

Ben-Gurion university of the Negev
Faculty of Engineering Sciences

Department of Industrial Engineering and Management

Evaluating Grid-Map Based Sensor Fusion mapping algorithms for
Autonomous Mobile Robots

Thesis submitted in partial fulfillment of the requirements
 for the M.Sc degree

Keren Kapach

August 2007

Evaluating Grid-Map Based Sensor

Fusion algorithms for

Autonomous Mobile Robots

Thesis submitted in partial fulfillment of the requirements
 for the M.Sc degree

Keren Kapach

Supervised by: Prof. Yael Edan

Author:_____________________________ Date:____________

Supervisor:__________________________ Date:____________

Chairman of Graduate Studies Committee:________________ Date:_____________

ז"שסת 2007

BEER – SHEVA

This work was carried out under the supervision of

Prof. Yael Edan

In the Department of Industrial Engineering and Management

Faculty of Engineering Sciences

For my beloved husband and best friend, Ido.

Acknowledgments

To my advisor, Prof. Yael Edan, thanks for the dedicated guidance throughout the past two
years, even on tight schedules and crazy deadlines that we knew well during this work. Thanks
for the professional assistance and for making all the efforts for finding financial and technical
support whenever I needed it. Thanks for inspiring me to pursue academic and personal
excellence; I hope our paths will cross again soon.

Thanks for Dr. Ofir Cohen , for his smart and helpful comments; thanks for helping me
achieving the tremendous goal of getting into your huge shoes.

I would like to thank the labs team Yossi Zahavi, Nisim Abuhazira, Rubi Gartner and Paul
Erez for their support and assistance inside and outside the labs.

Special thanks for the talented programmer, Oren Braitstein, for helping me so much with the
code which gave me a great starting point.

To Juan Wax, Uri Cartoon and Shahar Laykin – thanks for the professional help and for
contributing me from your knowledge and wide experience, you’ve all been a great help.

To all the Automation course TA friends, Ziv Har Zahavbm, Yael Salzer, Amit Gil and
Yuval Oren, thanks for the understanding and for covering up for me, which allowed me to
complete this thesis.

To my family, Mom, Dad and my sisters – Gali and Hadar, thanks a lot for all the mental
support and patience you gave me during the long hours I spent in the labs and in the
university.

Finally, I would like to thank my husband, Ido, for his love, understanding, tenderness and
encouragement during these tough and challenging times; I could have never completed this
thesis without you.

“If I have seen farther than other men, it is
because I have stood on the shoulders of giants”

Sir Isaac Newton

Keren Kapach
Ben-Gurion University of the Negev

Beer Sheva, 2007

Table of Contents

List of Figures .. III
List of Tables .. IV

Abstract .. V

1. Introduction ... 6
1.1 Problem description .. 6
1.2 Objectives ... 7
1.3 Research significance and innovations ... 7

2. Scientific background .. 8
2.1 Sensor fusion ... 8
2.2 Sensor fusion for autonomous mobile robots ... 10
2.3 Sensor mapping algorithms... 11
2.4 Sensor fusion evaluation ... 16
2.5 Cohen’s Work [Cohen, 2005] ... 17

3. Methodology ... 28
3.1 General .. 28
3.2 Mapping algorithms .. 29
3.3 Performance measures .. 29
3.4 Sensor fusion algorithms... 29
3.5 Evaluation ... 30
3.6 Experimental setup and analysis procedure .. 30

4. Performance measures .. 31
4.1 General .. 31
4.2 Type II performance measures.. 31

5. Sensor fusion algorithms ... 34
5.1 General .. 34
5.2 Adaptive weighted average algorithm .. 34

6. Mobile robot experiments ... 37
6.1 General .. 37
6.2 Experimental Setup ... 38
6.3 Mapping algorithms .. 39
6.4 Experimental procedure .. 42

7. Evaluation and Results .. 45
7.1 General .. 45
7.2 Extended sensor fusion framework evaluation ... 45
7.3 Adaptive weighted algorithm evaluation .. 53

8. Conclusions and future research .. 59
8.1 Conclusions ... 59
8.2 Future research .. 60

III

9. References ... 62

10. Appendices ... 68

Appendix I Robot and laser– specifications and parameters .. 69
Appendix II ARIA API .. 72
Appendix III Modifications to the research of Cohen [Cohen, 2005] 73
Appendix IV Software code .. 74
Appendix V Camera calibration ... 151
Appendix VI Mapping algorithms flowcharts .. 162
Appendix VII Code for analysis procedure .. 165
Appendix VIII Raw data for extended fusion framework experimental set 176
Appendix IX Statistical evauation - Friedman’s ranking ... 180
Appendix X Statistial evaluation - Multiple comparison procedure 187
Appendix XI Statistical evaluation - Sign test results ... 191
Appendix XII Raw data for adaptive weighted average experiment set 195
Appendix XIII Statistical evaluation - Friedman’s ranking ... 199
Appendix XIV Statisticl evaluation - Multiple comparison results .. 203
Appendix XV Statistical evaluation - Sign test results.. 205

List of Figures

Figure 1 Propagation pattern for Polaroid ultrasonic sensors ... 12
Figure 2 Information flow at time t – logical and adaptive algorithms 20
Figure 3 Pseudo code for fused map decision rule .. 25
Figure 4 numerical calculation example of type II performance measure 33
Figure 5 Adaptive weighted average algorithm pseudo code .. 35
Figure 6 LS and ELS grid maps ... 36
Figure 7 ARAD Pioneer 2-AT .. 37
Figure 8 Schematic experimental setup (Adapted from Cohen, 2005) 38
Figure 9 Ultrasonic array (Adapted from Pioneer manual) .. 39
Figure 10 Ultrasonic grid map model .. 40
Figure 11 Pan and Tilt angles (Adapted from Cohen, 2005) ... 43
Figure 12 Experimental setup photographs ... 43
Figure 13 Map results, experiment 3, first repetition .. 46
Figure 14 Map results, Experiment 3, first repetition .. 54
Figure 15 ARIA's schematic architecture... 72
Figure 16 Schematic diagram of main program flow .. 75
Figure 17 Camera angles: pan and tilt .. 151
Figure 18 Picture of the pointed obstacles .. 152
Figure 19 Camera horizontal and vertical lines .. 153
Figure 20 a and b values for each obstacle ... 155
Figure 21 The robot’s distance relative to the starting point .. 158
Figure 22 Examples of the obstacle's photos in the different pan angles 160

IV

List of Tables

Table 1 Selected examples of multisensor mapping mobile robots .. 11
Table 2 Coefficients for calculating the sensor fusion performance measures 22
Table 3 Fuzzy set values of the fuzzy variables .. 24
Table 4 Fuzzy sets values of the fuzzy output variables ... 24
Table 5 If-Then rules .. 24
Table 6 Pseudo-code for calculating type II performance measures 32
Table 7 Adaptive weighted average algorithms ... 36
Table 8 OR algorithm truth table (US1) .. 40
Table 9 Probablistic approach truth table (US2) .. 41
Table 10 Detection area for each algorithm .. 42
Table 11 Experimental initial perofrmance measures for AFL algorithm 44
Table 12 Experimental initial peroformance measures for AdpWA algorithm 44
Table 13 Experimental design for statistical evaluation experiment 46
Table 14 R calculations for each performance measure .. 47
Table 15 Sensor fusion performance measures values for experiment 2, first repetition 48
Table 16 OO Measure for four algorithms, seven repetitions, Experiment 7 48
Table 17 Example of Friedman's test ranking, OO measure, experiment 7, seven repetitions48
Table 18 Friedman's test results... 49
Table 19 Multiple comparison results for all PM , experiment 7 .. 49
Table 20 Sign test data ... 50
Table 21 Sign test results .. 50
Table 22 Logical sensors mapping in the extended sensor fusion framework 51
Table 23 Algorithms mapping in the extended sensor fusion framework 52
Table 24 Experimental design for statistical evaluation experiments 53
Table 25 R calculations for each performance measure .. 55
Table 26 Sensor fusion performance measures values for experiment 3, second repetition ... 55
Table 27 EE Measure for five algorithms, six repetitions, Experiment 2 55
Table 28 Example of Friedman's test ranking, OO measure, experiment 2, seven repetitions56
Table 29 Friedman's test results for AdpWA algorithm ... 56
Table 30 Multiple comparison results for all PM , experiment 1 .. 56
Table 31 Sign test data ... 57
Table 32 Sign test results .. 57
Table 33 Logical sensors mapping for adaptive weighted average algorithm experiments set58
Table 34 Algorithms mapping for adaptive weighted average algorithm experiments set 58
Table 35 Pioneer 2 AT Specifications (adapted from Pioneer 2 manual) 69
Table 36 Laser's technical data .. 70
Table 37 Pioneer 2 AT parameters (adapted from Pioneer 2 manual) 71
Table 38 list of functions and explanations .. 76
Table 39 Raw data to derive the polynomial equation ... 153
Table 40 Obstacle’s pixels location ... 154
Table 41 Values for each line's obstacle .. 156

Table 42 Raw data to derive the mathematical relationship between Y[cm] and b
a 158

Table 43 Obstacle’s array location for the expirement.. 159
Table 44 Obstacle's location analysis .. 161
Table 45 List of MATLAB functions and explanations ... 165

V

Abstract
This work focuses on sensor fusion algorithms for mapping a mobile robot's environment. To
function in unknown and unstructured environments a mobile robot must be equipped with
several types of sensors, in order to better understand its surroundings and to overcome
inaccurate or wrong information when sensors malfunction or fail. Sensor fusion deals with
the synergetic combination of information produced by various sensors and is important in
obtaining a more complete and accurate image on the phenomena being studied.
In this research, a previously developed sensor fusion framework was extended and revised.
An additional physical sensor was added to the system, and the system was expanded to fuse
data from this sensor as well. A new sensor fusion algorithm was developed.
Mapping the environment is important for several robotic tasks including exploration tasks
and path planning. The binary grid map model is a common mapping technique and was
employed in the previously developed sensor fusion framework. In this thesis, a non-binary
grid map was used to indicate each cell’s certainty.
Down through the years, many sensor fusion algorithms for mapping the environment for
mobile robots have been developed and implemented. Most of them require a-priori
information about the sensor's performances or the surroundings conditions, which is hard and
sometimes impossible to find in unstructured environments. In this research, a new adaptive
sensor fusion algorithm was developed and implemented. The algorithm uses non-binary grid
maps and on-line measures of each sensor’s performances. The measures developed give more
weight in the fusion process to the better performing sensor. The algorithm also uses a new
enhancement procedure that aims to improve the maps created by the different sensors. The
enhancement procedure checks each cell’s neighbors and determines which cell indeed
contains an obstacle and which cell should be treated as noise.
The algorithm was evaluated using a previously developed statistical evaluation method for
evaluating the different fusion algorithms and choosing the best one. The method defines the
experimental setup and procedure for testing the algorithms in various environmental
conditions. Two evaluations were made. The first one aimed to test the extended sensor fusion
system, while the second aimed to test the performance of the new sensor fusion algorithm in
comparison to previously developed fusion algorithms.

Results from the first evaluation indicate that the best performing algorithm in the previous
framework, an adaptive fuzzy logic algorithm, is the best performing algorithm in the
extended framework as well. Results from the second evaluation indicate that the enhancement
procedure did not affect the results at all and that in comparison to previously developed
fusion algorithms, the new developed adaptive weighted algorithm is superior.

Keywords: Sensor fusion, mobile robots, mapping algorithms, grid map, adaptive algorithms,
performance measure, evaluation.

This thesis is in part based on the following publications:

1. Kapach K. and Edan Y. 2007. Adaptive weighted average sensor fusion
algorithms for mobile robots, IADIS International Conference Intelligent
Systems and Agents: 43-50.

2. Kapach K. and Edan Y. 2007. Evaluation of grid-map sensor fusion
mapping algorithms, IEEE International Conference on Systems, Man and
Cybernetics.

6

1. Introduction

1.1 Problem description
To perform in unknown environments a mobile robot must build an accurate map that
describes the robot’s surroundings.
The first step in building a map is to choose the appropriate representation model [Cohen,
2005]. There are several different techniques for representing the environment of a mobile
robot, including configuration space [Lozano-Perez, 1981]; generalized cones [Brooks, 1982];
spherical octree [Chen, 1987]; and occupancy grid maps [Moravec and Elfes, 1985; Stepan,
2005]. In this research the grid map paradigm was used since it is a simple and fast technique.
In the grid map model the environment is divided into discrete cells, each containing a value
that indicates whether the area represented by the cell is Occupy or Empty. There are several
ways to fill the cells within occupancy grid map. One method is the binary grid map, where ‘0’
represents Empty cell and ‘1’ represents Occupy cell [Cohen, 2005]. Another method is a
probabilistic grid map, where each cell contains the probability of being occupied or empty
[Moravec and Elves, 1985; Stepan, 2005]. Another common approach for grid maps is the
Certainty Values method (CV), where is cell is assigned a value that indicates the measure of
confidence that an obstacle exists within that the cell area [Ribo and Pinz, 2001; Hong et al.,
2002]. Probabilities and CV’s are usually derived from distribution functions based on the
sensor’s model.
An autonomous mobile robot must be equipped with several sensors in order to robustly sense
its surroundings due to the different sensory characteristic and their inherent uncertainty in
sensory information. To enhance the accuracy of the maps the environmental information
received from multiple sensors must be merged. Sensor fusion deals with synergetic merging
of information from several different physical sensors [Adibi and Gonzales, 1992].
Multisensor integration is the synergetic use of the information provided by multiple sensory
devices to assist in the accomplishment of a task by the system. Multisensory fusion refers to
any stage in the integration process where there is an actual combination of different sources
of sensory information into one representational format. The distinction is made between
multisensory integration and a more restricted notion of multi sensor fusion to separate the
more general issues involved in the integration of multiple sensory devices at the system
architecture and control level, from the more specific issues – possibly mathematical or
statistical – involved in the actual combination (or fusion) of multisensory information [Luo
and Kay, 1989].
To complete the mapping mission, it is necessary to choose a method for handling the
multitude of sensors. In multi-sensor systems, the logical sensor paradigm is commonly used
[Henderson and Shilcrat, 1984]. A logical sensor is an abstract definition of a sensor that can
be used to provide a uniform framework for multisensory integration [Henderson and Shilcrat,
1984]. This approach enables to add sensors to the system without changing its whole concept.
In this work several logical sensors were implemented.
The next step towards an accurate environment mapping is to choose the desired sensor fusion
algorithm. Over the years, several sensor fusion methods and algorithms have been developed
for mapping the environment of a mobile robot, e.g., weighted average [Belknap et. al., 1986];
probabilistic [Harmon, 1986]; certainty factors [Belknap, 1986; Hanson et al., 1988; Kamat,
1985]; and fuzzy logic [Huntsberger and Jayaramamurthy, 1987].

7

These algorithms and other different fusion methods are employed when assuming a-priori
characteristics of the sensors (e.g., probabilities and standard deviation) including Bayesian
[Sukumar et al., 2007]; Neyman-Pearson [Thomopoulos et. al., 1989]; Kalman filter [Zhu et.
al., 2006] and extended Kalman filter [Mirzaei et al., 2007].
In unconstructed and dynamic environment, which is a common mobile robot’s environment,
it is very hard and sometimes impossible to predict a-priori the sensors characteristics.
Therefore, there is a need to estimate online the desirable characteristics while the system is in
motion. Furthermore, a mobile robot operating in a dynamic system must respond online to
environmental changes. This requires an algorithm that is able to adapt to the changing
environment and sensory performances. Cohen [Cohen, 2005] developed an adaptive sensor
fusion framework that fuses data from different physical sensors using different fusion
algorithms, including an adaptive fuzzy logic algorithm.

This research is based on Cohen’s work and intends to extend it.

1.2 Objectives
This research deals with grid-map based sensor fusion for mapping the environment of a
mobile robot. The objectives of this research were to:
• Extend Cohen’s work and evaluate its sensor fusion framework with a system that

contains three physical sensors.
• Develop a new adaptive sensor fusion algorithm based on the extended fusion

system.

1.3 Research significance and innovations
Cohen’s work has been extended to fuse data from three physical sensors, and its
performances were evaluated through the statistical evaluation procedure.
Cohen’s binary grid map paradigm was extended to include non-binary grid maps. The maps
was changed so occupied cells contains an integer value that indicates the number of time the
sensor declares this cell as occupied, while in Cohen’s work the binary grid map gave
information that this cell is Occupy (by assigning the binary value ‘1’), regardless of the
number of times this cells was declared as Occupy. This concept gives a lot of new
information about the environment that was loss in the binary grid map concept. Using the
non-binary grid map allows to give more weight to cells with higher values than the others,
because most chances are that this cells indeed contains an obstacle instead of being marked as
occupied due to noises of sensor’s deviations. A new map enhancement procedure was
developed and implemented. The enhancement procedure aims to improve maps accuracy and
filter noises. The procedure checks each occupied cell’s neighbors within the non-binary grid
map and decided whether this cell indeed contains an obstacle or it should be treated as noise.
In addition, new performance measures were developed in order to evaluate online the sensors
performances. These performance measures are used in the new adaptive sensor fusion
algorithm. The new algorithm includes the use of non-binary grid map and the new type of
performance measures, and allows the system online adaptation to changing environmental
conditions. The new algorithm was proven to be superior to previous developed algorithms.

8

2. Scientific background

Chapter overview

This chapter reviews the literature of the relevant research topics including: sensor fusion
applications, sensor fusion for autonomous mobile robots; different mapping algorithms for
ultrasonic, camera and laser sensors; and sensor fusion evaluation methods.

2.1 Sensor fusion
Sensors are devices that collect data about the world around them. Sensors range from
inexpensive cameras to earth observation satellites costing millions of dollars. In spite of this
variety, all sensors have a few things in common. Every sensor device has a limited accuracy,
and is a subject to the effect of some type of "noise", and will under some conditions function
incorrectly [Brooks and Iyengar, 1998].
To overcome these drawbacks most applications employ multiple sensors. This requires the
multitude of sensory data from multiple sensors to provide more reliable and accurate
information [Luo et al., 2002]. When done properly, sensor fusion combines input from many
independent sources of limited accuracy and reliability to give information of know accuracy
and proven reliability [Brooks and Iyengar, 1998]. The potential advantages in integrating
and/or fusing information from multiple sensors are that information can be obtained more
accurately, concerning features that are impossible to perceive with individual sensors, as well
as in less time, and at a lesser cost [Adibi and Gonzales, 1992].
Sensor fusion is a rapidly evolving research area and requires interdisciplinary knowledge in
control theory, signal processing, artificial intelligence, probability, statistics, etc. [Luo et al.,
2002]. In recent years, benefits of multisensor fusion have motivated research in a variety of
application areas such as military applications, remote sensing, biomedical applications and
robotics applications.
Military applications include the area of intelligence analysis, situation assessment, force
command and control, avionics and electronic warfare [Luo et al., 2002]. Filippidis and Martin
[Filippidis et al., 2000] presented a sensor fusion system that the detects surface land mines
given multiple registered images of the mined area, obtained from a suite of visible to IR
wavelength sensors. Carson [Carson et al., 1996] fused data from radar and a set of sensors
named identification friends-or-foe (IFF) sensors to improve capabilities of tracking and target
identification system using two algorithms. The IFF sensor provides target height which is
used to improve accuracy of 2D radar. The radar provides consistent and accurate bearing and
range measurements which are not always available from the IFF sensor (i.e., from hostile
targets). The fusion of data obtained from these sensors provides data not obtainable by either
sensor alone [Carson et al., 1996]. Remote sensing applications include monitoring climate,
environment, water sources, soil and agriculture as well as discovering natural sources and
fighting the import of illegal drugs [Bell, 1995]. Solaiman [Solaiman et al., 1999] applied
fuzzy based multisensor fusion to land cover classification using ERS-1/JERS-1 SAR
composites. Several sensor fusion applications were implemented in biomedical systems.
Hernandez [Hernandez et al., 1999] presents a multisensor multisource data fusion scheme to
improve atrial (AA) and ventricular activity (VA) detection in critical care environments. The
approach seeks to integrate, with the usual electrocardiogram (ECG) signals, complementary
data from hemodynamic processes or from the esophageal ECG (EECG). Solaiman [Solaiman

9

et al., 1998] used fuzzy logic based fusion methods for feature extraction from ultrasound
medical images, and results showed good quality detection.
Since robots are usually equipped with different sensors, multisensor integration and fusion
techniques are suitable for areas of industrial robots such as motion planning, material
handling, part fabrication, inspection and assembly [Luo and Kay, 1992]. Thomas [Thomas et
al., 2007] implemented a particle filter using sensor fusion for different assembly tasks. A
sensor fusion system that fuses data from force and acceleration sensors to improve
environmental force estimator in industrial robot was presented by [Garcia et al., 2004]. Luo
and Lin [Luo and Lin, 1996] have applied multisensor fusion techniques via an artificial neural
network to fuse measurement data from force sensors, acoustic emission, accelerometer data
and power signal to predict tool wear [Luo and Lin, 1996].
Groen [Groen et al., 1986] describe a multisensor robotic assembly station equipped with
vision, ultrasonic, tactile and force sensors. In operation, vision sensors are used to recognize
different parts of the assemblies as they arrive in varying order and at undefined positions.
Feedback information from the force sensors and the passive compliance of the robot’s gripper
are used for bolt insertion operations and to transport and place assembly housing on work
spots. Final inspection is performed with vision sensors [Groen et al., 1986].

The interaction between the sensors can be in three major ways: complementary, competitive
or cooperative [Durrant-Whyte, 1998]. Complementary sensors do not depend on each other
directly but can be merged to form a more complete picture of the environment. For example,
a set of radar stations covering non-overlapping geographical regions. In this case, fusion
implementation is easy since no conflicting information is presented. Competitive sensors
provide equivalent information about the environment. For example, three identical radar
stations covering overlapping geographical regions. In this case, a failure of one or two units
can be tolerated. In this case, fusion must handle the case of conflicting reading. Cooperative
sensors work together to derive information that neither sensor alone can provide. For
example, two video cameras in stereo for three-dimensional vision. Fusion in this case cannot
be approached as a general problem because it depends on details of the physical devices
involved [Brooks and Iyengar, 1998].
In this research, the sensors operate complementary. Fusion in this case offers several
advantages. First, fusion of redundant information can reduce overall uncertainty and thus
increase the accuracy with which the features are perceived by the systems. Second, multiple
sensors providing redundant information can also serve to increase reliability in case of sensor
error or failure. In addition, complementary information from multiple sensors allows features
in the environment to be perceived that would otherwise be impossible to acquire if we only
used the information supplied from each individual sensor operating separately [Durrant-
Whyte, 1988b; Luo et al., 2002].

There are different levels of representation where fusion from multiple sensors can take place
[Castellanos et al., 2001; Cohen, 2005]:

� Signal level fusion refers to the combination of signals from a group of
sensors to provide a signal that is usually of the same form as the original
but with higher quality [Adibi and Gonzales, 1992].

� Pixel level fusion can be used to increase the information content associated
with each pixel in an image formed through a combination of multiple
images, e.g., the fusion of a range image with a two-dimensional intensity
image adds depth information to each pixel in the intensity image. This can
be useful in the subsequent processing of the image [Adibi and Gonzales,
1992].

10

� Feature level fusion can be used both to increase the likelihood that a feature
extracted from the information provided by a sensor actually corresponds to
an important aspect of the environment and as means of creating additional
composite features for the system to use [Adibi and Gonzales, 1992].

� Symbol level fusion allows the information from multiple sensors to be
effectively used together at the highest level of abstraction. Symbol level
fusion may be the only means by which sensory information can be fused if
the sensors are very dissimilar or refer to different regions of the
environment [Adibi and Gonzales, 1992].

Most of the sensors typically used in practice provide data that can be fused at one or more of
these levels. In this research, we used pixel level fusion.

2.2 Sensor fusion for autonomous mobile robots
Mobile robots often operate in an unstructured and dynamic environments and are equipped
with different types of sensors (e.g., vision, laser and ultrasonic) to perform a wide variety of
tasks (such as dead-reckoning or mapping). As a result from this diversity, sensor fusion
methods are needed to translate the different sensory inputs into reliable information that is
needed to complete tasks such as self-location, mapmaking, path computing, motion planning
and execution. Hence, it becomes necessary to consider integrating or fusing data from a
variety of different sensors so that an adequate amount of information from the environment
can be quickly perceived [Adibi and Gonzales, 1992].
In implementing these tasks, different approaches have evolved for accumulating geometrical
representations of the unknown environment for mobile robots [Cohen, 2005]. The
representations used for robots operating in unknown or unstructured environments allow their
world models to be dynamically modified and updated with uncertain sensor information
[Abidi and Gonzales, 1992]. Among these representations there are spherical octrees [Chen,
1998]; configuration space [Loranzo-Perez, 1981]; generalized cones [Brooks, 1982]; Voroni
diagrams [Miller, 1985] and polygon region model [Miller, 1985].

Multisensory information can be represented in a multi-dimensional grid of cells. Each cell in
the grid corresponds to a region of space from which the sensor information is assumed to
have originated [Adibi and Gonzales, 1992]. Discrete or continuous values can be used to map
free and occupied areas within the environment. When continuous values are employed, the
values represent the certainty of an obstacle being in the cell, with '0' and '1' values
respectively implying an empty or an occupied cell [Moravec and Elfes, 1985]. Discrete
values can be either binary [Cohen, 2005] where ‘0’ and ‘1’ represents Empty or Occupy cells,
respectively. Another approach for discrete grip maps that was implemented in this research is
filling the map with integer values that indicates the number of times the sensors declared each
cell as occupied. The latter gives a lot more information regarding the cell’s state, and allows
giving more weight to cells with higher values. The grid map model is attractive as a means of
representing multisensory information because the data from each sensor are automatically in
spatial correspondence, as long as each sensor can correctly map its data to the grid. It is also
possible for fusion and other processing to take place within each cell before any further high
level processing is required, a feature that is important in many real-time applications. A
possible disadvantage of a grid representation that it usually requires a large amount of
memory to store the grid [Adibi and Gonzales, 1992].
Many algorithms and methods have been commonly used in sensor fusion when mapping the
environment for mobile robots (Table 1).

11

Table 1 Selected examples of multisensor mapping mobile robots

Mobile
robot Sensors

Operating
environment

World model
representation

Fusion
method Reference

Pioneer
2-AT

ultrasonic
camera

Indoor Grid map adaptive
fuzzy logic

[Cohen, 2005]

Magellen
pro robot

Ultrasonic
Laser

Manmade Grid map Rule based [Lai, 2005]

Mobile
platform

Sonar
Infrared

Indoor
corridor

Feature based
map

Extended
Kalman filter

[Vazquez, 2005]

Pioneer
2DX

Odometer
Sonar

Indoor
corridor

Grid map Extended
Kalman filter

[Ivanjko, 2005]

Nomad
200

Laser
rangefinder

Unknown Feature based
map

Extended
Kalman filter

[Costa et al., 2006]

Jinny Laser
GPS

Unknown Grid map Rule based [Chang et al., 2006]

Kim's
mobile
robot

Sonar
Infrared
Camera

Indoor
corridor

Grid map hierarchical
fusion:
geometric,
rule based
and Bayesian

[Kim, 2006]

Pioneer
II virtual
mobile
robot

A set of
ultrasonic
sensors

Small static
virtual

3-D grid map Rule based [Li et al., 2006]

Liu's
mobile
robot

Ultrasonic Laboratory Grid map Consensus
theory

[Liu et al., 2006]

Nomad
XR4000

Ultrasonic
Laser

Laboratory X-Y graph Tangential
regression

[Bank, 2007]

Wang's
mobile
robot

Ultrasonic Laboratory Feature based
map

Rule based [Wang et al., 2007]

2.3 Sensor mapping algorithms
2.3.1 Ultrasonic sensors

Many mobile robots, including the one described in this research, use Polaroid ultrasonic
sensors for environmental representation [Moravec and Elfes, 1984; Oriolo et al., 1997;
Toledo et al., 2000; Karaman and Temeltas, 2004; Bank and Kampke, 2007]. One key
characteristic of ultrasonic sensors is the propagation pattern, as shown in Figure 1. A "lobe" is
defined as the angular range between the normal direction, i.e., 0 and a zero of the first
derivative of the plot, as can be seen in Figure 1. The primary lobe is about 15º wide. The
secondary lobe is about 30º and the tertiary is about 45º wide [Cao and Borenstein, 2002].

12

Figure 1 Propagation pattern for Polaroid ultrasonic sensors

(Adapted from ultrasonic sensor's data sheet)

For map-building task a large beam width is undesirable since it increases the uncertainty
about the actual location of an obstacle. The result of this uncertainty is that obstacles tend to
be represented in the map as larger than they really are [Cao and Borenstein, 2002]. Since the
beam width of the ultrasonic sensor is limited, environmental mapping using ultrasonic
sensors is commonly done by a set or a ring of sensors mounted on the robot in different
angles. The multiple sensors also help locate the sensor in the horizontal direction.
The common occupancy grid map paradigm was first introduced by [Moravec and Elfes,
1984]. In this model, the sonar maps are two dimensional arrays of cells corresponding to a
horizontal grid imposed on the area to be mapped. The grid has MXN cells, each of size
deltaXdelta. The sonar reading in the final map has cell values in the range [-1, 1], where
values less than 0 represent probably empty regions, exactly zero represents unknown
occupancy, and greater than zero implies a probably occupied space. After preprocessing the
incoming readings from the sonar to remove chronic errors by thresholding, averaging and
clustering, the reading is projected into the correct cell using density functions according to the
uncertainty regions in the sonar reading [Moravec and Elfes, 1984]. These probabilistic
sensor-level sonar maps serve as the basis for a multilevel description of the robot's operating
environment. These multiple descriptions are developed for various kinds of problem solving
activities. Several dimensions of representation are defined: the abstraction axis, the
geographical axis and the resolution axis [Elfes, 1987]. In the certainty grid model [Moravec,
1988]; the robot's work area is represented by a grid map. Each cell within the grid contains a
certainty value (CV) that indicates the measure of confidence that an obstacle exists within the
cell area. CV's are updated by a heuristic probability function that takes into account the
conical field of view of the sonar [Elfes, 1987].
Histogram in-motion mapping (HIMM) is presented in [Borenstein and Koren, 1991]. The
HIMM model uses a two dimensional Cartesian histogram grid for obstacle representation.
Like the certainty grid concept, each cell in the histogram grid holds a certainty value that
represents the confidence in the existence of an obstacle at that location. In this model, only
the cell that corresponds to the measures distance and lies on the acoustic axis of the sensor is
incremented. A probability distribution is obtained by continuously and rapidly sampling each
sensor while the vehicle is moving. Thus, the same cell and its neighboring cells are repeatedly
incremented. This results in a histogramic probability distribution, in which high certainty
values are obtained in cells close to the actual location of the obstacle [Borenstein and Koren,
1991].
Fuzzy logic concepts are also used for robot perception as well as planning collision-free
motions [Oriolo et al., 1997; Karaman and Temeltas, 2004]. A map of the environment is
defined as the fuzzy set if unsafe points, whose membership function quantifies the possibility
for each point to belong to an obstacle. Each point in the map has two fuzzy values (Occupy

13

and Empty) which are not complementary. The membership function derives from the
ultrasonic sensor model and describes how the degree of certainty of the assertions 'Empty' and
'Occupy' varies in the map for a given range reading.

An occupancy grid map can also be built using artificial neural networks [Toledo et al., 2000].
The neural network output supplies the probability of occupancy of the points considered as
input. Thus, the occupancy estimated value is realized bearing in mind the different ultrasonic
sensors readings at the same time. The neural network training is supervised and is carried out
for a series of representative contours located into the sensors zone. Each contour is composed
of a set of points chosen as function of the different response of the ultrasonic sensors in real
environment. During training the output target for the network is 1 if the considered point is
occupied and 0 if is not. Once trained, the neural network output generates a value between 0
and 1 representing the probability of occupancy.
Another common environment mapping is the segment-based map [Perez-Lorenzo et al,
2004]. The environment representation is modeled with features detected by sonar sensors.
First, a local metric occupancy grid is built. Each cell in the map yields the occupancy
probability of the corresponding region of the environment. The local grid acquired at instant t
is combined with the metric map acquired at t-1. Second, each occupancy value in the local
grid map is thresholded. Cells whose occupancy value is above a certain value are considered
occupied cells, and all other cells are considered empty. Next, a Hough transform generation
finds lines in the local grid map. These lines are extracted, and are used to find the main
segments in the local metric map.
A probability based solution for map building is presented in [Kodagoda et al., 2006]. The
map is built using a single ultrasonic sensor, in contrast to most of the available map building
systems. The sensor is mounted on a rotating shaft and discrete sonar observations taken at
regular time intervals, by rotating the shaft in small step angles are incrementally merged into
partial planes to produce a realistic representation of environment that is amenable to sonar
localization. The probability model that has been implemented is based on the sonar sensor
model in an effort to allocate probabilities based on a sonar reading. In this model the sensors'
range area is divided into three regions based on the delay (i.e., the alleged distance of the
obstacle). The regions are: unknown, probably empty and probably occupied. The three
regions have different equations based on which the probability of occupation is calculated
[Kodagoda et al., 2006].
High resolution ultrasonic imaging [Bank and Kampke, 2007] can be built using straight line
representation. Sensor data is interpreted using tangential regression that considers sensor
properties as well as physical reflection properties of ultrasound. This allows reliable detection
and localization of straight lime segments which describe the boundary of geometric objects.

2.3.2 Machine vision
Visual information is the most powerful signal source of sensory information available to a
system [Luo and Kay, 1989]. Many different types of non visual sensors are used in
combination with vision sensors to compensate for some of the difficulties encountered in the
machine processing of visual information [Luo and Kay, 1989; Miura et al., 2002; Lu et al.,
2005; Tomono, 2005]. Tasks such as object recognition, feature extraction and SLAM can
sometimes require the aid of additional types of sensors to approach the capabilities of a
human using just visual information [Lua and Kay, 1989; Arras et al., 2001; Davison and
Murray, 2002; Kluge, 2003]. As small, cheap cameras have grown increasingly common, the
software/hardware interfaces needed to grab camera frames has become easier to find and use
[Wooden, 2006].

14

A lot of research has been done in the area practical implementation of visual-based sensing
for performing several tasks in robotics system. Several are mentioned in this section.

An application for robot’s localization using geometric features (vertical and horizontal lines)
from a 360° laser rangefinder and a monocular vision system is presented in [Arras et al.,
2001]. Vertical lines are extracted from images of an embarked CCD camera. First, a
specialized Sobel filter approximates the image gradient in the horizontal direction and the
most relevant edge pixels are extracted and thinned by using a standard method. Next, the
horizontal position of each edge pixel is corrected yielding a new position using a dedicated
formula resulting from the camera model. Finally, columns with a predefined number of edge
pixels are labeled as vertical lines.
Active visual sensing has been used for the exploration of sparse landmark information
required in robot map-building [Davison and Murray, 2002]. The visual landmarks in use are
features which are easily distinguishable from their surroundings, robustly associated with the
scene geometry, viewpoint invariant, and seldom occluded. The robot points its two cameras
in rather arbitrary directions and acquires features if regions of image interest are found.
Features are detected using Harris corner detector [Harris and Stephens, 1988]. This rather
rough collection of features is then refined naturally through the map maintenance steps into a
landmark set which spans the robot’s area of operation.
Detecting free regions in the robot’s surrounding using stereo vision and visual tracking of
persons is presented in [Tanaka et al., 2003]. First, landmarks are found by using a correlation
based stereo method proposed by [Faugeras et al., 1993]. In this method, a dense depth map
from a pair of images taken at different viewpoints is calculated through determining each
pixel’s correspondence to a landmark by correlation, and the depth is calculated based on the
focal length of the cameras, baseline and the disparity. Points in the depth map that belong to
the ceiling or floor are recognized as landmarks using their height, and are not regarded as
obstacles. The remaining points are called landmark points L. Uncertainties in the correlation
is analyzed according to the camera’s model and some unreliable objects can be completely
eliminated. Next, pixels that may correspond to a person are identified by subtracting the
background image from the current frame, and each x-column is scanned in up direction until
a pixel belonging to a person is found. Then, the pixel is regarded as a feature point and a
navigation map based on the feature pointes is built [Tanaka et al., 2003].
Locating and tracking a human in the vicinity of a robot using several sensors and a vision
system is described in [Lu et al., 2005]. The robot’s surrounding is described using an
occupancy grid, and the sensing objective is to determine the cell occupied by a human. The
cell’s size is sufficient for robot collision avoidance and preserving the human’s safety. Two
analog color cameras equipped with wide angle lenses and a frame grabber were installed on
the ceiling, facing towards the center of the occupancy grid. The cameras are used individually
so a single occlusion does not cause the vision system to fail. The image processing algorithm
first captures a color image and converts it from RGM to HSI color space. Then, it finds the
blob corresponding to the human’s hardhat by thresholding and size filtering. The centroid of
the blob is computed and based on the camera calibration is converted from the 2-D image
coordinates to a line of sight in 3-D world coordinates. Then, the line is truncated into a line
segment using the typical range of human height and is projected onto the occupancy grid
indicating the cells potentially occupied by a human [Lu et al., 2005].
Another vision based sensing for outdoor real-time robotics platform is described in [Wooden,
2006]. The robot is equipped with two pairs of color cameras mounted on its head and the plan
is to plan a path to a known goal point using the grid based map building process. The map
building process starts as a frame grabber captures a pair of images from two calibrated
cameras. The images pass through a stereo library, which has knowledge of the relative

15

physical geometry of the cameras as well as their intrinsic properties. The output is a depth
map, i.e., three dimensional terrain, in a local coordinate frame. Then, a first coordinate
transformation step corrects the depth map for the pitch and roll of the robot, based on the
inertial navigation unit, and a second coordinate transformation converts the depth map from
the local frame to global, using the robot's yaw and current global position. Next, the terrain is
described using a derivative operation on the small terrain map and the new information is
incorporated into the robot's global map [Wooden, 2006].

2.3.3 Laser
A radial laser scanner is a device that measures distances to the objects in the environment
intercepted by the laser beam [Reina and Gonzales, 1997]. Laser range scanners have become
the sensor of choice because of their accuracy and wide availability [Amigoni et al., 2006].
Three basic technologies are used in active laser ranging. Amplitude Modulation Continuous

Wave (AM-CW) lasers use the difference of phase between emitted and received mean; Time-
of-flight (TOF) lasers measure the travel time of a pulse; and Frequency Modulation
Continuous Wave (FM-CW) use the frequency shift of a frequency modulated laser for
measuring range [Hebert, 2000]. Among the available 2-D laser scanners, SICK LMS-200 has
been broadly used, including in this research. This is a TOF laser sensor; a pulsed infrared
laser beam is emitted and reflected from the object surface. The time between the transmission
and the reception of the laser beam is used to measure the distance between the scanner and
the object. The laser beam is reflected by a rotating mirror turning at 4500 rpm, which results
in a fan-shaped scan pattern [Ye and Borenstein, 2002]. The third type of laser is the AM-CW
lasers. These lasers are faster and perform best at close to medium range (e.g., 50m range).
They are typically more sensitive to ambient light, and therefore more suitable for indoor use.
TOF scanners can perform at long range and are best suited for mobile robot application in
outdoor settings; FM-CW sensors can be considerably more accurate, but at a cost of a more
complex design and more brittle packaging. Most robotic applications use AM-CW or TOF
sensors [Hebert, 2000].

Over the years, a lot of algorithms for mapping mobile robot’s environments using laser scans
were developed. Some of the methods are described in the following section.
Map building for a mobile robot equipped with a 2-D laser range finder is described in
[Gonzales et al., 1994]. The map consists of a set of short segments approximating the shape
of the environment, and the update process involves a correspondence problem between
segments from the current global map and segment from the local map obtained in each
position. The advantage of using geometric descriptions over the more common grid-based
representations is that line segments can be represented with few numbers and produce maps
that are easier to use [Amigoni et al., 2006]. The local map building is accomplished in four
different steps: filtering scanned points that do not exhibit a local alignment within a tolerance,
clustering the scan at points where the distance between successive points exceeds a threshold,
clusters segmentation into pieces of scan suitable for a good linear fitting and line segment
fitting where line segments are selected through best fitting all points within the above
segmented groups [Amigoni et al., 2006]. The final result of this process is a local map that
composed of a set of line segments that approximate the contour of the surrounding obstacles
[Gonzales et al., 1994].

Geometrical primitives maps produced by a 2-D laser range finder is described in [Vandrope
et al., 1996]. Their map is composed of two different geometrical primitives. The first
primitive is the line segment which is used to model all objects with a width exceeding 30 cm.
The second primitive is a cluster which is used to measure points which lie close to each other

16

but do not pass the criteria for line extraction. The parameters on the geometrical primitives
are provided with uncertainties depending on the uncertainty of the robot position estimate and
the uncertainties of all measurements leading to this primitive. The map is dynamic, so objects
which have removed from the real world are removed from the map as well.
Another geometric features laser map is presented in [Castellanos et al., 2001]. First, the laser
data is processed by a segmentation algorithm [Castellanos and Tardos, 1999]. Next, three
types of features are extracted: segments, which are considered low-level features; corners and
semi planes, which semantically upgrade the representation of the environment. Corners are
found in the intersection of two consecutive segments whilst semi planes are found at the free
endpoints of segments. Finally, a landmark is formed by each set of consecutive segments and
their derived corners and semi planes.
In general, the environment around the mobile robot could be quite complex, and it may be
composed of many obstacles such as chairs, boxes, the legs on the tables and so on. Thus, it is
not practical to represent all those obstacles as either lines or clusters [Kwon and Lee, 1997].
To remedy this problem, another map model is suggested that represents the entire
environment by a series of stochastic obstacle regions, with their own stochastic variables
[Kwon and Lee, 1997]. Each stochastic region is represented by the mean, variance,
covariance and by the number of scanning data used to determine the stochastic variable.
Laser scans are mapped into a number of cluster regions. If the distance between two
successive data points is smaller than 20cm, the points are denoted to be in the same cluster.
New scans are matched and updated using rule-based algorithm according to the stochastic
variables of each cluster [Kwon and Lee, 1997].
Grid map building using laser scans is described in [Patel et al., 2005]. The purpose is to
identify key unknown regions in the trajectory of the mobile robot and navigating the robot
through it by using active laser sensing. The algorithm performs a look ahead search which
picks the optimal direction to pan the laser according to a utility function. The vehicle builds a
map as it senses its environment in the following way: Each laser scan is converted into a set
of points in the global coordinate frame. The points in the scan are compared to their
neighbors and labeled. Points with sudden steep changes in z values are labeled as obstacles,
otherwise they are labeled as free. The points are placed into their corresponding grid cells and
the status of the cell is updated [Patel et al., 2005].
Most map building methods employed by mobile robots are based on the assumption that an
estimate of robot poses can be obtained from odometry readings or from observing landmarks
or other robots [Amigoni, 2006]. However, odometry data is often unreliable or does not exist
for miniature robots. In addition, it is not possible to interrupt the mapping process and resume
it at a later time without having to reset the initial poses of the robots [Amigoni, 2006]. Hence,
a method for building segment-based maps without pose information was developed and
detailed in [Amigoni, 2006]. Points returned from a 2-D laser scanner are approximated by
line-segments denoted as a partial map. A line segment is represented by its two end points in
the reference frame of the map. Range data can be collected by single or different robots. Two
partial maps are integrated and a set of partial maps is merged in order to build a global map
using a matching process. In this method, it is indifferent if the scans are collected during a
single session or multiple sessions, by multiple robots or a single robot. Robots can be added
or removed at any time, and they do not need to know their own position [Amigoni, 2006].

2.4 Sensor fusion evaluation
Along the years, many sensor fusion algorithms have been developed and implemented [Luo
and Kay, 1989]. Each algorithm has its advantages and disadvantages and therefore a method
for comparing performances is needed. Performance evaluation of sensor fusion in most cases

17

involves real environment experiments, which is problematic in dynamic and unstructured
environment, since it is impossible to repeat experiments under identical conditions. A second
approach for performance evaluation uses theoretical analysis, but it is also hard to implement
since it is usually difficult to characterize sensory performances in unstructured environments
[Cohen, 2005].

As a result of the difficulties, there is a need to find a quantitative comparison of algorithms to
identify the most effective fusion technique. As the method of the evaluation can have a
significant effect on the validity of the evaluation, the evaluation approach should be taken
with care. Among the characteristics that we would expect such a method to provide are: the
evaluation should not be biased in favor of specific systems and should ideally be independent
of the data used. In addition, the evaluation should be objective but in broad agreement with a
subjective assessment. The evaluation should give an overall indication of system
performances and should not be significantly affected by exceptional results [Schwering et al.,
2002].

An example of performance measures for fusion algorithms is available for landmine detection
problems. The probability of detection is plotted against the probability of false alarm for an
adjustable threshold and creates the ROC (receiver operator characteristics curve). Based on
this ROC curve, the minimal risk can be calculated for specific cost functions [Cramer et al.,
2001; Schwering et al., 2002]. ROC curves are also used to diagnose performances in
radiologic imaging using statistical methods [Metz, 1986].

Several performance measures for comparing and quantitative evaluations of sensor fusion
mapping algorithms were developed. A fitness factor for comparing fused grid map generated
from three fusion algorithms is presented in [HoseinNezhad, 2002]. The factor is calculated
for each map, and represents the similarity of the fused map to the corresponding true map of
the simulated environment by calculating the difference in the occupancy probability between
two corresponding cells in the obstacle’s perimeters [HoseinNezhad, 2002].
Another performance measure is the Score measure [Martin and Moravec, 1996] which is
defined as the match of a map to an a-priori ideal map. The match between two maps (for a
given relative displacement) is the log of the probability that the maps represent the same
world. However, this method does not describe the quality of the grid with respect to using the
grid for planning, and for that reason a safety measure was introduced [Stepan et al., 2005].
The safety measure can be computed from the planned path in the fused map and the pattern
grid and allows selecting the best fusion method for a specific environment.

Statistical measures usually require a-priori assumptions such as on the data distribution
[Faceli et al., 2004]. Such a-priori assumptions often lack validation in real world situation and
therefore are not accurate enough. A statistical evaluation method for comparing sensor fusion
mapping algorithm that does not require a-priori information about data distribution or sensors
performances was developed in [Cohen, 2005]. This method defines the experimental design
and statistical analysis procedure and was implemented in this research (chapter 7).

2.5 Cohen’s Work [Cohen, 2005]

2.5.1 General
This research is based on Cohen’s PhD thesis and aimed to extend the previous analysis.
Cohen’s system was developed based on three basic concepts: logical sensors, grid map
paradigm and performance measures.

18

The logical sensor paradigm used to provide a uniform framework for multisensory
integration [Henderon and Shilcrat, 1984]. This approach enables to add sensors to the system
without changing its whole concept.
The grid map paradigm was chosen to present the environment perception due to its simple
implementation and use [Moravec and Elfes, 1985]. Using the grid map representation, the
environment is divided into a fixed size discrete grid. Each grid cell is assigned a value that
indicates if that location is occupied by an obstacle or not. Cohen in his work used binary grid
maps where each cell is assigned either ‘1’ to represent an ‘Occupy’ cell or ‘0’ to represent an
‘Empty’ Cell. The performance measures quantify the difference between two grid maps and
uses the difference between binary decisions about the cell's condition in the grid maps. Cohen
defined two types of performance measures, to quantify the logical sensors and the sensor
fusion algoriths performances.
Sensor fusion algorithms are used to merge or combine the logical sensor’s grid maps into one
grid map, using different algorithms. Cohen used two types of fusion algorithms: logical and
adaptive,which are elaborated below.
In order to evaluate the fusion algorithms performances, Cohen used mobile robot experiments
and a statistical evaluation method. The latter aimed to choose the best performing algorithm.
The statistical evaluation method defines the experimental setup and makes sure that the
results are not specific for one certain data set.
This section describes Cohen’s major development basics that were the foundations for the
development in this work.

2.5.2 Information flow
The system includes N logical sensors representing k physical sensors. The logical sensors
work asynchronously. The schematic description of the information flow is presented in
Figure 2. At each time step t, the ith logical sensor maps the environment using the physical
sensor readings and creates a local observation grid map (LOGM), denoted by t

iy

1,2, ,i N= L . Let ci and di be the local observation grid map dimensions. i ic dt
iy ×∈� with

values from the range { }0,1,........,ir for each cell of that map. The values indicate the number

of times each cell was sampled by the physical sensor.
The system transfers each sensor's LOGM into a local grid map (LGM), denoted by

, 1,2, ,t
iu i N= L . Let c and d be the local grid map dimension. cxdt

iu Ν∈ with values from the

range { }0,1,........,ir for each cell of that map. The LGM dimensions are identical for all

logical sensors.

There are two types of fusion algorithms: logical and adaptive. The algorithms differ in the
memory and feedback properties; the adaptive algorithms use performance measures
(explained below) in the fusion process while the logical algorithms do not.

For logical algorithms (Figure 2):
The LGM reaches the fusion center, where it yields the fused grid map (FGM) cxdtu Ν∈0 ,

based on all the LGM ()1 2, , , ,t t t t t
Nu u u u u∈ L , using the fusion rule ()f ⋅ as follows:

()tufut =0 [1]

For Adaptive algorithms (Figure 2):

19

The performance measures of the logical sensors are calculated based on the previous local
grid maps 1-tu ,)...,,,(11

2
1

1
−−−= t

N
tt uuu1-tu of the logical sensors and the previous fused grid map

defined as 1
0
−tu . The performance measures are denoted as 1t

ip − , where 1,2, ,i N= L . The

calculation of the performance measure depends on the fusion rule in the fusion center. A
detailed description on the performance measures that were used in each adaptive algorithm
can be found in sections 2.5.4.2 and 5.2. An average value of the logical sensor performance
measures 2-t1,-tp ,),...,,(2,12,1

2
2,1

1
−−−−−−= tt

N
tttt ppp2-t1,-tp is calculated, based on 1-tp and 2-tp ,

where
2

21
2,1

−−
−− +
=

t
i

t
itt

i

pp
p , Ni ,...,2,1= .

Both the local grid maps tu and an average value of the logical sensor performance measures
2-t1,-tp are transmitted to the fusion center. At the fusion center, based on all local grid maps

tu and the average value of the logical sensor performance measures 2-t1,-tp the sensor fusion

algorithm yields the fused grid map tu0 at time step t, using the decision rule (.)f as follows:

()2-t1,-tt pu ,0 fut = [2]

The fused grid map, tu0 is fed back to all logical sensors (tu) to calculate the new performance

measures (tp).

Two types of adaptive algorithms were employed. The first type is the adaptive fuzzy logic
(denoted as AFL, explained below) developed, which uses the logical sensor’s performance
measures as fuzzy variables with three fuzzy sets (low, average and high) using trapezoid
membership function and If-Then rules to decide about the cell’s condition (‘Occupy’ or
‘Empty’).

The following information flow is identical to both logical and adaptive algorithms.
At each time step t, a virtual global grid map (VGGM), denoted by 0 0,t t a bZ Z ×∈� , expands the

size of the fused grid map tu0 from c d× to a b× , which is the full size. This is done by

assigning zero values to all cells of the virtual global grid map tZ0 , except those which appear

in tu0 (their values are as in the tu0 map).

All the VGGM's are placed in a new map, the global grid map (GGM), denoted by

, a bZ Z ×∈� . The VGGM's are places in the GGM according to the robot's new position along
the path. The GGM is an a b× matrix and is the output of the entire mapping process, that
represents the whole environment mapping along the robot's path.

20

Environment

u0
t

Virtual global grid map

p1
t-1,t-2 pi

t-1,t-2 pN
t-1,t-2

Fusion center

F
eedback of the global binary m

ap
ty1

t
iy t

Ny

tu1
t
iu t

Nu

tu0

f

u0
tu0

t

Sensor NSensor iSensor 1

Global grid map
Z

tZ0

tZ0

p 1t-
1,

t-
2

p it-
1,

t-
2

p N
t-

1,
t-

2

Figure 2 Information flow at time t – logical and adaptive algorithms

Data in black represents the logical algorithms information flow
Data in red with the data in black represent the adaptive algorithms information flow.

