
  

 

 

 
 
 

 
 

Heterogeneous Multi-Robot Search Algorithms 
 
 
 

Thesis submitted in partial fulfillment 
of the requirements for the degree of 
“DOCTOR OF PHILOSOPHY” 

 
 
 
 
by 
 
 
 

Shahar   Sarid 
 
 
 
 

Submitted to the Senate of Ben-Gurion University of the Negev 
 
 
 
 
 

 

 

 

 

 

 

 

2011 

 
 

Beer-Sheva 
  

 

 
 



 
 
 
 
 
 

 
 

Heterogeneous Multi-Robot Search Algorithms 
 
 
 

Thesis submitted in partial fulfillment 
of the requirements for the degree of 
“DOCTOR OF PHILOSOPHY” 

 
 
 
 
by 
 
 
 

Shahar   Sarid 
 
 
 
 

Submitted to the Senate of Ben-Gurion University of the Negev 
 
 
 
 

Approved by the advisors  

Dr. Amir Shapiro___________________ 

 
Prof. Yael Edan____________________ 

Approved by the Dean of the Kreitman School of Advanced Graduate Studies____________________________ 

 

 

 

2011 

 
 

Beer-Sheva 
 
 
 
 
  



This work was carried out under the supervision of 

 

Dr. Amir Shapiro 

and 

Prof. Yael Edan  

  

  

  

 

In the Department of Mechanical Engineering 

 

Faculty of Engineering Sciences  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 



To my family



Acknowledgments

I am excited to have arrived at the moment where I can finally thank all the people who assisted and

supported me along the long path toward completing my doctoral dissertation.

First, I would like to thank my advisors,Amir Shapiro andYael Edan. My work withAmir goes

back seven years, and I am grateful to him for his optimism and solid view of reality, for encouraging

me when I needed it, for being a friend who was always there for me, for his many ideas for research,

and for relieving my worries. Working with Amir was fruitful and rewarding. He was an ideal advisor

who I would wish for any doctoral student. To Yael, I would like to express my deep gratitude for

investing so much time in me, for pushing me forward, and for knowing exactly how to do so. Her

dedication and professional assistance were much appreciated.

I thank my students, Lior Barshan and Chen Futerman who did outstanding work in their

final project. I enjoyed working with them during the last year of my research and the last year of

their degree on implementing the algorithms in simulations and experiments. Thanks to Lior Salem,

and Guy Alon for their assistance in building the testbed and running the experiments. Thanks

to Yam Geva and Hagai Balshai for their support and help in running the experiments with the

mobile robots in the Robot Motion Lab.

I would also like to thank Dr. Yisrael Parmet for his help in statistically analyzing the experi-

ments results. Thanks to Yoav Gabriely, and Prof. Elon Rimon for their helpful contribution to

the research. I would like to thank Prof. Reuven Segev and Prof. Ephraim Korach for being

great lecturers, and for giving me their attention and assistance when I needed it. I would like to

extend thanks as well to the members of my Ph.D. committee, Prof. Moshe Kaspi, and Prof. Gal

A. Kaminka for their comments, which helped improve my research.

I would like to thank Hannah Komy Ofir for her technical editing, which improved the outcome.

Many thanks to Shahar Berger, Asaf Formoza, Bella Gurevich, Dan Shaine, Hanoch

Efraim, Eddie Zisser, Alon Ohev-Zion, and Alon Kapoa who all made my years in the De-

partment of Mechanical Engineering enjoyable and enriching.

When I began to summarize and consider all my years of study towards my Ph.D., I realized that

they are almost equal to the age of my oldest child. This period was filled with events not only in

my professional life, but also in my personal life. My dear grandfathers, Sholi and Yashka, z”l,

passed away during these years. Both were Holocaust survivors, who brought me up with a lot of

love, and I miss them very much. I thank my grandmothers, Eva and Frida, who raised me with

much tenderness, but also showed me how bold one can be when necessary. I love and admire them

both. I thank my sister Noga and my brother Tal who are loving, fun, and caring siblings. A special

thanks goes to my parents, who raised me with so much love and effort, and always supported my

choices. My father, Israel taught me that there is nothing that I can not do, and my mother Rochale

showed me how to do everything I want. You are the greatest family one can have. To Amalia and

Micha, my parents-in-law, many thanks for sensitively and professionally helping me throughout the

long period of my studies. To my son, Uri and to my daughter, Ziv who I love the most in the whole

world, thank you for entering my life, with all the joy you have brought. And last, but definitely not

least, my wife, the love of my life, Yael, who shared this journey with me, a very special thanks.

V



Contents

List of Tables IX

List of Figures XI

Abstract XV

1 Introduction 1

1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Research Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Contributions and Innovations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 7

2.1 Single Robot Coverage Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Multi-Robot Coverage Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 MRSAM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 MRBUG algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Methodology 21

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.3 Decentralization, Communication, and Robustness . . . . . . . . . . . . . . . . 22

3.3 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Simulation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.2 Parameters evaluated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Initial run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.1 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6.2 Mobile Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6.3 The environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6.4 Localization system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6.5 The software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

VII



3.6.6 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6.7 Performance Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6.8 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 HMRSTM Algorithm 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 The Problem’s Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Time competitive complexity lower bound . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 The HMRSTM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Analytical performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 HMRBUG Algorithm 49

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 A Lower Bound for a Known Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 HMRBUG Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.1 PBUG1 Motion Planning Algorithm for a Pair of Robots [53] . . . . . . . . . . 52

5.3.2 Target Reachability Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.3 HMRBUG Algorithm for a Heterogeneous Group of Robots . . . . . . . . . . 53

5.4 HMRBUG Upper Bound Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Simulations 63

6.1 HMRSTM simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 HMRBUG simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Experiments 77

7.1 HMRSTM experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.1.1 Experiment initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.1.2 Experiment example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.1.3 Experiments results analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.1.4 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2 HMRBUG experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2.1 Experiment example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2.2 Experiments results analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2.3 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8 Conclusions and Future Research 91

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Bibliography 100

Appendices 103

VIII



A Experimental Results 103

A.1 HMRSTM experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.2 HMRSTM simulation of experimental results . . . . . . . . . . . . . . . . . . . . . . . 112

A.3 HMRSTM simulation-experiment comparison . . . . . . . . . . . . . . . . . . . . . . . 116

A.4 HMRBUG experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.5 HMRBUG simulation-experiment results and comparison . . . . . . . . . . . . . . . . 121

B DVD content 123

B.1 DVD 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B.1.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B.1.2 Videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B.2 DVD 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B.3 DVD 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

IX



X



List of Tables

2.1 Exploration works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Approximate Cellular Decomposition Coverage works . . . . . . . . . . . . . . . . . . 11

2.3 Exact Cellular Decomposition Coverage works . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Simulation Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Threads timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Experiments Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 HMRBUG first ellipses search times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.1 HMRSTM experiment configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.2 Tests of Between-Subject Effects for HMRSTM experiments . . . . . . . . . . . . . . . 84

7.3 Tests of Between-Subject Effects for Target 3, HMRSTM experiments . . . . . . . . . 84

7.4 HMRBUG experiment configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.5 Tests of Between-Subject Effects for HMRBUG experiments . . . . . . . . . . . . . . . 89

A.1 HMRSTM experiments results - ”cave” Target 1 . . . . . . . . . . . . . . . . . . . . . 103

A.2 HMRSTM experiments results - ”cave” Target 2 . . . . . . . . . . . . . . . . . . . . . 104

A.3 HMRSTM experiments results - ”cave” Target 3 . . . . . . . . . . . . . . . . . . . . . 105

A.4 HMRSTM experiments results - ”free” Target 1 . . . . . . . . . . . . . . . . . . . . . . 106

A.5 HMRSTM experiments results - ”free” Target 2 . . . . . . . . . . . . . . . . . . . . . . 107

A.6 HMRSTM experiments results - ”free” Target 3 . . . . . . . . . . . . . . . . . . . . . . 108

A.7 HMRSTM experiments results - ”libr” Target 1 . . . . . . . . . . . . . . . . . . . . . . 109

A.8 HMRSTM experiments results - ”libr” Target 2 . . . . . . . . . . . . . . . . . . . . . . 110

A.9 HMRSTM experiments results - ”libr” Target 3 . . . . . . . . . . . . . . . . . . . . . . 111

A.10 HMRSTM simulation of experiment results - ”cave” . . . . . . . . . . . . . . . . . . . 113

A.11 HMRSTM simulation of experiment results - ”free” . . . . . . . . . . . . . . . . . . . . 114

A.12 HMRSTM simulation of experiment results - ”libr” . . . . . . . . . . . . . . . . . . . . 115

A.13 HMRSTM simulation-experiment comparison - ”cave” . . . . . . . . . . . . . . . . . . 116

A.14 HMRSTM simulation-experiment comparison - ”free” . . . . . . . . . . . . . . . . . . 117

A.15 HMRSTM simulation-experiment comparison - ”libr” . . . . . . . . . . . . . . . . . . 118

A.16 HMRBUG experiments results - ”cave” . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.17 HMRBUG experiments results - ”free” . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.18 HMRBUG experiments results - ”library” . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.19 HMRBUG simulation-experiment comparison . . . . . . . . . . . . . . . . . . . . . . . 121

XI



XII



List of Figures

2.1 Execution examples of (a) STC, (b) D-STC . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Execution examples of MFC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Boustrophedon extension to multi-robot by Rekleitis et al. . . . . . . . . . . . . . . . 14

2.4 Multi- Robot demining by Rekleitis et al. . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Boustrophedon extension to multi-robot by Kong et al. . . . . . . . . . . . . . . . . . 15

2.6 The first and final steps of MRSAM execution example . . . . . . . . . . . . . . . . . 17

2.7 Execution example of MRBUG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 HMRSTM Cave environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 HMRSTM 10 targets lopt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 HMRBUG 10 Start-Target positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 HMRSTM targets 1,2 in ”free” and ”cave” environments . . . . . . . . . . . . . . . . 30

3.5 HMRSTM target 3 in ”library” environment . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 HMRSTM target 1 in ”free” environment . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 HMRSTM target 2 in ”cave” environment . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.8 HMRSTM target 3 in ”library” environment . . . . . . . . . . . . . . . . . . . . . . . 32

3.9 HMRBUG ”cave” and ”lib” environments . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.10 HMRBUG S-T 1 in ”cave” environment . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.11 HMRBUG Start-Target 1,2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.12 HMRBUG Start-Target 2 in ”lib” environment . . . . . . . . . . . . . . . . . . . . . . 34

3.13 HMRSTM and HMRBUG validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Difficult environment for the lower bound proof of unknown target position . . . . . . 38

4.2 HMRSTM execution example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 HMRSTM execution example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 HMRSTM Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Difficult environment for the lower bound proof of known target position . . . . . . . . 50

5.2 PBUG1 execution example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Execution example of HMRBUG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 HMRBUG Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 HMRBUG execution example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 HMRSTM simulation example part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 HMRSTM simulation example part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3 HMRSTM average simulation results for environment and beta . . . . . . . . . . . . . 65

XIII



6.4 HMRSTM average simulation results for no. of robots and beta . . . . . . . . . . . . . 65

6.5 HMRSTM normalized simulation results for no. of robots and beta . . . . . . . . . . . 66

6.6 HMRSTM simulation initial search radii . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.7 HMRSTM finding cluster of targets #90, in ”free” environment . . . . . . . . . . . . . 67

6.8 HMRSTM normalized simulation results for no. of robots and beta . . . . . . . . . . . 68

6.9 HMRSTM simulation and analytical upper bound path length . . . . . . . . . . . . . 68

6.10 HMRBUG simulation example part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.11 HMRBUG simulation example part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.12 HMRBUG average simulation results for environment and beta . . . . . . . . . . . . . 71

6.13 HMRBUG average simulation results for no. of robots and beta . . . . . . . . . . . . . 71

6.14 HMRBUG normalized simulation results for no. of robots and beta . . . . . . . . . . . 72

6.15 HMRBUG simulation results for initial ellipse and beta, S-T#4, library . . . . . . . . 72

6.16 HMRBUG simulation results for initial ellipse and beta, S-T#6, library . . . . . . . . 72

6.17 HMRBUG simulation results for initial ellipse and beta, S-T#6, cave . . . . . . . . . . 73

6.18 HMRBUG simulation results for initial ellipse and beta . . . . . . . . . . . . . . . . . 73

6.19 HMRBUG simulation vs. analytical upper bound path length . . . . . . . . . . . . . . 74

6.20 HMRBUG ratio between analytical upper bound and maximal simulation path length 74

7.1 HMRSTM main application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.2 HMRSTM simulation and experiment example 1 . . . . . . . . . . . . . . . . . . . . . 79

7.3 HMRSTM simulation and experiment example 2 . . . . . . . . . . . . . . . . . . . . . 79

7.4 HMRSTM simulation and experiment example 3 . . . . . . . . . . . . . . . . . . . . . 80

7.5 HMRSTM simulation and experiment example 4 . . . . . . . . . . . . . . . . . . . . . 80

7.6 HMRSTM time to find target 1 with std. Error . . . . . . . . . . . . . . . . . . . . . . 81

7.7 HMRSTM time to find target 2 with std. Error . . . . . . . . . . . . . . . . . . . . . . 82

7.8 HMRSTM time to find target 3 with std. Error . . . . . . . . . . . . . . . . . . . . . . 82

7.9 HMRSTM measured and maximal expected path - target 3 . . . . . . . . . . . . . . . 83

7.10 HMRSTM experiments’ statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . 84

7.11 HMRBUG simulation and experiment example 1 . . . . . . . . . . . . . . . . . . . . . 85

7.12 HMRBUG simulation and experiment example 2 . . . . . . . . . . . . . . . . . . . . . 86

7.13 HMRBUG simulation and experiment example 3 . . . . . . . . . . . . . . . . . . . . . 86

7.14 HMRBUG time to reach all the targets in all environments . . . . . . . . . . . . . . . 87

7.15 HMRBUG time to reach the targets in ”library” . . . . . . . . . . . . . . . . . . . . . 88

7.16 HMRBUG time to reach the targets in ”cave” . . . . . . . . . . . . . . . . . . . . . . . 88

7.17 HMRBUG measured and maximal expected path - target 3 . . . . . . . . . . . . . . . 89

7.18 HMRBUG experiments statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . 90

XIV



Abstract

This thesis focuses on two on-line motion planning problems where a group of mobile robots with

heterogeneous velocity must reach a target located in an a priori unknown and unbounded environment.

In the first problem, the target position is unknown and should be found by the robots, while in the

second problem the target position is known and a path to it should be found. This thesis focuses on

optimizing the task cost in terms of motion time and describes two new on-line navigation algorithms:

Heterogeneous Multi-Robot Search Time Multiplication, HMRSTM, and Heterogeneous Multi-Robot

BUG, HMRBUG, which extends Lumelsky’s famous BUG algorithm.

The performance of an on-line algorithm is usually expressed in terms of competitiveness, the

constant ratio between the on-line and the optimal off-line solutions. Specifically, competitiveness,

is defined as the ratio between the lengths of the actual path made by the robot that reached the

target and the shortest path to the target. We use generalized time competitiveness, i.e., the solution

is the time to reach the target, and the ratio is not necessarily constant, but could be any function.

Classification of a motion planning task in the sense of performance is achieved by finding the upper

and lower bounds on the competitiveness of all algorithms solving that task. If the two bounds belong

to the same functional class, this is the competitive complexity class of the task. We find the two

bounds for the aforementioned common on-line motion planning problems, and classify them into

competitive classes. It is shown that in general any on-line motion planning algorithm that tries to

solve these problems must have at least a quadratic competitive performance. This defines the lower

bound of the problems.

We proved that both HMRSTM, and HMRBUG algorithms have quadratic upper bounds, which

prove that the problems they solve have quadratic upper bounds. Thus, it is shown that navigation in

an unknown and unbounded environment by a group of robots belongs to a quadratic time competitive

class. HMRSTM and HMRBUG have a quadratic competitive performance and thus have optimal

competitiveness.

The algorithms’ average case performance is evaluated in simulations. The average performance

is much better than the worst-case analytical upper bounds of the algorithms. It is evident that

the performance of heterogeneous groups is better than the performance of homogeneous groups.

Moreover, it is evident that more heterogeneous velocity distributions perform better. Simulations

were validated by experiments in real robots. The results were within the expected bounds. Therefore,

the HMRSTM and HMRBUG algorithms are not only optimal in their upper bounds, but also perform

very well in average-case real-world scenarios.

Keywords:

Multi-Robot, Heterogeneous, Motion Planning, On-Line Algorithms, Competitive Complexity, Com-

petitive Complexity Class, Decentralized systems, Navigation, Area Coverage.
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Chapter 1. Introduction

1.1 Problem Description

Mobile robots play a significant role in many domains, among them military and police applica-

tions (e.g., demining, armed patrol vehicles, surveillance, bomb disarming), industry (e.g., conveying

and handling materials), civil tasks (e.g., search and rescue missions, agriculture), space (e.g., plan-

etary exploration, and material acquisition on distant planets), and service (e.g., cleaning house-

holds/pools/grass/others).

Robot motion planning is a fundamental task [41] in mobile robotic operations. The goal of motion

planning is to provide the robot with a trajectory to follow in order to accomplish its mission. The

trajectory is usually a set of output commands such as direction of movement, distance, and speed,

based on input variables such as current position. Many single robot motion planning algorithms exist

([18, 17, 5, 19, 20, 21, 43, 41, 47, 50, 51, 12, 10, 7, 13])

The basic problem of motion planning [41] is to determine which path a robot starting from a

specific location should follow in order to reach a known target point in a known environment. The

solution includes a set of coordinates the robot should follow, including orientation, velocity, and

acceleration. The path planning problem depends on the defined objective (time, length), usually

implying a totally different strategy for the solution.

Mobile robot motion tasks that involve target finding include exploration, mapping, coverage, and

box pushing. In many real-world situations, the environment’s geometry is unknown, for example

in disaster areas or space applications, or dynamic, e.g., in populated environments (for example, in

offices, hospitals, and factories). In such cases, finding a known target [11] implies finding a path

to the target. When no a priori knowledge is available, exploration tasks are useful for obtaining

information about the environment, and are usually accompanied by mapping. Such tasks require

world modeling requisites and communication capabilities. Moreover, the use of advanced sensors

such as vision cameras and laser scanners greatly improves the performance of exploration algorithms,

but may prove inefficient in worst-case scenarios such as mazes, and congested environments, e.g.,

disaster areas, since in such cases the multiplicity of obstacles obstructs the long-range sensors and

they become as effective as the touch sensors. The algorithms developed in this thesis assume

limited range sensors, thus they can operate in worst-case scenarios without restrictions.

When the environment’s geometry and the target position are known in advance, the solution is

denoted off-line, since all motions can be preprocessed prior to the actual execution of the mission.

On-line solutions are defined when no information about the environment is known in advance. The

next step is computed while the robot moves and according to the information it receives from its

sensors. This thesis focuses on on-line solutions.

In order to follow a path, a robot must have some information regarding its position and orientation,

which can be relative to earth, or to any frame (e.g., a starting point). When no outer source can

define the robot’s position, the problem is defined as self-localization. Self-localization can be solved

using several approaches, including odometry, GPS, RFID tags ([68, 16]), vision, and Line of Sight

1
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(LOS) ([60, 4]). Odometry accumulates errors and GPS accuracy is insufficient for small-scale robots

and cannot be used indoors. The main drawback of the tagging and marking algorithms is the extra

equipment they need to hold and deploy the tag devices, which adds weight and physical size to the

robots . The algorithms developed in this thesis do not rely on communication or on

vision sensors. Perfect localization achieved through off-the-shelf solutions is assumed.

In area coverage missions, the covering robot must pass a tool over all points of a defined area.

Exploration missions in which the target position is unknown and can only be identified by the robot

upon arrival may be considered partial area coverage problems. Different coverage algorithms exist

([18, 17, 40, 26, 48, 37, 34, 35, 65, 2, 39, 67, 1, 27, 23, 25, 3, 12, 8, 49, 14, 53, 54, 55, 59]). A famous

single robot coverage algorithm is the Spanning Tree Covering, (STC ) [17] algorithm. It is a grid-

based coverage algorithm that constructs a spanning tree and deploys the robot to circumnavigate the

tree, thus covering the whole environment. STC has been proved to be complete and optimal in the

sense that the area will be covered only one time. STC is designed to work in bounded environments

and can be applied either off-line or on-line.

Performance of grid-based coverage algorithms is commonly derived or compared with STC. Hazon

et al. [26] introduced a STC based multi-robot algorithm that focuses on non-redundancy of the

area covered by the robots. Thus, the covering time is not optimal and its performance may be

reduced to that of STC in the worst case. Agmon et al. [1] introduced a distributed construction

of a spanning tree while considering different initial locations of the robots. Zheng et al. [67] rely

on STC as well, and introduced a multi-robot algorithm that uses heuristics to construct partially

overlapping trees off-line. In the notable early paper [37], Kurabayashi et al. present an off-line

sweeping algorithm for homogeneous multi-robots, which, unlike the above-mentioned algorithms,

uses exact cell decomposition. Though it seems complete and efficient, proofs are not provided and

it is only shown through simulations and experiments. The algorithms are off-line and cannot be

used in an on-line manner without major revisions. Hazon et al. [27] extended their algorithm and

created an on-line version of it. Like their previous off-line algorithm, the on-line version focuses on

non-redundancy of the covered area, and thus loses optimality in search time. In this thesis we

present on-line algorithms that optimize the search time.

Several coverage algorithms are derived from the Boustrophedon decomposition [14], an exact cel-

lular decomposition developed for a single robot. The cells are created by the natural structure of the

obstacles in the environment, and each cell is covered by simple back and forth vertical movements.

Rekleitis et al. [48] extended the Boustrophedon decomposition to multiple robots, using two types

of robots. This solution relies on line-of-sight communication between the explorers and within the

teams. In a later study, the Rekleitis solution et al. [49] demands scattering the robots evenly along

the edge of the field to be covered and combines an auction mechanism to divide the uncovered area

after the initial run. Kong et al. [35] propose a solution that is based on the Boustrophedon decom-

position, but does not require line-of-sight between the robots; instead, communication is assumed to

be available without restrictions. All of the above-mentioned algorithms are restricted to operating

within a bounded environment. The algorithms developed in this thesis operate optimally in

unbounded environments.

Multi-robot algorithms can have improved robustness, performance, and efficiency [26]. Some tasks

require the robots in a group to have different attributes, such as different velocities, manipulating
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capabilities, sensors, or sizes. In some cases, robots are different due to assembly of different types or

models, or due to different make quality. The objective of this research is to design motion planning

algorithms for a group of velocity-heterogeneous robots (which must reach targets whose positions are

known a priori and targets whose positions are unknown a priori).

Research on heterogeneous multi-robot systems focuses on the cooperation of different robots

[24]. Coordination is composed of formation [46, 32], task allocation [62, 30, 64], and integration

[33, 63]. Controlling swarms of mobile robots [61, 6, 8] is also considered part of this category.

Such works focus on generality rather than specifically solving an exploration or a coverage problem.

Other heterogeneous multi-robot research directions include systems with human-robot interaction

[31, 66, 9], which rely on human operators to partially or fully guide the robots during their missions.

Sensor networks are not originally related to robotics, yet sensor reallocation [38], sensor repair by

mobile robots [44], and mobile sensor agents [44] add the capability of movement to the sensors

and therefore transform such problems into multi-robot and sometimes to heterogeneous multi-robot

motion planning problems. In the aforementioned works, the sensors in the network are treated as

multiple robots or as multiple targets. Sensors in such networks must have adequate ranges and specific

positions in order to completely cover the area they are scattered in, and must form a network. Thus,

they must have communication capabilities. In this thesis algorithms utilizing a heterogeneous

group of robots with different velocities and optimizing the search time were developed.

This study explores the problem of a group of heterogeneous robots starting from a com-

mon location finding a target whose position is unknown, in an unknown a priori, un-

bounded environment. This problem has not previously been treated as a whole. The robots are

totally autonomous and their onboard setup is composed of short-range, e.g., tactile sensors. Commu-

nication between the robots is needed only at the beginning and the end of the execution, permitting

implementation with a decentralized system. A deterministic, complete, robust, and optimal solution

is pursued.

1.2 Objectives

The research objective is to develop optimal, complete, and deterministic target finding and path

finding algorithms for a heterogeneous group of robots operating in unknown and unbounded envi-

ronments. A robust solution for a decentralized system is developed. Specific objectives are to:

• Find lower bounds of the algorithms

• Analyze worst-case performance

• Analyze time competitive complexity

• Prove optimality

• Evaluate the effect of different parameters on the average-case performance of the algorithms

• Test the algorithms in experiments with real robots

1.3 Research Significance

Target-finding missions are important in many applications. When the target position is unknown

to the searcher, the mission may be considered as a partial area coverage problem. When the area

to be searched is dangerous to human activity, e.g., in demining, contaminated area cleaning, and
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search and rescue missions, robots can be applied in order to avoid risking human lives. Additional

advantages include the efficiency achieved by machines, the ability to work long hours, and the relief

from tedious work.

