
Ben-Gurion University of the Negev
Faculty of Engineering Sciences

Department of Industrial Engineering and Management

A Collaborative Hierarchical

Reinforcement Learning Framework

Thesis Submitted In Partial Fulfillment

of the Requirements for the M.Sc. Degree

by

Amit Gil

December 2008

Beer - Sheva

Ben-Gurion University of the Negev
Faculty of Engineering Sciences

Department of Industrial Engineering and Management

A Collaborative Hierarchical

Reinforcement Learning Framework

Thesis Submitted In Partial Fulfillment

of the Requirements for the M.Sc. Degree

By: Amit Gil

Supervised by: Helman Stern

 Yael Edan

 Author ____________ Date ____________

 Supervisor ____________ Date ____________

 Supervisor ____________ Date ____________

 Chairman of Graduate Studies Committee ____________ Date ____________

December 2008

Beer - Sheva

This work was carried out under the supervision of

Prof. Helman Stern

Prof. Yael Edan

In the

Department of Industrial Engineering and Management

Faculty of Engineering Sciences

Ben-Gurion University of the Negev

I

Acknowledgments

I would like to thank my supervisors Prof. Helman Stern and Prof. Yael Edan for their

guidance and support throughout the last two years. Their ideas and insights provided me with

direction and motivation, and their patience and valuable advice encouraged and promoted my

research in many ways. For that I owe them my deepest gratitude.

Very special thanks go to Dr. Uri Kartoun, my professional advisor, but first of all a good

friend. Uri is the one who introduced me to the challenging and fascinating world of machine

learning, and helped me take my first steps in the area. His support, advices and amazing sense of

humor made it very easy and enjoyable for me to enter the academic life and state of mind.

I would like to gratefully acknowledge the technical and professional support of Nissim

Abuhatzira, Yossi Zehavi, Noam Peles, Paul Erez and Rubi Gertner from the Department of

Industrial Engineering and Management.

I would also like to express my appreciation to Dr. Sigal Berman who helped me in the

exhausting process of choosing the subject for this research.

Finally, I recognize that this research would not have been possible without the financial

assistance of the Paul Ivanier Center for Robotics Research and Production Management, Ben-

Gurion University of the Negev and by the Rabbi W. Gunther Plaut Chair in Manufacturing

Engineering.

Amit Gil

Ben-Gurion University of the Negev

Beer Sheva, 2008

II

Abstract

To introduce robotic applications into real-world environments, robots must be constructed for a

large variety of tasks and be able to adapt continuously to new and changing working conditions.

Since it is impossible to model all environments and task conditions, the adaptation to new tasks

cannot be achieved by regular end-user programming. Rather, the robot must be delivered with

advanced capabilities to autonomously learn new tasks and new working conditions.

A common learning approach in robotics is reinforcement learning (RL). In RL the robot (agent)

acts autonomously in a process guided by reinforcements from the environment, indicating how

well it is performing the required task. RL is an attractive alternative for programming autonomous

systems, as it allows the agent to learn behaviors on the basis of sparse, delayed reward signals.

Nevertheless, RL has several drawbacks preventing it from answering the challenges presented by

real-world applications, such as the necessity for extensive interaction between the robot and the

environment, or the fact that it allows only one goal state for the learning task.

This thesis provides one more step in the continuing struggle to overcome these drawbacks. The

framework proposed in this research, Collaborative Hierarchical Reinforcement Learning (CHRL),

combines two known techniques used for addressing the drawbacks, hierarchical RL and Human-

Robot collaboration, in order to scale up RL and alleviate some of its disadvantages. This

combination enables both the execution of complex tasks and the improvement of the learning

process. Hierarchical RL reduces the search space and allows efficient learning. Human aid can

improve or expand already learned behaviors and enable the robot to handle unknown and

unpredictable events that are beyond the competence of current autonomous robotic systems.

In the proposed CHRL framework the learning task is decomposed into a two-level learning

hierarchy. The first level consists of learning the desired sequence of execution of a set of basic sub-

tasks. The second level consists of learning how to perform each of the sub-tasks required. Human

intervention is allowed at both levels, to expedite the learning process by exploiting human

intelligence and expertise. The applicability of the framework is proven using an automated toast

making system presenting both high and low level learning tasks.

Two RL-based algorithms were developed to support the CHRL framework: A sequencing

algorithm was developed for providing a sub-task execution sequence, as part of the first level of the

hierarchy. The algorithm addresses the learning task of scheduling a single transfer agent (a robot

arm) through a set of sub-tasks in a sequence that will achieve optimal task execution times. In lieu

of fixed inter-process job transfers, the robot allows the flexibility of job movements at any point in

time. Execution of complex tasks was demonstrated using two applications – the automated toast

III

making system and a flexible manufacturing system. The algorithm presents good results, matching

and outperforming the compared methods, Monte-Carlo and random search.

A collaborative algorithm was developed to allow the introduction of an advisor. This approach

is referred to as cognitive collaborative reinforcement learning (CCRL). In the CCRL algorithm an

autonomous learner (RL in this case) is enabled with a self awareness cognitive skill to decide when

to solicit instructions from the advisor. Furthermore, the learner is able to assess the value of any

advice given and to decide whether to accept or reject it. This approach of intelligent adjustable

autonomy was demonstrated and evaluated using the toast making system and a simulated three-

dimensional path planning task. Tests were conducted for advisors with various skill levels from

expert to novice. The algorithm expedites and improves the learning process by taking advantage of

the advisor’s knowledge and expertise, and learning to use advice given by an expert while

discarding advice suggested by a novice.

The main contribution of this research is in the introduction of the CHRL framework and the

development of the algorithms supporting its implementation, especially the cognitive collaborative

reinforcement learning (CCRL) algorithm.

.

Key words: Hierarchical reinforcement learning, Human-robot collaboration, Cognitive robot

learning, Path planning, Scheduling.

IV

Table of Contents

List of Appendices ……..……..V
List of Figures……..…………………VI
List of Tables……......VII
Acronyms………..………………………....VII

1. Introduction ..1
1.1 Problem Description and Research Motivation...1
1.2 Research Objectives...3
1.3 Research Contributions and Innovations ...3

2. Scientific Background ..5
2.1 Reinforcement Learning ..5
2.2 Common Reinforcement Learning Algorithms ...5
2.3 Hierarchical Reinforcement Learning ...8
2.4 Reinforcement Learning for Scheduling ...10
2.5 Robot Learning ..12
2.6 Collaborative Learning ..13
2.7 Summary..16

3. Methodology..18
3.1 Introduction..18
3.2 Robotic Toast Making System...19
3.3 Collaborative RL for a 3D Path Planning Task ...21

4. Collaborative Hierarchical Reinforcement Learning ...23
4.1 Introduction..23
4.2 Key Concepts...24
4.3 An illustrative example..25

5. RL Sequencing Algorithm (SRL)..26
5.1 Introduction..26
5.2 The SRL Algorithm ...27

6. Cognitive Collaborative Reinforcement Learning (CCRL) ...30
6.1 Introduction..30
6.2 The CCRL Algorithm..31
6.3 Collaborative Learning ..31
6.4 Self-Performance Assessment Capability..32
6.5 Advice Request Test ..32
6.6 Advice Assessment Capability ..33
6.7 Advice Rejection Test..34

7. Sub-task Sequencing for a Toast Making System ...36
7.1 Introduction..36
7.2 High Level Learning Task – Toast Transition Sequencing ...36
7.3 Experimental Setup and Method of Operation ..36
7.4 Task Definition ..38
7.5 Implementation of the SRL Algorithm..39
7.6 Analysis ...40
7.7 Results and Discussion ..42
7.8 Summary..50

8. Path Planning for a Toast Making System ..51

V

8.1 Introduction ...51
8.2 Task Definition..51
8.3 Experimental Setup and Method of Operation..52
8.4 Evaluation and Summary ..54

9. Evaluation of CCRL using a 3D Path Planning Task...55
9.1 Introduction ...55
9.2 Representation of Advisor Skill Levels...55
9.3 CCRL...57
9.4 Fully Autonomous Learning (Base-Line) ...57
9.5 Introspection Approach (IA) ...58
9.6 Combined Method ...58
9.7 Task Definition..58
9.8 Analysis ...60
9.9 Results and Discussion ..61
9.10 Summary..72

10. Conclusions and Future Research ..73
10.1 Conclusions ...73
10.2 Future Research ...76

11. References ...79

List of Appendices

Appendix I. Toast Making System – Specifications and Operation..83
Appendix II. Statistical Analysis...92
Appendix III. Task Sequencing for a Flexible Manufacturing System (FMS)..94
Appendix IV. Toast Making System – Additional Results ...104
Appendix V. 3D Path Planning Task – Additional Results...108
Appendix VI. Toast Making System – Source Code...120
Appendix VII. 3D Path Planning Task – Source Code ...145
Appendix VIII. Task Sequencing for a FMS – Source Code ..151

VI

List of Figures

Fig. 2.1 SARSA algorithm pseudo code... 7
Fig. 2.2 Q-learning algorithm pseudo code... 7
Fig. 2.3 Q(λ) algorithm pseudo code .. 8
Fig. 4.1 Flowchart of the CHRL framework... 24
Fig. 5.1 Pseudo-code of the SRL algorithm.. 29
Fig. 6.1 Scheme of the CCRL algorithm .. 34
Fig. 6.2 Pseudo-code of the CCRL algorithm... 35
Fig. 7.1 General scheme of the toast making system.. 37
Fig. 7.2 Motoman robot and cardboard mockup of the system stations ... 37
Fig. 7.3 Convergence to the scheduling problem's solution, case II ... 43
Fig. 7.4 Toast locations for the sequence found, case II... 43
Fig. 7.5 Action selection analysis, 3-toast problem, type A reward factor, case II... 44
Fig. 7.6 Adaptive ε-greedy action selection.. 44
Fig. 7.7 Reward factor analysis, 3-toast problem, case I, deterministic environment .. 45
Fig. 7.8 Reward factor analysis, 4-toast problem, case I, deterministic environment .. 45
Fig. 7.9 Performance comparison – 3-toast problem, type B reward factor, case III, deterministic environment.............. 46
Fig. 7.10 Performance comparison – 3-toast problem, type B reward factor, case I, stochastic environment 47
Fig. 7.11 Performance comparison – 4-toast problem, type B reward factor, case III, deterministic................................. 47
Fig. 7.12 Performance comparison – 4-toast problem, type B reward factor, case I, stochastic environment 48
Fig. 8.1 Experimental setup – side and overhead views ... 52
Fig. 8.2 Simulated environment.. 53
Fig. 8.3 User interface - low level learning task ... 53
Fig. 8.4 State-action value map... 54
Fig. 9.1 Human advisor representation... 57
Fig. 9.2 The grid-worlds ... 59
Fig. 9.3 Convergence in a learning session .. 62
Fig. 9.4 Autonomous learning - influence of β... 62
Fig. 9.5 CCRL - collaboration level switching, example I ... 63
Fig. 9.6 CCRL – collaboration level switching, example II ... 64
Fig. 9.7 CCRL - influence of Λ .. 64
Fig. 9.8 CCRL - learning without advice assessment capabilities.. 65
Fig. 9.9 CCRL - learning with advice assessment capabilities ... 65
Fig. 9.10 CCRL - influence of Ω .. 66
Fig. 9.11 IA - influence of the width parameter Ψ ... 67
Fig. 9.12 IA - learning with various advisors ... 68
Fig. 9.13 Combined method - learning with various advisors .. 68

VII

List of Tables

Table 2.1 RL notations ..6
Table 2.2 Summary of related work ..17
Table 7.1 System stations and machine processing times ...38
Table 7.2 Robot transition times (sec.)..38
Table 7.3 Summary of tests...42
Table 7.4 Summary of case I results ...48
Table 7.5 Summary of case II results ..49
Table 7.6 Summary of case III results...49
Table 9.1 Summary of tests...61
Table 9.2 Scores for world I with full view...70
Table 9.3 Scores for world I with limited view...70
Table 9.4 Scores for world II with full view ...71
Table 9.5 Scores for world II with limited view..71

Acronyms

AGV Automated Guided Vehicle
CCRL Cognitive Collaborative Reinforcement Learning Algorithm
CHRL Collaborative Hierarchical Reinforcement Learning
CQ(λ) Collaborative Q(λ)
FIFO First In First Out
FMS Flexible Manufacturing System
GUI Graphical User Interface
HO Human Operator
HRI Human-Robot Interaction
HRL Hierarchical Reinforcement Learning
IA Introspection Approach
MC Monte-Carlo
ML Machine Learning
RL Reinforcement Learning
SRL Sequencing Reinforcement Learning Algorithm

Chapter 1. Introduction - Problem Description and Research Motivation 1

1. Introduction
Chapter Overview

This chapter describes the problem addressed in this work and presents the research objectives,

contributions and innovations.

1.1 Problem Description and Research Motivation
To expand robotic applications into real-world environments, robots must be constructed for a

large variety of tasks and be able to adapt continuously to new and changing working conditions.

Since it is impossible to model all environments and task conditions, the adaptation to new tasks

cannot be achieved by regular end-user programming. Rather, the robot must be delivered with

advanced capabilities to autonomously learn new tasks and new working conditions.

A common learning approach in robotics, which can answer some of these challenges, is

reinforcement learning (RL) [Watkins, 1989; Peng and Williams, 1996; Sutton and Barto, 1998;

Ribeiro, 2002]. RL is an unsupervised learning method in which an agent (a robot1) learns

autonomously through direct interaction with the environment, using trial and error. The basic notion

is of a learning process in which an agent observes its current state (s) and chooses an action to

perform (a) from a set of all possible actions, with the ultimate objective of reaching a defined goal

state. The agent’s actions can change both its state and the environment’s state. Throughout the

process, the agent receives reinforcements from the environment (r), indicating how well it is

performing the required task. The robot’s goal is to optimize system responses by maximizing a

reward function suited for the desired task, i.e., maximize the rewards received during the entire

process.

RL is an attractive alternative for programming autonomous systems (agents), as it allows the

agent to learn behaviors on the basis of sparse, delayed reward signals provided only when the agent

reaches desired goals [Bakker and Schmidhuber, 2004]. Furthermore, RL does not require a detailed

model of the environment or training examples, as it creates its own model and examples during the

learning process. However, standard RL methods do not scale well for larger, more complex tasks.

The extensive interaction between the robot and the environment, necessary for determining an

effective policy, implies expensive computability and long learning times in large state-action

spaces. Another problem, directly derived from the fundamental characteristics of RL, is the fact that

it allows only one goal state for the learning task. These drawbacks present significant difficulties

when developing autonomous learning robotic systems, which are characterized by large state-action

spaces and typically consists of several goal states.

1 The terms “agent” and “robot” will be used interchangeably throughout this work.

Chapter 1. Introduction - Problem Description and Research Motivation 2

One promising approach to scaling up RL is hierarchical reinforcement learning (HRL) [Watkins,

1989; Dietterich, 1999]. Rather than attempting to solve the whole problem at once, decomposition is

performed to create a hierarchical structure of sub-problems. Low-level policies, which emit the

actual actions, solve only parts of the overall task. Higher-level policies solve the overall task,

considering only a few abstract, high-level observations and actions. This reduces each level’s search

space and facilitates temporal credit assignment [Bakker and Schmidhuber, 2004]. Moreover, HRL

allows a learning process to consist of more than one goal. When assuming the low-level policies are

known (i.e., we know how to perform them in an optimal way), what is left is to schedule (or

sequence) their execution in an order that will lead to optimal execution of the overall task.

Another way of addressing the drawbacks described is to allow a human advisor or a training

agent to intervene and provide guidance in the learning process. So, instead of relying solely on

reinforcements provided by the environment, the learning agent also has access to supervised

instruction supplied by a training agent or human advisor. A human may aid the robot in its learning

process by showing it how to solve new tasks and how to improve or expand already learned

behaviors. This can enable the robot to handle unknown and unpredictable events that are beyond the

competence of current autonomous robotic systems. Previous research indicated that human-robot

collaboration is essential to improve the learning and reduce the amount of time it takes a robot to

accomplish a learning task (e.g., [Papudesi and Huber, 2003; Mihalkova and R. Mooney, 2006;

Kartoun, 2008]).

Nevertheless, many of the previous works assumed that human assistance is available at all times.

Indeed, human intervention can improve the learning process and accelerate the robot learning, but if

it is required too frequently, the autonomous sense of the learning is lost, along with the initial

purpose of a robot replacing the human. Hence, a central issue in human-robot collaboration,

addressed in this research, is adjustable autonomy, the determination of whether and when human

intervention is required.

Another deficiency in prior works is the assumption that the human advisor is an expert providing

only optimal advice. This might not be the case when the instructor is tired for example, or if it is a

child instructing a service robot performing daily household chores. Hence, this assumption of expert

advisors is relaxed in this research, so that non-expert instructors are also considered.

The framework proposed in this research, Collaborative Hierarchical Reinforcement Learning

(CHRL), combines the two techniques described in the above paragraphs, hierarchical reinforcement

learning and human-robot collaboration. The framework aims to enable the execution of complex

tasks and to accelerate the learning process by decomposing the tasks into a two-level learning

hierarchy. The high level consists of learning the desired sequence of execution of the basic sub-

tasks, and the low level consists of learning how to perform each of the sub-tasks required. Since the

Chapter 1. Introduction - Research Objectives 3

sub-tasks may be performed many times, the reuse of learned sub-task problems provides a definite

advantage. Human intervention is allowed at both levels, to expedite the learning process by

exploiting human intelligence and expertise.