2.5.3 Performance measures
Cohen’s performance measures use the binary decisions about the cell's condition in the grid
maps. Since the cell's condition is a binary value (a positive value indicates 'Occupy' and '0'
indicates 'Empty'), there are four logical conditions for the difference between the two maps.
the performance measures are defined as the summation over all cells of the four logical
conditions: Occupy – Occupy, Empty – Empty, Occupy – Empty and Empty – Occupy.

Cohen’s performance measures are used in two cases. In each case the calculation process is
slightly different. In the first case, they are used in the adaptive fusion algorithms, to quantify
the difference between the logical sensor's maps and the fused map received as an output from
the fusion algorithm. In the second case, they are used in the sensor fusion evaluation process,
to quantify the difference between the sensor fusion's map and the original truth map.
The former measures are denoted in Cohen's work as 'logical sensor performance measures'
and the latter are denoted as 'sensor fusion algorithm performance measures'.

2.5.3.1 Logical sensor performance measures
The logical sensor performance measures are measured by comparing each cell for each
logical sensor's local grid map (LGM, tiu) with the corresponding cell in the adaptive fuzzy

logic fused grid map (FGM, 0
tu) for time sample t. each logical sensor has four performance

measures (4, 1,2, ,t
ip i N∈ ∀ =� L where N is the total number of logical sensors). Since the

cell's condition is a binary value (a positive value indicates 'Occupy' and '0' indicates 'Empty'),
there are four logical conditions for the difference between the two maps.

21

Let:

0

0

0

0

jk

jk

Empty jk cell in LGM
LGM

Occupied jk cell in LGM

Empty jk cell in FGM
FGM

Occupied jk cell in FGM


=

>


=

>

 [3]

Where:

LGMt(i) jk are cells in the sensor’s local grid map (tiu) and

FGMt
jk are cells in the fused grid map (tu0) corresponding to the j row and k column

Then:

()

()()

()

()

()() ()()
() ()

()

()

() ()()
() ()

0

1 1

1 0
1

1

1 0
1

1

t t
jkjk

j k t
jkt t

j kjk
j k

t
LGM FGM

t t
jkjk

j k t
jkt t

j kjk
j k

t
LGM FGM

t t
jkjk

j k t
jkt t

j kjk
j k

LGM FG

LGM i FGM

FGM
OO i FGM

E E i else

LGM i FGM

FGM
EE i FGM

O O i else

LGM i FGM

FGM
OE i FGM

O O

 ⋅


>
=




 − ⋅ −


− >
= −




⋅ −

− >
= −

−

∑∑
∑∑∑∑

∑∑
∑∑∑∑

∑∑
∑∑∑∑

()

()

()()()

()

1

0

1

t
M

t t
jkjk

j k t
jkt t

j kjk
j k

t
LGM FGM

i else

LGM i FGM

FGM
EO i FGM

E E i else









 − ⋅


>
=

 −

∑∑
∑∑∑∑

[4]

[5]

[6]

[7]

Note: for the calculation process, the maps (i.e., tFGM and tLGM) were transformed
into binary maps, which means that positive values were changed to ‘1’.

The vector () () () ()(), , ,t t t t t
ip OO i EE i OE i EO i= is calculated using [4]-[7] to each of the

logical sensors separately in every time step t, where i is the i th logical sensors, 1,2, ,i N= L
and N is the total number of logical sensor.

In order to combine the four measures, an additional united measure (()tUM i) was defined by

Cohen:

() () () () ()t t t t tUM i OO i OE i EE i EO i= − = − [8]

22

2.5.3.2 Sensor fusion performance measures
The sensor fusion performance measures are calculated by comparing each cell of the original

truth map (ORG, ()0,1
a b

ORG
×

∈), with the corresponding cell on the global grid map (GGM)

which is defined as Z. The performance measures use the binary decisions about the cell's
condition in the grid maps. the values of the sensor performance measures OO, EE, OE and
EO were calculated by multiplying the relevant variables by the coefficients defined.

Table 2 Coefficients for calculating the sensor fusion performance measures

OccupyCoefficient

()

GGM

ORG
tCoefficien

ORG

GGM
tCoefficien

ORG

GGM

tCoefficientCoefficien

GGMORG

Occupy

Occupy
Occupy

else

Occupy

Occupy
Occupy

Then
Occupy

Occupy
elseif

EmptyOccupy

ThenOccupyOccupyIf

=

=

≤≤

=

==

10

0

EmptyCoefficient

()

0 1

ORG GGM

Coefficient Coefficient

GGM

ORG

GGM
Coefficient

ORG

ORG
Coefficient

GGM

If Occupy Occupy a b Then

Empty Occupy

a b Occupy
elseif Then

a b Occupy

a b Occupy
Empty

a b Occupy

else

a b Occupy
Empty

a b Occupy

= = ⋅

=

⋅ −
≤ ≤

⋅ −

⋅ −
=

⋅ −

⋅ −
=

⋅ −

Where a and b are defined as the global grid map’s dimensions.

Let:

0

0

0

0

jk

jk

Empty jk cell inGGM
GGM

Occupied jk cell inGGM

Empty jk cell inORG
ORG

Occupied jk cell inORG


=

>


=

>

 [9]

Where:
GGMjk are cells in the global grid map (Z) and
ORGjk are cells in the original map (ORG) corresponding to the j row and k column

23

Then:

()

() ()()

() ()

()()

() ()

()()













−

>

⋅−

=













−

>−
−

−⋅

=













>−
−

−⋅−

=













>

⋅

=

∑∑∑∑

∑∑

∑∑∑∑

∑∑

∑∑∑∑

∑∑

∑∑∑∑

∑∑

elseEE

ORG
ORG

ORGGGM

OE

elseOO

ORG
ORG

ORGGGM

EO

elseOO

ORG
ORG

ORGGGM

EE

elseEE

ORG
ORG

ORGGGM

OO

ORGGGM

j k
jk

j k
jk

j k
jkjk

ORGGGM

ORGGGM

j k
jk

j k
jk

j k
jkjk

ORGGGM

ORGGGM

j k
jk

j k
jk

j k
jkjk

ORGGGM

ORGGGM

j k
jk

j k
jk

j k
jkjk

ORGGGM

1

0

1

1

01
1

1

01
1

11

0

[10]

[11]

[12]

Note: for the calculation process, the maps (i.e., tFGM and tLGM) were transformed into
binary maps, which means that positive values were changed to ‘1’.

And
[]
[]

[]
[]ORGGGMtCoefficien

ORGGGMtCoefficien

ORGGGMtCoefficien

ORGGGMtCoefficien

OEOccupyEO

EOEmptyOE

EEEmptyEE

OOOccupyOO

⋅−=

⋅−=

⋅=

⋅=

)1(

)1(

[13]

[14]

[15]

[16]

2.5.4 Sensor fusion algorithms
In his work, Cohen defined two types of sensor fusion algorithms. The first type consists of
logical algorithms in which the logical sensor distinguishes between two basic states, Occupy
and Empty. The second type use the performance of the logical sensors in the fusion, and are
denoted as adaptive algorithms. These algorithms are considered as algorithms that have
feedback and memory. The adaptive algorithm uses the fuzzy logic theorem, as detailed
below.

2.5.4.1 Logical algorithms
Three logical sensor fusion algorithms were evaluated. These algorithms present different
versions of Identify the obstacle by at least n logical sensors: Logical OR (n=1), MOST
(n>N/2) and logical AND (n=N), where N is the total number of logical sensors in the system
[Cohen, 2005; Blum et al., 1997; Klein, 1993].
The inputs are the local grid map (i.e., t

iu) and their output is the fused grid map (i.e., 0
tu).

24

2.5.4.2 Adaptive fuzzy logic algorithm
The algorithm's inputs are all the logical sensor's local grid maps (i.e., tu) and the average
value of the logical sensor performance measures (i.e., 1, 2t tp − −). The output is a fused grid map

(i.e., 0
tu) of the fused information.

The Adaptive fuzzy logic (denoted as AFL) algorithm that was evaluated was the algorithm
that achieved best performances according to Cohen’s evaluation (denoted as 1010 in [Cohen,
2005]).
The adaptive fuzzy logic algorithm uses Cohen’s logical sensors performance measures as
fuzzy variables with three fuzzy sets: High, Average and Low. Each fuzzy set member is
associated with a trapezoid membership function. The membership function evaluates the
degree of membership of each variable value of the respective fuzzy set member. Fuzzy sets
values and membership function of the fuzzy variables are presented in Table 3.

Table 3 Fuzzy set values of the fuzzy variables

Fuzzy variable
Fuzzy sets

Low Avg. High

OLGMOFGM
t-1,t-2(i) 0,0,0.3,0.45 0.4,0.45,0.55,0.6 0.55,0.7,1,1

ELGMEFGM
t-1,t-2(i) 0,0,0.3,0.45 0.4,0.45,0.55,0.6 0.55,0.7,1,1

OLGMEFGM
t-1,t-2(i) 0,0,0.3,0.45 0.4,0.45,0.55,0.6 0.55,0.7,1,1

ELGMOFGM
t-1,t-2(i) 0,0,0.3,0.45 0.4,0.45,0.55,0.6 0.55,0.7,1,1

For each logical sensor at every time stamp t, two fuzzy output variables are calculated:

t
iOccupy and t

iEmpty , where 1,2, ,i N= L and N is the total number of the logical sensors.

These output fuzzy variables also have three fuzzy sets: High, Average and Low. Each fuzzy
set member is associated with a trapezoid membership function. The fuzzy sets values of the
output fuzzy variables are presented in Table 4.

Table 4 Fuzzy sets values of the fuzzy output variables

Fuzzy variable
Fuzzy sets

Low Avg. High

Occupy 0,0,0.3,0.45 0.4,0.45,0.55,0.6 0.55,0.7,1,1

Empty 0,0,0.3,0.45 0.4,0.45,0.55,0.6 0.55,0.7,1,1

The fuzzy output variables are calculated using twelve If-Then rules presented in Table 5.

Table 5 If-Then rules

Fuzzy variables input
Fuzzy variables

output
Rule OLGMOFGM

t-1,t-2(i) ELGMEFGM
t-1,t-2(i) OLGMEFGM

t-1,t-2(i) ELGMOFGM
t-1,t-2(i) Occupy Empty

1 High High
2 Avg. Avg.
3 Low Low
4 High Low
5 Avg. Avg.
6 Low High
7 High High
8 Avg. Avg.
9 Low Low
10 High Low
11 Avg. Avg.

25

12 Low High

The rules are defuzzified using the Mamdani inference with centroid method [Mamdani and
Assilian, 1975; Kosko, 1992; Zadeh, 1978] and are evaluated to determine the final value of
the t

iOccupy and t
iEmpty final value.

The fused map cells are binary, where '1' indicates that the cell is 'Occupy' and '0' indicated
that the cell is 'Empty'. The decision rule for the fused map cell's is based on the summation of
the logical sensor's t

iOccupy and t
iEmpty final values. For all the corresponding cells in the

logical sensor's map that are '0', their t
iEmpty values are summed. For all the corresponding

cells in the logical sensor's map that are '0', their t
iOccupy values are summed. If the Occupy

sum is greater than the Empty sum, the cell in the fused map is set to '1', otherwise – '0'. The
pseudo-code for fused map decision rule is presented in Figure 3:

Adaptive fuzzy logic decision rule

()

()

()

0

0

1:

1:

1:

, 0

}

, 1

, 0

t
i

t t t
i

t t t
i

t t

t

t

for x MapSizeX

for y MapSizeY

for i N

if u x y

Empty Empty Empty

else

Occupy Occupy Occupy

if Occupy Empty

u x y

else

u x y

=

=

=

=

= +

= +

>

=

=

Figure 3 Pseudo code for fused map decision rule

2.5.5 Mobile robot experiment
Cohen’s experiment consisted of a mobile robot (Pioneer 2-AT). The robot was equipped with
an array of 16 ultrasonic sensors on the robot’s front and back panel (eight sensors on each
panel), and a PTZ SONY CCD camera. All sensors were used to scan the area in front of the
robot; therefore only six ultrasonic sensors from the front of the robot were used. The robot’s
specifications and parameters are detailed in Appendix I.
During the experiment, the robot moved forward at a constant velocity (10 cm/sec) along a
574 cm X 240 cm path in a controlled laboratory environment. As it moved, it mapped the
area in front of it. This area consisted of a black path with five obstacles in a fixed location. To
increase disagreement between logical sensors, two types of decoy obstacles were set along
the robot’s path. These decoys were made of light brown rug. The first type of decoy was less
than 6 cm. in width and length; the size of the second type was around 25 cm. Decoys
locations were randomly changed between repetitions. The obstacles and decoys were not
always noticeable to all logical sensors because of differences in the algorithms as in the color,
size and structure of the decoys themselves. These differences caused the logical sensors to
disagree.

26

2.5.6 Statistical evaluation method
2.5.6.1 General

To evaluate the algorithm's performances, several different experiments were performed. The
experiments differ by changes in the input and in the sensory conditions. Malfunctions were
created artificially by setting logical sensors to empty, full and shifting positions by a constant
value. Each experiment is performed R times (called repetitions), under the same
environmental and sensory conditions. Of course, there are some deviations from one
repetition to another, due to changes in the lighting conditions (day/night), temperature,
shadows, etc. The algorithms performances are quantified using Cohen’s sensor fusion
algorithm performance measures, as detailed in section 2.5.3.2.

The preliminary step in the evaluation process is to ensure that the experiments are different
enough and that there are enough repetitions. The number of repetitions is defined by the
statistical parameters (mean and standard deviation) of the performance measures as defined in
[Cohen, 2005].
A statistical analysis determines the best performing algorithm. The procedure evaluates the
performance measures that were calculated for each algorithm’s map in each experiment and
repetition. Non parametrical statistics were used since the data was very scattered. The
statistical analysis includes three stages. The first one is the Friedman’s test, which tests that
the algorithms performances are different. The test is followed by a multiple comparisons
procedure, which divides the algorithms into homogenous subgroups. The third and last step is
the sign test that picks the best performing algorithm.
This section details the evaluation method procedures. After confirming that the experiments
are different from each other and repetitions are similar enough by calculating the volume of
overlap region [Tin and Mitra, 2002], the number of repetitions required is calculated using
the statistical parameters (i.e., mean and standard deviation) of the performance measures.
This step is followed by a statistical analysis that includes three non-parametric tests. The
evaluation process was programmed in MATLAB, the code is detailed in
Appendix VII.

2.5.7 Different experiments
For each experiment between every two repetitions, each logical sensor’s map from one
repetition is subtracted from all other logical sensor maps from the other repetitions and saved
as an absolute value. For example, LS1 map from experiment 1, repetition 1 is compared to
LS1 map from experiment 2 and all its repetitions, experiment 3 and all its repetitions and so
on. The number of cells different than ‘0’ (signed cells) is saved for each comparison. The
total number of subtracted maps (NExp.) is presented in equation [17]. For each comparison,
the worst difference of all logical sensors is saved.

() ()2

. 2Exp

NumOfExp
N NumOfLS NumOfRep

 
= ⋅ ⋅ 

 
 [17]

2.5.8 Similar repetitions
For each experiment, each logical sensor’s map is subtracted from all its repetitions in pairs
and saved as an absolute value. For example, LS1 map from experiment 1 is subtracted from
LS1 maps from all other repetitions. This is conducted for all LS, and the number of cells
different than ‘0’ (signed cells) is saved for each comparison. The total number of
comparisons (NRep.) is presented in equation [18]. For each comparison, the worst difference
is saved, e.g., the maximum number of signed cells.

27

() (). 2Rep

NumOfRep
N NumOfLS NumOfExp

 
= ⋅ ⋅ 

 
 [18]

2.5.9 Volume of overlap region
This measure is an indicator that the experiments and repetitions are indeed different. This
measure evaluates the overlap of two populations (e.g., experiments and repetitions) and
should be as negative as possible [Tin and Mitra, 2002]. If the volume is not negative, the
experiments are not different enough and more experiments need to be performed. The volume
is calculated using the minimum and maximum number of signed cells from all the
comparisons between the experiments and repetitions, as shown in equation [19].

() ()() () ()()
() ()() () ()().min,.min.max,.max

.min,.min.max,.max

RepExpMINRepExpMAX

RepExpMAXRepExpMIN
VOLR

−
−

= [19]

2.5.10 Number of repetitions
The number of repetitions is based on a t-test detailed in [Cohen, 2005] and is calculated for
chosen values of α and β. For each performance measure, the number of repetitions was
calculated, and the final number was taken as the maximum number from all the performance
measures. The standard deviation (S) for each performance measure was taken as the upper
bound of the standard deviation for this performance measure from all the experiments. ∆ is
the minimum difference to be detected and is taken also for each performance measure
separately. In case the number of repetitions that were conducted is not sufficient, more
repetitions are required.

2.5.11 Performance measure calculation and grouping
After a confirmation that the experiments are indeed different and enough repetitions were
conducted, type I performance measures are calculated. Type I performance measures are
calculated using each algorithm's global grid map (GGM) denoted by Z in section 2.5.1, and
quantify the difference between the real world map and each algorithm's GGM using equations
[13]-[20]. For each experiment, all repetitions values for each performance measure are
grouped together.

2.5.12 Statistical analysis
The statistical analysis includes three non-parametric tests that aim to find the best performing
algorithm. The first stage is the Friedman's test [Hollander and Wolfe, 1973], that checks
whether the algorithms performances are considered different. Friedman's test is performed
separately for each performance measure in every experiment. In this test, the algorithms are
ranked from the least (rank=1) to the largest (rank=4) for every repetition. The test statistic
uses the rank differences. The second stage is the multiple comparison's procedure [Hollander
d Wolfe, 1973] that picks the best performing couple of algorithms. The multiple
comparisons’ procedure uses the sum of ranks for each algorithm to divide the algorithms into
homogenous subgroups. Two algorithms belong to the same subgroup if the difference
between the sums of their ranks does not exceed a predefined critical value. The critical value
is taken from table A.17 in [Hollander and Wolfe, 1973]. The significant value for this test is
derived from the number of repetitions and the number of the compared algorithms, and
appears in the same table. The third and final stage is the sign test [Hollander and Wolfe,
1973] that picks the best performing algorithm. The sign test checks the significance of
difference between the medians of the two algorithms. If the p-value of this test is smaller than
the desired significance level, this proves that one algorithm is superior to the other.

28

3. Methodology

Chapter overview

This chapter describes the methods used in this research. The basic development of this work
is presented in the first section. The second section presents the information flow of the sensor
fusion framework. The following sections present an overview of the methods used:
performance measures that were developed to quantify the logical sensors and the fusion
algorithms performances, the sensor fusion algorithms that were developed and implemented,
and a statistical evaluation method to check the system's performances that was used in the
analysis procedure.

3.1 General
This research is based on Cohen’s PhD thesis [Cohen, 2005] aimed to extend the previous
analysis by developing an extended experimental framework. In addition, a new sensor fusion
algorithm was developed and analyzed including development of new performance measures
and employing a different map representation.

3.1.1 Problem definition
Map a mobile robot's environment by fusing data received from different physical sensors and
evaluate fusion performances.

3.1.2 Development basics
The system was developed based on three basic concepts: logical sensors, grid map paradigm
and performance measures. These concepts are adapted from Cohen’s work (elaborated in
section 2.5) and are modified and extended to meet this research objectives.
In this work, two additional logical sensors were added to the system easily due to the use of
logical sensors. The grid map paradigm implementation in this work assigns each cell is an
integer value that indicated the number of times the logical sensor decided that this cell is
occupied with an obstacle. A cell that was declared as ‘Empty’ was assigned the value '0'. This
method enables to cells influence on the fusion process in direct proportion to their values. i.e.,
the higher the value of the cell, the higher it's importance in creating the fused map.
The performance measures quantify the difference between two grid maps. Two types of
performance measures were used, Type I and Type II. Type I was adapted from Cohen's work
(detailed in section 2.5.3). Type II, which was developed in this research, considers not only
the cell’s decisions, but also the value of the cell in the calculation process. Performance
measures are detailed in chapter 4.

3.1.3 Assumptions

• The environment changes slowly
• Each logical sensor observes the same area
• The logical sensors work asynchronously
• Each logical sensor outputs a two dimensional grid map of the environment
• The resolution of the grid map is higher than obstacle’s resolution; therefore each

obstacle occupies a group of cells in the grid map.

29

3.2 Mapping algorithms
The robot’s environment is represented by grid maps that are built using different mapping
algorithms. In the map building process, each sensor’s readings are placed within each
sensor’s grid map. Mapping algorithms describe the method for converting raw sensor data to
a grid map representation. Since each sensor output has different properties such as shape,
accuracy and resolution, which are derived from the sensor’s model, each sensor has a unique
mapping algorithm. To create different logical sensors, several mapping algorithms were used
for each physical sensor: two mapping algorithms for the ultrasonic sensor and three for the
CCD camera sensor were adapted and enhanced from [Cohen, 2005], and two mapping
algorithms for the laser sensor were developed in this work. Overall seven mapping algorithms
were employed. The different mapping algorithms are detailed in section 6.3.

3.3 Performance measures
Performance measures are used to quantify the difference between the two grid maps as
elaborated later [Cohen, 2005]. Two types of sensor performance measure were used: Type I
and Type II. Type I was adapted from Cohen's work (detailed in 2.5.3) and are used in the
AFL algorithm as the performance measures of the logical sensors as they quantify the
difference between the logical sensor's maps (LGM) and the fused map (FGM). The AFL
algorithm is detailed in section 2.5.4.2. In addition, they are used to evaluate the difference
between the entire environment map (GGM) and the real world map in order to evaluate the
sensor fusion algorithm's performances (see section 2.5.6).

Type II performance measures are used in the new developed Adaptive weighted average
algorithm (detailed in section 4.2) as the weights of the logical sensors. Type II considers not
only the binary decision, i.e., whether the cell is occupied or not, but considers also the value
of the cell in the performance measure calculation process.
These performance measures enable to give a higher weight to a logical sensor that occupies
similar regions in the LGM and in the fused map. This is important as to differentiate these
cells from those that occupy different regions in the LGM than those of the fused map. The
higher the logical sensor's performance measure, the logical sensor is given more weight in the
fusion process. The type II performance measure is defined as the summation over all cells
that are marked as 'Occupy' in both the logical sensor's map and the fused map of the squared
distance between the corresponding cell in the logical sensor's map and the fused map, divided
by the square value of the cell in the fused map. Type II performance measures calculation
process is elaborated in section 4.2.

3.4 Sensor fusion algorithms
Five different fusion algorithms were used to fuse the logical sensors’ grid maps. The
algorithms can be divided into two groups: logical (detailed in 2.5.4.1) and adaptive
algorithms.
The adaptive algorithms uses the logical sensor's performance measures in the fusion process.
The input of these algorithms are the logical sensor's grid maps (LGM) and each average
logical sensor's performance measures (1, 2t t

ip − −), calculated using the previously built fused

map and the LGM. The algorithm gives a higher weight to the better performing logical
sensors, so they have more influence on the fusion process. Although the adaptive algorithms
are computationally expensive, their ability to use the logical sensor's performances with no a-
priori assumption provides an important advantage to the system.

30

Two adaptive algorithms were evaluated: Adaptive Fuzzy Logic (AFL, developed by Cohen),
and a new developed Adaptive Weighted Average algorithm (AdpWA) developed in this
research. Adaptive algorithms are detailed in section 5.2.

3.5 Evaluation
The performance of the five sensor fusion algorithms were evaluated using a statistical
evaluation method detailed in section 2.5.6.

The evaluation method defines the experimental design and analysis procedure.
In order to evaluate the algorithm's performances, several different experiments must be
performed. The experiments differ by changes in the input and in the sensory conditions. Each
experiment is performed R times (called repetitions), under the same environmental and
sensory conditions. Of course, there are some deviations from one repetition to another, due to
changes in the lightning conditions (day/night), temperature, shadows etc.
The algorithms performances are quantified using type I sensor fusion algorithm performance
measures. For each algorithm, in every experiment and all repetitions, four performance
measures are gathered: OO, EE, OE and EO.
The preliminary step in the evaluation process is to ensure that the experiments are different
enough and that there are enough repetitions. The number of repetitions is defined by the
statistical parameters (mean and standard deviation) of the performance measures.
The next step is to check which algorithms perform better by applying a statistical analysis
that includes three stages. The first stage is Friedman's test, which checks whether the
algorithms performances are considered different. The second stage is the multiple
comparisons procedure that picks the best performing couple of algorithms, and the third and
final stage is the Sign test, that picks the best performing algorithm. The statistical tests also
define the number of experiments. The evaluation process and results are detailed in chapter 7.

3.6 Experimental setup and analysis procedure
Cohen's work was expanded to include three physical sensors and a new adaptive weighted
average. The expansion was carried out by re-programming Cohen’s framework using a new
object oriented API source of libraries, ARIA (see Appendix I). Necessary modifications were
made as detailed in Appendix III.

The experiments performed (detailed in chapter 6) consisted of a mobile robot (Pioneer 2-AT)
equipped with an array of 16 ultrasonic sensors (8 in the front panel and 8 in back panel), a
SONY CCD camera and a SICK laser rangefinder. Only six ultrasonic sensors were used.
Two logical sensors were generated using the ultrasonic data. The image registered by the
camera was transformed into three logical sensors. The laser scans were transformed into two
logical sensors. Each of the logical sensors mapped the area using a LOGM, and the system
created a GGM according to the information flow detailed in section 2.5.1.
During the experiments, the robot moved forward at a constant velocity in a controlled
laboratory environment and mapped the area in front of it. The area consisted of a black path
with obstacles along it. In addition, two types of decoy obstacles were set along the robot's
path.
In this research, two sets of evaluations were made. The first set aimed to check the
performances of Cohen's system using three physical sensors (instead of two in the original
work) with four algorithms: OR, MOST, AND and the adaptive fuzzy logic algorithm. The
second set aimed checks the performance of the new developed adaptive weighted average
algorithm compared with the adaptive fuzzy logic algorithm.

31

4. Performance measures

Chapter overview
This chapter presents two types of performance measures. The first type was developed by
Cohen [Cohen, 2005], and uses the difference in the binary decisions (‘Occupy’ vs. ‘Empty’)
between corresponding cells in two maps. The second type was developed in this research and
uses the changes in values between two corresponding cells in two maps.

4.1 General
Performance measures are used to quantify the difference between two grid maps [Cohen,
2005]. Two types of sensor performance measures were used: Type I and Type II.

Type I was adapted from Cohen's work, uses binary decisions about the cell's condition in the
grid maps. This type of performance measures checks whether the cell has a positive value
('Occupied') or not ('Empty'). Since there are four logical states of binary decisions, Type I
performance measures is a vector containing four parameters that all together quantify the
difference between the two maps: OO (indication to the number of cells that are 'Occupy' in
the first map and also in the second map), EE (indication to the number of cells that are
'Occupy' in the first map and also in the second map), OE (indication to the number of cells
that are 'Occupy' in the first map but 'Empty' in the second map) and EO (indication to the
number of cells that are 'Empty' in the first map but 'Occupy' in the second map). The
calculation process is detailed in section 2.5.3.

Type II is used in the adaptive weighted average algorithm as the weights of the logical
sensors. Type II counts not only the decision about the cell's condition ('Occupy' or 'Empty')
but also the value in the cell. This type is a scalar indicating the relation between two maps. A
map that occupies similar area of cells as the map it was compared to, would have a higher
value of this performance measure.

4.2 Type II performance measures
Type II performance measures are used in the adaptive weighted algorithm. Since the grid map
paradigm was extended to represent a non-binary grid map and the values of the map
represent the number of time each cell was sampled by the sensor, a reliable quantitative
measure of the difference between two non-binary grid maps that considers the gap between
maps’ corresponding cells values is needed. Type II considers not only if the cell is occupied
or not, but counts also the value of the cells in the calculation process. This type examines the
difference between the occupied cells both in the logical sensor's map and in the fused map.
The pseudo-code for calculating Type II performance measures is presented in Table 6 :

32

Table 6 Pseudo-code for calculating type II performance measures

() ()
2

1:

1:

&ij ij

ij ijt t

ij

for i MapSizeX

for j MapSizeY

if LSMap FusedMap

LSMap FusedMap
PM i PM i

FusedMap

=

=

 −
= +   

 

The calculation process checks all the cells in the logical sensor's map and in the fused map
and sums the differences in the following way: if both cells have positive values (implying that
these cells are occupied by an obstacle), then the gap between their values can be used to
quantify the difference between the two maps. The cells values are subtracted, and in order to
normalize the difference, it is divided by the value of the cell in the fused map. To avoid the
influence of negative differences, the quotient is squared. ()tPM i is calculated to each logical

sensor at every time sample t, where 1,2, ,i N= L and N is the total number of the logical
sensors.
As the number of two corresponding cells in both grid maps increases, the performance
measure value increases. In other words, the performance measure reveals similarity between
two maps that occupy similar regions. Since obstacles in this research’s grid map occupy a
group of cells, this performance measure enables to denote that performances are increasing
when two maps agree on obstacle’s location, and to decrease performances when two maps do
not agree.
However, the performance measure does not consider agreement on ‘Empty’ cells between
two maps, and thus should be enhanced.

To confirm convergence and in order to mark the best performing sensor, at every time sample
t, all the performance measures are normalized by dividing each performance measure by the
maximum value from all the calculated performance measures. Given the vector of

the () () ()()1 , 2 , ,t t t tPM PM PM PM N= L , the performance measures t
IIPM are calculated

by:

()
()

()
()

()
()

1 2
, , ,

max max max

t t t
t

II t t t

PM PM PM N
PM

PM PM PM

 
 =
 
 

L [20]

After performing this step, all the performance measures relate to the most accurate
performance measure, which has the value '1'. The rest of the logical sensors have lower
values according to their accuracy. These results giving in more weight to logical sensors that
occupy similar areas as the fused map and less weight to logical sensors that occupy different
regions then the fused map. The following section presents a numerical example of Type II
calculation process.

33

 1 2 3 4 1 2 3 4 1 2 3 4

1 20 0 10 0 1 15 17 0 24 1 0 24 2 14
2 0 12 20 0 2 12 0 0 0 2 7 5 0 25
3 0 0 0 0 3 0 0 0 0 3 0 0 11 6
4 4 0 0 0 4 0 20 0 0 4 4 10 0 0

Logical sensor 1
(LS1)

 Logical sensor 2
 (LS2)

Fused map

(FM)
Figure 4 numerical calculation example of type II performance measure

Suppose the system contains two logical sensors, with grid maps and a fused map for a certain
cycle as shown in Figure 4. As explained above, Type II performance measures considers
corresponding cells that are occupied in the logical sensor’s map and in the fused map, i.e., the
bold cells in the logical sensor’s map. The calculation process for the first logical sensor in the
example is detailed in [20]:

2 2 2

(1) 13 13 22 22 41 41

13 22 41

2 2 2
2 2 210 2 12 5 4 4

4 1.4 0 17.96
2 5 4

LS
II

LS FM LS FM LS FM
PM

FM FM FM

     − − −
= + + =     

    

− − −     = + + = + + =     
     

 [21]

The calculation process for the second logical sensor in the example is detailed in [22]:

()

2 2 2 2

12 12 14 14 12 12 24 24

12 14 12 24

2

42 42

42

2 2 2 2

2 2 2 2

17 24 24 14 12 7 20 10

24 14 7 10

0.291 0.714 0.714 1 2.104

II

LS FM LS FM LS FM LS FM
PM

FM FM FM FM

LS FM

FM

       − − − −
= + + +       
       

 −
+ = 
 

− − − −       = + + + =       
       

= − + + + =

 [22]

After calculating the measure for each logical sensor separately, the final step is dividing the
vector by the maximum value from all performance measures, to normalize and ensure
convergence, so the performance measures vector for the given example is presented in [23],
indicating that the most accurate logical sensor is LS1:

()17.96 2.104
, 1,0.117

17.96 17.96IIPM
 = = 
 

 [23]

34

5. Sensor fusion algorithms

Chapter overview

Two types of algorithms were evaluated: logical (OR, MOST and AND) and adaptive (fuzzy
logic and weighted average). Four adaptive weighted average algorithms were developed. This
chapter describes in detail the algorithms.

5.1 General
Two types of sensor fusion algorithms were evaluated. The first type consists of logical
algorithms in which the logical sensor distinguishes between two basic states, Occupy and
Empty, and are elaborated in section 2.5.4.1.

The second type of sensor fusion algorithms used the performance of the logical sensors in the
fusion. The adaptive algorithms are considered as algorithms that have feedback and memory.
In these algorithms, at each time step t, the ith logical sensor creates its local grid map (i.e.,

t
iu). The fused map (i.e., 0

tu) is built using the average value of the performance measures.

The algorithms are considered adaptive, since these values are recalculated online. Although
the adaptive algorithms are computationally expensive, their ability to consider the logical
sensor's performances with no a-priori assumptions provides an important advantage to the
system.

Two adaptive algorithms were evaluated. The Adaptive fuzzy logic (AFL) algorithm (detailed
in 2.5.4.2) uses the performance measures as fuzzy variables with three fuzzy sets. The
Adaptive weighted average (AdpWA) algorithm considers the values of the cells, (instead of
the decision ‘Occupy’ or ‘Empty’) and uses the type II logical sensor's performance measures
as weights, giving a higher weight to the better performing logical sensor. Four versions of the
AdpWA are presented, using different performance measures and a map enhancement
procedure.

5.2 Adaptive weighted average algorithm
The Adaptive weighted average (AdpWA) algorithm considers the values of the cells (instead
of the decision ‘Occupy’ or ‘Empty’), and uses the type II logical sensor's performance
measures as weights, giving a higher weight to the better performing logical sensor. Four
versions of the AdpWA are presented, using different performance measures and a map
enhancement procedure.

The first step in the algorithm is calculating an average map that contains for each cell within
the map, the average value from all logical sensors’ maps. The next step is calculating for each
cell the value of the adaptive weighted average by multiplying the corresponding logical
sensor's cells with the logical sensor's performance measure and dividing the product by the
sum of the performance measures, for normalization. The fused map is built according to the
following rule: if the corresponding cell in the average map is greater or equal to the adaptive
weighted average value, the cell in the fused map is assigned the value of the average map.
Else, the cell in the fused map is assigned the value '0'. After the fused map is built, the final

35

step is calculating the performance measures for each of the logical sensor. The pseudo-code
for calculating the fused map is presented in Figure 5.

Adaptive weighted average algorithm

()
()

() ()
() ()

()

0

1, 2

1

1, 2

1

0

0

1, 2

1.

2. :

1:

1:

,
,

, ,

, ,

, 0

3.

t

t

N
t t t
i i

t i
N

t t
i

i

t t

t t

t

t t
i

Calc AvgMap

Build u

for x MapSizeX

for y MapSizeY

PM u x y
AdpWA x y

PM

if AvgMap x y AdpWA x y

u x y AvgMap x y

else

u x y

Calc PM

− −

=

− −

=

− −

=

=

⋅
=

>

=

=

∑

∑

Figure 5 Adaptive weighted average algorithm pseudo code

The calculation of (),tAdpWA x y is done for each cell in the grid map. The sum of products

between each logical sensor’s performance measure and the cell’s value is divided in the sum
of all performance measures to receive each cell’s weighted average. Since the performance
measures changes between cycles according to the sensor’s performances, the average is
considered adaptive. The adaptive weighted average functions as a threshold as it compared to
the value of that cell in the average map. The average map can be considers as a weighted
average when each logical sensor is given the same value; comparing the average value to the
adaptive threshold allows to reference to each logical sensor’s performances, and how the
average changes with the performances. The disadvantage of the algorithm is that it requires of
the weighted average for each cell separately, and therefore it is computationally expensive in
comparison to logical algorithms; However, calculating a different value for each cell allows
to give more weight to cells with higher value since more likely that this cell indeed contains
an obstacle.

5.2.1 Map enhancement
Map enhancement was introduced into some of the fusion algorithms assuming a relation
between a cell and its neighbors. According to the assumption made in the development of the
framework (section 3.1.3), an obstacle occupies a group of cells in the grid map; therefore, a
cell that is surrounded by occupied cells is more likely to indeed contain an obstacle, rather
than a cell that most of its neighbors are empty, and is less likely to contain an obstacle. The
purpose of the enhancement procedure is to strengthen occupied cells that are surrounded with
occupied cells, by giving them higher values. The procedure checks the number of occupied
neighbors for each cell. If the number of occupied neighbors is greater than half of the
neighbors – the occupied cells average is added to the cell's value, else – the cell is assigned
the value '0'. This applies only to occupied cells (i.e., cells that their value is different than

36

zero), because if the cell is already marked as 'Empty' cell, there is no need to change the
sensor's decision.
 The following section presents a numerical example for the enhancement calculation
procedure.

 1 2 3 4 5 1 2 3 4 5
1 10 5 0 0 0 1 15 0 0 0 0
2 5 0 0 10 5 2 13 0 0 0 13
3 12 9 0 7 6 3 0 0 0 14 14
4 0 0 5 0 0 4 0 0 14 0 0
5 0 0 12 5 0 5 0 0 0 0 0

(a) (b)
logical sensor’s grid map

(LS)
 Enhanced logical sensor’s

grid map (ELS)
Figure 6 LS and ELS grid maps

Figure 6 presents an example for a logical sensor’s grid map (a) and its enhanced grid map (b).
The bold cells within the logical sensor’s grid map are cells that at least most of their
neighbors are occupied, and therefore are strengthen in the enhanced map. The non bold cells
are cells that less than half of their neighbors are occupied, and are assigned a zero value in the
enhanced grid map.
For example, 11LS has three neighbors, and two of them are occupied, so in the enhanced map

it will be added with the average value of it’s occupied neighbors – 5, and we obtain that

11 15ELS = . 34LS has eight neighbors, and four of them are occupied, so it’s value in ELS is

the sum of it’s value in LS and the average value of it’s occupied neighbors (6.5). since the
ELS, like the LS grid map contains integer values, this value is rounded up to the nearest
integer, and 1434 =ELS . 32LS has eight neighbors, but only three of them are occupied (less

then half of the neighbors), therefore we get 32 0ELS = . This is similar to 53LS , which only

two of it’s neighbors are occupied (instead of at least three), and therefore 53 0ELS = . The

same procedure applies for all LS cells, and the result is presented in Figure 6.

5.2.2 AdpWA algorithms
In order to examine the influence of the enhancement procedure and the type of the
performance measures, four different adaptive weighted average algorithms were developed.
The algorithms differ in the enhancement procedure and in the type of the performance
measures as described in Table 7.

Table 7 Adaptive weighted average algorithms
 Type I

Performance
measures

Type II
Performance
measures

No Enhancement AdpWA1 AdpWA2
Enhancement AdpWA3 AdpWA4

AdpWA1 and AdpWA3 use type I performance measures, while AdpWA2 and AdpWA4 use
type II. AdpWA1 and AdpWA2 do not use the map enhancement procedure, while AdpWA3
and AdpWA4 use it. For the evaluation of the different algorithm performances see section
 7.3.

37

6. Mobile robot experiments

Chapter overview
This chapter describes the experimental procedures design, mapping algorithms and setup for
the evaluating the sensor fusion framework and the new developed adaptive weighted average
algorithm.

6.1 General
The experiment consisted of a mobile robot (Pioneer 2-AT, Figure 7). The robot is equipped
with an array of 16 ultrasonic sensors on the robot’s front and back panel (eight sensors on
each panel), one SICK Laser rangefinder mounted on top of the robot and a PTZ SONY CCD
camera mounted on top of the laser sensor. All sensors were used to scan the area in front of
the robot; therefore only six ultrasonic sensors from the front of the robot were used. The
robot’s specifications and parameters are detailed in Appendix I. Two logical sensors were
generated using the ultrasonic data, two logical sensors were generated using the laser scans,
and three logical sensors were used to describe to image captured by the camera. Overall the
system consisted of seven logical sensors.
Two sets of experiments were conducted. The first set aimed to test Cohen’s sensor fusion
framework using three physical sensors, and the second set aimed to test the new developed
AdpWA algorithm’s performances, using the same three physical sensors and seven logical
sensors configuration.

Figure 7 ARAD Pioneer 2-AT

Laser

SONY CCD
Camera

Ultrasonic
sensors

Antenna

Pinpoint
laser

38

Figure 8 Schematic experimental setup (Adapted from Cohen, 2005)

6.2 Experimental Setup
The robot moved forward at a constant velocity (10 cm/sec) along a 574 cm X 240 cm path in
a controlled laboratory environment. As it moved, it mapped the area in front of it. This area
consisted of a black path with five obstacles (corrugated red cardboard cylinders Ø25 cm., 50
cm. height located at fixed positions along the path). To increase disagreement between logical
sensors, two types of decoy obstacles were set along the robot’s path. These decoys were made
of light brown rug. The first type of decoy was less than 6 cm. in width and length; the size of
the second type was around 25 cm. Decoys locations were randomly changed between
repetitions. The schematic experimental setup is presented in Figure 8. Obstacles and decoys
are presented in Figure 12. The obstacles and decoys were not always noticeable to all logical
sensors because of differences in the algorithms as in the color, size and structure of the
decoys themselves. These differences caused the logical sensors to disagree [Cohen, 2005].

Two logical sensors were generated using the ultrasonic data: (i) logical OR algorithm and (ii)
probabilistic approach algorithm [Ribo and Pinz, 2001] denoted as US1 and US2 respectively
[Cohen, 2005]. The laser scans were transformed into two logical sensors: LASER1 and
LASER2. The former used all the 180° scans while the latter used every third scan. The image
captured by the camera was transformed into three logical sensors for determining different
types of obstacles. The first logical sensor, denoted as CAM1 was used to detect red cardboard
cylinders; the second logical sensor, denoted as CAM2 was used to locate the first type of
decoys and the third logical sensor, denoted as CAM3 was used to locate the second type of
decoys. However, these algorithms were not optimized and their performances very much
depended on the lighting conditions, which varied along the path due to external conditions
(e.g. shadows from the ceilings and from obstacles in the room). To enhance image processing
performance, the only light source was a 300W spot placed behind the camera and a sheet of
aluminum foil was placed in the back of the spot to prevent light reflection.

In course of traveling 400 ± 5cm., the robot generated 38 fused grid maps. A fusion was
conducted whenever a logical sensor was sampled. To eliminate influence of the robot
localization problem [Lin et al., 2003] the robot moved only forward. To ensure that the robot
traveled straight, the robot was placed at the beginning of the path and a laser pointer mounted

39

on top of the robot marked the starting point on a calibration board placed at the end of the
path. The robot’s exact location was changed until the point on the calibration board matched
the exact beginning point. At the end of the experiment the robot’s location was measured
again using the laser and the calibration board and if the robot diverged more than 4cm the
repetition was not considered in the analysis.
The robot’s software is written in VC++ version 6.0 using ARIA version 2.4 library routines.
The robot’s operating system is Windows 2000. The experimental software code is detailed in
Appendix IV, while the ARIA library routines concept is detailed in Appendix II. During the
experiments the robot was controlled and programmed using radio connection and PC
Anywhere 8.0 interface via the network.

6.3 Mapping algorithms

Three physical sensors participated in the fusion system: a set of six ultrasonic sensors, a laser
rangefinder and a CCD camera. A total of seven algorithms were implemented to generate
seven logical sensors out of the physical sensors: two algorithms for the ultrasonic sensors,
two algorithms for the laser sensor and three algorithms for the camera.
This section contains the description and pseudo-code for the mapping algorithm for the
different physical sensors. The detailed functions mentioned in this section can be found in
Appendix IV. The flowcharts of the mapping algorithm are described in Appendix VI.
After building the logical sensor’s grid map, each local grid map is transformed relatively to
the robot’s location and placed in the path planning grid map (PPGM). The robot’s location is
checked using the robot’s encoders, and is divided by the cell’s size (5cm) and each cell within
the local grid map is copied to the PPGM (function CopyLBMToGGM)

6.3.1 Ultrasonic mapping algorithms
Ultrasonic mapping algorithms were adapted from [Cohen, 2005] and were modified to fit the
new non-binary grid map paradigm. An array of six ultrasonic sensors in the front panel of the
robot was used (sensors 1-6 in Figure 9). Two logical sensors (marked as US1 and US2)
describe the sensor's reading using two algorithms.

Figure 9 Ultrasonic array (Adapted from Pioneer manual)

The following steps describe the ultrasonic mapping procedure:
1. The sensors are read in a sequential order, from 1 to 6. Each sensor's reading is a

value indicating the distance to the nearest obstacle relatively to the physical
sensor's location on the robot, as described in Appendix I.

40

2. Each sensor's reading is placed within one grid map, resulting with a total of six
grid maps. Since each sensor's output is one value, each grid map contains one
obstacle. Each obstacle’s location is calculated locally by finding it’s projection on
the X and Y axis, and then transformed relatively to the physical sensor’s location
on the robot (function US_readDataFromUS). Since the shape and size of the
obstacles are unknown, the obstacles are described by an arc of 10 cm and 10°
angle, as Figure 10 presents. The cells inside the arc are marked as empty, the arc
cells are marked as occupied and the rest of the cells are marked as unknown. Grid
maps cells contain one of three options: '500' indicating that the cell status is
unknown, '0' indicating that this cell is empty or any integer value indicating the
number of times this cell was declared as occupied, creating non-binary grid map.
The grid map is initialized to the value ‘0’ and each time the algorithm decides a
cell is occupied, the cell’s value is incremented by 1, unless it is assigned with the
value ‘500’, then it is assigned the value ‘1’.

3. Two logical sensors local grid maps are generated by fusing the sensor's maps into
two grid map using two algorithms – OR and Probabilistic approach [Cohen,
2005]. The algorithms indicate logical sensors US1 and US2, respectively. The
algorithms were modified to fit the non-binary grid map concept. Each algorithm
serially fuses the generated grid maps of all logical sensors (one after another)
using its own truth table (functions US_SFA_LogicalOR
US_SFA_ProbablisticApproach). Table 8 and Table 9 present the OR and
Probabilistic approach truth table, respectively. The 'Max' value in the tables
means that the selected value is the maximum value within the occupied cells
values.

50050000500500

50050000500500

50050000500500

500500000500

5000000500

5000000500

5000000500

5000000500

5007241500

5002837500

500500500500500500

50050000500500

50050000500500

50050000500500

500500000500

5000000500

5000000500

5000000500

5000000500

5007241500

5002837500

500500500500500500

Figure 10 Ultrasonic grid map model

Table 8 OR algorithm truth table (US1)

 USj
Empty Occupied Unknown

U
S i

 Empty Empty Max Empty
Occupied Max Max Max
Unknown Empty Max Empty

41

Table 9 Probablistic approach truth table (US2)

 USj
Empty Occupied Unknown

U
S i

 Empty Empty Empty Empty
Occupied Empty Max Max
Unknown Empty Max Empty

6.3.2 Camera algorithms
Camera’s Mapping algorithms were adapted from [Cohen, 2005] and were changed to fit the
environmental conditions in the lab and the new non-binary grid map paradigm.
Sampling the camera sensor means taking photos in four pan angles: -17°, 17°, 50°,-50°. The
order of the pan angles changes between odd and even cycles. Three logical sensors are
implemented using the camera pictures (marked as CAM1, CAM2 and CAM3); each logical
sensor differs in the image processing algorithm, i.e., each logical sensor's map is created
using a different image processing function. The algorithms differ in the obstacles they are
designed to detect. CAM1 is designed to detect the obstacles, CAM2 is designed to detect the
first type of decoys and the obstacles and CAM3 is designed to detect the second type of
decoys and the obstacles (see section 6.2).

The following steps describe the camera mapping procedure:
1. The camera is set to one of four possible pan angle (-17°, 17°, 50° or -50°), and

takes a picture.
2. Obstacles center of mass in the picture is found using three image processing

algorithm and its X and Y location in the map is calculated using the camera’s
calibration process and saved in a special vector for each image processing
algorithm.

3. Steps 1 and 2 are taken for the next pan angle, until all four pan angles were
sampled. Overall, twelve obstacle’s location vectors represent the obstacle found
in each picture: three image processing vectors for each one of the four pan angle
(function ImageProcessingAlgo3).

4. For each image processing algorithm, according to the obstacle’s location vectors,
the obstacles from the different pan angles are placed in the grid map. Since the
size and the shape of the obstacles are unknown, around every obstacle’s location
a circle (Ø 15cm) is drawn. The grid map is initialized to the value ‘0’ and each
time the algorithm decided a cell is occupied, the cell’s value is incremented by 1.
This step resulting in three local grid maps that represent three logical sensors:
CAM1, CAM2 and CAM3 (function ImageProcessingAlgo4).

Image processing algorithms
The algorithms use Threshold, iplErode, iplDilate and cvFindCountors function from Intel's
CV and IPL (see Appendix IV), and differ in the functions constants. Each algorithm is
design to detect different kind of obstacles according to their area as found from the
cvFindCountors function. The areas for each algorithm are shown in Table 10. The threshold
values and the obstacle’s minimum and maximum sizes were found empirically and were
adapted to the lightning conditions in the lab where the experiments took place.

42

Algorithm 1 – CAM1
1. Convert the photo from RGB into grayscale format.
2. Run Threshold(120) on the grayscale photo and save in BW format.
3. Run cvFindCountors and find the center of mass of all obstacles.
4. Map the obstacles their area fit the range in Table 10.

Algorithm 2 – CAM2
1. Convert the picture from RGB into grayscale format.
2. Run Threshold(120) on the grayscale photo and save in BW format.
3. Run iplErode(3) on the BW photo and save it.
4. Run iplDilate(5) on the BW photo and save it.
5. Run cvFindCountors and find the center of mass of all obstacles.
6. Map the obstacles their area fit the range in Table 10.

Algorithm 3 – CAM3
1. Convert the picture from RGB into grayscale format.
2. Run Threshold(150) on the grayscale photo and save in BW format.
3. Run iplErode(3) on the BW photo and save it.
4. Run iplDilate(4) on the BW photo and save it.
5. Run cvFindCountors and find the center of mass of all obstacles.
6. Map the obstacles their area fit the range in Table 10.

Table 10 Detection area for each algorithm
 CAM1 CAM2 CAM3
Min 15,000 600 8000
Max 47,000 33,000 33,000

6.3.3 Laser algorithms

Two mapping algorithms were developed in this research. The laser sensor senses the
environment in front of it at a 180° in an angular resolution of 1°. This results in an output
vector with 181 readings. Each cell in the reading indicates the distance to the nearest obstacle
at a specific angle. The laser logical sensors (marked as LASER1 and LASER2) were
implemented using two algorithms. The two laser mapping algorithms differ by the number of
readings that are marked in the grid map.

The following steps describe the ultrasonic mapping procedure:
1. The laser is sampled and a vector of readings is saved.
2. For LASER1 - all the readings are placed in a grid map according to the reading

and its angle. A small circle (Ø 5cm) is placed around each reading in the grid
map. For LASER2 – every 3rd reading is placed within the grid map, and a small
circle (Ø 5cm) is placed around it. The local grid map is initialized to the value ‘0’
and each time the algorithm decided a cell is occupied, the cell’s value is
incremented by 1 (function ReadFromSick).

6.4 Experimental procedure
An experiment is defined as a mapping task for specific environmental and sensory conditions.
At each cycle, the robot mapped the environment using samples from six of the ultrasonic
sensors in the front panel, laser scans and photos taken from the camera. In order for the

43

camera to capture the obstacles and the decoys, the camera tilt angle was set to -25°. The
camera took photos from four pan angles (-50°, -17°, 17° and 50°), as shown in Figure 11.

Pan angles Tilt angle
Figure 11 Pan and Tilt angles (Adapted from Cohen, 2005)

The slowest sensor was the camera, due to the slow pan angles changing process. In order to
increase the number of cycles in the experiment, the order of the pan angles was reversed
between odd and even cycles. The pan angles order in the even cycles is -50°→-
17°→17°→50° and in the odd cycles is reversed, i.e., 50°→-17°→-17°→-50°. Image
processing algorithms recognized the obstacles and decoys from the different angles, and
placed them in the camera’s logical sensor’s LBM according to a calibration process detailed
in Appendix V. Environmental and sensory conditions are changed for each new experiment
using a methodology described in chapter 7 . The obstacle locations are constant and therefore
identical for all experiments. Each experiment is performed R times (called repetitions), for
identical environmental and sensory conditions. The difference between repetitions is caused
by randomly changing the location of the decoys. Statistical procedures (detailed in section
 2.5.6) determined the number of experiments and repetitions. At the end of each repetition, all
logical sensors maps and the data received from the sensors and robot’s encoders were saved
on the robot’s hard drive for offline analysis.