The use of a group of robots can yield better performance and reliability than a single robot. A

group of robots can find the target faster, and the robots can replace one another in case of malfunction

and assist each other to perform better in positioning and in reducing redundant movements. Many

tasks can benefit from the use of heterogeneous robots. For example, smaller robots can enter narrow

passages and cover confined crevices, while larger ones may carry heavier loads, such as acquired

samples and complementary systems such as positioning, communication and sensory systems. Dis-

tributing different sensors between the robots may reduce the individual robot weight and thus result

in a heterogeneous group that is lighter and possibly has better maneuverability. Furthermore, the

different sensors can provide increased functionality, since different sensors have different capabilities.

A heterogeneous group of robots can be formed from early versions of robots and newly acquired

ones. Developing an efficient algorithm to handle a group of heterogeneous robots in tasks such as

target finding and area coverage is of great importance.

1.4 Contributions and Innovations

Two optimal motion planning algorithms for a group of heterogeneous mobile robots were developed.

The first algorithm solves the problem of finding a target whose position is unknown a priori. The

second algorithm solves the problem of finding a path to a target whose position is known a priori.

In both problems, the search environment is unknown a priori , which implies that the al-

gorithms developed are online. Real situations incorporate an unknown search environment, where

a map is unavailable, nonexistent, or partially known. Moreover, the search environment is un-

bounded, meaning that the search area can be very large-scale, or arbitrarily large. Despite these

limitations, both algorithms developed maintain their optimal performance.

Optimality is obtained through the following stages. In the first stage, in order to measure per-

formance, generalized time competitive complexity is defined. This is the functional relation

between a solution to the problem (of an online algorithm) in the form of time of search, and the

optimal off-line solution. In the second part, a lower bound for each problem is proved. The impor-

tance of the lower bound is that no algorithm exists that can perform better than this bound. In the

third part, an upper bound for each algorithm is proved. This upper bound has the same functional

relation as the lower bound. Since both bounds have the same functional relation, they classify

the problem in part five. Finally, since the algorithms developed perform within the bounds of the

problems classes, they are proved optimal (up to constants).

The performance of the developed algorithms, which use a heterogeneous velocity group of

robots, is proved to be better than similar algorithms for a group of homogeneous robots and better

than single-robot algorithms.

Although the developed algorithms are on-line, run in unknown environments, and run in un-

bounded environments, they are proved to be complete, which means that if a solution exists, they

will find it. Moreover, they are proved to be robust, so that they stay complete even when the robots

experience malfunctions. Furthermore, the algorithms assume that the robots are capable of only

short-range sensing, have no communication and no central control unit, and have minimal processing
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power and memory onboard.

The upper bounds of the algorithms are worst-case scenario bounds. In order to evaluate the

average-case performance of the algorithms and the effect of several different parameters on the

average case performance, simulations were conducted. A special software platform was built to

serve as the base for the simulation application of the two different algorithms.

In order to validate the simulation application and evaluate the effect of uncertainty of sensors

and hardware implementation, experiments were conducted. Four robots were designed and built

as were other parts of the experiment system.

To summarize, the main assets of the algorithms developed are that they are proved optimal and

complete in the sense of search time, for unknown and unbounded environments. They cover two

major motion planning problems: searching for a target whose position is unknown, and searching for

a path to a known target. The algorithms developed utilize a group of heterogeneous velocity robots.

Previous algorithms that solved these problems either do not have all the properties mentioned above

(in particular, no algorithm handles an unknown, unbounded environment and proves upper bound

on its performance) or, they have such properties, but are designed for single robots ([19], or homo-

geneous groups of robots[57, 58, 53].

The main contributions of this research are as follows:

• Two motion planning algorithms for a heterogeneous group of mobile robots searching for un-

known and known targets in unknown and unbounded environments

• Upper bound, completeness, and robustness proofs despite major limitations, such as those

mentioned in the previous point, and limited robot capabilities, such as short-range sensors, lack

of communication, and lack of centralization

• Classification of the two motion planning problems into time competitive complexity classes,

including lower bound proofs, upper bound analysis, optimality, completeness, and robustness

proofs

• Extensive performance evaluation of the developed algorithms: Average-case performance for

a multitude of parameters was evaluated in simulations. Experiments validate the simulations

and further evaluate uncertainty of sensors and hardware implementation.
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Chapter 2. Literature Review
Motion planning problems can be categorized in many ways. The most common of these are the

definition of the problem, the setup and assumptions about the robot, and the nature of the solution.

The overall mission goal is another important category. A basic extension of the fundamental motion

planning problem is searching for a target whose position is unknown a-priori to the searcher. This

problem may be considered a partial area coverage problem or an area exploration problem. Here a

certain area must be visited and inspected by the robot. Examples of applications are lawn mowing,

cleaning, demining, search and rescue missions, and planetary exploration. A thorough survey on

coverage by Choset et al. [12] classifies it according to four types of cell decomposition, heuristic,

approximate, partial-approximate, and exact cell decomposition. Choset concentrates on single robot

coverage and the section on multi-robots focuses on approximate cell and exact cell decompositions.

The three tables 2.1, 2.2, and 2.3 summarize the important studies conducted, including their motion

planning, exploration, and coverage parameters, and the contribution of this dissertation. A detailed

review of the more interesting and relevant works follows.

Computational Complexity

Robot motion planning algorithms can be categorized in many ways, and one of the most important

questions is how good the algorithm is. To answer this question, a common measure must be applied.

The most common measure is the performance of the algorithm, which depends on computational

complexity. Computational complexity attempts to classify computational problems into classes ac-

cording to their level of difficulty. The level of difficulty of computational problems was first examined

in terms of the time it took to solve them. Since the time needed to solve a problem depends on

the capabilities of the machine that runs the algorithm, a more general performance measure is the

number of steps required to find the solution as a function of the size of the problem, that is, the size

of the input [42].

The common notation for the upper bound of an algorithm is the big O notation. ’A function

f(n) is O(g(n)) whenever there exists a constant c such that |f(n)| ≤ c · |g(n)| for all values of n ≥ 0 .

A polynomial time algorithm is defined as one whose complexity function is O(p(n)) for a polynomial

function p, where n is used to denote the input length. Any algorithm whose time complexity function

cannot be bounded in this way is called an exponential time algorithm’ [22]. The definition of time

complexity is measured in worst-case scenarios. When the size of the problem, the input, is large, this

distinction between polynomial and exponential time algorithms is much more significant than it is

with small inputs.

For example, on a computer that calculates each step in a microsecond, for n = 10, the time

to complete the calculation for an algorithm with an upper bound of O(n) will be 0.00001 second,

whereas the time to complete the calculation for an algorithm with an upper bound of O(3n) will

be 0.059 second. For n = 60 the time will be 0.00006 second for the O(n) algorithm and 1.3 × 1013

centuries for the O(3n) algorithm. The improvement of technology, specifically computing power, will

not significantly enhance performance. For example, the size of the largest problem instance solvable

7
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in 1 hour for a fast computer 1000 times faster than a slow computer will be 1000 times greater for

an algorithm with a complexity function of O(n), whereas it will be greater by only 6.29 input items

for an algorithm with complexity function of O(3n) [22].

Problems are considered intractable if no algorithm exists that can solve them with a polynomial

upper bound. Thus, generally it is considered best practice to develop and use algorithms with

polynomial time complexity. The theory of computational complexity classifies known problems into

classes of different levels of difficulty. The P class includes all the problems that can be solved in

polynomial time. A more difficult class of problems is called NP, and formally it consists of all the

decision problems that can be solved in polynomial time by a nondeterministic computer. In other

words, if a solution to the problem exists, by a guess, for example, it can be verified in polynomial

time. A major unsolved question is whether the class P is contained in or equal to the class NP.

Stephen Cook, in his study ”The Complexity of Theorem Proving Procedures,” from 1971, proved

that within the class NP there exists a problem called the ”satisfiability” problem. All other problems

in this class can be reduced to ”satisfiability” problems with polynomial time. Thus, this is the ”most

difficult” problem in NP. Later, it was proved that some other problems in NP are as difficult as

the ”satisfiability” problem and together they form the class of NP-complete problems. Even more

difficult problems exist, which may not even belong to NP. In these problems, solutions cannot be

verified in polynomial time, for example, if the solution size is polynomial in the size of the problem.

Such problems, if they can be reduced to a problem in the NP-complete class, belong to the class

called NP-hard. Among the problems that belong to the NP-complete class, the most relevant to

motion planning are the ones consisting of graphs. The most famous of them is the traveling salesman

problem.

The traveling salesmen problem is defined as follows: Given a finite set of cities, a distance for

each pair of cities and a bound, does a tour of all given cities having a total length no greater than

the given bound exist? Another famous graph problem that belongs to the class of NP-complete is

the vertex cover problem, which is defined as follows: Given a graph and a positive integer, is there a

vertex cover the size of that integer or smaller? Both problems belong to the NP-complete class and

thus are considered intractable. In order to overcome the issue of intractable problems that need to

be solved, a solution in the form of approximation was introduced. Approximation algorithms run in

polynomial time but do not provide an optimal solution. Approximation algorithms can ensure the

solution is within a certain bound, not as good as the optimal solution, which, in many cases, is better

than an optimal solution that can be obtained in exponential time. Some algorithms have exponential

time performance in the worst case, but perform quite well in most of the average cases. An example

of this kind is the simplex algorithm, which solves linear programming problems.

In robot motion and path planning problems, due to the advances in technology and computation

power, the time it takes a robot to calculate its next step is several orders smaller than the time it

takes to actually perform that step. Hence, many studies in this field do not consider the computa-

tion time the most important performance measure of their algorithm, but rather the optimality of

the solution. Optimality of a solution to a motion or path planning problem is usually measured in

terms of the path length produced by the robots executing the algorithm. The actual path length is

compared with the optimal off-line solution, and their ratio forms the competitiveness constant.
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Search

In many motion and path planning problems, graphs are used to represent either a part of the problem

or a part of the algorithm. Searching in graphs has been a well known area of research for many

years [36]. An example from this research is the minimum spanning tree problem, for which many

solutions have been found. Kruskal’s algorithm originally solved this problem in O (mn) time and

was later improved to O (m log n), where m is the number of edges, and n is the number of vertices

in the graph. Prim’s algorithm originally solved that problem in O
(

n2
)

time and later was improved

to O (m+ n log n). The shortest path problem is also very well known and has been thoroughly

investigated. Dijkstra’s algorithm solved this problem in O
(

n2
)

time and was later improved to

O (m+ n log n).

Searching in robotics incorporates a vast variety of problems. Generally, it can be said that search-

ing in robotics sums up to searching for a path. This can be searching for a path to a known target

or searching for a target whose position is unknown. The environment’s geometry is either known

in advance or it is unknown a-priori. Baeza-Yates et al. [5] explored several problems related to the

general case of searching in the plane, calculating and proving bounds for the problems’ performance.

They started with proving that searching for a point on a line using linear spiral search is optimal and

the lower bound for that problem is 9 times the optimal off-line solution. Furthermore, they explored

problems of searching for a line in planes with different properties.

Other famous algorithms that address the problem of finding a path to a target in an unknown

environment are BUG1 and BUG2, presented by Lumelsky et al. [43]. BUG1 has an upper bound

of D + 1.5
∑

i pi where D is the straight line distance from the start to the target points, and
∑

i pi

refers to the perimeters of the obstacles intersecting the disc of radius D centered at the target. When

searching for a path to a target whose position is unknown with limited capabilities sensors, a certain

area must be covered. Thus, the target finding problem can sometimes be referred to as a partial

coverage problem.

2.1 Single Robot Coverage Algorithms

Many coverage algorithms use graphs to represent the environment, and deploy the robots to move

through the entire graph for complete coverage. The most basic graph walking algorithm is DFS,

Depth-first search algorithm [15], which explores deep in the graph whenever possible, and otherwise

backtracks. STC algorithm [17] is a single robot coverage that improves DFS. Coverage of single

robot and multi-robot coverage are the subjects of the following sections.

The single robot covering problem was explored by Gabriely and Rimon [17]. They introduced

three versions of the Spanning Tree Covering (STC) algorithm, which achieves optimal coverage, off-

line, on-line, and ant-like algorithms. The assumptions and definitions of the off-line STC are as

follows: First, the robot has a rectangular covering tool of size D and can move only in the four

directions orthogonal to the tool’s sides. A spanning tree is constructed using DFS on a grid of

free-from-obstacle cells whose size is 2D. Finally, each 2D cell is further subdivided into four D size

cells, and the robot circumnavigates the spanning tree (Fig. 2.1(a)) until it reaches the starting point,

implying complete coverage.

The on-line STC uses onboard short-range sensors to detect the obstacles of the unknown envi-

ronment lying in the neighboring cells of the robot. As the robot moves, it incrementally constructs
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Table 2.1: Exploration works

Reference [68] [16] [60] [4] Sarid PhD

Multi-robot + + + + +

heterogeneous - - - - +

initial locations NAa known known NA known

online +-b + +-c var.d +

unbounded env. - - - - +

grid/graph graphe grid grid NR NR

cell decomposition App. App. App. NR NR

min. param. time time time time time

heuristic +f - - NR -

sensors +g NR - NR +

Short-range laser NR - NR +

Long-range laser NR - unlimited -

simulations + + + + +

sim. no. robots 2-20 1-30 1-4 3-5 1-20

sim. param. NA 4h R’s No. R’s No. 5i

proofs - - - - +

non-redundancy + + NR NR -

robustness NRj / + + NR NR +

complete - + NR - +

distributed + / - + + + +

centralized - / + - -+k + -

localization +l cell NA NA -m

collaboration - +- + + -

communication +-n / + -o LOSp LOS -

anot available
bRFIDs known
ctargets set in advance
d3 cases: online, offline, and between
eoccupancy graph
fA*, Euclid. Dist.
gIMU, RFID reader
hterrain size: 1000-5000 cells, 2-64 rooms, 20-50 obstacles
i3 environments, 1-20 robots, 3 velocity distributions, 10 initial search area, 10 target positions
jnot relevant
ktargets set in advance
lodometry+RFID

massumed ideal
nindirect via RFID
ovia RFID
pline of sight
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Table 2.2: Approximate Cellular Decomposition Coverage works

Reference [1] [17] [26] [67] [27] Sarid PhD

Alg. Name STC MSTC MFC ORMSTC HMRSTM

multi-robot + - + + + +

heterogeneous - - - - - +

initial locations arb. NR arb. arb. arb. known

online - + - - + +

unbounded env. - - - - - +

grid/graph grid grid grid grid grid NR

min. param. time path non-red.a time non-red. time

heuristic + - - + - -

robot size Db NR D NR D

short-range sensors + + + + +

Long-range sensors NR NR - - -

simulations + + - - +

sim. no. robots 3-30 1 NR 2-20 2-10 1-20

sim. param. ODc NR OD, RCd 2 envs. 5e

experiments - - - - + +

proofs + +f +g +h + i

non-redundancy NR + + - + -

robustness NR NR + - + +

complete NR + + + + +

distributed NR NR + - + +

centralized NR - + - -

localization NR perfect perfect perfect perfect perfect

collaboration NR NR - - + -

communication NR NR - - + -

anon-redundancy
bcovering tool
cobstacles’ density
dRC - robots’ clustering
e3 environments, 1-20 robots, 3 velocity distributions, 10 initial search area, 10 target positions
fTSTC is optimal
gTMSTC ≤ 0.5TSTC for R ≥ 3
hTMFC ≤ TSTC , TMFC ≤ 8Topt + ǫ
ioptimal, quadratic in the optimal off-line solution
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Table 2.3: Exact Cellular Decomposition Coverage works

Reference [37] [14] [48] [49] [35] Sarid PhD

Alg. Name B.C.D.a HMRSTM

Multi-robot + - + + + +

heterogeneous - - + + +

initial locations + - + +b known

online - + + + + +

unbounded env. - - - - - +

grid/graph graph graphc graphd graphe graphf NR

min. param. path path path path path time

heuristic - - - - - -

robot size point NA NA NA NA D

Short-range sensors + + + + + +

Long-range sensors - - LOS - - -

simulations + + - + + +

sim. no. robots 5 NR NA 3 2 1-20

sim. param. R’s r=15,30 NA NA NA NA 5g

Experiments + + - - + +

proofs - - - - - +

non-redundancy - - - - - -

robustness - NR NA + + +

complete + + + + + +

distributed - NR + + + +

centralized - NR - - - -

localization + DRh + + + perfect

collaboration + NR + + + -

communication - NR LOS + + -

aBoustrophedon Cellular Decomposition
binitially deployed along the side of the field at regluar intervals
cadjacency graph
dReeb graph
eReeb graph
fadjacency graph
g3 environments, 1-20 robots, 3 velocity distributions, 10 initial search area, 10 target positions
hdead reckoning



2. Literature Review 13

Figure 2.1: Execution examples of (a) STC [17], (b) D-STC [18]

and circumnavigates a spanning tree using DFS method, thus covering the environment completely.

In this version, the spanning tree is stored in the onboard memory, resulting in a dependency of the

search area on memory size. The third version solves this memory problem by leaving markers on

visited cells. A major drawback of partially occupied 2D cells that resulted in uncovered D cells near

obstacle boundaries and non-rectilinear walls was addressed in later research [18]. Gabriely and Rimon

introduce D-STC, which solves this problem by visiting the previously uncovered cells (Fig. 2.1(b)),

resulting, in worst-case scenarios, in a coverage area twice the area of the environment.

2.2 Multi-Robot Coverage Algorithms

Several algorithms extend STC to support multi-robots. An example of such an extension is the

Multi-Robot Spanning-Tree Coverage algorithm (MSTC ) [26] of Hazon et al. which assumes different

starting positions for the robots. Their algorithm first builds one spanning tree using STC algorithm,

and then each robot circumnavigates its part of the tree. Since MSTC focuses on non-redundancy of

the area covered by the robots, the covering time is not optimal when the robots’ starting positions are

close together. In such worst-case scenarios, k−1 out of k robots may stand while one robot continues

to cover the entire environment and MSTC performance is reduced to that of STC. Allowing the

robots to backtrack, MSTC achieves a worst-case performance, which is twice as good as that of STC.

Zheng et al. [67] introduce the Multi-robot Forest Coverage Algorithm (MFC ), which uses heuris-

tics to construct partially overlapping trees (Fig. 2.2). The union of the forest completely covers the

grid. MFC is proved to cover the environment with a time larger than optimal eight times at most.

Agmon et al. [1] introduce Create-Tree, an off-line grid-based distributed construction of a spanning

tree that considers the initial locations of the robots. First, each robot constructs a disjointed spanning

tree, trying to create trees of equal lengths, knowing the other robots’ spanning trees. Then, using

heuristics, the individual trees are merged into one spanning tree, which minimizes the total coverage

time.

In the notable early paper [37], Kurabayashi et al. present an off-line sweeping algorithm for

homogeneous multi-robots. The algorithm includes three parts. First, it computes separated paths

according to the Voronoi method. Next, the paths are connected to create a minimum distance tour
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Figure 2.2: Execution examples of MFC [66].

according to a known solution to the analogous Chinese Postman Problem. Finally, the tour is divided

into paths of equal lengths, which are assigned to the robots. The assumptions made here are that

all robots have equal ability, the sweeping unit of a robot is a circle with a radius of r, a robot can

move omni-directionally, only the size of the sweeping unit is considered, a robot can be regarded as

a point, and the work area to be swept is represented by polygons . No proof of optimality is made.

All the above-mentioned algorithms STC, MSTC, MFC,Create-Tree, use approximate cell decom-

position. Moreover, they all are off-line and operate in a known a priori, bounded environment. Hazon

et al. [27] further developed MSTC and created a distributed on-line version of such an algorithm,

called ORMSTC. Here, each of the robots gradually constructs a spanning tree, each knowing other

robot’s current position by communicating with them. Like their previous off-line algorithm, ORM-

STC, also focuses on non-redundancy of the covered area, thus losing optimality in search time, since

in worst-case scenarios the algorithm will lead to blocking k−1 out of the k robots from the beginning

of the coverage, leaving one robot to cover the whole environment.

Figure 2.3: Boustrophedon extension to multi-robot by Rekleitis et al. [48]

Rekleitis et al. [48] extended the Boustrophedon decomposition to multiple robots, using two types

of robots, explorers, which search the environment for obstacles and decompose it accordingly, and

coverers, which cover each cell previously created (Fig. 2.3). This solution relies on line-of-sight (LOS )

communication between the explorers and inside teams formed by robots that are in line of sight. In

a later study, Rekleitis et al. [49], focus on de-mining. Here, the robots are deployed from a vehicle

at one side of a field that needs to be de-mined. The initial positions are equally distributed so that

each robot is assigned a vertical stripe to cover (Fig. 2.4). At first, each robot tries to encircle its

stripe and build a representation of the work area. The solution combines an auction mechanism

to divide the uncovered area after the initial run. Kong et al. [35] propose a solution based on
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the Boustrophedon decomposition, but it can be considered partially approximate, since, at first, the

algorithm decomposes the environment to vertical stripes having a constant width of twice the covering

tool size (Fig. 2.5). Next, each robot covers a cell with simple back and forth motion and updates the

connectivity graph according to the obstacles it encounters. Finally, a mechanism to introduce new

tasks is incorporated in the algorithm to handle cases where one robot finishes its covered area before

a new task is introduced and the environment is not yet completely covered.

Figure 2.4: Multi- Robot demining by Rekleitis et al. [49]

Figure 2.5: (a)Cellular Decomposition with fixed size cell width, (b) Adjacency Graph to represent

the decomposition of (a) [35]

2.3 MRSAM algorithm

This study is partially based on our previous MRSAM algorithm [57, 53, 52]. MRSAM launches

multiple robots from a common starting point S and assigns each robot j to a disc to search for the

target T in it. All the discs are concentric and S is their center.

The first robot (j = 1) is designated to the initial disc of area A0, and each of the following robots

starts its search in a disc of area larger than the previous disc by a factor of 1 α > 1, namely, the

areas of the discs will be A0,αA0,α
2A0,α

3A0 . . . . For example, in Figure 2.6, MRSAM deploys a

group of four robots to search for the target. Robot 1 is initially assigned the task of searching for

the target inside a disc of area A0, robot 2 is assigned the task of searching inside a disc of area

αA0, and robots 3 and 4 search initially in discs of areas α2A0 and α3A0 respectively. After robot 1

1This is an important property, since the search area must be extended in each step in order to reach the target in

case the target is positioned outside the first search disc.
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finishes covering the entire portion of disc 1 that is accessible from S and fails to find the target, it

starts searching for the target inside disc 5 of area α4A0. Robot 2 will continue to search in disc 6,

and robot 3 will continue to disc 7. Note that the target lies inside disc 7, but cannot be reached by

robot 3 in this current step due to the presence of obstacles. Finally, robot 4 moves on to search in

disc 8, where it finds the target and terminates the algorithm. Each robot searches for the target in

the accessible portion of the disc allocated to it until the target is detected, or until the entire region

accessible from S is explored without finding T. The search process in each disc is as follows: The

robot imposes an online discretization of the continuous area into a grid of D-size cells [29, 18]. The

grid consists only of free cells and is surrounded by partially occupied cells. The robot executes a

standard area coverage tour on the grid of free cells, while scanning each new cell for the target. Upon

entering a new cell, the robot additionally scans the neighboring partially occupied cells for T. If the

discretization preserves the connectivity of the accessible region (this assumption can be relaxed by

a more sophisticated algorithm that monitors local connectivity breakage), then clearly all free and

partially occupied cells in the region accessible from S are eventually inspected by the robot.

The robots cover the area of the discs until they reach the target. If the target was not detected

in the initial disc, the robot is assigned to the next unoccupied disc.

In [57] it is proved that if the target T is reachable from S, MRSAM finds the target using n robots

and the path length lj traveled by the robot that found the target satisfies the quadratic inequality

lj <
2παn+1

D(αn − 1)
l2opt +

2πr20
D

, where D is the robot size, r0 is the initial search radius, α is the multiplication factor, which is a

function of n only, and lopt is the length of the optimal off-line path from S to T. Later it is proved that

the competitive complexity of MRSAM is minimal when the multiplication factor is α = (n+ 1)1/n.

It is proved that MRSAM algorithm is optimal, complete, robust, and decentralized, and does not

need communication.
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Figure 2.6: The first (a) and final (b) steps of MRSAM execution example. The gray area marks the

unreachable parts of each robot in its current step. The dashed line denotes the optimal path, lopt (b).
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2.4 MRBUG algorithm

This study is partially based on our previous MRBUG algorithm [58, 53, 52]. MRBUG launches pairs

of robots from a common starting point S to search for a target T whose position is known in an

unknown and unbounded environment. Each pair of robots is assigned to an ellipse whose focal points

are S and T . Each pair of robots executes PBUG1, an extended version of the BUG1 single robot

algorithm.

In PBUG1 a pair of robots that start from a common start point S needs to find a path to a

target T whose position is known in an unknown planar environment. The pair of robots will move

together toward the target in a straight line until it hits an ith obstacle at a point marked as Hit point

H i, i = 1, 2, ... . At this point the pair splits, robot RL turns left and robot RR turns right, and

they circumnavigate the obstacle from different directions. Each robot encircles half of the obstacle’s

perimeter. While moving, each robot calculates and remembers the closest point on the obstacle’s

boundary to the target. Upon meeting, the robots compare the recorded information, decide which

point is the closest to the target, join and again move together to that closest point, which they mark

as Leave point Li, i = 1, 2, ... . Finally, the robots continue to move together toward the target.

