Ben-Gurion university of the Negev

Faculty of Engineering Sciences
Departmenbf Industrial Engineering and Management

Evaluating Grid-Map Based Sensor Fusion mapping algrithms for
Autonomous Mobile Robots

Thesis submitted in partial fulfillment of the reggments
for the M.Sc degree

Keren Kapach

August 2007



Evaluating Grid-Map Based Sensor
Fusion algorithms for

Autonomous Mobile Robots

Thesis submitted in partial fulfillment of the rements
for the M.Sc degree

Keren Kapach

Supervised by: Prof. Yael Edan

Author: Date:
Supervisor: Date:
Chairman of Graduate Studies Committee: Date:
2007 VOWUN

BEER — SHEVA



This work was carried out under the supervision of
Prof. Yael Edan

In the Department of Industrial Engineering and Etzment

Faculty of Engineering Sciences



For my beloved husband and best friend, Ido.

“If I have seen farther than other men, it is
because I have stood on the shoulders of giants”
Sir Isaac Newton

Acknowledgments

To my advisor Prof. Yael Edan, thanks for the dedicated guidance throughoutptst two
years, even on tight schedules and crazy deadha¢sve knew well during this work. Thanks
for the professional assistance and for makinghallefforts for finding financial and technical
support whenever | needed it. Thanks for inspinng to pursue academic and personal
excellence; | hope our paths will cross again soon.

Thanks forDr. Ofir Cohen, for his smart and helpful comments; thanks folping me
achieving the tremendous goal of getting into yauge shoes.

| would like to thank the labs teaxfossi Zahavi Nisim Abuhazira, Rubi Gartner andPaul
Erez for their support and assistance inside and oeitbid labs.

Special thanks for the talented programn@en Braitstein, for helping me so much with the
code which gave me a great starting point.

To Juan Wax, Uri Cartoon and Shahar Laykin — thanks for the professional help and for
contributing me from your knowledge and wide expece, you've all been a great help.

To all the Automation course TA friend&jv Har Zahav®™, Yael Salzer Amit Gil and
Yuval Oren, thanks for the understanding and for coveringarpme, which allowed me to
complete this thesis.

To my family, Mom, Dad and my sisters Gali andHadar, thanks a lot for all the mental
support and patience you gave me during the longshd spent in the labs and in the
university.

Finally, I would like to thank my husbantio, for his love, understanding, tenderness and
encouragement during these tough and challengmnesti | could have never completed this
thesis without you.

Keren Kapach
Ben-Gurion University of the Negev
Beer Sheva, 2007



Table of Contents

IS 0 T U PP 1]
IS A0 1= o = \
Y 015 1 =T RS Vv
R 1)1 0T [ Tox 1 o o USSR 6
3 A o o o] =T o 0 o =2 ] o1 o 6
O O | o] [T o 1Y S PRSP 7
1.3 Research significance and iINNOVALIONS .....ceeeevviviiiiiiiiiiiie e eeeeeeeeeceeeeeeeeeeeeeeeeeeaees 7
2. ScCIentific DACKGIOUNG .............uuiiiii s e e e e e e e e e e eaees 8
20 S Y= o = T g (1] o o S UURRR 8
2.2 Sensor fusion for autonomous mobile robOtS ..o, 10
2.3 Sensor mapping algorithmsS...........coiiiiiiee e 11
2.4 Sensor fuSioN @VAlUALION ........coooi i e e e e e e e e e e e e e e eeeeeeeees 16
2.5 Cohen’s Work [CoNen, 2005] ........uuuuuummmmmmeeeieiiiniiiaseeeeeeeeeeeeseeeeesesssrennnneesenrsnnnnns 17
K J |V 111 T Yo (o] (o o | PSS 28
I 700 R € 1= 1= - | 28
3.2 Mapping algorithmS ... ..o e 29
3.3 PerformanCe MEASUIES .......uuiiiieiieeeeeeeeieeeeeeeeeee e s s e e e e e e eaaaeeeseeeeeneeeeeessesennnnnns 29
3.4 Sensor fusion algoritNMS............oiit ettt e e e e e e e e e e e e eeeeeeeeeeeeeennnns 29
3.5 EVAIUALION ... e e e e e e e e e e e e e e e e et et et e e n i ———————— e e e aaaaaaaaes 30
3.6 Experimental setup and analysiS ProCEAULE . .ccveveeviiiiiiiiiaeeee e e eeeeeee e 30
4. PerfOrmManCe MEASUIES .......ccooeiiieeeeeeeeeeieeeeaiaaaa e e e e e e e e e e eeeeeeeessebbbanna e e aeeaaaa s s s e e e aaeaaaans 31
o R 1= 1= = | USSP 31
4.2  Type |l performanCe MEASUIES............ummmmssreeeeeeeeeeeerreeeemnnrmnnnnaaeeees 31
5.  Sensor fusion algorithmsS ............iiiiii e 34
T A 1= o =T = | 34
5.2 Adaptive weighted average algorithm ... 34
6. Mobile robOt @XPEIMENTS .......uiiiiee e e e e e eeeeeaaaees 37
B.1  GENEIAL......oii i ——————— 37
6.2  EXPEerimental SEIUP .........coevvuuieees s ese e e s e e e e e e eeeeeeeeeeasssssessnns e e e e e e eaaaaees 38
(CIRC TN /=T o] o] 1 To Jr= 110 [0 111 410 4 LSS 39
6.4 EXperimental ProCEAUIE ..............vvicemmmmm e e e e eeeeeee e ettt e e e eeee e e e e e e e e e e eaaaeeeens 42
7. Evaluation and RESUILS......cccooi i e e e e eee e 45
4% R 1= = - | PSPPSR 45
7.2 Extended sensor fusion framework evaluation.................ccceiiiinieeeeeeeiiieeiieeeeee, 45
7.3 Adaptive weighted algorithm evaluation ..................ouvviiiiiiiiiee e, 53
8. Conclusions and fUuture reSEArCh ...........ciiiii e e e e e eeeeeaees 59
S 00 N @0 T 111 [ 1 U 59

8.2

FULUIE TESAICI . ..o e 60



O T 5 =Y (=] (= 1< TR 62

O Y o] 01T [0 [ o7 S TP 68
Appendix | Robot and laser— specifications anpaaters............oovvvvvviiiiiiiiieiee e, 69
APPENIX TT ARIA AP . ettt e e e e e e e e aaaaaaeeaaeaaeeeeeeernernnnnns 72
Appendix 1l Modifications to the research of Colj@ohen, 2005]...........eviiiiiiiiineneenne. 73
Appendix 1V SOFtWAre COUE ........coo it as 74
Appendix V Camera CaliDration...............ccceeeiiiiumiiiiiiiee e s 151
Appendix VI Mapping algorithms flowWCharts ....cccee..ooooiiiiiiiieiiiccie e, 162
Appendix VII Code for analySiS PrOCEAUIE ... . eeeieeeeeeeeeieeeeeeeeiiiiiis s 165
Appendix VIII Raw data for extended fusion framéwexperimental set........................... 176
Appendix IX Statistical evauation - Friedman’s MK ..........ccceeeeeeeeieeeeieiiiiiiieee e 180
Appendix X Statistial evaluation - Multiple comsam procedure ..........cccceeveeeeeeeeeeennnn. 187
Appendix XI| Statistical evaluation - Sign teSt HESSU...........uuuvuiiiiiiiiiie e 191
Appendix XIl Raw data for adaptive weighted averaggeriment Set..........cccceeeeeeeeen.n. 951
Appendix XllI Statistical evaluation - Friedman@nKing ..............cceeiiiienieieeeiiiiiiiieeeens 199
Appendix XIV Statisticl evaluation - Multiple comigan results ............ccccceeeeeeeieiiee e 203
Appendix XV Statistical evaluation - Sign test HSSU............ooooiiiiiiiiii e, 205

List of Figures

Figure 1 Propagation pattern for Polaroid ultras@mBensors ...........cooevvvvveeeeeivivvnnnnmmnees 12
Figure 2 Information flow at time t — logical andaptive algorithms...................ccceeev e 20
Figure 3 Pseudo code for fused map deciSion rule...............ooooviiiiiiiiiiiie e 25
Figure 4 numerical calculation example of type érformance measure ............cccceeen..... 3..3
Figure 5 Adaptive weighted average algorithm psecmite ...............coooiieiiiiiiiiiiiiiiieeeee 35
Figure 6 LS and ELS grid MapS ........coooes e etieis s e e e e e e e e e e e e e eeeeeaaase s mmmnnsssnnnnnnnn e as 36
FIgure 7 ARAD PIONEEI 2-AT ...ttt e e e e e et et b nnaanteseesa s 37
Figure 8 Schematic experimental setup (Adapted fatmen, 2005) .......cccceeevvveeeeeernennne. 38.
Figure 9 Ultrasonic array (Adapted from Pioneer maf) ...........cccooeeveeeeeeiiiiieieeeiiiiinnnnnn. 39
Figure 10 Ultrasonic grid map MOEl.........oceeemiiiieiiiieieieieeeeee e e 40
Figure 11 Pan and Tilt angles (Adapted from ColB05)...........coooviiiiiiiiiiiiiie e e 43
Figure 12 Experimental setup photographs ... 43
Figure 13 Map results, experiment 3, firSt repoemiti.............cooeviviiiiiiiiiiiiiiiiiie e 46
Figure 14 Map results, Experiment 3, first repetiti...............c..coevvvvevvevinnniiiiss e, 54
Figure 15 ARIA's schematiC arChiteCture. ... oieeiiiiiice e 72
Figure 16 Schematic diagram of main program floM ee..........cccoeviiiiiiiiiiiiiiiccs s 75
Figure 17 Camera angles: pan and tilt ... 151
Figure 18 Picture of the pointed ODSACIES . wevvvvveniiiiiiiiee e 152
Figure 19 Camera horizontal and vertical INeS . ........uueiiiiiiiieeieeeiieae 153
Figure 20 a and b values for each ObStACIE ....ceeevvvvivvviiiiiiiiii s 155
Figure 21 The robot’s distance relative to the S8t POINt ...........evvvviiiiiiinniee e, 158
Figure 22 Examples of the obstacle's photos irdifferent pan angles ......................... 160



List of Tables

Table 1 Selected examples of multisensor mappitgem@bots.............cevviiiiiiiiieeeeeenn. 11
Table 2 Coefficients for calculating the sensordogerformance measures ............ccc........ 22
Table 3 Fuzzy set values of the fuzzy variableS .........ccovvveiiiiiiiiiiiiie e 24
Table 4 Fuzzy sets values of the fuzzy outputiM@sa................coooviiiiiiiiiiiiii e 24
Table 5 If-TREN TUIES ... e e e e e e e as 24
Table 6 Pseudo-code for calculating type Il perfante measures..............cccevvevvvivnnnees 32
Table 7Adaptive weighted average algorithms .......cccoeeeiiiiiiiiii e 36
Table 8 OR algorithm truth table (USL) ... 40
Table 9 Probablistic approach truth table (US2) e ..cccoooeeiiiiiiecce e 41
Table 10 Detection area for each algorithm ............cccoooiiiii 42
Table 11 Experimental initial perofrmance measudoesAFL algorithm............................. 44
Table 12 Experimental initial peroformance measdogAdpWA algorithm........................ 44
Table 13 Experimental design for statistical evéilbmexperiment.............ccccceeeeiiiieie e 46
Table 14 Rcalculations for each performance MeasUre .. ..ccc..uveecieieieeeeeeeeeeeeeeeeeiieinnes 7.4
Table 15 Sensor fusion performance measures viduesperiment 2, first repetition......... 48
Table 16 OO Measure for four algorithms, seven tiipas, Experiment 7 ................cc.vue.e. 48
Table 17 Example of Friedman's test ranking, O@suee, experiment 7, seven repetitions48
Table 18 Friedman's teSt rESUILS.........oiiceeeeeeeie e 49
Table 19 Multiple comparison results for all PMxperiment 7 ........cccceeeeeeeeiiiiiiivviceeene 49
Table 20 SIgN tEST AALA .....uuuiiiie ettt e e e 50
Table 21 SIgN tESt rESUILS.......coi i eeeeee e e e e e e e e e e eeees 50
Table 22 Logical sensors mapping in the extendedmdusion framework......................... 51
Table 23 Algorithms mapping in the extended sefusion framework ............ccccceeeeeenn... 2.5
Table 24 Experimental design for statistical evéiliaexperiments ...........ccoceeevvvvininennn. 53
Table 25 Realculations for each performance measure..ccocc..vvvvvvvveeiiiiiiieee e, 55
Table 26 Sensor fusion performance measures viduesperiment 3, second repetition ... 55
Table 27 EE Measure for five algorithms, six refoatis, Experiment 2 ...........ccccceeeeeennnn. 55
Table 28 Example of Friedman's test ranking, O@suee, experiment 2, seven repetitions56
Table 29 Friedman's test results for ADpWA algonith...............cccoorrriiiiicce e v 56
Table 30 Multiple comparison results for all PMxperiment 1 .........ccccooeeviiiiiiiiiieiiivceee 56
Table 31 SIgN tEST UALA .....uuuuiiie e e e e e e e e e e e e e e e e e e e e e e aaeeeees 57
Table 32 SIgN tESt rESUILS.......coo e 57
Table 33 Logical sensors mapping for adaptive weidlaverage algorithm experiments set58
Table 34 Algorithms mapping for adaptive weightedrage algorithm experiments set...... 58
Table 35 Pioneer 2 AT Specifications (adapted fRdameer 2 manual) .............ccccevvvveeeee 9.6
Table 36 Laser's teChNICal data..........coocoeeeeiiiiiiieeie e 70
Table 37 Pioneer 2 AT parameters (adapted frorm&eo 2 manual)...............cceeeeeeeee 71.
Table 38 list of functions and eXPlanatiONS . ....eeeeeiiiiriiee e 76
Table 39 Raw data to derive the polynomial equation...............cccccceeeiiiiiiieeeeeeieeeee. 153
Table 40 Obstacle’s PiXels 0CatION .........oooiiiiiiiii e 154
Table 41 Values for each line's obStacCle ........cceuviiiiiiiiiiiii e 156
Table 42 Raw data to derive the mathematical retathip between Y[cm] an?é1 .......... 158
Table 43 Obstacle’s array location for the expire@me...............ooovviviiiiiiiineeeeeeeeeeeeen. 159
Table 44 Obstacle's 10cation aNalYSIS ..o eeeeeeeeieiiiiiii e e e e e e aaaes 161
Table 45 List of MATLAB functions and explanatians.............cooooviviiiiiiiiiiiiiiies 165



Abstract

This work focuses on sensor fusion algorithms fapping a mobile robot's environment. To
function in unknown and unstructured environmentsabile robot must be equipped with
several types of sensors, in order to better utalwisits surroundings and to overcome
inaccurate or wrong information when sensors matlion or fail. Sensor fusion deals with
the synergetic combination of information produdsdvarious sensors and is important in
obtaining a more complete and accurate image opttbeomena being studied.

In this research, a previously developed sensaoriusamework was extended and revised.
An additional physical sensor was added to theegysaind the system was expanded to fuse
data from this sensor as well. A new sensor fualgarithm was developed.

Mapping the environment is important for severdiatic tasks including exploration tasks
and path planning. The binary grid map model isommon mapping technique and was
employed in the previously developed sensor fusiamework. In this thesis, a non-binary
grid map was used to indicate each cell’s certainty

Down through the years, many sensor fusion algostior mapping the environment for
mobile robots have been developed and implementéast of them requirea-priori
information about the sensor's performances ostine@undings conditions, which is hard and
sometimes impossible to find in unstructured enwiments. In this research, a new adaptive
sensor fusion algorithm was developed and impleetenthe algorithm uses non-binary grid
maps and on-line measures of each sensor’s peniecesaThe measures developed give more
weight in the fusion process to the better perfagrsensor. The algorithm also uses a new
enhancement procedure that aims to improve the m@aded by the different sensors. The
enhancement procedure checks each cell’'s neighdiods determines which cell indeed
contains an obstacle and which cell should bedceas noise.

The algorithm was evaluated using a previously kgesl statistical evaluation method for
evaluating the different fusion algorithms and cting the best one. The method defines the
experimental setup and procedure for testing trgordhms in various environmental
conditions. Two evaluations were made. The firsg aimed to test the extended sensor fusion
system, while the second aimed to test the perfocmaf the new sensor fusion algorithm in
comparison to previously developed fusion algorghm

Results from the first evaluation indicate that test performing algorithm in the previous
framework, an adaptive fuzzy logic algorithm, isethest performing algorithm in the
extended framework as well. Results from the seewadliation indicate that the enhancement
procedure did not affect the results at all and thacomparison to previously developed
fusion algorithms, the new developed adaptive weigjlalgorithm is superior.

Keywords: Sensor fusion, mobile robots, mapping algorithgngl map, adaptive algorithms,
performance measure, evaluation.

This thesis is in part based on the following pedtiions:

1. Kapach K. and Edan Y. 2007. Adaptive weighted ayeraensor fusion
algorithms for mobile robots, IADIS Internationaloerence Intelligent
Systems and Agents: 43-50.

2. Kapach K. and Edan Y. 2007. Evaluation of grid-msgnsor fusion
mapping algorithms, IEEE International ConferenceSystems, Man and
Cybernetics.



1. Introduction

1.1 Problem description

To perform in unknown environments a mobile robaistnbuild an accurate map that
describes the robot’s surroundings.

The first step in building a map is to choose tperapriate representation model [Cohen,
2005]. There are several different techniques épreasenting the environment of a mobile
robot, including configuration space [Lozano-PetE281]; generalized cones [Brooks, 1982];
spherical octree [Chen, 1987]; and occupancy grgsr{Moravec and Elfes, 1985; Stepan,
2005]. In this research the grid map paradigm v&esisince it is a simple and fast technique.
In the grid map model the environment is dividetb idiscrete cells, each containing a value
that indicates whether the area represented bygelés Occupyor Empty There are several
ways to fill the cells within occupancy grid mamémethod is the binary grid map, where ‘0’
representEmpty cell and ‘1’ represent®©ccupycell [Cohen, 2005]. Another method is a
probabilistic grid map, where each cell contains pnobability of being occupied or empty
[Moravec and Elves, 1985; Stepan, 2005]. Anothenroon approach for grid maps is the
Certainty Values method (CV), where is cell is gsed a value that indicates the measure of
confidence that an obstacle exists within thatadlé area [Ribo and Pinz, 2001; Hoapall,
2002]. Probabilities and CV’s are usually derivedni distribution functions based on the
sensor’'s model.

An autonomous mobile robot must be equipped witteise sensors in order to robustly sense
its surroundings due to the different sensory dtarestic and their inherent uncertainty in
sensory information. To enhance the accuracy ofntia@s the environmental information
received from multiple sensors must be merged. @ension deals with synergetic merging
of information from several different physical serss[Adibi and Gonzales, 1992].

Multisensor integration is the synergetic use @f ithformation provided by multiple sensory
devices to assist in the accomplishment of a tgsthé system. Multisensory fusion refers to
any stage in the integration process where theam iactual combination of different sources
of sensory information into one representationaimit. The distinction is made between
multisensory integration and a more restrictedamotof multi sensor fusion to separate the
more general issues involved in the integratiomufitiple sensory devices at the system
architecture and control level, from the more sjedssues — possibly mathematical or
statistical — involved in the actual combinatiom fasion) of multisensory information [Luo
and Kay, 1989].

To complete the mapping mission, it is necessarghoose a method for handling the
multitude of sensors. In multi-sensor systems,ldlgecal sensor paradigm is commonly used
[Henderson and Shilcrat, 1984].l18gical sensolis an abstract definition of a sensor that can
be used to provide a uniform framework for multseny integration [Henderson and Shilcrat,
1984]. This approach enables to add sensors teytem without changing its whole concept.
In this work several logical sensors were impleragént

The next step towards an accurate environment mgpgito choose the desired sensor fusion
algorithm. Over the years, several sensor fusiothoas and algorithms have been developed
for mapping the environment of a mobile robot, ,eagighted average [Belknagp. al, 1986];
probabilistic [Harmon, 1986]; certainty factors [Beap, 1986; Hansoet al., 1988; Kamat,
1985]; and fuzzy logic [Huntsberger and Jayaramémyud 987].

6



These algorithms and other different fusion methads employed when assuming a-priori
characteristics of the sensors (e.g., probabiléied standard deviation) including Bayesian
[Sukumaret al, 2007]; Neyman-Pearson [Thomopoukds al, 1989]; Kalman filter [Zhtet.

al., 2006] and extended Kalman filter [Mirzaagial.,, 2007].

In unconstructed and dynamic environment, whicah @mmon mobile robot’s environment,

it is very hard and sometimes impossible to predigiriori the sensors characteristics.

Therefore, there is a need to estimate online ésga@ble characteristics while the system is in
motion. Furthermore, a mobile robot operating idyaamic system must respond online to
environmental changes. This requires an algorithat is able to adapt to the changing
environment and sensory performances. Cohen [C&§] developed an adaptive sensor
fusion framework that fuses data from different sibgl sensors using different fusion

algorithms, including an adaptive fuzzy logic aigfan.

This research is based on Cohen’s work and intendstend it.

1.2 Objectives

This research deals with grid-map based sensoorfulsir mapping the environment of a

mobile robot. The objectives of this research were

e Extend Cohen’s work and evaluate its sensor fusemmework with a system that
contains three physical sensors.

e Develop a new adaptive sensor fusion algorithm dbase the extended fusion
system.

1.3 Research significance and innovations

Cohen’s work has been extended to fuse data frometlphysical sensors, and its
performances were evaluated through the statisticgliation procedure.

Cohen’s binary grid map paradigm was extended ¢lude non-binary grid maps. The maps
was changed so occupied cells contains an integdee \that indicates the number of time the
sensor declares this cell as occupied, while ine@@hwork the binary grid map gave
information that this cell i©Dccupy (by assigning the binary value ‘1’), regardlesstioé
number of times this cells was declared @scupy This concept gives a lot of new
information about the environment that was losshie binary grid map concept. Using the
non-binary grid map allows to give more weight &l with higher values than the others,
because most chances are that this cells indeddicsmn obstacle instead of being marked as
occupied due to noises of sensor’'s deviations. & megap enhancement procedure was
developed and implemented. The enhancement prazadias to improve maps accuracy and
filter noises. The procedure checks each occupdd meighbors within the non-binary grid
map and decided whether this cell indeed containgbatacle or it should be treated as noise.
In addition, new performance measures were developerder to evaluate online the sensors
performances. These performance measures are os#te inew adaptive sensor fusion
algorithm. The new algorithm includes the use afi-bmary grid map and the new type of
performance measures, and allows the system oatiaptation to changing environmental
conditions. The new algorithm was proven to be sap& previous developed algorithms.



2. Scientific background

Chapter overview
This chapter reviews the literature of the relevagearch topics including: sensor fusion
applications, sensor fusion for autonomous molleots; different mapping algorithms for
ultrasonic, camera and laser sensors; and sergonfevaluation methods.

2.1 Sensor fusion

Sensors are devices that collect data about thédwayound them. Sensors range from
inexpensive cameras to earth observation satetidegng millions of dollars. In spite of this
variety, all sensors have a few things in commarerz sensor device has a limited accuracy,
and is a subject to the effect of some type ofs@giand will under some conditions function
incorrectly [Brooks and lyengar, 1998].

To overcome these drawbacks most applications gmpldtiple sensors. This requires the
multitude of sensory data from multiple sensorsptovide more reliable and accurate
information [Luoet al, 2002]. When done properly, sensor fusion combingst from many
independent sources of limited accuracy and réifialo give information of know accuracy
and proven reliability [Brooks and lyengar, 1998he potential advantages in integrating
and/or fusing information from multiple sensors #nat information can be obtained more
accurately, concerning features that are impossibfeerceive with individual sensors, as well
as in less time, and at a lesser cost [Adibi andz@les, 1992].

Sensor fusion is a rapidly evolving research arehraquires interdisciplinary knowledge in
control theory, signal processing, artificial itigggnce, probability, statisticgtc.[Luo et al,
2002]. In recent years, benefits of multisensordiudiave motivated research in a variety of
application areas such as military applicationsjate sensing, biomedical applications and
robotics applications.

Military applications include the area of intelligge analysis, situation assessment, force
command and control, avionics and electronic warfauoet al, 2002]. Filippidis and Martin
[Filippidis et al, 2000] presented a sensor fusion system thatebtexid surface land mines
given multiple registered images of the mined am#ained from a suite of visible to IR
wavelength sensors. Carson [Carstral, 1996] fused data from radar and a set of sensors
named identification friends-or-foe (IFF) sensarsmiprove capabilities of tracking and target
identification system using two algorithms. The IE€nsor provides target height which is
used to improve accuracy of 2D radar. The radaviges consistent and accurate bearing and
range measurements which are not always availabie the IFF senson.€., from hostile
targets). The fusion of data obtained from thess@es provides data not obtainable by either
sensor alone [Carsaet al, 1996]. Remote sensing applications include nooimig climate,
environment, water sources, soil and agriculturevall as discovering natural sources and
fighting the import of illegal drugs [Bell, 1995Folaiman [Solaimaret al, 1999] applied
fuzzy based multisensor fusion to land cover clasgion using ERS-1/JERS-1 SAR
composites. Several sensor fusion applications wepmemented in biomedical systems.
Hernandez [Hernandex al, 1999] presents a multisensor multisource dageifuscheme to
improve atrial (AA) and ventricular activity (VA)atection in critical care environments. The
approach seeks to integrate, with the usual elestdiogram (ECG) signals, complementary
data from hemodynamic processes or from the eseph&f"G (EECG). Solaiman [Solaiman



et al, 1998] used fuzzy logic based fusion methods &ature extraction from ultrasound
medical images, and results showed good qualigctien.

Since robots are usually equipped with differenmisses, multisensor integration and fusion
techniques are suitable for areas of industrialot®bsuch as motion planning, material
handling, part fabrication, inspection and asserflolyp and Kay, 1992]. Thomas [Thomeis
al., 2007] implemented a particle filter using senfigion for different assembly tasks. A
sensor fusion system that fuses data from force acckleration sensors to improve
environmental force estimator in industrial robasapresented by [Garcé al, 2004]. Luo
and Lin [Luo and Lin, 1996] have applied multisension techniques via an artificial neural
network to fuse measurement data from force senaomistic emission, accelerometer data
and power signal to predict tool wear [Luo and Llif96].

Groen [Groenet al, 1986] describe a multisensor robotic assembltiostaequipped with
vision, ultrasonic, tactile and force sensors. peration, vision sensors are used to recognize
different parts of the assemblies as they arrivearying order and at undefined positions.
Feedback information from the force sensors ang#ssive compliance of the robot’s gripper
are used for bolt insertion operations and to partsand place assembly housing on work
spots. Final inspection is performed with visionsa@'s [Groeret al, 1986].

The interaction between the sensors can be in theger ways: complementary, competitive
or cooperative [Durrant-Whyte, 1998 omplementargensors do not depend on each other
directly but can be merged to form a more compbétture of the environment. For example,
a set of radar stations covering non-overlappinggggphical regions. In this case, fusion
implementation is easy since no conflicting infotima is presentedCompetitivesensors
provide equivalent information about the environimdfor example, three identical radar
stations covering overlapping geographical regidmghis case, a failure of one or two units
can be tolerated. In this case, fusion must hatidiecase of conflicting readinGooperative
sensors work together to derive information thaithee sensor alone can provide. For
example, two video cameras in stereo for three-dgmmal vision. Fusion in this case cannot
be approached as a general problem because it dependetails of the physical devices
involved [Brooks and lyengar, 1998].

In this research, the sensors operate complemenksion in this case offers several
advantages. First, fusion of redundant informaian reduce overall uncertainty and thus
increase the accuracy with which the features aregpved by the systems. Second, multiple
sensors providing redundant information can alsees® increase reliability in case of sensor
error or failure. In addition, complementary infanon from multiple sensors allows features
in the environment to be perceived that would oties be impossible to acquire if we only
used the information supplied from each individsahsor operating separately [Durrant-
Whyte, 1988b; Luet al, 2002].

There are different levels of representation whesgon from multiple sensors can take place
[Castellano%t al, 2001; Cohen, 2005]:
= Signal levelfusion refers to the combination of signals frongraup of
sensors to provide a signal that is usually ofsame form as the original
but with higher quality [Adibi and Gonzales, 1992].
= Pixel levelfusion can be used to increase the informationerdgrassociated
with each pixel in an image formed through a coratiom of multiple
images,e.g., the fusion of a range image with a two-dimensiangnsity
image adds depth information to each pixel in titerisity image. This can
be useful in the subsequent processing of the iaddi and Gonzales,
1992].



= Feature levefusion can be used both to increase the likelihbatla feature
extracted from the information provided by a seremually corresponds to
an important aspect of the environment and as meaoseating additional
composite features for the system to use [Adibi@odzales, 1992].
= Symbol levelfusion allows the information from multiple sensaio be
effectively used together at the highest level lo$teaction. Symbol level
fusion may be the only means by which sensory métion can be fused if
the sensors are very dissimilar or refer to differeegions of the
environment [Adibi and Gonzales, 1992].
Most of the sensors typically used in practice mtewdata that can be fused at one or more of
these levels. In this research, we used pixel esbdn.

2.2 Sensor fusion for autonomous mobile robots

Mobile robots often operate in an unstructured dyaamic environments and are equipped
with different types of sensors.§.,vision, laser and ultrasonic) to perform a wideety of
tasks (such as dead-reckoning or mapping). As altré®m this diversity, sensor fusion
methods are needed to translate the different sgmsputs into reliable information that is
needed to complete tasks such as self-locationprakipg, path computing, motion planning
and execution. Hence, it becomes necessary to dmnsitegrating or fusing data from a
variety of different sensors so that an adequateuatof information from the environment
can be quickly perceived [Adibi and Gonzales, 1992]

In implementing these tasks, different approactss levolved for accumulating geometrical
representations of the unknown environment for teobiobots [Cohen, 2005]. The
representations used for robots operating in unknomunstructured environments allow their
world models to be dynamically modified and updateith uncertain sensor information
[Abidi and Gonzales, 1992]. Among these represematthere are spherical octrees [Chen,
1998]; configuration space [Loranzo-Perez, 198&heagalized cones [Brooks, 1982]; Voroni
diagrams [Miller, 1985] and polygon region modelillist, 1985].

Multisensory information can be represented in dirdimensional grid of cells. Each cell in
the grid corresponds to a region of space from lwhihe® sensor information is assumed to
have originated [Adibi and Gonzales, 1992]. Disemt continuous values can be used to map
free and occupied areas within the environment. Wdentinuous values are employed, the
values represent the certainty of an obstacle bainghe cell, with '0' and '1' values
respectively implying an empty or an occupied ¢Mbravec and Elfes, 1985]. Discrete
values can be either binary [Cohen, 2005] whereaf@ ‘1’ representEmptyor Occupycells,
respectively. Another approach for discrete grigpsthat was implemented in this research is
filling the map with integer values that indicatee number of times the sensors declared each
cell as occupied. The latter gives a lot more imfation regarding the cell’s state, and allows
giving more weight to cells with higher values. Tdred map model is attractive as a means of
representing multisensory information because #ta fom each sensor are automatically in
spatial correspondence, as long as each sens@ooa&ctly map its data to the grid. It is also
possible for fusion and other processing to takeglwithin each cell before any further high
level processing is required, a feature that isargmt in many real-time applications. A
possible disadvantage of a grid representation ithasually requires a large amount of
memory to store the grid [Adibi and Gonzales, 1992]

Many algorithms and methods have been commonly usednsor fusion when mapping the
environment for mobile robots (Table 1).

10



Table 1 Selected examples of multisensor mappinigjlmmoobots

Mobile Operating | World model Fusion
Sensors : . Reference
robot environment | representation method
Pioneer | ultrasonic Indoor Grid map adaptive [Cohen, 2005]
2-AT camera fuzzy logic
Magellen | Ultrasonic | Manmade Grid map Rule based [Lai, 2005]
pro robot | Laser
Mobile Sonar Indoor Feature based| Extended [Vazquez, 2005]
platform | Infrared corridor map Kalman filter
Pioneer | Odometer | Indoor Grid map Extended [Ivanjko, 2005]
2DX Sonar corridor Kalman filter
Nomad | Laser Unknown Feature based Extended [Costaet al, 2006]
200 rangefinder map Kalman filter
Jinny Laser Unknown Grid map Rule based [Chaeteal., 2006]
GPS
Kim's Sonar Indoor Grid map hierarchical | [Kim, 2006]
mobile Infrared corridor fusion:
robot Camera geometric,
rule based
and Bayesiar
Pioneer | A set of Small static | 3-D grid map Rule based [t al, 2006]
Il virtual | ultrasonic virtual
mobile sensors
robot
Liu's Ultrasonic Laboratory Grid map Consensug [Liu et al, 2006]
mobile theory
robot
Nomad | Ultrasonic | Laboratory X-Y graph Tangential | [Bank, 2007]
XR4000 | Laser regression
Wang's | Ultrasonic Laboratory Feature basedRule based [Wangt al, 2007]
mobile map
robot

2.3 Sensor mapping algorithms
2.3.1 Ultrasonic sensors

Many mobile robots, including the one describedthis research, use Polaroid ultrasonic

sensors for environmental representation [Moraved BElfes, 1984; Oriolcet al, 1997,

Toledo et al, 2000; Karaman and Temeltas, 2004; Bank and KampRe7]. One key

characteristic of ultrasonic sensors is the propagaattern, as shown in Figure 1. A "lobe" is
defined as the angular range between the normacttain,i.e., 0 and a zero of the first
derivative of the plot, as can be seen in Figurd@He primary lobe is about 15° wide. The

secondary lobe is about 30° and the tertiary isie#6° wide [Cao and Borenstein, 2002].

11




Figure 1 Propagation pattern for Polaroid ultras@rsensors

(Adapted from ultrasonic sensor's data sheet)

For map-building task a large beam width is un@éde since it increases the uncertainty
about the actual location of an obstacle. The teduhis uncertainty is that obstacles tend to
be represented in the map as larger than theyraal[Cao and Borenstein, 2002]. Since the
beam width of the ultrasonic sensor is limited, iesvvmental mapping using ultrasonic
sensors is commonly done by a set or a ring ofasnmounted on the robot in different
angles. The multiple sensors also help locateg¢hed in the horizontal direction.

The common occupancy grid map paradigm was firsbdluced by [Moravec and Elfes,
1984]. In this model, the sonar maps are two dinoeas$ arrays of cells corresponding to a
horizontal grid imposed on the area to be mappée grid has MXN cells, each of size
deltaXdelta. The sonar reading in the final map ¢l values in the range [-1, 1], where
values less than O represent probably empty regieractly zero represents unknown
occupancy, and greater than zero implies a probadtypied space. After preprocessing the
incoming readings from the sonar to remove chramrors by thresholding, averaging and
clustering, the reading is projected into the adroell using density functions according to the
uncertainty regions in the sonar reading [Moraved &lfes, 1984]. These probabilistic
sensor-level sonar maps serve as the basis foltdewel description of the robot's operating
environment. These multiple descriptions are depalofor various kinds of problem solving
activities. Several dimensions of representatios defined: theabstraction axis, the
geographicalaxis and theesolutionaxis [Elfes, 1987]. In the certainty grid modeldMvec,
1988]; the robot's work area is represented byicargap. Each cell within the grid contains a
certainty value (CV) that indicates the measureaoifidence that an obstacle exists within the
cell area. CV's are updated by a heuristic proltgbilinction that takes into account the
conical field of view of the sonar [Elfes, 1987].

Histogram in-motion mapping (HIMM) is presented [Borenstein and Koren, 1991]. The
HIMM model uses a two dimensional Cartesian histogmgrid for obstacle representation.
Like the certainty grid concept, each cell in thstdgram grid holds a certainty value that
represents the confidence in the existence of ataole at that location. In this model, only
the cell that corresponds to the measures distamgédies on the acoustic axis of the sensor is
incremented. A probability distribution is obtainieg continuously and rapidly sampling each
sensor while the vehicle is moving. Thus, the saelieand its neighboring cells are repeatedly
incremented. This results in a histogramic proligbdistribution, in which high certainty
values are obtained in cells close to the actwedtion of the obstacle [Borenstein and Koren,
1991].

Fuzzy logic concepts are also used for robot péimems well as planning collision-free
motions [Orioloet al, 1997; Karaman and Temeltas, 2004]. A map of thdrenment is
defined as the fuzzy set if unsafe points, whosmbeeship function quantifies the possibility
for each point to belong to an obstacle. Each painhe map has two fuzzy valuedqcupy

12



and Empty which are not complementary. The membership fancderives from the
ultrasonic sensor model and describes how the dexreertainty of the assertioiampty and
'‘Occupy varies in the map for a given range reading.

An occupancy grid map can also be built usingiardilf neural networks [Toledet al, 2000].
The neural network output supplies the probabiityoccupancy of the points considered as
input. Thus, the occupancy estimated value iszedlbearing in mind the different ultrasonic
sensors readings at the same time. The neural rletraining is supervised and is carried out
for a series of representative contours locatemltimt sensors zone. Each contour is composed
of a set of points chosen as function of the daffieresponse of the ultrasonic sensors in real
environment. During training the output target fioe network is 1 if the considered point is
occupied and 0 if is not. Once trained, the neneslvork output generates a value between 0
and 1 representing the probability of occupancy.

Another common environment mapping is the segmaseth map [Perez-Lorenzo et al,
2004]. The environment representation is modeletth Waatures detected by sonar sensors.
First, a local metric occupancy grid is built. Eacéll in the map yields the occupancy
probability of the corresponding region of the @amiment. The local grid acquired at instant t
is combined with the metric map acquiredt-4t Second, each occupancy value in the local
grid map is thresholded. Cells whose occupancyevalabove a certain value are considered
occupied cells, and all other cells are considemagty. Next, a Hough transform generation
finds lines in the local grid map. These lines aréracted, and are used to find the main
segments in the local metric map.

A probability based solution for map building isepented in [Kodagodet al, 2006]. The
map is built using a single ultrasonic sensor,antrast to most of the available map building
systems. The sensor is mounted on a rotating sinaftdiscrete sonar observations taken at
regular time intervals, by rotating the shaft inadinstep angles are incrementally merged into
partial planes to produce a realistic represemntatibenvironment that is amenable to sonar
localization. The probability model that has beesmplemented is based on the sonar sensor
model in an effort to allocate probabilities baseda sonar reading. In this model the sensors'
range area is divided into three regions basecherdelay i(e., the alleged distance of the
obstacle). The regions are: unknown, probably engtgl probably occupied. The three
regions have different equations based on whichptiledability of occupation is calculated
[Kodagodaet al, 2006].

High resolution ultrasonic imaging [Bank and KampR807] can be built using straight line
representation. Sensor data is interpreted usingetdial regression that considers sensor
properties as well as physical reflection propsrgtultrasound. This allows reliable detection
and localization of straight lime segments whichaldbe the boundary of geometric objects.

2.3.2 Machine vision

Visual information is the most powerful signal soeirof sensory information available to a
system [Luo and Kay, 1989]. Many different types mn visual sensors are used in
combination with vision sensors to compensate dones of the difficulties encountered in the
machine processing of visual information [Luo anayK1989; Miuraet al, 2002; Luet al,
2005; Tomono, 2005]. Tasks such as object recagnitieature extraction and SLAM can
sometimes require the aid of additional types ofsees to approach the capabilities of a
human using just visual information [Lua and Ka98%; Arraset al., 2001; Davison and
Murray, 2002; Kluge, 2003]. As small, cheap camdrage grown increasingly common, the
software/hardware interfaces needed to grab cafreeres has become easier to find and use
[Wooden, 2006].

13



A lot of research has been done in the area pehdtigplementation of visual-based sensing
for performing several tasks in robotics systenve®a are mentioned in this section.

An application for robot’s localization using gedme features (vertical and horizontal lines)
from a 360° laser rangefinder and a monocular miggstem is presented in [Arras$ al,
2001]. Vertical lines are extracted from imagesaof embarked CCD camera. First, a
specialized Sobel filter approximates the imagealigra in the horizontal direction and the
most relevant edge pixels are extracted and thidnyedsing a standard method. Next, the
horizontal position of each edge pixel is correcgedding a new position using a dedicated
formula resulting from the camera model. Finallgluenns with a predefined number of edge
pixels are labeled as vertical lines.

Active visual sensing has been used for the expboraof sparse landmark information
required in robot map-building [Davison and Murra@02]. The visual landmarks in use are
features which are easily distinguishable fromrtarroundings, robustly associated with the
scene geometry, viewpoint invariant, and seldomuaiexl. The robot points its two cameras
in rather arbitrary directions and acquires feauferegions of image interest are found.
Features are detected using Harris corner detfideris and Stephens, 1988]. This rather
rough collection of features is then refined ndtyrdirough the map maintenance steps into a
landmark set which spans the robot’s area of ojerat

Detecting free regions in the robot’s surroundirsing stereo vision and visual tracking of
persons is presented in [Tanakaal, 2003]. First, landmarks are found by using aalation
based stereo method proposed by [Faugetras, 1993]. In this method, a dense depth map
from a pair of images taken at different viewpoirgscalculated through determining each
pixel's correspondence to a landmark by correlataond the depth is calculated based on the
focal length of the cameras, baseline and the digp®&oints in the depth map that belong to
the ceiling or floor are recognized as landmarksgusheir height, and are not regarded as
obstacles. The remaining points are called landrparkts L. Uncertainties in the correlation
is analyzed according to the camera’s model ancesanneliable objects can be completely
eliminated. Next, pixels that may correspond toeaspn are identified by subtracting the
background image from the current frame, and eacblxmn is scanned in up direction until
a pixel belonging to a person is found. Then, thelps regarded as a feature point and a
navigation map based on the feature pointes i$ [d@ahakaet al, 2003].

Locating and tracking a human in the vicinity ofabot using several sensors and a vision
system is described in [Let al, 2005]. The robot’'s surrounding is described usamrg
occupancy grid, and the sensing objective is terdahe the cell occupied by a human. The
cell’'s size is sufficient for robot collision av@idce and preserving the human’s safety. Two
analog color cameras equipped with wide angle keasel a frame grabber were installed on
the ceiling, facing towards the center of the oeaqy grid. The cameras are used individually
S0 a single occlusion does not cause the visiosyto fail. The image processing algorithm
first captures a color image and converts it fro@MRto HSI color space. Then, it finds the
blob corresponding to the human’s hardhat by tlolelsing and size filtering. The centroid of
the blob is computed and based on the camera atdibris converted from the 2-D image
coordinates to a line of sight in 3-D world coomt®s. Then, the line is truncated into a line
segment using the typical range of human heightiangrojected onto the occupancy grid
indicating the cells potentially occupied by a hunflau et al,, 2005].

Another vision based sensing for outdoor real-tiof@tics platform is described in [Wooden,
2006]. The robot is equipped with two pairs of calameras mounted on its head and the plan
is to plan a path to a known goal point using thd gased map building process. The map
building process starts as a frame grabber captrpair of images from two calibrated
cameras. The images pass through a stereo libndrigh has knowledge of the relative

14



physical geometry of the cameras as well as timinsic properties. The output is a depth
map, i.e., three dimensional terrain, in a local coordinatemfe. Then, a first coordinate

transformation step corrects the depth map forpiteh and roll of the robot, based on the
inertial navigation unit, and a second coordinaé@gtformation converts the depth map from
the local frame to global, using the robot's yaw aarrent global position. Next, the terrain is
described using a derivative operation on the steathin map and the new information is
incorporated into the robot's global map [Wood€Q&].

2.3.3 Laser

A radial laser scanner is a device that measumsgarties to the objects in the environment
intercepted by the laser beam [Reina and Gonza®]. Laser range scanners have become
the sensor of choice because of their accuracyvwand availability [Amigoniet al, 2006].
Three basic technologies are used in active lasegimg. Amplitude Modulation Continuous
Wave (AM-CW) lasers use the difference of phasevbenh emitted and received mean; Time-
of-flight (TOF) lasers measure the travel time ofpalse; and Frequency Modulation
ContinuousWave (FM-CW) use the frequency shift of a frequemagdulated laser for
measuring range [Hebert, 2000]. Among the avail@blzlaser scanners, SICK LMS-200 has
been broadly used, including in this research. Thia TOF laser sensor; a pulsed infrared
laser beam is emitted and reflected from the olgedtce. The time between the transmission
and the reception of the laser beam is used touredlse distance between the scanner and
the object. The laser beam is reflected by a matiirror turning at 4500 rpm, which results
in a fan-shaped scan pattern [Ye and Borensted?]20 he third type of laser is the AM-CW
lasers. These lasers are faster and perform bedbssd to medium range.g., 50m range).
They are typically more sensitive to ambient ligirid therefore more suitable for indoor use.
TOF scanners can perform at long range and aresbéstd for mobile robot application in
outdoor settings; FM-CW sensors can be considenaloie accurate, but at a cost of a more
complex design and more brittle packaging. Mosbtabapplications use AM-CW or TOF
sensors [Hebert, 2000].

Over the years, a lot of algorithms for mapping fetobot’'s environments using laser scans
were developed. Some of the methods are describtbe ifollowing section.

Map building for a mobile robot equipped with a 2i&ser range finder is described in
[Gonzaleset al, 1994]. The map consists of a set of short segsrapmproximating the shape
of the environment, and the update process involvesrrespondence problem between
segments from the current global map and segmem the local map obtained in each
position. The advantage of using geometric desoriptover the more common grid-based
representations is that line segments can be m&pexs with few numbers and produce maps
that are easier to use [Amigosi al, 2006]. The local map building is accomplishedaar
different steps: filtering scanned points that dbexhibit a local alignment within a tolerance,
clustering the scan at points where the distantedss successive points exceeds a threshold,
clusters segmentation into pieces of scan suitil@ good linear fitting and line segment
fitting where line segments are selected througst Ifigting all points within the above
segmented groups [Amigoet al, 2006]. The final result of this process is a laoap that
composed of a set of line segments that approxithateontour of the surrounding obstacles
[Gonzaleset al, 1994].

Geometrical primitives maps produced by a 2-D laaage finder is described in [Vandrope
et al, 1996]. Their map is composed of two different metrical primitives. The first
primitive is the line segment which is used to mMadkeobjects with a width exceeding 30 cm.
The second primitive is a cluster which is usedthasure points which lie close to each other

15



but do not pass the criteria for line extractioheTparameters on the geometrical primitives
are provided with uncertainties depending on theettainty of the robot position estimate and
the uncertainties of all measurements leadingitoghmitive. The map is dynamic, so objects
which have removed from the real world are remdvenh the map as well.

Another geometric features laser map is present¢@astellano®t al, 2001]. First, the laser
data is processed by a segmentation algorithm ¢dasbs and Tardos, 1999]. Next, three
types of features are extracted: segments, whiele@rsidered low-level features; corners and
semi planes, which semantically upgrade the reptagen of the environment. Corners are
found in the intersection of two consecutive segmerhilst semi planes are found at the free
endpoints of segments. Finally, a landmark is fatiog each set of consecutive segments and
their derived corners and semi planes.

In general, the environment around the mobile ratmetid be quite complex, and it may be
composed of many obstacles such as chairs, bdyeteds on the tables and so on. Thus, it is
not practical to represent all those obstaclesthsrdines or clusters [Kwon and Lee, 1997].
To remedy this problem, another map model is sugdeshat represents the entire
environment by a series of stochastic obstacleonsgiwith their own stochastic variables
[Kwon and Lee, 1997]. Each stochastic region isregegnted by the mean, variance,
covariance and by the number of scanning data tsatetermine the stochastic variable.
Laser scans are mapped into a number of clustaongglf the distance between two
successive data points is smaller than 20cm, th@gare denoted to be in the same cluster.
New scans are matched and updated using rule-lzdgedthm according to the stochastic
variables of each cluster [Kwon and Lee, 1997].

Grid map building using laser scans is describefPatel et al, 2005]. The purpose is to
identify key unknown regions in the trajectory detmobile robot and navigating the robot
through it by using active laser sensing. The dlgar performs a look ahead search which
picks the optimal direction to pan the laser acewydo a utility function. The vehicle builds a
map as it senses its environment in the followiraymEach laser scan is converted into a set
of points in the global coordinate frame. The p®im the scan are compared to their
neighbors and labeled. Points with sudden steepgesain z values are labeled as obstacles,
otherwise they are labeled as free. The pointplaed into their corresponding grid cells and
the status of the cell is updated [Patehl, 2005].

Most map building methods employed by mobile rolats based on the assumption that an
estimate of robot poses can be obtained from odgmeadings or from observing landmarks
or other robots [Amigoni, 2006]. However, odomedata is often unreliable or does not exist
for miniature robots. In addition, it is not podsilbo interrupt the mapping process and resume
it at a later time without having to reset theialiposes of the robots [Amigoni, 2006]. Hence,
a method for building segment-based maps withowe poformation was developed and
detailed in [Amigoni, 2006]. Points returned fronR& laser scanner are approximated by
line-segments denoted as a partial map. A line sagis represented by its two end points in
the reference frame of the map. Range data capolleeted by single or different robots. Two
partial maps are integrated and a set of partigdsni® merged in order to build a global map
using a matching process. In this method, it isfieant if the scans are collected during a
single session or multiple sessions, by multipleots or a single robot. Robots can be added
or removed at any time, and they do not need tevktheir own position [Amigoni, 2006].

2.4 Sensor fusion evaluation

Along the years, many sensor fusion algorithms Hseen developed and implemented [Luo
and Kay, 1989]. Each algorithm has its advantagesdisadvantages and therefore a method
for comparing performances is needed. Performavaki&ion of sensor fusion in most cases

16



involves real environment experiments, which isbbematic in dynamic and unstructured

environment, since it is impossible to repeat expents under identical conditions. A second
approach for performance evaluation uses theotatialysis, but it is also hard to implement

since it is usually difficult to characterize sensperformances in unstructured environments
[Cohen, 2005].

As a result of the difficulties, there is a needitol a quantitative comparison of algorithms to
identify the most effective fusion technique. A® timethod of the evaluation can have a
significant effect on the validity of the evaluatjathe evaluation approach should be taken
with care. Among the characteristics that we waXgect such a method to provide are: the
evaluation should not be biased in favor of spedfistems and should ideally be independent
of the data used. In addition, the evaluation st objective but in broad agreement with a
subjective assessment. The evaluation should give ogerall indication of system
performances and should not be significantly affédiy exceptional results [Schweriepal,
2002].

An example of performance measures for fusion #lyos is available for landmine detection
problems. The probability of detection is plotteghimst the probability of false alarm for an
adjustable threshold and creates the ROC (receperator characteristics curve). Based on
this ROC curve, the minimal risk can be calculdtadspecific cost functions [Cramet al,
2001; Schweringet al, 2002]. ROC curves are also used to diagnose rnpeaftces in
radiologic imaging using statistical methods [M&t@86].

Several performance measures for comparing andtitptare evaluations of sensor fusion
mapping algorithms were developedfithess factorfor comparing fused grid map generated
from three fusion algorithms is presented in [Hobkzhad, 2002]. The factor is calculated
for each map, and represents the similarity offtised map to the corresponding true map of
the simulated environment by calculating the ddfere in the occupancy probability between
two corresponding cells in the obstacle’s perinsfeioseinNezhad, 2002].

Another performance measure is theore measure [Martin and Moravec, 1996] which is
defined as thenatchof a map to an a-priori ideal map. Thmatchbetween two maps (for a
given relative displacement) is the log of the bty that the maps represent the same
world. However, this method does not describe tiedity of the grid with respect to using the
grid for planning, and for that reasorsafety measurwas introduced [Stepaat al, 2005].
The safety measure can be computed from the plapaidin the fused map and the pattern
grid and allows selecting the best fusion methadfspecific environment.

Statistical measures usually require a-priori aggions such as on the data distribution
[Faceliet al, 2004]. Such a-priori assumptions often lack \&lwh in real world situation and
therefore are not accurate enough. A statisticaluaion method for comparing sensor fusion
mapping algorithm that does not requar@riori information about data distribution or sensors
performances was developed in [Cohen, 2005]. Tlathad defines the experimental design
and statistical analysis procedure and was implésaan this research (chaptéy.

2.5 Cohen’s Work [Cohen, 2005]

2.5.1 General

This research is based on Cohen’s PhD thesis ameblaio extend the previous analysis.
Cohen’s system was developed based on three basgepts:logical sensorsgrid map
paradigm angberformance measures

17



The logical sensor paradigm used to provide a uniform framework foult,eensory
integration [Henderon and Shilcrat, 1984]. Thisrapph enables to add sensors to the system
without changing its whole concept.

The grid map paradigm was chosen to present the environmegepgon due to its simple
implementation and use [Moravec and Elfes, 1985jng the grid map representation, the
environment is divided into a fixed size discretelgEach grid cell is assigned a value that
indicates if that location is occupied by an obistac not. Cohen in his work used binary grid
maps where each cell is assigned either ‘1’ toesgmt arlOccupy’ cell or ‘0’ to represent an
‘Empty’ Cell. Theperformance measuregiantify the difference between two grid maps and
uses the difference between binary decisions aheutell's condition in the grid maps. Cohen
defined two types of performance measures, to gyathie logical sensors and the sensor
fusion algoriths performances.

Sensor fusion algorithms are used to merge or awentbie logical sensor’s grid maps into one
grid map, using different algorithms. Cohen used types of fusion algorithms: logical and
adaptive,which are elaborated below.