Figure 12 Experimental setup photographs

Initial values for the performance measures for the AFL and AdpWA algorithms were set as
detailed in Table 11 and in Table 12 respectively. These values were determined randomly and
set as a constant for all experiments.

Obstacles

1st type decoys

2nd type decoys

-25°

44

Table 11 Experimental initial perofrmance measures for AFL algorithm

Logical
sensor

Initial performance measures values
OO0(i) EE0(i) EO0(i) OE0(i)

US1 0.85 0.9 0.1 0.15
US2 0.78 0.91 0.19 0.22
CAM1 0.8 0.7 0.3 0.2
CAM2 0.6 0.9 0.1 0.4
CAM3 0.88 0.91 0.09 0.12
LASER1 0.92 0.95 0.05 0.08
LASER2 0.93 0.95 0.05 0.07

Table 12 Experimental initial peroformance measures for AdpWA algorithm

Logical
sensor

Initial
performance

measures
values

US1 0.3
US2 0.3
CAM1 0.1
CAM2 0.1
CAM3 0.1
LASER1 1
LASER2 1

45

7. Evaluation and Results

Chapter overview
This chapter presents the algorithm's evaluation results. Two sets of experiments were
conducted. The first set aimed to test the performance of sensor fusion algorithms using the
new sensor fusion framework while the second set aimed to test the performances of the new
adaptive weighted algorithms.

7.1 General
Sensor fusion algorithms were evaluated using the evaluation method developed by [Cohen et.
al., 2005]. To evaluate the algorithm's performances, several different experiments were
performed. The experiments differ by changes in the input and in the sensory conditions.
Malfunctions were created artificially by setting logical sensors to empty, full and shifting
positions by a constant value. Each experiment is performed R times (called repetitions), under
the same environmental and sensory conditions. Of course, there are some deviations from one
repetition to another, due to changes in the lighting conditions (day/night), temperature,
shadows, etc. The algorithms performances are quantified using type I sensor fusion algorithm
performance measures, as detailed in section 2.5.3.2 . For each algorithm, in every experiment
and all repetitions, four performance measures are gathered: OO, EE, OE and EO.
The statistical method is detailed in section 2.5.6.
The first set of experiments aimed to test the performances of Cohen's extended sensor fusion
algorithm framework which uses three physical sensors instead of two, as in Cohen's work.
The second set of experiments aimed to test the performances of the new developed adaptive
weighted algorithm. The AdpWA performances were tested using the extended fusion
framework fusing data from three physical sensors.

7.2 Extended sensor fusion framework evaluation
7.2.1 General

In this research, Cohen's fusion framework was extended to fuse data from three physical
sensors. The additional physical sensor, a laser rangefinder, was added to the system, as
described in chapter 6. In the extended framework, four sensor fusion algorithms were
employed: OR, MOST, AND and AFL as detailed in section 2.5.4. In order to test the sensor
fusion algorithms using the new extended framework, a set of experiments was conducted.
The experiments design and procedure are detailed in chapter 6.

7.2.2 Experimental design
Seven different experiments were conducted (Table 13). The experiments differ in the
environmental conditions and in sensory input. Different environmental conditions were
chosen to ensure that the results are not specific for a dataset only. Each experiment was
repeated seven times. The number of experiments and repetitions required derives from
several parameters, including the statistical characteristics of the data (e.g., standard
deviation), the desired α value and ∆, the minimum difference to be detected [Cohen, 2005].
Hence, it is impossible to predict a-priori the number of experiments and repetitions required.
Therefore, the initial number of experiments and repetitions was chosen arbitrary as four.
Lighting conditions were changed in the third and seventh experiment. Experiment’s

46

repetitions were performed under the same conditions with natural variations such as lightning
conditions, shadows and time differences. However, calculating the volume of overlap region
(VOLR) showed that the experiments were not different enough (VOLR>0), therefore three
additional experiments were performed. In each experiment, environmental mapping was
achieved using the four different sensor fusion algorithms, resulting in a total of 196
environmental mappings (4 sensor fusion algorithms X 7 Experiments X 7 repetitions). Figure
13 presents the algorithms’ map results from experiment 1, first repetition and the
corresponding real world map. All logical sensors mappings from all experiments are
presented in Table 22, and algorithms mappings are presented in Table 23.

Table 13 Experimental design for statistical evaluation experiment
Exp. US1 US2 LASER1 LASER2 CAM1 CAM2 CAM3 Comments

1 Empty
Regular

Algorithm
Full

Regular
Algorithm

Regular
Algorithm

Shift:
X=X+40cm
Y=Y+40cm

Shift:
X=X-40cm
Y=Y-40cm

2 Full
Regular

Algorithm
Empty

Regular
Algorithm

Regular
Algorithm

Shift:
X=X-40cm
Y=Y-40cm

Empty

3
Regular

Algorithm
Empty

Regular
Algorithm

Full
Regular

Algorithm
Regular

Algorithm
Regular

Algorithm

Lights off
for cycles

15-end

4
Regular

Algorithm
Full

Regular
Algorithm

Empty
Regular

Algorithm
Regular

Algorithm
Full

5
Regular

Algorithm
Full

Regular
Algorithm

Empty
Shift:

X=X+20cm
Y=Y-40cm

Full
Shift:

X=X-40cm
Y=Y+60cm

6
Regular

Algorithm
Empty

Regular
Algorithm

Full
Regular

Algorithm

Shift:
X=X+60cm
Y=Y+60cm

Full

7
Regular

Algorithm
Regular

Algorithm
Regular

Algorithm
Regular

Algorithm
Regular

Algorithm
Regular

Algorithm
Regular

Algorithm

Lights off
for cycles

15-end

Real world
map

OR AND MOST AFL

Figure 13 Map results, experiment 3, first repetition

Different experiments
For seven LS, seven repetitions and seven experiments, this result in 7,203 subtracted maps, as
derived from [17] and presented in [24]. For each comparison, the worst difference of all
logical sensors is saved [Cohen, 2005], resulting in 343 maps.

47

203,7
2

7
77 2

. =







⋅⋅=ExpN [24]

Similar repetitions
For seven LS, seven repetitions and seven experiments that were chosen arbitrarily, this result
in 1,029 comparisons, as derived from [18] and presented in [25]. For each comparison, the
worst difference is saved, e.g., the maximum number of signed cells [Cohen, 2005], resulting
in 49 maps.

029,1
2

7
77.Re =








⋅⋅=pN [25]

Volume of overlap region
The maximum number of signed cells was calculated for all experiments and repetitions. The
volume is negative as equation [26] shows, implying that the experiments are different and
repetitions are similar.

() ()
() ()

7114.0
156,41601067,5136

156,41601067,5136
−=

−
−

=
MINMAX

MAXMIN
VOLR [26]

Number of repetitions
The number of repetitions is based on a t-test detailed in [Cohen, 2005] and is calculated for
α=0.05 and β=0.2. Standard deviation (S) and mean values are taken as the upper bound from
all experiments and algorithms. In order to allow reasonable error, ∆ is chosen to be 20% from
the mean upper bound. This value was chosen arbitrarily. Results are presented in Table 14.
Based on these results, the largest R is for the OO measure; this results in seven necessary
repetitions. Since each experiment has already seven repetitions, no additional repetitions were
required.

Table 14 R calculations for each performance measure
Performance
Measure

S ∆ Radjusted R

OO 0.068 0.072 6.220 7
EE 0.039 0.195 0.287 1
OE 0.009 0.200 0.016 1
EO 0.086 0.200 1.326 2

7.2.3 Performance measure calculation and grouping

Table 15 presents an example of raw data for one of the repetitions in one of the experiments
for all sensor fusion algorithms. Raw data for the whole experiment set is detailed in Appendix
VIII. An example of the resulting OO values for all repetitions is presented in Table 16.

48

Table 15 Sensor fusion performance measures values for experiment 2, first repetition

Algorithm OO EE OE EO
OR 0.038 0 1 0
AND 0 0.962 0 1
MOST 0.0048 0.9634 0.0001 0.8459
AFL 0.3513 0.9754 0.0001 0.0385

 Table 16 OO Measure for four algorithms, seven repetitions, Experiment 7

 Repetition number
Algorithm 1 2 3 4 5 6 7
OR 0.226 0.214 0.165 0.183 0.175 0.159 0.198
AND 0.001 0.005 0.001 0.001 0.004 0.004 0.005
MOST 0.295 0.374 0.278 0.252 0.180 0.230 0.193
AFL 0.416 0.395 0.401 0.361 0.220 0.305 0.234

7.2.4 Statistical analysis

Friedman's test
An example of Friedman' test ranking for the OO measure of one experiment is presented in
Table 17. The entries in each row are the ranks of each algorithm within the seven
replications. Friedman’s ranking for all experiments are presented in Appendix IX.
P-values for all 7 experiments for all seven experiments are presented in Table 18 . The very
small p-values imply a difference between algorithms.

Table 17 Example of Friedman's test ranking, OO measure, experiment 7, seven repetitions

(Note: for OE and EO smaller values is preferable)

 Algorithm
Repetition OR AND MOST AFL

R
an

k

1 2 1 3 4
2 2 1 3 4
3 2 1 3 4
4 2 1 3 4
5 2 1 3 4
6 2 1 3 4
7 3 1 2 4

 Sum 15 7 20 28

49

Table 18 Friedman's test results

Experiment
Sensor fusion
performance

measures
p - value Experiment

Sensor fusion
performance

measures
p - value

1.

OO 0.0002

5.

OO 0.0002
EE 0.0001 EE 0.0001
OE 0.0003 OE 0.0003
EO 0.0002 EO 0.0004

2.

OO 0.0001

6.

OO 0.0005
EE 0.0001 EE 0.0001
OE 0.0001 OE 0.0002
EO 0.0002 EO 0.0002

3.

OO 0.0004

7.

OO 0.0001
EE 0.0001 EE 0.0003
OE 0.0002 OE 0.0004
EO 0.0005 EO 0.0001

4.

OO 0.0003

EE 0.0006
OE 0.0005
EO 0.0005

Multiple comparison procedure
According to table A.17 in [Hollander and Wolfe, 1973], for a significance level of 0.02, four
algorithms and seven repetitions require a difference equal or greater than 14 between their
algorithm's sum of ranks in order to considered as different algorithms. Table 19 describes an
example of the 28 multiple comparison procedures detailed in Appendix X. A close look at the
results indicates that in most cases MOST and AFL algorithms belong to the same best
subgroup and thus they are considered the two best performing algorithms.

Table 19 Multiple comparison results for all PM , experiment 7
(Note: for OE and EO smaller values is preferable)

Experiment 7
OO measure EE measure

Sensor
fusion

algorithm

Sum of
ranks

Sub
groups

Sensor fusion
algorithm

Sum of
ranks

Sub groups

AFL 28 A AFL 27 A
MOST 20 A B MOST 22 A B

OR 15 A B AND 14 A B C
AND 7 B OR 7 C

OE measure EO measure
Sensor
fusion

algorithm

Sum of
ranks

Sub
groups

Sensor fusion
algorithm

Sum of
ranks

Sub groups

AND 27 A AFL 28 A
AFL 20 A B MOST 21 A B

MOST 16 A B OR 14 A B
OR 7 B AND 7 B

Sign test
Final comparison between the two best performing algorithms (AFL vs. MOST) is the sign
test. For each experiment, four performance measures was tested, overall 28 cases was
examined. Sign test data is presented in Appendix XI. Table 20 presents the sign test data
summary. The AFL algorithm outperformed the MOST algorithm in 12 cases, in 4 cases

50

MOST outperformed AFL and in 12 cases both of them yielded identical results. The
significance level corresponding to this case is equal to 0.077, as presented in Table 21. Table
21 was generated using SPSS for windows software release 12.0.0. The small significance
level implies that the AFL algorithm is the best performing algorithm.

Table 20 Sign test data

Table 21 Sign test results
 Frequencies

 N
MOST - AFL Negative

Differences(a) 12

Positive
Differences(b) 4

Ties(c) 12
Total 28

 Test Statistics(b)

 MOST - AFL
Exact Sig. (2-tailed) .077(a)

a Binomial distribution used.
b Sign Test

a MOST < AFL
b MOST > AFL
c MOST = AFL

7.2.5 Discussion
The evaluation method presented in this section indicates that the two best performing
algorithms are the AFL and MOST. Of the two, the AFL is superior. OR and AND algorithms
have poor performances. These evaluations correspond to previous results [Cohen, 2005] and
to visual presentations of the generated maps.

Experiment
environmental

conditions

Sensor fusion performance measures
OO EE OE EO

MOST AFL MOST AFL MOST AFL MOST AFL
1. Ties Ties Ties Ties Ties Ties Ties Ties
2. 0 7 0 7 0 3 0 7
3. 0 7 0 7 3 4 0 7
4. Ties Ties Ties Ties Ties Ties Ties Ties
5. 7 0 7 0 7 0 7 0
6. Ties Ties Ties Ties Ties Ties Ties Ties
7. 0 7 1 6 1 6 1 6

Total 1 3 1 3 1 3 1 3
Note: The values in this table indicate the number of times each algorithm outperforms the opponent.

51

Table 22 Logical sensors mapping in the extended sensor fusion framework

 Logical sensor Real
world
map Exp. US1 US2 LASER1 LASER2 CAM1 CAM2 CAM3

1

2

3

4

5

6

7

52

Table 23 Algorithms mapping in the extended sensor fusion framework
 Sensor fusion algorithm Real

world
map Exp. OR AND MOST AFL

1

2

3

4

5

6

7

53

7.3 Adaptive weighted algorithm evaluation
7.3.1 General

A new adaptive weighted algorithm (AdpWA) is presented in this research. The algorithm
uses the values in the maps and in performance measures for building the fused map, and was
implemented in the extended sensor fusion framework. The algorithm was implemented using
a set of algorithms, which differ in the performance measures type and include implementation
of a map enhancement procedure. The algorithm set is fully described in section 5.2. To test
the algorithms' performances, Cohen's evaluation method was applied [Cohen, 2005]. A total
of five sensor fusion algorithms were employed: AdpWA1, AdpWA2, AdpWA3 ,AdpWA4
and AFL. In order to test their performances, a set of experiments was conducted. The
experimental set was defined using the evaluation method developed by Cohen [Cohen, 2005].

7.3.2 Experimental design
Four different experiments were conducted (Table 24). The experiments differ in the
environmental conditions and in sensory input. Different environmental conditions were
chosen to ensure that the results are not only for a specific dataset. Each experiment was
repeated six times. The number of experiments and repetitions required derives from several
parameters, including the statistical characteristics of the data (e.g. standard deviation), the
desired α value and ∆, the minimum difference to be detected [Cohen, 2005]. Hence, it is
impossible to predict a-priori the number of experiments and repetitions required. Therefore,
the initial number of experiments and repetitions was chosen arbitrary. Lighting conditions
were changed in the fourth experiment by turning off the lights. Experiment’s repetitions were
performed under the same conditions with natural variations such as lightning conditions,
shadows and time differences. In each experiment, environmental mapping was achieved
using the five different sensor fusion algorithms, resulting in a total 120 of environmental
mappings (5 sensor fusion algorithms X 4 Experiments X 6 repetitions). Figure 14 presents the
algorithms’ map results from experiment 1, first repetition and the corresponding real world
map. All logical sensors mappings are presented in Table 33 and algorithms mappings are
presented in Table 34.

Table 24 Experimental design for statistical evaluation experiments
Exp. US1 US2 LASER1 LASER2 CAM1 CAM2 CAM3 Comments

1 Empty
Regular

algorithm
Full

Regular
Algorithm

Regular
Algorithm

Shift:
X=X+40
Y=Y-60

Shift:
X=X-60
Y=Y+40

2
Regular

 Algorithm
Empty

Regular
Algorithm

Full
Shift:

X=X+100
Y=Y-100

Regular
Algorithm

Regular
Algorithm

3 Empty
Regular

Algorithm
Regular

Algorithm Empty Empty
Regular

Algorithm

Shift:
X=X+100
Y=Y-120

4 Empty
Regular

Algorithm
Regular

Algorithm
Empty

Regular
Algorithm

Regular
Algorithm

Regular
Algorithm

Lights off

54

Real
world
map

AdpWA1 AdpWA2 AdpWA3 AdpWA4 AFL

Figure 14 Map results, Experiment 3, first repetition

Different experiments
For seven logical sensors, seven repetitions and four experiments that were chosen arbitrarily,
these results in 1,512 subtracted maps, as derived from [17] and presented in [27]. For each
comparison, the worst difference of all logical sensors is saved [Cohen, 2005], resulting in

512,1
2

4
67 2

. =







⋅⋅=ExpN [27]

Similar repetitions
For seven LS, six repetitions and four experiments, this results in 420 comparisons, as derived
from [18] and presented in [28]. For each comparison, the worst difference is saved, e.g., the
maximum number of signed cells [Cohen, 2005], resulting in 168 maps.

420
2

6
47.Re =








⋅⋅=pN [28]

Volume of overlap region
The maximum number of signed cells was calculated for all experiment and repetitions. The
volume is negative as equation [29] shows, implying that the experiments are different and
repetitions are similar.

() ()
() ()

024.0
78,877754,5136

78,877754,5136
−=

−
−

=
MINMAX

MAXMIN
VOLR [29]

Number of repetitions
The number of repetitions is based on a t-test detailed in [Cohen, 2005] and is calculated for
α=0.05 and β=0.2. Standard deviation (S) and mean values are taken as the upper bound from
all experiments and algorithms. ∆ is chosen to be 15% from the average upper bound. The
results are presented in Table 25. Based on these results, the largest R is for the OO measure;
this results in six necessary repetitions. Since each experiment has already six repetitions, no
additional repetitions were required.

55

Table 25 R calculations for each performance measure

Performance
Measure

S ∆ Radjusted R

OO 0.0371 0.041 5.838 6
EE 0.0221 0.1459 0.163 1
OE 0.0011 0.1471 0.0003 1
EO 0.0625 0.15 1.237 2

7.3.3 Performance measure calculation and grouping

Table 26 presents an example of raw data for one of the repetitions in one of the experiments
for all sensor fusion algorithms. Raw data for the whole experiment set is detailed in Appendix
XII. An example of the resulting EE values for all repetitions is presented in Table 27.

Table 26 Sensor fusion performance measures values for experiment 3, second repetition
Algorithm OO EE OE EO
AdpWA1 0.242 0.971 0.000 0.068
AdpWA2 0.196 0.878 0.004 0.310
AdpWA3 0.115 0.969 0.000 0.320
AdpWA4 0.231 0.935 0.001 0.221

AFL 0.000 0.962 0.000 1.000

 Table 27 EE Measure for five algorithms, six repetitions, Experiment 2
 Repetition number
Algorithm 1 2 3 4 5 6
AdpWA1 0.974 0.970 0.972 0.957 0.963 0.973
AdpWA2 0.000 0.000 0.000 0.000 0.000 0.000
AdpWA3 0.971 0.969 0.970 0.970 0.968 0.970
AdpWA4 0.002 0.002 0.002 0.002 0.002 0.002

AFL 0.974 0.971 0.973 0.973 0.970 0.973

7.3.4 Statistical analysis

Friedman's test
An example of Friedman' test ranking for the EE measure of experiment 2 is presented in
Table 28. The entries in each row are the ranks of each algorithm within the seven
replications. Friedman’s ranking for all experiments are presented in Appendix XIII.
P-values for all 7 experiments for all seven experiments are presented in Table 29. The very
small p-values imply a difference between algorithms.

56

Table 28 Example of Friedman's test ranking, OO measure, experiment 2, seven repetitions

(Note: for OE and EO smaller values is preferable)

 Algorithm
Repetition AdpWA1 AdpWA2 AdpWA3 AdpWA4 AFL

R
an

k

1 5 1 3 2 4
2 5 1 3 2 4
3 5 1 3 2 4
4 5 1 3 2 4
5 5 1 3 2 4
6 5 1 3 2 4

 Sum 30 6 18 12 24

Table 29 Friedman's test results for AdpWA algorithm

Experiment
Sensor fusion
performance

measures
p - value Experiment

Sensor fusion
performance

measures
p - value

1.

OO 0.0012

3.

OO 0.001
EE 0.0005 EE 0.0005
OE 0.0006 OE 0.0005
EO 0.0005 EO 0.0005

2.

OO 0.0005

4.

OO 0.0005
EE 0.0012 EE 0.0012
OE 0.0012 OE 0.0012
EO 0.0005 EO 0.0005

Multiple comparison procedure
According to table A.17 in [Hollander and Wolfe, 1973], for a significance level of 0.049, five
algorithms and six repetitions require a difference equal or greater than 15 between the
algorithm's sum of ranks in order to be considered as different algorithms. Table 30 describes
an example of the 16 multiple comparison procedures detailed in Appendix XIV. A close look
at the results indicates that in most cases AdpWA1 and AFL algorithms belong to the same
best subgroup and thus they are considered the two best performing algorithms.

Table 30 Multiple comparison results for all PM , experiment 1
(Note: for OE and EO smaller values is preferable)

Experiment 1
OO measure EE measure

Sensor
fusion

algorithm

Sum of
ranks

Sub groups
Sensor fusion

algorithm
Sum of
ranks

Sub groups

AdpWA4 29 A AdpWA1 30 A
AdpWA2 23 A B AdpWA3 24 A B
AdpWA1 20 A B C AFL 18 A B C

AFL 12 B C AdpWA4 12 B C
AdpWA3 6 C AdpWA2 6 C

OE measure EO measure
Sensor
fusion

algorithm

Sum of
ranks

Sub groups
Sensor fusion

algorithm
Sum of
ranks

Sub groups

AdpWA3 30 A AdpWA2 27 A
AdpWA1 22 A B AdpWA4 27 A

AFL 20 A B C AdpWA1 18 A B
AdpWA4 12 B C AFL 12 A B
AdpWA2 6 C AdpWA3 6 B

57

Sign test
Final comparison between the two best performing algorithms (AdpWA1 vs. AFL) was done
using the sign test. For each experiment, four performance measures were tested, resulting in
overall 16 cases. Sign test data it presented in Appendix XV. Table 31 presents the sign test
data summary. The AdpWA1 algorithm outperformed the AFL algorithm is 13 cases, and in 3
cases AFL outperformed AdpWA1. The significance level corresponding to this case is equal
to 0.021, as presented in Table 32. Table 32 was generated using SPSS software for windows
release 12.0.0. The small significance level implies that the AdpWA1 algorithm is the best
performing algorithm.

Table 31 Sign test data

Table 32 Sign test results

Frequencies

 N
AFL - AdpWA1 Negative

Differences(a)
13

Positive
Differences(b) 3

Ties(c) 0
Total 16

a AFL < AdpWA1
b AFL > AdpWA1
c AFL = AdpWA1

Test Statistics(b)

 AFL - AdpWA1
Exact Sig. (2-tailed) .021(a)

a Binomial distribution used.
b Sign Test

7.3.5 Discussion
The evaluation method presented in this section indicates that the two best performing
algorithms are the AdpWA1 and AFL. Of the two, the AdpWA1 is superior. AdpWA2,
AdpWA3 and AdpWA4 have poor performances. The results indicate that the suggested
enhancement procedure did not improve the performances, since the best performing
algorithm did not use the enhancement procedure and the algorithms that does use it, did not
appear as one of the two best performing algorithms. AdpWA1 algorithm uses type I
performance measures, implying that the developed type II performance measures does not
quantify the difference between two maps accurately enough, and this performance measures
needs to be improved. These evaluations correspond to visual presentations of the generated
maps.

Experiment
environmental

conditions

Sensor fusion performance measures
OO EE OE EO

AdpWA1 AFL AdpWA1 AFL AdpWA1 AFL AdpWA1 AFL
1. 6 0 6 0 1 0 6 0
2. 6 0 1 4 4 1 6 0
3. 6 0 6 0 0 6 6 0
4. 6 0 6 0 1 4 6 0

Total 4 0 3 1 2 2 4 0
Note: The values in this table indicate the number of times each algorithm outperforms the opponent.

58

Table 33 Logical sensors mapping for adaptive weighted average algorithm experiments set
 Logical sensor Real

world
map Exp. US1 US2 LASER1 LASER2 CAM1 CAM2 CAM3

1

2

3

4

Table 34 Algorithms mapping for adaptive weighted average algorithm experiments set
 Sensor fusion algorithm Real

world
map

Exp. AdpWA1 AdpWA2 AdpWA3 AdpWA4 AFL

1

2

3

4

59

8. Conclusions and future research

8.1 Conclusions
This thesis evaluates a sensor fusion framework developed in previous research for mapping
the environment of a mobile robot using a grid-map representation concept. This work consists
of two parts. The first part deals with an extended sensor fusion framework. [Cohen, 2005]
sensor fusion framework was extended to fuse data from three physical sensors. The
performances of the extended framework were evaluated through a statistical evaluation
method. In the evaluation, four different algorithms were used to fuse the data: three logical
algorithms and one adaptive algorithm. Results indicate that the adaptive algorithm is superior
the logical ones by giving best results in different environmental conditions corresponding to
previous results [Cohen, 2005].

The second part deals with the development of a new adaptive weighted average sensor fusion
algorithm. In the process of the algorithm’s development, three concepts were developed. The
first concept is the non-binary grid map, where Cohen’s binary grid-map paradigm was
extended to include cells that contain integer values that indicate the number of times the
sensor declared this cell as occupied (instead of binary cells, that contains only ‘1’ and ‘0’
values that indicates whether this cell is occupied or empty, respectively). This extension
increases the amount of data in the map yielding more accurate and complete information
about the robot’s surroundings. The second concept is a new type of performance measures
that was developed. This type examines changes in two corresponding cells values and detects
the more accurate sensors. The new type of performance measures allows giving more weight
in the fusion process to sensors with higher performances. i.e., the more accurate sensor. The
non-binary grid map concept allows cells with higher values (i.e., the sensor declared them as
occupied more times) to influence more on the fusion process. The third concept is the map
enhancement procedure that was developed in order to improve maps accuracy by canceling
environmental noises and sensors malfunctions. The assumption that stands in the basis of the
enhancement procedure is that occupied cells that are surrounding with occupied cells are
more likely to indeed contain an obstacle and therefore should be strengthened.
The new adaptive weighted average algorithm uses these three concepts when enhanced non-
binary grid maps from the different logical sensors are fused to one map by considering the
cells’ values and the logical sensor performance measures.

The performances of the new algorithm were evaluated through the statistical evaluation
method and were compared to the previously developed adaptive algorithms. Results show
that the new algorithm outperforms the other algorithms, while the enhancement procedure did
not affect the performances.

60

8.2 Future research
Several research areas remain open for future expansion of this work.

Performance measures
Type II performance measures needs to be modified. In the current definition, two identical
maps do not yield maximum performance measures as should be. The performance measures
can be a combination between type I and type II by considering changes in the cell’s status
(i.e., ‘Occupy’ or ‘Empty’) and also changes in the cell’s value. The current type II
performance measures deals only in the difference between two corresponding occupied cells,
and their definitions should be extended to include changes between cell’s conditions, i.e.,
corresponding cells that are marked as occupied in one map but empty in the other, and vice
versa. The influence of the initial performance measures must be checked, by running
simulations with several random performance measures and checking the convergence to the
best performing logical sensor.

Sensors configurations
In future research, it would be beneficial to examine changes in mapping from one physical
sensor only (ultrasonic or laser) as opposed to the fused map. i.e., what is the different
between one sensor mapping and the fusion algorithm mapping. This is important in
understanding the fusion contribution and the fusion system robustness. In addition, fusion
results from different sensors combinations (for example, ultrasonic and laser or camera and
laser) must to examined as opposed to fusion from all available sensors in order to examine
the different sensors’ contribution to the fusion process.

Extended experimentation
The mobile robots experiments must be extended to include more realistic conditions with
different types of interruptions such as lightning conditions or bright surfaces. Another
suggestion is to examine changes in the obstacle’s configuration, color or height (or all the
above together) in order to check the algorithms’ limitations. Checking a scenario when the
robot is static and adding a random noise to the system can give new understanding about
algorithm’s performances. In addition, the influence of the performance measures should be
tested by running different experiments.

Representation
Future research should deal with maps with uncertainty values representing the probability for
an obstacle in the cell. In addition, handling three-dimensional maps can provide important
additional information [Cohen, 2005]. Another direction can be to consider each cell’s
certainty to be ‘Empty’, perhaps by summing the number of times the sensor declared this cell
as ‘Empty’. A combination of each cell’s certainty to be ‘Occupy’ and ‘Empty’ can be taken
into account, and fusion based on these value can be an interesting approach.
In addition, image processing algorithms optimization for the camera different logical sensors
is required.

Algorithms
Cohen’s Online sensor and algorithm selection system, OLSAS [Cohen, 2005] needs to be
implemented using the extended fusion framework (i.e., to fuse data from three physical
sensors). In addition, the Adaptive weighted average algorithm should be integrated in the
OLSAS system.

61

Additional applications
It can be interesting to use the fused map for other mobile robot’s applications such as
navigation. Navigation through the use of the fused map and other techniques should be
compared, in order to examine the fusion profits.

62

9. References

[1] Abidi M. A. and Gonzales R. C. 1992. Data fusion in robotics and machine
intelligence, Academic Press, San Diego, CA.

[2] Amigoni, F., Gasparini, S. and Gini, M. 2006. Building segment-based maps
without pose information, Proceedings of the IEEE , 94(7): 1340-1359.

[3] Arkin E. M., Fekete S. P. and Mitchell J. S. B. 2000. Approximation algorithms
for lawn mowing and milling, Computational Geometry, 17(1-2): 25-50.

[4] Arras K.O., Tomaris N., Jensen B. and Siegwart R. 2001. Multisensor On-the-Fly
Localization: Precision and Reliability for Applications, Robotics and
Autonomous Systems, 34(2-3): 131-143.

[5] B. Solaiman, R. Debon, F. Pipelier, J.M. Cauvin and C. Roax. 1999. information
fusion, application to data and model fusion for ultrasound image segmentation,
IEEE transactions on biomedical engineering, 46(10):1171-1175

[6] Bank, D. and Kampke, T. 2007. High-Resolution Ultrasonic Environment
Imaging, IEEE Transactions on Robotics, 23(2): 370-381.

[7] Belknap R., Riesman E. and Hanson A. 1986. The information fusion problem and
rule-based hypothesis applied to complex aggregation of image events, IEEE
Conference Computer Vision and Pattern Recognition: 227-234.

[8] Blum R. S., Kassam S. A. and Poor H. V. 1997. Distributed detection with
multiple sensors: Part II – advanced topics, Proceedings of the IEEE, 85(1): 64-79.

[9] Borenstein, J. and Koren, Y. 1991. Histogramic in-motion mapping for mobile
robot obstacle avoidance, IEEE Transactions on Robotics and Automation,
7(4):535-539.

[10] Brooks R. A. 1982. Solving the find-edge problem is good representation of free
space, Proceedings AAAI-82: 381-387.

[11] Brooks, R. R. and Iyengar S. S. 1998. Multi-sensor fusion. Prentice Hall, New
York, NY.

[12] Cao, A., and Borenstein, J. 2002. Experimental Characterization of Polaroid
Ultrasonic Sensors in Single and Phased Array Configuration. Proceedings of the
UGV Technology Conference at the SPIE AeroSense Symposium.

[13] Carson R.R., Meyer, M.P and Peters, D.J. 1996. Fusion of IFF and radar data,"
Data Fusion Symposium. ADFS '96, 21-22 Nov: 65-70.

[14] Castellanos J.A. and Tardos J.D. 1999. Mobile robot localization and map
building: a multisensory fusion approach. Boston, MA: Kluwer Academic
Publishers.

[15] Castellanos, J.A., Neira, J. and Tardos, J.D. 2001. Multisensor fusion for
simultaneous localization and map building, IEEE Transactions on Robotics and
Automation, 17(6): 908-914.

[16] Chen S. 1987. Multisensor fusion and navigation of mobile robots, International
Journal of Intelligent Systems, 2(2): 227-251.

[17] Cohen O. 2005. Grid-Map based sensor fusion for autonomous mobile robot,Ph.d
thesis, Ben-Gurion University of the Negev, Beer-Sheva p.o box 84105, ISRAEL.

[18] Costa, J., Dias, F. and Araujo, R. 2006. Simultaneous Localization and Map
Building by Integrating a Cache of Features, IEEE Conference on Emerging
Technologies and Factory Automation, 20-22 Sept:1036 - 1043.

63

[19] Cremer F., Schutte K., Schavemaker J. G. M., and E. den Breejen. 2001. A
comparison of decision-level sensor-fusion methods for anti-personnel landmine
detection, Information Fusion, (2)3: 187-208.

[20] Daniel F., Gamrra T., Bastos-Filho T. and Sarcinelli-Filho M. 2005. Controlling
the Navigation of a Mobile Robot in a Corridor with Redundant Controllers,
Proceedings of the IEEE International Conference on Robotics and Automation,
Barcelona, Spain, April 2005: 3855-3860.

[21] Davison A. J. and Kita. N. 2002. Simultaneous localization and map-building
using active vision for a robot moving on undulating terrain. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 24(7): 865 – 880.

[22] Davison, A.J. and Murray, D.W. 2002. Simultaneous localization and map-
building using active vision, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(7): 865-880.

[23] Durrant-Whyte H. F. 1988a. Integration, coordination and control of multisensor
robot systems, Kluwer, Boston, MA.

[24] Durrant-Whyte H. F. 1988b. Sensors models and multisensor integration, The
International Journal of Robotics Research, 7(6): 97-112.

[25] Elfes, A. 1987. Sonar-based real-world mapping and navigation, IEEE Journal of
Robotics and Automation, 3(3):249-265.

[26] Faceli K., Andre C.P.L.F. de Carvalho and Rezende S. O. 2004. Combining
intelligent techniques for sensor fusion, Applied Intelligence, 20: 199–213.

[27] Faugeras O., Vieville T., Theron E., Vuillemin J., Hotz B., Zhang Z., Moll L,
Bertin P., Mathieu H., Fua P., Berry G. and Proy C. 1993. Real time correlation-
based stereo: algorithm, implementations and applications, Tech. Rep.
2013,INRIA.

[28] Feng-chun Z., Yan-bing J. and Ai-hua W. 2006. Research on Integrated
Navigation Technology of Field Robot, IEEE International Conference on
Information Acquisition, pp.59-64.

[29] Filippidis A., Jain L.C. and Martin, N. 2000. Multisensor data fusion for surface
land-mine detection, IEEE Transactions on Systems, Man and Cybernetics, Part C:
Applications and Reviews, 30(1):145-150.

[30] Garcia J.G., Robertsson A., Ortega J.G. and Johansson R. 2004. Sensor fusion of
force and acceleration for robot force control, Proceedings IEEE/RSJ International
Conference on Intelligent Robots and Systems, vol. 3: 3009-3014.

[31] Gon W. and Beom H. 2006. Hierarchical Sensor Fusion for Building an
Occupancy Grid Map using Active Sensor Modules, Proceedings of International
Joint Conference:2600 – 2605.

[32] Gonzales J., Ollero, A. and Reina, A. 1994. Map building for a mobile robot
equipped with a 2D laser rangefinder, Proceedings of the IEEE International
Conference on Robotics and Automation, vol. 3: 1904-1909.

[33] Groen F. C. A., Komen E. R., Vreeburg M. A. C. and Warmerdam T. P. H. 1986.
Multisensor robot assembly station, Robotics, vol. 2: 205-214.

[34] Guoliang L., Wanjun H., Shizuo Y., Zengqi S. and Wenyi Q. 2006. A Fusion
Algorithm for Building Maps in Confined Environments for Mobile Robots,
Proceedings of IMACS Multiconference on Computational Engineering in
Systems Applications:960 – 964.

[35] Hanson A. R., Risen E. M., and Williams T. D. 1988. Sensor and information
fusion from knowledge-based constrains, SPIE Proceedings of Sensor Fusion.
931: 186-196.

64

[36] Harmon S. Y. 1986. Autonomous vehicles, Encyclopedia of Artificial Intelligence,
John Wiley, New York: 39-45.

[37] Harris C.G. and Stephens M. 1988. A combined corner and edge detector.
Proceedings of Fourth Alvey Vision Conference: 147-151.

[38] Hebert M. 2000. Active and passive range sensing for robotics, Proceedings of
IEEE International Conference on Robotics and Automation, vol. 1: 102-110.

[39] Henderson T. and Shilcrat E. 1984. Logical sensor system, Journal of Robotic
Systems, 1(2): 169-193.

[40] Hernandez A.I., Carrault G., Mora, F., Thoraval L., Passariello G. and Schleich
J.M. 1999. Multisensor fusion for atrial and ventricular activity detection in
coronary care monitoring, IEEE Transactions on Biomedical Engineering,
46(10):1186-1190.

[41] Hernandez A.I., Carrault G., Mora F., Thoraval L., Passariello G. and Schleich
J.M., 1999. Multisensor fusion for atrial and ventricular activity detection in
coronary care monitoring, IEEE Transactions on Biomedical Engineering,
46(10):1186-1190.

[42] Hollander M. and Wolfe D. A. 1973. Nonparametric statistical methods, John
Wiley & Sons Inc, New York, NY.

[43] Hong W., Tian Y. and Dong Z. 2002. The approach of extracting features from the
local environment for mobile robot, Proceedings of the First International
Conference on Machine Learning and Cybernetics: 611-616.

[44] Hong-Ming W., Zeng-Guang H., Jia M., Yun-Chu Z., Yong-Qian Z. and Min T.
.2007. Sonar Feature Map Building for a Mobile Robot, Proceedings of IEEE
International Conference on Robotics and Automation: 4152 – 4157.

[45] HoseinNezhad R., Moshiri B. and Asharif M. R. 2002. Sensor fusion for
ultrasonic and laser arrays in mobile robotics. Proceedings of IEEE International
Conference on Sensors: 1682-1689.

[46] Huntsberger T. L. and Jayaramamurthy S. N. 1987. A framework for multisensor
fusion the presence of uncertainty, Proceedings of Workshop Spatial Reasoning
and Multisensor Fusion: 345-350.

[47] Hyeyeon C., JongSuk C. and Munsang K. 2006. Experimental research of
probabilistic localization of service robots using range image data and indoor GPS
system, Proceeding of IEEE Conference on Emerging Technologies and Factory
Automation:1021 – 1027.

[48] Ivanjko E., Vasak M. and Petrovic I. 2005. Kalman filter theory based mobile
robot pose tracking using occupancy grid maps, Proccedings of International
Conference on Control and Automation: 869 – 874.

[49] Kamat S. J. 1985. Value function structure for multiple sensor integration,
Proceedings of SPIE, Intelligence Robots and Computer Vision. 579: 432-435.

[50] Karaman, O. and Temeltas, H. 2004. Comparison of different grid based
techniques for real-time map building, Proceedings of IEEE International
Conference on Industrial Technology,vol. 2: 863-868.

[51] Kim G.W and Lee B.H. 2006. Hierarchical Sensor Fusion for Building an
Occupancy Grid Map using Active Sensor Modules, Proceedings of the
International Joint Conference SICE-ICASE: 2600-2605.

[52] Klein L. A. 1993. A Boolean algebra approach to multiple sensor voting fusion,
IEEE Transactions on Aerospace and Electronic Systems, 29(2): 317-327.

[53] Kluge, K.C. 2003. SAMLOS: a 2D simultaneous localization and mapping
algorithm based on lines of sight, Proceedings of IEEE Intelligent Vehicles
Symposium: 438-443.

65

[54] Kwon, Y.D. and Lee, J.S., 1997. A stochastic environment modelling method for
mobile robot by using 2-D laser scanner, Proceedings of the IEEE International
Conference on Robotics and Automation, vol.2: 1688-1693.

[55] Li X., Huang X., Wang M. and Peng G. 2006. A Comparison of the effect of sonar
grid map building based on dsmt and dst, Proceedings of the 6th World Congress
on Intelligent Control and Automation, vol. 1: 4073:4077.

[56] Lin H. H., Tsai C. C., Hsu J. C. and Chang C. F. 2003. Ultrasonic self localization
and pose tracking of an autonomous mobile robot via fuzzy adaptive extended
information filtering, Proceedings of the IEEE International Conference on
Robotics and Automation: 1283-1290.

[57] Liu G., Haot W., Yant S. , Sun2 Z. and Qiangt W. 2006. A Fusion Algorithm for
Building Maps in Confined Environments for Mobile Robots, IMACS
Multiconference on Computational Engineering in Systems Applications, vol.
1:960-964.

[58] Lozano-Perez T. 1981. Automatic planning of manipulator transfer movements,
IEEE Transactions, on Systems Man and Cybernetics: 781-798.

[59] Lu Y., Zeng L. and Bone G.M. 2005. Multisensor System for Safer Human-Robot
Interaction, Proceedings of the 2005 IEEE International Conference on Robotics
and Automation: 1767-1772.

[60] Luo R. C. and Kay M. G. 1989. Multisensor integration and fusion in intelligent
systems, IEEE Transactions on Systems, Man. and Cybernetics, 19(5): 901-931.

[61] Luo, R.C., Chih-Chen Yih and Kuo Lan Su. 2002. Multisensor fusion and
integration: approaches, applications, and future research directions, IEEE Sensors
Journal, 2(2):107-119.

[62] Luo K. and Lin C. 1996. An intelligent sensor fusion system for tool monitoring
on a machining center. Proceedings of the International Conference of Multisensor
Fusion Integration Intelligence Systems. pp. 208-214.

[63] Martin M.C. and Moravec H., Robot Evidence Grids, tech. report CMU-RI-TR-
96-06, Robotics Institute, Carnegie Mellon University, March, 1996.

[64] Metz CE. 1986. Statistical analysis of ROC data in evaluating diagnostic
performance. In: Multiple Regression Analysis: Applications in the Health
Sciences (D Herbert and R Myers, eds.). New York: American Institute of
Physics: 365-384.

[65] Mirzaei, F.M., Mourikis, A.I. and Roumeliotis, S.I., On the Performance of Multi-
robot Target Tracking, Proceedings of the IEEE International Conference on
Robotics and Automation, pp.3482-3489.

[66] Miura, J., Negishi, Y. and Shirai, Y. 2002. Mobile robot map generation by
integrating omnidirectional stereo and laser range finder, Proceedings of IEEE
International Conference on Intelligent Robots and System, pp. 250-255.

[67] Moravec H. P. and Elfes A. E. 1985. High resolution maps for wide-angle sonar,
Proceedings of the IEEE International Conference on Robotics and Automation:
116-121.

[68] Moravec H.P. 1988. Sensor fusion in certainty grids for mobile robots. Al
Magazine:61-74.

[69] Moravec, H. and Elfes, A..1985. High resolution maps from wide angle sonar,
Proceedings of IEEE International Conference on Robotics and Automation:116-
121.

[70] Najjaran H. and Goldenberg A. 2006. Real-time motion planning of an
autonomous mobile manipulator using a fuzzy adaptive Kalman filter, Robotics
and Autonomous Systems, 55(2): 96-106

66

[71] Oriolo G., Ulivi G. and Vendittelli M. 1997. Fuzzy maps: A new tool for mobile
robot perception and planning, Journal of Robotic Systems, 14(3): 179-197.

[72] Patel K., Macklem W., Thrun S. and Montemerlo M. 2005. Active Sensing for
High-Speed Offroad Driving, Proceedings of the IEEE International Conference
on Robotics and Automation, pp. 3162-3168.

[73] Perez-Lorenzo J.M., Vazquez-Martin R., Nunez P., Perez E.J. and Sandoval F.
2004. A Hough-based method for concurrent mapping and localization in indoor
Proceedings of IEEE Conference on environments, Robotics, Automation and
Mechatronics, vol. 2: 840-845.

[74] Reina A. and Gonzales J. 1997. Characterization of a radial laser scanner for
mobile robot navigation, Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, vol.2: 579-585.

[75] Ribo M. and Pinz A. 2001. A comparison of three uncertainty calculi for building
sonar based occupancy grids, International Journal of Robotics and Automation
Systems 35: 201-209.

[76] Schwering P. B. W., Baertlein B.A., Van den Broek S.P. and Cremer F. 2002.
Evaluation methodologies for comparison of fusion algorithms in land mine
detection, Detection and Remediation Technologies for Mines and Minelike
Targets VII, Proc. SPIE, 4742: 847-856.

[77] Solaiman B., Pierce L.E. and Ulaby F.T. 1999. Multisensor data fusion using
fuzzy concepts: application to land-cover classification using ERS-1/JERS-1 SAR
composites, IEEE Transactions on Geoscience and Remote sensing. 37(3):1316-
1326.

[78] Solaiman B., Koffi R.K., Mouchot M.-C., Hillion A. 1998. An information fusion
method for multispectral image classification postprocessing, IEEE Transactions
on Geoscience and Remote Sensing, 36(2):395-406.

[79] Stepan P., Kulich M. and Preucil L. 2005. Robust data fusion with occupancy grid,
IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and
Reviews, 35(1):106-115.

[80] Stepan P., Kulich M. and Preucil L. 2005. Robust Data Fusion With Occupancy
Grid, IEEE Transactions on Systems, Man and Cybernetics, 35(3): 106-115

[81] Sukumar S.R., Bozdogan H., Page D.L., Koschan A.F. and Abidi M.A. 2007.
Sensor Selection Using Information Complexity for Multi-sensor Mobile Robot
Localization. Proceedings of the IEEE International Conference on Robotics and
Automation, pp.4158-4163.

[82] T.E. Bell, 1995. Remote sensing, IEEE spectrum, 32(3): 24-31.
[83] Tanaka K., Okada N. and Kondo E. 2003. Building a floor map by combining

stereo vision and visual tracking of persons, Proceedings of IEEE International
Symposium on Computational Intelligence in Robotics and Automation, vol.2:
641-646.

[84] Thomas U., Molkenstruck S., Iser R. and Wahl F.M. 2007. Multi Sensor Fusion in
Robot Assembly Using Particle Filters, Proceedings of the IEEE International
Conference on Robotics and Automation, pp.3837-3843.

[85] Thomas U., Molkenstruck S., Iser R. and Wahl F.M. 2007. Multi Sensor Fusion in
Robot Assembly Using Particle Filters, Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 3837-3843.

[86] Thomopoulos S. C. A., Viswanathan R. and Bougoulias D. K. 1987. Optimal
decision fusion in multiple sensor systems, IEEE Transactions on Aerospace and
Electronic Systems, 23(5): 644-652.

67

[87] Tin K. H. and Mitra B. 2002. Complexity measures of supervised classification
problems, IEEE Transactions on Pattern analysis and machine intelligence 24(3):
289-300.

[88] Toledo, F.J., Luis, J.D., Tomas, L.M., Zamora, M.A. and Martinez, H. 2000. Map
building with ultrasonic sensors of indoor environments using neural networks,
Proceedings of the IEEE International Conference on Systems, Man, and
Cybernetics, vol. 2: 920-925.

[89] Tomoto M. 2005. environment modeling by a mobile robot with a laser range
finder and a monocular camera, Proceedings of the IEEE Workshop on Advanced
Robotics and its Social Impacts, pp. 133-138.

[90] Vandorpe J., Van Brussel H. and Xu H. 1996. Exact dynamic map building for a
mobile robot using geometrical primitives produced by a 2D range finder,
Proceedings of IEEE International Conference on Robotics and Automation, pp.
901-908.

[91] Vazquez J. and Malcolm C. 2005. Fusion of triangulated sonar plus infrared
sensing for localization and mapping, Proceedings of the International Conference
on Control and Automation, pp. 1097 – 1102.

[92] Wooden D. 2006. A guide to vision-based map building, IEEE Robotics and
Automation Magazine, 13(2): 94-98.

[93] Xinde L., Xinhan H., Min W. and Gang P. 2006. A Comparison of the Effect of
Sonar Grid Map Building Based on DSmT and DST, Proceedings of the The Sixth
World Congress on Intelligent Control and Automation, pp. 4073 – 4077.

[94] Xue-Cheng L., Cheong-Yeen K., Shuzhi S. G. and Al M. A. 2005. Online map
building for autonomous mobile robots by fusing laser and sonar data, Proceedings
of the IEEE International Conference Mechatronics and Automation, pp.993 –
998.

[95] Ye C. and Borenstein, J. 2002. Characterization of a 2D laser scanner for mobile
robot obstacle negotiation, Proceedings of IEEE International Conference on
Robotics and Automation ,vol.3: 2512-2518.

[96] Zhen J., Balasuriya A. and Challa S. 2005. Sensor fusion based 3D Target Visual
Tracking for Autonomous Vehicles with IMM, Proceedings of the IEEE
International Conference on Robotics and Automation, pp. 1841-1846.

[97] Kodagoda, S., Hemachandra, E. A. S. M., Jayasekara, P. G., Peiris, R. L., De
Silva, A. C. and Munasinghe, R. 2006. Obstacle Detection and Map Building with
a Rotating Ultrasonic Range Sensor using Bayesian Combination, Proceedings of
the International Conference on Information and Automation, 98-103.

10. Appendices

69

Appendix I Robot and laser– specifications and parameters

 Table 35 Pioneer 2 AT Specifications
(adapted from Pioneer 2 manual)

 Physical Characteristics
50 Length (cm)
49 Width (cm)
24 Height (cm)
5.5 Clearance (cm)
14 Weight (kg)
40 Payload (kg)

 Power

3 Batteries 12VDC lead-acid
252 Charge (watt-hrs)
4-6 Run time (hrs)
2-3 with PC (hrs)
 Recharge time
6 hr/battery
 std charger
2.4 High-Speed (3 batteries)

 Mobility

4 pneumatic Wheels
220 diam (mm)
75 width (mm)
na Caster (mm)
Skid Steering
85.2:1 Gear ratio
40 Swing (cm)
0 cm Turn (cm)
700 Translate speed max (mm/sec)
140 Rotate speed max (deg/sec)
89 Traversable step max (mm)
127 Traversable gap max (mm)
40% Traversable slope max (grade)
Unconsolidated No carpets! Traversable terrains

 Sensors
8 Sonar Front Array (one each side, six forward @ 20° intervals)
8 Sonar Front Array (one each side, six forward @ 20° intervals)
8 Rear Sonar Array (one each side, six rear @ 20° intervals)
na Top Deck Sonar (one each side, six rear @ 20° intervals)
34,000 Encoders (2 ea) counts/rev
49 counts/mm
22,500 counts/rotation

70

Microcontroller and Console Controls & Ports

Processor Siemens 8C166 (20 MHz)
LCD 32 characters on 2 lines
Encoder inputs 4
Audio Piezo buzzer
PWM outputs 8 (4 user-available)
Sonar inputs 2x8 (multiplexed)
Digital I/O 16 logic ports; 8 in, 8 out
A/D 5 @ 0-5 VDC; 1024- or 256-bit resolution
Digital timers 8 @ 1µsec resolution;
FLASH PROM 32 KB; P2OS and robot-specific parameters
RAM 32 KB
Power switches 1 main; 1 RADIO
Comm ports 2 RS-232 serial internal; 1 RS-232 external
Power (internal comm.
ports)

12 VDC @ 1A switched; 5 VDC @ 3Aswitched

Logic pushbuttons RESET and MOTORS
Indicator LEDs Main power; RADIO power; Host SERIAL RxD and TxD

Table 36 Laser's technical data
(Adapted from laser's manual)

Laser Measurement Sensors

Indoor

Model Name LMS 200-30106

Part Number 1015850

Technical data

Field of view: 180 °
Angular resolution: 1 ... 0.25 °
Response time: 13 ... 53 ms
Resolution: 10 mm
Systematic error: +/- 15 mm
Statistical error (1 sigma): 5 mm
Laser class: 1
Enclosure rating: IP 65
Ambient operating temperature: 0 °C ... +50 °C
Scanning range: 80 m
Data interface: RS-232, RS-422
Data transmission rate: 9,6 / 19,2 / 38,4 / 500 kBaud
Switching outputs: 3 x PNP
Supply voltage: 24 V DC +/- 15%
Power consumption: 20 W
Storage temperature: -30 °C ... +70 °C
Weight: 4.5 kg
Dimensions (L x W x H): 156 x 155 x 210 mm

71

Table 37 Pioneer 2 AT parameters
(adapted from Pioneer 2 manual)

;;
;; Parameters for the Pioneer 2 AT Mobile Robot (adapted from the Pioneer Manual)
;;
AngleConvFactor 0.001534 ;radians per angular unit (2PI/4096)
DistConvFactor 1.303 ; mm returned by P2
VelConvFactor 1.0 ; mm/sec returned by P2
RobotRadius 500.0 ; radius in mm
RobotDiagonal 120.0 ; half-height to diagonal of octagon
Holonomic 1 ; turns in own radius
MaxRVelocity 300.0 ; degrees per second
MaxVelocity 1200.0 ; mm per second
RangeConvFactor 0.268 ; sonar range returned in mm
;;
;; Robot class, subclass
;;
Class Pioneer
Subclass p2at
SonarNum 16 ; 16 total sonars
;; These are for the eight front sonars: six front, two sides
;;
;; Sonar parameters
;; SonarNum N is number of sonars
;; SonarUnit I X Y TH is unit I (0 to N-1) description
;; X, Y are position of sonar in mm, THETA is bearing in degrees
;;
;; # X Y THETA
;;-------------------------
SonarUnit 0 145 130 90
SonarUnit 1 185 115 50
SonarUnit 2 220 80 30
SonarUnit 3 240 25 10
SonarUnit 4 240 -25 -10
SonarUnit 5 220 -80 -30
SonarUnit 6 185 -115 -50
SonarUnit 7 145 -130 -90
;; These are for the eight rear sonars: six back, two sides
;; # X Y THETA
;;----------------------------
SonarUnit 8 -145 -130 -90
SonarUnit 9 -185 -115 -130
SonarUnit 10 -220 -80 -150
SonarUnit 11 -240 -25 -170
SonarUnit 12 -240 25 170
SonarUnit 13 -220 80 150
SonarUnit 14 -185 115 130
SonarUnit 15 -145 130 90
;; Number of readings to keep in circular buffers
FrontBuffer 20
SideBuffer 40

72

Appendix II ARIA API

This appendix is based on ARIA version 2.4.0 manual, downloaded from the Activemedia
website (http://www.activrobots.com/SOFTWARE/aria.html).

