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Abstract

This work deals with classification of agricultural produce. In agriculture, quality sorting of
produce is based on a multitude of features. To define the quality of the product, a feature
vector that includes all features must be derived. After extracting the feature vector of the
produce, a classifier must be designed to classify the fruit into its quality grade.

In many cases, some of the produce's features are irrelevant for the classification task. These
features not only cause slow classification, they also reduce performance. Furthermore, some
features might appear or disappear overnight. Therefore, it is important to define the actual
features employed in the classification process based on the immediate situation. In addition,
the characteristics of the product change slowly with time as the fruit or vegetable ages and
the season advances. If a classifier can track this change on-line, improved sorting
performance can be achieved.

Extensive research has been conducted in feature selection to improve classifier performance.
Due to the variability of the agricultural produce it is important to conduct feature selection
on-line to enable the classifier to adapt to changes.

This work aims to provide an efficient method for solving the diversity problems in sorting
agricultural produce by developing an on-line hierarchical classifier with the capability of

adapting to different populations.

Methodology

Population detection is conducted by analyzing the product variability. The main idea is to
check whether the current stream of produce is different from the previous one. To detect
population change, an on-line unsupervised clustering algorithm was developed. When the
algorithm detects a new population, it compares the history population overlap level with the
current population. Accordingly, it decides whether to use a previous population classifier or

to select a new one.

After a new population is detected, a classifier is selected for it according to the overlap level.
The classifier is selected from n fuzzy K-Nearest Neighbors classifiers, each trained with a
different number of features. A fuzzy logic rule-based decision system was developed to fuse
the classifier results and to select the best one according to weighted feedback.

When overlapping is high, the corresponding history population classifier was retrieved for the

current population. When overlapping is low, retraining is either human or automatic. The
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human retraining procedure was defined when there is no overlap, i.e., a predefined training
set for the current population is used for off-line retraining of the system. The automatic
retraining procedure is applied on-line for those cases in which classifiers are retrained with
the data points in the overlapping region of the history populations These data points are
already labeled with their population classifier.

The classifier was tested with a specially designed synthetic database. To test the classifier in
real world conditions and to create a well-defined database for the classification problem, a
specially designated crop of olives was harvested and analyzed.

A cost analysis was developed to evaluate classifier performance in addition to classification
accuracy. A cost function based on the computational cost of the features used by each
classifier and its error significance was also developed. Three parameters were defined to test

the performance of the classification system.

Analysis and Results

Synthetic data
The synthetic dataset was composed of six different populations. Each population contained

1000 data points with seven features. Each feature was created with a random multivariate
normal distribution. Results indicate that the overall classification accuracy of the on-line
classifier is better by 12% as compared to the kNN classifier that used all the features.

Time series analysis indicated system flexibility and the capability to adjust to the new
populations entering the system. Sensitivity analyses indicated that the population entrance
sequence has major influence on the system. Furthermore, when a new population has several
overlapping populations, the problem becomes a question of which population training data to
use. This pointed out the need to predefine the population database so that it includes
populations that cover most of the feature space of the produce. In this way each population
will be assigned the appropriate training set or classifier.

Agricultural data
The olives database contained 12 varieties of 10,550 olives harvested from Ramat-Negev

fields in the south of Israel. A full on-line run was applied on the data resulting in an accuracy
of 81%. Nevertheless, results indicate that in 13 cases (out of 21) human retrain was required.
This strengthens the need for a population database and the improved similarity measures.
The population database is defined a-priori using the knowledge of the overlap and similarity

levels between the populations.



When using the population database the classifier yields higher classification accuracy
performance compared to non-adaptive classifiers. The mean square precision error (MSPE)
indicates this difference (0.0346 for the adaptive classifier vs. 0.2943 for the non-adaptive
classifier). When compared with optimal classifiers (i.e., using all features and trained by all
populations) the system yielded lower but still quite good results (85% vs. 89%; 0.0346 vs.
0.0311).

The sensitivity analysis implies that changing batch size parameters has a major influence on
the system performance as well as the cost. Several parameter combinations resulted in better
performance than the best that was defined off-line (0.0188 vs. 0.0286). In addition, changing
the cost function characteristics — feature cost and penalty matrix cost — resulted in
corresponding changes in the cost behavior.

Summary

The main contributions of the proposed classifier are: efficient detection of a new population;
rapid adjustment to this population in terms of overlap and similarity measures; online feature
and classifier selection via the adjustment procedure; and a cost objective function that,
together with classification accuracy, tests the system performance.

The proposed on-line adaptive classifier framework selects online the most appropriate
classifier and feature subsets for the incoming population. The chief benefit of our system is
its ability to adapt to new populations based on previous ones using similarity measures. This
ability makes it possible to decide on a classification strategy without having to train on a
specific population, an approach that makes the framework more flexible to changes in the
population. The capability of selecting the best feature set results in improved classification

performance and lowered costs.

Keywords: Agriculture sorting systems, similarity measures, change detection, classifier
selection, fuzzy rule based system, image processing, machine vision, feature selection



XI

This thesis is in part based on the following publications:

Journal Papers

1.

Laykin, S., V. Alchanatis, E. Fallik, Y. Edan. 2002. Image processing
algorithms for tomato classification. Transactions of the ASAE 45(3): 851-
858.

Reviewed Conference Papers

1.

Laykin, S., V. Alchanatis, Y. Edan. 2000. Image processing algorithms for
tomatoes classification. Proceedings of the XIV Memorial CIGR World
Conference: 861-866, Tsukuba, Japan.

Laykin, S., V. Alchanatis, Y. Edan. 2003. On-line Hierarchical Classifier
for Agricultural Sorting Systems. Paper Code 3044. ISCA 12th
International Conference on Intelligent and Adaptive Systems and Software
Engineering (IASSE-2003), July 2003, San Francisco, USA.

S. Laykin, Y. Edan, and V. Alchanatis . 2004. On-line feature and classifier
selection for agricultural produce. Paper Code 451-151, Proceedings of the
Eighth IASTED International Conference on Artificial Intelligence and Soft
Computing, September 1 — 3, 2004, Marbella, Spain.

Conference Papers

4.

Laykin, S., Y. Edan, V. Alchanatis, R. Regev, F. Gross, J. Grinshpun, E.
Bar-Lev, E. Fallik, S. Alkalai. 1999. Development of a quality sorting
system using machine vision and impact. ASAE Paper No. 99-3144, ASAE
St. Joseph, M1 49085.

Laykin, S., V. Alchanatis, Y. Edan. 2003. Classifier Selection for
Agricultural Quality Sorting. ASAE Paper No. 03-3050, ASAE, St. Joseph,
MI 49085.






1 Introduction

1.1 Description of the problem
In agriculture, quality sorting of produce is based on a multitude of features (Dull, 1986):
flavor (sweetness, acidity); appearance (color, size, shape, blemishes, glossiness); and texture
(firmness, mouthfeel). To measure these characteristics as efficiently and accurately as
possible, appropriate sensors and algorithms must be developed focusing on a single or several
quality features. To define the quality of the product, a feature vector that includes all features
must be derived. Every produce has its unique feature space. After extracting the feature

vector of the produce, a classifier must be designed to classify the fruit into its quality grade.

Previous research (Edan et al., 1994) indicated that multi-sensor quality classification
improves the sorting performance. In many cases, some of the features are irrelevant for the
classification task. These features not only slow classification, they also reduce performance.
For example, the significance of the shape in tomato sorting is low for uniform-shaped
tomatoes and high for non-uniform. In addition, some fruit features might appear overnight.
For example, fruits that are damaged by hail or cold can suddenly appear and then disappear
from the sorting stream depending on the weather. Therefore, it is important to define the

actual features employed in the classification process based on the immediate situation.

The characteristics of the product change slowly with time as the fruit ages and the season
advances. If a classifier can track this change on-line, improved performance can be achieved
(Duda et al., 2001). This approach is similar to novelty detection, an area of research which
aims to update the classifier's ability to detect whether an input is part of the data it was

trained with or it is in fact unknown (Markou and Singh, 2003).

Extensive research has been conducted into feature selection to improve classifier
performance (Dash and Liu, 1997, Yu et al., 2002, Zhang et al., 2004). Currently, most feature
selection methods are applied off-line, before classification (Collins et al., 2005). However,
due to the variability of the agricultural produce, which occurs on-line, feature selection
should also be conducted on-line to enable the classifier to adapt to changes. In this case, the

problem becomes one of how to recognize that a new population (a batch of fruits harvested
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from the same field at a certain date) has arrived (Guedalia et al., 1999) and to adjust a new
subset of features for the classification stage. For example, in case of different stages of
ripeness, the system should be able to detect the changes and select a different feature space.

When a new population arrives, a different classifier for it may be necessary.

Creating classifiers involves learning and adaptation procedures. These procedures enable the
classifier to adjust to different produce features. The learning procedure uses training patterns
(training sets) to learn or estimate the unknown parameter of the classifier (Duda et al., 2001).

There are two types of learning procedures: supervised and unsupervised. In supervised
learning, there is a specified set of classes and training sets of produce, each labeled with the
appropriate class. The goal is to classify the new objects into one of the classes based upon the
training objects. In unsupervised learning, no a-priori information is given on the produce
labeled classes. Often, the goal in unsupervised learning is to decide which objects should be
grouped together, that is to say, the system forms the classes itself (Hall, 1999). Of course, the
success of classification learning heavily depends on the quality of the data provided for

training— the classifier has only the input to learn from.

In this work we implement an on-line unsupervised clustering algorithm for detecting
population change. It is designed for nonstationary data clustering and considers clusters
which have relatively small mass. This algorithm, based on a previous work (Guedalia et al.,
1999), has been improved in order to match the overall classifier. The improvement includes
three measures for detecting population changes based on cluster size (i.e., amount of data

points in a cluster) and variances of the centroid locations in the feature space.

To prevent loss of previous information, all measures related to the population that pass
through the system are maintained in a history database. When the system detects a new
population, it compares the history population overlap level with the current population.

Accordingly, it decides whether to use a previous population classifier or to select a new one.

We propose a systematic method for classifier selection developed for on-line detection of the
best-fit features. When a new population is detected, a classifier is selected for it according to
the overlap level mentioned above. The classifier is selected from n fuzzy K-Nearest

Neighbors classifiers, each trained with a different number of features.
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Several methods for the task of combining/selecting classifiers in order to improve
classification performance are well known from the literature (Kittler et al. 1998; Windriidge
and Kittler, 2000; Kuncheva, 2004). In this thesis we used a fuzzy logic rule-based decision
system to fuse the classifiers results and to select the best one according to feedback weights.
The reference (training) label for this procedure is set by using a retraining in which a new
batch of data points can represent the current population. This set is the new training set that
must be defined for the current retraining procedure. This is done in one of two ways: by off-
line human retraining or on-line automatic retraining. Human retraining is activated when
there is no significance overlap between the current population and the previous ones.
Automatic retraining is activated when the overlap is significant and the overlapped data

points are used for the retraining procedure.

An important characteristic of the classifier/feature selection procedure is that it considers the
classification error combined with the associated cost. This is in contrast to Bayesian machine
learning, for example, in which the decision model minimizes the overall economic loss
function (Duda et al., 2001). Grading of products includes two kinds of cost measures:
economic losses incurred by misclassification (Miller, 1985) and computational costs. To
estimate these measures, a cost function has been developed and implemented. The cost
function is capable of identifying that some classification mistakes are more costly than others.
In addition, there is a cost associated with the actual classification process — some features are

very complicated to determine resulting in heavy computational cost.

1.2 Research objectives
The main objective of this research is to develop an on-line multi-stage classifier that includes
population change detection as well as feature selection via a classifier selection methodology

to enable the classifier to deal with changing and unknown populations.

1.3 Research significance
In this thesis we developed a classifier that is capable of dealing with biological products by
continuously adapting itself to the current population. The developed sorting classifier
changes itself according to the produce state, by selecting on-line the appropriate classifier and
thereby the optimal subset of features. This is an indirect way of performing feature selection,

a primary interest in this research.
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By enabling feature selection we enable adaptation to time-varying features (e.g., due to
weather, seasons) and to population changes (e.g., different fields, color, defects). The
proposed classification system is a multi-stage, closed-loop system structure. The adaptive
framework of the classification system allows it to calibrate itself according to its input
produce.

System performance (selection accuracy and cost) is increased by incorporating cost analysis
with error classification. This is achieved by minimizing a cost function that considers all the
significant cost parameters including classifier features, computational cost and the classifier

error significance.

1.4 Research contributions and innovations

The contributions and innovations of this research are twofold:

e On-line feature selection in previous research was implemented a-priori in an off-line
mode. In this work we developed an on-line feature selection algorithm that consists of
two levels:

1. In the first level, an on-line clustering algorithm detects new populations (i.e., changes in
the feature space). It is based on a previous algorithm (Guedalia et al. 1999), which is
extended and adjusted to fit the system's definitions. This extension includes adjustment
from a two-dimensional feature space to a multi-feature dimensional space and a new
methodology to define the location of population changes using three measures
specifically developed in this thesis.

2. In the second level, a classifier is assigned to the present new population. According to
the clustering algorithm results the classifier was selected from a sequence of n fuzzy K-
Nearest Neighbor classifiers, each with a different number of features. The decision on
the best-fit classifier is based on four possible cases of overlap that were defined between

the current new population and the previous ones.

¢ A methodology for incorporating cost into the classifier was developed for the classifier
selection stage. While most research is based only upon the classification error, this
research takes into account a combined cost measure considering the algorithms’ cost
(computational and economical) and the risk associated with the classification error. This
is done at the high level of the classification system (Figure 5). This level combines the

following three criteria for the classifier selection task:
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1. Classification error, based on weights assigned to the classifiers according to a fuzzy
logic algorithm that fuses the classifiers results
2. Computational cost of the selected features
3. A cost function that will take into account error significance (i.e., the cost of
classifying a good product as bad and vise versa).
These three criteria define the objective cost function. In addition, each of the cost
function components was tested for sensitivity by changing both the batch size of data

defined for the population change check as well as the population entrance sequence.



2 Scientific background

2.1 Agriculture quality sorting

Quality sorting is based on a variety of features (Dull, 1986): flavor (sweetness, acidity),
appearance (color, size, shape, blemishes, glossiness), and texture (firmness, mouth-feel).
Previous research (Edan et al., 1994) indicated that quality classification base on multitude of
characteristics improves overall classification and can be applied in real sorting.

Firmness, a feature indicating maturity, freshness, degree of bruising and the presence of
internal spaces (i.e., internal voids or damage) has been used for years as a guide to fruit and
vegetable quality (Studman and Boyd, 1994). Although there have been numerous attempts to
automate firmness measurement in fruits and vegetables, there is no consensus on the
recommended sensor (Pitts et al., 1994). Firmness sorting of apples, nectarines and kiwis was
implemented in developing a commercial fruit firmness sorter (Peleg, 1999) comprises a
unique conveying system which allows physical contact of the inspected items by a sensor
finger. Another impact technique was to tap the fruit with a medium or small impact device.
Delwiche and Sarig (1991) developed a firmness sensor of 63g to impact the fruit. Shmulevich
et al. (2003) tested two non-destructive firmness methods on apples: low mass impact and
acoustic response. Results indicated that the acoustic method might improve the sorting using
impact method. Ruiz and Canavate (2005) reviewed non-destructive firmness measurements
and concluded that the non-destructive firmness testing is most suitable for online fruit
packing equipment. A high-speed weighting system for grading and sorting fruit
implementing non-destructive factors was developed for industrial needs (Calpe et al., 2002).
Fruit color is an external visual property that very much affects consumer choice. Moreover, it
has long been recognized as an acceptable maturity index for many fruits and vegetables such
as tomatoes (Choi et al., 1995). Computer vision is the most important sensor for measuring
color and other external features such as color homogeneity, bruises, size, shape, and stem
identification (Aneshansley et al. 1993; Delwiche et al., 1994;). Feng and Qixin (2004),
developed machine vision system for high-speed apples sorting. They extracted color and
contour features and sort the ‘Crystal Fuji’ apples using HIS color space resulting in 90%

sorting accuracy. The machine vision approach has also been used in classifying table olives
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(Diaz et al., 2004). A three CCD camera system was applied to detect disease in citrus leafs
(Pydipati et al., 2005).

A major issue focuses on what sort of features should be sorted. In an analysis of multiple
features in Florida citrus, Miller and Druillard (2001) showed that classifying blemish features
together with physical features yields better results than one just used based on blemishes.
Quality classification of tomatoes was successfully applied by integrating computer vision
with an impact sensor (Edan et al., 1997, Laykin et al., 2002).

The two most important parameters indicating tomato quality, firmness and color relate to
ripening and shelf-life (Polderdik et al., 1993). Monoi and O'Brien (1980) and Polderik et al.
(1993) investigated the relationships between tomato color, firmness, initial firmness, quality
and shelf life. They found that color alone was insufficiently accurate to establish the
relationship between tomato firmness and estimated shelf-life.

Several studies have examined the relationship between tomato maturity and optical features
(Heron and Zacharia, 1974; O'Brien and Sarkar, 1974; Goddard et al., 1975; Moini and
O'Brien, 1978). Moini (Moini and O'Brien, 1980; Moini et al., 1980) used reflectance at 670
and 960 nm wavelengths to detect mold and other surface defects. Near infrared spectroscopy
(NIR) hyperspectral imaging has been used to detect bruises on apples (Lu, 2003). The
spectral region between 1000-1340nm provided the most accurate results. He also studied the
time elapsed after bruising affects results.

Nuclear Magnetic Resonance (NMR) is a nondestructive and noninvasive technique that can
be used to detect the internal quality of fruits. Pathaveerat et al. (2001) developed an NMR
sorting system for avocado maturity sorting.

Digital imaging techniques have also been used for analyzing size, shape, color, and surface
defects (Sarkar and Wolfe, 1985). Maturity was classified into two stages: light red and red
tomatoes were considered ripe while green indicated other ripeness stages. A color image
analysis procedure was developed to classify fresh tomatoes into six maturity grades (Choi et
al., 1995) based on hue information.

Apple orientation on conveyors was performed using shape characteristics (Throop et al.,
2001). Hyperspectral and multispectral image analysis was used to detect defects in selected
apple cultivars (Mehl et al., 2002). Rehkugler and Throop (1989) developed an algorithm for
detecting apple-bruise with computer vision and NIR light reflectance from the apples. A
real-time inspection station was developed for detecting defects on apples (Throop et al.,
1999) while a high-speed machine vision system was developed for potato grading (Noordam

et al., 2000). A new design for rotary trays, which presents the two sides of a vegetable for
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inspection by machine vision systems, was developed for an eggplant grading system (Kondo

etal., 20006).
Table 1: Selected examples of measuring fruits quality
Feature/Sensor Product Reference
Firmness: finger sensor; Apples, kiwi, nectarine Peleg (1999)

tapping devices Peaches,apples Delwitch and Sarig (1991)
Firmness (acoustic&impact) | Apples Shmulevich et al. (2003)
Non-destructive device Dry plums Haff et al. (2005)

Color Camera Apples Feng and Qixin (2004)
Olives Diaz et al. (2004)
Potatoes Noordam et al.(2000)
Citrus leaf Pydipati R.(2005)

Integrated sensors

Tomatoes (Vision+impact)

Florida citrus (Vision+wight)

Laykin et al. (2002)
Miller and Druillard (2001)

NIR Apples Lu (2003)

Rehkugler and Throop (1989)
NMR Avocado Pathaveerat et al. (2001)
Hyperspectral & Apples (defects) Mehl et al. (2002)
multispectral
Firmness - Laser-based Apples Lu and Peng (2005)

multispectral

2.2 Classification methods

The main procedure in the sorting mechanism, after extracting the produce feature vector, is to

classify the fruit to one of several quality levels based on the features extracted using different

sensors. The following are the most common classification methods:

2.2.1 Classical classification methods

The following is a brief description of a well-known statistical approach to the problem of

classifier design (Duda et al., 2001).
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Given X as the vector of features that was observed on one produce (@; ), we need to decide

how to classify the produce (@) into one of ¢ categories. We use the Bayes' rule to determine
the a-posteriori probability P(w; ‘X) by using the a-priori probability P(®;) and the

conditional probability density function P(X|a) Pk

p Y-P(w.
P, - (XIwFJ)zX) (@;) 1
P(X):ZP(X|a)j)-P(a)j) )
j=1

In many pattern recognition applications, the a-priori knowledge about the probabilistic
structure of the problem is unknown.

One approach to the problem is the parameter estimation technique that uses training data to
estimate unknown probabilities and assume a form with certain probability density functions
(e.g., normal, linear distribution). Two common parameter estimation methods are maximum
likelihood estimation (MLE) and Bayesian estimation (Duda et al., 2001). Both approaches
estimate a parameter vector, #. This vector has fixed parameter values that maximize the
probability density function in the maximum likelihood case and is a random variable in the
Bayesian case.

The multivariate normal distribution is very commonly used as the density function. Miller
and Delwiche (1989) modeled features that were obtained from spectral analysis of peaches as
normally distributed and implemented a Bayes' rule for the classification. Crow and Shimizu
(1988) proposed two lognormal distributions. A Bayesian classifier was applied for sorting red
apples (Shahin et al., 1999). When there is no assumption that the forms of the probability
densities are known, the classifier can be designed by non-parametric approaches. The most
popular and simplest approach is the k-nearest neighbor (KNN) method (Ripley, 1996). This
method sorts the entire training set and calculates the distance from the new data, X. The
labels of the k nearest neighbors are used to determine a label for the new data. Fukunaga and
Flick (1985) compared the use of 1-NN and the 2-NN classification rules. Tomak (1979) used
the k-NN method to eliminate data, of storage requirement, far from the class boundaries.
Fuzzy k-NN classifiers were used for classifying airborne images (Yu et al., 2002). A
comparison between back-propagation neural network and statistical classifiers (kNN,
decision tree (DT) and Bayesian) was applied to apple sorting based on textural features

(Kavdir and Guyer,2004).
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Another approach to finding classification boundaries with no a-priori knowledge of the
density function is based on linear discriminant functions. A two-class linear discriminant
function using regression analysis was implemented to classify the spectrophotometric
analysis of apples (Upchurch et al. 1990). Miller (1985) used the piecewise linear classifier,
the term for more than two-classes, for lemon sorting. Deck et al. (1995) compared the Fisher

discriminant function method with a neural network approach for potatoes inspection.

2.2.2 Decision tree classifiers
While the statistical classifiers reach a conclusion in one step, the decision tree classifier takes

the global decision process and divides it into a number of local decisions at each level of the
tree. At each branch in the tree structure, a test is applied to the input data. The answer for
each level determines which branch will proceed (Duda et al., 2001). Final classification of
the data is made at the branch end. Kanal (1979) described models of these trees and
procedures for planning them. Decision trees such as C4.5 and ID3 perform feature selection
as part of their construction process (Scott et al., 1998). A node in these trees represents the
feature and the branches represent the feature's value. The classification is shown in the
leaves. Decision tree, C4.5, was mentioned as the most popular tree construction algorithm by
Duda et al. (2001). Jack and Fu (1980) report on automated classification of blood cells using
quadratic classifiers at junctions in a decision tree structure. A 17% misclassification rate was
achieved. A large tree classifier using heuristic search and global training (Wang and Suen,
1987) was developed for recognition of Chinese letters. In a simulation of this algorithm, a
very high recognition rate of 99.9% was achieved. A decision tree based approach for
discriminating apple stem and calyx was applied using CART and C4.5 methods (Unay et al.,
20006).

A binary decision-tree-structured rule base was established for defect inspection in apple
sorting (Wen and Tao, 1999). A decision tree algorithm was used to distinguish between
manure and chemical fertilizer treatments in corn fields (Yang et al., 2001). Three different
sensors were combined using a decision tree to evaluate the quality of apples (Xiaobo et al.,

2005). Two apple varieties were classified using a decision tree classifier (Kavdir and

Guyer,2004).
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2.2.3 Clustering
Clustering is a well known method for unsupervised learning. Clustering algorithms divide a

set of n observations into g groups so that members of the same group are more alike than
members of another group (Ripley, 1996).
Figure 1 presents a typical pattern clustering activity (Jain et al., 1999) . The feedback path
indicates that the grouping process output could affect the feature extraction and the similarity
computation. Hoppner et al. (1999) presented the main conventional clustering techniques:

e Incomplete or heuristic techniques: geometrical methods, representation or projection
techniques. Multi-dimensional data are analyzed by dimension reduction to obtain a
graphical representation in two or three dimensions (using methods such as principal
component analysis).

e Deterministic crisp techniques: Each data point can be assigned to exactly one cluster. The
cluster partition defines an ordinary partition of the data set.

e Overlapping crisp techniques: Each data point can be assigned to at least one cluster or to
several clusters simultaneously.

e Probabilistic techniques: A probability distribution is determined over the clusters such
that each data point is assigned to a cluster based on its specific probability.

e Possibilistic techniques: These techniques are the fuzzy clustering algorithms. The data
point is clustered according to the degrees of membership or possibility to the clusters.

e Hierarchical techniques: Divides the data into classes in several steps. The data is first
separated into a few broad classes and further divided into smaller classes and so on until
terminal classes are generated which can not be subdivided (Everit, 1974).

e Objective functions based techniques: An objective or evaluation function assigns each
possible cluster partition with a quality value that need to be optimize. The best solution is
the cluster partition that obtains the best evaluation.

o Cluster estimation techniques: These techniques use heuristic equations to build partitions

and estimate cluster parameters.