In MRBUG , the execution of PBUG1 regards the ellipse as a virtual obstacle’s boundary. If the

target is detected, the algorithm terminates; otherwise, the pair of robots repeats the process on the

next unassigned ellipse in the series. A formal description of the basic algorithm follows. Each pair

of robots executes PBUG1 within an ellipse of area larger than the previous ellipse’s area by a factor

of α > 1; that is, the areas of the ellipses will be A0,αA0,α
2A0,α

3A0 . . . . For example, in Figure 5.3

,robots 1L and 1R are initially assigned to search for a path to the target inside an ellipse of area

A0 and robots 2L and 2R are assigned to search inside an ellipse of area αA0. The search for the

path inside an ellipse is conducted by the pair of robots assigned to that ellipse using PBUG1. In

the following example depicted in Fig. 5.3, MRBUG launches three pairs of robots, 1, 2, 3 to search

for a path to the target in a very simple environment. Each robot pair is initially assigned to a

bounding ellipse, e1, e2, e3 to execute PBUG1 in it, and each robot in a pair is assigned to a different

local direction, Left,Right: 1L, 1R, 2L, 2R, 3L, 3R. At first, the robot pairs move directly toward the

target, and as they encounter an obstacle they split, each robot moving in its local direction. It can

be observed that a part of the path is traversed by all the robots together at the same time, and the

robots will move together as long as they are within the boundary of the first ellipse. As depicted in

Fig. 5.3(a), while robot pair no. 2 is traversing the second ellipse, robot pair no. 1 finishes traversing

the obstacle’s boundary, which lies inside the first bounding ellipse and the ellipse itself. It can be seen

that robot pair no. 3 does not have to traverse ellipse no. 3 in this example, since it does not intersect

the obstacle. After meeting each other, the robots of pair no. 1 move toward their first leave point,

which is the closest point to the target they encountered while traversing the obstacle’s boundary,

where they conclude that they cannot reach the target from ellipse no. 1 (Fig. 5.3(b)). Thus, the

robots of pair no. 1 start executing PBUG1 in ellipse no. 4. Meanwhile, robot pair no. 3 meets on

the obstacle’s boundary, as can be seen in Fig. 5.3(c). While robot pair no. 1 is busy with its search

in ellipse no. 4, robot pair no. 2 meets on ellipse no. 2, and afterward the pair moves together toward

the closest point to the target. At this interval, robot pair no. 3 moves together to its leave point

on the obstacle’s boundary and from there it continues without additional obstacles and reaches the
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target (Fig. 5.3(d)).

In [58] it is proved that if the target T is reachable from S, MRBUG finds the target using n robots

and the path length l traveled by the robot that reached the target satisfies the quadratic inequality

l ≤ π

D

αn+1

αn − 1
l2opt + ||S − T ||+ 4

A0

D

where D is the robot size, and lopt is the length of the optimal off-line path from S to T . Note

that the upper bound is scalable, in the sense that both summands have units of length. Later it is

proved that the competitive complexity of MRBUG is minimal when the multiplication factor α equals

α = (n+ 1)1/n. It is proved that MRBUG algorithm is optimal, complete, robust, decentralized, and

does not need communication.
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Figure 2.7: Execution example of MRBUG with 3 pairs of robots. The dense dashed lines indicate a

mutual path of a pair. The path traversed in the previous step is colored grey



Chapter 3. Methodology

3.1 Overview

New algorithms for a group of heterogeneous robots that must find a target for unknown (HMRSTM,

Heterogeneous Multi-Robot Search Time Multiplication) and known (HMRBUG, Heterogeneous Multi-

Robot BUG) positions are developed. Proofs of the algorithms are presented, including completeness,

performance bounds, and relative performance compared to other algorithms. The algorithms are

based on the area multiplication method of MRSAM and MRBUG algorithms for a group of homoge-

neous robots [57, 58]. The area multiplication method computes a multiplication factor, α, according

to the number of robots n, and assigns each robot to search for the target in consecutive areas where

each area is larger than the previous area by the multiplication factor. The areas selected are discs

for an unknown target position (HMRSTM ) and ellipses for a known target position (HMRBUG).

Analysis includes theoretical analysis, simulation analysis, and validation in real-world experiments.

3.2 Algorithms

Since the main performance measure is time, a multiplication factor for the time it takes to cover each

area (disc and ellipse corresponding to HMRSTM, and HMRBUG, respectively) is developed. The size

of each area is calculated using this time and the robot’s velocity. The multiplication factor, denoted

α,, is calculated with two constraints. The first asserts that the time to cover the next area must be

greater than the time to cover the current area. The second constraint is that the next area must

be greater than the current area. While the first method yields α calculated at the beginning and

remains constant during the rest the execution, the second method considers a varying multiplication

factor, namely, α changes from area to area, and more precisely, each robot has its own multiplication

factor.

3.2.1 Heterogeneity

The heterogeneity measure explored is different velocities among the robots. First, an algorithm for a

group composed of robots with two velocities, slow robots and fast robots, is developed. Subsequently,

the algorithm is generalized in such a way that more than two groups of velocities are handled, i.e.,

any number of velocities smaller than or equal to the number of the robots. The robots’ velocities

are defined as follows. The slowest robot, numbered robot 1, has a velocity v1 = β1v, where β1 = 1,

thus, v1 = v. Each additional robot has a velocity equal to or greater than that of the previous

robot, so that, vj ≥ vj−1, ∀j = 2, . . . , n, where n is the total number of robots. Thus, vj = βjv and

βj ≥ βj−1 ≥ 1, ∀j = 2, . . . , n.

3.2.2 Completeness

An algorithm is said to be complete if it finds a solution, if one exists. The algorithms developed

bound the search in each step with a disc or an ellipse until the target is found or reached. Within

each disc or ellipse, the algorithms perform the search using sub-algorithms, that is, STC to cover a

disc area, and PBUG to find a path to the target within an ellipse. Since the discs and ellipses grow

21
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in each step until they contain a path to the target, and since the sub-algorithms used are complete,

completeness of the algorithms is proved using the completeness of the sub-algorithms they use.

3.2.3 Decentralization, Communication, and Robustness

The algorithms are decentralized in such a way that each robot executes its mission independent of

the other robots and of any centralized unit. Communication is not needed, except at the end of the

execution, when the target is reached, and all other robots must receive a stop signal. An exception to

this rule is the extended version of HMRBUG algorithm. Here, the robots work in pairs, and each pair

is independent according to the rule above. However, two robots of the same pair cooperate to find

the path within the same ellipse, and thus must have some communication capabilities upon meeting.

Since the algorithms are decentralized, and the robots are independent and do not need commu-

nication, and since, in each step of the algorithms, the search is conducted within growing discs or

ellipses until reaching the target, the algorithms are robust. If one or more robots stop executing the

algorithm due to malfunction or sabotage, the algorithms will still be complete since, if at least one

functioning robot is left, it will reach the target, and hence robustness is achieved.

3.3 Performance Measures

Performance of on-line motion algorithms is usually measured by the path length traveled prior to

finding or reaching the target. In this research, since robots with varying velocities are employed,

each will travel different path lengths during the same time. Thus, the main performance measure

was defined as the time to reach the target.

The on-line path length of the examined algorithm is compared to the off-line optimal solution.

The ratio between the on-line path length and the optimal solution is defined as competitiveness. The

general definition of time competitiveness is provided in chapter 4.

The universal lower bounds of the problems are proved environments that are believed to be very

difficult for a group of heterogeneous robots, causing all algorithms to perform badly, that is, covering

the whole area of the environment prior to finding the target. The upper bounds of the algorithms are

found using methods taken from computational geometry. The algorithms’ performances are compared

to other algorithms solving the same problems in worst-case conditions.

3.4 Simulation analysis

3.4.1 Overview

Simulation analysis is performed on Intel Core2 Duo 2.5 GHz CPU based PC, with 3.5 GB of RAM

memory and running MIcrosoft Windows XP operating system. Simulation software was written in

C-Sharp (C#) language using Microsoft Visual Studio .NET 2010.

Simulations test the average-case behavior of the developed algorithms for several different pa-

rameters evaluated as defined below. The main performance measure evaluated is the time it took to

reach the target.

3.4.2 Parameters evaluated

The computer simulations test various configurations of the framework, with variations in the param-

eters governing the algorithm performance.



3. Methodology 23

Number of robots

For unknown targets (HMRSTM ) the number of robots, n, varies from between 1 and 10, where single

robot simulations were conducted for purposes of comparison. For known targets (HMRBUG) the

number of robots pairs, n, varies from between 1 and 10 (2 to 20 robots).

Velocity distribution

Three velocity distributions are considered. The first is linear distribution of the velocities, denoted

βLinear, in which the velocities are calculated to have linear distribution and βn is maximal according

to the number of robots and the algorithm’s restrictions. In the second velocity distribution, all

robots have the same slow velocity vj = βjv, βj = 1∀j = 1, . . . , n− 1, with the exception of the last

robot, which has a maximal velocity. This distribution is denoted βMax. Both heterogeneous velocity

distributions are compared with homogeneous velocities, where, vj = βjv, βj = 1∀j = 1, . . . , n,

hence, vj = v, ∀j.
βj indicates the velocity ratios among the robots within the group. βj were calculated to meet

the constraints derived from the algorithm αj > 1, β1 = 1, βj > βj−1 ∀j > 1, βj−1 < αjβj ∀j > 1,

βn < α1;

The three sets of β-s tested for each run are:

1. βLinear, ”beta-linear”: β-s with values distributed linearly

2. βMax, ”beta-max”: βn with maximal value and the rest of the β-s close to 1

3. β1, ”beta-homogeneous” : equal β-s

Environments

Three environments in which the robots search for a path to the target are evaluated. The first en-

vironment, ”free,” is free of obstacles. The second environment, ”cave,” is lightly congested and is

populated with 7 rock-like obstacles (Fig. 3.1). The third, the ”library” environment is a highly con-

gested office-like environment. It is the map of the Vasche library, the 1st floor of the CSU Stanislaus

library (Fig. 3.2). The two last environments were obtained from the Robotics Data Set Repository

(Radish) [28]1

Target positions

Ten different target positions were randomly selected and tested for the HMRSTM algorithm (search-

ing for unknown position target). Since the search path follows a spanning tree from one side, adjacent

targets can be on two sides of the spanning tree and thus the path length to them can differ drasti-

cally. To overcome this problem, first, for each target position we further tested two adjacent target

positions, one cell to the right and one cell below the original position. Later, for each target position

we further tested 8 adjacent target positions, surrounding the original position In such a way that

it appears as a cluster of 9 target points. The ten target positions along with the optimal paths are

shown in Fig. 3.2;

Ten different start (green) and target (red) positions were randomly selected and tested for the

HMRBUG algorithm (searching for a known target position) shown in Fig. 3.3. These points were

chosen so that all target points would be reachable from their start points in all environments.

1Thanks to Richard Vaughan and to Ashley Tews for providing this data.
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Figure 3.1: HMRSTM Cave environment.

Figure 3.2: 10 target positions in HMRSTM ”library” environment with optimal off-line paths marked.

Figure 3.3: HMRBUG 10 Start-Target positions
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Initial search time

For the unknown target simulation (HMRSTM ), the initial search radius varies from between 3 and

40, with intervals of 4 (intervals of 3 in the second phase). A total of 37,800 simulation runs were

analyzed, composed of two parts, as follows: In both parts, 3 environments, 10 robot groups, and

3 beta were tested. The first part consists of simulations on 10 target positions, two adjacent cells

that were additional targets, and 13 initial radii. The second part consists of simulations on 10 target

positions, eight adjacent surrounding cells that were targets, and 1 initial radius.

For the known target (HMRBUG), 10 initial search ellipses were evaluated starting from a mini-

mum value of the minor axis determined by the start and target position. A total of 9,000 simulation

runs were analyzed.

3.5 Initial run

The first run took 1 hour and 11 min on an Intel Core2 Duo CPU 2.5 GHz with 3.5 GB of RAM.

16,200 different simulations were conducted during that time. The results were kept in a .csv file

of size 1.38MB. The parameters in this run varied as follows: 3 environments, 10 target positions

plus 2 adjacent target positions for each target position, 9 robot groups (between 2 to 10), 2 beta

distributions (beta-linear,beta-max), 10 initial radii.

The various parameters are presented in Tables [3.1,3.2].

Table 3.1: Simulation Environments

No. Name Type Crowdedness

1 Free Free from obstacles None

2 Cave Open field Lightly Congested

3 Library Office Heavily Congested

Table 3.2: Simulation Parameters

Name Symbol Range

No. of Robots (Pairs in HMRBUG) n n = 1, 2, . . . , 10

Velocity Distributions β β1, βLinear, βMax

Initial Search Time T0i i = 1, 2, . . . , 10

3.5.1 Performance Measures

Performance is analyzed by calculating the time it took the robot to reach the target. The difference

in velocities is implemented in simulation by instructing each robot to move one D-step according to

its velocity, where D is the robot’s width or diameter. Hence, in the same time period, a robot that is

twice as fast will perform twice as many D-steps as the slower robot. Since all robots start and finish

the search together concurrently, the execution time of all robots is equal. Thus, time in this context

is the number of D-steps of the slowest robot.

This time measure can easily be converted to any physical system, assuming real units are pro-

vided. The performance is compared with all the different heterogeneous executions and with exe-
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cutions of other optimal deterministic algorithms, with uniform multi-robot algorithms such as MR-

SAM,MRBUG [57, 58] and with single-robot algorithms such as SAD1 [19].

The universal lower bound of the problem and the upper bound of the algorithm are valid for

worst-case scenarios. Consequently, the actual performance, or average performance, is better in all

simulation executions.

3.6 Experiments

3.6.1 Overview

Testing the algorithms on real robots in real environments plays an important role in the evaluation

process, since some parameters can be considered neither in the analytical proofs nor in the simulation

phase. Furthermore, using real robots in real environments enables us to analyze performance capa-

bilities in real world conditions. Significant parameters are the sensors’ data errors, communication

interferences, and borderline situations, e.g., where the target is very close to an obstacle. Ideally,

experiments should resemble the simulation for purposes of comparison, but few limitations are im-

posed by real- world constraints, that is, financial reasons. For example, testing 20 robots is easy in

simulation, but is complicated and expensive to implement.

HMRSTM and HMRBUG algorithms are distributed algorithms, and hence do not require com-

munication. Moreover, the algorithms assume perfect localization (position and orientation).

In HMRBUG, each pair of robots works as a team when circumnavigating an obstacle, and com-

municates the shortest point from the obstacles boundary to the target. Apart from that, HMRBUG

needs perfect localization when moving directly toward the target. In simulations, each pair of robots

held a common map and had perfect localization and communication through the software.

In the experiments, in order to achieve perfect localization, we used IR cameras with an error of

less than 1 [mm]. The localization data must be communicated to the robots, thus, in applications

that use external sources for localization, communication is a necessity.

3.6.2 Mobile Platform

The iRobot Create mobile robot platform was first tested to serve as the foundation of the system.

It has a Bluetooth module for communication, encoders for localization, and several short sensors.

However, since the area of the lab is approximately 9[m], and the iRobot’s diameter is approximately

30[cm], and since our algorithms are optimal for unbounded environments, smaller robots were

required in order to demonstrate the performance of the algorithms in large environments. The

WowWee Rovio mobile robot platform was also tested. It has a NorthStar localization system, wireless

communication, and omni-wheels. However, its main disadvantages were the very short battery life

(5[min]) and the inaccuracy of the NorthStar system due to the lab’s high ceiling and rough surfaces.

Therefore, self-designed robots were developed from off-the-shelf components, and according to

our needs. Four platforms were built, each composed of the following components;

• The base of the platform is the 2WD made by DFRobot. It is round and includes two motors,
two wheels, and one caster ball. Its diameter is slightly less than 20[cm].

• 1 Arduino UNO microcontroller

• 1 Solarbotics L298 motor driver (with H-Bridge)

• 3 SRF05 Ultrasonic range finders (US sensors)
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• 1 XBee wireless communication module

• 1 7.4v 2200mAh LiPo battery

3.6.3 The environments

Experiments were performed in a 3X3 meter area in the Robot Motion Lab of the Department of Me-

chanical Engineering of Ben-Gurion University of the Negev. The robots’ size is 20 centimeters and

thus the unbounded environment assumption, even relative to the robots’ size, is somewhat limited.

3.6.4 Localization system

The cameras are connected to the OptiTrack Tracking Tools software installed on a single PC. Each

robot has at least three round reflective markers positioned uniquely on board. Hence, each robot is

defined as a unique rigid body in the Tracking Tools software. The Tracking Tools software broad-

casts the position and orientation of each robot to a specified port on the PC using the VRPN server

application. Each robot is defined by 7 parameters, composed of 3 coordinates for position x,y,z and

4 quaternions for orientation. A VRPN client application was written in C++ to receive the broad-

casted localization data and saved in the Windows registry for compliance reasons. Finally, each robot

received its localization data from the main C# application through wireless communication. Since

the height of the robots is less than ten centimeters, simple cardboard walls construct the obstacles of

the environment, and do not cause any interference to the localization system (no obstruction between

the markers onboard the robots and the cameras).

3.6.5 The software

Since the localization data for all the robots is received on a single PC, the motion planning algorithm

was implemented in a C# application running on that PC. The C# application orchestrates the

reading of the camera’s localization data from the registry and its communication to the robots,

receives the US sensor’s readings and commands the robot’s movements according to all of the above

information. The C# application is composed of several modules, each run by a different thread.

1. GUI, for presenting the form on screen, visualizing the map of the experiment environment, the
robot’s positions and shortest points, and the sensor’s reading

2. Registry read, for reading the robot’s position and orientation from the IR cameras

3. Algorithm, which calculates the motion planning commands for all robots

4. Communication, which transmits localization data and motion commands to the robots

5. Log, which saves path coordinates

The modules run either by a looping thread or by a timer thread. The timing of the timer threads

was predetermined to achieve best performance while avoiding execution delays. The looping threads

were executed in a loop, some inserting a delay (sleep) for best performance. The timings for each

iteration of the non-timer modules were measured using the Stopwatch class. The timings of the

different modules are presented in Table 3.3.

Another timer is in charge of communication synchronizing assurance with a timing of 100[ms].

Table 3.3 asserts that the time between each communication message received for each robot depends
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Table 3.3: Threads timing

Name Type Avg. timing Min. timing Max. timing Sleep

1 GUI Timer 100 - - -

2 Registry Read Thread 10 10 10 10

3 Algorithm Thread 1.03 1 2 1

4 Communication Thread 4.79 4 6 1

5 Log Timer 250 - - -

on the number of robots. For example, when the number of robots is 4, the time between com-

munications received is 20[ms] on average (24[ms] at most). Since the robot’s on-board software is

implemented in such a way that the robot executes the command it received through communication,

it can be said that the timing of the robot’s motion commands update equals 5Xn [ms] where n is the

number of robots.

Log

The log module saves a global results file, a path file, a sequence of screen capture pictures, and a local

results file for each experiment. The log data is saved in a folder whose name is composed from the

current experiment parameters, for example, for an experiment in the library environment, searching

for target no. 2 with 3 robots, having linear beta distribution, the name for the first repetition will

be ”librT2R3bL-1”.

The path history of each robot is saved in a file named like the folder, with the name ending in

”path”. Every 250[ms] it saves the coordinates and angle of each robot, along with the time from the

beginning. Moreover, it calculates the path length and the current speed.

The local results file saves the following for each robot: the number of D steps, the current disc,

the path length when the target was found, and the average and the maximal speed. The number of

the robot that found the target is recorded along with the disc in which the target was found, as are

the number of steps and total time in minutes, seconds, and total seconds. This file is named like the

folder, with the ending ”res” added to its name.

Every 500[ms], the log module saves a picture of the GUI part that presents the environment with

a grid, the robot’s positions, their next grid cell, and their bounding discs. These pictures are saved in

.PNG format, which conserves space. The .PNG files are numbered with steps of 5, and saved within

a folder named like the parent folder with the addition of ”PNG” at the end of its name.

The global results file saves the information of all the experiments. For each experiment it saves

a line that logs the following parameters: the environment, the target number, the number of robots,

their velocity distribution (beta), the repetition number, which robot reached the target, in which

disc, how many steps, the total time in seconds, and the average speed of the robot that found the

target.

3.6.6 Parameters

Experiments were conducted in multiple environments using several configurations. The first stage

was setting up the test bed and testing two robots in a simple environment, i.e., one that was free

from obstacles. Next, two more robots were added and the algorithms were tested in environments
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as congested as the environments in the simulation according to the previously defined congestion

measure. The different parameters evaluated are presented in Table 3.4

Table 3.4: Experiments Parameters

Name Symbol Range

No. of Robots (Pairs in HMRBUG) n n = 1, 2, . . . , 4 (1, 2)

Velocities Distributions β β1, βLinear, βMax

Environment env i = 1, 2, 3 (”free”,”cave”,”libr”)

Target positions (Start-Target in HMRBUG) T i (Si − T i) i = 1, 2, 3, (i = 1, 2)

Repetitions repi i = 1, 2

Number of robots

The total number of robot platforms for experiments is 4. Thus, for the HMRSTM algorithm the

number of robots, n, varies from between 1 and 4, where single robot experiments were conducted

for purposes of comparison. For the HMRBUG algorithm the number of robots pairs, n, varies from

between 1 and 2 (2 to 4 robots).

Velocity distribution

Velocity distributions in experiments were evaluated according to the simulations. Thus, the three

sets of β-s tested for each run are:

1. βLinear, ”beta-linear”: β-s with values distributed linearly

2. βMax, ”beta-max”: βn with maximal value and the rest of the β-s close to 1

3. β1, ”beta-homogeneous” : equal β-s

Environments

Three environments in which the robots search for a path to the target are evaluated. The first

environment is free from obstacles and denoted ”free”. The second environment is lightly congested

and populated with 7 rock-like obstacles, and denoted as ”cave”. The third environment, denoted as

”library,” is a highly congested office-like environment (Fig. 3.4 - 3.12).

Target positions

In an unknown position (HMRSTM ), three different target positions were tested. The three target

positions are shown in Fig. 3.4-3.8.

In a known position (HMRBUG) two different start and target positions were tested. (3.11)
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Figure 3.4: a. HMRSTM target 1 in ”free” environment, b. HMRSTM target 2 in ”cave” environment.

Figure 3.5: HMRSTM target 3 in ”library” environment.
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Figure 3.6: HMRSTM target 1 in ”free” env.

Figure 3.7: HMRSTM target 2 in ”cave” env.
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Figure 3.8: HMRSTM target 3 in ”library” env.

Figure 3.9: HMRBUG ”cave” and ”lib” environments
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Figure 3.10: HMRBUG Start-Target 1 in ”cave” environment

Figure 3.11: HMRBUG Start-Target 1,2
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Figure 3.12: HMRBUG Start-Target 2 in ”lib” environment
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3.6.7 Performance Measure

The main performance measure in the experiments is similar to the performance measure in the

simulation part, that is, the time to find the target. Since we are experimenting with a real physical

system, time is measured in seconds. However, since hardware limitations cause deviation from the

expected search time, another performance measure is examined, the path length, which is proportional

to time.

3.6.8 Validation

The simulation software idealizes all parameters. Several errors are caused in real-world conditions, the

most important ones being localization, communication, collision avoidance, and obstacle detection.

For validation, the simulation was executed with environments equivalent to the experiments’ envi-

ronment in size and geometry. The measured and the expected path length and time were compared.

The robots in the experiment deviated from the expected search time and path due to hardware

limitations that imposed implementation restrictions.

A deviated path was calculated according to the hardware limitations and implementation specifi-

cations. Subsequently, the maximal difference factor between the simulation and the experiment path

length was yielded. Validation was performed for all experiments, showing that all results are within

the calculated bounds of the maximal differences.

HMRSTM Validation

In HMRSTM, movement is always between adjacent grid cells, hence, only movements of changing

orientation with 90 degrees and movements forward 200[mm] are performed. The robots receive the

center of the next cell coordinates as their next target, along with their position and orientation. The

onboard micro-controller calculates the angle to the target, directs the robot in place toward it, and

then moves forward until it reaches the target, and so on. Since there are hardware limitations, each

robot, in the worst case, performs a path that goes diagonally to the corner of the grid cell, and then

continues diagonally to the target in the next cell, as shown in Figure 3.13.

HMRBUG Validation

The application of the HMRBUG algorithm in the robots yields two factors for deviation from the

actual path. The first is that when traveling to a point of known coordinates, the robot heads toward

the target, where a deviation of 15 degrees is allowed for each direction. The second is caused by the

implementation of the obstacle’s edge following. Here, in the worst case, the robot’s path will have

the shape of half circles of the radius R = 2D around the obstacles, forming a round petal-like path

(Figure. 3.13). The second factor is much more significant and can yield a path whose length for a

real robot is greater than it is in simulation by a factor of 1.57.