ARIA is an object-oriented, application-programming interface for ActivMedia Robotics' line
of intelligent mobile robots, including Pioneer, Pioneer 2/3, PeopleBot, PowerBot, and
AmigoBot mobile robots. Written in the C++ language, ARIA is client-side software for easy,
high-performance access to and management of the robot server, as well to the many
accessory robot sensors and effectors. Its versatility and flexibility makes ARIA an excellent
foundation for higher-level robotics applications.

ARIA can be run multi- or single-threaded, using its own wrapper around Linux pthreads and
WIN32 threads. Use ARIA in many different ways, from simple command-control of the
robot server for direct-drive navigation, to development of higher-level intelligent actions
(behaviors).

At its heart, ARIA's ArRobot class collects and organizes the robot's operating states, and
provides clear and convenient interface for other ARIA components, as well as upper-level
applications, to access that robot state-reflection information for assessment, planning, and
ultimately, intelligent, purposeful control of the platform and its accessories. Figure 15
presents ARIA's schematic architecture.

ARIA also includes clear and convenient interface for applications to access and control
ActivMedia Robotics accessory sensors and devices, including operation and state reflection
for sonar and laser range finders, pan-tilt units, arms, inertial navigation devices, and many
others.
The versatility and ease of access to ARIA code (sources included!) makes it the ideal
platform for robotics client applications development.

Figure 15 ARIA's schematic architecture

(Adapted from ARIA 2.4.0 manual)

73

Appendix III Modifications to the research of Cohen [Cohen, 2005]
In this research, Cohen’s PhD work [Cohen, 2005] was extended and modified.

� A new type of performance measures (type II) was developed and implemented

(section 4.2).
� The grid map paradigm that was implemented in Cohen's work was extended from a

binary grid map (where each cell has to possible values: '1' represents that the cell is
Occupied or '0' represents that the cell is Empty) to a non-binary grid map (where
cells contains an integer value that represents the number of time the logical sensor
decided that this cell is occupied). The extension was carried out by code
modifications in all the mapping functions. In addition, Cohen's sensor fusion
algorithms were modified to fit the new concept. The extension enables to consider
the values within the cells, and was the base upon the type of performance measure
and the new algorithms were developed.

� A new adaptive sensor fusion algorithm was developed and implemented – adaptive
weighted average (section 5.2) and it's performances was compared to previous
algorithms using Cohen's statistical evaluation procedure (section 7.3).

� Cohen’s original code was developed using robot’s interface Saphira. In this work,
the robot's API was changed to ARIA. The Saphira architecture is designed to
operate with a robot server, that is, a mobile robot platform that provides a set of
robotic services in a standard format. ARIA is a newer and powerful robot’s
interface that replaces Saphira .As a result, the complete system's code was re-
programmed using the new API. ARIA API is detailed in Appendix II.

� The robot's system was extended by adding a third physical, a laser range finder
(Laser specifications are detailed in Appendix I). The laser sensor was implemented
using two logical sensors that were created through two new mapping algorithms
that were developed (see section 6.3). The system's code was adjusted to include
three physical sensors (instead of two) and seven logical sensors (instead of five).
All the matrices and variables were changed to fit the extended system. The
adjusted code is detailed in Appendix VII. The algorithms performances were
evaluated using the new physical sensor.

� The code for the sampling the camera was modified in order to prevent time lag and
enhance the system performances. In Cohen's work, the camera took pictures in four
pan angles at a constant sequence: -17°→17°→50°→-50°. Due to the camera's
structure, a lot of time was wasted in shifting the camera's pan angle from 50° to -
50°. This procedure was enhanced by using different sequences to odd and even
cycles. In even cycles, the camera samples in the following order: -50°→-
17°→17°→50°, and in odd cycles the sampling order is: 50°→17°→-17→-50°. The
change required code modification, and caused a higher number of cycles during the
robot's course (38 instead of 23), as a result from the increase in the number of
cycles, the sensors map are more accurate.

� The laser sensor was placed on the robot's base, and the camera is mounted on top
of the laser. As a result, the camera's new location is higher than the previous
location by 20 cm. this influenced the camera calibration parameters, and a new
calibration was performed (see Appendix V).

� The lab for the experiments was changed due to technical and administrative
changes, which caused difference in the lightning and environmental conditions.
Hence, the image processing algorithms were adjusted to fit the new conditions.

74

Appendix IV Software code
The experiments software is written in VC++TM (version 6.0), using ARIATM (version 6.4)
library routines, under WindowsTM 2000 (version 4.0).
The image processing functions that were used are taken from Intel's OpenCV and IPL
(manuals can be found at http://www.intel.com/technology/computing/opencv/ and
http://www.intel.com/software/products/perlib/ipl/iplrelnotes_test.htm).

The system consists of the following files.

System files
ConstantParameters.h Contains the system constant parameters.
GlobalParameters.h Contains the system global parameters.
StaticParameters.h Contains the system static parameters.

main.cpp This file starts the ARIATM and the program.

InitiationFile.h These files contain the functions to initialize the

parameters and arrays and check the system for errors
within the constant and global parameters.

InitiationFile.cpp

LogicalSensor.h These files contain all the information related to logical

sensors (e.g., sensor fusion algorithms and
transformations).

LogicalSensor.cpp

Camera and image processing algorithms files
PXC_Camera_Dll_Load.h These files contain the information related to the

camera and the PXC200 frame grabber. PXC_Camera_Dll_Load.cpp

Vision_Class.h These files contain the information related to the image

processing algorithms. Vision_Class.cpp

Ultrasonic files
UltraSonic_Class.h These files contain all the information related to the

physical ultrasonic sensors (e.g., algorithms
transformations).

UltraSonic_Class.cpp

Laser files
Sick_Class.h These files contain all the information related to the

physical laser sensor (e.g., algorithms transformations).
Sick_Class.cpp

Fuzzy Logic algorithm files
FuzzyLogic_Algorithm.h These files contain the information related to the fuzzy

logic algorithms (adaptive and logical). FuzzyLogic_Algorithm.cpp

75

Figure 16 presents a schematic diagram of main program information flow.

Figure 16 Schematic diagram of main program flow

Start

Initialization:
CheckParam();
Init_Parameters();
Load_Dll_For_Camera();

Read Data from Ultrasonic Sensors:

 US.US_ReadDataFromUS();
 US.US_SFA_LogicalOR();

 US.US_SFA_ProbabilisticApproach();
 US.US_GridMapCellConversion();

Sensor fusion algorithms()

from laser sensor:Read data

 mySick.ReadFromSick();
 mySick.Si_GridMapCellConversion();

Read data from camera:

 Read Data for each position
Rum image processing algorithms
Fuse images from all positions
Camera.GridMapCellConversion

Sensor fusion algorithms()

End

While (RobotLocation <> NotEndOfPath
 {

}

Initialize robot
and sensors
parameters

Generates two logical sensors and
converts logical sensor’s cell
dimensions into global map cell’s
dimensions.

Fusing data from all logical sensors
using sensor fusion algorithms:
AND/OR/MOST/AFL/AdpWA

Generates two logical sensors and converts
logical sensor’s cell dimensions into global
map cell’s dimensions.

Fusing data from all logical sensors using
sensor fusion algorithms:
AND/OR/MOST/AFL/AdpWA

Generates three logical sensors and
converts logical sensor’s cell dimensions
into global map cell’s dimensions.

76

Table 38 contains a list of the main functions in the system's files, their types and a brief
explanation about their purpose. The table is followed by the full system code.

Table 38 list of functions and explanations

File
Function

type
Function name

Explanations

collector.cpp

int main

This function is the main of
the sensor fusion system.
The robot moves at a
straight line while fusing
information from the
physical sensors. Schematic
diagram of the program
flow presented in Figure 16.
The function returns 0
when it ends.

void

initDLL
Initializing the camera's dll
files

Init_Parameters
This function initializes the
parameters and sets all
array to zeros

LogicalSensor.cpp void

SFA_AND
This function fuses the data
between all LBMs using the
AND method

SFA_OR
This function fuses the data
between all LBM using the
OR method

SFA_REGULAR_MOST
This function fuses the data
between all LBM using the
regular MOST method.

SFA_REGULAR_AFL
This function fuses the data
between all LBM using the
regular AFL method

SFA_AdpWA1

This function fuses the data
between all LBM using
AdpWA1 algorithm, which
means without
Enhancement, binary PM.

SFA_AdpWA2

This function fuses the data
between all LBM using
AdpWA1 algorithm, which
means without
Enhancement, New PM.

SFA_AdpWA3

This function fuses the data
between all LBM using
AdpWA1 algorithm, which
means with Enhancement,
Binary PM.

SFA_AdpWA4

This function fuses the data
between all LBM using
AdpWA1 algorithm, which
means without
Enhancement, new PM.

CopyLBM2GGM(int)
This function copies the
local binary maps (LBMs)
to the global grid maps.

CreateLS_PPGM(int)
This function creates the
PPGM matrix for each LS
using the LBM

77

SaveGGM
This function saves all the
data into the hard disk.

Call_LS_Func
This function is used to fuse
the data using the all
algorithms methods

Calculating_FL_TruthTable(int) Calculating the truth table

FuzzyLogicAlgorithm(int)
This function is an
algorithm base on the FL
theory for fusing the data.

CalculatingTrueAndFalseValues(int)

This function compares the
new data at this level with
the integrated data This
function is the adaptive part
of the system and determine
the following parameters
SFS_True_False: The Local
Map Found True But the
fused map determined False
SFS_True_True: The Local
Map Found True And the
fused map determined True
SFS_False_False: The
Local Map Found False
And the fused map
determined False
SFS_False_True: The Local
Map Found False But the
fused map determined True

SFA_Calc_PM(int)

This function calculates for
each LS its reliability
according to the generated
map by each algorithm

LGM_Transformation
This function transforms
the logical sensors’ maps
that were not update

PXC_Camera_Dll_Load.cpp

bool AppInit
This function initializes and
allocates the Frame grabber
PXC200.

void
ImageProcessingAlgo1

The function has three
steps:1. Capturing the
image.2. Image processing
algorithm (has two
stages).2.1 Simple
Threshold. 2.2 Two level
threshold.3. Finding the
center of mass (COM) for
each obstacle, and calculate
the real distance from the
camera.

Vision_Class.cpp void ImageProcessingAlgo3(int)

The heart of the image
processing, here we do the
Erode Dilate for each photo
according to the algorithm
number, We find the center
of mass for each algorithm
and finds the location of the
algorithm according to the
calibration process made
earlier.

78

ImageProcessingAlgo4(int)
This function transforms
the maps and built for each
obstacle a circle around it.

Vision_GridMapCellConversion
This function converts the
maps into a one grid cell
size.

UltraSonic_Class.cpp void

US_ReadDataFromUS
This function reads the data
form the sonar.

US_SFA_LogicalOR

This function fuse the data
between the physical US
sensors based on the OR
method.

US_SFA_ProbabilisticApproach

This function fuses the data
between the physical US
sensors based on the
algorithm which is based on
the paper of Miguel Ribo
and Axel Pinz, 2001.

US_GridMapCellConversion
This function converts cell
size from US to LBM.

FuzzyLogic_Algorithm.h FuzzyLogic

FL_Crisp2Fuzzy

This function:
FL_Crisp2Fuzzy calculate
the FUZZY value for each
crispy value.

operator>>(FuzzyLogic
&FL_Source1, FuzzyLogic

&FL_Target1)

This Operator: >> Means
'Then' at the IF....THEN
fuzzy rules

operator+(const FuzzyLogic
&FL1,const FuzzyLogic &FL2)

This Operator: + Means
'OR' at the IF....THEN
fuzzy rules

operator*(const FuzzyLogic
&FL1,const FuzzyLogic &FL2)

This Operator: * Means
'AND' at the IF....THEN
fuzzy rules

Sick_Class.h void
ReadFromSick

This function reads the data
from the laser sensor and
generates two logical
sensors from this data.

Si_GridMapCellConversion
This function converts cell
size from laser to LBM.

79

/**
** ConstantParameters.h
**
** Copyright 2001 by Ofir Cohen
**
** E-mail: oprc@bgumail.bgu.ac.il
**
**/

#ifndef __ConstantParameters_h__
#define __ConstantParameters_h__

const unsigned short g_usNumOfCamPos=4; // Total number of Cam positions
const int g_TotalNumberOfAlgorithms=6; // OR, AND, OLSAS, MOST, AFL(STAM), AFL
const double g_pi=3.1415926535;

const int LBM_cm_SizeX=140; // Local Binary Map (LBM) X Direction (Forward)
const int LBM_cm_SizeY=240; // Local Binary Map (LBM) Y Direction (Side)
const int PPGM_cm_SizeX=800; // Path Planning Grid Map (PPGM) X Direction (Forward)
const int PPGM_cm_SizeY=LBM_cm_SizeY;

const int g_iTotalNumOfCamLS=3; // Total number of camera LSs in the system
const int g_CamCellSize=5; //cell size in camera local grid map [cm]
const int g_CamGridSizeX=LBM_cm_SizeX/g_CamCellSize; //number of cells in camera local grid map - X axis
const int g_CamGridSizeY=LBM_cm_SizeY/g_CamCellSize; //number of cells in camera local grid map - Y axis

const int g_iTotalNumOfUsLS=2;
const int g_USCellSize=10; //cell size in US local grid map [cm]
const int g_USGridSizeX=LBM_cm_SizeX/g_USCellSize; //number of cells in US local grid map - X axis
const int g_USGridSizeY=LBM_cm_SizeY/g_USCellSize; //number of cells in US local grid map - Y axis

const int g_iTotalNumOfSiLS=2; // Total number of Sick LSs in the system
const int g_SickCellSize=5; //cell size in camera local grid map [cm]
const int g_SickGridSizeX=LBM_cm_SizeX/g_SickCellSize; //number of cells in camera local grid map - X axis
const int g_SickGridSizeY=LBM_cm_SizeY/g_SickCellSize; //number of cells in camera local grid map - Y axis

const int g_iTotalNumOfLS=g_iTotalNumOfCamLS+g_iTotalNumOfUsLS+g_iTotalNumOfSiLS; // Toatal number
fo LSs in the system
const int g_LBMCellSize=5; // cell size in LBM [cm]
const int g_iX_LBM_MapSize=LBM_cm_SizeX/g_LBMCellSize; // Number of cells of the LBM X direction
const int g_iY_LBM_MapSize=LBM_cm_SizeY/g_LBMCellSize; // Number of cells of the LBM Y direction

const int g_PPGMCellSize=g_LBMCellSize; // cell size in PPGM [cm]
const int g_iX_PPGM_MapSize=PPGM_cm_SizeX/g_PPGMCellSize;
const int g_iY_PPGM_MapSize=PPGM_cm_SizeY/g_PPGMCellSize;

const int g_iMaxNumOfObstacle=60; // Max number of obstacle

#endif

80

/**
** GlobalParameters.h
**
** Copyright 2001 by Ofir Cohen
**
** E-mail: oprc@bgumail.bgu.ac.il
**
**/
#include "ConstantParameters.h"

#ifndef __GlobalParameters_h__
#define __GlobalParameters_h__

 struct BlackBoard // Declare g_BlackBoard Structure
{
 // ************** System parameters ************* *
 int iCycle; // system cycle counter
 int iLBM_X_Old; // LBM old X Location
 int iLBM_Y_Old; // LBM old Y location
 int iLBM_Theta_Old; // LBM old Theta angle [Deg]

 int iLBM_X_New; // LBM new X Location
 int iLBM_Y_New; // LBM new Y location
 int iLBM_Theta_New; // LBM new Theta angle [Deg]

 int iPPGM_X; // PPGM X Location
 int iPPGM_Y; // PPGM Y location
 int iPPGM_Theta; // PPGM Theta angle [Deg]

 bool bLGM_NewDataFlag[g_iTotalNumOfLS+1]; // Flag to determine if the LBM has been updated

 float faRobotPos[100][2]; // Robot positions based on encoders X, Y

 int iaPI[g_iX_PPGM_MapSize][g_iY_PPGM_MapSize]; // Array which counts how many times each cell
has been sampled

 // Array which saves all algorithms PPGMs
 int iaPPGM[g_iX_PPGM_MapSize][g_iY_PPGM_MapSize][g_TotalNumberOfAlgorithms+1];
 /*
 Level 0 - OR
 Level 1 - AND
 Level 2 - OLSAS
 Level 3 - MOST
 Level 4 – EMPTY
 Level 5 - AFL
 */
 int iaLS_PPGM[g_iX_PPGM_MapSize][g_iY_PPGM_MapSize][g_iTotalNumOfLS+1];

 // iaLBM: Local Binary Map that includes the all LGMs contains the fused map at level 0
 int iaLBM[g_iX_LBM_MapSize][g_iY_LBM_MapSize][1+g_iTotalNumOfLS];

 float fFL_TruthTable[64]; //unique array for the FL algorithm (NOT for Adaptive algorithm)
 float faTrueFalseRegular[(1+g_iTotalNumOfLS)][7]; // For the regular algorithm

 float faTrueFalse[(1+g_iTotalNumOfLS)][7];

81

/* the calculated data from the CalculatingTrueAndFalseValues function entered to this array.
 Explanation about the BB_faTrueFalse[(1+g_NumberOfModules)][7] array:
 Cell number 0 is for: Free
 Cell number 1 is for: TT Value
 Cell number 2 is for: FF Value
 Cell number 3 is for: TF Value
 Cell number 4 is for: FT Value
 Cell number 5 is for: TRUE Value
 Cell number 6 is for: FALSE Value*/

 float fTrueAccuracy[(1+g_iTotalNumOfLS)]; // the 'True' value for each sensor
 float fFalseAccuracy[(1+g_iTotalNumOfLS)]; // the 'False' value for each sensor
 float fTTValue[(1+g_iTotalNumOfLS)][64];
/*
In this table we enter the results 'WHAT WOULD BE THE CELL VALUE' IF (FOR EXAMPLE) sensor number1
 'says' 'T' number three and four says 'F' etc.
 Explanation about: BB_fTTValue[7][64].
 Cell number 0 is for the calculated Value.
 Cell number 1 is for the LS number 1.
 Cell number 2 is for the LS number 2.
 Cell number 3 is for the LS number 3.
 Cell number 4 is for the LS number 4.
 Cell number 5 is for the LS number 5.
 Cell number 6 is for the LS number 6.
 */

 int iaLogicalSensorMap[g_iX_LBM_MapSize][g_iY_LBM_MapSize][g_iTotalNumOfLS][50]; // Array
that saves all the LSs maps during the experiment for future research

 int SFAOutput[g_iX_LBM_MapSize][g_iY_LBM_MapSize][g_iTotalNumOfLS+1][50];

 /*
 Explanations for the fSFA_PM 4D array:[i][j][k][l]
 i - stands for maximum number of cycles
 j - stands for number of 5 SFA (,i.e.,, OR/0/, AND/1/, OLSAS /2/, MOST_REGULAR /3/,AFL/5/)
 k - stands for PM: TT, FF, TF, FT, Fused measure(0.5*(TT+FF-TF-FT))
 l - stands for total number of LSs
 */
 float fSFA_PM[100][6][5][g_iTotalNumOfLS];

 /*
Explanations for the fSFA_FL 3D array:[i][j][k]
 i - stands for maximum number of cycles
 j - stands for number of 5 SFA (,i.e.,, OR/0/, AND/1/, OLSAS /2/, MOST_REGULAR /3/,AFL/5/)
 k - stands for PM: TT, FF, TF ,FT
 */

 float fSFA_FL_Regular[100][5][4]; // Regular FL algorithm

 //** **
 //Adpative weighted average algorithm
 //** **
 int AvgMap[g_iX_LBM_MapSize][g_iY_LBM_MapSize][60];
 int EnLSMap1[g_iX_LBM_MapSize][g_iX_LBM_MapSize][g_iTotalNumOfLS+1][60];
 float DiffMap[g_iX_LBM_MapSize][g_iY_LBM_MapSize][60];
 float AdpThr[g_iX_LBM_MapSize][g_iY_LBM_MapSize][60];
 float NewPM[g_iTotalNumOfLS+1][5][5][60]; //2nd dimension - AlgCode, 3rd - type of PM
 float NewPM1[g_iTotalNumOfLS+1][5][60]; //2nd dimension - AlgCode,
};
#endif

82

/**
** StaticParameters.h
**
** Copyright 2001 by Ofir Cohen
**
** E-mail: oprc@bgumail.bgu.ac.il
**
**/

#ifndef __StaticParameters_h__
#define __StaticParameters_h__

#include "ConstantParameters.h"
#include "GlobalParameters.h"
#include "InitiationFile.h"

// structure for the saphira sensors array
//extern struct sfprocess *sfpMainLoop;

// Camera and OpenCV Parameters
extern int videotype;
extern int grab_type;
extern int ImageMaxX,
 ImageMaxY,
 WindowX,
 WindowY;
/*
#define PIXEL_TYPE PBITS_RGB24
#define PXC_NAME "pxc_95.dll"
#define FRAME_NAME "frame_32.dll"
#define PXC_NT "pxc_nt.dll"
*/
static int videotype;
static int grab_type;
static int ImageMaxX,
 ImageMaxY,
 WindowX,
 WindowY;
#endif

83

/**
** collector.h
**
** Copyright 2007 by Keren Kapach
**
** E-mail: kapach@bgu.ac.il
**
**/
#include "Aria.h"
#include "ConstantParameters.h"
#include "GlobalParameters.h"
#include "UltraSonic_Class.h"
#include "Sick_Class.h"
//#include "InitiationFile.h"
#include "PXC_Camera_Dll_Load.h"
#include "LogicalSensor.h"
#include "image.h"
#include "ipl.h"
#include "cv.h"
#include <windows.h>
#include <cvlgrfmts.h>

#define move 1
#define stop 0
#define SPEED 40
#define PATH_LENGTH 1500
#define ReadDataFrom_US_Sensor 2
#define ReadDataFrom_Sick_Sensor 3
#define ReadDataFromCamera1 4
#define ReadDataFromCamera2 5
#define ReadDataFromCamera3 6
#define ReadDataFromCamera4 7
#define ReadDataFromCameraF 8

PXC pxc;
FRAMELIB frame;

// Camera and OpenCV Parameters
//extern PXC pxc ;
long fgh;
FRAME __PX_FAR *frh;
extern int videotype;
extern int grab_type;
extern int ImageMaxX,
 ImageMaxY,
 WindowX,
 WindowY;

 BlackBoard g_BB;
 ArRobot robot(NULL, false);
 ArSick *sick;

 Vision_Class CAM;
 UltraSonic_Class US;
 Sick_Class mySick;
 ArSonyPTZ myCam(&robot);

void initDLL();

84

/** ******************************
* Name: main *
* Description: This function is the main of the sensor fusion system *
*** *****************************/

int main(int argc, char **argv) {

 // just some stuff for returns
 std::string str;
 int ret,process_state=1,sum=0;

 initDLL();
 Init_Parameters();
 int tCam,tPic ; // the camera
 tCam =1100 ; tPic = 0 ;
 ArTime start;
 ArSerialConnection con;
 ArSerialConnection conL;
 Aria::init(); // mandatory init

 sick = new ArSick;
 if ((ret = conL.open("COM3")) != 0) { // opens the connection, if it fails, exit
 str = conL.getOpenMessage(ret);
 printf("Open failed: %s\n", str.c_str());
 Aria::shutdown();
 return 1; }

 sick->configure(false, true, false, ArSick::BAUD38400,
 ArSick::DEGREES180, ArSick::INCREMENT_ONE);
 sick->setDeviceConnection(&conL);

 sick->runAsync();
 ArUtil::sleep(100);
 sick->lockDevice();
 sick->asyncConnect();
 sick->unlockDevice();

 while (!sick->isConnected())
 ArUtil::sleep(100);
 printf("Connected\n");

 if ((ret = con.open()) != 0){ // opens the connection, if it fails, exit
 str = con.getOpenMessage(ret);
 printf("Open failed: %s\n", str.c_str());
 Aria::shutdown();
 return 1; }
 robot.setDeviceConnection(&con); // set the connection on the robot

 if (!robot.blockingConnect()) { // connect, if we fail, exit
 printf("Could not connect to robot... exiting\n");
 Aria::shutdown();
 return 1; }

 robot.comInt(ArCommands::SONAR, 1); // turn on the sonar, enable the motors, turn off amigobot sounds
 robot.comInt(ArCommands::ENABLE,1);

 robot.runAsync(true); // run, if we lose connection to the robot, exit
 Init_Parameters();
 myCam.tilt(-40);
 ArUtil::sleep(500);

85

 myCam.pan(-50);
 ArUtil::sleep(800);

while (process_state){
 switch (process_state){
 case move:
 printf("Starting to move...\n\n");
 robot.setVel2(30,30);
 g_BB.iCycle=0;
 process_state = ReadDataFrom_US_Sensor;
 continue;

 case ReadDataFrom_US_Sensor:
 printf("Reading data from US sensor\n\n");
 start.setToNow();
 US.US_ReadDataFromUS();
 US.US_SFA_LogicalOR();
 US.US_SFA_ProbabilisticApproach();
 US.US_GridMapCellConversion();
 if (g_BB.iCycle>=0)
 Call_LS_Func();
 else
 g_BB.iCycle++;
 if (robot.getX()>4000) { //end of the line
 printf("Path Ended\n\n");
 robot.setVel2(0,0); // Set velocity for each wheel side independently.
 robot.comInt(ArCommands::SONAR, 0);
 SaveGGM();
 robot.comInt(ArCommands::SONAR, 0);
 process_state=stop;
 break;}
 else{
 process_state = ReadDataFrom_Sick_Sensor;
 continue;}

 case ReadDataFrom_Sick_Sensor:
 printf("Reading data from Sick #%d\n\n",sum);
 mySick.ReadFromSick();
 mySick.Si_GridMapCellConversion();
 if (g_BB.iCycle>=0)
 Call_LS_Func();
 else
 g_BB.iCycle++;

 if (robot.getX()>4000) {//end of the line
 printf("Path Ended\n\n");
 robot.setVel2(0,0); // Set velocity for each wheel side independently.
 robot.comInt(ArCommands::SONAR, 0);
 SaveGGM();
 process_state=stop;}
 else{
 if (g_BB.iCycle%2==0)
 process_state = ReadDataFromCamera1;
 else
 process_state = ReadDataFromCamera4;
 continue;}

 case ReadDataFromCamera1: //-50
 printf("Angle -50\n");
 myCam.pan(-50);

86

 ArUtil::sleep(tCam);
 CAM.iVision_CameraAngleCode=1;
 ImageProcessingAlgo1(); // Take photo, update location and convert to gray scale
 CAM.iVision_CameraAngleCode=2;
 ImageProcessingAlgo3(0); // Input: First algorithm
 ImageProcessingAlgo3(1); // Input: second algorithm
 ImageProcessingAlgo3(2); // Input: Third algorithm
 if (g_BB.iCycle%2==0)
 process_state = ReadDataFromCamera2;
 else
 process_state = ReadDataFromCameraF;
 continue;

 case ReadDataFromCamera2: //-17
 printf("Angle -17\n");
 myCam.pan(-17);
 ArUtil::sleep(tCam);
 CAM.iVision_CameraAngleCode=2;
 ImageProcessingAlgo1(); // Take photo, update location and convert to gray scale
 CAM.iVision_CameraAngleCode=3;

 ImageProcessingAlgo3(0); // Input: First algorithm
 ImageProcessingAlgo3(1); // Input: second algorithm
 ImageProcessingAlgo3(2); // Input: Third algorithm
 if (g_BB.iCycle%2==0)
 process_state = ReadDataFromCamera3;
 else
 process_state = ReadDataFromCamera1;
 continue;
case ReadDataFromCamera3: //17
 printf("Angle 17\n");
 myCam.pan(17);
 ArUtil::sleep(tCam);
 //printf("my angle is 17 deg\n");
 CAM.iVision_CameraAngleCode=3;
 ImageProcessingAlgo1(); // Take photo, update location and convert to gray scale
 CAM.iVision_CameraAngleCode=4;
 ImageProcessingAlgo3(0); // Input: First algorithm
 ImageProcessingAlgo3(1); // Input: second algorithm
 ImageProcessingAlgo3(2); // Input: Third algorithm
 if (g_BB.iCycle%2==0)
 process_state = ReadDataFromCamera4;
 else
 process_state = ReadDataFromCamera2;
 continue;
 case ReadDataFromCamera4: //50
 printf("Angle 50\n");
 myCam.pan(50);
 ArUtil::sleep(tCam);
 CAM.iVision_CameraAngleCode=4;
 ImageProcessingAlgo1(); // Take photo, update location and convert to gray scale
 CAM.iVision_CameraAngleCode=1;

 ImageProcessingAlgo3(0); // Input: First algorithm
 ImageProcessingAlgo3(1); // Input: second algorithm*/
 ImageProcessingAlgo3(2); // Input: Third algorithm
 if (g_BB.iCycle%2==0)
 process_state = ReadDataFromCameraF;

87

 else
 process_state = ReadDataFromCamera3;
 continue;

 case ReadDataFromCameraF:
 printf("FUSING CAMERA DATA\n");
 ImageProcessingAlgo4(0); // Converting into pic number 1 position
 ImageProcessingAlgo4(1); // Converting into pic number 1 position
 ImageProcessingAlgo4(2); // Converting into pic number 1 position
 CAM.Vision_GridMapCellConversion();
 if (g_BB.iCycle>=0){
 Call_LS_Func();
 g_BB.iCycle++;}
 else
 g_BB.iCycle++;

 if (robot.getX()>4000) {//end of the line
 printf("Path Ended\n\n");
 robot.setVel2(0,0); // Set velocity for each wheel side independently.
 robot.comInt(ArCommands::SONAR, 0);
 SaveGGM();
 process_state=stop;
 continue;}
 else{
 printf (" in cycle %d the time is %f\n", g_BB.iCycle,(double)start.mSecSince());
 printf("The robots velocity is: %f\n\n", robot.getVel());
 process_state = ReadDataFrom_US_Sensor;
 continue;}

}//while

 printf("Stopping!\n\n\n");
 robot.comInt(ArCommands::SONAR, 0);
 robot.comInt(ArCommands::ENABLE, 0);
 robot.unlock();// shutdown and go away
 Aria::shutdown();
 return 0;
 }//switch
 return 0;}

88

/** ******************************
* Name: initDLL *
* Description: This function initializes the camera's dll files *
*** *****************************/

void initDLL()
{
 if (!imagenation_OpenLibrary(PXC_NAME,&pxc,sizeof(pxc)))
 {
 if (!imagenation_OpenLibrary(PXC_NT,&pxc,sizeof(pxc)))
 {
 printf("no load dll");
 }
 }

 if (!imagenation_OpenLibrary(FRAME_NAME,&frame,sizeof(frame)))
 {
 printf("no load dll");
 }

 fgh = pxc.AllocateFG(-1);
 //sleep(2500); // wait for CCIR auto detect
 videotype = pxc.VideoType(fgh);

 switch(videotype) {
case 0: // no video
case 1: // NTSC
 grab_type = 0;
 ImageMaxX = 640;
 ImageMaxY = 486;
 break;
case 2: // CCIR
 grab_type = 0;
 ImageMaxX = 768;
 ImageMaxY = 576;
 break;
 }

 pxc.SetWidth(fgh,(short)ImageMaxX);
 pxc.SetHeight(fgh,(short)ImageMaxY);
 pxc.SetLeft(fgh,0);
 pxc.SetTop(fgh,0);
 pxc.SetXResolution(fgh,(short)ImageMaxX);
 pxc.SetYResolution(fgh,(short)ImageMaxY);

 frh = pxc.AllocateBuffer((short)ImageMaxX, (short)ImageMaxY, PIXEL_TYPE);
}

89

/** ******************************
* Name: Init_Parameters *
* Description: This function initializes the parameters and sets all array to zeros *
*** *****************************/
void Init_Parameters()
{
 int i, j, m;
 printf("Initiating Parameters\n\n");

 // Camera parameters
 g_BB.iLBM_X_New=0;
 g_BB.iLBM_Y_New=0;
 g_BB.iLBM_Theta_New=0;

// Initial performance measures parameters

 // Initialization of the PMs for the different LSs
 for (i=1; i<=g_iTotalNumOfLS; i++)
 {
 if (i==1)
 {
 g_BB.faTrueFalse[i][1]=0.85; //TT Value
 g_BB.faTrueFalse[i][2]=0.9; //FF Value
 g_BB.faTrueFalse[i][3]=1-g_BB.faTrueFalse[i][2]; //TF=1-TT Value
 g_BB.faTrueFalse[i][4]=1-g_BB.faTrueFalse[i][1]; //FT=1-FF Value
 }
 if (i==2)
 {
 g_BB.faTrueFalse[i][1]=0.78; //TT Value
 g_BB.faTrueFalse[i][2]=0.91; //FF Value
 g_BB.faTrueFalse[i][3]=1-g_BB.faTrueFalse[i][2]; //TF=1-TT Value
 g_BB.faTrueFalse[i][4]=1-g_BB.faTrueFalse[i][1]; //FT=1-FF Value
 }

 if (i==3)
 {
 g_BB.faTrueFalse[i][1]=0.8; //TT Value
 g_BB.faTrueFalse[i][2]=0.7; //FF Value
 g_BB.faTrueFalse[i][3]=1-g_BB.faTrueFalse[i][2]; //TF=1-TT Value
 g_BB.faTrueFalse[i][4]=1-g_BB.faTrueFalse[i][1]; //FT=1-FF Value
 }

 if (i==4)
 {
 g_BB.faTrueFalse[i][1]=0.6; //TT Value
 g_BB.faTrueFalse[i][2]=0.9; //FF Value
 g_BB.faTrueFalse[i][3]=1-g_BB.faTrueFalse[i][2]; //TF=1-TT Value
 g_BB.faTrueFalse[i][4]=1-g_BB.faTrueFalse[i][1]; //FT=1-FF Value
 }

 if (i==5)
 {
 g_BB.faTrueFalse[i][1]=0.88; //TT Value
 g_BB.faTrueFalse[i][2]=0.91; //FF Value
 g_BB.faTrueFalse[i][3]=1-g_BB.faTrueFalse[i][2]; //TF=1-TT Value
 g_BB.faTrueFalse[i][4]=1-g_BB.faTrueFalse[i][1]; //FT=1-FF Value
 }
 if (i==6)
 {
 g_BB.faTrueFalse[i][1]=0.92; //TT Value

90

 g_BB.faTrueFalse[i][2]=0.95; //FF Value
 g_BB.faTrueFalse[i][3]=1-g_BB.faTrueFalse[i][2]; //TF=1-TT Value
 g_BB.faTrueFalse[i][4]=1-g_BB.faTrueFalse[i][1]; //FT=1-FF Value
 }
 if (i==7)
 {
 g_BB.faTrueFalse[i][1]=0.93; //TT Value
 g_BB.faTrueFalse[i][2]=0.95; //FF Value
 g_BB.faTrueFalse[i][3]=1-g_BB.faTrueFalse[i][2]; //TF=1-TT Value
 g_BB.faTrueFalse[i][4]=1-g_BB.faTrueFalse[i][1]; //FT=1-FF Value
 }
 }

 g_BB.iCycle=0; // Initiating the cycle counter

 for (m=1; m<=g_iTotalNumOfLS; m++)
 g_BB.baLS_Flag [m]=1; // initiating the LS flag to 1.

 //Initiating the UM PM for the AdpWA algorithm
 for (i=1; i<=g_iTotalNumOfLS; i++)
 {
 if (i==1)
 g_BB.NewPM[i][1][4][0]=0.3;
 if (i==2)
 g_BB.NewPM[i][1][4][0]=0.3;
 if (i==3)
 g_BB.NewPM[i][1][4][0]=1;
 if (i==4)
 g_BB.NewPM[i][1][4][0]=1;
 if (i==5)
 g_BB.NewPM[i][1][4][0]=0.1;
 if (i==6)
 g_BB.NewPM[i][1][4][0]=0.1;
 if (i==7)
 g_BB.NewPM[i][1][4][0]=0.1;
 }//for i

 //Initiating the UM PM for the SFA_EnNEW algorithm
 for (i=1; i<=g_iTotalNumOfLS; i++)
 {
 if (i==1)
 g_BB.NewPM[i][3][4][0]=0.3;
 if (i==2)
 g_BB.NewPM[i][3][4][0]=0.3;
 if (i==3)
 g_BB.NewPM[i][3][4][0]=1;
 if (i==4)
 g_BB.NewPM[i][3][4][0]=1;
 if (i==5)
 g_BB.NewPM[i][3][4][0]=0.1;
 if (i==6)
 g_BB.NewPM[i][3][4][0]=0.1;
 if (i==7)
 g_BB.NewPM[i][3][4][0]=0.1;
 }//for i

 //Initiating the PM for the SFA_NEW1 algorithm
 for (i=1; i<=g_iTotalNumOfLS; i++)
 {

91

 if (i==1)
 g_BB.NewPM1[i][2][0]=0.3;
 if (i==2)
 g_BB.NewPM1[i][2][0]=0.3;
 if (i==3)
 g_BB.NewPM1[i][2][0]=1;
 if (i==4)
 g_BB.NewPM1[i][2][0]=1;
 if (i==5)
 g_BB.NewPM1[i][2][0]=0.1;
 if (i==6)
 g_BB.NewPM1[i][2][0]=0.1;
 if (i==7)
 g_BB.NewPM1[i][2][0]=0.1;

 }//for i

//Initiating the PM for the SFA_EnNEW1 algorithm
 for (i=1; i<=g_iTotalNumOfLS; i++)
 {
 if (i==1)
 g_BB.NewPM1[i][4][0]=0.3;
 if (i==2)
 g_BB.NewPM1[i][4][0]=0.3;
 if (i==3)
 g_BB.NewPM1[i][4][0]=1;
 if (i==4)
 g_BB.NewPM1[i][4][0]=1;
 if (i==5)
 g_BB.NewPM1[i][4][0]=0.1;
 if (i==6)
 g_BB.NewPM1[i][4][0]=0.1;
 if (i==7)
 g_BB.NewPM1[i][4][0]=0.1;
 }//for i
}

92

/**
** LogicalSensor.h
**
** Copyright 2001 by Ofir Cohen
**
** E-mail: oprc@bgumail.bgu.ac.il
**/
#ifndef __LogicalSensor_h__
#define __LogicalSensor_h__
#include <math.h>
#include "ConstantParameters.h"
#include "GlobalParameters.h"
#include "InitiationFile.h"
#include "FuzzyLogic_Algorithm.h"

extern PXC pxc;
extern FRAMELIB frame;
extern long fgh;
extern FRAME __PX_FAR *frh;
extern int videotype;
extern int grab_type;
extern int ImageMaxX,
 ImageMaxY,
 WindowX,
 WindowY;
extern BlackBoard g_BB;

void SFA_AND();
void SFA_OR();
void SFA_MOST();
void SFA_REGULAR_MOST();
void SFA_REGULAR_AFL();
void SFA_AdpWA1(); //New algorithm
void SFA_AdpWA2();
void SFA_AdpWA3(); //EnNEW - With Enhance, Binary PM, level 3
void SFA_AdpWA4(); //EnNEW1 - With Enhance, New PM, level 4
void CopyLBM2GGM(int);
void CreateLS_PPGM(int);
void SaveGGM();
void Call_LS_Func();
void Calculating_FL_TruthTable();
void FuzzyLogicAlgorithm(int);
void CalculatingTrueAndFalseValues(int);
void SFA_Calc_PM(int); // Calculates PM
void LGM_Transformation();

class LogicalSensor
{
private:

public:
 LogicalSensor();
 ~LogicalSensor();
};
#endif

93

/**
** LogicalSensor.cpp
**
** Copyright 2001 by Ofir Cohen
**
** E-mail: oprc@bgumail.bgu.ac.il
**
**/
#include "ConstantParameters.h"
#include "GlobalParameters.h"
#include "LogicalSensor.h"
#include "InitiationFile.h"
#include "UltraSonic_Class.h"
#include "FuzzyLogic_Algorithm.h"
#include "STDIO.H"
#include <math.h>

extern PXC pxc;
extern FRAMELIB frame;

static long fgh;
static FRAME __PX_FAR *frh;

extern int videotype;
extern int grab_type;
extern int ImageMaxX,
ImageMaxY,
WindowX,
WindowY;

extern UltraSonic_Class US;

/** ******************************
* Name: LGM_Transformation *
* Description: This function transforms the logical sensors’ maps that were not update *
*** *****************************/
void LGM_Transformation()
{ // 0
 int i, j, k;
 double DeltaX;
 double DeltaY;
 int i_New, j_New;

 g_BB.faRobotPos[g_BB.iCycle][0]=g_BB.iLBM_X_New;
 g_BB.faRobotPos[g_BB.iCycle][1]=g_BB.iLBM_Y_New;

 DeltaX=g_BB.iLBM_X_New-g_BB.iLBM_X_Old;
 DeltaY=g_BB.iLBM_Y_New-g_BB.iLBM_X_Old;

 for (k=1; k<=g_iTotalNumOfLS; k++)
 { // 1
 if (g_BB.bLGM_NewDataFlag[k]) // If the LS has new data - FLAG =1
 { // 2
 g_BB.bLGM_NewDataFlag[k]=0; // Set NewDataFlag to 0
 //sfSMessage("DeltaX= %d",DeltaX);
 for (i=0; i<g_iX_LBM_MapSize ; i++)
 { // 3
 for(j=0; j<g_iY_LBM_MapSize ; j++)

94

 { // 4
 // Save the New data in an array for the Off-Line simulation
 g_BB.iaLogicalSensorMap[i][j][k-
1][g_BB.iCycle]=g_BB.iaLBM[i][j][k];

 } // 4
 } // 3
 } // 2
 else
 { // 5
 for (i=0; i<g_iX_LBM_MapSize ; i++)
 { // 6
 for(j=0; j<g_iY_LBM_MapSize ; j++)
 { // 7
 i_New=(int)(i-(int)(DeltaX/(double)g_LBMCellSize));
 j_New=j;
 if ((i_New>=0)&&(i_New<g_iX_LBM_MapSize)
&&(j_New>=0)&&(j_New<g_iY_LBM_MapSize))
 { // 8
 g_BB.iaLBM[i_New][j_New][k]=g_BB.iaLBM[i][j][k];

 g_BB.iaLogicalSensorMap[i_New][j_New][k-
1][g_BB.iCycle]=g_BB.iaLBM[i][j][k];
 if(i>i_New) // For moving robot case
 g_BB.iaLBM[i][j][k]=0;
 } // 8

 }// 7
 }// 6
 }// 5
 }// 1
// sfSMessage("Cycle %d",g_BB.iCycle); // print out the system's cycle
} // 0

/** ******************************
* Name: SFA_AND *
* Description: This function fuses the data between all LBMs using the AND method *
*** *****************************/

void SFA_AND()
{ // 0
 int i,j,k,counter;

 for (i=0;i<g_iX_LBM_MapSize;i++)
 { // 1
 for (j=0;j<g_iY_LBM_MapSize;j++)
 { // 2
 counter=0;
 for (k=1;k<=g_iTotalNumOfLS;k++)
 { // 3
 if(g_BB.iaLBM[i][j][k])
 counter++;
 } // 3
 if(counter==g_iTotalNumOfLS)
 g_BB.iaLBM[i][j][0]=1;
 } // 2
 } // 1
 // Calculate the PM for each LS by comparing the results to the fused AND map
 SFA_Calc_PM(1);
 CopyLBM2GGM(1);

95

} // 0

/** ******************************
* Name: SFA_OR *
 * Description: This function fuses the data between all LBM using the OR method *
*** *****************************/
void SFA_OR()
{
 int i,j,k;
 for (i=0;i<g_iX_LBM_MapSize;i++)
 {
 for (j=0;j<g_iY_LBM_MapSize;j++)
 {
 for (k=1;k<=g_iTotalNumOfLS;k++)
 {
 if(g_BB.iaLBM[i][j][k])
 {
 g_BB.iaLBM[i][j][0]=1;
 k=g_iTotalNumOfLS;
 }
 }
 }
 }
 // Calculate the PM for each LS by comparing the results to the fused OR map
 SFA_Calc_PM(0);
 CopyLBM2GGM(0);
}

/** ******************************
* Name: SFA_AdpWA1 *
* Description: This function fuses the data between all LBM using AdpWA1 algorithm, which means without * *
Enhancment, binary PM. *
*** *****************************/

void SFA_AdpWA1()
{
 int AvgMap[g_iX_LBM_MapSize][g_iY_LBM_MapSize]={0},i,j,k,sum,count;
 float AdpThr;

 //Enhancing the maps of the LS

 int EnLSMap[g_iX_LBM_MapSize][g_iY_LBM_MapSize][g_iTotalNumOfLS+1]={0};
 int mean[g_iTotalNumOfLS]={0};
 char string[30];
 char cLocNum[10];
 int m;

 for (k=1; k<=g_iTotalNumOfLS; k++)
 {
 for (i=0; i<g_iX_LBM_MapSize; i++)
 {
 for (j=0; j<g_iY_LBM_MapSize; j++)
 {
 EnLSMap[i][j][k]=g_BB.iaLBM[i][j][k];
 }
 }
 }

 //Calculating the Avg. of number of samples

96

 for (i=0; i<g_iX_LBM_MapSize; i++)
 {
 for (j=0; j<g_iY_LBM_MapSize; j++)
 {
 sum=0;
 count=0;
 for (k=1; k<=g_iTotalNumOfLS; k++)
 if (EnLSMap[i][j][k])
 {
 count++;
 sum=sum+EnLSMap[i][j][k];
 }
 if (count)
 AvgMap[i][j]=sum/count;
 g_BB.AvgMap[i][j][g_BB.iCycle]=AvgMap[i][j];
 }//for j
 }//for i

 //Calculating the fused map according to the adp. thr.
 for (i=0; i<g_iX_LBM_MapSize; i++)
 {
 for (j=0; j<g_iY_LBM_MapSize; j++)
 {
 AdpThr=0;
 sum=0;

 for (k=1; k<=g_iTotalNumOfLS; k++)
 {
 sum=sum+g_BB.NewPM[k][1][4][g_BB.iCycle];
 if (g_BB.iCycle)
 AdpThr=AdpThr+g_BB.NewPM[k][1][4][g_BB.iCycle-
1]*EnLSMap[i][j][k];
 else

 AdpThr=AdpThr+g_BB.NewPM[k][1][4][0]*EnLSMap[i][j][k];

 }
 if (sum)
 AdpThr=AdpThr/sum;

 //Saving AdpThr and Diff for off line testing
 g_BB.AdpThr[i][j][g_BB.iCycle]=AdpThr;

 if (AdpThr>=AvgMap[i][j])
 g_BB.iaLBM[i][j][0]=AvgMap[i][j];
 else
 g_BB.iaLBM[i][j][0]=0;
 }//for j
 }//for i

 SFA_Calc_PM(1);
 CopyLBM2GGM(1);
}

97

/** ******************************
* Name: SFA_AdpWA2
* Description: This function fuses the data between all LBM using AdpWA1 algorithm, which means without * *
Enhancment, New PM.
*** *****************************/

void SFA_AdpWA2()
{
 int AvgMap[g_iX_LBM_MapSize][g_iY_LBM_MapSize]={0},i,j,k,sum,count;
 float AdpThr;
 static iCycle;
 char string[60];
 int SumSquaredError, SquaredFusedSum;

 int EnLSMap[g_iX_LBM_MapSize][g_iY_LBM_MapSize][g_iTotalNumOfLS+1]={0};
 int mean[g_iTotalNumOfLS]={0};
 char cLocNum[10],Counter[10];
 int m;

 //Copying LS maps to EnLSMap array
 for (k=1; k<=g_iTotalNumOfLS; k++)
 {
 for (i=0; i<g_iX_LBM_MapSize; i++)
 {
 for (j=0; j<g_iY_LBM_MapSize; j++)
 EnLSMap[i][j][k]=g_BB.iaLBM[i][j][k];
 }
 }

 //Calculating the Avg. of number of samples
 for (i=0; i<g_iX_LBM_MapSize; i++)
 {
 for (j=0; j<g_iY_LBM_MapSize; j++)
 {
 sum=0;
 count=0;
 for (k=1; k<=g_iTotalNumOfLS; k++)
 if (EnLSMap[i][j][k])
 {
 count++;
 sum=sum+EnLSMap[i][j][k];
 }
 if (count)
 AvgMap[i][j]=sum/count;
 g_BB.AvgMap[i][j][g_BB.iCycle]=AvgMap[i][j];

 }//for j
 }//for i
 //Calculating the fused map according to the adp. thr.
 for (i=0; i<g_iX_LBM_MapSize; i++)
 {
 for (j=0; j<g_iY_LBM_MapSize; j++)
 {
 AdpThr=0;
 sum=0;

 for (k=1; k<=g_iTotalNumOfLS; k++)
 {

98

 sum=sum+g_BB.NewPM1[k][2][g_BB.iCycle];
 if (g_BB.iCycle)
 AdpThr=AdpThr+g_BB.NewPM1[k][2][g_BB.iCycle-
1]*EnLSMap[i][j][k];
 else
 AdpThr=AdpThr+g_BB.NewPM1[k][2][0]*EnLSMap[i][j][k];
 }
 if (sum)
 AdpThr=AdpThr/sum;

 //Saving AdpThr and Diff for off line testing
 g_BB.AdpThr[i][j][g_BB.iCycle] =AdpThr;

 if (AdpThr>=AvgMap[i][j])
 g_BB.iaLBM[i][j][0]=AvgMap[i][j];
 else
 g_BB.iaLBM[i][j][0]=0;
 }//for j

 }//for i

 int LSSquaredSum,FusedSquaredSum;
 float PM_Old=0, PM_New=0;

 //Calculating New PM
 int Temp;
 float ErrorCellRatio,ErrorSquaredSum;
 for (k=1; k<=g_iTotalNumOfLS; k++)
 {
 ErrorSquaredSum=0;
 FusedSquaredSum=0;
 LSSquaredSum=0;

 for (i=0; i<g_iX_LBM_MapSize; i++)
 {
 for (j=0; j<g_iY_LBM_MapSize; j++)
 {

 LSSquaredSum=LSSquaredSum+pow(EnLSMap[i][j][k],2);
 if (g_BB.iaLBM[i][j][0] && EnLSMap[i][j][k])
 {
 ErrorCellRatio=(float)(EnLSMap[i][j][k]-
g_BB.iaLBM[i][j][0])/(float)g_BB.iaLBM[i][j][0];
 ErrorSquaredSum=ErrorSquaredSum+pow(ErrorCellRatio,2);
 FusedSquaredSum=FusedSquaredSum+pow(g_BB.iaLBM[i][j][0],2);
 }
 }
 }
 if (g_BB.iCycle)
 PM_Old=g_BB.NewPM1[k][2][g_BB.iCycle-1];
 else
 PM_Old=g_BB.NewPM1[k][2][g_BB.iCycle];

 if (ErrorSquaredSum)
 PM_New=ErrorSquaredSum;
 else
 PM_New=PM_Old;

 g_BB.NewPM1[k][2][g_BB.iCycle]=0.5*(PM_New+PM_Old);

99

 }//for k
 //finding the maximum PM for normalization
 float max=0;
 for (k=1; k<=g_iTotalNumOfLS; k++)
 if (g_BB.NewPM1[k][2][g_BB.iCycle]>max)
 max=g_BB.NewPM1[k][2][g_BB.iCycle];

 for (k=1; k<=g_iTotalNumOfLS; k++)
 {
 g_BB.NewPM1[k][2][g_BB.iCycle]=g_BB.NewPM1[k][2][g_BB.iCycle]/max;
 }

 CopyLBM2GGM(2);
}

/** ******************************
* Name: SFA_AdpWA3 *
* Description: This function fuses the data between all LBM using AdpWA1 algorithm, which means withEnhancment,
Binary PM*
*** *****************************/

void SFA_AdpWA3()
{
 int AvgMap[g_iX_LBM_MapSize][g_iY_LBM_MapSize]={0},i,j,k,sum,count;
 float AdpThr;
 static iCycle;
 char string[60];
 int SumSquaredError, SquaredFusedSum;

 //Enhancing the maps of the LS
 int EnLSMap[g_iX_LBM_MapSize][g_iY_LBM_MapSize][g_iTotalNumOfLS+1]={0};
 int mean[g_iTotalNumOfLS]={0};
 char cLocNum[10];
 int m;

//Enahncing the LS Maps
 for (k=1; k<=g_iTotalNumOfLS; k++)
 {
 for (i=1; i<g_iX_LBM_MapSize-1; i++)
 {
 for (j=1; j<g_iY_LBM_MapSize-1; j++)
 {
 count=0;
 sum=0;
 if (g_BB.iaLBM[i-1][j-1][k]){ count++; sum=sum+g_BB.iaLBM[i-1][j-1][k];}
 if (g_BB.iaLBM[i-1][j][k]){ count++; sum=sum+g_BB.iaLBM[i-1][j][k];}
 if (g_BB.iaLBM[i-1][j+1][k]){ count++; sum=sum+g_BB.iaLBM[i-1][j+1][k];}
 if (g_BB.iaLBM[i][j+1][k]){ count++; sum=sum+g_BB.iaLBM[i][j+1][k];}
 if (g_BB.iaLBM[i+1][j+1][k]){ count++;
sum=sum+g_BB.iaLBM[i+1][j+1][k];}
 if (g_BB.iaLBM[i+1][j][k]){ count++; sum=sum+g_BB.iaLBM[i+1][j][k];}
 if (g_BB.iaLBM[i+1][j-1][k]){ count++; sum=sum+g_BB.iaLBM[i+1][j-1][k];}
 if (g_BB.iaLBM[i][j-1][k]){ count++; sum=sum+g_BB.iaLBM[i][j-1][k];}

 if (count>4 && g_BB.iaLBM[i][j][k])
 EnLSMap[i][j][k]=g_BB.iaLBM[i][j][k]+sum/count;
 else

100

 EnLSMap[i][j][k]=0;
 }//for i
 }//for j

 //First row
 for (j=1; j<g_iY_LBM_MapSize-1; j++)
 {
 sum=0;
 count=0;
 if (g_BB.iaLBM[0][j+1][k]){ count++; sum=sum+g_BB.iaLBM[0][j+1][k];}
 if (g_BB.iaLBM[1][j+1][k]){count++; sum=sum+g_BB.iaLBM[1][j+1][k];}
 if (g_BB.iaLBM[1][j][k]){ count++; sum=sum+g_BB.iaLBM[1][j][k];}
 if (g_BB.iaLBM[1][j-1][k]){count++; sum=sum+g_BB.iaLBM[1][j-1][k];}
 if (g_BB.iaLBM[0][j-1][k]){ count++; sum=sum+g_BB.iaLBM[0][j-1][k];}

 if (count>3 && g_BB.iaLBM[0][j][k])
 EnLSMap[i][j][k]=g_BB.iaLBM[i][j][k]+sum/count;
 else
 EnLSMap[i][j][k]=0;
 }//for j

 //Last row
 for (j=1; j<g_iY_LBM_MapSize-1; j++)
 {
 sum=0;
 count=0;
 if (g_BB.iaLBM[g_iX_LBM_MapSize-1][j-1][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-1][j-1][k];}
 if (g_BB.iaLBM[g_iX_LBM_MapSize-2][j-1][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][j-1][k];}
 if (g_BB.iaLBM[g_iX_LBM_MapSize-2][j][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][j][k];}
 if (g_BB.iaLBM[g_iX_LBM_MapSize-2][j+1][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][j+1][k];}
 if (g_BB.iaLBM[g_iX_LBM_MapSize-1][j+1][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-1][j+1][k];}

 if (count>3 && g_BB.iaLBM[g_iX_LBM_MapSize-1][j][k])
 EnLSMap[i][j][k]=g_BB.iaLBM[i][j][k]+sum/count;
 else
 EnLSMap[i][j][k]=0;
 }//for j
 //First Col.
 for (i=1; i<g_iX_LBM_MapSize-1; i++)
 {
 sum=0;
 count=0;
 if (g_BB.iaLBM[i-1][0][k]){ count++; sum=sum+g_BB.iaLBM[i-1][0][k];}
 if (g_BB.iaLBM[i-1][1][k]){ count++; sum=sum+g_BB.iaLBM[i-1][1][k];}
 if (g_BB.iaLBM[i][1][k]){ count++; sum=sum+g_BB.iaLBM[i][1][k];}
 if (g_BB.iaLBM[i+1][1][k]){ count++; sum=sum+g_BB.iaLBM[i+1][1][k];}
 if (g_BB.iaLBM[i+1][0][k]){ count++; sum=sum+g_BB.iaLBM[i+1][0][k];}

 if (count>3 && g_BB.iaLBM[i][0][k])
 EnLSMap[i][j][k]=g_BB.iaLBM[i][j][k]+sum/count;
 else
 EnLSMap[i][j][k]=0;
 }//for i

 //Last Col.