Patterns | _ Feature ; Pattern Interpattern Claistons
=| Selection/ Fristarib S i
- - Similarity Grouping
Extraction REPF&SEHTGIIDI]S
feedback loop

Figure 1: Stages in clustering (Jain et al., 1999)
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K-means clustering is a crispy partitioning method in which each data point belongs to one
cluster only (Jang et al., 1996). The procedure starts with initialization by guessing the k-
means (k-the number of clusters); continues with an iterative procedure that clusters the data
according to its distance from the means; and stops when there is no change in the means
location. Fuzzy C-Mean Clustering (FCM) is a clustering algorithm in which each data point
belongs to a cluster to a degree specified by a membership grade (Bezdek, 1981). FCM

partitions a collection of n vectors X; , I=1,...,n into C fuzzy groups, and finds a cluster center in

each group such that the cost function of a dissimilarity measure is minimized.

An algorithm is defined as on-line if no assumption is made as to the size of the dataset
(Guedalia et al., 1995). There are three common methods for on-line clustering: a constant
number of centroids; splitting centroids according to their relative importance; and inserting
centroids based on external parameter. The last case introduces us to the problem of how to
recognize that the data has arrived from a new cluster and how to allocate a centroid to
represent it. The adaptive resonance theory (ART) is one way to deal with this problem
(Carpenter and Grossberg, 1990; Georgiopoulos et al., 1999). Mattone (2002) presented an
on-line competitive clustering algorithm and applied it to motion-based image segmentation.
Guedalia et al. (1999) developed an on-line agglomerative clustering method for nonstationary
data. Since this algorithm fits the pattern of agricultural produce that tend to be non-stationary,
it was used in this research. Apples features were classified using k-means clustering method
as learning procedure in an overall classification task (Leemans and Destain, 2004). On this
basis fruits were classified by quadratic discriminant an analysis into 73% classification

accuracy.

2.2.4 Neural networks
Neural networks are an important tool for classification and research shows that they offer a

good alternative for known classifiers (Zhang, 2000).

Lippmann (1987) describes them as connected topologies of simple processing elements.
Each element computes a single-value output function based on its input vector. The network
types are defined by their topology, node characteristics and learning rules.

The most common structure is the multilayer perceptron that has three layers: n inputs nodes;
¢ output nodes where C is the number of desired classes; and a hidden layer of nodes of
undetermined number. Each node input is one output of the previous layer. The neural nets are

nonlinear models, which make them flexible in modeling real world problems.
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To improve the performance of neural networks classifiers an on-line retrainable neural
network was developed for image processing problems (Doulamis et al., 2000). A dynamic
neural network was applied to classifying multi-sensor quality information (Guedalia and
Edan, 1995). A neural network classifier was compared with the Fisher discriminant function
for inspecting potatoes (Deck et al., 1995). Two neural networks were employed for grading
carrots (Howarth and Searcy, 1991). Miller and Drouillard (2001) used three neural network
configurations for classifying Florida citrus. A probabilistic neural network was applied to
segmentation features in corn kernel images (Steenhoek et al,. 2001). An ANN classifier was
applied to apple classification based on surface bruising (Shahin et al., 2002). Unay and
Gosselin (2005) used an ANN to segment the defected region on apples by pixel-wise
processing. Using a SVM classifier, they reported a 90% recognition rate. Simoes et al. (2002)
ANN used a color classificatory for orange sorting. He concluded that for better performance
the network must be trained for each new color presented to the system.

Pydipati et al. (2005) compared neural network and statistical classifiers to determine citrus

disease resulting in 95% accuracy.

2.2.5 Fuzzy classifiers
Fuzzy pattern recognition is about any pattern classification method that involves fuzzy sets

(Kuncheva, 2000). The fuzzy classifier can be described by a set of fuzzy if-then rules. Fuzzy
logic applied as a decision support technique in grading apples (Kavdir and Guyer, 2003)
achieved a grading accuracy of 89%.

A fuzzy model was developed to predict peanut maturity (Shahin et al., 2001) based on NMR
signals. The hull-scrape chart that is commonly used for peanuts is boring and time-
consuming. Compared to the hull-scrape chart, the fuzzy model only yielded a 73% accuracy
for three maturity classes but is much faster.

Chao et al. (1999) applied a neuro-fuzzy based image classification system to inspecting

poultry viscera.

2.2.6 Multi-classifier systems
An effective technique for achieving higher classification accuracy combines multiple

classifiers. A number of fusion methods operates on the classifiers instead of their outputs,
trying to improve the classification rate by optimizing classifier structures (Ruta and Gabrys,
2000). Combining classifiers means assigning a class label for X based on L classifier outputs.

Soft label for X can denoted as:
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D(X) = [4, (X)seeees (O 3

Three voting classification algorithms were compared: bagging, boosting and variants (Bauer
and Kohavi, 1999 ). Boosting algorithms are among the most popular methods for building

classifier ensembles (Kuncheva, 2003).

Figure 2 presents a schematic diagram of a multi-classifier system. The classifier outputs are
combined using a suitable decision algorithm to give an overall prediction.
According to Kuncheva (2004) the use of classifier combination methods "aim at a more

accurate classification decision at the expense of increased complexity"

Final Prediction

T

Decision Combination Module

-
Prediction-1 Prediction-2 Prediction-N

Classifier-1 | |Classifier-2 | === | Classifier-N

Figure 2: MCS schematic diagram (Lim and Harrison, 2003)

Kuncheva et al. (2001) introduced a simple rule for adapting the combination method to the
application. A number of decision templates (one per class) are estimated with the same
training set that is used for the classifiers. These templates are then matched to the decision
profile of new, incoming objects using similarity measures.

Kuncheva (2003) compared fuzzy and non-fuzzy combination methods. The experiments
show that the fuzzy combination methods performed better than the non-fuzzy methods. The
fuzzy fusion is detailed in Figure 3.

The Dempster-Shafer (DS) theory was applied to multi-classifier systems to define the
rejection criteria of fruit images and handwritten numbers (Theil et al., 2005). It is shown that

this classifier fusion can boost the combined classifier accuracy to 100%.
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Figure 3: Fuzzy integral for classifier fusion (Kuncheva et al., 2001)

Windridge and Kittler (2000) combined four classifiers, k-NN, neural net, normal probability
distribution function (PDF) and quadratic PDF. This was based on a method for performance-
constraining a feature selection process as it relates to combine classifiers. They concluded
that applying one of various tested feature selection methods could provide an alternative to
other classifier combination approaches. Another approach for sequential classifiers
combination uses combinations of two k-NN classifiers. The first k-NN classifier works after
feature selection procedure is made. If it fails (according to threshold checking) the second is
activated on all features (Last et al., 2002).

In addition to classifier combination there is the matter of classifier selection.

Kuncheva (2002) presents a combination of classifier fusion and selection using statistical
inference to switch between the two. In this work, feature space regions, in which one
classifier yields significantly better results, were classified with selection while the other

regions with fusion.
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Table 2: Selected examples of fruits classification methods

Method Product Reference
Bayes rule Peaches Miller and Delwiche (1989)
Apples Shahin et al. (1999)
Knn Apples Kavdir and Guyer (2004)
linear discriminant Apples Upchurch et al. (1990)
functions Lemons Miller (1985)
Decision tree Apples (stem) Unay et al.(2006)
(CART&C4.5) Apples Wen and Tao (1999)
Binary DT-structured rule
base
k-means clustering Apples Leemans and destain (2004)
SOM_FCM Edible Beans Chitioui et al. (2003)
Fuzzy model Peanut maturity Shahin et al. (2001)
Apples Kavdir and Guyer (2003)
NN classifier Potatoes Deck et al. (1995)
Carrot Howarth and Searcy (1991)
Apples Shahin et al. (2002)
BPNN Apples Unay and Gosselin (2005)

2.3 Adaptive models

Adaptive classification is the ability of a classifier to adjust to changes in its classification
environment. A learning system should have the ability to absorb knowledge continuously
and autonomously in order to deal with problems in nonstationary environments (Lim and
Harrison, 2003). For example, in fruit grading, fruit features may appear overnight (Guedalia
et al., 1999) and in some cases, apples, for instance, the defects (Lu, 2003) can appear in a
matter of hours.

Carpenter and Grossberg (1987) mentioned the stability-plasticity dilemma that is very
relevant to the issue of adaptive classification. The dilemma is how a learning system is able
to protect useful history data (stability) while retaining the ability to learn new data
(plasticity). In the neural network domain, the primary efforts in overcoming this problem

were focused on growing and pruning networks (Lin and Lee, 1996). The issue of detecting
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new data entering the system can be treated with change/novelty detection. Novelty detection
is the identification of new or unknown data or signals that a machine learning system is not
aware of during training (Markou and Singh, 2003).

In their research Markou and Singh differentiate between statistical and neural network
approaches. The statistical approach is driven by modeling data distributions and then
estimating the probability of test data belonging to such distributions. The problem is in
making assumptions about the nature of training data. The main advantage, however, is its
cheap computational cost. Picus and Peleg (1999), present an adaptive classification method
for agriculture produce based on prototype populations. The idea was to set a classifier for
each prototype population and activate it whenever a compatible population went through the
system. Kuncheva, (2004) proposed a classifier ensemble for changing environments. The
idea is the combination can act as an online dynamic classifier selection system that updates
one classifier and combination rule for each new data point X. This idea is still in its initial

stage.

2.4 Feature selection

Feature selection methods try to find a subset of features that are relevant to the target concept
(e.g., the classification). An irrelevant feature neither affects the target concept nor adds
anything new to it (Dash and Liu, 1997). For high dimensional data, the right selection of
features has a significant effect on the cost and accuracy of an automated classifier. Reducing
the number of irrelevant features will result in reducing the computational cost (running time)
of a learning algorithm and yield better classification.

There are many existing methods and much work has been done in the area of feature
selection. In general, feature subset selection algorithms have two components: an evaluation
function that tests the fitness of feature sets and a search engine for finding these sets. Langley
(1994) defines two types of feature selection frameworks derived from the evaluation
function: filters and wrappers. The wrapper method uses the classifier’s accuracy as the
criterion (evaluation function) for the subset selection while the filter method uses various
measures (distance, information, consistency etc.) and is independent of the classifier. Liu and
Motoda (1998) discuss these two models in the context of machine learning and data mining
approaches. Because of the huge data size used in most data mining problems, a classifier
cannot directly be applied to it. Therefore, the filter method is more appropriate for data
mining problems. For machine learning, on the other hand, the major concern is to improve

the classifier’s performance and therefore the wrapper method is more appropriate.
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Jain and Zongker (1997) reviewed most of the feature selection methods (Figure 4).

A feature set that contains N features will result in 2" optional subsets. This is a huge number
and there are three main methods for solving this problem: exhaustive, heuristic and random
(Dash and Liu, 1997). In the exhaustive method, the search occurs throughout the complete
feature subsets to find the one with the minimum error rate. The simplest search is the
stepwise selection that includes the forward selection and the backward elimination. The first
starts with an empty set and adds one feature at a time, trying to maximize the evaluation
function. The second starts with all available features and deletes features that reduce the
performance. The two other methods based on heuristic or random search methods attempt to
reduce computational complexity by compromising performance. These methods need a
stopping criterion to prevent an exhaustive search of subsets.

The classic branch-and-bound method starts searching from the original feature set and
removes any subset whose value is less than the bound of the evaluation function. Stepwise
discriminant analysis was used for feature selection as part of a classification process of
pistachio nuts (Pearson et al., 2001). A mathematical method called orthogonal transformation
was used to find a small set of features that represent samples of wheat cultivars (Utku, 2000).
Feature selection based on the Bayes' rule for minimum cost was developed for classifying
remote sensing images (Bruzzone, 2000). Another approach to feature dimension reduction is
feature combination. Principal Component Analysis (PCA) is an unsupervised approach to
finding the “right” features of the data (Duda et al., 2001). In this method d-dimensional data
are projected onto a lower-dimensional subspace in a way that is optimal in a sum-square-
error sense. Yeung et al. (2000) setup an empirical study on PCA for gene data clustering.
Two feature selection methods were implemented with a neural network input data that was
used for wheat kernel color classification (Wang et al. 1999). The methods include PCA and
divergence feature selection. Leray and Gallinari (1999) introduce a review of neural network
approaches for feature selection. Feature selection by genetic algorithms was implemented for

seed discrimination (Chtioui et al., 1998).
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Figure 4: Taxonomy of feature selection algorithms (Jain and Zunker, 1997)
A branch-and-bound method was used to search for optimal feature subset selection (Somol et
al., 2004). The method was applied on a number of real-data known from literature.
An on-line feature selection mechanism was applied to tracking applications (Collins et al.,
2005). The method chooses features that minimized the potential for distraction in the next

frame.

2.5 Cost analysis
Cost function analysis is important when some classification errors are more costly than the
others. The simplest case of equal errors cost is most frequent case used (Duda et al., 2001).

The following conditional risk is used in the Bayes decision rule:

R(a, )= Y (e, | @) P, | X)

j=t
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The loss function A(¢; | @;) describes the system loss in case of taking action «; when the
stat of nature (i.e., ) is @;. P(w;|X) is the posterior probability calculated in the Bayes

formula. To minimize the overall risk calculate R(¢; | X) for i =1...a and select the action ¢,

that yields the minimum value.

The performance measure that is usually used in classification related works is the
classification accuracy. Nevertheless, in real-world application of such work there are several
types of cost that should be considered (Turney, 2000).

A cost model that takes into account additional cost attributes together with classification
accuracy can yield much more realistic results.

Cost can be measured in many different units (Turney, 2000). In medical applications it may
include units that related to quality of life of the patient and in image processing it might be
measured in terms of computational CPU time units. Cost can also be represent with
probability distribution over a range of possible costs. A Bayesian decision model for
agriculture products grading was developed that includes grades and feature vector
probabilities as well as penalty loss factor that was set according to the misclassification levels
(Miller, 1985). Peleg (1981) developed a grading criterion based on the sorting accuracy and a
sorting error index.

Turney (2000), defined most of the different cost types: misclassification error cost, test cost
(e.g., blood test in medical), teacher cost (the usage of an expert), cost of intervention (e.g.,
intervene in a manufacturing process in order to improve it), computational cost (static and
dynamic), human-computer interaction cost and the cost of instability (experiments should be
repeatable).

A framework based on utility theory used a classifier combination method while considering
each classifier cost (Demir and Alpydin, 2005). This framework demonstrated the ability to
achieve higher utility values by changing different classifiers type considering the importance

of the testing cost. The expected utility of selecting action A, for input vector X is described in

equation 5.

EU(A | x) :zp(ck | %, A)-uCy, A)
Where, u(C,, A) =accuracy(C,,A)—a-cost(C,,A)
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In this equations u(C, , A) is the utility (negative risk) of taking the action A, when C, is the
state of nature.

A cost function includes three types of costs, misclassification cost, features measurements
costs and the response time cost, was developed (Arnt and Zilberstein, 2004) and designed to
achieve the highest quality.

The following equation (6) is the cost function that combines these three cost types. It

represents the ‘cost of assigning predicted label | to an instance F with measured attributes
meas(F) and actual label |, in t time units’.

C(F,t)=w EC (cl(I))| F)+ & C; () + @, D Cy(M(f) 6

fiemeas(F)

Where EC, (cl(l,)| F) is the expected misclassification cost given that classifier predicts label

l,, Cy(m(f))is the individual attribute f; measuring cost and C,(t)is the time cost

component.

An experimental study that deals with ordinal classification problems used a cost sensitive
technique that uses fixed and unequal misclassification costs between classes (Kotsiantis and

Panagiotis, 2004).



3 Methodology

3.1 Overview
This chapter describes the methods used in this research. The classifier structure overview and
its basic development assumptions are presented in the first section. The second section
presents the classifier framework and the following sections present an overview of the
methods used in this dissertation. Detailed algorithms are presented in chapter 4.
The on-line multi-stage classifier consists of two levels - a low level for population detection
and a high level for classifier adjustment according to the low level input (Figure 5).
Feature selection in the on-line multi-stage classifier is achieved via classifier selection.

3.1.1 Classifier structure
At the low level a modified on-line clustering algorithm designed to cluster non-stationary
data identifies the population. A centroid in the feature space represents each population.
Since this type of algorithm is adaptive to the data input, each new data point becomes a new
centroid while the two previous most redundant centroids are merged. Overlapping measures
identify new populations. The measures themselves are determined by a known overlap
volume measure (Ho and Baso, 2002) implemented on the entire feature space as well as on

each individual feature.

High level
Overlap
Low level dg:::eon Classifier
Selection
Input . . PopulationTyp (1-4)
Fruit features (Population detection) (know/ ot Fr(jirilt;::;e
unknowns) classifiers Fuzzy Logic 9
On-line clustering with Rule-Base
different
features
combination
Wight
Feedback

Figure 5: The on-line multi-stage classifier basic structure.
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Assuming that 'H1' and 'H2' are known populations, the overlap level between these
populations and a 'New Population' is assigned to one of the following four levels (Figure 6):
no overlap (1a), full overlap (1b), multi-overlap (1c) (more than one overlapping population)

and partial overlap (1d). Each case is treated differently.

Hew " lew
Population Population
(a)

Hew
Population

(©)

Ly

<
Population
(@)

Figure 6: Population overlap cases: (a) no overlap, (b) full overlap, (c) multi-overlap, (d) partial
overlap

Whenever a new population is detected at the low level, the high level stage is activated. The
high level goal is to replace the previous classifier by a new one that better fits the current
data.

The classifier selection procedure, which constitutes the high level stage, uses n fuzzy kNN
classifiers, each trained with different feature combinations that function as input to a fuzzy
rule-based decision system. The rule-based system is composed of three fuzzy inference
systems (FIS) based on the Mamdani method (Jang et al., 1996).

The fuzzy kNN classifiers must be retrained whenever the classifier selection algorithm is
activated for a new population. This retrain procedure is implemented automatically on-line
when there is a sufficient overlap region and off-line when there is none. In the latter case,
retrain is achieved using off-line human retraining.

Since there is always a gap of data points between the decisions on population change
detection and overlap case determination, the data points are classified using the closest

‘history’ population classifier in order to keep the system in an on-line state.
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Three measures to detect population change using the amount of data points in a population

and the variance of the centroids were defined.

3.1.2 Assumptions
The proposed classification system is based on three assumptions:

e The produce enters the system in batches, one batch after another.
e After the products are separated from each other, they enter the system one-
by-one.

e All features exist for each product.

3.2 Overall classifier

Figure 5 describes the structure of the classifier system. Population detection is conducted by
analyzing the product variability. The main idea is to check whether the current stream of
produce is different from the previous one. The differences may be biological in origin, caused
mainly by weather changes and/or derived from a different field source of the produce,
resulting in diverse defects, major size or shape changes and various color saturation levels.
Introduction of a new population may be triggered either by a feature that has significantly
changed or by the appearance of a new feature (e.g., a new batch harvested after a severe
weather change might contain new defects such as hail damages that were not included in
previous populations) or a combination of several cases.

When a new population is announced, the overlap level of the current population is set using
the overlap measures. Unless a sufficient overlap exists (case of ‘full overlap’ Figure 6b) the n
fuzzy kNN classifiers are retrained on the selected training set (i.e., data from the overlap
region). After the classifiers are trained, the classifier selection procedure starts. At this stage

we let D ={D,,D,,...,D,} be a set of fuzzy kNN classifiers, each trained with different feature
combinations, and Q = {w,,...,®_} 1s a set of class labels. Each classifier receives as its input a
feature vector X € R’and assigns it to a class label from Q, ie. D, :R® ->Q, or
equivalently, D,(X) € Q,i=1,...,c. In the case of the fkNN classifiers the output is a “soft
label”, c-dimensional vector, D;(X) =[x, (X),..., ,uiyc(x)]T , where g, ;(X) is the “support” that
classifier D; gives the hypothesis that X comes from class @; and is in the interval [0,1],

i=1L..,n, j=1,...,c(Kuncheva, 2004). These “soft labels” function as an input to a fuzzy rule-

based decision system. The fuzzy system fuses the classifiers results and yields an overall
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classification result. Based on the result, weights are assigned to each classifier. The classifiers
weights are the criteria for the classifier selection. Eventually, after | data” points from the new
population pass through the selection procedure, the best-fit classifier is selected. The feature
subset selected to classify the current produce is defined by the features of the selected

classifier.

3.3 [Initial off-line feature selection
The extracted features, which form the input vectors to the system, may be statistically
correlated or dependent. To improve the overall classifier efficiency, these features should be
eliminated. Since the system contains two separate levels that use different features to
accomplish their targets (population change detection and classifier adjustment), eliminating
features at one level may affect the performance of the other level. Some features that might
not change much within a certain population (e.g., size or shape descriptors) may serve as a
good population representative and therefore could be good for population separation.
However, since they don’t influence the quality labeling they can be eliminated by the feature
selection procedure. Therefore, a procedure was implemented to keep these representative
features, together with the quality features that were selected with the traditional feature
selection algorithm. However, for the high level that eventually yields the quality grading
results, only the ‘quality features’ set is used. In this initial procedure the stepwise forward
selection (SFS) algorithm (Dash and Liu, 1997) was used for off-line feature selection. This is
conducted separately, a-priori, for each case study. The SFS algorithm starts from an empty
set, and at each iteration generates new subsets by adding a feature that, together with the ones
already in the set, most accurately predicts the target (i.e., the vector of results). The algorithm

stops when the new feature does not significantly reduce the prediction error.

3.4 Training/Testing data sets selection
The selection of training/testing is very important for determining classifier performance. The
goal is to use enough data to build the classifier (defined as a training set) and still leave as
much unseen data as possible to test its performance (defined as a testing set). It is important
to use a separate data set for these training/testing stages (Kuncheva, 2004). During the initial
a-priori phase and at the upcoming retraining phase, a training data set for the n fuzzy kNN

classifiers training was selected. The selection of the data for the training for both cases is

? The value of I was define empirically.
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based on the overlap level cases (detailed in section 3.8.2). The performance of each classifier
was evaluated using the cross-validation leave-one-out method (Duda et al., 2001). The

classifiers configuration is based on the k parameter selection and is detailed in section 3.9.

3.5 Classifiers base selection
After the initial feature selection stage (described in section 3.3), a procedure for selecting the

best classifiers for the high level phase is implemented. Each classifier at this level is designed
d-1

with a different feature composition. This means that for d selected features, Z( _) classifiers
=)

can be generated. However, since this might be too large to use in the current phase, a

classifier database, containing all possible classifiers, was determined with the best ones

selected according to their classification performance on the training set. Whenever a

population change is detected, the system checks all classifiers for the new population.

3.6 On-line clustering algorithm
Population identification is based on a modification of an on-line clustering algorithm
designed to cluster nonstationary data (Guedalia et al., 1999). This algorithm takes into
account clusters which have relatively small mass. For each new data point, the following
steps are conducted: the closest cluster centroid is moved toward the new point; the two
closest centroids are merged; and the new point becomes a centroid. The sequence of steps is
important to address the criteria of adaptation to temporal changes in the data distribution
which is crucial for the new population detection task. While this algorithm developers dealt
with the best choice of the initial number of centroids, in this work only three were used since
the goal is different. Whenever a new population is detected, the previous population details
(data and centroid) is kept in a history database to avoid mixture of populations. A new
centroid was assigned and the three-centroid process was repeated. To detect the change
location, it is necessary to trace the clustering changes on-line. To do that, the clusters size
together with the centroids means and variances are calculated after introducing each new data
point. These calculations result in three measures that were developed (see section 3.7) to test
whether the new point belongs to a new population. The full algorithm description is detailed

in section 4.2.

? The algorithm pseudo-code, based on the original code, is presented in Appendix V.
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3.7 Measures for detecting population change
The measures for detecting changes in the characteristics of the populations are activated
periodically, at predetermined intervals of m samples (m is determined empirically).
Incoming data is analyzed using the following characteristics: the size of the clusters (i.e., the
amount of data points) and the variance of the current centroids locations.
Let us define the function that describes the number of data points in the centroid (y) as a
function of the sample number entering the system (x). The change in the number of data
points that belong to each centroid is the gradient of the curve and can be calculated as follows
(equation 7):

dy _Yi— Vi
ax X, — X,

[7]

where Y, refers to the number of data points that belong to one of the centroids when sample i
enters the system. The expression X, —X; , represents the interval of m samples as defined

above.