In this research two RL-based algorithms were developed to support the CHRL framework: (i) a

sequencing RL algorithm (SRL), and (ii) a cognitive collaborative RL algorithm (CCRL). The SRL

algorithm was developed [Gil et al., 2008] for providing a sub-task execution sequence, as part of the

high level of the hierarchy. The algorithm addresses the learning task of scheduling a single transfer

agent (a robot arm) through a set of sub-tasks in a sequence that will achieve optimal task execution

times. In lieu of fixed inter-process job transfers, the robot allows the flexibility of job movements at

any point in time and to any location. Execution of complex tasks was demonstrated using two

applications – an automated toast making system and a flexible manufacturing system. The CCRL

algorithm was developed to allow the introduction of an advisor through intelligent adjustable

autonomy. The autonomous learner is enabled with two cognitive capabilities: a self awareness skill

to assess its own performance and decide when it is not sufficient hence advisor guidance should be

solicited, and the ability to judge the value of the advice given and decide whether to accept or reject

it. This approach was demonstrated and evaluated using the toast making system and a simulated

three-dimensional path planning task.

1.2 Research Objectives
The fundamental research objective of this work is to introduce a new reinforcement learning

framework, noted as Collaborative Hierarchical Reinforcement Learning (CHRL), designed to

enable learning and execution of partially modeled complex tasks by a self learning agent, while

allowing human collaboration in the process. The specific objectives are to describe the development

and evaluation of the two novel algorithms supporting the implementation of the CHRL framework -

the sequencing RL algorithm (SRL) and the cognitive collaborative RL algorithm (CCRL).

1.3 Research Contributions and Innovations
RL is a common learning method, widely used in the world of robotics. Although RL has many

advantages over other learning methods, it has several drawbacks preventing it from answering the

challenges presented by real-world applications. This thesis provides one more step in the continuing

struggle to overcome these drawbacks. The CHRL framework proposed in this research combines

two known techniques used for addressing the drawbacks, hierarchical RL and Human-Robot

collaboration, in order to scale up RL and alleviate some of its disadvantages. This combination

enables both the execution of complex tasks and the improvement of the learning process.

Chapter 1. Introduction - Research Contributions and Innovations 4

Two new algorithmic tools are introduced to support the new framework: The first algorithm is

the SRL, a RL-based sequencing algorithm aimed to solve various problems and produce effective

learning and execution under time and resource limitations, without the requirement of a detailed

model of the problem or predefined scheduling rules. This work also presents an alternative view of

the sequencing problem, referring to the robotic transfer agent as the limited resource, and to the

tasks it has to perform as the “jobs” waiting in its queue. This view can simplify the formulation of

such problems.

The second algorithm is a cognitive collaborative RL model (CCRL) which allows the learning

agent not only to decide when to solicit advice, but also to recognize a less capable advisor and

decide to stop the interaction, returning to autonomous operation. The CCRL algorithm improves the

interaction between the learner and the advisor by finding the right balance between independent and

guided learning, taking into account the advisor’s skills. In this last context, the research also

suggests a new method of representing various advisor skill levels, allowing the evaluation of

collaboration algorithms under realistic conditions of imperfect guidance.

Finally, this work demonstrates the applicability of RL-based methods for a real-world scenario,

presenting encouraging results to support future research in this area.

Chapter 2. Scientific Background - Reinforcement Learning 5

2. Scientific Background
Chapter Overview

This chapter reviews the literature of the relevant research topics, in particular reinforcement

learning methods and applications. Current human-robot collaboration and robot learning

applications are also presented.

2.1 Reinforcement Learning
“Reinforcement learning (RL) is a computational approach to understanding and automating goal-

directed learning and decision-making. It is distinguished from other computational approaches by

its emphasis on learning by the individual from direct interaction with its environment, without

relying on exemplary supervision or complete models of the environment” [Sutton and Barto, 1998].

RL does not assume the existence of a teacher that provides training examples. The learning agent

receives signals (reinforcements) from the environment indicating how well it is performing the

required task. These signals are usually associated to some dramatic condition - e.g., accomplishment

of a sub-task (reward) or complete failure (punishment), and the agent’s goal is to optimize its

behavior based on some performance measures (maximization of a reward function) [Kartoun,

2008]. “The learning agent learns the associations between observed states and chosen actions that

lead to rewards or punishments, i.e., it learns how to assign credit to past actions and states by

correctly estimating costs associated to these events” [Ribeiro, 2002].

RL algorithms make explorative and exploitative traverses in the state-space trying to find a

“path” that is highly rewarded. The benefit of the algorithm is its capability of exploration, i.e.,

traversing through states that are not well-rewarded but may yield higher reward in the long run,

bypassing local maxima this way. It is important to pay attention to the exploration and exploitation

balancing problem [Sutton and Barto, 1998]. [Stefan, 2003] notes that exploration is interpreted as an

operation mode of the learning agent where it makes experiments and tries to discover its

environment. Exploitation, on the other hand, is a mode in which the agent has gathered enough

knowledge and makes real decisions.

2.2 Common Reinforcement Learning Algorithms1

The central idea in reinforcement learning is Temporal Difference (TD) learning. TD learning is a

combination of Monte Carlo (MC) ideas and dynamic programming (DP) ideas. Like MC methods,

TD methods can learn directly from raw experience without a model of the environment's dynamics.

1 This review is based on material from [Sutton and Barto, 1998].

Chapter 2. Scientific Background - Common Reinforcement Learning Algorithms 6

Like DP, TD methods update estimates based in part on other learned estimates, without waiting for

a final outcome (they bootstrap).

The basic assumption in reinforcement learning studies is that any state 1ts + made by the agent

must be a function only of its last state and action: 1 (,)t tts f s a+ = , where ts S∈ and ta A∈ are the

state and chosen action at time step t . Q is the system’s estimate of the optimal action-value function.

The system estimates the optimal action-value function),(tt asQ directly and then uses it to derive a

control policy.

),(tt asQ represents the expected discounted cost for taking action ta when visiting state ts and

following an optimal policy thereafter. These characteristics allow an iterative process for calculating

an optimal action. The first step is to initialize the system’s action-value function, Q. Since no prior

knowledge is available, the initial values can be arbitrary (e.g., uniformly zero). Next, the system’s

initial control policy is established. This control policy will chose the action to be taken from the

current state. The control policy is usually derived from Q, and can change during the process. The

next action can be chosen such that it will lead the agent to the state with the highest Q value (i.e.,

greedy action selection), or using other methods, such as ε-greedy or softmax (described in Sections

5.2 and 9.2, respectively), which have a probabilistic feature, allowing better exploration of the state-

space.

At time-step t , the agent visits state ts S∈ and selects an action ta A∈ , receives from the process

the reinforcement (,)t tr s a R∈ and observes the next state 1ts + . Then it updates the action value

),(tt asQ according to the used algorithm (e.g., SARSA, Q-learning), thus completing one step. The

RL notations are described in Table 2.1.

Table 2.1 RL notations

S State space
A Action space
ts S∈ State at time step t

1ts S+ ∈ State at time step 1t +
ta A∈ Action at time step t

1ta A+ ∈ Action at time step 1t +
(,)t tr s a Reward at time step t

α Learning rate. Controls the weight given to the new Q estimate, as opposed to the old one
γ Discount factor. Determines the present value of future rewards
(,)t te s a Eligibility trace

λ Eligibility trace factor
δ Temporal difference error

),(tt asQ State-action value estimate

Chapter 2. Scientific Background - Common Reinforcement Learning Algorithms 7

2.2.1 SARSA
SARSA is an On-Policy TD control algorithm, meaning that the evaluated policy is the policy

used for control. The Q value estimates are updated after each step. The pseudo code of the SARSA

algorithm is described in Fig. 2.1.

Fig. 2.1 SARSA algorithm pseudo code

2.2.2 Q-Learning
Q -learning is an Off-Policy TD control algorithm, meaning that the evaluated policy is not

necessarily the policy used for control - the action chosen to be taken, ta , isn’t necessarily the one

that will locally maximize the action-value, although the Q updating equation assumes the optimal

expected cost. This is done in order to encourage exploration of the state-space, and avoid from

converging to a local optimum. A way to achieve this is to use action selection methods such as ε-

greedy or softmax. The pseudo code of the Q-learning algorithm is described in Fig. 2.2.

Fig. 2.2 Q-learning algorithm pseudo code

Initialize (),Q s a arbitrarily
Repeat (for each learning episode n):

Initialize state ts
Repeat (for each step t of episode):

Choose ta for ts using a policy derived from Q (e.g., ε-greedy)

Take action ta , observe tr , 1ts +

1 1 1(,) (,) [max (,) (,)]
tt t t t t t t taQ s a Q s a r Q s a Q s aα γ
+ + +← + + −

 1t ts s +←
 Until ts is terminal

Until n = N (reached the desired number of learning episodes)

Initialize (),Q s a arbitrarily
Repeat (for each learning episode n):

Initialize state ts , pick initial action ta
Repeat (for each step t of episode):

Take action ta , observe tr , 1ts +

Choose 1ta + for 1ts + using a policy derived from Q

1 1(,) (,) [(,) (,)]t t t t t t t tQ s a Q s a r Q s a Q s aα γ + +← + + −

1 1;t t t ts s a a+ +← ←
 Until ts is terminal

Until n = N (reached the desired number of learning episodes)

Chapter 2. Scientific Background - Hierarchical Reinforcement Learning 8

2.2.3 Q(λ)
)(λQ is a generalization of Q -learning.)(λQ uses eligibility traces,),(tt ase : the one-step Q -

learning is a particular case with 0=λ . The Q -learning algorithm might learn slowly since only one

time-step is traced for each action. To boost learning, a multi-step tracing mechanism, the eligibility

trace, is used in which the Q values of a sequence of actions can be updated simultaneously

according to the respective lengths of the eligibility traces. The pseudo code of the Q(λ) algorithm is

described in Fig. 2.3.

Fig. 2.3 Q(λ) algorithm pseudo code

2.3 Hierarchical Reinforcement Learning
The notion of hierarchical reinforcement learning (HRL) presented in this work has been applied

for various problems. [Dietterich, 1999] states that “the ideal hierarchical RL method would provide

the benefits of hierarchy (faster learning and sub-task sharing and reuse) while maintaining the

benefits of RL (optimality, online learning from the environment and autonomy).” Specifically, an

ideal method should satisfy the following requirements [Dietterich, 1999]: (i) support state

abstraction, i.e., make it possible for individual sub-tasks to ignore irrelevant aspects of the state

space, (ii) sharing/reuse of sub-tasks – the method should make it possible to learn an optimal policy

for a sub-task and then reuse the learned policy for different parent tasks, (iii) efficient learning –

obviously, hierarchical RL will be useless if it does not provide better performance than non-

hierarchical methods, (iv) optimally – the method should learn optimal or near-optimal policies, and

(v) online learning – The method should be able to learn online working with the entire task. [Sun

Initialize (),Q s a arbitrarily and 0(),e s a = , for all ,s a
Repeat (for each learning episode n):

Initialize state ts , ta
Repeat (for each step t of episode):

Take action ta , observe tr , 1ts +

Choose 1ta + for 1ts + using a policy derived from Q (e.g., ε-greedy)

1

* *
1 1 1 1arg max (,) (if ties for the max, than =)

t t t t taa Q s a a a a
+ + + + +←

*
1(,) (,)t t t t tr Q s a Q s aδ γ +← + −

(,) (,)+1t t t te s a e s a←
For all ,s a
 (,) (,)+ (,)Q s a Q s a e s aαδ←

*If , then (,) (,)
 else (,) 0

ta a e s a e s a
e s a

γλ= ←

←

1 1; t t t ts s a a+ +← ←
 Until ts is terminal

Until n = N (reached the desired number of learning episodes)

Chapter 2. Scientific Background - Hierarchical Reinforcement Learning 9

and Sessions, 2000] separate the many existing models of HRL into two cases: (i) the use of

structurally pre-determined domain-specific hierarchies and (ii) automatic building of hierarchies.

Furthermore, they distinguish two directions in automatically building hierarchies: upward and

downward.

An application of hierarchical RL to the problem of negotiating obstacles with a quadruped (four

legged robot) is described in [Honglak et al., 2006]. The algorithm is based on a two-level

hierarchical decomposition of the task, in which the high-level controller selects the sequence of foot

placement positions, and the low-level controller generates the continuous motions to move each foot

to the specified positions. The high-level controller uses an estimate of the value function to guide its

search. Then, a beam search is used to look multiple steps ahead, and try to find a sequence of

actions to move the robot towards the goal. The low-level controller is obtained via policy search. A

reward function penalizes undesirable behaviors such as taking a long time to complete the foot

movement, passing too close to of an obstacle, or failing to move the foot to the desired goal

location. After learning the parameters for both the low and the high level controllers, the resulting

hierarchical policy was tested, in simulation, and later using the real robot, for a large variety of

obstacles. The experiment demonstrates that the robot can successfully climb over a variety of

obstacles which were not encountered at the training stage.

In [Jeni et al., 2007], HRL is employed to a mobile robot navigation task. The environment is

decomposed into separate sections, and an interconnection function describes the prior knowledge of

how various parts of the environment are connected. In the first part of the learning process the

algorithm explores the state space by starting several trajectories. If it reaches an interconnecting

state it creates a new abstract state, which contains the states of the trajectory. If it finds a path

between two abstract states, which does not contain a connecting state, it merges the two states. The

result of this stage is a set of abstract states and each state represents a partition of the original state

space. In the second part of the learning process the algorithm learns partial policies on the partitions

represented by the abstract states. The results of simulations performed illustrated that the algorithm

performs much better than the flat learner algorithm, but it requires some prior knowledge about the

problem.

A method called HASSLE (Hierarchical Assignment of Sub-goals to Sub-policies Learning

algorithm) is presented in [Bakker and Schmidhuber, 2004]. As in other HRL methods, the high-

level value functions cover the state space at a coarse level, and the low-level value functions cover

only parts of the state space at a fine-grained level, with the aim of reaching the sub-goals assigned

by the high-level policy. The difference is that unlike other methods, at HASSLE the high-level

policies not only select the next sub-goal to be reached by a lower-level policy, but also

autonomously discover and define sub-goals. Both high-level policies and low-level policies use

Chapter 2. Scientific Background - Reinforcement Learning for Scheduling 10

essentially standard value function-based reinforcement learning algorithms. The issue of how to

autonomously arrive at abstract high-level observations is addressed using an unsupervised

clustering algorithm. The main requirement is that a clustering of “primitive”, low-level observations

is accomplished, such that neighboring low-level states tend to be clustered together. The HASSLE

algorithm was tested using a navigation task in a simulated “office” grid world. The agent had to

learn to move from any possible start position to a fixed goal position. Experiments showed that

HASSLE outperformed standard, “flat” RL methods in deterministic and stochastic tasks, and

learned significantly faster. Nevertheless, the system has some limitations, such as large number of

parameters, lack of strict convergence guarantees and the dependence on identifying reasonable

high-level observations.

Similarly to HRL, Compositional Q-Learning (CQ-L) [Singh, 1992] is a modular approach to

learning to perform composite tasks made up of several elemental tasks by RL. In CQ-L, skills

acquired while performing elemental tasks are also applied to solve composite tasks. Individual skills

compete for the right to act and only winning skills are included in the decomposition of the

composite task. [Tham and Prager, 1995] extend the original CQ-L concept in two ways: (i) a more

general reward function, and (ii) the agent can have more than one actuator. They use the CQ-L

architecture to acquire skills for performing composite tasks with a simulated two-linked manipulator

having large state and action spaces. The agent is required to drive the manipulator from an arbitrary

starting arm configuration to one where its end-effector is brought to a fixed destination in the case

of elemental tasks, or to several destinations, one after another, for composite tasks. Results indicated

that the CQ-L architecture can be successfully applied to the learning of complex composite tasks

with large state and action spaces.

2.4 Reinforcement Learning for Scheduling
Production scheduling is one of the most important processes in manufacturing systems, and

when properly executed can provide such benefits as increased throughput, enhanced customer

satisfaction, lower inventory levels, and increased utilization of resources [Wang and Usher, 2005].

Scheduling problems essentially involve completing a set of jobs with a limited number of

manufacturing resources and under various constraints, with the objective of optimizing performance

measures such as makespan (total completion time), mean flow time and mean tardiness [Wang and

Usher, 2005].

[Stefan, 2003] describes the three main scheduling concepts: mathematically grounded

algorithms, heuristic approaches and algorithms supported by machine learning (ML). The first

concept can be adapted to small-sized scheduling problems. The advantage of the concept is that it is

well defined, exact and can be generally applied to the wide range of two-machine scheduling tasks.

Chapter 2. Scientific Background - Reinforcement Learning for Scheduling 11

The price is lack of scalability, i.e., no mathematical proof can be given for a larger number of

machines. He states that “there are two directions of research to overcome the restrictions of

mathematical formulations: using heuristics and/or machine-learning. While heuristic approaches

provide direct rules of thumb to follow, but no algorithm to find the solution in a modified decision

environment, ML methods give a model of a mental process itself. As the knowledge of the learning

agent improves the method results in solutions that are more and more close to the optimal solution,

even in a changing environment.” In his research, [Stefan, 2003] propose an RL-based algorithm

designed to give a quasi-optimal solution to the m-machine flow-shop scheduling problem. Namely,

given a set of parts to be processed and a set of machines to carry out the process, each part should

have the same technological path on all machines and the order of jobs can be arbitrary. The goal is

to find an appropriate sequence of jobs that minimizes the sum of machining idle times. States are

defined as job sequences, or more precisely job precedence relations. State-changes (or actions) are

defined as changes in relations. Results indicated that the RL-scheduler was able to find close-to-

optimal solutions.