Consider a round obstacle following path of a circular shape with a radius of r. Its perimeter is

P = 2πr. In the implementation, while following obstacle’s boundary, each robot tries to keep its

position from the boundary at least 0.5D and at most 1.5D. Hence, the followed parameter length

equals

P ∗ ≤ 2π(r + 1.5D) = 2πr + 2π · 1.5D = P + 3πD
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Figure 3.13: HMRSTM and HMRBUG validation.

Now, adding the half circles of radius R, within each new perimeter there are P ∗

2R such half circles.

Thus, the path length of the half circles equals

P⋆ =
P ∗

2R
· 2πR

2
= P ∗π

2

Substituting p∗ and simplification yields,

P⋆ ≤ (P + 3πD)
π

2
=

π

2
P + 1.5π2D ≈ 1.57P + 1.5π2D

For D = 200 [mm], the path length is bounded by

P⋆ ≤ 1.57P + 2961 [mm]

Where P is the obstacles’ perimeter.



Chapter 4. HMRSTM Algorithm

4.1 Introduction

Finding a target whose position is unknown is a significant problem in many applications (e.g., search

and rescue, de-mining [49], planetary exploration missions [10] and surveillance [45]). In this chapter,

the above problem for a group of velocity-heterogeneous robots is defined and assumptions regarding

it are presented. Next, the problem’s complexity is analyzed, and a lower bound is found. Following

this, the HMRSTM, Heterogeneous Multi-Robot Search Time Multiplication algorithm, which solves

this problem, is introduced. Its performance is analyzed in terms of time competitive complexity.

Since the lower bound on the search time for any algorithm that solves the problem and the upper

bound of the search time using the HMRSTM algorithm belong to the same competitive complexity

class, the problem’s complexity can be classified into that class. Finally, the algorithm is proved to be

optimal in terms of its time competitive complexity.

4.2 The Problem’s Definitions

The motion planning problem explored is defined as follows: A target must be found by a group of n

robots in an unbounded, unknown two-dimensional environment while the target position is unknown.

The target can be identified using a specific target detector mounted on each of the robots, for example,

a metal detection sensor for metal mines. The target is detected only when the robot is positioned

directly above it. The size or diameter is uniform for all the robots and is D, a property important for

the performance analysis. The robots are heterogeneous in their velocities, so that the slowest robot

has a velocity v, and each robot j has a velocity vj = βj · v, s.t. βj ≥ 1. We use the following

definitions of generalized time competitiveness (1) and time competitive complexity class (2), which

extend generalized competitiveness and competitive complexity class ([19]):

Definition 1 (Generalized Time Competitiveness [54]). An on-line algorithm solving a task P

in time T is f(topt) time competitive when T is bounded from above by a scalable function f(topt) over

all instances of P , and topt is the optimal off-line solution achieved when all the information about the

environment’s geometry is known. In particular, T ≤ c1topt + c0 is the linear time competitiveness,

while T ≤ c2t
2
opt + c1topt + c0 is a quadratic time competitiveness, where the ci’s are positive constant

coefficients that depend on the robots’ size D, the robots’ velocity, the number of robots, and the

geometry of the environment.

The meaning of scalability is as follows: when performance is measured in physical units such as

seconds sec, one must ensure that both sides of the relationship t ≤ f(topt) possess the same units,

so that change of scale does not affect the bound. For instance, the coefficient c2 in the relationship

t ≤ c2t
2
opt + c1topt + c0 must have units of sec−1, c1 must be without units, and c0 must have units of

sec.

Note that the definition of f(topt) time competitiveness focuses on a particular algorithm that solves

the task P . However, the objective is to characterize the lowest upper bound that can be achieved

over all on-line algorithms for P . This objective requires a universal lower bound on the worst- case

37
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performance of all on-line algorithms for P . If the lower and upper bounds satisfy the same functional

relationship, that functional relationship is associated with P itself. Competitive complexity class is

composed of two bounds, a universal lower bound, which means that no algorithm exists to solve the

problem that can perform better than this bound, and an upper bound of an existing algorithm that

solves the aforementioned problem, which is within the same performance function. An algorithm

can be proved to be optimal if it can be shown that it performs in the bounds of the problem, if the

problem can be classified into a competitive complexity class. The following definitions formalize the

previous section:

Definition 2 (Time Competitive Complexity Class). A lower bound on the time competitiveness

of a task P is a lower bound T ≥ g(topt) over all on-line algorithms for P under worst-case conditions,

where T is the time it takes an algorithm to complete the task. If a time competitive upper bound

f(topt) and a universal lower bound g(topt) for P are of the same functional relation up to constant

coefficients, this function is said to be the time competitive complexity class of the task P .

4.3 Time competitive complexity lower bound

In this section, a lower bound for the problem will be introduced. This lower bound proves that no

algorithm can perform better than that bound. For this purpose, a very difficult environment, depicted

in Fig. 4.1.(a) is used. The environment is circular and composed of radial corridors emanating from

the start point S. Each part of the obstructed environment is further replaced with more corridors as

seen in Fig. 4.1.(b). The width of the corridors is the same as the size of the robots, D. The target is

placed in one of the corridors, at the farthest edge from S, whose distance is marked R.

Figure 4.1: [19] (a) The radial corridor’s environment. (b) Close-up view of the environment.

Lemma 4.3.1 (Lower Bound). Let AL be any navigation algorithm for n robots with velocities

vj = βjv, for j = 1, . . . , n, where βk ≥ βj ≥ 1, ∀ k > j, and, β1 = 1, in an unknown planar environ-

ment, while recognizing the target only upon arrival. Let TLB be the time it took the robot that found
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the target following the path generated by AL. Let lopt be the length of the optimal off-line path and

topt be the time it took the fastest robot to travel lopt. Let ǫ be an arbitrary small number. Then TLB

satisfy the quadratic lower bound,

TLB >
2πvn
3Dn

(1− ǫ)t2opt

Proof. In order to find the target, every corridor must be inspected. Assuming the number of corridors

is much greater than n, the number of robots in the worst-case scenario, the robots will cover the

whole free area of the environment at least once prior to reaching the target. This property is true

for deterministic algorithms, since the target will be positioned at the last point the robots visited.

If the algorithm is non-deterministic, at least one instance will produce this worst-case behavior. By

construction, the obstructed parts cover almost one third of the total environment area, and have a

limit of one third as R goes to infinity. Hence, the free area equals (2/3)πR2. Thus, the total path

length equals 2πR2/(3D). In the best-case scenario, no robot traverses the same path of any other

robot, and the time it takes for all the robots to cover the whole environment satisfies

TLB >
2πR2

3Dnvn

where all the robots are considered to be fast, and therefore the inequality is strong. The optimal off-

line path length equals lopt = R+ǫ′, where the ǫ′ is added due to the transitions between the corridors.

Thus, the optimal solution satisfies topt = (R + ǫ′)/(vn). Substituting R = lopt − ǫ′, R = topt · vn − ǫ′

yields,

TLB >
2π(lopt − ǫ′)2

3Dnvn
=

2π(l2opt − 2 · loptǫ′ + ǫ′2)

3Dnvn
=

2π

3Dnvn
(1− 2ǫ′

lopt
+

ǫ′2

l2opt
)l2opt

Substituting ǫ = 2ǫ′

lopt
− ǫ′2

l2opt
, lopt = topt · vn yields,

TLB >
2πv2n
3Dnvn

(1− ǫ)t2opt

Finally, simplification yields

TLB >
2πvn
3Dn

(1− ǫ)t2opt

4.4 The HMRSTM Algorithm

The HMRSTM motion planning algorithm, which uses multiple heterogeneous robots to search for a

target whose position is unknown in an unknown environment is presented. The algorithm is based

on our previously developed algorithm, MRSAM [57]. HMRSTM is introduced and explained, along

with a formal description of the algorithm.

In HMRSTM the robots are heterogeneous in their velocities. HMRSTM deploys each of its robots

to search for the target in concentric discs with growing areas. Each robot searches for the target

within a disc by covering it. The coverage algorithm should be efficient, e.g., STC algorithm [17].

After a robot finishes searching for the target inside a disc, if it has not found the target, it moves

to the next unoccupied search disc to search for it. The search is performed, again, by covering the

reachable portions of the whole larger disc. Eventually, the search disc will contain a path to the
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target if such a path exists and it will be found. Though each consequent disc contains the previous

one, the series of the discs’ areas form a converging geometric series, thus yielding an upper bound on

the path length. The following conditions formalize the latter idea:

Condition 1 (Search disc’s area ratio). Each consequent search discs’ area is greater than that of the

previous disc.

During identical time periods, robots with different velocities will cover different areas, and the

ratio of the covered areas will be identical to the ratio of the velocities. Consequently, a fast robot

might finish covering the next search disc before the slow robot has finished searching in the previous

disc, thus, for HMRSTM , condition 1 does not suffice, and the following condition complements it.

Condition 2 (Search time ratio). The time of search within each consequent search disc is greater

than the time of search within the previous search disc.

HMRSTM algorithm launches multiple robots from a common starting point S and assigns each

robot j to a disc to search for the target T in it. All the discs are concentric and S is their center.

n robots are deployed, and their velocities are vj = βjv, for j = 1, . . . , n, and βk ≥ βj ≥ 1, ∀ k > j.

The first robot, R1, is designated to search in the initial disc with search time T0. Each of the following

robots starts its search within a disc whose search time is larger than the previous disc’s search time

by a factor of αj > 1. Each robot has its own multiplication factor αj > 1 according to its velocity,

hence the search times within the discs will be, T0, α2T0, α2α3T0, α2α3α4T0, ...,
∏n

i=2 αiT0,
∏n

i=1 αiT0,

α2

∏n
i=1 αiT0, α2α3

∏n
i=1 αiT0, ...,

∏n
i=2 αi

∏n
i=1 αiT0, ...

For example, in Fig. 4.2, 4.3, HMRSTM deploys a group of two robots to search for the target.

Robot 1 is initially assigned to search for the target inside a disc whose search time is T0 and robot

R2 is assigned to search inside a disc of search time α2T0. After robot 1 finishes covering the entire

portion of disc 1 that is accessible from S and fails to find the target, it starts searching for the target

inside disc 3, whose search time is α1α2T0. In this case, robot R1 will find the target while searching in

disc 3, before or after robot R2 has completed searching in disc 2 and moved on to disc 4, whose search

time is α1α
2
2T0. Each robot searches for the target in the accessible portion of the disc allocated to

it until the target is detected, or until the entire region accessible from S is explored without finding

T. The search process in each disc is the same as in our MRSAM algorithm and is based on the STC

algorithm [57]. Fig. 4.4 contains the pseudocode of HMRSTM algorithm.

Implementation of the algorithm requires us to address communication and on-board memory

issues. At algorithm initialization, each robot must receive its own id number, and the following

parameters: n, the total number of robots, and their velocities, βj ’s. In this way, each robot can

calculate its own multiplication factor, αj, and know in advance in which discs it will be searching

next. Upon termination, each robot must receive the stop signal. Thus, communication with and

between the robots is not necessary during HMRSTM execution. The memory requirements for each

robot are as follows: Each robot must remember its own id number, the number of robots, n, the

velocities of all the robots (n − 1), the multiplication factors of all the robots (n − 1), and, during

execution, the current search disc number. Additional memory requirements depend on the coverage

method within a search disc. For example, if STC [17] is being used, each search disc is decomposed

into a grid of D-sized cells, and each robot builds a spanning tree on-line and circumnavigates it. If
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Figure 4.2: A group of two robots launched by HMRSTM searching the target.
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Figure 4.3: A group of two robots launched by HMRSTM searching the target.
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Basic HMRSTM Algorithm’s Pseudocode

Sensors: A position sensor

An obstacle detection sensor

A target detection sensor

Input: A start point S

An initial search time T0

A group of n searching robots with different velocities,

vj = βjv, i = 1, . . . , n βk ≥ βi ≥ 1, ∀k > i

Initialization:

For each robot Rj, j = 1, . . . , n:

Set multiplication factor αj =
(n+1)1/nβj−1
∏n

i=1 β
1/n
j

, β0 = βn, β1 = 1

Set initial search time T1(Rj )
= T0 , j = 1

Tj(Rj)
=
(

∏j
i=2 αi

)

T0, j 6= 1

For each robot j,

Repeat:

Execute a coverage tour on the grid contained in the disc

of search time Tj centered at S. Scan each new free cell

and its partially occupied neighbor cells for T .

until one of the following occurs:

(1) The target is reached: STOP.

(2) If no new free cell is encountered during the current coverage tour:

STOP, the target is unreachable.

(3) Otherwise, move to the next unoccupied disc k:

Set Tk(Rj)
= (
∏n

i=1 αi)
(k−j

n )T0 , j = 1.

Set Tk(Rj)
= (
∏n

i=1 αi)
(k−j

n )
(

∏j
i=2 αi

)

T0, j 6= 1.

End of Repeat loop

Figure 4.4: HMRSTM Pseudocode.
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the number of unoccupied cells equals N , each robot must have a memory of the size of O(N) in order

to execute STC [17]. Moreover, in the worst case, N is quadratic in the number of cells composing

the optimal off-line solution, lopt. Since topt = lopt/(βv), is a linear relation, in the worst case, N is

quadratic in the optimal off-line solution topt.

4.5 Analytical performance analysis

In order to analyze HMRSTM ’s performance, the worst-case scenario is inspected. Generally, the

target lies within a disc whose area is Aopt = πl2opt, where lopt is the optimal off-line path length from

S to T.

Proposition 4.5.1. If the target T is reachable, HMRSTM finds the target using n robots and the

travel time by robot j, which found the target, satisfies the quadratic inequality,

TRj <
παjβ

2
nv (

∏n
i=1 αi)

βj−1D (
∏n

i=1 αi − 1)
t2opt. (4.1)

where D is the robot size, βj is the ratio between the velocities of robot j and the slowest robot, αj is

the multiplication factor, which is a function of n and of all the β’s, and topt is the optimal off-line

solution.

Proof. In the first case, Rn searched and totally covered a disc whose area is Aopt − ǫ and search time

Toptn − ǫ and thus did not find the target. Consequently, R1 is assigned afterwards to search for it in

a disc whose search time is α1Toptn(area is πα1l
2
opt) and finds the target with time of

Ti(R1) ≤
α1π(βnvtopt)

2

βnvD
=

α1πβnv

D
t2opt, (4.2)

where Toptn = Aopt/(βnvD), and topt = lopt/(βnv).

The time to find the target by R1 after searching in i discs equals the sum of the search times

TR1≤T1 + T1+n + T1+2n + · · ·+ Ti(R1)

=T0 +

(

n
∏

i=1

αi

)1

T0 +

(

n
∏

i=1

αi

)2

T0 + · · ·+

+

(

n
∏

i=1

αi

)( i−1
n )

T0 (4.3)

The time series is a converging geometric series. According to

y + yλ+ yλ2 + yλ3 + ...+ yλw−1 =
y(λw − 1)

(λ− 1)
, (4.4)

substituting y = T0, λ = (
∏n

i=1 αi), and w − 1 = i−1
n , its sum is

TR1 ≤ (
∏n

i=1 αi)
( i−1

n
+1) − 1

∏n
i=1 αi − 1

T0 <
(
∏n

i=1 αi)
( i−1

n
+1)

∏n
i=1 αi − 1

T0 (4.5)

Comparing the two expressions for the time to cover the last disc, Ti(R1), (4.2) and (4.3), T0 can be

expressed in terms of i,

T0 =
α1πβnv

D (
∏n

i=1 αi)
( i−1

n )
t2opt (4.6)
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Substituting T0 from (4.6) into (5.10) yields,

TR1 <
(
∏n

i=1 αi)
( i−1

n
+1)

∏n
i=1 αi − 1

α1πβnv

D (
∏n

i=1 αi)
( i−1

n )
t2opt.

Simplification yields

TR1 <
α1πβnv (

∏n
i=1 αi)

D (
∏n

i=1 αi − 1)
t2opt. (4.7)

Accordingly, for R2, in the worst-case scenario, R1 covered a disc whose area is Aopt− ǫ and search

time Topt1 − ǫ and thus did not find the target. Consequently, R2 is assigned afterwards to search for

it in a disc whose search time is α2Topt1 (area is πα2l
2
opt) and finds the target in it with covering time

of

Ti(R2) ≤
α2π(βnvtopt)

2

β1vD
=

πα2β
2
nv

β1D
t2opt,

assuming Topt1 = Aopt/(β1vD), and topt = lopt/(βnv), and Aopt = πl2opt.

The sum of the search times by R2 is

TR2 ≤ T2 + T2+n + T2+2n + · · ·+ Ti(R2)

The series of time is a converging geometric series. After substituting y = α2T0, λ = (
∏n

i=1 αi), and

w − 1 = i−2
n , in (5.9), its sum is

TR2 <
α2 (

∏n
i=1 αi)

( i−2
n

+1)
∏n

i=1 αi − 1
T0 (4.8)

Comparing the two expressions for the time to cover the last disc, Ti(R2), T0 can be expressed in terms

of i,

Ti(R2) =
πα2β

2
nv

β1D
t2opt =

(

n
∏

i=1

αi

)( i−2
n )

α2T0,

T0 =
πβ2

nv

β1D (
∏n

i=1 αi)
( i−2

n )
t2opt. (4.9)

Substituting T0 from (4.9) into (4.8) yields

TR2 <
α2 (

∏n
i=1 αi)

( i−2
n

+1)
∏n

i=1 αi − 1

πβ2
nv

β1D (
∏n

i=1 αi)
( i−2

n )
t2opt.

Simplification yields

TR2 <
πα2β

2
nv (

∏n
i=1 αi)

β1D (
∏n

i=1 αi − 1)
t2opt. (4.10)

Accordingly, for R3,

TR3 <
πα3β

2
nv (

∏n
i=1 αi)

β2D (
∏n

i=1 αi − 1)
t2opt. (4.11)

Accordingly, for R4,

TR4 <
πα4β

2
nv (

∏n
i=1 αi)

β3D (
∏n

i=1 αi − 1)
t2opt. (4.12)

Repeating this process for cases where other robots reached the target leads to the generalization

(4.1).
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Lemma 4.5.1. The time competitive complexity of HMRSTM is minimal when for each of the n

robots deployed, the multiplication factor equals,

αj =
(n + 1)1/nβj−1
∏n

i=1 β
1/n
j

, β0 = βn, β1 = 1 (4.13)

Proof. In order to find the optimal multiplication factors, α′
is, a new objective function that combines

the sums of all coverage times is formed:

Ttot = TR1 + TR2 + . . . + TRn

=
πβ2

nv (
∏n

i=1 αi)

D (
∏n

i=1 αi − 1)

n
∑

i=1

αi

βi−1

(4.14)

Substituting c = πβ2
nv
D in Ttot (4.14) and differentiating according to each of the α′

is,

∂Ttot

∂αk
= c

(

∏n
i=1 αi

∑n
i=1

αi

βi−1

)′

(
∏n

i=1 αi − 1)

(
∏n

i=1 αi − 1)2
− c

(

∏n
i=1 αi

∑n
i=1

αi

βi−1

)

(
∏n

i=1 αi − 1)′

(
∏n

i=1 αi − 1)2
=

= c

(

∏n
i=1 αi

∑n
i=1

αi

βi−1

)′

(
∏n

i=1 αi − 1)
− c

(

∏n
i=1 αi

∑n
i=1

αi

βi−1

)

(

∏n
i=1,i 6=k αi

)

(
∏n

i=1 αi − 1)2
=

= c

(
∏n

i=1 αi)
′∑n

i=1
αi

βi−1

+
∏n

i=1 αi

(

∑n
i=1

αi

βi−1

)′

(
∏n

i=1 αi − 1)
− c

(

∏n
i=1 αi

∑n
i=1

αi

βi−1

)

(∏n
i=1 αi

αk

)

(
∏n

i=1 αi − 1)2
=

= c

(∏n
i=1 αi

αk

)

∑n
i=1

αi

βi−1

+
∏n

i=1 αi

(

1
βk−1

)

(
∏n

i=1 αi − 1)
− c

(

∏n
i=1 αi

∑n
i=1

αi

βi−1

)

(∏n
i=1 αi

αk

)

(
∏n

i=1 αi − 1)2
=

comparing each function to zero and finding the common roots yields,

αj =
(n+ 1)1/nβj−1
∏n

i=1 β
1/n
i

, β0 = βn, β1 = 1

Substituting αj back into ∂Ttot
∂αk

, yields

∂Ttot

∂αk
= c

(∏n
i=1 αi

αk

)

∑n
i=1

αi

βi−1

+
∏n

i=1 αi

(

1
βk−1

)

(
∏n

i=1 αi − 1)
− c

(

∏n
i=1 αi

∑n
i=1

αi

βi−1

)

(∏n
i=1 αi

αk

)

(
∏n

i=1 αi − 1)2
=

= c

(

n+1
αk

)

∑n
i=1

αi

βi−1

+

(

n+1
βk−1

)

n
− c

(n + 1)
∑n

i=1
αi

βi−1

(

n+1
αk

)

n2
=

= c
n+ 1

αkn2

[

n

n
∑

i=1

αi

βi−1

+
nαk

βk−1

− (n+ 1)

n
∑

i=1

αi

βi−1

]

=

= c
n+ 1

αkn2



n



n · (n+ 1)
1
n

∏n
i=1 β

1
n
i



+ n · (n+ 1)
1
n

∏n
i=1 β

1
n
i

− (n+ 1)n · (n+ 1)
1
n

∏n
i=1 β

1
n
i



 =

= c
n+ 1

αkn2



(n + 1)



n · (n+ 1)
1
n

∏n
i=1 β

1
n
i



− (n+ 1)



n · (n+ 1)
1
n

∏n
i=1 β

1
n
i







 =

= 0
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Theorem 1. The problem of on-line heterogeneous multi-robot navigation to an unknown target in

an unknown and unbounded environment belongs to the quadratic time competitive complexity class.

Proof. As defined in Definition 2, a time competitive complexity class is formed from a lower bound and

from an upper bound for the problem. In section 4.3 we found a lower bound for the research problem

that is quadratic in the optimal off-line solution, topt (4.3.1). Then we presented HMRSTM algorithm

to solve that problem with an upper bound quadratic in topt (4.1). Thus, the research problem belongs

to the quadratic time competitive complexity class.

The corollary below asserts that if a path from the start S to the target T exists, HMRSTM

algorithm will find T .

Corollary 4.5.1. HMRSTM is complete.

Proof. The first important property established in Proposition 4.5.1, is that if the target T is reachable,

HMRSTM will find it. The second property is that HMRSTM will find the target in a finite and

limited time and is deduced from the upper bound of the algorithm introduced in Proposition 4.5.1.

The two properties imply the completeness of HMRSTM .

The following corollary asserts that HMRSTM algorithm is optimal for the problem of finding a

target with a group of heterogeneous robots:

Corollary 4.5.2. HMRSTM is optimal in the sense of the search time.

Proof. In Theorem 1 we proved that the search problem belongs to the quadratic time competitive

complexity class. HMRSTM upper bound is time quadratic in the optimal off-line solution (4.1).

Thus, HMRSTM is optimal up to constant coefficients.

The problem of reaching a target whose position is unknown in an a priori unknown and unbounded

environment was presented. A lower bound for all algorithms that solve this problem was proved to be

quadratic in the optimal off-line solution. HMRSTM algorithm for a group of heterogeneous robots

was presented. HMRSTM algorithm was analyzed and its upper bound found to be quadratic in the

optimal off-line solution. Consequently, the aforementioned problem was classified into the quadratic

time competitive complexity class, and therefore, HMRSTM is optimal. The multiplication factor

that minimizes the time of search was found and finally the algorithm was proved to be complete.
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Chapter 5. HMRBUG Algorithm

5.1 Introduction

This chapter presents the problem of searching for a target whose position is known, in an environment

that is unknown and unbounded. In such cases, a path to the target must be searched for and found.

We investigate the use of multiple heterogeneous robots that differ in their velocities. The robots use

tactile sensors for obstacle detection and each robot knows its position.

Based on CBUG [20] for a single robot search and our MRBUG [53] for a homogeneous group of

robots, we introduce the HMRBUG algorithm [56]. HMRBUG, or Heterogeneous Multi-Robot BUG

algorithm. HMRBUG uses a modified BUG1 [43] technique to search for a path to a known target in

an unknown environment. Since BUG1 may have very poor performance in certain situations, such

as long obstacles and unbounded environments, HMRBUG bounds BUG1 search in ellipses whose

focal points are the start and target positions. The uniqueness of the ellipse is that it is the locus of

all points in the plane whose distances to the two focal points add up to a constant. Using an ellipse

means searching with an equal chance for all paths that are of the same length from start to target.

HMRBUG utilizes multiple heterogeneous robots by deploying pairs of robots in ellipses whose areas

and search times grow until they reach the target. In each step, the robot pair’s search is bounded to

an ellipse. However, eventually, the search area grows until the robot reaches the target.

The structure of this chapter is as follows: First, we introduce the problem of path-finding by a

group of robots that are heterogeneous in their velocity, and whose search environment is unknown

and unbounded. In the next section, HMRBUG , a novel algorithm for the problem of path-finding by

heterogeneous robots is introduced and explained. In the following section, HMRBUG performance

is analyzed, we find its upper bound to be quadratic in the optimal off-line solution, and prove

HMRBUG is complete and robust.