When the population characteristics do not change, the cluster's centroid accumulation rate of
sample points is linear. Three measures are defined to detect population changes. Two
measures are based on the comparison of clusters size while the third averages the variance
change between the data intervals. All measures are initialized after a new population is
detected. During the process of population detection the entering data points are classified
using the closest history population classifier in order to keep the system in an on-line state.
The performance measures for this procedure use the overlap measures between the
populations structure, which are defined in section 3.11.2. Detection results were compared to

the actual population change locations.

3.8 Classifier adjustment methodology

After a new population is detected, the previous classifier should be replaced by a new one
that better fits the current data. The previous population's details are kept in a history database.
These details include the population's raw data as well as the centroid and the selected
classifier information. According to the overlap level between the current and previous
populations, the system selects the best classifier. This procedure is detailed in a flowchart [

Figure 7]. An initial database, referred as population database, was defined a-priori based on
similarity levels between the populations. This population database represents most of the

populations and was updated with any new population detected.
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3.8.1 Overlap analysis
The new population must be checked for the overlap level with previous populations in order

to decide which methodology to use to select the best-fit classifier for it. An overlap volume
measure (Ho and Baso, 2002) was implemented (equation 8). This measure evaluates the
overlap of two different populations. The maximum and the minimum values of each feature fi

and class cj are defined to be max(fi, ¢j) and min(fi, cj), respectively.

E 3 H MIN (max(f,,c, ),max(f;,c, ))— MAX (min(f,,c, ),min(f,,c,))
overlap i MAX (max( f.,c, ), max( f.,c, ))— MIN (min( f.,C, ), min( f.,c, )) [8]

where i=1,....,d for a d-dimensional problem and j=1,2 for two classes (populations). Of

course, the volume is zero (or negative) as long as there is at least one feature dimension in
which populations range do not overlap.
Since this measure decreases rapidly along with the growing number of features, it is only
used to determine whether there is an overlap or not. The measure is also only used on each
individual feature. The minimum overlap is used to determine the overlap case. In addition, a
simple procedure was added to provide the amount of data points that overlap from each
population. To prevent noise interference, populations that indicate high degree of skew were
cutoff using a 95% confidence interval on their means.
According to the overlap measure, four overlap levels between the current population data and
the history populations were defined as mentioned above (section 3.1.1).

3.8.2 Retrain procedure
When ‘full overlap’ is determined, the corresponding history population classifier was
retrieved for the current population. For the other cases, two retraining procedures were
determined: automatic and human. The human retraining procedure was defined for the first
case (no overlap), meaning, a predefined training set for the current population was used for
off-line retraining of the system. The automatic retraining procedure applies on-line for those
cases in which classifiers are retrained with the data points in the overlapping region of the
history populations (cases 3/4). These data points are already labeled with their population

classifier.
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3.8.3 Classifier selection algorithm
The high level was implemented using n fuzzy kNN classifiers that function as input to a

fuzzy rule-based decision system. The system was composed of three fuzzy inference systems
(FIS) based on the Mamdani method (Jang et al., 1996). The number of quality grades is
defined in advance according to the produce standards. According to the number of quality
grades (C), each kNN classifier outputs an c-dimensional vector, one component for every
quality grade, into the fuzzy system. The fuzzy system outputs are summed into an
aggregation matrix. Each cell in the aggregated matrix sums the values that belong to it. A cell

summing procedure is activated for the final decision of the quality grade.

3.9 Optimal k selection

When dealing with kNN classifiers, we must cope with the problem of selecting the best
value of k, the number of neighbors considered. The leave-one-out cross-validation method
was applied (Duda et al., 2001) to estimate the misclassification rate of the classifier for each
choice of k. That is, each sample of the training set is classified by all the others, using the
current set of variables in the model and the entire vector of k’s. We used the set 1; 3; 5;:..15

since this has a “reasonably large” range (Buttrey and Karo, 2002).

3.10 Cost analysis
A cost analysis was developed to evaluate classifier performance in addition to classification
accuracy. Since each population was assigned with its best-fit classifier containing its own
features combination this analysis was applied for each population classification separately
resulting in an overall system analysis.
A cost function based on the computational cost of the features used by each classifier and its
error significance (the cost of classifying a good product as bad and vise versa) was
developed. To deal with the computational cost, each feature was assigned a cost value that
represents the execution time of each feature and its complexity.
The computational cost also depends on when, how and which features are used for grading.
For example, blemish detection may be more or less difficult to determine with green fruit
than with yellow fruit. Therefore, an enhanced weight factor was incorporated with the
blemish feature reading associated with green fruit classification (Miller, 1985).

The cost function contains a payment function for the misclassification rate together with the
classifier cost function for each population classifier and a change detection procedure cost

function for the overall hierarchical classifier.
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In addition, each feature has a different type of error risk. For example, if a severely bruised
fruit will be detected as a good one, the cost will be much higher than a misshaped fruit that
was detected as well shaped. Therefore, each feature will also be assigned an appropriate risk
weight. The payment function was implemented using a penalty cost weight matrix.

A penalty value was assigned to each classifier according to the error’s direction. A classifier
that sorts bad fruit as a good one will be assigned a higher penalty weight than the one that
sorts good fruit as bad. These weights values will be determined based on the quality standards
defined for each produce (by such Israeli organizations as Agrexco — a major fruit marketing

body -- Israel Institute of Standards).

For example, Table 3 presents a payment confusion matrix in which the downgrade

classification penalty is equal to three times the upgrade categorization (Miller, 1985).

Table 3: Error cost downgrade=3Xupgrade
1 2 3

W= =

0 3 3
1 0 3
1 1 0

This penalty function also corresponds to the magnitude of the difference defined by the
number of levels of difference. For example, a classifier that yields two level unit errors (i.e.,
graded 5 instead of 3 or 1 instead of 3) will receive a higher penalty than the one with only one
level error (graded 4 instead of 5).

The objective function was defined as:

Vcost :[_Zn:Ci ) I:)I +VFi]+¥'Vb [9]

where C; is the classification confusion matrix of each population (n populations), P is the
payment cost matrix of each classifier, Vi 1is the classifier cost, N is the batch size between
two change detection operations, ZCi is the number of products sorted by the classifier and

V, is the change detection operation cost.
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The classifier cost is described by the following equation:

Ve =t -V +>.C-V, +C, [10]

where t. is the classifier active time (t; & computational complexity), V, is one time unit
cost, ZCi is the number of products sorted by the classifier, V stands for the classifier

activation cost for one sample by means of feature cost and C, represent the general costs of

the classifier (e.g., hardware operating cost).

The influence of the following parameters on the performance of the classification system was
examined:

1. Detection batch size - the classifier structure includes a batch size in which it checks the
data for new population entrance (i.e., for each batch of fruits the system checks if this
batch belongs to current population or to a new one). Changing the batch size
increase/decrease the classification accuracy.

2. “All features’ batch size - the batch in which all features are activated. After the system
assigns a new classifier for the current population it uses its features for the classification
task. Nevertheless, in order to keep on detecting changes it needs to check all features
occasionally. Therefore, a batch size is defined for the number of samples in which all
features will be captured.

3. Current feature batch size - current classifier features are active. Following the previous
batch, this is the batch size defined for the number of samples in which only the classifier
features are captured.

Figure 8 presents a graphical representation of the data flow through the system and
demonstrates the three aforementioned ‘batch parameters’. The change detection procedure is
activated m times according to the 1* parameter (‘Detection batch size’ is set to nsamples).

After the classifier was selected, the corresponding subset of features (e.g., subset FI may
include [f1, 3, f4]; F2 may include [f7 {2 3] etc....) was set for the current population. At this
stage the 2™ and 3" parameters are activated. This means that until a new population is
detected the current subset of features is active for a k sample batch (i.e., ‘Current feature
batch size’, subsets are marked as F1...FN in Figure 8) followed by a batch of d samples in
which the whole set of features is active (i.e., ‘All features batch size’, marked as All F in

Figure 8). During the procedure of classifier selection the entire feature set is in use.
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Figure 8: Classifier dataflow and the batch parameters

By assigning different values to these parameters different situations can be simulated.

The main objective of these simulations was to demonstrate how to get good classifier
performance in less cost than the best one requires. Since determination of the exact cost
values is a subjective procedure, different cost settings were compared for each of the

simulations.

3.11 Evaluation
System analysis was conducted for a synthetic dataset and an agriculture dataset specially
collected for this thesis. System sensitivity to changes in several parameters (e.g., batch size
for population detection, data entrance order) was evaluated for the synthetic dataset. Two
aspects of system performance were evaluated for the agricultural dataset: population
detection and overall classification performance.

3.11.1 Datasets
The synthetic dataset included six different populations, each containing a 1000 data points
with seven features. Each feature was created using a random multivariate normal distribution.

The data point vectors were labeled with three quality labels.

An olive agriculture dataset was specially sampled as part of this research. A total of 10,550
olives were harvested in two seasons and at different dates. Olive images were acquired with
machine vision equipment and analyzed using image processing algorithms. Thirty-one
features emerged. To provide a system reference, a human panel classified the olives into four

classes, according to standard classification rules for table olives (Diaz et al., 2004).
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3.11.2 Performance measures
The population detection performance measure is based on the population overlap. The

overlap level can change from full overlap (same population) to separate groups (completely
different populations). Two overlap measures were used to estimate the populations
overlapping. The first is based on Fisher’s discriminant ratio (Duda et al., 2001) estimated by

the following equation:

¢l —u) i

2 2
o, +0,

where u,,,0/, are the mean and variance of two populations.

The second overlap measure was mentioned earlier in this chapter (equation [8] in section
3.8.1).

These two measures are used for all possible combinations of the order in which two
populations may appear. The overlap level provides a good estimation for the high level
performance. Highly overlapped populations will be difficult to detect. Nevertheless, errors in
detecting highly overlapped populations may not produce extreme errors since if they are so
much alike and therefore the same classifier can be used. Low overlap or separate populations

will be easier to detect. These statements should be tested for the high level part of the system.

The overall classification performance measure is based on two parameters calculated

according to the classifier resultant confusion matrix:

e The precision parameter that indicates the ratio between the real classification grades to
the results of the classifier grade.

e The mean square precision error (MSPE) parameter that is a more sensitive criterion and

which gives each class grade an equal significance.

3.11.3 Sensitivity Analysis
Sensitivity analysis was tested for the following parameters:

e Entrance order — switching between batch orders. Within the synthetic database we’ll
change between population entrance order to check the system sensitivity for it.

e Change detection batch size — changing the frequency of change detection tests.

e ALL feature batch size — changing the batch size occasions in which all features are

active.
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Current feature batch size - changing the batch size occasions in which only the current
classifier features are active.

Features cost — features activated during the simulation will be assigned with a changing
cost to check their influence on the classifier overall cost.

Payment matrix values — each misclassification is included in the payment matrix. Each
misclassification degree (i.e., number of grade error units) is assigned with a cost value.

Changing these values will influence the classifier overall cost.



4 Algorithms

4.1 Overview
The low level stage of the classifier contains a procedure related to on-line clustering and a
procedure to determine the population change measure. The high level stage contains the
algorithm for determining the overlap volume and the fuzzy logic classifier selection

algorithm and the on-line automatic/human retraining procedures.

4.2 On-line clustering algorithm

The on-line clustering algorithm is based on an algorithm that clusters the produce into distinct
populations (Guedalia et al., 1999). Each population defines a different location in the feature
space. The algorithm, designed to cluster non-stationary data, takes into account clusters
which have relatively small mass.

The algorithm can be summarized in three steps: (1) moving the closest centroid to the
arriving data point, (2) merging the two closest centroids (creating a redundant centroid) and
(3) setting the redundant centroid equals to the new data point. The well-known Euclidean-
distance is used for measuring distance. A multitude of features are considered (equation 12).

n

D(X(XI,XZ Xn)aY(ylayzr'"yn)z Z(Xi_yi)2 [12]

i=1

Eventually, in case of a new population, given that the initial case contains k centroids, k-1
centroids are moving towards it while one centroid (the one with the greatest weight) becomes
the previous population's representative.

Figure 9 presents the algorithm's stages. One of the main changes to this algorithm that
emerged in the course of developing it was in defining the number of centroids needed. The
original algorithm adds centroids on-line according to the available free memory and removes
the ones with negligible weight in a post-process procedure. Since the goal of this algorithm in
the current research is to determine new populations, we used the basic k=3 centroids.
Whenever a new population was detected, we designated the previous one to be a history
population and added one new centroid to the two that were already within the area of the new

population.
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Figure 9: On-line clustering algorithm stages. (a) k (k=3) centroids (in red) after first population
enters the system. (b) closest centroid (winner centroid) moves toward new data. (c) merge the two
closest centroids and set a new one. (d) k-1 centroids transferred to the new population (in green)
area while one centroid left within the previous populations

4.3 Population change detection measures

Population change detection is performed on-line. The system uses three measures to detect
the change occurrence and to decide about whether or not to activate the high level. The three
measures that were defined were based on clusters size and centroids variance. To track
clusters size, their growing gradient is checked after each constant batch of points (equation
13).

_Cj(i)—Cj(i—m) [13]

m

]

Where m is the batch size, C is the cluster size, j=1,2,3 and i is the current sample index.
This gradient is calculated for each cluster yielding a three-element ‘gradient vector’, which is

compared from batch to batch.
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Figure 10 presents changes of the size of two clusters during a sample run within three
populations data flow cases. The blue graph represents the gradient of the first cluster size and
the dashed green graph represents the gradient of the second cluster size. The three measures

defined were:

e Separate population measure (M1) - designed to detect a new population completely
separated from previous populations. It triggers detection of a population change when the
gradient of the largest cluster (within the gradient vector) becomes approximately zero

(Figure 10a).

e Overlapped population measure (M2) - for the case of two overlapped populations, two
stages are required. In the first stage, detection is made regarding when the rate of growth of
the larger cluster becomes lower than that of one of the other clusters (within the gradient
vector). A population change is detected when the value is above a threshold* (Figure 10b),
otherwise a second stage takes place after the next n samples. If the gradient of the smaller
centroid becomes negative, this indicates highly overlapped populations and no population

change is detected. As Figure 10c illustrates, this creates a "saw-tooth" graph.
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Figure 10: Cluster size in three different cases: (a) two separated populations; (b) two low
overlapped populations; (c) two highly overlapped populations (saw-tooth pattern).

e Centroid variance measure (M3) - calculates the difference between the current and
previous variances of the centroids' locations. For each data sample, the system checks the
k=3 centroids for the on-line clustering algorithm. They are kept in a centroids matrix:

C,;(i=123;j=12,.,n) where n is the number of features and C is value of centroid i at

feature j. After updating the centroids, the system calculates the variances of the current

centroids, which are held in an aggregate matrix. This matrix contains a n-sized vectors with

* All thresholds were determined empirically and analyzed for their sensitivity.
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the variance ol =1 where U = i:]N , for each j =1,2,...,n features. As each data

N
point enters the system, the matrix grows and is checked for the variance changes in any
batch of points. When one of the dimensions (features) indicates a high degree of change, it
is checked again after the next n samples; if stability is detected, then a new population is
announced.

Figure 11 shows one of these cases in which the centroids variance is changing significantly

in one of two feature dimensions. The blue line graph is the variance change in one feature

dimension and the green is for the second feature.
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Figure 11: Variance change of the centroids of two feature space

Figure 12 presents the algorithm for detecting population changes. One of the main problems
when calculating the distance between centroids with high dimensionality is that local changes
may adversely affect the detection. This problem leads to the miss of some changes in the
populations. To overcome this problem, the system analyzes, in each feature space, which are
the two centroids that ‘merged’ in the second part of the on-line algorithm. Since k=3, there
are three options: centroids 1&2, 1&3 or 2&3. As mentioned above, when a change occurs, k-
1 (equals to two in our case) centroids move towards the new population (Figure 9(c,d)). In
this situation these two centroids remain the closest for the next batch of points in the feature
space that caused the change.

The selection of the same two centroids as the ‘merged centroids’ in more than a certain

number of times in a row (the exact value is determined empirically) in one (or more) feature
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space causes an alarm in the system. In this case the clustering algorithm starts running with
the ‘suspicious’ features in which the three measures can be more easily detected.

These features ‘suspicious’ features are defined as separate features since they alarm the
system for change. In order to trace these separate features, a feature matrix (FM in Figure 12)
is defined in which each column j represents the j-th feature and each row is the index of the

sample.

4.4 Overlap level decision
After the decision about a new population has been made, the system starts to adjust to it. The
first stage is to define the new population location in relation to previous populations. As
mentioned in section 3.8, the system deals with four optional cases defined according to the
overlap measure (Figure 6). This measure (equation 2 at 3.8.1) is checked using the complete
‘quality feature’ space (mainly to decide on overlap or non-overlap) and then, if all features
are overlapped, for each feature separately (to decide upon the overlap level).
The cases are:
No overlap case — the current batch of points (new population) completely differs from all
“history” populations or there is a minor overlap. In this case a human retraining is activated.
Full overlap case — most of the current batch of points (new population) overlap with one of
the populations in the history database. The classifier of the overlapped population is applied.
Multi-overlap case - high overlap with more than one population. Since more than one
classifier might fit the current population classification, additional statistical measures were
used to compare populations distributions across the feature space (Kalmogorov-Smirnov, see
below).
Partial overlap case — only an average overlap level between current population and one or
more populations. In this case we use the data points from the overlap area as training points
for automatic retrain.
The overlap determination procedure is detailed in the flowcharts of Figure 13. This flowchart
yields just the 1%, 2™ and 4™ overlap cases for each tested population’. The 3" case, as
mentioned, is a competitive case in which the system needs to decide what is the best-fit
population between several populations that were assigned to either the 2™ or 4™ case. The
output of this algorithm is a ‘case table’ (Table 4) where each column represents the ‘tested’
population case decision, its overlap measure (which is a value between zero to one) and its

average Kalmogorov-Smirnov (KS) statistic.

> The three thresholds mentioned in the flow chart were defined empirically using several system iterations.
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Table 4: The case table: each ‘history’ population is graded with three measures in relation to the

current population

History Populations Overlap Case KS level Overlap Level
1 1/2/4 0-1 0-1
2 1/2/4 0-1 0-1
3 1/2/4 0-1 0-1
n 1/2/4 0-1 0-1

After obtaining the case table results, the system must define the suitable action to take. The

algorithm, which performs this function, is presented in Figure 14. This algorithm counts the

2" and 4™ cases. If there is more than one 2™ case, the system selects the one with the highest

overlap value together with the lowest KS statistic. Case 3 is determined when the system

detects more than one population labeled in the table with case 4. This means that there is

more than one optional training set for the current population. In this case the problem is what

population training data to use. The decision is based on comparing overlap values, KS

statistics and distribution comparison.
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Step 0) ind =ind +1 /*ind= index of new produce feature vector enter the system*/
Step 1) f.
Run the on-line clustering algorithm V producein dJ /*update the centroids*/
Step 2) Forj=1N /* N — number of features
MinDist’ = min(D,},D/,, DJ; /* D}, —centroids1 & 2 distance in feature j*/
FM i = MinDist ’ I*FM |,y — featurematrix f,,sample,
/*MinDist =1:3%*/
End /* End For */
Step 3) If(ind modn) /* If periodic check e.g., every n samples */
Update the three measures M1,M 2, M 3
if(M1=1) /*M1-Clusters size gradient */
/*if M1lis'on'= M1=1%*/
FlagChange =1 /% If M1 is 'on' than its achange */
End /*End if */
if(M2=1) /* M 2 — Saw tooth measure */
/*if M2is'on'= M2 =1%/
Counter,,, = Counter,,, +1 /*Update Counter,,, */
if (Counter,,, >1)
FlagChange =1 /* If M2 repeat 2 periods than its achange */
End /* End if (counter)
else
Counter,,, =0 /* Set counter to zero */
End /*End if (M2)*/
if(M3=1), /* M 3 —Centroids variance measure */
/*if M3is'on'than = M3 =1%*/
Counter,,, = Counter,,, +1 /*Update Counter,,, */
if (Counter,,, > 1)
FlagChange =1 /* If M3 repeat 2 periods than itsachange */
End /*End if (Counter)
else
Counter,,, =0 /* Set counter to zero */
End /*End if (M 3)*/
For j=1:N /*N —number of features
If ( %(FM ;i =3)>Thr) /* If merged case 3 > threshold
i=ind -n
FlagFeatur eAlarm =1 /* Setthe alarm flag active */
/*Update the relevant features with FM,, ; */
End /*End If */
End /*End For */
End /*End If */

Figure 12: New population detection procedure. The three measures and feature tracer.
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Figure 13: Overlap case determination flowchart
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4.5 Classifier selection algorithm
In all cases, except for the full overlap case, the system applies a retrain procedure. Whether
this procedure is automatic or manual (human) there is a need to select the best-fit classifier
after all classifiers are trained with the new training set. The classifier selection algorithm was
implemented using fuzzy kNN classifiers that function as an input to a fuzzy rule-based

decision system. The labels of the sample neighbors are combined into the soft output label
u(x) for x e R" using the Keller algorithm (Keller et al., 1985).

The output label, or the membership vector, w(X), is defined as:

k ) 2
D LEMyd)) ™
() =+ - ——,i=1,.,C 14

z(dj) m-1

i=1

where z belongs to the set of k vectors which are closest to the sample x; 1(z?) is the soft label

of the k nearest neighbors; d is the Euclidean distance; and m is a fuzzification parameter.

There is a different membership label related to the quality grade (c). Finally, a vector where
each component represents the neighbor’s quantity for each quality grade is obtained. For the
next stage the vector value order is maintained from low to high.

The system (Figure 15) was composed of three fuzzy inference systems (FIS - Low, Average
and High) using the Mamdani method (Matlab, 2002). The fuzzy system outputs are summed
into an aggregation matrix. Each cell in the aggregated matrix sums the values that belong to
it.

The matrix in Figure 15 fits three quality levels (A, B and C) and the “defuzzified” value of
the fuzzy system input to the matrix can be seen. The columns in the matrix represent the
quality level while the rows represent the FIS. For example (Figure 15), a classifier that has a
low number of neighbors (KNN_n(1,1)) that belong to class A enters its value into the low FIS
and the result, ‘Low_Ca_Res’, enters the matrix in the class A column in the Low row. A cell
summing procedure is activated to calculate the quality grade.

The cell summing procedure was determined using the following equation:

Column, =w, - Low; +w, - Ave, +w, - High, 15
Where,w, , ;- 0.25, 0.75, 1 were empirically selected.
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Figure 15: The fuzzy system and aggregation matrix

The overall classification result is derived from the column with the highest result (best wins).
To ensure that the highest result is significant, the result variances were calculated. When the
variance is low, additional comparisons are implemented on the High (best wins) and on the
Low (worse wins) rows. Based on these options the classification for the current sample is
defined.

Since the fruits enter the system in batches, their feature subset is employed for the next batch

of fruits to save the computational cost of the redundant features.

4.6 On-line automatic retrain

Whenever the system detects cases of overlap regions (i.e., cases 3 or 4) an automatic retrain
procedure starts (Figure 16). This procedure begins with the decision on the retraining points
from one or more overlap populations. The next step is to retrain the fuzzy kNN classifiers.
The next batch of points (together with the later detected as new population) is classified using
these classifiers. The classifiers results enter the fuzzy logic rule-based system (detailed in the
previous section). According to the fuzzy system results, the current population classifier is
selected.

Since the population detection and the overlap decision procedures require a batch of data
points that can neither be ignored nor classified by the previous classifier, the system checks
for the closest population and uses its classifier to grade the points (Figure 17). In the classifier

selection procedure, the data points grade is the fuzzy system output.
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Figure 17: The default classifier selected while system adjusting
4.7 Human retrain

When the system detects a non-overlap case, it uses a pre-defined training batch of data points
to initiate human retraining procedures. This means that all batch grades are known a-priori.
According to this information, the system starts working in an off-line mode, performing the
feature selection procedure and retraining the fuzzy kNN classifiers. As in the automatic

phase, it uses the fuzzy system to select the best-fit classifier.
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5 Experiments

5.1 Overview
System performance was evaluated using a synthetic database and an agricultural database,
both especially designed for this research. The synthetic database was constructed to
independently evaluate each subsystem (population detection and classifier selection) and then
the integrated system. These initial analyses made it possible to refine the integrated system.
The agricultural database was used to evaluate the integrated system for real world conditions.
To evaluate the integrated system we compared its results to other classifiers in different
configurations, i.e., different training and testing settings. Performance analysis included costs
analysis. System sensitivity to the size of predefined parameters, detection batch size, *All

features’ batch size, current feature batch size, and different costs was evaluated

5.2 Synthetic dataset
5.2.1 Structure

The synthetic dataset was composed of six different populations (Figure 19). Each population
contained 1000 data points with seven features. Each feature was created with a random
multivariate normal distribution.