In order to evaluate the fusion algorithms perfanoes, Cohen used mobile robot experiments
and a statistical evaluation method. The latteredino choose the best performing algorithm.
The statistical evaluation method defines the drpmrtal setup and makes sure that the
results are not specific for one certain data set.

This section describes Cohen’s major developmesicbahat were the foundations for the
development in this work.

2.5.2 Information flow

The system includebl logical sensors representitgphysical sensors. The logical sensors
work asynchronously. The schematic description hef information flow is presented in
Figure 2. At each time stepthe I" logical sensor maps the environment using the ipalys

sensor readings and creates a local observatioth map (LOGM), denoted byy'

i=1,2;-- N. Let ¢ andd: be the local observation grid map dimensiogse %*4 with

values from the rangg0,1,........ r} for each cell of that map. The values indicaterthmber

of times each cell was sampled by the physical@ens
The system transfers each sensor's LOGM into al Iggd map (LGM), denoted by

u,i=1,2;-- N. Letc andd be the local grid map dimension. e N** with values from the

range{O,l, ........ ri} for each cell of that map. The LGM dimensions @kentical for all
logical sensors.

There are two types of fusion algorithnhsgical andadaptive. The algorithms differ in the
memory and feedback properties; the adaptive dlgns use performance measures
(explained below) in the fusion process while thgidal algorithms do not.

Forlogical algorithms (Figure 2):
The LGM reaches the fusion center, where it yighis fused grid map (FGMy e N®¢,

based on all the LGMI', uf & (U, 4.+, 1 ), using the fusion rulef (-) as follows:

v =f(u') [1]

For Adaptive algorithms (Figure 2):

18



The performance measures of the logical sensorsacelated based on the previous local
grid mapsu'?, utt=ui?ust,..uh) of the logical sensors and the previous fused iag
defined asuf®. The performance measures are denotedpds wherei=1,2,-- N. The

calculation of the performance measure dependsherfusion rule in the fusion center. A
detailed description on the performance measurgswbre used in each adaptive algorithm
can be found in sectior’s5.4.2 andb.2. An average value of the logical sensor perémoe

measures p' 2, ptit? = (pt2 pitt2 | ptlt2y s calculated,based onp"t and p“?,

-1, -2
12 _ P +p

where p, ———i=12..,N.
2

Both the local grid maps' and an average value of the logical sensor pegoce measures
p't? are transmitted to the fusion center. At the fasienter, based on all local grid maps
u' and the average value of the logical sensor pedgace measurep' ™™ the sensor fusion
algorithm yields the fused grid mag at time step, using the decision rule(.) as follows:

Ul = f(ut’ pt-l,t-z) 2]
The fused grid mapy; is fed back to all logical sensora'{ to calculate the new performance
measures p').

Two types of adaptive algorithms were employed. Titst type is the adaptive fuzzy logic
(denoted as AFL, explained below) developed, whisls the logical sensor’s performance
measures as fuzzy variables with three fuzzy dets, (average and high) using trapezoid
membership function and If-Then rules to decideualtbe cell’'s condition ‘QOccupy’ or
‘Empty’).

The following information flow is identical to botbgical and adaptive algorithms.
At each time step a virtual global grid map (VGGM), denoted B}, Z, €0 *", expands the

size of the fused grid map) from cxd to axb, which is the full size. This is done by
assigning zero values to all cells of the virtulabgl grid mapZ;, except those which appear
in uy (their values are as in thg map).

All the VGGM's are placed in a new map, the glolgald map (GGM), denoted by

Z,Ze0*®. The VGGM's are places in the GGM according tordimt's new position along
the path. The GGM is aa xb matrix and is the output of the entire mappingcpss, that
represents the whole environment mapping alongabet's path.

19



Environment

t-1,t-2
Py
—=—-

— U
LA A A A
( Fusion center } N
f _

A

Virtual global grid map
Z,

dew Areuiq reqojb ay jo xoeqpas-

Z,

Y

Global grid map
z

Figure 2 Information flow at time t — logical andaptive algorithms

Data in black represents the logical algorithmsoimhation flow
Data inred with the data in black represent the adaptive athms information flow.

2.5.3 Performance measures

Cohen’s performance measures use the binary desisioout the cell's condition in the grid
maps. Since the cell's condition is a binary vdleositive value indicaté®ccupy'and '0'
indicates'Empty), there are four logical conditions for the diface between the two maps.
the performance measures are defined as the suommater all cells of the four logical
conditions:Occupy — OccupEmpty — EmptyOccupy — EmptandEmpty — Occupy

Cohen’s performance measures are used in two daseach case the calculation process is
slightly different. In the first case, they are dise the adaptive fusion algorithms, to quantify

the difference between the logical sensor's magdlanfused map received as an output from
the fusion algorithm. In the second case, theyuagsl in the sensor fusion evaluation process,
to quantify the difference between the sensor fusimap and the original truth map.

The former measures are denoted in Cohen's wollbgisal sensor performance measures'
and the latter are denoted as 'sensor fusion #igoperformance measures'.

2.5.3.1 Logical sensor performance measures

The logical sensor performance measures are melasyreeomparing each cell for each
logical sensor's local grid map (LGMy ) with the corresponding cell in the adaptive fuzzy
logic fused grid map (FGMy;) for time sample t. each logical sensor has farfgpmance
measures ' €0 *,Vi=1,2;-- N where N is the total number of logical sensor&)c& the

cell's condition is a binary value (a positive \aladicatesOccupy'and '0' indicatefEmpty),
there are four logical conditions for the differertmetween the two maps.

20



Let:
0 Empty jk cell in LGM
LGM. — pyj.ce_ in G
>0 Occupied jkcell in LGM 3
FGM. = 0 Empty jk cell in FGM 3]
¥ 1>0 Occupied jk cell in FGM
Where:
LGM‘(i)jk are cells in the sensor’s local grid mapit() and

FGMtjk are cells in the fused grid maplk) corresponding to the j row and k column
Then:

> > (LeM (i), -FGM", |
L > > FGM', >0 [4]
00 (i)= ZZFGMt].k 4 .
ik
Eom Eron (1) else

;;((1— LGM' (i), )-(1-FoM",,)) |
EE' (i) > > (1-FeM',) L2 (-FeML)>0 g

OLGM OFGMt(i) else
;;(LGMt(i)jk-(l— FGMtjk)) |
OF'(i)= > > (1-FeM',) ,Z;(l_FGM x)>0

[6]
1- O,y Ora (i ) else
Zk (1-Lom!(i), )-Fom', ) |
EO(i)- I S FOMn>0 7
7K

1-E gy Eeou (1) else

Note: for the calculation process, the maps (iIEGM " and LGM") were transformed
into binary maps, which means that positive valuese changed to ‘1.

The vector p' =(0O0 (i), EE (i), OB (), EQ( ) is calculated using [4]-[7] to each of the

logical sensors separately in every time stepherei is thei™ logical sensorsi=1,2,-- N
andN is the total number of logical sensor.

In order to combine the four measures, an additioniked measureth(i)) was defined by
Cohen:

UM (i)=00" (i) - OF' (i) = EE (i)- EG (i [8]

21



2.5.3.2 Sensor fusion performance measures
The sensor fusion performance measures are cadulgtcomparing each cell of the original
truth map (ORG,ORGe(O,l)aXb), with the corresponding cell on the global gridp{GGM)

which is defined as Z. The performance measuresthesdinary decisions about the cell's
condition in the grid maps. the values of the sepssformance measures OO, EE, OE and
EO were calculated by multiplying the relevant ables by the coefficients defined.

Table 2 Coefficients for calculating the sensordngperformance measures
OccupyCoefficiem

If (Occupyge = Occupy,g, = 0) Then
Occup)(:oefficien = Empt)éoefficien

elseif 0< mgl Then

Occupyre
OCCUPY: efiicien :%
else RG
OCCUPY. efiicien :g((::%s)fs;

EmptyCOefficient
If (Occupy,g = Occupy,,= ap The
Em pt)éoefficient = OCCU p)foefficient

elseif 0< 2P=OCCUPYay 9 1y,
a-b— Occupye

_a-b— Occupygy

Em t - =
P oefticient a-b— Occupyge
else
Empty:oefficient = b OCCUPMRG

a-b— Occupygy,

Where a and b are defined as the global grid mdptsensions

Let:
0 Empty jkcellinGGM
GGM'k: . . .
¥ 1>0 Occupied jk cellinGGM o
0 Empty jkcellinORG 9]
ORG, = _ .
¥ 1>0 Occupied jk cellinORG
Where:

GGM are cells in the global grid map (Z) and
ORG are cells in the original map (ORG) correspondtoghe j row and k column

22



Then:

3 3 (GGM, -ORG, )
L« ORG, >0
OsemOorc = ZZORij Z; " [10]
ik
EcomEore else
> > (a-cem,)-oRrG,)) ( )
Lk 1-ORG, )>0
EcomEore = ZZ(l_ORij) Zg .
ik [11]
OcemOora else
ZZ(GGMjk ‘(1_ORij )) ( )
L& 1-ORG, )>0
OgemEore = ZZ(l_ORij) Z; .
ik
1-O¢cmOore else
ZZ((l_GGMjk )'ORij) [12]
Lk ORG, >0
EcomOore = Z ZORij Z; "
ik
1-EgevEore else
Note: for the calculation process, the maps (iIEGM" and LGM") were transformed into
binary maps, which means that positive values whasnged to ‘1'.
And
OO =0cCUpYesicien - [OGGMOORG] [13]
EE= Empt)éoefﬁciem ’ [EGGM EORG] [14]
OE=(1- EMPty: eicien) - [OGGM EORG] [15]
EO=(1-OcCUP¥:pefiicien) [EGGMOORG] [16]

2.5.4 Sensor fusion algorithms

In his work, Cohen defined two types of sensordusalgorithms. The first type consists of
logical algorithms in which the logical sensor distinge@stbetween two basic stat€;cupy
andEmpty The second type use the performance of the Ibgassors in the fusion, and are
denoted asadaptive algorithms. These algorithms are considered asritigns that have
feedback and memory. The adaptive algorithm usesfulazy logic theorem, as detailed
below.

2.5.4.1 Logical algorithms

Three logical sensor fusion algorithms were evaldafThese algorithms present different
versions ofldentify the obstacle by at least n logical sensdmsgical OR (n=1), MOST
(n>N/2) and logical AND (n=N), wherd is the total number of logical sensors in the exyst
[Cohen, 2005; Blunet al, 1997; Klein, 1993].

The inputs are the local grid mdge(, u' ) and their output is the fused grid mag.( u).

23



2.5.4.2 Adaptive fuzzy logic algorithm

The algorithm's inputs are all the logical senstutsl grid mapsife., u') and the average
value of the logical sensor performance measus p'™?). The output is a fused grid map

(i.e., uy) of the fused information.

The Adaptive fuzzy logic (denoted as AFL) algorithinat was evaluated was the algorithm

that achieved best performances according to Celeraluation (denoted as 1010 in [Cohen,
2005]).

The adaptive fuzzy logic algorithm uses Cohen’sdalgsensors performance measures as
fuzzy variables with three fuzzy sets: High, Avexaand Low. Each fuzzy set member is

associated with a trapezoid membership functiore Tembership function evaluates the

degree of membership of each variable value ofékpective fuzzy set member. Fuzzy sets
values and membership function of the fuzzy vagalare presented in Table 3.

Table 3 Fuzzy set values of the fuzzy variables

Fuzzy variable Tow FZ\Z/;y Sets High
OLamOram () 0,0,0.3,0.45 0.4,0.45,0.55,0.6 0.55,0.7,1,1
ELomEram 40) 0,0,0.3,0.45 0.4,0.45,0.55,0.6 0.55,0.7,1,1
OLomEram™ () 0,0,0.3,0.45 0.4,0.45,0.55,0.6 0.55,0.7,1,1
ELomOram ) 0,0,0.3,0.45 0.4,0.45,0.55,0.6 0.55,0.7,1,1

For each logical sensor at every time stampwo fuzzy output variables are calculated:
Occupy andEmpty, wherei=1,2;-- N andN is the total number of the logical sensors.

These output fuzzy variables also have three fisety: High, Average and Low. Each fuzzy
set member is associated with a trapezoid memigefshction. The fuzzy sets values of the
output fuzzy variables are presented in Table 4.

Table 4 Fuzzy sets values of the fuzzy output e

. Fuzzy sets
Fuzzy variable Tow AVO. High
Occupy 0,0,0.3,0.45 0.4,0.45,0.55,0.6 0.55,0.7,1,1
Empty 0,0,0.3,0.45 0.4,0.45,0.55,0.6 0.55,0.7,1,1

The fuzzy output variables are calculated usinguavi-Then rules presented in Table 5.

Table 5 If-Then rules

Fuzzy variables input Fuzzgu\t/g&ables
Rule [OomOrem () [EromEram () | OomErem () | ELomOreM () | Occupy | Empty

1 High High
2 Avg. Avg.
3 Low Low
4 High Low
5 Avg. Avg.
6 Low High

7 High High

8 Avg. Avg.

9 Low Low

10 High Low

11 Avg. Avg.

24



[ 12 | | | | Low | |_High |

The rules are defuzzified using the Mamdani infeeewith centroid method [Mamdani and
Assilian, 1975; Kosko, 1992; Zadeh, 1978] and ara@umted to determine the final value of

the Occupy and Empty final value.

The fused map cells are binary, where '1' indictitaes the cell is 'Occupy' and '0' indicated
that the cell is 'Empty'. The decision rule for foseed map cell's is based on the summation of

the logical sensor'©ccupy and Empty final values. For all the corresponding cells lie t
logical sensor's map that are '0', thEimpty values are summed. For all the corresponding
cells in the logical sensor's map that are 'Ofy tecupy values are summed. If ti@ccupy

sum is greater than themptysum, the cell in the fused map is set to '1', milse — '0". The
pseudo-code for fused map decision rule is predantBigure 3:

Adaptive fuzzy logic decision rule

for x=1: MapSizeX
for y=1: MapSizeY
fori=1:N
if ui (x,y)=0
Empty = Empty+ Empty
else
Occupy = Occupy+ Occufly
if Occupy > Empty
Up (% y)=1
else
Us (% ¥)=0

Figure 3 Pseudo code for fused map decision rule

2.5.5 Mobile robot experiment

Cohen’s experiment consisted of a mobile robotr{€&p 2-AT). The robot was equipped with
an array of 16 ultrasonic sensors on the robotatfeand back panel (eight sensors on each
panel), and a PTZ SONY CCD camera. All sensors wsegl to scan the area in front of the
robot; therefore only six ultrasonic sensors frdra tront of the robot were used. The robot’s
specifications and parameters are detailed in Agipen

During the experiment, the robot moved forward aipastant velocity (10 cm/sec) along a
574 cm X 240 cm path in a controlled laboratoryiemment. As it moved, it mapped the
area in front of it. This area consisted of a blpakh with five obstacles in a fixed location. To
increase disagreement between logical sensorsiypes of decoy obstacles were set along
the robot’s path. These decoys were made of lighwb rug. The first type of decoy was less
than 6 cm. in width and length; the size of theosédctype was around 25 cm. Decoys
locations were randomly changed between repetitidhe obstacles and decoys were not
always noticeable to all logical sensors becausifferences in the algorithms as in the color,
size and structure of the decoys themselves. Ttiéfeeences caused the logical sensors to
disagree.

25



2.5.6 Statistical evaluation method
2.5.6.1 General

To evaluate the algorithm's performances, sevéfi@rent experiments were performed. The
experiments differ by changes in the input andh $ensory conditions. Malfunctions were
created artificially by setting logical sensorsetapty, full and shifting positions by a constant
value. Each experiment is performed R times (callegetitions), under the same
environmental and sensory conditions. Of courserethare some deviations from one
repetition to another, due to changes in the Inghtconditions (day/night), temperature,
shadows, etc. The algorithms performances are ifjeantusing Cohen’s sensor fusion
algorithm performance measures, as detailed inose25.3.2.

The preliminary step in the evaluation proces®igrisure that the experiments are different
enough and that there are enough repetitions. Tinebar of repetitions is defined by the
statistical parameters (mean and standard dev)aiidhe performance measures as defined in
[Cohen, 2005].

A statistical analysis determines the best perfogralgorithm. The procedure evaluates the
performance measures that were calculated for algcnithm’s map in each experiment and
repetition. Non parametrical statistics were usewesthe data was very scattered. The
statistical analysis includes three stages. T dine is thd-riedman’s testwhich tests that
the algorithms performances are different. The igedbllowed by amultiple comparisons
procedure which divides the algorithms into homogenous sabgs. The third and last step is
thesign testhat picks the best performing algorithm.

This section details the evaluation method procesiuifter confirming that the experiments
are different from each other and repetitions arelar enough by calculating the volume of
overlap region [Tin and Mitra, 2002], the numberrepetitions required is calculated using
the statistical parameterse(, mean and standard deviation) of the performancasuores.
This step is followed by a statistical analysisttmludes three non-parametric tests. The
evaluation process was programmed in MATLAB, thdecs detailed in

Appendix VII.

2.5.7 Different experiments

For each experiment between every two repetiti@ash logical sensor's map from one
repetition is subtracted from all other logical s@nmaps from the other repetitions and saved
as an absolute value. For example, LS1 map fronererpnt 1, repetition 1 is compared to
LS1 map from experiment 2 and all its repetitioegperiment 3 and all its repetitions and so
on. The number of cells different than ‘0’ (signeells) is saved for each comparison. The
total number of subtracted maps$Exp) is presented in equation [17]. For each compariso
the worst difference of all logical sensors is shve

[17]

Exp. —

Ne,, = (NUmOFLS NumOfRsz[zNumOfExrj

2.5.8 Similar repetitions

For each experiment, each logical sensor's mapbsracted from all its repetitions in pairs
and saved as an absolute value. For example, LPlfnmia experiment 1 is subtracted from
LS1 maps from all other repetitions. This is cortddcfor all LS, and the number of cells
different than ‘O’ (signed cells) is saved for eacbmparison. The total number of
comparisonsNRep) is presented in equation [18]. For each compayiite worst difference
is savede.g, the maximum number of signed cells.

26



[18]

Rep —

Neo, = (NUMOFLS NumOngp[zNumOfRej

2.5.9 Volume of overlap region

This measure is an indicator that the experimentsrapetitions are indeed different. This
measure evaluates the overlap of two populati@ng, (experiments and repetitions) and
should be as negative as possible [Tin and Mité®2P If the volume is not negative, the
experiments are not different enough and more @xjets need to be performed. The volume
is calculated using the minimum and maximum numbgrsigned cells from all the
comparisons between the experiments and repeti@snshown in equation [19].

MIN (max Exp.), max Rep)) - MAX(min(Exp.), min(Rep))
MAX (max Exp.), max Rep)) - MIN (min(Exp.), min(Rep))

VOLR= [19]

2.5.10 Number of repetitions

The number of repetitions is based on a t-testilddtan [Cohen, 2005] and is calculated for
chosen values ofi and . For each performance measure, the number ofitiepst was
calculated, and the final number was taken as #wd@mum number from all the performance
measures. The standard deviation (S) for each peafice measure was taken as the upper
bound of the standard deviation for this perforneanmeasure from all the experimensis

the minimum difference to be detected and is talilso for each performance measure
separately. In case the number of repetitions Wete conducted is not sufficient, more
repetitions are required.

2.5.11 Performance measure calculation and grouping

After a confirmation that the experiments are inleidferent and enough repetitions were
conducted, type | performance measures are catclldype | performance measures are
calculated using each algorithm's global grid m@@§) denoted by in section2.5.1, and
quantify the difference between the real world raag each algorithm's GGM using equations
[13]-[20]. For each experiment, all repetitions ued for each performance measure are
grouped together.

2.5.12 Statistical analysis

The statistical analysis includes three non-paramsts that aim to find the best performing
algorithm. The first stage is thériedman's tes{Hollander and Wolfe, 1973], that checks
whether the algorithms performances are considdiéerent. Friedman's test is performed
separately for each performance measure in evgrgrement. In this test, the algorithms are
ranked from the least (rank=1) to the largest (zr@kior every repetition. The test statistic
uses the rank differences. The second stage mltgple comparison's procedufelollander

d Wolfe, 1973] that picks the best performing ceupdf algorithms. The multiple
comparisons’ procedure uses the sum of ranks fdr algorithm to divide the algorithms into
homogenous subgroups. Two algorithms belong to stwme subgroup if the difference
between the sums of their ranks does not exceeddefined critical value. The critical value
is taken from table A.17 in [Hollander and Wolf&7B]. The significant value for this test is
derived from the number of repetitions and the neiméf the compared algorithms, and
appears in the same table. The third and finalestaghesign test[Hollander and Wolfe,
1973] that picks the best performing algorithm. Tdign test checks the significance of
difference between the medians of the two algosthifithe p-value of this test is smaller than
the desired significance level, this proves that algorithm is superior to the other.

27



3. Methodology

Chapter overview

This chapter describes the methods used in théarels. The basic development of this work
is presented in the first section. The second @eqresents the information flow of the sensor
fusion framework. The following sections present awerview of the methods used:
performance measures that were developed to guah#f logical sensors and the fusion
algorithms performances, the sensor fusion algmstithat were developed and implemented,
and a statistical evaluation method to check tretesy's performances that was used in the
analysis procedure.

3.1 General

This research is based on Cohen’s PhD thesis [C&@05] aimed to extend the previous
analysis by developing an extended experimentaldvaork. In addition, a new sensor fusion
algorithm was developed and analyzed including kbgveent of new performance measures
and employing a different map representation.

3.1.1 Problem definition

Map a mobile robot's environment by fusing dataenesd from different physical sensors and
evaluate fusion performances.

3.1.2 Development basics

The system was developed based on three basicptsrogical sensorsgrid mapparadigm
and performance measureShese concepts are adapted from Cohen’s work (eltdb in
section2.5) and are modified and extended to meet thesarel objectives.

In this work, two additional logical sensors wetgled to the system easily due to the use of
logical sensors. Thgrid map paradigm implementation in this work assigns eeelhis an
integer value that indicated the number of times ltgical sensor decided that this cell is
occupied with an obstacle. A cell that was declag&mpty’ was assigned the value '0'. This
method enables to cells influence on the fusiorgss in direct proportion to their values.,
the higher the value of the cell, the higher ittportance in creating the fused map.

The performance measureguantify the difference between two grid maps. Twpes of
performance measures were used, Type | and Tyggpke | was adapted from Cohen's work
(detailed in sectior2.5.3). Type Il, which was developed in this reskaconsiders not only
the cell’s decisions, but also the value of thd gelthe calculation process. Performance
measures are detailed in chapter

3.1.3 Assumptions
e The environment changes slowly
e Each logical sensor observes the same area
e The logical sensors work asynchronously
e Each logical sensor outputs a two dimensional ignagh of the environment
e The resolution of the grid map is higher than otlsta resolution; therefore each
obstacle occupies a group of cells in the grid map.

28



3.2 Mapping algorithms

The robot’s environment is represented by grid nthps are built using different mapping
algorithms. In the map building process, each s&nhseadings are placed within each
sensor’s grid map. Mapping algorithms describentie¢hod for converting raw sensor data to
a grid map representation. Since each sensor ohgmidifferent properties such as shape,
accuracy and resolution, which are derived fromstresor’'s model, each sensor has a unique
mapping algorithm. To create different logical sassseveral mapping algorithms were used
for each physical sensor: two mapping algorithmstiie ultrasonic sensor and three for the
CCD camera sensor were adapted and enhanced frommefC 2005], and two mapping
algorithms for the laser sensor were developedigwrork. Overall seven mapping algorithms
were employed. The different mapping algorithnesdetailed in sectiof.3.

3.3 Performance measures

Performance measures are used to quantify theretife between the two grid maps as
elaborated later [Cohen, 2005]. Two types of sepsoformance measure were used: Type |
and Type Il. Type | was adapted from Cohen's wakgdiled in2.5.3) and are used in the
AFL algorithm as the performance measures of tlggcdd sensors as they quantify the
difference between the logical sensor's maps (L@nt the fused map (FGM). The AFL
algorithm is detailed in section5.4.2. In addition, they are used to evaluatedifference
between the entire environment map (GGM) and theéwerld map in order to evaluate the
sensor fusion algorithm's performances (see se2tmf).

Type Il performance measures are used in the newlased Adaptive weighted average
algorithm (detailed in sectiofh.2) as the weights of the logical sensors. Typsohsiders not
only the binary decision,e., whether the cell is occupied or not, but considdss the value
of the cell in the performance measure calculgpiamtess.

These performance measures enable to give a higkight to a logical sensor that occupies
similar regions in the LGM and in the fused mapisTis important as to differentiate these
cells from those that occupy different regionshe tGM than those of the fused map. The
higher the logical sensor's performance measuedptiical sensor is given more weight in the
fusion process. The type Il performance measudeimed as the summation over all cells
that are marked d®ccupy'in both the logical sensor's map and the fused ofidipe squared
distance between the corresponding cell in theclgiensor's map and the fused map, divided
by the square value of the cell in the fused mameTll performance measures calculation
process is elaborated in secta.

3.4 Sensor fusion algorithms

Five different fusion algorithms were used to fube logical sensors’ grid maps. The
algorithms can be divided into two groups: logiddetailed in 2.5.4.1) and adaptive
algorithms.

The adaptive algorithms uses the logical senserfopnance measures in the fusion process.
The input of these algorithms are the logical sesasgrid maps (LGM) and each average
logical sensor's performance measur@s™{ ®), calculated using the previously built fused

map and the LGM. The algorithm gives a higher weighthe better performing logical
sensors, so they have more influence on the fysiocess. Although the adaptive algorithms
are computationally expensive, their ability to tise logical sensor's performances with no a-
priori assumption provides an important advantaghée system.

29



Two adaptive algorithms were evaluated: Adaptivezyu_ogic (AFL, developed by Cohen),
and a new developed Adaptive Weighted Average #hgor (AdpWA) developed in this
research. Adaptive algorithms are detailed in ea&i2.

3.5 Evaluation

The performance of the five sensor fusion algorghwere evaluated using a statistical
evaluation method detailed in sect@:5.6.

The evaluation method defines the experimentafdesnd analysis procedure.

In order to evaluate the algorithm's performansesjeral different experiments must be
performed. The experiments differ by changes innpeat and in the sensory conditions. Each
experiment is performed R times (called repetifipnsder the same environmental and
sensory conditions. Of course, there are some ti@viafrom one repetition to another, due to
changes in the lightning conditions (day/nightinperature, shadows etc.

The algorithms performances are quantified usipg tiysensor fusion algorithm performance
measures. For each algorithm, in every experimext al repetitions, four performance
measures are gathered: OO, EE, OE and EO.

The preliminary step in the evaluation proces®igrisure that the experiments are different
enough and that there are enough repetitions. Tingbar of repetitions is defined by the
statistical parameters (mean and standard devjaifdhe performance measures.

The next step is to check which algorithms perfdratter by applying a statistical analysis
that includes three stages. The first stage isdRram's test, which checks whether the
algorithms performances are considered differente Tsecond stage is the multiple
comparisons procedure that picks the best perfayoauple of algorithms, and the third and
final stage is the Sign test, that picks the bestgoming algorithm. The statistical tests also
define the number of experiments. The evaluatiotgss and results are detailed in chapter

3.6 Experimental setup and analysis procedure

Cohen's work was expanded to include three physeasors and a new adaptive weighted
average. The expansion was carried out by re-pmogiag Cohen’s framework using a new
object oriented API source of libraries, ARIA (s&gpendix 1). Necessary modifications were
made as detailed in Appendix IlI.

The experiments performed (detailed in chap)eronsisted of a mobile robot (Pioneer 2-AT)
equipped with an array of 16 ultrasonic sensors (e front panel and 8 in back panel), a
SONY CCD camera and a SICK laser rangefinder. Qmyultrasonic sensors were used.
Two logical sensors were generated using the oltiasdata. The image registered by the
camera was transformed into three logical senddrs.laser scans were transformed into two
logical sensors. Each of the logical sensors mapipedrea using a LOGM, and the system
created a GGM according to the information flowailet! in sectior?.5.1.

During the experiments, the robot moved forwardaatonstant velocity in a controlled
laboratory environment and mapped the area in fobiitt The area consisted of a black path
with obstacles along it. In addition, two typesd&coy obstacles were set along the robot's
path.

In this research, two sets of evaluations were mdade first set aimed to check the
performances of Cohen's system using three physaaors (instead of two in the original
work) with four algorithms: OR, MOST, AND and thdaptive fuzzy logic algorithm. The
second set aimed checks the performance of thedeswloped adaptive weighted average
algorithm compared with the adaptive fuzzy logigasithm.

30



4. Performance measures

Chapter overview
This chapter presents two types of performance unesasThe first type was developed by
Cohen [Cohen, 2005], and uses the difference irbthary decisions‘Qccupy’ vs. ‘Empty’)
between corresponding cells in two maps. The sebmelwas developed in this research and
uses the changes in values between two corresgpaoéils in two maps.

4.1 General

Performance measures are used to quantify theretiée between two grid maps [Cohen,
2005]. Two types of sensor performance measures usad: Type | and Type Il

Type | was adapted from Cohen's work, uses binacystbns about the cell's condition in the
grid maps. This type of performance measures chetlether the cell has a positive value
('Occupied) or not (Empty). Since there are four logical states of binargislens, Type |
performance measures is a vector containing fouanpeters that all together quantify the
difference between the two ma@30O (indication to the number of cells that &@ecupy'in
the first map and also in the second mdsf, (indication to the number of cells that are
'‘Occupy'in the first map and also in the second m&), (indication to the number of cells
that are'Occupy’'in the first map butEmpty'in the second map) artelO (indication to the
number of cells that arEEmpty' in the first map butOccupy'in the second map). The
calculation process is detailed in sect®B.3.

Type Il is used in the adaptive weighted averagmrdhm as the weights of the logical
sensors. Type Il counts not only the decision abl@tcell's condition'Qccupy’or 'Empty)
but also the value in the cell. This type is aa&caldicating the relation between two maps. A
map that occupies similar area of cells as the mams compared to, would have a higher
value of this performance measure.

4.2 Type Il performance measures

Type Il performance measures are used in the agapeighted algorithm. Since the grid map
paradigm was extended to represent a non-binay m@ap and the values of the map
represent the number of time each cell was samipjethe sensor, a reliable quantitative
measure of the difference between two non-binaiy igyaps that considers the gap between
maps’ corresponding cells values is needed. Typenkiders not only if the cell is occupied
or not, but counts also the value of the cellha ¢alculation process. This type examines the
difference between the occupied cells both in tdggchl sensor's map and in the fused map.
The pseudo-code for calculating Type Il performameasures is presented in Table 6 :

31



Table 6 Pseudo-code for calculating type Il perfanoe measures
fori =1:MapSizeX
for j =1:MapSizeY
if LSMap & FusedMap

pmt(i)zpw(i){

LSMap - FusedMgp ’
FusedMap

The calculation process checks all the cells inldiggcal sensor's map and in the fused map
and sums the differences in the following way:aftbcells have positive values (implying that

these cells are occupied by an obstacle), thergéipebetween their values can be used to
guantify the difference between the two maps. Télks walues are subtracted, and in order to
normalize the difference, it is divided by the \alof the cell in the fused map. To avoid the

influence of negative differences, the quotierdggaared.PM* (|) is calculated to each logical

sensor at every time sampglewherei=1,2:-- N andN is the total number of the logical
sensors.

As the number of two corresponding cells in botid gnaps increases, the performance
measure value increases. In other words, the peaioce measure reveals similarity between
two maps that occupy similar regions. Since obsgaah this research’s grid map occupy a
group of cells, this performance measure enablatetmte that performances are increasing
when two maps agree on obstacle’s location, amttoease performances when two maps do
not agree.

However, the performance measure does not conagleement on ‘Empty’ cells between
two maps, and thus should be enhanced.

To confirm convergence and in order to mark the pegorming sensor, at every time sample
t, all the performance measures are normalized \agidg each performance measure by the
maximum value from all the calculated performanceasures. Given the vector of

thePM' =(PMt(1), PM'(2) ;- ,PM( N)) the performance measuréM, are calculated
by:

; PM! (1) PM' (2) PMt( N)
PM," = =, R t [20]

max(PM") " max PM") max PM' )
After performing this step, all the performance mgas relate to the most accurate
performance measure, which has the value '1'. €gt af the logical sensors have lower
values according to their accuracy. These resutiagyin more weight to logical sensors that
occupy similar areas as the fused map and lesshiidogical sensors that occupy different

regions then the fused map. The following sectiogs@nts a numerical example of Type I
calculation process.

32



1 2 3 4 1 2 3 4 1 2 3 4
11 20| 0 (10| O 1| 15 |17 |0 | 24 1| O 24| 2| 14
2| 0 [ 12]20| O 2| 12 | 0 |0O] O 2| 7 5] 0| 25
3|/ 0 0| 0] O 3| O 0O 0] O 3| 0 0|11 6
4| 4 0O | 0] O 41 0 2010| O 4| 4 10| 0| O
Logical sensor 1 Logical sensor 2 Fused map
(LS1) (LS2) (FM)

Figure 4 numerical calculation example of type érformance measure

Suppose the system contains two logical sensotis,gsid maps and a fused map for a certain
cycle as shown in Figure 4. As explained above,eTifpperformance measures considers
corresponding cells that are occupied in the Idgieasor's map and in the fused ma@, the
bold cells in the logical sensor’s map. The calitolaprocess for the first logical sensor in the
example is detailed in [20]:

PM|(|L51) :(Lag_ FM13JZ+( L%z_ F%2J2+( Lgl_ FMujZ:

FM, FM, FM i [21]
2 2 2
_ 10-2 N 12- 5 n 4- =4°4+1.4+0F=17.96
2 5 4

The calculation process for the second logical aeinsthe example is detailed in [22]:

2 2 2 2
M. = ESe= FM, | [ LS— FMy, ) [ LS, FM,) [ LSz FM,
! FM,, FM,, FM, FM ,,

2
LS,,— FM,,
+ =

( FM,, [22]

(17— 24)2 (2¢ 14?2 (12 T ( 20 1jf
24 14 7 10

=(-0.290° + 0.713+ 0.70%+ *= 2.104

After calculating the measure for each logical serseparately, the final step is dividing the
vector by the maximum value from all performanceasuges, to normalize and ensure
convergence, so the performance measures vecttidagiven example is presented in [23],
indicating that the most accurate logical sensaS$:

17.96 2.10

M, :(—, 3:(1,0.117) [23]
17.96 17.9

33



5. Sensor fusion algorithms

Chapter overview
Two types of algorithms were evaluated: logical (MROST and AND) and adaptive (fuzzy
logic and weighted average). Four adaptive weightetage algorithms were developed. This
chapter describes in detail the algorithms.

5.1 General

Two types of sensor fusion algorithms were evalliafehe first type consists of logical
algorithms in which the logical sensor distingusheetween two basic staté€3ccupyand
Empty and are elaborated in secti®®.4.1.

The second type of sensor fusion algorithms usegbénformance of the logical sensors in the
fusion. The adaptive algorithms are consideredgmithms that have feedback and memory.
In these algorithms, at each time steghe I logical sensor creates its local grid map.(

u'). The fused mapi.e., uy) is built using the average value of the perforogameasures.

The algorithms are considered adaptive, since thakes are recalculated online. Although
the adaptive algorithms are computationally expamsiheir ability to consider the logical
sensor's performances with no a-priori assumptmosides an important advantage to the
system.

Two adaptive algorithms were evaluated. The Adaptixzzy logic (AFL) algorithm (detailed
in 2.5.4.2) uses the performance measures as fuzzgblew with three fuzzy sets. The
Adaptive weighted average (AdpWA) algorithm conssdine values of the cells, (instead of
the decisioriOccupy’ or ‘Empty’) and uses the type Il logical sensor's performaneasures
as weights, giving a higher weight to the bettefqrening logical sensor. Four versions of the
AdpWA are presented, using different performanceasuees and a map enhancement
procedure.

5.2 Adaptive weighted average algorithm

The Adaptive weighted average (AdpWA) algorithm siders the values of the cells (instead
of the decision'Occupy’ or ‘Empty’), and uses the type Il logical sensor's perforraanc
measures as weights, giving a higher weight tobtbeer performing logical sensor. Four
versions of the AdpWA are presented, using diffenearformance measures and a map
enhancement procedure.

The first step in the algorithm is calculating areiege map that contains for each cell within
the map, the average value from all logical sensoaps. The next step is calculating for each
cell the value of the adaptive weighted averagemuftiplying the corresponding logical
sensor's cells with the logical sensor's perforrmameasure and dividing the product by the
sum of the performance measures, for normalizaiitee. fused map is built according to the
following rule: if the corresponding cell in theexage map is greater or equal to the adaptive
weighted average value, the cell in the fused msagssigned the value of the average map.
Else, the cell in the fused map is assigned theev@l'. After the fused map is built, the final

34



step is calculating the performance measures fdn eaithe logical sensor. The pseudo-code
for calculating the fused map is presented in Fadgur

Adaptive weighted average algorithm

1. Calc AvgMap
2.Build uj :
for x=1: MapSizeX
for y=1: MapSizeY
N
Z PM it—l,t—2‘ qt ( X, y)
AdpWA( x y=-=—;
Z PM .tfl,t72
i=1

if AvgMag ( x y)> AdpWA x
Uy (X y)= AvgMap( x ¥
else
Uy(% y)=0
3.CalcPM{ ™2

Figure 5 Adaptive weighted average algorithm psecuite

The calculation ofAdeA( X )) is done for each cell in the grid map. The sunproducts

between each logical sensor’s performance measur¢ha cell’s value is divided in the sum
of all performance measures to receive each cekighted average. Since the performance
measures changes between cycles according to tisarse performances, the average is
considered adaptive. The adaptive weighted avdrag#ions as a threshold as it compared to
the value of that cell in the average map. The ayeermap can be considers as a weighted
average when each logical sensor is given the safne; comparing the average value to the
adaptive threshold allows to reference to eachcldgsensor’'s performances, and how the
average changes with the performances. The distay@of the algorithm is that it requires of
the weighted average for each cell separately tlag@fore it is computationally expensive in
comparison to logical algorithms; However, calcuigta different value for each cell allows
to give more weight to cells with higher value gimoore likely that this cell indeed contains
an obstacle.

5.2.1 Map enhancement

Map enhancement was introduced into some of therfualgorithms assuming a relation
between a cell and its neighbofs:cording to the assumption made in the developroktite
framework (sectior8.1.3), an obstacle occupies a group of cells engihd map; therefore, a
cell that is surrounded by occupied cells is mdkely to indeed contain an obstacle, rather
than a cell that most of its neighbors are emptyl ia less likely to contain an obstaclde
purpose of the enhancement procedure is to strengttcupied cells that are surrounded with
occupied cells, by giving them higher values. Thacpdure checks the number of occupied
neighbors for each cell. If the number of occupreghbors is greater than half of the
neighbors — the occupied cells average is addédetaell's value, else — the cell is assigned
the value '0'. This applies only to occupied céls., cells that their value is different than

35



zero), because if the cell is already marked astigneell, there is no need to change the

sensor's decision.
The following section presents a numerical examfae the enhancement calculation

procedure.

1 2 3 4 5 1 2 3 4 5

1|10 |5 |0 |0 ]O 1 |15/0 [0 |0 | O

2 |5 |0 |0 |10]|5 2 113/0 |0 |0 |13

3112 |9 |0 |7 |6 3 /0|0 |0 (14|14

4 |0 0|5 1|0 |0 4 |0 |0 |14|0 |0

510 0 |12|5 |0 510 (0]0]|]0|O0
(a) (b)

logical sensor’s grid map Enhanced logical sensor’s
(LS) grid map (ELS)

Figure 6 LS and ELS grid maps

Figure 6 presents an example for a logical sengpitsmap (a) and its enhanced grid map (b).
The bold cells within the logical sensor's grid mape cells that at least most of their
neighbors are occupied, and therefore are strengththe enhanced map. The non bold cells
are cells that less than half of their neighboesacupied, and are assigned a zero value in the
enhanced grid map.

For example LS, has three neighbors, and two of them are occuped the enhanced map
it will be added with the average value of it's oped neighbors — 5, and we obtain that
ELS, =15. LS,, has eight neighbors, and four of them are occymedt’s value in ELS is
the sum of it's value in LS and the average valui@’® occupied neighbors (6.5). since the
ELS, like the LS grid map contains integer valubsés value is rounded up to the nearest
integer, andELS,, = 14LS,, has eight neighbors, but only three of them apied (less

then half of the neighbors), therefore we gdtS, =0. This is similar toLS,;, which only
two of it's neighbors are occupied (instead of sk three), and therefolelS,=0. The
same procedure applies for all LS cells, and tbaltés presented in Figure 6.

5.2.2 AdpWA algorithms

In order to examine the influence of the enhancénpmocedure and the type of the
performance measures, four different adaptive wejlaverage algorithms were developed.
The algorithms differ in the enhancement procedamd in the type of the performance
measures as described in Table 7.

Table 7Adaptive weighted average algorithms

Type | Type Il

Performance Performance

measures measures
No Enhancement] AdpWALl AdpWA2
Enhancement AdpWA3 AdpWA4

AdpWA1 and AdpWAS use type | performance measumsle AdpWA2 and AdpWA4 use
type Il. AdpWA1 and AdpWA2 do not use the map erdeament procedure, while AdpWA3
and AdpWA4 use it. For the evaluation of the def@r algorithm performances see section

7.3.

36



6. Mobile robot experiments

Chapter overview
This chapter describes the experimental procedigsgn, mapping algorithms and setup for
the evaluating the sensor fusion framework anchéwe developed adaptive weighted average
algorithm.

6.1 General

The experiment consisted of a mobile robot (Pior2eA, Figure 7). The robot is equipped
with an array of 16 ultrasonic sensors on the rsbiobnt and back panel (eight sensors on
each panel), one SICK Laser rangefinder mountetprmf the robot and a PTZ SONY CCD
camera mounted on top of the laser sensor. Allssngere used to scan the area in front of
the robot; therefore only six ultrasonic sensomnfrthe front of the robot were used. The
robot’s specifications and parameters are detariedppendix I. Two logical sensors were
generated using the ultrasonic data, two logicatses were generated using the laser scans,
and three logical sensors were used to descrilreage captured by the camera. Overall the
system consisted of seven logical sensors.

Two sets of experiments were conducted. The fiestagmed to test Cohen’s sensor fusion
framework using three physical sensors, and thenskeset aimed to test the new developed
AdpWA algorithm’s performances, using the sameedhphysical sensors and seven logical
sensors configuration.

SONY CCD

Antenna

Pinpoint
laser

Figure 7 AR£

Ultrasonic
Sensors

37



43 cm

(3¢
™
()
3
b

(&
129 cm

416 cm

135¢cm

kil - 568 cm

5 |

=

e

~ ano
e}

Moving direction

o 00
s ag” (’j /
[Pinpoint laser 2 P:npomt Starting
| target point ~ Y aser g

Calibration board
&,

oy A || B
L < Fon ; 5 S0 - 368 cm o
J O 33 —
- ) ~a = ) La 198 cm
M Lo S Ay - " s 5] g9 )
/>,/\~" (—[,%' IS g2 £ ;:}v? O3S Lo E ag? 30 a g9 g Y 987 [_/8
# 28 - £ a§ 2 i A <
b e
Commentary :
Obstacles - Decoy of obstacle type | - & o~ Decoy of obstacle type Il - 2y~

Figure 8 Schematic experimental setup (Adapted fatmen, 2005)

6.2 Experimental Setup

The robot moved forward at a constant velocity ¢iJsec) along a 574 cm X 240 cm path in
a controlled laboratory environment. As it movddnapped the area in front of it. This area
consisted of a black path with five obstacles (egated red cardboard cylinders @25 cm., 50
cm. height located at fixed positions along thénpalo increase disagreement between logical
sensors, two types of decoy obstacles were sef dt@nrobot’s path. These decoys were made
of light brown rug. The first type of decoy wasdd¢han 6 cm. in width and length; the size of
the second type was around 25 cm. Decoys locatvoere randomly changed between
repetitions. The schematic experimental setupesented in Figure 8. Obstacles and decoys
are presented in Figure 12. The obstacles and degese not always noticeable to all logical
sensors because of differences in the algorithmm dake color, size and structure of the
decoys themselves. These differences caused tivallsgnsors to disagree [Cohen, 2005].

Two logical sensors were generated using the oltiaslata: (i) logical OR algorithm and (ii)
probabilistic approach algorithm [Ribo and PinzQ2Pdenoted as US1 and US2 respectively
[Cohen, 2005]. The laser scans were transformeal twb logical sensors: LASER1 and
LASERZ2. The former used all the 180° scans whiel#tter used every third scan. The image
captured by the camera was transformed into thogedl sensors for determining different
types of obstacles. The first logical sensor, dethets CAM1 was used to detect red cardboard
cylinders; the second logical sensor, denoted aMZavas used to locate the first type of
decoys and the third logical sensor, denoted as EAMs used to locate the second type of
decoys. However, these algorithms were not optichized their performances very much
depended on the lighting conditions, which variémhg the path due to external conditions
(e.g.shadows from the ceilings and from obstacles@rttom). To enhance image processing
performance, the only light source was a 300W gpated behind the camera and a sheet of
aluminum foil was placed in the back of the spaptevent light reflection.

In course of traveling 400 £ 5cm., the robot getexta38 fused grid maps. A fusion was
conducted whenever a logical sensor was sampledelificinate influence of the robot
localization problem [Liret al, 2003] the robot moved only forward. To ensuré tha robot
traveled straight, the robot was placed at therivégg of the path and a laser pointer mounted

38



on top of the robot marked the starting point ocehbration board placed at the end of the
path. The robot’s exact location was changed tmgilpoint on the calibration board matched
the exact beginning point. At the end of the expent the robot’s location was measured
again using the laser and the calibration boardiftite robot diverged more than 4cm the
repetition was not considered in the analysis.

The robot’s software is written in VC++ version @8ing ARIA version 2.4 library routines.
The robot’s operating system is Windows 2000. Txygeemental software code is detailed in
Appendix IV, while the ARIA library routines condels detailed in Appendix Il. During the
experiments the robot was controlled and programmsidg radio connection and PC
Anywhere 8.0 interface via the network.

6.3 Mapping algorithms

Three physical sensors participated in the fusystesn: a set of six ultrasonic sensors, a laser
rangefinder and a CCD camera. A total of sevenrdlgos were implemented to generate
seven logical sensors out of the physical sensms:algorithms for the ultrasonic sensors,
two algorithms for the laser sensor and three #lgos for the camera.

This section contains the description and pseudie-dor the mapping algorithm for the
different physical sensors. The detailed functiomentioned in this section can be found in
Appendix IV. The flowcharts of the mapping algonittare described in Appendix VI.

After building the logical sensor’s grid map, edobal grid map is transformed relatively to
the robot’s location and placed in the path plagrgrnid map (PPGM). The robot’s location is
checked using the robot’s encoders, and is divinjetthe cell’s size (5cm) and each cell within
the local grid map is copied to the PPGM (funct@opyLBMToGGNI

6.3.1 Ultrasonic mapping algorithms

Ultrasonic mapping algorithms were adapted fromhé&g 2005] and were modified to fit the
new non-binary grid map paradigm. An array of dixasonic sensors in the front panel of the
robot was used (sensors 1-6 in Figure 9). Two kigsensors (marked as US1 and US2)
describe the sensor's reading using two algorithms.

$
Front

4l

10
3 \

1
/ %
] !'.-_%t T, /
e I I o 0
ok S
i A

o o’

~T"8 |
-500 el 5 7 o
A i 1
\ F 4\ 5 ? ; /
»3’:’\“\ *"
7 Pioneer 2 b
0= ), Sonar Array o E]—m"
-

Figure 9 Ultrasonic array (Adapted from Pioneer roat)

The following steps describe the ultrasonic mapirggedure:

1. The sensors are read in a sequential order, frém6l Each sensor's reading is a
value indicating the distance to the nearest olestegdatively to the physical
sensor's location on the robot, as described ireAgix I.

39



2. Each sensor's reading is placed within one grid, megulting with a total of six
grid maps. Since each sensor's output is one veheh grid map contains one
obstacle. Each obstacle’s location is calculatedllp by finding it's projection on
the X and Y axis, and then transformed relativelyhie physical sensor’s location
on the robot (functiolJS_readDataFromUS Since the shape and size of the
obstacles are unknown, the obstacles are descopeth arc of 10 cm and 10°
angle, as Figure 10 presents. The cells insidatb@re marked as empty, the arc
cells are marked as occupied and the rest of tileeare marked as unknown. Grid
maps cells contain one of three options: '500'caiiig that the cell status is
unknown, '0" indicating that this cell is emptyay integer value indicating the
number of times this cell was declared as occumezhting non-binary grid map.
The grid map is initialized to the value ‘0’ andckdime the algorithm decides a
cell is occupied, the cell’s value is incrementgdlbunless it is assigned with the
value ‘500, then it is assigned the value ‘1'.

3. Two logical sensors local grid maps are generayeftiding the sensor's maps into
two grid map using two algorithms — OR and Probsil approach [Cohen,
2005]. The algorithms indicate logical sensors Wt US2, respectively. The
algorithms were modified to fit the non-binary grnthp concept. Each algorithm
serially fuses the generated grid maps of all lalggensors (one after another)
using its own truth table (functions US_SFA_LogicalOR
US_SFA_ProbablisticApproagh Table 8 and Table 9 present the OR and
Probabilistic approach truth table, respectiveljie TMax' value in the tables
means that the selected value is the maximum waitlen the occupied cells
values.

500 | 500 | 500 | 500 [ 500 [ 500
500 | 71 3 TTN2 | 500
s0f 1| 4 2| 7Y s00
500 [% of o o| ¢ s00
50 | 0| o o| fo| s00
s0 | 6] o o/ o] s00
500 | 09 o o/ o] s00
50 | of% of 6| 500 500
500 | 500 | %0 | /o 500 | 500
500 [ 500 | @ |/ o 500 | 500
500 | 500 | 01 o 500 | 500

Figure 10 Ultrasonic grid map model

Table 8 OR algorithm truth table (US1)

us
Empty | Occupied | Unknown
Empty Empty | Max Empty
U:,T Occupied | Max Max Max
Unknown | Empty | Max Empty

40



Table 9 Probablistic approach truth table (US2)
us

Empty | Occupied | Unknown

Empty Empty | Empty Empty

Occupied | Empty | Max Max

Unknown | Empty | Max Empty

2
-

6.3.2 Camera algorithms

Camera’s Mapping algorithms were adapted from [@pR€05] and were changed to fit the
environmental conditions in the lab and the new-bimary grid map paradigm.

Sampling the camera sensor means taking photasumpian angles: -17°, 17°, 50°,-50°. The
order of the pan angles changes between odd and @ues. Three logical sensors are
implemented using the camera pictures (marked agilZACAM2 and CAMS3); each logical
sensor differs in the image processing algorijtliue, each logical sensor's map is created
using a different image processing function. Thgoathms differ in the obstacles they are
designed to detect. CAM1 is designed to detecobistacles, CAM2 is designed to detect the
first type of decoys and the obstacles and CAM8asigned to detect the second type of
decoys and the obstacles (see sed@ign

The following steps describe the camera mappingguiore:

1. The camera is set to one of four possible pan apg¥, 17°, 50° or -50°), and
takes a picture.

2. Obstacles center of mass in the picture is fouridguthree image processing
algorithm and its X and Y location in the map idcaéated using the camera’s
calibration process and saved in a special veatorehch image processing
algorithm.

3. Steps 1 and 2 are taken for the next pan angld, alhnfour pan angles were
sampled. Overall, twelve obstacle’s location vext@present the obstacle found
in each picture: three image processing vectorgdch one of the four pan angle
(functionlmageProcessingAlgo3

4. For each image processing algorithm, accordingpeéocobstacle’s location vectors,
the obstacles from the different pan angles areeglan the grid map. Since the
size and the shape of the obstacles are unknowunarevery obstacle’s location
a circle (@ 15cm) is drawn. The grid map is inigad to the value ‘0’ and each
time the algorithm decided a cell is occupied,dbi's value is incremented by 1.
This step resulting in three local grid maps theiresent three logical sensors:
CAM1, CAM2 and CAM3 (functionmageProcessingAlgg4

Image processing algorithms

The algorithms us@&hreshold iplErode iplDilate andcvFindCountorsfunction from Intel's
CV and IPL (see Appendix IV), and differ in the @tions constants. Each algorithm is
design to detect different kind of obstacles adogrdo their area as found from the
cvFindCountordunction. The areas for each algorithm are shawhable 10. The threshold
values and the obstacle’s minimum and maximum sme® found empirically and were
adapted to the lightning conditions in the lab vehitie experiments took place.

41



Algorithm 1 — CAM1

1. Convert the photo from RGB into grayscale format.

2. RunThreshold(120pn the grayscale photo and save in BW format.
3. RuncvFindCountorsand find the center of mass of all obstacles.

4. Map the obstacles their area fit the range in Table

Algorithm 2 — CAM2

Convert the picture from RGB into grayscale format.
RunThreshold(120pn the grayscale photo and save in BW format.
RuniplErode(3)on the BW photo and save it.