5.2 A Lower Bound for a Known Target

In this section we establish a universal lower bound on the competitive complexity of a group of

heterogeneous robots navigating to a known target in an unknown environment. We would like to

show that in difficult, close-to- worst-case scenarios, the robots will cover at least a certain area prior

to finding the path to the target, and for this purpose we used the environment depicted in Figure

5.1. The environment is built from radial corridors of the same width as the robots, D, and one

circular corridor containing the target with only one entrance. According to the construction of the

environment [20], the obstacles occupy one third of the environment’s area (Figure 5.1(b)).

This lemma and its proof are inspired by [53]. This lemma establishes a quadratic lower bound

on the search time of all online navigation algorithms for a heterogeneous group of robots to a known

target in an a priori unknown environment.

Lemma 5.2.1. Let AL be any navigation algorithm for n robots with velocities

vj = βjv, where βj ≥ βj−1 ≥ 1, ∀j, j = 2, 3, . . . n, and β1 = 1, in an unknown planar environment

to a target whose position is known. Let TLB be the time it took to the robot that reached the target

49
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T

S

Figure 5.1: [19] (a) The radial corridor environment. (b) A close-up view of the environment

following the path generated by AL. Let lopt be the length of the optimal off-line path and Topt be the

time it took the fastest robot to travel lopt. Then TLB satisfies the quadratic lower bound,

TLB ≥ 4πβv

3nD(1 + π)2
(1− ǫ)t2opt (5.1)

where D is the robot size and ǫ is a small positive number.

Proof. Consider the corridor environment with the target T placed in the outer corridor, at a distance

r from S. Since the robots have no knowledge of the environment and no information regarding

where the entrance to the outer corridor might be, they must in the worst case inspect every corridor,

including all distal corridors. If AL is deterministic, we can enforce this worst-case scenario by first

watching the behavior of AL, and then placing the entrance to the outer corridor in the last inspected

radial corridor. If AL is non-deterministic, we can only guarantee that one outcome of the algorithm

would match this worst-case scenario. By construction, every distal corridor can be approached from

S along a simple radial path. Moreover, assuming the number of corridors in the outermost part

is much greater than the number of robots, the robots must eventually move twice through every

corridor of the environment-once in order to inspect a distal corridor and once in order to exit the

corridor. An exception to this rule is the last corridor of each robot, which is considered below. The

total area of the obstacles in the corridor environment is almost one third of the disc area, with the

approximation becoming arbitrarily close to one third as the disc’s radius increases. The total area

inspected by the robots is therefore 2πr2

3 . Since all corridors have a width of D, which is identical

to the robots’ size, the total length of the path traveled by the robots satisfies in the worst case the

inequality ltot ≥ 4πr2

3D −nr ,where the subtraction of nr is due to the last corridor for each robot, which

need not be traced backward. A good algorithm will distribute the work equally between the robots,

in such a way that none of the robots will travel any part of the path of the other robots. Thus, the
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total length of the path traveled by one robot satisfies l ≥ 4πr2

3nD − r. Since T is placed in the circular

outer corridor, lopt ≤ (1 + ǫ′)(1 + π)r, where ǫ′ is a small positive number that is added due to the

transitions between the corridors. This is a worst-case bound for cases where the target is placed in

the circular corridor farthest from the entrance. It follows that r ≥ lopt
(1+ǫ′)(1+π) . On the other hand,

r ≤ lopt in the above-mentioned environment. Substituting the last two inequalities into the lower

bound on l gives

l ≥ 4π

3nD
r2 − r =

4π

3nD(1 + ǫ′)2(1 + π)2
l2opt − lopt.

We can write the last inequality as

l ≥ cl2opt

(

1

(1 + ǫ′)2
− 1

clopt

)

= cl2opt

(

1− ǫ′′ − 1

clopt

)

,

where c = 4π
3nD(1+π)2

and 1
(1+ǫ′)2

= 1 − ǫ′′. Since the quantity ǫ = ǫ′′ + 1
clopt

contains the quotient

D/lopt, which can be made arbitrarily small for sufficiently large environments, we obtain the lower

bound l ≥ c(1− ǫ)l2opt.

At best, all the robots are assumed to be fast, i.e., vj = βv, β = max {βj}, ∀j, j = 1, 2 . . . n. Thus,

substituting

l ≥ 4π

3nD(1 + π)2
(1− ǫ)l2opt

into tj = lj/(βjvj) yields,

TLB ≥ 4π

3nD(1 + π)2βv
(1− ǫ)l2opt

Moreover, the optimal off-line solution is assumed to be topt = lopt/βv. Thus,

TLB ≥ 4πβv

3nD(1 + π)2
(1− ǫ)t2opt

5.3 HMRBUG Algorithm

We now introduce the HMRBUG algorithm for finding a path to a known target. HMRBUG uses 2n

robots (n pairs) with n different velocities, vj = βjv, j = 1, . . . , n, where βj+1 ≥ βj ≥ 1, j = 1, . . . , n − 1

and v is the velocity of each of the robots in the slowest robot pair and βj is the ratio between the

velocity of robot pair j and the velocity of the slowest robot pair, v.

HMRBUG solves the problem of finding a path to a known target using a group of robots.

HMRBUG deploys each pair of robots to search for the target in a virtual bounding ellipse, and

inside that ellipse uses our PBUG1 algorithm [53] as a sub procedure. PBUG1 algorithm is described

in the following section.

The following conditions ensure that the search area and time of each consequent robot pair will

grow in order to prevent redundant searches and eventually reach the target.

Condition 3 (Search ellipse area ratio). The area of each consequent search ellipse is greater than

the area of the previous search ellipse.

During the same period of time, robots with different velocities will travel unequal path lengths,

and the ratio of the traveled path lengths is the same as the ratio of the velocities. Consequently, a

fast robot might finish searching the next search ellipse before the slow robot has finished searching in
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the previous ellipse. Thus, for HMRBUG , condition 1 does not suffice, and the following condition

completes it.

Condition 4 (Search time ratio). The time of search within each consequent search ellipse is greater

than the time of search within the previous search ellipse.

5.3.1 PBUG1 Motion Planning Algorithm for a Pair of Robots [53]

We now review our PBUG1, a version of BUG1 [43] for a pair of robots that uses the same problem

definitions as BUG1. In PBUG1, a pair of robots that starts from a common start point S needs to

find a path to a target T whose position is known, in an unknown planar environment. The pair of

robots will move together toward the target in a straight line until it hits an ith obstacle at a point

marked as Hit point H i, i = 1, 2, ... . At that point they split, robot RL turns left, and robot RR turns

right, and they circumnavigate the obstacle from different directions, so that each robot encircles half

of the obstacle’s perimeter. While moving, each robot calculates and remembers the closest point on

the obstacle’s boundary to the target. Upon meeting, the robots compare the recorded information,

decide which point is the closest to the target, join, and again move together to that closest point,

which they mark as Leave point Li, i = 1, 2, . . . . Finally, the robots continue to move together toward

the target.

Setup and Definitions of PBUG1

The basic setup and definitions of PBUG1 are the same as in [53]. PBUG1 uses two mobile robots,

RL and RR. Each has a different pre- defined local direction for moving around an obstacle, left and

S

T

L
2

L
1

H
1

H
2

RR

RL

RR

RL

Figure 5.2: A pair of robots, RL and RR executing PBUG1. The dense dashed lines mark a mutual

path of the two robots
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right accordingly. The hit and leave points are common for both of the robots. The procedure PBUG1

needs only one register for each robot, Reg1, which is used to store the coordinates of the current

point, Qm, of the minimum distance between the obstacle’s boundary and the target. The robots

compare their Qm points and go together to the one with the smaller value.

5.3.2 Target Reachability Test

PBUG1 determines that the target is unreachable and trapped inside an obstacle using the BUG1

method [43], which checks the direction to the target after circumnavigating an obstacle. If this

direction points to the last obstacle, the target is surrounded by that obstacle, since the leaving point

is the closest point to the target on the obstacle’s boundary. A formal description of PBUG1 algorithm

follows.
PBUG1 Algorithm

Sensors: A position and orientation sensor.

An obstacle detection sensor

Input: Position of a start S and a target T
A pair of robots: RL, RR

Initialization: For each of the robots in the pair RL, RR:

Define local direction: Left for RL, Right for RR.

Set i=1.

Set initial leave point L0 = S.
For each of the two robots RL, RR, Repeat:

From the point Li−1, move toward the target along a straight line

until one of the following occurs:

(1) The target is reached: STOP.

(2) An obstacle is encountered: Define a hit point H i.

Turn in the direction of the predefined local direction and follow the obstacle’s boundary

according to that direction. While circumnavigating the obstacle, calculate and record the

coordinates of the closest point to the target, QmL
and QmR

for RL and RR respectively,

until one of the following occurs:

(a) The target is reached: STOP.

(b) Upon meeting each other,

exchange information and calculate the closest point to T : Qm = min(QmL
, QmR

).

Define a new leave point Li = Qm.

Apply the test for target reachability:

(i) If the target is not reachable: STOP.

(ii) Otherwise, move to Li: If Qm = QmL
, trace back

RL path. Otherwise, trace back RR path.

Set i = i+ 1.

End of Repeat loop

5.3.3 HMRBUG Algorithm for a Heterogeneous Group of Robots

HMRBUG algorithm launches n pairs of robots from a common starting point S and assigns each

pair Rj to a different ellipse to search for a path to the target T in it. Each ellipse’s focal points are
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S and T .

The first pair of robotsR1 is designated to the initial ellipse of search time T0, and each of the follow-

ing robots starts its search in an ellipse of search time larger than the previous ellipse’s search time by

a factor of αj, αj > 1. That is, the search times of the ellipses will be T0, α2T0, α2α3T0, α2α3α4T0, . . . .

In the following example, depicted in Fig. 5.3, HMRBUG launches two pairs of robots, 1, 2 to search

for a path to the target in an office-like environment. Each robot pair is initially assigned to a bound-

ing ellipse, e1, e2, to execute PBUG1 in it, and each robot in a pair is assigned to a different local

direction, Left,Right: 1L, 1R, 2L, 2R. At first, the robot pairs move directly toward the target, and

as they encounter an obstacle they split, each robot moving in its local direction. It can be observed

that a part of the path is traversed by all the robots together at the same time, and the robots will

move together as long as they are within the boundary of the first ellipse. While robot pair no. 2

is traversing the second ellipse, robot pair no.1 finishes traversing the obstacle’s boundary, which lies

inside the first bounding ellipse and the ellipse itself. After meeting each other, the robots of pair no. 1

move toward the closest point to the target they encountered while traversing the ellipse, where there

they conclude that they cannot reach the target from ellipse no. 1. In Fig. 5.3(a), robot pair 1 is just

about to execute PBUG1 in ellipse no. 3, and robot pair 2 has already met on ellipse no. 2 and is on

its way to the closest point to the target. While robot pair no. 1 is busy with its search in ellipse no.

3, robot pair no. 2 reaches the closest point to the target (Fig. 5.3(b)). Next, robot pair 2 is assigned

to ellipse no. 4, and while searching in it robot pair no.1 meets on ellipse no.3 (Fig. 5.3(c)). While

robot pair no. 2 searches in ellipse no. 4, robot pair 1 moves toward the closest point to the target

(Fig. 5.3(d)) and from there it continues without any additional obstacles in its way and reaches the

target.

Figure 5.3: Execution example of HMRBUG

In HMRBUG , the execution of PBUG1 regards the ellipse as a virtual obstacle’s boundary. If the

target is detected, the algorithm terminates; otherwise, the pair of robots repeats the process on the

next unassigned ellipse in the series. A formal description of the basic algorithm appears in Fig. 5.4.



5. HMRBUG Algorithm 55

Basic HMRBUG Algorithm’s Pseudocode

Sensors: A position sensor.

An obstacle detection sensor.

Input: Position of a start S and a target T points.

An initial ellipse with focal points S and T
An initial search time T0

n pairs of robots {1L, 1R, 2L, 2R, . . . , nL, nR}
with different velocities, vj = βjv, j = 1, . . . , n

βj+1 ≥ βj ≥ 1, j = 1, . . . , n− 1, β1 = 1

Initialization: For each robot pair Rj, j = 1, . . . , n:

Set global step p = 1

Set initial leave point L0
ej = S,

Set multiplication factor αj =
(n+1)(

1
n )β

n−1
n

j−1

∏n
k=2,k 6=j−1 β

1
n
k

, where βj−1 = βn when j = 1

Set initial search ellipse parameters:

focal points are S and T ,

semi major axis1 a0 = a0(αj , T0,S,T , βj , v),

semi minor axis1 b0 = b0(a0,S ,T ).

For each robot pair Rj, Repeat:

Initialize PBUG1 with the following parameters:

Create an outer virtual obstacle’s boundary with current search ellipse.

Start point is S, target is T .

Set i = 1.

Leave point is L0.
Execute PBUG1 until one of the following occurs:

(1) PBUG1 terminates at T : STOP, target is found.

(2) T is trapped inside an obstacle:

(a) If the obstacle does not intersect the eRj ellipse, STOP, the target is unreachable.

(b) Otherwise, move to the next unoccupied ellipse:

Set p = p+ 1.

Set current search ellipse parameters:

semi major axis1 ap = ap(a0, αj , p),

semi minor axis1 bp = bp(a0, ap).

Set L0 at PBUG1 termination point.

End of Repeat loop

1Calculations of a0, b0, ap, bp is presented in section 5.4.

Figure 5.4: HMRBUG Pseudocode.



5. HMRBUG Algorithm 56

Before analyzing the time competitiveness of the algorithm, we make the following remarks: First,

during initialization, after obtaining the values of n, T0,S, and T , each robot is assigned to a number

j and to a local direction, Left or Right and thus can calculate its future search ellipse parameters,

which means that after a pair of robots has finished searching for a path in an ellipse, it can immediately

continue to search in the next ellipse, regardless of the state of the other robots. Second, the method

PBUG1 used to determine that the target is unreachable and trapped inside an obstacle in step 2 is

discussed in subsection 5.3.2. HMRBUG ensures in step 2a that the robots are not bounded by the

ellipse and thus guarantee that the target is unreachable. Third, regarding the memory requirements,

in HMRBUG , each robot executing PBUG1 uses the same amount of memory as in BUG1 with slight

modification, plus a constant amount of memory. The target position T , the current obstacle’s hit

point, the distance of the closest point on the current obstacle’s boundary to the target and the two

distances to that point along the obstacle’s boundaries from its current position are BUG1 necessities.

PBUG1 memory modification is evident in the last requirement, where these two distances to the

leave point are not necessary and should be recorded by each robot, as was discussed in Subsection

5.3.1. Additional memory requirements of HMRBUG are the start position S and the current ellipse’s

parameters ap, bp.

5.4 HMRBUG Upper Bound Analysis

In this section, the performance of HMRBUG is analyzed and an upper bound on the traveling time

to reach the target is formed. First, two conditions regarding the ellipses’ areas and search times

are formulated. These conditions assist the calculations and the convergence of the upper bound of

HMRBUG . Next, using the ellipse’s geometrical properties and the optimal off-line solution, the

upper bound is achieved.

In the following two lemmas we use terms related to Configuration Space. The configuration

Figure 5.5: Two pairs of robots, executing HMRBUG.
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space (or C-space) of a disc-shaped robot is IR2, and the C-space obstacle CBi consists of all robot

configurations where it intersects the obstacle Bi.

Definition 3 ([20]). Let CBi be the C-space obstacle induced by an obstacle Bi for a disc robot of size

D. The traceable obstacle induced by Bi, denoted Bi, is obtained by filling any internal holes in CBi

and then shrinking CBi inward by a distance of D/2.

Lemma 5.4.1 ([20]). Let a planar environment contain z disjointed traceable obstacles Bi, i =

1, . . . , z. Let a disc robot of size D trace the ith obstacle’s boundary, and let qi be the total area

swept by the robot during tracing of the ith boundary. Let C be any simple closed curve that surrounds

the z regions swept by the robot. Then
∑z

i=1 qi ≤ 4A(C), where A(C) is the area of the traceable

obstacle-free points enclosed by C.

Note that the regions swept during tracing of the individual boundaries may overlap, so that in

general the sum
∑z

i=1 qi may be larger than A(C). The following lemma is written in the spirit of [53].

Lemma 5.4.2. The path travel time tji of the the ith ellipse traversed by each robot of the jth pair

searching for the path to the target is bounded by

tji ≤ 4
Ai

βjvD
+ (||L0

i − T || − ||L0
i+n − T ||)/(βjv), (5.2)

where Ai is the area of the ith ellipse, D is the size of each robot, βjv is the velocity of each robot of

the jth’s pair. L0
i is the start point at the ith ellipse, n is the number of robot pairs, L0

i+n is the start

point at the next ellipse of the pair of robots, and ||γ − δ|| denotes the Euclidean distance between γ

and δ.

Proof. When moving toward the target in the ith ellipse, each robot of the pair of robots assigned by

HMRBUG to that ellipse is executing PBUG1. The regions swept by the robots during circumnavi-

gation of obstacles in this ellipse (including the ellipse itself) are surrounded by the ellipse’s boundary.

Identifying the latter boundary with the curve A(C) from Lemma 5.4.1, the total path length of the

two robots during circumnavigation of the obstacles is at most 4Ai/D, where Ai is the ith ellipse’s

area. Since each robot travels exactly half of the way, the path length of one robot is not more than

2Ai/D. Recall now that under BUG1, the robot circumnavigates the boundary of each obstacle at

most 1.5 times; here each of the two robots will circumnavigate the boundary of each obstacle only

one time at most. Hence, the total length of each robot’s path during boundary following is at most

4Ai/D. Recall, too, that under BUG1, motion between obstacles is always conducted directly to the

target. The total length of these motion segments equals the net decrease of the distance of the robot

from T , which is ||L0
i −T || − ||L0

i+n −T ||. Adding the two terms and dividing by the robots’ velocity

gives the result.

The following lemma states that the last ellipse search time is bounded from above. This lemma

and its proof are inspired by [53].

Lemma 5.4.3. Let T be reachable from S. If the initial ellipse contains no path from S to T , robot

pair j in HMRBUG reaches the target in an ellipse whose search time Tfj is bounded by

Tfj ≤ αj
πtoptβn
4βj−1D

√

(toptβnv)2 − ||S − T ||2. (5.3)
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where, topt is the travel time of the optimal off-line path from S to T by the fastest robot pair, αj is

the multiplication factor of the robot pair that reached the target, βj is the velocity factor of robot pair

j, and for j = 1, βj−1 = βn, v is the slowest robot’s velocity and D is the robots’ width.

Proof. An ellipse with focal points S and T satisfies the inequality ε = {x : ||x− S||+ ||x− T || ≤ 2a},
where 2a is the length of the ellipse’s major axis. Consider now the optimal off-line path from S to

T of length lopt. Every point x along this path satisfies the inequality ||x − S|| + ||x − T || ≤ lopt. It

follows that the entire optimal off-line path lies in an ellipse with focal points S and T and major

axis 2a ≤ lopt. Next, recall that the area of an ellipse is given by πab, where 2b is the length of

the ellipse’s minor axis. In an ellipse with focal points S and T , ||S − T ||2/4 + b2 = a2. Hence,

b ≤ 1
2

√

l2opt − ||S − T ||2, where we used the inequality a ≤ lopt/2. Let Aopt denote the area of the

smallest ellipse with focal points S and T , which contain the optimal off-line path. Substituting the

expressions for a and b in πab, the ellipse area computation formula gives the upper bound:

Aopt = πab ≤ π

4
lopt

√

l2opt − ||S − T ||2. (5.4)

According to our assumption, the initial ellipse contains no path from S to T . Hence, HMRBUG

multiplies the search time of the ellipse by a factor of αj at least once.

We will examine the worst-case scenario for several cases in which different robots reached the

target. In the first case, robot pair Rn searched for a path in an ellipse whose area is Aopt − ǫ and

search time Toptn − ǫ,, substituting topt = lopt/(βnv)or lopt = toptβnv, into (5.4) yields

Aopt ≤
π

4
toptβnv

√

(toptβnv)2 − ||S − T ||2, (5.5)

Then substituting (5.5) into

Toptn = Aopt/(βnvD),

yields,

Toptn ≤ πtoptβnv

4βnvD

√

(toptβnv)2 − ||S − T ||2.

Simplification yields

Toptn ≤ πtopt
4D

√

(toptβnv)2 − ||S − T ||2.

Robot pair Rn could not reach the target in the current ellipse. Consequently, pair R1 is assigned

afterwards to search for it in an ellipse whose search time satisfies the inequality Tf1 ≤ α1Toptn .

Substituting for Toptn in the inequality Tf1 ≤ α1Toptn yields,

Tf1 ≤ α1
πtopt
4D

√

(toptβnv)2 − ||S − T ||2.

Accordingly, generally, robot pair Rj−1 searched for a path in an ellipse whose area is Aopt − ǫ and

search time Toptj−1
− ǫ,, substituting (5.5) into

Toptj−1
= Aopt/(βj−1vD),

yields,

Toptj−1
≤ πtoptβnv

4βj−1vD

√

(toptβnv)2 − ||S − T ||2.

Simplification yields

Toptj−1
≤ πtoptβn

4βj−1D

√

(toptβnv)2 − ||S − T ||2.
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Robot pair Rj−1 could not reach the target in the current ellipse. Consequently, pair Rj was assigned

afterwards to search for it in an ellipse whose search time satisfies the inequality Tfj ≤ αjToptj−1
.

Substituting for Toptj−1
in the inequality Tfj ≤ αjToptj−1

yields,

Tfj ≤ αj
πtoptβn
4βj−1D

√

(toptβnv)2 − ||S − T ||2.

The following proposition establishes a quadratic time competitive upper bound on HMRBUG .

Theorem 2. (Quadratic time competitive complexity) Assume target T is reachable from S. Let

HMRBUG use n robot pairs with velocities: vj = βjv, ∀j, j = 1, 2 . . . n, where

βj+1 ≥ βj ≥ 1, ∀j, j = 1, 2 . . . n− 1.

Then the traveling time of robot pair j, which reached the target, is bounded by:

TRj <
παjβn (

∏n
i=1 αi) topt

√

(βnvtopt)2 − ||S − T ||2
4Dβj−1 (

∏n
i=1 αi − 1)

. (5.6)

Proof. The path to the target is assumed to lie within an ellipse whose area is given in (5.4) and search

time (5.3). First, we will inspect the case in which robot pair no. 1, R1 reaches the target. In the

worst-case scenario, the last robot pair, Rn, searched for a path in an ellipse whose area is Aopt− ǫ and

search time Toptn − ǫ, and thus could not reach the target. Consequently, R1 was assigned afterwards

to search for it in an ellipse whose search time is (5.3)

Tf1 ≤ πα1topt
4D

√

(βnvtopt)2 − ||S − T ||2. (5.7)

The sum of the ellipses’ search times of R1 is

TR1 ≤ t1,1 + t1,1+n + t1,1+2n + · · ·+ t1,i

= T0 +

(

n
∏

k=1

αk

)1

T0 +

(

n
∏

k=1

αk

)2

T0

+ · · ·+
(

n
∏

k=1

αk

)( i−1
n )

T0 (5.8)

The last expression can be explained by example. Consider that HMRBUG uses 3 pairs of robots

to search for a path to the target. Table 5.1 describes the first search ellipse’s search times.

Table 5.1: HMRBUG first ellipses search times

ellipse num. (i) 1 2 3 4 5 6 7

Robot pair 1 2 3 1 2 3 1

Saerch time T0 α2T0 α2α3T0 α1α2α3T0 α1α
2
2α3T0 α1α

2
2α

2
3T0 α2

1α
2
2α

2
3T0

T0 coefficient 1 α2 α2α3 α1α2α3 α1α
2
2α3 α1α

2
2α

2
3 α2

1α
2
2α

2
3

This series of times is a converging geometric series. The sum of such a series is

y + yλ+ yλ2 + yλ3 + ...+ yλw−1 =
y(λw − 1)

(λ− 1)
, (5.9)
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substituting y = T0, λ = (
∏n

k=1 αk), and w − 1 = i−1
n ,

TR1 ≤ (
∏n

k=1 αk)
( i−1

n
+1) − 1

∏n
k=1 αk − 1

T0 <
(
∏n

k=1 αk)
( i−1

n
+1)

∏n
k=1 αk − 1

T0 (5.10)

Comparing the two expressions in terms of the time to cover the last ellipse, t1,i from (5.8), and Tf1

from (5.3), T0 can be calculated,

(

n
∏

k=1

αk

)( i−1
n )

T0 = Tf1 ≤ α1
πtopt
4D

√

(toptβnv)2 − ||S − T ||2.

T0 ≤
πα1topt

√

(βnvtopt)2 − ||S − T ||2

4D (
∏n

i=1 αi)
( i−1

n )
.

Substituting T0 into (5.10) yields,

TR1 <
(
∏n

k=1 αk)
( i−1

n
+1)

∏n
k=1 αk − 1

πα1topt
√

(βnvtopt)2 − ||S − T ||2

4D (
∏n

i=1 αi)
( i−1

n )
.

Simplification yields

TR1 <
πα1topt

√

(βnvtopt)2 − ||S − T ||2 (∏n
k=1 αk)

4D (
∏n

k=1 αk − 1)
.