An original population was generated based on an initial mean and variance feature vector
determined empirically. Each component in this vector represents the Gaussian distribution

parameters of each feature. Each feature f; is distributed normally N(,o”) where i =1,2,..n

- n was set to seven. Five additional populations were created by changing the third
component of the original mean vector by significant value. The changing of this value
simulates change of one feature dimension (e.g., color intensity feature) that influences the
quality of the produce. The data point vectors were labeled with three quality labels,
corresponding to three fruit grades, implementing by a constant reference function.

Each population contains different grade distributions. The first two populations are alike and
highly overlap with the original population (‘Pop_Base’ in Figure 19) in the feature space. The
third and fourth populations are alike but differ from the first three. The 5th population is

completely different from all other populations.
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The synthetic dataset was used to:
e Test the system capability to adjust to population changes
e Check the performance of the three measures that were developed for detecting
new populations
e Check the system for the overlapping measures between the populations
e Check the system's sensitivity to the order (sequence) that populations are

presented to the classification system

5.2.2 Analysis
5.2.2.1 Classifier selection
The classifier selection sub-system (high level) was analyzed in two steps. For each step it was

assumed that each new population was identified correctly. In the first step, the classifiers
were trained on 500 samples randomly selected from the original population. Ten different
fuzzy kNN classifiers, differing in the number of features and the specific features, were
empirically selected and compared for each population. This process was conducted 10 times;

each time 500 different points were selected.

HClass_A
OClass_B 86 85
B Class_C

r 100

Pop_5 Pop_4 Pop_3 Pop_2 Pop_1 Pop_Base

Populations

Figure 19: Quality labels distribution within each of the six synthetic populations

In the second step, the best classifier was selected based on presentation of the first 100 points
of each population to the fuzzy inference system (FIS, section 4.5). The remaining 900 points
were classified according to the best-fit classifier.

Classification results for the whole dataset, including all six populations, are compared to

results that would have been obtained by a classifier using all features (denoted as ‘All’).
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5.2.2.2 Population change detection
Population change detection (mentioned in section 4.3), together with the on-line clustering

algorithm were evaluated by comparing the real points where there was population change to
the points where the system detected the change using these measures. A time series analysis
facilitated understanding of the complete on-line classification procedure.
The overall system classification results are compared to the predefined classifier that uses all
features and implemented on each population separately. In both cases the classifiers were
only trained with the first 500 points of the first population.

5.2.2.3 Integrated system
The main experiment was conducted on the integrated system that contains the overlapping
measure and selects the actions accordingly (see the flowchart in section 4.6).
Initially, classifiers were trained with the first population but when the system found no
overlapping between the current new population and the previous one, it ‘announced’ the need
for human retrain.

A final analysis included the system sensitivity to the population's entrance sequence.

5.3 Agricultural dataset
5.3.1 Structure

To evaluate performance in real world conditions, a dataset for olives was specially
constructed. The dataset contained 10,550 olives from 12 varieties, harvested from Ramat-
Negev fields in the south of Israel. The olives were harvested in the course of two different
seasons and at different times during the season (30/11/2004; 16/12/2004; 15/12/2005).
Appendix II presents more specific details about the harvest.

The olives were classified into 4 classes (Figure 20) based on several literature references
(Diez et al., 2004) concerning the issue of table olives classification. Image processing
algorithms were developed to determine the following features: color, color homogeneity,
shape and defects (Appendix I). The resulting dataset includes 10,550 feature vectors with 31
elements (features) per vector (Appendix III). A two-member panel graded the olives into four
quality grades and into color and defects grades. These grades function as the real grade

(label) reference to the system.
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Figure 20: Olive sample and its grading options

5.3.2 Analysis
5.3.2.1 System evaluation
The on-line system was tested for two cases:

e Populations entering the system one-by-one. Each population was checked for overlap
and similarity relative to the previous populations. Similar to the synthetic data experiments,
the system indicates when human retraining is necessary. In this case, the system used pre-
labeled training data for the current population.

e A collection of representing populations is pre-defined. A population database is defined
a-priori using the knowledge of the overlap and similarity levels between the populations.
This database, referred to as the population base, contains several populations that best

represent the feature space and contain the rest of the populations in their ranges.

After the population base is set, the other populations are entered and classified on-line and
their relationship (similarity) with the population base is adapted.

Each stage, population detection, feature selection and classification error, was evaluated
separately.

The population base assembly was based upon an a-priori similarity test between the
populations in order to find the ones that most frequently appear and the ones that best span
the feature space.

The integrated system for on-line adaptive classification was compared to the following
classifiers that can be found in the literature:

1. A decision tree (DT) classifier trained for each population base.

2. DT classifiers, each trained on a different population and tested on the rest of them.

3. A classifier (FKNN) trained on samples from all populations.
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5.3.2.2 Cost analysis
System performance was evaluated for the following values of the batch size parameters:

1. Detection batch size - the classifier structure includes a batch size in which it checks the
data for new population entrance (i.e., for each batch of fruits the system checks if this
batch belongs to current population or to a new one). Changing the batch size
increase/decrease the classification accuracy.

2. ‘All features’ batch size - the batch in which all features are activate. After the system
assigns a new classifier for the current population it uses its features to the classification
task. Nevertheless, in order to keep on detecting changes it must check all features
occasionally. Therefore, a batch size is defined for the number of samples in which all
features will be captured.

3. Current feature batch size - current classifier features are active. This is the batch size

defined for the number of samples in which only the classifier features are captured.

A total of 504 simulations were conducted (7 cases of change detection operations: batches of
20,30,40,50,60,70,80; 8 cases of all features activated: 5,10,15,20,25,30,35,40; 9 cases of off
features activated: 1,5,10,15,20,25,30,35,40.

Sensitivity to the cost of features and the penalty of misclassification was additionally

evaluated.

5.3.3 Experimental design
The final class of each olive was determined as the average value of the evaluation of two

panelists. The panelists analyzed the olive images using a Graphical User Interface of Matlab
(Matlab R14, 2005). See Appendix IV, Figure 58 for further details.

Classification included three quality measures: color and color homogeneity (7 grade levels),
defects (5 levels) and overall quality grades (4 levels). The overall quality grades were used as
the olives labels while the other grades were used to validate the image processing results.
Table 5 presents the tested populations and their best-fit base-populations. Appendix V
presents the complete table for the similarity measures values between populations. This
similarity was determined using the predefined overlap measure (equation 8 chapter 3.8.1)

and the Kolmogorov-Smirnov test to compare the distribution of two samples. These two
measures were averaged over the quality features of the populations and used for

comparison.
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In addition to the similarity measures, the population database includes the quality grades

distribution of each population.

Table 5: Population data base and fit populations
Population Base | 1 | 3 8 12 | 14 | 16 | 18 | 21
2 16 |4 7 17 5 |19 [15
9 13 20
10
11

Quality levels and their distribution varied according to the maturity of each
population’s produce (e.g., a premature population contains levels 1-3-4 which means
green, non-homogeneous and defected olives, while other populations may contain only
levels 3-4 which indicates a midway maturity population of poor quality). Each quality
level was also distributed along its feature scale. The quality level distribution was

different for each population.

Figure 21 presents the distribution of the quality levels in each population for a single
feature (i.e., one of the tested quality features). The difference in the quality levels, in the
quantity and span manner, is important for understanding the similarity domain since the
overlap and distribution levels alone cannot determine population similarity. Quality

grades are also necessary.

The following two figures emphasize the importance of using the overlap and KS measures in
the population’s similarity estimation.

Figure 22 presents a statistical comparison using the box plot method. This is a graphical way
to see population range coverage. Figure 23 presents the Kolmogorov-Smirnov test of two
different populations for a specific feature. Two cases are presented: two fully overlapped
populations (b) and two separate populations (a). The plot-boxes include the data of each
population from its first to third quarter while the borders outside of it (also known as the
‘mustache’) contain 1.5 interquartile ranges from these quarters. The ‘+’ points are the outlier

data points.
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Figure 21: Population quality level distributions for a single feature. Each figure describes the
feature value (horizontal axis) as a function of the grade level (1-4) (verical axis). Mean and
median are marked.
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Figure 22: Box-plot of the 21 populations using the mean Hue color feature- vertical axis is the

label
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The KS test emphasizes the difference between the cumulative distribution functions (CDF) of

the two populations checked for overlapping.
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Figure 23: Two populations comparison using KS-test. (a) two separate populations and (b) two
overlapped populations. The evaluation applied on the same feature.

Classification performance and its corresponding cost levels are presented using the Matlab
(2005) software contours that represent 3D domain on-to 2D where one of the three batch size
parameters is fixed. In addition, two main characteristics — features cost and payment matrix

values - of the cost function was change to test their influence on the system cost.

5.4 Results and discussion
5.4.1 Synthetic data

Classification results for all six populations within the whole dataset are compared to results
that would have been obtained by a classifier using all features (denoted as ‘All’).
Average results (Table 6) indicate that the system adjusts to population changes by choosing a

different classifier at each step.

All classification results are poor when the new population is significantly different (e.g.,
Pop_5). The values marked in bold in each row indicate for each population the classification
accuracy of the classifier the fuzzy system selects. It can be seen that this does not yield the
best classification accuracy for each population (except for Pop 1). This is because the fuzzy
system in yielding its classification during the selection procedure takes into account all
classifiers results. Nevertheless, the system eventually performs well (Table 7) because it

weights the classifiers for each data point so that the bad performance classifiers have a
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decreasing effect on the final decision. Increasing the number of data points for selecting the

classifier may improve the final results.

Table 6: Classifier selection results

Population/

Features Al 135736 (132547 ]|157|236|457|246/2346
Original 75.0 | 775 | 489 | 69.2 | 49.7 | 557 | 769 | 49.0 | 56.7 | 52.0 | 51.7
Pop 1 725 | 756 | 55.0 | 72.1 | 524 ]| 56.6 | 755 | 53.8 | 57.0 | 534 | 56.0
Pop 2 649 | 69.5 | 624 | 68.1 | 51.4 | 53.6 | 67.8 | 60.1 | 53.1 | 51.1 55.8
Pop 3 539 | 63.6 [ 84.6 | 649 | 589|555 | 57.8 | 78.0 | 51.1 | 56.5 | 67.4
Pop 4 65.5 842 | 85.8 | 90.9 | 59.7 [ 53.4 | 53.9 | 855 | 504 | 554 | 824
Pop 5 302 | 364 | 44.7 | 399 | 31.8 | 274 | 34.1 | 444 | 26.1 | 27.6 | 39.7

Figure 24 and Table 7 summarize the overall classifier results.

The time series analysis (Figure 24) shows the values of parameters of the multi-stage

classifier throughout the classification process. The time series analysis is divided into three

sub-groups:

1. Fuzzy Process - denotes the instances where the high level was triggered. It also indicates
whether a new population was detected.

2. Measures - denotes the instances where the three change detection measures was
triggered. Instances presented as on/off states.

3. Features - this subgroup indicates which features are used at each stage.

The fuzzy process and the measures states indicate that the on-line clustering algorithm did not

detect a new population during the transition to the second and third populations. These first

three populations (Laykin et al., 2004) overlap. It can be pointed out that the second measure

detects a change between P2 and P3 but at its second stage (as described earlier-0) this

detection was not confirmed. The first measure detects the next three populations (P3 to P4, P4

to P5 and P5 to P6). The second and third measures support the detection of population change

1n two cases.

Features 2 and 4 were never selected while feature 3 is used for most of the populations. Using
feature 3 is reasonable since this feature created the difference between populations. It can be
seen that various features in different combinations were selected during classification.

This mainly means that the system is flexible and adjusts to the new entrance populations.
Features that are marked as ‘YES’ at any stage of the classification process indicate that they
are included in the current classifier. For example at the transition from P4 to P5, the feature

subset changes from [F1, F5, F7] into [F3, F6].
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Figure 24: Parameters of the hierarchical classifier throughout the classification process

Table 7 presents classification accuracy by depicting the correct classification percentage as

well as the percentage of error when classifying adjacent classes in one or two levels of

proximity. Misclassified data represents the difference in quality grades.

Results indicate that the overall classification accuracy of the on-line classifier is better by

12% as compared to the kNN classifier that used all the features. Classification accuracy of

individual populations improved between 5 to 12 percent with only one level of

misclassification in most cases (except for Pop 5 which yielded poor classification results).

Table 7: Results comparison

Populations On-line Classifier All Features
Classifier | Exact (%) [£1 Missed (%) |£2 Missed (%)] Exact (%) [=1 Missed (%)+2 Missed (%)

Original 75.3 24.7 0

Pop 1 1357 73.7 259 0.4 72.4 27.6 0

Pop 2 62.9 37.1 0

Pop 3 (157 66.9 32.9 0.2 47.8 52.2 0

Pop 4 3 6) 85 14.9 0.1 73.5 26.5 0
Pop 5 (3 6) 49.6 50.1 0.3 26.4 51.5 22.1

Total Percent 70.3 29.4 0.3 58.3 37.7 4
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System sensitivity to the population entrance sequence is demonstrated by two examples using
the ‘optimal’ classifier that was trained for each population (Tables 8-9). These results imply
that when the third population is trained with the overlapping data of the second population,
all classifiers yield poor results (~38% misclassified - Table 8). However, if the third
population is trained with the fourth population's overlapping data, a major improvement is
achieved (~10% misclassified - Table 9). This implies that results will improve if the fourth

population enters the system before the third population.

Table 8: Full human run versus on-line run

offline Fknn all features
Pop (Each 500 Train, k=5) Online | Features selected
1 0.80080 0.809 [147]
2 0.82766 0.66 [134]
3 0.96393 0.629 [135]
4 0.94990 0.83 [345]
5 0.80321 0.81 [35]
Overall 0.8629 0.75

Table 8 also presents the results of an off-line classifier that was trained each time with 500

data points (50%) for each population.

Table 9: On-line run with order change

Changed order | On-Line (200 human retrain, 1st with 500) Case
Pop
1 0.8061 human
4 0.928 human
3 0.9118 Overlap(case 4)
5 0.9014 human
2 0.7535 Overlap(case 3)
Overall 0.8552

It can be concluded that for a specific population's entrance sequence, equal results can be
achieved using human retrain only three times (Table 9) instead of five (Table 8, at the offline

case). Furthermore, the system uses only part of the feature space for the on-line classification.

Table 10: Overlap measure values between populations
(significant values are marked (overlap>0.2))

1:500 501:1500 | 1501:2500 | 2501:3500 | 3501:4500 | 4501:5498
Pop Order 1 2 3 4 5 6

1 0.7826 0.4865 0.14731 0.00786 -0.13459
2 0.3915 0.10431 0.103475 -0.143743
3 0.47117 -0.10724 0.0282779
4 -0.239710 | 0.2089594
5 -0.341975
6
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Table 10 illustrates another issue related to the case of more than one population overlap.
Population 3 has almost the same overlap measure for both the second and fourth populations.
As aforementioned, the fourth population yielded better results. This is due to the fact that
populations 3 and 4 have the same grade level distribution (b and c), while the second
population includes ranges of all grade levels. Accordingly, when a new population has
several overlapping populations, the problem becomes a question of which population training
data to use. This is solved by using distribution and symmetry measures as described in the

agricultural dataset experiment design (section 5.3.3).

5.4.2 Agricultural data

Table 11 presents the results of the on-line classifier with the population base. The graphical
stream of data and its area of change are presented in Figure 25. The overall accuracy of the
on-line classifier was 85.3%.

The first two columns present a comparison of the real population change location and the
system change population detection. The third and fourth columns include the quantity of data
points of the new and base populations. The fifth to seventh columns include the average of
the similarity measures. Columns 8-11 respectively include the overlapped data points, the
overlap case (1-4), the appropriate base population (i.e., the one that was selected to classify

the new population) and the final accuracy classification.

Table 11: Overlap table results for the ‘populations base’ run

1 2 3 4 5 6 7 8 9 10 11
Pop | Real | Classifier | Size | Size | OM2 Mean Mean | Overlap | Case | Base | Class
Index | Index | Index base | new om2 KS points Pop
2 1 1 692 | 80 | 0.15558 | 0.86152 | 0.29751 575 4 1 0.9768
4 461 460 692 | 81 | 0.08053 | 0.81556 | 0.25504 364 2 1 0.83
5 626 649 145 | 92 |0.03234 | 0.75869 | 0.23549 75 4 12 | 0.8337
6 1053 1086 181 | 95 | 0.00487 | 0.65944 | 0.19838 109 4 3 0.81
7 1331 1336 145 | 85 |0.06263 | 0.79758 | 0.26319 99 4 12 | 0.8197
9,10 | 1637 1643 180 | 98 | 0.05747 | 0.79884 | 0.22608 114 2 8 0.828
11 1971 1985 180 | 96 | 0.07240 | 0.81346 | 0.19107 144 2 8 0.8985
13 2153 2181 145 | 80 | 0.12077 | 0.84060 | 0.19869 101 2 12 | 0.8964
15 2480 2489 974 | 92 | 0.05908 | 0.80238 | 0.15572 850 2 21 | 0.8656
17 3395 3403 505 | 98 |0.08019 | 0.82787 | 0.19271 289 4 14 | 0.8276
19 4513 4527 704 | 94 | 0.00003 | 0.43760 | 0.31567 292 0 18 | 0.8476
20 4876 4887 978 | 94 | 0.00559 | 0.68356 | 0.18078 554 4 16 | 0.8862

All population changes were detected except of the change between populations 9 and 10.
Since these two populations belong, according to Table 5, to the same population base the

average accuracy remains good related to the overall accuracy.
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Compared to Table 5, the results here indicate that most of the populations selected their
predefined population database. The two exceptions are populations 4,5 and 19. In the case of
population 4, the selected retrain population is 1 instead of 8 because of better overlap value
(Table 20, Appendix VI). Other measures were similar.

In the case of population 5, the overlap and KS measures were similar while the skewness
pointed out that population 12 is more suitable than 16 (as in Table 5).

The skewness comparison is presented in Table 12, which is partial of the full table presented
in Appendix VII that contains all populations cases. The features compared here are the most
useful among the base population classifiers. The comparison is between the mean and
skewness values of the populations at theses common features. The base populations together
with the current one, that is currently checked for similarity, are indexed in the “Pop Base”
column. The selected and current populations measure values are marked in bold font. When a
base population classifier is not based on one of the compared features a zero value is
assigned. “Base population” that has low overlap with the current population contains a row of
zero values (i.e., no need for skewness measure). The “Current rows” include all features since
no sub-group was yet selected. Population 1 was more suitable to population 4 than population
8 even though the tendency to one of them is not significantly indicated in the table.
Population 5, on the other hand, indicates a significance tendency to population 12 over
population 16. Population 19 got low measure values for all populations and was eventually

classified according to the highest values (i.e., below the threshold set for it).

Table 22 in Appendix VIII presents details of the full on-line run. Results indicate that 13
cases required human retrain. Two cases yielded very poor results (less than 70%
classification accuracy) probably due to bad history population selection. These results
together with the plurality use of human retrain is due to the system sensitivity to entrance
order. The system yielded 81% classification accuracy but the extensive use of the human

retrain indicates a significant need for the predefined population base.
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Table 12: Skewness measure for similarity (Population 4&5)

PopBase Feature 20 Feature 26 Feature 27 Feature 28
Mean Skewness Mean Skewness Mean Skewness Mean Skewness
Current | 1.040473 | 0.387228 | 0.402134 | 0.510796 | 0.029511 | 0.787229 | 5.844775 | -0.48129
1 0 0 0 0 0.029479 | 0.426652 | 5.844532 | 0.057617
3 0 0 0 0 0 0 0 0
8 0 0 0 0 0.023588 1.4363 6.064877 | -1.11302
12 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0
Current | 0.470174 | 1.346545 | 0.029131 0.38345 0.065649 -0.0697 4.724809 | 0.406449
1 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0
12 0.687794 | 1.317574 0 0 0.048626 | 0.032254 | 4.95899 0.483001
14 0 0 0 0 0 0 0 0
16 0.575333 | 0.846029 0 0 0.088865 | 0.264578 0 0
18 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0
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Figure 25: The population detection of thel2 new populations stream
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The following tables present the confusion matrix of the presented classifier in comparison to
other classification options. The mean square precision error (MSPE) was evaluated for each

case. Table 13 present the results of our classifier.

Table 13: Confusion matrix of the on-line classifier (using the population database)

A B C D
A 0.796923 0.04 0.14 0.023077
B 0.066558 0.756494 0.136364 0.040584
C 0.036353 0.051011 0.864263 0.048373
D 0 0.000663 0.102717 0.89662

1< )

Mspel3= ZZ(I— P;)7 =0.25%(0.21°2+0.25/2+0.14%2+0.11/2)=0.0346
i=1

Table 14 includes the confusion matrix result from the decision tree ¢5.0. This classifier was

trained, like our classifier, with the ‘base-population’ as the training set and the rest of the
populations as testing. The decision tree eventually works as a rule-based system which is
supposed to yield the best performance giving the mentioned training set. The MSPE measure

it yields is almost equal to the one our classifier yields.

Table 14: Confusion matrix of decision tree C5.0 (train-‘Populations base’; test- rest)

A B C D
A 0.89077 0 0.10923 0
B 0.00161 0.74194 0.25645 0
C 0.02260 0.01702 0.92398 0.03640
D 0 0.00398 0.06627 0.92975

Mspel4= ZZ(l — P;)? =0.25%(0.21/2+0.26/2+0.08"2+0.08"2)=0.0311
i-1
In comparison to our classifier, two additional classifiers are presented. These two are based

again on the decision tree trained with only one population. Table 15 includes results of the
classifier trained with population 16 while Table 16 presents the results when the classifier is
trained on population 1. The confusion matrix together with the MSPE measure indicates
severe misclassification in comparison to the adaptive classifier. The confusion matrix in
Table 16 indicates that no sample was classified to grade ‘B’. This is due to the fact that the
classifier was trained only with population 1 which does not contain samples of grade ‘B’.

As mentioned in section 5.3.2.2 three parameters were checked for their influence on the
system cost and performance. The system performance values were based on the MSPE

measure. Results in 2D and 3D (by contours) are presented.
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(test- other 20 populations)

Table 15: Confusion matrix of decision tree C5.0 trained on population 16

A B C D
A 0.56750 0 0.43250 0
B 0 0.63708 0.36292 0
C 0.01847 0.00354 0.97406 0.00393
D 0 0.00182 0.19193 0.80625
1 4
Mspel5= ZZ(I — P;)? =0.25%(0.44/2+0.37/2+0.03°2+0.22)=0.0929
i=1
Table 16: Confusion matrix of decision tree C5.0 trained on population 1
(test- other 20 populations)
A B C D
A 0.98970 0 0.01030 0
B 0.00109 0 0.99891 0
C 0.08977 0 0.58691 0.32332
D 0 0 0.01025 0.98975

1< )

Mspe16= ZZ(I — D)7 =0.25%(0.02/2+112+0.42/2+0.02/2)=0.2943
i=l

The three parameters values, as mentioned in section 5.3.2.2, are as follow:

e 7 cases of change detection operations (batches of 20,30,40,50,60,70,80). The phrase
‘BatchSize’ is used for these values in the figures axes/legends.
e 8 cases of all features activate (5,10,15,20,25,30,35,40). The phrase ‘On’ is used for
these values in the figures axes/legends.
e 9 cases of Current feature activate(1,5,10,15,20,25,30,35,40). The phrase ‘Off” is used
for these values in the figures axes/legends.
Sensitivity to the cost of features and the penalty of misclassification was additionally
evaluated.
Figure 26 and Figure 27 present the overall influence of the detection batch size on the
classifier performance. It always go from high performance at 20 to low performance at 80.
Each line in the graph present the values of the other two parameters. For example, each point
on the red line in Figure 26 is the mean of 7 values (10-40) of Current feature parameter (Off)
for All features on value of 30.
In Figure 28, for all values of All features on parameter, the batch size of 20 (blue line)
represents the highest performance while 70 (red line) is the worst. The cost value variations is
presented in Figure 29 where the minimum value of All feature parameter got the minimum
cost for almost all values of batch size detection parameter. Figure 30 and Figure 31 imply that
cost values increase together with the All feature batch parameter and decrease when Current

features increase. This is presented for all batch size parameter values.
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Figure 26: Batch size influence on the system performance (with All features (on) parameter)
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Contours graphs are presented to check the parameter influence in more detailed results.

These results indicate can supply local trends of the parameter influence on the system.

Change detection batch size
Classification performance levels as well as the corresponding cost for the case in which the

batch size for the change detection procedure is set to three constant levels (20,40,80) is

presented. Each contour is a boundary for certain level area. The arrows mark the gradient

direction from high performance areas to the low ones. The parameters influence on

performance is summarized in the following points:

1.