RuniplIDilate(5) on the BW photo and save it.
RuncvFindCountorsand find the center of mass of all obstacles.
Map the obstacles their area fit the range in Table

ok wNE

Algorithm 3 — CAM3

1. Convert the picture from RGB into grayscale format.

2. RunThreshold(150pn the grayscale photo and save in BW format.
3. RuniplErode(3)on the BW photo and save it.
4
5
6

. RuniplDilate(4) on the BW photo and save it.
. RuncvFindCountorsand find the center of mass of all obstacles.
. Map the obstacles their area fit the range in Table

Table 10 Detection area for each algorithm
CAM1 | CAM2 | CAM3
Min | 15,000 | 600 8000
Max | 47,000 | 33,000/ 33,000

6.3.3 Laser algorithms

Two mapping algorithms were developed in this redeaThe laser sensor senses the
environment in front of it at a 180° in an angulasolution of 1°. This results in an output
vector with 181 readings. Each cell in the readimticates the distance to the nearest obstacle
at a specific angle. The laser logical sensors Kethras LASER1 and LASER2) were
implemented using two algorithms. The two laser pnag algorithms differ by the number of
readings that are marked in the grid map.

The following steps describe the ultrasonic mappragedure:

1. The laser is sampled and a vector of readingsvisdsa

2. For LASER1 - all the readings are placed in a gnap according to the reading
and its angle. A small circle (@ 5cm) is placedua each reading in the grid
map. For LASER2 — every%reading is placed within the grid map, and a small
circle (@ 5cm) is placed around it. The local gndp is initialized to the value ‘0’
and each time the algorithm decided a cell is oedjpthe cell's value is
incremented by 1 (functioReadFromsSick

6.4 Experimental procedure

An experiment is defined as a mapping task fori§penvironmental and sensory conditions.
At each cycle, the robot mapped the environmentgusamples from six of the ultrasonic
sensors in the front panel, laser scans and phaken from the camera. In order for the

42



camera to capture the obstacles and the decoysiathera tilt angle was set to -25°. The
camera took photos from four pan angles (-50°,,-17° and 50°), as shown in Figure 11.

¥ E
f 7
+50° 0 -25°
[ +7 °Pe
= 47 cm
. D ( 170
500
SAINNE
Pan angles Tilt angle

Figure 11 Pan and Tilt angles (Adapted from Col26(5)

The slowest sensor was the camera, due to thepdowangles changing process. In order to
increase the number of cycles in the experimert,dider of the pan angles was reversed
between odd and even cycles. The pan angles ordethe even cycles is -505-
17°—-17°-50° and in the odd cycles is reversad., 50°—-17°—-17°—-50°. Image
processing algorithms recognized the obstacles dawdys from the different angles, and
placed them in the camera’s logical sensor’s LBMoading to a calibration process detailed
in Appendix V. Environmental and sensory conditi@ne changed for each new experiment
using a methodology described in chapterThe obstacle locations are constant and therefo
identical for all experiments. Each experiment ésfprmed R times (called repetitions), for
identical environmental and sensory conditions. diflerence between repetitions is caused
by randomly changing the location of the decoystiStical procedures (detailed in section
2.5.6) determined the number of experiments anetitegns. At the end of each repetition, all
logical sensors maps and the data received fronse¢hsors and robot’s encoders were saved
on the robot’s hard drive for offline analysis.

2nd type decoys

h

12 Experimental setup photogphs

the performance measures forARé and AdpWA algorithms were set as
11 and in Table 12 respectivEhese values were determined randomly and
t for all experiments.

43




Table 11 Experimental initial perofrmance meastwe#\FL algorithm

Logical Initial performance measures values
sensor 00%Gi) EE() EOY() OEY()
Usi 0.85 0.9 0.1 0.15
us2 0.78 0.91 0.19 0.22
CAM1 0.8 0.7 0.3 0.2
CAM2 0.6 0.9 0.1 0.4
CAM3 0.88 0.91 0.09 0.12
LASER1 0.92 0.95 0.05 0.08
LASER2 0.93 0.95 0.05 0.07

Table 12 Experimental initial peroformance meastwe&dpWA algorithm

Logical Initial
sensor performance
measures
values

Usi 0.3
uUs2 0.3
CAM1 0.1
CAM2 0.1
CAM3 0.1
LASER1 1
LASER2 1

44



7. Evaluation and Results

Chapter overview
This chapter presents the algorithm's evaluatigulte Two sets of experiments were
conducted. The first set aimed to test the perfageaf sensor fusion algorithms using the
new sensor fusion framework while the second seedito test the performances of the new
adaptive weighted algorithms.

7.1 General

Sensor fusion algorithms were evaluated using ¥aéiation method developed by [Cohetn

al., 2005]. To evaluate the algorithm's performancesjeral different experiments were
performed. The experiments differ by changes initipat and in the sensory conditions.
Malfunctions were created artificially by settinggical sensors to empty, full and shifting
positions by a constant value. Each experimeneiopmed R times (called repetitions), under
the same environmental and sensory conditionsoQise, there are some deviations from one
repetition to another, due to changes in the Inghtconditions (day/night), temperature,
shadows, etc. The algorithms performances are digedniising type | sensor fusion algorithm
performance measures, as detailed in se@ib18.2 . For each algorithm, in every experiment
and all repetitions, four performance measuregatieered: OO, EE, OE and EO.

The statistical method is detailed in sect5.6.

The first set of experiments aimed to test thequarhnces of Cohen's extended sensor fusion
algorithm framework which uses three physical sengustead of two, as in Cohen's work.
The second set of experiments aimed to test tHerpances of the new developed adaptive
weighted algorithm. The AdpWA performances weretetgsusing the extended fusion
framework fusing data from three physical sensors.

7.2 Extended sensor fusion framework evaluation

7.2.1 General

In this research, Cohen's fusion framework wasneldd to fuse data from three physical
sensors. The additional physical sensor, a lasggefander, was added to the system, as
described in chapte6. In the extended framework, four sensor fusiogo@dhms were
employed: OR, MOST, AND and AFL as detailed in sstR.5.4. In order to test the sensor
fusion algorithms using the new extended framewarlset of experiments was conducted.
The experiments design and procedure are detailelaptes6.

7.2.2 Experimental design

Seven different experiments were conducted (Taldg The experiments differ in the
environmental conditions and in sensory input. &#ht environmental conditions were
chosen to ensure that the results are not spdoifia dataset only. Each experiment was
repeated seven times. The number of experimentsr@petitions required derives from
several parameters, including the statistical atarstics of the datae(g., standard
deviation), the desired value andA, the minimum difference to be detected [Cohen,5200
Hence, it is impossible to prediatpriori the number of experiments and repetitions required
Therefore, the initial number of experiments angdet#ions was chosen arbitrary as four.
Lighting conditions were changed in the third angventh experiment. Experiment’s

45



repetitions were performed under the same conditwith natural variations such as lightning
conditions, shadows and time differences. Howes@culating the volume of overlap region
(VOLR) showed that the experiments were not difierenough (VOLR>0), therefore three
additional experiments were performed. In each em@nt, environmental mapping was
achieved using the four different sensor fusionoalgms, resulting in a total of 196
environmental mappings (4 sensor fusion algoritbhYsExperiments X 7 repetitions). Figure
13 presents the algorithms’ map results from expemt 1, first repetition and the
corresponding real world map. All logical sensorgappings from all experiments are
presented in Table 22, and algorithms mappingp@sented in Table 23.

Table 13 Experimental design for statistical evatumaexperiment

Exp. US1 uSsS2 LASERYLASER2| CAM1 CAM2 CAM3 |Comment
Regular Regular| Regular Shift Shift
Empty | atgorithm| 7O |atgorithm| Algorithm | <=<*400m| X=X-40cm
g 9 9 Y=Y+40cm| Y=Y-40cm
Shift:
Regular Regular| Regular
Full . Empty . . X=X-40cm| Empty
Algorithm Algorithm Algorithm Y=Y-400m
Regular Emot Regular Full Regular Regular Regular I{(;?rétsdoeffs
Algorithm Pty Algorithm Algorithm | Algorithm | Algorithm 15->(;n d
Regular Regular Regular Regular
Algorithm Ful Algorithm Empty Algorithm | Algorithm Full
Reqular Reqular Shift: Shift:
A O%ithm Full |5 O%ithm Empty |X=X+20cm|  Full | X=X-40cm
g g Y=Y-40cm Y=Y+60cm
Shift:
Regular Regular Reqgular |, _
. Empty . Full . X=X+60cm Full
Algorithm Algorithm Algorithm Y=Y+60cm
Regular | Regular | Regular | Regular| Regular Regular Regular ::(;?Tscgfs
Algorithm | Algorithm | Algorithm Algorithm  Algorithm | Algorithm | Algorithm 15-)én d
Real world | OR AND MOST AFL
map
. &
LA
@ o A T N
. L}

Figure 13 Map results, experiment 3, first repetition

Different experiments
For seven LS, seven repetitions and seven expeisitéins result in 7,203 subtracted maps, as

derived from[17] and presented in [24]. For each comparison, thestwaifference of all
logical sensors is saved [Cohen, 2005], resultin8?i3 maps.

46

L)



7
Ngg =772 [2} = 7,203 [24]

Similar repetitions

For seven LS, seven repetitions and seven expetsntiegit were chosen arbitrarily, this result
in 1,029 comparisons, as derived fr¢h®] and presented in [25]. For each comparison, the
worst difference is saveé,g, the maximum number of signed cells [Cohen, 208&gulting

in 49 maps.

7
Npep. = 7-7- @ =1029 [25]

Volume of overlap region

The maximum number of signed cells was calculabedali experiments and repetitions. The
volume is negative as equation [26] shows, implyiingt the experiments are different and
repetitions are similar.

_ MIN(51361067)- MAX(4160156)

VOLR
MAX(51361067)—- MIN(416Q156)

- -0.7114 [26]

Number of repetitions

The number of repetitions is based on a t-testilddtan [Cohen, 2005] and is calculated for
a=0.05 and3=0.2. Standard deviation (S) and mean values &sntas the upper bound from
all experiments and algorithms. In order to all@asonable erron is chosen to be 20% from
the mean upper bound. This value was chosen ailyitrResults are presented in Table 14.
Based on these results, the largest R is for then@@sure; this results in seven necessary
repetitions. Since each experiment has alreadyns@petitions, no additional repetitions were
required.

Table 14 Rcalculations for each performance measure
Performance S A Radjusted| R
Measure
00 0.068| 0.072| 6.220
EE 0.039| 0.195| 0.287
OE 0.009| 0.200| 0.016
EO 0.086| 0.200| 1.326

(SITENISNEN|

7.2.3 Performance measure calculation and grouping

Table 15 presents an example of raw data for orteeofepetitions in one of the experiments
for all sensor fusion algorithms. Raw data forwiele experiment set is detailed in Appendix
VIII. An example of the resulting OO values for @petitions is presented in Table 16.

47



Table 15 Sensor fusion performance measures vRluegperiment 2, first repetition

Algorithm 00 EE OE EO

OR 0.038 0 1 0
AND 0| 0.962 0 1
MOST 0.0048| 0.9634| 0.0001| 0.8459
AFL 0.3513| 0.9754| 0.0001] 0.0385

Table 16 OO Measure for four algorithms, severtigpns, Experiment 7

Repetition number
Algorithm 1 2 3 4 5 6 7
OR 0.226| 0.214| 0.165| 0.183| 0.175| 0.159| 0.198
AND 0.001] 0.005/ 0.001| 0.001] 0.004| 0.004| 0.005
MOST 0.295| 0.374| 0.278| 0.252| 0.180{ 0.230| 0.193
AFL 0.416| 0.395| 0.401| 0.361| 0.220| 0.305| 0.234

7.2.4 Statistical analysis

Friedman's test

An example of Friedman' test ranking for the OO snea of one experiment is presented in
Table 17. The entries in each row are the rankseah algorithm within the seven
replications. Friedman’s ranking for all experimgeate presented in Appendix IX.

P-values for all 7 experiments for all seven experits are presented in Table 18 . The very
small p-values imply a difference between algorghm

Table 17 Example of Friedman's test ranking, O@suee, experiment 7, seven repetitions
(Note: for OE and EO smaller values is preferable)

Algorithm
Repetition | OR AND MOST AFL
1 2 1 3 4
2 2 1 3 4
X~ 3 2 1 3 4
S 4 2 1 3 4
o 5 2 1 3 4
6 2 1 3 4
7 3 1 2 4
Sum 15 7 20 28

48



Table 18 Friedman's test results

Sensor fusion Sensor fusion
Experiment | performance | p - value Experiment | performance | p - value
measures measures
00 0.0002 00 0.0002
1 EE 0.0001 5 EE 0.0001
' OE 0.0003 ' OE 0.0003
EO 0.0002 EO 0.0004
00 0.0001 00 0.0005
5 EE 0.0001 6 EE 0.0001
' OE 0.0001 ' OE 0.0002
EO 0.0002 EO 0.0002
00 0.0004 00 0.0001
3 EE 0.0001 7 EE 0.0003
' OE 0.0002 ' OE 0.0004
EO 0.0005 EO 0.0001
00 0.0003
4 EE 0.0006
' OE 0.0005
EO 0.0005

Multiple comparison procedure

According to table A.17 in [Hollander and Wolfe,78), for a significance level of 0.02, four
algorithms and seven repetitions require a diffeeeequal or greater than 14 between their
algorithm's sum of ranks in order to consideredifisrent algorithms. Table 19 describes an
example of the 28 multiple comparison procedurésiléel in Appendix X. A close look at the
results indicates that in most cases MOST and Afgordhms belong to the same best
subgroup and thus they are considered the twopeefsirming algorithms.

Table 19 Multiple comparison results for all PMkperiment 7
(Note: for OE and EO smaller values is preferable)

Experiment 7
OO measure EE measure
Serjsor Sum of Sub Sensor fusion| Sum of
fusion . Sub groups
. ranks groups algorithm ranks
algorithm
AFL 28 A AFL 27 A
MOST 20 A B MOST 22 Al B
OR 15 A B AND 14 Al B| C
AND 7 B OR 7 C
OE measure EO measure
Serjsor Sum of Sub Sensor fusion| Sum of
fusion . Sub groups
. ranks groups algorithm ranks
algorithm
AND 27 A AFL 28 A
AFL 20 A B MOST 21 A B
MOST 16 A B OR 14 A B
OR 7 B AND 7 B

Sign test
Final comparison between the two best performimggrihms (AFLvs. MOST) is the sign

test. For each experiment, four performance measwa&s tested, overall 28 cases was
examined. Sign test data is presented in AppendixT&ble 20 presents the sign test data
summary. The AFL algorithm outperformed the MOSgoaithm in 12 cases, in 4 cases

49




MOST outperformed AFL and in 12 cases both of th@eided identical results. The
significance level corresponding to this case isaétp 0.077, as presented in Table 21. Table
21 was generated using SPSS for windows softwdease 12.0.0. The small significance
level implies that the AFL algorithm is the bestfpaming algorithm.

Table 20 Sign test data

Experiment Sensor fusion performance measures
environmental (0]e)] EE OE EO

conditions MOST | AFL | MOST | AFL |MOST |AFL |MOST |AFL
1. Ties Ties Ties Ties Ties Ties Ties Ties
2. 0 7 0 7 0 3 0 7
3. 0 7 0 7 3 4 0 7
4, Ties Ties Ties Ties Ties Ties Ties Ties
5. 7 0 7 0 7 0 7 0
6. Ties Ties Ties Ties Ties Ties Ties Ties
7. 0 7 1 6 1 6 1 6

Total 1 3 1 3 1 3 1 3
Note: The values in this table indicate the numbeiroés each algorithm outperforms the opponent.

Table 21 Sign test results
Frequencies

N
MOST - AFL Negative 12
Differences(a)
Positive 4
Differences(b) a MOST < AFL
Ties(c) 12 b MOST > AFL
Total 28 ¢ MOST = AFL

Test Statistics(b)

MOST - AFL
Exact Sig. (2-tailed) .077(a)

a Binomial distribution used.
b Sign Test

7.2.5 Discussion

The evaluation method presented in this sectioncaes that the two best performing
algorithms are the AFL and MOST. Of the two, theLA& superior. OR and AND algorithms

have poor performances. These evaluations corrdsimoprevious results [Cohen, 2005] and
to visual presentations of the generated maps.

50



Table 22 Logical sensors mapping in the extendedadusion framework

Logical sensor Real
Exp. usSl us2 LASERL LASERZ CAM1 CAM2 CAM3 Vr;ll(;gd
»
‘ * [ 4 ] ™ - d - -
l 5 ‘ 1 r ’ “ .‘ - é L] .
3 y
- " % 5 H : “‘ -
t B ]
-‘ -I" n L] ) L] [ ]
L A . ko
2 ¥ ¢ } ‘ ’ L] ]
»
- " " ’, - -
~ T . L . o
» A . % + *
3 4 F * ! ¥ .
1| e -
. » L
1‘ -l' L 1 . &
» -
L ] » i f ' -
E
‘- f - r 1 } - .
5 H ‘ 2 [ L 1 1 r‘ L] [ ]
&
4
- : r N
L
- i 1 . # . @
6 o I * ) .
| ia N L
> ) R .
b F 4 T e ot e * @
L T T I TS B A
L | L] ] L -

51




Table 23 Algorithms mapping in the extended sefssion framework

Sensor fusion algorithm Real
Ex OR AND | MOST | afL | World
P map
[ [ ] - -
1 - [ ] &
[ ]
b | ' ] L]
2 ' b | ;:' & L]
" L ]
b | - [ ] i
3 *. “ ” .
» [ ]
» | ]
1 1 3 * &
4 " g n F L
» »
P 1 . " i .
» »
5 F - f . &
5 T r | gt e
? T *
Y Y . -
6 " " .
'y 'y .
“ T e Y e e
7 s ¥ | " o g |
b | iy A »

52




7.3 Adaptive weighted algorithm evaluation
7.3.1 General

A new adaptive weighted algorithm (AdpWA) is pre®ehin this research. The algorithm
uses the values in the maps and in performanceumesafor building the fused map, and was
implemented in the extended sensor fusion framewidnk algorithm was implemented using
a set of algorithms, which differ in the performameasures type and include implementation
of a map enhancement procedure. The algorithmsdedly described in sectioh.2. To test
the algorithms' performances, Cohen's evaluatiothodewas applied [Cohen, 2005]. A total
of five sensor fusion algorithms were employed: AGKL, AdpWA2, AdpWA3 ,AdpWA4
and AFL. In order to test their performances, a &feexperiments was conducted. The
experimental set was defined using the evaluatiethad developed by Cohen [Cohen, 2005].

7.3.2 Experimental design

Four different experiments were conducted (Tablg. Zzhe experiments differ in the
environmental conditions and in sensory input. &#ht environmental conditions were
chosen to ensure that the results are not onlyafepecific dataset. Each experiment was
repeated six times. The number of experiments apdtitions required derives from several
parameters, including the statistical charactesstf the datag(g. standard deviation), the
desireda value andA, the minimum difference to be detected [Cohen,520Blence, it is
impossible to predica-priori the number of experiments and repetitions requiféerefore,
the initial number of experiments and repetitiorssvehosen arbitrary. Lighting conditions
were changed in the fourth experiment by turnirfglod lights. Experiment’s repetitions were
performed under the same conditions with naturaiatians such as lightning conditions,
shadows and time differences. In each experimentir@mental mapping was achieved
using the five different sensor fusion algorithmssulting in a total 120 of environmental
mappings (5 sensor fusion algorithms X 4 Experimen6 repetitions). Figure 14 presents the
algorithms’ map results from experiment 1, firgpettion and the corresponding real world

map. All logical sensors mappings are presentedaible 33 and algorithms mappings are
presented in Table 34.

Table 24 Experimental design for statistical evatuaexperiments

Exp.] US1 us2 LASER1LASER?2| CAM1 CAM2 CAM3 | Comments
Regular Regular| Regular Shift Shift
L EmPY | aigorithm | FU! JAigorithmAlgorithm X=X 40 | X=X-60
g g g Y=Y-60 | Y=Y+40
Shift:
Regular Regular - Regular | Regular
2 Algorithm Empty Algorithm Full >\<(_:>\((+11(())(? Algorithm | Algorithm
3 Empt Regular | Regular Empt Empt Regular X—S>?Jirft1:00
Pty Algorithm |Algorithm Pty Pty Algorithm Y_:Y-120
Regular | Regular Regular| Regular Regular .
4 | Empty Algorithm |Algorithm Empty Algorithm| Algorithm | Algorithm Lights off

5

3



Real | AdpWAL | AdpWA2 | AdpWA3 | AdpWA4 | AFL

r | w w
[ ] ) L) rE ™ ‘r 3 p - ‘r

b - L]

Figure 14 Map results, Experiment 3, first repetiti

Different experiments

For seven logical sensors, seven repetitions amdeperiments that were chosen arbitrarily,
these results in 1,512 subtracted maps, as defived[17] and presented in [27]. For each
comparison, the worst difference of all logical sans is saved [Cohen, 2005], resulting in

N =7-6° @ =1512 [27]

Similar repetitions

For seven LS, six repetitions and four experimethis, results in 420 comparisons, as derived
from [18] and presented in [28]. For each comparison, thestwbfference is savee,.g, the
maximum number of signed cells [Cohen, 2005], tesyin 168 maps.

6
Nrep. :7-4-@:420 [28]

Volume of overlap region

The maximum number of signed cells was calculabecafi experiment and repetitions. The
volume is negative as equation [29] shows, implyiingt the experiments are different and
repetitions are similar.

~ MIN(5136754)- MAX(87778)
MAX(5136754) - MIN(877,78)
Number of repetitions
The number of repetitions is based on a t-testilddtan [Cohen, 2005] and is calculated for
a=0.05 and3=0.2. Standard deviation (S) and mean values &sntas the upper bound from
all experiments and algorithma. is chosen to be 15% from the average upper bolinel.
results are presented in Table 25. Based on tlessiéts, the largest R is for the OO measure;
this results in six necessary repetitions. Sinad experiment has already six repetitions, no
additional repetitions were required.

VOLR

- -0.024 [29]

54



Table 25 Realculations for each performance measure
Performance S A Radjusted| R
Measure
e]e 0.0371| 0.041| 5.838
EE 0.0221] 0.1459| 0.163
OE 0.0011| 0.1471| 0.0003
EO 0.0625| 0.15| 1.237

NIFR P O

7.3.3 Performance measure calculation and grouping

Table 26 presents an example of raw data for ortbeofepetitions in one of the experiments
for all sensor fusion algorithms. Raw data forwiele experiment set is detailed in Appendix
XIl. An example of the resulting EE values for i@petitions is presented in Table 27.

Table 26 Sensor fusion performance measures vlduegperiment 3, second repetition
Algorithm 00 EE OE EO

AdpWA1 | 0.242 0.971 0.000 0.068
AdpWA2 | 0.196 0.878 0.004 0.310
AdpWA3 | 0.115 0.969 0.000 0.320
AdpWA4 | 0.231 0.935 0.001 0.221

AFL 0.000 0.962 0.000 1.000
Table 27 EE Measure for five algorithms, six répmts, Experiment 2
Repetition number

Algorithm 1 2 3 4 5 6
AdpWAL1 0.974 0.970| 0.972] 0.957 0.968 0.973
AdpWA2 0.000 0.000| 0.000] 0.00(¢ 0.000  0.000
AdpWA3 0.971 0.969 0.970, 0.97( 0.968 0.970
AdpWA4 0.002 0.002 0.002] 0.002 0.00p 0.002

AFL 0.974 0.971 0973 0973 0.970 0.973

7.3.4 Statistical analysis

Friedman's test

An example of Friedman' test ranking for the EE soea of experiment 2 is presented in
Table 28. The entries in each row are the rankseaxh algorithm within the seven
replications. Friedman’s ranking for all experingeate presented in Appendix XIlII.

P-values for all 7 experiments for all seven expernts are presented in Table 29. The very
small p-values imply a difference between algorghm

55



Table 28 Example of Friedman's test ranking, O@suee, experiment 2, seven repetitions
(Note: for OE and EO smaller values is preferable)

Algorithm
Repetition AdpWA1 AdpWA2 AdpWA3 AdpWA4 AFL
1 5 1 3 2 4
2 5 1 3 2 4
= 3 5 1 3 2 4
& 4 5 1 3 2 4
5 5 1 3 2 4
6 5 1 3 2 4
Sum 30 6 18 12 24
Table 29 Friedman's test results for AdpWA algaonith
Sensor fusion Sensor fusion
Experiment performance | p - value Experiment performance | p - value
measures measures
00 0.0012 00 0.001
1 EE 0.0005 3 EE 0.0005
OE 0.0006 ' OE 0.0005
EO 0.0005 EO 0.0005
00 0.0005 00 0.0005
5 EE 0.0012 4 EE 0.0012
OE 0.0012 ' OE 0.0012
EO 0.0005 EO 0.0005

Multiple comparison procedure

According to table A.17 in [Hollander and Wolfe,7B), for a significance level of 0.049, five
algorithms and six repetitions require a differerezial or greater than 15 between the
algorithm's sum of ranks in order to be consideedlifferent algorithms. Table 30 describes
an example of the 16 multiple comparison proceddetailed in Appendix XIV. A close look
at the results indicates that in most cases Adp\aAd AFL algorithms belong to the same
best subgroup and thus they are considered thedsioperforming algorithms.

Table 30 Multiple comparison results for all PMkperiment 1
(Note: for OE and EO smaller values is preferable)

Experiment 1
OO measure EE measure
Sef?sor Sum of Sensor fusion| Sum of
fusion Sub groups , Sub groups
. ranks algorithm ranks

algorithm
AdpWA4 29 A AdpWA1 30 A
AdpWA2 23 A B AdpWAS3 24 A B
AdpWA1 20 A B C AFL 18 A B C

AFL 12 B C AdpWA4 12 B C
AdpWA3 6 C AdpWA2 6 C

OE measure EO measure
Serjsor Sum of Sensor fusion| Sum of
fusion Sub groups . Sub groups
. ranks algorithm ranks

algorithm
AdpWA3 30 A AdpWA2 27 A
AdpWA1 22 A B AdpWA4 27 A

AFL 20 A B C AdpWA1 18 A B
AdpWA4 12 B C AFL 12 A B
AdpWA2 6 C AdpWA3 6 B

56



Sign test

Final comparison between the two best performiggrahms (AdpWA1vs. AFL) was done
using the sign test. For each experiment, fourgoerdnce measures were tested, resulting in
overall 16 cases. Sign test data it presented pmeAdix XV. Table 31 presents the sign test
data summary. The AdpWAL1 algorithm outperformedAlRé& algorithm is 13 cases, and in 3
cases AFL outperformed AdpWAL. The significanceelecorresponding to this case is equal
to 0.021, as presented in Table 32. Table 32 wasrgied using SPSS software for windows

release 12.0.0. The small significance level ingplieat the AdpWAL1 algorithm is the best
performing algorithm.

Table 31 Sign test data

Experiment Sensor fusion performance measures
environmental 00 EE OE EO
conditions AdpWAl | AFL | AdpWAl |AFL |AdpWAl1l |AFL AdpWAl AFL
1. 6 0 6 0 1 0 6 0
2. 6 0 1 4 4 1 6 0
3. 6 0 6 0 0 6 6 0
4. 6 0 6 0 1 4 6 0
Total 4 0 3 1 2 2 4 0
Note: The values in this table indicate the numbeimés each algorithm outperforms the opponent.

Table 32 Sign test results
Frequencies

N
AFL - AdpWA1 Negative
i 13 <
Differences(a) 3 ﬁit S ﬁggwﬁi
Positive
Differences(b) 3 ¢ AFL = AdpWA1l
Ties(c) 0
Total 16

Test Statistics(b)

AFL - AdpWA1
Exact Sig. (2-tailed) .021(a)

a Binomial distribution used.
b Sign Test

7.3.5 Discussion

The evaluation method presented in this sectioncaes that the two best performing
algorithms are the AdpWA1 and AFL. Of the two, tAdpWAL is superior. AdpWA2,
AdpWA3 and AdpWA4 have poor performances. The tssirdicate that the suggested
enhancement procedure did not improve the perfocegnsince the best performing
algorithm did not use the enhancement procedurelandlgorithms that does use it, did not
appear as one of the two best performing algorithAdpWAL algorithm uses type |
performance measures, implying that the develogpd tl performance measures does not
guantify the difference between two maps accuratalyugh, and this performance measures

needs to be improved. These evaluations corresfmrcual presentations of the generated
maps.

57



Table 33 Logical sensors mapping for adaptive wemjlaverage algorithm experiments set

Logical sensor Real
Exp. | US1 | US2| LASER] LASER2| CAM1 | CAM2 | CAM3 Wmo&rlls
'
‘ ! - r - - - ]
1 - [ o ] \ iq- .
- L] b - l! I “ -
» g ~r . " .- »
2 L™ ¢ A r a » [ ] .
- - ‘ :
e "y e
- oy . ® . &
3 - L T s . a
- - L9
£ :
g *or " » i - 4
4 M 1 . ' ) - . .
L L] .

Table 34 Algorithms mapping for adaptive weightedrage algorithm experiments set

Sensor fusion algorithm Real
EXp.| AdpWAL | AdpWA2 | AdpWA3 | AdpWA4 | AFL V\r/r?g sl
N . .
1 A e e
- L]
R L ~ -
2 T 1o L) -
. ) ) .
* * f * - * -.- L ]
3 1 hl * 1 ¥ b Y f - .
" - - .
L - s " s * 4 . -
4 * * ' . I ‘ ,! - .
- L™ - .

58




8. Conclusions and future research

8.1 Conclusions

This thesis evaluates a sensor fusion frameworlkldped in previous research for mapping
the environment of a mobile robot using a grid-mgmesentation concept. This work consists
of two parts. Thdirst part deals with an extended sensor fusion framlew@ohen, 2005]
sensor fusion framework was extended to fuse deden fthree physical sensors. The
performances of the extended framework were ewadudirough a statistical evaluation
method. In the evaluation, four different algorithmvere used to fuse the data: three logical
algorithms and one adaptive algorithm. Resultscaug that the adaptive algorithm is superior
the logical ones by giving best results in difféarenvironmental conditions corresponding to
previous results [Cohen, 2005].

The second part deals with the development of aadaptive weighted average sensor fusion
algorithm. In the process of the algorithm’s depetent, three concepts were developed. The
first concept is the non-binary grid map, where Cohdmfgary grid-map paradigm was
extended to include cells that contain integer @glthat indicate the number of times the
sensor declared this cell as occupied (insteadnar cells, that contains only ‘1’ and ‘0’
values that indicates whether this celloscupiedor empty,respectively). This extension
increases the amount of data in the map yieldingenamcurate and complete information
about the robot’s surroundings. Thecondconcept is a new type of performance measures
that was developed. This type examines changegartorresponding cells values and detects
the more accurate sensors. The new type of perfaenmeasures allows giving more weight
in the fusion process to sensors with higher peréocesi.e., the more accurate sensor. The
non-binary grid map concept allows cells with higlalues i.e., the sensor declared them as
occupiedmore times) to influence more on the fusion precésethird concept is the map
enhancement procedure that was developed in codengrove maps accuracy by canceling
environmental noises and sensors malfunctions.aBeamption that stands in the basis of the
enhancement procedure is that occupied cells tleas@arounding with occupied cells are
more likely to indeed contain an obstacle and fioeeeshould be strengthened.

The new adaptive weighted average algorithm usesetthree concepts when enhanced non-
binary grid maps from the different logical sensars fused to one map by considering the
cells’ values and the logical sensor performancasuees.

The performances of the new algorithm were evatlateough the statistical evaluation

method and were compared to the previously devdl@uaptive algorithms. Results show
that the new algorithm outperforms the other atpans, while the enhancement procedure did
not affect the performances.

59



8.2 Future research
Several research areas remain open for future sigaof this work.

Performance measures

Type Il performance measures needs to be modifrethe current definition, two identical
maps do not yield maximum performance measureb@sdd be. The performance measures
can be a combination between type | and type ltdmysidering changes in the cell's status
(i.e., ‘Occupy or ‘Empty) and also changes in the cell’'s value. The currgmpe Il
performance measures deals only in the differeeteden two corresponding occupied cells,
and their definitions should be extended to inclatianges between cell’s conditiong,,
corresponding cells that are marked as occupieh@map but empty in the other, and vice
versa. The influence of the initial performance swas must be checked, by running
simulations with several random performance measanel checking the convergence to the
best performing logical sensor.

Sensors configurations

In future research, it would be beneficial to exa@nchanges in mapping from one physical
sensor only (ultrasonic or laser) as opposed tofiised map..e., what is the different
between one sensor mapping and the fusion algormhapping. This is important in
understanding the fusion contribution and the fussgstem robustness. In addition, fusion
results from different sensors combinations (foaragle, ultrasonic and laser or camera and
laser) must to examined as opposed to fusion fribravailable sensors in order to examine
the different sensors’ contribution to the fusiongess.

Extended experimentation

The mobile robots experiments must be extendedhdlude more realistic conditions with
different types of interruptions such as lightningnditions or bright surfaces. Another
suggestion is to examine changes in the obstacteifiguration, color or height (or all the
above together) in order to check the algorithnmithtions. Checking a scenario when the
robot is static and adding a random noise to tlstegy can give new understanding about
algorithm’s performancedn addition, the influence of the performance nueas should be
tested by running different experiments.

Representation

Future research should deal with maps with uncestaialues representing the probability for
an obstacle in the cell. In addition, handling gadgmensional maps can provide important
additional information [Cohen, 2005hnother direction can be to consider each cell's
certainty to be ‘Empty’, perhaps by summing the banof times the sensor declared this cell
as ‘Empty’. A combination of each cell’s certairitybe ‘Occupy’ and ‘Empty’ can be taken

into account, and fusion based on these value eamlinteresting approach.

In addition, image processing algorithms optim@atior the camera different logical sensors
is required.

Algorithms

Cohen’s Online sensor and algorithm selection syst@eLSAS [Cohen, 2005] needs to be
implemented using the extended fusion framewor,(to fuse data from three physical
sensors). In addition, the Adaptive weighted averalgorithm should be integrated in the
OLSAS system.

60



Additional applications
It can be interesting to use the fused map for rothebile robot's applications such as

navigation. Navigation through the use of the fuseap and other techniques should be
compared, in order to examine the fusion profits.

61



[1]
[2]
[3]
[4]

[5]

[6]
[7]

[8]
[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

9. References

Abidi M. A. and Gonzales R. C. 1992. Data fusionrabotics and machine
intelligence, Academic Press, San Diego, CA.

Amigoni, F., Gasparini, S. and Gini, M. 2006. Binlgl segment-based maps
without pose information, Proceedings of the IEEB(7): 1340-1359.

Arkin E. M., Fekete S. P. and Mitchell J. S. B. @Q0@pproximation algorithms
for lawn mowing and milling, Computational Geometty(1-2): 25-50.

Arras K.O., Tomaris N., Jensen B. and Siegwart®.12 Multisensor On-the-Fly
Localization: Precision and Reliability for Applitans, Robotics and
Autonomous Systems, 34(2-3): 131-143.

B. Solaiman, R. Debon, F. Pipelier, J.M. Cauvin &hdRoax. 1999. information
fusion, application to data and model fusion faragound image segmentation,
IEEE transactions on biomedical engineering, 46(1M1-1175

Bank, D. and Kampke, T. 2007. High-Resolution Wtmaic Environment
Imaging, IEEE Transactions on Robotics, 23(2): 38Q-

Belknap R., Riesman E. and Hanson A. 1986. Thenmdtion fusion problem and
rule-based hypothesis applied to complex aggregatioimage events, IEEE
Conference Computer Vision and Pattern Recogni2@i-234.

Blum R. S., Kassam S. A. and Poor H. V. 1997. ihsted detection with
multiple sensors: Part Il — advanced topics, Prdicgs of the IEEE, 85(1): 64-79.
Borenstein, J. and Koren, Y. 1991. Histogramic ioion mapping for mobile
robot obstacle avoidance, IEEE Transactions on &mboand Automation,
7(4):535-539.

Brooks R. A. 1982. Solving the find-edge probleng@od representation of free
space, Proceedings AAAI-82: 381-387.

Brooks, R. R. and lyengar S. S. 1998. Multi-serfsigion. Prentice Hall, New
York, NY.

Cao, A., and Borenstein, J. 2002. Experimental &ttarization of Polaroid
Ultrasonic Sensors in Single and Phased Array Qardtion. Proceedings of the
UGV Technology Conference at the SPIE AeroSensep8gmam.

Carson R.R., Meyer, M.P and Peters, D.J. 1996.0Rusf IFF and radar data,”
Data Fusion Symposium. ADFS '96, 21-22 Nov: 65-70.

Castellanos J.A. and Tardos J.D. 1999. Mobile roloctlization and map
building: a multisensory fusion approach. BostonA:MKluwer Academic
Publishers.

Castellanos, J.A., Neira, J. and Tardos, J.D. 20@ultisensor fusion for
simultaneous localization and map building, IEEBRNEactions on Robotics and
Automation, 17(6): 908-914.

Chen S. 1987. Multisensor fusion and navigationmobile robots, International
Journal of Intelligent Systems, 2(2): 227-251.

Cohen O. 2005. Grid-Map based sensor fusion farrewmous mobile robot,Ph.d
thesis, Ben-Gurion University of the Negev, Beeexghp.o box 84105, ISRAEL.
Costa, J., Dias, F. and Araujo, R. 2006. Simultasebocalization and Map
Building by Integrating a Cache of Features, IEEBnf€rence on Emerging
Technologies and Factory Automation, 20-22 Sep810B8043.

62



[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Cremer F., Schutte K., Schavemaker J. G. M., andlda. Breejen. 2001. A
comparison of decision-level sensor-fusion methimdsanti-personnel landmine
detection, Information Fusion, (2)3: 187-208.

Daniel F., Gamrra T., Bastos-Filho T. and Sarcistélho M. 2005. Controlling
the Navigation of a Mobile Robot in a Corridor wiRedundant Controllers,
Proceedings of the IEEE International ConferenceéRobotics and Automation,
Barcelona, Spain, April 2005: 3855-3860.

Davison A. J. and Kita. N. 2002. Simultaneous lzegion and map-building
using active vision for a robot moving on undulgtterrain. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 24(Bp & 880.

Davison, A.J. and Murray, D.W. 2002. Simultaneoosalization and map-
building using active vision, IEEE TransactionsRattern Analysis and Machine
Intelligence, 24(7): 865-880.

Durrant-Whyte H. F. 1988a. Integration, coordinatemd control of multisensor
robot systems, Kluwer, Boston, MA.

Durrant-Whyte H. F. 1988b. Sensors models and sartor integration, The
International Journal of Robotics Research, 7(3)192.

Elfes, A. 1987. Sonar-based real-world mapping @endgation, IEEE Journal of
Robotics and Automation, 3(3):249-265.

Faceli K., Andre C.P.L.F. de Carvalho and RezendeDS2004. Combining
intelligent techniques for sensor fusion, Applietelligence, 20: 199-213.
Faugeras O., Vieville T., Theron E., Vuillemin Blotz B., Zhang Z., Moll L,
Bertin P., Mathieu H., Fua P., Berry G. and Proyl@93. Real time correlation-
based stereo: algorithm, implementations and aqpbics, Tech. Rep.
2013,INRIA.

Feng-chun Z., Yan-bing J. and Ai-hua W. 2006. Regteaon Integrated
Navigation Technology of Field Robot, IEEE Inteinaal Conference on
Information Acquisition, pp.59-64.

Filippidis A., Jain L.C. and Martin, N. 2000. Mwdé&nsor data fusion for surface
land-mine detection, IEEE Transactions on Systétas, and Cybernetics, Part C:
Applications and Reviews, 30(1):145-150.

Garcia J.G., Robertsson A., Ortega J.G. and JobarfiRs2004. Sensor fusion of
force and acceleration for robot force control,d@exlings IEEE/RSJ International
Conference on Intelligent Robots and Systems,3:8009-3014.

Gon W. and Beom H. 2006. Hierarchical Sensor Fudien Building an
Occupancy Grid Map using Active Sensor Modulescledings of International
Joint Conference:2600 — 2605.

Gonzales J., Ollero, A. and Reina, A. 1994. Mapdng for a mobile robot
equipped with a 2D laser rangefinder, Proceedingshe IEEE International
Conference on Robotics and Automation, vol. 3: 199@9.

Groen F. C. A., Komen E. R., Vreeburg M. A. C. Akdrmerdam T. P. H. 1986.
Multisensor robot assembly station, Robotics, 20R05-214.

Guoliang L., Wanjun H., Shizuo Y., Zengqgi S. andnijeQ. 2006. A Fusion
Algorithm for Building Maps in Confined Environmentfor Mobile Robots,
Proceedings of IMACS Multiconference on ComputadlorEngineering in
Systems Applications:960 — 964.

Hanson A. R., Risen E. M., and Williams T. D. 19&ensor and information
fusion from knowledge-based constrains, SPIE Pdinge of Sensor Fusion.
931: 186-196.

63



[36]
[37]
[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Harmon S. Y. 1986. Autonomous vehicles, EncyclopediArtificial Intelligence,
John Wiley, New York: 39-45.

Harris C.G. and Stephens M. 1988. A combined commell edge detector.
Proceedings of Fourth Alvey Vision Conference: 141-

Hebert M. 2000. Active and passive range sensimgdbotics, Proceedings of
IEEE International Conference on Robotics and Awttom, vol. 1: 102-110.
Henderson T. and Shilcrat E. 1984. Logical sengstesn, Journal of Robotic
Systems, 1(2): 169-193.

Hernandez A.l., Carrault G., Mora, F., Thoraval Rgssariello G. and Schleich
J.M. 1999. Multisensor fusion for atrial and vecdtar activity detection in
coronary care monitoring, IEEE Transactions on Bidical Engineering,
46(10):1186-1190.

Hernandez A.l., Carrault G., Mora F., Thoraval Bgssariello G. and Schleich
J.M., 1999. Multisensor fusion for atrial and vémitar activity detection in
coronary care monitoring, IEEE Transactions on Bidioal Engineering,
46(10):1186-1190.

Hollander M. and Wolfe D. A. 1973. Nonparametriatstical methods, John
Wiley & Sons Inc, New York, NY.

Hong W., Tian Y. and Dong Z. 2002. The approackxtfacting features from the
local environment for mobile robot, Proceedings tbeé First International
Conference on Machine Learning and Cybernetics:6a1BL

Hong-Ming W., Zeng-Guang H., Jia M., Yun-Chu Z.,ngeQian Z. and Min T.
.2007. Sonar Feature Map Building for a Mobile Rpleroceedings of IEEE
International Conference on Robotics and Automaudd®b?2 — 4157.
HoseinNezhad R., Moshiri B. and Asharif M. R. 200&ensor fusion for
ultrasonic and laser arrays in mobile robotics.cBealings of IEEE International
Conference on Sensors: 1682-1689.

Huntsberger T. L. and Jayaramamurthy S. N. 198#tafework for multisensor
fusion the presence of uncertainty, Proceedingg/ofkshop Spatial Reasoning
and Multisensor Fusion: 345-350.

Hyeyeon C., JongSuk C. and Munsang K. 2006. Ewmpmmrial research of
probabilistic localization of service robots usiragge image data and indoor GPS
system, Proceeding of IEEE Conference on Emergechiiologies and Factory
Automation:1021 — 1027.

lvanjko E., Vasak M. and Petrovic I. 2005. Kalmaltef theory based mobile
robot pose tracking using occupancy grid maps, dediaogs of International
Conference on Control and Automation: 869 — 874.

Kamat S. J. 1985. Value function structure for mplét sensor integration,
Proceedings of SPIE, Intelligence Robots and Coarptision. 579: 432-435.
Karaman, O. and Temeltas, H. 2004. Comparison @&ferdnt grid based
techniques for real-time map building, Proceedings IEEE International
Conference on Industrial Technology,vol. 2: 863-868

Kim G.W and Lee B.H. 2006. Hierarchical Sensor Busfor Building an
Occupancy Grid Map using Active Sensor Modules, cBedings of the
International Joint Conference SICE-ICASE: 2600260

Klein L. A. 1993. A Boolean algebra approach to tiplé sensor voting fusion,
IEEE Transactions on Aerospace and Electronic 8yst29(2): 317-327.

Kluge, K.C. 2003. SAMLOS: a 2D simultaneous locatian and mapping
algorithm based on lines of sight, Proceedings EEH Intelligent Vehicles
Symposium: 438-443.

64



[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Kwon, Y.D. and Lee, J.S., 1997. A stochastic emuinent modelling method for
mobile robot by using 2-D laser scanner, Proceedwfgthe IEEE International
Conference on Robotics and Automation, vol.2: 16883.

Li X., Huang X., Wang M. and Peng G. 2006. A Conmxar of the effect of sonar
grid map building based on dsmt and dst, Procesdifighe 6th World Congress
on Intelligent Control and Automation, vol. 1: 404Q377.

Lin H. H., Tsai C. C., Hsu J. C. and Chang C. RR®0Jltrasonic self localization
and pose tracking of an autonomous mobile robotfwzay adaptive extended
information filtering, Proceedings of the IEEE Imtational Conference on
Robotics and Automation: 1283-1290.

Liu G., Haot W., Yant S. , Sun2 Z. and Qiangt WO0A Fusion Algorithm for
Building Maps in Confined Environments for Mobile obots, IMACS
Multiconference on Computational Engineering in t8yss Applications, vol.
1:960-964.

Lozano-Perez T. 1981. Automatic planning of marap transfer movements,
IEEE Transactions, on Systems Man and Cybernat8k:798.

Lu Y., Zeng L. and Bone G.M. 2005. Multisensor t8ys for Safer Human-Robot
Interaction, Proceedings of the 2005 IEEE Inteorati Conference on Robotics
and Automation: 1767-1772.

Luo R. C. and Kay M. G. 1989. Multisensor integratand fusion in intelligent
systems, IEEE Transactions on Systems, Man. andr@gbcs, 19(5): 901-931.
Luo, R.C., Chih-Chen Yih and Kuo Lan Su. 2002. f&eainsor fusion and
integration: approaches, applications, and futasearch directions, IEEE Sensors
Journal, 2(2):107-119.

Luo K. and Lin C. 1996. An intelligent sensor fusisystem for tool monitoring
on a machining center. Proceedings of the IntesnatiConference of Multisensor
Fusion Integration Intelligence Systems. pp. 208:21

Martin M.C. and Moravec H., Robot Evidence Grids;ht report CMU-RI-TR-
96-06, Robotics Institute, Carnegie Mellon Univgr,sMarch, 1996.

Metz CE. 1986. Statistical analysis of ROC dataewaluating diagnostic
performance. In: Multiple Regression Analysis: Apations in the Health
Sciences (D Herbert and R Myers, eds.). New YorkneAican Institute of
Physics: 365-384.

Mirzaei, F.M., Mourikis, A.l. and Roumeliotis, S.Dn the Performance of Multi-
robot Target Tracking, Proceedings of the IEEE rimddonal Conference on
Robotics and Automation, pp.3482-3489.

Miura, J., Negishi, Y. and Shirai, Y. 2002. Mobitebot map generation by
integrating omnidirectional stereo and laser rafigder, Proceedings of IEEE
International Conference on Intelligent Robots 8ydtem, pp. 250-255.

Moravec H. P. and Elfes A. E. 1985. High resolutimaps for wide-angle sonar,
Proceedings of the IEEE International Conferentdrobotics and Automation:
116-121.

Moravec H.P. 1988. Sensor fusion in certainty grids mobile robots. Al
Magazine:61-74.

Moravec, H. and Elfes, A..1985. High resolution sdmm wide angle sonar,
Proceedings of IEEE International Conference onddob and Automation:116-
121.

Najjaran H. and Goldenberg A. 2006. Real-time muotiplanning of an
autonomous mobile manipulator using a fuzzy adapKalman filter, Robotics
and Autonomous Systems, 55(2): 96-106

65



[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]
[83]

[84]

[85]

[86]

Oriolo G., Ulivi G. and Vendittelli M. 1997. Fuzayaps: A new tool for mobile
robot perception and planning, Journal of Roboyist&ns, 14(3): 179-197.

Patel K., Macklem W., Thrun S. and Montemerlo MO20Active Sensing for
High-Speed Offroad Driving, Proceedings of the IEEEernational Conference
on Robotics and Automation, pp. 3162-3168.

Perez-Lorenzo J.M., Vazquez-Martin R., Nunez PreP&.J. and Sandoval F.
2004. A Hough-based method for concurrent mappimdylacalization in indoor
Proceedings of IEEE Conference on environments,oftd) Automation and
Mechatronics, vol. 2: 840-845.

Reina A. and Gonzales J. 1997. Characterizatioa ofdial laser scanner for
mobile robot navigation, Proceedings of the IEEEYR@&ernational Conference
on Intelligent Robots and Systems, vol.2: 579-585.

Ribo M. and Pinz A. 2001. A comparison of threearnteainty calculi for building
sonar based occupancy grids, International Jowwh&obotics and Automation
Systems 35: 201-209.

Schwering P. B. W., Baertlein B.A., Van den BroelP.Sand Cremer F. 2002.
Evaluation methodologies for comparison of fusidgodathms in land mine
detection, Detection and Remediation Technolog@s Mines and Minelike
Targets VII, Proc. SPIE, 4742: 847-856.

Solaiman B., Pierce L.E. and Ulaby F.T. 1999. Mualtisor data fusion using
fuzzy concepts: application to land-cover clasaiimn using ERS-1/JERS-1 SAR
composites, IEEE Transactions on Geoscience andfesensing. 37(3):1316-
1326.

Solaiman B., Koffi R.K., Mouchot M.-C., Hillion A1998. An information fusion
method for multispectral image classification postessing, IEEE Transactions
on Geoscience and Remote Sensing, 36(2):395-406.

Stepan P., Kulich M. and Preucil L. 2005. Robusadasion with occupancy grid,
IEEE Transactions on Systems, Man and Cybernd®ag, C: Applications and
Reviews, 35(1):106-115.

Stepan P., Kulich M. and Preucil L. 2005. RobustaDiausion With Occupancy
Grid, IEEE Transactions on Systems, Man and Cyims) 35(3): 106-115
Sukumar S.R., Bozdogan H., Page D.L., Koschan Arfd Abidi M.A. 2007.
Sensor Selection Using Information Complexity foulltsensor Mobile Robot
Localization. Proceedings of the IEEE InternatioBanference on Robotics and
Automation, pp.4158-4163.

T.E. Bell, 1995. Remote sensing, IEEE spectrum3)324-31.

Tanaka K., Okada N. and Kondo E. 2003. Buildindoarf map by combining
stereo vision and visual tracking of persons, Redoeys of IEEE International
Symposium on Computational Intelligence in Robotargl Automation, vol.2:
641-646.

Thomas U., Molkenstruck S., Iser R. and Wahl F.BD2 Multi Sensor Fusion in
Robot Assembly Using Particle Filters, Proceedinfshe IEEE International
Conference on Robotics and Automation, pp.3837-3843

Thomas U., Molkenstruck S., Iser R. and Wahl F.BD2 Multi Sensor Fusion in
Robot Assembly Using Particle Filters, Proceedinfighe IEEE International
Conference on Robotics and Automation, pp. 38373384

Thomopoulos S. C. A., Viswanathan R. and BougoubasK. 1987. Optimal
decision fusion in multiple sensor systems, IEEBnEactions on Aerospace and
Electronic Systems, 23(5): 644-652.

66



[87] Tin K. H. and Mitra B. 2002. Complexity measuressopervised classification
problems, IEEE Transactions on Pattern analysisnaachine intelligence 24(3):
289-300.

[88] Toledo, F.J., Luis, J.D., Tomas, L.M., Zamora, Maid Martinez, H. 2000. Map
building with ultrasonic sensors of indoor enviramts using neural networks,
Proceedings of the IEEE International Conference Systems, Man, and
Cybernetics, vol. 2: 920-925.

[89] Tomoto M. 2005. environment modeling by a mobilbabwith a laser range
finder and a monocular camera, Proceedings ofER& IWorkshop on Advanced
Robotics and its Social Impacts, pp. 133-138.

[90] Vandorpe J., Van Brussel H. and Xu H. 1996. Exgcadhic map building for a
mobile robot using geometrical primitives produckyg a 2D range finder,
Proceedings of IEEE International Conference ond®od and Automation, pp.
901-908.

[91] Vazquez J. and Malcolm C. 2005. Fusion of triangasonar plus infrared
sensing for localization and mapping, Proceedirighe International Conference
on Control and Automation, pp. 1097 — 1102.

[92] Wooden D. 2006. A guide to vision-based map bugdilEEE Robotics and
Automation Magazine, 13(2): 94-98.

[93] Xinde L., Xinhan H., Min W. and Gang P. 2006. A Guarison of the Effect of
Sonar Grid Map Building Based on DSmT and DST, Pedings of the The Sixth
World Congress on Intelligent Control and Automafipp. 4073 — 4077.

[94] Xue-Cheng L., Cheong-Yeen K., Shuzhi S. G. and AIAM2005. Online map
building for autonomous mobile robots by fusingelaand sonar data, Proceedings
of the IEEE International Conference Mechatroniosl &utomation, pp.993 —
998.

[95] Ye C. and Borenstein, J. 2002. Characterizatioa 8D laser scanner for mobile
robot obstacle negotiation, Proceedings of IEEEerimtional Conference on
Robotics and Automation ,vol.3: 2512-2518.

[96] Zhen J., Balasuriya A. and Challa S. 2005. Senssioh based 3D Target Visual
Tracking for Autonomous Vehicles with IMM, Proceegs of the IEEE
International Conference on Robotics and Automaiiqn 1841-1846.

[97] Kodagoda, S., Hemachandra, E. A. S. M., JayasekRar&;., Peiris, R. L., De
Silva, A. C. and Munasinghe, R. 2006. ObstaclesBtein and Map Building with
a Rotating Ultrasonic Range Sensor using Bayes@nhbihation, Proceedings of
the International Conference on Information andofudtion, 98-103.