In their study, [Wei and Zhao, 2004] developed an adaptive rule selection method for dynamic

job-shop scheduling. A Q-learning agent performs dynamic scheduling based on information

provided by the scheduling system. The learning agent’s decision on the rule to be employed for

selecting a job from the buffer is based on the status of the system’s buffer. The agent was trained by

the Q-learning algorithm, entailing the capabilities of selecting the appropriate rules in real time

based on changes in the state of the system. The action selection was performed using an adaptive ε-

greedy strategy1, and the goal was to minimize mean tardiness. The Q-learning algorithm showed

superiority over most of the conventional rules compared for a simulated environment. [Creighton

and Nahavandi, 2002] present an intelligent agent-based scheduling system for solving the Economic

Lot Scheduling Problem (ELSP). This problem refers to the production of multiple parts on a single

machine, with the restriction that no two parts may he produced at the same time. The production

facility studied was a multi-product serial line subject to stochastic failure. The agent goal was to

minimize total production costs, through selection of job sequence and batch size. By applying an

independent inventory control policy for each product, the agent successfully identified optimal

operating policies for a real production facility.

[Gabel and Riedmiller, 2007] note that “most approaches to tackle job-shop scheduling problems

assume complete task knowledge and search for a centralized solution.” In their work they adopt an

alternative view where each resource is equipped with an adaptive agent that, independent of other

agents, makes job dispatching decisions based on its local view on the plant and employs

1 The adaptive ε-greedy action selection method is described in Section 5.2.

Chapter 2. Scientific Background - Robot Learning 12

reinforcement learning to improve its dispatching strategy. This decentralized approach is

particularly suitable for environments where unexpected events may occur, such as the arrival of new

tasks or machine breakdowns, hence frequent re-planning would be required. The empirical

evaluation in the research leads to the conclusion that problems of current standards of difficulty can

very well be effectively solved by the learning method they suggest.

2.5 Robot Learning
“Robotics is one of the most challenging applications of machine learning techniques. It is

characterized by direct interaction with a real world, sensory feedback and complex control tasks”

[Kreuziger, 1992]. Learning should lead to faster and more reliable solution executions, and to

development of the ability to solve problems the robot was not able to solve before. [Connell and

Mahadevan, 1993] state “building robotic systems that learn to perform a task has been

acknowledged as one of the major challenges facing artificial intelligence. Self-improving robots can

relieve humans from much of the drudgery of programming and potentially allow their operation in

unknown and dynamic environments.” Progress towards this goal can contribute to intelligent

systems by advancing the understanding of how to successfully integrate disparate abilities such as

perception, planning, learning, and action.

Common robot learning tasks, such as navigation in an environment, include: (i) localization - the

process of determining the robot’s location; (ii) mapping - the process of building a model of the

environment, and (iii) planning - the process of planning the robot’s movements [Howard, 1999]. A

navigation learning task of a miniature mobile robot equipped with vision capabilities using several

RL-based algorithms is described in [Bhanu et al., 2001]. Comparison between the Q and Q(λ)

algorithms for a 6 x 6 maze show only a few significant differences between the two learning

algorithms. Overall, the Q(λ) algorithm takes fewer actions during the entire experiment, suggesting

it is faster in finding the shortest path. A RL algorithm for accelerating acquisition of new skills by

real mobile robot is presented in [Martínez-Marín and Duckett, 2005]. The algorithm, tested using a

docking task, speeds up Q-learning by applying memory-based sweeping [Touzet, 2003].

Autonomous object approaching with an arm-hand robot is a very difficult problem since the

possible configurations are numerous. [Wang et al., 2006] propose a modified RL algorithm for

solving the problem of how a multi-fingered robotic hand should approach objects before grasping.

Learning is divided into two phases, heuristic learning and autonomous learning. In the first phase,

the heuristic search (a function of A* search) is utilized to help the robot reach the goal quickly, while

updating a Q table. Once the table has been modified enough to effectively control the robot, the

second learning phase starts. In this phase, the robot is trained using a standard RL learning method,

Chapter 2. Scientific Background - Collaborative Learning 13

which impels the robot to find the local optimal policy. The experimental results demonstrate the

effectiveness of the proposed algorithm.

It is stated in [Kartoun, 2008] “although Q-learning and Q(λ) were used in many fields of

robotics, the issue of acceleration of learning towards finding an optimal or close to optimal solution

is still significant.”

2.6 Collaborative Learning
Human-robot interaction (HRI) can be defined as the study of humans, robots, and the manner in

which they influence each other. Sheridan describes a ten-level formulation of robot autonomy,

viewing the robot as a highly intelligent system that is capable of performing a task by itself in a

given context [Sheridan, 1987]. The degree of robot autonomy is scaled accordingly based on human

decisions when performing the task. Through this, a balance of control between the robot and the

human is achieved. On the one hand, to ensure that highest-quality decisions are made, a robot

should transfer control and collaborate with a human operator (HO) when it has superior decision-

making expertise. On the other hand, interrupting a user might cause delays or acquiring information

that is not necessarily beneficial; thus such transfers of control should be optimized.

Fong and his co-researchers [Fong et al., 2001] determined that there are four key issues that must

be addressed when constructing a collaborative control system. First, the robot must have self-

awareness, not in the sense of being fully sentient, but merely in having the capabilities for detecting

and determining if it should ask for help, and recognizing when it has to solve problems on its own.

Second, the robot must be self-reliant. Since the robot cannot rely on the human to always be

available or to provide accurate information, it must be able to maintain its own safety. Specifically,

the robot should be capable of avoiding hazards, when necessary. Third, the system must support

dialogue, allowing the robot and the human to communicate effectively with each other. Each

participant must be able to convey information, to ask questions and to judge the quality of responses

received. Finally, the system must be adaptive. By design, collaborative control provides a

framework for integrating users with varied skills, knowledge, and experience. [Kartoun, 2008]

points that collaboration between a robot and a human during learning is beneficial since humans

have superior intelligence and skills such as perception, intuition and awareness, to direct policy

adjustments in the most suitable direction. These skills are especially important in real-world

applications which are characterized by unknown and unstructured environments.

[Breazeal and Thomaz, 2008] indicate that past work that incorporate human input into a Machine

Learning process tend to maintain a constant level of human involvement. Several are highly

dependent on guidance, learning nothing without human interaction, while other approaches are

Chapter 2. Scientific Background - Collaborative Learning 14

almost entirely exploration based, using limited input from a teacher. They posit that a social learner

must be able to move flexibly along this guidance-exploration spectrum, explore and learn on its

own, but also take full advantage of a human partner’s guidance when available.

Human-robot collaboration research deals with collaboration between the HO and the system and

the level of automation in aspects of data acquisition, data and information analysis, decision

making, action selection and action implementation, in accordance to specific task or sub-task goals

and parameters [Bechar et al., 2006]. Shifting from one collaboration level to another during task

performance is required in cases in which the robot or the HO parameters change [Bechar et al.,

2003]. [Kartoun, 2008] states “a robot system performing a learning task has to be designed in such a

way to consider how to achieve optimal cooperation via appropriate degrees of sharing and trading

between human and robot.” Human-robot collaboration is unnecessary as long as the robot learns

policies autonomously, and adapts to new states. The collaboration with a HO should be triggered

when a robot reports to the human that its learning performance is low. Then the human is required

to intervene and suggest alternative solutions [Kartoun, 2008].

Sliding scale autonomy is defined in [Yanco et al., 2005] as the ability to create new levels of

autonomy between existing, pre-programmed autonomy levels. The suggested sliding scale

autonomy system allows dynamical combination of human and robot inputs, using a small set of

variables such as user and robot speeds, speed limitations, and obstacle avoidance. An experimental

environment called EVIPRO (Virtual Environment for Prototyping and Robotic) was developed

allowing the assistance of autonomous robots during the realization of a teleoperation mission

[Heguy et al., 2001]. This project studied man-machine cooperation in a system using virtual reality

and adaptive tools. The goal of the human users and autonomous robots was to achieve a global task

in virtual environment. Thanks to virtual reality, the project could have natural and intuitive

interface, and allowed mixing of different information to increase user perception. A collaborative

process enabling a robotic learner to acquire concepts and skills from human examples is presented

in [Lockerd and Breazeal, 2004]. During the teaching process, the robot performs tasks based on

human instructions. Using a Q-learning approach, the robot learns a button pushing task.

Mobile robot optimal navigation to a specific target in a two-dimensional world, is achieved by

changes in rewards and Q-value functions, performed by the user [Papudesi and Huber, 2003;

Papudesi et al., 2003]. In [Wang et al., 2003], a variable autonomy approach is used. User

commands serve as training inputs for the robot learning component, which optimizes the

autonomous control for its task. This is achieved by employing user commands for modifying the

robot’s reward function. Similarly, [Thomaz and Breazeal, 2006] describe a new RL-based approach

for giving reward signals by human. The signals depend not only on past actions but also on future

rewards. The experimental platform, called “Sophie’s Kitchen”, simulates a cake baking learning

Chapter 2. Scientific Background - Collaborative Learning 15

process. The platform was developed for investigating how human prefer to interact with a robotic

learner. One feature of “Sophie’s Kitchen” is called the “Interactive Rewards Interface” in which

humans can give rewards in two ways: (i) rewarding a whole state of the world, and (ii) rewarding a

state of a particular object. This distinction was made in order to examine the hypothesis that people

prefer to communicate feedback about particular aspects of a state rather than an entire world state.

Results achieved indicate that people use the reward signal not only to provide feedback about past

actions, but also to provide future directed rewards to guide subsequent actions. Given this, and after

making specific modifications to the simulated RL robot to incorporate guidance, the results show

significant improvements on several measures. The work demonstrates the importance of

understanding the human-teacher / robot-learner system as a whole in order to design algorithms that

support how people want to teach while simultaneously improving the robot’s learning performance.

The steps involved in taking advice from external entities were defined [Hayes-Roth et al., 1980]

as: (i) request the advice, (ii) convert the advice to an internal representation, (iii) convert the advice

into a usable form, (iv) integrate the reformulated advice into the agent’s current knowledge base,

and (v) judge the value of the advice. The potential of learning from environmental reinforcement

and human advice is illustrated in [Papudesi and Huber, 2003]. By incorporating advice into an

additional reward function, the advisor is provided with high degree of freedom in shaping the

control policy, but cannot prevent the achievement of the overall task. Furthermore, strategic advice

can accelerate the learning process, while incorrect advice is ultimately ignored, as its effects

diminish over time.

[Cetina, 2007] introduce a supervised reinforcement learning architecture for robot control

problems with high dimensional state spaces. A supervisor is used to dynamically generate subsets of

relevant actions at each state of the environment. The use of these subsets of actions leads the agent

to exploit relevant parts of the action space, avoiding the selection of irrelevant actions, and

accelerate its learning rate very early in the learning process. Once the agent has exploited the

information provided by the behavior model, it keeps improving its value function without any help,

by selecting the next actions to be performed from the complete action space. The algorithms were

tested with the robot dribbling problem, in the framework of the RoboCup simulation league. Such

problem involves a continuous state space with high dimensionality. Experimental work shows how

the approach can dramatically speed up the learning process.

A learning mechanism, Socially Guided Exploration, in which a robot learns new tasks through a

combination of self-exploration and social interaction, is presented in [Breazeal and Thomaz, 2008].

The system’s motivational drives (novelty, mastery), along with social scaffolding from a human

partner, bias behavior to create learning opportunities for a RL. The system is able to learn on its

own, but can flexibly use the guidance of a human partner to improve performance, through attention

Chapter 2. Scientific Background - Summary 16

direction, action suggestion, labeling of goal states, and feedback. The research platform is Leonardo

(“Leo”), a 65 degree of freedom robot specifically designed for human social interaction. Leo has

speech and vision sensory inputs and uses gestures and facial expressions for social communication.

An experiment with non-expert human subjects shows a human is able to shape the learning process

through suggesting actions and drawing attention to goal states. Human guidance results in a task set

that is significantly more focused and efficient, while self exploration results in a broader set.

Another implementation of human-robot collaborative learning process is described in [Kartoun,

2008]. An ER-1 mobile robot was required to navigate toward a target location in a two-dimensional

world containing undesirable navigation areas. The robot, located remotely from the HO, used

environmental sensing capabilities. Learning was achieved by sharing knowledge with the HO, using

a Collaborative Q(λ) learning algorithm, noted as CQ(λ). Two levels of collaboration where defined:

(i) autonomous - the robot decides which actions to take, acting autonomously according to its Q(λ)

learning function, and (ii) semi-autonomous - HO suggests actions remotely and the robot combines

this knowledge into its CQ(λ) learning function. Evaluating robot performance for the navigation

task revealed the superiority of the collaborative algorithm, CQ(λ), over the standard Q(λ) algorithm

for various parameter combinations. Results show that the human collaboration accelerated robot

learning performance for different collaboration threshold values (the threshold values determine the

balance between autonomous and collaborative learning). On the other hand, the human intervention

rate was not consistent with the improvement level of the robot. The Introspection Approach (IA)

[Clouse, 1996] is a similar method by which the learning agent determines when it requires aid from

a training agent. In IA the agent asks for instruction when it is confused or otherwise unable to

decide upon a course of action. To implement IA, a test was developed to determine whether the

learner is unsure of its choices, indicating the need for help in novel situations. The test examines the

two extreme values of possible actions: if they are close to each other it implies that the learner has

not experienced this state often enough to produce a clear choice, thus should ask for advice. The IA

approach was evaluated using two-dimensional maze problems in which the agent is required to

traverse optimally from a starting cell to a goal cell, and compared against an approach in which the

learning agent requests help randomly. Guidance received via IA was shown to be more informative

than random guidance, thus reducing the interaction that the learning agent has with the training

agent without reducing the speed with which the learner develops its policy.

2.7 Summary
Significant work related to reinforcement learning applied for robot learning, human-robot

interaction and scheduling problems is summarized in Table 2.2.

Chapter 2. Scientific Background - Summary 17

Table 2.2 Summary of related work

Robotic Applications

Method Application Reference
Socially Guided Exploration (HRI) human social interaction (Leonardo) Breazeal and Thomaz, 2008

Collaborative Q(λ)-learning Mobile robot navigation Kartoun, 2008
Hierarchical RL Mobile robot navigation Jeni et al., 2007

Supervised RL (HRI) robot dribbling (RoboCup) Cetina, 2007
Q-learning “Relocation” of mobile robots Mihalkova and Mooney, 2006

A* and Q-learning Object approaching with multi-fingered
robotic hand Wang et al., 2006

Human-computer interaction and
future directed rewards Sophie’s Kitchen Thomaz and Breazeal, 2006

Hierarchical RL Quadruped robot obstacle negotiation Honglak .et al , 2006
Q-learning Mobile robot Martínez-Marín and Duckett, 2005

HRI and sliding scale autonomy Robot speed control and obstacle
avoidance Yanco .et al , 2005

Q-learning and human instructions Robot button pushing task Lockerd and Breazeal, 2004

Hierarchical RL autonomously discover and define
subgoals (HASSLE) Bakker and Schmidhuber, 2004

HRI and Q-learning Mobile robot navigation Papudesi .et al , 2003

HRI and variable autonomy Modifying mobile robot reward
function

Wang .et al , 2003

Q and Q(λ)-learning Mobile robot navigation Bhanu .et al , 2001
Virtual reality and behavior

simulation
Cooperative assistance in teleoperation

(EVIPRO)
Heguy .et al , 2001

RL-based approach
involving human interaction

Human teacher to guide exploration
during learning Clouse, 1996

Compositional Q-learning Simulated two-linked manipulator Tham and Prager, 1995

Scheduling Applications
Method Application Reference

Q-learning Large scale job-shop problems Gabel and Riedmiller, 2007
Q-learning Dynamic job-shop scheduling Wei and Zhao, 2004
Q-learning m-machine flow-shop scheduling Stefan, 2003

RL and Simulation Economic Lot Scheduling Creighton and Nahavandi, 2002

Chapter 3. Methodology - Introduction 18

3. Methodology
Chapter Overview

This chapter describes the methods used in this research. An overview of the algorithms and

learning systems developed is introduced first, followed by problem definitions and notations,

experiments and performance measures.

3.1 Introduction
The collaborative hierarchical reinforcement learning (CHRL) framework presented in this work

was developed in order to allow the execution of complex tasks by a self learning agent, and to

improve and accelerate the learning through the use of advisor guidance.

Two algorithms were developed in order to support the CHRL approach: (i) a sequencing

algorithm (SRL) was developed to address the high level learning task of the hierarchical

reinforcement learning approach, a task of determining the optimal order of execution of low level

sub-tasks; (ii) a cognitive collaborative reinforcement learning algorithm (CCRL) was developed in

order to allow the introduction of an instructor into the learning process, endowing the learner with

the abilities to decide when to ask for guidance and to evaluate the quality of the guidance.

A robotic toast making system was used to demonstrate the applicability of the CHRL framework

and to evaluate the two algorithms. Toast making is a complex multi-goal task since it is composed

of many sub-tasks (such as grasping a toast, inserting it to the toaster or applying butter over it), each

having its own goal state. In this system, the SRL algorithm was used to create a sequence of

required sub-tasks (robot movements)1 and the CCRL algorithm was used for learning how to

perform one of those sub-tasks. The CCRL algorithm was thoroughly evaluated2 using a simulated

3D path planning task.