The upper left corner of the graph indicates high performance since most of the features
are used most of the time (FeatureOn>>FeatureOff) while the lower right corner indicates
poor performance.

Several local minimum/maximum represent less expected results. For example, point
[20,20] (i.e., [‘FeaturesOff’,‘FeaturesOn’]) was expected to achieve higher performance
than [20,15] since less ‘FeaturesOn’ are used. The contour graph (Figure 32) shows the
opposite. Same phenomenon repeats (in different locations) in other examples. These
cases occur since different parameter combinations have a different influence on the
change detection procedure as well as on the overall classification.

Comparing the classifier cost and performance contours indicates the influence of the
classification accuracy on the cost function. For example, it could be expected that using
point [20,5] will yield lower cost than points [20,10/15] since it uses more active features.
The cost function contours presented in Figure 33 shows the opposite. This is due to the
fact that the cost function incorporates classification performance. Same areas in the
performance graph (Figure 32) emphasize that the first area ([20,5]) has lower
performance level than the second area.

In several cases a high classification accuracy area corresponds to a lower cost minimum
area. Two examples are points [30,10] and, even better point [20,15] in which good

performance is achieved simultaneously with lower cost units.

Other cases are displayed in Appendix 1X.

When comparing the different batch sizes of the change detection operations during simulation

it should indicate that the classification performance levels are decreasing and the cost

increasing. This can be figured out by checking the color bars of the graphs (e.g., Figure 32
min-0.02, max-0.07; Figure 36 min-0.04, max-0.13).
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All feature batch size
Classification performance levels as well as the corresponding cost for the case in which the

all features on parameter set to three constant levels (5,20,40) is presented.
The parameters influence on performance in this case is summarized in the following points:

1. The batch size of the change detection influence is best emphasized in this simulation.
Each figure illustrates how the classifier performance decreases as the batch size
increases. These changes tend to the right side of the figures (e.g., Figure 38) indicating
that altering the change batch size together with the features off batch size has a high
effect.

2. The highest cost area is concentrated on the left side of the figure since most of the
features are activated during simulation (Figure 39).

3. Cost minimum value is at Figure 39. This means that moving from this parameter low
value (5, Figure 39) to the highest (40, Figure 43) increases the overall cost since more
features are active.

4. While in the lower/average parameters values (Figure 39; Figure 41) there is no specific
direction to the cost gradient (i.e., arrows aim to all directions) it becomes very clear at
parameter size of 40 (Figure 43) that the gradient is from left to right. This indicates that
the feature cost becomes at this point more significant than the other cost constituents of
the cost function.

Current features (off) batch size
Classification performance levels as well as the corresponding cost for the case in which the

(current) features off parameter is set to three constant levels (5,15,40) is presented.
The parameters influence on performance in this case is summarized in the following points:
1. When moving from the value of 5 to 15 (Figure 44 to Figure 46) the low performance area
increases.

2. The cost in these cases decreases. This is due to the fact that less features are involved.
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Figure 38: Classification performance measures variations where all features on is fixed on a
batch of 5 and features off/detection batch size batches are changing
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Figure 46: Classification performance measures variations where all features off is fixed on a
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Sensitivity to cost changes

To check the cost function sensitivity to cost changes three values of both the feature cost and

penalty cost were evaluated. Comparison of results of the first change (presented in Figure 48

and Figure 49) to the case in which all features cost was one unit and all penalties were the

same for positive/negative misclassification (Figure 33) indicate:

1. Increasing the features cost by 3 units increases the significance of the feature cost. In
Figure 48 we can see an obvious tend of the cost to increase from down-right corner to
the up-left corner continuously. This means that by current change the feature cost is
more significant than the penalty cost.

2. Multiplying the penalty cost by two makes the cost contours in Figure 49 look much like
the classifier performance contours in Figure 32. Actually, cost behavior is similar to
performance behavior. This result indicates the significance of the penalty cost over the
feature cost.

Simulation significance

To check the changing parameters influence on the overall classifier performance a

comparison is made between the best classification performance results and the best off-line

classifier (Table 17). The off-line classifier was a FKNN classifier that was trained on all
population- base training sets and used the best fit feature combinations of all quality features.

Table 17: Comparison between best off-line and best in the sensitivity test

Highest performance Lowest cost Off-line classifier
results results
ParametersValue ParametersValue
[20,40,1] [20,10,30] Features=[20,26,29]
Classification 0.01883 0.0288 0.0286
performance
Cost 1501 1160 820 (+TrainCost)

We can see that one parameter combination (and there are more within all simulation
possibilities) resulted in better performance than the best that was defined off-line. However,
the cost of the simulated classifier is higher even though we must consider the training cost of
the off-line classifier.

Table 17 includes also the simulation with lower accuracy performance, but still comparable

to the off-line classifier, that costs much less than the best performance simulation.
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5.5 Summary
The chapter presents system implementation analysis on synthetic and real agriculture
databases. The synthetic experiment indicated the capabilities of the change detection
measures in this research. The measures were precise and succeeded in detecting the
significance transitions between the populations. Classification accuracy was better than the
classifier that used all the features. The significance of the order of population’s entrance was
also presented using the synthetic data base. These experiments indicated the system
sensitivity to entrance order and pointed out the need for a population database.
The classifier yields higher classification accuracy performance than non-adaptive classifiers
for the agriculture database. The mean square precision error (MSPE) indicates this difference
(0.0346 for the adaptive vrs. 0.2943 for non-adaptive). When compared with optimal
classifiers (i.e., using all features and trained using all populations) the system yielded lower
but still comparable results (85% vrs. 89%; 0.0346 vrs. 0.0311). Its advantage is the
employment of a smaller number of features (different number for each population), which
implies lower classification costs. In addition, the optimal classifier that was tested is a ¢5.0
tree classifier which is comparable to a rule-based system that uses all features and therefore
yields the best results.
Results imply that Class B always appears with a lower accuracy than the other grades. Going
through detailed results we find that these errors mainly appear for population 17. This
population images of black olives and near black olives were problematic to analyze during
the image-processing phase and therefore there is a higher gap between class B and C.
The sensitivity analysis implies that the defined parameters have major influence on both

system performance and cost.



6 Conclusions and future work

6.1 Conclusions
With quality sorting of produce constituting a major challenge in agriculture, most research in
the field today focuses on the feature extraction ability that various systems offer. The main
problem is how to deal with the "diversity of physical appearance encounters in agricultural
products" (Njoroge et al., 2002). This problem is difficult since agricultural features depend
on growing conditions and change during the season and therefore cannot be predicted a-
priori. These changes introduce a sorting problem in which the classifier must be able to
classify agricultural produce as efficiently as possible using a minimum quantity of features
and considering all costs in the classification process so as to maximize system profitability.
This thesis attempts to provide an efficient method for solving this problem by developing an
on-line hierarchical classifier with the capability of adapting to different populations. By
applying best-fit classifiers and the appropriate subset of features, we achieved improved
classification accuracy.
The main contributions of the proposed classifier are: efficient detection of a new population;
rapid adjustment to this population in terms of overlap and similarity measures; online feature
and classifier selection via the adjustment procedure; and a cost objective function that,
together with classification accuracy, tests the system performance.
A major contribution of our methodology is the ability to adapt to variations in produce using
population detection and decision tools about classification strategies. Our methodology is in
accordance with the observations of leading researchers in this area. For example, Lu (2003),
who used NIR hyper-spectral imaging for bruise detection in apples, mentioned that "these
results indicate that bruises are affected by apple variety and bruise severity, and they change
with time and at different rates, even for the same fruit. Hence, an effective detection system
must have the capability to detect bruises, both new and old, for different apple cultivars".
Njoroge et al. (2002), in presenting the performance of his automated fruit grading system
concluded: “Incorporation of a high level intelligence into the system will enhance robustness
in dealing with problems related to flexibility of the inspection product and inspection

environment”.
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Picus and Peleg (2000), who identified the need for adaptation in sorting agricultural produce,

developed a classification system based on prototype populations and implemented it on dates.

However, in their research, all prototype populations must be known in advance and used to

train the classifier. Their system identifies a new population from an existing one. In our

research, not all populations must be known in advance. When a new population is detected,

the system compares it to previous populations using an overlap measure and two similarity

statistic measures (KS for distribution and skewness for the class similarity). Since the

classifier deals with many different relationships between the populations it is more flexible

and suitable for real world problems.

The classifier that we developed has several advantages:

1.

Employs a multitude of features

The developed methodology deals with a multitude of features, detecting the features that
cause the change and define the best-fit feature set for the new population decision.
On-line change detection

An on-line clustering algorithm was expanded to enable on-line change detection. This
includes adjustment of the clustering algorithm to provide information to three measures
developed for global and local changing detection. Previous work dealing with on-line
change detection was mainly implemented for signal processing and abrupt changes
[Markou and Singh, 2003].

Change detection in the feature space depends on the batch size that is defined for the
change detection operation timing.

In a population classifier based on a FIFO stack methodology (Picus, 2000), in which the
classifier is trained with a known, a-priori population training set and where the reference
is the population index, the problem is that the stack must contain samples from the same
population in order to detect it. In case of two populations in the stack, the classifier
detects either a mix with no reference or a third population. The previous population
classifier misclassified the samples that, meanwhile, went through the stack.

Although in our classifier we encounter the same problem of misclassified samples, a
situation in which a mixed population is detected and classified as unknown cannot arise.
Our system achieves this by separating the detection (of the new population) from the

action (set new classifier).
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4. Our population base approach is based on all relevant features and not only on the best
ones. As a result of this approach, the classifier detects changes in more than one feature

domain and uses the population's similarity measures to improve performance.

5. While most similarity measures are based on a rough comparison between two
clusters/classes (see Hu and Basu, 2002; Rond and Wang, 2004) our system diagnoses not
only the overlapping level between the groups but also determines whether the
classification levels within the populations are similarly distributed. Whenever a new
population enters the system, it might be found highly overlapped with several
populations but only similar to part of them. This is a very important point since even
though the overlap level is high, the two populations might contain different grade
distributions (e.g., Figure 4). Comparing the skewness measure of both populations for
each selected feature provides the system with a better population choice. The issue of the
classification level span inside the populations requires additional research.

6. The classifier selection procedure also defines the best-fit feature subset. This is achieved
by the procedure developed for using data from populations that have the best overlap
level with the new population as a retrain data set for the classifier selection procedure.
This procedure uses a fuzzy logic rule-based system to select the best-fit classifier from a
batch of n fuzzy kNN classifiers. These classifiers use different feature combinations.

Sensitivity analysis indicates, as expected, that the population entrance order is important and

adversely influences the classification accuracy. To overcome this problem a population base

was selected using an averaged overlap and KS statistic between the populations. This
population base was the reference for new populations that use its known classifiers in case of
full adjustment or just the retrain data according to the overlap levels. The advantage of our
classifier is its ability to use several pre-defined populations in order to build a new retrain

database for the adaptation stage.

Lim and Harrison (2003), faced with the problems of on-line pattern recognition using
probabilistic fuzzy adaptive resonance theory (PFAM), mentioned the need to "absorb
knowledge continuously and autonomously without corrupting or forgetting previously
acquired knowledge". This is called the stability-plasticity dilemma (Carpenter and Grossberg,
1987). The need for this population base can also be seen from the research of Lim and
Harrison (2003) who concluded: "One practical strategy is to employ a dual-mode learning

approach where each PFAM classifier is first trained, offline, with a set of input samples with
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different orderings. This approach helps establish a knowledge base in the classifier before
online, incremental learning is engage"’.

Picus (2000) defined prototype populations, a concept which is similar to our ‘population
base’ using the dendogram clustering method. The best separating feature dendogram was
selected for this task. The system detects populations that fit the prototype population and sets
its classifiers for it. Populations that were not fully similar to one prototype population could
not be classified. Our classifier yields higher classification accuracy performance when
compared to non-adaptive classifiers. The mean square precision error (MSPE) indicates this
difference (0.0346 for the adaptive Ver. 0.2943 for non-adaptive). When compared with
optimal classifiers (i.e., classifier using all features and all populations and trained on them)
the system yielded lower but still quite good results (85% versus 89%). Furthermore,
employing a lower number of features (a different amount for each population), results in
lower classification costs. Sensitivity analysis dealing with the batch size also indicates the
cost benefit that is achieved using a small subset of features for each population.

To test the classifier in real world conditions, we harvested and analyzed a specially
designated crop of olives to create a well-defined database for the classification problem.
Commonly employed databases used for performance analyses of classifiers (e.g., UCI
machine learning repository, 1998, ELENA dataset, etc.) could not be used since they do not
contain multiple populations. The application of the classifier to the problem of olive quality
sorting resulted in contributions for olive quality sorting: image processing algorithms,

classification of table olives and olive oil quality prediction.

To summarize, the proposed on-line adaptive classifier framework selects online the most
appropriate classifier and feature subsets for the incoming population. The chief benefit of our
system 1is its ability to adapt to new populations based on previous ones using similarity
measures. This ability makes it possible to decide on a classification strategy without having to
train on a specific population, an approach that makes the framework more flexible to changes
in the population. The capability of selecting the best feature set results in improved

classification performance and lowered costs.
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6.2 Future work

Future work may include the following directions:
6.2.1 Algorithms
Optimal classifier design

The system presented in this work is based on several methods that were combined into one
hierarchical system. Using several sensitivity analyses, we tried to improve system
performance. To improve the system, optimization procedures should be conducted for some
of its elements. The classifier selection procedure can be based on systems other than the
fuzzy method (e.g., voting method, Dempster-Shafer method). The fuzzy procedure itself can
be tested for various membership functions with different rules. A classifier combination
method should be applied to define the training data points selected for a new population.
Several population classifiers that have high similarity with the new population must be
combined to obtain the best classification grades. Additionally, statistical tools, designed for
process optimization (Montgomery, 2001), might be considered in order to get the best
performance based on all system parameters (e.g., several batch sizes, cost parameters.).

Virtual population structures
After building the population base there should be a way of combining these populations into

virtual populations to maximize the coverage of the feature space. This option should provide
the system with the ability to deal with additional types of populations. This virtual process
should include growing populations from the initial population database in order to keep the
nature of quality labels.

6.2.2 Parameters

Cost analysis
In the current research we presented an off-line cost function that was applied after

implementation. A basic cost analysis of the classifier selection procedure was conducted on-
line in which classifiers with equal accuracy were compared over their feature quantity (i.e.,
the classifier with minimum features was selected). Additional parameters should be
incorporated into this on-line cost analysis. These parameters can include most of the
predefined parameters in our off-line cost function — classifier operation cost, misclassification
penalty and change detection routine cost. In this way the system can be made more sensitive
to the cost influence during a system run. This sensitivity to cost will improve the suitability of

system performance in other domains as well, including those mentioned above.
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As the cost analysis demonstrated in the experiment chapter there is a way to set classifier
parameters to achieve high performance classification with much lower costs. Therefore
further optimization analysis research should be conducted on the simulations results.

Changing batch size
In this work we tested the influence of the batch size in which change detection is checked.

Future research might check the possibility of a variable batch size or a new parameter that can
be more successful in the performance means. The system can increase or decrease the batch
size according to its changing gap (e.g., after several short batch sizes, checking the use of a
long one for the detection and then repeating the loop).

In addition, the overlap measure and the classifier selection procedures were applied to constant
batches that have been empirically predefined. The system sensitivity to those batches size
should be tested.

Population similarity measures
In this research we implemented three measures (overlapping, KS statistic and skewness) for

defining population similarity and selecting the classification action accordingly. The
overlapping measure is specifically fitted to this work and other related measures should be
tested. The overlapping domain, which related to a changing online environment, should be
further examined.

The skewness measure that determines the classification grade level patterns (e.g., Figure 20 in
section 5.3.2) inside the population feature space used in this research is very general. A
combination of this measure with other statistical ones or its extension may improve its
performance.

6.2.3 Experiments

Extended experimentation
Further research must be carried out on additional agricultural produce. Additionally, the

suitability of the system for additional domains should be evaluated. Among the features to be
included in these domains are: multiple features, vague border definition and time change
dependency. We propose that GIS domains and medical systems as offering suitable features
for further research. The former might include satellite vision implementation to classify
surface patterns (e.g., different agricultural field variations or any other ground cover
application) while the latter can include blood tests or diseases with changing variables
between patients. Additional domains could include economic problems (e.g., classify
personal loans/accounts as ‘good’ or ‘bad’ during some time periods based on the application

characteristics) and data mining (e.g., handwriting detection of people in changing states).
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Appendix I Vision system & Image processing algorithms

The vision station is presented in the following fi gures.

Figure 50: Grabbing system(1) — The camera and light table.
The system composed of :
* Color CCD camera (Sony Cyber-shot DSC-F717).
* Four 17 W halogen spotlights were placed, two on each wall with a constant
distance between them to ensure uniform illumination distribution in the sampling
area. The walls are made of diffuse structure that enables the light uniformity.

Figure 51: Grabbing system (2) — Overall system

* The acquired RGB image was transformed to an HSI (hue, saturation, intensity)
image using a standard software procedure (Matlab, 7.1).
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Images of Olives Harvested Varieties:
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Figure 52: Olives varieties
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Classifications:
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Defects] Defects] small Defects] Defects]

Figure 54: Olives grades

Extract Olrves

Olive Ripe
Stage (Color)

v

Shape Detection

y

Defect Detection

v

Olive Grade

Figure 55: Image processing flow chart
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Figure 56: Color histograms (midway maturity olive)
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Figure 57: Color histograms (green olive)
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Appendix II Olives data description

21 populations based on different spices of olives and from different location and dates:

Table 18: Olives varieties

Population # Samples | Location Special Harvest Day’
Name (RamatNegev) | Features
1 Barnea 693 Tree 1 Shape 15/12/2005
2 Barnea 2 460 Tree 2 Shape 15/12/2005
3 Manzanilo 182 15/12/2005
4 Pishulin 165 Bad Quality | 15/12/2005
5 Nuchilera 427 Big size 15/12/2005
Belizi
6 Pikual 279 BIG Black 15/12/2005
7 Barnea 184/305 Tree 1 Shape H30/11/2004
G 2/12/2005
8 Barnea (Tree | 104/180 Tree 2 Shape H30/11/2004
2) G 2/12/2005
9 Ochiblanka | 137/203 Color H30/11/2004
Homogeneity | G 2/12/2005
10 Barnea 96/132 Tree 3 Bad Quality | H30/11/2004
(defective G 2/12/2005
Tree)
11 Blanketa 114/182 Small size H30/11/2004
G 2/12/2005
12 Nuchilera 73/145 Big size H30/11/2004
Belizi G 2/12/2005
13 Prolin 222/327 Small size H30/11/2004
G 2/12/2005
14 Nuchilera 505 Big size H 16/12/2004
Belizi G 17/12/2004
15 Unknown 915 Taken from Ripe stage H 16/12/2004
(~Barnea) packing G 17/12/2004
16 Prolin 978 Small H 16/12/2004
G 24/12/2004
17 Arbikina 1118 First Tree SMALL H 16/12/2004
G 24/12/2004
18 Ochiblanka | 704 Color H 16/12/2004
Homogeneity | G 25/12/2004
19 Pikual 364 Taken from BIG Black H 16/12/2004
packing G 25/12/2004
20 Kurineiky 1313 SMALLEST | H 16/12/2004
G 26/12/2004
21 Barnea 974 Taken from Shape+ Ripe | H 16/12/2004
packing (Bad | stage G 27/12/2004
Quality)

S H — harvest day; G — grabbing day — in-between kept in refrigerator
At 16/12/2004 — Rainy day.
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Appendix III Olives features description

Table 19: Features description

Feature name implementation description

Area BW matrix Number of relevant pixels

Length BW matrix Length of Olive Bounding Box

Width BW matrix Width of Olive Bounding Box

Eccentricity L1/L2: Ellipse (same second moment
as the region) centers distance (L1) by
Long Axis (L2) (~1 — Circle; ~0 - Area
Line).

Orientation

Equiv. Diameter

Diameter of same area circle

Compactness (Shape) (Perimeter/Area’2)
Max Distance maximum distance from center to edge
Length vec The distance vector length

FD1 (1* FFT coefficient)

Average Radius

FD2 (2nd FFT coefficient) Bendingness

FD3 Elongation

FD4

FD5

Ratio Elong (FD(1)-2*(FD(3)))/(FD(1)+2*(FD(3)))
Ave G Color

Var G Color Variance

DefectPer

Texture (Mean) Ave intensity (Graylmage).

Texture (Std) Standard deviation — measure of

average contrast

Texture (Smoothness)

R=1-1/(1+0%)

Texture (3" moment)

Measure of the skewness of the histogram

Texture (Uniformity)

U=Zp2(zi)

Entropy

Measure of randomness
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Appendix IV Expert Panel GUI

The Matlab (7™) GUI that was used for the two panelists work is at Figure 58.

The GUI contains three operation areas. The first is the olive label and color (b and ¢ in the
figure). These are the general grades — labels contains 4 grades and color contains 5 grades.
The “defect type and severity’ (d, e and f) section is the more detailed one. First the user mark
the defect type (e) and then the defect severity level (f). The five defect types mentioned in the
GUI are the most common defects: fly defect (automatically get the worst grade), wrinkles,
pressure, mechanical and rot defects.

The last section (g) is the brightness bar which give the user the option of improving the image
visibility.

| <) Olives1 = | kad
100016,
Nurrber of 15 - t Brightness :
a = £

Olive label b

|Severe defects :J

: |

|green ;I |

Defect type and severity

—wirinkles

— fly defect — pressure defects — mechanical defects — rot defects ——

[ fly detect [] wwerinkles [Jpressur... mechani... [ rat

() nonsignific...

() average

(3) eszentiald...
() tatally defect totally detect
fl

Next

Figure 58: Olives panel GUI
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Appendix V The on-line clustering algorithm

The original on line clustering algorithm (Guedalia et al., 1999) is detailed in the following

pseudo code. For each centroid &, let Yo be the location and © the counter of the centroid:

Step 0) Set k=3 /* get the first 3 data points to be the initial k¥ centroids. */
Step 1) Get data point x

Step 2) winner = o _g.t. ”J’a - x|| ig minimal *winner - The centroid closest to the data point.*/

X= y WINHEY

3 [*Update the location and counter of the winrner centroid ¥/
£ +

Stel" 3} yw:’nnsr — yw:’nnsr +

winner

+1

winner c wnney

Step 4) {(;}_: arg min ,,; Hy}, -y, ” Find the two most similar centroids (closest to each other)*/

Yoyt ¥sCs

Step 5) y,
C,+Cy

FMerge the two redundant centroids. ¥/
R,

Step 6) ¥, =xc, =0 (Initialize the new centroid with the last data point. It may
indicate the arrival of a new cluster of data (population)™/

Step 7) Go to step 1.