67



10. Appendices



Appendix | Robot and laser— specifications and pameters

Table 35 Pioneer 2 AT Specifications
(adapted from Pioneer 2 manual)

Physical Characteristics
Length (cm)

Width (cm)

Height (cm)

Clearance (cm)

Weight (kg)

Payload (kg)

Power

Batteries 12VDC lead-acid
Charge (watt-hrs)

Run time (hrs)

with PC (hrs)

Recharge time
hr/battery

std charger

High-Speed (3 batteries)

Mobility

Wheels

diam (mm)

width (mm)

Caster (mm)

Steering

Gear ratio

Swing (cm)

Turn (cm)

Translate speed max (mm/sec)
Rotate speed max (deg/sec)
Traversable step max (mm)
Traversable gap max (mm)
Traversable slope max (grade)
Traversable terrains

Sensors

Sonar Front Array (one each side, six forward @igtrvals)
Sonar Front Array (one each side, six forward @ig@&rvals)
Rear Sonar Array (one each side, six rear @ 26Mvats)
Top Deck Sonar (one each side, six rear @ 20°aley
Encoders (2 ea) counts/rev

counts/mm

counts/rotation

69

50
49
24
5.5
14
40

2.4

4 pneumatic
220
75

na
Skid
85.2:1
40
0cm
700
140
89
127
40%

Unconsolidated No carpets!



Microcontroller and Console Controls & Ports
Siemens 8C166 (20 MHz)
32 characters on 2 lines

4
Piezo buzzer

8 (4 user-available)
2x8 (multiplexed)

16 logic ports; 8 in, 8 out

5 @ 0-5 VDC; 1024- or 256-bit resolution

8 @ lusec resolution;

32 KB; P20S and robot-specific parameters

32 KB
1 main; 1 RADIO

2 RS-232 serial internal; 1 RS-232 external
12 VDC @ 1A switched; 5 VDC @ 3Aswitched

RESET and MOTORS

Main power; RADIO power; Host SERIAL RxD and TxD

Processor
LCD

Encoder inputs
Audio

PWM outputs
Sonar inputs

Digital I1/0

A/D

Digital timers

FLASH PROM

RAM

Power switches

Comm ports

Power (internal comm.
ports)

Logic pushbuttons
Indicator LEDs

Table 36 Laser's technical data
(Adapted from laser's manual)

Laser Measurement Sensors

Indoor

Model Name LMS 200-30106
Part Number 1015850

Technical data

Field of view: 180 °

Angular resolution: 1..025°
Response time: 13..53ms
Resolution: 10 mm
Systematic error: +/- 15 mm
Statistical error (1 sigma): 5 mm

Laser class: 1

Enclosure rating: IP 65

Ambient operating temperature: 0°C...+50°C
Scanning range: 80 m

Data interface:

RS-232, RS-422

Data transmission rate:

9,6 /19,2 /38,4 /500uBa

Switching outputs:

3 X PNP

Supply voltage:

24 V DC +/- 15%

Power consumption: 20W
Storage temperature: -30 °C ... +70 °C
Weight: 4.5 kg

Dimensions (L x W x H):

156 x 155 x 210 mm

70



Table 37 Pioneer 2 AT parameters
(adapted from Pioneer 2 manual)

;; Parameters for the Pioneer 2 AT Mobile Roboafddd from the Pioneer Manual)

AngleConvFactor 0.001534 ;radians per angular (@fit/4096)
DistConvFactor 1.303 ; mm returned by P2

VelConvFactor 1.0 ; mm/sec returned by P2

RobotRadius 500.0 ; radius in mm

RobotDiagonal 120.0 ; half-height to diagonal ofagon
Holonomic 1 ; turns in own radius

MaxRVelocity 300.0 ; degrees per second

MaxVelocity 1200.0 ; mm per second

RangeConvFactor 0.268 ; sonar range returned in mm

;; Robot class, subclass

Class Pioneer

Subclass p2at

SonarNum 16 ; 16 total sonars

;; These are for the eight front sonars: six frong sides

;; Sonar parameters

;; SonarNum N is number of sonars

;; SonarUnit | X Y TH is unit | (0 to N-1) descriph

;; X, Y are position of sonar in mm, THETA is bewyiin degrees

" # X Y THETA

SonarUnit 0 145 130 90

SonarUnit 1 185 115 50

SonarUnit 2 220 80 30

SonarUnit 3 240 25 10

SonarUnit 4 240 -25 -10

SonarUnit 5 220 -80 -30

SonarUnit 6 185 -115 -50

SonarUnit 7 145 -130 -90

;; These are for the eight rear sonars: six baok sides
N # X Y THETA

SonarUnit 8 -145 -130 -90
SonarUnit 9 -185 -115 -130
SonarUnit 10 -220 -80 -150
SonarUnit 11 -240 -25 -170
SonarUnit 12 -240 25 170
SonarUnit 13 -220 80 150
SonarUnit 14 -185 115 130
SonarUnit 15 -145 130 90
;; Number of readings to keep in circular buffers
FrontBuffer 20

SideBuffer 40

71



Appendix Il ARIA API

This appendix is based on ARIA version 2.4.0 mandailvnloaded from the Activemedia
website fittp://www.activrobots.com/SOFTWARE/aria.hjml

ARIA is an object-oriented, application-programmingerface for ActivMedia Robotics' line
of intelligent mobile robots, including Pioneer,oReer 2/3, PeopleBot, PowerBot, and
AmigoBot mobile robots. Written in the C++ languag®IA is client-side software for easy,
high-performance access to and management of thet reerver, as well to the many
accessory robot sensors and effectors. Its vatgatitd flexibility makes ARIA an excellent
foundation for higher-level robotics applications.

ARIA can be run multi- or single-threaded, usirgyatvn wrapper around Linux pthreads and
WIN32 threads. Use ARIA in many different waysprfr simple command-control of the
robot server for direct-drive navigation, to deymteent of higher-level intelligent actions
(behaviors).

At its heart, ARIA'sArRobot class collects and organizes the robot's operatiatgs, and
provides clear and convenient interface for oth&A components, as well as upper-level
applications, to access that robot state-reflectidarmation for assessment, planning, and
ultimately, intelligent, purposeful control of thglatform and its accessories. Figure 15
presents ARIA's schematic architecture.

ARIA also includes clear and convenient interfaoce d&pplications to access and control
ActivMedia Robotics accessory sensors and devioekjding operation and state reflection
for sonar and laser range finders, pan-tilt uratsns, inertial navigation devices, and many
others.

The versatility and ease of access to ARIA codaur(ss included!) makes it the ideal
platform for robotics client applications developrhe

Ardctions

ArRobot

ArRobot Packet Receiver ArRobot Packet Sender

Robot (Sim or Real)

Figure 15 ARIA's schematic architecture
(Adapted from ARIA 2.4.0 manual)

72



Appendix Il Modifications to the research of Cohen[Cohen, 2005]
In this research, Cohen’s PhD work [Cohen, 2005 extended and modified.

A new type of performance measures (type Il) waseliped and implemented
(section4.2).

The grid map paradigm that was implemented in Csheark was extended from a
binary grid map (where each cell has to possibleesa '1' represents that the cell is
Occupied or '0' represents that the cell is Empiya non-binary grid map (where
cells contains an integer value that representsitingber of time the logical sensor
decided that this cell is occupied). The extenswas carried out by code
modifications in all the mapping functions. In awh, Cohen's sensor fusion
algorithms were modified to fit the new concephelextension enables to consider
the values within the cells, and was the base tiperype of performance measure
and the new algorithms were developed.

A new adaptive sensor fusion algorithm was develap®l implemented — adaptive
weighted average (sectidn2) and it's performances was compared to previous
algorithms using Cohen's statistical evaluatiorcpedure (sectioi.3).

Cohen’s original code was developed using roboitsrfaceSaphira In this work,
the robot's APl was changed to ARIA. TBaphira architecture is designed to
operate with a robot server, that is, a mobile tqi@atform that provides a set of
robotic services in a standard format. ARIA is avee and powerful robot’s
interface that replaceSaphira .As a result, the complete system's code was re-
programmed using the new API. ARIA API is detaileddppendix II.

The robot's system was extended by adding a thiggipal, a laser range finder
(Laser specifications are detailed in AppendixThe laser sensor was implemented
using two logical sensors that were created thrawghnew mapping algorithms
that were developed (see secti®B). The system's code was adjusted to include
three physical sensors (instead of two) and sewvgicdl sensors (instead of five).
All the matrices and variables were changed totH#& extended system. The
adjusted code is detailed in Appendix VII. The aldpons performances were
evaluated using the new physical sensor.

The code for the sampling the camera was modifieatder to prevent time lag and
enhance the system performances. In Cohen's walcamera took pictures in four
pan angles at a constant sequence: —=lI/7°—50°—-50°. Due to the camera's
structure, a lot of time was wasted in shifting tdanera's pan angle from 50° to -
50°. This procedure was enhanced by using diffesequences to odd and even
cycles. In even cycles, the camera samples in dliewing order: -50°-
17°—17°—50°, and in odd cycles the sampling order is-507°—-17—-50°. The
change required code modification, and causedlehigumber of cycles during the
robot's course (38 instead of 23), as a result ftbenincrease in the number of
cycles, the sensors map are more accurate.

The laser sensor was placed on the robot's badgharcamera is mounted on top
of the laser. As a result, the camera's new logasohigher than the previous
location by 20 cm. this influenced the camera catibn parameters, and a new
calibration was performed (see Appendix V).

The lab for the experiments was changed due tonieghand administrative
changes, which caused difference in the lightnindg environmental conditions.
Hence, the image processing algorithms were adjustét the new conditions.

73



Appendix IV Software code

The experiments software is written in VC¥+(version 6.0), using ARIR! (version 6.4)
library routines, under WindoW$ 2000 (version 4.0).

The image processing functions that were used altent from Intel's OpenCV and IPL
(manuals can be found ahtttp://www.intel.com/technology/computing/opencvand
http://www.intel.com/software/products/perlib/ipliielnotes _test.htin

The system consists of the following files.

System files

ConstantParameters.h Contains the system constant parameters.
GlobalParameters.h Contains the system global parameters.
StaticParameters.h Contains the system static parameters.

main.cpp This file starts the ARIA" and the program.
InitiationFile.h These files contain the functions to initialize the

I . parameters and arrays and check the system forserro

InitiationFile.cpp e
within the constant and global parameters.

Logical Sensor.h These files contain all the information relatedidgical

sensors d.g., sensor fusion algorithms and

transformations).

L ogical Sensor.cpp

Camera and image processing algorithms files
PXC _Camera DIl Load.h These files contain the information related to fthe
PXC_Camera DIl_Load.cpp camera and the PXC200 frame grabber.

Vision_Class.h These files contain the information related toithage
Vision_Class.cpp processing algorithms.

Ultrasonic files

UltraSonic_Class.h These files contain all the information related tte
physical  ultrasonic  sensors e.g., algorithms
transformations).

UltraSonic_Class.cpp

Laser files
Sick_Class.h These files contain all the information related tte
Sick_Class.cpp physical laser sensoe.@.,algorithms transformations).

Fuzzy Logic algorithm files
FuzzyLogic_Algorithm.h These files contain the information related to thezy
Fuzzyl ogic_Algorithm.cpp logic algorithms (adaptive and logical).

74



Figure 16 presents a schematic diagram of mainranegnformation flow.

While (RobotLocation <> NotEndOfPath

{

v

Initialization:
CheckParam();
Init_Parameters();
Load_DIl_For_Camera();

Initialize robot
and sensors
parametel

v

Read Data from Ultrasonic Sensors:

US.US_ReadDataFromUS();
US.US_SFA_LogicalOR();
US.US_SFA_ProbabilisticApproach();
US.US_GridMapCellConversion();

Generates two logical sensors and
converts logical sensor’s cell

> dimensions into global map cell’'s
dimensions

'

Sensor fusion algorithms()

Fusing data from all logical sensors
using sensor fusion algorithms:
AND/OR/MOST/AFL/AdpWA

v

Read datafrom laser sensor:

mySick.ReadFromSick();
mySick.Si_GridMapCellConversion();

Generates two logical sensors and converts
logical sensor’s cell dimensions into global
map cell’'s dimension

A 4

Sensor fusion algorithms()

Fusing data from all logical sensors using
sensor fusion algorithms:
AND/OR/MOST/AFL/AdpWA

A 4

Read data from camera:

Read Data for each position

Rum image processing algorithms
Fuse images from all positions
Camera.GridMapCellConversion

Generates three logical sensors and
converts logical sensor’s cell dimensions
into global map cell’s dilensions

Y S

\ 4
End

Figure 16 Schematic diagram of main program flow

75



Table 38 contains a list of the main functions he system's files, their types and a brief
explanation about their purpose. The table is vd#id by the full system code.

Table 38 list of functions and explanations

File Function Function name Explanations

type

This function is the main of
the sensor fusion system.
The robot moves at a
straight line while fusing
information from the
physical sensors. Schematic
diagram of the program
collector.cpp flow presented in Figure 16.
The function returns 0
when it ends.

Initializing the camera's dll
files

void This function initializes the
Init_Parameters parameters and sets all
array to zeros

int main

initDLL

This function fuses the data
SFA_AND between all LBMs using the
AND method
This function fuses the data
SFA OR between all LBM using the
OR method

This function fuses the data
SFA_REGULAR_MOST between all LBM using the
regular MOST method.
This function fuses the data
SFA_REGULAR_AFL between all LBM using the
regular AFL method

This function fuses the data
between all LBM using
SFA_AdpWA1 AdpWAL1 algorithm, which
means without
Enhancement, binary PM.
This function fuses the data
between all LBM using
SFA_AdpWA2 AdpWAL1 algorithm, which
means without
Enhancement, New PM.
This function fuses the data
between all LBM using
SFA_AdpWA3 AdpWAL1 algorithm, which
means with Enhancement,
Binary PM.

This function fuses the data
between all LBM using
SFA_AdpWA4 AdpWAL1 algorithm, which
means without
Enhancement, new PM.
This function copies the
CopyLBM2GGM(int) local binary maps (LBMs)
to the global grid maps.
This function creates the
CreateLS_PPGM(int) PPGM matrix for each LS
using the LBM

17

LogicalSensor.cpp void

76



This function saves all the

SaveGGM data into the hard disk.
This function is used to fus
Call_LS Func the data using the all

algorithms methods

Calculating FL_TruthTable(int)

Calculating the trdable

FuzzyLogicAlgorithm(int)

This function is an
algorithm base on the FL
theory for fusing the data.

CalculatingTrueAndFalseValues(in

This function compares the
new data at this level with
the integrated data This
function is the adaptive pat
of the system and determin
the following parameters
SFS True_False: The Loc
Map Found True But the
fused map determined Fals
t)YSFS_True_True: The Locd
Map Found True And the
fused map determined Tru
SFS_False_False: The
Local Map Found False
And the fused map
determined False
SFS False_True: The Loc
Map Found False But the
fused map determined Tru

—

Al

5E

D

2]

1%

SFA_Calc_PM(int)

This function calculates for
each LS its reliability
according to the generated
map by each algorithm

LGM_Transformation

This function transforms
the logical sensors’ maps
that were not update

PXC_Camera_DIl_Load.cpp

bool

Applnit

This function initializes and

PXC200.

allocates the Frame grabbe

void

ImageProcessingAlgol

The function has three
steps:1. Capturing the
image.2. Image processing
algorithm (has two
stages).2.1 Simple
Threshold. 2.2 Two level
threshold.3. Finding the
center of mass (COM) for
each obstacle, and calcula
the real distance from the
camera.

e

Vision_Class.cpp

void

ImageProcessingAlgo3(int)

The heart of the image
processing, here we do the
Erode Dilate for each phot
according to the algorithm
number, We find the cente
of mass for each algorithm
and finds the location of th
algorithm according to the
calibration process made

D

earlier.

77



ImageProcessingAlgo4(int)

This function transforms
the maps and built for each
obstacle a circle around it.

Vision_GridMapCellConversion

This function converts the
maps into a one grid cell
size.

US_ReadDataFromUS

This function reads the dat
form the sonar.

US_SFA LogicalOR

This function fuse the data
between the physical US
sensors based on the OR
method.

This function fuses the dat

UltraSonic_Class.cpp void between the physical US
S sensors based on the
US_SFA_ProbabilisticApproach algorithm which is based o
the paper of Miguel Ribo
and Axel Pinz, 2001.
. . This function converts cell
US_GridMapCellConversion size from US to LBM.
This function:
. FL_Crisp2Fuzzy calculate
FL_Crisp2Fuzzy the FUZZY value for each
crispy value.
operator>>(FuzzylLogic This Operator: >> Means
&FL_Sourcel, Fuzzylogic 'Then' at the IF....THEN
FuzzyLogic_Algorithm.h FuzzylLogic &FL_Targetl) fuzzy rules
. This Operator: + Means
operator+(const FuzzylLogic 'OR' at the IE... THEN
&FL1,const FuzzylLogic &FL2) f
uzzy rules
. This Operator: * Means
operator*(const FuzzylLogic . .
&FL1,const FuzzylLogic &FL2) fAND atthe IF.... THEN
uzzy rules
This function reads the dat
Sick_Class.h void g 9

sensors from this data.

Si_GridMapCellConversion

This function converts cell
size from laser to LBM.

78



/**

** ConstantParameters.h

*%

** Copyright 2001 by Ofir Cohen

** E-mail: oprc@bgumail.bgu.ac.il

**/

#ifndef __ ConstantParameters_h
#define __ ConstantParameters_h_

const unsigned short g_usNumOfCamPos=4; // Tatalber of Cam positions
const int g_TotalNumberOfAlgorithms=6; // OR, ANDLSAS, MOST, AFL(STAM), AFL
const double g_pi=3.1415926535;

const int LBM_cm_SizeX=140; // Local Binary Map (MB X Direction (Forward)

const int LBM_cm_SizeY=240; // Local Binary Map (MB Y Direction (Side)

const int PPGM_cm_SizeX=800; // Path Planning Gtap (PPGM) X Direction (Forward)
const int PPGM_cm_SizeY=LBM_cm_SizeY;

const int g_iTotalNumOfCamLS=3; // Total numbercafmera LSs in the system

const int g_CamcCellSize=5; //cell size in camelarid map [cm]

const int g_CamGridSizeX=LBM_cm_SizeX/g_CamCellSiz@umber of cells in camera local grid map - Xsax
const int g_CamGridSizeY=LBM_cm_SizeY/g_CamcCellSiz@umber of cells in camera local grid map - Ysax

const int g_iTotalNumOfUsLS=2;

const int g_USCellSize=10; //cell size in US logat map [cm]

const int g_USGridSizeX=LBM_cm_SizeX/g_USCellSiZaumber of cells in US local grid map - X axis
const int g_USGridSizeY=LBM_cm_SizeY/g_USCellSiZaumber of cells in US local grid map - Y axis

const int g_iTotalNumOfSiLS=2; // Total numberQitk LSs in the system

const int g_SickCellSize=5; //cell size in camexeal grid map [cm]

const int g_SickGridSizeX=LBM_cm_SizeX/g_SickCe#l&j //number of cells in camera local grid mapaxs
const int g_SickGridSizeY=LBM_cm_SizeY/g_SickCe#l&j //number of cells in camera local grid mapax¥s

const int g_iTotalNumOfLS=g_iTotalNumOfCamLS+g_iatiumOfUsLS+g_iTotalNumOfSILS; // Toatal number
fo LSs in the system

const int g_LBMCellSize=5; // cell size in LBM [cm]

constint g_iX_LBM_MapSize=LBM_cm_SizeX/g_LBMCell&; // Number of cells of the LBM X direction
constintg_iY_LBM_MapSize=LBM_cm_SizeY/g_LBMCell&; // Number of cells of the LBM Y direction

const int g_PPGMCellSize=g_LBMCellSize; // cellsin PPGM [cm]
const int g_iX_PPGM_MapSize=PPGM_cm_SizeX/g_PPGNBL=;
constint g_iY_PPGM_MapSize=PPGM_cm_SizeY/g_PPGNBL=d;

const int g_iMaxNumOfObstacle=60; // Max numbepbstacle

#endif

79



/**

** GlobalParameters.h

*%

*

** Copyright 2001 by Ofir Cohen

** E-mail: oprc@bgumail.bgu.ac.il

*%

**/

#include "ConstantParameters.h"

#ifndef __ GlobalParameters_h
#define __ GlobalParameters_h

struct BlackBoard // Declare g_BlackBoard Struetur

{

// *kkkkhhhkhhkkk System parameters kkhkkkhkkkkkkk *

int iCycle; Il system cycle counter
intiLBM_X Old; // LBM old X Location
intiLBM_Y_Old; // LBM old Y location

int iLBM_Theta_Old; // LBM old Theta angle [Deg]
intiLBM_X_ New; /I LBM new X Location
intiLBM_Y_ New; /I LBM new Y location

int iLBM_Theta_New; /[ LBM new Theta angle [Deg]
intiPPGM_X; /[ PPGM X Location
intiPPGM_Y; /[ PPGM Y location
intiPPGM_Theta; /[l PPGM Theta angle [Deg]

bool bLGM_NewDataFlag[g_iTotaINumOfLS+1]; // Flag determine if the LBM has been updated
float faRobotPos[100][2]; // Robot positions éd®n encoders X, Y

int iaPl[g_iX_PPGM_MapSize][g_iY_PPGM_MapSize]A¥ray which counts how many times each cell

has been sampled

/I Array which saves all algorithms PPGMs
intiaPPGM[g_iX_PPGM_MapSize][g_iY_PPGM_MapSize]lptalNumberOfAlgorithms+1];
/*

Level 0 - OR

Level 1 - AND

Level 2 - OLSAS

Level 3 - MOST

Level 4 — EMPTY

Level 5 - AFL

*
intiaLS_PPGMI[g_iX_PPGM_MapSize][g_iY_PPGM_Map3jgeiTotalNumOfLS+1];

/I iaLBM: Local Binary Map that includes the alGIMs contains the fused map at level 0
intiaLBM[g_iX_LBM_MapSize][g_iY_LBM_MapSize][1+giTotalNumOfLS];

float fFL_TruthTable[64]; /lunique array for thé Blgorithm (NOT for Adaptive algorithm)
float faTrueFalseRegular[(1+g_iTotaINumOfLS)][7]For the regular algorithm

float faTrueFalse[(1+g_iTotalNumOfLS)][7];

80



/* the calculated data from the CalculatingTrueAal3EValues function entered to this array.
Explanation about the BB_faTrueFalse[(1+g_Numbbt@fules)][7] array:
Cell number 0 is for: Free
Cell number 1 is for: TT Value
Cell number 2 is for: FF Value
Cell number 3 is for: TF Value
Cell number 4 is for: FT Value
Cell number 5 is for: TRUE Value
Cell number 6 is for: FALSE Value*/

float fTrueAccuracy[(1+g_iTotalNumOfLS)]; /I th&rue' value for each sensor
float fFalseAccuracy[(1+g_iTotalNumOfLS)]; /I thealse' value for each sensor
float fTTValue[(1+g_iTotalNumOfLS)][64];
/*
In this table we enter the results 'WHAT WOULD BBHH CELL VALUE' IF (FOR EXAMPLE) sensor numberl
'says' 'T' number three and four says 'F' etc.
Explanation about; BB_fTTValue[7][64].
Cell number 0 is for the calculated Value.
Cell number 1 is for the LS number 1.
Cell number 2 is for the LS number 2.
Cell number 3 is for the LS number 3.
Cell number 4 is for the LS number 4.
Cell number 5 is for the LS number 5.
Cell number 6 is for the LS number 6.
*

int iaLogicalSensorMap[g_iX_LBM_MapSize][g_iY_LBMJAapSize][g_iTotalNumOfLS][50]; // Array
that saves all the LSs maps during the experingarfufure research

int SFAOutput[g_iX_LBM_MapSize][g_iY_LBM_MapSizg][ iTotalNumOfLS+1][50];

/*

Explanations for the fSFA_PM 4D array:[i][j][K][l]

i - stands for maximum number of cycles

j - stands for number of 5 SFA.é., OR/0/, AND/1/, OLSAS /2/, MOST_REGULAR /3/,AFL)5/
k - stands for PM: TT, FF, TF, FT, Fused measut&(0T+FF-TF-FT))

| - stands for total number of LSs

*/

float fSFA_PM[100][6][5][g_iTotaINumOfLS];

/*
Explanations for the fSFA_FL 3D array:[i][jl[k]
i - stands for maximum number of cycles
j - stands for number of 5 SFA.é., OR/0/, AND/1/, OLSAS /2/, MOST_REGULAR /3/,AFL)5/
k - stands for PM: TT, FF, TF ,FT

*

float fSFA_FL_Regular[100][5][4]; /I Regular Fdlgorithm
/I' *% * *kk * * *k*k * *% * * *%

/[Adpative weighted average algorithm

/I' *% * *kk * * *k*k * *% * * *%

int AvgMap([g_iX_LBM_MapSize][g_iY_LBM_MapSize][60Q]
int EnLSMapl[g_iX_LBM_MapSize][g_iX_LBM_MapSize][dgTotalNumOfLS+1][60];
float DiffMap[g_iX_LBM_MapSize][g_iY_LBM_MapSizeO0];
float AdpThr[g_iX_LBM_MapSize][g_iY_LBM_MapSize][@];
float NewPM[g_iTotalNumOfLS+1][5][5][60]; //2nd diension - AlgCode, 3rd - type of PM
float NewPM1[g_iTotalNumOfLS+1][5][60]; //2nd dinmsion - AlgCode,

¥

#endif

81



/**

** StaticParameters.h

*%

** Copyright 2001 by Ofir Cohen

** E-mail: oprc@bgumail.bgu.ac.il

**/

#ifndef __ StaticParameters_h
#define __ StaticParameters_h

#include "ConstantParameters.h"
#include "GlobalParameters.h"
#include "InitiationFile.h"

/I structure for the saphira sensors array
/lextern struct sfprocess *sfpMainLoop;

/I Camera and OpenCV Parameters
extern int videotype;
extern int grab_type;
extern int ImageMaxX,
ImageMaxy,
WindowX,
WindowY;
/*
#define PIXEL_TYPE PBITS_RGB24
#define PXC_NAME "pxc_95.dlI"
#define FRAME_NAME "frame_32.dII"
#define PXC_NT "pxc_nt.dll"
*/
static int videotype;
static int grab_type;
static int ImageMaxX,
ImageMaxy,
WindowX,
WindowY;
#endif

82



/**

** collector.h

*%

** Copyright 2007 by Keren Kapach

*
** E-mail: kapach@bgu.ac.il

*%

**/

#include "Aria.h"

#include "ConstantParameters.h”
#include "GlobalParameters.h"
#include "UltraSonic_Class.h"
#include "Sick_Class.h"

/l#include "InitiationFile.h"

#include "PXC_Camera_DIl_Load.h"
#include "LogicalSensor.h"

#include "image.h"

#include "ipl.h"

#include "cv.h"

#include <windows.h>

#include <cvigrfmts.h>

#define move 1

#define stop 0

#define SPEED 40

#define PATH_LENGTH 1500
#define ReadDataFrom_US_Sensor 2
#define ReadDataFrom_Sick Sensor 3
#define ReadDataFromCameral 4
#define ReadDataFromCamera2 5
#define ReadDataFromCamera3 6
#define ReadDataFromCamera4 7
#define ReadDataFromCameraF 8

PXC pxc;
FRAMELIB frame;

/I Camera and OpenCV Parameters
/lextern PXC pxc ;
long fgh;
FRAME __PX_FAR *frh;
extern int videotype;
extern int grab_type;
extern int ImageMaxX,
ImageMaxy,
WindowX,
WindowyY;

BlackBoard g_BB;
ArRobot robot(NULL, false);
ArSick *sick;

Vision_Class CAM;
UltraSonic_Class US;
Sick_Class mySick;
ArSonyPTZ myCam(&robot);

void initDLL();



/************************************************** kkkkkkkkkkkkkkkhkkkkhkkkkhkkkhkkkk

* Name: main  *
* Description: This function is the main of the senfusion system  *

* *% * *% * *kk * *% * *kk *% * *kk * *% * /

int main(int argc, char **argv) {

/I just some stuff for returns
std::string str;
int ret,process_state=1,sum=0;

initDLL();

Init_Parameters();

int tCam,tPic ; // the camera
tCam =1100 ;tPic=0;
ArTime start;
ArSerialConnection con;
ArSerialConnection conL;
Ariazinit(); // mandatory init

sick = new ArSick;
if ((ret = conL.open("COM3")) I=0) { // operthe connection, if it fails, exit
str = conL.getOpenMessage(ret);
printf("Open failed: %s\n", str.c_str());
Aria::shutdown();
return1; }

sick->configure(false, true, false, ArSick::BABB400,
ArSick::DEGREES180, ArSick::INCREMENT_ONE);
sick->setDeviceConnection(&conl);

sick->runAsync();
ArUtil::sleep(100);
sick->lockDevice();
sick->asyncConnect();
sick->unlockDevice();

while (!sick->isConnected())
ArUtil::sleep(100);
printf("Connected\n");

if ((ret = con.open()) '= 0){ // opens the contien, if it fails, exit
str = con.getOpenMessage(ret);
printf("Open failed: %s\n", str.c_str());
Aria::shutdown();
return1; }
robot.setDeviceConnection(&con); // set tharextion on the robot

if (Irobot.blockingConnect()) { // connect,we fail, exit
printf("Could not connect to robot... exitingn
Aria::shutdown();
return1; }

robot.comint(ArCommands::SONAR, 1); // turn &we sonar, enable the motors, turn off amigobotdsun
robot.comint(ArCommands::ENABLE,1);

robot.runAsync(true); // run, if we lose connentio the robot, exit
Init_Parameters();

myCam.tilt(-40);

ArUtil::sleep(500);

84



myCam.pan(-50);
ArUtil::sleep(800);

while (process_state){
switch (process_state){

case move:

printf("Starting to move...\n\n");
robot.setVel2(30,30);

g_BB.iCycle=0;

process_state = ReadDataFrom_US_Sensor;
continue;

case ReadDataFrom_US_Sensor:
printf("Reading data from US sensor\n\n");
start.setToNow();
US.US_ReadDataFromUS();
US.US_SFA_LogicalOR();
US.US_SFA_ProbabilisticApproach();
US.US_GridMapCellConversion();
if (g_BB.iCycle>=0)

else

Call_LS_Func();

g_BB.iCycle++;

if (robot.getX()>4000) { //end of the line

else{

printf("Path Ended\n\n");

robot.setVel2(0,0); // Set velocity for each whside independently.
robot.comint(ArCommands::SONAR, 0);

SaveGGM();

robot.comint(ArCommands::SONAR, 0);

process_state=stop;

break;}

process_state = ReadDataFrom_Sick_Sensor;
continue;}

case ReadDataFrom_Sick Sensor:
printf("Reading data from Sick #%i’',sum);
mySick.ReadFromSick();
mySick.Si_GridMapCellConversion();
if (g_BB.iCycle>=0)

else

Call_LS Func();

g_BB.iCycle++;

if (robot.getX()>4000) {//end of the line

else{

printf("Path Ended\n\n");

robot.setVel2(0,0); // Set velocity for each whside independently.
robot.comint(ArCommands::SONAR, 0);

SaveGGM();

process_state=stop;}

if (g_BB.iCycle%2==0)

process_state = ReadDataFromCameral;
else

process_state = ReadDataFromCamera4;
continue;}

case ReadDataFromCameral: //-50
printf("Angle -50\n");
myCam.pan(-50);

85



ArUtil::sleep(tCam);

CAM.iVision_CameraAngleCode=1;

ImageProcessingAlgol(); // Take photo, updatatioa and convert to gray scale
CAM.iVision_CameraAngleCode=2;

ImageProcessingAlgo3(0); // Input: First al¢jom
ImageProcessingAlgo3(1); I/l Input: second atgor
ImageProcessingAlgo3(2); // Input: Third algion

if (g_BB.iCycle%2==0)
process_state = ReadDataFromCamera2;
else
process_state = ReadDataFromCameraF;
continue;

case ReadDataFromCamera2: //-17
printf("Angle -17\n");
myCam.pan(-17);
ArUtil::sleep(tCam);
CAM.iVision_CameraAngleCode=2;
ImageProcessingAlgol(); // Take photo, updatation and convert to gray scale
CAM.iVision_CameraAngleCode=3;

ImageProcessingAlgo3(0); I/l Input: First altjom
ImageProcessingAlgo3(1); /l Input: second atgor
ImageProcessingAlgo3(2); // Input: Third algion

if (g_BB.iCycle%2==0)
process_state = ReadDataFromCamera3;
else
process_state = ReadDataFromCameral;
continue;
case ReadDataFromCamera3: //17
printf("Angle 17\n");
myCam.pan(17);
ArUtil::sleep(tCam);
/lprintf("my angle is 17 deg\n");
CAM.iVision_CameraAngleCode=3;
ImageProcessingAlgol(); // Take photo, updatatioa and convert to gray scale
CAM.iVision_CameraAngleCode=4;

ImageProcessingAlgo3(0); I/l Input: First al¢jom
ImageProcessingAlgo3(1); I/l Input: second atgor
ImageProcessingAlgo3(2); // Input: Third algion

if (g_BB.iCycle%2==0)
process_state = ReadDataFromCamera4;
else
process_state = ReadDataFromCamera2;
continue;
case ReadDataFromCamera4: //50
printf("Angle 50\n");
myCam.pan(50);
ArUtil::sleep(tCam);
CAM.iVision_CameraAngleCode=4;
ImageProcessingAlgol(); // Take photo, updatation and convert to gray scale
CAM.iVision_CameraAngleCode=1;

ImageProcessingAlgo3(0); /l Input: First altjom
ImageProcessingAlgo3(1); /l Input: second atgor*/
ImageProcessingAlgo3(2); // Input: Third aldgjon

if (g_BB.iCycle%2==0)
process_state = ReadDataFromCameraF;

86



else
process_state = ReadDataFromCamera3;
continue;

case ReadDataFromCameraF:

Y/while

HIswitch
return 0;}

printf("FUSING CAMERA DATA\n");

ImageProcessingAlgo4(0); I/l Converting into pignber 1 position
ImageProcessingAlgo4(1); I/l Converting into pignber 1 position
ImageProcessingAlgo4(2); /I Converting into picnber 1 position

CAM.Vision_GridMapCellConversion();
if (g_BB.iCycle>=0){
Call_LS_Func();
g_BB.iCycle++;}
else
g_BB.iCycle++;

if (robot.getX()>4000) {//end of the line
printf("Path Ended\n\n");
robot.setVel2(0,0); // Set velocity for each whside independently.
robot.comint(ArCommands::SONAR, 0);
SaveGGM();
process_state=stop;
continue;}
else{
printf (" in cycle %d the time is %f\n", g_BByCle,(double)start. mSecSince() );
printf("The robots velocity is: %f\n\n", roboetyel());
process_state = ReadDataFrom_US_Sensor;
continue;}

printf("Stopping\n\n\n");
robot.comint(ArCommands::SONAR, 0);
robot.comint(ArCommands::ENABLE, 0);
robot.unlock();// shutdown and go away
Aria::shutdown();

return O;

87



/************************************************** kkkkkkkkkkkkkkkhkkkhkkkkhkkkhkkkk

* Name: initDLL *
* Description: This function initializes the camerdll files  *

* *% * *% * *kk * *% * *kk *% * *kk * *% * /

void initDLL()

if (limagenation_OpenLibrary(PXC_NAME,&pxc,sizepKc)))

{

if (limagenation_OpenLibrary(PXC_NT,&pxc,sizeof(p))

printf("no load dlI");

}
}
if (limagenation_OpenLibrary(FRAME_NAME,&frame,siaf(frame)))
{

printf("no load dlI");

}

fgh = pxc.AllocateFG(-1);
/Isleep(2500); // wait for CCIR auto detect
videotype = pxc.VideoType(fgh);

switch(videotype) {

case 0: // novideo

case 1: //NTSC
grab_type = 0;
ImageMaxX = 640;
ImageMaxY = 486;
break;

case 2: //CCIR
grab_type =0;
ImageMaxX = 768;
ImageMaxy = 576;
break;

}

pxc.SetWidth(fgh,(short)imageMaxX);
pxc.SetHeight(fgh,(short)ImageMaxY);
pxc.SetLeft(fgh,0);

pxc.SetTop(fgh,0);
pxc.SetXResolution(fgh,(short)imageMaxX);
pxc.SetYResolution(fgh,(short)imageMaxY);

frh = pxc.AllocateBuffer((short)lmageMaxX, (shdrageMaxY, PIXEL_TYPE);

88



/************************************************** kkkkkkkkkkkkkkkhkkkhkkkkhkkkhkkkk

* Name: Init_Parameters *
* Description: This function initializes the pararees and sets all array to zeros *

* *% * *% * *kk * *% * *kk *% * *kk * *% * /

void Init_Parameters()

{

inti, j, m;
printf("Initiating Parameters\n\n");

/I Camera parameters
g_BB.iLBM_X_ New=0;
g_BB.iLBM_Y_New=0;
g_BB.iLBM_Theta_New=0;

/I Initial performance measures parameters

/I Initialization of the PMs for the different LSs
for (i=1; i<=g_iTotalNumOfLS; i++)

if (i==1)

{
g_BB.faTrueFalse[i][1]=0.85; //TT Value
g_BB.faTrueFalse[i][2]=0.9; //FF Value
g_BB.faTrueFalse[i][3]=1-g_BB.faTrueFalse[i][2Z]TF=1-TT Value
g_BB.faTrueFalse[i][4]=1-g_BB.faTrueFalse[i][Y]FT=1-FF Value

}

if (I==2)

{
g_BB.faTrueFalse[i][1]=0.78; //TT Value
g_BB.faTrueFalse[i][2]=0.91; //FF Value
g_BB.faTrueFalse[i][3]=1-g_BB.faTrueFalse[i][2]TF=1-TT Value
g_BB.faTrueFalse[i][4]=1-g_BB.faTrueFalse[i][Y]FT=1-FF Value

}

if (i==3)

{
g_BB.faTrueFalse[i][1]=0.8; //TT Value
g_BB.faTrueFalse[i][2]=0.7; //FF Value
g_BB.faTrueFalse[i][3]=1-g_BB.faTrueFalse[i][2]TF=1-TT Value
g_BB.faTrueFalse[i][4]=1-g_BB.faTrueFalse[i][Y]FT=1-FF Value

}

if (i==4)

{
g_BB.faTrueFalse[i][1]=0.6; //TT Value
g_BB.faTrueFalse[i][2]=0.9; //FF Value
g_BB.faTrueFalse[i][3]=1-g_BB.faTrueFalse[i][2Z]TF=1-TT Value
g_BB.faTrueFalse[i][4]=1-g_BB.faTrueFalse[i][Y]FT=1-FF Value

}

if (i==5)

{
g_BB.faTrueFalse[i][1]=0.88; //TT Value
g_BB.faTrueFalse[i][2]=0.91; //FF Value
g_BB.faTrueFalse[i][3]=1-g_BB.faTrueFalse[i][2Z]TF=1-TT Value
g_BB.faTrueFalse[i][4]=1-g_BB.faTrueFalse[i][Y]FT=1-FF Value

}

if (i==6)

{

g_BB.faTrueFalse[i][1]=0.92; /ITT Value

89



g_BB.faTrueFalse[i][2]=0.95; //FF Value
g_BB.faTrueFalse[i][3]=1-g_BB.faTrueFalse[i][2Z]TF=1-TT Value
g_BB.faTrueFalse[i][4]=1-g_BB.faTrueFalse[i][Y]JFT=1-FF Value

}

if (i==7)

{
g_BB.faTrueFalse[i][1]=0.93; //TT Value
g_BB.faTrueFalse[i][2]=0.95; //FF Value
g_BB.faTrueFalse[i][3]=1-g_BB.faTrueFalse[i][2Z]TF=1-TT Value
g_BB.faTrueFalse[i][4]=1-g_BB.faTrueFalse[i][Y]FT=1-FF Value

}

g_BB.iCycle=0; // Initiating the cycle counter

for (m=1; m<=g_iTotalNumOfLS; m++)
g_BB.balLS _Flag [m]=1; // initiating the LS flag 1.

/Initiating the UM PM for the AdpWA algorithm
for (i=1; i<=g_iTotalNumOfLS; i++)

{
if (i==1)
g_BB.NewPM][i][1][4][0]=0.3;
if (i==2)
g_BB.NewPM[i][1][4][0]=0.3;
if (i==3)
g_BB.NewPM[i][1][4][0]=1;
if (i==4)
g_BB.NewPM[i][1][4][0]=1;
if (i==5)
g_BB.NewPM][i][1][4][0]=0.1;
if (i==6)
g_BB.NewPM][i][1][4][0]=0.1;
if (i==7)
g_BB.NewPM][i][1][4][0]=0.1;
Yifor i

/Initiating the UM PM for the SFA_EnNEW algorithm
for (i=1; i<=g_iTotalNumOfLS; i++)

{
if (i==1)
g_BB.NewPM][i][3][4][0]=0.3;
if (i==2)
g_BB.NewPM][i][3][4][0]=0.3;
if (i==3)
g_BB.NewPM][i][3][4][0]=1;
if (i==4)
g_BB.NewPM[i][3][4][0]=1,;
if (i==5)
g_BB.NewPM[i][3][4][0]=0.1;
if (i==6)
g_BB.NewPM[i][3][4][0]=0.1;
if (i==7)
g_BB.NewPM][i][3][4][0]=0.1;
Yifor i

/lInitiating the PM for the SFA_NEW1 algorithm
for (i=1; i<=g_iTotalNumOfLS; i++)
{

90



Mifor i

if (I==1)

g_BB.NewPM1[i][2][0]=0.3;

if (i==2)

g_BB.NewPM1[i][2][0]=0.3

if (i==3)
g_BB.NewPM1[i][2][0]=1:
if (i==4)
g_BB.NewPM1[i][2][0]=1;
if (i==5)

g_BB.NewPM1]i][2][0]=0.1;

if (i==6)

g_BB.NewPM1]i][2][0]=0.1;

if (I==7)

g_BB.NewPM1]i][2][0]=0.1;

/lInitiating the PM for the SFA_EnNEW1 algorithm
for (i=1; i<=g_iTotalNumOfLS; i++)

{

Yifor i

if (I==1)

g_BB.NewPM1[i][4][0]=0.3;

if (I==2)

g_BB.NewPM1]i][4][0]=0.3;

if (i==3)
g_BB.NewPM1[i][4][0]=1;
if (i==4)
g_BB.NewPM1[i][4][0]=1;
if (i==5)

g_BB.NewPMA1][i][4][0]=0.1

if (i==6)

g_BB.NewPM1]i][4][0]=0.1;

if (I==7)

g_BB.NewPM1]i][4][0]=0.1;

91



/**

** |_ogicalSensor.h

*%

** Copyright 2001 by Ofir Cohen

*

** E-mail: oprc@bgumail.bgu.ac.il
**/

#ifndef __ LogicalSensor_h
#define __LogicalSensor_h___
#include <math.h>

#include "ConstantParameters.h”
#include "GlobalParameters.h"
#include "InitiationFile.h"

#include "FuzzylLogic_Algorithm.h"

extern PXC pxc;

extern FRAMELIB frame;

extern long fgh;

extern FRAME _ PX_FAR *frh;

extern int videotype;

extern int grab_type;

extern int ImageMaxX,
ImageMaxy,
WindowX,
WindowyY;

extern BlackBoard g_BB;

void SFA_AND();

void SFA_OR();

void SFA_MOST();

void SFA_REGULAR_MOST();

void SFA_REGULAR_AFL();

void SFA_AdpWAL(); //New algorithm

void SFA_AdpWA2();

void SFA_AdpWA3(); //[EnNEW - With Enhance, BinariPlevel 3
void SFA_AdpWAA4(); //[EnNNEW1 - With Enhance, New Phlyel 4
void CopyLBM2GGM(int);

void CreateLS_PPGM(int);

void SaveGGM();

void Call_LS_ Func();

void Calculating_FL_TruthTable();

void FuzzyLogicAlgorithm(int);

void CalculatingTrueAndFalseValues(int);

void SFA_Calc_PM(int); // Calculates PM

void LGM_Transformation();

class LogicalSensor

{
private:
public:
LogicalSensor();
~LogicalSensor();
I3
#endif

92



/**

** | ogicalSensor.cpp

*%

** Copyright 2001 by Ofir Cohen

*
** E-mail: oprc@bgumail.bgu.ac.il
*%

**/

#include "ConstantParameters.h”
#include "GlobalParameters.h"
#include "LogicalSensor.h"
#include "InitiationFile.h"

#include "UltraSonic_Class.h"
#include "FuzzylLogic_Algorithm.h
#include "STDIO.H"

#include <math.h>

extern PXC pxc;
extern FRAMELIB frame;

static long fgh;
static FRAME __ PX_ FAR *frh;

extern int videotype;
extern int grab_type;
extern int ImageMaxX,
ImageMaxy,
WindowX,

WindowyY;

extern UltraSonic_Class US;

/************************************************** kkkkkkkkkkkkkkkhkkkkhkkhkhkkkhkkkk

* Name: LGM_Transformation *

* Description: This function transforms the logic&nsors’ maps that were not update  *
* *% * *% * *k* * *% * *kk *% * *k*k * *% * /

void LGM_Transformation()

{/o

inti, j, k;

double DeltaX;
double DeltaY;
inti_New, j_New;

g_BB.faRobotPos[g_BB.iCycle][0]=g_BB.iLBM_X_New;
g_BB.faRobotPos[g_BB.iCycle][1]=g_BB.iLBM_Y_New;

DeltaX=g_BB.iLBM_X_New-g_BB.iLBM_X_OId;
DeltaY=g_BB.iLBM_Y_New-g_BB.iLBM_X_OId;

for (k=1; k<=g_iTotaINumOfLS; k++)
{/n1
if (g_BB.bLGM_NewDataFlagl[k]) // If the LS haswealata - FLAG =1
{12
g_BB.bLGM_NewDataFlag[k]=0; // Set NewDataFlagdt
lIstfSMessage("DeltaX= %d",DeltaX);
for (i=0; i<g_iX_LBM_MapSize ; i++)
{/I'3
for(j=0; j<g_iY_LBM_MapSize ; j++)

93



{/l4
/I Save the New data in an array for the QffeLsimulation
g_BB.iaLogicalSensorMap[i][j][k-
1][g_BB.iCycle]=g_BB.iaLBMIIi][j][k];

Y4
/13
Y2
else
{/I'5
for (i=0; i<g_iX_LBM_MapSize ; i++)
{/l6
for(j=0; j<g_iY_LBM_MapSize ; j++)
{n7
i_ New=(int)(i-(int)(DeltaX/(double)g_LBMCellS&));
j_New=j;

if (I_New>=0)&&(i_New<g_iX_LBM_MapSize)
&&(_New>=0)&&(j_New<g_iY_LBM_MapSize))
{/l 8
g_BB.iaLBM[i_New][j_New][k]=g_BB.iaLBM[i][jI[ K];

g_BB.iaLogicalSensorMap[i_New][j_New][k-
1][g_BB.iCycle]=g_BB.iaLBMIi][j][KI;
if(i>i_New) // For moving robot case
g_BB.iaLBM[i][jl[K]=0;

1118
W7
Y6
Y5
Y1

I sfSMessage("Cycle %d",g_BB.iCycle); // print ¢ln¢ system's cycle

j/A0)

/************************************************** kkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkx

* Name: SFA_AND *
* Description: This function fuses the data betwa#mnBMs using the AND method *

*% * *% *kk * *% * *kk *% * *kk *% * /

void SFA_AND()
{/o
int i,j,k,counter;

for (i=0;i<g_iX_LBM_MapSize;i++)

{11
for (j=0;j<g_iY_LBM_MapSize;j++)
{12
counter=0;
for (k=1;k<=g_iTotalNumOfLS;k++)
{13
if(g_BB.iaLBMI[i][j][K])
counter++;
3
if(counter==g_iTotalNumOfLS)
g_BB.iaLBMJI][j][0]=1;
Y2
jy/t

/I Calculate the PM for each LS by comparing #mults to the fused AND map
SFA_Calc_PM(1);
CopyLBM2GGM(1);

94



} /10

/ k%% * *% * * *% *kkk *% * *% * *% * *%k%k *

* Name: SFA_OR *
* Description: This function fuses the data betwa# LBM using the OR method *
* *% * *% * *kk * *% * *kk *% * *k*k * *% * /
void SFA_OR()
{
inti,j,k;
for (i=0;i<g_iX_LBM_MapSize;i++)
{
for (j=0;j<g_iY_LBM_MapSize;j++)
for (k=1;k<=g_iTotalNumOfLS;k++)
{
if(g_BB.iaLBMIi][j][k])
{
g_BB.iaLBMTi][j][0]-1;
k=g_iTotaINumOfLS;
}
}
} }
/I Calculate the PM for each LS by comparing #mults to the fused OR map
SFA_Calc_PM(0);
CopyLBM2GGM(0);
}

/ *k%k * *% * * *% *kkk *% * *% * *% * *%k%k *

* Name: SFA_AdpWA1 *
* Description: This function fuses the data between all LBM usinmtp®A1 algorithm, which meansithout * *

Enhancment, binary PM. *
khkkkkkkkkkkkkkkkkkkkkkkhkkhkkkhkkkkkkkkkkkkkkkkkhkhkkx *****************************/

void SFA_AdpWAL()

{
int AvgMap([g_iX_LBM_MapSize][g_iY_LBM_MapSize]={0},j,k,sum,count;

float AdpThr;
/[Enhancing the maps of the LS

int EnLSMap[g_iX_LBM_MapSize][g_iY_LBM_MapSize][gTotalNumOfLS+1]={0};
int mean[g_iTotalNumOfLS]={0};

char string[30];

char cLocNum[10];

int m;

for (k=1; k<=g_iTotaINumOfLS; k++)

{ for (i=0; i<g_iX_LBM_MapSize; i++)
{ for (j=0; j<g_iY_LBM_MapSize; j++)
EnLSMapli][jl[k]=g_BB.iaLBMIi][j][K];
} } |

/[Calculating the Avg. of number of samples

95



for (i=0; i<g_iX_LBM_MapSize; i++)
for (j=0; j<g_iY_LBM_MapSize; j++)

sum=0;

count=0;

for (k=1; k<=g_iTotalNumOfLS; k++)
if (EnLSMapl[i][j][K])
{

count++;
sum=sum+EnLSMap[i][j][K];

}

if (count)
AvgMapli][j]=sum/count;

g_BB.AvgMapli][jl[g_BB.iCycle]=AvgMapli][j];
Yifor
Mifor i

/[Calculating the fused map according to the #aip.
for (i=0; i<g_iX_LBM_MapSize; i++)

{
for (j=0; j<g_iY_LBM_MapSize; j++)

AdpThr=0;

sum=0;

for (k=1; k<=g_iTotalNumOfLS; k++)

{
sum=sum+g_BB.NewPMIk][1][4][g_BB.iCycle];
if (g_BB.iCycle)

AdpThr=AdpThr+g_BB.NewPMIk][1][4][g_BB.iCycle
1]*EnLSMapl[i][j][k];

else
AdpThr=AdpThr+g_BB.NewPMIK][1][4][0]*EnLSMap[i][jIK];

}
if (sum)
AdpThr=AdpThr/sum;

//Saving AdpThr and Diff for off line testing
g_BB.AdpThr][i][jl[g_BB.iCycle]=AdpThr;

if (AdpThr>=AvgMapli][j])
g_BB.iaLBMI[i][jl[0]=AvgMap]il[i];
else
g_BB.iaLBM[i][j][0]=0;
Hifor
Hifor i

SFA_Calc_PM(2);
CopyLBM2GGM(1);

96



/************************************************** kkkkkkkkkkkkkkhkkkkhkkkkhkkkhkkkk

* Name: SFA_AdpWA2
* Description: This function fuses the data between all LBM usimpWA1 algorithm, which meansithout * *
Enhancment, New PM.

