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Abstract 
Body condition scoring (BCS) indicates energy reserves of dairy cows for estimating their 

fatness or thinness according to a 5-point scale. Despite several attempts to automate it, 

it is still handled manually. The goal of this study is to develop an automatic computer 

vision tool for evaluating BCS. Digital Images of 151 cows were collected in the Bet 

Dagan dairy farm (Israel) using a Nikon DSLR camera located at the entrance of the 

milking parlor. The cows were manually scored by an expert. Images for training and 

testing were manually selected. Cow‘s tail head area and its contour were segmented 

and extracted automatically using Matlab software. Two types of features of the tail head 

contour were extracted for BCS prediction: (1) Five anatomical points that were 

automatically detected by analyzing the sequence of the peaks and valleys of the tail 

head contour. The angles and distances between these five points were computed. (2)  

The cow's contour was presented as a one dimensional vector of the distances from 

each point in the contour to the object center. In order to eliminate influence of size and 

orientation each contour was interpolated to a fix number of points and scaled to a range 

between zero to one. Each contour was described by two forms: (1) selected number of 

latent variables produced by Partial least square (PLS) (2) the Fourier descriptors of the 

one dimensional contour vector.  The prediction models were derived by backward 

regression and the features found as best for  BCS prediction were the first ten Fourier 

descriptors of the one dimensional vector resulting in a  R2 of 0.77 and 0.64 for the 

training and testing set respectively. 

Classification results between different classes of BCS indicate that it is possible to 

automatically extract and analyze BCS from digital images without involving any manual 

labeling procedure and without causing any interruption to the animal. 
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1 Introduction 

 

Description of the problem  
Body condition scoring (BCS) estimates energy reserves of cows and their fatness or 

thinness according to a 5-point manual scale (Hady et al., 1994). Evaluation of BCS is a 

management tool associated with risk factors for health problems, feed intake and 

optimal insemination time (Rodenburg, 2004).  Currently, BCS is measured manually: 

this is a time consuming process, it requires training, and its scores are subjective and 

may be influenced by the previous cow examined (Halachmi et al., 2008, Schröder and 

Staufenbiel, 2006).  The lack of automation in this process is obvious. Despite several 

attempts to automate BCS of dairy cows (Coffey et al., 2003, Ferguson et al., 2006, 

Bewley et al., 2008, Halachmi et al., 2008, Azzaro et al., 2009) -it is still handled 

manually with no commercial applications and all state-of-the-art models involve a 

manual labeling procedure (Bewley et al., 2008, Halachmi et al., 2008, Azzaro et al., 

2009) . Roche et al., 2009 suggested that ―Ongoing research into the automation of 

body condition scoring are likely candidate to be incorporated into decision support 

systems in the near future to aid producers in making operational and tactical decisions‖. 

Computer vision is used today in a wide variety of real-world industrial applications and 

can be applicable to BCS.  The present study aims to develop an efficient and objective 

automatic computer vision tool to evaluate the cow's body condition. It differs from state-

of-the-art models since it does not involve any manual labeling in neither the 

segmentation nor feature extraction process. 

   Objectives 
The main objective of this study was to develop an automatic computer vision tool for 

evaluating body condition score including: 

1) Image acquisition: design and implementation of a mechanical system for 

automatic capturing of images.  

2) Image processing and analysis: development of image processing algorithms to 

extract the cow object from its natural background in the farm. 

3) Image interpretation: statistically identification and selection of cow shape 

features that are correlated with body condition. 

4) Modeling: development of a prediction and classification model of body condition. 

The system was validated on a research dairy farm.   
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2 Literature review 

Body Condition Scoring  (BCS) 

Body condition reflects body fat reserves of dairy cows (Hady et al., 1994). These 

reserves can be used by the cow in periods when she is unable to eat enough to satisfy 

her energy needs. In high producing cows, this normally happens during early lactation, 

but it may also happen when the cows get sick, or are fed poor quality feeds, or feed 

intake is restricted (Rodenburg, 2004). After a period of weight loss, cows should be fed 

more than their requirements to restore their normal body condition  

(Ferguson et al., 1994). Evaluation of body condition using a body condition score (BCS) 

is a useful management tool (Wildman et al., 1982). Excessive body condition has been 

recognized as a risk factor for health problems in dairy cows (Markusfeld et al., 1988, 

Gillund et al., 2001, Gearhart et al., 1990) and as a factor influencing feed intake 

(Gransworthy 1988), milk production (Domeq et al., 1997) and insemination time (Ruegg 

and Milton 1995, Syriyasathaporn et al., 1998). Excessive loss of body condition has 

been associated with lowered reproductive performance (Koenen and Veerkamp, 1998; 

Burke et al., 1996), and reduced milk production (Waltner et al., 1993). Thus, BCS has 

received considerable attention as a tool to aid in the management of nutritional 

programs in dairy herds. Cows should be scored regularly to reflect changes in fat 

reserves in each stage of lactation (Ferguson et al., 1994). Figure 1 shows the 

connection between body energy reserves and milk production, and also shows the 

optimal insemination time which is the maximum point of the energy reserve curve.  

 

 
Figure 1 – Body energy reserve (black curve) and its connections with calving, milk production, 
and the optimum point before dry period which associated with optimal insemination time 
(Ferguson et al., 1994) 
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2.1.1 Body Condition Scoring techniques  

There are many different scoring scales 0 to 5 (Lowman et al., 1976, Pedron et al., 

1993), 1 to 10 (Morris ea al., 2002), and 1 to 9 (Earle 1976). The most common 

system applied for BCS in the U.S.A. is the 1 to 5 scale (Ferguson et al., 1994), with 

1 being emaciated, 2 thin, 3 average, 4 fat and 5 obese. It is common to divide the 

scale into 0.25 point increments (Ferguson et al., 1994). 

The scoring technique includes looking at the cow and handling the pin bone, hip 

bone, the top of the backbone and ends of the short ribs, which all together 

combine the tail head area. The tail head area do not have muscle tissue covering, 

therefore any covering you see or feel is the combination of skin and fat deposits. 

As shown in Figure 2, only skin and fat cover the tail head area, making these ideal 

locations to assess body condition (Rodenburg, 2004). 

 

Figure 2 -Backbone, loin and rump areas (Rodenburg , 2004) 
 
 

Table 1 shows the difference in the tail head area according to each body score 

from 1 to 5. 

Ferguson et al., (1997) developed an organized flow chart for scoring body 

condition with a 5 point scale and accuracy of 0.25, when information needed for 

BCS is taken from the back side of the body. The flowchart scoring: Scores from 

3.25 to 4 (Figure 3), from 4 to 5 (Figure 4), 3 to 2.5 (Figure 5) and, 2.5 to less than 

2 (Figure 6). 

 

 



 

4 

 

Table 1- The back bone area for each BCS 1 to 5 (Rodenburg,  2004) 

Condition score Tail head  area  

1 
Emaciated cow 

 
 

2 
A thin cow 

 
 

3 
An average cow 

 
 

4 
A fat cow 

 

  
5 

Obese cow 
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Figure 3 –Ferguson BCS flowchart from 3.25 to 4 (Ferguson et al., 1997) 

 
 

 

 

 
 

     Figure 4 –Ferguson BCS flowchart from 4 to 5 (Ferguson et al., 1997) 
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Figure 5 –Ferguson BCS flowchart from 3 to 2.5 (Ferguson et al., 1997) 

 
 

Figure 6 –Ferguson BCS flowchart from 2.5 to less than 2 (Ferguson et al., 1997) 
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Automation in dairy farming  

Modern dairy farming is characterized by automation and information systems that 

support decision making. The data is usually collected by a variety of sensors (Table 2). 

However, the current method of measuring BCS in modern dairy farms is still manual. 

Manual BCS is time consuming in large farms and requires trained labor  

(Halachmi et al., 2008).  Another problem associated with the manual scoring is the 

subjectivity of the process, the score depends on the person who performs the 

measurement, and the score of the specific cow can be influenced by the previous cow 

examined (Schröder and Staufenbiel, 2006).  ―Despite the general consensus of dairy 

producers and herd managers, on the benefits of the BCS evaluation, less than 5% of 

U.S. dairy farms have adopted this practice in the production chain‖ (Azzaro et al. 2011). 

The main reasons that discourage the use of BCS evaluation techniques are the lack of 

computerized reports, its subjectivity and time consumption of on-farm training of 

technicians. Furthermore, the measurements must be conducted frequently for each cow, 

expanding the costs for the farmers (Azzaro et.al., 2009). Bewley et al (2008) suggested 

that an automatic BCS requires less time, is less stressful on the animal, more objective 

and consistent, and possibly be more cost effective. Therefore, the development of an 

automatic device based on digital images for monitoring BCS is of economic interest 

(Halachmi et al., 2008). 
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Table 2- Examples of dairy farming sensors 

Domain Technology Description Source 

Detection  Radio Frequency 

Identification (RFID) 

sensor 

Detect the specific 

cow by using a 

unique serial number 

Senger, 1994, 

Pendell et al., 2010 

Weight  Weigh scale Weigh cows during 

their movement out of 

the milking parlor. 

Peiper et al., 1993 

Passtel et al., 2005 

Milk meters  Metering device 

controls the flow of 

milk 

Alert when milk 

flowing is about to 

end in order to pervert 

over milking.  

Flochini, 1980 

Hogeveen et al., 

2001 

Milk quality Near-infrared (NIR) 

sensor 

predicting three major 

milk constituents (fat, 

protein and lactose) 

Kawamura et al., 

2007 

Tsenkova et al., 

2000 

Mastits 

detection  

Measuring electrical 

conductivity 

Measure the level of 

conductivity of each 

quarter separately. 

Gotien, 2006, Neiln 

et al., 1992 

Lameness 

detection  

Force–plate system  Alert for Hoof care, by 

generating signatures 

of ground reaction  

Rajkondawar et 

al.,2002 

Estrous 

detection 

Pedometer 

pressure sensors 

Alert for estrous and 

optimal insemination 

time. 

Maatje et al., 1997 

Senger 1994 

Behavioral 

evaluation 

Pedometer Plus Measures cow's 

comforts by counting 

steps, lying time and 

lying frequency. 

Maltz et al., 2007 

Rumination 

behavior 

Sound sensor Monitoring changes in 

time of rumination 

reflecting  the cows 

comfort  

Bar-Shalom,  2008 



 

9 

 

Computer vision  
Computer vision can extract more information than a specific sensor (Chen et al., 2002). 

This is due to its ability to draw on a far richer blend of image components (including 

visible light, X-rays, ultrasound, and nuclear magnetic resonance), coupled with its 

flexibility as a tool for filtering and extracting the information that are the most relevant 

(Van der Stuyft et.al., 1991). Computer vision is used today in a wide variety of real-world 

industry applications such as shown in Table 3. 

 
Table 3- Examples of computer vision applications (Szeliski, 2008) 

Domain Applications Sensor 

Quality 
Control 

Machine inspection: rapid parts 
inspection for quality assurance 
measure. 
Retail: object recognition for 
automated checkout lanes 

Stereo  vision 
X-ray vision 
NIR 
Digital Camera 

Industrial 
sorting &Food 
quality. 

Meat \ Fruit \ Vegetables \ Fish \ Grain 
quality evaluation and ingredients.  

Microscopic Video 
camera, Digital Camera, 
Ultrasound, X-ray, NIR. 

Medical Real-time vision to detect pose of 
markers during surgical, Registering 
pre-operative and intra-operative 
imagery, Detecting tumors. 

Stereo vision 
X-ray vision 
 

Vehicle 
guidance 

Detecting pedestrians, or obstacles on 
the road.  

Video Camera 

Law 
enforcement 
and 
surveillance 

Advanced video surveillance, Post 
event analysis, Shoplifting, Suspect 
tracking and investigation. 

Digital Camera 
Video Camera 

Biometrics Using face recognition algorithms for: 
Drivers‘ licenses, Voter registration 

Digital Camera 
Thermal Infra-red 

Information 
security 
 

Personal device logon, Desktop logon 
Database security, Intranet security. 

Digital Camera 
Video Camera 
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Agriculture computer vision applications  
Computer vision holds potential for the agriculture industry because of its simplicity, 

noninvasive sensing ability and low cost (Chen et al., 2002). It has been used to define 

characteristics of fruits, vegetables, meat and fishes with color, size, shape and texture 

features that can be drawn from images (Ram, 2009). 

Gross et al., (2001) showed that the most progressive face recognition algorithms find 

difficulties dealing with wide range of variation including different viewing angle of the 

person face, illumination, occlusion, time delay between acquisition of gallery and probe 

images, and individual differences between different persons. Agriculture is 

characterized by large variation in both the environment and the objects: 

 Illumination, caused by different times along the day or different weather conditions 

(e.g., clouds, fog) 

  Different viewing angles caused by different poses of the object (fruit, or animal). 

 Time delay between images, animals and fruits change their appearance during 

time, due to randomness (wind, animal motion). 

 Individual differences between objects (fruit, or animal) due to their biological 

nature. 

Table 4 shows several examples of uses of computer vision in agriculture and the 

different size, shape, texture and color of the features extracted. 

 

Computer vision in livestock  
Nowadays, computer vision has been developed to a stage that it could possibly help a 

stockman by automating some of his routine tasks. Twenty two years ago, a review by 

DeShazer et al. (1990) identified over 90 potential applications for vision systems in 

livestock production simply by considering the tasks a stockman performs using his eyes. 

Table 5 shows examples of computer vision in livestock application. Those applications 

mainly aim to monitor the wealth of the animals and to reduce the stress causing by the 

traditional invasive examinations. The majority of applications regarding poultry and pigs 

brought in Table 5 are commercial while the lameness detection and BCS prediction for 

dairy cattle are not commercial yet. 
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Table 4- Examples of computer vision systems in agriculture 

Application Sensor Extracted features Source 

Pickling cucumbers 
classification 

NIR spectrometer 
Intensity reflectance of 
wavelength in range of 950- 1650 nm 

Ariana et al., 2006 

Olive classification Digital camera Size , Shape, Texture, Color, Defects Laykin et al.,2008 

Tomatoes classification Digital camera Color, color homogeneity, defects, shape Laykin et al.,2002 

Potato classification 
Digital camera and 
multispectral sensor 

intensity reflectance of 
wavelength in range of 450- 870 nm 

Noordam et al., 2005 

Ripened bananas 
sorting 

Digital camera 
 

brown area percentage, number of brown 
spots per cm2, homogeneity, entropy 

Mendoza & 
Aguilera, 2004 

Pomegranate sorting 2 Digital camera Color  Blasco et al., 2009 

Citrus sorting 
2 Digital camera & 
Illumination system 

3D Shape, size Blasco et al., 2009 

Grape Grading Digital camera homogeneity of surface 
Vazquez-Fernandez 
et al., 2009 

Measurement of Grains  Scanner Shape, Boundary identification 
Igathinathane et al., 
2009 

Watermelons quality 
determination 

NIR spectrometer 
Weight, Height, Internal defects, Sugar 
content, soluble solid contents 

Lee et al.,2008 

Disease detection in 
Greenhouse  

Scanner Color, texture, shape and size. Boissard et al., 2008 

Finding the optimal 
harvesting time of olive 
grove 

Digital camera Low 
Resolution-Nuclear Magnetic 
Resonance (LR-NMR) 

Size, shape, color and texture Ram, 2009 
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Table 5- Livestock applications using computer vision 

Application Sensor description source 

Fish sorting Digital camera 
The contour lines and the body‘s geometry 
characteristic were extracted in order to detect 
the fish type between three different classes      

Zion et al., 2006 

Social behavior of 
poultry 

Video Camera 
 Motion tracking used for tracking the route taken 
to feed by focal birds.  

Collins,  2008 
Dawkins et al., 2009 

poultry thermal comfort  Thermal camera 
Motion tracking used for classifying specific 
behaviors in different temperatures.  

Nääs et al., 2009 

Monitoring pigs thermal 
comfort 

Video Camera 
Motion tracking used to detect resting behavioral 
patterns. 