Figure 59: On-line clustering algorithm
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Appendix VI Similarity measures

Table 20: Offline Similarity Measure

pl p2 #featuresMeanK  |OM2 MeanOM2 0/1
1 2 16 0.2599717| 0.0726101|0.8554033 1
1 3 16 0.4843019| 0.0000011|0.5060942 0
1 4 16 0.2543785| 0.0537339|0.8383415 1
1 5 16 0.4289169| 0.1295740/0.8934223 0
1 6 16 0.4956528| 0.0000002/0.4626533 0
1 71 16 0.2873446| 0.0396341]0.8241855 1
1 8 16 0.2563744| 0.0423501/0.8336830 1
1 9 16 0.3411934| 0.1248844/0.8864424 1
1 10, 16 0.3272320| 0.0258910/0.8066193 1
1 11| 16 0.2141131] 0.0489578|0.8389789 1
1 12| 16 0.4125023| 0.0452449|0.8328870 0
1 13] 16 0.4268367| 0.0555402/0.8431684 0
1 14 16 0.3073054| 0.0166107|0.8022292 1
1 15 16 0.3934981| 0.0103934/0.7733074 1
1 16| 16 0.4568689| 0.0071551]|0.7623228 0
1 17] 16 0.2430299| 0.0253214/|0.8152759 1
1 18| 16 0.6002140| 0.00276640.7092093 0
1 19| 16 0.6212220| 0.0000000{0.4348616 0
1 200 16 0.5023976| 0.0016429|0.7121305 0
1 21 16 0.4807657| 0.0007170|0.6857637 0
2 1 16 0.2599717| 0.0726101|0.8554033 1
2 3 16 0.6446618| 0.0000004/0.4739157 0
2 4 16 0.3240864| 0.0268389|0.8031989 1
2 5 16 0.4900826| 0.0199640/0.8071495 0
2 6 16 0.6496801| 0.0000001|0.4328719 0
2 71 16 0.4412021] 0.01465600.7829015 0
2 8 16 0.2715743| 0.0436923|0.8300227 1
2 9 16 0.3629259| 0.0471526|0.8354614 1
2 10, 16 0.3472392| 0.0255501/0.8010878 1
2 11 16 0.3096585| 0.0388623|0.8300572 1
2 12| 16 0.4427491] 0.0209877|0.7972867 0
2 13] 16 0.4861413| 0.0112119|0.7715701 0
2 14 16 0.3655478| 0.0067897|0.7768335 0
2 15| 16 0.4503086| 0.0050205|0.7408830 0
2 16| 16 0.5043974| 0.0013832/0.6980878 0
2 17] 16 0.3506489| 0.0040980|0.7396472 0
2 18| 16 0.7118687| 0.0007643|0.6608950 0
2 19| 16 0.7432353| 0.0000000|0.3975812 0
2 200 16 0.5122602| 0.0003117|0.6540368 0
2 21 16 0.5536444| 0.0002512|0.6364184 0
3 1 16 0.4843019| 0.0000011|0.5060942 0
3 2 16 0.6446618| 0.0000004/0.4739157 0
3 4 16 0.3794952| 0.0000109[0.5731300 0
3 5 16 0.5930157| 0.0000004/0.4700016 0
3 6 16 0.1699748| 0.0211458/0.8037918 1
3 71 16 0.5498698| 0.0000001|0.4247965 0
3 8 16 0.5348589| 0.0000001/0.4126882 0
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3 10, 16 0.5599689| 0.0000001|0.4199258 0
3 11] 16 0.5072556| 0.0000001/0.4304739 0
3 12| 16 0.6339349| 0.0000000{0.4122828 0
3 13] 16 0.6373792| 0.0000001|0.4415902 0
3 14 16 0.5693598| 0.0000003|0.4591029 0
3 15 16 0.4443617| 0.0000061/0.5398621 0
3 16| 16 0.6232087|-0.0000002|0.4794044 0
3 17] 16 0.5036724| 0.0000007|0.4817347 0
3 18| 16 0.5006201| 0.0000083|0.5649087 0
3 19| 16 0.5493722| 0.0000391|0.6425998 0
3 200 16 0.7463929| 0.0000008/0.4503804 0
3 21 16 0.4560956| 0.0000242|0.6059211 0
4 1 16 0.2543785| 0.0537339|0.8383415 1
4 2] 16 0.3240864| 0.0268389|0.8031989 1
4 3 16 0.3794952| 0.0000109|0.5731300 0
4 5 16 0.4684317| 0.0199336|0.8018438 0
4 6 16 0.4036667| 0.0000022|0.5313479 0
4 7 16 0.3983584| 0.0057436|0.7412084 0
4 8 16 0.2482983| 0.0060858|0.7450437 0
4 9 16 0.3008026| 0.0417567|0.8289540 1
4 10, 16 0.3065487| 0.0040040|0.7255240 0
4 11| 16 0.2969666| 0.0047781|0.7375812 0
4 12| 16 0.4933828| 0.0064406|0.7465026 0
4 13| 16 0.4981634| 0.0146564/0.7857308 0
4 14 16 0.3725760| 0.0042502|0.7379810 0
4 15 16 0.2870388| 0.0231298|0.8074718 1
4 16| 16 0.5043155| 0.0058107|0.7566843 0
4 17] 16 0.2829799| 0.0068146|0.7514136 0
4 18| 16 0.5459757| 0.0233037|0.8073543 0
4 19| 16 0.5995259| 0.0000007|0.4860504 0
4 200 16 0.5807913| 0.0007885|0.6762674 0
4 21 16 0.4092446| 0.0057986|0.7610421 0
5 1 16 0.4289169| 0.1295740/0.8934223 0
5 2 16 0.4900826| 0.0199640/0.8071495 0
5 3 16 0.5930157| 0.0000004/0.4700016 0
5 4 16 0.4684317| 0.0199336|0.8018438 0
5 6 16 0.6004060| 0.0000001|0.4340520 0
5 71 16 0.2842674| 0.0483424/0.8331084 1
5 8 16 0.4418710] 0.0115464/0.7801165 0
5 9 16 0.5004796| 0.0379223|0.8311367 0
5 100 16 0.5654017| 0.0084242|0.7568640 0
5 11] 16 0.3944239| 0.0152383|0.7911874 1
5 12| 16 0.2502602| 0.0316528|0.8155679 1
5 13| 16 0.2360910| 0.0997739|0.8706733 1
5 14 16 0.2812121] 0.0484871|0.8341936 1
5 15 16 0.5041840| 0.0143578|0.7841573 0
5 16| 16 0.2260171] 0.0329079|0.8201560 1
5 17] 16 0.3801370| 0.0762269|0.8566035 1
5 18| 16 0.6018378| 0.0085787|0.7610942 0
5 19 16 0.6167108| 0.0000000/0.4660355 0
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5 200 16 0.2985383| 0.0088844|0.7704347 0
5 21 16 0.5685319| 0.0008588|0.6988238 0
6 1 16 0.4956528| 0.0000002/0.4626533 0
6 2 16 0.6496801| 0.0000001|0.4328719 0
6 3 16 0.1699748| 0.0211458/0.8037918 1
6 4 16 0.4036667| 0.0000022|0.5313479 0
6 5 16 0.6004060| 0.0000001|0.4340520 0
6 70 16 0.5453830| 0.0000000]0.3879166 0
6 8 16 0.5633319| 0.0000000|0.3723522 0
6 9 16 0.6276653| 0.0000001/0.4301515 0
6 100 16 0.6051584| 0.0000000|0.3720624 0
6 11 16 0.5116109| 0.0000000/0.3901721 0
6 12| 16 0.6363950| 0.0000000|0.3704352 0
6 13] 16 0.6389169| 0.0000000]0.4023266 0
6 14 16 0.5702769| 0.0000001|0.4297225 0
6 15| 16 0.4357158| 0.0000015/0.5018398 0
6 16| 16 0.6203610| 0.0000001|0.4535806 0
6 17, 16 0.5127878| 0.0000002|0.4529719 0
6 18] 16 0.4822143| 0.00000240.5230795 0
6 19| 16 0.5108687| 0.0000661|0.6144997 0
6 200 16 0.7466479| 0.0000001|0.4138759 0
6 21 16 0.4305641| 0.0000142/0.5805596 0
7 1 16 0.2873446| 0.0396341|0.8241855 1
7 2 16 0.4412021] 0.0146560/0.7829015 0
7 3 16 0.5498698| 0.0000001|0.4247965 0
7 4 16 0.3983584| 0.0057436|0.7412084 0
7 5 16 0.2842674| 0.0483424/0.8331084 1
7 6 16 0.5453830| 0.0000000]0.3879166 0
7 8 16 0.3794785| 0.0402995|0.8294378 1
7 9 16 0.4242165| 0.0335473|0.8146384 0
7 10 16 0.4758961| 0.0149149|0.7799698 0
7 11 16 0.2855943| 0.0951499|0.8734668 1
7 12| 16 0.2222876| 0.1130222|0.8745762 1
7 13 16 0.2404971] 0.1501164/0.8902521 1
7 14 16 0.2699866| 0.0087097|0.7596694 0
7 15| 16 0.4803093| 0.0031481|0.7213648 0
7 16| 16 0.3644653| 0.0030962|0.7147496 0
7 17, 16 0.2499214| 0.0124644/0.7681994 1
7 18] 16 0.5689227| 0.0010443|0.6746958 0
7 19| 16 0.5834282| 0.0000000{0.4161854 0
7 200 16 0.3793237| 0.0012455|0.6869199 0
7 21 16 0.5392759| 0.0001051|0.6268722 0
8 1 16 0.2563744| 0.0423501|0.8336830 1
8 2 16 0.2715743| 0.0436923|0.8300227 1
8 3 16 0.5348589| 0.0000001|0.4126882 0
8 4 16 0.2482983| 0.0060858|0.7450437 0
8 5 16 0.4418710] 0.0115464/0.7801165 0
8 6 16 0.5633319| 0.0000000|0.3723522 0
8 71 16 0.3794785| 0.0402995|0.8294378 1
8 9 16 0.2595184| 0.0530756|0.8426866 1
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8 10, 16 0.1621573| 0.0899169|0.8639525 1
8 11| 16 0.2012264| 0.0527045|0.8420213 1
8 12| 16 0.4194305| 0.0780225|0.8608434 0
8 13] 16 0.4458699| 0.0318996|0.8205812 0
8 14 16 0.3673118| 0.0015512/0.7000203 0
8 15 16 0.4386579| 0.0006801|0.6587464 0
8 16| 16 0.5222519| 0.0004578|0.6476486 0
8 17] 16 0.3402941| 0.0021006|0.7024167 0
8 18| 16 0.5908964| 0.0002167|0.6187591 0
8 19| 16 0.6981040| 0.0000000/0.3618007 0
8 200 16 0.5505010] 0.0002061|0.6220498 0
8 21 16 0.5393642| 0.0000409|0.5855221 0
9 1 16 0.3411934] 0.1248844/0.8864424 1
9 2 16 0.3629259| 0.0471526|0.8354614 1
9 3 16 0.5976295| 0.0000006|0.4757074 0
9 4 16 0.3008026| 0.0417567|0.8289540 1
9 5 16 0.5004796| 0.0379223|0.8311367 0
9 6 16 0.6276653| 0.0000001/0.4301515 0
9 7 16 0.4242165| 0.0335473|0.8146384 0
9 8 16 0.2595184| 0.0530756|0.8426866 1
9 10, 16 0.3204040] 0.0312353|0.8174103 1
9 11] 16 0.3485005| 0.0215217|0.7993269 1
9 12| 16 0.4684119| 0.0870180|0.8653651 0
9 13| 16 0.4855170| 0.0753373|0.8580219 0
9 14 16 0.4302437| 0.0048765|0.7421277 0
9 15 16 0.4987217| 0.0055824/0.7400815 0
9 16| 16 0.5651108| 0.0029410|0.7210952 0
9 17] 16 0.3971101] 0.0074928|0.7570209 0
9 18| 16 0.6435480| 0.0022723|0.6988242 0
9 19] 16 0.7213284| 0.0000001|0.4213995 0
9 200 16 0.5862683| 0.0008319|0.6791752 0
9 21 16 0.6041799| 0.0005722/0.6631930 0

10 1 16 0.3272320| 0.0258910/0.8066193 1
10 2] 16 0.3472392| 0.0255501/0.8010878 1
10 3 16 0.5599689| 0.0000001|0.4199258 0
10 4 16 0.3065487| 0.0040040|0.7255240 0
10 5 16 0.5654017| 0.0084242|0.7568640 0
10 6] 16 0.6051584| 0.0000000]0.3720624 0
10 7 16 0.4758961| 0.0149149|0.7799698 0
10 8 16 0.1621573| 0.0899169|0.8639525 1
10 9 16 0.3204040] 0.0312353|0.8174103 1
10 11| 16 0.2727703| 0.0131100|0.7738044 1
10 12| 16 0.5554475| 0.0330082/0.8139934 0
10 13] 16 0.5796734| 0.0097596/|0.7580359 0
10 14 16 0.4745256| 0.0012393|0.6821496 0
10 15 16 0.5010291| 0.0008395|0.6632452 0
10 16| 16 0.6300221| 0.0004295|0.6444504 0
10 17| 16 0.4304929| 0.0015047|0.6881391 0
10 18| 16 0.6412143| 0.0001866|0.6091905 0
10 19 16 0.7550361| 0.0000000]{0.3642806 0
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10 200 16 0.6624778| 0.0001671/0.6105340 0
10 21 16 0.5767249| 0.0000218|0.5711791 0
11 1 16 0.2141131] 0.0489578|0.8389789 1
11 2 16 0.3096585| 0.0388623|0.8300572 1
11 3 16 0.5072556| 0.0000001|0.4304739 0
11 4 16 0.2969666| 0.0047781|0.7375812 0
11 5 16 0.3944239| 0.0152383|0.7911874 1
11 6 16 0.5116109| 0.0000000/0.3901721 0
11 71 16 0.2855943| 0.0951499|0.8734668 1
11 8 16 0.2012264| 0.0527045|0.8420213 1
11 9 16 0.3485005| 0.0215217|0.7993269 1
11 10, 16 0.2727703| 0.0131100]0.7738044 1
11 12| 16 0.3560850| 0.0491170]0.8374280 1
11 13] 16 0.3900060| 0.0302732/0.8157136 1
11 14 16 0.3389114| 0.0024132|0.7254925 0
11 15| 16 0.4339089| 0.0011619|0.6936432 0
11 16| 16 0.4411637| 0.0008349|0.6765897 0
11 17, 16 0.3033797| 0.0034681|0.7253663 0
11 18| 16 0.5579865| 0.0001833|0.6177679 0
11 19| 16 0.6138113| 0.0000000|0.3755258 0
11 200 16 0.4853955| 0.0002869|0.6390845 0
11 21 16 0.5196518| 0.0000347|0.6083255 0
12 1 16 0.4125023| 0.0452449|0.8328870 0
12 2 16 0.4427491] 0.0209877|0.7972867 0
12 3 16 0.6339349| 0.0000000{0.4122828 0
12 4 16 0.4933828| 0.0064406|0.7465026 0
12 5 16 0.2502602| 0.0316528|0.8155679 1
12 6 16 0.6363950| 0.0000000|0.3704352 0
12 71 16 0.2222876| 0.1130222|0.8745762 1
12 8 16 0.4194305| 0.0780225|0.8608434 0
12 9 16 0.4684119| 0.0870180|0.8653651 0
12 100 16 0.5554475| 0.0330082/0.8139934 0
12 11 16 0.3560850| 0.0491170]0.8374280 1
12 13 16 0.1377009| 0.1584922/0.8955915 1
12 14 16 0.2533267| 0.0048308]0.7353890 0
12 15| 16 0.5297810| 0.0018394|0.7055053 0
12 16| 16 0.3173308| 0.0011817|0.6734300 0
12 17, 16 0.3241443| 0.0061600|0.7388949 0
12 18| 16 0.6207247| 0.0005680|0.6563426 0
12 19| 16 0.6318503| 0.0000000]0.3897274 0
12 200 16 0.3099720| 0.0005413|0.6486717 0
12 21 16 0.5879698| 0.0000333|0.6090850 0
13 1 16 0.4268367| 0.0555402/0.8431684 0
13 2 16 0.4861413| 0.0112119|0.7715701 0
13 3 16 0.6373792| 0.0000001|0.4415902 0
13 4 16 0.4981634| 0.0146564/|0.7857308 0
13 5 16 0.2360910| 0.0997739|0.8706733 1
13 6 16 0.6389169| 0.0000000{0.4023266 0
13 71 16 0.2404971] 0.1501164/0.8902521 1
13 8 16 0.4458699| 0.0318996|0.8205812 0
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13 9 16 0.4855170| 0.0753373|0.8580219 0
13 10 16 0.5796734| 0.0097596/|0.7580359 0
13 11 16 0.3900060] 0.0302732|0.8157136 1
13 12| 16 0.1377009| 0.1584922/0.8955915 1
13 14 16 0.2458246| 0.0094172|0.7595280 0
13 15 16 0.5256249| 0.0058803|0.7509991 0
13 16| 16 0.2782480| 0.0070464/0.7470290 0
13 17| 16 0.3363009| 0.0248997|0.7996618 1
13 18| 16 0.6070641| 0.0037698|0.7316612 0
13 190 16 0.6221249| 0.0000000|0.4378312 0
13 200 16 0.2613589| 0.0032848|0.7235473 0
13 21 16 0.5893321| 0.0002334/|0.6657616 0
14 1 16 0.3073054| 0.0166107|0.8022292 1
14 2] 16 0.3655478| 0.0067897|0.7768335 0
14 3 16 0.5693598| 0.0000003|0.4591029 0
14 4 16 0.3725760| 0.0042502|0.7379810 0
14 5 16 0.2812121] 0.0484871|0.8341936 1
14 6] 16 0.5702769| 0.0000001|0.4297225 0
14 7 16 0.2699866| 0.0087097|0.7596694 0
14 8 16 0.3673118| 0.0015512/0.7000203 0
14 9 16 0.4302437| 0.0048765|0.7421277 0
14 10 16 0.4745256| 0.0012393|0.6821496 0
14 11 16 0.3389114| 0.0024132|0.7254925 0
14 12| 16 0.2533267| 0.0048308]0.7353890 0
14 13| 16 0.2458246| 0.0094172/0.7595280 0
14 15 16 0.4029486| 0.0167880|0.7827042 0
14 16| 16 0.2580863| 0.0864705|0.8682509 1
14 17| 16 0.1692952| 0.1043595|0.8737741 1
14 18| 16 0.5805032| 0.0030627|0.7058208 0
14 19| 16 0.6013830| 0.0000005|0.4559773 0
14 200 16 0.2877834| 0.0102519|0.7873463 1
14 21 16 0.4894162| 0.0004072/0.6376048 0
15 1 16 0.3934981| 0.0103934/0.7733074 1
15 2 16 0.4503086| 0.0050205|0.7408830 0
15 3 16 0.4443617| 0.0000061/0.5398621 0
15 4 16 0.2870388| 0.0231298/0.8074718 1
15 5 16 0.5041840| 0.0143578|0.7841573 0
15 6] 16 0.4357158| 0.0000015/0.5018398 0
15 7 16 0.4803093| 0.0031481]|0.7213648 0
15 8 16 0.4386579| 0.0006801|0.6587464 0
15 9 16 0.4987217| 0.0055824|0.7400815 0
15 10 16 0.5010291]| 0.0008395|0.6632452 0
15 11 16 0.4339089| 0.0011619|0.6936432 0
15 12| 16 0.5297810| 0.0018394/0.7055053 0
15 13| 16 0.5256249| 0.0058803|0.7509991 0
15 14| 16 0.4029486| 0.0167880|0.7827042 0
15 16| 16 0.4834830| 0.0290267|0.8080174 0
15 17| 16 0.3333540| 0.0309065|0.8175760 1
15 18| 16 0.4492822| 0.0315536|0.8144107 0
15 19 16 0.5264469| 0.0000113)0.5343581 0
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15 200 16 0.5921017| 0.0030458|0.7149050 0
15 21 16 0.1801447| 0.0158162|0.7853906 1
16 1 16 0.4568689| 0.0071551|0.7623228 0
16 2 16 0.5043974| 0.0013832|0.6980878 0
16 3 16 0.6232087|-0.0000002|0.4794044 0
16 4 16 0.5043155| 0.0058107|0.7566843 0
16 5 16 0.2260171] 0.0329079|0.8201560 1
16 6 16 0.6203610| 0.0000001|0.4535806 0
16 71 16 0.3644653| 0.0030962|0.7147496 0
16 8 16 0.5222519| 0.0004578|0.6476486 0
16 9 16 0.5651108| 0.0029410|0.7210952 0
16 10, 16 0.6300221| 0.0004295|0.6444504 0
16 11 16 0.4411637| 0.0008349|0.6765897 0
16 12| 16 0.3173308| 0.0011817|0.6734300 0
16 13] 16 0.2782480| 0.0070464/0.7470290 0
16 14 16 0.2580863| 0.0864705|0.8682509 1
16 15 16 0.4834830| 0.0290267|0.8080174 0
16 17, 16 0.3462631| 0.1253339|0.8810044 1
16 18| 16 0.5892214| 0.0128277|0.7704514 0
16 19| 16 0.5834617| 0.0000027|0.5162810 0
16 200 16 0.2062121| 0.0511505|0.8447287 1
16 21 16 0.5354194| 0.0019732|0.7071628 0
17 1 16 0.2430299| 0.0253214/0.8152759 1
17 2 16 0.3506489| 0.0040980|0.7396472 0
17 3 16 0.5036724| 0.0000007|0.4817347 0
17 4 16 0.2829799| 0.0068146|0.7514136 0
17 5 16 0.3801370| 0.0762269|0.8566035 1
17 6 16 0.5127878| 0.0000002|0.4529719 0
17 71 16 0.2499214| 0.0124644/0.7681994 1
17 8 16 0.3402941| 0.0021006|0.7024167 0
17 9 16 0.3971101] 0.0074928|0.7570209 0
17 100 16 0.4304929| 0.0015047|0.6881391 0
17 11 16 0.3033797| 0.0034681|0.7253663 0
17 12| 16 0.3241443| 0.0061600|0.7388949 0
17 13] 16 0.3363009| 0.0248997|0.7996618 1
17 14 16 0.1692952| 0.1043595|0.8737741 1
17 15| 16 0.3333540| 0.0309065|0.8175760 1
17 16| 16 0.3462631| 0.1253339|0.8810044 1
17 18| 16 0.5367667| 0.0088206|0.7549276 0
17 19| 16 0.5676004| 0.0000004/0.4985060 0
17 200 16 0.3746492| 0.0315854/0.8306306 1
17 21 16 0.4210161| 0.0008515|0.6828896 0
18 1 16 0.6002140| 0.00276640.7092093 0
18 2 16 0.7118687| 0.0007643|0.6608950 0
18 3 16 0.5006201| 0.0000083|0.5649087 0
18 4 16 0.5459757| 0.0233037|0.8073543 0
18 5 16 0.6018378| 0.0085787|0.7610942 0
18 6 16 0.4822143| 0.00000240.5230795 0
18 71 16 0.5689227| 0.0010443|0.6746958 0
18 8 16 0.5908964| 0.0002167|0.6187591 0
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18 9 16 0.6435480| 0.0022723|0.6988242 0
18 10 16 0.6412143| 0.0001866|0.6091905 0
18 11 16 0.5579865| 0.0001833|0.6177679 0
18 12| 16 0.6207247| 0.0005680|0.6563426 0
18 13| 16 0.6070641| 0.0037698|0.7316612 0
18 14 16 0.5805032| 0.0030627|0.7058208 0
18 15| 16 0.4492822| 0.0315536/|0.8144107 0
18 16| 16 0.5892214| 0.0128277|0.7704514 0
18 17| 16 0.5367667| 0.0088206|0.7549276 0
18 19| 16 0.3075506| 0.0000480[0.5961390 0
18 200 16 0.6922194| 0.0018573|0.6902983 0
18 21 16 0.3754440| 0.0372762/0.8288024 1
19 1 16 0.6212220| 0.0000000{0.4348616 0
19 2] 16 0.7432353| 0.0000000|0.3975812 0
19 3 16 0.5493722| 0.0000391|0.6425998 0
19 4 16 0.5995259| 0.0000007|0.4860504 0
19 5 16 0.6167108| 0.0000000]0.4660355 0
19 6 16 0.5108687| 0.0000661|0.6144997 0
19 7 16 0.5834282| 0.0000000{0.4161854 0
19 8 16 0.6981040| 0.0000000/0.3618007 0
19 9 16 0.7213284| 0.0000001|0.4213995 0
19 10 16 0.7550361| 0.0000000]0.3642806 0
19 11 16 0.6138113| 0.0000000]0.3755258 0
19 12| 16 0.6318503| 0.0000000]0.3897274 0
19 13| 16 0.6221249| 0.0000000|0.4378312 0
19 14 16 0.6013830| 0.0000005|0.4559773 0
19 15| 16 0.5264469| 0.0000113)0.5343581 0
19 16| 16 0.5834617| 0.0000027|0.5162810 0
19 17| 16 0.5676004| 0.0000004|0.4985060 0
19 18| 16 0.3075506| 0.0000480{0.5961390 0
19 200 16 0.6976587| 0.0000003/0.4936878 0
19 21 16 0.4752364| 0.0001344/0.6069113 0
20 1 16 0.5023976| 0.0016429|0.7121305 0
20 2] 16 0.5122602| 0.0003117|0.6540368 0
20 3 16 0.7463929| 0.0000008/0.4503804 0
20 4 16 0.5807913| 0.0007885|0.6762674 0
20 5 16 0.2985383| 0.0088844|0.7704347 0
20 6] 16 0.7466479| 0.0000001/0.4138759 0
20 7 16 0.3793237| 0.0012455|0.6869199 0
20 8 16 0.5505010| 0.0002061|0.6220498 0
20 9 16 0.5862683| 0.0008319|0.6791752 0
20 10 16 0.6624778| 0.0001671/0.6105340 0
20 11 16 0.4853955| 0.0002869|0.6390845 0
20 12| 16 0.3099720| 0.0005413|0.6486717 0
20 13| 16 0.2613589| 0.0032848|0.7235473 0
20 14| 16 0.2877834| 0.0102519|0.7873463 1
20 15| 16 0.5921017| 0.0030458]0.7149050 0
20 16| 16 0.2062121] 0.0511505|0.8447287 1
20 17| 16 0.3746492| 0.0315854/|0.8306306 1
20 18 16 0.6922194| 0.0018573|0.6902983 0
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pl p2 #featuresMeanK  |OM2 MeanOM2 0/1
20 19| 16 0.6976587| 0.0000003|0.4936878 0
20 21 16 0.6453449| 0.0001203|0.5989998 0
21 1 16 0.4807657| 0.0007170|0.6857637 0
21 2 16 0.5536444| 0.0002512|0.6364184 0
21 3 16 0.4560956| 0.0000242|0.6059211 0
21 4 16 0.4092446| 0.0057986|0.7610421 0
21 5 16 0.5685319| 0.0008588/|0.6988238 0
21 6 16 0.4305641| 0.0000142/0.5805596 0
21 71 16 0.5392759| 0.0001051|0.6268722 0
21 8 16 0.5393642| 0.0000409|0.5855221 0
21 9 16 0.6041799| 0.0005722|0.6631930 0
21 10, 16 0.5767249| 0.0000218|0.5711791 0
21 11 16 0.5196518| 0.0000347|0.6083255 0
21 12| 16 0.5879698| 0.0000333|0.6090850 0
21 13] 16 0.5893321| 0.0002334/|0.6657616 0
21 14 16 0.4894162| 0.0004072/0.6376048 0
21 15 16 0.1801447| 0.0158162|0.7853906 1
21 16| 16 0.5354194| 0.0019732|0.7071628 0
21 17] 16 0.4210161]| 0.0008515|0.6828896 0
21 18| 16 0.3754440| 0.0372762/0.8288024 1
21 19| 16 0.4752364| 0.0001344/0.6069113 0
21 200 16 0.6453449| 0.0001203/0.5989998 0
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Appendix VII Full Skewness table

Skewness overall results for the overall run with populations database.