101

 for (i=1; i<g_iX_LBM_MapSize-1; i++)
 {
 sum=0;
 count=0;
 if (g_BB.iaLBM[i-1][g_iY_LBM_MapSize-1][k]){ count++; sum=sum+g_BB.iaLBM[i-
1][g_iY_LBM_MapSize-1][k];}
 if (g_BB.iaLBM[i-1][g_iY_LBM_MapSize-2][k]){ count++; sum=sum+g_BB.iaLBM[i-
1][g_iY_LBM_MapSize-2][k];}
 if (g_BB.iaLBM[i][g_iY_LBM_MapSize-2][k]){ count++;
sum=sum+g_BB.iaLBM[i][g_iY_LBM_MapSize-2][k];}
 if (g_BB.iaLBM[i+1][g_iY_LBM_MapSize-2][k]){count++;
sum=sum+g_BB.iaLBM[i+1][g_iY_LBM_MapSize-2][k];}
 if (g_BB.iaLBM[i+1][g_iY_LBM_MapSize-1][k]){ count++;
sum=sum+g_BB.iaLBM[i+1][g_iY_LBM_MapSize-1][k];}

 if (count>3 && g_BB.iaLBM[i][g_iY_LBM_MapSize-1][k])
 EnLSMap[i][j][k]=g_BB.iaLBM[i][j][k]+sum/count;
 else
 EnLSMap[i][j][k]=0;
 }//for i

 //Corners - Top left
 sum=0;
 count=0;
 if (g_BB.iaLBM[0][1][k]){ count++; sum=sum+g_BB.iaLBM[0][1][k]; }
 if (g_BB.iaLBM[1][1][k]){ count++; sum=sum+g_BB.iaLBM[1][1][k]; }
 if (g_BB.iaLBM[1][0][k]){ count++; sum=sum+g_BB.iaLBM[1][0][k]; }
 if (count>2 && g_BB.iaLBM[0][0][k])
 EnLSMap[i][j][k]=g_BB.iaLBM[i][j][k]+sum/count;
 else
 EnLSMap[i][j][k]=0;

 //Bottom left
 sum=0;
 count=0;
 if (g_BB.iaLBM[g_iX_LBM_MapSize-2][0][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][0][k]; }
 if (g_BB.iaLBM[g_iX_LBM_MapSize-2][1][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][1][k];}
 if (g_BB.iaLBM[g_iX_LBM_MapSize-1][1][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-1][1][k]; }
 if (count>2 && g_BB.iaLBM[g_iX_LBM_MapSize-1][g_iY_LBM_MapSize-1][k])
 EnLSMap[i][j][k]=g_BB.iaLBM[i][j][k]+sum/count;
 else
 EnLSMap[i][j][k]=0;

 //Top right
 sum=0;
 count=0;
 if (g_BB.iaLBM[0][g_iY_LBM_MapSize-2][k]){ count++;
sum=sum+g_BB.iaLBM[0][g_iY_LBM_MapSize-2][k];}
 if (g_BB.iaLBM[1][g_iY_LBM_MapSize-2][k]){ count++;
sum=sum+g_BB.iaLBM[1][g_iY_LBM_MapSize-2][k];}
 if (g_BB.iaLBM[1][g_iY_LBM_MapSize-1][k]){ count++;
sum=sum+g_BB.iaLBM[1][g_iY_LBM_MapSize-1][k]; }
 if (count>2 && g_BB.iaLBM[0][g_iY_LBM_MapSize-1])
 EnLSMap[i][j][k]=g_BB.iaLBM[i][j][k]+sum/count;
 else
 EnLSMap[i][j][k]=0;

102

 //Bottom right
 sum=0;
 count=0;
 if (g_BB.iaLBM[g_iX_LBM_MapSize-2][g_iY_LBM_MapSize-1][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][g_iY_LBM_MapSize-1][k]; }
 if (g_BB.iaLBM[g_iX_LBM_MapSize-2][g_iY_LBM_MapSize-2][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][g_iY_LBM_MapSize-2][k]; }
 if (g_BB.iaLBM[g_iX_LBM_MapSize-1][g_iY_LBM_MapSize-2][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-1][g_iY_LBM_MapSize-2][k]; }
 if (count>2 && g_BB.iaLBM[g_iX_LBM_MapSize-1][g_iY_LBM_MapSize-1][k])
 EnLSMap[i][j][k]=g_BB.iaLBM[i][j][k]+sum/count;
 else
 EnLSMap[i][j][k]=0;
 }//for k

 //Calculating the Avg. of number of samples
 for (i=0; i<g_iX_LBM_MapSize; i++)
 {
 for (j=0; j<g_iY_LBM_MapSize; j++)
 {
 sum=0;
 count=0;
 for (k=1; k<=g_iTotalNumOfLS; k++)
 if (EnLSMap[i][j][k])
 {
 count++;
 sum=sum+EnLSMap[i][j][k];
 }
 if (count)
 AvgMap[i][j]=sum/count;
 g_BB.AvgMap[i][j][g_BB.iCycle]=AvgMap[i][j];
 }//for j

 }//for i

 //Calculating the fused map according to the adp. thr.
 for (i=0; i<g_iX_LBM_MapSize; i++)
 {
 for (j=0; j<g_iY_LBM_MapSize; j++)
 {
 AdpThr=0;
 sum=0;

 for (k=1; k<=g_iTotalNumOfLS; k++)
 {
 sum=sum+g_BB.NewPM[k][3][4][g_BB.iCycle];
 if (g_BB.iCycle)
 AdpThr=AdpThr+g_BB.NewPM[k][3][4][g_BB.iCycle-
1]*EnLSMap[i][j][k];
 else

 AdpThr=AdpThr+g_BB.NewPM[k][3][4][0]*EnLSMap[i][j][k];
 }
 if (sum)
 AdpThr=AdpThr/sum;

 //Saving AdpThr and Diff for off line testing
 g_BB.AdpThr[i][j][g_BB.iCycle] =AdpThr;

 if (AdpThr>=AvgMap[i][j])

103

 g_BB.iaLBM[i][j][0]=AvgMap[i][j];
 else
 g_BB.iaLBM[i][j][0]=0;

 }//for j

 }//for i

 SFA_Calc_PM(3);
 CopyLBM2GGM(3);
}

/** ******************************
* Name: SFA_AdpWA4 *
* Description: This function fuses the data between all LBM using AdpWA1 algorithm, which means without Enhancment,
new PM. *
*** *****************************/

void SFA_AdpWA4()
{
 int AvgMap[g_iX_LBM_MapSize][g_iY_LBM_MapSize]={0},i,j,k,sum,count;
 float AdpThr;
 static iCycle;
 char string[60];
 int SumSquaredError, SquaredFusedSum;

 //Enhancing the maps of the LS

 int EnLSMap[g_iX_LBM_MapSize][g_iY_LBM_MapSize][g_iTotalNumOfLS+1]={0};
 int mean[g_iTotalNumOfLS]={0};
 char cLocNum[10];
 int m;

//Enahncing the LS Maps
 for (k=1; k<=g_iTotalNumOfLS; k++)
 {
 //all together
 for (i=0; i<g_iX_LBM_MapSize-1; i++)
 {
 for (j=0; j<g_iY_LBM_MapSize-1; j++)
 {
 count=0;
 sum=0;
 if (i>=1 && j>=1) {
 if (g_BB.iaLBM[i-1][j-1][k]){ count++; sum=sum+g_BB.iaLBM[i-1][j-
1][k];}
 }
 if (i>=1) {
 if (g_BB.iaLBM[i-1][j][k]){ count++; sum=sum+g_BB.iaLBM[i-
1][j][k];}
 if (g_BB.iaLBM[i-1][j+1][k]){ count++; sum=sum+g_BB.iaLBM[i-
1][j+1][k];}
 }
 if (g_BB.iaLBM[i][j+1][k]){ count++; sum=sum+g_BB.iaLBM[i][j+1][k];}
 if (g_BB.iaLBM[i+1][j+1][k]){ count++;
sum=sum+g_BB.iaLBM[i+1][j+1][k];}
 if (g_BB.iaLBM[i+1][j][k]){ count++; sum=sum+g_BB.iaLBM[i+1][j][k];}
 if (j>=1) {

104

 if (g_BB.iaLBM[i+1][j-1][k]){ count++;
sum=sum+g_BB.iaLBM[i+1][j-1][k];}
 if (g_BB.iaLBM[i][j-1][k]){ count++; sum=sum+g_BB.iaLBM[i][j-
1][k];}
 }

 if (count>4 && g_BB.iaLBM[i][j][k])
 EnLSMap[i][j][k]=g_BB.iaLBM[i][j][k]+sum/count;
 else
 EnLSMap[i][j][k]=0;
 }//for i
 }//for j

 for (i=1; i<g_iX_LBM_MapSize-1; i++)
 {
 for (j=1; j<g_iY_LBM_MapSize-1; j++)
 {
 count=0;
 sum=0;
 if (g_BB.iaLBM[i-1][j-1][k]){ count++; sum=sum+g_BB.iaLBM[i-1][j-1][k];}
 if (g_BB.iaLBM[i-1][j][k]){ count++; sum=sum+g_BB.iaLBM[i-1][j][k];}
 if (g_BB.iaLBM[i-1][j+1][k]){ count++; sum=sum+g_BB.iaLBM[i-1][j+1][k];}
 if (g_BB.iaLBM[i][j+1][k]){ count++; sum=sum+g_BB.iaLBM[i][j+1][k];}
 if (g_BB.iaLBM[i+1][j+1][k]){ count++;
sum=sum+g_BB.iaLBM[i+1][j+1][k];}
 if (g_BB.iaLBM[i+1][j][k]){ count++; sum=sum+g_BB.iaLBM[i+1][j][k];}
 if (g_BB.iaLBM[i+1][j-1][k]){ count++; sum=sum+g_BB.iaLBM[i+1][j-1][k];}
 if (g_BB.iaLBM[i][j-1][k]){ count++; sum=sum+g_BB.iaLBM[i][j-1][k];}

 if (count>4 && g_BB.iaLBM[i][j][k])
 EnLSMap[i][j][k]=g_BB.iaLBM[i][j][k]+sum/count;
 else
 EnLSMap[i][j][k]=0;
 }//for i
 }//for j

 //First row
 for (j=1; j<g_iY_LBM_MapSize-1; j++)
 {
 sum=0;
 count=0;
 if (g_BB.iaLBM[0][j+1][k]){ count++; sum=sum+g_BB.iaLBM[0][j+1][k];}
 if (g_BB.iaLBM[1][j+1][k]){count++; sum=sum+g_BB.iaLBM[1][j+1][k];}
 if (g_BB.iaLBM[1][j][k]){ count++; sum=sum+g_BB.iaLBM[1][j][k];}
 if (g_BB.iaLBM[1][j-1][k]){count++; sum=sum+g_BB.iaLBM[1][j-1][k];}
 if (g_BB.iaLBM[0][j-1][k]){ count++; sum=sum+g_BB.iaLBM[0][j-1][k];}

 if (count>3 && g_BB.iaLBM[0][j][k])
 EnLSMap[i][j][k]=g_BB.iaLBM[i][j][k]+sum/count;
 else
 EnLSMap[i][j][k]=0;
 }//for j

 //Last row
 for (j=1; j<g_iY_LBM_MapSize-1; j++)
 {
 sum=0;
 count=0;
 if (g_BB.iaLBM[g_iX_LBM_MapSize-1][j-1][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-1][j-1][k];}

105

 if (g_BB.iaLBM[g_iX_LBM_MapSize-2][j-1][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][j-1][k];}
 if (g_BB.iaLBM[g_iX_LBM_MapSize-2][j][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][j][k];}
 if (g_BB.iaLBM[g_iX_LBM_MapSize-2][j+1][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][j+1][k];}
 if (g_BB.iaLBM[g_iX_LBM_MapSize-1][j+1][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-1][j+1][k];}

 if (count>3 && g_BB.iaLBM[g_iX_LBM_MapSize-1][j][k])
 EnLSMap[i][j][k]=g_BB.iaLBM[i][j][k]+sum/count;
 else
 EnLSMap[i][j][k]=0;
 }//for j
 //First Col.
 for (i=1; i<g_iX_LBM_MapSize-1; i++)
 {
 sum=0;
 count=0;
 if (g_BB.iaLBM[i-1][0][k]){ count++; sum=sum+g_BB.iaLBM[i-1][0][k];}
 if (g_BB.iaLBM[i-1][1][k]){ count++; sum=sum+g_BB.iaLBM[i-1][1][k];}
 if (g_BB.iaLBM[i][1][k]){ count++; sum=sum+g_BB.iaLBM[i][1][k];}
 if (g_BB.iaLBM[i+1][1][k]){ count++; sum=sum+g_BB.iaLBM[i+1][1][k];}
 if (g_BB.iaLBM[i+1][0][k]){ count++; sum=sum+g_BB.iaLBM[i+1][0][k];}

 if (count>3 && g_BB.iaLBM[i][0][k])
 EnLSMap[i][j][k]=g_BB.iaLBM[i][j][k]+sum/count;
 else
 EnLSMap[i][j][k]=0;
 }//for i

 //Last Col.
 for (i=1; i<g_iX_LBM_MapSize-1; i++)
 {
 sum=0;
 count=0;
 if (g_BB.iaLBM[i-1][g_iY_LBM_MapSize-1][k]){ count++; sum=sum+g_BB.iaLBM[i-
1][g_iY_LBM_MapSize-1][k];}
 if (g_BB.iaLBM[i-1][g_iY_LBM_MapSize-2][k]){ count++; sum=sum+g_BB.iaLBM[i-
1][g_iY_LBM_MapSize-2][k];}
 if (g_BB.iaLBM[i][g_iY_LBM_MapSize-2][k]){ count++;
sum=sum+g_BB.iaLBM[i][g_iY_LBM_MapSize-2][k];}
 if (g_BB.iaLBM[i+1][g_iY_LBM_MapSize-2][k]){count++;
sum=sum+g_BB.iaLBM[i+1][g_iY_LBM_MapSize-2][k];}
 if (g_BB.iaLBM[i+1][g_iY_LBM_MapSize-1][k]){ count++;
sum=sum+g_BB.iaLBM[i+1][g_iY_LBM_MapSize-1][k];}

 if (count>3 && g_BB.iaLBM[i][g_iY_LBM_MapSize-1][k])
 EnLSMap[i][j][k]=g_BB.iaLBM[i][j][k]+sum/count;
 else
 EnLSMap[i][j][k]=0;
 }//for i

 //Corners - Top left
 sum=0;
 count=0;
 if (g_BB.iaLBM[0][1][k]){ count++; sum=sum+g_BB.iaLBM[0][1][k]; }
 if (g_BB.iaLBM[1][1][k]){ count++; sum=sum+g_BB.iaLBM[1][1][k]; }
 if (g_BB.iaLBM[1][0][k]){ count++; sum=sum+g_BB.iaLBM[1][0][k]; }
 if (count>2 && g_BB.iaLBM[0][0][k])

106

 EnLSMap[i][j][k]=g_BB.iaLBM[i][j][k]+sum/count;
 else
 EnLSMap[i][j][k]=0;

 //Bottom left
 sum=0;
 count=0;
 if (g_BB.iaLBM[g_iX_LBM_MapSize-2][0][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][0][k]; }
 if (g_BB.iaLBM[g_iX_LBM_MapSize-2][1][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][1][k];}
 if (g_BB.iaLBM[g_iX_LBM_MapSize-1][1][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-1][1][k]; }
 if (count>2 && g_BB.iaLBM[g_iX_LBM_MapSize-1][g_iY_LBM_MapSize-1][k])
 EnLSMap[i][j][k]=g_BB.iaLBM[i][j][k]+sum/count;
 else
 EnLSMap[i][j][k]=0;

 //Top right
 sum=0;
 count=0;
 if (g_BB.iaLBM[0][g_iY_LBM_MapSize-2][k]){ count++;
sum=sum+g_BB.iaLBM[0][g_iY_LBM_MapSize-2][k];}
 if (g_BB.iaLBM[1][g_iY_LBM_MapSize-2][k]){ count++;
sum=sum+g_BB.iaLBM[1][g_iY_LBM_MapSize-2][k];}
 if (g_BB.iaLBM[1][g_iY_LBM_MapSize-1][k]){ count++;
sum=sum+g_BB.iaLBM[1][g_iY_LBM_MapSize-1][k]; }
 if (count>2 && g_BB.iaLBM[0][g_iY_LBM_MapSize-1])
 EnLSMap[i][j][k]=g_BB.iaLBM[i][j][k]+sum/count;
 else
 EnLSMap[i][j][k]=0;

 //Bottom right
 sum=0;
 count=0;
 if (g_BB.iaLBM[g_iX_LBM_MapSize-2][g_iY_LBM_MapSize-1][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][g_iY_LBM_MapSize-1][k]; }
 if (g_BB.iaLBM[g_iX_LBM_MapSize-2][g_iY_LBM_MapSize-2][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-2][g_iY_LBM_MapSize-2][k]; }
 if (g_BB.iaLBM[g_iX_LBM_MapSize-1][g_iY_LBM_MapSize-2][k]){ count++;
sum=sum+g_BB.iaLBM[g_iX_LBM_MapSize-1][g_iY_LBM_MapSize-2][k]; }
 if (count>2 && g_BB.iaLBM[g_iX_LBM_MapSize-1][g_iY_LBM_MapSize-1][k])
 EnLSMap[i][j][k]=g_BB.iaLBM[i][j][k]+sum/count;
 else
 EnLSMap[i][j][k]=0;
 }//for k

 //Calculating the Avg. of number of samples
 for (i=0; i<g_iX_LBM_MapSize; i++)
 {
 for (j=0; j<g_iY_LBM_MapSize; j++)
 {
 sum=0;
 count=0;
 for (k=1; k<=g_iTotalNumOfLS; k++)
 if (EnLSMap[i][j][k])
 {
 count++;
 sum=sum+EnLSMap[i][j][k];
 }

107

 if (count)
 AvgMap[i][j]=sum/count;
 g_BB.AvgMap[i][j][g_BB.iCycle]=AvgMap[i][j];
 }//for j

 }//for i

 //Calculating the fused map according to the adp. thr.
 for (i=0; i<g_iX_LBM_MapSize; i++)
 {
 for (j=0; j<g_iY_LBM_MapSize; j++)
 {
 AdpThr=0;
 sum=0;

 for (k=1; k<=g_iTotalNumOfLS; k++)
 {
 sum=sum+g_BB.NewPM1[k][4][g_BB.iCycle];
 if (g_BB.iCycle)
 AdpThr=AdpThr+g_BB.NewPM1[k][4][g_BB.iCycle-
1]*EnLSMap[i][j][k];
 else
 AdpThr=AdpThr+g_BB.NewPM1[k][4][0]*EnLSMap[i][j][k];
 }
 if (sum)
 AdpThr=AdpThr/sum;

 //Saving AdpThr and Diff for off line testing
 g_BB.AdpThr[i][j][g_BB.iCycle] =AdpThr;

 if (AdpThr>=AvgMap[i][j])
 g_BB.iaLBM[i][j][0]=AvgMap[i][j];
 else
 g_BB.iaLBM[i][j][0]=0;

 }//for j

 }//for i

 int LSSquaredSum,FusedSquaredSum;
 float PM_Old=0, PM_New=0;

 //Calculating New PM
 int Temp;
 float ErrorCellRatio,ErrorSquaredSum;
 for (k=1; k<=g_iTotalNumOfLS; k++)
 {
 ErrorSquaredSum=0;
 FusedSquaredSum=0;
 LSSquaredSum=0;

 for (i=0; i<g_iX_LBM_MapSize; i++)
 {
 for (j=0; j<g_iY_LBM_MapSize; j++)
 {

 LSSquaredSum=LSSquaredSum+pow(EnLSMap[i][j][k],2);
 if (g_BB.iaLBM[i][j][0] && EnLSMap[i][j][k])
 {

108

 ErrorCellRatio=(float)(EnLSMap[i][j][k]-
g_BB.iaLBM[i][j][0])/(float)g_BB.iaLBM[i][j][0];
 ErrorSquaredSum=ErrorSquaredSum+pow(ErrorCellRatio,2);
 FusedSquaredSum=FusedSquaredSum+pow(g_BB.iaLBM[i][j][0],2);
 }
 }
 }

 if (g_BB.iCycle)
 PM_Old=g_BB.NewPM1[k][2][g_BB.iCycle-1];
 else
 PM_Old=g_BB.NewPM1[k][2][g_BB.iCycle];

 if (ErrorSquaredSum)
 PM_New=ErrorSquaredSum;
 else
 PM_New=PM_Old;

 g_BB.NewPM1[k][4][g_BB.iCycle]=0.5*(PM_New+PM_Old);

 }//for k

 //finding the maximum PM for normalization
 float max=0;
 for (k=1; k<=g_iTotalNumOfLS; k++)
 if (g_BB.NewPM1[k][4][g_BB.iCycle]>max)
 max=g_BB.NewPM1[k][4][g_BB.iCycle];

 for (k=1; k<=g_iTotalNumOfLS; k++)
 g_BB.NewPM1[k][4][g_BB.iCycle]=g_BB.NewPM1[k][4][g_BB.iCycle]/max;

 CopyLBM2GGM(4);
}

/** ******************************
* Name: SFA_REGULAR_MOST *
* Description: This function fuses the data between all LBM using the regular MOST method *
*** *****************************/
void SFA_REGULAR_MOST()
{
 int i,j,k, counter, MOST_US_Camera;

 // Definitions of the MOST, using the 'ceil' function
 MOST_US_Camera=(int)(ceil(0.5*(float)g_iTotalNumOfLS));
 //sfSMessage("MOST_US_Camera %d", MOST_US_Camera);
 for (i=0;i<g_iX_LBM_MapSize;i++)
 {
 for (j=0;j<g_iY_LBM_MapSize;j++)
 {
 counter=0;
 for (k=1;k<=g_iTotalNumOfLS;k++)
 {
 if(g_BB.iaLBM[i][j][k])
 counter++;
 if(counter>=MOST_US_Camera)
 {
 g_BB.iaLBM[i][j][0]=1;

109

 k=g_iTotalNumOfLS;
 }
 }
 }
 }
 // Calculate the PM for each LS by comparing the results to the fused MOST map
 SFA_Calc_PM(0);
 CopyLBM2GGM(0);
}

/** ******************************
* Name: SFA_REGULAR_AFL *
* Description: This function fuses the data between all LBM using the regular AFL method *
*** *****************************/
void SFA_REGULAR_AFL()
{
 int i,j,k, m,Temp;
 int iCellValue;

 g_BB.iAFL_Flag=0; // 0 for regular AFL, 1 for MOST+AFL
 // Calculating the TRUE and FALSE value for each LS
 for (m=1; m<=g_iTotalNumOfLS; m++)
 FuzzyLogicAlgorithm(m);

 // Calculating truth table for each LS
 Calculating_FL_TruthTable();
 // Based on the Truth table the fused map is built
 for (i=0;i<g_iX_LBM_MapSize;i++)
 {
 for (j=0;j<g_iY_LBM_MapSize;j++)
 {
 iCellValue=0;
 for (k=0;k<g_iTotalNumOfLS;k++)
 {
 if (g_BB.iaLBM[i][j][k+1])
 Temp=1;
 else
 Temp=0;
 iCellValue= // The value for the cell at the Truth table [0/1]
 iCellValue+(Temp*pow(2,k));
 }// for (int k=1;k<2+g_NumberOfModules;k++)
 g_BB.iaLBM[i][j][0]=g_BB.fTTValue[0][iCellValue];
 }//for (int j=0;j<2*g_SensorYLength;j++)
 }// for (int i=0;i<g_SensorXLength;i++)*/

 for (m=1; m<=g_iTotalNumOfLS; m++)
 CalculatingTrueAndFalseValues(m);
 // Calculate the PM for each LS by comparing the results to the fused OLSAS map
 SFA_Calc_PM(5);
 CopyLBM2GGM(5);
}

/** ******************************
* Name: Call_LS_Func *
* Description: This function is used to fuse the data using the all algorithms methods *
*** *****************************/
void Call_LS_Func()
{ //1
 float fSpecialMeasure, fTT, fFF, fTF, fFT;

110

 int i,j,k;

 LGM_Transformation(); // map transformation for the maps that were not updated

 //Saving PPGM for the Logical sensor's maps
 CreateLS_PPGM(1); //US1
 CreateLS_PPGM(2); //US2
 CreateLS_PPGM(3); //LASER1
 CreateLS_PPGM(4); //LASER2
 CreateLS_PPGM(5); //CAM1
 CreateLS_PPGM(6); //CAM2
 CreateLS_PPGM(7); //CAM3
 //********************
// Fusing Data using the sensor fusion algorithms: OR/AND/MOST/ADS/AFL
 // It would help us to compare the results with what would happen if we used algorithm
 // instead of the other

 SFA_OR(); // OR writing to level 0
 SFA_AND(); // AND writing to level 1
 SFA_REGULAR_MOST(); // Regular MOST writing to level 0

 SFA_AdpWA1(); // NEW -Without Enhance, Binary PM ,level 1
 SFA_AdpWA2(); //NEW1 - Without Enhance, New PM, level 2
 SFA_AdpWA3(); //EnNEW - With Enhance, Binary PM, level 3
 SFA_AdpWA4(); //EnNEW1 - With Enhance, New PM, level 4
 SFA_REGULAR_AFL(); // Level 5
} // 1

111

/** ******************************
* Name: CopyLBM2GGM *
* Description: This function copy the local binary maps (LBMs) to the global grid maps *
*** *****************************/
void CopyLBM2GGM(int iAlgCode)
{
 int i, j;
 int iNew, jNew;
 for (i=0; i<g_iX_LBM_MapSize; i++)
 {
 for (j=0; j<g_iY_LBM_MapSize; j++)
 {
 iNew=i+(int)((double)g_BB.iPPGM_X/(double)g_LBMCellSize);
 jNew=j+(int)(((double)g_iY_PPGM_MapSize-(double)g_iY_LBM_MapSize)/2);
 if ((iNew>=0)&&(jNew< g_iY_PPGM_MapSize)&&
 (jNew>=0)&&(iNew< g_iX_PPGM_MapSize)&&(g_BB.iaLBM[i][j][0]))
 g_BB.iaPPGM[iNew][jNew][iAlgCode]=g_BB.iaLBM[i][j][0];
 if (iAlgCode==1)
 g_BB.iaPI[iNew][jNew]++;
 }
 }
 for (i=0; i<g_iX_LBM_MapSize; i++)// Save LBM maps for OffLine simulation
 {
 for (j=0; j<g_iY_LBM_MapSize; j++)
 {
 g_BB.SFAOutput[i][j][iAlgCode][g_BB.iCycle]=g_BB.iaLBM[i][j][0];
 g_BB.iaLBM[i][j][0]=0;
 }
 }
}

/** ******************************
* Name: CreateLS_PPGM *
* Description: This function creates the PPGM matrix for each LS using the LBM *
*** *****************************/
void CreateLS_PPGM(int iLSNum)
{
 int i, j;
 int iNew, jNew;
 for (i=0; i<g_iX_LBM_MapSize; i++)
 {
 for (j=0; j<g_iY_LBM_MapSize; j++)
 {
 iNew=i+(int)((double)g_BB.iPPGM_X/(double)g_LBMCellSize);
 jNew=j+(int)(((double)g_iY_PPGM_MapSize-(double)g_iY_LBM_MapSize)/2);
 if ((iNew>=0)&&(jNew< g_iY_PPGM_MapSize)&&
 (jNew>=0)&&(iNew<
g_iX_PPGM_MapSize)&&(g_BB.iaLBM[i][j][iLSNum]))
 {
 g_BB.iaLS_PPGM[iNew][jNew][iLSNum]=g_BB.iaLBM[i][j][iLSNum];
 }
 // if (iAlgCode==1)
 // g_BB.iaPI[iNew][jNew]++;

 }
 }
}

112

/** ******************************
* Name: SFA_Calc_PM *
* Description: This function calculates for each LS its reliability according *
* to the generated map by each algorithm *
*** *****************************/
void SFA_Calc_PM(int iAlg_Index)
{
 int i,j,k;
 int iAlg,Num,SumSquaredError,SquaredFusedSum;
 float fCounterT, fCounterF;

 // If the value at the BB_iaSensorArray[][][SFS_level] array is true then its value is 1
 float fLevelCell;
 // If the value at the BB_iaTemporarySensorArray array is true then the its value is 1
 float fFusedCell;

 float PM_True_False; // Found True but was False.
 float PM_True_True; // Found True And was True.
 float PM_False_False; // Found False And was False.
 float PM_False_True; // Found False but was true.
 float PM_UM, NewPM1, NewPM1_Old;
 float OldUM=0;

 iAlg=iAlg_Index;

 for (k=1;k<=g_iTotalNumOfLS;k++)
 {
 PM_True_False=0; // The Local Map Found True But the fused map determined False.
 PM_True_True=0; // The Local Map Found True And the fused map determined True.
 PM_False_False=0;// The Local Map Found False And the fused map determined False.
 PM_False_True=0; // The Local Map Found False But the fused map determined True.

 for (i=0;i<g_iX_LBM_MapSize;i++)
 {
 for (j=0;j<g_iY_LBM_MapSize;j++)
 {
 fLevelCell=0;
 fFusedCell=0;

 if (g_BB.iaLBM[i][j][0]) //fused map
 {
 fFusedCell=1;

 }

 // g_BB.BB_iaTemporarySensorArray[i][j]=0;// Set the array values to 0
 if(g_BB.iaLBM[i][j][k]) // LSv Map
 {
 fLevelCell=1;
 }

 if(fLevelCell>fFusedCell)// Found True but was False.
 PM_True_False++;

 if((fLevelCell==fFusedCell)&&(fLevelCell==1))// Found True And was True.
 PM_True_True++;

113

 if((fLevelCell==fFusedCell)&&(fLevelCell==0))// Found False And was False.
 PM_False_False++;

 if(fLevelCell<fFusedCell)// Found False but was true
 PM_False_True++;
 } // End (for (j))
 } // End (for (i))
 fCounterT=(PM_True_True+PM_False_True);
 fCounterF=(PM_False_False+PM_True_False);

 if (fCounterT>0)
 {
 PM_True_True=PM_True_True/fCounterT;
 PM_False_True=PM_False_True/fCounterT;
 }

 if (fCounterF>0)
 {
 PM_False_False=PM_False_False/fCounterF;
 PM_True_False=PM_True_False/fCounterF;
 }
 if (fCounterT==0)
 {
 PM_True_True= PM_False_False;
 PM_False_True=1- PM_False_False;
 }

 if (fCounterF==0)
 {
 PM_False_False= PM_True_True;
 PM_True_False=1- PM_True_True;
 }

 /*
 Explanations for the fSFA_PM 4D array:[i][j][k][l]
 i - stands for maximum number of robot positions
 j - stands for number of 5 SFA (,i.e.,, OR, AND , MOST, FL, AFL)
 k - stands for PM: TT, FF, TF ,FT, Fused measure (0.5*(TT+FF-TF-FT))
 l - stands for total number of LSs
 */

 g_BB.fSFA_PM[g_BB.iCycle][iAlg][0][k-1]=PM_True_True; // TT
 g_BB.fSFA_PM[g_BB.iCycle][iAlg][1][k-1]=PM_False_False; // FF
 g_BB.fSFA_PM[g_BB.iCycle][iAlg][2][k-1]=PM_True_False; // TF
 g_BB.fSFA_PM[g_BB.iCycle][iAlg][3][k-1]=PM_False_True; // FT
 g_BB.fSFA_PM[g_BB.iCycle][iAlg][4][k-1]=
 0.5*(PM_True_True+PM_False_False-PM_True_False-PM_False_True); // Fused measure

 if (g_BB.NewPM[k][4][g_BB.iCycle]>=0)
 OldUM=g_BB.NewPM[k][iAlg][4][g_BB.iCycle];
 PM_UM=0.5*(PM_True_True+PM_False_False-PM_True_False-PM_False_True);

 if (iAlg==1 ||iAlg==3)
 g_BB.NewPM[k][iAlg][4][g_BB.iCycle]=0.5*(OldUM+PM_UM);

 } // End (for (k))
}

114

/** ******************************
* Name: SaveGGM *
* Description: This function save all the data into the hard disk *
*** *****************************/
void SaveGGM()
{

 FILE *f;
 char string[40];
 char cLocNum[6];
 char Counter[6];

 int i, j,k,l;
 ofstream output;
 char fname[60];

 // Saving all path planning grid maps
 for (k=0; k<(g_TotalNumberOfAlgorithms+1); k++)
 {
 _itoa(k, cLocNum, 10); // Converting pic number (int) into string.
 _itoa(g_BB.iCycle, Counter, 10); // Converting pic number (int) into string.
 strcpy(string, "PPGM");
 strcat(string, cLocNum);
 strcat(string, ".data");
 f=fopen(string,"w");

 for(i = 0; i<g_iX_PPGM_MapSize ; i++)
 {
 for(j = 0; j <g_iY_PPGM_MapSize; j++)
 {
 fprintf(f,"%d",g_BB.iaPPGM[i][j][k]);
 fprintf(f," ");
 }//j
 fprintf(f,"\n");
 }//i
 fclose(f);
 }//k

 // Saving all path planning grid maps for each LS
 for (k=0; k<(g_iTotalNumOfLS+1); k++)
 {
 _itoa(k, cLocNum, 10); // Converting pic number (int) into string.
 _itoa(g_BB.iCycle, Counter, 10); // Converting pic number (int) into string.
 strcpy(string, "LS_PPGM");
 strcat(string, cLocNum);
 strcat(string, ".data");
 f=fopen(string,"w");

 for(i = 0; i<g_iX_PPGM_MapSize ; i++)
 {
 for(j = 0; j <g_iY_PPGM_MapSize; j++)
 {
 fprintf(f,"%d",g_BB.iaLS_PPGM[i][j][k]);
 fprintf(f," ");
 }//j
 fprintf(f,"\n");
 }//i
 fclose(f);
 }

115

 // Saving the local binary maps
 for (k=0; k<g_BB.iCycle; k++)
 {
 for (l=0; l<g_iTotalNumOfLS; l++)
 {
 _itoa(k, Counter, 10); // Converting pic number (int) into string.
 _itoa(l, cLocNum, 10); // Converting pic number (int) into string.
 strcpy(string, "LBM");
 strcat(string, Counter);//k - counter
 strcat(string, "_");
 strcat(string, cLocNum);//l - g_iTotalNumOfLS
 strcat(string, ".data");
 f=fopen(string,"w");
 for(i = 0; i <g_iX_LBM_MapSize ; i++)
 {
 for(j = 0; j < g_iY_LBM_MapSize; j++)
 {
 fprintf(f,"%d",g_BB.iaLogicalSensorMap[i][j][l][k]);
 fprintf(f," ");
 }
 fprintf(f,"\n");
 }
 fclose(f);
 }
 }

for (k=0; k<g_BB.iCycle; k++)// Saving the sensor fusion algorithms maps (during the process)
 {
 for (l=0; l<5; l++) // l - algorithm{
 _itoa(k, Counter, 10); // Converting pic number (int) into string.
 _itoa(l, cLocNum, 10); // Converting pic number (int) into string.
 strcpy(string, "SFA");
 strcat(string, Counter);//k - counter
 strcat(string, "_");
 strcat(string, cLocNum);//l - algorithm
 strcat(string, ".data");
 f=fopen(string,"w");
 for(i = 0; i <g_iX_LBM_MapSize ; i++)
 {
 for(j = 0; j < g_iY_LBM_MapSize; j++)
 {
 fprintf(f,"%d",g_BB.SFAOutput[i][j][l][k]);
 fprintf(f," ");
 }
 fprintf(f,"\n");
 }
 fclose(f);
 }
 }
 // Saving the robot position
 f=fopen("RobotPos.data","w");
 for (i=0; i<(g_BB.iCycle); i++)
 {
 fprintf(f,"%f ",g_BB.faRobotPos[i][0]);
 fprintf(f," %f",g_BB.faRobotPos[i][1]);
 fprintf(f,"\n");
 }
 fclose(f);

 //Saving data of the new algorithm

116

//Saving the AvgMaps
 for (k=0; k<g_BB.iCycle;k++)
 {
 strcpy(string, "AvgMap");
 _itoa(k,Counter,10);
 strcat(string,Counter);
 strcat(string,".data");
 f=fopen(string,"w");
 for (i=0;i<g_SickGridSizeX ; i++)
 {
 for (j=0;j<g_SickGridSizeY; j++)
 fprintf(f,"%d " ,g_BB.AvgMap[i][j][k]);
 fprintf(f,"\n");
 }
 fclose(f);
 }
}

/** ******************************
* Name: FuzzyLogicAlgorithm *
* Description: This function is an algorithm base on the FL theory for fusing the data. *
*** *****************************/
void FuzzyLogicAlgorithm(int plevel){
 float fFalseAreaTotal=0;
 float fTrueAreaTotal=0;
 float fFalseCOMValue=0;
 float fTrueCOMValue=0;
 int level=plevel;

 FuzzyLogic FL_TT(cf_TT);
 FuzzyLogic FL_FF(cf_FF);
 FuzzyLogic FL_FT(cf_FT);
 FuzzyLogic FL_TF(cf_TF);
 FuzzyLogic FL_TRUE(cf_TRUE);
 FuzzyLogic FL_FALSE(cf_FALSE);

 FL_TT.FLInsCrispVal(g_BB.faTrueFalse[level][1]); // SFS_True_True
 FL_FF.FLInsCrispVal(g_BB.faTrueFalse[level][2]); // SFS_False_False
 FL_TF.FLInsCrispVal(g_BB.faTrueFalse[level][3]); // SFS_True_False
 FL_FT.FLInsCrispVal(g_BB.faTrueFalse[level][4]); // SFS_False_True

 //************** The Rules ****************
 // [F/F,High]=>[False,High]
 FL_FF.FL_Crisp2Fuzzy("High")>>FL_FALSE.FLInsFuzzyName("High");
 //fFalseAreaTotal=fFalseAreaTotal+(FL_FALSE.FuzzyLogicGetAraeValue());
 fFalseCOMValue=fFalseCOMValue+
 FL_FALSE.FuzzyLogicGetAraeValue()*FL_FALSE.FuzzyLogicGetCenterOfMassCrisp();

 // [F/F,Avarage]=>[False,Avarage]
 FL_FF.FL_Crisp2Fuzzy("Avarage")>>FL_FALSE.FLInsFuzzyName("Avarage");
 //fFalseAreaTotal=fFalseAreaTotal+(FL_FALSE.FuzzyLogicGetAraeValue());
 fFalseCOMValue=fFalseCOMValue+
 FL_FALSE.FuzzyLogicGetAraeValue()*FL_FALSE.FuzzyLogicGetCenterOfMassCrisp();

 // [F/F,Low]=>[False,Low]
 FL_FF.FL_Crisp2Fuzzy("Low")>>FL_FALSE.FLInsFuzzyName("Low");
 //fFalseAreaTotal=fFalseAreaTotal+(FL_FALSE.FuzzyLogicGetAraeValue());
 fFalseCOMValue=fFalseCOMValue+
 FL_FALSE.FuzzyLogicGetAraeValue()*FL_FALSE.FuzzyLogicGetCenterOfMassCrisp();

117

 // [F/T,High]=>[False,Low]
 FL_FT.FL_Crisp2Fuzzy("High")>>FL_FALSE.FLInsFuzzyName("Low");
 //fFalseAreaTotal=fFalseAreaTotal+(FL_FALSE.FuzzyLogicGetAraeValue());
 fFalseCOMValue=fFalseCOMValue+
 FL_FALSE.FuzzyLogicGetAraeValue()*FL_FALSE.FuzzyLogicGetCenterOfMassCrisp();

 // [F/T,Avarage]=>[False,Avarage]
 FL_FT.FL_Crisp2Fuzzy("Avarage")>>FL_FALSE.FLInsFuzzyName("Avarage");
 //fFalseAreaTotal=fFalseAreaTotal+(FL_FALSE.FuzzyLogicGetAraeValue());
 fFalseCOMValue=fFalseCOMValue+
 FL_FALSE.FuzzyLogicGetAraeValue()*FL_FALSE.FuzzyLogicGetCenterOfMassCrisp();

 // [F/T,Low]=>[False,High]
 FL_FT.FL_Crisp2Fuzzy("Low")>>FL_FALSE.FLInsFuzzyName("High");
 //fFalseAreaTotal=fFalseAreaTotal+(FL_FALSE.FuzzyLogicGetAraeValue());
 fFalseCOMValue=fFalseCOMValue+
 FL_FALSE.FuzzyLogicGetAraeValue()*FL_FALSE.FuzzyLogicGetCenterOfMassCrisp();

 // [T/T,High]=>[True,High]
 FL_TT.FL_Crisp2Fuzzy("High")>>FL_TRUE.FLInsFuzzyName("High");
 //fTrueAreaTotal=fTrueAreaTotal+(FL_TRUE.FuzzyLogicGetAraeValue());
 fTrueCOMValue=fTrueCOMValue+
 FL_TRUE.FuzzyLogicGetAraeValue()*FL_TRUE.FuzzyLogicGetCenterOfMassCrisp();

 // [T/T,Avarage]=>[True,Avarage]
 FL_TT.FL_Crisp2Fuzzy("Avarage")>>FL_TRUE.FLInsFuzzyName("Avarage");
 //fTrueAreaTotal=fTrueAreaTotal+(FL_TRUE.FuzzyLogicGetAraeValue());
 fTrueCOMValue=fTrueCOMValue+
 FL_TRUE.FuzzyLogicGetAraeValue()*FL_TRUE.FuzzyLogicGetCenterOfMassCrisp();

 // [T/T,Low]=>[True,Low]
 FL_TT.FL_Crisp2Fuzzy("Low")>>FL_TRUE.FLInsFuzzyName("Low");
 //fTrueAreaTotal=fTrueAreaTotal+(FL_TRUE.FuzzyLogicGetAraeValue());
 fTrueCOMValue=fTrueCOMValue+
 FL_TRUE.FuzzyLogicGetAraeValue()*FL_TRUE.FuzzyLogicGetCenterOfMassCrisp();

 // [T/F,High]=>[True,Low]
 FL_TF.FL_Crisp2Fuzzy("High")>>FL_TRUE.FLInsFuzzyName("Low");
 //fTrueAreaTotal=fTrueAreaTotal+(FL_TRUE.FuzzyLogicGetAraeValue());
 fTrueCOMValue=fTrueCOMValue+
 FL_TRUE.FuzzyLogicGetAraeValue()*FL_TRUE.FuzzyLogicGetCenterOfMassCrisp();

 // [T/F,Avarage]=>[True,Avarage]
 FL_TF.FL_Crisp2Fuzzy("Avarage")>>FL_TRUE.FLInsFuzzyName("Avarage");
 //fTrueAreaTotal=fTrueAreaTotal+(FL_TRUE.FuzzyLogicGetAraeValue());
 fTrueCOMValue=fTrueCOMValue+
 FL_TRUE.FuzzyLogicGetAraeValue()*FL_TRUE.FuzzyLogicGetCenterOfMassCrisp();

 // [T/F,Low]=>[True,High]
 FL_TF.FL_Crisp2Fuzzy("Low")>>FL_TRUE.FLInsFuzzyName("High");
 //fTrueAreaTotal=fTrueAreaTotal+(FL_TRUE.FuzzyLogicGetAraeValue());
 fTrueCOMValue=fTrueCOMValue+
 FL_TRUE.FuzzyLogicGetAraeValue()*FL_TRUE.FuzzyLogicGetCenterOfMassCrisp();

 g_BB.fFalseAccuracy[level]=fFalseCOMValue; // Updating the data at the BB.
 g_BB.fTrueAccuracy[level]=fTrueCOMValue; // Updating the data at the BB.

}

118

/** ******************************
* Name: Calculating_FL_TruthTable *
* Description: Calculating the truth table, *
*** *****************************/
void Calculating_FL_TruthTable()
{
 int i,j,iTempValue;//,iTempTTValue;
 char buffer[10];
 int iTempTable[128];
 float fTrueValue,fFalseValue;

 // This loop calculte the cell number in a binary mode
 for (i=0;i<pow(2,g_iTotalNumOfLS);i++)
 {
 _itoa(i,buffer,2);
 iTempTable[i]=atoi(buffer);
 }

 // This loop distribute the binary numbers in to single one '0' and '1'.
 for (i=0;i<pow(2,g_iTotalNumOfLS);i++)
 {
 for (j=1;j<(g_iTotalNumOfLS+1);j++)
 {
 if((iTempTable[i]%10)==0)
 iTempValue=0;
 else
 iTempValue=1;
 g_BB.fTTValue[j][i]=(float)iTempValue;
 iTempTable[i]=iTempTable[i]/10;
 }// for (j=1;j<6;j++)
 }// for (i=0;i<32;i++)

 // Calculating the total values as function of the sensors outputs and the rules
 for (i=0;i<pow(2,g_iTotalNumOfLS);i++)
 {
 //iTempTTValue=g_BB.BB_fTTValue[1][i];
 fTrueValue=0;
 fFalseValue=0;

 for (j=1;j<=g_iTotalNumOfLS;j++)
 {
 if(g_BB.fTTValue[j][i]==0)
 fFalseValue=fFalseValue+g_BB.fFalseAccuracy[j];
 else
 fTrueValue=fTrueValue+g_BB.fTrueAccuracy[j];
 }
 if (i==0)
 g_BB.fTTValue[0][i]=0;
 else if (i==(pow(2,g_iTotalNumOfLS)-1))
 g_BB.fTTValue[0][i]=1;
 else //(i>0)
 {
 if(fTrueValue<fFalseValue)
 g_BB.fTTValue[0][i]=0;
 else
 g_BB.fTTValue[0][i]=1;
 }
 }// for (i=0;i<64;i++)
}

119

/** ******************************
* Name: CalculatingTrueAndFalseValues *
* Description: This function Compare the new data at this level with the integrated data *
* This function is the adaptive part of the system and determine the following parameters *
* SFS_True_False The Local Map Found True But the fused map determined False *
* SFS_True_True The Local Map Found True And the fused map determined True *
* SFS_False_False The Local Map Found False And the fused map determined False *
* SFS_False_True The Local Map Found False But the fused map determined True *
*** *****************************/
void CalculatingTrueAndFalseValues(int SFS_Level)
{
 unsigned short int i,j;
 float fCounterT,fCounterF;
 float fLevelCell; // If the value at the BB_iaSensorArray[][][SFS_level] array is true then its value is 1
 float fFusedCell; // If the value at the BB_iaTemporarySensorArray array is true then the its value is 1
 float fOldFF,fOldTT,fOldTF,fOldFT;

 float SFS_True_False; // Found True but was False.
 float SFS_True_True; // Found True And was True.
 float SFS_False_False; // Found False And was False.
 float SFS_False_True; // Found Fasle but was true.