In all applications the learning phase of the task is performed using MATLAB simulations, in

which the algorithms (SRL and CCRL) are implemented. The use of simulations allows fast learning,

due to the fact that no real robot manipulations are required. Furthermore, the simulation constitutes

a convenient and powerful tool for analyzing the performance of the algorithms, by conducting

various virtual experiments off-line.

1 The SRL algorithm was also applied for a Flexible Manufacturing System for further evaluation - see Appendix III.
2 The CCRL algorithm was employed both for the toast making system (solving a 2D path planning task) and for a
simulated 3D path planning task. Since the 3D task is more complex and poses greater challenges, a thorough statistical
evolution was performed only for it.

Chapter 3. Methodology - Robotic Toast Making System 19

3.2 Robotic Toast Making System
3.2.1 Problem Definitions and Notations

The robotic toast making system includes six stations (two processing stations and four storage

stations) and a transfer “agent” (a fixed-arm robot), utilized to advance the toasts through the system,

one toast at a time. There are predefined process and transferring times. The complex task of toast

making is addressed by decomposing it into a two-level learning hierarchy to be solved by CHRL.

The high-level consists of learning the desired sequence of execution of basic sub-tasks (the

sequencing of the robot’s toast transfers) and the low-level consists of learning how to perform each

of the sub-tasks (i.e., learn actual robot movements).

High-level learning task (sub-task sequencing):

In this application the SRL algorithm is used to generate a sequence of toast (robot) transitions

through the system stations that will result in the completion of toast making in minimum time. The

sequencing of the robot’s transitions can be viewed as a job sequencing problem, where the robot is

the “machine”, and the toasts transitions are the “jobs” waiting in its queue, each requiring a different

“process time” (robot transition time). Here, as in conventional job sequencing problems, there is a

need to prioritize the job execution (toast transfers) using a certain policy (i.e., determine which toast

will be transferred first).

Learning the high-level sequencing task is performed off-line using an event-based MATLAB

simulation. On-line fixed-arm robot motions are performed only after the simulation supplies the

desired sequence.

To solve the sequencing problem using the SRL algorithm, it is formulated as a RL problem1. The

system’s overall state at time step t, denoted as Sst ∈ , is defined by the current locations of the

toasts. A solution is a specific sequence of toast transfers: “move toast 1 to its next station, move

toast 3 to its next station, move toast 1 to its next station, move toast 3…”. The goal state of the

learning task is the state where all the toasts have reached the finished plate. An action at step t is

denoted as ()t ta A s∈ , where A is the action space of all possible actions (the action space is state

dependent). The execution of an action constitutes the advancement of a toast to its next station in

the processing sequence. Rewards are assigned according to the performance, as explained in Section

 5.2.

1 A detailed formulation is presented in Section 7.5.

Chapter 3. Methodology - Robotic Toast Making System 20

Low-level learning task (path planning):

This application includes an example for learning the execution of one of the required low-level

sub-tasks, a task of path planning for the insertion of a slice of bread into the toaster. In this task the

robot-arm is required to transfer the bread slice in the shortest path from a starting position to a target

position above the toaster’s hatch, while avoiding obstacles. During the learning phase a human

advisor guides the robot when requested. The optimal path is learned using a simulation employing

the CCRL algorithm integrated with a standard Q(λ) algorithm [Watkins, 1989] and a human advisor.

Once the path is obtained it is sent to the robot’s controller to carry out the actual robot motions

accordingly.

The robot’s state at time step t, Sst ∈ , is represented by its location in a 2D grid world, defined by

two coordinates. An action Aat ∈ , taken at each step, is traveling left, right, forward, or backward.

Rewards are defined as),(tt asr . If the robot reaches the target, the reward is positive. If it passes

through an undesirable area (obstacle), the reward is negative. Furthermore, a small negative reward

is assigned after each step in order to facilitate minimal number of steps.

3.2.2 Analysis
High-level learning task (sub-task sequencing):

The sequencing algorithm’s performance is tested using two problems: a “3-toast” problem and a

“4-toast” problem, requiring the generation of a sequence for the optimal production of 3 and 4

toasts, respectively. Based on a MATLAB simulation, tests are conducted to examine the influence

of the action selection parameters and the reward factors on the performance, and to evaluate the

performance by comparison to the Monte-Carlo method [Sutton and Barto, 1998] and to a random

search algorithm. Three sets of machine processing times and robot transfer times are considered,

one adjusted to suit the transition times of the real robot and two with increased processing times and

modified robot transition times.

Low-level learning task (path planning):

In this experiment the robot-arm is required to transfer the bread slice in the shortest path from a

starting position to a target position above the toaster’s hatch, while avoiding obstacles. The optimal

path is learned using a simulation, employing the CCRL algorithm, and the actual robot motions are

performed later, according to that path. Human advice is introduced during the path learning process,

using a dedicated interface.

Chapter 3. Methodology - Collaborative RL for a 3D Path Planning Task 21

3.2.3 Performance Measures
System performance is evaluated using the following measures:

High-level learning task (sub-task sequencing):

1) Average number of learning episodes required to reach convergence1.

2) Average percentage of learning sessions reaching the optimal solution, for deterministic times.

3) Average best result achieved in the learning session, for stochastic times, where an optimal

solution cannot be defined due to the probabilistic feature.

Low-level learning task (path planning):

The low level task implementation is only intended to prove the applicability of the CHRL

framework, hence the performance measure is a successful implementation, as described in Chapter

 8 (See further explanation in Section 8.4).

3.3 Collaborative RL for a 3D Path Planning Task
3.3.1 Problem Definitions and Notations

The CCRL algorithm is applied for a simulated 3D path planning task2. Results are compared to

those achieved by: (i) a fully autonomous learner, (ii) the Introspection Approach3 and (iii) a

combined method, integrating the advice request rules of both CCRL and IA. A simulated adviser

with various skill levels is used in the evaluations, to examine the performance achieved with sub-

optimal advice.

Evaluation is conducted for a simulated mobile robot path planning problem in a three-

dimensional grid environment of size 10×10×10 (1000 states). Two grid-world instances are

considered, one with a relatively low obstacle density, and another with a higher density. In order to

evaluate performance in the case of human teleoperated guidance, a limited region of assistance is

also considered for each world. The objective of the robot is to traverse from a starting state to a goal

state through the shortest path, while avoiding obstacles. At each state Sst ∈ , defined by three

coordinates, the robot can choose one of six actions Aat ∈ (up, down, left, right, forward, or

backward). The RL reward structure is such that the robot receives a positive reward for reaching the

1 Detailed definitions of learning episodes, learning sessions, convergence etc. are found in Chapters 7, 8 and 9.
2 The CCRL algorithm is applied here for a simulated environment and not a real one due to time constraints. However,
the simulated environment is sufficient for the algorithmic analysis and in this aspect there is not much added value for a
real robot implementation.
3 The Introspection Approach (IA) is described in details in Sections 6.1 and 9.5.

Chapter 3. Methodology - Collaborative RL for a 3D Path Planning Task 22

target, a small negative reward for each step performed and a large negative reward for colliding

with an obstacle (similar to the reward structure of the low-level task described in Section 3.2.1).

3.3.2 Analysis
Extensive analysis is performed using MATLAB simulations in order to examine the suggested

CCRL algorithm and compare its performance to the base-line fully autonomous learning, the IA

method, and the combined method integrating CCRL and IA.

All methods are evaluated using four environments – worlds I and II, each with full and limited

views, and four different tests are performed for each environment: The first test examines the base-

line fully autonomous learning, the second test evaluates the performance of the CCRL algorithm,

the third test implements IA for solving the path planning problem and the fourth and final test

explores the combined method, integrating both CCRL and IA into one algorithm.

3.3.3 Performance Measures
Performance is evaluated using the following measures:

1) Average number of requests for advice during the learning session (used only for CCRL, in

which advice is requested for a whole episode).

2) Average number of steps performed using advice during the learning session (used for the IA

method in which advice is requested per step, and for the comparison).

3) Average percentage of learning sessions reaching the optimal solution (minimal path length).

4) Weighted normalized scoring based on the 2nd and 3rd measures.

Chapter 4. Collaborative Hierarchical Reinforcement Learning - Introduction 23

4. Collaborative Hierarchical Reinforcement Learning
Chapter Overview

This chapter describes the CHRL framework suggested in this research. The framework combines

two known techniques used for addressing the RL drawbacks, hierarchical RL and Human-Robot

collaboration.

4.1 Introduction
The Collaborative Hierarchical Reinforcement Learning framework (CHRL), illustrated in Fig.

 4.1, aims to enable the execution of complex tasks and to accelerate the learning process. This is

achieved by decomposing the task into a two-level learning hierarchy, while allowing human

collaboration at both levels. The high level consists of learning the desired sequence of execution of

basic sub-tasks, and the low level consists of learning how to perform each of the sub-tasks required.

Human intervention is allowed at both levels, to expedite the learning process and to improve1 it by

exploiting human intelligence and expertise. The innovation is in combining two known techniques,

hierarchical RL and human-robot collaboration, into one framework.

CHRL allows the use of accumulated knowledge gathered in previous learning sessions. Each

complex task is composed of a set of basic sub-tasks. These sub-tasks can be saved in a “toolbox”,

ready to be reused by the agent without the need to learn them from the start. The sub-tasks saved in

the “toolbox” should be general-purposed, allowing them to be used for various high level tasks

(picking up a tray for example, can be used in a hospital or in a restaurant). They may vary from

delicate operations such as picking up a glass without spilling its content or performing a precise cut

during a surgical operation, to obstacle-avoiding navigation and other complex tasks. In the end-

state, the agent will have no need for learning new tasks, but only to learn how to use a set of

available “tools” suitable for performing a specific task.

The inherent modularity and agility of the framework can simplify the formation and execution of

new complex tasks: various tasks can be composed by creating a desired sequence of already known

sub-tasks, available in the system’s toolbox. The SRL algorithm, presented in Chapter 5 was

developed for this purpose.

As both the high and low levels of the hierarchy might still present large-scale, unstructured,

unpredictable problems, human guidance and assistance should be made available for the agent, in

order to improve and accelerate the learning process. The CCRL algorithm presented in Chapter 6

suggests a method of achieving this interaction in an efficient and intelligent way.

1 Improvement means achieving better results than a fully autonomous learning, as demonstrated in Chapter 9.

Chapter 4. Collaborative Hierarchical Reinforcement Learning - Key Concepts 24

It is important to emphasize that this research lays the foundations for the use of the CHRL

framework, introducing the necessary tools for its application, but does not present a complete

implementation. This remains open for future research1.

Fig. 4.1 Flowchart of the CHRL framework

4.2 Key Concepts
CHRL has four key concepts:

1) The complex task is decomposed into a sequence of low level sub-tasks, thus creating a two-

level learning hierarchy: learning the desired sequence of execution (high level) and learning

how to perform each of the basic sub-tasks required (low level).

1 Areas for future expansion of this work can be found in details in Section 10.2.

Chapter 4. Collaborative Hierarchical Reinforcement Learning - An illustrative example 25

2) The high level sequence can be constructed by a human operator (HO), when the full task is

composed of a simple and straightforward set of steps, or by autonomous or collaborative

learning sessions aimed to optimize a more complex task. The low level tasks can also be

acquainted to the system by a set of predefined steps supplied by the HO (supervised control), or

by autonomous or collaborative learning.

3) Learning the sequence and some of the sub-tasks (such as path planning tasks) can be performed

using a simulated environment, fitted to the specific system, thus saving time spent while

learning using real robot moves, and preventing safety issues. After the simulated learning

sessions generate the desired set of steps, the data will be downloaded to the robot’s controller

for execution, allowing fast learning and implementation.

4) Sub-tasks are saved in a toolbox, available for reuse, either within the same application or in

other applications.

4.3 An illustrative example
Consider a trash disposing robot required to take a trash can from a certain room in an office

building, dispose of the trash in a central trash container located in another room, and return the

empty can to the original room. First, the robot needs to learn how to navigate inside the room to

reach the trash can and grasp it. Then, it needs to navigate out of the room and through the corridor

to the container room. Finally, it will need to find the way to the container, empty the can, and return

to the original room with the empty can. Now, consider emptying all trash cans of the entire floor;

instead of letting the robot learn the entire task from scratch, it is suggested to create a correct

sequence of sub-tasks, using the ones the robot had already learned and stored in its toolbox.

Relevant general purpose sub-tasks could be: grasping a can, navigating in the corridor (each

corridor is relevant for different office rooms), navigating inside the central container room,

emptying the can, returning to the original room etc. By composing these general sub-tasks together

in the right order, the robot’s learning and task execution could be achieved much faster.

Chapter 5. RL Sequencing Algorithm (SRL) - Introduction 26

5. RL Sequencing Algorithm (SRL)
Chapter Overview

This chapter presents the RL-based sequencing algorithm developed for providing a sub-task

execution sequence.

5.1 Introduction
In real-time control of dynamic manufacturing systems, scheduling decisions are usually

implemented through a policy that assigns priorities to the jobs waiting at a machine - the job with

the highest priority is selected for imminent processing [Park et al., 1997]. These problems are also

referred to as job sequencing problems, where decision makers must determine the production

sequence of the jobs awaiting their next process in the machine queue. A common approach to

address such problems is to adopt dispatching rules - priority rules used to determine the order in

which the jobs are to be processed as soon as a machine becomes available. However, a dispatching

rule often favors one performance measure at the expense of other measures [Wang and Usher,

2005]. The relative effectiveness of any rule depends upon the current state of the system. Therefore,

there should be flexibility in selecting a dispatching rule employed in such a dynamic environment.

[Park et al., 1997] present an adaptive scheduling policy for dynamic manufacturing systems that

tailors the dispatching rule to be used at a given point in time according to the state of the system.

The rule selection logic is embedded in a decision tree that is generated by applying an inductive

learning algorithm on a set of training examples. Experimental studies indicated the superiority of

the suggested approach over the alternative approach involving the repeated application of a single

dispatching rule.

However, in order to implement dispatching rules, a complete system model is required.

Furthermore, for dynamically assigning dispatching rules there is a need to continually compute

system parameters, such as flow allowance (the lead time permitted to any job), system utilization,

relative machine workloads (points system bottlenecks), and machine homogeneity.

RL provides a relatively easy way to model scheduling problems. With RL there is no need for

predefining desirable or undesirable intermediate states, which is very hard to do in such problems.

All that must be done is to construct a fairly simple reward policy (e.g., higher reward for shorter

completion times) and the algorithm will supply a solution.

Chapter 5. RL Sequencing Algorithm (SRL) - The SRL Algorithm 27

5.2 The SRL Algorithm
The sequencing RL algorithm (Fig. 5.1) is developed to solve the job sequencing problem. The

objective is to sequence the jobs so as to minimize the makespan (total completion time) of the

desired task.

 Problem states, denoted as ts S∈ , are defined as system’s overall state at time step t. Problem

actions, Aat ∈ , which convert the system from state to state, are defined in accordance to the specific

problem. A value Q, associated with a state-action pair, (st,at), represents how “good” it is to perform

action at when the system is in state st.

A learning episode is defined as a finite sequence of time steps, during which the system traverses

from a starting state to a goal state, according to the agent’s actions. A learning session is a series of

N learning episodes.

Action selection in the SRL algorithm is performed using an adaptive ε-greedy method [Sutton

and Barto, 1998], in which the agent behaves greedily by selecting an action according to Max Q

most of the time with probability 1- ε, but with a small probability ε, selects a random action instead.

The probability ε starts with a relatively high value, and is adaptively reduced over time using

exponential decay as a function of the number of episodes, n, as shown in (5.1). The rate of decay is

controlled by β, a positive parameter specifying how fast ε will decrease towards zero.

1
nβε =

(5.1)

At the beginning of the learning session, when the agent has not gathered much information, a

high value of ε encourages exploration of the state-space by allowing more random actions. As the

learning session progresses, the probability ε decreases, reducing the number of random actions, and

allowing the agent to exploit the information already gathered and perform better.

To solve the scheduling problem there is a need to consider the sequence of steps as a whole and

not only step by step. The reason is that the policy’s performance can only be evaluated and

rewarded at the end of the learning episode, when the task completion time is known. This is also the

reason why standard RL algorithms, such as Q-learning, updating value estimates on a step-to-step

basis and assigning predefined constant rewards, cannot be applied here. Hence, the algorithm

includes two updating methods.

The first method is performed after each step, similar to the SARSA1 control algorithm [Sutton

and Barto, 1998]. The difference is that because of the characteristics of the scheduling problem,

there is no way of evaluating whether a certain action taken is good or not, from the narrow

1 The SARSA algorithm is described in Section 2.2.

Chapter 5. RL Sequencing Algorithm (SRL) - The SRL Algorithm 28

perspective of a single step. Therefore, it is impossible to assign an effective instantaneous reward.

The one step update of the state-action values is described in (5.2).

1 1(,) (,) [(,) (,)]t t t t t t t tQ s a Q s a Q s a Q s aα γ + += + − (5.2)

Where Q(st,at) is the value of performing action at when the system is in state st, α is the learning

rate which controls how much weight is given to the new Q estimate, as opposed to the old one, and

γ is the discount rate, determining the present value of future rewards.