Table 21: Pop-Base SkewTable

Sample |Population| SK1 SK2 SK3 SK4
1.000 0.000 0.511 0.320 3.037 -1.594
1.000 1.000 0.000 0.000 0.427 0.058
1.000 2.000 0.000 0.000 0.000 0.000
1.000 3.000 0.000 0.000 1.436 -1.113
1.000 4.000 0.000 0.000 0.000 0.000
1.000 5.000 0.000 0.000 0.000 0.000
1.000 6.000 0.000 0.000 0.000 0.000
1.000 7.000 0.000 0.000 0.000 0.000
1.000 8.000 0.000 0.000 0.000 0.000

460.000 0.000 0.387 0.511 0.787 -0.481

460.000 1.000 0.000 0.000 0.427 0.058

460.000 2.000 0.000 0.000 0.000 0.000

460.000 3.000 0.000 0.000 1.436 -1.113

460.000 4.000 0.000 0.000 0.000 0.000

460.000 5.000 0.000 0.000 0.000 0.000

460.000 6.000 0.000 0.000 0.000 0.000

460.000 7.000 0.000 0.000 0.000 0.000

460.000 8.000 0.000 0.000 0.000 0.000

460.000 9.000 0.706 0.308 2.112 0.000

649.000 0.000 1.347 0.383 -0.070 0.406

649.000 1.000 0.000 0.000 0.000 0.000

649.000 2.000 0.000 0.000 0.000 0.000

649.000 3.000 0.000 0.000 0.000 0.000

649.000 4.000 1.318 0.000 0.032 0.483

649.000 5.000 0.000 0.000 0.000 0.000

649.000 6.000 0.846 0.000 0.265 0.000

649.000 7.000 0.000 0.000 0.000 0.000

649.000 8.000 0.000 0.000 0.000 0.000

649.000 9.000 0.000 0.000 0.000 0.000

649.000 10.000 0.000 0.000 0.000 0.000

1086.000 0.000 -0.247 -0.475 -0.189 1.031

1086.000 1.000 0.000 0.000 0.000 0.000

1086.000 2.000 -0.012 -2.000 0.068 0.000

1086.000 3.000 0.000 0.000 0.000 0.000

1086.000 4.000 0.000 0.000 0.000 0.000

1086.000 5.000 0.000 0.000 0.000 0.000

1086.000 6.000 0.000 0.000 0.000 0.000

1086.000 7.000 0.000 0.000 0.000 0.000

1086.000 8.000 0.000 0.000 0.000 0.000

1086.000 9.000 0.000 0.000 0.000 0.000

1086.000| 10.000 0.000 0.000 0.000 0.000

1086.000| 11.000 0.000 0.000 0.000 0.000

1336.000 0.000 0.501 -1.553 1.437 0.171

1336.000 1.000 0.000 0.000 0.000 0.000

1336.000 2.000 0.000 0.000 0.000 0.000
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Sample |Population| SK1 SK2 SK3 SK4
1336.000 6.000 0.000 0.000 0.000 0.000
1336.000 7.000 0.000 0.000 0.000 0.000
1336.000 8.000 0.000 0.000 0.000 0.000
1336.000 9.000 0.000 0.000 0.000 0.000
1336.000| 10.000 0.000 0.000 0.000 0.000
1336.000| 11.000 0.993 0.000 0.183 0.239
1336.000| 12.000 0.000 0.000 0.000 0.000
1643.000 0.000 -0.324 0.886 1.696 -0.770
1643.000 1.000 0.000 0.000 0.000 0.000
1643.000 2.000 0.000 0.000 0.000 0.000
1643.000 3.000 0.000 0.000 1.436 -1.113
1643.000 4.000 0.000 0.000 0.000 0.000
1643.000 5.000 0.000 0.000 0.000 0.000
1643.000 6.000 0.000 0.000 0.000 0.000
1643.000 7.000 0.000 0.000 0.000 0.000
1643.000 8.000 0.000 0.000 0.000 0.000
1643.000 9.000 0.000 0.000 0.000 0.000
1643.000| 10.000 0.000 0.000 1.981 -1.288
1643.000| 11.000 0.000 0.000 0.000 0.000
1643.000| 12.000 0.000 0.000 0.000 0.000
1643.000| 13.000 0.000 0.000 0.000 0.000
1985.000 0.000 0.083 0.918 0.893 -0.436
1985.000 1.000 0.000 0.000 0.427 0.058
1985.000 2.000 0.000 0.000 0.000 0.000
1985.000 3.000 0.000 0.000 1.436 -1.113
1985.000 4.000 0.000 0.000 0.000 0.000
1985.000 5.000 0.000 0.000 0.000 0.000
1985.000 6.000 0.000 0.000 0.000 0.000
1985.000 7.000 0.000 0.000 0.000 0.000
1985.000 8.000 0.000 0.000 0.000 0.000
1985.000 9.000 0.000 0.000 0.000 0.000
1985.000| 10.000 0.000 0.000 1.981 -1.288
1985.000| 11.000 0.000 0.000 0.000 0.000
1985.000| 12.000 0.000 0.000 0.000 0.000
1985.000| 13.000 0.425 0.000 0.863 0.180
1985.000| 14.000 0.000 0.000 1.391 -0.807
2181.000 0.000 1.501 0.290 0.023 0.839
2181.000 1.000 0.000 0.000 0.000 0.000
2181.000 2.000 0.000 0.000 0.000 0.000
2181.000 3.000 0.000 0.000 0.000 0.000
2181.000 4.000 1.318 0.000 0.032 0.483
2181.000 5.000 0.000 0.000 0.000 0.000
2181.000 6.000 0.846 0.000 0.265 0.000
2181.000 7.000 0.000 0.000 0.000 0.000
2181.000 8.000 0.000 0.000 0.000 0.000
2181.000 9.000 0.000 0.000 0.000 0.000
2181.000| 10.000 0.000 0.000 0.000 0.000
2181.000| 11.000 0.993 0.000 0.183 0.239
2181.000| 12.000 0.000 0.000 0.000 0.000
2181.000| 13.000 0.000 0.000 0.000 0.000
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Sample |Population| SK1 SK2 SK3 SK4
2181.000| 14.000 0.000 0.000 0.000 0.000
2181.000| 15.000 0.000 0.000 0.000 0.000
2489.000 0.000 -0.440 1421 0.699 -0.100
2489.000 1.000 0.000 0.000 0.000 0.000
2489.000 2.000 0.000 0.000 0.000 0.000
2489.000 3.000 0.000 0.000 0.000 0.000
2489.000 4.000 0.000 0.000 0.000 0.000
2489.000 5.000 0.000 0.000 0.000 0.000
2489.000 6.000 0.000 0.000 0.000 0.000
2489.000 7.000 0.000 0.000 0.000 0.000
2489.000 8.000 0.358 0.000 0.000 0.000
2489.000 9.000 0.000 0.000 0.000 0.000
2489.000| 10.000 0.000 0.000 1.981 -1.288
2489.000| 11.000 0.000 0.000 0.000 0.000
2489.000| 12.000 0.000 0.000 0.000 0.000
2489.000| 13.000 0.000 0.000 0.000 0.000
2489.000| 14.000 0.000 0.000 0.000 0.000
2489.000| 15.000 0.000 0.000 0.000 0.000
2489.000| 16.000 0.000 0.000 0.000 0.000
3403.000 0.000 -0.150 1.528 0.859 -0.602
3403.000 1.000 0.000 0.000 0.427 0.058
3403.000 2.000 0.000 0.000 0.000 0.000
3403.000 3.000 0.000 0.000 0.000 0.000
3403.000 4.000 0.000 0.000 0.000 0.000
3403.000 5.000 0.547 0.000 1.090 0.000
3403.000 6.000 0.000 0.000 0.000 0.000
3403.000 7.000 0.000 0.000 0.000 0.000
3403.000 8.000 0.000 0.000 0.000 0.000
3403.000 9.000 0.000 0.000 0.000 0.000
3403.000| 10.000 0.000 0.000 1.981 -1.288
3403.000| 11.000 0.000 0.000 0.000 0.000
3403.000| 12.000 0.000 0.000 0.000 0.000
3403.000| 13.000 0.425 0.000 0.863 0.180
3403.000| 14.000 0.000 0.000 0.000 0.000
3403.000| 15.000 0.000 0.000 0.000 0.000
3403.000| 16.000 0.000 0.000 0.000 0.000
3403.000| 17.000 0.000 0.000 0.000 0.000
4527.000 0.000 -0.201 -5.821 0.570 0.345
4527.000 1.000 0.000 0.000 0.000 0.000
4527.000 2.000 0.000 0.000 0.000 0.000
4527.000 3.000 0.000 0.000 0.000 0.000
4527.000 4.000 0.000 0.000 0.000 0.000
4527.000 5.000 0.000 0.000 0.000 0.000
4527.000 6.000 0.000 0.000 0.000 0.000
4527.000 7.000 0.000 0.000 0.000 0.000
4527.000 8.000 0.000 0.000 0.000 0.000
4527.000 9.000 0.000 0.000 0.000 0.000
4527.000| 10.000 0.000 0.000 0.000 0.000
4527.000| 11.000 0.000 0.000 0.000 0.000
4527.000] 12.000 0.000 0.000 0.000 0.000
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Sample |Population| SK1 SK2 SK3 SK4
4527.000| 13.000 0.000 0.000 0.000 0.000
4527.000| 14.000 0.000 0.000 0.000 0.000
4527.000| 15.000 0.000 0.000 0.000 0.000
4887.000 0.000 1431 3.273 0.402 0.542
4887.000 1.000 0.000 0.000 0.000 0.000
4887.000 2.000 0.000 0.000 0.000 0.000
4887.000 3.000 0.000 0.000 0.000 0.000
4887.000 4.000 0.000 0.000 0.000 0.000
4887.000 5.000 0.846 0.000 0.265 0.000
4887.000 6.000 0.000 0.000 0.000 0.000
4887.000 7.000 0.000 0.000 0.000 0.000
4887.000 8.000 0.000 0.000 0.000 0.000
4887.000 9.000 0.000 0.000 0.000 0.000
4887.000| 10.000 0.000 0.000 0.000 0.000
4887.000| 11.000 0.000 0.000 0.000 0.000
4887.000| 12.000 0.000 0.000 0.000 0.000
4887.000| 13.000 0.000 0.000 0.000 0.000
4887.000| 14.000 0.000 0.000 0.000 0.000
4887.000| 15.000 0.000 0.000 0.000 0.000
4887.000| 16.000 0.000 0.000 0.000 0.000
4887.000| 17.000 0.000 0.000 0.000 0.000
4887.000| 18.000 0.000 0.000 0.000 0.000
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Appendix VIII The overlap table for the full online algorithm

Table 22: Full overlap run

Figure 60 : Full run change detection

Real | Classifier | Base | Size | Size OM2 Mean Mean | Overlap | Case | Overlap | Class
Index Index base | new OM2 KS points Pop
1 620 1 618 82 0.0377 | 0.84612 | 0.10148 483 2 1 0.9746

461 737 1 116 85 0.0067 | 0.7725 | 0.1847 67 4 2 0.969
1153 1156 4 - 86 0 0.50 0.416 1 1 Human 0.8
1334 1340 2 116 82 0.0008 | 0.7096 | 0.2307 40 0 0.738
1449 1568 2 116 94 0.0002 | 0.6632 | 0.3931 62 0 0.8065 | 0.8065
1637 1643 3 180 98 0.05747 | 0.79884 | 0.22608 114 2 8 0.82
1926 1965 2 116 97 0.0000 | 0.4152 | 0.4455 3 1 0.7056 | 0.7056
2205 2212 2 116 90 0.0001 | 0.6248 | 0.3243 33 0 0.66 0.66
2510 2518 2 116 84 0.0044 | 0.7577 | 0.2286 57 4 2510 0.6
2690 2753 2 116 89 0.0000 | 0.6397 | 0.4148 3 1 0.77 0.77
3024 3049 2 116 93 0.0000 | 0.4844 | 0.3600 0 1 0.6471 | 0.6471
3206 3218 2 116 84 0.0005 | 0.7025 | 0.3332 31 0 0.5 0.5
3351 3362 2 116 80 0.0000 | 0.5280 | 0.3549 2 1 0.72 0.72
3678 3691 2 116 91 0.0000 | 0.5502 | 0.3421 16 1 0.65 0.65
4183 4214 2 116 88 0.0000 | 0.5568 | 0.3266 10 1 0.89 0.89
5098 5114 2 116 88 0.0000 | 0.5230 | 0.3803 5 1 0.8 0.8
6075 6083 2 116 99 0.0000 | 0.0000 | 0.0000 0 0 0.89 0.89
7194 7235 2 116 87 0.0000 | 0.5120 | 0.4575 3 1 0.81 0.81
7898 7913 2 116 89 0.0000 | 0.2959 | 0.4430 0 1 0.86 0.86
8261 8280 2 116 82 0.0000 | 0.0000 | 0.0000 0 0 0.92 0.92
9612 9612 2 116 90 0.0000 | 0.5571 | 0.3831 4 1 0.87 0.87
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Appendix [X Graphical simulations

Additional experiment is dealing with the performance and cost and is detailed in the graph.
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Figure 61: Classification performance measures variations where batch size is fixed
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Appendix X Population description

Populations composition is provide in the following tables.

Table 23: All Populations

Classl |Class2 |[Class3 |[Class4
1 22 0 287 383 692
2 0 0 268 192)2 class 460
3 0 17 36 128 181
4 0 0 71 942 class 165
5 151 0 149 127 427
6 0 33 89 157 279
7 85 14 143 63 305
8 24 0 69 87 180
9 10 22 149 21 202
10 0 0 53 792 class 132
11 31 0 102 49 182
12 54 0 63 28 145
13 145 0 114 68 327
14 87 24 330 64 505
15 0 145 372 398 915
16 155 33 621 169 978
17 58 247 716 97 1118
18 0 162 458 84 704
19 0 136 207 20 363
20 170 19 978 144 1311
21 0 60 446 468 974
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Table 24 provides another perspective on the similarity between the population, KS measure is
the presented values.

Table 24: Populations confusion similarity matrix

1.0000 | 2.0000 | 3.0000 | 4.0000 | 5.0000 | 6.0000 | 7.0000
1 0.0000 | 0.2600 | 0.4843 | 0.2544 | 0.4289 | 0.4957 | 0.2873
2 0.2600 | 0.0000 | 0.6447 | 0.3241 | 0.4901 | 0.6497 | 0.4412
3 0.4843 | 0.6447 | 0.0000 | 0.3795 | 0.5930 | 0.1700 | 0.5499
4 0.2544 | 0.3241 | 0.3795 | 0.0000 | 0.4684 | 0.4037 | 0.3984
5 0.4289 | 0.4901 | 0.5930 | 0.4684 | 0.0000 | 0.6004 | 0.2843
6 0.4957 | 0.6497 | 0.1700 | 0.4037 | 0.6004 | 0.0000 | 0.5454
7 0.2873 | 0.4412 | 0.5499 | 0.3984 | 0.2843 | 0.5454 | 0.0000
8 0.2564 | 0.2716 | 0.5349 | 0.2483 | 0.4419 | 0.5633 | 0.3795
9 0.3412 | 0.3629 | 0.5976 | 0.3008 | 0.5005 | 0.6277 | 0.4242
10 0.3272 | 0.3472 | 0.5600 | 0.3065 | 0.5654 | 0.6052 | 0.4759
11 0.2141 | 0.3097 | 0.5073 | 0.2970 | 0.3944 | 0.5116 | 0.2856
12 0.4125 | 0.4427 | 0.6339 | 0.4934 | 0.2503 | 0.6364 | 0.2223
13 0.4268 | 0.4861 | 0.6374 | 0.4982 | 0.2361 | 0.6389 | 0.2405
14 0.3073 | 0.3655 | 0.5694 | 0.3726 | 0.2812 | 0.5703 | 0.2700
15 0.3935 | 0.4503 | 0.4444 | 0.2870 | 0.5042 | 0.4357 | 0.4803
16 0.4569 | 0.5044 | 0.6232 | 0.5043 | 0.2260 | 0.6204 | 0.3645
17 0.2430 | 0.3506 | 0.5037 | 0.2830 | 0.3801 | 0.5128 | 0.2499
18 0.6002 | 0.7119 | 0.5006 | 0.5460 | 0.6018 | 0.4822 | 0.5689
19 0.6212 | 0.7432 | 0.5494 | 0.5995 | 0.6167 | 0.5109 | 0.5834
20 0.5024 | 0.5123 | 0.7464 | 0.5808 | 0.2985 | 0.7466 | 0.3793
21 0.4808 | 0.5536 | 0.4561 | 0.4092 | 0.5685 | 0.4306 | 0.5393

8.0000 | 9.0000 | 10.0000 | 11.0000 | 12.0000 | 13.0000 | 14.0000
1 0.2564 | 0.3412 | 0.3272 | 0.2141 | 0.4125 | 0.4268 | 0.3073
2 0.2716 | 0.3629 | 0.3472 | 0.3097 | 0.4427 | 0.4861 | 0.3655
3 0.5349 | 0.5976 | 0.5600 | 0.5073 | 0.6339 | 0.6374 | 0.5694
4 0.2483 | 0.3008 | 0.3065 | 0.2970 | 0.4934 | 0.4982 | 0.3726
5 0.4419 | 0.5005 | 0.5654 | 0.3944 | 0.2503 | 0.2361 | 0.2812
6 0.5633 | 0.6277 | 0.6052 | 0.5116 | 0.6364 | 0.6389 | 0.5703
7 0.3795 | 0.4242 | 0.4759 | 0.2856 | 0.2223 | 0.2405 | 0.2700
8 0.0000 | 0.2595 | 0.1622 | 0.2012 | 0.4194 | 0.4459 | 0.3673
9 0.2595 | 0.0000 | 0.3204 | 0.3485 | 0.4684 | 0.4855 | 0.4302
10 0.1622 | 0.3204 | 0.0000 | 0.2728 | 0.5554 | 0.5797 | 0.4745
11 0.2012 | 0.3485 | 0.2728 | 0.0000 | 0.3561 | 0.3900 | 0.3389
12 0.4194 | 0.4684 | 0.5554 | 0.3561 | 0.0000 | 0.1377 | 0.2533
13 0.4459 | 0.4855 | 0.5797 | 0.3900 | 0.1377 | 0.0000 | 0.2458
14 0.3673 | 0.4302 | 0.4745 | 0.3389 | 0.2533 | 0.2458 | 0.0000
15 0.4387 | 0.4987 | 0.5010 | 0.4339 | 0.5298 | 0.5256 | 0.4029
16 0.5223 | 0.5651 | 0.6300 | 0.4412 | 0.3173 | 0.2782 | 0.2581
17 0.3403 | 0.3971 | 0.4305 | 0.3034 | 0.3241 | 0.3363 | 0.1693
18 0.5909 | 0.6435 | 0.6412 | 0.5580 | 0.6207 | 0.6071 | 0.5805
19 0.6981 | 0.7213 | 0.7550 | 0.6138 | 0.6319 | 0.6221 | 0.6014
20 0.5505 | 0.5863 | 0.6625 | 0.4854 | 0.3100 | 0.2614 | 0.2878
21 0.5394 | 0.6042 | 0.5767 | 0.5197 | 0.5880 | 0.5893 | 0.4894
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15.0000 | 16.0000 | 17.0000 | 18.0000 | 19.0000 | 20.0000 | 21.0000
1 0.3935 | 0.4569 | 0.2430 | 0.6002 | 0.6212 | 0.5024 | 0.4808
2 0.4503 | 0.5044 | 0.3506 | 0.7119 | 0.7432 | 0.5123 | 0.5536
3 0.4444 | 0.6232 | 0.5037 | 0.5006 | 0.5494 | 0.7464 | 0.4561
4 0.2870 | 0.5043 | 0.2830 | 0.5460 | 0.5995 | 0.5808 | 0.4092
5 0.5042 | 0.2260 | 0.3801 | 0.6018 | 0.6167 | 0.2985 | 0.5685
6 0.4357 | 0.6204 | 0.5128 | 0.4822 | 0.5109 | 0.7466 | 0.4306
7 0.4803 | 0.3645 | 0.2499 | 0.5689 | 0.5834 | 0.3793 | 0.5393
8 0.4387 | 0.5223 | 0.3403 | 0.5909 | 0.6981 | 0.5505 | 0.5394
9 0.4987 | 0.5651 | 0.3971 | 0.6435 | 0.7213 | 0.5863 | 0.6042
10 0.5010 | 0.6300 | 0.4305 | 0.6412 | 0.7550 | 0.6625 | 0.5767
11 0.4339 | 0.4412 | 0.3034 | 0.5580 | 0.6138 | 0.4854 | 0.5197
12 0.5298 | 0.3173 | 0.3241 | 0.6207 | 0.6319 | 0.3100 | 0.5880
13 0.5256 | 0.2782 | 0.3363 | 0.6071 | 0.6221 | 0.2614 | 0.5893
14 0.4029 | 0.2581 | 0.1693 | 0.5805 | 0.6014 | 0.2878 | 0.4894
15 0.0000 | 0.4835 | 0.3334 | 0.4493 | 0.5264 | 0.5921 | 0.1801
16 0.4835 | 0.0000 | 0.3463 | 0.5892 | 0.5835 | 0.2062 | 0.5354
17 0.3334 | 0.3463 | 0.0000 | 0.5368 | 0.5676 | 0.3746 | 0.4210
18 0.4493 | 0.5892 | 0.5368 | 0.0000 | 0.3076 | 0.6922 | 0.3754
19 0.5264 | 0.5835 | 0.5676 | 0.3076 | 0.0000 | 0.6977 | 0.4752
20 0.5921 | 0.2062 | 0.3746 | 0.6922 | 0.6977 | 0.0000 | 0.6453
21 0.1801 | 0.5354 | 0.4210 | 0.3754 | 0.4752 | 0.6453 | 0.0000
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Appendix XI Simulations results
Table 25 provides the 504 simulations results. The first three columns contains the three
simulation parameters values that was mentioned in section 3.10. Each simulation results in

three aspects: classification accuracy, classification performance (MSPE) and the cost.