* *% * *% * *kk * *% * *kk *% * *kk * *% * /

void SFA_AdpWA2()
{
int AvgMap([g_iX_LBM_MapSize][g_iY_LBM_MapSize]={0},j,k,sum,count;
float AdpThr;
static iCycle;
char string[60];
int SumSquaredError, SquaredFusedSum;

int EnLSMap[g_iX_LBM_MapSize][g_iY_LBM_MapSize][gTotalNumOfLS+1]={0};
int mean[g_iTotalNumOfLS]={0};

char cLocNum[10],Counter[10];

int m;

/[Copying LS maps to EnLSMap array
for (k=1; k<=g_iTotaINumOfLS; k++)

{
for (i=0; i<g_iX_LBM_MapSize; i++)
{
for (j=0; j<g_iY_LBM_MapSize; j++)
EnLSMap[i][jl[k]=g_BB.iaLBMI[i][j][k];
}
}

/[Calculating the Avg. of number of samples
for (i=0; i<g_iX_LBM_MapSize; i++)

{
for (j=0; j<g_iY_LBM_MapSize; j++)
sum=0;
count=0;
for (k=1; k<=g_iTotalNumOfLS; k++)
if (EnLSMapl[il[j]K])
{
count++;
sum=sum-+EnLSMap[i][j][K];
}
if (count)
AvgMapli][j]=sum/count;
g_BB.AvgMapli][j][g_BB.iCycle]=AvgMapli][j];
Yifor
Mifor i

/[Calculating the fused map according to the #ap.
for (i=0; i<g_iX_LBM_MapSize; i++)

{
for (j=0; j<g_iY_LBM_MapSize; j++)

AdpThr=0;
sum=0;

for (k=1; k<=g_iTotalNumOfLS; k++)
{

97



sum=sum+g_BB.NewPM1[k][2][g_BB.iCycle];
if (g_BB.iCycle)
AdpThr=AdpThr+g_BB.NewPM1[k][2][g_BB.iCycle-
1]*EnLSMap(i][j][K];
else
AdpThr=AdpThr+g_BB.NewPM1[k][2][0]*EnLSMap][if[K];
}
if (sum)
AdpThr=AdpThr/sum;

//Saving AdpThr and Diff for off line testing
g_BB.AdpThr][i][jl[g_BB.iCycle] =AdpThr;

if (AdpThr>=AvgMapli][j])
g_BB.iaLBM([i][jl[0]=AvgMap]i][jl;
else
g_BB.iaLBM(i][j][0]=0;
Hifor

Mifor i

int LSSquaredSum,FusedSquaredSum;
float PM_0OIld=0, PM_New=0;

/[Calculating New PM

int Temp;

float ErrorCellRatio,ErrorSquaredSum;

for (k=1; k<=g_iTotaINumOfLS; k++)

{
ErrorSquaredSum=0;
FusedSquaredSum=0;
LSSquaredSum=0;

for (i=0; i<g_iX_LBM_MapSize; i++)

{
for (j=0; j<g_iY_LBM_MapSize; j++)
{

LSSquaredSum=LSSquaredSum+pow(EnLSMapli][i¥k],
if (g_BB.iaLBMIi][j][0] && EnLSMap[i][jI[k])
{

ErrorCellRatio=(float)(EnLSMapli][j][k]-
g_BB.iaLBM[i][jl[0])/(float)g_BB.iaLBMI[i][j][O];

ErrorSquaredSum=ErrorSquaredSum-+pow(Error@sie2);

FusedSquaredSum=FusedSquaredSum+pow(g_BB.ial[H®¥],2);

}

}
if (g_BB.iCycle)
PM_Old=g_BB.NewPM1[Kk][2][g_BB.iCycle-1];

else

PM_Old=g_BB.NewPM1[Kk][2][g_BB.iCycle];
if (ErrorSquaredSum)

PM_New=ErrorSquaredSum;
else

PM_New=PM_Old;

g_BB.NewPM1[Kk][2][g_BB.iCycle]=0.5*(PM_New+PM_Ojd

98



}

Mifor k
/ffinding the maximum PM for normalization
float max=0;
for (k=1; k<=g_iTotalNumOfLS; k++)
if (g_BB.NewPM1[k][2][g_BB.iCycle]>max)
max=g_BB.NewPM1[k][2][g_BB.iCycle];

for (k=1; k<=g_iTotaINumOfLS; k++)

{
g_BB.NewPM1[Kk][2][g_BB.iCycle]=g_BB.NewPMZ1[K][24_BB.iCycle]/max;
}
CopyLBM2GGM(2);

/

* *% * * *% *kkk *% * *% * *% * *%k%k *

* Name: SFA_AdpWA3 *
* Description: This function fuses the data between all LBM usimtp/Al algorithm, which meansithEnhancment,
Binary PM*

kkkkkkkkkkhkkkkhkkkhkkkhhkkkhkkkhkkkhkhkkkhkhkkkhkkkkkkkkkkk *****************************/

void SFA_AdpWA3()

{

int AvgMap([g_iX_LBM_MapSize][g_iY_LBM_MapSize]={0}i,j,k,sum,count;
float AdpThr;

static iCycle;

char string[60];

int SumSquaredError, SquaredFusedSum;

/[Enhancing the maps of the LS

int EnLSMap[g_iX_LBM_MapSize][g_iY_LBM_MapSize][gT otalNumOfLS+1]={0};
int mean[g_iTotalNumOfLS]={0};

char cLocNum[10];

int m;

/[Enahncing the LS Maps

for (k=1; k<=g_iTotaINumOfLS; k++)

{
for (i=1; i<g_iX_LBM_MapSize-1; i++)
{
for (j=1; j<g_iY_LBM_MapSize-1; j++)
count=0;
sum=0;

if (g_BB.iaLBM[i-1][j-1][K]){ count++; sum=sum+4y_BB.iaLBM[i-1][j-1][K];}
if (g_BB.iaLBM[i-1][j][K]){ count++; sum=sum+gBB.iaLBM[i-1][jl[k];}

if (g_BB.iaLBM[i-1][j+1][k]){ count++; sum=sum+_BB.iaLBM[i-1][j+1][K];}
if (g_BB.iaLBM[i][j+1][K]){ count++; sum=sum+gBB.iaLBM[i][j+1][k];}

if (g_BB.iaLBM[i+1][j+1][K]){ count++;

sum=sum+g_BB.iaLBM[i+1][j+1][K];}

if (g_BB.iaLBM[i+1][j][K]){ count++; sum=sum+gBB.iaLBM[i+1][jI[k];}
if (g_BB.iaLBM[i+1][j-1][k]){ count++; sum=sum+4_BB.iaLBM[i+1][j-1][K];}
if (g_BB.iaLBM[i][j-1][K]){ count++; sum=sum+gBB.iaLBM[i][j-1][k];}

if (count>4 && g_BB.iaLBMJi|[j][K])

EnLSMap[i][jl[k]=g_BB.iaLBM[i][j][k]+sum/count;
else

99



EnLSMapli][jl[k]=0;
Yifor i
Mifor

/[First row
for (j=1; j<g_iY_LBM_MapSize-1; j++)

sum=0;

count=0;

if (g_BB.iaLBM[O][j+1][k]){ count++; sum=sum+g_B.iaL BM[O][j+1][K];}
if (g_BB.iaLBM[1][j+1][k]){count++; sum=sum+g_BBalLBM[1][j+1][K];}
if (g_BB.iaLBM[1][j][K]){ count++; sum=sum+g_BBalLBM[1][j][K];}

if (g_BB.iaLBM[1][j-1][K]){count++; sum=sum+g_BBalLBM[1][j-1][k];}
if (g_BB.iaLBM[O0][j-1][K]){ count++; sum=sum+g_B.iaLBM[O][j-1][k];}

if (count>3 && g_BB.iaLBMIO][j][K])
EnLSMap[i][jl[k]=g_BB.iaLBM]i][j][K]+sum/count;
else
EnLSMapl[i][j][k]=0;
Mifor

//Last row
for (j=1, j<g_iY_LBM_MapSize-1; j++)

sum=0;

count=0;

if (g_BB.iaLBM[g_iX_LBM_MapSize-1][j-1][K]){ cont++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-1][j-1][K];}

if (g_BB.iaLBM[g_iX_LBM_MapSize-2][j-1][K]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][j-1][K];}

if (g_BB.iaLBM[g_iX_LBM_MapSize-2][j][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][j][k];}

if (g_BB.iaLBM[g_iX_LBM_MapSize-2][j+1][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][j+1][k];}

if (g_BB.iaLBM[g_iX_LBM_MapSize-1][j+1][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-1][j+1][k];}

if (count>3 && g_BB.iaLBM[g_iX_LBM_MapSize-1][jIk])
EnLSMap[i][jl[k]=g_BB.iaLBM]i][j][K]+sum/count;

else
EnLSMap[i][j][k]=0;
Mifor
/IFirst Col.
for (i=1; i<g_iX_LBM_MapSize-1; i++)
{
sum=0;
count=0;
if (g_BB.iaLBM[i-1][0][K]){ count++; sum=sum+g_B.iaLBM[i-1][0][Kk];}
if (g_BB.iaLBM[i-1][1][K]){ count++; sum=sum+g_B.iaLBM[i-1][1][K];}
if (g_BB.iaLBM[i][1][K]){ count++; sum=sum-+g_BBaLBM[i][1][K];}
if (g_BB.iaLBM[i+1][1][K]){ count++; sum=sum+g_B.iaLBM[i+1][1][K];}
if (g_BB.iaLBM[i+1][0][k]){ count++; sum=sum+g_B.iaLBM[i+1][0][K];}
if (count>3 && g_BB.iaLBM[i][0][K])
EnLSMap[i][jl[k]=g_BB.iaLBM[i][j][k]+sum/count;
else
EnLSMapli][jl[k]=0;
Yifor i
//Last Col.

100



for (i=1; i<g_iX_LBM_MapSize-1; i++)

sum=0;
count=0;

if (g_BB.iaLBM[i-1][g_iY_LBM_MapSize-1][k]){ cont++; sum=sum+g_BB.iaLBMi-

1][g_iY_LBM_MapSize-1][K];}

if (g_BB.iaLBM[i-1][g_iY_LBM_MapSize-2][k]){ cont++; sum=sum+g_BB.iaLBMi-

1][g_iY_LBM_MapSize-2][Kk];}

if (g_BB.iaLBM[i][g_iY_LBM_MapSize-2][k]){ count++;
sum=sum+g_BB.iaLBM[i][g_iY_LBM_MapSize-2][k];}

if (g_BB.iaLBM[i+1][g_iY_LBM_MapSize-2][k]){court++;
sum=sum+g_BB.iaLBM[i+1][g_iY_LBM_MapSize-2][k];}

if (g_BB.iaLBM[i+1][g_iY_LBM_MapSize-1][k]){ cownt++;
sum=sum+g_BB.iaLBM[i+1][g_iY_LBM_MapSize-1][k];}

if (count>3 && g_BB.iaLBMJi][g_iY_LBM_MapSize-1]k])
EnLSMap[i][jl[k]=g_BB.iaLBM]i][j][K]+sum/count;
else
EnLSMapl[i][j][k]=0;
Mifor i

/[Corners - Top left
sum=0;
count=0;
if (g_BB.iaLBM[O][1][K]){ count++; sum=sum+g_BBaLBM[O0][1][K]; }
if (g_BB.iaLBM[1][1][K])}{ count++; sum=sum+g_BBaLBM[1][1][K]; }
if (g_BB.iaLBM[1][0][K])}{ count++; sum=sum+g_BBaLBM[1][0][K]; }
if (count>2 && g_BB.iaLBM[O][O0][K])
EnLSMap[i][jl[k]=g_BB.iaLBM][i][j][k]+sum/count;
else
EnLSMap[i][j][K]=0;

//Bottom left
sum=0;
count=0;
if (g_BB.iaLBM[g_iX_LBM_MapSize-2][0][K]){ count+;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][0][K]; }
if (g_BB.iaLBM[g_iX_LBM_MapSize-2][1][K]){ count+;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][1][K];}
if (g_BB.iaLBM[g_iX_LBM_MapSize-1][1][K]){ count+;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-1][1][K]; }
if (count>2 && g_BB.iaLBM[g_iX_LBM_MapSize-1][g Y_LBM_MapSize-1][K])
EnLSMap[i][jl[k]=g_BB.iaLBM[i][j][k]+sum/count;
else
EnLSMap[i][j][k]=0;

/[Top right
sum=0;
count=0;
if (g_BB.iaLBM[0][g_iY_LBM_MapSize-2][k]){ count+;
sum=sum+g_BB.iaLBM[0][g_iY_LBM_MapSize-2][k];}
if (g_BB.iaLBM[1][g_iY_LBM_MapSize-2][k]){ count+;
sum=sum+g_BB.iaLBM[1][g_iY_LBM_MapSize-2][k];}
if (g_BB.iaLBM[1][g_iY_LBM_MapSize-1][K]){ count+;
sum=sum+g_BB.iaLBM[1][g_iY_LBM_MapSize-1][K]; }
if (count>2 && g_BB.iaLBMJ[0][g_iY_LBM_MapSize-1])
EnLSMap[i][jl[k]=g_BB.iaLBM[i][j][k]+sum/count;
else
EnLSMap[i][j][k]=0;

101



//Bottom right
sum=0;
count=0;
if (g_BB.iaLBM[g_iX_LBM_MapSize-2][g_iY_LBM_MapSie-1][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX LBM_MapSize-2][g_iY_LBM_Mda&ize-1][K]; }
if (g_BB.iaLBM[g_iX_LBM_MapSize-2][g_iY_LBM_MapSie-2][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][g_iY_LBM_Mda&ize-2][K]; }
if (g_BB.iaLBM[g_iX_LBM_MapSize-1][g_iY_LBM_MapSie-2][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-1][g_iY_LBM_M&ize-2][K]; }
if (count>2 && g_BB.iaLBM[g_iX_LBM_MapSize-1][g_Y_LBM_MapSize-1][K])
EnLSMapli][jl[k]=g_BB.iaLBM[i][j][k]+sum/count;
else
EnLSMap[i][j][k]=0;
Yifor k

/[Calculating the Avg. of number of samples
for (i=0; i<g_iX_LBM_MapSize; i++)
{
for (j=0; j<g_iY_LBM_MapSize; j++)

sum=0;

count=0;

for (k=1; k<=g_iTotalNumOfLS; k++)
if (EnLSMapli][j1K])
{

count++;
sum=sum+EnLSMapl[i][j][K];
}

if (count)
AvgMap(i][j]l=sum/count;
g_BB.AvgMapli][jl[g_BB.iCycle]=AvgMapli][j];
Yifor j

Mifor i

/[Calculating the fused map according to the dap.
for (i=0; i<g_iX_LBM_MapSize; i++)

for (j=0; j<g_iY_LBM_MapSize; j++)

AdpThr=0;
sum=0;

for (k=1; k<=g_iTotalNumOfLS; k++)

{
sum=sum+g_BB.NewPMIK][3][4][g_BB.iCycle];

if (g_BB.iCycle)
AdpThr=AdpThr+g_BB.NewPMIK][3][4][g_BB.iCycle
1]*EnLSMap(i][j][K];
else

AdpThr=AdpThr+g_BB.NewPM[K][3][4][0]*EnLSMapl[i][iIk];
}

if (sum)
AdpThr=AdpThr/sum;

//Saving AdpThr and Diff for off line testing
g_BB.AdpThr][i][jl[g_BB.iCycle] =AdpThr;

if (AdpThr>=AvgMapli][j])

102



g_BB.iaLBM[i][j][0]=AvgMapli][j];
else
g_BB.iaLBM(i][j][0]=0;

Mifor
Mifor i
SFA_Calc_PM(3);
CopyLBM2GGM(3);
}
/************************************************** kkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkx

* Name: SFA_AdpWA4 *
* Description: This function fuses the data between all LBM usintp®WA1 algorithm, which meansithout Enhancment,
new PM. *

* *% * *% * *kk * *% * *kk *% * *kk * *% * /

void SFA_AdpWA4()
{
int AvgMap([g_iX_LBM_MapSize][g_iY_LBM_MapSize]={0}i,j,k,sum,count;
float AdpThr;
static iCycle;
char string[60];
int SumSquaredError, SquaredFusedSum;

/[Enhancing the maps of the LS

int EnLSMap[g_iX_LBM_MapSize][g_iY_LBM_MapSize][gT otalNumOfLS+1]={0};
int mean[g_iTotalNumOfLS]={0};

char cLocNum[10];

int m;

/[Enahncing the LS Maps
for (k=1; k<=g_iTotaINumOfLS; k++)
{
//all together
for (i=0; i<g_iX_LBM_MapSize-1; i++)
{
for (j=0; j<g_iY_LBM_MapSize-1; j++)

count=0;
sum=0;
if (i>=1 && j>=1) {
if (g_BB.iaLBM[i-1][j-1][k]){ count++; sum=sum-g_BB.iaLBM[i-1][j-
1][k]:}
}
if (i>=1) {
if (g_BB.iaLBM[i-1][j][k]){ count++; sum=sum+gBB.iaLBM][i-
1][][K]:}

1]G+1]0K]:}

if (g_BB.iaLBM[i-1][j+1][K]){ count++; sum=sumg_BB.iaLBM[i-

}

if (g_BB.iaLBM[i][j+1][K]){ count++; sum=sum+gBB.iaLBM[i][j+1][k];}

if (g_BB.iaLBM[i+1][j+1][K]){ count++;
sum=sum+g_BB.iaLBM[i+1][j+1][k];}

if (g_BB.iaLBM[i+1][j][K]){ count++; sum=sum+gBB.iaLBM[i+1][j][k];}

if (>=1) {

103



if (9_BB.iaLBM[i+1][j-1][]}{ count++;
sum=sum-+g_BB.iaLBM[i+1][j-1][k];}

1][k]}

if (g_BB.iaLBM[i][j-1][k]){ count++; sum=sum-+gBB.iaLBM][i][j-
}

if (count>4 && g_BB.iaLBM[i][j][K])
EnLSMap[i][jl[k]=g_BB.iaLBM]i][j][K]+sum/count;

else
EnLSMapli][jl[k]=0;
Yifor i
Yifor j
for (i=1; i<g_iX_LBM_MapSize-1; i++)
{
for (j=1; j<g_iY_LBM_MapSize-1; j++)
count=0;
sum=0;

if (g_BB.iaLBM[i-1][j-1][K]){ count++; sum=sum+4y_BB.iaLBM[i-1][j-1][K];}

if (g_BB.iaLBM[i-1][j][k]){ count++; sum=sum+gBB.iaLBM[i-1][j][K];}

if (g_BB.iaLBM[i-1][j+1][k]){ count++; sum=sum+_BB.iaLBM[i-1][j+1][K];}

if (g_BB.iaLBM[i][j+1][K]){ count++; sum=sum+gBB.iaLBM[i][j+1][k];}

if (g_BB.iaLBM[i+1][j+1][Kk]){ count++;
sum=sum+g_BB.iaLBM[i+1][j+1][k];}

if (g_BB.iaLBM[i+1][j][K]){ count++; sum=sum+gBB.iaLBM[i+1][jI[k];}

if (g_BB.iaLBM[i+1][j-1][k]){ count++; sum=sum+_BB.iaLBM[i+1][j-1][K];}

if (g_BB.iaLBM[i][j-1][K]){ count++; sum=sum+gBB.iaLBM[i][j-1][k];}

if (count>4 && g_BB.iaLBMIi][j][K])
EnLSMap[i][jl[k]=g_BB.iaLBM]i][j][k]+sum/count;
else
EnLSMapli][jl[k]=0;
Yifor i
Yifor j

/[First row
for (j=1; j<g_iY_LBM_MapSize-1; j++)

sum=0;

count=0;

if (g_BB.iaLBM[O][j+1][K]){ count++; sum=sum+g_B.iaLBM[O][j+1][K];}
if (g_BB.iaLBM[1][j+1][k]){count++; sum=sum+g_BBalLBM[1][j+1][K];}
if (g_BB.iaLBM[1][j][K]){ count++; sum=sum-+g_BBalLBM[1][j][K];}

if (g_BB.iaLBM[1][j-1][K]){count++; sum=sum+g_BBalL BM[1][j-1][K];}
if (g_BB.iaLBM[O0][j-1][K]){ count++; sum=sum+g_B.iaLBM[O][j-1][k];}

if (count>3 && g_BB.iaLBMI[O][j][K])
EnLSMap[i][jl[k]=g_BB.iaLBM]i][j][K]+sum/count;
else
EnLSMap[i][j][k]=0;
Mifor

/ILast row
for (j=1; j<g_iY_LBM_MapSize-1; j++)

sum=0;

count=0;

if (g_BB.iaLBM[g_iX_LBM_MapSize-1][j-1][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-1][j-1][K];}

104



if (g_BB.iaLBM[g_iX_LBM_MapSize-2][j-1][K]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][j-1][K];}

if (g_BB.iaLBM[g_iX_LBM_MapSize-2][j][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][jl[k];}

if (g_BB.iaLBM[g_iX_LBM_MapSize-2][j+1][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][j+1][Kk];}

if (g_BB.iaLBM[g_iX_LBM_MapSize-1][j+1][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-1][j+1][Kk];}

if (count>3 && g_BB.iaLBM[g_iX_LBM_MapSize-1][jk])
EnLSMap[i][jl[k]=g_BB.iaLBM[i][j][k]+sum/count;

else
EnLSMapli][jl[k]=0;
Yifor j
/IFirst Col.
for (i=1; i<g_iX_LBM_MapSize-1; i++)
{
sum=0;
count=0;
if (g_BB.iaLBM[i-1][0][K]){ count++; sum=sum+g_B.iaLBM[i-1][0][Kk];}
if (g_BB.iaLBM[i-1][1][K]){ count++; sum=sum+g_B.iaLBM[i-1][1][k];}
if (g_BB.iaLBM[i][1][K]){ count++; sum=sum+g_BBalLBM[i][1][K];}
if (g_BB.iaLBM[i+1][1][K]){ count++; sum=sum+g_B.ialL BM[i+1][1][K];}
if (g_BB.iaLBM[i+1][0][k]){ count++; sum=sum+g_B.iaLBM[i+1][0][K];}
if (count>3 && g_BB.iaLBM[i][0][K])
EnLSMap[i][jl[k]=g_BB.iaLBM]i][j][k]+sum/count;
else
EnLSMapli][jl[k]=0;
Mifor i
//Last Col.
for (i=1; i<g_iX_LBM_MapSize-1; i++)
{
sum=0;
count=0;

if (g_BB.iaLBM[i-1][g_iY_LBM_MapSize-1][K]){ cont++; sum=sum+g_BB.iaLBM(i-
1][g_iY_LBM_MapSize-1][K];}

if (g_BB.iaLBM[i-1][g_iY_LBM_MapSize-2][k]){ cont++; sum=sum+g_BB.iaLBMi-
1][g_iY_LBM_MapSize-2][K];}

if (g_BB.iaLBM[i][g_iY_LBM_MapSize-2][k]){ count++;
sum=sum+g_BB.iaLBM[i][g_iY_LBM_MapSize-2][k];}

if (g_BB.iaLBM[i+1][g_iY_LBM_MapSize-2][k]){court++;
sum=sum+g_BB.iaLBM[i+1][g_iY_LBM_MapSize-2][k];}

if (g_BB.iaLBM[i+1][g_iY_LBM_MapSize-1][k]){ cownt++;
sum=sum+g_BB.iaLBM[i+1][g_iY_LBM_MapSize-1][k];}

if (count>3 && g_BB.iaLBM[i][g_iY_LBM_MapSize-1]k])
EnLSMap[i][jl[k]=g_BB.iaLBM]i][j][K]+sum/count;
else
EnLSMap[i][j][k]=0;
Mifor i

/[Corners - Top left
sum=0;
count=0;
if (g_BB.iaLBM[O][1][K]){ count++; sum=sum+g_BBaLBM[O][1][K]; }
if (g_BB.iaLBM[1][1][K]){ count++; sum=sum+g_BBaLBM[1][1][K]; }
if (g_BB.iaLBM[1][0][K]){ count++; sum=sum+g_BB&aLBM[1][0][K]; }
if (count>2 && g_BB.iaL BM[O][O0][K])

105



EnLSMap[i][jl[k]=g_BB.iaLBM][i][j][k]+sum/count;
else
EnLSMapl[i][jl[k]=0;

//Bottom left
sum=0;
count=0;
if (g_BB.iaLBM[g_iX_LBM_MapSize-2][0][K]){ count+;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][0][K]; }
if (g_BB.iaLBM[g_iX_LBM_MapSize-2][1][K]){ count+;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][1][k];}
if (g_BB.iaLBM[g_iX_LBM_MapSize-1][1][K]){ count+;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-1][1][K]; }
if (count>2 && g_BB.iaLBM[g_iX_LBM_MapSize-1][g_Y_LBM_MapSize-1][K])
EnLSMap[i][jl[k]=g_BB.iaLBM][i][j][k]+sum/count;
else
EnLSMapli][jl[k]=0;

/[Top right
sum=0;
count=0;
if (g_BB.iaLBM[0][g_iY_LBM_MapSize-2][k]){ count+;
sum=sum+g_BB.iaLBM[0][g_iY_LBM_MapSize-2][k];}
if (g_BB.iaLBM[1][g_iY_LBM_MapSize-2][k]){ count+;
sum=sum+g_BB.iaLBM[1][g_iY_LBM_MapSize-2][k];}
if (g_BB.iaLBM[1][g_iY_LBM_MapSize-1][k]){ count+;
sum=sum+g_BB.iaLBM[1][g_iY_LBM_MapSize-1][K]; }
if (count>2 && g_BB.iaLBM[0][g_iY_LBM_MapSize-1])
EnLSMap[i][jl[k]=g_BB.iaLBM][i][j][k]+sum/count;
else
EnLSMap[i][j][K]=0;

//Bottom right
sum=0;
count=0;
if (g_BB.iaLBM[g_iX_LBM_MapSize-2][g_iY_LBM_MapSie-1][K]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][g_iY_LBM_M&ize-1][K]; }
if (g_BB.iaLBM[g_iX_LBM_MapSize-2][g_iY_LBM_MapSie-2][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][g_iY_LBM_Mdaize-2]K]; }
if (g_BB.iaLBM[g_iX_LBM_MapSize-1][g_iY_LBM_MapSie-2][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-1][g_iY_LBM_Mda&ize-2][K]; }
if (count>2 && g_BB.iaLBM[g_iX_LBM_MapSize-1][g Y_LBM_MapSize-1][K])
EnLSMap[i][jl[k]=g_BB.iaLBM[i][j][k]+sum/count;
else
EnLSMap[i][j][k]=0;
Yifor k

/[Calculating the Avg. of number of samples
for (i=0; i<g_iX_LBM_MapSize; i++)
{
for (j=0; j<g_iY_LBM_MapSize; j++)

sum=0;

count=0;

for (k=1; k<=g_iTotalNumOfLS; k++)
if (EnLSMapl[il[jl[K])
{

count++;
sum=sum+EnLSMap[i][j][K];

106



Mifor i

if (count)
AvgMapi][j]=sum/count;
g_BB.AvgMapli][il[g_BB.iCycle]=AvgMapli][j];
Yifor

/[Calculating the fused map according to the #aip.
for (i=0; i<g_iX_LBM_MapSize; i++)

for (j=0; j<g_iY_LBM_MapSize; j++)

{
1]*EnLSMap[i][j][k];
Yifor j
Mifor i

AdpThr=0;
sum=0;

for (k=1; k<=g_iTotalNumOfLS; k++)

{
sum=sum+g_BB.NewPM1[k][4][g_BB.iCycle];
if (g_BB.iCycle)
AdpThr=AdpThr+g_BB.NewPM1[k][4][g_BB.iCycle-
else
AdpThr=AdpThr+g_BB.NewPM1[k][4][0]*EnLSMap][if[K];
}
if (sum)

AdpThr=AdpThr/sum;

//Saving AdpThr and Diff for off line testing
g_BB.AdpThr]i][jl[g_BB.iCycle] =AdpThr;

if (AdpThr>=AvgMapli][j])
g_BB.iaLBMI[i][jl[0]=AvgMap]il[i];
else
g_BB.iaLBMI[i][j][0]=0;

int LSSquaredSum,FusedSquaredSum;
float PM_0OId=0, PM_New=0;

/[Calculating New PM

int Temp;

float ErrorCellRatio,ErrorSquaredSum;
for (k=1; k<=g_iTotaINumOfLS; k++)

{

ErrorSquaredSum=0;
FusedSquaredSum=0;
LSSquaredSum=0;

for (i=0; i<g_iX_LBM_MapSize; i++)

{

for (j=0; j<g_iY_LBM_MapSize; j++)

LSSquaredSum=LSSquaredSum+pow(EnLSMapli][j¥K],
if (g_BB.iaLBM(i][j][0] && EnLSMap[i][j][k])
{

107



ErrorCellRatio=(float)(EnLSMapli][j][k]-
g_BB.iaLBM(i][jJ[0])/(float)g_BB.iaLBM[i][j][0];

ErrorSquaredSum=ErrorSquaredSum+pow(Error@aie);

FusedSquaredSum=FusedSquaredSum+pow(g_BB.ial[HM],2);

}

if (g_BB.iCycle)
PM_Old=g_BB.NewPM1[K][2][g_BB.iCycle-1];
else
PM_OIld=g_BB.NewPM1[K][2][g_BB.iCycle];

if (ErrorSquaredSum)
PM_New=ErrorSquaredSum;
else
PM_New=PM_Old;

g_BB.NewPM1[K][4][g_BB.iCycle]=0.5*(PM_New+PM_OJd

Yifor k

/ffinding the maximum PM for normalization
float max=0;
for (k=1; k<=g_iTotalNumOfLS; k++)
if (g_BB.NewPM1[k][4][g_BB.iCycle]>max)
max=g_BB.NewPM1[k][4][g_BB.iCycle];

for (k=1; k<=g_iTotalNumOfLS; k++)
g_BB.NewPM1[Kk][4][g_BB.iCycle]=g_BB.NewPMZ1[K][43_BB.iCycle]/max;

CopyLBM2GGM(4);

/ *k%k * *% * * *% *kkk *% * *% * *% * *%k%k *

* Name: SFA_REGULAR_MOST *
* Description: This function fuses the data betwakh.BM using the regular MOST method *

*% * *% *kk * *% * *kk *% *kk * *% * /

void SFA_REGULAR_MOST()

{
inti,j,k, counter, MOST_US_Camera;

/I Definitions of the MOST, using the 'ceil’ fuiart
MOST_US_Camera=(int)(ceil(0.5*(float)g_iTotalNumc¥));
/IsfSMessage("MOST_US_Camera %d", MOST_US_Camera);
for (i=0;i<g_iX_LBM_MapSize;i++)
{

for (j=0;j<g_iY_LBM_MapSize;j++)

counter=0;
for (k=1;k<=g_iTotalNumOfLS;k++)
{
if(g_BB.iaLBMIi][j][K])
counter++;
if(counter>=MOST_US_Camera)

{
g_BB.iaLBM[i][j][0]=1;

108



k=g_iTotaINumOfLS;

}

}
/I Calculate the PM for each LS by comparing #sults to the fused MOST map
SFA_Calc_PM(0);
CopyLBM2GGM(0);
}

/************************************************** kkkkkkkkkkkkkkhkkkkhkkkkhkkkhkkkk

* Name: SFA_REGULAR_AFL *
* Description: This function fuses the data betwa#mn.BM using the regular AFL method

kkkkkkkkkkkhkkkhkkkkhkkkhkkkhkkkhkkkhkhkkkhkhkkkhkkkkkkkkkkhk *****************************/

void SFA_REGULAR_AFL()
{

inti,j,k, m,Temp;

int iCellValue;

g_BB.iIAFL_Flag=0; // 0 for regular AFL, 1 for MOSAFL

/I Calculating the TRUE and FALSE value for ea& L

for (m=1; m<=g_iTotalNumOfLS; m++)
FuzzyLogicAlgorithm(m);

/I Calculating truth table for each LS
Calculating_FL_TruthTable();
/I Based on the Truth table the fused map is built
for (1=0;i<g_iX_LBM_MapSize;i++)
{

for (j=0;j<g_iY_LBM_MapSize;j++)

{

iCellvValue=0;
for ( k=0;k<g_iTotaINumOfLS;k++)
{
if (g_BB.iaLBM[i][jl[k+1])
Temp=1;
else
Temp=0;
iCellvValue= // The value for the cell at thauir table [0/1]
iCellvValue+(Temp*pow(2,k));
Y1 for (int k=1;k<2+g_NumberOfModules;k++)
g_BB.iaLBM[i][j][0]=g_BB.fTTValue[0][iCellValue];
Yifor (int j=0;j<2*g_SensorYLength;j++)
Y/ for (int i=0;i<g_SensorXLength;i++)*/

for (m=1; m<=g_iTotalNumOfLS; m++)
CalculatingTrueAndFalseValues(m);
/I Calculate the PM for each LS by comparing #mults to the fused OLSAS map
SFA_Calc_PM(5);
CopyLBM2GGM(5);

/ *k%k * *% * * *% *kkk *% * *% * *% * *%k%k *

* Name: Call_LS Func *
* Description: This function is used to fuse théadasing the all algorithms methods *
kkkkkkkkkkkkkkkkkkkkkkkkkkhkhkhkkkkkkkkkkkkkkkkkhkhkk *****************************/
void Call_LS Func()
{m

float fSpecialMeasure, fTT, fFF, fTF, fFT;

109



inti,j,k;
LGM_Transformation(); // map transformation foetmaps that were not updated

/[Saving PPGM for the Logical sensor's maps
CreateLS_PPGM(1); //US1
CreateLS_PPGM(2); //US2
CreateLS_PPGM(3); //LASER1
CreateLS_PPGM(4); //LASER2
CreateLS_PPGM(5); //CAM1
CreateLS_PPGM(6); //CAM2
CreateLS_PPGM(7); //ICAM3

//********************

/I Fusing Data using the sensor fusion algorith@R/AND/MOST/ADS/AFL

Y1

/I It would help us to compare the results withatwvould happen if we used algorithm
/l instead of the other

SFA_OR(); /I OR writing to level 0
SFA_AND(); /I AND writing to level 1
SFA_REGULAR_MOST(); // Regular MOST writing to leM0

SFA_AdpWAL(); // NEW -Without Enhance, Binary PMvel 1
SFA_AdpWA2(); /INEW1 - Without Enhance, New PMyél 2
SFA_AdpWA3(); //ENNEW - With Enhance, Binary PNyel 3
SFA_AdpWA4(); /[ENNEW1 - With Enhance, New PM, ddw
SFA_REGULAR_AFL(); // Level 5

110



/************************************************** kkkkkkkkkkkkkkkhkkkhkkkkhkkkhkkkk

* Name: CopyLBM2GGM *
* Description: This function copy the local binanaps (LBMs) to the global grid maps *

*% *% *kk *% *kk *% *kk * *% * /

void CopyLBM2GGM(int iAlgCode)

{
inti, j;
int iNew, jNew;
for (i=0; i<g_iX_LBM_MapSize; i++)
{
for (j=0; j<g_iY_LBM_MapSize; j++)
iNew=i+(int)((double)g_BB.iPPGM_X/(double)g_LBM{lSize);
jNews=j+(int)(((double)g_iY_PPGM_MapSize-(doulde)Y_LBM_MapSize)/2);
if (INew>=0)&&(jNew< g_iY_PPGM_MapSize)&&
(iINew>=0)&&(iNew< g_iX_PPGM_MapSize)&&(g_BB.iaBM[i][j][0]))
g_BB.iaPPGM[iNew][jNew][iAlgCode]=g_BB.iaLBM][j][0];
if (IAlgCode==1)
g_BB.iaPI[iNew][jNew]++;
}
}
for (i=0; i<g_iX_LBM_MapSize; i++)// Save LBM mager OffLine simulation
{
for (j=0; j<g_iY_LBM_MapSize; j++)
g_BB.SFAOutput[i][j][iAlgCode][g_BB.iCycle]=g_BBaLBM[i][j][O];
g_BB.iaLBM(i][j][0]=0;
}
}
}
/************************************************** kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx
* Name: CreateLS_PPGM*
* Description: This function creates the PPGM mator each LS using the LBM *
kkkkkkkkkkkkkkkkkkkkkkkkhkkhkhhhhkkkkkkkkkkkkkkkkkhkhkhkx *****************************/
void CreateLS_PPGM(int iLSNum)
{ o
inti, j;

int iNew, jNew;
for (i=0; i<g_iX_LBM_MapSize; i++)
{
for (j=0; j<g_iY_LBM_MapSize; j++)

iNew=i+(int)((double)g_BB.iPPGM_X/(double)g_LBM{lSize);
jNews=j+(int)(((double)g_iY_PPGM_MapSize-(doulde)Y_LBM_MapSize)/2);
if (INew>=0)&&(jNew< g_iY_PPGM_MapSize)&&
(iINew>=0)&&(iNew<
g_iX_PPGM_MapSize)&&(g_BB.iaLBM[i][j][ILSNum]))
{

g_BB.iaLS_PPGM][iNew][jNew][iLSNum]=g_BB.iaLBM[[j][iLSNum];

}
1 if (IAlgCode==1)
1 g_BB.iaPI[iNew][jNew]++;
}
}

111



/************************************************** kkkkkkkkkkkkkkkhkkkhkkkkhkkkhkkkk

* Name: SFA_Calc PM *
* Description: This function calculates for each itSreliability according *
* to the generated map by each algorithm  *

* *% * *% * *kk *% * *kk *% * *kk * *% * /

void SFA_Calc_PM(int iAlg_Index)
{

int i,j,k;
int iIAlg,Num,SumSquaredError,SquaredFusedSum;
float fCounterT, fCounterF;

/I If the value at the BB_iaSensorArray[[[[[SFSvéd] array is true then its value is 1
float fLevelCell;

/l'If the value at the BB_iaTemporarySensorArrenagis true then the its value is 1
float fFusedCell;

float PM_True_False; // Found True but was False.
float PM_True_True; // Found True And was True.
float PM_False_False; // Found False And was False
float PM_False_True; // Found False but was true.
float PM_UM, NewPM1, NewPM1_Old;

float OldUM=0;

iAlg=iAlg_Index;

for (k=1;k<=g_iTotalNumOfLS;k++)

{
PM_True_False=0; // The Local Map Found True tBatfused map determined False.
PM_True_True=0; // The Local Map Found True Alnel fused map determined True.
PM_False_False=0;// The Local Map Found False thadused map determined False.
PM_False_True=0; // The Local Map Found FalsetBeitfused map determined True.

for (i=0;i<g_iX_LBM_MapSize;i++)

{
for (j=0;j<g_iY_LBM_MapSize;j++)
{
fLevelCell=0;
fFusedCell=0;

if (g_BB.iaLBM[i][j][0]) //fused map
{

fFusedCell=1;

I g_BB.BB_iaTemporarySensorArray/i][j]=0;// Sthe array values to 0
if(g_BB.iaLBMIi][j][k]) // LSv Map
{

fLevelCell=1;
}

if(fLevelCell>fFusedCell)// Found True but wihalse.
PM_True_False++;

if((fLevelCell==fFusedCell)&&(fLevelCell==1))// Found True And was True.
PM_True_True++;

112



if((fLevelCell==fFusedCell)&&(fLevelCell==0))/Found False And was False.
PM_False_False++;

if(fLevelCell<fFusedCell)// Found False butsmMaue
PM_False_True++;
} /1 End (for (j))
} /1 End (for (i)
fCounterT=(PM_True_True+PM_False_True);
fCounterF=(PM_False_False+PM_True_False);

if (fCounterT>0)

{
PM_True_True=PM_True_True/fCounterT;

PM_False_True=PM_False_True/fCounterT;
}

if (fCounterF>0)

{
PM_False_False=PM_False_False/fCounterF;

PM_True_ False=PM_True_False/fCounterF;

}
if (fCounterT==0)

{
PM_True_True= PM_False False;
PM_False_True=1- PM_False False;

}

if (fCounterF==0)

{
PM_False_False= PM_True_True;
PM_True_ False=1- PM_True_True;

}

/*

Explanations for the fSFA_PM 4D array:[i][j][K][!

i - stands for maximum number of robot positions

j - stands for number of 5 SFA.€., OR, AND , MOST, FL, AFL)

k - stands for PM: TT, FF, TF ,FT, Fused mea¢0re*(TT+FF-TF-FT))
| - stands for total number of LSs

*

g_BB.fSFA_PM[g_BB.iCycle][iAlg][0][k-1]=PM_True_T¥ue; // TT
g_BB.fSFA_PM[g_BB.iCycle][iAlg][1][k-1]=PM_FalseFalse; // FF
g_BB.fSFA_PM[g_BB.iCycle][iAlg][2][k-1]=PM_True_Else; // TF
g_BB.fSFA_PM[g_BB.iCycle][iAlg][3][k-1]=PM_FalseTrue; // FT
g_BB.fSFA_PM[g_BB.iCycle][iAlg][4][k-1]=
0.5%(PM_True_True+PM_False_False-PM_True_False-Palke_True); // Fused measure

if (g_BB.NewPMIK][4][g_BB.iCycle]>=0)

OldUuM=g_BB.NewPM][K][iAlg][4][g_BB.iCycle];
PM_UM=0.5*(PM_True_True+PM_False_False-PM_Truds&&®M_False_True);

if (IAlg==1 ||iAlg==3)
g_BB.NewPMI[K][iAlg][4][g_BB.iCycle]=0.5*(OldUM+PM_UM);

} /1 End (for ()

113



/************************************************** kkkkkkkkkkkkkkkhkkkhkkkkhkkkhkkkk

* Name: SaveGGM *
* Description: This function save all the data itite hard disk *

* *% * *% * *%k%k * *% * *%k%k *% * *k%k *

REKXXXK |
void SaveGGM()
{

FILE *f;

char string[40];
char cLocNum[6];
char Counter[6];

inti, j,k,l;
ofstream output;
char fname[60];

/I Saving all path planning grid maps
for (k=0; k<(g_TotalNumberOfAlgorithms+1); k++)

_itoa(k, cLocNum, 10 ); // Converting pic numigit) into string.
_itoa(g_BB.iCycle, Counter, 10 ); // Converting pumber (int) into string.
strepy( string, "PPGM");

strcat( string, cLocNum);

strcat( string, ".data" );

f=fopen(string,"w");

for(i= 0; i<g_iX_PPGM_MapSize ; i++)

{
for(j = 0; j<g_iY_PPGM_MapSize; j++)
fprintf(f,"%d",g_BB.iaPPGM[i][j][K]);
fprintf(f," ");
Y
fprintf(f,"\n");
Mih
fclose(f);

Yik

/I Saving all path planning grid maps for each LS
for (k=0; k<(g_iTotaINumOfLS+1); k++)

_itoa(k, cLocNum, 10 ); // Converting pic numi§it) into string.
_itoa(g_BB.iCycle, Counter, 10 ); // Converting pumber (int) into string.
strepy( string, "LS_PPGM");

strcat( string, cLocNum);

strcat( string, ".data" );

f=fopen(string,"w");

for(i=0; i<g_iX_PPGM_MapSize ; i++)

{
for(j=0; j<g_iY_PPGM_MapSize; j++)
fprintf(f,"%d",g_BB.iaLS_PPGMI[il[j][K]);
fprintf(f," ");
Y
fprintf(f,"\n");
Mih
fclose(f);

114



/I Saving the local binary maps
for (k=0; k<g_BB.iCycle; k++)

for (I=0; I<g_iTotaINumOfLS; |++)

{
_itoa(k, Counter, 10); /I Converting pic numfiat) into string.
_itoa(l, cLocNum, 10); /I Converting pic nunnigit) into string.
strepy( string, "LBM");
strcat( string, Counter);//k - counter
strcat( string, "_");
strcat( string, cLocNum);//l - g_iTotalNumOfLS
strcat( string, ".data" );
f=fopen(string,"w");
for(i=0; i <g_iX_LBM_MapSize ; i++)
{
for(j=0;j<g_iY_LBM_MapSize; j++)
fprintf(f,"%d",g_BB.iaLogicalSensorMap][i][jII[k]);
fprintf(f," ™);
}
fprintf(f,"\n");
}
fclose(f);
}

for (k=0; k<g_BB.iCycle; k++)// Saving the sensasion algorithms maps (during the process)

for (I=0; I<5; I++) // | - algorithm{
_itoa(k, Counter, 10); // Converting pic numfiet) into string.
_itoa(l, cLocNum, 10); // Converting pic numigant) into string.
strepy( string, "SFA™);
strcat( string, Counter);//k - counter
strcat( string, "_");
strcat( string, cLocNum);//I - algorithm
strcat( string, ".data" );
f=fopen(string,"w");
for(i=0; i <g_iX_LBM_MapSize ; i++)

{ for(j=0;j<g_iY_LBM_MapSize; j++)
fprintf(f,"%d",g_BB.SFAOutput[i][jI[NK]);
fprintf(f," ");

%printf(f,"\n");

%close(f);

}
}
/I Saving the robot position

f=fopen("RobotPos.data","w");
for (i=0; i<(g_BB.iCycle); i++)

fprintf(f,"%f ",g_BB.faRobotPos[i][0]);
fprintf(f," %f",g_BB.faRobotPos[i][1]);
fprintf(f,"\n");

}

fclose(f);

/[Saving data of the new algorithm

115



/[Saving the AvgMaps

}

for (k=0; k<g_BB.iCycle;k++)

strcpy(string, "AvgMap");
_itoa(k,Counter,10);
strcat(string,Counter);
strcat(string,".data");
f=fopen(string,"w");

for (i=0;i<g_SickGridSizeX ; i++)

{
for (j=0;j<g_SickGridSizeY; j++)
fprintf(f,"%d " ,g_BB.AvgMap[il[jl[K]);
fprintf(f,"\n");
}
fclose(f);

/

* *% * * *% *kkk *% * *% * *% * *%k%k *

* Name: FuzzyLogicAlgorithm *

* Description: This function is an algorithm basetbe FL theory for fusing the data.  *
kkkkkkkkkkkkkkkkkkkkkkkkhkkhkkhhkkkkkkkkkkkkkkkkkhkhkhkx *****************************/

void FuzzylLogicAlgorithm(int plevel){

float fFalseAreaTotal=0;
float fTrueAreaTotal=0;
float fFalseCOMValue=0;
float fTrueCOMValue=0;
int level=plevel,

FuzzylLogic FL_TT(cf_TT);
FuzzylLogic FL_FF(cf_FF);
FuzzylLogic FL_FT(cf_FT);
FuzzylLogic FL_TF(cf_TF);
FuzzylLogic FL_TRUE(cf_TRUE);
FuzzylLogic FL_FALSE(cf_FALSE);

FL_TT.FLInsCrispVal(g_BB.faTrueFalse[level][1]);$FS_True_True

FL_FF.FLInsCrispVal(g_BB.faTrueFalse[level][2]};3FS_False_False
FL_TF.FLInsCrispVal(g_BB.faTrueFalse[level][3]);3FS_True_False
FL_FT.FLInsCrispVal(g_BB.faTrueFalse[level][4]);3FS_False_True

//************** The R u |es *kkkkkkkkkkkkkkk

/I [FIF,High]=>[False,High]

FL_FF.FL_Crisp2Fuzzy("High")>>FL_FALSE.FLInsFuzzghe("High");

/[fFalseAreaTotal=fFalseAreaTotal+(FL_FALSE.FuzegicGetAraeValue());

fFalseCOMValue=fFalseCOMValue+
FL_FALSE.FuzzylLogicGetAraeValue()*FL_FALSE.FuzaygicGetCenterOfMassCrisp();

I/l [FIF,Avarage]=>[False,Avarage]

FL_FF.FL_Crisp2Fuzzy("Avarage")>>FL_FALSE.FLInsEydame("Avarage");

/[fFalseAreaT otal=fFalseAreaTotal+(FL_FALSE.FuzagicGetAraeValue());

fFalseCOMValue=fFalseCOMValue+
FL_FALSE.FuzzylLogicGetAraeValue()*FL_FALSE.FuzaygicGetCenterOfMassCrisp();

/I [FIF,Low]=>[False,Low]
FL_FF.FL_Crisp2Fuzzy("Low")>>FL_FALSE.FLInsFuzzyhe("Low");
/[fFalseAreaTotal=fFalseAreaTotal+(FL_FALSE.FuzegicGetAraeValue());
fFalseCOMValue=fFalseCOMValue+
FL_FALSE.FuzzylLogicGetAraeValue()*FL_FALSE.FuzaygicGetCenterOfMassCrisp();

116



/I [FIT High]=>[False,Low]

FL_FT.FL_Crisp2Fuzzy("High")>>FL_FALSE.FLInsFuzzgihe("'Low");

/[fFalseAreaT otal=fFalseAreaTotal+(FL_FALSE.FuzagicGetAraeValue());

fralseCOMValue=fFalseCOMValue+
FL_FALSE.FuzzylLogicGetAraeValue()*FL_FALSE.FuzaygicGetCenterOfMassCrisp();

/I [FIT,Avarage]=>[False,Avarage]
FL_FT.FL_Crisp2Fuzzy("Avarage")>>FL_FALSE.FLInskyhame("Avarage");
/[fFalseAreaTotal=fFalseAreaTotal+(FL_FALSE.FuzegicGetAraeValue());
fFalseCOMValue=fFalseCOMValue+
FL_FALSE.FuzzylLogicGetAraeValue()*FL_FALSE.FuzaygicGetCenterOfMassCrisp();

/I [FIT,Low]=>[False,High]

FL_FT.FL_Crisp2Fuzzy('Low")>>FL_FALSE.FLInsFuzzye("High");

/[fFalseAreaT otal=fFalseAreaTotal+(FL_FALSE.FuzagicGetAraeValue());

fFalseCOMValue=fFalseCOMValue+
FL_FALSE.FuzzylLogicGetAraeValue()*FL_FALSE.FuzaygicGetCenterOfMassCrisp();

I [TIT,High]=>[True,High]
FL_TT.FL_Crisp2Fuzzy("High")>>FL_TRUE.FLInsFuzzyhe("High");
/[fTrueAreaTotal=fTrueAreaTotal+(FL_TRUE.FuzzylLo@etAraeValue());
fTrueCOMValue=fTrueCOMValue+
FL_TRUE.FuzzylLogicGetAraeValue()*FL_TRUE.FuzzylioGetCenterOfMassCrisp();

/[ [TIT,Avarage]=>[True,Avarage]
FL_TT.FL_Crisp2Fuzzy("Avarage")>>FL_TRUE.FLInsFyhiame("Avarage");
/[fTrueAreaTotal=fTrueAreaTotal+(FL_TRUE.FuzzyLo@etAraeValue());
fTrueCOMValue=fTrueCOMValue+
FL_TRUE.FuzzyLogicGetAraeValue()*FL_TRUE.FuzzylioGetCenterOfMassCrisp();

/I [T/T,Low]=>[True,Low]
FL_TT.FL_Crisp2Fuzzy("Low")>>FL_TRUE.FLInsFuzzyNaiLow");
/[fTrueAreaTotal=fTrueAreaTotal+(FL_TRUE.FuzzylLo@etAraeValue());
fTrueCOMValue=fTrueCOMValue+
FL_TRUE.FuzzylLogicGetAraeValue()*FL_TRUE.FuzzylioGetCenterOfMassCrisp();

/I [T/F,High]=>[True,Low]
FL_TF.FL_Crisp2Fuzzy("High")>>FL_TRUE.FLInsFuzzyhe("Low");
/[fTrueAreaTotal=fTrueAreaTotal+(FL_TRUE.FuzzylLo@etAraeValue());
fTrueCOMValue=fTrueCOMValue+
FL_TRUE.FuzzyLogicGetAraeValue()*FL_TRUE.FuzzylioGetCenterOfMassCrisp();

/I [T/F,Avarage]=>[True,Avarage]
FL_TF.FL_Crisp2Fuzzy("Avarage")>>FL_TRUE.FLInsFyiame("Avarage");
/[fTrueAreaTotal=fTrueAreaTotal+(FL_TRUE.FuzzylLo@etAraeValue());
fTrueCOMValue=fTrueCOMValue+
FL_TRUE.FuzzylLogicGetAraeValue()*FL_TRUE.FuzzylioGetCenterOfMassCrisp();

/I [T/F,Low]=>[True,High]
FL_TF.FL_Crisp2Fuzzy("Low")>>FL_TRUE.FLInsFuzzyNafiHigh");
/[fTrueAreaTotal=fTrueAreaTotal+(FL_TRUE.FuzzyLo@etAraeValue());
fTrueCOMValue=fTrueCOMValue+
FL_TRUE.FuzzyLogicGetAraeValue()*FL_TRUE.FuzzylioGetCenterOfMassCrisp();

g_BB.fFalseAccuracy[level]=fFalseCOMValue; // Upidg the data at the BB.
g_BB.fTrueAccuracy[level]=fTrueCOMValue; // Updatj the data at the BB.