The second update method is performed at the end of the learning episode n, when it is possible to

evaluate the performance of the policy used. At this stage there is an update of all the steps in the

episode sequence, by multiplying their Q values with a reward factor indicating how good the last

episode was. Two reward factor calculations are suggested, both assigning higher values to lower

task completion times. A type A reward factor receives a value of 1 if task completion time Tn,

achieved at episode n, was less than or equal to the best time found so far. Otherwise, the factor will

be smaller than 1, proportional to the difference between the current episode’s time and the best time

achieved so far. This way, Q values of states visited during a “good” sequence remain the same,

while Q values of states included in worse sequences are decreased. The type A reward factor is

calculated according to (5.3).

0,..., 1

* 1

* *1 1

1* { }

1,

1/() ,

i n

T Tn n
n

T T T Tn n n n

in

R
b

WhereT Min T

if

a if

= −

≤ −

− + + >− −

−

=

=

⎧⎪
⎨
⎪⎩

(5.3)

Where Rn is the reward factor at episode n, Tn is the completion time achieved at the current episode

n, and T* n-1 is the best time achieved up to episode n-1. The parameters a and b are used to adjust

the reward factor to achieve the desired values.

The type B reward factor, described in (5.4), is simply set in inverse proportion to the completion

time Tn, achieving the desired effect of a higher reward factor for lower completion times.

1
n

Tn
R = (5.4)

Here Tn is the time achieved at the current episode n and Rn is the reward factor.

Chapter 5. RL Sequencing Algorithm (SRL) - The SRL Algorithm 29

Fig. 5.1 Pseudo-code of the SRL algorithm

Initialize () 1,Q s a = for a learning session
Repeat (for each learning episode n):

Initialize state ts as starting state, pick initial action ta
Repeat (for each step t of episode):

Take action ta , observe next state 1ts +

Choose 1ta + for 1ts + using a certain action selection rule (e.g., ε-greedy)

1 1(,) (,) [(,) (,)]t t t t t t t tQ s a Q s a Q s a Q s aα γ + +← + −

1 1;t t t ts s a a+ +← ←
 Until ts is terminal (reached the goal state)

Calculate nR (type A or type B)

For all (,)s a visited during the episode:
(,) * (,)nQ s a R Q s a←

End
Until n = N (reached the desired number of learning episodes)

Chapter 6. Cognitive Collaborative Reinforcement Learning (CCRL) - Introduction 30

6. Cognitive Collaborative Reinforcement Learning (CCRL)
Chapter Overview

This chapter presents the cognitive collaborative algorithm allowing the introduction of an advisor

to the learning process.

6.1 Introduction
As reviewed in the Introduction chapter, a central issue in human-robot collaboration is adjustable

autonomy, the determination of whether and when human intervention is required. Collaborative Q-

learning, CQ(λ) [Kartoun, 2006; Kartoun, 2008], addresses the issue of accelerated learning through

the concept of human-robot collaboration and adjustable autonomy. The CQ(λ) algorithm integrates

the experience of the learning agent with the knowledge of a human operator.

A similar approach is that of the Introspection Approach (IA) [Clouse, 1996]. The IA is a method

by which the learning agent determines when it requires aid from a training agent. The main

challenge in such a method is designing a mechanism for deciding when the learner should ask for

advice. The goal here is to maximize the impact of the advisor’s instruction, so that the learner

develops its decision policy quickly and correctly, with as little training as possible [Clouse, 1996].

When addressing the question of when the agent should ask for advice, Clouse relies on his

informal perception of when human learners require instructions, noting that humans seek help when

they are confused or otherwise unable to decide upon a course of action. To implement IA, he

developed a test to determine whether the learner is unsure of its choices, indicating the need for help

in novel situations. Clouse notes that “when discussing automated learners, it is fairly easy to specify

exactly when they are unsure: one has access to the decision policy and the evaluations on which the

decision is based.” The test examines the two extreme values of possible actions (Q(s,a)): if they are

close to each other it implies that the learner has not experienced this state often enough to produce a

clear choice, thus should ask for advice. Guidance received via IA is shown to be more informative

than random guidance, thus making better use of the training agent.

In this thesis the question is addressed by employing a result-oriented approach. We argue that

another case in which humans seek aid is when they come to the understanding that their

performance is not improving fast enough, or in other words, that their improvement rate is not

sufficient. Thus, the decision whether assistance is required relies on the objective outcome of the

learning, evaluated according to certain acceptable performance thresholds.

The following sections describe a cognitive collaborative reinforcement learning algorithm

(CCRL) which extends the concept of CQ(λ) to include the cognitive capabilities of performance

assessment and advice assessment.

Chapter 6. Cognitive Collaborative Reinforcement Learning (CCRL) - The CCRL Algorithm 31

6.2 The CCRL Algorithm
The cognitive collaborative reinforcement learning algorithm (CCRL), addresses the questions of

whether and when the robot should solicit advice by endowing the robot with two human-like

cognitive abilities: The ability to assess its performance and request advice when it is not

sufficient, and the ability to assess the value of the offered advice and decide whether to continue

asking for it or stop the requests and switch to fully autonomous learning.

The robot applies a result-oriented approach, seeking aid when it comes to the understanding that

its performance is not sufficient. Furthermore, the robot is given the ability to judge the worth of the

advice it receives. This self-awareness is achieved by performing self tests designed to evaluate its

learning performance according to acceptable performance thresholds.

The CCRL algorithm, as well as the IA approach, uses the basic model of a RL learner

incorporating advisor-suggested actions online. Upon receipt of an action from the advisor, the robot

executes the action as if it had chosen the action with its own policy. Thus, the basic RL algorithm

used (e.g., Q-learning) does not need to be modified to handle the advisors actions. The adjustable

autonomy method includes two learning modes, supervised and autonomous, following the model

introduced in [Kartoun, 2006].

6.3 Collaborative Learning
Consider a collaborative learning model in which the system can be in one of two modes: (i)

autonomous (unsupervised learning) and (ii) guided (supervised by an outside intelligent agent). In

the autonomous mode the robot decides which actions to take according to feedback from the

environment (reinforcements), using a certain action selection method (e.g., ε-greedy, softmax). It is

in this mode that the collaborative feature is added in which the learner can switch into the guided

supervised mode and back. In the guided supervised mode a guidance agent such as a human advisor

suggests actions. This knowledge is incorporated into the learning function if it is deemed worthy.

The learning itself can be done using any RL algorithm (e.g., SARSA, Q-learning). The advice from

an outside guidance agent is unnecessary as long as the robot learns policies and adapts to new states

while showing improvement. Only when the robot senses its performance is not improving at the

desired rate, is the advisor solicited to intervene and suggest actions. The robot then performs the

suggested action, and updates its Q values according to the action taken as though it had chosen the

action itself.

The robot is endowed with two cognitive capabilities that allow it to decide whether and when to

switch between the autonomous and guided modes. These decisions are triggered when two

performance thresholds are exceeded: Λ, used to determine when to ask for advice, and Ω, used to

Chapter 6. Cognitive Collaborative Reinforcement Learning (CCRL) - Self-Performance Assessment Capability 32

determine whether the advice is acceptable or not. The robot performs self tests (incorporating these

thresholds) based on the ability to assess its own learning performance, as detailed in the following

sections.

6.4 Self-Performance Assessment Capability1
The robot must determine whether its performance is sufficient in order to decide when to switch

between the two learning modes. Since the optimal solution (minimal number of steps to reach the

goal in this case) is unknown a priori, the threshold for triggering a request for advice cannot be set

as a constant measure, above which advisor assistance will be desired. Furthermore, even if we had

some idea of the scale of the optimal solution, the robot cannot be expected to achieve it

immediately, since the learning process is gradual. What can be expected from the robot is to

continuously improve its performance. Therefore, the threshold used is not a constant value it has to

reach, but an improvement rate. The way for the robot to sense it is not learning fast enough is by

comparing its current performance with past performance. The robot wishes to achieve a certain

improvement rate during the learning session2. When it does not achieve that rate, a request for

advice is triggered. The improvement rate is defined as a ratio between moving averages of the

number of steps of previous episodes, as described in (6.1).

p c

p

T T
IR T=

−

1 1

2;

() ()
K

K K

n n

i i

c p
i n i nT T

T T

K K

+− −

= − = −= =

∑ ∑

(6.1)

Where n is the current episode, Ti is the performance at episode i (number of steps to reach the goal

in this case) and IR is the actual performance improvement rate, comparing the previous average

number of steps Tp (average over previous K episodes, n-2K to n-K+1) and the current average Tc

(average over the most recent K episodes, n-K to n-1). If the current average is smaller than the

previous one (less steps required to reach the goal – better performance) IR will be positive.

6.5 Advice Request Test
The CCRL advice request self test compares IR with the threshold Λ, as shown in (6.2).

1 The explanations and calculations described here refer to a problem in which the objective is to minimize the number of
steps to reach the goal state. In maximization problems the formulations would be slightly modified.
2 A learning episode is defined here as a finite sequence of time steps, during which the agent traverses from the starting
state to the goal state. A learning session is a series of N learning episodes.

Chapter 6. Cognitive Collaborative Reinforcement Learning (CCRL) - Advice Assessment Capability 33

If IR < Λ , then request advice

 Else learn autonomously
(6.2)

Here Λ is a predefined collaboration threshold, representing the desired improvement in

performance. Before each learning episode begins, the actual improvement rate is compared to the

threshold. If IR > Λ, meaning the actual rate is better then the desired, the robot will continue to

learn autonomously and will not solicit advice. If IR < Λ, the improvement rate is not sufficient, and

advisor assistance will be requested. When requested, the advisor will assist during the entire

episode.

When the robot converges to the optimum, obviously there will not be any improvement in the

performance, and advisor assistance will be asked recurrently without need. This problem is solved

by applying the following rule: If after 2K episodes the robot produces the same result, it assumes it

has reached the optimum and stops asking for aid. Even if the optimum found was a local one, if 2K

episodes using human assistance did not help the robot escape it, then there is no sense in continuing

the requests.

Another rule is that the robot can start asking for advice only after a certain number of episodes X.

This is done in order to allow the robot to operate autonomously, since at the beginning of the

session there is a lot of exploration, and it is not expected to show improvement.

It is important to note, that in the CCRL algorithm switching between the autonomous mode

(action selection using the Q table of the RL algorithm) and the guided mode (action selection by the

advisor), occurs only at the end of an episode, whereas in the IA approach this switch can take place

at any step within an episode.

6.6 Advice Assessment Capability
Until here the assumption was that the advisor provides good instructions, but what happens if the

advice is bad? Wrong advice will not promote learning, and might even cause deterioration in

performance. By endowing the robot with the capability to assess the value of the advice, such

situations may be avoided. The robot judges the advisor’s suggestions by comparing its performance

when using the advisor’s aid with past performance. If assistance does not improve the performance,

the robot learns to stop asking for it. The number of steps achieved at episodes performed with

advisor assistance is compared to the average number of steps over the K episodes previous to the

assisted episodes. When the number of steps to reach the goal in the assisted episodes, Ta, is higher

(worse) than the average, it insinuates that advisor instructions are worthless and maybe even

misleading. The number of times in which the episode with advisor assistance produced worse

results than the average, denoted as ML, is counted as shown in (6.3)

Chapter 6. Cognitive Collaborative Reinforcement Learning (CCRL) - Advice Rejection Test 34

If

1

()

()
K

n

i
i n

a

T

T n
K

−

= −>

∑
, then ML = ML + 1

(6.3)

6.7 Advice Rejection Test
When ML exceeds a predefined threshold, meaning the human misled the robot too many times,

the robot refuses the advice, and switches to a fully autonomous learning mode until the end of the

session. The CCRL advice rejection test is elaborated in (6.4).

 If ML > Ω, then refuse advice

 Else continue requesting advice when IR < Λ (6.4)

Here ML is the number of occasions in which the human misled the robot causing the episode with

advisor assistance to achieve worse results than the average results of the K previous episodes, and Ω

is a predefined advice refusal threshold for such occasions, above which collaboration is stopped.

When the human has poor expertise, the episodes performed with his assistance will result in

decreased performance, ML will rapidly rise and exceed Ω, and the robot will stop asking for advisor

aid, as it should. In this final structure of the algorithm (Fig 6.1), collaboration is defined by the two

threshold parameters, Λ and Ω, determining the desired improvement rate and the acceptable number

of human misleads, respectively. A pseudo-code of the algorithm is displayed in Fig. 6.2. An

example for the collaboration mode switching during a learning session is presented in Fig 9.5.

Environment Advisor

Learning Fast
Enough?
(IR > Λ)

Choose Action
Autonomously

Use Advisor
Suggested

Action

Advice
 Helpful?
(ML < Ω)

Yes

No

Yes

Learning
Agent

State

Advice

Action

Reward

Advice
Request

No

Autonomous Mode

Guided Mode

Fig. 6.1 Scheme of the CCRL algorithm

Chapter 6. Cognitive Collaborative Reinforcement Learning (CCRL) - Advice Rejection Test 35

Fig. 6.2 Pseudo-code of the CCRL algorithm

Initialize the basic RL algorithm (e.g., Q-learning, SARSA) for the learning session

Initialize ML = 0

Set desired Λ, Ω (collaboration thresholds)

Repeat (for each learning episode n):

Initialize state ts as starting state, pick initial action ta
If n < X or ML > Ω
 Use Action Selection I (learn autonomously)
Else
 If IR < Λ
 Use Action Selection II (request advice)
 Else
 Use Action Selection I (learn autonomously) End
End
Repeat (for each step t of episode):

Take action ta , observe reward tr and next state 1ts +

Action Selection I: Choose 1ta + for 1ts + using a certain action selection rule (e.g., ε-greedy)

Action Selection II: Advisor suggests action 1ta +

Update basic algorithm’s parameters according to ta , tr , 1ts + and 1ta +

1 1;t t t ts s a a+ +← ←
 Until ts is terminal (reached the goal state)

() /p c pIR T T T= −

If
1

() () /
n

a i
i n K

T n T K
−

= −

> ∑

1ML ML← +

 End

Until n = N (reached the desired number of learning episodes)

Chapter 7. Sub-task Sequencing for a Toast Making System - Introduction 36

7. Sub-task Sequencing for a Toast Making System
Chapter Overview

The applicability of the CHRL framework is demonstrated using an automated toast making

system, presenting both high and low level learning tasks for its operation. This chapter describes the

high level learning task of sequencing toast transitions through the system’s stations.

7.1 Introduction
A test-bed application, robotic toast making system, was developed to demonstrate the

applicability of the CHRL framework1. Toast making is a complex multi-goal task since it is

composed of many sub-tasks (such as grasping a toast, inserting it to the toaster or applying butter

over it), each having its own goal state. The system includes six stations (two of which are

processing stations) and a transfer “agent”, a fixed-arm robot, advancing the toasts through the

system, one toast at a time. In lieu of fixed inter-process job transfers, the robot allows the flexibility

of job movements at any point in time and to any location. The complex task of toast making is

addressed here by decomposition into a two-level learning hierarchy to be solved by CHRL. The

high-level consists of learning the desired sequence of execution of basic sub-tasks and the low-level

consists of learning how to perform the required sub-tasks. In this application the SRL algorithm is

used to generate a sequence of toast transitions through the system stations, to achieve completion of

toast making in minimum time, and the CCRL algorithm is employed for learning the execution of

an exemplary sub-task, the insertion of a bread-slice to the toaster (See Chapter 8).

7.2 High Level Learning Task – Toast Transition Sequencing
The high level sequencing problem presented by the toast making system is addressed by the SRL

algorithm. The algorithm’s performance is evaluated by comparison to a Monte-Carlo method and a

random search through extensive experimentation. The generation of the desired sequence is

performed off-line using an event-based MATLAB simulation. This solution is implemented on-line

using a Motoman fixed-arm robot operating on a toast making system in an environment consisting

of a cardboard mockup of toast objects and processing units.

7.3 Experimental Setup and Method of Operation
The system consists of six stations (Fig. 7.1): 1- plate for raw slices of bread, 2- a buffer in front

of a toaster, 3- toaster (with a capacity of one slice), 4- a buffer in front of a butter applier, 5- butter

1 A detailed description of the system and its operation can be found in Appendix I.

Chapter 7. Sub-task Sequencing for a Toast Making System - Experimental Setup and Method of Operation 37

applier (butter can be applied to only one slice at a time), and 6- finished toasts plate. Each toast has

to go through all of the stations in the specified order, except for the buffer stations (2 and 4) which

are used only when needed (the buffers allow bread-slice advancement while the machines are

occupied, thus may save time in later loading of the machines, since the slices would be located

closer). The toast transfer “agent” is a fixed-arm six degree of freedom Motoman UP-6 robot with a

pneumatic gripper (Fig. 7.2), which advances the toasts through the system, one toast at a time.

Fig. 7.1 General scheme of the toast making system

Fig. 7.2 Motoman robot and cardboard mockup of the system stations

Three instances of the robot sequencing problem are examined. We designate these as cases I, II

and III. Each is described by specific robot transition and machine processing times (Tables 7.1 and

Chapter 7. Sub-task Sequencing for a Toast Making System - Task Definition 38

7.2). Case I is adjusted to suit the transition times of the real robot1. Cases II and III have increased

processing times and modified robot transition times.

Table 7.1 System stations and machine processing times

No. Station Processing times (sec.)
1 Raw slices plate -
2 Toaster buffer -
3 Toaster case I - 60; case II - 90; case III - 120
4 Butter applier buffer -
5 Butter applier case I - 60; case II - 90; case III - 120
6 Finished toasts plate -

Table 7.2 Robot transition times (sec.)

* Transition combinations marked with X are inapplicable.