Shao & Xin, 2008 

Tracking piglets 
Video Camera 
 

Motion tracking used for detecting long period 
between piglets being born, or piglets being 
unable to find the sow's teats. 

McFarlane & 
Schofield, 1995, 
 Navarro et al., 2009 

Predicting pigs weight Video Camera 
The plan view area measured from images used 
to predict pig weight with an accuracy of 5 %. 

Schofield, et.al., 2005 
Schofield at al., 1999 

Describing pigs growth  Digital Camera 11 size Measurements of shape and size. 
Doeschl-Wilson 
Et.al., 2004 

Distinguishing between 
pig types and sexes 

Video Camera Measuring the plan view area. White et al., 2004 

Finding relationship 
between body weight 
and body measures in 
three different breeds of 
beef cattle 

Digital Camera 6 size Measurements of shape and size 
Ozkaya & Bozkurt,  
2008 
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Application Sensor description source 

Dairy cattle lameness 
detection 

Video Camera 
Measuring the distance between hoofs using 
edge detection 

Song et al., 2008 

Dairy cattle lameness 
detection 

Video Camera Fitting a circle to the back posture while walking.  Poursaberi et al., 2010 

Assessing energy 
requirements for cattle 
on pasture 

Thermal Camera 
Modeling the cattle heat losses and gains using a 
3D model of the animal 

Keren &Olson, 2007 

Pigs body condition 
scoring 

Stereo imaging 
system with six 
high-resolution and 
three flash units. 

Capturing 3D shapes in order to evaluate their 
body score from the images. 

Wu et.al.,2004 

Cow‘s body condition 
Digital camera  
Line laser 

Capturing 3D shape of the cows surface and 
extracting the body contour 

Pompe et al., 2005 

Cow‘s body condition Ultrasound 
distinguish between skin, sub dermal fat and 
muscle 

Mizrach et al., 1999 

Cow‘s body condition Digital camera 19 points were manually identified for describing 
the cow contour from the back side of the cow. 

Leroy et al., 2005 

Cow‘s body condition Digital camera 

Laser light 

Manually extraction of cow shape by spotting the 
laser light in the digital image 

Coffey et al., 2003 

Cow‘s body condition Digital camera 
Manually identification of 23 anatomical points 
describing the cows contour and computing the 
angles between those points 

Bewley et al., 2008 

Cow‘s body condition Thermal camera  Cow parabolic shape factor  Halachmi et al.,2008 

Cow‘s body condition Digital camera Manually identification of 23 anatomical points, 

and computing their principal components 

Azzaro et al., 2011 
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Computer vision in BCS  

2.1.2 Manually BCS from images 

Coffey et al., (2003) evaluated the possibility of scoring the cow's body 

condition by using digital images and a red laser light that created light lines 

across the tail head area of the cow. The light lines in the image allowed 

extracting manually a curve that represented the fat tissue around the tail head 

area of the animal. Results indicated that it is feasible to extract the shape of 

the hooks and the tail head area and to use this information in order to score 

the cows from those digital images and that those scores are correlated to BCS 

taken apart. Ferguson et al., (2006) evaluated the correlation between regular 

BCS and BCS taking from images of the rear of the cow at 0 to 20 degrees 

angle, similar to the photos in Table 1. Four observers scored cows both on live 

visit in the farm and from images. The mean of live BCS did not differ from the 

mean photo BCS. Correlation coefficients between BCS assigned live and from 

photos were 0.84, 0.82, 0.82, and 0.90 for observers 1 to 4, respectively and 

therefore it was concluded that body condition can be assessed by observers 

from images taken on the farm without visiting the farm. Bewley et al., (2008) 

identified 23 anatomical points representing the cow shape as shown in  

figure 7.The images were acquired automatically above the weighing station. 

The points were derived manually from images and transformed to an x/y 

coordinate system as shown in Figure 8. From the coordinates the angles of 

both sides of hooks and pins were calculated (overall 15 angels were 

calculated), and then two types of linear mixed models considering the effect of 

the angles and interaction between the angles were evaluated for BSC 

prediction. Results showed strong relationship between calculated angles and 

the BCS determined by experts. 

 
Figure 7- Twenty-three key anatomical 
points identified (Bewley et al., 2008). 

 
Figure 8- Twenty-three key anatomical points 
with x/y values (Bewley et al., 2008). 
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2.1.3 Automatic BCS from images 

Fitting cow's body shape to a parabolic curve using a thermal camera 

(Halachmi et al., 2008): 

Images were taken automatically from above the cows at a weighing station 

with a thermal camera. The hypothesis of the research was that fat cow's have 

a round contour similar to parabolic, and so for each cow it is possible to fit a 

polynomial and to calculate the mean absolute error (MAE) from her own 

contour. The thinner the cow, the larger the MAE will be as shown in Figure 9. 

The scoring model presented as: BCS= 5x 9x (1/MAE) where 9 is the best fit in 

the specific herd, 5 is the factor that normalize the score to a 1-5 scale. Matlab 

software was used for taking the images and fitting them with a polynomial, 

calculating the MAE and then providing a score on a 1-5 scale, advancing this 

process one more step toward full automation.  

 

 
 

Figure 9- On the left side an image of a thin cow and her parabolic fit and on the right 
side an image of a fat cow (Halachmi et al., 2008). 

 
A 0.89 correlation found between the scores of the model and scores taken 

manually and by ultrasound (Halacmi et. al, 2009). The results indicate that it is 

feasible to fully automate the BCS process. 

This M.Sc. study aims to build upon Halachmi (2008, 2009)‘s results using 

digital camera instead of a thermal camera which is less expensive and hence 

more attractive to industry. 
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Estimating BCS from digital images (Azzaro et al., 2011): 

The images were taken from above by a low cost digital camera. The 

researchers obtained a consistent shape representation by aligning the 

corresponding anatomical landmarks. The landmarks were selected according 

to Bewley et al., (2008) 23 anatomical points. The alignment of shapes was 

carried out by establishing a coordinate reference to which all shapes must be 

referred as shown in figure 10(a). First, shapes are translated to the origin 

(Figure 10b). Shapes are then rotated such that the left hook and the right hook 

have the same horizontal coordinate (Figure 10c). To perform translation and 

rotation of shapes, the middle point between the left hook and the right hook 

was taken into account. Finally, shapes are scaled to fit in a unit square (Figure 

10d)‖. After alignment, all the shapes referred to the same coordinate system 

centered into the origin. 

 

Figure 10- Anatomical landmarks in a cow body shape (a), shape translation (b), shape rotation 
(c), and shape scaling (d) (Azzaro et al., 2009). 

 

The researchers used this system in order to evaluate state-of-the-art BCS 

models such as the Bewley linear model, Halachmi parabolic model, and a 

model based on Principal Component Analysis (PCA).  

Results indicated that the Bewley model and the PCA models achieved lower 

mean error (0.3289 and 0.3059 respectively) than the parabolic model 

regarding the manual BCS. The results indicated that further research is 

needed in order to build a fully automatic system for BCS evaluation in which 

the shape of a cow will be automatically extracted through segmentation 
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procedure from digital images acquired with a low cost camera, and further 

research is needed for better estimation of BCS. 

Steps in computer vision 
Groover (2001) describes the operation of machine vision as a three step 

operation including acquisition and digitization of the image, image processing 

and analysis and finally interpretation of the image. 

Image acquisition: is accomplished by dividing the viewing area into a discrete 

matrix of the picture elements call pixels. This operation is conduct by the digital 

camera itself and a data acquisition card (Groover,  2001). 

Image processing and analysis: Before image processing some Pre-

processing is needed for clarification of the image and noise removal. 

Techniques such as High-Pass and Low-pass filters, median filters and 

morphological operations are productive (Sonka et al, 2007). After producing 

the new image, the image can be segmented. Segmentation techniques are 

aided to define and separate regions of interest in the image. Two of the most 

common segmentation techniques are Tresholding and Edge detection 

(Groover, 2001). Thresholding involves transforming the intensity values of the 

pixels to binary values according to a value determent according to the object of 

interest and the image characteristics (Sonka et al, 2007). The image values 

are naturally given from the camera in the RGB space, but they also can be 

transformed according to image characteristics to other types of three 

dimensional spaces such as HSV, HSI and Lab spaces (Zheng et al., 2006).It is 

possible to transform the image, in any color space, to a one-dimensional 

image by using relative values that emphasize the difference between the three 

dimensions (Bakker et al., 2008). 

Edge detection is a method for determining the boundaries and location of an 

object within his background. It is usually used following the threshold operation 

however; it can also include the threshold operation (Groover, 2001). Edge 

detection drastically reduces the amount of data to be processed while 

preserving useful structural information about the objet boundaries  

(Canny, 1986).The edges are defined as the set of points which after a smooth 

operation (Low-Pass filter) the norm of the gradient reach to local 

maximum(Catte et al., 1992). There are many edge operators in literature, the 
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most common ones use the first directional derivative such as Sobel  

(Cherry & Karim, 1984), Roberts (Robert, 1984) and Prewit  

(Cherry & Karim, 1984) andoperators that use the second derivative such as 

Laplacian and Gaussian operators such as canny (Canny, 1986). 

Following segmentation usually comes feature extraction procedures. The 

feature extraction procedures (such as Blob analysis) characterize the object in 

means of area, length, width, diameter, perimeter, orientation and center of 

gravity by using simple geometry on the binary image (Groover, 2001). For 

tracking piglets McFarlane & Schofield , 1995 (Table 5) used the fact that the 

piglet‘s skin is brighter than their background in order to reduce two sequential 

images and then threshold the background that had low intensity values. In 

order to monitor their movement they used Laplacian edge detector to track the 

movement of the piglet's edges instead of the whole object and finally to 

remove noises they used Blob analysis to extract only the features that 

resembled the geometry form of ellipse. For tracking lameness Song et al., 

2008 (Table 5) reduced two sequential images in order to segment the cows 

hoof and blob analysis was applied on the binary image in order to find the area 

and the center point of the hoofs. Zion et al., 2006 (Table 5) segmented fish 

from their background by threshold each band separately and applying the AND 

operator on the three binary images. By blob analysis the area of the fish, 

perimeter, orientation and the foremost pixel were extracted. 

Image interpretation (Zhang and Lu , 2003): There are mainly two 

approaches to shape representation, the region-based approach and the 

contour-based approach. Region-based techniques often use moment 

descriptors to describe shapes but, in many applications the internal shape is 

not as important as its contour. Contour -based techniques tend to be more 

efficient for handling shapes that are describable by their object boundary 

(Zhang and Lu, 2003). These techniques use a shape signature function which 

aims two create one dimension vector representing a two dimension shape.   

The most common shape signatures are: radial distances from the object 

centroid (Zhang et al., 2003), angular functions representing the changes in the 

directions of the contour (Zhan et al., 1972), and polar coordinate 

representations which combine the radial distances and the polar angle (Kunttu 

et al., 2007).  Zion et al., 2006 (Table 5) used the fish contour signature of polar 
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coordinates followed by Partial Least Square regression in order to compute the 

latent variable describing the variances between the contours and to classify 

their type. Zhang and Lu, 2003 suggested the discrete Fourier transform as a 

powerful tool for reducing noise sensitivity, for shape analysis of the chosen 

signature and in order to make the transformation of the shape invariant to the 

starting point (absolute values must be used). 
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3  Methods 

General overview 
Figure 11 illustrates the data collection, image processing and model development main 

steps.  All methods are detailed in chapter 3.2-3.7 and all algorithms are detailed in 

chapter 4. The selected algorithms in final model are marked in red. The motivation for 

selecting each algorithm is also detailed in chapter 4. 
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Figure 11- Research main steps 



 

21 

 

Image acquisition  
The images were collected in the ARO research farm at Bet Dagan, Israel between 

October 2011 and February, 2012. A Nikon D 7000 DSLR camera was located at the 

entrance of the milking parlor at 2.5 meter height. All images were taken at the noon 

milking.  The camera was activated manually from a PC via a USB cable by Nikon 

Camera Control pro 2 software (Nikon Corporation, USA, Appendix A. image acquisition 

software). Each time a cow entered through the parlor gate the camera was activated, 

and acquired six consecutive images in resolution of 1632X2464.  All images were 

downloaded to the PC (Appendix B .cow digital images) and processed off-line. The 

images for processing were selected manually by the following criteria: (1) the entire tail 

head area of the cow was above the red floor of the milking parlor entrance. (2) The tail 

head area was not connected to forging objects including other cows.  (3) The tail and 

legs were straightened.  Figure 12 demonstrate two selected images (on the top) and 

two images that weren‘t selected (bottom).  

 

Figure 12- Cows entering the milking parlor. Two selected images (top) and two not-selected 
images (bottom) 
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Database 
Two sets of data were collected by the same procedure mentioned above. A training 

data set was collected between October and December 2011 and was used for the 

development of the prediction model. A testing data set was collected in February 2012 

(Appendix B .cow digital images). The cows were photographed at eight different days 

in both the training set and testing set. The details of the two data sets are shown in 

Table 6 and all cows were manually scored by an expert (Appendix C. manual BCS).  

Table 6- Details of training and testing sets 

Data base No. of images No. of cows Collection date Expert scoring dates 

Training set 87 71 10.10.2011 

21.11.2011 

18-20.12.2011 

10.10.2011 

21.11.2011 

20.12.2011 

Test set 64 41 21-23.2.2012 22.2.2012 

 

Training set: The training set contains eighty seven Images of fifty nine different 

cows. The data (scores and images) were collected at three different dates (Table 6) 

and their scores distribution is given in Table 7 and Figure 13 (left). The majority of 

the scores are between 2-3, there are no extremely thin cows (below 2) and there is 

a small amount of very fat cows (around 4.5). 

Testing set: The testing data set included sixty four images of forty one different 

cows. The distribution of scores in the testing set is given in Table 7 and Figure 13 

(right). The majority of the scores are between 2-3 and between 3.5-4. Unlike in the 

training set, there are no very high scores (above 4.5) and there are two scores 

below 2.  As discussed in chapter 2.2, the manual scoring include some natural error 

which may limit the classification results. According to Ferguson et al., 2006 the 

natural human error for fat and very thin cows (BCS> 3.5 and BCS< 2.5) is 0.5 while 

for medium cows (2.5<BCS<3.5) the natural error is 0.25.  

Table 7- BCS distribution in training set and testing set 

BCS 
Data 

set 
1-2 2-2.5 2.5-3 3-3.5 3.5-4 4-4.5 4.5-5 Total 

Amount Training 0 32 26 13 5 6 5 87 

Percentage 
in data set 

Training 0.00% 37% 30% 15% 5.5% 7% 5.5% 100.00% 

Amount Testing 2 20 17 7 14 4 0 64 

Percentage 
in data set 

Testing 3% 31% 27% 11% 22% 6 % 0% 100% 
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Figure 13- BCS distribution in training set (left) and testing set (right)  

Image processing 

3.1.1 Segmentation 

Two different methods were tested for segmentation: (1) edge detection using 

common operators (Sobel, Roberts, Prewit and Canny) and (2) a second method 

which included three steps, the first step is transformation to different color masks, 

followed by applying the Otsu method (Otsu, 1979) for automatic selection of 

threshold from gray level histogram and subtraction of the proper background image 

(detailed in chapter 4.1.3). The best color mask was selected by univariate analysis 

of the threshold effectiveness followed by LSD post hoc testing. 

3.1.2 Image reconstruction 

The morphological operations in this stage were performed with Matlab‘s image 

processing functions: (1) ‗bwlabel‘- for objects labeling. (2)‘regionprops‘-for extraction 

of shape features of binary object (BW matrix) such as area, orientation, etc.  

(3) erosion and dilation - for removal of small objects and smoothing of the object.  

(4) ‗bwboundaries‘- for labeling holes inside the object  (detailed in chapter 4.1.4). 
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Image interpretation and feature extraction  
The information for BCS classification is contained in the object shape. Therefore, the 

contour of the tail head area was extracted, and the features for BCS classification were 

extracted directly and automatically from each contour (Table 8).The algorithms for 

extracting the features are detailed in chapter 4. 