117



/**************************************************

kkkkkkkkkkkkkkkhkkkhkkkkhkkkhkkkk

* Name: Calculating_FL_TruthTable *
* Description: Calculating the truth table, *

*

* *kk * *% * *kk *% * *kk * *% * /

void Calculating_FL_TruthTable()

{

inti,j,iTempValue;//,iTempTTValue;
char buffer[10];
intiTempTable[128];

float fTrueValue,fFalseValue;

/I This loop calculte the cell number in a binargde
for (i=0;i<pow(2,g_iTotaINumOfLS);i++)

}

_itoa(i,buffer,2);
iTempTable[i]=atoi(buffer);

/I This loop distribute the binary numbers in itogée one '0' and '1".
for (i=0;i<pow(2,g_iTotaINumOfLS);i++)

Y

for (j=1;j<(g_iTotalNumOfLS+1);j++)
{

if((iITempTable[i]%10)==0)
iTempValue=0;
else
iTempValue=1;
g_BB.fTTValue[j][i]=(float)iTempValue;
iTempTable[i]=iTempTable[i}/10;
M for (j=1;j<6;j++)
for (i=0;i<32;i++)

/I Calculating the total values as function of se@sors outputs and the rules
for (i=0;i<pow(2,g_iTotaINumOfLS);i++)

YiI

/liTempTTValue=g_BB.BB_fTTValue[1][i];
fTrueValue=0;
fFalseValue=0;

for (j=1;j<=g_iTotalNumOfLS;j++)

if(g_BB.fTTValue[j][i]==0)
fFalseValue=fFalseValue+g_BB.fFalseAccuracy[j];
else
fTrueValue=fTrueValue+g_BB.fTrueAccuracy]j];
}
if (i==0)
g_BB.fTTValue[O][i]=0;
else if (i==(pow(2,g_iTotalNumOfLS)-1))
g_BB.fTTValue[0][i]=1;
else //(i>0)

if(fTrueValue<fFalseValue)
g_BB.fTTValue[0][i]=0;
else
g_BB.fTTValue[O][i]=1;

}
for (i=0;i<64;i++)

118



/************************************************** kkkkkkkkkkkkkkkhkkkhkkkkhkkkhkkkk

* Name: CalculatingTrueAndFalseValues *

* Description: This function Compare the new ddtéhis level with the integrated data *
* This function is the adaptive part of the systeimd determine the following parameters*
* SFS_True_ False The Local Map Found True But tised map determined False *
* SFS_True_True The Local Map Found True And tteetumap determined True *
* SFS_False_False The Local Map Found False Anduged map determined False *
* SFS_False_True The Local Map Found False Bufuked map determined True *

kkkkkkkkkkkhkkkhkkkkhkkkhkkkkkkkhkkkhkhkkkhkhkkkhkkhkkkkkkkk *****************************/

void CalculatingTrueAndFalseValues(int SFS_Level)

{
unsigned short int i,j;
float fCounterT,fCounterF;
float fLevelCell; // If the value at the BB_iaSemnarray[][][SFS_level] array is true then its valisel
float fFusedCell; // If the value at the BB_iaTamm@rySensorArray array is true then the its vafug i
float fOIdFF,fOIdTT,fOIdTF,fOIdFT;

float SFS_True_ False; // Found True but was False
float SFS_True_True; // Found True And was True.
float SFS_False False; // Found False And wasFals
float SFS_False_True; // Found Fasle but was true

SFS_True_False=0; // The Local Map Found True tBaifused map determined False.
SFS_True_True=0; // The Local Map Found True Aredfused map determined True.
SFS_False_False=0;// The Local Map Found Falsetdadlused map determined False.
SFS_False_True=0; // The Local Map Found Fasletgufused map determined True.

if(g_BB.IAFL_Flag==0) // Regular AFL

{
if (g_BB.faTrueFalseRegular[SFS_Level][1]>=0)
fOldTT=g_BB.faTrueFalseRegular[SFS_Level][1];
if (g_BB.faTrueFalseRegular[SFS_Level][2]>=0)
fOldFF=g_BB.faTrueFalseRegular[SFS_Level][2];
if (g_BB.faTrueFalseRegular[SFS_Level][3]>=0)
fOldTF=g_BB.faTrueFalseRegular[SFS_Level][3];
if (g_BB.faTrueFalseRegular[SFS_Level][4]>=0)
fOldFT=g_BB.faTrueFalseRegular[SFS_Level][4];
}
else
{
if (g_BB.faTrueFalse[SFS_Level][1]>=0)
fOldTT=g_BB.faTrueFalse[SFS_Level][1];
if (g_BB.faTrueFalse[SFS_Level][2]>=0)
fOldFF=g_BB.faTrueFalse[SFS_Level][2];
if (g_BB.faTrueFalse[SFS_Level][3]>=0)
fOldTF=g_BB.faTrueFalse[SFS_Level][3];
if (g_BB.faTrueFalse[SFS_Level][4]>=0)
fOldFT=g_BB.faTrueFalse[SFS_Level][4];
}
for (i=0;i<g_iX_LBM_MapSize;i++)
{
for (j=0;j<g_iY_LBM_MapSize;j++)
{
fLevelCell=0;
fFusedCell=0;
if(g_BB.iaLBMi][j][0]) // Fused Map
fFusedCell=1;

119



if(g_BB.iaLBM[i][j][SFS_Level])
fLevelCell=1;
if(fLevelCell>fFusedCell)// Found True but whalse.
SFS_True_False++;
if((fLevelCell==fFusedCell)&&(fLevelCell==1))// Found True And was True.
SFS_True_True++;
if((fLevelCell==fFusedCell)&&(fLevelCell==0))/Found False And was False.
SFS_False_False++;
if(fLevelCell<fFusedCell)// Found Fasle but wase
SFS_False_True++;
}
}
fCounterT=(SFS_True_True+SFS_False_True);
fCounterF=(SFS_False_False+SFS_True_False);

if (fCounterT>0)
{
SFS_True_True=SFS_True_True/fCounterT,;
SFS_False_True=SFS_False_True/fCounterT;
}

if (fCounterF>0)

SFS False False=SFS_False_False/fCounterF;
SFS True_False=SFS_True_ False/fCounterF;

}
if (fCounterT==0)

SFS_True_True= SFS_False False;
SFS_False_True=1- SFS_False_False;

}
if (fCounterF==0)

SFS False False= SFS_True_True;
SFS True_False=1- SFS True True;

}

/*Explanation about the BB_faTrueFalse[(1+g_Nuntifdtodules)][7] array:
Cell number 0 is for: Free

Cell number 1 is for: TT Value

Cell number 2 is for: FF Value

Cell number 3 is for: TF Value

Cell number 4 is for: FT Value

Cell number 5 is for: TRUE Value

Cell number 6 is for: FALSE Value */

if(g_BB.IAFL_Flag==0) // Regular AFL

{

g_BB.faTrueFalseRegular[SFS_Level][1]=0.5*(SFS €lrtrue+fOIdTT);
g_BB.faTrueFalseRegular[SFS_Level][2]=0.5*(SFS seaFalse+fOIdFF);
g_BB.faTrueFalseRegular[SFS_Level][3]=0.5*(SFS €lrdalse+fOIdTF);
g_BB.faTrueFalseRegular[SFS_Level][4]=0.5*(SFS sEall rue+fOIdFT);

g_BB.fSFA_FL_Regular[g_BB.iCycle][SFS_Level][0]=BB.faTrueFalseRegular[SFS_Level][1]; /TT
g_BB.fSFA_FL_Regular[g_BB.iCycle][SFS_Level][1]-BB.faTrueFalseRegular[SFS_Level][2]; // FF

g_BB.fSFA_FL_Regular[g_BB.iCycle][SFS_Level][2]-BB.faTrueFalseRegular[SFS_Level][3]; // TF
g_BB.fSFA_FL_Regular[g_BB.iCycle][SFS_Level][3]-BB.faTrueFalseRegular[SFS_Level][4]; // FT

}

else

120



{
g_BB.faTrueFalse[SFS_Level][1]=0.5*(SFS_True_Tri@dTT);
g_BB.faTrueFalse[SFS_Level][2]=0.5*(SFS_False_&&i®IdFF);
g_BB.faTrueFalse[SFS_Level][3]=0.5*(SFS_True_Faf€ddTF);
g_BB.faTrueFalse[SFS_Level][4]=0.5*(SFS_False_Ff@ddFT);

g_BB.fSFA_FL[g_BB.iCycle][SFS_Level][0]=g_BB.faTekalse[SFS_Level][1]; /TT
g_BB.fSFA_FL[g_BB.iCycle][SFS_Level][1]=g_BB.faTekralse[SFS_Level][2]; // FF

g_BB.fSFA_FL[g_BB.iCycle][SFS_Level][2]=g_BB.faTelralse[SFS_Level][3]; // TF
g_BB.fSFA_FL[g_BB.iCycle][SFS_Level][3]=g_BB.faTelralse[SFS_Level][4]; // FT

}

121



/**

** PXC_Camera_DIl_Load.h

*%

** Copyright 2001 by Ofir Cohen

** E-mail; oprc@bgumail.bgu.ac.il

**/

#ifndef _ PXC_Camera DIl_Load h
#define _ PXC_Camera DIl Load h

#include <windows.h>
#include <commdlg.h>
#include "ipl.h"

#include "cv.h"
#include "image.h"

#include "pxc.h"

#include "iframe.h"

#include "StaticParameters.h"
#include "ConstantParameters.h"
#include "GlobalParameters.h"
#include "InitiationFile.h"
#include "Vision_Class.h"

#define PIXEL_TYPE PBITS_RGB24

#define PXC_NAME "C:\\PXC2\\bin\\pxc_95.dIl"
#define FRAME_NAME "C:\\PXC2\\bin\\frame_32.dIlI"
#define PXC_NT  "C:\\PXC2\\bin\\pxc2_nt.dll"
extern int videotype;

extern int grab_type;

extern int ImageMaxX,ImageMaxY,WindowX,WindowY;
extern long fgh;

extern FRAME __ PX_FAR *frh;

extern HINSTANCE hLib;

extern PXC pxc;

extern FRAMELIB frame;

extern Vision_Class CAM; // Crearting the CAMERA et
extern BlackBoard g_BB;

/I Fuctions definitions
bool Applnit();
void ImageProcessingAlgol();

#endif

122



/**

** pXC_Camera_DIlI_Load.cpp

*%

** Copyright 2001 by Ofir Cohen

*
** E-mail: oprc@bgumail.bgu.ac.il
*%

**/

#include "Aria.h"

#include <math.h>

#include <time.h>

#include <sys/types.h>

#include <sys/timeb.h>

#include "ipl.h"

#include "pxc.h"

#include "iframe.h"

#include <cvigrfmts.h>

#include "StaticParameters.h"
#include "ConstantParameters.h”
#include "GlobalParameters.h"
#include "PXC_Camera_DIl_Load.h"
#include <windows.h>

#include "Vision_Class.h"

#define PIXEL_TYPE PBITS_RGB24
#define PXC_NAME "pxc_95.dII"
#define FRAME_NAME "frame_32.dII"
#define PXC_NT "pxc_nt.dll"

extern int videotype;

extern int grab_type;

extern int ImageMaxX,

ImageMaxy,

WindowX,

WindowyY;

extern long fgh;

extern FRAME __ PX_FAR *frh;

extern PXC pxc;

extern FRAMELIB frame;

extern ArRobot robot ;

Cimage gray; // OpenCV generating the gary Cimgpe t

/************************************************** kkkkkkkkkkkkkkkhkkkkhkkkkhkkkhkkkk

* Name: ImageProcessingAlgol *
* Description: The function has three steps: *
*1. Capturing the image. *

*2. Image processing algorithm (has two stages). *

* 2.1 Simple Threshold. *

* 2.2 Two level threshold. *

*3. Finding the center of mass (COM) for each otistaand calculate the *

*real distance from the camera. *

* *% * *% * *kk * *% * *kk *% * *kk * *% * /

void ImageProcessingAlgol()

{

gray.Create(768,576,8);
Iplimage *i_gray = gray.Getlmage();

float temp;

123



temp=float(robot.getY());

CAM.iaVision_X[CAM.iVision_CameraAngleCode]=(intgbot.getX()/10);
CAM.iaVision_Y[CAM.iVision_CameraAngleCode]=(intgmp*0.231);
CAM.iaVision_Theta[CAM.iVision_CameraAngleCode]r{j(robot.getTh());//[Red]

pxc.Grab(fgh, frh, (short)grab_type);
Iplimage *i_part=iplCreatelmageHeader(3,0,IPL_DEP3BU,"RGB","RGB",
IPL_DATA_ORDER_PIXEL,IPL_ORIGIN_TL, //top leftrientation
IPL_ALIGN_QWORD,768,576,NULL,NULL,NULL,NULL; // not tiled

int i=CAM.iVision_CameraAngleCode;
i_part->imageData =(char *)frame.FrameBuffer(frh);
iplColorToGray(i_part,i_gray); //convert intoayscale

}
/' *k*k * *% * * *% *kkk *% * *% * *% * *kk *
* Name: Applnit *
* Description: This function initializes and allates the Frame grabber PXC200 *
* *% * *% * *kk * *% * *k*k *% * *k*k * *% * /
//BOOL
bool Applnit()
{
fgh = 0;
frh = OL;
1l
/initialize the library
1l
if (limagenation_OpenLibrary(PXC_NAME,&pxc,sizepKc)))
{
if (limagenation_OpenLibrary(PXC_NT,&pxc,sizeof(p))
{
return false;
}
}

if (limagenation_OpenLibrary(FRAME_NAME,&frame,giaf(frame)))

return false;

}

1
/[allocate any frame grabber
1
fgh = pxc.AllocateFG(-1);
videotype = pxc.VideoType(fgh);
switch(videotype) {
case 0: // no video
case 1: //NTSC
grab_type = 0;
ImageMaxX = 640;
ImageMaxy = 486;
break;
case 2: //CCIR
grab_type = 0;
ImageMaxX = 768;
ImageMaxyY = 576;
break;

}
if(GetSystemMetrics(SM_CXSCREEN) <= ImageMaxX) {

124



ImageMaxX/=2;
ImageMaxY/=2;

}

pxc.SetWidth(fgh,(short)imageMaxX);
pxc.SetHeight(fgh,(short)ImageMaxY);
pxc.SetLeft(fgh,0);

pxc.SetTop(fgh,0);
pxc.SetXResolution(fgh,(short)imageMaxX);
pxc.SetYResolution(fgh,(short)imageMaxY);

1
/lallocate a frame buffer
1
frh = pxc.AllocateBuffer((short)lmageMaxX, (shdrfjageMaxY, PIXEL_TYPE);
return true;

125



/**

** \/ision_Class.h

*%

** Copyright 2001 by Ofir Cohen

*

** E-mail: oprc@bgumail.bgu.ac.il

**/

#ifndef _ Vision_Class_h
#define _ Vision_Class_h_
#include <time.h>

#include <conio.h>

#include <iostream.h>
#include <string.h>

#include <fstream.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

#include "ConstantParameters.h"
#include "GlobalParameters.h"
#include "InitiationFile.h"

extern PXC pxc;

extern FRAMELIB frame;

extern long fgh;

extern FRAME _ PX_FAR *frh;

extern int videotype;

extern int grab_type;

extern int ImageMaxX,
ImageMaxy,
WindowX,
WindowyY;

extern BlackBoard g_BB;
void ImageProcessingAlgo3(int);
void ImageProcessingAlgo4(int);

class Vision_Class
{
public:
void Vision_GridMapCellConversion();
int iVision_CameraAngleCode;
int iaVision_X[g_usNumOfCamPos+1]; // Robot X Ltica
int iaVision_Y[g_usNumOfCamPos+1]; // Robot Y Itica
int iaVision_Theta[g_usNumOfCamPos+1]; // Robotfhangle [Deg or Rad]
int iaVision_Phi[g_usNumOfCamPos+1]; // CameralaijiBeg] (Cell number 0 is not in use)
int
iaVision_NumberOfObstacle[g_usNumOfCamPos+1][g_aldumOfCamLS]; // (Cell number O is not in use)
int
iaVision_XY_CAM_Position[g_usNumOfCamPos+1][g_iMauhOfObstacle][2*g_iTotaINumOfCamLS];
/I X and Y obstacle location for each camera pasifjg_usNumOfCamPos+1] - Number of camera pasitid0] -
Number of obstacles (10 is MAX),[2] - Two coordiea for Y and X obstacle's COM
int iaVision_LocalGridMap[g_CamGridSizeX][g_Cam@8izeY][g_iTotalNumOfCamLS];
Vision_Class();
~Vision_Class();
¥
#endif

126



/**

** Vision_Class.cpp

*%

** Copyright 2001 by Ofir Cohen

*

** E-mail: oprc@bgumail.bgu.ac.il

**/

#include <math.h>
#include "Vision_Class.h"
#include "PXC_Camera_DIl_Load.h"

extern PXC pxc;

extern FRAMELIB frame;
extern long fgh;

extern FRAME _ PX_FAR *frh;
extern int videotype;

extern int grab_type;

extern int ImageMaxX,
ImageMaxy,

WindowX,

WindowyY;

extern Clmage gray;

Cimage bwi;
Cimage bwg;
Cimage bw3;
Clmage Temp;

/ *k%k * *% * * *% *kkk *% * *% * *% * *%k%k *

* Name: Vision_Class::Vision_Class *
* Description: Default Constructor *
khkkkkkkkkkkkkkkkkkkkkkkhkkhkkhhkkkkkkkkkkkkkkkkkhkhkkx *****************************/
Vision_Class::Vision_Class()
inti,j,k;

iVision_CameraAngleCode=2;

for (i=0;i<=g_usNumOfCamPos;i++)

{
iaVision_X[i]=0; // Robot X Location
iaVision_YT[i]=0; // Robot Y location
iaVision_Theta[i]=0; // Robot Theta angle [DegRuad]
iaVision_Phi[i]=0; // Camera angle [Deg] (Cellmber 0 is not in use)
iaVision_NumberOfObstacle[i][0]=0; // (Cell numb@ is not in use)
iaVision_NumberOfObstacle[i][1]=0; // (Cell numb@ is not in use)
}
for (i=0;i<=g_usNumOfCamPos;i++)
{
for (j=0;j<=g_iMaxNumOfObstacle;j++)
for (k=0; k<2*g_iTotalNumOfCamLS; k++)
{
iaVision_XY_CAM_Position[i][j][k]=0;
}
}
}

127



for (i=0; i<g_CamGridSizeY; i++)
for (j=0; j<g_CamGridSizeX; j++)

for(k=0; k<g_iTotaINumOfCamLS; k++)
iaVision_LocalGridMapli][jl[k]=0;

/************************************************** kkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkx
* Name: Vision_Class::~Vision_Class *

* Description: Default Destructor *

* *% * *% * *kk * *% * *kk *% * *kk * *% * /

Vision_Class::~Vision_Class(){;}

/ *k%k * *% * * *% *kkk *% * *% * *% * *%k%k *

* Name: ImageProcessingAlgo3  *

* Description: The heart of the image processirggetwe do the Erode Dilate  *

* for each photo according to the algorithm numb®g find the center of mass for each *

* algorithm and finds the location of the algorittamcording to the calibration process made earlier*

kkkkkkkkkkkkkkkkkkkkkkkkhkkhkkhhkkkkkkkkkkkkkkkkkhkhkhkx *****************************/
void ImageProcessingAlgo3(int Alg_Code)
{
double fCenterOfMassRow; /lcenter of mass foolastacle (row)
double fCenterOfMassCol; /lcenter of mass foobstacle (Col)
long double Xp5=-6.17e-12; /[calibration paramete
long double Xp4=1.59e-8; /lcalibration parameter
double Xp3=-1.54e-5; /[calibration parameter
double Xp2=0.007846; /[calibration parameter
double Xp1=-2.3348; /lcalibration parameter
double Xp0=406.14; /lcalibration parameter
double fTanAlfa;
double fDisX; /lobstacle distance from caméa@ipin X axis
float fDisY; /lobstacle distance from cameragpiin Y axis
float fR; /lobstacle distance from camera pivo
double fRealAngle; /langle between obstacle
int AngleCode;
float CameraAngle;
int ObsX;
int ObsY;

int iObsArea_Min[3]={15000,20000,20000};
int iObsArea_Max[3]={47000,33000,33000};
int iDecoyArea_Min[3]={0,600,8000};

int iDecoyArea_Max[3]={0,1200,20000};

CvMoments moments;

double mOO;

CvSeq *contour = NULL;

CvSeq* copycontour;

CvMemStorage *storage =cvCreateMemStorage(0);
int counter;// How many obstacles for each picture
counter=0;

int iObsTH_Min,iObsTH_Max;
if(Alg_Code==0)

bwl.Create(768,576,8);

128



Iplimage *i_gray = gray.Getlmage();

Iplimage *i_bw1 = bwl.Getlmage();

ipIThreshold(i_gray, i_bw1, 120);

cvFindContours(i_bwl1, storage, &contour, sizeef{Gntour),
CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);

}
if(Alg_Code==1)

iObsTH_Min=120;

bw2.Create(768,576,8);

Temp.Create(768,576,8);

Iplimage *i_Temp = Temp.Getimage();

Iplimage *i_gray = gray.Getlmage();

Iplimage *i_bw?2 = bw2.Getimage();

ipIThreshold(i_gray, i_bw2, iObsTH_Min);
iplErode(i_bw2, i_bw2, 3); // Clear the obstabtader
/Ibw2.Save("d:/users/oren/data/algl/bw2erodel pmp
/lipDilate(i_bw2, i_bw2,g_BB.Dilate2);

ipIDilate(i_bw2, i_bw2,5);// Make the object tiar
/liplErode(i_bw?2, i_bw?2, g_BB.Erode2); // Makesthbject
cvFindContours(i_bwz2, storage, &contour, sizeef{Gntour),
CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);

if(Alg_Code==2)
{

iObsTH_Min=120;

/iObsTH_Min=g_BB.iTresholdValue3_Min;

/iObsTH_Max=g_BB.iTresholdValue3_Max;

bw3.Create(768,576,8);

Temp.Create(768,576,8);

Iplimage *i_gray = gray.Getlmage();

Iplimage *i_bw3 = bw3.Getlmage();

ipIThreshold(i_gray, i_bw3, iObsTH_Min);

iplErode(i_bwa3, i_bw3, 3); // Clear the obstalbteder

ipIDilate(i_bw3, i_bw3, 4); // Make the objetigaker

cvFindContours(i_bw3, storage, &contour, sizeef{Gntour),
CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);

}

if (CAM.iVision_CameraAngleCode==1)

{
AngleCode=4;
CameraAngle=(float)(50*g_pi/180);

}

else

{
AngleCode=CAM.iVision_CameraAngleCode-1;
CameraAngle=(float)((AngleCode*33.4-83.5)*g_pit)8

}

/I Stage 3 - find center of mass for each obsticthe image, and its real distance from the ttobo
double ContourArea;
if (contour)
{15
for(copycontour=contour; copycontour!=0; copyemmtcopycontour->h_next)
{116
cvContourArea(copycontour, &ContourArea);

129



ContourArea=ContourArea*(-1);
//IChecking if this is an obstacle or decoy

[*if(ContourArea>iObsArea_Min[Alg_Code] &&
ContourArea<iObsArea_Max[Alg_Code])
iObs_Flag=1;

if(Alg_Code!=0 && ContourArea>iDecoyArea_ Min[AlgCode] &&
ContourArea<iDecoyArea_Max[Alg_Code])
iDecoy_Flag=1;
if (iObs_Flag==1 || iDecoy_Flag==1)
*/

if (ContourArea>iObsArea_Min[Alg_Code] &&
ContourArea<iObsArea_Max[Alg_Code] ||
(Alg_Code!=0 && ContourArea>iDecoyArea_Min[Algode] &&
ContourArea<iDecoyArea_Max[Alg_Code]) )
{7
cvContourMoments(copycontour, &moments);
mO0=cvGetSpatialMoment(&moments,0,0);
fCenterOfMassCol=(cvGetSpatialMoment(&momet®)/m00)*(-1);
fCenterOfMassRow=(cvGetSpatialMoment(&mome@t$)/m00)*(-1);
/ calculating X and Y distance relative to fieture axis
if
(!((fCenterOfMassRow<50)||(fCenterOfMassRow>56)gaterOfMassCol<10)||(fCenterOfMassCol>758)))
{18
counter++;
fTanAlfa= (fCenterOfMassCol-385)/(fCenterOf\&w+117);
fDisX=Xp5*pow(fCenterOfMassRow, 5);
fDisX=fDisX+Xp4*pow(fCenterOfMassRow,4);
fDisX=fDisX+Xp3*pow(fCenterOfMassRow,3);
fDisX=fDisX+Xp2*pow(fCenterOfMassRow,?2);
fDisX=fDisX+ Xpl*fCenterOfMassRow;
fDisX=fDisX+XpO0;
fDisY = float(60.459*fTanAlfa+0.2418);
fR=float(pow(fDisX,2)+pow(fDisY,2));
fR=(float)sqrt(fR);
fRealAngle=float(atan(fDisY/fDisX)); //[Rad]

ObsX=(int)(cos(fRealAngle+CameraAngle)*fR);
ObsY=(int)(sin(fRealAngle+CameraAngle)*fR);
CAM.iaVision_XY_CAM_Position[AngleCode][counter][l_Code*2]=0ObsX;

CAM.iaVision_XY_CAM_Position[AngleCode][counter][l§_Code*2+1]=0bsY;

I8
WI7
Y 6 end for
YI'5 end if
CAM.iaVision_NumberOfObstacle[AngleCode][Alg_Csdcounter;
counter=0;

130



/************************************************** kkkkkhkkkkkkkkkkhkkkkhkkkkhkkkhkkkk

* Name: ImageProcessingAlgo4  *
* Description: This function transform the maps dmilt for each obstacle a circle around it.

* *% * *% * *kk * *% * *kk *% * *kk * *% * /

void ImageProcessingAlgo4(int Alg_Code)

{
double Thetal; /I Vehicle Old Theta Position
double Theta2; /I Vehicle New Theta Position
double DeltaX;
double DeltaY;
double DeltaTheta;

double X1_obj; /I Rotation of the object frond gdosition to New position
double Y1_obj; /I Rotation of the object frond gdosition to New position
double X12; /I Rotation of the vehicle frohd position to new position
double Y12; /I Rotation of the vehicle frohd position to new position
double Xm1; /I Object Old X Position (Relatito the OLD vehicle)
double Ym1; /I Object Old Y Position (Relatito the OLD vehicle)
double Xm2; I/l Object new X Position (Relativethe NEW vehicle)
double Ym2; I/l Object new Y Position (Relativethe NEW vehicle)

int ObstcaleLocIinMapX;

int ObstcaleLocIinMapY;

int i,j, Theta,k;

double phi,xTag,yTag,x0,y0;

int x,y,Last; /I projection of range 'r' on Xchl axis

if (g_BB.iCycle%2==0)
Last=4;

else
Last=1;

for (i=0; i<g_CamGridSizeX ; i++)

for (j=0; j<g_CamGridSizeY; j++)
CAM.iaVision_LocalGridMapli][j][Alg_Code]=0;
}

for (i=1; i<=g_usNumOfCamPos; i++)
{12
if(CAM.iaVision_NumberOfObstacle[i][Alg_Code]!=0)
{113
for (j=1; j<=CAM.iaVision_NumberOfObstacle[i][&4l_Code]; j++)
{14
Xml1l=CAM.iaVision_XY_CAM_Position[i][j][Alg_Codé&2];
Yml1l=CAM.iaVision_XY_CAM_Position[i][j][Alg_Cod&2+1];
Thetal=CAM.iaVision_Theta[i]*g_pi/180;
Theta2=CAM.iaVision_Theta[Last]*g_pi/180;
DeltaX=CAM.iaVision_X[Last]-CAM.iaVision_X]i];
Deltay=CAM.iaVision_Y[Last]-CAM.iaVision_Y]i];
if (fabs(Theta2-Thetal)<g_pi)
DeltaTheta=Theta2-Thetal,;
else

if(Theta2>Thetal)

DeltaTheta=(Theta2-Thetal)-2*g_pi;
else

131



DeltaTheta=2*g_pi-(Theta2-Thetal);

}
X1 _obj=Xml*cos(DeltaTheta)+Ym1*sin(DeltaTheta);
Y1 _obj=-Xml*sin(DeltaTheta)+Ym1l*cos(DeltaTheta)
X12=DeltaX*cos(DeltaTheta)+DeltaY*sin(DeltaThgt
Y12=-DeltaX*sin(DeltaTheta)+DeltaY*cos(DeltaTtag
Xm2=X1_obj-X12;
Ym2=Y1_obj-Y12;
CAM.iaVision_XY_CAM_Position[i][j][Alg_Code*2]Xint)Xm2;
CAM.iaVision_XY_CAM_Position[i][j][Alg_Code*2+]=(int)Y m2;

I building the map using the array iaVision_XY_CARNosition

ObstcaleLocinMapX=

(int)(CAM.iaVision_XY_CAM_Position[i][j][Alg_Code*2);

ObstcaleLocinMapY=

((int)(CAM.iaVision_XY_CAM_Position[i][j][Alg_Code*?2+1]+

LBM_cm_SizeY/2));

for (k=0 ;k<15;k=k+2)//k->>from O to obstacladios
{
for (Theta=0;Theta<360;Theta=Theta+30)
{
phi=g_pi/180*Theta;
xTag=(double)k*cos(phi);
yTag=(double)k*sin(phi);
x0=xTag+(double)ObstcaleLoclnMapX;
yO=yTag+(double)ObstcaleLocIinMapY;
x=(int)(x0/(double)g_CamCellSize);
y=(int)(y0/(double)g_CamCellSize);

if (x>=0)&&(x<g_CamGridSizeX)&&(y>0)&&(y<=g_CanGridSizeY))

{
[%if (Alg_Code==2)
CAM.iaVision_LocalGridMap[x][g_CamGridSizeY-
yl[Alg_Code]=0; //[CAM3=Empty
else
CAM.iaVision_LocalGridMap[x][g_CamGridSizeY-
y][Alg_Code]=1;
*/
/ffinding how many times each cell is sampled
CAM.iaVision_LocalGridMap[x][g_CamGridSizeY{Alg_Code]++;
/I[CAM.iaVision_LocalGridMap[x][g_CamGridSizeYjAlg_Code]=1;

}
Ylend for (theta)
Ylend for (k)
}I4 j - iaVision_NumberOfObstacle
Y13 if iaVision_NumberOfObstacle>0
12 i - g_usNumOfCamPos

CAM.iaVision_X[0]=CAM.iaVision_X[Last];
CAM.iaVision_Y[0]=CAM.iaVision_Y[Last];
CAM.iaVision_Theta[0]=CAM.iaVision_Theta[Last];

Y

132



/************************************************** kkkkkkkkkkkkkkkhkkkhkkkkhkkkhkkkk

* Name: Vision_Class::Vision_GridMapCellConversion *
* Description: This function convert the maps iatone grid cell size *
* *% * *% * *kk * *% * *k*k *% * *k*k * *% * /

void Vision_Class::Vision_GridMapCellConversion()

{

inti, j, kK, m, n;
int iResParam;

g_BB.iLBM_X_Old=g_BB.iLBM_X_New;
g_BB.iLBM_Y_Old=g_BB.iLBM_Y_New;

g_BB.iLBM_X_ New=CAM.iaVision_X[0];
g_BB.iLBM_Y_New=CAM.iaVision_Y[0];

g_BB.iPPGM_X=CAM.iaVision_X[0]; // Saving the X acdinate for the PPGM [cm]
g_BB.iPPGM_Y=CAM.iaVision_Y[0]; // Saving the Y eodinate for the PPGM
g_BB.iPPGM_Theta=CAM.iaVision_Theta [0]; // Savitige Theta coardinate for teh PPGM

iResParam= (int)((float)g_LBMCellSize/(float)g_CamilSize);
for (k=0; k<g_iTotaINumOfCamLS; k++)
{ g_BB.bLGM_NewDataFlag[k+1+g_iTotaINumOfUsLS+g_tRINumOfSIiLS]=1; // turn the flag
" for (i=0; i<g_CamGridSizeX; i++)
{ for (j=0; j<g_CamGridSizeY; j++)

for (m=0; m<iResParam; m++)

{
for (n=0; n<iResParam; n++)
g_BB.iaLBM][(i*iResParam+m)][(j*iResParam+n)][k+1+grotalNumOfUsLS+g_iTotalNumOfSiLS]=CA
M.iaVision_LocalGridMapl[i][jl[K];

}

}
MYlend for (k - g_iTotaINumOfCamLS)
for (i=0;i<=g_usNumOfCamPos;i++)

if (I>0){
CAM.iaVision_X[i]=0; // Robot X Location
CAM.iaVision_Y[i]=0; // Robot Y location
CAM.iaVision_Theta[i]=0; // Robot Theta angled® or Rad]

}

CAM.iaVision_Phi[i]=0; // Camera angle [Deg] (Caumber 0 is not in use)

for (k=0;k<g_iTotaINumOfCamLS;k++){
CAM.iaVision_NumberOfObstacle[i][k]=0; // (Catlumber O is not in use)
for (j=0;j<=g_iMaxNumOfObstacle;j++)

CAM.iaVision_XY_CAM_Position[i][j][k]=0;

}

for(i= 0; i <g_CamGridSizeX ; i++ ){
for(j = 0; j < g_CamGridSizeY; j++ ){
CAM.iaVision_LocalGridMapli][j][0]=0;
CAM.iaVision_LocalGridMapli][j][1]=0;

133



/**

** UltraSonic_Class.h

*%

** Copyright 2001 by Ofir Cohen

*

** E-mail: oprc@bgumail.bgu.ac.il

**/

#ifndef __ UltraSonic_Class_h
#define __ UltraSonic_Class h

#include <math.h>

#include "ConstantParameters.h"
#include "GlobalParameters.h"
#include "InitiationFile.h"

extern BlackBoard g_BB;

class UltraSonic_Class

{
public:

intiUS_X; // Robot X Location

intiUS_Y; // Robot Y location

int iUS_Theta; // Robot Theta angle [Deg or Rad]

int sonarNum[6];//

/[This array represents Six local physical mapb4fused LGMs.
/lLevel 0: Sensor Num 2

/lLevel 1: Sensor Num 3

/lLevel 2: Sensor Num 4

/lLevel 3: Sensor Num 5

/[Level 4: Sensor Num 6

/[Level 5: Sensor Num 7

/[Level 6: Fusion Algorithm AND

/[Level 7: Miguel Ribo and Axel Pinz, 2001, A coanjson of three uncertainty
/I calculi for building sonar based occupanaggr

/I Robotics and Automation systems 35: 201-209

/ILevel 8: Fifith LS all zeros or all ones.

unsigned short usaUS_PhysicalSensor[g_USGridSjgeXSGridSizeY][6+g_iTotaINumOfUsLS+1];
unsigned short NewusaUS_PhysicalSensor[g_USGedJig USGridSizeY][6+g_iTotaINumOfUsLS+1];
intiaUS_Range[6]; //sensor data

float faUS_SonarLoc[6][3]; //Locataion of each aofrom the center of the camera
/IRow O : X;
/IRow 1:Y;
/IRow 2 : Theta;

intiaUS_NumCellCccupy]6];
intiaUS_NumCellEmpty([6];
void US_ReadDataFromUS();
void US_SFA LogicalOR();
void US_SFA_ProbabilisticApproach();
void US_GridMapCellConversion();
UltraSonic_Class(); // Default constructor
~UltraSonic_Class(); // Default distructor
¥
#endif

134



/**

** UltraSonic_Class.cpp

*%

** Copyright 2001 by Ofir Cohen

*

** E-mail: oprc@bgumail.bgu.ac.il

**/

#include "Aria.h"

#include <math.h>

#include "ConstantParameters.h"
#include "GlobalParameters.h"
#include "InitiationFile.h"
#include "UltraSonic_Class.h"

extern UltraSonic_Class US;
extern ArRobot robot ;

/ *k%k * *% * * *% *kkk *% *

* Name: US_ReadDataFromUs  *
* Description: This function reads the data forra gonar
kkkkkkkkkkkkkkkkkkkkkkkkhkkhkhkhhkkkkkkkkkkkkkkkkkhkhkkx
void UltraSonic_Class::US_ReadDataFromUS(){
int i,j, Theta,k;
double phi,xTag,yTag,x0,y0;
int x,y; // projection of range 'r' on X and Y axi
static iCycle;
iCycle++;
FILE *f;
char fname[60],cLocNum([10];

for (k=0; k<8; k++)//Initialzaing the maps

*****************************/

{
for(i=0; i<g_USGridSizeX; i++)
{
for (j=0; j<g_USGridSizeY; j++)
usaUS_PhysicalSensorfi][j][k]=500;
I usaUS_PhysicalSensorf[i][j][K]=2;
}
}

iUS_X=(int)(robot.getX()*0.1);

iUS_Y=(int)(robot.getY()*0.231); // relative traftsmation based on the center of mass point

g_BB.iPPGM_X=(int)(robot.getX()*0.1); // cm
g_BB.iIPPGM_Y=(int)(robot.getY()*0.231);
g_BB.iPPGM_Theta=(int)robot.getTh();

printf("Start reading sonar\n");
for (i=0;i<6; i++)

{

iaUS_Range(i]=(int)(0.1*robot.getSonarRange(sbdham[i]));// Converting to [cm]

printf("Sonar %d Range = %d \n",i, iaUS_Raiige[

x=0;

y=0;

phi=0;

int flag=0;

/I Define the 'steps' fo range chacking

135



for (k=1 ;k<=(iaUS_Range[i])+10;k++)

for (Theta=-5 ;Theta<=5;Theta++)

{
phi=(g_pi/180*(Theta+faUS_SonarLoc[i][2]));

xTag=k*cos(phi)/*-k*sin(phi)*/;
yTag=/*k*cos(phi)+*/k*sin(phi);

x0=xTag+faUS_SonarLocfi][O];
yO=yTag+faUS_SonarLocl[i][1];

x=(int)(x0/g_USCellSize);

if((Theta+faUS_SonarLoc][i][2])>0)
y=(int)(ceil((y0/g_USCellSize)+(0.5*g_USGrid®iY)))-1;
else
y=(int)(floor((y0/g_USCellSize)+(0.5*g_USGrid®Y)));

if (x>=0) && (x<g_USGridSizeX) &&
(y>=0) && (y<g_USGridSizeY))

{
if (k<=iaUS_Range[i])
{
if (usaUS_PhysicalSensor[x][y][i]!'=500)
if (usaUS_PhysicalSensor[x][y][i]>=1)
usaUS_PhysicalSensor[x][y][i]--;
else
usaUS_PhysicalSensor[x][y][i]=0;
else
usaUS_PhysicalSensor[X][y][i]=0;
YIif smaller then range
else
{
/lusaUS_PhysicalSensor[X][y][i]=1;
if (usaUS_ PhysicalSensor[x][y][i]==500)
usaUS_PhysicalSensor[X][y][i]=1;
else
{
usaUS_PhysicalSensor[X][y][i]++;
[lprintf("%d\n",(int)JusaUS_ PhysicalSensofA[i]);
}
Ylielse
Miif
Yifor k
Mifor i
}

136



/************************************************** kkkkkkkkkkkkkkkhkkkhkkkkhkkkhkkkk

* Name: UltraSonic_Class::US_SFA_LogicalOR *
* Description: This function fuse the data betwéles physical US sensors *
* based on the OR method *

* *% * *% * *kk * *% * *kk *% * *kk * *% * /

void UltraSonic_Class::US_SFA_LogicalOR()
{

/llevel 6

inti, j, k;// temp;
unsigned short max;

for(i=0; i<g_USGridSizeX; i++)

{
for (j:O; j<g_USGridSizeY; j++)

max=0;
for (k=0; k<6; k++)
{
lprintf("%d",(int)JusaUS_ PhysicalSensor[i][j])k
if (usaUS_PhysicalSensor[i][j][k]>max &&
usaUS_PhysicalSensorf[i][j][K]!'=500)
max=usaUS_PhysicalSensor]i][j][K];

Yifor k
if (max!=0)
usaUS_PhysicalSensor|i][j][6]=max;
else
usaUS_PhysicalSensor]i][j][6]=0;

Ml
Yl
}

/************************************************** kkkkkkkkkkkkkkkhkkkkhkkhkhkkkhkkkk

* Name: UltraSonic_Class::US_SFA_ProbabilisticApgob  *

* Description: This function fuse the data betw#es physical US sensors *
* based on the algorithm which is based on the pap®liguel Ribo and *
* Axel Pinz, 2001, *

* A comparison of three uncertainty calculi for kiimg sonar based  *

* occupancy grids algorithms, Robotics and Autooraystems 35; 201-209  *

*% *% *kk *% * *kk *% *kk * *% * /

void UltraSonic_Class::US_SFA_ProbabilisticAppro@ch

lNevel 7
/[Cell values: Unknown=500; Occupied=1; Empty=0;

/10 |500(1|

|| ====================
/' 01010 [O]
/R

/I 500]]0 (5001
/R

inti, j, k;
unsigned short Templ, Temp2;

for(i=0; i<g_USGridSizeX; i++)

137



for (j=0; j<g_USGridSizeY; j++)
usaUS_PhysicalSensor[i][jl[7]=usaUS_Physical8€ii§][0];
}

/INew Probablistic Approach

for(i=0; i<g_USGridSizeX; i++)

{
for (j=0; j<g_USGridSizeY; j++)
usaUS_PhysicalSensorl[i][j][7]=usaUS_Physical 8€il§][O];
}
for (k=1; k<6; k++)
{

for (i=0; i<g_USGridSizeX; i++)
{
for (j=0; j<g_USGridSizeY; j++)

if ((usaUS_PhysicalSensor]i][j][7]==0)||(usaUhysicalSensor[i][j][k]==0))
usaUS_PhysicalSensor]i][j][7]=0;
else if

((usaUS_PhysicalSensor[i][j][7]==500)&&(usaUS_PivgdSensor|i][j][k]==2))
usaUS_PhysicalSensor]i][j][7]=3;
else
{
Templ=usaUS_PhysicalSensor[i][j][7];
Temp2=usaUS_PhysicalSensor[i][j][K];
if (Temp1==500 && Temp2!=500)
usaUS_PhysicalSensor[i][j][7]=Temp2;
if (Temp1!=500 && Temp2==500)
usaUS_PhysicalSensor[i][j][7]=Temp1;
if (Temp1!=500 && Temp2!=500)
if (Templ>Temp2)
usaUS_PhysicalSensor[i][j][7]=Temp1;
else
usaUS_PhysicalSensor[i][j][7]=Temp2;

Yifor
Mifor i
Yifor k

/************************************************** kkkkkkkkkkkkkkkhkkkkhkkkkhkkkhkkkk

* Name: UltraSonic_Class::US_GridMapCellConversion *
* Description: This function convert cell size frdds to LBM *

* *% * *% * *kk * *% * *kk *% * *kk * *% * /

void UltraSonic_Class::US_GridMapCellConversion()
{

inti, j, kK, m, n;
int iResParam;

g_BB.iLBM_X_Old=g_BB.iLBM_X_New;

g_BB.iLBM_Y_OIld=g_BB.iLBM_Y_New;
g_BB.iLBM_Theta_Old=g_BB.iLBM_Theta_New;

138



g_BB.iLBM_X_New=US.iUS_X;
g_BB.iLBM_Y_New=US.iUS_Y;
g_BB.ILBM_Theta_New=US.iUS_Theta;

/I replacing cells marked as unknown (2) to empdy (
/I and cells maeked as conflit (3) to occupy (1)

for (k=0; k<=(g_iTotaINumOfUsLS-1); k++)

{
for (i=0; i<g_USGridSizeX; i++)
{
for (j=0; j<g_USGridSizeY; j++)
if (usaUS_PhysicalSensorf[i][j][k+6]==500)
usaUS_PhysicalSensor|i][j][k+6]=0;
llelse if (usaUS_PhysicalSensorl[i][j][k+7]==3)
I usaUS_PhysicalSensor[i][j][k+7]=1;
}
}
}

/I cell conversion procedure
iResParam= g_USCellSize/g_LBMCellSize;

for (k=0; k<g_iTotaINumOfUsLS; k++)

{
g_BB.bLGM_NewDataFlag[k+1]=1; // turn the flag on

for (i=0; i<g_USGridSizeX; i++)
{
for (j=0; j<g_USGridSizeY; j++)

for (m=0; m<iResParam; m++)
{

for (n=0; n<iResParam; n++)

g_BB.iaLBM](i*iResParam+m)][(j*iResParam+n)][k+1{rsaUS_PhysicalSensor]i][j][k+6];
}

/************************************************** kkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkx
* Name: UltraSonic_Class::UltraSonic_Class *
* Description: Default Constructor.The locationtbé US physical sensors *

* relative to the center of mass is defined  *

* *% * *% * *kk * *% * *kk *% * *kk * *% * /

UltraSonic_Class::UltraSonic_Class()

{

sonarNum[0] = 1;
sonarNum[1] = 2;
sonarNum([2] = 3;
sonarNum|[3] = 4;
sonarNum[4] = 5;
sonarNum[5] = 6;
faUS_SonarLoc[0][0]=-54.5;// X Location

139



faUS_SonarLoc[1][0]=-51;// X Location
faUS_SonarLoc[2][0]=-49;// X Location
faUS_SonarLoc[3][0]=-49;// X Location
faUS_SonarlLoc[4][0]=-51;// X Location
faUS_SonarlLoc[5][0]=-54.5;// X Location

faUS_SonarlLoc[0][1]=11.5;// Y Location
faUS_SonarlLoc[1][1]=8.0;// Y Location
faUS_SonarlLoc[2][1]=2.5;// Y Location
faUS_SonarLoc[3][1]=-2.5;// Y Location
faUS_SonarlLoc[4][1]=-8.0;// Y Location
faUS_SonarlLoc[5][1]=-11.5;// Y Location

faUS_SonarlLoc[0][2]=50;// Theta Location
faUS_SonarlLoc[1][2]=30;// Theta Location
faUS_SonarlLoc[2][2]=10;// Theta Location
faUS_SonarLoc[3][2]=-10;// Theta Location
faUS_SonarlLoc[4][2]=-30;// Theta Location
faUS_SonarLoc[5][2]=-50;// Theta Location

}

/************************************************** kkkkkkkkkkkkkkkhkhkkkhkkkkhkkkhkkkk

* Name: UltraSonic_Class::~UltraSonic_Class *

* Description: Default Destructor  *
kkkkkkkkkkkkkkkkkkkkkkkkhkkhkhhhkkkkkkkkkkkkkkkkkkhkhkx *****************************/

UltraSonic_Class::~UltraSonic_Class()

{
}

140



/**

** FuzzyLogic_Algorithm.h

*%

** Copyright 2001 by Ofir Cohen

*

** E-mail: oprc@bgumail.bgu.ac.il

**/

#ifndef __Fuzzylogic_Algorithm_h__
#define ___Fuzzylogic_Algorithm_h__

#include <windows.h>

#include <math.h>

#include "ConstantParameters.h”
#include "GlobalParameters.h"
#include "InitiationFile.h"

/I Constant parameters

const double cf TT[] ={-0.0001,0,0.3,0.45, 0.4®0.55,0.6, 0.55,0.7,1,1.0001},
const double cf_FF[] ={-0.0001,0,0.3,0.45, 0.4%)0.55,0.6, 0.55,0.7,1,1.0001},
const double cf TF[] ={-0.0001,0,0.3,0.45, 0.4%0.55,0.6, 0.55,0.7,1,1.0001};
const double cf FTJ] ={-0.0001,0,0.3,0.45, 0.4%0.55,0.6, 0.55,0.7,1,1.0001};
const double cf TRUE]] ={-0.0001,0,0.3,0.45, 0.4%0.55,0.6, 0.55,0.7,1,1.0001};
const double cf_FALSE]] ={-0.0001,0,0.3,0.45, 0.45,0.55,0.6, 0.55,0.7,1,1.0001};

class FuzzylLogic
{
private:
const double *Data; // Const Data which contdirparametrs for each one of the three
I/l Trapezoids "Low","Avarage","High"
char* FuzzyName; // The name of the traoezoid \aatwo reafer to, can be
/l one of :"Low","Avarage","High"
float CrispValue; //The crisp value we get frore firograme
float FuzzyValue; //The fuzzy value we calculayethe 'FL_Crisp2Fuzzy' function
float CenterOfMassCrisp; //The COM of the Crispueawhich is calculated by the
/I operator '>>'
float CenterOfMassFuzzy;
float Area;

public:
FuzzyLogic ();
FuzzylLogic &FLInsCrispVal(float);

friend FuzzylLogic operator>>(/*const*/ FuzzyLogic&uzzyl ogic&);
friend FuzzylLogic operator+(const FuzzylLogic&,coRezzylLogic&);
friend FuzzylLogic operator*(const FuzzylLogic&,coRsizzyLogic&);
FuzzylLogic FL_Crisp2Fuzzy(char®);

FuzzylLogic &FLInsFuzzyName(char*);

FuzzyLogic (const double *);

float FuzzyLogicGetCrispValue();

float FuzzyLogicGetFuzzyValue();

float FuzzyLogicGetCenterOfMassCrisp();

float FuzzyLogicGetAraeValue();

~FuzzyLogic ();

b
#endif

141



/**

** FuzzylLogic_Algorithm.cpp

*%

** Copyright 2001 by Ofir Cohen

*

** E-mail: oprc@bgumail.bgu.ac.il

**/

#include <windows.h>

#include <math.h>

#include "ConstantParameters.h"
#include "GlobalParameters.h"
#include "InitiationFile.h"

#include "FuzzylLogic_Algorithm.h"

/ *k%k * *% * * *% *kkk *% * *% * *% * *%k%k *

* Name: FuzzylLogic::FuzzyLogic () *
* Description: Default Constructor with no data *
kkkkkkkkkkkkkkkkkkkkkkkkhkkhkhhhhkkkkkkkkkkkkkkkkkhkkhkx *****************************/
FuzzylLogic::FuzzyLogic ()
{
CrispValue=0; // The Crisp Value default functizalue
Area=0; /I The Area default function value
FuzzyValue=0; //The Fuzzy default function value
CenterOfMassCrisp=0; // The Center Of Mass defatikp value
CenterOfMassFuzzy=0; // The Center Of Mass defaudtzy value

}

/************************************************** kkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkx

* Name: FuzzylLogic::FuzzylLogic (const double *Datal *

* Description: Default Constructor for with constdbATA (12 parameters which represent the  *
* 3 trapezoids "Low","Avarage”,"High",) *

kkkkkkkkkkhkkkhkkkkhkkkhkkkkkkkhkkkhkhkkkhkkkkhkkkhkkkkkkkk *****************************/

Fuzzylogic::FuzzylLogic (const double *Datal)

Data=Datal;
CrispValue=0; // The Crisp Value default functizalue
Area=0; /l The Area default function value

FuzzyValue=0; //The Fuzzy default function value
CenterOfMassCrisp=0; // The Center Of Mass defatikp value
CenterOfMassFuzzy=0; // The Center Of Mass defaudtzy value

/************************************************** kkkkkkkkhkhkkkhkhkkkhhkhkkhkhhkhhkhxkx
* Name: FuzzylLogic FuzzylLogic::FL_Crisp2Fuzzy (ch&uzzyName) *

* Description: This function: FL_Crisp2Fuzzy calaté the FUZZY value for each crispy value *

* *% * *% * *kk * *% *kk *% * *kk * *% * /
FuzzylLogic FuzzyLogic::FL_Crisp2Fuzzy (char *FuzayiNe)
{

this->FuzzyName=FuzzyName;
this->FuzzyValue=0;

int result,i;

float a,b,DegreeOfMembership=0.;
int FlagChack=0;

142



result = strspn(FuzzyName,"Low");
if (result==3)
i=0;
result = strspn(FuzzyName,"Avarage");
if (result==7)
i=4;
result = strspn(FuzzyName,"High");
if (result==4)
i=8;
if ((this->CrispValue>=this->Data[i]) && (this->@GspValue<=this->Data[i+3]))

if ((this->CrispValue>=this->Data][i]) && (this-€rispValue<=this->Data[i+1]))

a=((float)1./(this->Data[i+1]-this->Data[i]));
b=((float)(-1.)*a*this->Datali]);
DegreeOfMembership=((float)a*this->CrispValug:+b
if ((this->FuzzyValue<DegreeOfMembership))
this->FuzzyValue=DegreeOfMembership;
FlagChack=1;
}

if((this->CrispValue>=this->Data[i+2]) && (this=CrispValue<=this->Data[i+3]))

a=((float)(-1.)/(this->Data[i+3]-this->Data[i1g;

b=((float)(-1.)*a*this->Data[i+3]);

DegreeOfMembership=((float)a*this->CrispValug:+b

if (this->FuzzyValue<(float)DegreeOfMembership)
this->FuzzyValue=(float)DegreeOfMembership;

FlagChack=1;
}
if (FlagChack==0)
{
DegreeOfMembership=1.;
if (this->FuzzyValue<(float)DegreeOfMembership)
this->FuzzyValue=(float)DegreeOfMembership;
}

return FuzzyLogic(*this);

}

/ *k%k * *% * * *% *kkk *% * *% * *% * *%k%k *

* Name: FuzzylLogic operator>>(FuzzylLogic &FL_Soutc€uzzylLogic &FL_Targetl) *
* Description: This Operator: >> Means 'Then' & tR... THEN fuzzy rules  *

kkkkkkkkkkkhkkkkhkkkkhkkkhkkkhkkkhkkkhkhkkkhkhkkkhkkkkkkkkkkk *****************************/

FuzzylLogic operator>>(/*const*/ FuzzylLogic &FL_Saetl ,/*const*/ FuzzylLogic &FL_Targetl)

//IBeacuse the Data parameters for each objed®NST we need to 'copy’ the
/I object and then work on the new objects
FuzzylLogic FL_Source;
FuzzylLogic FL_Target;
FL_Source=FL_Sourcel,;
FL_Target=FL_Targetl;
FL_Target.FuzzyValue=FL_Sourcel.FuzzyValueg/heed to get the new fuzzy value
[[after making OR or AND operations
int result,i;
float a,b ; //the parametrs of the linear equation
float StamArray[4];
result = strspn(FL_Target.FuzzyName,"Low");
if (result==3)

143



i=0;
result = strspn(FL_Target.FuzzyName,"Avarage");
if (result==7)
i=4;
result = strspn(FL_Target.FuzzyName,"High");
if (result==4)
i=8;

if(FL_Target.FuzzyValue>0)

{
a=1/(FL_Target.Data[i+1]-FL_Target.Data[i]);
b=(-1)*a*FL_Target.Data]i];
StamArray[1]=(FL_Target.FuzzyValue-b)/a;

a=(-1)/(FL_Target.Data[i+3]-FL_Target.Data[i+2])
b=(-1)*a*FL_Target.Data[i+3];
StamArray[2]=(FL_Target.FuzzyValue-b)/a;

StamArray[0]=FL_Target.Data]i];
StamArray[3]=FL_Target.Data[i+3];
FL_Target.Area=0.5*(FL_Target.FuzzyValue)*
(StamArray[3]+StamArray[2]-StamArray[1]-StamAxi0]);
FL_Target.CenterOfMassCrisp=
(0.5*(StamArray[2]+StamArray[1])*(StamArray[ZtamArray[1])*FL_Target.FuzzyValue+
0.5*%((2./3.)*StamArray[2]+(1./3.)*StamArray[3j)StamArray[3]-
StamArray[2])*FL_Target.FuzzyValue+
0.5*%((2./3.)*StamArray[1]+(1./3.)*StamArray[0j)StamArray[1]-
StamArray[0])*FL_Target.FuzzyValue)/
FL_Target.Area;

}

else
FL_Target.CenterOfMassCrisp=0;
FL_Target.Area=0;

}

FL_Targetl.FuzzyValue=FL_Target.FuzzyValue;
FL_Targetl.CenterOfMassCrisp=FL_Target.CenterO8Zaisp;
FL_Targetl.Area=FL_Target.Area,
/[FL_Targetl=FL_Target;
return FuzzyLogic(FL_Targetl);
}

/************************************************** kkkkkkkkkkkkkkkhkkkkhkkkkhkkkhkkkk

* Name: FuzzylLogic operator+(const Fuzzylogic &Ftdnst FuzzylLogic &FL2) *
* Description: This Operator: + Means 'OR"' at the.ITHEN fuzzy rules *
kkkkkkkkkkkkkkkkkkkkkkkkkkhkkhhkkkkkkkkkkkkkkkkkhkhkkx *****************************/
FuzzylLogic operator+(const FuzzylLogic &FL1,conszEyl ogic &FL2){

FuzzylLogic FL_Stam;

if (FL1.FuzzyValue > FL2.FuzzyValue)

{
/IFL_Stam.FuzzyValue=FL1.FuzzyValue;
FL_Stam=FL1,;

}

else
/[FL_Stam.FuzzyValue=FL2.FuzzyValue;
FL_Stam=FL2;

}

return FuzzylLogic(FL_Stam);}

144



/************************************************** kkkkkkkkkkkkkkkhkkkhkkkkhkkkhkkkk

* Name: FuzzylLogic operator*(const FuzzylLogic &Ftanst FuzzylLogic &FL2) *
* Description: This Operator: * Means 'AND' at the...THEN fuzzy rules *

*% *% *kk * *% *kk *% *kk * *% * /

FuzzylLogic operator*(const FuzzylLogic &FL1,constzEyLogic &FL2){
FuzzylLogic FL_Stam;
if (FL1.FuzzyValue < FL2.FuzzyValue)

{

FL_Stam=FL1;
}
else
{

FL_Stam=FL2;
}

return FuzzylLogic(FL_Stam);}

/ *k%k * *% * * *% *kkk *% * *% * *% * *%k%k *

* Name: FuzzylLogic::FuzzylLogicGetCenterOfMassCrjsp(*
* Description: This function: FuzzyLogicGetCenteMssCrisp returns the crisp value of the *
* COM after running the rules *
kkkkkkkkkkkkkkkkkkkkkkkkhkkhkkhhkkkkkkkkkkkkkkkkkhkhkhkx *****************************/
float FuzzyLogic::Fuzzyl ogicGetCenterOfMassCrisp(){
return (this->CenterOfMassCrisp);}

/************************************************** kkkkkkkkkkkkkkkhkkkkhkkkkhkkkhkkkk

* Name: FuzzylLogic::FuzzyLogicGetFuzzyValue() *
* Description: This function: FuzzyLogicGetFuzzy\al prints out the fuzzy value of the object *

* *% * *% * *kk *% *kk *% * *kk * *% * /

float FuzzyLogic::FuzzylLogicGetFuzzyValue(){
return (this->FuzzyValue);}

/************************************************** kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx

* Name: FuzzylLogic::FuzzylLogicGetAraeValue() *

* Description: This function: FuzzyLogicGetAraeValveturn the area of the object *
khkkkkkkkkkkkkkkkkkkkkkkhkkhkkhhkkkkkkkkkkkkkkkkkhkhkkx *****************************/

float FuzzylLogic::Fuzzyl ogicGetAraeValue(){
return (this->Area);}

/ *k%k * *% * * *% *kkk *% * *% * *% * *%k%k *

* Name: FuzzylLogic::FuzzylLogicGetCrispValue() *
* Description: This function: FuzzyLogicGetCrisp\al prints out the crisp value of the object  *
kkkkkkkkkkkkkkkkkkkkkkkhkhkhkhkhkhkhhkkkkkkkkkkkkkkkkkhkhkhkx *****************************/
float FuzzylLogic::FuzzylogicGetCrispValue(){
return (this->CrispValue);}

/************************************************** kkkkkkkkkkkkkkkhkkkkhkkkkhkkkhkkkk

* Name: &Fuzzyl ogic::FLInsFuzzyName(char* FuzzyNgme
* Description: This function: FLInsFuzzyName entaesv Fuzzy name for the object  *

* *% * *% * *kk * *% * *kk *% * *kk *% * /

FuzzylLogic &FuzzylLogic::FLInsFuzzyName(char* FuzziNe){
this->FuzzyName=FuzzyName;
return (*this);}

145



/************************************************** kkkkkhkkkkkkkkkkhkkkkhkkkkhkkkhkkkk

* Name: &Fuzzylogic::FLInsCrispVal(float CValue)*
* Description: This function: FLInsFuzzyName entaesv Crisp value for the object *
* *% * *% * *kk * *% * *kk *% * *k*k * *% * /
FuzzylLogic &FuzzylLogic::FLInsCrispVal(float CValug)
this->CrispValue=CValue;
return (*this);

/************************************************** kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx
* Name: FuzzylLogic::~FuzzyLogic() *

* Description: Default Destructor with no data *
khkkkkkkkkkkkkkkkkkkkkkkhkkhkkhhkkkkkkkkkkkkkkkkkhkhkkx *****************************/

FuzzylLogic::~FuzzyLogic() {
PostQuitMessage(0);}

146



/**

**Sick_Class.h

*%

** Copyright 2007 by Keren Kapach

*

** E-mail: kapach@bgu.ac.il
**/

#include <time.h>

#include <conio.h>

#include <iostream.h>
#include <string.h>

#include <fstream.h>

#include <stdio.h>

#include <string.h>

#include <stdio.h>

#include <math.h>

#include "ConstantParameters.h”
#include "GlobalParameters.h"

#include "Aria.h"
extern BlackBoard g_BB;

class Sick_Class

{
public:
int iSick_X; //robot's Y location
int iSick_Y; //robot's X location
int iSick_Theta;
int Sick_PhysicalMap[g_iX_LBM_MapSize][g_iY_LBM_&pSize][g_iTotalNumOfSILS];
int range[360];
Sick_Class(); //default constructor
void ReadFromSick();
void Si_GridMapCellConversion();
¥

147



/**

**Sick_Class.cpp

*%

** Copyright 2007 by Keren Kapach

*
** E-mail: kapach@bgu.ac.il

**/

#include "Sick_Class.h"

#include <math.h>

#include "ConstantParameters.h"
#include "GlobalParameters.h"

extern ArRobot robot ;
extern ArSick *sick;
extern Sick_Class mySick;

/ *k%k * *% * * *% *kkk *% * *% * *% * *%k%k *

* Name: Sick_Class::Sick_Class *
* Description: Default constructor *
kkkkkkkkhkkkhhkkkhhkkhhkkkhhhkhhhkkhkhhkhhhrkkhhhriik *****************************/
Sick_Class::Sick_Class()
{
inti,j,k;
for (k=0;k<=g_iTotalNumOfSiLS;k++)
{
for (i=0; i<g_SickGridSizeX; i++)
{
for (j=0; j<g_SickGridSizeY ;j++)
Sick_PhysicalMapli][j][k]=0;
Mifor i
Yifor k

/************************************************** kkkkkkkkkkkkkkkhkkkkhkkhkhkkkhkkkk

* Name: Sick_Class::ReadFromSick *
* Description: This function reads the data frora thser sensor and generates two logical sensors*fthis data .