7.4 Task Definition
The objective of the system is to produce butter covered toasts from a fixed number of raw bread

slices as fast as possible, that is to find a sequence of robot (toast) moves that minimizes total job

completion time. When addressing the high level learning task, it is assumed that low-level task

times, achieved via optimal robot motions, are known, such that only the high-level sequencing task

must be solved.

When defining the sequencing problem presented by the system in the conventional way, it can be

regarded as a flow-shop scheduling problem, which requires sequencing of jobs (toasts) with

different processing times through a set of machines. The difference here is that the jobs have

identical processing times, and that they are not automatically transferred from station to station.

Other unique characteristics are: (i) the use of dynamic buffers (unlimited) for the processing

stations, which are not a part of the technological path, and are used only when a station is busy, and

(ii) the fact that robot’s arm movements while empty must be considered (duration depends on the

source and target locations).

1 The robot’s transition times where measured in the real experimental setup.

Case I Case II Case III
 To Station

 1 2 3 4 5 6
1 X 24 36 X X X

2 21 X 24 16 15 X

3 22 X X 22 28 X

4 24 26 19 X 19 X

5 26 24 20 X X 12 Fr
om

 S
ta

tio
n

6 25 23 19 21 X X

 To Station

 1 2 3 4 5 6
1 X 20 30 X X X

2 30 X 30 20 30 X

3 30 X X 30 50 X

4 30 20 30 X 40 X

5 30 20 30 X X 20 Fr
om

 S
ta

tio
n

6 30 20 20 30 X X

 To Station

 1 2 3 4 5 6
1 X 50 70 X X X

2 40 X 40 40 50 X

3 45 X X 30 45 X

4 50 40 30 X 35 X

5 55 50 45 X X 30 Fr
om

 S
ta

tio
n

6 60 55 50 45 X X

Chapter 7. Sub-task Sequencing for a Toast Making System - Implementation of the SRL Algorithm 39

Due to the system’s unique characteristics, it is easier to approach the problem from a different

point of view, as described in the Methodology chapter: the problem can be viewed as a job

sequencing problem, in which the robot is the limited resource (the “machine”), and the toast

transition tasks are the “jobs” waiting in its queue, requiring a different “process time” (robot

transition time). Since the transfer agent has limited capacity (the robot can move only one bread

slice at a time) there is a problem of how to schedule this “limited resource”.

7.5 Implementation of the SRL Algorithm
To solve the sequencing problem using the SRL algorithm, it is formulated as a RL problem. The

system’s overall state at time step t, denoted as Sst ∈ , is defined by the current locations of the

toasts. For a K toast problem, the state will be represented as (L1, L2, L3, …, Lk), where Li is the

location of the i-th toast (1...6iL ∈). In a three toast problem for example, states can be: (1,1,1),

(3,1,1), (3,2,1), (5,2,1) etc. Not all location combinations are feasible, due to system’s characteristics:

state (3,3,1) for example is not feasible, since the toaster (station 3) can process only one bread slice

at a time.

A solution is a specific sequence of toast transfers: “move toast 1 to its next station, move toast 3

to its next station, move toast 1 to its next station, move toast 2…;” presented as a vector:

[1,3,1,2,…]. Different sequences might be in different lengths, since some may use the dynamic

buffer stations (2 and 4) and some may not. The goal state of the learning task is state (6,6,6), where

all the toasts have reached the finished plate. In this context, it is important to understand the

distinction between the goal state of the toasting system, which is, as noted, (6,6,6), and the goal of

the learning task, which is to find the sequence of steps that would lead from state (1,1,1) to state

(6,6,6) in minimum time1. The sequence’s execution time is composed of transition, processing and

waiting times.

An action at step t is denoted as ()t ta A s∈ , where A is the action space of all possible actions (the

action space is state dependent). The execution of an action constitutes the advancement of a toast to

its next station in the processing sequence, causing the system to arrive at a new state. For example,

at state (3,2,1) there are two possible actions: (i) advance toast number one from station 3 to station

5, arriving to state (5,2,1), and (ii) advance toast number three from station 1 to station 2, arriving to

state (3,2,2). Toast number two can not be moved to station 3 (the toaster) because the station is still

loaded with toast number one.

Rewards are assigned according to the performance, as explained in Section 5.2. A learning

episode starts from the state (1,1,1) where all the slices lie on the raw slice plate, and ends in state

1 An example for a state sequence is shown in Fig 7.4.

Chapter 7. Sub-task Sequencing for a Toast Making System - Analysis 40

(6,6,6) when the last slice arrives to the serving plate, toasted and covered with butter. A step is the

transition from one system state to another.

As a side note, it is important to understand the difference between the problem’s state definition

here and the definitions in other tasks. In path planning tasks for example, the state is defined as the

agent’s location, and during the learning it traverses from state to state. In our case, the state is

defined as the system’s status, and the agent’s actions shift the system from state to state. Hence, not

the location of the agent (robot) itself counts, but the influence of its actions on the system’s state.

Therefore, when at a certain state, the real decision considered is which next system state is

desirable, not which robot’s location. As an outcome of the final robot sequence however, one can

obtain the location-time trace of the robot’s activities.

Learning the high-level sequencing task is performed off-line using an event-based MATLAB

simulation. On-line fixed-arm robot motions are performed only after the simulation supplies the

desired sequence. The use of simulation allows fast learning, since real robot manipulations are

extremely time-consuming. Furthermore, the simulation constitutes a convenient and powerful tool

for analyzing the performance of the SRL algorithm, by conducting various virtual experiments off-

line. The model receives robot transition times and machine processing times as input data. The

system allows the user to input the number of toasts in a session.

7.6 Analysis
The SRL performance is tested with two different size problems, using demands of 3 and 4 toasts.

The 3-toast problem allows better understanding of the algorithm’s characteristics, and its optimal

solution can be found in reasonable time and compared to the solution reached by the algorithm. The

4-toast problem is closer to real-world problems, having a larger state-space. Based on a MATLAB

simulation, various simulated experiments are conducted, to examine the influence of the adaptive ε-

greedy action selection parameter β and of the reward types on the SRL performance, and to evaluate

the performance by comparison to the Monte-Carlo method [Sutton and Barto, 1998] and to a

random search algorithm.

Monte-Carlo (MC) methods are ways of solving the RL problem based on averaging sample

returns [Sutton and Barto, 1998]. It is only upon the completion of an episode that value estimates

and policies are changed, thus incremental in an episode-by-episode sense, but not in a step-by-step

sense (this is the reason MC methods can be applied for scheduling problems). Here the Q values are

simply the average rewards received after visits to the states during the episodes. The reward for a

specific episode is set to be 1/Tn, assigning a higher reward for lower times, and is accumulated and

averaged for each state-action pair encountered during the episode. Action selection here is

performed using the same adaptive ε-greedy method of the SRL algorithm. When applying the

Chapter 7. Sub-task Sequencing for a Toast Making System - Analysis 41

random search method, actions are chosen with equal probability, using a uniform distribution. In all

tests (Table 7.3), the RL parameters1 are set as follows: α = 0.05, γ = 0.9. These parameters were

selected empirically.

The first test examines the SRL performance with various values of the parameter β, controlling

the decay rate of ε (the probability of choosing random actions). The values are varied from 1.0 to

1.7. Each value is evaluated by performing 100 learning sessions with 200 learning episodes. This is

done for all three cases (I, II and III).

In a second test the SRL algorithm is compared to the MC and random search methods for the

three cases (I, II and III) and for both the 3 and 4-toast problems. Comparisons are made using

various learning session lengths (N). Lengths are varied from 15 to 60 learning episodes in

increments of 5 for the 3-toast problem, and 50 to 400 learning episodes in increments of 50 for the

more complex 4-toast problem (requiring more episodes in order to achieve good results). Each

length is evaluated by performing 10 simulation replications, each containing 100 and 30 sessions of

a certain length for the 3 and 4-toast problems, respectively2. Each session length is evaluated four

times, twice for SRL (once using type A reward factor and once using type B) and once for each of

the other methods (MC and random search). In terms of equation (5.1), for the random search β = 0

(ε = 1 for all n) is used, while for the SRL and MC, using the adaptive ε-greedy method, a value of β

= 1 is used for the 3-toast problem and β = 0.5 for the 4-toast problem. These values were selected

since they produced the best performance in the first test.

A third test is conducted to examine the performance in a stochastic environment. Stochastic

process times sampled from a Gaussian probability density function are used, with a mean equal to

the constant process times, and a standard deviation of 10% of the mean3. Similar to the second test,

various learning session lengths are examined, for cases I, II and III and for the 3 and 4 toast

problems.

Performance is evaluated using the following measures:

1) CE (convergence episode) - Average number of learning episodes required to reach

convergence.

2) SP (success percentage) - Average percentage of learning sessions reaching the optimal solution,

for deterministic times.

1 The RL parameters, α (learning rate) and γ (discount factor), are described in Section 5.2.
2 10 replications are performed for the statistical analysis of the performance measures. 30 sessions are performed for the
4-toasts problem, as opposed to 100 for the 3-toast problem, since the simulation running times are longer.
3 The variations in robot transition times are negligible and therefore they are represented as deterministic.

Chapter 7. Sub-task Sequencing for a Toast Making System - Results and Discussion 42

3) BR (best result) - Average best result achieved in the learning session, for stochastic times,

where an optimal solution cannot be defined due to the probabilistic feature.

Convergence (measure 1) means not only reaching the optimal solution, but eventually coming to

the understanding it is the best solution possible, and continuing to produce it until the end of the

learning session. The episode at which convergence occurs, n*, is defined as the episode after which

there is no change in the performance over the interval [n*, N], meaning the algorithm supplied the

same solution until the end of the session (consisting N episodes), as described in (7.1).

1,...,

() 1

0 0
* { } [,]

() , ,...,
n N

n Tn nT

n Min n over all intervals n N
such that n j j N n

=

∆ = + −

∀
=

+ = = −
 (7.1)

Where ∆(n) = Tn+1 - Tn is the change in performance at episode n and N is the number of episodes in

the learning session.

Table 7.3 Summary of tests

No. Examined Methods Environments Analyzed Parameters (Values)

1 SRL 3-toast problem

Cases I, II and III

Deterministic

Decay factor β (1.0 - 1.7)

2 SRL

MC

Random Search

3 and 4 toast problems

Cases I, II and III

Deterministic

Session length N (15 - 60; 50 - 400)

Reward factor (Types A and B)

3 SRL

MC

Random Search

3 and 4 toast problems

Cases I, II and III

Stochastic

Session length N (15 - 60; 50 - 400)

Reward factor (Types A and B)

7.7 Results and Discussion1
7.7.1 SRL Analysis

The best solutions produced by the SRL algorithm for the 3-toast problem are 513, 700 and 995

seconds for cases I, II and III respectively2. Fig. 7.3 shows the results for a learning session with case

II times. It can be seen that the algorithm converges to a solution after 67 episodes.

1 Additional results can be found in Appendix IV.
2 The optimality of the solution was verified using the Branch and Bound general search technique as illustrated in
Appendix IV.

Chapter 7. Sub-task Sequencing for a Toast Making System - Results and Discussion 43

650

700

750

800

850

900

950

1000

0 20 40 60 80 100
n - episode number

Tn
 -

tim
e

ac
hi

ev
ed

 a
t e

pi
so

de
 n

(s

ec
.)

Fig. 7.3 Convergence to the scheduling problem's solution, case II

The solution achieved at this case is to schedule the toast advancements as follows (from left to

right): [1,2,1,2,1,2,3,2,3,3]. Fig. 7.4 shows the toast locations, or in other words the system states

during an episode, for the specified scheduling1.

Fig. 7.4 Toast locations for the sequence found, case II

Examining the influence of the action selection parameters on the SRL performance (Fig. 7.5),

reveals that when using a relatively small β (β = 1) the algorithm reaches the optimal solution with

very high percentage of success, yet with the cost of a high number of episodes required for

convergence. As β increases, the percentage of success in reaching the optimal solution decreases,

1 A Gantt chart of the solution can be seen in Appendix IV.

Chapter 7. Sub-task Sequencing for a Toast Making System - Results and Discussion 44

but fewer episodes are required to achieve convergence. The reason for this behavior lies in the

action selection method. As explained in Section 5.2, the algorithm uses an adaptive ε-greedy action

selection method, allowing a balance between exploration and exploitation. ε, specifying the

probability in which random actions are chosen, decreases as the episode number increases. At the

limit 0ε → actions are always chosen greedily, meaning the best action (to the agent’s knowledge)

is always chosen. Fig. 7.6 shows the decrease in the probability of choosing a random action as a

function of the episode number.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 1.2 1.5 1.7
β

SP
 -

 A
ve

ra
ge

 p
er

ce
nt

ag
e

of

se
ss

io
ns

 re
ac

hi
ng

 o
pt

im
um

0

20

40

60

80

100

120

140

160

C
E

- A
ve

ra
ge

 n
um

be
r o

f e
pi

so
de

s
re

ui
re

d
fo

r c
on

ve
rg

en
ce

% Optimum Convergence

Fig. 7.5 Action selection analysis, 3-toast problem, type A reward factor, case II

0

0.1

0.2

0.3

0 10 20 30 40 50

n - episode number

 ε
 -

pr
ob

ab
ili

ty
 o

f c
ho

os
in

g
a

ra
nd

om

ac
tio

n

β = 1.7 β = 1.5 β = 1.2 β = 1

Fig. 7.6 Adaptive ε-greedy action selection

When using a small β, the probability of choosing a random action remains relatively high when

the episode number rises. The action selection rule allows much exploration, resulting in a higher

percentage of sessions reaching the optimal solution, but also a higher number of episodes required

Chapter 7. Sub-task Sequencing for a Toast Making System - Results and Discussion 45

for convergence. When using larger values of β, the probability of choosing a random action

decreases very fast, resulting in less exploration of the environment, and more exploitation of the

information already gathered. This allows much faster convergence to a solution, but not necessarily

the optimal one.

For all instances (cases I, II and III, 3 and 4 toast problems, deterministic and stochastic), the use

of a type A reward factor achieves fast learning and good results in a low number of episodes. When

using the type B reward factor, the algorithm requires more episodes in order to achieve good results,

but ultimately it outperforms the type A results. Figs. 7.7 and 7.8 illustrate this trade-off for the

deterministic 3 and 4 toast problems, respectively.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

15 20 25 30 35 40 45 50 55 60

N - number of episodes in a learning session

SP
 -

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 s

es
si

on
s

re
ac

hi
ng

 o
pt

im
um

Type A Type B

Fig. 7.7 Reward factor analysis, 3-toast problem, case I, deterministic environment

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50 100 150 200 250 300 350 400

N - number of episodes in a learning session

SP
 -

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 s

es
si

on
s

re
ac

hi
ng

 o
pt

im
um

Type A Type B

Fig. 7.8 Reward factor analysis, 4-toast problem, case I, deterministic environment

Chapter 7. Sub-task Sequencing for a Toast Making System - Results and Discussion 46

7.7.2 Comparative Analysis – 3 Toast problem
Comparison of the SRL algorithm to the MC method and random search in solving the

deterministic 3-toast problem, demonstrates the superiority of the SRL algorithm over a wide range

of learning conditions (25-60 episode sessions). The same results appear with all three cases: For 15

to 25 episode sessions, the agent does not achieve enough interaction with the environment therefore

does not have sufficient information, and its Q values do not reflect the real state-action values. At

this state, the algorithm acts de facto as a random search method, hence the performance is similar.

From 25 to 60 episodes, the agent obtains sufficient information on the environment, allowing it to

correctly update the Q values and reach optimality more times than the other methods. Fig. 7.9

shows the results for case III. For this case the SRL algorithm reaches up to 37% difference from the

MC method and 22% difference from the random search method.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

15 20 25 30 35 40 45 50 55 60

N - number of episodes in a learning session

SP
 -

A
ve

ra
ge

 p
er

ce
nt

ag
e

of

se
ss

io
ns

 re
ac

hi
ng

 o
pt

im
um

SRL Random MC

Fig. 7.9 Performance comparison – 3-toast problem, type B reward factor, case III, deterministic environment

The MC method acts similarly, but converges to worse solutions. For the random search on the

other hand, more episodes implies a greater chance of reaching the optimal solution in one of them,

hence its success percentage continues to rise along the full range.

In the stochastic environment (Fig. 7.10) the SRL algorithm again shows superiority, achieving

better (lower) times over a wide range, outperforming both the MC method and the random search

for all cases. Here, as in the deterministic environment, the random search produces better results

than the MC method.

Chapter 7. Sub-task Sequencing for a Toast Making System - Results and Discussion 47

490

500

510

520

530

540

550

560

15 20 25 30 35 40 45 50 55 60

N - number of episodes in a learning session

B
R

 -
A

ve
ra

ge
 b

es
t r

es
ul

ts
 o

f
le

ar
ni

ng

se
ss

io
ns

 (s
ec

.)

SRL Random MC

Fig. 7.10 Performance comparison – 3-toast problem, type B reward factor, case I, stochastic environment

7.7.3 Comparative Analysis – 4 Toast Problem
Comparison of performance for the deterministic 4-toast problem (Fig. 7.11) reveals the

superiority of the SRL algorithm in reaching the best results of 663, 900 and 1,290 seconds (cases I,

II and III respectively) in the higher range of session lengths (300-400). These results are consistent

for all three cases. Due to its complexity, the 4-toast problem requires more learning episodes to

reach the best solution, and the algorithm requires more experience to reach good results. Here, as

opposed to the 3-toast problem, the MC method shows better results than the random search, which

apparently requires even more episodes in order to deal with the increased complexity presented by

the 4-toast problem.