Table 25: The simulation results

BatchSize On Off Accuracy PM Cost
20 5 1 0.83168 0.03227 1569.75
20 5 5 0.82818 0.03404 1436.51
20 5 10 0.82737 0.05172 1316.83
20 5 15 0.82657 0.03669 1318.31
20 5 20 0.78570 0.06464 1536.21
20 5 25 0.80882 0.06974 1345.84
20 5 30 0.81420 0.03421 1427.78
20 5 35 0.78489 0.06480 1502.47
20 5 40 0.83033 0.06920 1113.24
20 10 0.86905 0.01909 1436.48
20 10 5 0.86717 0.01988 1322.61
20 10 10 0.84888 0.02963 1323.53
20 10 15 0.81931 0.05318 1452.69
20 10 20 0.85776 0.02889 1186.77
20 10 25 0.81823 0.04387 1376.43
20 10 30 0.85265 0.03286 1160.28
20 10 35 0.82576 0.03952 1310.33
20 10 40 0.82603 0.03596 1294.34
20 15 0.85050 0.03118 1530.90
20 15 5 0.82737 0.03479 1579.82
20 15 10 0.82388 0.05580 1521.01
20 15 15 0.83087 0.03513 1444.45
20 15 20 0.86260 0.02223 1216.79
20 15 25 0.85830 0.02655 1206.88
20 15 30 0.82011 0.04281 1388.91
20 15 35 0.82468 0.03544 1348.39
20 15 40 0.85292 0.03300 1237.34
20 20 0.81877 0.03045 1830.98
20 20 5 0.83194 0.03222 1597.35
20 20 10 0.81689 0.04614 1588.16
20 20 15 0.85964 0.02636 1313.15
20 20 20 0.81070 0.07584 1525.83
20 20 25 0.82684 0.03650 1431.09
20 20 30 0.83302 0.06202 1399.85
20 20 35 0.83436 0.06291 1379.39
20 20 40 0.82979 0.03297 1359.31
20 25 0.86690 0.02038 1491.06
20 25 5 0.86582 0.02072 1426.10
20 25 10 0.86609 0.02022 1361.63
20 25 15 0.86287 0.02387 1335.58
20 25 20 0.82818 0.03404 1486.82
20 25 25 0.81689 0.06567 1503.20
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BatchSize On Off Accuracy PM Cost
20 25 30 0.82011 0.04494 1524.15
20 25 35 0.82092 0.05749 1449.34
20 25 40 0.80586 0.07609 1482.74
20 30 1 0.86690 0.02039 1498.88
20 30 5 0.86824 0.01917 1440.06
20 30 10 0.86663 0.02043 1387.43
20 30 15 0.83141 0.03318 1533.19
20 30 20 0.86152 0.02259 1325.49
20 30 25 0.87066 0.04514 1268.71
20 30 30 0.83114 0.03174 1439.69
20 30 35 0.86206 0.02194 1242.61
20 30 40 0.82092 0.05631 1447.78
20 35 1 0.86798 0.01883 1498.30
20 35 5 0.86717 0.01988 1451.67
20 35 10 0.83221 0.03182 1598.26
20 35 15 0.86152 0.02305 1384.21
20 35 20 0.85453 0.02717 1375.22
20 35 25 0.85265 0.02821 1345.98
20 35 30 0.81850 0.04412 1516.35
20 35 35 0.80909 0.03489 1641.27
20 35 40 0.82388 0.03825 1448.87
20 40 1 0.86798 0.01883 1501.87
20 40 5 0.83168 0.03107 1655.17
20 40 10 0.83194 0.03186 1610.06
20 40 15 0.83490 0.03039 1561.03
20 40 20 0.86340 0.02297 1357.62
20 40 25 0.83141 0.03318 1510.91
20 40 30 0.82253 0.03820 1522.20
20 40 35 0.81258 0.06737 1533.30
20 40 40 0.82361 0.06428 1482.18
30 5 1 0.8196 0.0346 1506.80
30 5 5 0.8123 0.0414 1381.48
30 5 10 0.8129 0.0399 1307.16
30 5 15 0.8069 0.0438 1278.51
30 5 20 0.8080 0.0448 1259.30
30 5 25 0.8094 0.0435 1231.71
30 5 30 0.8094 0.0435 1220.55
30 5 35 0.7806 0.0808 1354.70
30 5 40 0.8163 0.0766 1243.72
30 10 1 0.8258 0.0304 1553.30
30 10 5 0.8198 0.0337 1453.87
30 10 10 0.8120 0.0407 1401.51
30 10 15 0.8091 0.0431 1360.85
30 10 20 0.7771 0.0723 1512.48
30 10 25 0.8166 0.0357 1261.13
30 10 30 0.8094 0.0435 1278.29
30 10 35 0.8067 0.0455 1267.97
30 10 40 0.8207 0.0685 1231.65
30 15 1 0.8198 0.0330 1602.86
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BatchSize On Off Accuracy PM Cost
30 15 5 0.8241 0.0666 1501.74
30 15 10 0.8142 0.0387 1450.67
30 15 15 0.8188 0.0329 1368.34
30 15 20 0.7663 0.0870 1600.17
30 15 25 0.7741 0.0737 1550.17
30 15 30 0.8064 0.0470 1327.54
30 15 35 0.8104 0.0454 1315.21
30 15 40 0.8174 0.0678 1280.95
30 20 1 0.8188 0.0327 1619.90
30 20 5 0.8142 0.0378 1552.77
30 20 10 0.8107 0.0402 1501.75
30 20 15 0.7806 0.0679 1634.92
30 20 20 0.7747 0.0445 1723.74
30 20 25 0.8080 0.0454 1383.15
30 20 30 0.7787 0.0698 1542.74
30 20 35 0.7674 0.0866 1573.30
30 20 40 0.8104 0.0439 1321.23
30 25 1 0.8177 0.0354 1638.99
30 25 5 0.8177 0.0346 1571.06
30 25 10 0.8145 0.0382 1507.71
30 25 15 0.8185 0.0342 1452.62
30 25 20 0.7725 0.0780 1666.35
30 25 25 0.8048 0.0461 1439.54
30 25 30 0.7991 0.0438 1468.33
30 25 35 0.8266 0.0292 1300.01
30 25 40 0.8161 0.0370 1323.35
30 30 1 0.8255 0.0290 1609.88
30 30 5 0.8188 0.0327 1577.02
30 30 10 0.8198 0.0337 1516.54
30 30 15 0.8153 0.0376 1501.31
30 30 20 0.8188 0.0335 1437.08
30 30 25 0.8225 0.0305 1396.87
30 30 30 0.8193 0.0337 1387.23
30 30 35 0.8241 0.0562 1443.03
30 30 40 0.8266 0.0606 1333.28
30 35 1 0.8204 0.0326 1633.98
30 35 5 0.7749 0.0723 1821.92
30 35 10 0.8252 0.0295 1514.65
30 35 15 0.7698 0.0472 1852.52
30 35 20 0.7841 0.0640 1655.37
30 35 25 0.8177 0.0355 1433.40
30 35 30 0.8241 0.0311 1393.01
30 35 35 0.7809 0.0663 1594.05
30 35 40 0.7768 0.0751 1594.13
30 40 1 0.8185 0.0342 1646.70
30 40 5 0.8150 0.0367 1610.91
30 40 10 0.7749 0.0448 1884.78
30 40 15 0.8190 0.0349 1507.88
30 40 20 0.8217 0.0315 1459.80
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BatchSize On Off Accuracy PM Cost
30 40 25 0.8266 0.0292 1421.00
30 40 30 0.8204 0.0351 1406.43
30 40 35 0.8083 0.0435 1446.37
30 40 40 0.8099 0.0390 1506.04
40 5 1 0.8492 0.0288 1343.16
40 5 5 0.8069 0.0736 1414.77
40 5 10 0.8086 0.0653 1351.10
40 5 15 0.8346 0.0441 1126.61
40 5 20 0.7986 0.0876 1289.79
40 5 25 0.8120 0.1020 1309.63
40 5 30 0.7717 0.0777 1433.12
40 5 35 0.7776 0.0973 1505.35
40 5 40 0.8104 0.0974 1302.56
40 10 1 0.8389 0.0376 1450.99
40 10 5 0.8102 0.0598 1507.04
40 10 10 0.8486 0.0288 1209.28
40 10 15 0.8314 0.0461 1213.12
40 10 20 0.8411 0.0396 1150.10
40 10 25 0.7921 0.0991 1346.41
40 10 30 0.8387 0.0389 1119.40
40 10 35 0.8395 0.0415 1093.67
40 10 40 0.7978 0.0737 1386.74
40 15 1 0.8397 0.0374 1474.93
40 15 5 0.8422 0.0369 1366.35
40 15 10 0.8524 0.0264 1257.31
40 15 15 0.8424 0.0335 1237.35
40 15 20 0.8438 0.0345 1186.08
40 15 25 0.8059 0.0624 1390.99
40 15 30 0.8024 0.0759 1354.03
40 15 35 0.8072 0.0731 1323.40
40 15 40 0.8086 0.0699 1299.90
40 20 1 0.7983 0.0770 1712.76
40 20 5 0.8096 0.0564 1612.37
40 20 10 0.8411 0.0343 1341.29
40 20 15 0.8435 0.0351 1271.98
40 20 20 0.8096 0.0564 1450.39
40 20 25 0.8059 0.0598 1442.52
40 20 30 0.8548 0.0587 1161.13
40 20 35 0.8427 0.0337 1160.06
40 20 40 0.8276 0.0509 1312.43
40 25 1 0.8505 0.0269 1458.18
40 25 5 0.7981 0.0708 1679.39
40 25 10 0.8486 0.0297 1333.54
40 25 15 0.8042 0.0729 1515.49
40 25 20 0.8346 0.0370 1393.73
40 25 25 0.8349 0.0437 1255.32
40 25 30 0.8371 0.0393 1234.05
40 25 35 0.8115 0.0519 1400.00
40 25 40 0.8061 0.0654 1372.53
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BatchSize On Off Accuracy PM Cost
40 30 1 0.8384 0.0402 1510.73
40 30 5 0.8510 0.0273 1409.07
40 30 10 0.8005 0.0399 1704.06
40 30 15 0.7967 0.0842 1561.94
40 30 20 0.8397 0.0374 1308.43
40 30 25 0.8086 0.0557 1484.60
40 30 30 0.8481 0.0297 1219.05
40 30 35 0.8397 0.0368 1216.14
40 30 40 0.8457 0.0301 1202.32
40 35 1 0.8287 0.0531 1552.05
40 35 5 0.8465 0.0335 1428.37
40 35 10 0.8454 0.0324 1383.34
40 35 15 0.8454 0.0311 1349.42
40 35 20 0.8311 0.0453 1366.58
40 35 25 0.8449 0.0322 1282.21
40 35 30 0.8091 0.0575 1481.25
40 35 35 0.8473 0.0321 1224.18
40 35 40 0.8239 0.0450 1444.08
40 40 1 0.8155 0.0480 1658.65
40 40 5 0.8021 0.0651 1700.45
40 40 10 0.8435 0.0351 1400.59
40 40 15 0.8416 0.0329 1371.54
40 40 20 0.8360 0.0413 1365.60
40 40 25 0.8438 0.0331 1294.85
40 40 30 0.8395 0.0404 1278.85
40 40 35 0.8473 0.0316 1247.18
40 40 40 0.8489 0.0293 1223.35
50 10 20 0.8443 0.0346 1115.18
50 30 10 0.8392 0.0372 1386.38
50 40 20 0.8389 0.0393 1333.77
50 35 20 0.8381 0.0402 1323.18
50 35 30 0.8373 0.0425 1273.16
50 5 15 0.8207 0.0426 1227.09
50 20 15 0.8142 0.0429 1433.62
50 25 1 0.8153 0.0436 1630.25
50 10 5 0.8147 0.0446 1479.76
50 25 5 0.8131 0.0456 1582.01
50 35 40 0.7951 0.0471 1561.25
50 25 25 0.8166 0.0478 1377.98
50 10 30 0.8153 0.0479 1247.55
50 20 35 0.8172 0.0494 1284.43
50 10 10 0.8118 0.0495 1405.83
50 15 35 0.8086 0.0496 1406.98
50 15 25 0.8174 0.0496 1281.21
50 40 35 0.8064 0.0511 1455.62
50 40 5 0.8198 0.0522 1557.85
50 5 5 0.8163 0.0526 1336.04
50 5 20 0.8107 0.0527 1246.30
50 30 5 0.8077 0.0528 1707.50
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BatchSize On Off Accuracy PM Cost
50 5 10 0.8161 0.0529 1257.48
50 40 15 0.8032 0.0537 1660.65
50 30 15 0.8080 0.0543 1610.71
50 35 5 0.8045 0.0554 1646.18
50 40 1 0.8061 0.0559 1785.34
50 15 10 0.8147 0.0562 1415.63
50 35 1 0.8094 0.0563 1669.03
50 10 1 0.8112 0.0563 1573.30
50 30 40 0.8059 0.0564 1383.72
50 15 1 0.8405 0.0570 1501.29
50 10 15 0.8129 0.0572 1303.46
50 15 30 0.8010 0.0578 1334.34
50 5 1 0.8040 0.0579 1667.04
50 35 25 0.8142 0.0597 1406.05
50 10 35 0.8018 0.0598 1251.23
50 10 40 0.7991 0.0599 1248.68
50 10 25 0.8026 0.0605 1342.73
50 40 30 0.8056 0.0609 1486.30
50 20 5 0.8123 0.0612 1537.19
50 15 5 0.7771 0.0626 1910.00
50 20 10 0.8075 0.0627 1483.88
50 30 30 0.8094 0.0641 1383.50
50 35 35 0.8002 0.0645 1434.94
50 25 15 0.7973 0.0645 1528.46
50 15 20 0.8048 0.0646 1464.72
50 30 35 0.7986 0.0650 1538.63
50 25 30 0.7983 0.0652 1438.69
50 5 25 0.8021 0.0664 1221.56
50 20 30 0.8069 0.0665 1362.14
50 25 10 0.8048 0.0666 1523.32
50 20 40 0.8051 0.0673 1309.92
50 40 25 0.7994 0.0686 1594.64
50 25 35 0.8069 0.0691 1350.62
50 35 10 0.7994 0.0691 1691.62
50 15 15 0.8061 0.0718 1414.52
50 25 40 0.7986 0.0732 1346.82
50 20 25 0.7965 0.0763 1385.49
50 20 20 0.8051 0.0769 1421.61
50 15 40 0.8069 0.0777 1305.08
50 30 1 0.8223 0.0778 1600.99
50 30 20 0.8002 0.0789 1517.37
50 20 1 0.8120 0.0830 1731.57
50 5 30 0.8067 0.0837 1144.75
50 25 20 0.7862 0.0866 1642.83
50 5 40 0.7943 0.0868 1237.11
50 40 10 0.7903 0.0873 1767.53
50 30 25 0.7895 0.0880 1508.56
50 40 40 0.7919 0.0881 1607.49
50 35 15 0.7892 0.0888 1720.68
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BatchSize On Off Accuracy PM Cost
50 5 35 0.7806 0.0959 1330.12
60 5 1 0.8034 0.0676 1642.27
60 5 5 0.8048 0.0617 1364.12
60 5 10 0.7736 0.1117 1575.01
60 5 15 0.7959 0.0751 1271.49
60 5 20 0.7895 0.0863 1262.38
60 5 25 0.8056 0.0830 1176.90
60 5 30 0.7755 0.1192 1332.98
60 5 35 0.7892 0.0960 1232.55
60 5 40 0.7698 0.1344 1335.01
60 10 1 0.8010 0.0651 1698.92
60 10 5 0.8013 0.0651 1559.23
60 10 10 0.8459 0.0312 1191.25
60 10 15 0.8037 0.0633 1329.66
60 10 20 0.8053 0.0604 1279.30
60 10 25 0.7873 0.0850 1321.96
60 10 30 0.8258 0.0527 1127.95
60 10 35 0.7938 0.0780 1245.20
60 10 40 0.7800 0.1060 1464.35
60 15 1 0.8016 0.0663 1723.30
60 15 5 0.8059 0.0596 1603.44
60 15 10 0.8314 0.0450 1401.25
60 15 15 0.7833 0.0995 1495.68
60 15 20 0.7835 0.1014 1455.18
60 15 25 0.7876 0.0841 1362.88
60 15 30 0.8333 0.0429 1136.03
60 15 35 0.7868 0.0973 1373.89
60 15 40 0.7965 0.0741 1284.12
60 20 1 0.8217 0.0514 1626.53
60 20 5 0.8013 0.0653 1664.48
60 20 10 0.7938 0.0770 1513.72
60 20 15 0.8131 0.0634 1533.26
60 20 20 0.7921 0.0753 1442.27
60 20 25 0.7967 0.0893 1416.14
60 20 30 0.7970 0.0669 1490.92
60 20 35 0.7956 0.0822 1367.87
60 20 40 0.7712 0.1109 1596.19
60 25 1 0.7884 0.0901 1821.93
60 25 5 0.8077 0.0578 1644.51
60 25 10 0.7857 0.0775 1734.00
60 25 15 0.8303 0.0483 1329.31
60 25 20 0.8056 0.0616 1507.14
60 25 25 0.8104 0.0662 1477.26
60 25 30 0.7881 0.0914 1445.90
60 25 35 0.7919 0.0840 1523.02
60 25 40 0.8395 0.0389 1172.27
60 30 1 0.7946 0.0689 1798.06
60 30 5 0.7862 0.0890 1806.87
60 30 10 0.8091 0.0548 1595.59
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BatchSize On Off Accuracy PM Cost
60 30 15 0.7825 0.0793 1733.95
60 30 20 0.7868 0.0862 1675.28
60 30 25 0.7954 0.0763 1443.55
60 30 30 0.8021 0.0611 1509.69
60 30 35 0.8319 0.0407 1221.39
60 30 40 0.7986 0.0765 1379.35
60 35 1 0.8309 0.0491 1603.15
60 35 5 0.8279 0.0445 1561.66
60 35 10 0.8064 0.0601 1615.21
60 35 15 0.7983 0.0575 1642.93
60 35 20 0.7876 0.0845 1515.24
60 35 25 0.8126 0.0563 1516.82
60 35 30 0.7916 0.0751 1477.40
60 35 35 0.7973 0.0730 1409.71
60 35 40 0.7782 0.0895 1629.19
60 40 1 0.8271 0.0451 1627.86
60 40 5 0.8207 0.0616 1629.14
60 40 10 0.8013 0.0616 1676.49
60 40 15 0.8008 0.0626 1527.12
60 40 20 0.7852 0.0938 1703.01
60 40 25 0.8150 0.0511 1409.82
60 40 30 0.7911 0.0737 1622.33
60 40 35 0.8274 0.0475 1369.50
60 40 40 0.8416 0.0383 1267.53
70 5 1 0.7809 0.0955 1642.78
70 5 5 0.8172 0.0919 1346.15
70 5 10 0.8295 0.0486 1164.19
70 5 15 0.8220 0.0515 1130.48
70 5 20 0.8344 0.0406 1061.91
70 5 25 0.7066 0.1536 1619.64
70 5 30 0.7752 0.1060 1217.11
70 5 35 0.8215 0.0506 1078.92
70 5 40 0.7763 0.1093 1274.40
70 10 1 0.7930 0.0826 1662.26
70 10 5 0.7835 0.1043 1577.24
70 10 10 0.7599 0.1379 1583.09
70 10 15 0.8147 0.1008 1266.14
70 10 20 0.8341 0.0411 1145.19
70 10 25 0.7795 0.1122 1392.00
70 10 30 0.8338 0.0875 1165.13
70 10 35 0.8061 0.0714 1196.20
70 10 40 0.7978 0.1213 1340.04
70 15 1 0.8236 0.0516 1504.09
70 15 5 0.7887 0.0937 1599.80
70 15 10 0.8131 0.0640 1355.78
70 15 15 0.7731 0.1139 1553.14
70 15 20 0.8139 0.0595 1293.81
70 15 25 0.8233 0.0884 1259.73
70 15 30 0.8051 0.0695 1283.44




131

BatchSize On Off Accuracy PM Cost
70 15 35 0.8287 0.0646 1143.87
70 15 40 0.7709 0.0673 1521.93
70 20 1 0.8209 0.0745 1571.07
70 20 5 0.8220 0.0476 1468.58
70 20 10 0.8231 0.0509 1401.15
70 20 15 0.7973 0.0888 1412.03
70 20 20 0.7905 0.0852 1488.98
70 20 25 0.7787 0.1135 1483.52
70 20 30 0.8193 0.0598 1250.85
70 20 35 0.8193 0.0593 1226.87
70 20 40 0.8094 0.2005 1283.58
70 25 1 0.8056 0.0675 1606.66
70 25 5 0.8325 0.0371 1437.30
70 25 10 0.8392 0.0683 1374.71
70 25 15 0.8099 0.0662 1404.07
70 25 20 0.7822 0.0952 1545.25
70 25 25 0.8118 0.0626 1342.50
70 25 30 0.8322 0.0837 1255.39
70 25 35 0.8126 0.0651 1272.43
70 25 40 0.8018 0.1059 1339.24
70 30 1 0.8271 0.0451 1522.31
70 30 5 0.7865 0.0905 1697.00
70 30 10 0.8077 0.0628 1497.55
70 30 15 0.7825 0.0957 1607.46
70 30 20 0.8233 0.0570 1338.78
70 30 25 0.7932 0.1233 1544.26
70 30 30 0.8279 0.0870 1340.95
70 30 35 0.8099 0.0609 1330.07
70 30 40 0.8193 0.0589 1253.03
70 35 1 0.8379 0.0699 1510.43
70 35 5 0.7908 0.0885 1666.48
70 35 10 0.8330 0.0692 1446.99
70 35 15 0.7825 0.1021 1601.72
70 35 20 0.8166 0.0520 1400.15
70 35 25 0.8172 0.0561 1392.26
70 35 30 0.7978 0.1189 1475.27
70 35 35 0.7817 0.2529 1537.39
70 35 40 0.7895 0.0972 1420.59
70 40 1 0.8204 0.0537 1578.16
70 40 5 0.8029 0.0775 1605.02
70 40 10 0.8228 0.0510 1493.27
70 40 15 0.8094 0.0676 1487.94
70 40 20 0.8239 0.0493 1367.95
70 40 25 0.8163 0.0537 1393.82
70 40 30 0.7739 0.1184 1580.78
70 40 35 0.8180 0.0547 1369.83
70 40 40 0.7973 0.1193 1487.83
80 5 1 0.7889 0.0916 1619.32
80 5 5 0.822 0.0515 1287.73
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BatchSize On Off Accuracy PM Cost
80 5 10 0.8169 0.0632 1215.50
80 5 15 0.8061 0.0751 1215.73
80 5 20 0.825 0.0541 1110.93
80 5 25 0.7787 0.1107 1234.32
80 5 30 0.8051 0.089 1114.87
80 5 35 0.762 0.1291 1342.32
80 5 40 0.8274 0.0448 1041.02
80 10 1 0.7905 0.0934 1637.05
80 10 5 0.8212 0.0733 1410.41
80 10 10 0.8373 0.039 1219.69
80 10 15 0.8263 0.0547 1210.03
80 10 20 0.8137 0.0657 1219.11
80 10 25 0.8255 0.0536 1147.92
80 10 30 0.8155 0.061 1148.20
80 10 35 0.7897 0.0981 1308.03
80 10 40 0.8188 0.0764 1127.25
80 15 1 0.7809 0.1027 1748.08
80 15 5 0.8139 0.0648 1439.97
80 15 10 0.8142 0.0595 1393.40
80 15 15 0.8163 0.0648 1332.05
80 15 20 0.8301 0.0465 1231.72
80 15 25 0.8145 0.063 1272.68
80 15 30 0.7776 0.1293 1372.07
80 15 35 0.8137 0.0703 1225.65
80 15 40 0.7776 0.0892 1395.52
80 20 1 0.8247 0.0575 1516.05
80 20 5 0.8163 0.0662 1479.53
80 20 10 0.7779 0.1202 1601.51
80 20 15 0.7986 0.1122 1454.15
80 20 20 0.7981 0.069 1433.44
80 20 25 0.8341 0.0807 1267.35
80 20 30 0.8048 0.0768 1296.70
80 20 35 0.8314 0.0816 1207.10
80 20 40 0.8282 0.0852 1213.90
80 25 1 0.7943 0.0808 1677.53
80 25 5 0.7814 0.1114 1671.97
80 25 10 0.8088 0.0613 1490.94
80 25 15 0.7911 0.0841 1516.27
80 25 20 0.7989 0.0768 1445.01
80 25 25 0.8158 0.0633 1331.92
80 25 30 0.7688 0.1222 1504.72
80 25 35 0.8336 0.0819 1264.58
80 25 40 0.8107 0.0688 1262.70
80 30 1 0.8163 0.0662 1570.15
80 30 5 0.7806 0.1028 1724.67
80 30 10 0.8123 0.0884 1505.36
80 30 15 0.8172 0.0609 1408.41
80 30 20 0.8077 0.0726 1404.16
80 30 25 0.8244 0.0513 1309.41
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BatchSize On Off Accuracy PM Cost
80 30 30 0.8204 0.0605 1307.93
80 30 35 0.7749 0.1089 1528.59
80 30 40 0.8155 0.061 1244.61
80 35 1 0.8045 0.0559 1651.42
80 35 5 0.8177 0.0587 1545.81
80 35 10 0.8196 0.0585 1461.15
80 35 15 0.822 0.0566 1412.82
80 35 20 0.8129 0.0654 1424.85
80 35 25 0.7981 0.1137 1502.02
80 35 30 0.8163 0.0672 1348.40
80 35 35 0.8126 0.0702 131291
80 35 40 0.8139 0.0648 1291.06
80 40 1 0.825 0.0522 1539.50
80 40 5 0.8051 0.0695 1604.43
80 40 10 0.8158 0.0675 1496.03
80 40 15 0.8163 0.0662 1454.56
80 40 20 0.7954 0.1193 1605.50
80 40 25 0.8139 0.0696 1397.30
80 40 30 0.8013 0.0635 1438.20
80 40 35 0.8077 0.0633 1363.03
80 40 40 0.7975 0.0979 1400.20
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