 SFS_True_False=0; // The Local Map Found True But the fused map determined False.
 SFS_True_True=0; // The Local Map Found True And the fused map determined True.
 SFS_False_False=0;// The Local Map Found False And the fused map determined False.
 SFS_False_True=0; // The Local Map Found Fasle But the fused map determined True.

 if(g_BB.iAFL_Flag==0) // Regular AFL
 {
 if (g_BB.faTrueFalseRegular[SFS_Level][1]>=0)
 fOldTT=g_BB.faTrueFalseRegular[SFS_Level][1];
 if (g_BB.faTrueFalseRegular[SFS_Level][2]>=0)
 fOldFF=g_BB.faTrueFalseRegular[SFS_Level][2];
 if (g_BB.faTrueFalseRegular[SFS_Level][3]>=0)
 fOldTF=g_BB.faTrueFalseRegular[SFS_Level][3];
 if (g_BB.faTrueFalseRegular[SFS_Level][4]>=0)
 fOldFT=g_BB.faTrueFalseRegular[SFS_Level][4];
 }
 else
 {
 if (g_BB.faTrueFalse[SFS_Level][1]>=0)
 fOldTT=g_BB.faTrueFalse[SFS_Level][1];
 if (g_BB.faTrueFalse[SFS_Level][2]>=0)
 fOldFF=g_BB.faTrueFalse[SFS_Level][2];
 if (g_BB.faTrueFalse[SFS_Level][3]>=0)
 fOldTF=g_BB.faTrueFalse[SFS_Level][3];
 if (g_BB.faTrueFalse[SFS_Level][4]>=0)
 fOldFT=g_BB.faTrueFalse[SFS_Level][4];

 }

 for (i=0;i<g_iX_LBM_MapSize;i++)
 {
 for (j=0;j<g_iY_LBM_MapSize;j++)
 {
 fLevelCell=0;
 fFusedCell=0;
 if(g_BB.iaLBM[i][j][0]) // Fused Map
 fFusedCell=1;

120

 if(g_BB.iaLBM[i][j][SFS_Level])
 fLevelCell=1;
 if(fLevelCell>fFusedCell)// Found True but was False.
 SFS_True_False++;
 if((fLevelCell==fFusedCell)&&(fLevelCell==1))// Found True And was True.
 SFS_True_True++;
 if((fLevelCell==fFusedCell)&&(fLevelCell==0))// Found False And was False.
 SFS_False_False++;
 if(fLevelCell<fFusedCell)// Found Fasle but was true
 SFS_False_True++;
 }
 }
 fCounterT=(SFS_True_True+SFS_False_True);
 fCounterF=(SFS_False_False+SFS_True_False);

 if (fCounterT>0)
 {
 SFS_True_True=SFS_True_True/fCounterT;
 SFS_False_True=SFS_False_True/fCounterT;
 }

 if (fCounterF>0)
 {
 SFS_False_False=SFS_False_False/fCounterF;
 SFS_True_False=SFS_True_False/fCounterF;
 }
 if (fCounterT==0)
 {
 SFS_True_True= SFS_False_False;
 SFS_False_True=1- SFS_False_False;
 }

 if (fCounterF==0)
 {
 SFS_False_False= SFS_True_True;
 SFS_True_False=1- SFS_True_True;
 }

 /*Explanation about the BB_faTrueFalse[(1+g_NumberOfModules)][7] array:
 Cell number 0 is for: Free
 Cell number 1 is for: TT Value
 Cell number 2 is for: FF Value
 Cell number 3 is for: TF Value
 Cell number 4 is for: FT Value
 Cell number 5 is for: TRUE Value
 Cell number 6 is for: FALSE Value */

 if(g_BB.iAFL_Flag==0) // Regular AFL
 {
 g_BB.faTrueFalseRegular[SFS_Level][1]=0.5*(SFS_True_True+fOldTT);
 g_BB.faTrueFalseRegular[SFS_Level][2]=0.5*(SFS_False_False+fOldFF);
 g_BB.faTrueFalseRegular[SFS_Level][3]=0.5*(SFS_True_False+fOldTF);
 g_BB.faTrueFalseRegular[SFS_Level][4]=0.5*(SFS_False_True+fOldFT);
 g_BB.fSFA_FL_Regular[g_BB.iCycle][SFS_Level][0]=g_BB.faTrueFalseRegular[SFS_Level][1]; // TT
 g_BB.fSFA_FL_Regular[g_BB.iCycle][SFS_Level][1]=g_BB.faTrueFalseRegular[SFS_Level][2]; // FF
 g_BB.fSFA_FL_Regular[g_BB.iCycle][SFS_Level][2]=g_BB.faTrueFalseRegular[SFS_Level][3]; // TF
 g_BB.fSFA_FL_Regular[g_BB.iCycle][SFS_Level][3]=g_BB.faTrueFalseRegular[SFS_Level][4]; // FT
 }

 else

121

 {
 g_BB.faTrueFalse[SFS_Level][1]=0.5*(SFS_True_True+fOldTT);
 g_BB.faTrueFalse[SFS_Level][2]=0.5*(SFS_False_False+fOldFF);
 g_BB.faTrueFalse[SFS_Level][3]=0.5*(SFS_True_False+fOldTF);
 g_BB.faTrueFalse[SFS_Level][4]=0.5*(SFS_False_True+fOldFT);

 g_BB.fSFA_FL[g_BB.iCycle][SFS_Level][0]=g_BB.faTrueFalse[SFS_Level][1]; // TT
 g_BB.fSFA_FL[g_BB.iCycle][SFS_Level][1]=g_BB.faTrueFalse[SFS_Level][2]; // FF
 g_BB.fSFA_FL[g_BB.iCycle][SFS_Level][2]=g_BB.faTrueFalse[SFS_Level][3]; // TF
 g_BB.fSFA_FL[g_BB.iCycle][SFS_Level][3]=g_BB.faTrueFalse[SFS_Level][4]; // FT
 }
}

122

/**
 ** PXC_Camera_Dll_Load.h
 **
 ** Copyright 2001 by Ofir Cohen
 **
 ** E-mail: oprc@bgumail.bgu.ac.il
 **
 **/

#ifndef __PXC_Camera_Dll_Load_h__
#define __PXC_Camera_Dll_Load_h__

#include <windows.h>
#include <commdlg.h>
#include "ipl.h"

#include "cv.h"
#include "image.h"

#include "pxc.h"
#include "iframe.h"
#include "StaticParameters.h"
#include "ConstantParameters.h"
#include "GlobalParameters.h"
#include "InitiationFile.h"
#include "Vision_Class.h"

#define PIXEL_TYPE PBITS_RGB24
#define PXC_NAME "C:\\PXC2\\bin\\pxc_95.dll"
#define FRAME_NAME "C:\\PXC2\\bin\\frame_32.dll"
#define PXC_NT "C:\\PXC2\\bin\\pxc2_nt.dll"
extern int videotype;
extern int grab_type;
extern int ImageMaxX,ImageMaxY,WindowX,WindowY;
extern long fgh;
extern FRAME __PX_FAR *frh;
extern HINSTANCE hLib;
extern PXC pxc;
extern FRAMELIB frame;
extern Vision_Class CAM; // Crearting the CAMERA object
extern BlackBoard g_BB;

// Fuctions definitions
bool AppInit();
void ImageProcessingAlgo1();

#endif

123

/**
** PXC_Camera_Dll_Load.cpp
**
** Copyright 2001 by Ofir Cohen
**
** E-mail: oprc@bgumail.bgu.ac.il
**
**/
#include "Aria.h"
#include <math.h>
#include <time.h>
#include <sys/types.h>
#include <sys/timeb.h>
#include "ipl.h"
#include "pxc.h"
#include "iframe.h"
#include <cvlgrfmts.h>
#include "StaticParameters.h"
#include "ConstantParameters.h"
#include "GlobalParameters.h"
#include "PXC_Camera_Dll_Load.h"
#include <windows.h>
#include "Vision_Class.h"

#define PIXEL_TYPE PBITS_RGB24
#define PXC_NAME "pxc_95.dll"
#define FRAME_NAME "frame_32.dll"
#define PXC_NT "pxc_nt.dll"
extern int videotype;
extern int grab_type;
extern int ImageMaxX,
ImageMaxY,
WindowX,
WindowY;
extern long fgh;
extern FRAME __PX_FAR *frh;
extern PXC pxc;
extern FRAMELIB frame;
extern ArRobot robot ;
CImage gray; // OpenCV generating the gary CImage type

/** ******************************
* Name: ImageProcessingAlgo1 *
* Description: The function has three steps: *
*1. Capturing the image. *
*2. Image processing algorithm (has two stages). *
* 2.1 Simple Threshold. *
* 2.2 Two level threshold. *
*3. Finding the center of mass (COM) for each obstacle, and calculate the *
*real distance from the camera. *
*** *****************************/
void ImageProcessingAlgo1()
{
 gray.Create(768,576,8);

 IplImage *i_gray = gray.GetImage();

 float temp;

124

 temp=float(robot.getY());

 CAM.iaVision_X[CAM.iVision_CameraAngleCode]=(int)(robot.getX()/10);
 CAM.iaVision_Y[CAM.iVision_CameraAngleCode]=(int)(temp*0.231);
 CAM.iaVision_Theta[CAM.iVision_CameraAngleCode]=(int)(robot.getTh());//[Red]

 pxc.Grab(fgh, frh, (short)grab_type);
 IplImage *i_part=iplCreateImageHeader(3,0,IPL_DEPTH_8U,"RGB","RGB",
 IPL_DATA_ORDER_PIXEL,IPL_ORIGIN_TL, // top left orientation
 IPL_ALIGN_QWORD,768,576,NULL,NULL,NULL,NULL); // not tiled

 int i=CAM.iVision_CameraAngleCode;
 i_part->imageData =(char *)frame.FrameBuffer(frh);
 iplColorToGray(i_part,i_gray); //convert into grayscale
}

/** ******************************
* Name: AppInit *
* Description: This function initializes and allocates the Frame grabber PXC200 *
*** *****************************/
//BOOL
bool AppInit()
{
 fgh = 0;
 frh = 0L;
 //---
 //initialize the library
 //---
 if (!imagenation_OpenLibrary(PXC_NAME,&pxc,sizeof(pxc)))
 {
 if (!imagenation_OpenLibrary(PXC_NT,&pxc,sizeof(pxc)))
 {
 return false;
 }
 }

 if (!imagenation_OpenLibrary(FRAME_NAME,&frame,sizeof(frame)))
 {
 return false;
 }

 //---
 //allocate any frame grabber
 //---
 fgh = pxc.AllocateFG(-1);
 videotype = pxc.VideoType(fgh);
 switch(videotype) {
case 0: // no video
case 1: // NTSC
 grab_type = 0;
 ImageMaxX = 640;
 ImageMaxY = 486;
 break;
case 2: // CCIR
 grab_type = 0;
 ImageMaxX = 768;
 ImageMaxY = 576;
 break;
 }
 if(GetSystemMetrics(SM_CXSCREEN) <= ImageMaxX) {

125

 ImageMaxX/=2;
 ImageMaxY/=2;
 }
 pxc.SetWidth(fgh,(short)ImageMaxX);
 pxc.SetHeight(fgh,(short)ImageMaxY);
 pxc.SetLeft(fgh,0);
 pxc.SetTop(fgh,0);
 pxc.SetXResolution(fgh,(short)ImageMaxX);
 pxc.SetYResolution(fgh,(short)ImageMaxY);

 //---
 //allocate a frame buffer
 //---
 frh = pxc.AllocateBuffer((short)ImageMaxX, (short)ImageMaxY, PIXEL_TYPE);
 return true;
}

126

/**
** Vision_Class.h
**
** Copyright 2001 by Ofir Cohen
**
** E-mail: oprc@bgumail.bgu.ac.il
**/

#ifndef __Vision_Class_h__
#define __Vision_Class_h__
#include <time.h>
#include <conio.h>
#include <iostream.h>
#include <string.h>
#include <fstream.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "ConstantParameters.h"
#include "GlobalParameters.h"
#include "InitiationFile.h"

extern PXC pxc;
extern FRAMELIB frame;
extern long fgh;
extern FRAME __PX_FAR *frh;
extern int videotype;
extern int grab_type;
extern int ImageMaxX,
 ImageMaxY,
 WindowX,
 WindowY;

extern BlackBoard g_BB;
void ImageProcessingAlgo3(int);
void ImageProcessingAlgo4(int);

class Vision_Class
{
public:
 void Vision_GridMapCellConversion();
 int iVision_CameraAngleCode;
 int iaVision_X[g_usNumOfCamPos+1]; // Robot X Location
 int iaVision_Y[g_usNumOfCamPos+1]; // Robot Y location
 int iaVision_Theta[g_usNumOfCamPos+1]; // Robot Theta angle [Deg or Rad]
 int iaVision_Phi[g_usNumOfCamPos+1]; // Camera angle [Deg] (Cell number 0 is not in use)
 int
iaVision_NumberOfObstacle[g_usNumOfCamPos+1][g_iTotalNumOfCamLS]; // (Cell number 0 is not in use)
 int
iaVision_XY_CAM_Position[g_usNumOfCamPos+1][g_iMaxNumOfObstacle][2*g_iTotalNumOfCamLS];
// X and Y obstacle location for each camera position ,[g_usNumOfCamPos+1] - Number of camera position , [10] -
Number of obstacles (10 is MAX),[2] - Two coordinates for Y and X obstacle's COM
int iaVision_LocalGridMap[g_CamGridSizeX][g_CamGridSizeY][g_iTotalNumOfCamLS];
 Vision_Class();
 ~Vision_Class();
};
#endif

127

/**
** Vision_Class.cpp
**
** Copyright 2001 by Ofir Cohen
**
** E-mail: oprc@bgumail.bgu.ac.il
**/

#include <math.h>
#include "Vision_Class.h"
#include "PXC_Camera_Dll_Load.h"

extern PXC pxc;
extern FRAMELIB frame;
extern long fgh;
extern FRAME __PX_FAR *frh;
extern int videotype;
extern int grab_type;
extern int ImageMaxX,
ImageMaxY,
WindowX,
WindowY;

extern CImage gray;

CImage bw1;
CImage bw2;
CImage bw3;
CImage Temp;

/** ******************************
* Name: Vision_Class::Vision_Class *
* Description: Default Constructor *
*** *****************************/
Vision_Class::Vision_Class()
{
 int i,j,k;
 iVision_CameraAngleCode=2;

 for (i=0;i<=g_usNumOfCamPos;i++)
 {
 iaVision_X[i]=0; // Robot X Location
 iaVision_Y[i]=0; // Robot Y location
 iaVision_Theta[i]=0; // Robot Theta angle [Deg or Rad]
 iaVision_Phi[i]=0; // Camera angle [Deg] (Cell number 0 is not in use)
 iaVision_NumberOfObstacle[i][0]=0; // (Cell number 0 is not in use)
 iaVision_NumberOfObstacle[i][1]=0; // (Cell number 0 is not in use)

 }

 for (i=0;i<=g_usNumOfCamPos;i++)
 {
 for (j=0;j<=g_iMaxNumOfObstacle;j++)
 {
 for (k=0; k<2*g_iTotalNumOfCamLS; k++)
 {
 iaVision_XY_CAM_Position[i][j][k]=0;
 }
 }
 }

128

 for (i=0; i<g_CamGridSizeY; i++)
 {
 for (j=0; j<g_CamGridSizeX; j++)
 {
 for(k=0; k<g_iTotalNumOfCamLS; k++)
 iaVision_LocalGridMap[i][j][k]=0;
 }
 }
}

/** ******************************
* Name: Vision_Class::~Vision_Class *
* Description: Default Destructor *
*** *****************************/
Vision_Class::~Vision_Class(){;}

/** ******************************
* Name: ImageProcessingAlgo3 *
* Description: The heart of the image processing, here we do the Erode Dilate *
* for each photo according to the algorithm number, We find the center of mass for each *
* algorithm and finds the location of the algorithm according to the calibration process made earlier*
*** *****************************/
void ImageProcessingAlgo3(int Alg_Code)
{
 double fCenterOfMassRow; //center of mass for an obstacle (row)
 double fCenterOfMassCol; //center of mass for an obstacle (Col)
 long double Xp5=-6.17e-12; //calibration parameter
 long double Xp4=1.59e-8; //calibration parameter
 double Xp3=-1.54e-5; //calibration parameter
 double Xp2=0.007846; //calibration parameter
 double Xp1=-2.3348; //calibration parameter
 double Xp0=406.14; //calibration parameter
 double fTanAlfa;
 double fDisX; //obstacle distance from camera pivot in X axis
 float fDisY; //obstacle distance from camera pivot in Y axis
 float fR; //obstacle distance from camera pivot
 double fRealAngle; //angle between obstacle
 int AngleCode;
 float CameraAngle;
 int ObsX;
 int ObsY;
 int iObsArea_Min[3]={15000,20000,20000};
 int iObsArea_Max[3]={47000,33000,33000};
 int iDecoyArea_Min[3]={0,600,8000};
 int iDecoyArea_Max[3]={0,1200,20000};

 CvMoments moments;
 double m00;
 CvSeq *contour = NULL;
 CvSeq* copycontour;
 CvMemStorage *storage =cvCreateMemStorage(0);
 int counter;// How many obstacles for each picture
 counter=0;

 int iObsTH_Min,iObsTH_Max;

 if(Alg_Code==0)
 {
 bw1.Create(768,576,8);

129

 IplImage *i_gray = gray.GetImage();
 IplImage *i_bw1 = bw1.GetImage();
 iplThreshold(i_gray, i_bw1, 120);
 cvFindContours(i_bw1, storage, &contour, sizeof(CvContour),
 CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
 }

 if(Alg_Code==1)
 {
 iObsTH_Min=120;
 bw2.Create(768,576,8);
 Temp.Create(768,576,8);
 IplImage *i_Temp = Temp.GetImage();
 IplImage *i_gray = gray.GetImage();
 IplImage *i_bw2 = bw2.GetImage();
 iplThreshold(i_gray, i_bw2, iObsTH_Min);
 iplErode(i_bw2, i_bw2, 3); // Clear the obstacle border
 //bw2.Save("d:/users/oren/data/alg1/bw2erode1.bmp");
 //iplDilate(i_bw2, i_bw2,g_BB.Dilate2);
 iplDilate(i_bw2, i_bw2,5); // Make the object thiner
 //iplErode(i_bw2, i_bw2, g_BB.Erode2); // Make the object
 cvFindContours(i_bw2, storage, &contour, sizeof(CvContour),
 CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
 }

 if(Alg_Code==2)
 {
 iObsTH_Min=120;
 //iObsTH_Min=g_BB.iTresholdValue3_Min;
 //iObsTH_Max=g_BB.iTresholdValue3_Max;
 bw3.Create(768,576,8);
 Temp.Create(768,576,8);
 IplImage *i_gray = gray.GetImage();
 IplImage *i_bw3 = bw3.GetImage();
 iplThreshold(i_gray, i_bw3, iObsTH_Min);
 iplErode(i_bw3, i_bw3, 3); // Clear the obstacle border
 iplDilate(i_bw3, i_bw3, 4); // Make the object theaker
 cvFindContours(i_bw3, storage, &contour, sizeof(CvContour),
 CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
 }

 if (CAM.iVision_CameraAngleCode==1)
 {
 AngleCode=4;
 CameraAngle=(float)(50*g_pi/180);
 }
 else
 {
 AngleCode=CAM.iVision_CameraAngleCode-1;
 CameraAngle=(float)((AngleCode*33.4-83.5)*g_pi/180);
 }

 // Stage 3 - find center of mass for each obstacle in the image, and its real distance from the robot.
 double ContourArea;
 if (contour)
 {//5
 for(copycontour=contour; copycontour!=0; copycontour=copycontour->h_next)
 {//6
 cvContourArea(copycontour, &ContourArea);

130

 ContourArea=ContourArea*(-1);
 //Checking if this is an obstacle or decoy

 /*if(ContourArea>iObsArea_Min[Alg_Code] &&
ContourArea<iObsArea_Max[Alg_Code])
 iObs_Flag=1;

 if(Alg_Code!=0 && ContourArea>iDecoyArea_Min[Alg_Code] &&
ContourArea<iDecoyArea_Max[Alg_Code])
 iDecoy_Flag=1;
 if (iObs_Flag==1 || iDecoy_Flag==1)
 */

 if (ContourArea>iObsArea_Min[Alg_Code] &&
ContourArea<iObsArea_Max[Alg_Code] ||
 (Alg_Code!=0 && ContourArea>iDecoyArea_Min[Alg_Code] &&
ContourArea<iDecoyArea_Max[Alg_Code]))
 {//7
 cvContourMoments(copycontour, &moments);
 m00=cvGetSpatialMoment(&moments,0,0);
 fCenterOfMassCol=(cvGetSpatialMoment(&moments, 1,0)/m00)*(-1);
 fCenterOfMassRow=(cvGetSpatialMoment(&moments, 0,1)/m00)*(-1);
 // calculating X and Y distance relative to the picture axis
 if
(!((fCenterOfMassRow<50)||(fCenterOfMassRow>566)||(fCenterOfMassCol<10)||(fCenterOfMassCol>758)))
 {//8
 counter++;
 fTanAlfa= (fCenterOfMassCol-385)/(fCenterOfMassRow+117);
 fDisX=Xp5*pow(fCenterOfMassRow, 5);
 fDisX=fDisX+Xp4*pow(fCenterOfMassRow,4);
 fDisX=fDisX+Xp3*pow(fCenterOfMassRow,3);
 fDisX=fDisX+Xp2*pow(fCenterOfMassRow,2);
 fDisX=fDisX+ Xp1*fCenterOfMassRow;
 fDisX=fDisX+Xp0;
 fDisY = float(60.459*fTanAlfa+0.2418);
 fR=float(pow(fDisX,2)+pow(fDisY,2));
 fR=(float)sqrt(fR);
 fRealAngle=float(atan(fDisY/fDisX)); //[Rad]

 ObsX=(int)(cos(fRealAngle+CameraAngle)*fR);
 ObsY=(int)(sin(fRealAngle+CameraAngle)*fR);
 CAM.iaVision_XY_CAM_Position[AngleCode][counter][Alg_Code*2]=ObsX;

 CAM.iaVision_XY_CAM_Position[AngleCode][counter][Alg_Code*2+1]=ObsY;

 }//8
 }//7
 }// 6 end for
 }// 5 end if
 CAM.iaVision_NumberOfObstacle[AngleCode][Alg_Code]=counter;
 counter=0;
}

131

/** ******************************
* Name: ImageProcessingAlgo4 *
* Description: This function transform the maps and built for each obstacle a circle around it. *
*** *****************************/

void ImageProcessingAlgo4(int Alg_Code)
{
 double Theta1; // Vehicle Old Theta Position
 double Theta2; // Vehicle New Theta Position
 double DeltaX;
 double DeltaY;
 double DeltaTheta;
 double X1_obj; // Rotation of the object from old position to New position
 double Y1_obj; // Rotation of the object from old position to New position

 double X12; // Rotation of the vehicle from old position to new position
 double Y12; // Rotation of the vehicle from old position to new position

 double Xm1; // Object Old X Position (Relative to the OLD vehicle)
 double Ym1; // Object Old Y Position (Relative to the OLD vehicle)
 double Xm2; // Object new X Position (Relative to the NEW vehicle)
 double Ym2; // Object new Y Position (Relative to the NEW vehicle)
 int ObstcaleLocInMapX;
 int ObstcaleLocInMapY;
 int i,j,Theta,k;
 double phi,xTag,yTag,x0,y0;
 int x,y,Last; // projection of range 'r' on X and Y axis

 if (g_BB.iCycle%2==0)
 Last=4;
 else
 Last=1;

 for (i=0; i<g_CamGridSizeX ; i++)
 {
 for (j=0; j<g_CamGridSizeY; j++)
 CAM.iaVision_LocalGridMap[i][j][Alg_Code]=0;
 }

 for (i=1; i<=g_usNumOfCamPos; i++)
 {//2
 if(CAM.iaVision_NumberOfObstacle[i][Alg_Code]!=0)
 {//3
 for (j=1; j<=CAM.iaVision_NumberOfObstacle[i][Alg_Code]; j++)
 { // 4
 Xm1=CAM.iaVision_XY_CAM_Position[i][j][Alg_Code*2];
 Ym1=CAM.iaVision_XY_CAM_Position[i][j][Alg_Code*2+1];
 Theta1=CAM.iaVision_Theta[i]*g_pi/180;
 Theta2=CAM.iaVision_Theta[Last]*g_pi/180;
 DeltaX=CAM.iaVision_X[Last]-CAM.iaVision_X[i];
 DeltaY=CAM.iaVision_Y[Last]-CAM.iaVision_Y[i];
 if (fabs(Theta2-Theta1)<g_pi)
 DeltaTheta=Theta2-Theta1;
 else
 {
 if(Theta2>Theta1)
 DeltaTheta=(Theta2-Theta1)-2*g_pi;
 else

132

 DeltaTheta=2*g_pi-(Theta2-Theta1);
 }
 X1_obj=Xm1*cos(DeltaTheta)+Ym1*sin(DeltaTheta);
 Y1_obj=-Xm1*sin(DeltaTheta)+Ym1*cos(DeltaTheta);
 X12=DeltaX*cos(DeltaTheta)+DeltaY*sin(DeltaTheta);
 Y12=-DeltaX*sin(DeltaTheta)+DeltaY*cos(DeltaTheta);
 Xm2=X1_obj-X12;
 Ym2=Y1_obj-Y12;
 CAM.iaVision_XY_CAM_Position[i][j][Alg_Code*2]=(int)Xm2;
 CAM.iaVision_XY_CAM_Position[i][j][Alg_Code*2+1]=(int)Ym2;
// building the map using the array iaVision_XY_CAM_Position
ObstcaleLocInMapX=
(int)(CAM.iaVision_XY_CAM_Position[i][j][Alg_Code*2]);
ObstcaleLocInMapY=
((int)(CAM.iaVision_XY_CAM_Position[i][j][Alg_Code*2+1]+
LBM_cm_SizeY/2));

 for (k=0 ;k<15;k=k+2)//k->>from 0 to obstacle radios
 {
 for (Theta=0;Theta<360;Theta=Theta+30)
 {
 phi=g_pi/180*Theta;
 xTag=(double)k*cos(phi);
 yTag=(double)k*sin(phi);
 x0=xTag+(double)ObstcaleLocInMapX;
 y0=yTag+(double)ObstcaleLocInMapY;
 x=(int)(x0/(double)g_CamCellSize);
 y=(int)(y0/(double)g_CamCellSize);

 if ((x>=0)&&(x<g_CamGridSizeX)&&(y>0)&&(y<=g_CamGridSizeY))
 {
 /*if (Alg_Code==2)
 CAM.iaVision_LocalGridMap[x][g_CamGridSizeY-
y][Alg_Code]=0; //CAM3=Empty
 else
 CAM.iaVision_LocalGridMap[x][g_CamGridSizeY-
y][Alg_Code]=1;
 */
 //finding how many times each cell is sampled
 CAM.iaVision_LocalGridMap[x][g_CamGridSizeY-y][Alg_Code]++;
 //CAM.iaVision_LocalGridMap[x][g_CamGridSizeY-y][Alg_Code]=1;

 }
 }//end for (theta)
 }//end for (k)
 }//4 j - iaVision_NumberOfObstacle
 }//3 if iaVision_NumberOfObstacle>0
 }//2 i - g_usNumOfCamPos

 CAM.iaVision_X[0]=CAM.iaVision_X[Last];
 CAM.iaVision_Y[0]=CAM.iaVision_Y[Last];
 CAM.iaVision_Theta[0]=CAM.iaVision_Theta[Last];

}//1

133

/** ******************************
* Name: Vision_Class::Vision_GridMapCellConversion *
* Description: This function convert the maps into a one grid cell size *
*** *****************************/
void Vision_Class::Vision_GridMapCellConversion()
{
 int i, j, k, m, n;
 int iResParam;

 g_BB.iLBM_X_Old=g_BB.iLBM_X_New;
 g_BB.iLBM_Y_Old=g_BB.iLBM_Y_New;

 g_BB.iLBM_X_New=CAM.iaVision_X[0];
 g_BB.iLBM_Y_New=CAM.iaVision_Y[0];

 g_BB.iPPGM_X=CAM.iaVision_X[0]; // Saving the X coardinate for the PPGM [cm]
 g_BB.iPPGM_Y=CAM.iaVision_Y[0]; // Saving the Y coardinate for the PPGM
 g_BB.iPPGM_Theta=CAM.iaVision_Theta [0]; // Saving the Theta coardinate for teh PPGM

 iResParam= (int)((float)g_LBMCellSize/(float)g_CamCellSize);
 for (k=0; k<g_iTotalNumOfCamLS; k++)
 {
 g_BB.bLGM_NewDataFlag[k+1+g_iTotalNumOfUsLS+g_iTotalNumOfSiLS]=1; // turn the flag
on
 for (i=0; i<g_CamGridSizeX; i++)
 {
 for (j=0; j<g_CamGridSizeY; j++)
 {
 for (m=0; m<iResParam; m++)
 {
 for (n=0; n<iResParam; n++)
 g_BB.iaLBM[(i*iResParam+m)][(j*iResParam+n)][k+1+g_iTotalNumOfUsLS+g_iTotalNumOfSiLS]=CA
M.iaVision_LocalGridMap[i][j][k];
 }
 }
 }
 }//end for (k - g_iTotalNumOfCamLS)

 for (i=0;i<=g_usNumOfCamPos;i++)
 {
 if (i>0){
 CAM.iaVision_X[i]=0; // Robot X Location
 CAM.iaVision_Y[i]=0; // Robot Y location
 CAM.iaVision_Theta[i]=0; // Robot Theta angle [Deg or Rad]
 }
 CAM.iaVision_Phi[i]=0; // Camera angle [Deg] (Cell number 0 is not in use)
 for (k=0;k<g_iTotalNumOfCamLS;k++){
 CAM.iaVision_NumberOfObstacle[i][k]=0; // (Cell number 0 is not in use)
 for (j=0;j<=g_iMaxNumOfObstacle;j++)
 CAM.iaVision_XY_CAM_Position[i][j][k]=0;
 }
 }

 for(i = 0; i <g_CamGridSizeX ; i++){
 for(j = 0; j < g_CamGridSizeY; j++){
 CAM.iaVision_LocalGridMap[i][j][0]=0;
 CAM.iaVision_LocalGridMap[i][j][1]=0;
 }
 }
}

134

/**
** UltraSonic_Class.h
**
** Copyright 2001 by Ofir Cohen
**
** E-mail: oprc@bgumail.bgu.ac.il
**/

#ifndef __UltraSonic_Class_h__
#define __UltraSonic_Class_h__

#include <math.h>
#include "ConstantParameters.h"
#include "GlobalParameters.h"
#include "InitiationFile.h"

extern BlackBoard g_BB;

class UltraSonic_Class
{
public:

 int iUS_X; // Robot X Location
 int iUS_Y; // Robot Y location
 int iUS_Theta; // Robot Theta angle [Deg or Rad]
 int sonarNum[6];//
 //This array represents Six local physical maps and 4 fused LGMs.
 //Level 0: Sensor Num 2
 //Level 1: Sensor Num 3
 //Level 2: Sensor Num 4
 //Level 3: Sensor Num 5
 //Level 4: Sensor Num 6
 //Level 5: Sensor Num 7
 //Level 6: Fusion Algorithm AND
 //Level 7: Miguel Ribo and Axel Pinz, 2001, A comparison of three uncertainty
 // calculi for building sonar based occupancy grids,
 // Robotics and Automation systems 35: 201-209
 //Level 8: Fifith LS all zeros or all ones.

 unsigned short usaUS_PhysicalSensor[g_USGridSizeX][g_USGridSizeY][6+g_iTotalNumOfUsLS+1];
 unsigned short NewusaUS_PhysicalSensor[g_USGridSizeX][g_USGridSizeY][6+g_iTotalNumOfUsLS+1];
 int iaUS_Range[6]; //sensor data

 float faUS_SonarLoc[6][3]; //Locataion of each sonar from the center of the camera
 //Row 0 : X;
 //Row 1 : Y;
 //Row 2 : Theta;

 int iaUS_NumCellCccupy[6];
 int iaUS_NumCellEmpty[6];
 void US_ReadDataFromUS();
 void US_SFA_LogicalOR();
 void US_SFA_ProbabilisticApproach();
 void US_GridMapCellConversion();
 UltraSonic_Class(); // Default constructor
 ~UltraSonic_Class(); // Default distructor
};
#endif

135

/**
** UltraSonic_Class.cpp
**
** Copyright 2001 by Ofir Cohen
**
** E-mail: oprc@bgumail.bgu.ac.il
**/

#include "Aria.h"
#include <math.h>
#include "ConstantParameters.h"
#include "GlobalParameters.h"
#include "InitiationFile.h"
#include "UltraSonic_Class.h"

extern UltraSonic_Class US;
extern ArRobot robot ;

/** ******************************
* Name: US_ReadDataFromUS *
* Description: This function reads the data form the sonar *
*** *****************************/
void UltraSonic_Class::US_ReadDataFromUS(){
 int i,j,Theta,k;
 double phi,xTag,yTag,x0,y0;
 int x,y; // projection of range 'r' on X and Y axis
 static iCycle;
 iCycle++;
 FILE *f;
 char fname[60],cLocNum[10];

 for (k=0; k<8; k++)//Initialzaing the maps
 {
 for(i=0; i<g_USGridSizeX; i++)
 {
 for (j=0; j<g_USGridSizeY; j++)
 usaUS_PhysicalSensor[i][j][k]=500;
 // usaUS_PhysicalSensor[i][j][k]=2;
 }
 }

 iUS_X=(int)(robot.getX()*0.1);
 iUS_Y=(int)(robot.getY()*0.231); // relative transformation based on the center of mass point

 g_BB.iPPGM_X=(int)(robot.getX()*0.1); // cm
 g_BB.iPPGM_Y=(int)(robot.getY()*0.231);
 g_BB.iPPGM_Theta=(int)robot.getTh();

 printf("Start reading sonar\n");
 for (i=0;i<6; i++)
 {
 iaUS_Range[i]=(int)(0.1*robot.getSonarRange(sonarNum[i]));// Converting to [cm]

 printf("Sonar %d Range = %d \n",i, iaUS_Range[i]);
 x=0;
 y=0;
 phi=0;
 int flag=0;
 // Define the 'steps' fo range chacking

136

 for (k=1 ;k<=(iaUS_Range[i])+10;k++)
 {
 for (Theta=-5 ;Theta<=5;Theta++)
 {
 phi=(g_pi/180*(Theta+faUS_SonarLoc[i][2]));

 xTag=k*cos(phi)/*-k*sin(phi)*/;
 yTag=/*k*cos(phi)+*/k*sin(phi);

 x0=xTag+faUS_SonarLoc[i][0];
 y0=yTag+faUS_SonarLoc[i][1];

 x=(int)(x0/g_USCellSize);

 if((Theta+faUS_SonarLoc[i][2])>0)
 y=(int)(ceil((y0/g_USCellSize)+(0.5*g_USGridSizeY)))-1;
 else
 y=(int)(floor((y0/g_USCellSize)+(0.5*g_USGridSizeY)));

 if ((x>=0) && (x<g_USGridSizeX) &&
 (y>=0) && (y<g_USGridSizeY))
 {

 if (k<=iaUS_Range[i])
 {
 if (usaUS_PhysicalSensor[x][y][i]!=500)
 if (usaUS_PhysicalSensor[x][y][i]>=1)
 usaUS_PhysicalSensor[x][y][i]--;
 else
 usaUS_PhysicalSensor[x][y][i]=0;
 else
 usaUS_PhysicalSensor[x][y][i]=0;

 }//if smaller then range
 else
 {
 //usaUS_PhysicalSensor[x][y][i]=1;

 if (usaUS_PhysicalSensor[x][y][i]==500)
 usaUS_PhysicalSensor[x][y][i]=1;
 else
 {
 usaUS_PhysicalSensor[x][y][i]++;
 //printf("%d\n",(int)usaUS_PhysicalSensor[x][y][i]);
 }

 }//else

 }//if
 }//for k
 }//for i
 }
}

137

/** ******************************
* Name: UltraSonic_Class::US_SFA_LogicalOR *
* Description: This function fuse the data between the physical US sensors *
* based on the OR method *
*** *****************************/
void UltraSonic_Class::US_SFA_LogicalOR()
{
 //level 6

 int i, j, k;// temp;
 unsigned short max;

 for(i=0; i<g_USGridSizeX; i++)
 {
 for (j=0; j<g_USGridSizeY; j++)
 {
 max=0;
 for (k=0; k<6; k++)
 {
 //printf("%d",(int)usaUS_PhysicalSensor[i][j][k]);
 if (usaUS_PhysicalSensor[i][j][k]>max &&
usaUS_PhysicalSensor[i][j][k]!=500)
 max=usaUS_PhysicalSensor[i][j][k];

 }//for k
 if (max!=0)
 usaUS_PhysicalSensor[i][j][6]=max;
 else
 usaUS_PhysicalSensor[i][j][6]=0;

 }//j
 }//i
}

/** ******************************
* Name: UltraSonic_Class::US_SFA_ProbabilisticApproach *
* Description: This function fuse the data between the physical US sensors *
* based on the algorithm which is based on the paper of Miguel Ribo and *
* Axel Pinz, 2001, *
* A comparison of three uncertainty calculi for building sonar based *
* occupancy grids algorithms, Robotics and Automation systems 35: 201-209 *
*** *****************************/
void UltraSonic_Class::US_SFA_ProbabilisticApproach()
{
 //level 7
 //Cell values: Unknown=500; Occupied=1; Empty=0;

//| 0 | 500 | 1 |
// ====================
// 0 || 0 | 0 | 0 |
// -----------------
// 500|| 0 | 500 | 1 |
// -----------------
// 1 || 0 | 1 | 1 |
// -----------------

 int i, j, k;
 unsigned short Temp1, Temp2;

 for(i=0; i<g_USGridSizeX; i++)

138

 {
 for (j=0; j<g_USGridSizeY; j++)
 usaUS_PhysicalSensor[i][j][7]=usaUS_PhysicalSensor[i][j][0];
 }

 //New Probablistic Approach

 for(i=0; i<g_USGridSizeX; i++)
 {
 for (j=0; j<g_USGridSizeY; j++)
 usaUS_PhysicalSensor[i][j][7]=usaUS_PhysicalSensor[i][j][0];
 }

 for (k=1; k<6; k++)
 {
 for (i=0; i<g_USGridSizeX; i++)
 {
 for (j=0; j<g_USGridSizeY; j++)
 {
 if ((usaUS_PhysicalSensor[i][j][7]==0)||(usaUS_PhysicalSensor[i][j][k]==0))
 usaUS_PhysicalSensor[i][j][7]=0;
 else if

 ((usaUS_PhysicalSensor[i][j][7]==500)&&(usaUS_PhysicalSensor[i][j][k]==2))
 usaUS_PhysicalSensor[i][j][7]=3;
 else
 {
 Temp1=usaUS_PhysicalSensor[i][j][7];
 Temp2=usaUS_PhysicalSensor[i][j][k];
 if (Temp1==500 && Temp2!=500)
 usaUS_PhysicalSensor[i][j][7]=Temp2;
 if (Temp1!=500 && Temp2==500)
 usaUS_PhysicalSensor[i][j][7]=Temp1;
 if (Temp1!=500 && Temp2!=500)
 if (Temp1>Temp2)
 usaUS_PhysicalSensor[i][j][7]=Temp1;
 else
 usaUS_PhysicalSensor[i][j][7]=Temp2;

 }
 }//for j
 }//for i
 }//for k

}

/** ******************************
* Name: UltraSonic_Class::US_GridMapCellConversion *
* Description: This function convert cell size from US to LBM *
*** *****************************/
void UltraSonic_Class::US_GridMapCellConversion()
{
 int i, j, k, m, n;
 int iResParam;

 g_BB.iLBM_X_Old=g_BB.iLBM_X_New;
 g_BB.iLBM_Y_Old=g_BB.iLBM_Y_New;
 g_BB.iLBM_Theta_Old=g_BB.iLBM_Theta_New;

139

 g_BB.iLBM_X_New=US.iUS_X;
 g_BB.iLBM_Y_New=US.iUS_Y;
 g_BB.iLBM_Theta_New=US.iUS_Theta;

// replacing cells marked as unknown (2) to empty (0),
// and cells maeked as conflit (3) to occupy (1)

 for (k=0; k<=(g_iTotalNumOfUsLS-1); k++)
 {
 for (i=0; i<g_USGridSizeX; i++)
 {
 for (j=0; j<g_USGridSizeY; j++)
 {
 if (usaUS_PhysicalSensor[i][j][k+6]==500)
 usaUS_PhysicalSensor[i][j][k+6]=0;
 //else if (usaUS_PhysicalSensor[i][j][k+7]==3)
 // usaUS_PhysicalSensor[i][j][k+7]=1;
 }
 }
 }

// cell conversion procedure

 iResParam= g_USCellSize/g_LBMCellSize;

 for (k=0; k<g_iTotalNumOfUsLS; k++)
 {
 g_BB.bLGM_NewDataFlag[k+1]=1; // turn the flag on
 for (i=0; i<g_USGridSizeX; i++)
 {
 for (j=0; j<g_USGridSizeY; j++)
 {
 for (m=0; m<iResParam; m++)
 {
 for (n=0; n<iResParam; n++)

 g_BB.iaLBM[(i*iResParam+m)][(j*iResParam+n)][k+1]=usaUS_PhysicalSensor[i][j][k+6];
 }
 }
 }
 }

}

/** ******************************
* Name: UltraSonic_Class::UltraSonic_Class *
* Description: Default Constructor.The location of the US physical sensors *
* relative to the center of mass is defined *
*** *****************************/
UltraSonic_Class::UltraSonic_Class()
{
 sonarNum[0] = 1;
 sonarNum[1] = 2;
 sonarNum[2] = 3;
 sonarNum[3] = 4;
 sonarNum[4] = 5;
 sonarNum[5] = 6;
 faUS_SonarLoc[0][0]=-54.5;// X Location

140

 faUS_SonarLoc[1][0]=-51;// X Location
 faUS_SonarLoc[2][0]=-49;// X Location
 faUS_SonarLoc[3][0]=-49;// X Location
 faUS_SonarLoc[4][0]=-51;// X Location
 faUS_SonarLoc[5][0]=-54.5;// X Location

 faUS_SonarLoc[0][1]=11.5;// Y Location
 faUS_SonarLoc[1][1]=8.0;// Y Location
 faUS_SonarLoc[2][1]=2.5;// Y Location
 faUS_SonarLoc[3][1]=-2.5;// Y Location
 faUS_SonarLoc[4][1]=-8.0;// Y Location
 faUS_SonarLoc[5][1]=-11.5;// Y Location

 faUS_SonarLoc[0][2]=50;// Theta Location
 faUS_SonarLoc[1][2]=30;// Theta Location
 faUS_SonarLoc[2][2]=10;// Theta Location
 faUS_SonarLoc[3][2]=-10;// Theta Location
 faUS_SonarLoc[4][2]=-30;// Theta Location
 faUS_SonarLoc[5][2]=-50;// Theta Location
}

/** ******************************
* Name: UltraSonic_Class::~UltraSonic_Class *
* Description: Default Destructor *
*** *****************************/
UltraSonic_Class::~UltraSonic_Class()
{
 ;
}

141

/**
** FuzzyLogic_Algorithm.h
**
** Copyright 2001 by Ofir Cohen
**
** E-mail: oprc@bgumail.bgu.ac.il
**/

#ifndef __FuzzyLogic_Algorithm_h__
#define __FuzzyLogic_Algorithm_h__

#include <windows.h>
#include <math.h>
#include "ConstantParameters.h"
#include "GlobalParameters.h"
#include "InitiationFile.h"

// Constant parameters
const double cf_TT[] ={-0.0001,0,0.3,0.45, 0.4,0.45,0.55,0.6, 0.55,0.7,1,1.0001};
const double cf_FF[] ={-0.0001,0,0.3,0.45, 0.4,0.45,0.55,0.6, 0.55,0.7,1,1.0001};
const double cf_TF[] ={-0.0001,0,0.3,0.45, 0.4,0.45,0.55,0.6, 0.55,0.7,1,1.0001};
const double cf_FT[] ={-0.0001,0,0.3,0.45, 0.4,0.45,0.55,0.6, 0.55,0.7,1,1.0001};
const double cf_TRUE[] ={-0.0001,0,0.3,0.45, 0.4,0.45,0.55,0.6, 0.55,0.7,1,1.0001};
const double cf_FALSE[] ={-0.0001,0,0.3,0.45, 0.4,0.45,0.55,0.6, 0.55,0.7,1,1.0001};

class FuzzyLogic
{
private:
 const double *Data; // Const Data which contain 12 parametrs for each one of the three
 // Trapezoids "Low","Avarage","High"
 char* FuzzyName; // The name of the traoezoid we want to reafer to, can be
 // one of :"Low","Avarage","High"
 float CrispValue; //The crisp value we get from the programe
 float FuzzyValue; //The fuzzy value we calculate by the 'FL_Crisp2Fuzzy' function
 float CenterOfMassCrisp; //The COM of the Crisp value which is calculated by the
 // operator '>>'
 float CenterOfMassFuzzy;
 float Area;

public:
 FuzzyLogic ();
 FuzzyLogic &FLInsCrispVal(float);

 friend FuzzyLogic operator>>(/*const*/ FuzzyLogic&, FuzzyLogic&);
 friend FuzzyLogic operator+(const FuzzyLogic&,const FuzzyLogic&);
 friend FuzzyLogic operator*(const FuzzyLogic&,const FuzzyLogic&);
 FuzzyLogic FL_Crisp2Fuzzy(char*);
 FuzzyLogic &FLInsFuzzyName(char*);
 FuzzyLogic (const double *);
 float FuzzyLogicGetCrispValue();
 float FuzzyLogicGetFuzzyValue();
 float FuzzyLogicGetCenterOfMassCrisp();
 float FuzzyLogicGetAraeValue();

 ~FuzzyLogic ();
};
#endif

142

/**
** FuzzyLogic_Algorithm.cpp
**
** Copyright 2001 by Ofir Cohen
**
** E-mail: oprc@bgumail.bgu.ac.il
**/

#include <windows.h>
#include <math.h>
#include "ConstantParameters.h"
#include "GlobalParameters.h"
#include "InitiationFile.h"
#include "FuzzyLogic_Algorithm.h"

/** ******************************
* Name: FuzzyLogic::FuzzyLogic () *
* Description: Default Constructor with no data *
*** *****************************/
FuzzyLogic::FuzzyLogic ()
{
 CrispValue=0; // The Crisp Value default function value
 Area=0; // The Area default function value
 FuzzyValue=0; //The Fuzzy default function value
 CenterOfMassCrisp=0; // The Center Of Mass default Crisp value
 CenterOfMassFuzzy=0; // The Center Of Mass default Fuzzy value
}

/** ******************************
* Name: FuzzyLogic::FuzzyLogic (const double *Data1) *
* Description: Default Constructor for with constant DATA (12 parameters which represent the *
* 3 trapezoids "Low","Avarage","High",) *
*** *****************************/
FuzzyLogic::FuzzyLogic (const double *Data1)
{
 Data=Data1;
 CrispValue=0; // The Crisp Value default function value
 Area=0; // The Area default function value
 FuzzyValue=0; //The Fuzzy default function value
 CenterOfMassCrisp=0; // The Center Of Mass default Crisp value
 CenterOfMassFuzzy=0; // The Center Of Mass default Fuzzy value
}

/** ******************************
* Name: FuzzyLogic FuzzyLogic::FL_Crisp2Fuzzy (char *FuzzyName) *
* Description: This function: FL_Crisp2Fuzzy calculate the FUZZY value for each crispy value *
*** *****************************/
FuzzyLogic FuzzyLogic::FL_Crisp2Fuzzy (char *FuzzyName)
{

 this->FuzzyName=FuzzyName;
 this->FuzzyValue=0;

 int result,i;
 float a,b,DegreeOfMembership=0.;
 int FlagChack=0;

143

 result = strspn(FuzzyName,"Low");
 if (result==3)
 i=0;
 result = strspn(FuzzyName,"Avarage");
 if (result==7)
 i=4;
 result = strspn(FuzzyName,"High");
 if (result==4)
 i=8;
 if ((this->CrispValue>=this->Data[i]) && (this->CrispValue<=this->Data[i+3]))
 {
 if ((this->CrispValue>=this->Data[i]) && (this->CrispValue<=this->Data[i+1]))
 {
 a=((float)1./(this->Data[i+1]-this->Data[i]));
 b=((float)(-1.)*a*this->Data[i]);
 DegreeOfMembership=((float)a*this->CrispValue+b);
 if ((this->FuzzyValue<DegreeOfMembership))
 this->FuzzyValue=DegreeOfMembership;
 FlagChack=1;
 }

 if((this->CrispValue>=this->Data[i+2]) && (this->CrispValue<=this->Data[i+3]))
 {
 a=((float)(-1.)/(this->Data[i+3]-this->Data[i+2]));
 b=((float)(-1.)*a*this->Data[i+3]);
 DegreeOfMembership=((float)a*this->CrispValue+b);
 if (this->FuzzyValue<(float)DegreeOfMembership)
 this->FuzzyValue=(float)DegreeOfMembership;
 FlagChack=1;
 }
 if (FlagChack==0)
 {
 DegreeOfMembership=1.;
 if (this->FuzzyValue<(float)DegreeOfMembership)
 this->FuzzyValue=(float)DegreeOfMembership;
 }
 }
 return FuzzyLogic(*this);
}

/** ******************************
* Name: FuzzyLogic operator>>(FuzzyLogic &FL_Source1, FuzzyLogic &FL_Target1) *
* Description: This Operator: >> Means 'Then' at the IF....THEN fuzzy rules *
*** *****************************/
FuzzyLogic operator>>(/*const*/ FuzzyLogic &FL_Source1,/*const*/ FuzzyLogic &FL_Target1)
{
 //Beacuse the Data parameters for each object is CONST we need to 'copy' the
 // object and then work on the new objects
 FuzzyLogic FL_Source;
 FuzzyLogic FL_Target;
 FL_Source=FL_Source1;
 FL_Target=FL_Target1;
 FL_Target.FuzzyValue=FL_Source1.FuzzyValue; //we need to get the new fuzzy value
 //after making OR or AND operations
 int result,i;
 float a,b ; //the parametrs of the linear equation
 float StamArray[4];
 result = strspn(FL_Target.FuzzyName,"Low");
 if (result==3)

144

 i=0;
 result = strspn(FL_Target.FuzzyName,"Avarage");
 if (result==7)
 i=4;
 result = strspn(FL_Target.FuzzyName,"High");
 if (result==4)
 i=8;

if(FL_Target.FuzzyValue>0)
 {
 a=1/(FL_Target.Data[i+1]-FL_Target.Data[i]);
 b=(-1)*a*FL_Target.Data[i];
 StamArray[1]=(FL_Target.FuzzyValue-b)/a;

 a=(-1)/(FL_Target.Data[i+3]-FL_Target.Data[i+2]);
 b=(-1)*a*FL_Target.Data[i+3];
 StamArray[2]=(FL_Target.FuzzyValue-b)/a;