Table 8- Feature extracted from tail head contour 

Feature name Description Source 

X, Y 
coordinates 

5 points given in X and Y coordinates 
representing the peaks and valleys of the 

Tail head area 

Bewley et al., 2008 

X Distances 5 distances between the points in X 
coordinate 

 

Y Distances 5 distances  between the points in Y 
coordinate 

 

Angles The angle of the triangles assembled 
from the 5 points 

Bewley et al., 2008 

1000 
Distances 

Vector 

The radial distance was computed from 
each point in the cow‘s contour to the 

center of the object 

Zhang and Lu , 2003 

 

Bewley et al., 2008 and Halachmi et al., 2008 suggested the hypothesis that rounder 

shape of the tail head area indicates higher BCS. Therefore, a wide angle between the 

peaks and valleys in the contour indicate a rounder contour implying a fatter cow with a 

higher score. On the other hand, high distance between the peaks and valleys in the 

cow contour indicate a thin cow and hence, the score is lower. 

In general, in this study we applied state-of-the-art methods with some differences 

caused by the automated process and by different approaches as detailed in the 

following: (1) only 5 anatomical points from Bewley's 23 anatomical points were 

extracted due to the fact that Bewley et al., 2008 did not use all points in his final model 

and since the hook area was difficult to extract automatically while the cow was walking. 

(2) the curvature of the tail head contour was computed with the 1000 distances vector 

instead of the polynomial fit of Halachmi et al., 2008.  

Regression modeling 

Prediction of BCS was achieved by developing a linear regression model. Two 

different types of features were taken for the development of the regression models: 

the first model used the anatomical points extracted from the contour.  The second 
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model used the vector of distances from the center object to each point in the 

contour. The distances were described by two forms: the first form is by producing a 

small number of latent variables that describe the majority of the variance data in the 

contour. The latent variables were derived using Partial Least squares Regression 

(PLSR).  The second form of describing the contour used the Fourier descriptors of 

the curve. The Fourier transform was conducted using Fast Fourier Transform (FFT). 

The most important Fourier descriptors were selected using Stepwise Regression.  

Features were selected by analyzing the correlation matrix of the different predictors 

with BCS and the model goodness of fit was examined by: R2, R2adjusted, Akaike 

information criterion (AIC) and the Bayesian information criterion (BIC). Cross-

validation was implemented using the „Leave One Out‟ procedure (Stone, 1974). 

Performance Analysis  

The model's performance was tested and validated on the observations taken from 

the testing data base which was collected between the 21th and the 23th of February. 

The model was also analyzed by its capability of distinguishing between BCS 

classes. Confusion matrices were calculated for the different classes. Due to (1) the 

inherent subjectivity of the golden reference (2) possibility large variations in the 

expert‘s golden reference, and (3) vague borders between classes; it was decided to 

assign artificially classes of scores. In practice, the main interest is in the BCS class 

and trend the absolute numerical value is meaningless. For example, it is important 

to know if the cow is thin, very thin, fat cow, etc and not if it has  a specific BCS of 

2.4, 2.5, and 2.6. Ferguson et al., 2006 recommended that in general, cows with 

BCS lower than 2.5 are too thin and cows with BCS higher than 3.5 are too fat. 

Therefore, actual classification results were derived for different class combinations 

including different borders between the classes. 

 Comparing with state-of-the-art methods: Azzaro et al., (2011) compared the 

performance of state-of-the-art methods for BCS predictions  

(Bewley et al., 2008, Halacmi et al., 2008, Azzaro et al., 2011).  

The comparison was based on calculating the average error between the models 

outputs and the manual BCS by: 

𝐵𝐶𝑆_𝑒𝑟𝑟𝑜𝑟 =
1

𝑁
  𝑀𝑜𝑑𝑒𝑙𝐵𝐶𝑆 𝑖−𝑀𝑎𝑛𝑢𝑎𝑙𝐵𝐶𝑆 𝑖 

𝑁

𝑖=1
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In order to compare the current model results with the state-of-the-art results the 

BCS error was calculated also as a performance measure. 

The repeatability of the model results was examined by calculating the standard 

deviation of five measurements of five cows measured on the same day. 

Classification modeling 
Instead of computing linear regression followed by classification (by creating the 

borders between BCS) in this model the BCS will be labeled as classes and then a 

classification model will be computed by Ordinal regression.  The Ordinal regression 

was conducted using the cumulative Logit link function: 

 

ln  
𝑝𝑟𝑜𝑏(𝑔𝑟𝑜𝑢𝑝𝑖)

1 − 𝑝𝑟𝑜𝑏(𝑔𝑟𝑜𝑢𝑝𝑖)
 = 𝛽0 + 𝛽1𝑋 

 

groupi  is the class that the BCS belongs, prob(groupi) is the probability of belonging 

to the group and, ln  
prob (group i )

1−prob (group i )
   is the link function. 

The selected classes were: thin cows (below 2.5, labeled as 1) medium-thin,  

(2.5-3, labeled as 2) medium-fat, (3-3.5, labeled as 3) and fat  

(above 3.5, labeled as 4). The model performance was evaluated by the error rate of 

the classification table. 

Sensitivity analyses  

The following sensitivity analyses were performed: 

 Different sizes of training data set:  both the training set and testing set were 

combined to one data set which contains 151 images and then new, randomly, 

calibration and validation sets were created. 

 Distribution of training set:  The BCS were divided to new, theoretical 1 to 7 

classes (1.5-2, 2-2.5, 2.5-3, 3-3.5, 3.5-4, 4-4.5, 4.5-5). Then, the 151 images 

data set was equally randomly, divided to two separate sets so the proportion 

of each category was identical in both the training and the testing sets.  

 Estimation of the sensitivity of the model to the imaging properties conducted 

by evaluating the difference in the model output under different: (1) image 

resolution -conducted with Matlab function ‘imreasize‘. The input of this 
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function is the original image and the new resolution desired. (2)  blurred 

image- conducted by creating a ―motion‖ filter by Matlab‘s function ‗fspecial‘ 

and then convolving it on the image. The direction of the filter was set to zero 

(to visualize the motion of cow going straight). Different sizes of the filter 

were evaluated. 
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4 Algorithms 

Image processing 

4.1.1 Edge detection  

Several common edge detection methods were applied (Sobel, Prewitt and Roberts, 

Figure 14). Qualitative analyses of results indicate that these methods have 

difficulties in finding the back-bone contour due to the many lines that appear in the 

images. It is very hard to distinguish between lines that represent the contour and 

lines that represent black & white stains. It seems that in order to solve this problem 

a color transformation is needed in order to eliminate the black and white stains of 

the cow. 

 

Figure 14- Edge detection operators: gray scale image (upper left), Sobel operator (upper right), 
Prewitt operator (bottom left) and Robert operator (bottom right)  

4.1.2 Color masks determination 

To automatically determine the threshold, the Otsu method (Otsu, 1979) was 

applied. This method looks for a separation between two groups that their centers 

are as far as possible and the variance inside the group is as small as possible. 

Therefore, it is needed to construct from the RGB image a gray-level image with a 

bimodal histogram. The aim is to find a suitable color space that separates between 

the floor and the rest of the picture. Twenty five different color masks (Table 9) were 

tested to derive an image with bimodal distribution of the pixel values. By looking at 

the images in Appendix D (color masks images) it is possible to see that in all 
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transformations that involve the H space the floor color is not homogeneous; hence, 

transformations 10, 13-18 were not considered. The Otsu method was applied with 

the Matlab function- Gray Thresh. This function returns the threshold value and the 

effectiveness of this threshold. Univariate analysis of variance was tested on sixty 

three images with the effectiveness of the threshold tested on the eighteen different 

color masks.  The results (Appendix E. color masks effectiveness statistic results) 

show that the difference in the threshold effectiveness between the color mask is 

significant. According to The LSD post hoc analysis (Appendix E. color masks 

effectiveness statistic results) the selected mask will be transformation 19 (C1) 

which is significantly different from the rest of the masks and has the highest mean 

effectiveness in the specific barn. 

4.1.3 Segmentation procedure 

The segmentation procedure involves the background image and the cow image.  

Each image is transformed to the R-G space and then transformed to gray level 

(values between zero and one) by the mat2gary function (Matlab) and followed by 

increase of the image contrast (Imadjust, Matlab). From these images the threshold 

is computed using Matlab‘s Gray thresh function. Figure 15 shows the original 

background image (upper left) and its gray level distribution (upper right). The pixel 

distribution is obviously not bimodal.  On the other hand, it is possible to see that for 

the transformed background image (R-G transform, middle left). The pixel values 

distribution is bimodal (middle right). The high values around 70 are the values of 

the pixels representing the red floor. On the bottom left the values of the 

transformed pixels are presented in gray level and in the bottom right the pixel 

values are presented after increasing the contrast in the image. In this stage the 

threshold is computed. The Otsu threshold for the specific image was computed as 

0.4. The result of the threshold operation is a binary background image. Figure 16 

illustrates the segmentation process which involves the subtraction of the two binary 

images (cow and background images). Figure 18 demonstrates an example of the 

segmentation procedure. The outcome of this procedure is a binary image 

containing two objects: the cow object and noise. Following segmentation, the 

image was reconstructed using morphological operations. 
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Table 9- The color space transformation 

Space 
Num 

Name Transformation 

 RGB RGB(1,2,3) 

1 R RGB(:,:,1) 

2 G RGB(:,:,2) 

3 B RGB(:,:,3) 

4 R R/(R+G+B) 

5 G G/(R+G+B) 

6 B B/(R+G+B) 

7 deltaR (R-G)+(R-B) 

8 deltaG (G-R)+(G-B) 

9 deltaB (B-G)+(B-R) 

10 H hsv(:,:,1) 

11 S hsv(:,:,2) 

12 V hsv(:,:,3) 

13 H H/(H+S+V) 

14 S S/(H+S+V) 

15 V V/(H+S+V) 

16 deltaH (H-S)+(S-V) 

17 deltaS (S-H)+(S-V) 

18 deltaV (V-S)+(V-H) 

19 C1 R-G 

20 C2 R-B 

21 C3 G-B 

22 C4 2G-R-B 

23 NDI1 (R-G)/(R+G) 

24 NDI2 (G-R)/(R+B) 

25 NDI3 (R-B)/(R+B) 
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Figure 15- Background image in RGB space (upper left) and its gray level pixel distribution 

(upper right). Background image of R-G transform (middle left), R-G pixel values distribution 
(middle right), pixel value distribution in gray level (bottom left), pixel values distribution after 

increasing of contrast and threshold computation (bottom right). 
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Figure 16- The segmentation procedure 

 

4.1.4 Reconstruction and Morphological operations  

After obtaining the cow‘s binary image the next step was to derive the body contour 

defined as the region of interest in the cow. In order to reach the body contour a 

blob analysis was conducted by using Matlab's BW matrix and the following 

features were extracted (Table 10). The procedure pseudo code is provided in 

Figure 17 and is conducted by three stages. First, noise was removed by selecting 

the biggest object in the image and then erosion and dilation were applied to reach 

a smooth binary cow (Figure 17 rows 1-7). In this stage, noise can appear due to 

many reasons such as secondary objects in the image caused by parts of another 

cow entered the frame, by another object in the background or on the cow‘s body 
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such as mud ―connected‖ to the cow object. The aim of the second stage (Figure 17 

rows 8-15) is to provide an image containing only the region of interest of the cow 

object and to eliminate orientation influence. Therefore, the object was rotated to 90 

degrees (rows 8, 9,15) and only the upper third part of the object was saved (rows 

10-14) in order to eliminate artificial cuts created in the segmentation by the 

background objects. The last stage (rows 16-19) involved removal of small objects 

and ―holes‖ elimination (by labeling them by bwboundaries function row 18) in the 

cow‘s body that may resulted from the segmentation procedure and previous 

operations. Figure 19 demonstrates the reconstruction and morphological process. 

The noises in the cow object (holes and connected objects) are marked by yellow 

circles. The result of this process is the tail head area of the binary cow. 

 A comparison between the automatic segmentation and manual segmentation was 

applied with Matlab‘s function impoly.  Figure 20 illustrates an example of the 

manual labeling (upper left) and its result (upper right). Visual analysis of the 

automated segmentation (Figure 20, bottom) indicated that it provides a smoother 

and more natural contour than the manual segmentation. 

Table 10- Feature extraction by BW-Matrix 

Feature Description 
 

Area Number of relevant pixels 

Orientation The angle  between the x-axis and the major axis 

of the ellipse that has the same second-moments 

as the Object 

Pixel list The coordinates of the pixels in the object 

Bounding Box The smallest rectangle containing the region. The 

bounding Box contains the length and width of the 

rectangle.  

X min   Represent the coordinate of the edge of the tail 

head. Minimum point of x-axis pixel list 
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Figure 17-Reconstrucion and morphological procedure 
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4.1.5 Demonstration of image processing procedures 

 Segmentation  

 

Figure 18- Example of the segmentation procedure  
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 Reconstruction and Morphological process  

 
Figure 19- Example of the reconstruction and morphological process  
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Figure 20- Example of manual segmentation (impoly function) and the automate result. Upper 

left- the manual labeling, upper right- manual segmentation result, bottom- the automate 
process result. 

 

Feature extraction 

4.1.6 Extracting the contour of the tail head area of the cow: 

  In order to eliminate the influence of size on image features, the contour was 

normalized to a given number of points by sorting the y coordinates and selecting the 

highest 1500 points, followed by interpolation to 1000 points and scaling them to a  

0-1 range that will represent the new cow curve.  The procedure is given in Figure 21 

starting from the extraction of the curve coordinates. The outcome of this procedure 

is the cow tail head area curve (Figure 21 row 11). Another feature extracted is a one 

dimensional vector representing the tail head area contour. This vector is extracted 

by assigning the center point as (0.5,0.5) and all distances on the normalized 

contour line are presented by the radial distance from the center. 
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Figure 21-Contour extraction and normalization procedure 

4.1.7 Distances and angles of the tail head anatomical points: 

 For each contour, the extreme points are computed by the following algorithm 

(Figure 22) first by smoothing the curve using the Savitsky-Golay algorithm (PLS 

toolbox, Eigenvectors Inc.) This algorithm receives the size of the window (in this 

case defined as 25 points) and the degree of the fitted polynomial (in this case 1). 

The smoothing allows easy selection of peaks and valleys. Due to noise that still 

may appear in the signal, the extreme points are selected in the surroundings of 100 

points. When more than 5 points were found, the algorithm uses the information on 

the order of points: Max point, Min Point, Max point, Min Point, Max point. For this, 

the algorithm sorts the peaks and valleys by their X coordinate and removes 

minimum points from the edges, if still there are more than two minimum points and 

three maximum points the algorithm seeks consecutive points of the same type and 

selects the maximum or minimum point correspondingly. The vertical and horizontal 

distances between those points are computed. In order to compute the five angles 
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representing the tail head area two more points are added by constructing a 

horizontal line from the valleys points to the contour line. If the algorithm cannot 

reduce the amount of points to 5 or finds less than 5 points, then the features are not 

extracted. Figure 22 shows an example of the sequence filtering. It is possible to see 

that from the three consecutive minimum points in the middle (marked in green, 

Figure 22 a) the selected point is the minimum point (Figure 22 b). Figure 22 c holds 

an example of a situation where five points cannot be extracted due to the tail 

orientation and therefore this image is not suitable for BCS extraction with this 

method. 