Accordingly, in general,

TRj <
παjβn (

∏n
i=1 αi) topt

√

(βnvtopt)2 − ||S − T ||2
4Dβj−1 (

∏n
i=1 αi − 1)

.

where for j = 1, βj−1 = βn.

The last inequality can also be rewritten as follows,

TRj <
παjβntopt

√

(βnvtopt)2 − ||S − T ||2

4Dβj−1

(

1− 1

(
∏n

i=1αi)

) .

There are two boundary cases for the last result. The first case is when there are no obstacles

between S and T . According to the algorithm, all the robots will move directly towards the target

and the fastest robot will reach T first. Here the travel time will be ‖S − T ‖/(βnv). The second case

is when the path to the target is found within the first search ellipse. The upper bound in this case

will be, according to Lemma 5.4.2,

tj,j ≤ 4
Aj

βjvD
+

‖S − T ‖
βjv

Lemma 5.4.1. The time competitive complexity of HMRBUG is minimal when for each of the n

pairs of robots deployed, the multiplication factor equals,

αj =
(n + 1)1/nβj−1
∏n

i=1 β
1/n
j

, β0 = βn, β1 = 1 (5.11)
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Proof. In order to find the optimal multiplication factors, α′
js, a new objective function that combines

all the sums of times is formed,

Ttot = TR1 + TR2 + . . .+ TRn

<
πβn (

∏n
i=1 αi) topt

√

(βnvtopt)2 − ||S − T ||2
4D (

∏n
i=1 αi − 1)

·
n
∑

i=1

αi

βi−1

.

Substituting c =
πβntopt

√
(βnvtopt)2−||S−T ||2

4D in Ttot, And then differentiating Ttot according to each of

the α′
js,

Ttot < c
(
∏n

i=1 αi)

(
∏n

i=1 αi − 1)
·

n
∑

i=1

αi

βi−1

∂Ttot

∂αk
= c

(

∏n
i=1 αi

∑n
i=1

αi

βi−1

)′

(
∏n

i=1 αi − 1)

(
∏n

i=1 αi − 1)2
− c

(

∏n
i=1 αi

∑n
i=1

αi

βi−1

)

(
∏n

i=1 αi − 1)′

(
∏n

i=1 αi − 1)2
=

= c

(

∏n
i=1 αi

∑n
i=1

αi

βi−1

)′

(
∏n

i=1 αi − 1)
− c

(

∏n
i=1 αi

∑n
i=1

αi

βi−1

)

(

∏n
i=1,i 6=k αi

)

(
∏n

i=1 αi − 1)2
=

= c

(
∏n

i=1 αi)
′∑n

i=1
αi

βi−1

+
∏n

i=1 αi

(

∑n
i=1

αi

βi−1

)′

(
∏n

i=1 αi − 1)
− c

(

∏n
i=1 αi

∑n
i=1

αi

βi−1

)

(∏n
i=1 αi

αk

)

(
∏n

i=1 αi − 1)2
=

= c

(∏n
i=1 αi

αk

)

∑n
i=1

αi

βi−1

+
∏n

i=1 αi

(

1
βk−1

)

(
∏n

i=1 αi − 1)
− c

(

∏n
i=1 αi

∑n
i=1

αi

βi−1

)

(∏n
i=1 αi

αk

)

(
∏n

i=1 αi − 1)2
=

comparing each function to zero and finding the common roots yields

αj =
(n+ 1)1/nβj−1
∏n

i=1 β
1/n
i

, β0 = βn, β1 = 1

Substituting αj back into ∂Ttot
∂αk

, yields

∂Ttot

∂αk
= c

(∏n
i=1 αi

αk

)

∑n
i=1

αi

βi−1

+
∏n

i=1 αi

(

1
βk−1

)

(
∏n

i=1 αi − 1)
− c

(

∏n
i=1 αi

∑n
i=1

αi

βi−1

)

(∏n
i=1 αi

αk

)

(
∏n

i=1 αi − 1)2
=

= c

(

n+1
αk

)

∑n
i=1

αi

βi−1

+

(

n+1
βk−1

)

n
− c

(n+ 1)
∑n

i=1
αi

βi−1

(

n+1
αk

)

n2
=

= c
n+ 1

αkn2

[

n

n
∑

i=1

αi

βi−1

+
nαk

βk−1

− (n + 1)

n
∑

i=1

αi

βi−1

]

=

= c
n+ 1

αkn2



n



n · (n+ 1)
1
n

∏n
i=1 β

1
n
i



+ n · (n+ 1)
1
n

∏n
i=1 β

1
n
i

− (n+ 1)n · (n+ 1)
1
n

∏n
i=1 β

1
n
i



 =

= c
n+ 1

αkn2



(n+ 1)



n · (n+ 1)
1
n

∏n
i=1 β

1
n
i



− (n+ 1)



n · (n + 1)
1
n

∏n
i=1 β

1
n
i







 =

= 0
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Theorem 3. The problem of on-line heterogeneous multi-robot navigation to a known target in an

unknown and unbounded environment belongs to the quadratic time competitive complexity class.

Proof. As defined in Definition 2, a time competitive complexity class is formed from a lower bound

and from an upper bound for the problem. In section 5.2 we found a lower bound for the research

problem that is quadratic in the optimal off-line solution, topt (5.1). Then we presented HMRBUG

algorithm to solve that problem with an upper bound quadratic in topt (5.6). Thus, the research

problem belongs to the quadratic time competitive complexity class.

Corollary 5.4.1. HMRBUG is complete.

Proof. The first important property established in Theorem 2, is that if the target T is reachable,

HMRBUG will find a path to it. The second property is that HMRBUG will find that path in a

finite and limited time.

Corollary 5.4.2. HMRBUG is optimal in the sense of the search time.

Proof. In Theorem 3 we proved that the search problem belongs to the quadratic time competitive

complexity class. HMRBUG upper bound is time quadratic in the optimal off-line solution (5.6).

Thus, HMRBUG is optimal up to constant coefficients.

The problem of reaching a target whose position is known in an a priori unknown and unbounded

environment was presented. A lower bound for all algorithms that solve this problem was proved to be

quadratic in the optimal off-line solution. HMRBUG algorithm for a group of heterogeneous robots

was presented. HMRBUG algorithm was analyzed and its upper bound found to be quadratic in the

optimal off-line solution. Consequently, the aforementioned problem was classified into the quadratic

time competitive complexity class, and therefore, HMRBUG is optimal. The multiplication factor

that minimizes the time of search was found and finally the algorithm was proved to be complete.



Chapter 6. Simulations
The algorithms’ analytical analysis provides the upper bound for the performance in worst-case scenar-

ios. However, most scenarios are not worst-case scenarios. Thus, better performance is often evident.

Using simulation, it is possible to evaluate the effect of several parameters. This chapter presents

simulation results for the HMRSTM and HMRBUG algorithms.

6.1 HMRSTM simulations

The effect of the following parameters on the average performance of HMRSTM was evaluated. Ac-

cording to Sec. 3.4.2, a total of 37,800 simulations with different configurations were executed. The

parameters for the simulations were 3 environments, 10 target positions, up to 8 surrounding adjacent

cells, 3 beta- velocity distributions, 10 numbers of robots, and up to 10 initial disc sizes.

Since execution time in computer application is not equivalent to the actual running time in real

robots, the performance measure chosen was the number of steps made by the slowest robot. Each

step is a traveling distance equivalent to the size of the robot, D. Since all robots start at the same

time and simultaneously stop when one robot finds the target, the travel time of the slowest robot

equals the travel time of any other, possibly faster robot, from the starting point until the first robot

reaches the target. In theory and in the simulations, the slowest robots always have the same velocity

in all configurations. Thus, measuring the number of D-steps made by the slowest robot in each

configuration yields an exact performance measure for comparison.

In the following example, depicted in Fig. 6.1 and 6.2, HMRSTM deploys 4 robots to search for

target number 98 in the library environment. Since a clear view of the execution is pursued in this

example, only robot number 3 is shown along with its path within each search disc. First, each robot

was assigned to search for the target in its disc. Thus, robot 3 was initially assigned to search for

the target in disc no. 3 (Fig. 6.1 Left). Covering the accessible regions of its first disc took robot

3 635 steps. Afterward, since it did not find the target in its initial disc, it moved on to search the

target within its second disc, disc no. 7 (Fig. 6.1 Right). After covering its second disc with 3012

steps and not finding the target, robot 3 continued to search within the next disc, disc number 11

(Fig. 6.2 Left). Finally, after another 4940 steps, robot number 3 found the target and terminated the

algorithm (Fig. 6.2 Right).

The first phase of simulations of HMRSTM, focused on testing the effect of the initial search

disc radius on the average-case performance of the algorithms in addition to testing environment,

velocity distribution, and target position. Averaging all parameters except the environment and beta,

as in Fig. 6.3, it is evident that the time to find the target (the number of steps) decreases as the

environment becomes increasingly congested (”library” is more congested than ”cave,” which is more

congested than ”free”). Since HMRSTM cover growing portions of the environment until finding the

target, in less congested environments there is less free space to cover. Thus, it takes less time to cover

the environment and find the target. Moreover, it is evident that the more heterogeneous the group’s

velocity, the less time it takes for it to find the target. Figure 6.3 shows that in every environment,

averaged over all target positions, number of robots, and initial search radii, the beta-max velocity

63



6. Simulations 64

Figure 6.1: Robot no. 3 search for the target, Left: in its initial search disc, no.3. Right: in its second

search disc, no. 7.

Figure 6.2: Robot no. 3 Left: search for the target in its third disc, no.11. Right: Finds the target.
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Figure 6.3: HMRSTM average simulation results for environment and beta

distribution performs significantly better than the beta-linear velocity distribution, which performs

significantly better than the homogeneous velocity distribution.

The effect of the number of robots is shown in Fig 6.4. It can be seen that as the number of robots

increases, the time to reach the target decreases, which shows that generally, the greater the number

of robots that search for the target, the sooner it will be found. The latter result is consistent with

intuition and with the assumptions made prior to execution of the simulations.

Figure 6.4: HMRSTM average simulation results for no. of robots and beta

For groups with the same number of robots, but different beta, the maximal velocities are different.

Moreover, due to analytical restrictions within the linear velocity distribution, the maximal velocity

within each group decreases as the number of robots in the group increases. For example, for a group

of 2 robots, the fastest robot can have a velocity of 2.99 times the slowest, while in a group of 3 robots,

the fastest robot is allowed to be only 2.37 times faster than the slowest. Thus, Fig.6.8 shows the

results normalized according to the formula: Normalized number of steps = (number of steps)/(Sum
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of velocities). The sum of velocities is a very good measure of the group’s total cost, since faster robots

consume more energy, and possibly wear out more quickly. Since a single robot has only homogeneous

velocity distribution, and a pair of robots has only homogeneous and linear velocity distributions, the

graph in Fig. 6.5 shows the normalized results for groups of 3 to 10 robots. It is clear that in the

normalized results as well, the more robots used to search for the target, the less time it takes to find

it. Again, it is evident that the more heterogeneous the group is, the sooner the target will be found.

Figure 6.5: HMRSTM normalized simulation results for no. of robots and beta

In theory, the initial disc is supposed to be sufficiently small not to affect the upper bound of the

algorithm. In average-case performance, the initial disc may have only a minor effect. The effect of

the initial disc in simulations was not consistent, and general rules could not be formed. The general

results for varying the initial search disc are depicted in Fig. 6.6. The graphs are fairly horizontal,

suggesting that there is only a minor effect of the initial search disc radius. This result is consistent

with the theory that dictates that the search time does not depend on the initial search disc radius.

Figure 6.6: HMRSTM initial search radii
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The effect of placing a target in an adjacent cell (Sec. 3.4) was evaluated for all 10 targets, for all

3 environments, for robot groups ranging between 1 and 10 robots, and for 3 velocity distributions.

Only one initial search disc radius was chosen. For each target position, additional 8 adjacent cells

were tested as targets. Figure 6.7 shows the results of finding each of the 9 targets of the cluster of

target number 90 in the ”free” environment. It is evident that although the targets are 4 cells apart

at most (Manhattan distance), the differences between each target are much greater (more than 350

steps). Generally, from the trend lines, it is evident that on average, the more heterogeneous the

group, the more quickly the target will be found (beta-max is better than beta-linear, which is better

than homogeneous velocity distribution). However, at some points, the beta-max distribution is much

poorer than the linear and the homogeneous distributions (e.g., points 2, 5, and, 8). This is due to

the spiral nature of the inner disc covering algorithm, discussed in 3.4. Fig. 6.8 shows the normalized

Figure 6.7: HMRSTM finding cluster of targets #90, in ”free” environment

results for clusters of 9 adjacent cells for each target. It is clear that in the normalized results as well,

the more robots used to search for the target, the less time it takes to find it. Again, it is evident that

the more heterogeneous the group, the sooner the target will be found.

The simulation results, which exhibit the average-case performance, were compared with the an-

alytical worst-case upper bound of the algorithm (As presented in Chapter 4). The upper bound of

robot j for a certain execution depends on n, αi, βi, i = 1, . . . , n, ||S − T ||, D, topt, v. Thus, it was

calculated for each robot (in a pair), for each set of start-target points, for each number of robots, and

for each environment. Without loss of generality, D = 1, v = 1 were assumed. All simulation results

were within the upper bound. Moreover, the simulation average-case results were sometimes several

orders of magnitude smaller than the analytical worst upper bound. The path length of the simulation

for the case of searching for target number 97 in ”free” environment by groups of heterogeneous robots

with beta-max velocity distributions is compared with the analytical upper bound in Fig. 6.9. Since

the differences are so great, the vertical axis is logarithmic.

The tens of thousands of simulation runs show that the average-case performance of HMRSTM

depends on several parameters. The use of multiple robots significantly reduces the time to find the
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Figure 6.8: HMRSTM normalized simulation results for no. of robots and beta

Figure 6.9: HMRSTM simulation and analytical upper bound path length

target, and the use of heterogeneous groups of robots reduces that time even more. Moreover, the

more heterogeneous the group is, the better the performance. As predicted, the more congested the

environment is, the less time the robots will spend on the search. The distance of the target from

the start position obviously affects the time needed to find the target, but due to the nature of the

coverage algorithm used, the exact position of the target has a great effect. In accordance with the

hypothesis, the initial disc search time does not have a great effect on performance. The average-

case performance of HMRSTM, as evident from the simulations, is much better than the analyzed

worst-case performance.

6.2 HMRBUG simulations

The effect of several parameters on the average performance of HMRBUG was evaluated. According to

Sec. 3.4.2, a total of 9000 simulation runs with different configurations were executed with the following

parameters: 3 environments, 10 sets of start and target positions, 3 beta-velocity distributions, 10

robot pairs, and 10 initial ellipses sizes. As in the previous section, (6.1), the performance measure

chosen was the number of steps conducted by the slowest robot.

In the following example, HMRBUG deploys two pairs of robots to search for a path from start to
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target in the ”cave” environment. The first pair’s color is green and the second, faster pair’s color is

red. Each pair’s initial bounding ellipse is drawn with its pair color (Fig. 6.10). First, all the robots

move directly towards the target. After pair number 2 hits the first obstacle’s boundary, it begins to

circumnavigate it and its bounding ellipse. The green pair, which is slower, hits the obstacle after the

red pair, and begins encircling the obstacle’s boundary and its green ellipse. The red pair meets on the

red ellipse, and heads towards the shortest point to the target from the boundaries of the obstacle and

the ellipse. From the nearest point, figuring their way directly towards the target, which is blocked by

an obstacle, pair number 2 moves on to search for a path to the target in a larger ellipse. While pair

number 2 circumnavigates the obstacle’s boundary within the new, larger ellipse, robot pair number

1 meets on its ellipse’s boundary and moves to the nearest point together (Fig. 6.10 Right). After

reaching the nearest point and realizing that the way toward the target is blocked by an obstacle, pair

number 1 extends its disc and continues to search for a path to the target in the next ellipse (Fig. 6.11

Left). Next, the robots of pair number 2 complete their circumnavigation of the obstacle and their

second search ellipse, meet, move together to the closest point on the boundary to the target and,

finally, head directly toward the target, reach it and terminate the algorithm (Fig. 6.11 Right). The

simulation application shows a message that indicates how many steps each robot made, and the time

it took for the simulation to execute the search in seconds.

Averaging all parameters except for the environment and beta, as in Fig. 6.12, it is evident that

the time to reach the target (the number of steps) increases as the environment becomes increasingly

congested (”library” is more congested than ”cave,” which is more congested than ”free”). This result

is consistent with the algorithm that circumnavigates obstacles on its way to the target. Thus, the

more congested the environment is, the more obstacles there are for the robots to encircle. Moreover,

it is evident that the more heterogeneous the group’s velocity is, the less time it takes to reach the

target. It is clear that a group with homogeneous velocity distribution will reach the target after the

group with linear velocity distribution, and the group with the beta-max velocity distribution will

reach the target first. This effect occurs due to the different velocities that influence the ellipse search

time multiplication factors, which yield greater ellipses for the heterogeneous groups.

The effect of the number of robots is shown in Fig 6.13. It can be seen that as the number of

robots increases, the time to reach the target decreases. This rule does not apply to the linear velocity

distribution, due to the constraints on the search time and area within each ellipse (Conditions 3,4).

These constraints yield a decrease in the velocity of the fastest robot as the number of robots grows.

Thus, although the ellipse within which the search for a path to the target is conducted is larger,

the overall performance of the linear velocity distribution decreases as the number of robots grows

under this performance measure comparison. Therefore, a normalized comparison yields the results

presented in Fig. 6.14. The normalization made according to the sum of the velocities of the group and

according to the formula: Normalized number of steps = (Number of Steps)/(Sum of Velocities). An

improvement in performance as the number of robots increases is evident in all velocity distributions.

It is also evident that beta-max velocity distribution is better than the linear distribution and that

linear distribution is better than homogeneous group even after the velocity normalization.

The initial ellipse is supposed, in theory, to be sufficiently small that it will not affect the upper

bound of the algorithm. In average-case performance, the initial ellipse should have an effect. However,

the effect of the initial ellipse in simulations was not consistent, and general rules could not be formed.
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Figure 6.10: Left: Initial search ellipses. Right: fast pair in red moves to a larger ellipse.

Figure 6.11: Left: Slow pair in green moves to a larger ellipse. Right: fast pair in red reaches that

target.
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Figure 6.12: HMRBUG average simulation results for environment and beta

Figure 6.13: HMRBUG average simulation results for no. of robots and beta

Figures 6.15,6.16,6.17 show the behavior of the algorithm’s average-case performance for different

initial ellipses. It is evident that in some cases, a larger initial search ellipse yields poorer results

(longer time), e.g., Start-Target configuration number 4 in Library, Fig. 6.15. There are cases where a

larger initial search ellipse yields better results (shorter time), e.g., Start-Target configuration number

6 in Library, Fig. 6.16. Additionally, there are cases where the ellipse’s initial size does not influence

performance, e.g., Fig. 6.17. The general results for varying the initial search ellipse are depicted in

Fig. 6.18. In cases where the initial search ellipse is small relative to the S-T distance and to the

size of the obstacles on the S-T path, it will be extended many times, and choosing a larger initial

ellipse results in better performance. This is the main assumption for large environments. However,

if the search ellipse is too large relative to those parameters, as in several cases in the simulation, the

performance, in some cases, improves and in others does not, according to the specific arrangement

of the obstacles in the environment. For example, sometimes a larger search ellipse yields a larger

bounding ellipse to follow. The reason for this behavior stems from the constraints of the size of the

simulation system and the additional constraint of the minimal size of the search ellipse.
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Figure 6.14: HMRBUG normalized simulation results for no. of robots and beta

Figure 6.15: HMRBUG simulation results for initial ellipse and beta, S-T#4, library

Figure 6.16: HMRBUG simulation results for initial ellipse and beta, S-T#6, library
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Figure 6.17: HMRBUG simulation results for initial ellipse and beta, S-T#6, cave

Figure 6.18: HMRBUG simulation results for initial ellipse and beta
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The simulation results, which exhibit the average-case performance, were compared with the an-

alytical worst-case upper bound of the algorithm (As presented in Chapter 5). The upper bound of

robot j for a certain execution depends on n, αi, βi, i = 1, . . . , n, ||S − T ||, D, topt, v. Thus, it was

calculated for each robot (in a pair), for each set of start-target points, for each number of robots, and

for each environment. Without loss of generality, D = 1, v = 1 were assumed. All simulation results

were within the upper bound. Moreover, the simulation average-case results were sometimes several

orders of magnitude smaller than the analytical worst upper bound. The path length of the simulation

for the case of searching for target number 0 in the ”cave” environment by groups of heterogeneous

robots with beta-max velocity distributions is compared with the analytical upper bound in Fig. 6.19.

Since the differences are so great, the vertical axis is logarithmic.

Figure 6.19: HMRBUG simulation vs. analytical upper bound path length

The ratio between the minimal analytical upper bound and the maximal simulation path length is

shown in Fig. 6.20. It is evident that this ratio’s maximal value in the ”cave” environment is 82 and

its average is 29, whereas in the ”library,” the maximal value is 13 and the average is 6.

Figure 6.20: HMRBUG ratio between analytical upper bound and maximal simulation path length

Several tens of thousands of simulation runs revealed that the average-case performance of HM-

RBUG depends on several parameters. The use of multiple robots significantly reduces the time to
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reach the target, and the use of heterogeneous groups of robots reduces that time even more. More-

over, the more heterogeneous the group is, the better its performance. As predicted, the more congest

the environment is, the more time the robots will spend on the search. The distance of the target

from the start position obviously affects the time to find the target, but the number and shape of the

obstacles between the start and the target positions has a great effect. In accordance with the hypoth-

esis, the initial ellipse search time does not have a great effect on the performance. The average-case

performance of HMRBUG, as evident from the simulations, is much better than the analyzed worst

case-performance.
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Chapter 7. Experiments
The experiments aim to validate the simulations and analyze performance in real-world conditions.

The main performance measure was defined as the time to find the target in seconds. The test bed

and experimental setup are presented in detail in Section 3.6.

7.1 HMRSTM experiments

In HMRSTM, the effect of the uncertainty of the positioning system and of the implementation of the

algorithm in hardware on the performance of the algorithm was evaluated. Three environments were

evaluated, and within each environment three target positions were tested (Figures 3.4 and 3.5). For

each configuration, HMRSTM deployed between 1 and 4 robots. Three different velocity distributions

were evaluated: homogeneous, linear, and ”beta-max”. Table 7.1 summarizes the parameters tested in

HMRSTM experiments. For each configuration, two repetitions were conducted, resulting in a total

of 162 experiment runs. The experiment’s raw results are presented in Appendix A.

Table 7.1: HMRSTM experiment configurations

No. of Robots No. of Environments Target Positions Beta tested Configurations

1 3 (free,cave,libr) 3 1 (H) 9

2 3 (free,cave,libr) 3 2 (H,L) 18

3 3 (free,cave,libr) 3 3 (H,L,M) 27

4 3 (free,cave,libr) 3 3 (H,L,M) 27

Total Configuration 81

7.1.1 Experiment initialization

Prior to the experiment session, the following preparations were made. The hardware equipment,

which includes the robots and their batteries, the video camera, the FLEX IR cameras, the PC,

the obstacles, and the XBee wireless modules were prepared and activated. The software included

the Tracking Tools application, the VRPN client application, the video camera application, and the

main experiment C# application. On the main application, the proper parameters which are the

environment, the number of robots, the target number, the Beta distribution, and the repetition

number were selected. For a detailed explanation of all hardware and software modules see Sec. 3.6.1.

The main application is presented as an example in Figure 7.1. This is the first repetition of

the experiment conducted in the ”library” environment, where 4 robots with ”beta-max” velocity

distribution were looking for target number 3. Since the robot does not have a dedicated target

sensor, the target position is known to the main application, but unknown to the robot that searches

for it.

The map in the top left hand corner shows the current real positions of the robots received from

the localization system; each robot is represented by a dot. The next step of each robot according to

the algorithm is represented by a colored grid cell. The map shows the target position with a red circle,

and each robot’s bounding discs in blue. The black rectangle marks the bounds of the localization

77
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Figure 7.1: HMRSTM main application.

system and thus the bounds of the experiment. The right part contains options to manually control

each robot and fields with localization and sensory data (mainly for debugging purposes).

After the aforementioned steps are performed, the robots start to move and search for the target.

When one of the robots finds the target, the main application automatically stops all logging and

shows a message on screen with the number of the robot who finds the target and the amount of time

it took.

7.1.2 Experiment example

Consider the case where a group of 4 robots with linear velocity distribution search for the target

positioned in place number 3 in the ”library” environment. In simulation, the robots’ initial position

and discs are depicted in figure 7.2. The colors of the robots are green, red, purple, and pink for

robots 1, 2, 3, and 4, respectively. It is evident that the target lies within the fourth disc, but outside

of discs 1, 2, and 3.