* *% * *% * *kk * *% * *kk *% * *kk * *% * /

void Sick_Class::ReadFromSick()
{

double phi,tempPhi,xTag,yTag,x0,y0;
int x,y,flag=0;

int i=0;

int ObsLocInMapX, ObsLocInMapY,Theta,k;
static int sum=0;
iSick_X=(int)(robot.getX()*0.1);
iSick_Y=(int)(robot.getY()*0.231);
iSick_Theta=(int)(robot.getTh());
g_BB.iPPGM_X=iSick_X;
g_BB.iPPGM_Y=iSick_Y;
g_BB.iPPGM_Theta=iSick_Theta;

const std::list<ArSensorReading *> *readings;
std::list<ArSensorReading *>::const_iterator it

148



sick->lockDevice();

/IMap building for the first laser LS
readings = sick->getRawReadings();
if (readings '= NULL)

for (it = readings->begin() , i=0; it != readig>end(); it++,i++)

{
char tmp[100];
rangel[i] = (*it)->getRange();

rangeli]=range[i]*0.1; //converting to cm
sprintf(tmp,"Angle %d reading %d \n i, rafifje
output<<tmp;

phi=(g_pi/180*(i-90)); //transferring to the &ar's angle
x0=range[i]*cos(phi)-60;

yO=range][i]*sin(phi);

ObsLocInMapX=(int)(x0);
ObsLocInMapY=(int)(yO+LBM_cm_SizeY/2);

for (k=0;k<5;k=k+2)

for(Theta=0; Theta<360; Theta=Theta+30)

{
tempPhi=g_pi/180*Theta;
xTag=(double)k*cos(tempPhi);
yTag=(double)k*sin(tempPhi);
x0=xTag+(double)ObsLocIinMapX;
yO=yTag+(double)ObsLocInMapY;
x=(int)(x0/(double)g_CamcCellSize);
y=(int)(y0/(double)g_CamCellSize);

if (x>=0 && x<g_SickGridSizeX && y>=0 && y<g_StkGridSizeY)
Sick_PhysicalMap[x][y][0]++; //finding how marnymes cell is samples
//Sick_PhysicalMap[x][y][0]=1;
1 Sick_PhysicalMap[x][y][0]=0; //LASER1=Empty

Yifor theta

Yifor k

Yifor it
Miif

/IMap building for the second laser LS

for(i=0; i<181; i=i+3)

{
phi=(g_pi/180*(i-90));
x0=range[i]*cos(phi)-60;
yO=rangel[i]*sin(phi);
ObsLocInMapX=(int)(x0);
ObsLocInMapY=(int)(yO+LBM_cm_SizeY/2);

for (k=0:k<5:k=k+2)

for(Theta=0; Theta<360; Theta=Theta+30)
{
tempPhi=g_pi/180*Theta;
XTag=(double)k*cos(tempPhi);
yTag=(double)k*sin(tempPhi);

149



x0=xTag+(double)ObsLocIinMapX;
yO=yTag+(double)ObsLocInMapY;
x=(int)(x0/(double)g_CamcCellSize);
y=(int)(y0/(double)g_CamCellSize);

if (x>=0 && x<g_SickGridSizeX && y>=0 && y<g_StkGridSizeY)
Sick_PhysicalMap[x][y][1]++;
Yifor theta
Yifor k
Yifor i

sum-++;
output.close();
sick->unlockDevice();

}

/ *k%k * *% * * *% *kkk *% * *% * *% * *%k%k *

* Name: Sick_Class:: Si_GridMapCellConversion  *
* Description: This function converts cell sizeirdaser to LBM.
kkkkkkkkhkkkhhkkkhhkkhhkkkhkhhkhhhkkhkhhkhhhhkkhhhriik ****************************-k/

void Sick_Class::Si_GridMapCellConversion()
{

inti, j, k,m,n, iResParam;

g_BB.iLBM_X_Old=g_BB.iLBM_X_New;
g_BB.iLBM_Y_Old=g_BB.iLBM_Y_New;

g_BB.ILBM_X_ New=mySick.iSick_X;
g_BB.ILBM_Y_New=mySick.iSick_Y;

iResParam=g_SickCellSize/g_LBMCellSize;

for(k=0; k<g_iTotaINumOfSIiLS; k++)
{
g_BB.bLGM_NewDataFlag[k+1+g_iTotaINumOfUsLS]=1;
for(i=0; i<g_SickGridSizeX; i++)
{
for (j=0; j<g_SickGridSizeY; j++)

for (m=0; m<iResParam; m++)
for (n=0; n<iResParam; n++)

g_BB.iaLBM](i*iResParam+m)][(j*iResParam+n)][k+1+dr otalNumOfUsLS]=Sick_PhysicalMapli][j][K]

Ml
Vi
Yk

/linitialazing the physical maps
for(k=0; k<g_iTotaINumOfSIiLS; k++)

{
for(i=0; i<g_SickGridSizeX; i++)
for (j=0; j<g_SickGridSizeY; j++)
Sick_PhysicalMapli][j][k]=0;
Yifor

150



Appendix V Camera calibration

General

The main goal of this work is to map the robot's@unding using different physical sensors.
One of these sensors is a PTZ CCD camera, mountegpf the robot, as detailed in chapter
6. The robot’s surrounding is represented by the muap paradigm. The obstacles within the
grid map are placed in the real world X-Y coordesatTo create grid maps from photos taken
from the camera, we need to find the mathematieltion between the obstacle’s pixels
coordinates and the real world X-Y obstacle’s cowtes. This is done through a calibration
process.

In the mobile robot experiment, the camera isset $pecific tilt angle (-25°) and takes photos
from four different pan angles (-50°, -17°, 17° &f@f) as shown in Figure 17. To avoid a
different calibration for each pan angle, the diseawas measured only from the rotation axis,
as detailed later.

¥ E
f 7
+50° l -25°
[ 70 °Pe
= 47 cm
. D ( 170
500
SN\
Pan angles Tilt angle

Figure 17 Camera angles: pan and tilt
(Adapted from Cohen, 2005)

The basic assumption is that the calibration wapleyed for a specific camera tilt angle (-
25°), zoom and height from the floor (47 cm), asveh in Figure 17. To determine the
obstacle’s location relative to the robot, two flimes were developed, one along the robot’s
X- axis of movement, the second on the Y-axis. ©hstacle's location relative to the zero
point was derived from the geometrical relation.

In the calibration process, small obstacles weseqa on the floor at known distances, photos
were taken, and equations that describe the relagbween the pixel coordinates and the real
X-Y coordinates were determined.

An experiment was conducted to check the calibngpiarameters. In the experiment pointed
obstacles were pointed at a known location relaivthe zero point. The obstacles’ position
was found according to the parameters that wergatErand the mean error between the real
location and the calculated location was found.

Methodology

In the calibration process the following steps waken:

1. Determining the rotation axis

2. Deriving the mathematical equation for X axis rekato the robot
3. Deriving the mathematical equation for Y axis rekato the robot
4. Finding the obstacle's location relative to theozawint

151



1. Determining the rotation axis
To avoid a different calibration for each pan angle assume that the points on the rotation
axis do not move. All the distances were measuekdively to the rotation axis. The rotation
axis was found from the camera in an experimené pbint on this axis remains static and
does not move while the camera turns to the diftgpan angles.
The rotation axis was found in the following expeental procedure:
1. Setthe camera tilt angle to -25°.
2. Estimate the rotation axis and gently touch thiswppaising a pencil. Since on the
rotation axis the pencil remains static and do¢smave while the camera turns to the
different pan angles, converge to this point byaft~ and — error'. When at the

rotation axis, the pencil creates a point; whenyafsam the rotation axis, the pencil
will create an arc.

2. Deriving the mathematical equation for X axis relatto the robot

A set of pointed obstacles was placed at knowradégts from the rotation axis, in different X
and Y distances, as shown in Figure 18.

y=-20cm | y=20cm =S
y=0cm -

.
-

L]

R ———————

13
=
»
n
L
]
|
H
¢

e o

Figure 18 Picture of the pointed obstacles

Along the X axis, the obstacles are placed 5cmtaphe Y coordinate of each line is shown
in the figure. All the lines were measured from tbgtion axis, where y=0 is the rotation axis
itself. Along the rotation axis (y=0), the realtdisces in centimeters of the pointed obstacles

vs. their pixel location (as taken from the imageéng a PaintBrush application), shown in
Table 39.

152



Table 39 Raw data to derive the polynomial equation

X X
measured| X [pixels] measured| X [pixels]
[cm] [cm]

60 521 95 347
65 484 100 329
70 460 105 312
75 435 110 297
80 409 115 282
85 387 120 269
90 368 125 257

The polynomial equation was derived in MATLAB usipglyfit function, which finds the
coefficients of a polynomial of degree n that fike data. The function receives a vector
containing values and the desired polynomial degaed returns a row vector of length n+1
containing the polynomial coefficients in descegdoowers

The equation is presented in [30]. Where X is iktadce in pixels, anBpistanceiS the distance
relative to the robot.

=-6.71E-12x° +1.59E- 08x* -1.54E- 05x° + 0.00784&° - 2.3348& + 406.14 [30]

Distance ~—

X

3. Deriving the mathematical equation for Y axis refatto the robot

Calculation of the distance of the obstacle in Yhexis is based on the concept that the
vertical and horizontal lines connect at point ,shown in Figure 19. The bold line is the
rotation axis, and each line in the figure représéime same vertical distance from the rotation
axis.

Rotation axis

[E]-

i ctstack 5ot
Figure 19 Camera horizontal and vertical lines

153



The first step is to find the point P coordinat&s (Y,). This was achieved by an intersection
of two lines of data taken from the pointed ob&iadhown in Figure 18.

Xp coordinate is the same as the rotation axis ansl mvaasured a¥,=385. This was
measured from the X coordinate of the line at th®ot's rotation axis (y=0 in Figure 18). The
coordinate was found using PaintBrush software.

Y, coordinate was calculated as follows:

The Pixels location of the pointed obstacles iediy=-45cm, y=-20cm, y=20crandy=45cm
were taken manually using PaintBrush software rasgmted in Table 40.

A linear equation for each line was derived usiimedr regression. The equations are
presented in Table 4@, is the value of the linear line . Since slightly different values
were derivedY, was taken as the average value.

Table 2 represents the (X, y) pixel values of tbhmged obstacles, the linear equation and the
calculated Y value for each line in Figure 18, asvid from the experiment.

Table 40 Obstacle’s pixels location

y=-20cm =-45cm y=20cm =45cm
X[pix] Y[pix] X[pix] Y[pix] X[pix] Y[pix] X[pix] Y[ pix]
172 518 602 516
183 486 592 485
188 460 580 457
201 432 572 431
205 408 563 408
213 386 19 389 557 385 7572 378
219 367 29 365 550 363 736 360
226 347 42 348 543 345 724 341
233 328 54 332 537 328 713 325
237 313 67 321 531 311 709 309
241 296 76 299 526 297 691 294
246 283 85 286 521 283 68( 280
251 270 95 272 516 268 671 269
256 258 104 261 512 257 662 256
259 246 112 249 508 246 651 245
262 235 121 239 502 235 643 235
267 226 129 228 499 225 637 225
270 216 136 219 497 214 63( 215
273 206 143 208 494 206 622 207
276 197 148 200 490 196 616 199
279 190 152 194 487 190 61( 190
282 183 159 185 485 182 603 182
284 175 164 178 480 174 597 173
286 168 170 170 479 168 594 169
293 164 175 164 476 160 589 163
290 156 182 157 475 155 583 155
292 149 185 151 472 149 579 150
294 144 189 146 470 143 574 144
y =-3.0127x + 1029.6 y =-1.3985x + 408.14 y =2.8253x - 1187 y =1.310x - 609.34
y(x=385)=-130 y(x=385)=-130.28 y(x=385)=-99.3 y(x88)=-104.72
Ypavg=-117

P coordinates ar¢385,-117)

154



For each pointed obstacle, we can calcudatk values as shown in Figure 20. ‘a’ represents
the vertical distance to point P, and ‘b’ is theibontal distance.

Figure 20 a and b values for each obstacle
Note that the valuel%1 is the tangent value of the head angle.

Calculation of thea, bvalues for each obstacle is presented in equafigijsand [32].

a=YyY,
b=X

pixel — xp =Y, I +117 [31]
~Y, = Xy — 385 32]

pixe
pixel
The next step is to derive the mathematical refatigp between each obstacle%é1 value,

and the real Y distance. This was done in the ahg way:
For each real Y distancg/<-45cm, y=-20cm, y=20cm and y=-45Frnthe value% was

calculated. Table 41 represents values for eaehdindrawn from Figure 18. Sin% is the

tangent of the head angle, values of all the oletagithin the same lines were the same, as
expected.

155



Table 41 Values for each line's obstacle

y=-20cm y=-45cm

Y[cm] X[pix] Y[pix] a b/a X[pix] Y[pix] | b/a

105 237 313 430 -148 -0.34 67 321 438 -318 -0
110 241 296 413 -144 -0.3% 76 299 416 -309 -0
115 246 283 400 -139 -0.3% 85 286 403 -300 -0
120 251 270 387 -134 -0.35 95 272 389 -290 -0
125 256 258 375 -129 -0.34 104 261 378 -281 -0
130 259 246 363 -126 -0.3% 112 249 366 -273 -0
135 262 235 352 -123 -0.3% 121 239 356 -264 -0
140 267 226 343 -118 -0.34 129 228 345 -25%6 -0
145 270 216 333 -115 -0.35 136 219 336 -249 -0
150 273 206 323 -112 -0.3% 143 208 325 -242 -0
155 276 197 314 -109 -0.3% 148 200 31y -237 -0
160 279 190 307 -106 -0.3% 152 194 311 -233 -0
165 282 183 300 -103 -0.34 159 185 302 -226 -0
170 284 175 292 -101 -0.3% 164 178 295 -221 -0
175 286 168 285 -99 -0.35 170 170 287 -215 -0
180 293 164 281 -92 -0.33 175 164 281 -210 -0
185 290 156 273 -95 -0.35 182 157 274 -203 -0
190 292 149 266 -93 -0.35 185 151 268 -200 -0
195 294 144 261 -91 -0.3% 189 146 263 -196 -0

156



Table 38 (continued)

y=20cm y=45cm

Y[cm] X[pix] 1. Y[pix] b b/a X[pix] Y[pix] b/a

105 531 311 428 146 0.34 703 309 426 318 0.75
110 526 297 414 141 0.34 691 294 411 306 0.r4
115 521 283 400 136 0.34 680 280 397 295 0.r4
120 516 268 385 131 0.34 671 269 386 286 0./4
125 512 257 374 127 0.34 662 256 373 277 0./4
130 508 246 363 123 0.34 651 245 362 266 0.3
135 502 235 352 117 0.33 643 235 352 258 0.3
140 499 225 342 114 0.33 637 225 342 25p 0.r4
145 497 214 331 112 0.34 630 215 332 245 0./4
150 494 206 323 109 0.34 622 207 324 237 0.3
155 490 196 313 105 0.34 616 199 316 231 0.3
160 487 190 307 102 0.33 610 190 307 225 0.3
165 485 182 299 100 0.33 603 182 299 218 0.3
170 480 174 291 95 0.33 597 173 290 21p 0.Y3
175 479 168 285 94 0.33 594 169 286 209 0.Y3
180 476 160 277 91 0.33 589 163 280 204 0.Y3
185 475 155 272 90 0.33 583 155 272 198 0.Y3
190 472 149 266 87 0.33 579 150 267 194 0.Y3
195 470 143 260 85 0.33 574 144 261 18P 0.y2

157



From Table 41 we can find the mathematical relstgm between each obstacBé1 value and

the real Y distance in centimeters. The raw dapmasented in Table 42.

Table 42 Raw data to derive the mathematical eiahip between Y[cm] anyél

Y[cm] b/a
0 0
-20 -0.34
-45 -0.75
20 0.34
45 0.73

Using linear regression, the equation is preseint§8i3].
Y sance = 60.459 87+ 0.241 [33]

The distance between the center of the camerahanobistacle is presented in [34].
R =\ X2 + Y2

Distance Distance

[34]

The angle between the center of the camera anobitacle is presented in [35].
X
a=a- tar( Dlstancej [35]
YDistance

4. Finding the obstacle's location relative to theaebint

Once we know the mathematical relationship betwien pixel coordinates and the X-Y
coordinates relative to the robot, the robot's iocaand the camera's pan angle, the X-Y
coordinates relative to the zero point can be aeriv

Figure 21 shows the movement axis, starting attg@inOC is the robot's distance from the
starting point (taken from the robot's encoder®.abd AB is the vertical distance from point
O and the horizontal distance from the movemerd,ari correspondence, afds the given
camera’'s tilt angle.

Movement &
Axis

Y

0
Figure 21 The robot’s distance relative to the stag point

158



From the geometrical relationships in Figure 21emhpoint A represents the obstacle's
location, we can see that the Real X distanceivel& the starting point is BO, and the real Y
distance is ABBO is the sum of BC and CO, where CO is the robdissance from the zero
point, and can be found from the robot’s encoders.given,a and R are calculated from [34]
and [35].

The real X and Y distances are derived from [3@] 7] as follows:

Real X= BO= BG- CG- Rog(a+0) [36]
RealY= AB= Rin(a+0) [37]

Experiment

An experiment was performed to test the calibratesult.

An array of seven pointed obstacles (with differealors) was pointed in known X and Y
distances, as shown in Table 43.

Table 43 Obstacle’s array location for the expireime

#0bs. Color Vertical distance from the Horizontal
Num. driving path [cm] distance [cm]

1 Orange 45 -45

2 White 90 -45

3 Black 135 -90

4 Red 45 45

5 Black 135 45

6 Purple 90 90

7 Yellow 180 90

The robot moves a distance of 1.5m in a straigid, lat a constant velocity (0.5 m/s) and
takes images at 5 different angles: -40°, -20°20°,and 40°, in a continuous loop.

Overall, 40 images were taken. For every picture,gan angle, the robots X location (OC)
and Y location (Zero to all the images, since tit@t moves in a straight line) are known. The
images were analyzed to find the obstacle’s looatio

Examples of the obstacle’s images in the diffepamt angles are presented in Figure 22.

159



pan angle40°

pan anglé°® pan anglelQ°
Figure 22 Examples of the obstacle's photos irdifferent pan angles

The real X-Y of the obstacle was derived accordmthe method described above.

Table 44 presents an example of the obstacle'§docanalysis.

The error is set to the absolute distance of tistaske real location (taken from Table 43) and
the one that was found from the data accordin¢peéomethod (denoted as X calculated and Y
calculated in Table 44).

The mean error in X axis is 6.5cm, and in Y axi6.82cm. The error is caused by deviation in
the robot's location relative to the rotation ax@&ce the robot is massive, it is a hard task
placing it exactly in the rotation axis, and itgdtion varies a bit from on experiment to the
other. This error is acceptable, since the mapslusn is 5cm and each obstacle is denoted
as a group of cells (explained in sectt®8).

160



Table 44 Obstacle's location analysis

Pan . . . Obs. Cols Rows X Y
X Pic [cm] Y Pic [cm] Object X ) calculated | calculated | Real X[cm] | Real Y[cm]
angle number | [pixels] [pixels] [cm] [cm]

-40 6 0 1 1 402 531 56.93 1.83 50.78 -35.19
-40 6 0 2 2 635 353 91.15 32.40 96.65 -33.47
-40 6 0 3 3 541 191 154.77 30.8p 144.40 -75.84
-20 10 0 1 1 104 575 50.05 -24.31 48.72 -39.96
-20 10 0 2 2 327 351 91.68 -7.2% 93.67 -38.17
-20 10 0 3 3 217 199 150.06 -31.90 140.10 -81.30

0 13 0 2 2 15 405 78.82 -42.61 91.82 -42.1

0 13 0 5 5 687 258 121.81 48.93 134.81 48.93
20 17 0 5 5 378 250 125.09 -0.91 134.86 41.93
20 17 0 7 7 503 153 181.14 26.6/6 178.10 87.01
40 21 0 5 5 74 284 112.05 -46.65 136.82 36.29
40 21 0 6 6 496 292 109.29 16.65 94.0p 83.00
40 21 0 7 7 188 164 172.75 -42.14 180.43 78.16

161



Appendix VI Mapping algorithms flowcharts

Ultrasonic algorithms

Read sensor’si

Place readingin
Na the sensor’s map
asanarcof 10 cm
and 10° angle
\I.r‘

=1+

Fuse all grid map
Ves into local grid
> map using
Logical OR
method

W

Fuse all grid map
into local gnd
map using
Probablistic
approach

/

Transform the
logical sensor’s
map relativelyto
the robot’s location
using
copy LBMToGGM
function

/

[ End

162



Camera algorithms

Start

Set camerato i pan angle

v

No

Find obstacle’s location

usingimage processing

algorithm 1 and savein a
vector

v

Find obstacle’s location
using image processing
algorithm 2 and savein a
vector

v

Find obstacle’slocation
using image processing
algorithm 3 and savein a
vector

V

1=1+1

Yes

1=0

Place obstacles for all pan
angles forimage processing
algorithm 1in alocal grid 1
map and draw a circle
around it

4{

No

Transform the local gid mapi
relatively to the robot’s location
using copy LEMTo GGM
function

2

1=1+]

163

4

End




Laser algorithms

Laserl

( Start |
\L,
—> 1=0
J
Read angle1 from the
laser readings vector

J

Flace the reading in the
to local gnd map and draw a
circle (@ Scm) around 1t

I

1=1+1

l

L

Yes

Laser2

( Start |
W

2
Read angle 1 fromthe
laser readings vector

v

Place the reading in the

local gnd map and draw a
circle (@ 5cm) aroundit

v

1=1+3

Transform the local grid mapi
relatively tothe robot’s location
using copy LBMTo GGM
function

End

function

Transform the local grid mapi
Yes relatively to the robot’slocation
. using copy LEMTo GG

[ End

164




Appendix VII Code for analysis procedure

All experiments results were analyzed using MATLAR.

Since we can't tell in advance if the experimemnésdafferent from each other (as part of the
statistical analysis requirements), several expanisiwere performed in each experiments set
and the experiments that fulfill the volume of daprregion criteria were chosen (see section
2.5.9). The analysis procedure consists of thevetig steps. First, all logical sensors local
maps and algorithms maps from all experiments apetitions were read and saved. Next,
the difference between experiments maps and repetitvas checked and the number of
signed cells for each comparison was saved. Themmlof overlap region (VOLR) was
calculated for every experiments combination, ank}y the experiments that hold the criteria
of negative VOLR was chosen. Next, algorithms mapse compared to the real world map
(that was created according to the real obstatdeation in the experiment) and type |
performance measures were calculated and savedpdifi@mance measures were used to
perform the statistical analysis procedure: catoudathe number of repetitions required,
friedman's test, multiple comparison procedure ©igd test. The statistical analysis procedure
was done manually using tables as shown in AppendixX-
Appendix XV. Table 45 presents a list of MATLAB fctions that were used in the analysis
and a brief explanation of their purpose. The tabléollowed by the functions MATLAB
code.

Table 45 List of MATLAB functions and explanations

Function name Explanation

Load LS maps This function loads all LS maps from the differemp.

and rep. and returns the LS_Maps 5D array.
The dimensions of the LS maps array are:
LS_Maps[NumOfLS,NumOfExp,NumOfRep,107,48]

Load_SFA_maps This function loads all SFA maps from the differexip.

and rep. and returns the SFA_Maps 5D array.
The dimensions of the SFA maps array are:
SFA Maps[NumOfSFA,NumOfExp,NumOfRep,107,48]|

CheckMaps(LS_Maps) This function calculates the max. number of sijoells

for every comparison between different experimeartd
repetitions in order to determine if the experinseate
different enough.

one_count(GridMap); %this function counts the num. of cells that areTNO

ZEero

ChoosingExp(MaxExp,MaxRep,NumOfChosenExp); | This function takes all the experiments combinatiand

calculates the VOLR for each one of the combination

VOLR_Calc(MaxExp,MaxRep); This function calculated the volume of over lagioa for
each experiments set using the MaxExp and MaxRep
vector.

PM_Calc(SFA_Maps); This function receives the sensor fusion algorithmagps

and calculates the Sensor's fusion algorithms paefnce
measures. The four PM are calculated accordingge t
performance measures equations.

truth_map; This function creates the truth world map of the

experiment

165



function LS_Maps=Load_LS maps
%************************************************** kkkkkkkkhkhkkkk
%This function loads all LS maps from the differerp. and rep. and
%returns the LS_Maps 5D array.

%The dimensions of the LS maps array are:
%LS_Maps[NumOfLS,NumOfExp,NumOfRep,107,48]

%n * *%k%k *% *kk *% *kkkkhkkhhkkhx

LS_Maps=zeros(7,13,7,107,48);
Exp=[1:1:13];
[m,NumOfExp]=size(Exp);
NumOfRep=7;

NumOfLS=7;

%Reading data into Maps matrix
for i=1:NumOfExp
for j=1:NumOfRep
for k=1:NumOfLS
filename=('"H:\kapach\Thesis\Experimiésv Algorithm 16042007\Experiments\Exp.");
filename=strcat(filename,int2str(Exp(\);
filename=strcat(flename,'Rep.",intgstk);
filename=strcat(filename,'LS_PPGM' sitfk),".data’);
fid=fopen(filename,'r");
for rows=1:107
for cols=1:48
LS_Maps(k,i,j,rows,cols)=fsciuf,'%d',1);
if LS_Maps(k,i,j,rows,cols)~=0
LS Maps(k,i,j,rows,cols)=1;
end %if
end %for cols
end
fclose(fid);
end
end
end

function SFA_Maps=Load_SFA_maps()
%************************************************** kkkkkkkkhkkkkk
%This function loads all SFA maps from the diffdrerp. and rep. and
%returns the SFA_Maps 5D array.

%The dimensions of the SFA maps array are:
%SFA_Maps[NumOfSFA,NumOfExp,NumOfRep,107,48]

%The codes for the number of sensor fusion algostiSFA) are:
%
% TOTAL - 5 Algorithms.

%n * *%k%k *% k%% * *% * * *kkkkhkkhhkkhk

NumOfPM=4;

Exp=[1:13];

[m,NumOfExp]=size(Exp);

NumOfRep=7;

NumOfSFA=5;

SFA_Code=[1:5];
SFA_Maps=zeros(NumOfSFA,9,NumOfRep,107,48);

%reading data into Maps matrix
for i=1:NumOfExp

166



for j=1:NumOfRep
for k=1:NumOfSFA
filename=('"H:\kapach\Thesis\Experimiésv Algorithm 16042007\Experiments\Exp.");
filename=strcat(filename,int2str(Exp(i);
filename=strcat(flename,'Rep.",intgstk);
filename=strcat(filename,'PPGM',intgSFA_Code(k)),".data’);
fid=fopen(filename,'r");
for rows=1:107
for cols=1:48
SFA_Maps(k,i,j,rows,cols)=fsfdid,'%d",1);
if SFA_Maps(k,i,j,rows,cols)~=0
SFA_Maps(k,i,j,rows,cols)=1
end %if
end %for cols
end
fclose(fid);
end
end
end

function PM=PM_Calc(SFA_Maps);
96************************************************** kkkkkkkkkkkkk
%This function calculates the Sensor's fusion algms performance measures.
%The four PM are calculated according to the egaige 34.

96************************************************** kkkkkkkkkkkkk

%Constructing the TM
TM=truth_map;
[m,NumOfExp]=size(Exp);
NumOfRep=7;
NumOfSFA=5;
NumOfPM=4;
SFA_Code=[1:5];

PM=zeros(NumOfSFA,NumOfExp,NumOfRep,NumOfPM);

%Explanation for the PM matrix:

%The Matrix has 4 dimentions:

% The 1st dimention is the num. of SFA- 1- ORARID, 3- MOST, 4- AFL

% The second dimention is the number of exp., ltfrd {s the num of rep..

% The fifth dimention is 4, one cell for each PM the following order: OO,EE,OE,EO

GSize=107*48; %Global grid map's dimensions.
global O_tm E_tm

One_Count=0;

Zero_Count=0;

Occ_Coeff=0;

Empty_Coeff=0;

% GGM=zeros(4,160,48);
%

% GGM(1,:,:)=OR_map;

% GGM(2,:,:)=AND_map;
% GGM(3,:,:)=MOST_map;
% GGM(4,:,:)=AFL_map;

%figure(2);

% subplot(1,4,1); imshow(~OR_map); title('OR map";

167



% subplot(1,4,2); imshow(~AND_map); title("AND mgp'
% subplot(1,4,3); imshow(~MOST_map); title(MOST pha
% subplot(1,4,4); imshow(~AFL_map); title(AFL map'

%Counting the numbers of '1' and '0' in TM
O_tm=0;
[m,n]=size(TM);

fori=1:m
for j=1:n
if(TM(i,j)~=0)
TM(i,j)=1;
O_tm=0_tm+1;
end
end
end
E_tm=GSize-O_tm;

for i=1:NumOfSFA
for j=1:NumOfExp
for k=1:NumOfRep
One_Count=0;
for rows=1:m
for cols=1:n
if SFA_Maps(i,j,k,rows,cols)~=0

One_Count=0One_Count+1; %timg the num. of signed cells for each SFA map

end %if
end %cols
end %rows
Zero_Count=GSize-One_Count;

if (O_tm==0ne_Count)& (O_tm==0) %Calatihg Occupy_Coeff for the current map

Occ_Coeff=0;

elseif (One_Count/O_tm<=1) & (One_Cd0Ontm>=0)
Occ_Coeff=One_Count/O_tm;

else
Occ_Coeff=0_tm/One_Count;

end

if (O_tm==Zero_Count) & (O_tm==GSizeC#lculating Empty_ Coeff for the current map

Empty_Corff=Occ_Coeff;
elseif (Zero_Count/E_tm <=1) & (Zero \®WE_tm>=0)
Empty_Coeff=Zero_Count/E_tm;
else
Empty_Coeff=E_tm/Zero_Count;
end
%Calculating the four PM for the cuitremap
% OO0
if (O_tm>0)
OO=Calc_00O(squeeze(SFA_Maps(i,j)k,TM);
else %0O0=EE
OO=Calc_EE(squeeze(SFA_Maps(i,j)k,TM);
end
PM(i,j,k,1)=0cc_Coeff*OO0;

%Calculating EE

if (E_tm>0)
EE=Calc_EE(squeeze(SFA_Maps(i,j)k,TM);

else
EE=Calc_OO(squeeze(SFA_Maps(i,j)k,TM);

end

168



PM(i,j,k,2)=Empty_Coeff*EE;

%Calculating OE

if (E_tm>0)
OE=Calc_OE(squeeze(SFA_Maps(i,j)k,TM);

else
OE=1-Calc_0OO(squeeze(SFA_Maps(i,j)kTM);

end

PM(i,j,k,3)=(1-Empty_Coeff)*OE;

%Calculating EO

if (O_tm>0)
EO=Calc_EO(squeeze(SFA_Maps(i,j)k,TM);

else
EO=1-Calc_EE(squeeze(SFA_Maps(i,jkTM);

end

PM(i,j,k,4)=(1-Occ_Coeff)*EO;

end %k
end %;j
end %i

96********************************

% Writing the PM into files
96********************************
for i=1:NumOfExp
filename=("H:\kapach\Thesis\Experiments\Newokithm 16042007\Experiments\PM\");
filename=strcat(filename,int2str(Exp(i)),"Jxt'
fid=fopen(filename,'wt’);
for j=1:NumOfRep
text="Repetition ';
text=strcat(text,int2str(j), * \n";
fprintf(fid,text,\n");
% text= OO EE OE EO
% fprintf(fid,text);
% fprintf(fid, \n");
for k=1:NumOfSFA

% if (k==1) fprintf(fid, 'OR ");

% elseif (k==2) fprintf(fid, * AND ");
% elseif (k==3) fprintf(fid, ' MOST ;)
% elseif (k==4) fprintf(fid, ' AFL");
% end

for m=1:NumOfPM
fprintf(fid,'%4.3f' ,PM(k,i,j,m));
fprintf(fid, ' *);
end
fprintf(fid,"\n");
end
fprintf(fid,"\n\n");
end
fclose(fid);
end

96************************************

% SUB-FUNCTIONS

96************************************

function OO1= Calc_OO(A,TM)
%Calculates the number of '1' in GGM and TM devidgdhe num. of '1'in TM
global O_tm

169



[row,col]=size(A);

temp=0;

for m=1:row
for n=1:col
temp=temp+A(m,n)*TM(m,n);
end

end

OO01=temp/O_tm;

%************************************************** kkkkkkkkkkkkkkkkkkkhkkkkhkkkhkkkkhkkkk

function EE1=Calc_EE(A,TM)
%Calculates the number of '0' in GGM and TM devidgdhe num. of '0'in TM
global E_tm
[row,col]=size(A);
temp=0;
for m=1:row

for n=1:col

temp=temp+(1-A(m,n))*(1-TM(m,n));

end

end

EEl1=temp/E_tm;

%************************************************** kkkkkkkkkkkkkkkkkkkhkkkkhkkkhkkkkhkkkk

function OE1=Calc_OE(A,TM)
%Calculates the num. of '1'in GGM and '0' in TMided by the num. of '0'in TM
global E_tm
[row,col]=size(A);
temp=0;
for m=1:row
for n=1:col
temp=temp+A(m,n)*(1-TM(m,n));
end
end
OEl=temp/E_tm;

%n * *%k%k * *% * *k%k * *% * * * *% * *%k%k * *%

function EO1=Calc_EO(A,TM)
%Calculates the num. of '0'in GGM and '1' in TMided by the num. of '1'in TM
global O_tm
[row,col]=size(A);
temp=0;
for m=1:row
for n=1:col
temp=temp+((1-A(m,n))*TM(m,n));
end
end
EO1=temp/O_tm;

%n * *%k%k *% * *k%k * *% * * * *% * *%k%k * *%

170



function [MaxExp,MaxRep]=CheckMaps(LS_Maps)
%************************************************** kkkkkkkkkkkkhkkkkkkkkkkkkx
%This function calculates the max. number of sigoelts

% for every comparison between different experiraamid repetitions

% in order to determine if the experiments areedé@ht enough

%n * *%k% * *% * *%k% * *% * * * *% * *%k*k *
Exp=[1:1:14];

[m,NumOfExp]=size(Exp);

NumOfRep=10;

NumOfLS=7;

%Copying the LS_Maps to Maps matrix
Maps=zeros(NumOfLS,NumOfExp,NumOfRep,107,48);

for i=1:NumOfExp
Maps(:,i,:,:,:)=LS_Maps(,Exp(i),:,:,:);
end

%Structure of the maps array:
%maps[NumOfLS][NumOfExp][NumOfRep][160][48]

%SubMaps=zeros(NumOfLS,NumOfExp,160,48);
SignedCells=zeros(NumOfLS,NumOfExp,NumOfRep);

*kkk Kk * *% * Kk
0

% Different experiments
%n * *kk * *% * *kk
%Calculation of the number of sighned cells forrgvamparison between
% the different experiments.
%for each experiment between every two rep., eagicdl sensor's map from
%one repetition is compared to all other LS mapmfthe other repetition.
%i.e, for LS1 - Expl. Repl. is compared with Exp2.
%Repl.,Exp2.Rep2.,Exp2.Rep3 and so on.
ExpSignedCells=zeros(NumOfLS,NumOfExp-1,NumOfRepiiQIExp,NumOfRep);
NumOfCompExp=0;
for i=1:NumOfLS
for j=1:(NumOfExp-1)
for k=1:NumOfRep
for I=(j+1):NumOfExp
for m=1:NumOfRep
SubMaps=abs(Maps(i,j,k,:,:)-Mép,m,:,?));
counter=one_count(squeeze(Syis))a
ExpSignedCells(i,j,k,l,m)=coant
NumOfCompExp=NumOfCompExp+1;
end
end
end
end
end

NumOfCompExp

%Finding the max value for each comparison for d&&h

%for each comparison, the maximum difference ot 8lis saved.

%i.e for the comp. between Expl.Repl. and Exp2Réipe max. difference
%from all LS is saved.
MaxExp=zeros(NumOfExp-1,NumOfRep,NumOfExp,NumOfRep)

171



IndexExp=zeros(NumOfExp-1,NumOfRep,NumOfExp,NumQiRe

for j=1:(NumOfExp-1)
for k=1:NumOfRep
for I=(j+1):NumOfExp
for m=1:NumOfRep
for i=1:NumOfLS
if ExpSignedCells(i,j,k,l,m)>Maxp(j,k,I,m)
MaxExp(j,k,I,m)=ExpSignedIsé,j,k,I,m);
IndexExp(j,k,1,m)=i;
end
end
end
end
end
end

% MaxExp=reshape(MaxExp, 1, (NumOfExp-1)*NumOfRepthOfEXp*NumOfRep);
%n * *kk * *% * *kk
% Different repetitions
%********************************
%Calculation of the number of sighned cells forrg\aamparison between
% the repetitions
%for each exp., each LS map is compared to alko# in pairs.e.g -
%LS1 expl. rep.1. with expl.rep2., expl.rep3.,aepl. and so on.
RepSignedCells=zeros(NumOfLS,NumOfExp,NumOfRep-mi@iRep);
NumOfCompRep=0;
for i=1:NumOfLS
for j=1:NumOfExp
for k=1:(NumOfRep-1)
for m=(k+1):NumOfRep
SubMaps=Maps(i,j,k,:,:)-Maps(i,j;m;
NumOfCompRep=NumOfCompRep+1;
counter=one_count(squeeze(SubMaps))
RepSignedCells(i,j,k,m)=counter;
end
end
end
end
NumOfCompRep

%For each exp. and each comp., the maximum vahalfaS is saved.
MaxRep=zeros(NumOfExp,NumOfRep-1,NumOfRep);
IndexRep=zeros(NumOfExp,NumOfRep-1,NumOfRep);

for i=1:NumOfExp
for j=1:NumOfRep-1
for k=(j+1):NumOfRep
for m=1:NumOfLS
if RepSignedCells(m,i,j,k)>MaxRepk)
MaxRep(i,j,k)=RepSignedCells(jik);
IndexRep(i,j,k)=m;
end
end
end
end
end

172



function one_count=one_count(GridMap)
%********************************

%this function counts the num. of cells that areTNk@ro

% and turns the maps into binary maps.
%n * *%k% * *% * *%k%

one_count=0;
[n,m]=size(GridMap);

fori=1:n
for j=1:m
if (GridMap(i,j)~=0)
one_count=one_count+1;
end
end
end

function VOLR=ChoosingExp(MaxExp,MaxRep,NumOfChoserExp)
%************************************************** *kkkkkkk
%This function takes all the experiments combiratiand calculates the
%VOLR for each one of the combinations.

%n * *%k%k * *% * *k%k * *% * * *kkkkkkk

NumOfRep=10;

% NumOfChosenExp=5;

%Building the Exp vector

A=[1:14];
Exp_Comb=nchoosek(A,NumOfChosenExp);
[rows,cols]=size(Exp_Comb);

count=0;
VOLR=zeros(rows,1+NumOfChosenExp+4);

for comb_num=1:rows
%building the MaxExp1 array that contains thennof signed cells from the
% comparisons between the different experiments
%MaxExpl is a 2-D array with dimentions ((Nun@®bsenExp-
1)*NumOfRep,NumOfExpChosen*NumOfRep)

%Choosing the wanted experiments from the Max&rxay
Exp=Exp_Comb(comb_num,:);
Exp=[1,6,10,11,12,13,14];

[m,n]=size(Exp);

%Creating the first row

MaxExpl=squeeze(MaxExp(Exp(1),:,Exp(1),:));

fori=2:n
MaxExpl=[MaxExpl,squeeze(MaxExp(Exp(1),p&x:))I;

end

%Creating the rest of the rows
for i=2:(n-1)

temp=squeeze(MaxExp(Exp(i),:,Exp(1),3));

for j=2:n

temp=[temp,squeeze(MaxExp(Exp(i),:,Expil;

end %j

MaxExpl=[MaxExpl;temp];
end %i
MaxExpl=reshape(MaxExpl,1,(NumOfChosenExp-1)yffRep*NumOfChosenExp*NumOfRep);
% MaxExpl=reshape(MaxExp1l,1,(n-1)*10*n*10);

173



%building the MaxRepl array that contains thmnof signed cells from the
%comparisons between the different repetitions.