0%
10%

20%
30%

40%
50%
60%
70%
80%

90%
100%

50 100 150 200 250 300 350 400

N - number of episodes in a learning session

SP
 -

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 s

es
si

on
s

re
ac

hi
ng

 o
pt

im
um

SRL Random MC

Fig. 7.11 Performance comparison – 4-toast problem, type B reward factor, case III, deterministic

Chapter 7. Sub-task Sequencing for a Toast Making System - Results and Discussion 48

In the stochastic environment (Fig. 7.12), as in the deterministic one, the SRL algorithm performs

worse than the MC method when less experience is available (low number of episodes in a session),

but matches the results when the sessions are longer. These results are again consistent for all cases.

630

640

650

660

670

680

690

700

710

720

50 100 150 200 250 300 350 400

N - number of episodes in a learning session

B
R

 -
A

ve
ra

ge
 b

es
t r

es
ul

ts
 o

f
le

ar
ni

ng
 s

es
si

on
s

(s
ec

.)

SRL Random MC

Fig. 7.12 Performance comparison – 4-toast problem, type B reward factor, case I, stochastic environment

7.7.4 Summary of Results
Tables 7.4 - 7.6 summarize the results for the three cases (I, II and III). The results presented for

the SRL algorithm are for learning performed with the type B reward factor. Significant1 best results

are marked with gray shading (when two methods are significantly better than the third, both are

marked). Note that for the deterministic scenarios the highest success percentage is the best, while

for the stochastic scenarios the lowest average completion time is the best.

Table 7.4 Summary of case I results

Deterministic 3-toast problem

Session length (number of episodes)
Method

15 20 25 30 35 40 45 50 55 60
SRL 29% 44% 62% 73% 84% 91% 95% 97% 99% 100%
Random 41% 50% 62% 69% 75% 79% 81% 84% 87% 88%
MC 34% 44% 50% 50% 52% 58% 60% 62% 60% 65%

Stochastic 3-toast problem
Session length (number of episodes)

Method
15 20 25 30 35 40 45 50 55 60

SRL 551.15 541.89 531.44 523.29 518.18 515.92 512.17 509.87 508.49 507.26
Random 537.59 529.97 525.6 523 519.73 518.87 517.83 516.56 514.96 513.81
MC 547.24 538.3 531.97 528.24 527.11 523.49 522.46 521.74 518.67 517.74

1 Significance is determined using one-way ANOVA analysis (F-test) and Tukey’s HSD test demanding 95% confidence
level, as explained in Appendix II.

Chapter 7. Sub-task Sequencing for a Toast Making System - Results and Discussion 49

Deterministic 4-toast problem
Session length (number of episodes)

Method
50 100 150 200 250 300 350 400

SRL 12% 26% 39% 65% 78% 89% 95% 97%
Random 16% 20% 31% 37% 47% 47% 58% 62%
MC 27% 54% 70% 79% 83% 86% 91% 93%

Stochastic 4-toast problem
Session length (number of episodes)

Method
50 100 150 200 250 300 350 400

SRL 709.92 680.54 670.98 664.47 659.07 655.27 652.81 651.8
Random 701.84 689.66 680.77 676.39 672.66 671.55 670.29 669.24
MC 688.79 666.23 658.66 656.99 654.99 653.68 653.22 651.83

Table 7.5 Summary of case II results

Deterministic 3-toast problem

Session length (number of episodes)
Method

15 20 25 30 35 40 45 50 55 60
SRL 32% 43% 59% 77% 86% 91% 94% 97% 100% 100%
Random 42% 49% 60% 66% 72% 78% 82% 86% 88% 90%
MC 34% 40% 44% 52% 54% 56% 54% 56% 61% 60%

Stochastic 3-toast problem
Session length (number of episodes)

Method
15 20 25 30 35 40 45 50 55 60

SRL 760.31 745.26 730.44 714.94 706.93 701.6 698.7 695.7 693.1 690.61
Random 732.61 720.76 715.33 710.88 709.21 707.12 704.75 702.77 701.5 700.97
MC 746.27 733.88 728.04 719.39 717.14 713.29 710 708.9 706.68 704.96

Deterministic 4-toast problem
Session length (number of episodes)

Method
50 100 150 200 250 300 350 400

SRL 8% 23% 39% 64% 79% 93% 96% 98%
Random 12% 19% 25% 36% 39% 49% 55% 60%
MC 23% 55% 69% 75% 80% 82% 87% 95%

Stochastic 4-toast problem
Session length (number of episodes)

Method
50 100 150 200 250 300 350 400

SRL 964.47 925.31 911.48 903.78 897.89 894.21 890.26 887.84
Random 947.14 935.82 924.9 920.02 914.5 912.81 909.63 910
MC 938.36 906.25 898.03 894.82 892.05 890.06 889.16 884.84

Table 7.6 Summary of case III results

Deterministic 3-toast problem

Session length (number of episodes)
Method

15 20 25 30 35 40 45 50 55 60
SRL 29% 40% 57% 73% 83% 92% 95% 97% 99% 100%
Random 35% 43% 52% 60% 64% 70% 75% 78% 81% 83%
MC 32% 38% 45% 49% 56% 56% 58% 61% 63% 64%

Chapter 7. Sub-task Sequencing for a Toast Making System - Summary 50

Stochastic 3-toast problem
Session length (number of episodes)

Method
15 20 25 30 35 40 45 50 55 60

SRL 1074.06 1055.66 1035.05 1016.16 1006.05 999.36 994.72 990.23 986.86 983.97
Random 1041.20 1030.56 1023.09 1017.69 1011.05 1007.46 1004.06 1003.36 998.51 999.17
MC 1062.67 1049.40 1032.95 1026.31 1020.80 1017.19 1013.74 1011.91 1006.80 1004.63

Deterministic 4-toast problem
Session length (number of episodes)

Method
50 100 150 200 250 300 350 400

SRL 8% 19% 33% 51% 71% 90% 93% 96%
Random 6% 15% 25% 30% 34% 37% 36% 48%
MC 24% 57% 65% 77% 81% 87% 89% 92%

Stochastic 4-toast problem
Session length (number of episodes)

Method
50 100 150 200 250 300 350 400

SRL 1390.44 1336.51 1309.87 1298.78 1290.06 1282.53 1278.65 1276.1
Random 1376.35 1348.41 1331.49 1328.15 1323.66 1315.18 1310.79 1307.7
MC 1353.09 1305.14 1290.78 1284.69 1280.49 1277.61 1275.03 1274.3

7.8 Summary
The applicability of the CHRL framework is shown using a robotic toast making system,

requiring both low and high-level learning for its operation1. The SRL algorithm is used for learning

high-level policies in the decomposed complex task, where there is a need to sequence the execution

of a set of sub-tasks in order to optimize a target function. In such learning tasks, where there is a

need to consider the sequence of steps as a whole, standard step-by-step update RL methods cannot

be applied. Analyses indicate the SRL algorithm produces good results, matching or outperforming

both the Monte-Carlo and the random search methods when allowed sufficient experience, in both

deterministic and stochastic environments. Furthermore, the algorithm can be adjusted to achieve

desired performance (in aspects of percentage of success in reaching the optimal solution and the

number of episodes required to achieve convergence) by choosing the proper action selection

parameters and reward factor type.

1 The implementation of the low level learning is shown in the following chapter.

Chapter 8. Path Planning for a Toast Making System - Introduction 51

8. Path Planning for a Toast Making System
Chapter Overview

This chapter describes an exemplary low level learning task of inserting a bread slice into the

toaster, as part of the toast making system developed to demonstrate the applicability of the CHRL

framework.

8.1 Introduction
This application demonstrates an example for learning the execution of one of the required low-

level sub-tasks, a task of path planning for the insertion of a slice of bread into the toaster. In this

task the robot-arm is required to transfer the bread slice in the shortest path from a starting position

to a target position above the toaster’s hatch, while avoiding obstacles. The optimal path is learned

off-line using the CCRL algorithm integrated with a standard Q(λ)1 algorithm and a human advisor.

After the learning phase it is implemented on-line with actual robot motions.

Since the low level task implementation is aimed to prove the applicability the CHRL framework,

and not to assess the performance of the CCRL algorithm, the experiments are only intended to

demonstrate a successful implementation2.

8.2 Task Definition
In this task of inserting a bread-slice to the toaster, the robot is required to move its gripper,

grasping a toast, from a starting location to a target location above the toaster, from which the bread

will be lowered into the toaster’s hatch. Along the path of traverse, the robot also must avoid

obstacles found in the environment. This is a two-dimensional path planning task, where an optimal

path from the starting state to the goal state is sought.

The problem formulation is as follows: The robot’s state Sst ∈ , is defined by two coordinates:

(,)t i js x y= where , (1, 2,...,12)i j ∈ . An action Aat ∈ , taken at each state is traveling left, right,

forward, or backward. Rewards are defined as { 1, 0.1, 1.5}tr ∈ − − + . If the robot reaches the target, the

reward is positive (+1.5). If it collides with an obstacle, the reward is negative (-1). Furthermore, a

small negative reward (-0.1) is assigned after each step in order to facilitate minimal number of steps.

A learning episode comprises one event of reaching the target. The Q(λ) algorithm applies softmax

1 The Q(λ) algorithm is presented in Section 2.2.
2 As mentioned in the Methodology chapter, a thorough evaluation of the CCRL algorithm, using a 3D path planning
task, is presented in Chapter 9.

Chapter 8. Path Planning for a Toast Making System - Experimental Setup and Method of Operation 52

action selection1 for the autonomous learning, and its parameters2 are set as follows: α = 0.95, γ =

0.99 and λ = 0.5.

8.3 Experimental Setup and Method of Operation3
The experiment is performed using the UP-6 Motoman robot. A USB camera is used to capture

the state of the system. The setup (Fig. 8.1) includes a table on which the obstacles (wooden cubes)

and the toaster are located. The bread-slice is preliminary located on the corner of the table (bottom-

left corner in the overhead view), to be taken by the robot during operation.

Fig. 8.1 Experimental setup – side and overhead views

The task is performed with the following steps:

1) The robot grasps the bread-slice and moves to the starting location.

2) A snapshot of the environment is taken using a USB camera situated above the table.

3) An image processing algorithm (running in MATLAB) is used locate the objects (robot’s

gripper, obstacls and toaster) and build a model of the environment accordingly. The objects are

recognized using round markers in differnet colors. The environment is described as a 12 × 12

grid world.

4) A MATLAB simulation applying the CCRL algorithm (based on Q(λ)) is employed to learn the

optimal path from the starting state to the goal state in the world’s model.

1 The softmax action selection method is described in Section 9.3.
2 The Q(λ) parameters, α (learning rate), γ (discount factor) and λ (eligibility traces factor), are described in Section 2.2.
3 A detailed description of the system and its operation can be found in Appendix I.

Chapter 8. Path Planning for a Toast Making System - Experimental Setup and Method of Operation 53

5) The robot is operated according to the generated path. Image processing is used to identify the

location of the robot and syncrozine the location in the world’s model with the location in the

real world.

6) After arriving to the desired location above the toaster, the bread is lowered and the gripper is

opened to release it into the toaster.

The simulated environment in which the learning is performed (built according to the image of the

real environment) is displayed in Fig. 8.2.

Fig. 8.2 Simulated environment

As mentioned, the CCRL algorithm is employed in the 4th step of the operation. When the robot

senses that its performance does not improve fast enough, a request for advice is prompted. The

human advisor is then required to guide the robot using the GUI (Graphical User Interface) shown in

Fig. 8.3. If the robot concludes that the advice given is not beneficial, it switches to fully autonomous

learning, and notifies the advisor.

(a) Guidance interface (b) Autonomous learning notice
Fig. 8.3 User interface - low level learning task

Chapter 8. Path Planning for a Toast Making System - Evaluation and Summary 54

During the learning session, the robot (agent) updates the state-action values according to the

employed algorithm (Q(λ) in this case). An example for the state-action value map is presented in

Fig. 8.4. The height of the surface represents the state’s value, which can be considered as the value

of taking a certain action when the system is in a given state. After the off-line learning phase ends,

the real robot is operated on-line according to the value map which represents the learned policy (the

state-action pairs). At the on-line stage there is no learning, but only exploitation of the information

gathered in the learning phase.

Fig. 8.4 State-action value map

8.4 Evaluation and Summary
A successful execution of a low-level task, the insertion of a bread-slice to the toaster while

avoiding obstacles, is achieved using the CCRL algorithm integrated with a standard Q(λ) algorithm.

In this case only a basic experiment was performed to prove applicability. The experiment was kept

simple, since a thorough evaluation was conducted earlier with a simulated complex 3D environment

(see Chapter 9), and execution of more complex experiments would not add value to the algorithmic

analysis. Nonetheless, a full demonstration was conducted using several obstacle layouts to ensure a

complete and feasible implementation of the CHRL framework.

Chapter 9. Evaluation of CCRL using a 3D Path Planning Task - Introduction 55

9. Evaluation of CCRL using a 3D Path Planning Task
Chapter Overview

The CCRL algorithm is evaluated using a 3D path planning task. The evaluation includes a

comparison of the CCRL algorithm to (i) a base-line fully autonomous RL algorithm, (ii) learning

performed using the introspection approach (IA) and (iii) a combained CCRL and IA method.

Various levels of human advisors are simulated, to assess the robustness of the algorithm under

realistic conditions of imperfect guidance.

9.1 Introduction
The cognitive collaborative reinforcement learning algorithm (CCRL) addresses the questions of

whether and when the robot should solicit advice by endowing the robot with human-like cognitive

abilities. The robot applies a result-oriented approach, seeking aid when it comes to the

understanding that its performance is not sufficient. Furthermore, the robot is given the ability to

judge the worth of the advice it receives and to decide whether to accept or reject it. This self-

awareness is achieved by performing self tests designed to evaluate its learning performance

according to acceptable performance thresholds.

The CCRL algorithm is evaluated by applying it to a simulated three-dimensional path planning

task, comparing the results to those achieved by (i) fully autonomous learning (a base-line used for

comparison), (ii) learning using the Introspection Approach (IA) and (iii) learning with a combined

CCRL and IA method. A simulated adviser with various skill levels is used in the evaluations.

Advisor skill levels are represented by softmax temperature values varying the suggested actions

from optimal to random, as described in Section 9.2.

The CCRL algorithm, as well as the IA method, uses the basic model of a RL learner

incorporating advisor-suggested actions online. Upon receipt of an action from the advisor, the

learning agent executes the action as if it had chosen the action with its own policy. Thus, the basic

RL algorithm used (Q-learning in this case) does not need to be modified to handle the advisors

actions.

9.2 Representation of Advisor Skill Levels
Since we assume that perfect guidance cannot always be provided, we analyze the effect of

various skill levels of the human advisor by considering a continuum from novice to expert. When

asked to give advice, the advisor simply examines the current state of the learner and provides the

action that it considers best. In case of an expert advisor, this action is optimal. Lesser skilled

advisors may provide either optimal or suboptimal actions. By adjusting the frequency by which the

Chapter 9. Evaluation of CCRL using a 3D Path Planning Task - Representation of Advisor Skill Levels 56

advisor responds with suboptimal actions, a wide range of problem-solving expertise can be

simulated, from an expert advisor with perfect knowledge and skills to a novice with poor skills.

The skill level of the advisor is represented by the softmax action selection rule [Sutton and Barto,

1998], based on an optimal Q table1. In softmax the action probabilities are varied as a graded

function of the estimated value. The greedy action is given the highest selection probability, but all

the others are ranked and weighted according to their value estimates. The softmax method uses a

Boltzmann distribution, choosing action a on the t-th step with the probability shown in (9.1).

()

()

1

/

/
Prob()

t

tn i
i

Q a

Q
a e

e

τ

τ
=

=
∑ (9.1)

Where Qt(i) is the value of taking an action i from the current state and τ is a positive parameter

referred to as the temperature. High temperatures cause the actions to be all (nearly) equiprobable.

Low temperatures cause a greater difference in selection probability for actions that differ in their

value estimates. In the limit, as 0τ → , softmax action selection becomes the same as greedy action

selection.

Human skill level is adjusted using τ, the temperature parameter. Since the advisor’s action

selection is performed on the basis of an optimal Q table, the use of very small temperatures,

meaning choosing actions greedily, will result in suggesting optimal actions at each state. A use of

higher temperatures will result in more random action suggestions. Therefore, a human with perfect

skills can be represented by using a very low temperature while a human with poor skills will be

represented using a relatively high temperature.

An example for the performance of advisors with various skill levels, represented using a range of

temperatures, τ = 0.01 – 1, is presented in Fig. 9.1. The most skillful advisor, represented using τ =

0.01, chooses actions that result in reaching the goal in the optimal number of steps (13 steps in this

example) in 100% of the cases, while less skilled advisors achieve optimal solution with lower

percentages and higher average number of steps. The poorest skilled advisor does not achieve the

optimal solution at all and requires an average of 178 steps to reach the goal state. It is important to

understand that here there is no learning process of the advisor, but only a use of the optimal Q table

to simulate the human suggestions to the robot (As a sideline however, it is possible to use the τ

representation to simulate advisor learning by dynamically modifying its value).