Figure 24 shows the outcome of applying the three procedures on the original cow 

image (Figure 24 a). Figure 24 (b) illustrate the outcome of the segmentation and 

morphological procedures. The peaks and valleys are marked in Figure 24 (c) in red 

and green respectively, and the points marked in pink are the points added for 

computing the angles. The distances and angles are shown in Figure 24 (e and f) 

and the 1D vector is shown in Figure 24 d. 
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Figure 22- Automatic extraction of tail head peaks and valleys 
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Figure 23- Example of extraction of the peaks and valleys. 7 points automatically extracted (a), 

5 remaining points after the sequence filtering (b), example of contour that points cannot be 
extracted due to bad tail orientation (c) 

 
 

 
 

 Figure 24-Original image (a) the segmentation outcome (b) the cows normalized curve (c) 1 
dimension cows curve signature (d) vertical and horizontal distances (e) angles (f) between 

peaks and valleys. 
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4.1.1 Describing the distance vector by latent variables: 

 The contour vector size is 1X1000 for each cow. Partial Least Square Regression 

(PLS toolbox, Eigenvectors Inc.) was applied to reduce the problem dimensions. The 

latent variables were selected using the ―Leave-One-Out‖ method (Stone, 1974) in 

order to avoid over fitting of the variables selected to the data. The number of latent 

variables was selected by the number that brings the root MSE of the validation 

(―Leave-One-Out‖) to minimum. 

4.1.2 Describing the distance vector Fourier transform: 

Figure 25 shows the one dimension contour vector of three thin (blue) and three fat 

(red) cows. It is possible to distinguish the low valleys of the blue curves, but it is 

also possible to distinguish the variance in their location, causing difficulty for 

identification. To overcome this problem we propose to use the Fourier descriptors of 

each curve. The Fourier transform was applied by using Matlab‘s Fast Fourier 

Transform command.  The Fourier transform allows to reduce the dimension of the 

problem by examining the descriptors that can reconstruct the cow contour. 

 

 
 

Figure 25-  3 thin cows (blue) and 3 fat cows (red) signature curve 
 

 Figure 26 suggests that by using only fifty Fourier descriptors it could be enough to 

reconstruct the cows curve. Ten descriptors are also sufficient to show the trend and 
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the curve is much smoother. The reconstruction was applied by the inverse fast 

Fourier transform. Before applying the transform a Low-Pass filter of moving average 

with a window of size of five was used in order to reduce noise in the data.   

Figure 27 holds an example of the absolute values of the Fourier descriptors derived 

from a cows curve. On the left side all 1000 descriptors are shown and for the 

majority of descriptors the value is around zero, except for the descriptors in the 

edges (the values in the edges are similar due to the symmetric of the Fourier 

transform) which are marked in red circle. The right side of Figure 27 shows, by 

zooming on the first 50 descriptors, that from the 10th descriptor the values drop 

almost to zero. This indicates that probably the first ten descriptors hold the majority 

of variance between fat and thin cows and therefore they will be taken in to 

consideration. Figure 28 shows the advantage in using the Fourier transform, by 

looking at the second to the tenth Fourier descriptors of four thin cows (BCS lower 

than 2.5, marked in blue dots) and four fat cows (BCS above 4, marked in red dots) 

the variance within the red group and the blue group and the variance between the 

group is much more obvious.   
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Figure 26- On the left side: a fat cow original 1D vector of distances from center (upper image) 
, and its reconstruction by 50 descriptors (in the middle) and 10 descriptors (bottom), in the 
right side: the same example for a thin cow. In all plots the X axis represents the index of the 

point in the contour. The  Y axis represents the distance of that point . 
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Figure 27- Left side: All 1000 Fourier descriptors (X axis) and it absolute value (Y axis).  Right 

side: Zoom in on the first 50 descriptors and their value 
 

 
 

Figure 28-  the  2-10 Fourier descriptors of 4 thin cows (blue) and 4 fat cows (red). 
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5 Results 

 

BCS prediction using anatomical points features  
  

Correlation analysis: The linear correlations between the anatomical point‘s 

features (ten distances and angles, Figure 24 e-f) and the BCS are shown in Table 

11.  The Y1, Y4, and Angle1-5 features were correlated with BCS (correlation higher 

than 0.5 are marked in red). The X1-X5, Y1-Y5, and Angle1-5 features were inter-

correlated (high correlations are marked in red).This is due to the fact that the 

obtained angles are based on the distances between the peaks and valleys and vice 

versa. 

Table 11- Multi correlation of anatomical points measurements  

  X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4 Y5 Angle1 Angle2 Angle3 Angle4 Angle5 BCS 

X1 1 0.2 -0.09 0.38 0.07 0.82 0.58 0.55 0.48 0.07 -0.65 -0.58 -0.62 -0.56 -0.76 
-0.42 

X2   1 -0.34 0.11 0.48 0.28 0.41 0.32 0.1 0.12 -0.14 -0.2 -0.23 -0.11 -0.2 
-0.2 

X3     1 -0.07 0.67 -0.07 0.11 0.26 -0.06 0.22 -0.15 -0.17 0.01 0.01 0 
0.01 

X4       1 0.02 0.51 0.44 0.51 0.82 0.26 -0.54 -0.5 -0.65 -0.73 -0.52 
-0.38 

X5         1 0.15 0.43 0.5 0.03 0.3 -0.25 -0.32 -0.18 -0.08 -0.16 
-0.15 

Y1           1 0.73 0.73 0.65 0.28 -0.81 -0.69 -0.74 -0.71 -0.86 
-0.52 

Y2             1 0.91 0.51 0.21 -0.81 -0.88 -0.71 -0.54 -0.67 
-0.49 

Y3               1 0.54 0.45 -0.77 -0.86 -0.72 -0.57 -0.63 
-0.44 

Y4                 1 0.22 -0.65 -0.56 -0.81 -0.89 -0.69 
-0.53 

Y5                   1 -0.27 -0.26 -0.28     -0.27 -0.2 
-0.19 

Angle1                     1 0.92 0.88 0.8 0.92 
0.7 

Angle2                       1 0.86 0.68 0.74 
0.63 

Angle3                         1 0.93 0.85 
0.75 

Angle4                           1 0.83 
0.72 

Angle5                             1 
0.69 

 

Modeling: The prediction model using linear regression (Table 12 and Appendix F. 

anatomical points results) suggests that: (a) The difference between model 2 (R2=0.56, 

the outcome of the Forward or Stepwise methods) and model 1 (R2=0.65 the Backward 

method) is minor (the R2 adjusted and AIC are better in model 1 and BIC is better in 

model 2). In both cases the results are poor and can be explained by the strong 

correlation between the features. (b) The coefficients estimates (Appendix F. anatomical 
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points results) indicate that as the distance increases, the score decreases, and the 

angles have opposite influence on the scores. These results fit the research assumption. 

Model 3: Although the cow contour supposes to be symmetric the anatomical point‘s 

locations do not always indicate this. Therefore, another model that uses the average 

distance and angles from both sides of the tail head was tested. The results of this 

model do not show BCS prediction improvement. The AIC and BIC show improvement 

from model 2 (lower values) but, the R2 adjusted is lower. 

 

Table 12- Linear Regression for anatomical points features 

Model 
no. 

Features Method Variables in 
Model 

R2
 R2

 
adj 

AIC
1 

BIC
2 

P.Value 

1 5 Angles and 
10 distances 

Backward X2, Y3, 
Angle2, 
Angle4 

0.65 0.62 104 118.3 <0.01 

2 5 Angles and 
10 distances 

Forward\ 
Stepwise 

Angle3 0.56 0.55 108 116 <0.01 

3 Average 
Angles and  

distances 

Forward\ 
Stepwise\
Backward 

Average 
AngleIn (1,3),  
Average 
AngleOut 
(4,5) 
Average 
height(Y1,Y4) 

0.61 0.6 101 113.5 <0.01 

1 Akaike information criterion   

2 Bayesian information criterion  

BCS prediction using automatically extracted cow-contour  
 Figure 29 shows that when selecting more variables, the error on the calibration set 

(calculated by root MSE) reduces monotonically (green line), the error of the 

validation (the leave one-out method) reaches a minimum value (around 0.5) in three 

variables and then the error increases dramatically. Therefore, the number of 

variables selected for the model  was three. The results of the Linear Regression of 

the three variables did not indicate improvement in predicting BCS. The R2 on the 

calibration set was 0.6 and with “Leave-One-Out” method the R2 value drops to 

0.486 (Appendix G. PLS results). Pre-processing methods available by PLS toolbox 

such as smoothing, scaling and derivative of the contour did not improve the model 

results. 
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Figure 29-Latent Variable selection by Root MSE on calibration (green line) and Leave one out 

method (blue line) 
 

BCS prediction using by Fourier Transform of the contour  
 
 Correlation analysis:  A Pearson correlation matrix (Table 13) between BCS and 

the Fourier descriptors (F1…F10) indicates that nine descriptors (except F1) have 

negative connection with BCS. In general, there are no descriptors with high 

correlation (the highest correlation is achieved by the fifth and six descriptors) with 

BCS. On the other hand, there is no high cross correlation within the Fourier 

descriptors indicating that a linear combination between them can be useful.   

 

Table 13- Cross correlation between BCS and the first ten Fourier descriptors 

  BCS F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

BCS 1.00 0.47 -0.15 -0.09 -0.39 -0.52 -0.59 -0.35 -0.30 -0.11 -0.02 

F1   1.00 -0.77 -0.79 -0.19 -0.81 -0.13 0.39 -0.06 -0.10 -0.10 

F2     1.00 0.65 0.16 0.60 -0.01 -0.49 -0.08 0.05 0.07 

F3       1.00 -0.03 0.36 -0.35 -0.59 0.08 0.05 0.01 

F4         1.00 0.15 0.06 -0.01 0.39 0.05 -0.28 

F5           1.00 0.47 -0.21 -0.03 0.12 0.26 

F6             1.00 0.38 -0.15 0.09 0.21 

F7               1.00 0.04 -0.27 -0.14 

F8                 1.00 0.24 -0.21 

F9                   1.00 0.25 

F10                     1.00 
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Modeling: A linear model of the absolute value of the first ten descriptors by using 

forward, backward and stepwise regression was performed in SPSS. Table 14 (and 

Appendix H. Fourier transform model results) suggests that the two models modified 

are similar with a very small advantage for model 1 (higher R2, and the lower AIC 

and BIC).  

The backward model (Eq .1): 

 
The stepwise model (Eq .2): 

 

Table 14- Linear Regression for Fourier descriptors 

Model Method Variables in 

Model 

R2
 R2

adj 

R2
 (Leave-

One-Out) 

AIC
1 

BIC
2 

P.Value 

1  Backward 

Regression  

F3-F8  0.77  0.

75  

0.732  79  98 <0.01 

2  Stepwise \ 

Forward 

Regression  

F1,F3,F4,F6, 

F7, F8  

0.76  0.

75  

0.732  80  99 <0.01 

1 Akaike information criterion   

2 Bayesian information criterion  

 

 

Figure 30 demonstrates the correlation between the BCS observed manually by the 

expert and the model output (Eq.1). The Pearson correlation is 0.77. 53% of scores 

were classified correctly within the range of 0.25, 82% were classified within the 

range of 0.5, 98% within the range of 0.75 and 100% were within the range of 1.  

Model assumption: By examining the residuals distribution and the residuals 

scattering of model 1 (Appendix H) the model assumptions can be satisfied. The 

residuals do not show any trend and are normally distributed, indicating that a linear 

model is suitable for the problem.  

 Model meaning: It is possible to see in model 1 that for a cow with a straight line 

(zero frequency) the score will be 6.4. Although this score, and a constant curve are 

impossible, implying that any addition of curvature (frequency) to the cows contour 

will directly reduce BCS. These results confirm the research assumption. In model 2 
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the constant is lower (3.6) due to the fact that the only variable with positive 

connection to BCS (F1, Table 13) has entered the model.  

Feature selection:  The best feature for BCS prediction seems to be the cow‘s tail 

head area contour presented as the radial distances from its center. The best form to 

describe the vector is by Fourier descriptors which are uninfluenced by the peaks 

and valleys locations. Finally, it seems that the first ten descriptors hold the majority 

of information in the curve, meaning that they are the most important features for 

BCS prediction. Combining the anatomical points features together with the Fourier 

descriptors into one model did not change the results since the anatomical points 

features (in backwards, stepwise or forward methods) always excluded out of the 

model (Appendix I. combined Fourier descriptors and anatomical points model 

results ).   

Both models were evaluated on the testing set. The performance analysis was 

conducted on model 1- The model that achieved higher scores on the testing set 

(chapter 4.5). The PLS method was also applied on the entire set of Fourier 

descriptors. The results (Appendix J. PLS of Fourier descriptors model results) were 

not different (R2: 0.77 and by R2 of Leave-One-Out: 0.73 by using 5 Latent variables) 

suggesting that due to simplicity of the model the PLS method in addition to the 

Fourier descriptors is not necessary in this case. 

 
Figure 30- Correlation in training set between the model output (model 1, Y axis) and the 

manually BCS (X axis). The red line is the linear fit line and the green line is 1:1. 
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R2 = 0.771
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Validation 
The R2 between the expert results and BCS computed by model 1 is 0.643 and 0.6 

for models 1 and 2 respectively (Figure 31, Appendix K. Testing results). The focus 

from now on will be on model 1 only, since it yields higher performance for both sets. 

The correlation is of course lower than in the training data set (calibration), but the 

difference is not large (0.643 vs. 0.77). Table 15 shows evaluation of the model 

errors: in more than half of the observations the error rate is bigger than 0.25, which 

represents one digression in Ferguson scale.  For two and three digressions (0.5 and 

0.75) the classification percentage climes to 72% and 94% respectively. None of the 

cows were scored with an error rate bigger than 1. 

 
Table 15- Evaluation of error rate on testing set 

Error range 0-0.25 0-0.5 0-0.75 0-1 

Amount 37 18 4 0 

Classified 
percentage 43% 72 % 94% 100% 

 

 
Figure 31- Correlation in testing set between the model output (model 1, Y axis) and the 

manually BCS (X axis). The red line is the linear fit line and the green line is 1:1. 
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Model performance 
The results of the different borders are shown in Tables 16-21 and Appendix L 

(classification tables).  From Table 16 and 17 we can derive that the model has high 

ability to distinguish between cows with BCS higher than 3 and lower than 3. This 

ability stays similar for both the training and testing sets. The model classified 

correctly almost 95% of cows below the score of 3 and 83% of cows that were above 

the score 3 for the training set and respectively 90% and 84% for the test set.  

In Tables 18 and 19 the borders were constructed for gaps of one (1-2,2-3,3-4,4-5). 

Table 18 shows that in the training set, the majority of cows were classified correctly 

and that the distances of errors were not more than one category (none of the cows 

in category 4-5 were classified as 2-3 and vice versa). Table 19 indicates similar 

performances on the testing set: the majority of cows were classified correctly and 

that the distance of errors were not more than one category (for example, none of 

the cows in category 3-4 were classified as 1-2 and vice versa) but, all of the cows 

between 4-5 were classified as 3-4. 

In Tables 20 and 21 four classes are presented: thin cows (below 2.5) medium-thin 

(2.5-3) medium-fat (3-3.5) and fat (above 3.5). In the training set (Table 20) one cow 

was miss-classified by more than one category (classified as 2.5-3 instead of 3.5-5) 

and in the testing set (Table 21) two cows were misclassified by more than one class 

(classified as 1-2.5 instead of 3-3.5 and classified as 2.5-3 instead of 3.5-5). 

However, the weakness of the model performance can be noticed in the model‘s 

output of class 2.5-3, where the cow‘s actual class according to manual classification 

comes from all four classes (48% and 52% of cows who were classified as 2.5-3 in 

the training and testing respectively, were actually miss-classified. see column 2 in 

Tables 20-21). In addition, in the testing set (Table 21) the problem of classifying fat 

cows is more obvious, where the majority of fat cows (above 3.5) were classified as 

3-3.5. If we take, for instance, the eleven cows that were miss-classified as 2.5-3 

(instead of 2-2.5 in the training set, Table 20) six of them were actually very close to 

their real class (less than 0.25 from the class border) with three out of six with a 

distance of approximately 0.1 from their real class. This implies that prediction ability 

is high despite the errors in exact class assignment which is problematic as 

discussed before since the borders between classes are not really well defined and 

the manual classification is also limited by its natural errors. 
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 In Appendix L (classification tables) we present a classification table with a gap of 

0.5 and 0.25 between classes. On the 0.5 gap, it is possible to notice that in both the 

training and testing sets only two cows were miss-classified with a distance of two 

classes; on the other hand, in the testing set, cows that were classified as 2.5-3 were 

originally from scores between 2- 4, and the majority of cows that were classified as 

3-3.5 were actually manually scored as 3.5-5. When classes are set with very fine 

resolution (0.25, Appendix L), the classification rate drops (the majority of predictions 

are not in the diagonal of the table), especially in the high scores where the variance 

of errors is bigger. Misclassification by more than one class (which implies a 

prediction error of 0.50) is 25% and 45% in training and testing set respectively 

implying that larger data set is needed for improvement in the accuracy of predicting 

small resolution BSC. 