%MaxRepl is a 2-D array with dimentions ((Nurk@p-1)*10,NumOfRep)
MaxRepl=squeeze(MaxRep(Exp(1),:,:));

for i=2:n
temp=squeeze(MaxRep(Exp(i),:,:));
MaxRepl=[MaxRepl;temp];
end
MaxRepl=reshape(MaxRep1l,1,(NumOfRep-1)*NumO&amExp*NumOfRep);
temp=zeros(1,4);
[f,temp(1),temp(2),temp(3),temp(4)]=VOLR_CalcdkExpl,MaxRepl);
VOLR(comb_num,1)=f;
VOLR(comb_num,2:8)=Exp;
VOLR(comb_num,9)=temp(1);
VOLR(comb_num,10)=temp(2);
VOLR(comb_num,11)=temp(3);
VOLR(comb_num,12)=temp(4);

VOLR=sortrows(VOLR,1);

function [f,Min_Exp,Max_Exp,Min_Rep,Max_Rep]=VOLR Calc(MaxExp MaxRep)
%**************************************************

% This function calculated the volume of over lagion for each

% experiments set usmg the MaxExp and MaxRep vecto

%n * *%k%k * *% *k%k * *% * * *

MaxExp=sort(MaxExp);
MaxRep=sort(MaxRep);
[m,n]=size(MaxExp);

i=1;

while(MaxExp(i)==0)
i=i+1;

end

Min_Exp=MaxExp(i);
Max_Exp=MaxExp(n);

[m,n]=size(MaxRep);

i=1;

while (MaxRep(i)==0)
i=i+1;

end

Min_Rep=MaxRep(i);
Max_Rep=MaxRep(n);

f=(min(Max_Exp,Max_Rep)-max(Min_Exp,Min_Rep))/(mddéx_Exp,Max_Rep)-min(Min_Exp,Min_Rep));

function truth map truth - map;
%n * *k*k *% *%k% * *% *

%This function creates the truth world map of tkperiment
%n * *%k*k * *% * *%k% * *%

TM=zeros(107,48);
%Coordinates of the Center of mass of each obstable

x=[21,45,20,43,79];
y=[40,39,11,7,22];

174



[n,m]=size(x);

fori=1:m
x(1)=x(i)*5;
y()=y()*5;
end

%drawing the center of the obstacles
% for i=1:m

% TM(x(0).y())=1;

% end

%drawing a circle around the center of the obstacle
for i=1:m
for k=1:1:15
for theta=0:20:360
phi=pi/180*theta;
xTag=k*cos(phi);
yTag=k*sin(phi);
x0=xTag+x(i);
yO=yTag+y(i);
x1=round(x0/5);
y1=round(y0/5);
if (x1>=1 & x1<=160 & y1>=1 & y1<=48)
TM(x1,y1)=TM(x1,y1)+1;
end
end
end
end
truth_map=TM,;

175



Appendix VII1 Raw data for extended fusion framework experimental set

Performance measure
Experiment | Algorithm | Repetition | OO EE OE EO

1 0.038 0 0.9988 0
2 0.038 0 0.9988 0
3 0.038 0 1 0
OR 4 0.038 0 1 0
5 0.038 0 1 0
6 0.038 0 1 0
7 0.038 0 1 0
1 0 0.962 0 1
2 0 0.962 0 1
3 0 0.962 0 1
AND 4 0 0.962 0 1
5 0 0.962 0 1
6 0 0.962 0 1
1 7 0 0.962 0 1
1 0.0121 | 0.9652] 0.0001 0.7864
2 0.0044 | 0.9632] 0.0001 0.8454
3 0.0016 | 0.9627] 0.0001  0.904/L
MOST 4 0.0057 | 0.9636] 0.000] 0.8364
5 0.0109 | 0.9643] 0.0001 0.780R
6 0.0188 | 0.9651] 0.0002 0.716p
7 0.019 0.9655] 0.0001 0.726}
1 0.0121 | 09652 0.0001 0.786}
2 0.0044 | 0.9632] 0.0001 0.8454
3 0.0016 | 0.9627] 0.0001  0.904/L
AFL 4 0.0057 | 0.9636| 0.000] 0.83604
5 0.0109 | 0.9643] 0.0001 0.780R
6 0.0188 | 0.9651] 0.0002 0.716p
7 0.019 0.9655| 0.0001 0.726}

Performance measure

Experiment | Algorithm | Repetition | OO EE OE EO
1 0.038 0 1 0
2 0.038 0 1 0
3 0.038 0 1 0
OR 4 0.038 0 1 0
5 0.038 0 1 0
6 0.038 0 1 0
7 0.038 0 1 0
1 0 0.962 0 1
2 0 0.962 0 1
3 0 0.962 0 1
AND 4 0 0.962 0 1
5 0 0.962 0 1
6 0 0.962 0 1
2 7 0 0.962 0 1
1 0.0048 | 0.9634] 0.000]  0.8459
2 0.0028 | 0.9631] 0.000]  0.8798
3 0.0018 | 0.9627] 0.0001  0.8941
MOST 4 0.0046 | 0.9634] 0.000]  0.850B
5 0.011 | 0.9646] 0.0001 0.7854
6 0.005 | 0.9634] 0.0001  0.840¢
7 0.0032 | 0.9631] 0.0001  0.8698
1 0.3513 | 0.9754] 0.0001  0.0385
2 0.3654 | 0.9751 0 0.0064
3 0.3648 | 0.9753 0 0.016
AFL 4 0.3511 | 0.9758] 0.000]  0.053p
5 0.4475| 0.979 0 0.0214
6 0.3111 | 0.9748] 0.000]  0.0855
7 0.323 0.975 | 0.0001  0.071f

176



Performance measure
Experiment | Algorithm | Repetition 00 EE OE EO
1 0.038 0 1 0
2 0.038 0 1 0
3 0.038 0 1 0
OR 4 0.0383 0.0001 0.9807 0
5 0.0383 0.0001 0.9807 0
6 0.038 0 1 0
7 0.0383 0.0001 0.9807 0
1 0 0.962 0 1
2 0 0.962 0 1
3 0 0.962 0 1
AND 4 0 0.962 0 1
5 0 0.962 0 1
6 0 0.962 0 1
3 7 0 0.962 0 1
1 0.0792 0.9683 0.0002 0.4584
2 0.107 0.9711 0.0002 0.43
3 0.059 0.9682 0.0002 0.5467
MOST 4 0.0511 0.9673 0.0002 0.5584
5 0.054 0.9687 0.0001 0.577
6 0.095 0.9699 0.0002 0.4437
7 0.0525 0.9689 0.0001 0.5854
1 0.3868 0.9703 0.0001 0.0464
2 0.3416 0.9743 0 0.0134
3 0.287 0.9725 0.0001 0.0358
AFL 4 0.3718 0.976 0 0.0282
5 0.2902 0.9732 0.0001 0.0595
6 0.4573 0.9774 0 0.0107
7 0.2823 0.973 0.0001 0.067
Performance measure
Experiment | Algorithm | Repetition 00 EE OE EO
1 0.038 0 1 0
2 0.038 0 1 0
3 0.038 0 1 0
OR 4 0.038 0 1 0
5 0.038 0 1 0
6 0.038 0 1 0
7 0.038 0 1 0
1 0 0.962 0 1
2 0 0.962 0 1
3 0 0.962 0 1
AND 4 0 0.962 0 1
5 0 0.962 0 1
6 0 0.962 0 1
4 7 0 0.962 0 1
1 0.2172 0.907 0.0021 0.279
2 0.2119 0.9018 0.0024 0.2874
3 0.2825 0.9311 0.0011 0.2071
MOST 4 0.3346 0.9484 0.0006 0.151
5 0.2852 0.9464 0.0006 0.168]
6 0.2652 0.9256 0.0013 0.2244
7 0.2767 0.9297 0.0012 0.2127
1 0.2172 0.907 0.0021 0.279
2 0.2119 0.9018 0.0024 0.2875
3 0.2825 0.9311 0.0011 0.2071
AFL 4 0.3346 0.9484 0.0006 0.151
5 0.2852 0.9464 0.0006 0.168]
6 0.2652 0.9256 0.0013 0.2244
7 0.2767 0.9297 0.0012 0.2127

177



Performance measure
Experiment | Algorithm | Repetition 00 EE OE EO
1 0.038 0 1 0
2 0.038 0 1 0
3 0.038 0 1 0
OR 4 0.038 0 1 0
5 0.038 0 1 0
6 0.038 0 1 0
7 0.038 0 1 0
1 0 0.962 0 1
2 0 0.962 0 1
3 0 0.962 0 1
AND 4 0 0.962 0 1
5 0 0.962 0 1
6 0 0.962 0 1
5 7 0 0.962 0 1
1 0.3192 0.9671 0.0001 0.055
2 0.3065 0.9713 0 0.0138
3 0.3433 0.9721 0 0.0193
MOST 4 0.3067 0.9625 0.0002 0.0862
5 0.3592 0.9711 0.0001 0.033]
6 0.2676 0.9713 0 0.0112
7 0.318 0.9657 0.0001 0.0655
1 0.2079 0.8695 0.0045 0.2897
2 0.1953 0.8717 0.0043 0.3094
3 0.2143 0.8765 0.004 0.2844
AFL 4 0.2108 0.8576 0.0054 0.2747
5 0.2298 0.8708 0.0044 0.2564
6 0.1832 0.873 0.0042 0.327
7 0.2144 0.8593 0.0052 0.2702
Performance measure
Experiment | Algorithm | Repetition 00 EE OE EO
1 0.038 0 1 0
2 0.038 0 1 0
3 0.038 0 1 0
OR 4 0.038 0 1 0
5 0.038 0 1 0
6 0.038 0 1 0
7 0.038 0 1 0
1 0 0.962 0 1
2 0 0.962 0 1
3 0 0.962 0 1
AND 4 0 0.962 0 1
5 0 0.962 0 1
6 0 0.962 0 1
6 7 0 0.962 0 1
1 0.2964 0.9725 0 0.0143
2 0.3333 0.9707 0.0001 0.0287
3 0.3754 0.9764 0.0001 0.0364
MOST 4 0.3627 0.9719 0 0.0274
5 0.343 0.9745 0 0.0199
6 0.3448 0.9715 0 0.0253
7 0.3744 0.9753 0 0
1 0.2964 0.9725 0 0.0143
2 0.3333 0.9707 0.0001 0.0287
3 0.3754 0.9764 0.0001 0.0364
AFL 4 0.3627 0.9719 0 0.0274
5 0.343 0.9745 0 0.0199
6 0.3448 0.9715 0 0.0253
7 0.3744 0.9753 0 0

178



Performance measure
Experiment | Algorithm | Repetition 00 EE OE EO

1 0.22551 0.81768 0.009139 0.17865

2 0.214 0.77953 0.013697 0.12564

3 0.16511 0.74157 0.019246 0.21369

OR 4 0.18265 0.73724 0.019972 0.13953
5 0.17493 0.78433 0.013028 0.25505

6 0.15926 0.70492 0.025709 0.16786

7 0.19831 0.83198 0.007653 0.2678

1 0.000657 0.96297 0 0.94938

2 0.005444 0.96362 9.53E-05 0.84134

3 0.000657 0.96297 0 0.94938

AND 4 0.000947 0.96316 0 0.93941
5 0.004471 0.96386 4.93E-05 0.86601]

6 0.00355 0.96368 4.27E-05 0.88047,

7 7 0.004734 0.96385 5.60E-05 0.86114
1 0.29507 0.97445 0.000118 0.1002

2 0.37365 0.97553 1.45E-05 0.00954¢

3 0.2784 0.97429 0.000137 0.12455

MOST 4 0.25247 0.97287 0.000142 0.12426
5 0.17988 0.9699 0.000187 0.16963

6 0.22974 0.97122 0.000128 0.10154

7 0.19282 0.97028 0.000173 0.15179

1 0.41584 0.97474 3.38E-05 0.01972¢

2 0.39474 0.96558 0.000187 0.077935

3 0.40097 0.97653 9.34E-06 0.006101

AFL 4 0.36092 0.97534 3.29E-05 0.022459
5 0.21964 0.97037 0.000108 0.0811838

6 0.3048 0.97291 2.64E-05 0.01762

7 0.23406 0.97075 8.88E-05 0.06482f

179



Appendix IX Statistical evauation - Friedman’s ranking

Experiment 1

Sensor fusion algorithm

Experiment 1

Sensor fusion algorithm

Performance | oo ciiion | OR | AND | MOST | AFL Performance | oo oiiion | OR | AND | MOST | AFL
measure measure

1 4 1 2.5 2.5 1 1 2 3.5 3.5
2 4 1 2.5 2.5 2 1 2 35 3.5
3 4 1 2.5 2.5 3 1 2 35 3.5
00 4 4 1 2.5 2.5 EE 4 1 2 35 3.5
5 4 1 2.5 2.5 5 1 2 35 3.5
6 4 1 2.5 2.5 6 1 2 35 3.5
7 4 1 2.5 2.5 7 1 2 35 3.5
sumof | g | 7 175 | 175 Sum of 7 14 245 | 245

ranks ranks
Experiment 1 Experiment 1
Sensor fusion algorithm Sensor fusion algorithm
Performance | oo oiiion | OR | AND | MOST | AFL Performance | oo oiition | OR | AND | MOST | AFL
measure measure

1 1 4 2.5 2.5 1 1 4 2.5 2.5
2 1 4 2.5 2.5 2 1 4 2.5 2.5
3 1 4 2.5 2.5 3 1 4 2.5 2.5
OE 4 1 4 2.5 2.5 EO 4 1 4 2.5 2.5
5 1 4 2.5 2.5 5 1 4 2.5 2.5
6 1 4 2.5 2.5 6 1 4 2.5 2.5
7 1 4 2.5 2.5 7 1 4 2.5 2.5
Sumof | o | o9 175 | 175 Sum of 7 28 175 | 175

ranks ranks

180




Experiment 2

Sensor fusion algorithm

Experiment 2

Sensor fusion algorithm

Performance | oo atition | OR | AND | MOST | AFL Performance | oo otiion | OR | AND | MOST | AFL
measure measure

1 3 1 2 4 1 1 2 3 4
2 3 1 2 4 2 1 2 3 4
3 3 1 2 4 3 1 2 3 4
00 4 3 1 2 4 EE 4 1 2 3 4
5 3 1 2 4 5 1 2 3 4
6 3 1 2 4 6 1 2 3 4
7 3 1 2 4 7 1 2 3 4

sumof | 5 | 5 14 28 sumof | o | g4 21 28

ranks ranks
Experiment 2 Experiment 2
Sensor fusion algorithm Sensor fusion algorithm
performance | poetiion | OR | AND | MOST | AFL Performance | poetition | OR | AND | MOST | AFL
measure measure

1 1 4 2.5 2.5 1 4 1 2 3
2 1 | 35 2 3.5 2 4 1 2 3
3 1 | 35 2 3.5 3 4 1 2 3
OE 4 1 4 2.5 2.5 EO 4 4 1 2 3
5 1 | 35 2 3.5 5 4 1 2 3
6 1 4 2.5 2.5 6 4 1 2 3
7 1 4 2.5 2.5 7 4 1 2 3

sumof | 5 | 265| 16 | 205 sumof | o5 | 7 14 21

ranks ranks

181




Experiment 3

Sensor fusion algorithm

Experiment 3

Sensor fusion algorithm

Performance | oo otiion | OR | AND | MOST | AFL Performance | oo otiion | OR | AND | MOST | AFL
measure measure

1 2 1 3 4 1 1 2 3 4
2 2 1 3 4 2 1 2 3 4
3 2 1 3 4 3 1 2 3 4
00 4 2 1 3 4 EE 4 1 2 3 4
5 2 1 3 4 5 1 2 3 4
6 2 1 3 4 6 1 2 3 4
7 2 1 3 4 7 1 2 3 4

sumof |, 1 21 28 sumof | o |4, 21 28

ranks ranks
Experiment 3 Experiment 3
Sensor fusion algorithm Sensor fusion algorithm
Performance | oo atition | OR | AND | MOST | AFL Performance | oo otiion | OR | AND | MOST | AFL
measure measure

1 1 4 2 3 1 4 1 2 3
2 1 4 2 3 2 4 1 2 3
3 1 4 2 3 3 4 1 2 3
OE 4 1 4 2 3 EO 4 4 1 2 3
5 1 4 2 3 5 4 1 2 3
6 1 4 2 3 6 4 1 2 3
7 1 4 2 3 7 4 1 2 3

Sum of 7 28 14 21 Sum of 28 7 14 21

ranks ranks

182




Experiment 4

Sensor fusion algorithm

Experiment 4

Sensor fusion algorithm

Performance | oo otiion | OR | AND | MOST | AFL Performance | oo otiion | OR | AND | MOST | AFL
measure measure

1 2 1 35 35 1 1 4 25 25
2 2 1 35 35 2 1 4 25 2.5
3 2 1 35 35 3 1 4 25 2.5
00 4 2 1 3.5 35 EE 4 1 4 25 2.5
5 2 1 35 35 5 1 4 25 2.5
6 2 1 35 35 6 1 4 25 2.5
7 2 1 35 35 7 1 4 25 2.5
sumof |, , 7 245 | 245 Sum of 7 28 175 | 175

ranks ranks
Experiment 4 Experiment 4
Sensor fusion algorithm Sensor fusion algorithm
Performance | oo atition | OR | AND | MOST | AFL Performance | oo otiion | OR | AND | MOST | AFL
measure measure

1 1 4 25 25 1 4 1 25 25
2 1 4 25 25 2 4 1 25 2.5
3 1 4 25 25 3 4 1 25 2.5
OE 4 1 4 25 25 EO 4 4 1 25 2.5
5 1 4 25 25 5 4 1 25 2.5
6 1 4 25 25 6 4 1 25 2.5
7 1 4 25 25 7 4 1 25 2.5
Sum of 7 28 175 | 175 Sum of 28 7 175 | 175

ranks ranks

183




Experiment 5

Sensor fusion algorithm

Experiment 5

Sensor fusion algorithm

Performance
measure

Repetition

OR

AND | MOST | AFL

Performance
measure

Repetition

OR

AND | MOST | AFL

o]0

N[OOI A |WIN(F

NININININININ

BB RS E N S
WWWWwww

EE

\lCD(J'I-bOOI\)'_‘

NN R IR

wlw|w|w|w|w|®
INFSINFSININES
NIINJINIINTINIIN

Sum of
ranks

N R|R|Rr|Rr|Rr|k| e

28 21

Experiment 5

Sensor fusion algorithm

Sum of
ranks

21 28 14

Experiment 5

Sensor fusion algorithm

Performance
measure

Repetition

OR

AND | MOST | AFL

Performance
measure

Repetition

OR

AND | MOST | AFL

OE

N|IO|OARIWIN|F-

R R R E S
WWwwlwlww
NIN[NININININ

EO

1 3 2

\lO)U‘I-bOOI\)H

bbb#bbh

NN IR
wlw|w|w|w|w
N[NNI N

Sum of
ranks

N R R R PRk~

184

Sum of
ranks

28




Experiment 6

Sensor fusion algorithm

Experiment 6

Sensor fusion algorithm

Performance | oo otiion | OR | AND | MOST | AFL Performance | oo otiion | OR | AND | MOST | AFL
measure measure

1 2 1 35 35 1 1 2 35 35
2 2 1 35 35 2 1 2 35 35
3 2 1 35 35 3 1 2 35 35
00 4 2 1 3.5 35 EE 4 1 2 35 35
5 2 1 35 35 5 1 2 35 3.5
6 2 1 35 35 6 1 2 35 3.5
7 2 1 35 35 7 1 2 35 3.5
sumof |, , 7 245 | 245 Sum of 7 14 245 | 245

ranks ranks
Experiment 6 Experiment 6
Sensor fusion algorithm Sensor fusion algorithm
Performance | oo atition | OR | AND | MOST | AFL Performance | oo otiion | OR | AND | MOST | AFL
measure measure

1 1 4 25 25 1 4 1 25 25
2 1 4 25 25 2 4 1 25 2.5
3 1 4 25 25 3 4 1 25 2.5
OE 4 1 4 25 25 EO 4 4 1 25 2.5
5 1 4 25 25 5 4 1 25 2.5
6 1 4 25 25 6 4 1 25 2.5

7 1 3 3 3 7 3 1 3 3

Sum of 7 27 18 18 Sum of 27 7 18 18

ranks ranks

185




Experiment 7

Sensor fusion algorithm

Experiment 7

Sensor fusion algorithm

Performance | oo otiion | OR | AND | MOST | AFL Performance | oo otiion | OR | AND | MOST | AFL
measure measure

1 2 1 3 4 1 1 2 3 4
2 2 1 3 4 2 1 2 4 3
3 2 1 3 4 3 1 2 3 4
00 4 2 1 3 4 EE 4 1 2 3 4
5 2 1 3 4 5 1 2 3 4
6 2 1 3 4 6 1 2 3 4
7 3 1 2 4 7 1 2 3 4

sumof | 4o | 20 28 sumof | o |4, 22 27

ranks ranks
Experiment 7 Experiment 7
Sensor fusion algorithm Sensor fusion algorithm
Performance | oo atition | OR | AND | MOST | AFL Performance | oo otiion | OR | AND | MOST | AFL
measure measure

1 1 4 2 3 1 2 1 3 4
2 1 3 4 2 2 2 1 3 4
3 1 4 2 3 3 2 1 3 4
OE 4 1 4 2 3 EO 4 2 1 3 4
5 1 4 2 3 5 2 1 3 4
6 1 4 2 3 6 2 1 3 4
7 1 4 2 3 7 2 1 3 4

Sum of 7 27 16 20 Sum of 14 7 21 28

ranks ranks

186




Appendix X Statistial evaluation - Multiple comparison procedure

Experiment 1
OO measure EE measure
Ser_lsor Sum of Sub Sensor fusion| Sum of
fusion . Sub groups
. ranks groups algorithm ranks
algorithm
OR 28 A MOST 24.5 A
MOST 17.5 A B AFL 24.5 A
AFL 17.5 A B AND 14 A B
AND 7 B OR 7 B
OE measure EO measure
Ser_lsor Sum of Sub Sensor fusion| Sum of
fusion . Sub groups
) ranks groups algorithm ranks
algorithm
AND 28 A AND 28 A
MOST 17.5 A B MOST 17.5 A B
AFL 17.5 A B AFL 17.5 A B
OR 7 B OR 7 B
Experiment 2
OO measure EE measure
Sef?sor Sum of Sub Sensor fusion| Sum of
fusion . Sub groups
. ranks groups algorithm ranks
algorithm
AFL 28 A AFL 28 A
OR 21 A B MOST 21 A B
MOST 14 A B AND 14 A B
AND 7 B OR 7 B
OE measure EO measure
Ser_lsor Sum of Sub Sensor fusion| Sum of
fusion . Sub groups
. ranks groups algorithm ranks
algorithm
AND 26.5 A OR 28 A
AFL 20.5 A B AFL 21 A B
MOST 16 A B MOST 14 A B
OR 7 B AND 7 B

187




Experiment 3

OO measure EE measure
Serjsor Sum of Sensor fusion| Sum of
fusion Sub groups . Sub groups
) ranks algorithm ranks
algorithm
AFL 28 A AFL 28 A
MOST 21 A B MOST 21 A B
OR 14 A B AND 14 A B
AND 7 B OR 7 B
OE measure EO measure
Sensor Sum of Sensor fusion| Sum of
fusion Sub groups . Sub groups
) ranks algorithm ranks
algorithm
AND 28 A OR 28 A
AFL 21 A B AFL 21 A B
MOST 14 A B MOST 14 A B
OR 7 B AND 7 B
Experiment 4
OO measure EE measure
Sef?sor Sum of Sub Sensor fusion| Sum of
fusion . Sub groups
) ranks groups algorithm ranks
algorithm
MOST 24.5 A AND 28 A
AFL 24.5 A B MOST 17.5 A B
OR 14 A B AFL 17.5 A B
AND 7 B OR 7 B
OE measure EO measure
Sef?sor Sum of Sub Sensor fusion| Sum of
fusion . Sub groups
) ranks groups algorithm ranks
algorithm
AND 28 A OR 28 A
MOST 17.5 A B MOST 17.5 A B
AFL 17.5 A B AFL 17.5 A B
OR 7 B AND 7 B

188




Experiment 5

OO measure EE measure
Sef?sor Sum of Sub Sensor fusion| Sum of
fusion . Sub groups
) ranks groups algorithm ranks
algorithm
MOST 28 A MOST 28 A
AFL 21 A B AND 21 A B
OR 14 A B AFL 14 A B
AND 7 B OR 7 B
OE measure EO measure
Sef?sor Sum of Sub Sensor fusion| Sum of
fusion . Sub groups
. ranks groups algorithm ranks
algorithm
AND 28 A OR 28 A
MOST 21 A B MOST 21 A B
AFL 14 A B AFL 14 A B
OR 7 B AND 7 B
Experiment 6
OO measure EE measure
Sensor Sum of Sub Sensor fusion| Sum of
fusion . Sub groups
) ranks groups algorithm ranks
algorithm
MOST 24.5 A MOST 24.5 A
AFL 24.5 A B AFL 24.5 A B
OR 14 A B AND 14 A B
AND 7 B OR 7 B
OE measure EO measure
Sef?sor Sum of Sub Sensor fusion| Sum of
fusion . Sub groups
. ranks groups algorithm ranks
algorithm
AND 27 A OR 27 A
MOST 18 A B MOST 18 A B
AFL 18 A B AFL 18 A B
OR 7 B AND 7 B

189




Experiment 7

OO measure EE measure
Sef?sor Sum of Sub Sensor fusion| Sum of
fusion : Sub groups
) ranks groups algorithm ranks
algorithm
AFL 28 A AFL 27 A
MOST 20 A B MOST 22 Al B
OR 15 A B AND 14 Al B| C
AND 7 B OR 7 C
OE measure EO measure
Sef?sor Sum of Sub Sensor fusion| Sum of
fusion , Sub groups
. ranks groups algorithm ranks
algorithm
AND 27 A AFL 28 A
AFL 20 A B MOST 21 A B
MOST 16 A B OR 14 A B
OR 7 B AND 7 B

190




Appendix Xl Statistical evaluation - Sign test reslis

Experiment 1
Performance measure
00 EE OE EO
Repetition MOST AFL MOST AFL MOST AFL MOST AFL 00 EE OF EO
1 0.0121 0.0121 0.9652 0.9652 0.0001 0.0001 0.78640.7864 Ties Ties Ties Ties
2 0.0044 0.0044 0.9632 0.9632 0.0001 0.0001 0.84540.8454 Ties Ties Ties Ties
3 0.0016 0.0016 0.9627 0.9627 0.0001 0.0001 0.90410.9041 Ties Ties Ties Ties
4 0.0057 0.0057 0.9636 0.9636 0.0001 0.0001 0.83640.8364 Ties Ties Ties Ties
5 0.0109 0.0109 0.9643 0.9643 0.0001 0.0001 0.78020.7802 Ties Ties Ties Ties
6 0.0188 0.0188 0.9651 0.9651 0.000p 0.0002 0.71620.7162 Ties Ties Ties Ties
7 0.019 0.019 0.9655 0.965pb 0.0001 0.0001 0.72p7 7260. Ties Ties Ties Ties
Ties Ties Ties Ties
Experiment 2
Performance measure
00 EE OE EO
Repetition MOST AFL MOST AFL MOST AFL MOST | AFL 00 EE OF EO
1 0.0048 0.3513 0.9634 0.9754 0.0001 0.0001 0.84590.0385 AFL AFL TIES AFL
2 0.0028 0.3654 0.9631 0.9751 0.0001 0 0.8798 6.006 AFL AFL AFL AFL
3 0.0018 0.3648 0.9627 0.9753 0.0001 0 0.8941 0.016 AFL AFL AFL AFL
4 0.0046 0.3511 0.9634 0.9758 0.0001 0.0001 0.85080.0536 AFL AFL TIES AFL
5 0.011 0.4475 0.9646 0.979 0.0001 0 0.7854 0.0219 AFL AFL AFL AFL
6 0.005 0.3111 0.9634 0.9748 0.0004 0.0001 0.8409 .0856 AFL AFL TIES AFL
7 0.0032 0.323 0.9631 0.97% 0.0001 0.0001 0.86p8 0710. AFL AFL TIES AFL
AFL AFL AFL AFL

191



Experiment 3

Performance measure

00 EE OE EO

Repetition MOST AFL MOST AFL MOST AFL MOST AFL 00 EE OE EO

1 0.0792 0.3868 0.9683 0.9703 0.000p 0.0001 0.45860.0465 AFL AFL AFL AFL

2 0.107 0.3416 0.9711 0.9743 0.000p 0 0.43 0.0134 FL A AFL AFL AFL

3 0.059 0.287 0.9682 0.972b 0.0002 0.0001 0.54p2 0358. AFL AFL AFL AFL

4 0.0511 0.3718 0.9673 0.976 0.000P 0 0.5588 0.0282 AFL AFL AFL AFL

5 0.054 0.2902 0.9687 0.9732 0.000L1L 0.0001 0.577 0598, AFL AFL TIES AFL

6 0.095 0.4573 0.9699 0.9774 0.0002 0 0.4437 0.0107 AFL AFL AFL AFL

7 0.0525 0.2823 0.9689 0.973 0.000L1L 0.0001 0.5859 .0670 AFL AFL TIES AFL

AFL AFL AFL AFL
Experiment 4
Performance measure
00 EE OE EO

Repetition MOST AFL MOST AFL MOST AFL MOST AFL 00 EE OE EO
1 0.2172 0.2172 0.907 0.907 0.0021 0.0021 0.279 790.2 Ties Ties Ties Ties
2 0.2119 0.2119 0.9018 0.9018 0.0024 0.0024 0.28750.2875 Ties Ties Ties Ties
3 0.2825 0.2825 0.9311 0.9311 0.001p 0.0011 0.20710.2071 Ties Ties Ties Ties
4 0.3346 0.3346 0.9484 0.9484 0.000b 0.0006 0.1%1 .1510 Ties Ties Ties Ties
5 0.2852 0.2852 0.9464 0.9464 0.000b 0.0006 0.16810.1681 Ties Ties Ties Ties
6 0.2652 0.2652 0.9256 0.9256 0.001B 0.0013 0.22460.2246 Ties Ties Ties Ties
7 0.2767 0.2767 0.9297 0.9297 0.001p 0.0012 0.21j220.2122 Ties Ties Ties Ties
Ties Ties Ties Ties

192




Experiment 5

Performance measure

00 EE OE EO
Repetition MOST AFL MOST AFL MOST AFL MOST AFL 00 EE OE EO
1 0.3192 0.2079 0.9671 0.8695 0.0001 0.0045 0.0%5 .2890 MOST MOST MOST MOST
2 0.3065 0.1953 0.9713 0.871{7 0 0.0043 0.0138 6.309 MOST MOST MOST MOST
3 0.3433 0.2143 0.9721 0.8765 0 0.004 0.0193 0.2845MOST MOST MOST MOST
4 0.3067 0.2108 0.9625 0.8576 0.000p 0.0054 0.08620.2747 MOST MOST MOST MOST
5 0.3592 0.2298 0.9711 0.8708 0.0001 0.0044 0.03310.2569 MOST MOST MOST MOST
6 0.2676 0.1832 0.9713 0.873 0 0.0042 0.0112 0.327 MOST MOST MOST MOST
7 0.318 0.2144 0.9657 0.8593 0.000L1L 0.0052 0.0655 .270Q MOST MOST MOST MOST
MOST | MOST MOST MOST
Experiment 6
Performance measure
00 EE OE EO
Repetition MOST AFL MOST AFL MOST AFL MOST AFL 00 EE OE EO
1 0.2964 0.2964 0.9725 0.9725 0 0 0.0143 0.0143 s Tie Ties Ties Ties
2 0.3333 0.3333 0.9707 0.9707 0.000¢ 0.0001 0.02870.0287 Ties Ties Ties Ties
3 0.3754 0.3754 0.9764 0.9764 0.000¢ 0.0001 0.03690.0369 Ties Ties Ties Ties
4 0.3627 0.3627 0.9719 0.9719 0 0 0.0274 0.02774 s Tie Ties Ties Ties
5 0.343 0.343 0.9745 0.974b 0 0 0.0199 0.0199 Tigs Ties Ties Ties
6 0.3448 0.3448 0.9715 0.9715 0 0 0.0253 0.0253 s Tie Ties Ties Ties
7 0.3744 0.3744 0.9753 0.9753 0 0 0 0 Tieg Tie s Tie Ties
Ties Ties Ties Ties

193




Experiment 7

Performance measure

0]0) EE OE EO
Repetition MOST AFL MOST AFL MOST AFL MOST AFL 00 EE OE EO
1 0.29507 | 0.41584 0.9744% 0.97474 0.000118 3.38K-08.1002 0.019726 AFL AFL AFL AFL
2 0.37365 | 0.39474 0.97558 0.96558 1.45E405 0.000187009546| 0.077935 AFL MOST MOST MOST|
3 0.2784 | 0.40097 0.97429 0.976p3 0.000137 9.34E-08.12455 | 0.006101 AFL AFL AFL AFL
4 0.25247 | 0.36092 0.97287 0.97534 0.000142 3.29E-05.12426 | 0.022459 AFL AFL AFL AFL
5 0.17988 | 0.21964 0.9699 0.97087 0.000187 0.00010816963 | 0.081183 AFL AFL AFL AFL
6 0.22974 | 0.3048 0.97122 0.972p1 0.000128 2.64E-05.10154 0.01762 AFL AFL AFL AFL
7 0.19282 | 0.23406 0.97028 0.970/5 0.000173 8.88EK-05.15179 | 0.064826 AFL AFL AFL AFL
AFL AFL AFL AFL

194




Appendix XlI Raw data for adaptive weighted averagesxperiment set

Performance measure

Experiment | Algorithm | Repetition 00 EE OE EO
1 0.0347| 0.9659 0.0002 0.6142
2 0.0193| 0.9659 0.0001 0.7322
3 0.0376] 0.9667 0.0002 0.62%22
AdpWAL 4 0.0417| 0.9663 0.0002 0.5801
5 0.0370| 0.9659 0.0002 0.5960
6 0.0312| 0.9660 0.0002 0.6415
1 0.0383] 0.0001 0.9807 0.0000
2 0.0383| 0.0001 0.9807 0.0000
3 0.0383] 0.0001 0.9807 0.0000
AdpWA2 4 0.0383] 0.0001 0.9807 0.0000
5 0.0383] 0.0001 0.9807 0.0000
6 0.0383] 0.0001 0.9807 0.0000
1 0.0033| 0.9637 0.0000 0.8854
2 0.0038| 0.9643 0.0000 0.8807
3 0.0055| 0.9647 0.0000 0.8568
1 AdpWA3 4 0.0021| 0.9635 0.0000 0.9098
5 0.0060| 0.9642 0.0000 0.8470
6 0.0024| 0.9637 0.0000 0.9049
1 0.0395| 0.0017 0.9203 0.0000
2 0.0395| 0.0017 0.9203 0.0000
3 0.0395| 0.0017 0.9203 0.0000
AdpWA4 4 0.0395| 0.0017 0.9203 0.0000
5 0.0395| 0.0017 0.9203 0.0000
6 0.0395| 0.0017 0.9203 0.0000
1 0.0058| 0.9629 0.0002 0.78%3
2 0.0064| 0.9631 0.0002 0.7911
AFL 3 0.0072| 0.9631 0.0002 0.7713
4 0.0097| 0.9633 0.0002 0.7328
5 0.0062| 0.9629 0.0002 0.7754
6 0.0079] 0.9631 0.0002 0.7515

195



Performance measure

Experiment | Algorithm | Repetition 00 EE OE EO
1 0.3255| 0.9744 0.0001 0.0434
2 0.2336] 0.9701 0.0000 0.0234
3 0.2883| 0.9723 0.0000 0.0216
AdpWAL 4 0.3058| 0.9568 0.0008 0.1205
5 0.2454| 0.9629 0.0001 0.0708
6 0.3016] 0.9729 0.0000 0.0247
1 0.0383] 0.0001 0.9807 0.0000
2 0.0383| 0.0001 0.9807 0.0000
3 0.0383| 0.0001 0.9807 0.0000
AdpWA2 4 0.0383| 0.0001 0.9807 0.0000
5 0.0383| 0.0001 0.9807 0.0000
6 0.0383| 0.0001 0.9807 0.0000
1 0.1627| 0.9715 0.0002 0.28%8
2 0.1249| 0.9687 0.0002 0.2890
3 0.1516] 0.9698 0.0002 0.2542
2 AdpWA3 4 0.1768| 0.9704 0.0002 0.2024
5 0.1094| 0.9677 0.00083 0.2940
6 0.1323| 0.9697 0.0002 0.3118
1 0.0395| 0.0017 0.9203 0.0000
2 0.0395| 0.0017 0.9203 0.0000
3 0.0395| 0.0017 0.9203 0.0000
AdpWA4 4 0.0395| 0.0017 0.9203 0.0000
5 0.0395| 0.0017 0.9203 0.0000
6 0.0395| 0.0017 0.9203 0.0000
1 0.2650| 0.9739 0.0001 0.1368
2 0.2036| 0.9707 0.0002 0.1421
AFL 3 0.2808| 0.9726 0.0001 0.0501
4 0.2535| 0.9731 0.0001 0.1304
5 0.2045| 0.9705 0.0002 0.1276
6 0.2540| 0.9729 0.0001 0.1207

196



Performance measure

Experiment | Algorithm | Repetition 00 EE OE EO
1 0.2390| 0.9727 0.0002 0.1466
2 0.2421| 0.9712 0.0001 0.0677
3 0.3119] 0.9742 0.0001 0.0606
AdpWAL 4 0.2183| 0.9708 0.0001 0.1106
5 0.2663| 0.9730 0.0001 0.1022
6 0.2663| 0.9730 0.0001 0.1022
1 0.2267| 0.8921 0.0030 0.2742
2 0.1965| 0.8780 0.0038 0.3096
3 0.2829| 0.9348 0.0010 0.2004
AdpWA2 4 0.1905| 0.8888 0.0031 0.31%9
5 0.2356| 0.8881 0.0032 0.2621
6 0.2274| 0.9030 0.0024 0.2722
1 0.1282| 0.9704 0.0002 0.3487
2 0.1148| 0.9685 0.00083 0.3200
3 0.1539| 0.9711 0.0002 0.2974
3 AdpWA3 4 0.0884| 0.9683 0.0002 0.4166
5 0.1175| 0.9694 0.0002 0.3483
6 0.1325| 0.9701 0.0002 0.3274
1 0.2378| 0.9311 0.0011 0.2283
2 0.2305| 0.9348 0.0009 0.2208
3 0.3020| 0.9523 0.0004 0.1424
AdpWA4 4 0.2180| 0.9361 0.0009 0.2202
5 0.2727| 0.9365 0.0009 0.2008
6 0.2429| 0.9406 0.0007 0.19Y7
1 0.0000f 0.9620 0.0000 1.0000
2 0.0000f 0.9620 0.0000 1.0000
AFL 3 0.0000f 0.9620 0.0000 1.0000
4 0.0000f 0.9620 0.0000 1.0000
5 0.0000f 0.9620 0.0000 1.0000
6 0.0000f 0.9620 0.0000 1.0000

197



Performance measure

Experiment | Algorithm | Repetition 00 EE OE EO
1 0.2514| 0.9716 0.0001 0.0667
2 0.2700] 0.9724 0.0001 0.0649
3 0.2459| 0.9718 0.0001 0.0920
AdpWAL 4 0.2570| 0.9715 0.0001 0.0519
5 0.2244| 0.9715 0.0001 0.1270
6 0.2538| 0.9707 0.0000 0.0076
1 0.1951| 0.8802 0.0037 0.3117
2 0.2023| 0.8846 0.0034 0.3027
3 0.2000| 0.8861 0.0033 0.30%5
AdpWA2 4 0.1991| 0.8785 0.0038 0.3062
5 0.2051| 0.8869 0.0033 0.2993
6 0.1949| 0.8854 0.0034 0.3117
1 0.1294| 0.9693 0.0002 0.3038
2 0.1251| 0.9693 0.0002 0.3200
3 0.1531| 0.9692 0.0002 0.2147
4 AdpWA3 4 0.1436| 0.9694 0.0002 0.2615
5 0.1041| 0.9686 0.0002 0.3657
6 0.1215| 0.9676 0.0002 0.2343
1 0.2114| 0.9260 0.0012 0.2526
2 0.2468| 0.9313 0.0011 0.2239
3 0.2405| 0.9467 0.0006 0.1731
AdpWA4 4 0.2132| 0.9254 0.0013 0.25382
5 0.2244| 0.9285 0.0012 0.2404
6 0.1951| 0.9211 0.0014 0.2724
1 0.0000f 0.9620 0.0000 1.0000
2 0.0000f 0.9620 0.0000 1.0000
AFL 3 0.0006| 0.9628 0.0000 0.9494
4 0.0012| 0.9627 0.0001 0.9242
5 0.0006| 0.9628 0.0000 0.9494
6 0.0000] 0.9620 0.0001 0.9590

198



Appendix XllI Statistical evaluation - Friedman’s ranking

Experiment 1

Sensor fusion algorithm

Experiment 1

Sensor fusion algorithm

performance | oo otition | AdpWA1 | AdpWA2 | AdpWA3 | AdpWA4 | AFL performance | oo oition | AdpWA1 | AdpWA2 | AdpWA3 | AdpWA4 | AFL
measure measure
1 3 4 1 5 2 1 5 1 4 2 3
2 3 4 1 5 2 2 5 1 4 2 3
3 3 4 1 5 2 3 5 1 4 2 3
00 4 5 3 1 4 2 EE 4 5 1 4 2 3
5 3 4 1 5 2 5 5 1 4 2 3
6 3 4 1 5 2 6 5 1 4 2 3
Sum of 20 23 6 29 12 Sum of 30 6 24 12 18
ranks ranks
Experiment 1 Experiment 1
Sensor fusion algorithm Sensor fusion algorithm
Performance | oo otition | AdpWAL | AdpWA2 | AdpWA3 | AdpWA4 | AFL Performance | oo oition | AdpWA1 | AdpWA2 | AdpWA3 | AdpWA4 | AFL
measure measure
1 3 1 5 2 4 1 3 5 1 5 2
2 4 1 5 2 3 2 3 5 1 5 2
3 4 1 5 2 3 3 3 5 1 5 2
OE 4 4 1 5 2 3 EO 4 3 5 1 5 2
5 3 1 5 2 4 5 3 5 1 5 2
6 4 1 5 2 3 6 3 5 1 5 2
Sum of 22 6 30 12 20 Sum of 18 27 6 27 12
ranks ranks

199




Experiment 2

Sensor fusion algorithm

Experiment 2

Sensor fusion algorithm

Performance | oo otition | AdpWA1 | AdpWA2 | AdpWA3 | AdpWA4 | AFL Performance | oo oition | AdpWA1 | AdpWA2 | AdpWA3 | AdpWA4 | AFL
measure measure
1 5 1 3 2 4 1 5 1 3 2 4
2 5 1 3 2 4 2 4 1 3 2 5
3 5 1 3 2 4 3 4 1 3 2 5
00 4 5 1 3 2 4 EE 4 3 1 4 2 5
5 5 1 3 2 4 5 3 1 4 2 5
6 5 1 3 2 4 6 5 1 3 2 4
Sum of 30 6 18 12 24 Sum of 24 6 20 12 28
ranks ranks
Experiment 2 Experiment 2
Sensor fusion algorithm Sensor fusion algorithm
Performance | oo otition | AdpWAL | AdpWA2 | AdpWA3 | AdpWA4 | AFL Performance | oo oition | AdpWA1 | AdpWA2 | AdpWA3 | AdpWA4 | AFL
measure measure
1 5 1 3 2 4 1 3 5 1 5 2
2 5 1 3 2 4 2 3 5 1 5 2
3 5 1 3 2 4 3 3 5 1 5 2
OE 4 3 1 4 2 5 EO 4 3 5 1 5 2
5 5 1 3 2 4 5 3 5 1 5 2
6 5 1 3 2 4 6 3 5 1 5 2
Sum of 28 6 19 12 25 Sum of 18 27 6 27 12
ranks ranks

200




Experiment 3

Sensor fusion algorithm

Experiment 3

Sensor fusion algorithm

Performance | oo otition | AdpWA1 | AdpWA2 | AdpWA3 | AdpWA4 | AFL Performance | oo oition | AdpWA1 | AdpWA2 | AdpWA3 | AdpWA4 | AFL
measure measure
1 5 3 2 4 1 1 5 1 4 2 3
2 5 3 2 4 1 2 5 1 4 2 3
3 5 3 2 4 1 3 5 1 4 2 3
00 4 5 3 2 4 1 EE 4 5 1 4 2 3
5 5 3 2 4 1 5 5 1 4 2 3
6 5 3 2 4 1 6 5 1 4 2 3
Sum of 30 18 12 24 6 Sum of 30 6 24 12 18
ranks ranks
Experiment 3 Experiment 3
Sensor fusion algorithm Sensor fusion algorithm
Performance | oo otition | AdpWAL | AdpWA2 | AdpWA3 | AdpWA4 | AFL Performance | oo oition | AdpWA1 | AdpWA2 | AdpWA3 | AdpWA4 | AFL
measure measure
1 3 1 2 4 5 1 5 4 2 3 1
2 4 1 3 2 5 2 5 3 2 4 1
3 4 1 3 2 5 3 5 4 3 2 1
OE 4 4 1 3 2 5 EO 4 5 3 2 4 1
5 4 1 3 2 5 5 5 3 2 4 1
6 4 1 3 2 5 6 5 3 2 4 1
Sum of 23 6 17 14 30 Sum of 30 20 13 21 6
ranks ranks

201




Experiment 4

Sensor fusion algorithm

Experiment 4

Sensor fusion algorithm

Performance | oo otition | AdpWA1 | AdpWA2 | AdpWA3 | AdpWA4 | AFL Performance | oo oition | AdpWA1 | AdpWA2 | AdpWA3 | AdpWA4 | AFL
measure measure
1 5 3 2 4 1 1 5 1 4 2 3
2 5 3 2 4 1 2 5 1 4 2 3
3 5 3 2 4 1 3 5 1 4 2 3
00 4 5 3 2 4 1 EE 4 5 1 4 2 3
5 5 3 2 4 1 5 5 1 4 2 3
6 5 3 2 4 1 6 5 1 4 2 3
Sum of 30 18 12 24 6 Sum of 30 6 24 12 18
ranks ranks
Experiment 4 Experiment 4
Sensor fusion algorithm Sensor fusion algorithm
Performance | oo otition | AdpWAL | AdpWA2 | AdpWA3 | AdpWA4 | AFL Performance | oo oition | AdpWA1 | AdpWA2 | AdpWA3 | AdpWA4 | AFL
measure measure
1 4 1 3 2 5 1 5 2 3 4 1
2 4 1 3 2 5 2 5 3 2 4 1
3 4 1 3 2 5 3 5 2 3 4 1
OE 4 4 1 3 2 5 EO 4 5 2 3 4 1
5 4 1 3 2 5 5 5 3 2 4 1
6 5 1 3 2 4 6 5 2 4 3 1
Sum of 25 6 18 12 29 Sum of 30 14 17 23 6
ranks ranks

202




Appendix XIV Statisticl evaluation - Multiple comparison results

Experiment 1
OO measure EE measure
Ser_lsor Sum of Sensor fusion| Sum of
fusion Sub groups . Sub groups
. ranks algorithm ranks
algorithm
AdpWA4 29 A AdpWA1 30 A
AdpWA2 23 A B AdpWA3 24 A B
AdpWA1 20 A B C AFL 18 A B C
AFL 12 B C AdpWA4 12 B C
AdpWA3 6 C AdpWA2 6 C
OE measure EO measure
Ser_lsor Sum of Sensor fusion| Sum of
fusion Sub groups . Sub groups
. ranks algorithm ranks
algorithm
AdpWA3 30 A AdpWA2 27 A
AdpWA1 22 A B AdpWA4 27 A
AFL 20 A B C AdpWAL1 18 A B
AdpWA4 12 B C AFL 12 A B
AdpWA2 6 C AdpWA3 6 B
Experiment 2
OO measure EE measure
Sef?sor Sum of Sensor fusion| Sum of
fusion Sub groups . Sub groups
. ranks algorithm ranks
algorithm
AdpWA1 30 A AFL 28 A
AFL 24 A B AdpWA1 24 A| B
AdpWA3 18 A B C AdpWAS3 20 A| B C
AdpWA4 12 B C AdpWA4 12 B C
AdpWA2 6 C AdpWA2 6 C
OE measure EO measure
Ser_lsor Sum of Sensor fusion| Sum of
fusion Sub groups . Sub groups
. ranks algorithm ranks
algorithm
AdpWA1 28 A AdpWA2 27 A
AFL 25 A B AdpWA4 27 A
AdpWA3 19 A B C AdpWA1 18 A B
AdpWA4 12 B C AFL 12 B
AdpWA2 6 C AdpWAS3 6 B

203




Experiment 3

OO measure EE measure
Sensor Sum of Sensor fusion| Sum of
fusion Sub groups . Sub groups
) ranks algorithm ranks
algorithm
AdpWA1 30 A AdpWA1 30 A
AdpWA4 24 A| B AdpWA3 24 A| B
AdpWA2 18 Al B|] C AFL 18 Al B| C
AdpWA3 12 B| C AdpWA4 12 Bl C
AFL 6 C AdpWA2 6 C
OE measure EO measure
Sensor Sum of Sensor fusion| Sum of
fusion Sub groups . Sub groups
) ranks algorithm ranks
algorithm
AFL 30 A AdpWA1 30 A
AdpWA1 23 A| B AdpWA4 21 A B
AdpWAS3 17 Al B| C AdpWA2 20 A B
AdpWA4 14 B| C AdpWAS3 13 B
AdpWA2 6 C AFL 6 B
Experiment 4
OO measure EE measure
Sensor Sum of Sensor fusion| Sum of
fusion Sub groups . Sub groups
) ranks algorithm ranks
algorithm
AdpWA1 30 A AdpWA1 30 A
AdpWA4 24 A| B AdpWA3 24 A| B
AdpWA2 18 Al B|] C AFL 18 Al B| C
AdpWA3 12 B| C AdpWA4 12 Bl C
AFL 6 C AdpWA2 6 C
OE measure EO measure
Sensor Sum of Sensor fusion| Sum of
fusion Sub groups . Sub groups
) ranks algorithm ranks
algorithm
AFL 29 A AdpWA1 30 A
AdpWA1 25 A| B AdpWA4 23 A| B
AdpWA3 18 Al B|] C AdpWA3 17 Al B|] C
AdpWA4 12 B| C AdpWA2 14 Bl C
AdpWA2 6 C AFL 6 C

204



Appendix XV Statistical evaluation - Sign test reslis

Experiment 1

Performance measure

00 EE OE EO
Repetition | AdpWA1 AFL AdpWAL1 AFL AdpWAL AFL AdpWA1| AFL 00 EE OF EO

1 0.0347 0.0058 0.9659 0.9629 0.000pR 0.0002 0.61420.7853 | AdpWAl| AdpWALl TIES AdpWAL

2 0.0193 0.0064 0.9659 0.963]1 0.000L 0.0002 0.73220.7911 | AdpWA1l| AdpWA1l| AdpWA1ll AdpWA1

3 0.0376 0.0072 0.9667 0.963]1 0.000pR 0.0002 0.62220.7713 | AdpWAl| AdpWAl TIES AdpWAL

4 0.0417 0.0097 0.9663 0.9633 0.000pR 0.0002 0.58010.7328 | AdpWAl| AdpWAl TIES AdpWAL

5 0.037 0.0062 0.9659 0.962P 0.000p 0.0002 0.596 775@. | AdpWALl| AdpWAl TIES AdpWAL

6 0.0312 0.0079 0.966 0.963[L 0.000p 0.0002 0.6415 .7516 | AdpWAl| AdpWA1l TIES AdpWAL1
AdpWAL | AdpWA1 | AdpWALl |AdpWAl

Experiment 2
Performance measure
00 EE OE EO
Repetition | AdpWA1l| AFL | AdpWAl| AFL AdpWA1 AFL AdpWA1l| AFL 00 EE OF EO

1 0.3255 0.265 0.9744 0.9739 0.0001 0.0001 0.0434 .1368 | AdpWA1l| AdpWA1l TIES AdpWA1

2 0.2336 0.2036 0.9701 0.97Q7 0 0.0002 0.0234 0.142AdpWA1 AFL AdpWA1l | AdpWAl

3 0.2883 0.2808 0.9723 0.9726 0 0.0001 0.0216 0.030AdpWA1 AFL AdpWA1 | AdpWAl

4 0.3058 0.2535 0.9568 0.9731 0.000B8 0.0001 0.12050.1304 | AdpWA1 AFL AFL AdpWAL1

5 0.2454 0.2045 0.9629 0.9705 0.000L 0.0002 0.07080.1276 | AdpWA1 AFL AdpWA1l| AdpWAl

6 0.3016 0.254 0.9729 0.9729 0 0.0001 0.0247 0.120AdpWA1 TIES AdpWA1| AdpWAl
AdpWA1 AFL AdpWAL | AdpWA1l

205




Experiment 3

Performance measure

00 EE OE EO
Repetition | AdpWA1l| AFL | AdpWAl| AFL AdpWA1 AFL AdpWA1l| AFL 00 EE OF EO

1 0.239 0 0.9727 0.962 0.0002 0 0.1466 1 AdpWAL1l \Aéj AFL AdpWA1
2 0.2421 0 0.9712 0.962 0.0001 0 0.0677 1 AdpWAL1 pWél AFL AdpWA1
3 0.3119 0 0.9742 0.962 0.0001 0 0.0606 1 AdpWAL1 pWél AFL AdpWA1
4 0.2183 0 0.9708 0.962 0.0001 0 0.1106 1 AdpWA1 pWél AFL AdpWA1
5 0.2663 0 0.973 0.962 0.0001 0 0.102p 1 AdpWAL1 \Aéj AFL AdpWA1
6 0.2663 0 0.973 0.962 0.0001 0 0.102p 1 AdpWAL1 \Aéj AFL AdpWA1

AdpWA1 | AdpWAl AFL AdpWA1

Experiment 4
Performance measure
00 EE OE EO
Repetition | AdpWA1l| AFL | AdpWAl| AFL AdpWA1 AFL AdpWA1l| AFL 00 EE OF EO

1 0.2514 0 0.9716 0.962 0.0001 0 0.0667 1 AdpWA1 pWél AFL AdpWA1
2 0.27 0 0.9724 0.962 0.0001 0 0.064P 1 AdpWAl Aé&dw  AFL AdpWA1
3 0.2459 0.0006 0.9718 0.9628 0.000 0 0.092 0.949AdpWA1 | AdpWAl AFL AdpWA1
4 0.257 0.0012 0.9715 0.9627 0.0001 0.0001 0.0519 .9242 | AdpWA1l| AdpWAl TIES AdpWA1
5 0.2244 0.0006 0.9715 0.9628 0.000 0 0.127 0.949AdpWA1 | AdpWAl AFL AdpWA1
6 0.2538 0 0.9707 0.962 0 0.0001 0.0076 0.959 AdpWAADpWAL | AdpWA1L | AdpWA1L

AdpWA1 | AdpWAl AFL AdpWA1

206




PNTN

TPONY NN LY LT VIA NDAD NN TNXY DNYONH YN PNPNY DXNMININI NPOW 1N NTIAY
2V PAND N DY ,DNYMON MO 90N THINN NPNY 2N 1) VI NN NI MNT KD MDD
NN NN DXTPONND DNWINN TYND DAPNND MDY IN PNTH XD YN DY 91DNNDY , 1IN0 NN INY
NIVNA ,DNYN DIYINNN YINN YN DY SOXIND NDOWL POW DIYONND YN TINON OO IN
DTROIN NYNINN DY NPT NNOY 9N ANHNN NNY PI0D

,N0YNY 4N G0N O JWON .NINYY NANNN DIYONND YN TINdNY NNTIP NN Nt IpHNna
TN NN YIN DNINON NNMID, 0N VTN NONNA DT IWIN NOOIN TNXD NANIIN NOIYHIM
NYIN NN ST 501 PNIOM PN MNOWN MOON NNVII MNOWN 190N 2IVN N2IDN NN
TN VINOYW DYV T N .YTNRN TINNY NNTIPN NN DU NN MOYOY P2 NI NXINDIN
XD DD DY MINXTNN DTN NN PINHNT MIRDI-ND Y NN

D2 HNY INM M DI NI NN TNXD YN PPNY DM DMNIMININ DNV TIND
MIYON MND GN DYDY NIYPY YN ,NA0N ONIN YY IN DNOYONN MNNI DY ONIP YN DOWNT
Y DIPINON .OWUPY NNIO YN TINPND WTN XDVSTN DNINON ,NT IPNNA .NM2MN KD N0 NISND
TONNA DPYN N INM DNYINN NN AN TINPN NN PN NON 0TI YN Y UNT ION
YINNY MONT NN YD INIVNY NV TONA WHNWN N DNINON .21V AN TPINNDY WMDY 7NN
210N DN PN NN NDN VIDNNI XN DD DY POV NN PTIA NOYN TON .OMNMYN DIYONN YT DY
.UV ONMNNYD TIN RN NN

TIVRD DMV DINIMINON MNXT NIIYNY T2Y2 DNMAY TPVLDXVLO NVIY NIYA TIVN DNININND
NN PNIAD NN DY YNIY YWY OMDNN JINY NN X NPTHN NV .0 VN NN YN
NN PN2D NN IMVYNRIN NOIWNN NIVH IYSI MDD SNV DMV 12520 MNIN DINIININD ONIN
DIININD NN NN PN NOT 71V NDYNN NIV INY,NIANIND YN TINOD NN NN
ANMAY DRTIP DNNINOND INNYNA YN TINND WIND

,NTIPN NOIYN NN DIV DMWNINIAN DYA DNINDNNIY T DY MYXANN INYNRIN N9YNN NINNIN
NN NN NP2 DIVN DOVINIAN DY DNINIONRN D) NI DVSTN 7DINY NPPND ONINON
YINN DIPININD D) DWNINOIAN DY YAV DD PR NMDWUN TOND D MININD 7PIYN NIIWNN MINNN

LDMNTIP DMIMININRD NRNYNA 1NN DXV DIYINAN NN PADN NMOY

DRMININ YT MM INY DIRIININ DX DXV ,DNYPNN YN I :HNSM M
JPVDOVD NN PN ITTN ,DPDVITN



YTOR DY 9179 DY NNOITNA NNV NTIAYN

2N YYD NOTIND NPINNIN

NOTINN YT NOIIPAN



DIYWINNA ¥ TINNY DINMININ NIYN
7953 DY2Y9 NP0 NV TINNY

NOTINA VDN ININ NOAPY MYIITNN PON INNN MY NN

NONP Y
YTON DY 19139 : PN

TIND NN NN
TIND TPNPINN NIYW ININ NTY 7P NN
2007 VIown

Yav-9N2



DIYWINNA ¥ TINNY DINMININ NIYN
7953 DY2Y9 NP0 NV TINNY

NOTINA VDN ININ NOAPY MYIITNN PON INNN MY NN

NONP P

2007 LAvAZA)

YaV-IN2