 StamArray[0]=FL_Target.Data[i];
 StamArray[3]=FL_Target.Data[i+3];
 FL_Target.Area=0.5*(FL_Target.FuzzyValue)*
 (StamArray[3]+StamArray[2]-StamArray[1]-StamArray[0]);
 FL_Target.CenterOfMassCrisp=
 (0.5*(StamArray[2]+StamArray[1])*(StamArray[2]-StamArray[1])*FL_Target.FuzzyValue+
 0.5*((2./3.)*StamArray[2]+(1./3.)*StamArray[3])*(StamArray[3]-
StamArray[2])*FL_Target.FuzzyValue+
 0.5*((2./3.)*StamArray[1]+(1./3.)*StamArray[0])*(StamArray[1]-
StamArray[0])*FL_Target.FuzzyValue)/
 FL_Target.Area;
 }
 else
 {
 FL_Target.CenterOfMassCrisp=0;
 FL_Target.Area=0;
 }
 FL_Target1.FuzzyValue=FL_Target.FuzzyValue;
 FL_Target1.CenterOfMassCrisp=FL_Target.CenterOfMassCrisp;
 FL_Target1.Area=FL_Target.Area;
 //FL_Target1=FL_Target;
 return FuzzyLogic(FL_Target1);
}

/** ******************************
* Name: FuzzyLogic operator+(const FuzzyLogic &FL1,const FuzzyLogic &FL2) *
* Description: This Operator: + Means 'OR' at the IF....THEN fuzzy rules *
*** *****************************/
FuzzyLogic operator+(const FuzzyLogic &FL1,const FuzzyLogic &FL2){
 FuzzyLogic FL_Stam;
 if (FL1.FuzzyValue > FL2.FuzzyValue)
 {
 //FL_Stam.FuzzyValue=FL1.FuzzyValue;
 FL_Stam=FL1;
 }
 else
 {
 //FL_Stam.FuzzyValue=FL2.FuzzyValue;
 FL_Stam=FL2;
 }
 return FuzzyLogic(FL_Stam);}

145

/** ******************************
* Name: FuzzyLogic operator*(const FuzzyLogic &FL1,const FuzzyLogic &FL2) *
* Description: This Operator: * Means 'AND' at the IF....THEN fuzzy rules *
*** *****************************/
FuzzyLogic operator*(const FuzzyLogic &FL1,const FuzzyLogic &FL2){
 FuzzyLogic FL_Stam;
 if (FL1.FuzzyValue < FL2.FuzzyValue)
 {
 FL_Stam=FL1;
 }
 else
 {
 FL_Stam=FL2;
 }
 return FuzzyLogic(FL_Stam);}

/** ******************************
* Name: FuzzyLogic::FuzzyLogicGetCenterOfMassCrisp() *
* Description: This function: FuzzyLogicGetCenterOfMassCrisp returns the crisp value of the *
* COM after running the rules *
*** *****************************/
float FuzzyLogic::FuzzyLogicGetCenterOfMassCrisp(){
 return (this->CenterOfMassCrisp);}

/** ******************************
* Name: FuzzyLogic::FuzzyLogicGetFuzzyValue() *
* Description: This function: FuzzyLogicGetFuzzyValue prints out the fuzzy value of the object *
*** *****************************/
float FuzzyLogic::FuzzyLogicGetFuzzyValue(){
 return (this->FuzzyValue);}

/** ******************************
* Name: FuzzyLogic::FuzzyLogicGetAraeValue() *
* Description: This function: FuzzyLogicGetAraeValue return the area of the object *
*** *****************************/
float FuzzyLogic::FuzzyLogicGetAraeValue(){
 return (this->Area);}

/** ******************************
* Name: FuzzyLogic::FuzzyLogicGetCrispValue() *
* Description: This function: FuzzyLogicGetCrispValue prints out the crisp value of the object *
*** *****************************/
float FuzzyLogic::FuzzyLogicGetCrispValue(){
 return (this->CrispValue);}

/** ******************************
* Name: &FuzzyLogic::FLInsFuzzyName(char* FuzzyName) *
* Description: This function: FLInsFuzzyName enters new Fuzzy name for the object *
*** *****************************/
FuzzyLogic &FuzzyLogic::FLInsFuzzyName(char* FuzzyName){
 this->FuzzyName=FuzzyName;
 return (*this);}

146

/** ******************************
* Name: &FuzzyLogic::FLInsCrispVal(float CValue) *
* Description: This function: FLInsFuzzyName enters new Crisp value for the object *
*** *****************************/
FuzzyLogic &FuzzyLogic::FLInsCrispVal(float CValue){
 this->CrispValue=CValue;
 return (*this);
}

/** ******************************
* Name: FuzzyLogic::~FuzzyLogic() *
* Description: Default Destructor with no data *
*** *****************************/
FuzzyLogic::~FuzzyLogic() {
 PostQuitMessage(0);}

147

/**
**Sick_Class.h
**
** Copyright 2007 by Keren Kapach
**
** E-mail: kapach@bgu.ac.il
**/
#include <time.h>
#include <conio.h>
#include <iostream.h>
#include <string.h>
#include <fstream.h>
#include <stdio.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include "ConstantParameters.h"
#include "GlobalParameters.h"

#include "Aria.h"
extern BlackBoard g_BB;

class Sick_Class
{
 public:
 int iSick_X; //robot's Y location
 int iSick_Y; //robot's X location
 int iSick_Theta;
 int Sick_PhysicalMap[g_iX_LBM_MapSize][g_iY_LBM_MapSize][g_iTotalNumOfSiLS];
 int range[360];

 Sick_Class(); //default constructor
 void ReadFromSick();
 void Si_GridMapCellConversion();
};

148

/**
**Sick_Class.cpp
**
** Copyright 2007 by Keren Kapach
**
** E-mail: kapach@bgu.ac.il
**/
#include "Sick_Class.h"
#include <math.h>
#include "ConstantParameters.h"
#include "GlobalParameters.h"

extern ArRobot robot ;
extern ArSick *sick;
extern Sick_Class mySick;

/** ******************************
* Name: Sick_Class::Sick_Class *
* Description: Default constructor *
*** *****************************/
Sick_Class::Sick_Class()
{
 int i,j,k;
 for (k=0;k<=g_iTotalNumOfSiLS;k++)
 {
 for (i=0; i<g_SickGridSizeX; i++)
 {
 for (j=0; j<g_SickGridSizeY ;j++)
 Sick_PhysicalMap[i][j][k]=0;
 }//for i
 }//for k

}
/** ******************************
* Name: Sick_Class::ReadFromSick *
* Description: This function reads the data from the laser sensor and generates two logical sensors from * this data .
*** *****************************/
void Sick_Class::ReadFromSick()
{

 double phi,tempPhi,xTag,yTag,x0,y0;
 int x,y,flag=0;
 int i=0;
 int ObsLocInMapX, ObsLocInMapY,Theta,k;

 static int sum=0;

 iSick_X=(int)(robot.getX()*0.1);
 iSick_Y=(int)(robot.getY()*0.231);
 iSick_Theta=(int)(robot.getTh());

 g_BB.iPPGM_X=iSick_X;
 g_BB.iPPGM_Y=iSick_Y;
 g_BB.iPPGM_Theta=iSick_Theta;

 const std::list<ArSensorReading *> *readings;
 std::list<ArSensorReading *>::const_iterator it;

149

 sick->lockDevice();

//Map building for the first laser LS
 readings = sick->getRawReadings();
 if (readings != NULL)
 {
 for (it = readings->begin() , i=0; it != readings->end(); it++,i++)
 {
 char tmp[100];
 range[i] = (*it)->getRange();

 range[i]=range[i]*0.1; //converting to cm
 sprintf(tmp,"Angle %d reading %d \n ",i, range[i]);
 output<<tmp;

 phi=(g_pi/180*(i-90)); //transferring to the Sonar's angle
 x0=range[i]*cos(phi)-60;
 y0=range[i]*sin(phi);
 ObsLocInMapX=(int)(x0);
 ObsLocInMapY=(int)(y0+LBM_cm_SizeY/2);

 for (k=0;k<5;k=k+2)
 {
 for(Theta=0; Theta<360; Theta=Theta+30)
 {
 tempPhi=g_pi/180*Theta;
 xTag=(double)k*cos(tempPhi);
 yTag=(double)k*sin(tempPhi);
 x0=xTag+(double)ObsLocInMapX;
 y0=yTag+(double)ObsLocInMapY;
 x=(int)(x0/(double)g_CamCellSize);
 y=(int)(y0/(double)g_CamCellSize);

 if (x>=0 && x<g_SickGridSizeX && y>=0 && y<g_SickGridSizeY)
 Sick_PhysicalMap[x][y][0]++; //finding how many times cell is samples
 //Sick_PhysicalMap[x][y][0]=1;
 // Sick_PhysicalMap[x][y][0]=0; //LASER1=Empty
 }//for theta
 }//for k
 }//for it
 }//if

//Map building for the second laser LS
 for(i=0; i<181; i=i+3)
 {
 phi=(g_pi/180*(i-90));
 x0=range[i]*cos(phi)-60;
 y0=range[i]*sin(phi);
 ObsLocInMapX=(int)(x0);
 ObsLocInMapY=(int)(y0+LBM_cm_SizeY/2);

 for (k=0;k<5;k=k+2)
 {
 for(Theta=0; Theta<360; Theta=Theta+30)
 {
 tempPhi=g_pi/180*Theta;
 xTag=(double)k*cos(tempPhi);
 yTag=(double)k*sin(tempPhi);

150

 x0=xTag+(double)ObsLocInMapX;
 y0=yTag+(double)ObsLocInMapY;
 x=(int)(x0/(double)g_CamCellSize);
 y=(int)(y0/(double)g_CamCellSize);

 if (x>=0 && x<g_SickGridSizeX && y>=0 && y<g_SickGridSizeY)
 Sick_PhysicalMap[x][y][1]++;
 }//for theta
 }//for k
 }//for i

 sum++;
 output.close();
 sick->unlockDevice();
}

/** ******************************
* Name: Sick_Class:: Si_GridMapCellConversion *
* Description: This function converts cell size from laser to LBM.
*** *****************************/
void Sick_Class::Si_GridMapCellConversion()
{

 int i, j, k,m,n, iResParam;

g_BB.iLBM_X_Old=g_BB.iLBM_X_New;
 g_BB.iLBM_Y_Old=g_BB.iLBM_Y_New;

 g_BB.iLBM_X_New=mySick.iSick_X;
 g_BB.iLBM_Y_New=mySick.iSick_Y;

 iResParam=g_SickCellSize/g_LBMCellSize;

 for(k=0; k<g_iTotalNumOfSiLS; k++)
 {
 g_BB.bLGM_NewDataFlag[k+1+g_iTotalNumOfUsLS]=1;
 for(i=0; i<g_SickGridSizeX; i++)
 {
 for (j=0; j<g_SickGridSizeY; j++)
 {
 for (m=0; m<iResParam; m++)
 for (n=0; n<iResParam; n++)

 g_BB.iaLBM[(i*iResParam+m)][(j*iResParam+n)][k+1+g_iTotalNumOfUsLS]=Sick_PhysicalMap[i][j][k]
;
 }//j
 }//i
 }//k

//initialazing the physical maps
 for(k=0; k<g_iTotalNumOfSiLS; k++)
 {
 for(i=0; i<g_SickGridSizeX; i++)
 for (j=0; j<g_SickGridSizeY; j++)
 Sick_PhysicalMap[i][j][k]=0;
 }//for
}

151

Appendix V Camera calibration

General
The main goal of this work is to map the robot's surrounding using different physical sensors.
One of these sensors is a PTZ CCD camera, mounted on top of the robot, as detailed in chapter
 6. The robot’s surrounding is represented by the grid map paradigm. The obstacles within the
grid map are placed in the real world X-Y coordinates. To create grid maps from photos taken
from the camera, we need to find the mathematical relation between the obstacle’s pixels
coordinates and the real world X-Y obstacle’s coordinates. This is done through a calibration
process.
In the mobile robot experiment, the camera is set to a specific tilt angle (-25°) and takes photos
from four different pan angles (-50°, -17°, 17° and 50°) as shown in Figure 17. To avoid a
different calibration for each pan angle, the distance was measured only from the rotation axis,
as detailed later.

Pan angles Tilt angle
Figure 17 Camera angles: pan and tilt

(Adapted from Cohen, 2005)

The basic assumption is that the calibration was employed for a specific camera tilt angle (-
25°), zoom and height from the floor (47 cm), as shown in Figure 17. To determine the
obstacle’s location relative to the robot, two functions were developed, one along the robot’s
X- axis of movement, the second on the Y-axis. The obstacle's location relative to the zero
point was derived from the geometrical relation.
In the calibration process, small obstacles were placed on the floor at known distances, photos
were taken, and equations that describe the relation between the pixel coordinates and the real
X-Y coordinates were determined.
An experiment was conducted to check the calibration parameters. In the experiment pointed
obstacles were pointed at a known location relative to the zero point. The obstacles’ position
was found according to the parameters that were derived, and the mean error between the real
location and the calculated location was found.

Methodology
In the calibration process the following steps were taken:
1. Determining the rotation axis
2. Deriving the mathematical equation for X axis relative to the robot
3. Deriving the mathematical equation for Y axis relative to the robot
4. Finding the obstacle's location relative to the zero point

-25°

152

1. Determining the rotation axis

To avoid a different calibration for each pan angle, we assume that the points on the rotation
axis do not move. All the distances were measured relatively to the rotation axis. The rotation
axis was found from the camera in an experiment. The point on this axis remains static and
does not move while the camera turns to the different pan angles.
The rotation axis was found in the following experimental procedure:

1. Set the camera tilt angle to -25°.
2. Estimate the rotation axis and gently touch this point, using a pencil. Since on the

rotation axis the pencil remains static and does not move while the camera turns to the
different pan angles, converge to this point by ‘trial – and – error’. When at the
rotation axis, the pencil creates a point; when away from the rotation axis, the pencil
will create an arc.

2. Deriving the mathematical equation for X axis relative to the robot

A set of pointed obstacles was placed at known distances from the rotation axis, in different X
and Y distances, as shown in Figure 18.

Figure 18 Picture of the pointed obstacles

Along the X axis, the obstacles are placed 5cm apart. The Y coordinate of each line is shown
in the figure. All the lines were measured from the rotation axis, where y=0 is the rotation axis
itself. Along the rotation axis (y=0), the real distances in centimeters of the pointed obstacles
vs. their pixel location (as taken from the image using a PaintBrush application), shown in
Table 39.

x

y

y=0cm
y=20cm

y=45cm
y=-20cm y=-45cm

153

Table 39 Raw data to derive the polynomial equation

X
measured

[cm]
X [pixels]

X
measured

[cm]
X [pixels]

60 521 95 347
65 484 100 329
70 460 105 312
75 435 110 297
80 409 115 282
85 387 120 269
90 368 125 257

The polynomial equation was derived in MATLAB using polyfit function, which finds the
coefficients of a polynomial of degree n that fits the data. The function receives a vector
containing values and the desired polynomial degree, and returns a row vector of length n+1
containing the polynomial coefficients in descending powers
The equation is presented in [30]. Where x is the distance in pixels, and XDistance is the distance
relative to the robot.

406.142.3348-0.00784605-1.54E-08-1.59E12--6.71E 2345
tan +++= xxxxxX ceDis

[30]

3. Deriving the mathematical equation for Y axis relative to the robot
Calculation of the distance of the obstacle in the Y axis is based on the concept that the
vertical and horizontal lines connect at point P, as shown in Figure 19. The bold line is the
rotation axis, and each line in the figure represents the same vertical distance from the rotation
axis.

Figure 19 Camera horizontal and vertical lines

154

The first step is to find the point P coordinates (Xp , Yp). This was achieved by an intersection
of two lines of data taken from the pointed obstacles shown in Figure 18.
XP coordinate is the same as the rotation axis and was measured as Xp=385. This was
measured from the X coordinate of the line at the robot’s rotation axis (y=0 in Figure 18). The
coordinate was found using PaintBrush software.
Yp coordinate was calculated as follows:
The Pixels location of the pointed obstacles in lines y=-45cm, y=-20cm, y=20cm and y=45cm
were taken manually using PaintBrush software, as presented in Table 40.
A linear equation for each line was derived using linear regression. The equations are
presented in Table 40. Yp is the value of the linear line at Xp. Since slightly different values
were derived, Yp was taken as the average value.
Table 2 represents the (x, y) pixel values of the pointed obstacles, the linear equation and the
calculated Y value for each line in Figure 18, as derived from the experiment.

Table 40 Obstacle’s pixels location
y=-20cm y=-45cm y=20cm y=45cm

X[pix] Y[pix] X[pix] Y[pix] X[pix] Y[pix] X[pix] Y[pix]
172 518 602 516
183 486 592 485
188 460 580 457
201 432 572 431
205 408 563 408
213 386 19 389 557 385 752 378
219 367 29 365 550 363 736 360
226 347 42 348 543 345 725 341
233 328 54 332 537 328 713 325
237 313 67 321 531 311 703 309
241 296 76 299 526 297 691 294
246 283 85 286 521 283 680 280
251 270 95 272 516 268 671 269
256 258 104 261 512 257 662 256
259 246 112 249 508 246 651 245
262 235 121 239 502 235 643 235
267 226 129 228 499 225 637 225
270 216 136 219 497 214 630 215
273 206 143 208 494 206 622 207
276 197 148 200 490 196 616 199
279 190 152 194 487 190 610 190
282 183 159 185 485 182 603 182
284 175 164 178 480 174 597 173
286 168 170 170 479 168 594 169
293 164 175 164 476 160 589 163
290 156 182 157 475 155 583 155
292 149 185 151 472 149 579 150
294 144 189 146 470 143 574 144

y = -3.0127x + 1029.6

y = -1.3985x + 408.14

y = 2.8253x - 1187

y = 1.310x - 609.34

y(x=385)=-130 y(x=385)=-130.28 y(x=385)=-99.3 y(x=385)=-104.72

YPavg.=-117

P coordinates are: (385,-117)

155

For each pointed obstacle, we can calculate a, b values as shown in Figure 20. ‘a’ represents
the vertical distance to point P, and ‘b’ is the horizontal distance.

Figure 20 a and b values for each obstacle

Note that the value ba is the tangent value of the head angle.

Calculation of the a, b values for each obstacle is presented in equations [31] and [32].

117+=−= pixelppixel YXYa
 [31]

385−=−= pixelppixel XYXb
 [32]

The next step is to derive the mathematical relationship between each obstacle's b
a value,

and the real Y distance. This was done in the following way:

For each real Y distance (y=-45cm, y=-20cm, y=20cm and y=-45cm) the value ba was

calculated. Table 41 represents values for each line as drawn from Figure 18. Since b
a is the

tangent of the head angle, values of all the obstacles within the same lines were the same, as
expected.

P

b

a

156

Table 41 Values for each line's obstacle
 y=-20cm y=-45cm
Y[cm] X[pix] Y[pix] a b b/a X[pix] Y[pix] a b b/a
105 237 313 430 -148 -0.34 67 321 438 -318 -0.73
110 241 296 413 -144 -0.35 76 299 416 -309 -0.74
115 246 283 400 -139 -0.35 85 286 403 -300 -0.74
120 251 270 387 -134 -0.35 95 272 389 -290 -0.75
125 256 258 375 -129 -0.34 104 261 378 -281 -0.74
130 259 246 363 -126 -0.35 112 249 366 -273 -0.75
135 262 235 352 -123 -0.35 121 239 356 -264 -0.74
140 267 226 343 -118 -0.34 129 228 345 -256 -0.74
145 270 216 333 -115 -0.35 136 219 336 -249 -0.74
150 273 206 323 -112 -0.35 143 208 325 -242 -0.74
155 276 197 314 -109 -0.35 148 200 317 -237 -0.75
160 279 190 307 -106 -0.35 152 194 311 -233 -0.75
165 282 183 300 -103 -0.34 159 185 302 -226 -0.75
170 284 175 292 -101 -0.35 164 178 295 -221 -0.75
175 286 168 285 -99 -0.35 170 170 287 -215 -0.75
180 293 164 281 -92 -0.33 175 164 281 -210 -0.75
185 290 156 273 -95 -0.35 182 157 274 -203 -0.74
190 292 149 266 -93 -0.35 185 151 268 -200 -0.75
195 294 144 261 -91 -0.35 189 146 263 -196 -0.75

157

Table 38 (continued)
 y=20cm y=45cm

Y[cm] X[pix] 1. Y[pix] a b b/a X[pix] Y[pix] a b b/a
105 531 311 428 146 0.34 703 309 426 318 0.75
110 526 297 414 141 0.34 691 294 411 306 0.74
115 521 283 400 136 0.34 680 280 397 295 0.74
120 516 268 385 131 0.34 671 269 386 286 0.74
125 512 257 374 127 0.34 662 256 373 277 0.74
130 508 246 363 123 0.34 651 245 362 266 0.73
135 502 235 352 117 0.33 643 235 352 258 0.73
140 499 225 342 114 0.33 637 225 342 252 0.74
145 497 214 331 112 0.34 630 215 332 245 0.74
150 494 206 323 109 0.34 622 207 324 237 0.73
155 490 196 313 105 0.34 616 199 316 231 0.73
160 487 190 307 102 0.33 610 190 307 225 0.73
165 485 182 299 100 0.33 603 182 299 218 0.73
170 480 174 291 95 0.33 597 173 290 212 0.73
175 479 168 285 94 0.33 594 169 286 209 0.73
180 476 160 277 91 0.33 589 163 280 204 0.73
185 475 155 272 90 0.33 583 155 272 198 0.73
190 472 149 266 87 0.33 579 150 267 194 0.73
195 470 143 260 85 0.33 574 144 261 189 0.72

158

From Table 41 we can find the mathematical relationship between each obstacle b
a value and

the real Y distance in centimeters. The raw data is presented in Table 42.

Table 42 Raw data to derive the mathematical relationship between Y[cm] and b
a

Y[cm] b/a
0 0

-20 -0.34
-45 -0.75
20 0.34
45 0.73

Using linear regression, the equation is presented in [33].

DistanceY = 60.459 + 0.2418b
a⋅ [33]

The distance between the center of the camera and the obstacle is presented in [34].

2
Distance

2
Distance YXR +=

[34]

The angle between the center of the camera and the obstacle is presented in [35].









⋅=

Distance

Distancetan
Y

X
aα

[35]

4. Finding the obstacle's location relative to the zero point
Once we know the mathematical relationship between the pixel coordinates and the X-Y
coordinates relative to the robot, the robot's location and the camera's pan angle, the X-Y
coordinates relative to the zero point can be derived.
Figure 21 shows the movement axis, starting at point O. OC is the robot's distance from the
starting point (taken from the robot's encoders). OB and AB is the vertical distance from point
O and the horizontal distance from the movement axis, in correspondence, and θ is the given
camera's tilt angle.

Figure 21 The robot’s distance relative to the starting point

159

From the geometrical relationships in Figure 21, where point A represents the obstacle's
location, we can see that the Real X distance relative to the starting point is BO, and the real Y
distance is AB. BO is the sum of BC and CO, where CO is the robot’s distance from the zero
point, and can be found from the robot’s encoders. θ is given, α and R are calculated from [34]
and [35].
The real X and Y distances are derived from [36] and [37] as follows:

()cosReal X BO BC CO R α θ= = + = + [36]

()sinRealY AB R α θ= = + [37]

Experiment
An experiment was performed to test the calibration result.
An array of seven pointed obstacles (with different colors) was pointed in known X and Y
distances, as shown in Table 43.

Table 43 Obstacle’s array location for the expirement
#Obs.
Num.

Color
Vertical distance from the

driving path [cm]
Horizontal

distance [cm]
1 Orange 45 -45
2 White 90 -45
3 Black 135 -90
4 Red 45 45
5 Black 135 45
6 Purple 90 90
7 Yellow 180 90

The robot moves a distance of 1.5m in a straight line, at a constant velocity (0.5 m/s) and
takes images at 5 different angles: -40°, -20°, 0°, 20° and 40°, in a continuous loop.
Overall, 40 images were taken. For every picture, the pan angle, the robots X location (OC)
and Y location (Zero to all the images, since the robot moves in a straight line) are known. The
images were analyzed to find the obstacle’s location.
Examples of the obstacle’s images in the different pan angles are presented in Figure 22.

160

pan angle -40° pan angle -20°

pan angle 0° pan angle 40°

Figure 22 Examples of the obstacle's photos in the different pan angles

The real X-Y of the obstacle was derived according to the method described above.
Table 44 presents an example of the obstacle's location analysis.
The error is set to the absolute distance of the obstacle real location (taken from Table 43) and
the one that was found from the data according to the method (denoted as X calculated and Y
calculated in Table 44).
The mean error in X axis is 6.5cm, and in Y axis is 6.62cm. The error is caused by deviation in
the robot's location relative to the rotation axis. Since the robot is massive, it is a hard task
placing it exactly in the rotation axis, and its location varies a bit from on experiment to the
other. This error is acceptable, since the maps resolution is 5cm and each obstacle is denoted
as a group of cells (explained in section 6.3).

161

Table 44 Obstacle's location analysis

Pan
angle

X Pic [cm] Y Pic [cm] Object
Obs.

number
Cols

[pixels]
Rows

[pixels]

X
calculated

[cm]

Y
calculated

[cm]
Real X[cm] Real Y[cm]

-40 6 0 1 1 402 531 56.93 1.83 50.78 -35.19
-40 6 0 2 2 635 353 91.15 32.40 96.65 -33.77
-40 6 0 3 3 541 191 154.77 30.86 144.40 -75.84
-20 10 0 1 1 104 575 50.05 -24.31 48.72 -39.96
-20 10 0 2 2 327 351 91.68 -7.25 93.67 -38.17
-20 10 0 3 3 217 199 150.06 -31.90 140.10 -81.30
0 13 0 2 2 15 405 78.82 -42.61 91.82 -42.61
0 13 0 5 5 687 258 121.81 48.93 134.81 48.93
20 17 0 5 5 378 250 125.09 -0.91 134.86 41.93
20 17 0 7 7 503 153 181.14 26.66 178.10 87.01
40 21 0 5 5 74 284 112.05 -46.65 136.82 36.29
40 21 0 6 6 496 292 109.29 16.65 94.02 83.00
40 21 0 7 7 188 164 172.75 -42.14 180.43 78.76

162

Appendix VI Mapping algorithms flowcharts

Ultrasonic algorithms

163

Camera algorithms

164

Laser algorithms

Laser1

Laser2

165

Appendix VII Code for analysis procedure

All experiments results were analyzed using MATLAB 7.1.
Since we can't tell in advance if the experiments are different from each other (as part of the
statistical analysis requirements), several experiments were performed in each experiments set
and the experiments that fulfill the volume of overlap region criteria were chosen (see section
 2.5.9). The analysis procedure consists of the following steps. First, all logical sensors local
maps and algorithms maps from all experiments and repetitions were read and saved. Next,
the difference between experiments maps and repetitions was checked and the number of
signed cells for each comparison was saved. The volume of overlap region (VOLR) was
calculated for every experiments combination, and only the experiments that hold the criteria
of negative VOLR was chosen. Next, algorithms maps were compared to the real world map
(that was created according to the real obstacle's location in the experiment) and type I
performance measures were calculated and saved. The performance measures were used to
perform the statistical analysis procedure: calculating the number of repetitions required,
friedman's test, multiple comparison procedure and sign test. The statistical analysis procedure
was done manually using tables as shown in Appendix IX-
Appendix XV. Table 45 presents a list of MATLAB functions that were used in the analysis
and a brief explanation of their purpose. The table is followed by the functions MATLAB
code.

Table 45 List of MATLAB functions and explanations
Function name Explanation
Load_LS_maps; This function loads all LS maps from the different exp.

and rep. and returns the LS_Maps 5D array.
The dimensions of the LS maps array are:
LS_Maps[NumOfLS,NumOfExp,NumOfRep,107,48]

Load_SFA_maps; This function loads all SFA maps from the different exp.
and rep. and returns the SFA_Maps 5D array.
The dimensions of the SFA maps array are:
SFA_Maps[NumOfSFA,NumOfExp,NumOfRep,107,48]

CheckMaps(LS_Maps); This function calculates the max. number of signed cells
for every comparison between different experiments and
repetitions in order to determine if the experiments are
different enough.

one_count(GridMap); %this function counts the num. of cells that are NOT
zero

ChoosingExp(MaxExp,MaxRep,NumOfChosenExp);

This function takes all the experiments combinations and
calculates the VOLR for each one of the combinations.

VOLR_Calc(MaxExp,MaxRep); This function calculated the volume of over lap region for
each experiments set using the MaxExp and MaxRep
vector.

PM_Calc(SFA_Maps); This function receives the sensor fusion algorithms maps
and calculates the Sensor's fusion algorithms performance
measures. The four PM are calculated according to type I
performance measures equations.

truth_map; This function creates the truth world map of the
experiment

166

function LS_Maps=Load_LS_maps
%** *************
%This function loads all LS maps from the different exp. and rep. and
%returns the LS_Maps 5D array.
%The dimensions of the LS maps array are:
%LS_Maps[NumOfLS,NumOfExp,NumOfRep,107,48]
%** *************

LS_Maps=zeros(7,13,7,107,48);
Exp=[1:1:13];
[m,NumOfExp]=size(Exp);
NumOfRep=7;
NumOfLS=7;

%Reading data into Maps matrix
for i=1:NumOfExp
 for j=1:NumOfRep
 for k=1:NumOfLS
 filename=('H:\kapach\Thesis\Experiments\New Algorithm 16042007\Experiments\Exp.');
 filename=strcat(filename,int2str(Exp(i)),'\');
 filename=strcat(filename,'Rep.',int2str(j),'\');
 filename=strcat(filename,'LS_PPGM',int2str(k),'.data');
 fid=fopen(filename,'r');
 for rows=1:107
 for cols=1:48
 LS_Maps(k,i,j,rows,cols)=fscanf(fid,'%d',1);
 if LS_Maps(k,i,j,rows,cols)~=0
 LS_Maps(k,i,j,rows,cols)=1;
 end %if
 end %for cols
 end
 fclose(fid);
 end
 end
end

function SFA_Maps=Load_SFA_maps()
%** *************
%This function loads all SFA maps from the different exp. and rep. and
%returns the SFA_Maps 5D array.
%The dimensions of the SFA maps array are:
%SFA_Maps[NumOfSFA,NumOfExp,NumOfRep,107,48]

%The codes for the number of sensor fusion algorithms (SFA) are:
%
% TOTAL - 5 Algorithms.
%** *************

NumOfPM=4;
Exp=[1:13];
[m,NumOfExp]=size(Exp);
NumOfRep=7;
NumOfSFA=5;
SFA_Code=[1:5];
SFA_Maps=zeros(NumOfSFA,9,NumOfRep,107,48);

%reading data into Maps matrix
for i=1:NumOfExp

167

 for j=1:NumOfRep
 for k=1:NumOfSFA
 filename=('H:\kapach\Thesis\Experiments\New Algorithm 16042007\Experiments\Exp.');
 filename=strcat(filename,int2str(Exp(i)),'\');
 filename=strcat(filename,'Rep.',int2str(j),'\');
 filename=strcat(filename,'PPGM',int2str(SFA_Code(k)),'.data');
 fid=fopen(filename,'r');
 for rows=1:107
 for cols=1:48
 SFA_Maps(k,i,j,rows,cols)=fscanf(fid,'%d',1);
 if SFA_Maps(k,i,j,rows,cols)~=0
 SFA_Maps(k,i,j,rows,cols)=1;
 end %if
 end %for cols
 end
 fclose(fid);
 end
 end
end

function PM=PM_Calc(SFA_Maps);
%** *************
%This function calculates the Sensor's fusion algorithms performance measures.
%The four PM are calculated according to the eq. in page 34.
%** *************

%Constructing the TM
TM=truth_map;
[m,NumOfExp]=size(Exp);
NumOfRep=7;
NumOfSFA=5;
NumOfPM=4;
SFA_Code=[1:5];

PM=zeros(NumOfSFA,NumOfExp,NumOfRep,NumOfPM);

%Explanation for the PM matrix:
%The Matrix has 4 dimentions:
% The 1st dimention is the num. of SFA- 1- OR, 2- AND, 3- MOST, 4- AFL
% The second dimention is the number of exp., the third is the num of rep..
% The fifth dimention is 4, one cell for each PM in the following order: OO,EE,OE,EO

GSize=107*48; %Global grid map's dimensions.
global O_tm E_tm
One_Count=0;
Zero_Count=0;
Occ_Coeff=0;
Empty_Coeff=0;

% GGM=zeros(4,160,48);
%
% GGM(1,:,:)=OR_map;
% GGM(2,:,:)=AND_map;
% GGM(3,:,:)=MOST_map;
% GGM(4,:,:)=AFL_map;

%figure(2);

% subplot(1,4,1); imshow(~OR_map); title('OR map');

168

% subplot(1,4,2); imshow(~AND_map); title('AND map');
% subplot(1,4,3); imshow(~MOST_map); title('MOST map');
% subplot(1,4,4); imshow(~AFL_map); title('AFL map');

%Counting the numbers of '1' and '0' in TM
O_tm=0;
[m,n]=size(TM);

for i=1:m
 for j=1:n
 if(TM(i,j)~=0)
 TM(i,j)=1;
 O_tm=O_tm+1;
 end
 end
end
E_tm=GSize-O_tm;

for i=1:NumOfSFA
 for j=1:NumOfExp
 for k=1:NumOfRep
 One_Count=0;
 for rows=1:m
 for cols=1:n
 if SFA_Maps(i,j,k,rows,cols)~=0
 One_Count=One_Count+1; %counting the num. of signed cells for each SFA map
 end %if
 end %cols
 end %rows
 Zero_Count=GSize-One_Count;
 if (O_tm==One_Count)& (O_tm==0) %Calculating Occupy_Coeff for the current map
 Occ_Coeff=0;
 elseif (One_Count/O_tm<=1) & (One_Count/O_tm>=0)
 Occ_Coeff=One_Count/O_tm;
 else
 Occ_Coeff=O_tm/One_Count;
 end
 if (O_tm==Zero_Count) & (O_tm==GSize) %Calculating Empty_Coeff for the current map
 Empty_Corff=Occ_Coeff;
 elseif (Zero_Count/E_tm <=1) & (Zero_Count/E_tm>=0)
 Empty_Coeff=Zero_Count/E_tm;
 else
 Empty_Coeff=E_tm/Zero_Count;
 end
 %Calculating the four PM for the current map
 % OO
 if (O_tm>0)
 OO=Calc_OO(squeeze(SFA_Maps(i,j,k,:,:)),TM);
 else %OO=EE
 OO=Calc_EE(squeeze(SFA_Maps(i,j,k,:,:)),TM);
 end
 PM(i,j,k,1)=Occ_Coeff*OO;

 %Calculating EE
 if (E_tm>0)
 EE=Calc_EE(squeeze(SFA_Maps(i,j,k,:,:)),TM);
 else
 EE=Calc_OO(squeeze(SFA_Maps(i,j,k,:,:)),TM);
 end

169

 PM(i,j,k,2)=Empty_Coeff*EE;

 %Calculating OE
 if (E_tm>0)
 OE=Calc_OE(squeeze(SFA_Maps(i,j,k,:,:)),TM);
 else
 OE=1-Calc_OO(squeeze(SFA_Maps(i,j,k,:,:)),TM);
 end
 PM(i,j,k,3)=(1-Empty_Coeff)*OE;

 %Calculating EO
 if (O_tm>0)
 EO=Calc_EO(squeeze(SFA_Maps(i,j,k,:,:)),TM);
 else
 EO=1-Calc_EE(squeeze(SFA_Maps(i,j,k,:,:)),TM);
 end
 PM(i,j,k,4)=(1-Occ_Coeff)*EO;

 end %k
 end %j
end %i

%********************************
% Writing the PM into files
%********************************
for i=1:NumOfExp
 filename=('H:\kapach\Thesis\Experiments\New Algorithm 16042007\Experiments\PM\');
 filename=strcat(filename,int2str(Exp(i)),'.txt');
 fid=fopen(filename,'wt');
 for j=1:NumOfRep
 text='Repetition ';
 text=strcat(text,int2str(j), ' \n');
 fprintf(fid,text,'\n');
% text=' OO EE OE EO ';
% fprintf(fid,text');
% fprintf(fid, '\n');
 for k=1:NumOfSFA
% if (k==1) fprintf(fid, 'OR ');
% elseif (k==2) fprintf(fid, ' AND ');
% elseif (k==3) fprintf(fid, ' MOST ');
% elseif (k==4) fprintf(fid, ' AFL ');
% end
 for m=1:NumOfPM
 fprintf(fid,'%4.3f',PM(k,i,j,m));
 fprintf(fid, ' ');
 end
 fprintf(fid,'\n');
 end
 fprintf(fid,'\n\n');
 end
 fclose(fid);
end

%************************************
% SUB-FUNCTIONS
%************************************
function OO1= Calc_OO(A,TM)
%Calculates the number of '1' in GGM and TM devided by the num. of '1' in TM
global O_tm

170

[row,col]=size(A);
temp=0;
for m=1:row
 for n=1:col
 temp=temp+A(m,n)*TM(m,n);
 end
end

OO1=temp/O_tm;

%** **********************************
function EE1=Calc_EE(A,TM)
%Calculates the number of '0' in GGM and TM devided by the num. of '0' in TM
global E_tm
[row,col]=size(A);
temp=0;
for m=1:row
 for n=1:col
 temp=temp+(1-A(m,n))*(1-TM(m,n));
 end
end

EE1=temp/E_tm;

%** **********************************
function OE1=Calc_OE(A,TM)
%Calculates the num. of '1' in GGM and '0' in TM devided by the num. of '0' in TM
global E_tm
[row,col]=size(A);
temp=0;
for m=1:row
 for n=1:col
 temp=temp+A(m,n)*(1-TM(m,n));
 end
end
OE1=temp/E_tm;

%** **********************************
function EO1=Calc_EO(A,TM)
%Calculates the num. of '0' in GGM and '1' in TM devided by the num. of '1' in TM
global O_tm
[row,col]=size(A);
temp=0;
for m=1:row
 for n=1:col
 temp=temp+((1-A(m,n))*TM(m,n));
 end
end
EO1=temp/O_tm;
%** **********************************

171

function [MaxExp,MaxRep]=CheckMaps(LS_Maps)
%** ************************
%This function calculates the max. number of signed cells
% for every comparison between different experiments and repetitions
% in order to determine if the experiments are different enough
%** ************************
Exp=[1:1:14];
[m,NumOfExp]=size(Exp);
NumOfRep=10;
NumOfLS=7;

%Copying the LS_Maps to Maps matrix
Maps=zeros(NumOfLS,NumOfExp,NumOfRep,107,48);

for i=1:NumOfExp
 Maps(:,i,:,:,:)=LS_Maps(:,Exp(i),:,:,:);
end

%Structure of the maps array:
%maps[NumOfLS][NumOfExp][NumOfRep][160][48]

%SubMaps=zeros(NumOfLS,NumOfExp,160,48);
SignedCells=zeros(NumOfLS,NumOfExp,NumOfRep);

%********************************
% Different experiments
%********************************
%Calculation of the number of sighned cells for every comparison between
% the different experiments.
%for each experiment between every two rep., each logical sensor's map from
%one repetition is compared to all other LS maps from the other repetition.
%i.e, for LS1 - Exp1. Rep1. is compared with Exp2.
%Rep1.,Exp2.Rep2.,Exp2.Rep3 and so on.
ExpSignedCells=zeros(NumOfLS,NumOfExp-1,NumOfRep,NumOfExp,NumOfRep);
NumOfCompExp=0;
for i=1:NumOfLS
 for j=1:(NumOfExp-1)
 for k=1:NumOfRep
 for l=(j+1):NumOfExp
 for m=1:NumOfRep
 SubMaps=abs(Maps(i,j,k,:,:)-Maps(i,l,m,:,:));
 counter=one_count(squeeze(SubMaps));
 ExpSignedCells(i,j,k,l,m)=counter;
 NumOfCompExp=NumOfCompExp+1;
 end
 end
 end
 end
 end

NumOfCompExp

%Finding the max value for each comparison for each LS
%for each comparison, the maximum difference of all LS is saved.
%i.e for the comp. between Exp1.Rep1. and Exp2.Rep.5 the max. difference
%from all LS is saved.
MaxExp=zeros(NumOfExp-1,NumOfRep,NumOfExp,NumOfRep);

172

IndexExp=zeros(NumOfExp-1,NumOfRep,NumOfExp,NumOfRep);

for j=1:(NumOfExp-1)
 for k=1:NumOfRep
 for l=(j+1):NumOfExp
 for m=1:NumOfRep
 for i=1:NumOfLS
 if ExpSignedCells(i,j,k,l,m)>MaxExp(j,k,l,m)
 MaxExp(j,k,l,m)=ExpSignedCells(i,j,k,l,m);
 IndexExp(j,k,l,m)=i;
 end
 end
 end
 end
 end
end

% MaxExp=reshape(MaxExp, 1, (NumOfExp-1)*NumOfRep*NumOfExp*NumOfRep);
%********************************
% Different repetitions
%********************************
%Calculation of the number of sighned cells for every comparison between
% the repetitions
%for each exp., each LS map is compared to all other rep. in pairs.e.g -
%LS1 exp1. rep.1. with exp1.rep2., exp1.rep3.,exp1.rep4 and so on.
RepSignedCells=zeros(NumOfLS,NumOfExp,NumOfRep-1,NumOfRep);
NumOfCompRep=0;
for i=1:NumOfLS
 for j=1:NumOfExp
 for k=1:(NumOfRep-1)
 for m=(k+1):NumOfRep
 SubMaps=Maps(i,j,k,:,:)-Maps(i,j,m,:,:);
 NumOfCompRep=NumOfCompRep+1;
 counter=one_count(squeeze(SubMaps));
 RepSignedCells(i,j,k,m)=counter;
 end
 end
 end
end
NumOfCompRep

%For each exp. and each comp., the maximum value for all LS is saved.
MaxRep=zeros(NumOfExp,NumOfRep-1,NumOfRep);
IndexRep=zeros(NumOfExp,NumOfRep-1,NumOfRep);

for i=1:NumOfExp
 for j=1:NumOfRep-1
 for k=(j+1):NumOfRep
 for m=1:NumOfLS
 if RepSignedCells(m,i,j,k)>MaxRep(i,j,k)
 MaxRep(i,j,k)=RepSignedCells(m,i,j,k);
 IndexRep(i,j,k)=m;
 end
 end
 end
 end
end

173

function one_count=one_count(GridMap)
%********************************
%this function counts the num. of cells that are NOT zero
% and turns the maps into binary maps.
%********************************

one_count=0;
[n,m]=size(GridMap);

for i=1:n
 for j=1:m
 if (GridMap(i,j)~=0)
 one_count=one_count+1;
 end
 end
end

function VOLR=ChoosingExp(MaxExp,MaxRep,NumOfChosenExp)
%** ********
%This function takes all the experiments combinations and calculates the
%VOLR for each one of the combinations.
%** ********

NumOfRep=10;
% NumOfChosenExp=5;
%Building the Exp vector
A=[1:14];
Exp_Comb=nchoosek(A,NumOfChosenExp);
[rows,cols]=size(Exp_Comb);
count=0;
VOLR=zeros(rows,1+NumOfChosenExp+4);

for comb_num=1:rows
 %building the MaxExp1 array that contains the num. of signed cells from the
 % comparisons between the different experiments.
 %MaxExp1 is a 2-D array with dimentions ((NumOfChosenExp-
1)*NumOfRep,NumOfExpChosen*NumOfRep)

 %Choosing the wanted experiments from the MaxExp array
 Exp=Exp_Comb(comb_num,:);
 Exp=[1,6,10,11,12,13,14];
 [m,n]=size(Exp);

 %Creating the first row
 MaxExp1=squeeze(MaxExp(Exp(1),:,Exp(1),:));
 for i=2:n
 MaxExp1=[MaxExp1,squeeze(MaxExp(Exp(1),:,Exp(i),:))];
 end

 %Creating the rest of the rows
 for i=2:(n-1)
 temp=squeeze(MaxExp(Exp(i),:,Exp(1),:));
 for j=2:n
 temp=[temp,squeeze(MaxExp(Exp(i),:,Exp(j),:))];
 end %j
 MaxExp1=[MaxExp1;temp];
 end %i
 MaxExp1=reshape(MaxExp1,1,(NumOfChosenExp-1)*NumOfRep*NumOfChosenExp*NumOfRep);
 % MaxExp1=reshape(MaxExp1,1,(n-1)*10*n*10);

174

 %building the MaxRep1 array that contains the num. of signed cells from the
 %comparisons between the different repetitions.
 %MaxRep1 is a 2-D array with dimentions ((NumOfRep-1)*10,NumOfRep)
 MaxRep1=squeeze(MaxRep(Exp(1),:,:));

 for i=2:n
 temp=squeeze(MaxRep(Exp(i),:,:));
 MaxRep1=[MaxRep1;temp];
 end
 MaxRep1=reshape(MaxRep1,1,(NumOfRep-1)*NumOfChosenExp*NumOfRep);
 temp=zeros(1,4);
 [f,temp(1),temp(2),temp(3),temp(4)]=VOLR_Calc(MaxExp1,MaxRep1);
 VOLR(comb_num,1)=f;
 VOLR(comb_num,2:8)=Exp;
 VOLR(comb_num,9)=temp(1);
 VOLR(comb_num,10)=temp(2);
 VOLR(comb_num,11)=temp(3);
 VOLR(comb_num,12)=temp(4);

VOLR=sortrows(VOLR,1);

function [f,Min_Exp,Max_Exp,Min_Rep,Max_Rep]=VOLR_C alc(MaxExp,MaxRep)
%** **
% This function calculated the volume of over lap region for each
% experiments set using the MaxExp and MaxRep vector.
%** *

MaxExp=sort(MaxExp);
MaxRep=sort(MaxRep);
[m,n]=size(MaxExp);

i=1;
while(MaxExp(i)==0)
 i=i+1;
end

Min_Exp=MaxExp(i);
Max_Exp=MaxExp(n);

[m,n]=size(MaxRep);
i=1;
while (MaxRep(i)==0)
 i=i+1;
end

Min_Rep=MaxRep(i);
Max_Rep=MaxRep(n);

f=(min(Max_Exp,Max_Rep)-max(Min_Exp,Min_Rep))/(max(Max_Exp,Max_Rep)-min(Min_Exp,Min_Rep));

function truth_map=truth_map;
%**
%This function creates the truth world map of the experiment
%**

TM=zeros(107,48);

%Coordinates of the Center of mass of each obstable
x=[21,45,20,43,79];
y=[40,39,11,7,22];

175

[n,m]=size(x);

for i=1:m
 x(i)=x(i)*5;
 y(i)=y(i)*5;
end

%drawing the center of the obstacles
% for i=1:m
% TM(x(i),y(i))=1;
% end

%drawing a circle around the center of the obstacles
for i=1:m
 for k=1:1:15
 for theta=0:20:360
 phi=pi/180*theta;
 xTag=k*cos(phi);
 yTag=k*sin(phi);
 x0=xTag+x(i);
 y0=yTag+y(i);
 x1=round(x0/5);
 y1=round(y0/5);
 if (x1>=1 & x1<=160 & y1>=1 & y1<=48)
 TM(x1,y1)=TM(x1,y1)+1;
 end
 end
 end
end
truth_map=TM;

176

Appendix VIII Raw data for extended fusion framework experimental set

 Performance measure

Experiment Algorithm Repetition OO EE OE EO

1

OR

1 0.038 0 0.9988 0
2 0.038 0 0.9988 0
3 0.038 0 1 0
4 0.038 0 1 0
5 0.038 0 1 0
6 0.038 0 1 0
7 0.038 0 1 0

AND

1 0 0.962 0 1
2 0 0.962 0 1
3 0 0.962 0 1
4 0 0.962 0 1
5 0 0.962 0 1
6 0 0.962 0 1
7 0 0.962 0 1

MOST

1 0.0121 0.9652 0.0001 0.7864
2 0.0044 0.9632 0.0001 0.8454
3 0.0016 0.9627 0.0001 0.9041
4 0.0057 0.9636 0.0001 0.8364
5 0.0109 0.9643 0.0001 0.7802
6 0.0188 0.9651 0.0002 0.7162
7 0.019 0.9655 0.0001 0.7267

AFL

1 0.0121 0.9652 0.0001 0.7864
2 0.0044 0.9632 0.0001 0.8454
3 0.0016 0.9627 0.0001 0.9041
4 0.0057 0.9636 0.0001 0.8364
5 0.0109 0.9643 0.0001 0.7802
6 0.0188 0.9651 0.0002 0.7162
7 0.019 0.9655 0.0001 0.7267

Performance measure
Experiment Algorithm Repetition OO EE OE EO

2

OR

1 0.038 0 1 0
2 0.038 0 1 0
3 0.038 0 1 0
4 0.038 0 1 0
5 0.038 0 1 0
6 0.038 0 1 0
7 0.038 0 1 0

AND

1 0 0.962 0 1
2 0 0.962 0 1
3 0 0.962 0 1
4 0 0.962 0 1
5 0 0.962 0 1
6 0 0.962 0 1
7 0 0.962 0 1

MOST

1 0.0048 0.9634 0.0001 0.8459
2 0.0028 0.9631 0.0001 0.8798
3 0.0018 0.9627 0.0001 0.8941
4 0.0046 0.9634 0.0001 0.8508
5 0.011 0.9646 0.0001 0.7854
6 0.005 0.9634 0.0001 0.8409
7 0.0032 0.9631 0.0001 0.8698

AFL

1 0.3513 0.9754 0.0001 0.0385
2 0.3654 0.9751 0 0.0065
3 0.3648 0.9753 0 0.016
4 0.3511 0.9758 0.0001 0.0536
5 0.4475 0.979 0 0.0219
6 0.3111 0.9748 0.0001 0.0855
7 0.323 0.975 0.0001 0.0717

177

 Performance measure

Experiment Algorithm Repetition OO EE OE EO

3

OR

1 0.038 0 1 0
2 0.038 0 1 0
3 0.038 0 1 0
4 0.0383 0.0001 0.9807 0
5 0.0383 0.0001 0.9807 0
6 0.038 0 1 0
7 0.0383 0.0001 0.9807 0

AND

1 0 0.962 0 1
2 0 0.962 0 1
3 0 0.962 0 1
4 0 0.962 0 1
5 0 0.962 0 1
6 0 0.962 0 1
7 0 0.962 0 1

MOST

1 0.0792 0.9683 0.0002 0.4586
2 0.107 0.9711 0.0002 0.43
3 0.059 0.9682 0.0002 0.5462
4 0.0511 0.9673 0.0002 0.5588
5 0.054 0.9687 0.0001 0.577
6 0.095 0.9699 0.0002 0.4437
7 0.0525 0.9689 0.0001 0.5859

AFL

1 0.3868 0.9703 0.0001 0.0465
2 0.3416 0.9743 0 0.0134
3 0.287 0.9725 0.0001 0.0358
4 0.3718 0.976 0 0.0282
5 0.2902 0.9732 0.0001 0.0595
6 0.4573 0.9774 0 0.0107
7 0.2823 0.973 0.0001 0.067

Performance measure
Experiment Algorithm Repetition OO EE OE EO

4

OR

1 0.038 0 1 0
2 0.038 0 1 0
3 0.038 0 1 0
4 0.038 0 1 0
5 0.038 0 1 0
6 0.038 0 1 0
7 0.038 0 1 0

AND

1 0 0.962 0 1
2 0 0.962 0 1
3 0 0.962 0 1
4 0 0.962 0 1
5 0 0.962 0 1
6 0 0.962 0 1
7 0 0.962 0 1

MOST

1 0.2172 0.907 0.0021 0.279
2 0.2119 0.9018 0.0024 0.2875
3 0.2825 0.9311 0.0011 0.2071
4 0.3346 0.9484 0.0006 0.151
5 0.2852 0.9464 0.0006 0.1681
6 0.2652 0.9256 0.0013 0.2246
7 0.2767 0.9297 0.0012 0.2122