 
Table 16- Training set classification results of cows above and below 3 

  
 Manual  BCS category observed by expert 

  
  
  

Model output category 

Total 

1-3 3-5 

 1-3 Count 55 3 58 

% within BCS category 94.8% 5.2% 100.0% 

% within Model output category  91.7% 11.1% 66.7% 

    
3-5 Count 5 24 29 

% within BCS category 17.2% 82.8% 100.0% 

% within Model output category  8.3% 88.9% 33.3% 

    
 

 

Table 17- Testing set classification results of cows above and below 3 
 

Manual  BCS category observed by expert 

 Model output category 

Total       1-3 3-5 

 1-3 Count 35 4 39 

% within BCS category 89.7% 10.3% 100% 

% within Model output category  89.7% 16.0% 60.9% 

    3-5 Count 4 21 25 

% within BCS category 16.0% 84% 100% 

% within Model output category  10.3% 84% 39.1% 
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Table 18- Testing set classification results of cows between groups (2-3,3-4,4-5)  

      Model output category 

Total 
  

 Manual  BCS category observed by expert 

  
2-3 3-4 4-5 

 

2-3 Count 55 3 0 58 

 
% within BCS category 94.8% 5.2% 0.0% 100.0% 

 
% within Model output category  91.7% 14.3% 0.0% 66.7% 

      3-4 Count 5 13 0 18 

 
% within BCS category 27.8% 72.2% 0.0% 100.0% 

 
% within Model output category  8.3% 61.9% 0.0% 20.7% 

      4-5 Count 0 5 6 11 

 
% within BCS category 0.0% 45.5% 54.5% 100.0% 

 
% within Model output category  0.0% 23.8% 100.0% 12.6% 

       

 
 
 

Table 19- Testing set classification results of cows between groups (1-2,2-3,3-4,4-5) 
  
  

Manual  BCS category observed by expert 

  
Model output category 

  

Total       1-2 
2-3 3-4 4-5 

 1-2 Count 1 1 0 0 2 

% within BCS category 50.0% 50.0% 0% 0% 100.0% 

% within Model output category  25.0% 2.9% 0% 0% 3.1% 

      2-3 Count 3 30 4 0 37 

% within BCS category 8.1% 81.1% 10.8% 0% 100.0% 

% within Model output category  75.0% 85.7% 16.0% 0% 57.8% 

      3-4 Count 0 4 17 0 21 

% within BCS category 0% 19.0% 81.0% 0% 100.0% 

% within Model output category  0% 11.4% 68.0% 0% 32.8% 

      4-5 Count 0 0 4 0 4 

% within BCS category 0% 0% 100.0% 0% 100.0% 

% within Model output category  0% 0% 16.0% 0% 6.3% 
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Table 20- Training set classification results of thin-medium and fat cows 

 
 

Manual  BCS category observed by expert 

 
 

Model output category 

Total  2-2.5 2.5-3 3-3.5 3.5-5 

 2-2.5 Count 21 11 0 0 32 

% within BCS category 65.6% 34.4% 0.0% 0.0% 100.0% 

% within Model output category  77.8% 33.3% 0.0% 0.0% 36.8% 

      2.5-3 Count 6 17 3 0 26 

% within BCS category 23.1% 65.4% 11.5% 0.0% 100.0% 

% within Model output category  22.2% 51.5% 23.1% 0.0% 29.9% 

      3-3.5 Count 0 4 7 2 13 

% within BCS category 0.0% 30.8% 53.8% 15.4% 100.0% 

% within Model output category  0.0% 12.1% 53.8% 14.3% 14.9% 

      3.5-5 Count 0 1 3 12 16 

% within BCS category 0.0% 6.3% 18.8% 75.0% 0.0% 

% within Model output category  0.0% 3.0% 23.1% 85.7% 0.0% 

      
 

Table 21- Testing set classification results of thin-medium and fat cows  
  
  

Manual  BCS category observed by expert 

  
Model output category 

  

Total       1-.2.5 2.5-3 3-3.5 3.5-5  

1-2.5 Count 14 8 0 0 22 

% within BCS category 63.6% 36.4% 0% 0% 100.0% 

% within Model output category  77.8% 38.1% 0% 0% 34.4% 

      2.5-3 Count 3 10 4 0 17 

% within BCS category 17.6% 58.8% 23.5% 0% 100.0% 

% within Model output category  16.7% 47.6% 21.1% 0% 26.6% 

      3-3.5 Count 1 2 4 0 7 

% within BCS category 14.3% 28.6% 57.1% 0% 100.0% 

% within Model output category  5.6% 9.5% 21.1% 0% 10.9% 

      3.5-5 Count 0 1 11 6 18 

% within BCS category 0% 5.6% 61.1% 33.3% 100.0% 

% within Model output category  0% 4.8% 57.9% 100% 28.1% 

      
 

BCS error (Azzaro et al., 2011):  The average of the absolute error between the 

model output and the manual BCS in the training and testing sets were 0.285 and 

0.34 respectively with a combined average error of 0.31.  
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Classification model 
 

The BCS classes were: thin cows (below 2.5, labeled as 1); medium-thin (2.5-3, 

labeled as 2); medium-fat (3-3.5, labeled as 3) and fat (above 3.5, labeled as 4). 

The model was modified by backward regression in SPSS software by using the 

training set and was validated by the testing set.  From the parameter estimation 

table (Table 22) it is possible to see that the variables entered to the model are F3, 

F4, F6, and F7 the three equations can be presented as: 

 

 

 

 

 

The probability for each group can be computed by: 
 

 
 

 

 
 

Table 22- Parameter estimation of ordinal regression 

Parameter B 
Std. 
Error 

95% Wald 
Confidence Interval Hypothesis Test 

Lower Upper 

Wald 
Chi-

Square df Sig. 

Threshold [BCS_ordinal=1.00] -20.866 3.2423 -27.221 -14.511 41.416 1 .000 

[BCS_ordinal=2.00] -18.229 3.0233 -24.155 -12.304 36.356 1 .000  

[BCS_ordinal=3.00] -16.049 2.7949 -21.527 -10.571 32.971 1 .000 

F3 -.188 .0364 -.260 -.117 26.845 1 .000 

F4 -.184 .0358 -.254 -.113 26.249 1 .000 

F6 -.494 .0858 -.663 -.326 33.188 1 .000 

F7 -.526 .1097 -.741 -.311 22.995 1 .000 

(Scale) 1
a
             

 

The classification results of the Ordinal regression for the training set and testing set 

are presented in Tables 23 and 24 respectively.  

  

𝑃𝑟𝑜𝑏 𝐺𝑟𝑜𝑢𝑝3 =Prob(𝐺𝑟𝑜𝑢𝑝2OR 𝐺𝑟𝑜𝑢𝑝1 𝑂𝑅 𝐺𝑟𝑜𝑢𝑝3 ) − 𝑃𝑟𝑜𝑏(𝐺𝑟𝑜𝑢𝑝2𝑂𝑅 𝐺𝑟𝑜𝑢𝑝1) 
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Table 23- Training set classification results by Ordinal regression of thin-medium and 

fat cows 
  

Manual  BCS category observed by expert  Model output category 

Total     1-2.5 2.5-3 3-3.5 3.5-5 

 1-2.5 20 12 0 0 32 

2.5-3 8 16 2 0 26 

3-3.5 1 7 2 3 13 

3.5-5 0 0 3 13 16 

Total 29 35 7 16 87 

 
Table 24- Testing set classification results by Ordinal regression of thin-medium and 

fat cows 
  

 Manual  BCS category observed by expert Model output category 

Total     1-2.5 2.5-3 3-3.5 3.5-5 

 1-2.5 14 7 1 0 22 

2.5-3 6 7 3 1 17 

3-3.5 1 2 3 1 7 

3.5-5 1 4 8 5 18 

Total 22 20 15 7 64 

 

The results of the linear regression model are better than the results achieved by the 

classification model for both the training and testing sets (in Table 20: 57 BCS were 

classified correctly while in Table 23 only 51 cows were classified correctly; Table 21: 

34 BCS were classified correctly while in Table 24 only 29 cows were classified 

correctly).  Moreover, it seems that there are more miss-classifications with 

distances of two classes: in Table 21 there are no fat cows (3.5-5) that are classified 

as thin (1-2.5) and only one fat cow is classified as 2.5-3 while in Table 24 one fat 

cow is classified as 1-2.5 and four fat cows were classified as 2.5-3.  
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Model repeatability 
Table 25 shows the BCS and its standard deviation given by the model for five 

different images of each cow. It is possible to notice that the biggest deviation is 

0.21- smaller than one digression in Ferguson scale (0.25). In Figure 32 Each cow 

represented in a different color.  The estimates of covariance parameters were 

generated from a linear-mixed-model (Table 26) showing that the variance between 

cows (0.201) is more than 12 times bigger than the variance within cows (0.016). It is 

important to clarify that the repeatability of the process highly depends on correct 

selection of the images. 

Table 25- BCS repeatability for each cow and its standard deviation 

num 2984 3186 3071 2579 3117 

1 2.29 3.22 3.65 2.67 2.57 

2 2.63 3.12 3.66 2.46 2.54 

3 2.85 3.11 3.66 2.67 2.85 

4 2.74 3.11 3.66 2.77 2.62 

5 2.64 3.12 3.65 2.8 2.54 

Std 0.21 0.05 0.01 0.13 0.13 

 

 

 
Figure 32- The BCS computed for 5 different images of 5 cows taken in the same day  

 

Table 26- Variance within cows and between cows 
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Sensitivity analyses 

5.1.1 Influence of the training data set size: 

Table 27 shows the Pearson correlation of the calibration and validation results with 

the BCS taken manually, and the variables combining the model. All models, as the 

original model (1) were modified by backward elimination.  In general, all models 

results with minor changes in the model performance and variables combining the 

model (Table 27) implying that the original model is reliable. Results indicate that the 

usage of the first, the ninth and the tenth Fourier descriptors may cause over-fitting 

of the model, due to a major drawback of the validation results (models 2-4, 5, 7).  

The results especially indicate that the second descriptor, that was not included in 

model 1, may contribute to the model performance (model 6,9-11), implying that 

further collection of data and modifying a model from more observation may improve 

the model results. It is interesting to mention that unlike the rest of the coefficients of 

the Fourier descriptors, the coefficient of the second descriptor is positive, indicating 

that combining it to the model may improve the model performance on fat cows.   

 
Table 27- Estimation of influence of training data size on the model modified  

Num Training 

size 

Actual 

size 

R2 

calibration 

R2 

Validation 

Variables in 

the model 

1- Original 

data 

57.6% 87 0.77 0.64 F3…F8 

2 15% 27 0.81 0.43 F1,F2,F8,F7 

3 15% 21 0.77 0.25 F1,F2,F6,F10 

4 15% 21 0.85 0.49 F1,F7,F8,F9 

5 50% 77 0.80 0.63 F2…F9 

6 50% 69 0.75 0.73 F2…F7 

7 50% 74 0.77 0.59 F2…F7,F9 

8 80% 123 0.73 0.86 F2…F8 

9 80% 126 0.75 0.74 F2…F8 

10 80% 126 0.76 0.67 F2…F8 

11 100% 151 0.75 - F2…F8 
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5.1.2 Influence of the distribution of the training and testing sets 

The training set and validation set were not identically distributed (Table 7); for 

instance, in the training set there are no cows below 2 (the testing set has two cows 

with values below 2) and on the other hand, there are five cows above 4.5 in the 

training set and none in the testing set. If identically distributed sets could have being 

monitored, perhaps a different model would have been derived. The random creation 

of identical distributed sets was applied three times- each time a new training and 

testing set were created.  

Figure 33 shows an example of the new separation between the training set (on the 

left side) and the testing set (right side). Table 27 shows the results of the models 

derived by the three different datasets. 

 

Figure 33- Randomly sepration of equal distrbuted training (left side) and testing (right) sets 
 

Table 27- Estimation of influence of training data size on the model modified.  

Num R2 

calibration 

R2 

Validation 

Variables in the 

model 

1- Original 

data 

0.77 0.64 F3…F8 

2 0.78 0.68 F2..F8,F10 

3 0.68 0.76 F1,F2,F4,F6,F7,F8 

4 0.73 0.75 F2…F8 

 

The different training sets did not produced models that are different in their essence. 

All variables coefficients are negative except F1 and F2.  Similar to the conclusions 

related to the influence of size evaluation it is possible to see that F10 and F9 do not 

contribute to the model performance; on the other hand, again, it seems that F2 

(which has positive coefficient) contributes to the model stability and performance 

(model 4 which show high results on both training and testing sets).    
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5.1.3 Influence of different resolutions and blurred images 

Table 28 shows that the model is very sensitive to changes in the image resolutions. 

All Parried t-tests in Table 28 show significant difference from the original output. On 

the other hand, for resolutions that did not cause damage to the image (by changing 

dramatically the proportion of the image, set 2, 4, 5, 6) the Pearson correlation 

shows that a new calibration may be needed in order to obtain similar results as in 

the original images. Table 29 indicates that the model is not sensitive to blurring. 

Only for very intensive blur (set 4) the Parried t-test shows difference (Sig. 0.08) in 

the model outputs. Figure 34 shows an example of the blurring created by the 

―motion‖ filter; it is possible to see in the bottom right that for a very big filter (set 4) 

the image is damaged and the correlation with the original output drops to 0.39. 

Table 28- Influence of different resolutions on model output 

Set Resolution Resolution 

ratio 

Parried t-test 

Sig. 

Pearson 

Correlation 

Original image 1632X2464 0.66   

1 1400X1800 0.77 0.00 0.67 

2 1400X2100 0.66 0.00 0.78 

3 1500X1000 1.5 0.00 0.26 

4 1500X2000 0.75 0.00 0.84 

5 1600X2200 0.72 0.00 0.94 

6 1600X2000 0.8 0.00 0.87 
 

Table 29- Influence of blurring on model output 

Set Filter size 

 

Parried t-test 

Sig. 

Pearson 

Correlation 

1 1X20 .430 .980 

2 1X40 .440 .970 

3 1X80 .440 .870 

4 1X160 .080 .390 
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Figure 34- Blurring example with different filter sizes: on upper left- original image, upper 

right- 1X20, bottom left- 1X80, bottom right- 1X160.   
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6 Discussion, conclusions and future research 
 

Three different models (based on anatomical points, PLS and FFT) were evaluated 

for automatic evaluation of the dairy cow's BCS using automatic segmentation and 

feature extraction computer vision methods. The best model for describing BCS 

was based on Fourier descriptors of the one dimensional curve of the cow's 

contour. The linear prediction model resulted in R2 of 0.77 and 0.65 respectively for 

the training and testing databases. For both training and testing sets approximately 

95% of the cows were classified correctly within a range of 0.75 and none of the 

cows were scored with an error rate bigger than 1. In addition, the model showed 

high ability to distinguish between thin, medium and fat cows. These results indicate 

the feasibility of using the model as a management tool for monitoring the status of a 

group of cows by emphasizing trends and changes in their body condition. For 

example, by applying the model to a herd, if 30% of the cows have moved between 

classes during a certain period this can indicate a health problem, influence of 

dietary change, etc.    