After robot 1 finished covering its first disc and did not find the target, it moved on to search for

it in a larger disc, the next unoccupied disc. The next disc is disc number 5 and is shown in figure

7.3. Robot 2 is in the same position as robot 1, and thus is not shown. It is evident that disc number

5 is slightly larger than disc number 4, and since the starting positions of robots 1 and 4 are adjacent,

the discs are not exactly concentric, since each disc is centered at its robot’s starting point. In the

experiment, after 74 seconds, the first robot finished covering its first disc, and continued to search

within disc number 5. Next, after 15 seconds in the experiment, robot number 2 finished covering
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Figure 7.2: Initial position in simulation (left) and experiment (right)

Figure 7.3: Robot 1 expanded its search disc. Left: Robot 2 (red) is in the same position as robot 1

(green) and therefore is not shown.

the second disc without finding the target, so it continued its search in disc 6, depicted in figure 7.4.

Finally, robot number four found the target and terminated the algorithm. The positions of all robots

a step prior to that moment is depicted in figure 7.5 The total D-steps made by robots 1, 2, 3, and

4 until finding the target were 37, 50, 63, and 77 respectively, which correlates to the linear velocity

distribution.

In the experiment, the total D-steps made by robots 1, 2, 3, and 4 until finding the target in the

experiment were 60, 75, 65, and 68 respectively. The path lengths that robots 1, 2, 3, and 4 traversed

prior to finding the target were 12984, 17053, 15286, and 17095 [mm] respectively, and thus their

average speeds were 90.01, 118.22, 105.97, and 118.51 respectively.

The main difference between the simulation and the experiment in this case is that robot 2 found

the target in the experiment after 75 D-steps, whereas in the simulation robot 4 found the target after

77 D-steps. The main reason for this difference lies in the fact that in the experiment, the actual

velocity distribution was not linear. Moreover, robot 2 was faster than robot 3, and had almost the
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Figure 7.4: Robot 2 expanded its search disc. Left: Robot 1 (green) was in the same position as robot

2 (red) and therefore is not shown.

Figure 7.5: The target is found. Left: By robot no.4. Right: By robot no. 2

same velocity as robot 4. Hardware limitations, mainly the robots’ motors and the angle control

applied, caused the difference in velocity between theory and application. Moreover, in simulation

the robots are allowed to pass each other, where actually, in real robots, a mechanism for collision

avoidance has been deployed, resulting in delays in travel time.

The main difference between theory and simulation is that in theory the robots start from the

same starting point, whereas in simulation and in experiments the robots start from adjacent cells, so

their search discs are not concentric.

7.1.3 Experiments results analysis

The experimental results are depicted in Figures 7.6,7.7, and 7.8. It is evident that the more robots

deployed, the less time is needed to find the target. Moreover, it is evident that the more heterogeneous

the group is, the more the time to reach the target is reduced. As expected, it is observed that the

less congested the environment is with obstacles, the more time is needed to find the target. The last

observation is explained by the covering character of the algorithm. Since it covers an area prior to
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Figure 7.6: Time to find target 1 with std. Error.

finding a target, and since the area in a cluttered environment is smaller than in a non-cluttered one,

it will take less time to cover and find a target in a cluttered environment.

Several results do not follow the aforementioned trend. However, none of the paths in the experi-

ments deviates from the maximal expected path (See section 3.6.8). All deviations were investigated,

and are explained as follows: From Figure 7.9 it is clear that the group of 3 robots with beta-max

(velocity distribution) perform less well than other groups of 3 (beta-1 and beta-linear) and groups of

2 robots (beta-1 and beta-linear). The reason for the deviation stems from the specific case where the

velocity distribution is beta-max; thus, the initial search disc is very large and the target is positioned

epsilon farther outside the initial search disc of robot 3. Therefore, robot 3 covered the entire disc

and did not find the target. Afterwards, it moved on to search for the target in a larger disc where it

could reach the target. Thus, this configuration, in which a group of 3 robots with beta-max velocity

distribution searches for a target in position 3 and the initial radius is 5D, is a worst case in terms of

performance.

The main performance measure in the experiments is the time to find the target, and is measured

in [sec]. However, as noted in 3.6.7, when comparing experiments with simulation time, two problems

arise. The first is that the simulation performance measure is normalized time, since we measure path

length in [D-steps] and divide it by a virtual velocity [D/sec]. The second, as noted in the previous

section, is that, due to hardware limitations, the actual velocity was not as it should be in theory, and

thus neither were the velocity distributions in the experiments. For these reasons, we chose to use

path length as the performance measure to compare simulation results with experimental results.

Simulation of the experiment environment yielded a Theoretical path lTheoretical length. As pre-

sented in section 3.6.8, due to hardware limitations, the Actual path lActual was longer. In section

3.6.8, the maximal deviation from the path was calculated. The Theoretical simulated path was then

factored by the maximal deviation factor to yield the Maximal expected path lMax. All path lengths
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Figure 7.7: Time to find target 2 with std. Error.

Figure 7.8: Time to find target 3 with std. Error.
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in experiments hold the inequality lActual < lMax. In Figure 7.9 both the path length and the maximal

expected path for target 3 are presented.

Figure 7.9: Measured and maximal expected path length for target 3.

7.1.4 Statistical analysis

The time to find the target is the variable dependant on the environment’s geometry (ENV), the

target position (TARGET), and the robot group configuration (GROUP), which is composed of the

number of robots and the velocity distribution. The main assumption is that each of the factors is

significant. A three way ANOVA of time to find the target was conducted where the three factors

were the environment (ENV), the target positions (TARGET), and the group lineup (GROUP) was

performed with IBM R© SPSS R©.

The output, shown in Table 7.2, indicates that all the examined effects were significant, including

the main effects, all second order interactions, and the third order interaction (with p < 0.00001 ).

The 3rd order interaction was found to be statistically significant. For example, the results for

target 3 are presented in Table 7.3 and in Figure 7.10.



7. Experiments 84

Table 7.2: Tests of Between-Subject Effects for HMRSTM experiments

Source Type III Sum of Squares df Mean Square F Sig.

env 191493.836 2 95746.918 622.418 .000

target 136225.631 2 68112.816 442.778 .000

group 943184.333 8 117898.042 766.415 .000

env * target 119220.177 4 29805.044 193.752 .000

env * group 82684.930 16 5167.808 33.594 .000

target * group 391511.987 16 24469.499 159.068 .000

env * target * group 83701.686 32 2615.678 17.004 .000

Error 12460.271 81 153.831

Corrected Total 1960482.851 161

Table 7.3: Tests of Between-Subject Effects for Target 3, HMRSTM experiments

Source Type III Sum of Squares df Mean Square F Sig.

env 106928.437 2 53464.219 212.159 .000

group 427145.493 8 53393.187 211.877 .000

env * group 22978.553 16 1436.160 5.699 .000

Error 6804.027 27 252.001

Corrected Total 563856.510 53

Figure 7.10: HMRSTM experiments’ statistical analysis
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7.2 HMRBUG experiments

In HMRBUG, the effect of the uncertainty of the ultrasonic range sensors, the positioning system, and

the implementation of the algorithm in hardware on the performance of the algorithm was evaluated.

Three environments were evaluated, and within each environment two target positions were tested

(Figures 3.4 and 3.5). For each configuration, HMRBUG deployed one and two pairs of robots. Two

different velocity distributions were evaluated: homogeneous and linear. Table 7.4 summarizes the

parameters tested in HMRBUG experiments. For each configuration, two repetitions were conducted,

resulting in a total of 36 experiment runs. The experiments’ raw results are presented in Appendix

A.

Table 7.4: HMRBUG experiment configurations

No. of Robot Pairs No. of Environments Start-Target Positions Beta tested Configurations

1 3 (free,cave,libr) 2 1 (H) 6

2 3 (free,cave,libr) 2 2 (H,L) 12

Total

Configuration 18

7.2.1 Experiment example

Experiment initialization in HMRBUG is the same as in HMRSTM (7.1.1). Consider the case in

which a group of 2 robot pairs (4 robots) with linear velocity distribution searches for a path from

start to target position 2 in the ”library” environment. The robots’ initial position and ellipses are

depicted in figure 7.11. The colors of the robots are green for robots 1 and 2, which belong to the first

Figure 7.11: Initial position in simulation (left) and experiment (right)

pair, and red for robots 3 and 4 of the second pair. It is evident that a path to the target lies within

the second ellipse, but outside the first ellipse. In simulation, all four robots started from the same

point, but in the experiment, robot 3 was the first, and after it came robots 4, 1, and 2, in that order.

Pair 1 and 2 moved directly towards the target in a straight line. Pair 2 reached and started

circumnavigating the obstacle first. Afterward, pair number 1 reached the obstacle, started circum-
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navigating it, but before completing the circumnavigation, met its bounding ellipse and continued

circumnavigating it (Fig. 7.12). Meanwhile, robot pair 2 finished encircling the obstacle’s boundary,

and moved to the closest point to the target. Finally, robot pair number 2 again moved directly

Figure 7.12: Pair number 1 circumnavigates its bounding ellipse, and pair number 2 circumnavigates

the obstacle

towards the target and reached it (Fig. 7.13).

Figure 7.13: Robot pair number 2 reach the target

The total path length in simulation is 3400[mm], and the total path length in the experiment was

5532[mm]. This deviation is within the bounds calculated in section 3.6.8.

The main difference between the simulation and the experiment is due to the actual path traveled

while circumnavigating an obstacle. While in simulation the path is touching the obstacle, in the

experiment it is farther away. The main reason for this difference lies in the fact that the ultrasonic

sensor error imposed a conservative boundary circumnavigation method. Moreover, in the experiment,

the actual velocity difference between robot pairs was not as great as it is in theory. Hardware

limitations, mainly the robots’ motors and the angle control applied, caused the difference in velocity

between theory and application. Moreover, in simulation the robots are allowed to pass one another,
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where actually, in real robots, a mechanism for collision avoidance has been deployed, resulting in

delays in travel time.

The main difference between theory and simulation is that in theory the robots start from the

same starting point, where in simulation and in experiments the robots start from adjacent points,

yielding a long ”start line” in the case of four robots.

7.2.2 Experiments results analysis

The experimental results are depicted in Figures 7.14,7.15, and 7.16. It is evident that the more robots

deployed, the less time is needed to reach the target. Moreover, it is evident that the more hetero-

geneous the group is, the less time it takes it to reach the target. None of the paths in experiments

deviate from the maximal expected path (See section 3.6.8).

Most of the path lengths in the experiment are longer than those in simulation due to the afore-

mentioned reasons. However, in several cases they are shorter. This situation occurs when the robots

are circumnavigating an obstacle and accidentally reach the target. In this way, the circumnavigation

of the obstacle stops and the algorithm terminates, resulting in a shorter path. In simulations, reach-

ing the target while circumnavigating an obstacle is possible only when the target is adjacent to the

obstacle’s boundary.

Figure 7.14: Time to reach all the targets in all environments

The main performance measure in the experiments is time to find the target, and is measured in

[sec]. However, as noted in 3.6.7, when comparing experiment time with simulation time, two problems

arise. The first is that the simulation performance measure is normalized time, since we measure path

length in [D-steps] and divide it by a virtual velocity [D/sec]. The second, as noted in the previous

section, is that the actual velocity was not as it should be in theory, due to hardware limitations, and

thus neither were the velocity distributions in the experiments. For these reasons, we chose to use

path length as a performance measure when comparing simulation with experiment results.

Simulation of the experiment environment yielded a Theoretical path lTheoretical length. As pre-

sented in section 3.6.8, due to hardware limitations, the Actual path lActual was longer. In section

3.6.8, the maximal deviation from the path was calculated. The Theoretical simulated path was then
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Figure 7.15: Time to reach the targets in ”library”

Figure 7.16: Time to reach the targets in ”cave”

factored by the maximal deviation factor to yield the Maximal expected path lMax. All path lengths in

experiments hold the inequality lActual < lMax. In Figure 7.17 both the path length and the maximal

expected path for target 3 are presented.
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Figure 7.17: Measured and maximal expected path length.

7.2.3 Statistical analysis

The time to find the target is the variable dependant on the environment’s geometry (ENV), the

target position (TARGET), and the robot group configuration (GROUP), which is composed of the

number of robots and the velocity distribution. The main assumption is that each of the factors is

significant. A three way ANOVA of time to reach the target was conducted where the three factors

were the environment (ENV), the target positions (TARGET), and the group lineup (GROUP) was

performed with IBM R© SPSS R©.

The output, shown in Table 7.5, indicates that the main effects for ENV and GROUP and their

interaction are significant (with p < 0.00001). However, any effects that involve TARGET are not

statistically significant (p > 0.05). This phenomenon can be explained by the relatively similar path

length of the two Start-Target configurations, which is a limitation of the small experiment environ-

ment and algorithm implementation. In a larger environment, different paths would probably yield

experiments with significant effect of start-target positions.

Table 7.5: Tests of Between-Subject Effects for HMRBUG experiments

Source Type III Sum of Squares df Mean Square F Sig.

env 12281.386 2 6140.693 47.090 .000

target 118.763 1 118.763 .911 .350

group 6942.591 2 3471.295 26.620 .000

env * target 173.425 2 86.713 .665 .524

env * group 3909.173 4 977.293 7.494 .001

target * group 90.850 2 45.425 .348 .710

env * target * group 102.898 4 25.724 .197 .937

Error 2999.290 23 130.404

Corrected Total 29894.548 40
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The results are presented in Fig. 7.18

Figure 7.18: HMRBUG experiments statistical analysis



Chapter 8.

Conclusions and Future Research

8.1 Conclusions

This thesis describes the research of two motion planning problems of finding a path to a target

by a group of heterogeneous robots. In the first problem, the target position is unknown, and

in the second problem the target position is known. In both problems, the search environment

is a priori unknown and unbounded. The research includes classification of the problems into

quadratic time competitive complexity classes formed from lower and upper bounds of the same

functional relation. For each problem, a quadratic time lower bound was found, and the quadratic

time upper bound was obtained from a newly developed algorithm. The newly developed algorithms,

HMRSTM, and HMRBUG, utilize a group of velocity heterogeneous robots to find a path to the

target. They are proved to be optimal, complete, and robust.

The worst-case performance of HMRSTM and HMRBUG was analyzed. The average-case perfor-

mance of both algorithms was evaluated in extensive simulation runs. It is evident that the average-

case performance of HMRSTM and HMRBUG is much better than the worst-case performance. It is

evident that a heterogeneous group of robots performs better than a homogenous group

of robots. Moreover, it is evident that maximal velocity distribution performs better than linear

velocity distribution.

Simulations were validated through experiments with real robots. The deviations in performance

of the experiments from the simulations were caused by hardware limitations and algorithm implemen-

tation, and were within the expected bounds. Thus, the new developed algorithms, HMRSTM,

and HMRBUG, not only have an optimal worst-case upper bound, but also perform much

better in the average case and are suitable for use in real robots in real environments.

8.2 Future Work

Future research should evaluate the following:

• Heterogeneity of robot size and coverage tool: Heterogeneity in the velocities of the robots

can be considered analogous to their size in the sense of the covering tool’s area, assuming a

covering tool the size of the robot, e.g., a robot with a size 2D with a velocity β will cover the

same area as a robot with size D and velocity 2β both working the same amount of time. Thus,

converting the algorithms from the velocity heterogeneity to the robots’ size heterogeneity is

straightforward. However, a thorough investigation should be conducted to cover all aspects of

this correlation prior to implementation.

• Define a measure of crowdedness The average-case performance was evaluated in three envi-

ronments, which were free from obstacles, lightly congested with obstacles, and highly congested

respectively. Defining a measure of crowdedness for an environment according to geometric pa-

rameters such as obstacles area versus free area, or obstacle shapes, and measuring the average
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performance according to this measure, will enable the anticipation of the performance in other

environments, not tested before, according to that measure.

• Communication heterogeneity Heterogeneity of communication capabilities should be ex-

plored, since minimizing the communication equipment and transmission results in reduced

system price and decreased power consumption, implying longer battery life.

• Improve average-case performance:

∗ Use a common map between the robots In HMRSTM and in HMRBUG each robot

executes the algorithm in a decentralized way, and no communication between the robots

is present. Thus, the robots do not know about areas already traveled by other robots, and

redundant traversing is evident. If the robots could communicate between themselves, and

pass along information regarding the obstacles and the free area in the environment they

have already inspected, they could build a common map of the environment and perform

much better by minimizing the redundant traverse.

∗ Search within the ring added in MRSTM : Since each next disc contains the previ-

ous search disc, redundancy in the covered area is evident. Enabling the assignment of

only the ring added to the last covered disc instead of the whole next disc to the robot

currently finished covering its disc will reduce or eliminate this redundancy. Such improve-

ment is possible only through the use of the common map of the environment created and

communicated between the robots on the moves

∗ Improve inner disc search in HMRSTM algorithm:. A parameter not included in the

theoretical analysis, but which plays an important role in the experiments, is the motion

planning method used by the robots to cover the area of a disc, i.e, in the formal description

of the algorithm each robot is instructed to make a coverage tour in the disc to which it

was assigned. The covering method offered was grid-based DFS or STC [18] since its upper

bound is well defined to be twice the disc’s area. However, grid-based covering methods

usually restrict the movement of the robots to the neighboring cells and thus break the

continuous movement with many turns, especially ninety degrees turns. Such turns do not

influence the total path traveled by the robots, but, unless using an omni-wheel platform,

physical turning takes a significant amount of time. Consequently, the number of turns

is also a performance measure, first by counting them, and second by including the time

each turn takes as a fraction of one physical step’s time. Replace Spiral STC with other

coverage algorithms for bounded environments (e.g., the use of edge-weighting STC[17]) .

∗ Improve inner ellipse search in HMRBUG algorithm: Replace PBUG with other

versions of target finding algorithms (e.g., BUG2 TangentBUG).

∗ Deploy multi robots within each disc in HMRSTM algorithm: Use multi-robot

coverage algorithms for bounded environments within each disc (e.g., MSTC ).

∗ Utilize long range sensor: Sensory heterogeneity in this part plays an important role in

the obstacle’s detection and in the target detection sensors. Touch or short-range sensors

for detecting obstacles are employed, and the target is sensed when the robot is positioned
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on top of the target or upon arrival at the target. The use of long-range sensors such as

laser scanner and vision cameras for such purposes introduces extended capabilities that

may result in better performance in the average case. However, in congested environments

and worst-case scenarios, such improved sensory equipment will yield the upper bounds

of the basic system. Nonetheless, the use of more advanced sensors is important and

should be examined. Utilization of the aforementioned sophisticated sensors involves vast

modification to the algorithm or writing a completely new one.

∗ Utilize different roles for the robots: Use fast robots as scouts to partially explore the

unknown area prior to deploying the other covering robots. This algorithm makes use of

long-range sensors for the scouts and short-range sensors for the coverers. This method

may prove efficient in inter-disc searches of multi-robots.

• Test in simulations:

∗ Practical speedups Examine various versions of practical speedup mechanisms along with

the relevant parameters of optimization.

∗ Unbounded environments Test much larger environments.

• Test in experiments:

∗ Number of robots: In simulation up to twenty robots are employed in one execution. In the

experiments, up to four robots were deployed. Despite the relatively small number of robots,

mechanisms for collision avoidance and sensor synchronization were already needed. The

relatively small experiment area limited the performance of multiple robots. A measure of

when the increase in the number of robots decreases performance according to the size and

other parameters of the environment should be found. Experimenting with more robots,

possibly in larger environments, in light of these difficulties and finding the appropriate

solutions is an important future direction.

∗ Comparing with errors in simulations Introducing into the simulation software errors

approximating the size of the errors received from the sensory equipment on board the

robots.
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Appendix A. Experimental Results

A.1 HMRSTM experimental Results

The following tables present the experimental results. In each of the tables A.1 to A.9 the results

of one of the environments and of one of the targets are presented. The first 5 columns represent

the configuration of each experiment. The first column represent the environment, the second is the

target number, the third is the number of robots and the fourth is their velocity distribution. For each

configuration, two repetitions were conducted (fifth column). The results appear in the sixth column,

which presents the number of robot that reached the target. Next, appears the disc number in which

the target was found, followed by (col. 8) the number of grid steps took to reach the target. Finally,

(cols. 9, 10) appears the total time in seconds that took to reach the target, and average speed of the

robot that reached the target in mm/second.

Table A.1: HMRSTM experiments results - ”cave” Target 1

env target robots beta repetition reached inDisc steps totalSeconds avgSpeed

cave 1 1 1 1 1 3 115 212.6563 111.4051

cave 1 1 1 2 1 3 115 200.5469 117.0051

cave 1 2 1 1 2 4 158 269.9219 123.5061

cave 1 2 1 2 2 4 158 272.6963 123.368

cave 1 2 L 1 2 2 30 43.70313 158.7987

cave 1 2 L 2 2 2 30 33.125 197.8566

cave 1 3 1 1 1 4 59 114.7031 106.8446

cave 1 3 1 2 1 4 59 103.4063 117.4951

cave 1 3 L 1 1 4 59 107.1875 115.8689

cave 1 3 L 2 1 4 59 110 111.9182

cave 1 3 M 1 1 4 59 125.125 98.998

cave 1 3 M 2 1 4 59 111.0313 111.693

cave 1 4 1 1 1 5 135 263.3125 105.3853

cave 1 4 1 2 1 5 135 275.2188 102.8171

cave 1 4 L 1 4 4 96 197.6875 107.7719

cave 1 4 L 2 4 4 96 177.6406 117.0381

cave 1 4 M 1 4 4 96 197.9531 127.7367

cave 1 4 M 2 4 4 96 182.7344 136.1866
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Table A.2: HMRSTM experiments results - ”cave” Target 2

env target robots beta repetition reached inDisc steps totalSeconds avgSpeed

cave 2 1 1 1 1 4 222 386.7129 117.0791

cave 2 1 1 2 1 4 222 388.3281 116.4402

cave 2 2 1 1 2 4 101 175.625 119.4192

cave 2 2 1 2 2 4 101 177.4688 122.1511

cave 2 2 L 1 2 4 133 173.875 171.7728

cave 2 2 L 2 2 4 133 173.9219 172.957

cave 2 3 1 1 2 5 93 165.6094 116.8472

cave 2 3 1 2 2 5 93 178.7383 112.3766

cave 2 3 L 1 3 3 44 66.03125 148.2783

cave 2 3 L 2 3 3 44 64.73438 150.5383

cave 2 3 M 1 3 3 44 57.04688 174.418

cave 2 3 M 2 3 3 44 58.90625 175.7878

cave 2 4 1 1 1 5 74 152.9531 100.9067

cave 2 4 1 2 1 5 74 142.3594 107.8046

cave 2 4 L 1 4 4 51 143.4375 80.29281

cave 2 4 L 2 4 4 51 109.5156 98.53389

cave 2 4 M 1 4 4 51 87.85938 132.9056
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Table A.3: HMRSTM experiments results - ”cave” Target 3

env target robots beta repetition reached inDisc steps totalSeconds avgSpeed

cave 3 1 1 1 1 4 208 339.625 127.7173

cave 3 1 1 2 1 4 208 332.2813 130.7748

cave 3 2 1 1 2 4 87 154.5156 118.2275

cave 3 2 1 2 2 4 87 154.2813 119.1072

cave 3 2 L 1 2 4 119 154 174.4351

cave 3 2 L 2 2 4 119 157.875 170.0903

cave 3 3 1 1 2 5 79 141.0156 118.9797

cave 3 3 1 2 2 5 79 138.9063 120.9809

cave 3 3 L 1 2 5 87 156.6543 122.5948

cave 3 3 L 2 2 5 87 149.2188 129.0253

cave 3 3 M 1 3 6 162 257.2969 159.0342

cave 3 3 M 2 3 6 162 239.8281 163.9007

cave 3 4 1 1 2 6 79 142.1719 119.5454

cave 3 4 1 2 2 6 79 143.125 118.3371

cave 3 4 L 2 4 4 37 54.8125 151.7172

cave 3 4 L 1 4 4 37 70 122.8143

cave 3 4 M 1 4 4 37 55.32813 169.7509

cave 3 4 M 2 4 4 37 59.25 163.308
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Table A.4: HMRSTM experiments results - ”free” Target 1

env target robots beta repetition reached inDisc steps totalSeconds avgSpeed

free 1 1 1 1 1 3 183 358.2969 103.9864

free 1 1 1 2 1 3 183 335.6406 111.0265

free 1 2 1 1 1 3 91 189.7813 97.42796

free 1 2 1 2 1 3 91 190.7188 97.98198

free 1 2 L 1 2 2 46 79.96875 128.3001

free 1 2 L 2 2 2 46 69.48438 145.4428

free 1 3 1 1 3 3 73 169.0156 90.80817

free 1 3 1 2 3 3 73 152.4531 99.70934

free 1 3 L 1 3 3 57 115.5156 105.0248

free 1 3 L 2 3 3 57 92.96875 129.0541

free 1 3 M 1 3 3 57 94.54688 144.2988

free 1 3 M 2 3 3 57 92.78125 141.8713

free 1 4 1 1 4 4 68 144.8125 99.70134

free 1 4 1 2 4 4 68 147.1875 96.9172

free 1 4 L 1 3 3 53 104.5156 110.7107

free 1 4 L 2 3 3 53 100.3594 115.5149

free 1 4 M 1 2 6 82 180.4063 95.70068

free 1 4 M 2 2 6 82 194.2031 89.3343
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Table A.5: HMRSTM experiments results - ”free” Target 2