AFL

1 0.2172 0.907 0.0021 0.279
2 0.2119 0.9018 0.0024 0.2875
3 0.2825 0.9311 0.0011 0.2071
4 0.3346 0.9484 0.0006 0.151
5 0.2852 0.9464 0.0006 0.1681
6 0.2652 0.9256 0.0013 0.2246
7 0.2767 0.9297 0.0012 0.2122

178

 Performance measure

Experiment Algorithm Repetition OO EE OE EO

5

OR

1 0.038 0 1 0
2 0.038 0 1 0
3 0.038 0 1 0
4 0.038 0 1 0
5 0.038 0 1 0
6 0.038 0 1 0
7 0.038 0 1 0

AND

1 0 0.962 0 1
2 0 0.962 0 1
3 0 0.962 0 1
4 0 0.962 0 1
5 0 0.962 0 1
6 0 0.962 0 1
7 0 0.962 0 1

MOST

1 0.3192 0.9671 0.0001 0.055
2 0.3065 0.9713 0 0.0138
3 0.3433 0.9721 0 0.0193
4 0.3067 0.9625 0.0002 0.0862
5 0.3592 0.9711 0.0001 0.0331
6 0.2676 0.9713 0 0.0112
7 0.318 0.9657 0.0001 0.0655

AFL

1 0.2079 0.8695 0.0045 0.2897
2 0.1953 0.8717 0.0043 0.3095
3 0.2143 0.8765 0.004 0.2845
4 0.2108 0.8576 0.0054 0.2747
5 0.2298 0.8708 0.0044 0.2569
6 0.1832 0.873 0.0042 0.327
7 0.2144 0.8593 0.0052 0.2702

Performance measure
Experiment Algorithm Repetition OO EE OE EO

6

OR

1 0.038 0 1 0
2 0.038 0 1 0
3 0.038 0 1 0
4 0.038 0 1 0
5 0.038 0 1 0
6 0.038 0 1 0
7 0.038 0 1 0

AND

1 0 0.962 0 1
2 0 0.962 0 1
3 0 0.962 0 1
4 0 0.962 0 1
5 0 0.962 0 1
6 0 0.962 0 1
7 0 0.962 0 1

MOST

1 0.2964 0.9725 0 0.0143
2 0.3333 0.9707 0.0001 0.0287
3 0.3754 0.9764 0.0001 0.0369
4 0.3627 0.9719 0 0.0274
5 0.343 0.9745 0 0.0199
6 0.3448 0.9715 0 0.0253
7 0.3744 0.9753 0 0

AFL

1 0.2964 0.9725 0 0.0143
2 0.3333 0.9707 0.0001 0.0287
3 0.3754 0.9764 0.0001 0.0369
4 0.3627 0.9719 0 0.0274
5 0.343 0.9745 0 0.0199
6 0.3448 0.9715 0 0.0253
7 0.3744 0.9753 0 0

179

 Performance measure

Experiment Algorithm Repetition OO EE OE EO

7

OR

1 0.22551 0.81768 0.009139 0.17865
2 0.214 0.77953 0.013697 0.12564
3 0.16511 0.74157 0.019246 0.21369
4 0.18265 0.73724 0.019972 0.13953
5 0.17493 0.78433 0.013028 0.25505
6 0.15926 0.70492 0.025709 0.16786
7 0.19831 0.83198 0.007653 0.2678

AND

1 0.000657 0.96297 0 0.94938
2 0.005444 0.96362 9.53E-05 0.84134
3 0.000657 0.96297 0 0.94938
4 0.000947 0.96316 0 0.93941
5 0.004471 0.96386 4.93E-05 0.86601
6 0.00355 0.96368 4.27E-05 0.88047
7 0.004734 0.96385 5.60E-05 0.86114

MOST

1 0.29507 0.97445 0.000118 0.1002
2 0.37365 0.97553 1.45E-05 0.009546
3 0.2784 0.97429 0.000137 0.12455
4 0.25247 0.97287 0.000142 0.12426
5 0.17988 0.9699 0.000187 0.16963
6 0.22974 0.97122 0.000128 0.10154
7 0.19282 0.97028 0.000173 0.15179

AFL

1 0.41584 0.97474 3.38E-05 0.019726
2 0.39474 0.96558 0.000187 0.077935
3 0.40097 0.97653 9.34E-06 0.006101
4 0.36092 0.97534 3.29E-05 0.022459
5 0.21964 0.97037 0.000108 0.081183
6 0.3048 0.97291 2.64E-05 0.01762
7 0.23406 0.97075 8.88E-05 0.064826

180

Appendix IX Statistical evauation - Friedman’s ranking

Experiment 1

Experiment 1

Sensor fusion algorithm Sensor fusion algorithm
Performance

measure
Repetition OR AND MOST AFL

Performance
measure

Repetition OR AND MOST AFL

OO

1 4 1 2.5 2.5

EE

1 1 2 3.5 3.5
2 4 1 2.5 2.5 2 1 2 3.5 3.5
3 4 1 2.5 2.5 3 1 2 3.5 3.5
4 4 1 2.5 2.5 4 1 2 3.5 3.5
5 4 1 2.5 2.5 5 1 2 3.5 3.5
6 4 1 2.5 2.5 6 1 2 3.5 3.5
7 4 1 2.5 2.5 7 1 2 3.5 3.5

Sum of
ranks

28 7 17.5 17.5 Sum of
ranks

7 14 24.5 24.5

Experiment 1 Experiment 1
Sensor fusion algorithm Sensor fusion algorithm

Performance
measure Repetition OR AND MOST AFL

Performance
measure Repetition OR AND MOST AFL

OE

1 1 4 2.5 2.5

EO

1 1 4 2.5 2.5
2 1 4 2.5 2.5 2 1 4 2.5 2.5
3 1 4 2.5 2.5 3 1 4 2.5 2.5
4 1 4 2.5 2.5 4 1 4 2.5 2.5
5 1 4 2.5 2.5 5 1 4 2.5 2.5
6 1 4 2.5 2.5 6 1 4 2.5 2.5
7 1 4 2.5 2.5 7 1 4 2.5 2.5

 Sum of
ranks

7 28 17.5 17.5 Sum of
ranks

7 28 17.5 17.5

181

Experiment 2

Experiment 2

Sensor fusion algorithm Sensor fusion algorithm
Performance

measure
Repetition OR AND MOST AFL

Performance
measure

Repetition OR AND MOST AFL

OO

1 3 1 2 4

EE

1 1 2 3 4
2 3 1 2 4 2 1 2 3 4
3 3 1 2 4 3 1 2 3 4
4 3 1 2 4 4 1 2 3 4
5 3 1 2 4 5 1 2 3 4
6 3 1 2 4 6 1 2 3 4
7 3 1 2 4 7 1 2 3 4

Sum of
ranks

21 7 14 28 Sum of
ranks

7 14 21 28

Experiment 2 Experiment 2
Sensor fusion algorithm Sensor fusion algorithm

Performance
measure

Repetition OR AND MOST AFL
Performance

measure
Repetition OR AND MOST AFL

OE

1 1 4 2.5 2.5

EO

1 4 1 2 3
2 1 3.5 2 3.5 2 4 1 2 3
3 1 3.5 2 3.5 3 4 1 2 3
4 1 4 2.5 2.5 4 4 1 2 3
5 1 3.5 2 3.5 5 4 1 2 3
6 1 4 2.5 2.5 6 4 1 2 3
7 1 4 2.5 2.5 7 4 1 2 3

 Sum of
ranks

7 26.5 16 20.5 Sum of
ranks

28 7 14 21

182

Experiment 3

Experiment 3

Sensor fusion algorithm Sensor fusion algorithm
Performance

measure
Repetition OR AND MOST AFL

Performance
measure

Repetition OR AND MOST AFL

OO

1 2 1 3 4

EE

1 1 2 3 4
2 2 1 3 4 2 1 2 3 4
3 2 1 3 4 3 1 2 3 4
4 2 1 3 4 4 1 2 3 4
5 2 1 3 4 5 1 2 3 4
6 2 1 3 4 6 1 2 3 4
7 2 1 3 4 7 1 2 3 4

Sum of
ranks 14 7 21 28 Sum of

ranks 7 14 21 28

Experiment 3 Experiment 3
Sensor fusion algorithm Sensor fusion algorithm

Performance
measure

Repetition OR AND MOST AFL
Performance

measure
Repetition OR AND MOST AFL

OE

1 1 4 2 3

EO

1 4 1 2 3
2 1 4 2 3 2 4 1 2 3
3 1 4 2 3 3 4 1 2 3
4 1 4 2 3 4 4 1 2 3
5 1 4 2 3 5 4 1 2 3
6 1 4 2 3 6 4 1 2 3
7 1 4 2 3 7 4 1 2 3

 Sum of
ranks

7 28 14 21 Sum of
ranks

28 7 14 21

183

Experiment 4

Experiment 4

Sensor fusion algorithm Sensor fusion algorithm
Performance

measure
Repetition OR AND MOST AFL

Performance
measure

Repetition OR AND MOST AFL

OO

1 2 1 3.5 3.5

EE

1 1 4 2.5 2.5
2 2 1 3.5 3.5 2 1 4 2.5 2.5
3 2 1 3.5 3.5 3 1 4 2.5 2.5
4 2 1 3.5 3.5 4 1 4 2.5 2.5
5 2 1 3.5 3.5 5 1 4 2.5 2.5
6 2 1 3.5 3.5 6 1 4 2.5 2.5
7 2 1 3.5 3.5 7 1 4 2.5 2.5

Sum of
ranks 14 7 24.5 24.5 Sum of

ranks 7 28 17.5 17.5

Experiment 4 Experiment 4
Sensor fusion algorithm Sensor fusion algorithm

Performance
measure

Repetition OR AND MOST AFL
Performance

measure
Repetition OR AND MOST AFL

OE

1 1 4 2.5 2.5

EO

1 4 1 2.5 2.5
2 1 4 2.5 2.5 2 4 1 2.5 2.5
3 1 4 2.5 2.5 3 4 1 2.5 2.5
4 1 4 2.5 2.5 4 4 1 2.5 2.5
5 1 4 2.5 2.5 5 4 1 2.5 2.5
6 1 4 2.5 2.5 6 4 1 2.5 2.5
7 1 4 2.5 2.5 7 4 1 2.5 2.5

 Sum of
ranks

7 28 17.5 17.5 Sum of
ranks

28 7 17.5 17.5

184

Experiment 5

Experiment 5

Sensor fusion algorithm Sensor fusion algorithm
Performance

measure
Repetition OR AND MOST AFL

Performance
measure

Repetition OR AND MOST AFL

OO

1 2 1 4 3

EE

1 1 3 4 2
2 2 1 4 3 2 1 3 4 2
3 2 1 4 3 3 1 3 4 2
4 2 1 4 3 4 1 3 4 2
5 2 1 4 3 5 1 3 4 2
6 2 1 4 3 6 1 3 4 2
7 2 1 4 3 7 1 3 4 2

Sum of
ranks 14 7 28 21 Sum of

ranks 7 21 28 14

Experiment 5 Experiment 5
Sensor fusion algorithm Sensor fusion algorithm

Performance
measure

Repetition OR AND MOST AFL
Performance

measure
Repetition OR AND MOST AFL

OE

1 1 4 3 2

EO

1 4 1 3 2
2 1 4 3 2 2 4 1 3 2
3 1 4 3 2 3 4 1 3 2
4 1 4 3 2 4 4 1 3 2
5 1 4 3 2 5 4 1 3 2
6 1 4 3 2 6 4 1 3 2
7 1 4 3 2 7 4 1 3 2

 Sum of
ranks

7 28 21 14 Sum of
ranks

28 7 21 14

185

Experiment 6

Experiment 6

Sensor fusion algorithm Sensor fusion algorithm
Performance

measure
Repetition OR AND MOST AFL

Performance
measure

Repetition OR AND MOST AFL

OO

1 2 1 3.5 3.5

EE

1 1 2 3.5 3.5
2 2 1 3.5 3.5 2 1 2 3.5 3.5
3 2 1 3.5 3.5 3 1 2 3.5 3.5
4 2 1 3.5 3.5 4 1 2 3.5 3.5
5 2 1 3.5 3.5 5 1 2 3.5 3.5
6 2 1 3.5 3.5 6 1 2 3.5 3.5
7 2 1 3.5 3.5 7 1 2 3.5 3.5

Sum of
ranks 14 7 24.5 24.5 Sum of

ranks 7 14 24.5 24.5

Experiment 6 Experiment 6
Sensor fusion algorithm Sensor fusion algorithm

Performance
measure

Repetition OR AND MOST AFL
Performance

measure
Repetition OR AND MOST AFL

OE

1 1 4 2.5 2.5

EO

1 4 1 2.5 2.5
2 1 4 2.5 2.5 2 4 1 2.5 2.5
3 1 4 2.5 2.5 3 4 1 2.5 2.5
4 1 4 2.5 2.5 4 4 1 2.5 2.5
5 1 4 2.5 2.5 5 4 1 2.5 2.5
6 1 4 2.5 2.5 6 4 1 2.5 2.5
7 1 3 3 3 7 3 1 3 3

 Sum of
ranks

7 27 18 18 Sum of
ranks

27 7 18 18

186

Experiment 7

Experiment 7

Sensor fusion algorithm Sensor fusion algorithm
Performance

measure
Repetition OR AND MOST AFL

Performance
measure

Repetition OR AND MOST AFL

OO

1 2 1 3 4

EE

1 1 2 3 4
2 2 1 3 4 2 1 2 4 3
3 2 1 3 4 3 1 2 3 4
4 2 1 3 4 4 1 2 3 4
5 2 1 3 4 5 1 2 3 4
6 2 1 3 4 6 1 2 3 4
7 3 1 2 4 7 1 2 3 4

Sum of
ranks 15 7 20 28 Sum of

ranks 7 14 22 27

Experiment 7 Experiment 7
Sensor fusion algorithm Sensor fusion algorithm

Performance
measure

Repetition OR AND MOST AFL
Performance

measure
Repetition OR AND MOST AFL

OE

1 1 4 2 3

EO

1 2 1 3 4
2 1 3 4 2 2 2 1 3 4
3 1 4 2 3 3 2 1 3 4
4 1 4 2 3 4 2 1 3 4
5 1 4 2 3 5 2 1 3 4
6 1 4 2 3 6 2 1 3 4
7 1 4 2 3 7 2 1 3 4

 Sum of
ranks

7 27 16 20 Sum of
ranks

14 7 21 28

187

Appendix X Statistial evaluation - Multiple comparison procedure

Experiment 1
OO measure EE measure

Sensor
fusion

algorithm

Sum of
ranks

Sub
groups

Sensor fusion
algorithm

Sum of
ranks

Sub groups

OR 28 A MOST 24.5 A
MOST 17.5 A B AFL 24.5 A
AFL 17.5 A B AND 14 A B
AND 7 B OR 7 B

OE measure EO measure
Sensor
fusion

algorithm

Sum of
ranks

Sub
groups

Sensor fusion
algorithm

Sum of
ranks

Sub groups

AND 28 A AND 28 A
MOST 17.5 A B MOST 17.5 A B
AFL 17.5 A B AFL 17.5 A B
OR 7 B OR 7 B

Experiment 2
OO measure EE measure

Sensor
fusion

algorithm

Sum of
ranks

Sub
groups

Sensor fusion
algorithm

Sum of
ranks

Sub groups

AFL 28 A AFL 28 A
OR 21 A B MOST 21 A B

MOST 14 A B AND 14 A B
AND 7 B OR 7 B

OE measure EO measure
Sensor
fusion

algorithm

Sum of
ranks

Sub
groups

Sensor fusion
algorithm

Sum of
ranks

Sub groups

AND 26.5 A OR 28 A
AFL 20.5 A B AFL 21 A B

MOST 16 A B MOST 14 A B
OR 7 B AND 7 B

188

Experiment 3

OO measure EE measure
Sensor
fusion

algorithm

Sum of
ranks

Sub groups
Sensor fusion

algorithm
Sum of
ranks

Sub groups

AFL 28 A AFL 28 A
MOST 21 A B MOST 21 A B

OR 14 A B AND 14 A B
AND 7 B OR 7 B

OE measure EO measure
Sensor
fusion

algorithm

Sum of
ranks

Sub groups
Sensor fusion

algorithm
Sum of
ranks

Sub groups

AND 28 A OR 28 A
AFL 21 A B AFL 21 A B

MOST 14 A B MOST 14 A B
OR 7 B AND 7 B

Experiment 4
OO measure EE measure

Sensor
fusion

algorithm

Sum of
ranks

Sub
groups

Sensor fusion
algorithm

Sum of
ranks

Sub groups

MOST 24.5 A AND 28 A
AFL 24.5 A B MOST 17.5 A B
OR 14 A B AFL 17.5 A B

AND 7 B OR 7 B
OE measure EO measure

Sensor
fusion

algorithm

Sum of
ranks

Sub
groups

Sensor fusion
algorithm

Sum of
ranks

Sub groups

AND 28 A OR 28 A
MOST 17.5 A B MOST 17.5 A B
AFL 17.5 A B AFL 17.5 A B
OR 7 B AND 7 B

189

 Experiment 5
OO measure EE measure

Sensor
fusion

algorithm

Sum of
ranks

Sub
groups

Sensor fusion
algorithm

Sum of
ranks

Sub groups

MOST 28 A MOST 28 A
AFL 21 A B AND 21 A B
OR 14 A B AFL 14 A B

AND 7 B OR 7 B
OE measure EO measure

Sensor
fusion

algorithm

Sum of
ranks

Sub
groups

Sensor fusion
algorithm

Sum of
ranks

Sub groups

AND 28 A OR 28 A
MOST 21 A B MOST 21 A B
AFL 14 A B AFL 14 A B
OR 7 B AND 7 B

Experiment 6
OO measure EE measure

Sensor
fusion

algorithm

Sum of
ranks

Sub
groups

Sensor fusion
algorithm

Sum of
ranks

Sub groups

MOST 24.5 A MOST 24.5 A
AFL 24.5 A B AFL 24.5 A B
OR 14 A B AND 14 A B

AND 7 B OR 7 B
OE measure EO measure

Sensor
fusion

algorithm

Sum of
ranks

Sub
groups

Sensor fusion
algorithm

Sum of
ranks

Sub groups

AND 27 A OR 27 A
MOST 18 A B MOST 18 A B
AFL 18 A B AFL 18 A B
OR 7 B AND 7 B

190

Experiment 7

OO measure EE measure
Sensor
fusion

algorithm

Sum of
ranks

Sub
groups

Sensor fusion
algorithm

Sum of
ranks

Sub groups

AFL 28 A AFL 27 A
MOST 20 A B MOST 22 A B

OR 15 A B AND 14 A B C
AND 7 B OR 7 C

OE measure EO measure
Sensor
fusion

algorithm

Sum of
ranks

Sub
groups

Sensor fusion
algorithm

Sum of
ranks

Sub groups

AND 27 A AFL 28 A
AFL 20 A B MOST 21 A B

MOST 16 A B OR 14 A B
OR 7 B AND 7 B

191

Appendix XI Statistical evaluation - Sign test results

Experiment 1

Performance measure

OO EE OE EO
OO EE OE EO

Repetition MOST AFL MOST AFL MOST AFL MOST AFL
1 0.0121 0.0121 0.9652 0.9652 0.0001 0.0001 0.7864 0.7864 Ties Ties Ties Ties
2 0.0044 0.0044 0.9632 0.9632 0.0001 0.0001 0.8454 0.8454 Ties Ties Ties Ties
3 0.0016 0.0016 0.9627 0.9627 0.0001 0.0001 0.9041 0.9041 Ties Ties Ties Ties
4 0.0057 0.0057 0.9636 0.9636 0.0001 0.0001 0.8364 0.8364 Ties Ties Ties Ties
5 0.0109 0.0109 0.9643 0.9643 0.0001 0.0001 0.7802 0.7802 Ties Ties Ties Ties
6 0.0188 0.0188 0.9651 0.9651 0.0002 0.0002 0.7162 0.7162 Ties Ties Ties Ties
7 0.019 0.019 0.9655 0.9655 0.0001 0.0001 0.7267 0.7267 Ties Ties Ties Ties

 Ties Ties Ties Ties

Experiment 2

Performance measure

OO EE OE EO
OO EE OE EO

Repetition MOST AFL MOST AFL MOST AFL MOST AFL
1 0.0048 0.3513 0.9634 0.9754 0.0001 0.0001 0.8459 0.0385 AFL AFL TIES AFL
2 0.0028 0.3654 0.9631 0.9751 0.0001 0 0.8798 0.0065 AFL AFL AFL AFL
3 0.0018 0.3648 0.9627 0.9753 0.0001 0 0.8941 0.016 AFL AFL AFL AFL
4 0.0046 0.3511 0.9634 0.9758 0.0001 0.0001 0.8508 0.0536 AFL AFL TIES AFL
5 0.011 0.4475 0.9646 0.979 0.0001 0 0.7854 0.0219 AFL AFL AFL AFL
6 0.005 0.3111 0.9634 0.9748 0.0001 0.0001 0.8409 0.0855 AFL AFL TIES AFL
7 0.0032 0.323 0.9631 0.975 0.0001 0.0001 0.8698 0.0717 AFL AFL TIES AFL

 AFL AFL AFL AFL

192

Experiment 3

Performance measure

OO EE OE EO
OO EE OE EO

Repetition MOST AFL MOST AFL MOST AFL MOST AFL
1 0.0792 0.3868 0.9683 0.9703 0.0002 0.0001 0.4586 0.0465 AFL AFL AFL AFL
2 0.107 0.3416 0.9711 0.9743 0.0002 0 0.43 0.0134 AFL AFL AFL AFL
3 0.059 0.287 0.9682 0.9725 0.0002 0.0001 0.5462 0.0358 AFL AFL AFL AFL
4 0.0511 0.3718 0.9673 0.976 0.0002 0 0.5588 0.0282 AFL AFL AFL AFL
5 0.054 0.2902 0.9687 0.9732 0.0001 0.0001 0.577 0.0595 AFL AFL TIES AFL
6 0.095 0.4573 0.9699 0.9774 0.0002 0 0.4437 0.0107 AFL AFL AFL AFL
7 0.0525 0.2823 0.9689 0.973 0.0001 0.0001 0.5859 0.067 AFL AFL TIES AFL

 AFL AFL AFL AFL

Experiment 4

Performance measure

OO EE OE EO
OO EE OE EO

Repetition MOST AFL MOST AFL MOST AFL MOST AFL
1 0.2172 0.2172 0.907 0.907 0.0021 0.0021 0.279 0.279 Ties Ties Ties Ties
2 0.2119 0.2119 0.9018 0.9018 0.0024 0.0024 0.2875 0.2875 Ties Ties Ties Ties
3 0.2825 0.2825 0.9311 0.9311 0.0011 0.0011 0.2071 0.2071 Ties Ties Ties Ties
4 0.3346 0.3346 0.9484 0.9484 0.0006 0.0006 0.151 0.151 Ties Ties Ties Ties
5 0.2852 0.2852 0.9464 0.9464 0.0006 0.0006 0.1681 0.1681 Ties Ties Ties Ties
6 0.2652 0.2652 0.9256 0.9256 0.0013 0.0013 0.2246 0.2246 Ties Ties Ties Ties
7 0.2767 0.2767 0.9297 0.9297 0.0012 0.0012 0.2122 0.2122 Ties Ties Ties Ties

 Ties Ties Ties Ties

193

Experiment 5

Performance measure

OO EE OE EO
OO EE OE EO

Repetition MOST AFL MOST AFL MOST AFL MOST AFL
1 0.3192 0.2079 0.9671 0.8695 0.0001 0.0045 0.055 0.2897 MOST MOST MOST MOST
2 0.3065 0.1953 0.9713 0.8717 0 0.0043 0.0138 0.3095 MOST MOST MOST MOST
3 0.3433 0.2143 0.9721 0.8765 0 0.004 0.0193 0.2845 MOST MOST MOST MOST
4 0.3067 0.2108 0.9625 0.8576 0.0002 0.0054 0.0862 0.2747 MOST MOST MOST MOST
5 0.3592 0.2298 0.9711 0.8708 0.0001 0.0044 0.0331 0.2569 MOST MOST MOST MOST
6 0.2676 0.1832 0.9713 0.873 0 0.0042 0.0112 0.327 MOST MOST MOST MOST
7 0.318 0.2144 0.9657 0.8593 0.0001 0.0052 0.0655 0.2702 MOST MOST MOST MOST

 MOST MOST MOST MOST

Experiment 6

Performance measure

OO EE OE EO
OO EE OE EO

Repetition MOST AFL MOST AFL MOST AFL MOST AFL
1 0.2964 0.2964 0.9725 0.9725 0 0 0.0143 0.0143 Ties Ties Ties Ties
2 0.3333 0.3333 0.9707 0.9707 0.0001 0.0001 0.0287 0.0287 Ties Ties Ties Ties
3 0.3754 0.3754 0.9764 0.9764 0.0001 0.0001 0.0369 0.0369 Ties Ties Ties Ties
4 0.3627 0.3627 0.9719 0.9719 0 0 0.0274 0.0274 Ties Ties Ties Ties
5 0.343 0.343 0.9745 0.9745 0 0 0.0199 0.0199 Ties Ties Ties Ties
6 0.3448 0.3448 0.9715 0.9715 0 0 0.0253 0.0253 Ties Ties Ties Ties
7 0.3744 0.3744 0.9753 0.9753 0 0 0 0 Ties Ties Ties Ties

 Ties Ties Ties Ties

194

Experiment 7

Performance measure

OO EE OE EO
OO EE OE EO

Repetition MOST AFL MOST AFL MOST AFL MOST AFL
1 0.29507 0.41584 0.97445 0.97474 0.000118 3.38E-05 0.1002 0.019726 AFL AFL AFL AFL
2 0.37365 0.39474 0.97553 0.96558 1.45E-05 0.000187 0.009546 0.077935 AFL MOST MOST MOST
3 0.2784 0.40097 0.97429 0.97653 0.000137 9.34E-06 0.12455 0.006101 AFL AFL AFL AFL
4 0.25247 0.36092 0.97287 0.97534 0.000142 3.29E-05 0.12426 0.022459 AFL AFL AFL AFL
5 0.17988 0.21964 0.9699 0.97037 0.000187 0.000108 0.16963 0.081183 AFL AFL AFL AFL
6 0.22974 0.3048 0.97122 0.97291 0.000128 2.64E-05 0.10154 0.01762 AFL AFL AFL AFL
7 0.19282 0.23406 0.97028 0.97075 0.000173 8.88E-05 0.15179 0.064826 AFL AFL AFL AFL

 AFL AFL AFL AFL

195

Appendix XII Raw data for adaptive weighted average experiment set

 Performance measure

Experiment Algorithm Repetition OO EE OE EO

1

AdpWA1

1 0.0347 0.9659 0.0002 0.6142
2 0.0193 0.9659 0.0001 0.7322
3 0.0376 0.9667 0.0002 0.6222
4 0.0417 0.9663 0.0002 0.5801
5 0.0370 0.9659 0.0002 0.5960
6 0.0312 0.9660 0.0002 0.6415

AdpWA2

1 0.0383 0.0001 0.9807 0.0000
2 0.0383 0.0001 0.9807 0.0000
3 0.0383 0.0001 0.9807 0.0000
4 0.0383 0.0001 0.9807 0.0000
5 0.0383 0.0001 0.9807 0.0000
6 0.0383 0.0001 0.9807 0.0000

AdpWA3

1 0.0033 0.9637 0.0000 0.8854
2 0.0038 0.9643 0.0000 0.8807
3 0.0055 0.9647 0.0000 0.8568
4 0.0021 0.9635 0.0000 0.9098
5 0.0060 0.9642 0.0000 0.8470
6 0.0024 0.9637 0.0000 0.9049

AdpWA4

1 0.0395 0.0017 0.9203 0.0000
2 0.0395 0.0017 0.9203 0.0000
3 0.0395 0.0017 0.9203 0.0000
4 0.0395 0.0017 0.9203 0.0000
5 0.0395 0.0017 0.9203 0.0000
6 0.0395 0.0017 0.9203 0.0000

AFL

1 0.0058 0.9629 0.0002 0.7853
2 0.0064 0.9631 0.0002 0.7911
3 0.0072 0.9631 0.0002 0.7713
4 0.0097 0.9633 0.0002 0.7328
5 0.0062 0.9629 0.0002 0.7754
6 0.0079 0.9631 0.0002 0.7515

196

Performance measure
Experiment Algorithm Repetition OO EE OE EO

2

AdpWA1

1 0.3255 0.9744 0.0001 0.0434
2 0.2336 0.9701 0.0000 0.0234
3 0.2883 0.9723 0.0000 0.0216
4 0.3058 0.9568 0.0003 0.1205
5 0.2454 0.9629 0.0001 0.0708
6 0.3016 0.9729 0.0000 0.0247

AdpWA2

1 0.0383 0.0001 0.9807 0.0000
2 0.0383 0.0001 0.9807 0.0000
3 0.0383 0.0001 0.9807 0.0000
4 0.0383 0.0001 0.9807 0.0000
5 0.0383 0.0001 0.9807 0.0000
6 0.0383 0.0001 0.9807 0.0000

AdpWA3

1 0.1627 0.9715 0.0002 0.2858
2 0.1249 0.9687 0.0002 0.2890
3 0.1516 0.9698 0.0002 0.2542
4 0.1768 0.9704 0.0002 0.2024
5 0.1094 0.9677 0.0003 0.2940
6 0.1323 0.9697 0.0002 0.3118

AdpWA4

1 0.0395 0.0017 0.9203 0.0000
2 0.0395 0.0017 0.9203 0.0000
3 0.0395 0.0017 0.9203 0.0000
4 0.0395 0.0017 0.9203 0.0000
5 0.0395 0.0017 0.9203 0.0000
6 0.0395 0.0017 0.9203 0.0000

AFL

1 0.2650 0.9739 0.0001 0.1368
2 0.2036 0.9707 0.0002 0.1421
3 0.2808 0.9726 0.0001 0.0501
4 0.2535 0.9731 0.0001 0.1304
5 0.2045 0.9705 0.0002 0.1276
6 0.2540 0.9729 0.0001 0.1207

197

Performance measure
Experiment Algorithm Repetition OO EE OE EO

3

AdpWA1

1 0.2390 0.9727 0.0002 0.1466
2 0.2421 0.9712 0.0001 0.0677
3 0.3119 0.9742 0.0001 0.0606
4 0.2183 0.9708 0.0001 0.1106
5 0.2663 0.9730 0.0001 0.1022
6 0.2663 0.9730 0.0001 0.1022

AdpWA2

1 0.2267 0.8921 0.0030 0.2742
2 0.1965 0.8780 0.0038 0.3096
3 0.2829 0.9348 0.0010 0.2004
4 0.1905 0.8888 0.0031 0.3159
5 0.2356 0.8881 0.0032 0.2621
6 0.2274 0.9030 0.0024 0.2722

AdpWA3

1 0.1282 0.9704 0.0002 0.3487
2 0.1148 0.9685 0.0003 0.3200
3 0.1539 0.9711 0.0002 0.2974
4 0.0884 0.9683 0.0002 0.4166
5 0.1175 0.9694 0.0002 0.3483
6 0.1325 0.9701 0.0002 0.3274

AdpWA4

1 0.2378 0.9311 0.0011 0.2283
2 0.2305 0.9348 0.0009 0.2208
3 0.3020 0.9523 0.0004 0.1424
4 0.2180 0.9361 0.0009 0.2202
5 0.2727 0.9365 0.0009 0.2008
6 0.2429 0.9406 0.0007 0.1977

AFL

1 0.0000 0.9620 0.0000 1.0000
2 0.0000 0.9620 0.0000 1.0000
3 0.0000 0.9620 0.0000 1.0000
4 0.0000 0.9620 0.0000 1.0000
5 0.0000 0.9620 0.0000 1.0000
6 0.0000 0.9620 0.0000 1.0000

198

Performance measure
Experiment Algorithm Repetition OO EE OE EO

4

AdpWA1

1 0.2514 0.9716 0.0001 0.0667
2 0.2700 0.9724 0.0001 0.0649
3 0.2459 0.9718 0.0001 0.0920
4 0.2570 0.9715 0.0001 0.0519
5 0.2244 0.9715 0.0001 0.1270
6 0.2538 0.9707 0.0000 0.0076

AdpWA2

1 0.1951 0.8802 0.0037 0.3117
2 0.2023 0.8846 0.0034 0.3027
3 0.2000 0.8861 0.0033 0.3055
4 0.1991 0.8785 0.0038 0.3062
5 0.2051 0.8869 0.0033 0.2993
6 0.1949 0.8854 0.0034 0.3117

AdpWA3

1 0.1294 0.9693 0.0002 0.3038
2 0.1251 0.9693 0.0002 0.3200
3 0.1531 0.9692 0.0002 0.2147
4 0.1436 0.9694 0.0002 0.2615
5 0.1041 0.9686 0.0002 0.3657
6 0.1215 0.9676 0.0002 0.2343

AdpWA4

1 0.2114 0.9260 0.0012 0.2526
2 0.2468 0.9313 0.0011 0.2239
3 0.2405 0.9467 0.0005 0.1731
4 0.2132 0.9254 0.0013 0.2532
5 0.2244 0.9285 0.0012 0.2404
6 0.1951 0.9211 0.0014 0.2724

AFL

1 0.0000 0.9620 0.0000 1.0000
2 0.0000 0.9620 0.0000 1.0000
3 0.0006 0.9628 0.0000 0.9494
4 0.0012 0.9627 0.0001 0.9242
5 0.0006 0.9628 0.0000 0.9494
6 0.0000 0.9620 0.0001 0.9590

199

Appendix XIII Statistical evaluation - Friedman’s r anking

Experiment 1

Experiment 1

Sensor fusion algorithm Sensor fusion algorithm
Performance

measure
Repetition AdpWA1 AdpWA2 AdpWA3 AdpWA4 AFL

Performance
measure

Repetition AdpWA1 AdpWA2 AdpWA3 AdpWA4 AFL

OO

1 3 4 1 5 2

EE

1 5 1 4 2 3
2 3 4 1 5 2 2 5 1 4 2 3
3 3 4 1 5 2 3 5 1 4 2 3
4 5 3 1 4 2 4 5 1 4 2 3
5 3 4 1 5 2 5 5 1 4 2 3
6 3 4 1 5 2 6 5 1 4 2 3

Sum of
ranks 20 23 6 29 12 Sum of

ranks 30 6 24 12 18

Experiment 1 Experiment 1
Sensor fusion algorithm Sensor fusion algorithm

Performance
measure

Repetition AdpWA1 AdpWA2 AdpWA3 AdpWA4 AFL
Performance

measure
Repetition AdpWA1 AdpWA2 AdpWA3 AdpWA4 AFL

OE

1 3 1 5 2 4

EO

1 3 5 1 5 2
2 4 1 5 2 3 2 3 5 1 5 2
3 4 1 5 2 3 3 3 5 1 5 2
4 4 1 5 2 3 4 3 5 1 5 2
5 3 1 5 2 4 5 3 5 1 5 2
6 4 1 5 2 3 6 3 5 1 5 2

 Sum of
ranks

22 6 30 12 20 Sum of
ranks

18 27 6 27 12

200

Experiment 2

Experiment 2

Sensor fusion algorithm Sensor fusion algorithm
Performance

measure
Repetition AdpWA1 AdpWA2 AdpWA3 AdpWA4 AFL

Performance
measure

Repetition AdpWA1 AdpWA2 AdpWA3 AdpWA4 AFL

OO

1 5 1 3 2 4

EE

1 5 1 3 2 4
2 5 1 3 2 4 2 4 1 3 2 5
3 5 1 3 2 4 3 4 1 3 2 5
4 5 1 3 2 4 4 3 1 4 2 5
5 5 1 3 2 4 5 3 1 4 2 5
6 5 1 3 2 4 6 5 1 3 2 4

Sum of
ranks

30 6 18 12 24 Sum of
ranks

24 6 20 12 28

Experiment 2 Experiment 2
Sensor fusion algorithm Sensor fusion algorithm

Performance
measure

Repetition AdpWA1 AdpWA2 AdpWA3 AdpWA4 AFL
Performance

measure
Repetition AdpWA1 AdpWA2 AdpWA3 AdpWA4 AFL

OE

1 5 1 3 2 4

EO

1 3 5 1 5 2
2 5 1 3 2 4 2 3 5 1 5 2
3 5 1 3 2 4 3 3 5 1 5 2
4 3 1 4 2 5 4 3 5 1 5 2
5 5 1 3 2 4 5 3 5 1 5 2
6 5 1 3 2 4 6 3 5 1 5 2

 Sum of
ranks

28 6 19 12 25 Sum of
ranks

18 27 6 27 12

201

Experiment 3

Experiment 3

Sensor fusion algorithm Sensor fusion algorithm
Performance

measure
Repetition AdpWA1 AdpWA2 AdpWA3 AdpWA4 AFL

Performance
measure

Repetition AdpWA1 AdpWA2 AdpWA3 AdpWA4 AFL

OO

1 5 3 2 4 1

EE

1 5 1 4 2 3
2 5 3 2 4 1 2 5 1 4 2 3
3 5 3 2 4 1 3 5 1 4 2 3
4 5 3 2 4 1 4 5 1 4 2 3
5 5 3 2 4 1 5 5 1 4 2 3
6 5 3 2 4 1 6 5 1 4 2 3

Sum of
ranks

30 18 12 24 6 Sum of
ranks

30 6 24 12 18

Experiment 3 Experiment 3
Sensor fusion algorithm Sensor fusion algorithm

Performance
measure

Repetition AdpWA1 AdpWA2 AdpWA3 AdpWA4 AFL
Performance

measure
Repetition AdpWA1 AdpWA2 AdpWA3 AdpWA4 AFL

OE

1 3 1 2 4 5

EO

1 5 4 2 3 1
2 4 1 3 2 5 2 5 3 2 4 1
3 4 1 3 2 5 3 5 4 3 2 1
4 4 1 3 2 5 4 5 3 2 4 1
5 4 1 3 2 5 5 5 3 2 4 1
6 4 1 3 2 5 6 5 3 2 4 1

 Sum of
ranks

23 6 17 14 30 Sum of
ranks

30 20 13 21 6

202

Experiment 4

Experiment 4

Sensor fusion algorithm Sensor fusion algorithm
Performance

measure
Repetition AdpWA1 AdpWA2 AdpWA3 AdpWA4 AFL

Performance
measure

Repetition AdpWA1 AdpWA2 AdpWA3 AdpWA4 AFL

OO

1 5 3 2 4 1

EE

1 5 1 4 2 3
2 5 3 2 4 1 2 5 1 4 2 3
3 5 3 2 4 1 3 5 1 4 2 3
4 5 3 2 4 1 4 5 1 4 2 3
5 5 3 2 4 1 5 5 1 4 2 3
6 5 3 2 4 1 6 5 1 4 2 3

Sum of
ranks

30 18 12 24 6 Sum of
ranks

30 6 24 12 18

Experiment 4 Experiment 4
Sensor fusion algorithm Sensor fusion algorithm

Performance
measure

Repetition AdpWA1 AdpWA2 AdpWA3 AdpWA4 AFL
Performance

measure
Repetition AdpWA1 AdpWA2 AdpWA3 AdpWA4 AFL

OE

1 4 1 3 2 5

EO

1 5 2 3 4 1
2 4 1 3 2 5 2 5 3 2 4 1
3 4 1 3 2 5 3 5 2 3 4 1
4 4 1 3 2 5 4 5 2 3 4 1
5 4 1 3 2 5 5 5 3 2 4 1
6 5 1 3 2 4 6 5 2 4 3 1

 Sum of
ranks

25 6 18 12 29 Sum of
ranks

30 14 17 23 6

203

Appendix XIV Statisticl evaluation - Multiple comparison results
Experiment 1

OO measure EE measure
Sensor
fusion

algorithm

Sum of
ranks

Sub groups
Sensor fusion

algorithm
Sum of
ranks

Sub groups

AdpWA4 29 A AdpWA1 30 A
AdpWA2 23 A B AdpWA3 24 A B
AdpWA1 20 A B C AFL 18 A B C

AFL 12 B C AdpWA4 12 B C
AdpWA3 6 C AdpWA2 6 C

OE measure EO measure
Sensor
fusion

algorithm

Sum of
ranks

Sub groups
Sensor fusion

algorithm
Sum of
ranks

Sub groups

AdpWA3 30 A AdpWA2 27 A
AdpWA1 22 A B AdpWA4 27 A

AFL 20 A B C AdpWA1 18 A B
AdpWA4 12 B C AFL 12 A B
AdpWA2 6 C AdpWA3 6 B

Experiment 2

OO measure EE measure
Sensor
fusion

algorithm

Sum of
ranks

Sub groups
Sensor fusion

algorithm
Sum of
ranks

Sub groups

AdpWA1 30 A AFL 28 A
AFL 24 A B AdpWA1 24 A B

AdpWA3 18 A B C AdpWA3 20 A B C
AdpWA4 12 B C AdpWA4 12 B C
AdpWA2 6 C AdpWA2 6 C

OE measure EO measure
Sensor
fusion

algorithm

Sum of
ranks

Sub groups
Sensor fusion

algorithm
Sum of
ranks

Sub groups

AdpWA1 28 A AdpWA2 27 A
AFL 25 A B AdpWA4 27 A

AdpWA3 19 A B C AdpWA1 18 A B
AdpWA4 12 B C AFL 12 B
AdpWA2 6 C AdpWA3 6 B

204

Experiment 3

OO measure EE measure
Sensor
fusion

algorithm

Sum of
ranks

Sub groups
Sensor fusion

algorithm
Sum of
ranks

Sub groups

AdpWA1 30 A AdpWA1 30 A
AdpWA4 24 A B AdpWA3 24 A B
AdpWA2 18 A B C AFL 18 A B C
AdpWA3 12 B C AdpWA4 12 B C

AFL 6 C AdpWA2 6 C
OE measure EO measure

Sensor
fusion

algorithm

Sum of
ranks

Sub groups
Sensor fusion

algorithm
Sum of
ranks

Sub groups

AFL 30 A AdpWA1 30 A
AdpWA1 23 A B AdpWA4 21 A B
AdpWA3 17 A B C AdpWA2 20 A B
AdpWA4 14 B C AdpWA3 13 B
AdpWA2 6 C AFL 6 B

Experiment 4

OO measure EE measure
Sensor
fusion

algorithm

Sum of
ranks

Sub groups
Sensor fusion

algorithm
Sum of
ranks

Sub groups

AdpWA1 30 A AdpWA1 30 A
AdpWA4 24 A B AdpWA3 24 A B
AdpWA2 18 A B C AFL 18 A B C
AdpWA3 12 B C AdpWA4 12 B C

AFL 6 C AdpWA2 6 C
OE measure EO measure

Sensor
fusion

algorithm

Sum of
ranks

Sub groups
Sensor fusion

algorithm
Sum of
ranks

Sub groups

AFL 29 A AdpWA1 30 A
AdpWA1 25 A B AdpWA4 23 A B
AdpWA3 18 A B C AdpWA3 17 A B C
AdpWA4 12 B C AdpWA2 14 B C
AdpWA2 6 C AFL 6 C

205

Appendix XV Statistical evaluation - Sign test results

Experiment 1

Performance measure

OO EE OE EO
OO EE OE EO

Repetition AdpWA1 AFL AdpWA1 AFL AdpWA1 AFL AdpWA1 AFL
1 0.0347 0.0058 0.9659 0.9629 0.0002 0.0002 0.6142 0.7853 AdpWA1 AdpWA1 TIES AdpWA1
2 0.0193 0.0064 0.9659 0.9631 0.0001 0.0002 0.7322 0.7911 AdpWA1 AdpWA1 AdpWA1 AdpWA1
3 0.0376 0.0072 0.9667 0.9631 0.0002 0.0002 0.6222 0.7713 AdpWA1 AdpWA1 TIES AdpWA1
4 0.0417 0.0097 0.9663 0.9633 0.0002 0.0002 0.5801 0.7328 AdpWA1 AdpWA1 TIES AdpWA1
5 0.037 0.0062 0.9659 0.9629 0.0002 0.0002 0.596 0.7754 AdpWA1 AdpWA1 TIES AdpWA1
6 0.0312 0.0079 0.966 0.9631 0.0002 0.0002 0.6415 0.7515 AdpWA1 AdpWA1 TIES AdpWA1

 AdpWA1 AdpWA1 AdpWA1 AdpWA1

Experiment 2

Performance measure

OO EE OE EO
OO EE OE EO

Repetition AdpWA1 AFL AdpWA1 AFL AdpWA1 AFL AdpWA1 AFL
1 0.3255 0.265 0.9744 0.9739 0.0001 0.0001 0.0434 0.1368 AdpWA1 AdpWA1 TIES AdpWA1
2 0.2336 0.2036 0.9701 0.9707 0 0.0002 0.0234 0.1421 AdpWA1 AFL AdpWA1 AdpWA1
3 0.2883 0.2808 0.9723 0.9726 0 0.0001 0.0216 0.0501 AdpWA1 AFL AdpWA1 AdpWA1
4 0.3058 0.2535 0.9568 0.9731 0.0003 0.0001 0.1205 0.1304 AdpWA1 AFL AFL AdpWA1
5 0.2454 0.2045 0.9629 0.9705 0.0001 0.0002 0.0708 0.1276 AdpWA1 AFL AdpWA1 AdpWA1
6 0.3016 0.254 0.9729 0.9729 0 0.0001 0.0247 0.1207 AdpWA1 TIES AdpWA1 AdpWA1

 AdpWA1 AFL AdpWA1 AdpWA1

206

Experiment 3

Performance measure

OO EE OE EO
OO EE OE EO

Repetition AdpWA1 AFL AdpWA1 AFL AdpWA1 AFL AdpWA1 AFL
1 0.239 0 0.9727 0.962 0.0002 0 0.1466 1 AdpWA1 AdpWA1 AFL AdpWA1
2 0.2421 0 0.9712 0.962 0.0001 0 0.0677 1 AdpWA1 AdpWA1 AFL AdpWA1
3 0.3119 0 0.9742 0.962 0.0001 0 0.0606 1 AdpWA1 AdpWA1 AFL AdpWA1
4 0.2183 0 0.9708 0.962 0.0001 0 0.1106 1 AdpWA1 AdpWA1 AFL AdpWA1
5 0.2663 0 0.973 0.962 0.0001 0 0.1022 1 AdpWA1 AdpWA1 AFL AdpWA1
6 0.2663 0 0.973 0.962 0.0001 0 0.1022 1 AdpWA1 AdpWA1 AFL AdpWA1

 AdpWA1 AdpWA1 AFL AdpWA1

Experiment 4

Performance measure

OO EE OE EO
OO EE OE EO

Repetition AdpWA1 AFL AdpWA1 AFL AdpWA1 AFL AdpWA1 AFL
1 0.2514 0 0.9716 0.962 0.0001 0 0.0667 1 AdpWA1 AdpWA1 AFL AdpWA1
2 0.27 0 0.9724 0.962 0.0001 0 0.0649 1 AdpWA1 AdpWA1 AFL AdpWA1
3 0.2459 0.0006 0.9718 0.9628 0.0001 0 0.092 0.9494 AdpWA1 AdpWA1 AFL AdpWA1
4 0.257 0.0012 0.9715 0.9627 0.0001 0.0001 0.0519 0.9242 AdpWA1 AdpWA1 TIES AdpWA1
5 0.2244 0.0006 0.9715 0.9628 0.0001 0 0.127 0.9494 AdpWA1 AdpWA1 AFL AdpWA1
6 0.2538 0 0.9707 0.962 0 0.0001 0.0076 0.959 AdpWA1 AdpWA1 AdpWA1 AdpWA1

 AdpWA1 AdpWA1 AFL AdpWA1

 תקציר

על מנת לתפקד . עבודה זו עוסקת באלגוריתמים להיתוך מידע מחיישנים לצורך מיפוי סביבת רובוט נייד
על מנת להבין טוב , בסביבות לא ידועות ולא מובנות רובוט נייד חייב להיות מצויד במספר סוגי חיישנים

ישנים מתפקדים בצורה פגומה ולהתגבר על מידע לא מדויק או שגוי המתקבל כאשר החי, יותר את סביבתו
במטרה , היתוך מידע מחיישנים עוסק בשילוב סינרגטי של מידע המגיע מהחיישנים השונים. או כושלים

 .לספק לתת תמונה יותר שלמה ומדויקת על התופעה הנלמדת
, חיישן פיזי נוסף צורף למערכת. מערכת קודמת להיתוך מידע מחיישנים הורחבה ושופרה, במחקר זה

 .פותח אלגוריתם חדש להיתוך מידע,בנוסף. ערכת הורחבה לצורך הכללת חיישן זה בהתכת המידעוהמ
מודל מפת הרשת . מיפוי הסביבה חשוב למספר משימות רובוטיות הכוללות משימות חקר ותכנון מסלול

במודל נעשה שימוש , בתזה זו. הבינארית נפוץ בין שיטות המיפוי ויושם במערכת הקודמת להיתוך המידע
 .בינארית המציין את מידת הוודאות של כל תא-מפת רשת לא

רובם . אלגוריתמים רבים להיתוך מידע לצורך מיפוי סביבת רובוט נייד פותחו ויושמו, לאורך השנים
מידע שקשה ולפעמים אף בלתי אפשרי , דורשים מידע קודם על ביצועי החיישנים או על תנאי הסביבה

אלגוריתם זה . אלגוריתם אדפטיבי חדש להיתוך מידע פותח ויושם, במחקר זה. למצוא בסביבה לא מובנית
אלא מעריך בצורה מקוונת את ביצועי החיישנים ונותן יותר משקל בתהליך , אינו דורש כל מידע מוקדם

אלגוריתם זה משתמש בהליך שיפור שמטרתו לשפר את המפות שנוצרו . ההיתוך לחיישן שמתפקד יותר טוב
הליך השיפור בודק את שכניו של כל תא ומחליט איזה תא אכן מכיל מכשול . חיישנים השוניםעל ידי ה

 .ולאיזה תא צריך להתייחס כרעש
האלגוריתם הוערך בעזרת שיטה סטטיסטית שפותחה בעבר להערכת ביצועי אלגוריתמים שונים לאיחוד

ם שיש לבצע על מנת לבחון את השיטה מגדירה את צורת ואופן הניסויי. מידע ובחירת הטוב מביניהם
מטרת ההערכה הראשונה היא לבחון את . שתי הערכות בוצעו. ביצועי האלגוריתמים בתנאי סביבי שונים

היא לבחון את ביצועי האלגוריתם הואילו מטרת ההערכה השניי, ביצועי מערכת היתוך המידע המורחבת
 .החדש להיתוך מידע בהשוואה לאלגוריתמים קודמים שפותחו

, תוצאות ההערכה הראשונה מצביעות על כך שהאלגוריתם בעל הביצועים הטובים ביותר במערכת הקודמת

. הוא גם האלגוריתם בעל הביצועים הטובים ביותר במערכת המורחבת, אלגוריתם לוגיקה עמומה אדפטיבי
וריתם החדש מראות כי להליך השיפור אין כל השפעה על הביצועים וכי האלג התוצאות ההערכה השניי

 .שפותח מספק את הביצועים הטובים ביותר בהשוואה לאלגוריתמים קודמים

אלגוריתמים , מפות רשת, אלגוריתמים למיפוי, רובוטים ניידים, היתוך מידע מחיישנים: מילות מפתח
 .הערכה סטטיסטית, מדדי ביצועי, אדפטיביים

 יעל אידן' העבודה נעשתה בהדרכתה של פרופ

 המחלקה להנדסת תעשיה וניהול

 הפקולטה למדעי ההנדסה

הערכת אלגוריתמים להיתוך מידע מחיישנים

 לצורך מיפוי סביבת רובוט נייד

 חיבור זה מהווה חלק מהדרישות לקבלת תואר מגיסטר בהנדסה

 קרן קאפח

 יעל אידן' פרופ: מנחה

 ___________תאריך ______________ אישור המנחה

 ___________תאריך____________ ר ועדת תואר שני מחלקתית"אישור יו

 2007 ז"תשס

 שבע-באר

הערכת אלגוריתמים להיתוך מידע מחיישנים

 לצורך מיפוי סביבת רובוט נייד

 חיבור זה מהווה חלק מהדרישות לקבלת תואר מגיסטר בהנדסה

 קרן קאפח

 2007 ז"תשס

 שבע-באר