 

Comparing results with state-of-the-art models: Prediction results are presented 

in the literature using different performance measures (average error rate (Azzaro et 

al., 2011), R2 (Halacmi et al., 2008), classification (Bewley et al., 2008). There is no 

common method to evaluate performance.  

The average error rate tested by Azzaro et al., (2011) for the state-of- the-art BCS 

prediction models obtained 0.98 average error for the parabolic model designed by 

Halachmi et al., 2008, 0.32 average error for the angles computed from 23 

anatomical points model designed by Bewley et al., 2008 and 0.31 for the PCA 

model (of 23 anatomical points, suggested by Azzaro et al., 2011). The model 

developed in this thesis which is based on the FFT transform obtained an average 

error rate of 0.34 on the testing set implying that the proposed model is as good as 

state-of-the-art models. However, it is advent since  it does not require manual 

labeling of points in the cow image. It is important to clarify that the  average error 

rates stated in the different studies were tested on different data sets which  may 

limit the comparison results. 

Halachmi et al., 2009 measured the parabolic model performance by R2. The model 

developed in this thesis showed weaker results under this measure (0.77 vs. 0.89). 
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However, the parabolic model (Halachmi et al., 2009) was conducted with a thermal 

camera which allows better extraction of the entire body of the cow (including the 

hook area). However, it is a more expensive device.  

 Bewley et al., 2008 showed that the model based on the angles of 23 anatomical 

points classified correctly 100% of the scores within 0.5 range and 93% within range 

of 0.25.  In the method presented in this thesis around half of the observations were 

miss-classified within the range of 0.25 (42% and 58 % in the training and testing set 

respectively) 82% were classified correctly within 0.5 (in testing set- 74%). Potential 

reasons for the weaker results are: (1) in addition to the tail head Bewley et al. (2008) 

used the hook area which was impossible to extract automatically under our 

research conditions. (2) Bewley et al. (2008) applied his methods manually which 

could improve the contour points as compared to our automatic procedures. 

Image processing: The color of the background can change in different barns which 

may lead to a different color transformation, but the essence of the process will be 

the same. Hence, implementation of such a tool must include installing a best-fit 

background and its calibration, a common procedure in computer vision applications.   

Contour extraction: The cow contour was extracted by selecting the highest 1500 

points followed by interpolation to 1000 points (Chapter 4.2.1). Since the camera 

was not always located at the same position (distance and angle) 1500 points were 

selected as the number of points that are sufficient for describing the entire tail head 

area in any case. In order to eliminate the variance between images taken at 

different days the 1500 points were interpolated to 1000 points. It is important to 

clarify that the Fourier transform calculation is influenced by the size of the vector 

transformed. This implies that, selecting a different vector size will cause changes in 

the Fourier descriptors values. Hence, changes in vector size will require new model 

calibration.  

Feature selection: The best feature proposed for BCS prediction was the vector of 

Fourier descriptors of the cow curve. The FFT is a well known method used in many 

image processing applications. The main advantage of FFT over the PLS method is 

that it is not influenced by the location of the peaks and valleys in the contour, it 

allows clear and easy reduction of the problem dimension by describing the data with 

only 1% of the descriptors. In addition, the FFT is less sensitive to noise -it allows 

smoothing of the curve by low pass filter and by placing the noise in the high 

frequencies.      
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Classification model: The classification tables in chapter 5.4 (performance analysis) 

show high ability of the model to distinguish between fat-medium and thin cows.  The 

classification results of the ordinal regression which aims to predict the class of BCS 

and not its specific value showed weaker performance (Table 23-24). A potential 

reason may be the fact that for each class the model modifies a suitable equation. In 

our case, the eighty seven observations were probably not enough for avoiding over 

fitting of the model to the training set- causing the many errors in the testing set 

(Table 24). It is necessary to collect larger datasets in order to imply a reliable 

classification model.    

Manual BCS:  The manual BCS was provided by only one expert- its natural error 

and subjectivity may limit the model's statistical results. It is important to validate the 

model outputs with the manual score of a group of experts. 

Future research: Further research is still necessary for fully automating the process. 

An automated decision system to determine the suitable color transform regarding 

the specific imaging conditions (e.g., natural color of background, lighting) must be 

developed. Furthermore, it is still required to automate the frame selection procedure: 

while capturing the image stream, the majority of the images are not suitable for 

processing due to many reasons such as cow out of frame or bad orientation of the 

tail. A classification model for classifying between suitable images and bad images 

should be developed using the features extracted out from the shape segmented. In 

robotic farms we expect that the percentage of images that are not suitable for 

processing will be reduced dramatically due to the fact that the images will be taken 

while the cow is standing instead of while it is walking. When implementing the 

system in the milking parlor and since the cow enters the parlor around three times a 

day, it is more than reasonable to assume that the system will be able to capture at 

least one suitable image a day, making this system practical for dairy farm usage.  

It is important to develop a standard procedure for evaluating performance in 

order to compare different models with the same methods and performance 

measures. 

Future work should also investigate the possibility of applying fuzzy logic for the 

classification. The definition of the border of a ‗fat‘ cow is not clear cut: a cow of 

value 3.8 is very fat, but cows with values of 2.9 and 3.1 are both medium-fat cows, 

however, in the current method they will be assigned to different classes (fat and 
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medium) although they have close values. This is even more problematic due to the 

fact that the manual classification is also prone to errors and can cause 

misclassification. Fuzzy logic is well fit for problems in which borders between 

classes are artificially defined and vague and hence we expect that it can 

significantly improve performance.   
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8   Appendices 

Appendix A. Data acquisition software 

Camera control pro 2. Software by Nikon: 

http://imaging.nikon.com/lineup/software/control_pro2/ 

Appendix  B. Cow digital images 

All training images are stored in CD in: Appendices\training images.  

All testing images are stored in CD in: Appendices\testing images. 

Images that were not selected for modeling are stored in CD in: Appendices\images 

not selected. 

Example of selected cow image: 

 
  

http://imaging.nikon.com/lineup/software/control_pro2/
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Appendix C.  manual BCS 
Training set

 

  

Num COW BCS Num COW BCS Num COW BCS

1 2646 4.4 32 3116 2.8 63 3212 2.3

2 2646 4.4 33 3116 2.8 64 2992 2.4

3 2703 2.25 34 3126 3.6 65 3070 2

4 2739 4.6 35 3128 3.9 66 3088 2.1

5 2791 3.4 36 3130 2.6 67 3091 2.2

6 2791 3.4 37 3130 2.6 68 3096 2.5

7 2815 2.3 38 3132 3.2 69 3122 2.7

8 2853 2.3 39 3138 2.5 70 3146 2.4

9 2853 2.3 40 3201 3 71 3157 2.3

10 2856 2.2 41 3211 2.5 72 3163 2.2

11 2902 2.5 42 2978 2.7 73 3193 3

12 2906 2.3 43 2970 2.3 74 3195 2.3

13 2906 2.3 44 3036 2.3 75 3196 2.8

14 2945 4.8 45 3058 3.3 76 3201 3.4

15 2985 2.5 46 3077 2.4 77 3212 2.3

16 2995 4.6 47 3077 2.4 78 3195 2.7

17 2995 4.6 48 3100 2.3 79 2974 3.4

18 2995 4.6 49 3122 2.7 80 3058 3.3

19 2996 2.7 50 3139 4.1 81 3058 3.3

20 3006 3 51 3146 2.4 82 3101 2.6

21 3006 3 52 3151 2.2 83 3096 2.5

22 3021 2.65 53 3158 2.1 84 3071 4.2

23 3021 2.65 54 3160 2.5 85 3071 4.2

24 3054 3.7 55 3183 2.3 86 3071 4.2

25 3061 2.65 56 3185 2.3 87 3122 2.7

26 3064 2.1 57 3185 2.3

27 3074 3.6 58 3190 3.7

28 3077 2.6 59 3200 2.5

29 3096 2.4 60 3200 2.5

30 3101 2.4 61 3203 2.4

31 3116 2.8 62 3206 3.2

Training Set Training Set Training Set
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Testing set 

 
  

Num Cow BCS Num Cow BCS

1 2894 2.6 33 3028 2.6

2 2894 2.6 34 3037 3.2

3 2894 2.6 35 3071 4.2

4 2894 2.6 36 3071 4.2

5 2894 2.6 37 3071 4.2

6 2917 2.8 38 3071 4.2

7 2921 3.3 39 3122 2.8

8 2936 2.3 40 3124 3.1

9 3096 2.4 41 3139 3.5

10 3096 2.4 42 3139 3.5

11 3139 3.5 43 3146 2.5

12 3139 3.5 44 3146 2.5

13 3146 2.5 45 3149 2.4

14 3151 2.2 46 3154 2.1

15 3158 2.3 47 3163 2.3

16 3162 3 48 3167 3.5

17 3162 3 49 3171 2.3

18 3185 2.3 50 3206 2.5

19 3187 2.6 51 3212 2.2

20 3195 2.4 52 2858 2.1

21 3195 2.4 53 2858 2.1

22 3205 2.7 54 3154 2.1

23 3206 2.5 55 3167 3.5

24 3207 1.9 56 3167 3.5

25 3207 1.9 57 3167 3.5

26 3218 2 58 3186 3.9

27 2858 2.1 59 3186 3.9

28 2879 2.5 60 3186 3.9

29 2917 2.8 61 3186 3.9

30 2921 3.3 62 3186 3.9

31 2921 3.3 63 3186 3.9

32 2983 2.1 64 3218 2

Testing set Testing set
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Appendix D. Color masks: 

Images 
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round 
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NDI2 

 

NDI
3 

 

 

Appendix E. Color masks effectives statistics results: 

Univariate analysis of variance 

 

Tests of Between-Subjects Effects 

Dependent Variable:Effectivness 

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model 3.811
a
 17 .224 240.161 .000 

Intercept 680.844 1 680.844 729393.783 .000 

ColorMask 3.811 17 .224 240.161 .000 

Error 1.042 1116 .001   

Total 685.696 1134    

Corrected Total 4.853 1133    

a. R Squared = .785 (Adjusted R Squared = .782) 
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LSD test- for color masks effectiveness 

 

(I) 
ColorMask 

(J) 
ColorMask 

Mean 
Difference 

(I-J) 
Std. 
Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

19 1 .1601
*
 .00544 .000 .1495 .1708 

2 .0841
*
 .00544 .000 .0734 .0947 

3 .0850
*
 .00544 .000 .0744 .0957 

4 .0231
*
 .00544 .000 .0124 .0338 

5 .0602
*
 .00544 .000 .0495 .0709 

6 .0996
*
 .00544 .000 .0889 .1103 

7 .0427
*
 .00544 .000 .0320 .0534 

8 .0182
*
 .00544 .001 .0076 .0289 

9 .1339
*
 .00544 .000 .1232 .1445 

11 .0284
*
 .00544 .000 .0177 .0390 

12 .1623
*
 .00544 .000 .1517 .1730 

20 .0922
*
 .00544 .000 .0815 .1029 

21 .2050
*
 .00544 .000 .1944 .2157 

22 .0182
*
 .00544 .001 .0076 .0289 

23 .0210
*
 .00544 .000 .0103 .0317 

24 .0212
*
 .00544 .000 .0105 .0319 

25 .0603
*
 .00544 .000 .0496 .0709 

Appendix F.  anatomical points results:  

 
Backward Regression- anatomical point‘s features (model 1): 
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Model coefficients 

 
 

 
 

 

 Forward\ Stepwise Regression- anatomical points features (model 2): 
 

Model Summary 

Model R R Square Adjusted R Square 

Std. Error of the 

Estimate 

1 .750a .562 .556 .47424 

a. Predictors: (Constant), Angle3 

 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .918 .201  4.568 .000 

Angle3 .024 .002 .750 9.877 .000 

a. Dependent Variable: BCS 
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Goodness of Fitb 

 Value df Value/df 

Deviance 17.093 76 .225 

Scaled Deviance 78.000 76  

Pearson Chi-Square 17.093 76 .225 

Scaled Pearson Chi-Square 78.000 76  

Log Likelihooda -51.474   

Akaike’s Information Criterion 

(AIC) 

108.947 
  

Finite Sample Corrected AIC 

(AICC) 

109.272 
  

Bayesian Information Criterion 

(BIC) 

116.017 
  

Consistent AIC (CAIC) 119.017   

Dependent Variable: BCS 

Model: (Intercept), Angle3 

a. The full log likelihood function is displayed and used in computing 

information criteria. 

b. Information criteria are in small-is-better form. 

 

 

 

Forward\ Stepwise\Backward Regression- anatomical points feature Average Angles 

and Distance (Model 3): 
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Appendix G.  PLS results: 

The result of linear regression between 3 latent variables and the BCS measured by 

expert are shown on the calibration set and by using leave one out method (CV)  

 

 

Correlation between the model output (calibration) and the manual BCS. Red line is the 

linear fitting between the scores observed manually by the expert (X axis), and the PLS 

model output (Y axis). The grin line is the desired fitting 

 
Correlation between the model output (Leave one out) and the manual BCS. Red line is the 
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linear fitting between the scores observed manually by the expert (X axis), and the PLS 

model output (Y axis). The grin line is the desired fitting 
 

Appendix H.  Fourier transform model results : 
Model Summary

f
 

Model R R Square 

Adjusted 

R Square 

Std. Error 

of the 

Estimate 

1 .887a .787 .759 .35840 

2 .887b .787 .762 .35625 

3 .886c .785 .763 .35544 

4 .882d .778 .759 .35867 

5 .878e .771 .754 .36243 

 

 

Coefficients
a
 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 

5 (Constant) 6.405 .257 
  

24.950 .000 

F3 -.027 .004 -.477 -5.997 .000 

F4 -.024 .005 -.278 -4.656 .000 

F5 -.011 .005 -.168 -2.061 .043 

F6 -.081 .013 -.520 -6.261 .000 

F7 -.087 .013 -.462 -6.518 .000 

F8 -.072 .020 -.215 -3.571 .001 
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Goodness of Fitb 

 Value df Value/df 

Deviance 10.508 80 .131 

Scaled Deviance 87.000 80  

Pearson Chi-Square 10.508 80 .131 

Scaled Pearson Chi-Square 87.000 80  

Log Likelihooda -31.500   

Akaike's Information Criterion 

(AIC) 

79.000 
  

Finite Sample Corrected AIC 

(AICC) 

80.846 
  

Bayesian Information Criterion 

(BIC) 

98.727 
  

Consistent AIC (CAIC) 106.727   

Dependent Variable: BCS 

Model: (Intercept), F3, F4, F5, F6, F7, F8 

a. The full log likelihood function is displayed and used in computing 

information criteria. 

b. Information criteria are in small-is-better form. 
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Forward \ Stepwise Regression: 

Model Summary
g
 

Model R R Square 

Adjusted 

R Square 

Std. Error 

of the 

Estimate 

1 .591a .349 .342 .59261 

2 .708b .502 .490 .52168 

3 .794c .630 .617 .45207 

4 .852d .726 .713 .39133 

5 .868e .754 .739 .37326 

6 .876f .768 .751 .36462 

Coefficients 
6 (Constant) 3.654 1.599 

  
2.286 .025 

F6 -.083 .013 -.529 -6.165 .000 

F8 -.074 .020 -.222 -3.660 .000 

F1 .005 .003 .246 1.798 .076 

F7 -.081 .013 -.431 -6.155 .000 

F4 -.022 .006 -.246 -3.739 .000 

F3 -.018 .008 -.326 -2.210 .030 

 

 

Goodness of Fitb 

 Value df Value/df 

Deviance 10.636 80 .133 

Scaled Deviance 87.000 80  

Pearson Chi-Square 10.636 80 .133 

Scaled Pearson Chi-Square 87.000 80  

Log Likelihooda -32.025   

Akaike's Information Criterion 

(AIC) 

80.051 
  

Finite Sample Corrected AIC 

(AICC) 

81.897 
  

Bayesian Information Criterion 

(BIC) 

99.778 
  

Consistent AIC (CAIC) 107.778   

Dependent Variable: BCS 

Model: (Intercept), F3, F4, F6, F7, F8, F1 

a. The full log likelihood function is displayed and used in computing 

information criteria. 

b. Information criteria are in small-is-better form. 