env target robots beta repetition reached inDisc steps totalSeconds avgSpeed

free 2 1 1 1 1 4 378 659.5625 118.1632

free 2 1 1 2 1 4 378 637.4688 122.3668

free 2 2 1 1 2 4 193 368.75 111.9376

free 2 2 1 2 2 4 193 361.6094 114.195

free 2 2 L 1 2 4 237 337.1094 158.2276

free 2 2 L 2 2 4 237 307.1719 171.1485

free 2 3 1 1 2 5 169 343.8086 107.045

free 2 3 1 2 2 5 169 382.2969 97.60216

free 2 3 L 1 3 3 100 155.75 138.2408

free 2 3 L 2 3 3 100 184.3281 120.139

free 2 3 M 1 3 3 100 138.3125 161.7207

free 2 3 M 2 3 3 100 146.4688 151.9915

free 2 4 1 1 1 5 122 266.0156 94.05463

free 2 4 1 2 1 5 122 270.0625 92.40454

free 2 4 L 1 4 4 99 197.4063 111.4909

free 2 4 L 2 4 4 99 188.4531 119.9237

free 2 4 M 1 4 4 99 189.4531 132.8244

free 2 4 M 2 4 4 99 147.0781 157.2158
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Table A.6: HMRSTM experiments results - ”free” Target 3

env target robots beta repetition reached inDisc steps totalSeconds avgSpeed

free 3 1 1 1 1 4 324 500.375 134.5491

free 3 1 1 2 1 4 324 508.25 131.5691

free 3 2 1 1 2 4 163 270 124.8593

free 3 2 1 2 2 4 163 338.25 99.66593

free 3 2 L 1 2 4 199 260.2969 168.0888

free 3 2 L 2 2 4 199 282.1094 152.9052

free 3 3 1 1 2 5 135 250.0313 114.1937

free 3 3 1 2 2 5 135 238.4375 120.065

free 3 3 L 1 2 5 147 225.7031 138.7841

free 3 3 L 2 2 5 147 240.8906 133.9737

free 3 3 M 1 3 6 254 314.9219 186.5161

free 3 3 M 2 3 6 254 378.375 163.6498

free 3 4 1 1 2 6 135 293.2656 100.4039

free 3 4 1 2 2 6 135 242.2188 118.0957

free 3 4 L 1 4 4 69 133.2344 123.9695

free 3 4 L 2 4 4 69 120.4375 129.2787

free 3 4 M 1 4 4 69 130.8125 142.173

free 3 4 M 2 4 4 69 131.3594 143.9029
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Table A.7: HMRSTM experiments results - ”libr” Target 1

env target robots beta repetition reached inDisc steps totalSeconds avgSpeed

libr 1 1 1 1 1 3 111 202.8887 111.608

libr 1 1 1 2 1 3 111 204.4756 111.0695

libr 1 2 1 1 2 4 170 285.5 123.8529

libr 1 2 1 2 2 4 170 291.4375 123.5908

libr 1 2 L 1 2 2 18 29 139.931

libr 1 2 L 2 2 2 18 25.26563 158.7137

libr 1 3 1 1 1 4 47 96.65625 100.7902

libr 1 3 1 2 1 4 47 90.54688 105.9893

libr 1 3 L 1 3 3 45 70.75 143.8869

libr 1 3 L 2 3 3 45 64.35938 158.9046

libr 1 3 M 1 3 3 45 63.48438 168.0886

libr 1 3 M 2 3 3 45 65.73438 163.5674

libr 1 4 1 1 1 5 139 280.7119 104.4238

libr 1 4 1 2 1 5 139 256.5469 112.8215

libr 1 4 L 1 4 4 48 84.70313 126.2645

libr 1 4 L 2 4 4 48 82.45313 131.2139

libr 1 4 M 1 4 4 48 76.4375 145.1513

libr 1 4 M 2 4 4 48 70.46875 163.1929
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Table A.8: HMRSTM experiments results - ”libr” Target 2

env target robots beta repetition reached inDisc steps totalSeconds avgSpeed

libr 2 1 1 1 1 4 230 420.1875 111.7216

libr 2 1 1 2 1 4 230 405.7344 116.2066

libr 2 2 1 1 2 4 121 211.0469 120.1013

libr 2 2 1 2 2 4 121 217.7031 118.5789

libr 2 2 L 1 2 4 137 185.7656 164.0239

libr 2 2 L 2 2 4 137 181.25 170.8248

libr 2 3 1 1 2 5 101 175.2813 120.4521

libr 2 3 1 2 2 5 101 169.6094 125.8952

libr 2 3 L 1 3 3 76 114.4531 150.8915

libr 2 3 L 2 3 3 76 116.7188 145.9663

libr 2 3 M 1 3 3 76 116.6094 154.756

libr 2 3 M 2 3 3 76 113.7344 156.1709

libr 2 4 1 1 1 5 82 160.9844 106.1656

libr 2 4 1 2 1 5 82 153.7813 110.5661

libr 2 4 L 1 4 4 91 152.4844 128.6689

libr 2 4 L 2 4 4 91 154.5781 129.0804

libr 2 4 M 1 4 4 91 143.8438 150.5175

libr 2 4 M 2 4 4 91 143.625 151.3316
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Table A.9: HMRSTM experiments results - ”libr” Target 3

env target robots beta repetition reached inDisc steps totalSeconds avgSpeed

libr 3 1 1 1 1 4 208 396.2432 111.482

libr 3 1 1 2 1 4 208 405.5586 110.026

libr 3 2 1 1 2 4 107 225.4473 103.6473

libr 3 2 1 2 2 4 107 234.8555 100.4575

libr 3 2 L 1 2 4 115 178.3008 158.5803

libr 3 2 L 2 2 4 115 165.3662 166.1041

libr 3 3 1 1 2 5 79 166.583 104.7886

libr 3 3 1 2 2 5 79 166.8594 104.3094

libr 3 3 L 1 2 5 91 167.4971 126.6888

libr 3 3 L 2 2 5 91 164.5684 127.4729

libr 3 3 M 1 3 6 158 306.7822 134.3298

libr 3 3 M 2 3 6 158 300.1113 135.6097

libr 3 4 1 2 2 6 79 169.9102 101.7714

libr 3 4 1 1 2 6 79 157.1074 110.1794

libr 3 4 L 1 2 6 75 147.3711 116.6375

libr 3 4 L 2 2 6 75 144.5117 118.0043

libr 3 4 M 2 4 4 77 141.9043 141.9971

libr 3 4 M 1 4 4 77 143.4189 144.9808
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A.2 HMRSTM simulation of experimental results

Tables A.10, A.11, and A.12 presents the results of the simulations conducted with the experiments’

conditions. The first 4 columns present the configuration, which includes, the environment (col. 1),

the target number (col. 2), the number of robots and their velocity distributions (cols. 3, and 4

respectively). Then, columns 5, 6, 7 present results, starting with the number of robot that found the

target, the disc number in which the target was found, and the number of steps made until finding

the target by the robot which found it. The last two columns presents the number of steps made by

the slowest robot, and the path length of the robot that found the target, calculated by the number

of steps multiplied by the robots’ width, D.
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Table A.10: HMRSTM simulation of experiment results - ”cave”

env target robots beta reached inDisc steps 1steps steps*D

cave 1 1 1 1 3 115 115 23000

cave 1 2 1 2 4 158 158 31600

cave 1 2 L 2 2 30 10 6000

cave 1 3 1 1 4 59 59 11800

cave 1 3 L 3 3 89 38 17800

cave 1 3 M 3 3 89 23 17800

cave 1 4 1 2 6 134 134 26800

cave 1 4 L 4 4 96 46 19200

cave 1 4 M 4 4 96 20 19200

cave 2 1 1 1 4 222 222 44400

cave 2 2 1 2 4 101 101 20200

cave 2 2 L 2 4 133 44 26600

cave 2 3 1 2 5 93 93 18600

cave 2 3 L 3 3 44 19 8800

cave 2 3 M 3 3 44 11 8800

cave 2 4 1 1 5 74 74 14800

cave 2 4 L 4 4 51 24 10200

cave 2 4 M 4 4 51 11 10200

cave 3 1 1 1 4 208 208 41600

cave 3 2 1 2 4 87 87 17400

cave 3 2 L 2 4 119 40 23800

cave 3 3 1 2 5 79 79 15800

cave 3 3 L 2 5 87 51 17400

cave 3 3 M 3 6 162 41 32400

cave 3 4 1 2 6 79 79 15800

cave 3 4 L 4 4 37 18 7400

cave 3 4 M 4 4 37 8 7400
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Table A.11: HMRSTM simulation of experiment results - ”free”

env target robots beta reached inDisc steps 1steps steps*D

free 1 1 1 1 3 183 183 36600

free 1 2 1 1 3 91 91 18200

free 1 2 L 2 2 46 15 9200

free 1 3 1 3 3 73 73 14600

free 1 3 L 3 3 57 24 11400

free 1 3 M 3 3 57 15 11400

free 1 4 1 4 4 68 68 13600

free 1 4 L 3 3 53 30 10600

free 1 4 M 4 4 128 26 25600

free 2 1 1 1 4 378 378 75600

free 2 2 1 2 4 193 193 38600

free 2 2 L 2 4 237 79 47400

free 2 3 1 2 5 169 169 33800

free 2 3 L 3 3 100 42 20000

free 2 3 M 3 3 100 25 20000

free 2 4 1 1 5 122 122 24400

free 2 4 L 4 4 99 47 19800

free 2 4 M 4 4 99 20 19800

free 3 1 1 1 4 324 324 64800

free 3 2 1 2 4 163 163 32600

free 3 2 L 2 4 199 66 39800

free 3 3 1 2 5 135 135 27000

free 3 3 L 2 5 147 87 29400

free 3 3 M 3 6 254 64 50800

free 3 4 1 2 6 135 135 27000

free 3 4 L 4 4 69 33 13800

free 3 4 M 4 4 69 14 13800
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Table A.12: HMRSTM simulation of experiment results - ”libr”

env target robots beta reached inDisc steps 1steps steps*D

libr 1 1 1 1 3 111 111 22200

libr 1 2 1 2 4 170 170 34000

libr 1 2 L 2 2 18 6 3600

libr 1 3 1 1 4 47 47 9400

libr 1 3 L 3 3 45 19 9000

libr 1 3 M 3 3 45 12 9000

libr 1 4 1 1 5 139 139 27800

libr 1 4 L 4 4 48 23 9600

libr 1 4 M 4 4 48 10 9600

libr 2 1 1 1 4 230 230 46000

libr 2 2 1 2 4 121 121 24200

libr 2 2 L 2 4 137 46 27400

libr 2 3 1 2 5 101 101 20200

libr 2 3 L 3 3 76 32 15200

libr 2 3 M 3 3 76 19 15200

libr 2 4 1 1 5 82 82 16400

libr 2 4 L 4 4 91 43 18200

libr 2 4 M 4 4 91 19 18200

libr 3 1 1 1 4 208 208 41600

libr 3 2 1 2 4 107 107 21400

libr 3 2 L 2 4 115 38 23000

libr 3 3 1 2 5 79 79 15800

libr 3 3 L 2 5 91 54 18200

libr 3 3 M 3 6 158 40 31600

libr 3 4 1 2 6 79 79 15800

libr 3 4 L 4 4 77 37 15400

libr 3 4 M 4 4 77 16 15400
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A.3 HMRSTM simulation-experiment comparison

Tables A.13, A.14, A.15 present the results of the simulations and the experiments. The first four

columns are the environment, the target position, the number of robots, and their velocity distribution.

The last two columns are the average path of the two repetitions of the experiments, and the expected

path calculated from simulations and expected deviations.

Table A.13: HMRSTM simulation-experiment comparison - ”cave”

env target robots beta avg Path expected Path

cave 1 1 1 23578 32522

cave 1 2 1 33489.5 44682.4

cave 1 2 L 6747 8484

cave 1 3 1 12154.5 16685.2

cave 1 3 L 12340 25169.2

cave 1 3 M 12360 25169.2

cave 1 4 1 27969.5 37895.2

cave 1 4 L 21001.5 27148.8

cave 1 4 M 25024 27148.8

cave 2 1 1 45246.5 62781.6

cave 2 2 1 21325.5 28562.8

cave 2 2 L 29974 37612.4

cave 2 3 1 19718.5 26300.4

cave 2 3 L 9768 12443.2

cave 2 3 M 10152.5 12443.2

cave 2 4 1 15390.5 20927.2

cave 2 4 L 11154 14422.8

cave 2 4 M 11563.5 14422.8

cave 3 1 1 43415 58822.4

cave 3 2 1 18322 24603.6

cave 3 2 L 26858 33653.2

cave 3 3 1 16791.5 22341.2

cave 3 3 L 19229 24603.6

cave 3 3 M 40113.5 45813.6

cave 3 4 1 16966.5 22341.2

cave 3 4 L 8456.5 10463.6

cave 3 4 M 9534 10463.6
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Table A.14: HMRSTM simulation-experiment comparison - ”free”

env target robots beta avg Path expected Path

free 1 1 1 37261.5 51752.4

free 1 2 1 18588.5 25734.8

free 1 2 L 10183 13008.8

free 1 3 1 15274.5 20644.4

free 1 3 L 12065 16119.6

free 1 3 M 13403 16119.6

free 1 4 1 14351.5 19230.4

free 1 4 L 11582 14988.4

free 1 4 M 17307 36198.4

free 2 1 1 77970.5 106898.4

free 2 2 1 41285.5 54580.4

free 2 2 L 52956 67023.6

free 2 3 1 37058 47793.2

free 2 3 L 21838 28280

free 2 3 M 22315 28280

free 2 4 1 24987.5 34501.6

free 2 4 L 22304.5 27997.2

free 2 4 M 24143.5 27997.2

free 3 1 1 67097.5 91627.2

free 3 2 1 33712 46096.4

free 3 2 L 43444.5 56277.2

free 3 3 1 28590 38178

free 3 3 L 31798.5 41571.6

free 3 3 M 60329.5 71831.2

free 3 4 1 29025 38178

free 3 4 L 16043.5 19513.2

free 3 4 M 18750.5 19513.2
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Table A.15: HMRSTM simulation-experiment comparison - ”libr”

env target robots beta avg Path expected Path

libr 1 1 1 22677.5 31390.8

libr 1 2 1 35689.5 48076

libr 1 2 L 4034 5090.4

libr 1 3 1 9669.5 13291.6

libr 1 3 L 10203.5 12726

libr 1 3 M 10711.5 12726

libr 1 4 1 29128.5 39309.2

libr 1 4 L 10757 13574.4

libr 1 4 M 11297.5 13574.4

libr 2 1 1 47046.5 65044

libr 2 2 1 25581 34218.8

libr 2 2 L 30716 38743.6

libr 2 3 1 21233 28562.8

libr 2 3 L 17153.5 21492.8

libr 2 3 M 17904 21492.8

libr 2 4 1 17047 23189.6

libr 2 4 L 19786.5 25734.8

libr 2 4 M 21693 25734.8

libr 3 1 1 44398 58822.4

libr 3 2 1 23480 30259.6

libr 3 2 L 27871.5 32522

libr 3 3 1 17430.5 22341.2

libr 3 3 L 21099 25734.8

libr 3 3 M 40954 44682.4

libr 3 4 1 17301 22341.2

libr 3 4 L 17121 21775.6

libr 3 4 M 20471.5 21775.6
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A.4 HMRBUG experimental Results

The following tables present the experiments results. In each of the tables A.16 to A.18 the results

of one of the environments are presented. The first 5 columns represent the configuration of each

experiment. The first column represent the environment, the second is the target number, the third

is the number of robots and the fourth is their velocity distribution. For each configuration, two

repetitions were conducted (fifth column). The results appear in the sixth column, which presents the

number of robot that reached the target. Next, appears the ellipse number in which the path to the

target was found. Finally, (cols. 8, 9) appears the total time in seconds that took to reach the target,

and average speed of the robot that reached the target in mm/second.

Table A.16: HMRBUG experiments results - ”cave”

env target robots beta repetition reached in Ellipse total time [sec] avg. Speed

cave 1 2 1 1 1 2 93.22 126.47

cave 1 2 1 2 2 2 91.33 108.98

cave 1 2 1 3 2 2 80.59 143.17

cave 1 4 1 1 3 4 32.81 158.42

cave 1 4 1 2 3 2 35.64 157.74

cave 1 4 L 1 3 2 28.98 174.37

cave 1 4 L 2 3 2 30.36 200.70

cave 2 2 1 1 1 2 91.09 141.50

cave 2 2 1 2 1 2 83.27 129.20

cave 2 2 1 3 1 2 72.73 148.80

cave 2 4 1 1 3 4 45.92 131.18

cave 2 4 1 2 3 4 33.09 152.11

cave 2 4 L 1 3 2 33.55 177.60

cave 2 4 L 2 3 2 33.66 158.10
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Table A.17: HMRBUG experiments results - ”free”

env target robots beta repetition reached in Ellipse total time [sec] avg. Speed

free 1 2 1 1 1 1 17.31 147.18

free 1 2 1 2 1 1 16.77 151.98

free 1 4 1 1 3 2 17.42 156.24

free 1 4 1 2 4 2 18.88 147.39

free 1 4 L 1 3 2 14.73 186.10

free 1 4 L 2 3 2 10.59 261.76

free 2 2 1 1 1 1 11.95 206.22

free 2 2 1 2 1 1 12.95 189.45

free 2 4 1 1 3 2 14.73 165.60

free 2 4 1 2 3 2 18.84 131.87

free 2 4 L 1 3 2 13.22 188.82

free 2 4 L 2 3 2 8.11 304.96

Table A.18: HMRBUG experiments results - ”library”

env target robots beta repetition reached in Ellipse total time [sec] avg. Speed

libr 1 2 1 1 2 1 116.84 122.25

libr 1 2 1 2 1 1 51.84 153.67

libr 1 2 1 3 2 2 66.55 121.81

libr 1 4 1 1 4 2 46.80 106.78

libr 1 4 1 2 4 2 54.50 143.06

libr 1 4 1 3 4 2 47.94 124.98

libr 1 4 L 1 3 2 54.42 131.12

libr 1 4 L 2 4 2 51.27 120.72

libr 1 4 L 3 3 2 37.22 153.36

libr 2 2 1 1 1 1 75.06 135.98

libr 2 2 1 2 1 1 63.56 144.30

libr 2 4 1 1 3 2 50.30 124.04

libr 2 4 1 2 3 2 45.14 104.23

libr 2 4 L 1 3 2 34.86 164.95

libr 2 4 L 2 3 2 29.88 177.91
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A.5 HMRBUG simulation-experiment results and comparison

Table A.19 presents the results of the simulations and the experiments. The first four columns are

the environment, the number of robots, the start-target position, the velocity distribution. The next

two columns are simulation path length and the average path length of the two repetitions of the

experiments. The following two columns present the relative error, and the absolute value of the

relative error. Finally, the last column presents the expected path bound calculated from simulations

and expected deviations.

Table A.19: HMRBUG simulation-experiment comparison

Env robots S-T beta Simulation Experiment Relative Absolute Expected

point Path Length Path Length Error Rel. Err. path bound

cave 2 4 1 11200 11093.667 0.009 0.009 20542

cave 2 1 1 10200 11480.667 -0.126 0.126 18972

cave 4 4 1 7800 5410 0.306 0.306 15204

cave 4 1 1 6600 5529 0.162 0.162 13320

cave 4 4 L 5600 5573.5 0.005 0.005 11750

cave 4 1 L 4600 5639.5 -0.226 0.226 10180

free 2 4 1 3200 2548 0.204 0.204 7982

free 4 4 1 3200 2752 0.14 0.14 7982

free 4 4 L 3200 2757.5 0.138 0.138 7982

free 2 1 1 2600 2459.5 0.054 0.054 7040

free 4 1 1 2600 2462.5 0.053 0.053 7040

free 4 1 L 2600 2484.5 0.044 0.044 7040

library 2 4 1 9600 10119 -0.054 0.054 18030

library 2 1 1 8600 9689.5 -0.127 0.127 16460

library 4 4 1 7200 6261.667 0.13 0.13 14262

library 4 4 L 6800 6344.333 0.067 0.067 13634

library 4 1 1 3400 5472 -0.609 0.609 8296

library 4 1 L 3400 5532.5 -0.627 0.627 8296
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Appendix B. DVD content

B.1 DVD 1

B.1.1 Software

1. Arduino c and assembly code

2. HMRBUG C# simulation application

3. HMRBUG C# serial simulation application

4. HMRBUG C# simulation of experiments application

5. HMRBUG C# experiment application

6. HMRSTM C# experiment application

7. HMRSTM C# environment files

8. HMRSTM C# simulation of experiments application

9. HMRSTM C# simulation application

10. VRPN c++ client application

1. HMRBUG experiments results

2. HMRBUG simulation results

3. HMRSTM experiments results

4. HMRSTM simulation of experiment results

5. SPSS statistical analysis

B.1.2 Videos

• HMRBUG experiments videos

• HMRSTM library experiments videos

B.2 DVD 2

• HMRSTM cave experiments videos

B.3 DVD 3

• HMRSTM free experiments videos
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 תקציר

בה	 קבוצת רובוטי� ניידי� on-line) (  עבודת מחקר זו מתמקדת בשתי בעיות תכנו	 תנועה מקוונות

בעלת מהירות הטרוגנית צריכי� להגיע למטרה הנמצאת בסביבה שאיננה ידועה מראש ואיננה 

חסומה. בבעיה הראשונה, מיקו� המטרה איננו ידוע, והרובוטי� צריכי� למצוא אותה, ובבעיה 

שנייה מיקו� המטרה ידוע ועל הרובוטי� למצוא דר� אל המטרה. התיזה מתמקדת באופטימיזציה ה

  של עלות המשימה במוב	 של זמ	 התנועה ומציגה שני אלגוריתמי� מקווני� לתכנו	 תנועה:

 Heterogeneous Multi-Robot Search Time Multiplication, HMRSTM ו -  

Heterogeneous Multi-Robot BUG, HMRBUG.  

תחרותיות כאשר מודדי� את הביצועי� של אלגורית� מקוו	 משתמשי� בדר� כלל במושג  

)competitiveness( ,אשר הינו 	היחס המיטבי בי 	. בהקשר של בעיות  פתרו	לא מקוו 	ופתרו 	מקוו

 מוגדרת כיחס בי	 אור� המסלול שבוצע בפועל על ידי הרובוט שהגיע אל תחרותיותתכנו	 תנועה, 

, תחרותיות זמ	 מוכללתהמטרה לבי	 אור� המסלול הקצר ביותר אל המטרה. אנו משתמשי� ב

כלומר, הפתרו	 הוא הזמ	 להגעה אל המטרה, והיחס אינו חייב להיות קבוע, אלא כל יחס פונקציונלי. 

סיווג בעיות תכנו	 תנועה מבחינת ביצועי� מתקבל על ידי מציאת החסמי� העליו	 והתחתו	 של 

ותיות של כל האלגוריתמי� הפותרי� את הבעיה. א� שני החסמי� שייכי� לאותה מחלקה התחר

של הבעיה. במסגרת התיזה נמצאו שני  מחלקת הסיבוכיות התחרותיתפונקציונלית, מחלקה זו היא 

גו למחלקות תחרותיות. אנו החסמי� עבור שתי בעיות תכנו	 התנועה הנזכרות לעיל, והבעיות סוו

מראי� שבאופ	 כללי, לכל אלגורית� מקוו	 המנסה לפתור בעיות אלו יהיו ביצועי� בעלי תחרותיות 

  ריבועית. כ� מוגדר הגבול התחתו	 של הבעיות.

�ו HMRSTMלשני האלגוריתמי� HMRBUG  ה� 	ריבועי, מה שמוכיח שלבעיות אות 	יש גבול עליו

ריבועי. לפיכ�, אנו מראי� שתכנו	 תנועה בסביבה שאיננה ידועה ואיננה חסומה פותרי� יש גבול עליו	 

�שייכת למחלקת סיבוכיות זמ	 ריבועית. ל HMRSTM ול�HMRBUG  יש ביצועי� תחרותיי�

  ריבועיי� ולכ	 ה� בעלי תחרותיות מיטבית.

י� בהרבה ביצועי האלגוריתמי� במקרה הממוצע נמדדו בסימולציות. הביצועי� הממוצעי� טוב

מהחס� העליו	 של האלגוריתמי�. אנו מראי� שהביצועי� של קבוצה הטרוגנית טובי� מהביצועי� 

של קבוצה הומוגנית. יתר על כ	, נראה שככל שהקבוצה יותר הטרוגנית ניכר שיפור בביצועי�. 

� הסימולציות תוקפו על ידי ניסויי� שבוצעו בעזרת קבוצת רובוטי� אמיתית. תוצאות הניסויי

�ו HMRSTMעומדות בכל הגבולות המצופי�. לפיכ�, האלגוריתמי� HMRBUG  לא רק בעלי חסמי�

עליוני� המבטאי� את האופטימליות שלה�, אלא ג� בעלי ביצועי� טובי� מאד ביישו� בעול� 

 האמיתי במקרה הכללי.
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,               וכיות תחרותית, סיבכנו	 תנועה, אלגוריתמי� מקווני�ריבוי רובוטי�, הטרוגניות, ת

  ., מערכות מבוזרות, ניווט, כיסוי שטחמחלקת סיבוכיות תחרותית
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