 



 

89 

 

Leave-one-out results of Model 2: 

 

Linear Regression assumption testing (model 1): 
 

Normal distribution of residuals: 
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Independence of residuals: 
 

 
 

Appendix I. Combining anatomical points features and Fourier 
descriptors 

Anatomical points features (average height, angle in and out) are excluded 

out of the linear regression model using Forward\ stepwise or backward 

methods: 

Excluded Variables Forward\ Stepwise methods
  
 

Model Beta In t Sig. 
Partial 

Correlation 

Collinearity 
Statistics 

Tolerance 

6 F2 .147
f
 1.650 .103 .193 .335 

F5 -.052
f
 -.286 .776 -.034 .082 

F9 -.076
f
 -1.323 .190 -.156 .821 

F10 -.044
f
 -.736 .464 -.088 .769 

AvgAngIn .005
f
 .097 .923 .012 .946 

AvgAngOut .066
f
 1.224 .225 .145 .924 

AvgHeight -.053
f
 -.988 .327 -.117 .950 
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Excluded Variables Backward method 

Model Beta In t Sig. 
Partial 

Correlation 

Collinearity 
Statistics 

Tolerance 

8 F5 -.052
g
 -.286 .776 -.034 .082 

AvgAngOut .066
g
 1.224 .225 .145 .924 

F10 -.044
g
 -.736 .464 -.088 .769 

F9 -.076
g
 -1.323 .190 -.156 .821 

AvgAngIn .005
g
 .097 .923 .012 .946 

AvgHight -.053
g
 -.988 .327 -.117 .950 

F2 .147
g
 1.650 .103 .193 .335 

Appendix J. Modeling by contour features using PLS and Fourier 
transform 

Number of latent variables for selection: It is possible to see that RMSE reach to 

minimum for 5 variables. 
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Results of PLS on Fourier transform –Leave one out and calibration set : 
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Appendix K. Model 2 performance on testing set: 

 
  

1.5 2 2.5 3 3.5 4 4.5
1.5

2

2.5

3

3.5

4

4.5

BCS-model input

M
o

d
e

l 
2

- 
o

u
tp

u
t

R^2 = 0.602



 

94 

 

Appendix L. Model classing performance: 

 
Classify by ranges of 0.25-training set 

 

 
  

2-2.25 2.25-2.5 2.5-2.75 2.75-3 3-3.25 3.25-3.5 3.5-3.75 3.75-4 4-4.25 4.25-4.5 4.5- 4.75 4.75-5

Count 4 2 1 1 0 0 0 0 0 0 0 0 8

% within 

BCSBinn

50.0% 25.0% 12.5% 12.5% .0% .0% .0% .0% .0% .0% .0% .0% 100.0%

% within 

PreBin

28.6% 15.4% 6.7% 5.6% .0% .0% .0% .0% .0% .0% .0% .0% 9.2%

% of Total 4.6% 2.3% 1.1% 1.1% .0% .0% .0% .0% .0% .0% .0% .0% 9.2%

Count 8 7 5 4 0 0 0 0 0 0 0 0 24

% within 

BCSBinn

33.3% 29.2% 20.8% 16.7% .0% .0% .0% .0% .0% .0% .0% .0% 100.0%

% within 

PreBin

57.1% 53.8% 33.3% 22.2% .0% .0% .0% .0% .0% .0% .0% .0% 27.6%

% of Total 9.2% 8.0% 5.7% 4.6% .0% .0% .0% .0% .0% .0% .0% .0% 27.6%

Count 2 3 6 10 0 1 0 0 0 0 0 0 22

% within 

BCSBinn

9.1% 13.6% 27.3% 45.5% .0% 4.5% .0% .0% .0% .0% .0% .0% 100.0%

% within 

PreBin

14.3% 23.1% 40.0% 55.6% .0% 20.0% .0% .0% .0% .0% .0% .0% 25.3%

% of Total 2.3% 3.4% 6.9% 11.5% .0% 1.1% .0% .0% .0% .0% .0% .0% 25.3%

Count 0 1 1 0 2 0 0 0 0 0 0 0 4

% within 

BCSBinn

.0% 25.0% 25.0% .0% 50.0% .0% .0% .0% .0% .0% .0% .0% 100.0%

% within 

PreBin

.0% 7.7% 6.7% .0% 25.0% .0% .0% .0% .0% .0% .0% .0% 4.6%

% of Total .0% 1.1% 1.1% .0% 2.3% .0% .0% .0% .0% .0% .0% .0% 4.6%

Count 0 0 0 1 2 1 2 0 0 0 0 0 6

% within 

BCSBinn

.0% .0% .0% 16.7% 33.3% 16.7% 33.3% .0% .0% .0% .0% .0% 100.0%

% within 

PreBin

.0% .0% .0% 5.6% 25.0% 20.0% 28.6% .0% .0% .0% .0% .0% 6.9%

% of Total .0% .0% .0% 1.1% 2.3% 1.1% 2.3% .0% .0% .0% .0% .0% 6.9%

Count 0 0 2 1 3 1 0 0 0 0 0 0 7

% within 

BCSBinn

.0% .0% 28.6% 14.3% 42.9% 14.3% .0% .0% .0% .0% .0% .0% 100.0%

% within 

PreBin

.0% .0% 13.3% 5.6% 37.5% 20.0% .0% .0% .0% .0% .0% .0% 8.0%

% of Total .0% .0% 2.3% 1.1% 3.4% 1.1% .0% .0% .0% .0% .0% .0% 8.0%

Count 0 0 0 1 1 2 0 0 0 0 0 0 4

% within 

BCSBinn

.0% .0% .0% 25.0% 25.0% 50.0% .0% .0% .0% .0% .0% .0% 100.0%

% within 

PreBin

.0% .0% .0% 5.6% 12.5% 40.0% .0% .0% .0% .0% .0% .0% 4.6%

% of Total .0% .0% .0% 1.1% 1.1% 2.3% .0% .0% .0% .0% .0% .0% 4.6%

Count 0 0 0 0 0 0 1 0 0 0 0 0 1

% within 

BCSBinn

.0% .0% .0% .0% .0% .0% 100.0% .0% .0% .0% .0% .0% 100.0%

% within 

PreBin

.0% .0% .0% .0% .0% .0% 14.3% .0% .0% .0% .0% .0% 1.1%

% of Total .0% .0% .0% .0% .0% .0% 1.1% .0% .0% .0% .0% .0% 1.1%

Count 0 0 0 0 0 0 4 0 0 0 0 0 4

% within 

BCSBinn

.0% .0% .0% .0% .0% .0% 100.0% .0% .0% .0% .0% .0% 100.0%

% within 

PreBin

.0% .0% .0% .0% .0% .0% 57.1% .0% .0% .0% .0% .0% 4.6%

% of Total .0% .0% .0% .0% .0% .0% 4.6% .0% .0% .0% .0% .0% 4.6%

Count 0 0 0 0 0 0 0 0 1 1 0 0 2

% within 

BCSBinn

.0% .0% .0% .0% .0% .0% .0% .0% 50.0% 50.0% .0% .0% 100.0%

% within 

PreBin

.0% .0% .0% .0% .0% .0% .0% .0% 100.0% 50.0% .0% .0% 2.3%

% of Total .0% .0% .0% .0% .0% .0% .0% .0% 1.1% 1.1% .0% .0% 2.3%

Count 0 0 0 0 0 0 0 1 0 0 1 2 4

% within 

BCSBinn

.0% .0% .0% .0% .0% .0% .0% 25.0% .0% .0% 25.0% 50.0% 100.0%

% within 

PreBin

.0% .0% .0% .0% .0% .0% .0% 100.0% .0% .0% 100.0% 100.0% 4.6%

% of Total .0% .0% .0% .0% .0% .0% .0% 1.1% .0% .0% 1.1% 2.3% 4.6%

Count 0 0 0 0 0 0 0 0 0 1 0 0 1

% within 

BCSBinn

.0% .0% .0% .0% .0% .0% .0% .0% .0% 100.0% .0% .0% 100.0%

% within 

PreBin

.0% .0% .0% .0% .0% .0% .0% .0% .0% 50.0% .0% .0% 1.1%

% of Total .0% .0% .0% .0% .0% .0% .0% .0% .0% 1.1% .0% .0% 1.1%

3.5-3.75

3.75-4

4-4.25

4.25-4.5

4.5-4.75

4.75-5
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2-2.25

2.25-2.5
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3-3.25

3.25-3.5
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Classify by ranges of 0. 5- Training set 
 

  

2-2.5 2.5-3 3-3.5 3.5-4 4-4.5 4.5-5

Count 21 11 0 0 0 0 32

% within 

bcsBinn

65.6% 34.4% .0% .0% .0% .0% 100.0%

% within 

preBinn

77.8% 33.3% .0% .0% .0% .0% 36.8%

% of Total 24.1% 12.6% .0% .0% .0% .0% 36.8%

Count 6 17 3 0 0 0 26

% within 

bcsBinn

23.1% 65.4% 11.5% .0% .0% .0% 100.0%

% within 

preBinn

22.2% 51.5% 23.1% .0% .0% .0% 29.9%

% of Total 6.9% 19.5% 3.4% .0% .0% .0% 29.9%

Count 0 4 7 2 0 0 13

% within 

bcsBinn

.0% 30.8% 53.8% 15.4% .0% .0% 100.0%

% within 

preBinn

.0% 12.1% 53.8% 25.0% .0% .0% 14.9%

% of Total .0% 4.6% 8.0% 2.3% .0% .0% 14.9%

Count 0 1 3 1 0 0 5

% within 

bcsBinn

.0% 20.0% 60.0% 20.0% .0% .0% 100.0%

% within 

preBinn

.0% 3.0% 23.1% 12.5% .0% .0% 5.7%

% of Total .0% 1.1% 3.4% 1.1% .0% .0% 5.7%

Count 0 0 0 4 2 0 6

% within 

bcsBinn

.0% .0% .0% 66.7% 33.3% .0% 100.0%

% within 

preBinn

.0% .0% .0% 50.0% 66.7% .0% 6.9%

% of Total .0% .0% .0% 4.6% 2.3% .0% 6.9%

Count 0 0 0 1 1 3 5

% within 

bcsBinn

.0% .0% .0% 20.0% 20.0% 60.0% 100.0%

% within 

preBinn

.0% .0% .0% 12.5% 33.3% 100.0% 5.7%

% of Total .0% .0% .0% 1.1% 1.1% 3.4% 5.7%

4.5-5

Predicted Binnes

Total
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2-2.5

2.5-3

3-3.5

3.5-4

4-4.5
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Classify by ranges of 0. 25- Testing set 
 

 
  

2-2.25 2.25-2.5 2.5-2.75 2.75-3 3-3.25 3.25-3.5 3.5-3.75 3.75-4 4-4.25

Count 5 4 2 1 0 0 0 0 0 12

% within BCSBin 41.7% 33.3% 16.7% 8.3% .0% .0% .0% .0% .0% 100.0%

% within PredicteddBin 71.4% 36.4% 15.4% 12.5% .0% .0% .0% .0% .0% 18.8%

% of Total 7.8% 6.3% 3.1% 1.6% .0% .0% .0% .0% .0% 18.8%

Count 0 5 2 3 0 0 0 0 0 10

% within BCSBin .0% 50.0% 20.0% 30.0% .0% .0% .0% .0% .0% 100.0%

% within PredicteddBin .0% 45.5% 15.4% 37.5% .0% .0% .0% .0% .0% 15.6%

% of Total .0% 7.8% 3.1% 4.7% .0% .0% .0% .0% .0% 15.6%

Count 2 1 7 2 2 0 0 0 0 14

% within BCSBin 14.3% 7.1% 50.0% 14.3% 14.3% .0% .0% .0% .0% 100.0%
% within PredicteddBin 28.6% 9.1% 53.8% 25.0% 12.5% .0% .0% .0% .0% 21.9%

% of Total 3.1% 1.6% 10.9% 3.1% 3.1% .0% .0% .0% .0% 21.9%

Count 0 0 1 0 1 1 0 0 0 3

% within BCSBin .0% .0% 33.3% .0% 33.3% 33.3% .0% .0% .0% 100.0%

% within PredicteddBin .0% .0% 7.7% .0% 6.3% 33.3% .0% .0% .0% 4.7%

% of Total .0% .0% 1.6% .0% 1.6% 1.6% .0% .0% .0% 4.7%

Count 0 1 1 0 1 1 0 0 0 4

% within BCSBin .0% 25.0% 25.0% .0% 25.0% 25.0% .0% .0% .0% 100.0%

% within PredicteddBin .0% 9.1% 7.7% .0% 6.3% 33.3% .0% .0% .0% 6.3%

% of Total .0% 1.6% 1.6% .0% 1.6% 1.6% .0% .0% .0% 6.3%

Count 0 0 0 1 2 0 0 0 0 3

% within BCSBin .0% .0% .0% 33.3% 66.7% .0% .0% .0% .0% 100.0%

% within PredicteddBin .0% .0% .0% 12.5% 12.5% .0% .0% .0% .0% 4.7%

% of Total .0% .0% .0% 1.6% 3.1% .0% .0% .0% .0% 4.7%

Count 0 0 0 1 5 0 2 0 0 8

% within BCSBin .0% .0% .0% 12.5% 62.5% .0% 25.0% .0% .0% 100.0%

% within PredicteddBin .0% .0% .0% 12.5% 31.3% .0% 33.3% .0% .0% 12.5%

% of Total .0% .0% .0% 1.6% 7.8% .0% 3.1% .0% .0% 12.5%

Count 0 0 0 0 5 1 0 0 0 6

% within BCSBin .0% .0% .0% .0% 83.3% 16.7% .0% .0% .0% 100.0%

% within PredicteddBin .0% .0% .0% .0% 31.3% 33.3% .0% .0% .0% 9.4%

% of Total .0% .0% .0% .0% 7.8% 1.6% .0% .0% .0% 9.4%

Count 0 0 0 0 0 0 4 0 0 4

% within BCSBin .0% .0% .0% .0% .0% .0% 100.0% .0% .0% 100.0%
% within PredicteddBin .0% .0% .0% .0% .0% .0% 66.7% .0% .0% 6.3%

% of Total .0% .0% .0% .0% .0% .0% 6.3% .0% .0% 6.3%

BCSBin * PredicteddBin Crosstabulation

PredicteddBin

Total
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in
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2-2.25

2.25-2.5

2.5-2.75

2.75-3

3-3.25

3.25-3.5

3.5-3.75

3.75-4

4-4.25
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Classify by ranges of 0. 5- Testing set 
 

  

Manual BCS category observed by expert 

  
   
  

Model output category 
  

Total 1.5-2 2-2.5 2.5-3 3-3.5 3.5-4 4-4.5 

 1.5-2 Count 1 1 0 0 0 0 2 

% within BCS category 50.0% 50.0% .0% .0% .0% .0% 100.0% 

% within Model output category  25.0% 7.1% .0% .0% .0% .0% 3.1% 

% of Total 1.6% 1.6% .0% .0% .0% .0% 3.1% 

2-2.5 Count 2 10 8 0 0 0 20 

% within BCS category 10.0% 50.0% 40.0% .0% .0% .0% 100.0% 

% within Model output category  50.0% 71.4% 38.1% .0% .0% .0% 31.3% 

% of Total 3.1% 15.6% 12.5% .0% .0% .0% 31.3% 

2.5-3 Count 1 2 10 4 0 0 17 

% within BCS category 5.9% 11.8% 58.8% 23.5% .0% .0% 100.0% 

% within Model output category  25.0% 14.3% 47.6% 21.1% .0% .0% 26.6% 

% of Total 1.6% 3.1% 15.6% 6.3% .0% .0% 26.6% 

3-3.5 Count 0 1 2 4 0 0 7 

% within BCS category .0% 14.3% 28.6% 57.1% .0% .0% 100.0% 

% within Model output category  .0% 7.1% 9.5% 21.1% .0% .0% 10.9% 

% of Total .0% 1.6% 3.1% 6.3% .0% .0% 10.9% 

3.5-4 Count 0 0 1 11 2 0 14 

% within BCS category .0% .0% 7.1% 78.6% 14.3% .0% 100.0% 

% within Model output category  .0% .0% 4.8% 57.9% 33.3% .0% 21.9% 

% of Total .0% .0% 1.6% 17.2% 3.1%   21.9% 

4-4.5 Count 0 0 0 0 4 0 4 

% within BCS category .0% .0% .0% .0% 100.0% .0% 100.0% 

% within Model output category  .0% .0% .0% .0% 66.7% .0% 6.3% 

% of Total .0% .0% .0% .0% 6.3% .0% 6.3% 
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 Appendix M. Matlab code 
BCS computation with FFT: 

%% TotalProcess9.m 
% This function take a cow image and proper background image and return the 
% BCS by: 
%1. create binary object of the cow 2. extract the cow contour,normeliaze 

and 
% sacle the contour 3. tkae the 1000 distance from center and transform to 
% Fourier 4. compute the BCS from the 2-8 Fourier descriptors. 

  
%% clean binary files and create output subdirectory 
clear all; close all; clc; 
if ~isdir('Binary'), mkdir('Binary'); disp('Binary sub-directory was 

created'); end; 
listOfBinaryJpegs = dir('Binary*.jpg'); 
if 0<length(listOfBinaryJpegs), for  k = 1:size(listOfBinaryJpegs), 

delete(listOfBinaryJpegs(k).name); end; end;     % k=2 
 % loading the image and Background image 
Background=imread('Background.jpg'); 
listOfJpegs = dir('*.jpg'); 
R_back=Background(:,:,1); 
G_back=Background(:,:,2); 
B_back=Background(:,:,3); 
C1_back1 = double(R_back-G_back);   % transform Background to R-G space 
Cmatb=mat2gray(C1_back1); 
Cmatb = imadjust(Cmatb); 
level  = graythresh(Cmatb); 
C1_back=im2bw(Cmatb,0.95*level);        % treshold background image to 

binary 
 C1_back=abs(C1_back-1); 
se_back = strel('disk',7); 
C1_back=imopen(C1_back,se_back);   % cleaning small objects from binary 

image 
clear se_back R_back C1_back1 Cmatb level G_back B_back k Background 

listOfBinaryJpegs ; 
 % % Runnig on cows images       
for  k = 2:size(listOfJpegs)    % k=2    
    %% 1. creation of binary object 
    listOfJpegs(k).im = imread(listOfJpegs(k).name) ; 
    Image_name=listOfJpegs(k).name;  % taking the cow number 
    Cow=str2num(Image_name(5:8)); 
    Image=(listOfJpegs(k).im); 
    imwrite(Image,[cd,'\Binary\RGB ',Image_name],'jpg');  %%% < --------     
        %% Transform to R-G space 
    R=Image(:,:,1); 
    G=Image(:,:,2); 
    B=Image(:,:,3); 
    C1 = double(R-G) ; 
    C1G=mat2gray(C1);  % transform to gray 
    C1G = imadjust(C1G); 
    level2= graythresh(C1G);  % computing threshold 
    C1S=im2bw(C1G,0.8*level2);                        % Treshold to binary 
    C1S=abs(C1S-1); 
    C1Seg=imsubtract(C1S,C1_back);    % Subtracing BAckground image 
    C1_BW=bwlabel(C1Seg);               % labeling the objects 
    imwrite(C1_BW,[cd,'\Binary\BW ',Image_name],'jpg');  %%% < -------- 
    clear R G B C1 C1Seg Image C1G level2 C1S ; 

     
    %% Choosing the biggest object in image 
    C1_Label=(regionprops(C1_BW));  
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    C1_Label_N=max([C1_Label.Area]); 
    C1_Label_ind=find([C1_Label.Area]==C1_Label_N); 
    C1_segment=zeros(size(C1_BW)); 
    C1_segment=(C1_BW==C1_Label_ind); 
    clear C1_Label C1_Label_N C1_Label_ind C1_BW ; 
        %% nooise removal  Openning- closing holes and opening %%%%%%%% 
    se2 = strel('disk',10); 
    OpenIm = imerode(C1_segment,se2); 
    se = strel('disk',12);     %  closing holes 
    closeIm = imdilate(OpenIm,se); 
    %figure(3); imagesc(closeIm) ; title(Image_name); 
        se2 = strel('disk',7);  % opening noise 
    OpenIm = imerode(closeIm,se2); 
    %closing holes inside the object 
    [B OpenIm]=bwboundaries(OpenIm); 
    OpenIm(OpenIm>=1)=1; 
    imwrite(OpenIm,[cd,'\Binary\Disk ',Image_name],'jpg');  %%% < -------- 
    clear B se se2 C1_segment closeIm ; 
        %% rotating the object by the object oreintation 
    Im_props=(regionprops(OpenIm)); 
    Im_theta=(regionprops(OpenIm,'Orientation')); 
    Im_rotated=imrotate(OpenIm,-(Im_theta.Orientation)); % this line 

doesnot seem to work           imshow(Im_rotated) imagesc(Im_rotated) 
    Pix=(regionprops(Im_rotated,'PixelList'));   
      xj=Pix.PixelList(:,1); 
      yj=Pix.PixelList(:,2); 
      [Xmin I]=min(xj); 
      cutIm=Im_rotated; 
      Bound=(regionprops(Im_rotated,'BoundingBox')); 
      Xlength=Bound.BoundingBox(3); 
      cutIm(:,Xmin+ceil(Xlength/3):end)=0; 

     
    IM=imrotate(cutIm,-90);    % Rotate to 90 degrees figure; imshow(IM) 
    imwrite(IM,[cd,'\Binary\Rotated ',Image_name],'jpg');  %%% < -------- 
    clear Im_props Im_theta Im_rotated OpenIm cutIm Pix 
        %% choosing again the biggest object 
    ImBeforeCutting=bwlabel(IM); 
    ImBeforeCuttingProps=(regionprops(ImBeforeCutting)); 
    ImBeforeCuttingProps_N=max([ImBeforeCuttingProps.Area]); 
    

ImBeforeCuttingProps_ind=find([ImBeforeCuttingProps.Area]==ImBeforeCuttingP

rops_N); 
    IM2=zeros(size(ImBeforeCutting)); 
    IM2=(ImBeforeCutting==ImBeforeCuttingProps_ind); 
    [B IM3]=bwboundaries(IM2); 
    IM3(IM3>=1)=1;      % imshow(IM3) 
    imwrite(IM3,[cd,'\Binary\IM3 ',Image_name],'jpg');  %%% < -------- 
    clear IM ImBeforeCutting ImBeforeCuttingProps ImBeforeCuttingProps_N 

ImBeforeCuttingProps_ind IM2 B; 
    % end of creation of binary object     

     
    %% 2. extracting the cow contour 
    figure; 
    Contour=imcontour(IM3,1)';  
    close; 
    Contour(1,:)=[]; % delete first line 
    Contour(:,2)=max(Contour(:,2))-Contour(:,2); 
    Contour=Contour(find(0<Contour(:,1)),:); % delete every y = zero  
    Contour=Contour(find(0<Contour(:,2)),:); % delete every x = zero  
    figure; plot(Contour(:,1),Contour(:,2),'.'); set(gca,'YDir','reverse');  
    title(sprintf('Cow %s ',Image_name)); 
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    saveas(gcf, sprintf('Contour line 106; Cow %s; .jpg',Image_name)); 
    movefile(   sprintf('Contour line 106; Cow %s; 

.jpg',Image_name),'Binary');       
    close; 
    clear IM3; 
        %% sorting the points   
    numOfpoints=min(1500,length(Contour(:,2))); % taking 1500 points or the 

highest possible 
    [Y Y_index]=sort(Contour(:,2),'descend'); 
    Contour2=Contour(sort(Y_index(1:numOfpoints)),:);  % taking 1500 points 

or the highest possible  
    clear numOfpoints Y Y_index Contour ; 
    figure; plot(Contour2(:,1),Contour2(:,2),'.'); 

set(gca,'YDir','reverse'); title(Image_name);      
    saveas(gcf, sprintf('1500 points; Cow %s; .jpg',Image_name)); 
    movefile(   sprintf('1500 points; Cow %s; .jpg',Image_name),'Binary');     
    close;   

     
    %% taking 1000 only points near or far from the tail and Interpolation: 
    numOfpoints2=1000; 
    length1=length(Contour2(:,1)); 
    newXJ=interp1(1:length1, Contour2(:,1),1:length1/numOfpoints2:length1); 

% Interpolation:  1000 points near the tail 
    newYJ=interp1(1:length1, Contour2(:,2),1:length1/numOfpoints2:length1); 
    clear numOfpoints2 length1 Contour2; 
    %figure; plot(newXJ,newYJ,'.');  
      %% scaling the contour from 0 to 1 
    XXj= (newXJ-min(newXJ)) / (max(newXJ)-min(newXJ)  )  ;   
    YYj= (newYJ-min(newYJ)) / (max(newYJ)-min(newYJ)  )  ; 
    clear newYJ newXJ n c   
    figure; 
    plot(XXj,YYj,'.'); set(gca,'YDir','reverse'); title(Image_name); 
    saveas(gcf, sprintf('0 to 1 1000; Cow %s; .jpg',Image_name)); 
    movefile(   sprintf('0 to 1 1000; Cow %s; .jpg',Image_name),'Binary');     
    close;    

     
    %% center points 
    CenterX=0.5; 
    CenterY=0.5;    

     
    %% extracting distances from center by eucldean distances 
    Distances=sqrt((YYj-CenterY).^2+(XXj-CenterX).^2); 
    clear YYj XXj;    
    %figure; plot(Distances,'.'); plot(Distances) 

     
    %% 3. transform to Fourierer 
    ffx=0; ffx2=0; 
    windowsize=5;  % smoothing tha sighn with low-pass filter 
    DistancesFilt=filter(ones(1,windowsize)/windowsize,1,Distances'); 
    ffx=abs(fft(DistancesFilt)); 
    ffx=ffx'; 
    ffx2=ffx(1:10); 

     
    %% 4. compute BCS from the 2-8 Fourier descriptors 

     
     BCS=6.405-0.027.*ffx2(3)-0.024.*ffx2(4)-0.011.*ffx2(5)-0.081.*ffx2(6)-

0.087.*ffx2(7)-0.072.*ffx2(8); 
     BCSV(k-1,1)=BCS; 
     BCSV(k-1,2)=Cow; 
%     fprintf(1,'\n Cow %s ; \t BCS = %2.1f\n',Image_name,BCS); 
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    figure; plot(Distances,'.'); 
    title(      sprintf('Distances; Cow %s; BCS = %2.1f',Image_name,BCS)); 
    saveas(gcf, sprintf('Distances; Cow %s; BCS = %2.1f.jpg',Image_name,BCS 

)); 
    movefile(   sprintf('Distances; Cow %s; BCS = %2.1f.jpg',Image_name,BCS 

),'Binary'); 
    close; 

     
    %input(' press enter:  '); 

     
end % end of cows 
save('BCSV') 

  

 

Code for extracting anatomical point‘s angles and distances- in CD\Matlab codes. 
 

 Appendix N. SPSS syntax 
 
All data for statistics exams are stored in CD\Excel files. 

The SPSS syntax for the backward regression of first ten Fourier descriptors: 

DATASET ACTIVATE DataSet0. 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT BCS 

  /METHOD=BACKWARD F1 F2 F3 F4 F5 F6 F7 F8 F9 F10. 

 

The SPSS syntax for the Ordinal regression of first ten Fourier descriptors: 

DATASET ACTIVATE DataSet1. 

PLUM BCS_ordinal WITH F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

  /CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5) 

PCONVERGE(1.0E-6) SINGULAR(1.0E-8) 

  /LINK=LOGIT 

  /PRINT=FIT PARAMETER SUMMARY 
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 תקציר

, 5 עד 1רזרבות האנרגיה של הפרה החולבת בסולם של  זהו ציון המעיד על BCS))ציון מצב גופני 

למרות מספר ניסיונות להפוך תהליך זה . 0.25כאשר הדיוק הנפוץ בציון הינו בקפיצות של 

י "עד היום הדרוג נקבע בהערכת  עובי שכבת השומן התת עורית כפי שמשוקללת ע, לאוטומאטי

זהו תהליך . המתבונן כמופע המבנה המורפולוגי של מספר אזורים מקובלים על פני גוף הפרה

 המבוססת עיבוד תמונה תמטרתו של מחקר זה הינה לפתח מערכת אובייקטיבי. ממושך וסובייקטיבי

מאה . בכוונה להפכה למערכת אוטומטית בעתיד, לצורך הערכת ציון המצב הגופני של פרה חולבת

 בכניסה לבמת המחלוב במכון DLSRוחמישים תמונת של פרות שצולמו במבט על במצלמת ניקון 

לצורך בניית , החליבה ברפת בית דגן קיבלו ציונים על די מומחה בשיטה המקובלת וחולקו לסט אימון

תהליך עיבוד התמונה עד לקבלת קו המתאר של גב הפרה ואזור עצם הזנב בוצע . המודל וסט בחינה

בודדה הפרה , בשלב ראשון.  וכלל שלושה שלביםMatlabבאופן אוטומאטי בעזרת תכנת 

מהרקע של התמונה בעזרת קביעת ערוץ צבע וערך סף מתאימים והחסרה של תמונת  (האובייקט)

הסרת )הכיל פעולות מורפולוגיות על האובייקט הכוללות ניקוי רעשים , השלב שני. רקע מתאימה

השלב השלישי והאחרון . וסיבוב התמונה לאוריינטציה קבועה של תשעים מעלות (אובייקטים משניים

כל . מתאר את העקום של הגב האחורי ואזור עצם הזנב, קו זה. הינו חילוץ קו המתאר מן האובייקט

אינטרפולציה למספר זהה של נקודות ונרמול לטווח , קו עבר תהליך של החלקה להסרת רעשים

חיזוי ציון . ערכים קבוע על מנת להפחית את ההשפעות של גודל וכיוון האובייקט בתמונה המקורית

כללה זיהוי , שיטה ראשונה. המצב הגופני מקו המתאר של אזור עצם הזנב נבחן על ידי שתי שיטות

 וחמש םעשרה מרחקים אנכיים ואופקיי.  נקודות מינימום ומקסימום על קו המתאר5אוטומאטי של 

בשיטה . ת הנוצרות בין נקודות אלו נלקחו בתור מאפיינים מסבירים במודל רגרסיה ליניאריתהזוויו

שנייה הפכה ההסתכלות על קו המתאר של עצם הזנב לווקטור מרחקים ממרכז הכובד של 

מווקטור מקדמי . ולאחר מכן הועבר ווקטור זה למרחב התדר על ידי התמרת פורייה, האובייקט

הפורייה של קו המתאר נלקחו עשרת מקדמי הפורייה הראשונים בתור משתנים מסבירים במודל 

התוצאות הטובות ביותר התקבלו על ידי שימוש במקדמי פורייה כאשר . תהרגרסיה הליניארי

מדד .  ועד השמינילישיהמשתנים שנכנסו בסופו של דבר למודל הם שבעת המקדמים מהקדם הש

 על 0.64 על סט האימון ו 0.77הקורלציה בין תוצאות המודל לציון שניתן על ידי המומחה עמד על 

 דבר המעיד על יציבות המודל ויכולת סבירה לחזות את ציון המצב הגופני של פרת סט הבחינה

 .החלב באופן אוטומאטי וללא כל התערבות ידנית
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גוריון בנגב -אוניברסיטת בן
הפקולטה למדעי ההנדסה 

 המחלקה להנדסת תעשייה וניהול

 
 
 
 
 

 של פרת החלב יזיהוי מצב גופני אוטומאט
 
 
 

 חיבור זה מהווה חלק מהדרישות לקבלת תואר מגיסטר בהנדסה
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