1 The optimal Q table is assumed to be known for the advisor simulation, but is of course unknown to the learning agent.

Chapter 9. Evaluation of CCRL using a 3D Path Planning Task - CCRL 57

0%

20%

40%

60%

80%

100%

0.01 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

τ - human skill level

Pe
rc

en
ta

ge
 o

f r
un

s
co

nv
er

gi
ng

to

 o
pt

im
um

 s
ol

ut
io

n

0

20

40

60

80

100

120

140

160

180

A
ve

ra
ge

 n
um

be
r o

f s
te

ps
 to

re

ac
h

go
al

Steps Percentage

NoviceExpert

Fig. 9.1 Human advisor representation

9.3 CCRL
CCRL is implemented here based on a standard Q-learning algorithm. The performance

assessment and advice refusal capabilities are employed as described in Chapter 6. The algorithm is

configured such that the parameter X, defining the episode from which the robot can solicit advice, is

set to 30, and the parameter K, used for various calculations, is set to 5. The collaboration threshold

parameters Λ and Ω are varied as described in Section 9.8.

9.4 Fully Autonomous Learning (Base-Line)
The base-line robotic learner employs Q-learning to develop its policy1. A value Q, associated

with a state-action pair, (st,at), represents how “good” it is to perform a specific action at when at

state st. A learning episode is a finite sequence of time steps, during which the agent traverses from

the starting state to the goal state (the episode is stopped after a predefined number of steps, even if

the agent haven’t reached the goal state). A learning session is a series of N learning episodes. Action

selection is performed using the adaptive softmax method, in which the temperature τ is varied as a

function of the learning episode. In the beginning of the session, when the agent has not gathered

much information yet, a relatively high temperature encourages exploration of the state-space by

allowing more non-greedy actions. As the learning session progresses, the temperature decreases,

reducing the number of random actions, and allowing the agent to exploit the information already

gathered and perform better. The change in τ as a function of the episode number is shown in (9.2).

1
nβτ = (9.2)

1 The Q-learning algorithm is described in Section 2.2.

Chapter 9. Evaluation of CCRL using a 3D Path Planning Task - Introspection Approach (IA) 58

Where n is the number of episodes already performed during the current learning session and β is a

positive parameter specifying how fast τ will exponentially decrease towards zero, meaning how

greedily the algorithm will act as the learning proceeds (greater β results in sooner exploitation).

Note that τ is updated similarly to ε in adaptive ε-greedy (Eq. 5.1).

9.5 Introspection Approach (IA)
The IA method [Clouse, 1996] is used here as a benchmark for comparison. To implement IA,

Clouse developed a test to determine whether the learner is unsure of its choices, indicating the need

for help in novel situations. When discussing an automated learner, it is fairly easy to specify exactly

when they are unsure: one has access to the decision policy and the evaluations on which the

decision is based. The test examines the two extreme values of possible actions (Q(s,a)): if they are

sufficiently close to each other it implies that the learner has not experienced this state often enough

to produce a clear choice. In this case the test succeeds and the learner asks for aid. Sufficiency is

determined by comparing the difference between the minimum and maximum Q values to a width

parameter Ψ - if the difference is smaller than the width parameter the test succeeds. With a small

width parameter, the learner rarely asks for assistance, while with a large width parameter, the

learner asks for aid quite frequently. The IA advice request self test is shown in (9.3).

If Maxi Q(s,ai) – Mini Q(s,ai) < Ψ

 Then request advice for current state s

 Else choose action autonomously

(9.3)

Where Q(s,ai) is the value of taking action ai when at state s, and Ψ is the width parameter.

9.6 Combined Method
The combined method integrates both CCRL and IA to one algorithm. In this combined

algorithm, advice is solicited only when both advice request tests (Eq. 6.2 and 9.3) are passed

(meaning that the learner’s rate of improvement is unsatisfactory and that the learner is unsure of its

choices in its current state), and when the advise refusal threshold (Eq. 6.4) in not exceeded.

9.7 Task Definition
Evaluation is conducted using a path planning test problem comprised of a simulated mobile robot

traversing a three-dimensional grid-world of size 10×10×10 (1000 states). Two grid-world instances

are considered, one with a relatively low obstacle density (60 obstacle states), and another with

Chapter 9. Evaluation of CCRL using a 3D Path Planning Task - Task Definition 59

higher density (100 obstacle states). In order to evaluate the performance for cases where the human

advisor has only a limited view of the environment and can supply advice only when the robot is

within that view, a limited region of assistance is also considered for each grid-world. Such

situations may arise in systems employing teleoperated guidance, due to various reasons (e.g., hazard

materials, radiation), and the human operator is located remotely, receiving visual feedback from the

robot’s operation area through a camera with limited area coverage.

Fig. 9.2 shows the two grid-worlds. The starting and goal states are represented by light-gray

cubes. The obstacles are shown as dark-gray cubes. The limited helping region is marked with a

large transparent cube. The optimal (shortest) path from the starting state to the goal state includes 13

and 16 steps for worlds I and II, respectively.

(a) World I – full and limited views (b) World II – full and limited views

Fig. 9.2 The grid-worlds

The objective of the robot is to traverse from a starting state to a goal state through the shortest

path, while avoiding obstacles. At each state (st), the robot can choose one of six actions (at) - up,

down, left, right, forward, or backward. When the robot collides with an obstacle, reaches the goal or

exceeds a maximum number of steps, the learning episode is stopped, and the robot is returned to the

Chapter 9. Evaluation of CCRL using a 3D Path Planning Task - Analysis 60

starting point. Reinforcements (rt) are set as follows: the robot receives a positive reward of +1.5

units for reaching the goal, a negative reward of -1.0 units for colliding with an obstacle and a

negative reward of -0.1 units for each step performed. The state of the system is the position of the

robot defined by its three coordinate values.

9.8 Analysis
Analysis is performed using MATLAB simulations. Four different learning methods are

employed and compared: (i) fully-autonomous learning using a standard Q-learning algorithm

(serving as base-line for the comparison), (ii) the CCRL algorithm, (iii) the IA method, and (iv) a

combined method integrating the advice request rules of both CCRL and IA. All methods are

evaluated using four environments – worlds I and II, each with full and limited views.

In all of the tests the Q-learning and action selection parameters are set as follows: learning rate α

= 0.95, discount rate γ = 0.991 (These parameters were selected empirically). Furthermore, all of the

learning sessions includes 200 learning episodes (N = 200), with a maximum of 200 steps allowed at

each episode (Also selected empirically). For the collaborative algorithms, human skills, represented

by τ, is varied from an expert advisor (τ = 0.01) to a novice (τ = 1).

Four different tests are performed for each environment (Table 9.1): The first test examines the

base-line fully autonomous learning and the differences in performance using various action

selection parameters. Sensitivity analysis is performed using various values of the adaptive softmax

parameter β (0.5 to 1.5). Each value is evaluated by performing 500 learning sessions.

To evaluate the performance of the CCRL algorithm, a second test is conducted. The

collaboration threshold Λ is varied from 0.01 (demanding small improvement in performance) to 0.9

(demanding significant improvement during the session). The advice refusal threshold Ω, defining

the number of occasions in which the results of learning with an advisor’s aid are allowed to be

worse than the results of the previous episodes, is varied from 1 to 7. For each combination of τ, Λ

and Ω, five simulation replications are performed, each composed of 100 learning sessions. In all of

the tests the parameter X, defining the episode from which the robot can solicit advice, is set to 30,

and the parameter K, used for various calculations, is set to 5.

In a third test, IA is implemented to solve the path planning problem under consistent

assumptions. The width parameter Ψ is varied from 0.1 (representing a learner which is rarely

uncertain) to 1.3 (representing a learner that asks for aid quite frequently). Each value of Ψ is

evaluated by performing five simulation replications, each containing 100 learning sessions.

1 The RL parameters, α (learning rate) and γ (discount factor) are described in Section 2.2.

Chapter 9. Evaluation of CCRL using a 3D Path Planning Task - Results and Discussion 61

A fourth test evaluates the performance of a combined method. For each combination of τ, Λ, Ω

and Ψ, five replications of 100 sessions are performed.

Performance is evaluated using the following measures:

1) AR (advice requests) – Average number of requests for advice during the learning session (used

only for CCRL, in which advice is requested for a whole episode).

2) HS (helped steps) – Average number of steps performed using advice during the learning session

(used for the IA method in which advice is requested per step, and for the comparison)

3) SP (success percentage) – Average percentage of learning sessions reaching the optimal solution

(minimal path length).

4) Score – Weighted normalized scoring based on the HS and SP measures, described in Section

 9.9.4.

Table 9.1 Summary of tests

No. Examined Methods Environments / Advisors Analyzed Parameters (Values)

1 Fully Autonomous Worlds I and II Decay factor β (0.5 - 1.5)

2 CCRL Worlds I and II

Full and limited views

Expert to novice advisors

Collaboration threshold Λ (0.01 - 0.9)

Advise refusal threshold Ω (1 - 7)

Human skill level τ (0.01 - 1)

3 IA Worlds I and II

Full and limited views

Expert to novice advisors

Width parameter Ψ (0.1 - 1.3)

Human skill level τ (0.01 - 1)

4 Combined Method

(CCRL and IA)

Worlds I and II

Full and limited views

Expert to novice advisors

Collaboration threshold Λ (0.01 - 0.9)

Advise refusal threshold Ω (1 - 7)

Width parameter Ψ (0.1 - 1.3)

Human skill level τ (0.01 - 1)

9.9 Results and Discussion
9.9.1 Fully Autonomous Learning

Fig. 9.3 shows an example of convergence to a solution in a given learning session in world I. In

this example a value of β = 1.3 is used. Note that in order to distinguish the episodes in which the

robot collided with an obstacle, they are assigned a value of 201 steps (maximal number of steps +1).

As can be seen, in the beginning of the session, the robot, still unfamiliar with the environment,

collides with obstacles many times, and only after about 50 episodes it starts reaching the goal

regularly, eventually converging to the optimal path of 13 steps at episode number 135.

Chapter 9. Evaluation of CCRL using a 3D Path Planning Task - Results and Discussion 62

0

50

100

150

200

0 50 100 150 200
n - epsiode number

t
- n

um
be

r o
f s

te
ps

Fig. 9.3 Convergence in a learning session

For world I, the best performance is obtained with β = 1.3, when the learning achieves SP of

63%. For world II, performance (SP) is 37%, obtained with β = 0.7 (Fig. 9.4). With lower values of

β, τ decreases to zero relatively slow so actions are chosen more randomly, and the algorithm does

not achieve convergence fast enough, resulting in low percentage of sessions reaching the optimal

solution. With higher values of β, τ decreases to zero too fast so actions are chosen greedily, and the

algorithm converges to a local optimum, hence does not achieve the global optimum. The reason for

the lower success percentage in world II lies in the fact that it has a higher obstacle density, and

hence it is harder to reach the goal. This is also the reason why in world II the optimal β is lower –

more exploration in needed in order to find the optimal path when there are more obstacles, and a

lower β is required to allow this exploration. The β values achieving best results here (1.3 and 0.7 for

worlds I and II, respectively) were used for the following tests.

0%

5%

10%

15%

20%

25%

30%

35%

40%

0.5 0.6 0.7 0.8 0.9 1 1.1

β

SP
 -

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 s

es
si

on
s

co
nv

er
gi

ng
 to

 o
pt

im
um

Fig. 9.4 Autonomous learning - influence of β

Chapter 9. Evaluation of CCRL using a 3D Path Planning Task - Results and Discussion 63

9.9.2 CCRL
When applying CCRL and introducing an expert advisor (τ = 0.01), the results improve drastically

as expected. The learning achieves 99% and 96% SP for worlds I and II respectively, with

significant improvements of 36% and 59% with respect to the autonomous learning results. An

example for the collaboration level switching during a learning session is shown in Fig. 9.5. When

the improvement rate (IR) is above the threshold (Λ = 0.05 in this case) the robot learns

autonomously. When it drops below the threshold, human assistance is requested and the system

switches to the guided mode, until the rate again exceeds the threshold. The IR stabilized to 0 at

episode number 162, meaning the algorithm converged to a solution.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

130 135 140 145 150 155 160 165

n - episode number

IR

IR Λ

Autonomous

Guided

Fig. 9.5 CCRL - collaboration level switching, example I

Another example, presenting both the number of steps performed in each episode and the IR

calculated accordingly, is shown in Fig. 9.6. A value of K = 5 is used, meaning that IR is calculated

(according to Eq. 6.1) using the 10 (2K) previous episodes. The high average number of steps during

episodes 145 - 149, in comparison to the lower average in the prior episodes, causes IR to drop below

Λ (0.05) at episode number 148 and triggers requests for human guidance. With the supplied advice,

the number of steps reduces again, and convergence is achieved at episode 157, followed by the

stabilization of IR to 0 at episode number 166 (10 episodes later).

Chapter 9. Evaluation of CCRL using a 3D Path Planning Task - Results and Discussion 64

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

140 145 150 155 160 165

n - episode number

IR

-60

-40

-20

0

20

40

60

t
- n

um
be

r o
f s

te
ps

IR Λ t

Guided

Autonomous

Fig. 9.6 CCRL – collaboration level switching, example II

To examine the self-assessment capability, learning was performed with various threshold values.

When setting low values of Λ, the robot is expected to achieve less improvement in each episode,

hence requests less advice. As Λ rises, high improvement is required and the robot asks for help

more frequently. When the advisor is an expert (τ = 0.01), more advice leads to better performance,

as can be seen in Fig. 9.7 (results for world II with limited view).

0%

10%

20%

30%

40%

50%

60%

70%

0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Λ

SP
 -

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 s

es
si

on
s

co
nv

er
gi

ng
 to

 o
pt

im
um

0

20

40

60

80

100

120

140
A

R
 -

A
ve

ra
ge

 n
um

be
r o

f r
eq

ue
st

s
fo

r
ad

vi
ce

Percentage Requests

Fig. 9.7 CCRL - influence of Λ

When the advisor does not supply optimal instructions, an interesting phenomenon appears. Fig.

 9.8 shows the results for the limited view case of world I, with a collaboration threshold of Λ = 0.05

and advisors of various skill levels (represented by τ), but without advice assessment capabilities.

On the one hand, the learning agent senses its performance is not sufficient, and therefore it requests

human guidance. On the other hand, when the human is not an expert, the advice may not bring the

Chapter 9. Evaluation of CCRL using a 3D Path Planning Task - Results and Discussion 65

desired improvement in performance and might even cause deterioration. The learning agent keeps

asking for guidance because it does not improve, and the guidance further deteriorates its

performance. The situation enters a “vicious cycle” from which there is no escape, resulting in very

low performance. As expected, when the human skill level is lower, the agent requests guidance

more often, and the performance deteriorates faster.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0.01 0.1 0.15 0.3 1

τ - human skill level

SP
 -

 A
ve

ra
ge

 p
er

ce
nt

ag
e

of

se
ss

io
ns

 c
on

ve
rg

in
g

to
 o

pt
im

u m

0

20

40

60

80

100

120

140

A
R

 -
 A

ve
ra

ge
 n

um
be

r o
f

re
qu

es
ts

 fo
r a

dv
ic

e

Percentage Requests

NoviceExpert

Fig. 9.8 CCRL - learning without advice assessment capabilities

The introduction of advice assessment capabilities helps to break this “vicious cycle” and

improves performance significantly. Fig. 9.9 shows results for the same environment (world I,

limited view), with a collaboration threshold Λ = 0.05 and an advice refusal threshold of Ω = 1,

again using the aid of advisors with various skill levels (various values of τ).

0%

10%

20%

30%

40%

50%

60%

70%

80%

0.01 0.1 0.15 0.3 1

τ - human skill level

S
P

 -
 A

ve
ra

ge
 p

er
ce

nt
ag

e
of

se

ss
io

ns
 c

on
ve

rg
in

g
to

 o
pt

im
um

0

2

4

6

8

10

12

14

A
R

 -
 A

ve
ra

ge
 n

um
be

r
of

 r
eq

ue
st

s
fo

r
ad

vi
ce

Percentage Requests

NoviceExpert

Fig. 9.9 CCRL - learning with advice assessment capabilities

Chapter 9. Evaluation of CCRL using a 3D Path Planning Task - Results and Discussion 66

Here, when human skill level is low, it is sensed by the robot which accordingly stops asking for

guidance. Since the robot reverts to autonomous learning, human advice does not interfere and this

results in improved performance. When the advisor is a novice, the robot understands it very fast and

stops asking for advice early in the session, achieving better results. The worse performance appears

when the advisor's expertise is midway (τ = 0.3), not very good and not very bad, so it takes time for

the robot to notice that the advice is not good enough and to stop asking for it. When the advisor is

an expert, the results are slightly worse in comparison to those achieved without the advice

assessment capability (72% vs. 82%). The reason is that the agent sometimes misjudges the advice

and rejects it, even though the advisor is an expert. In these cases the actions chosen autonomously

by the agent (who reverted to fully autonomous learning) are worse then those suggested by the

advisor, leading to worse performance.

A further study of the effects of the advise refusal threshold Ω (Eq. 6.4) reveals that there is a

trade-off when setting its values. When Ω is low, poor skilled advisors would be quickly recognized

and discarded, but experts might be misjudged and unjustly discarded as well. When Ω is high there

is a smaller chance of discarding an expert, but it also takes longer time for the robot to identify

worse skilled advisors, and the prolonged use of their advices obstructs the learning. Hence, when

the advisor is skilled a use of high values of Ω achieves the best performance, while when the

advisor has limited or no skills lower values of Ω result in better learning. This trade-off is illustrated

in Fig. 9.10, showing the results of employing CCRL with Λ = 0.05 and various values of Ω (1, 3, 5,

7) to the limitedly viewed world I.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0.01 0.1 0.3 1

τ - human skill level

SP
 -

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 s

es
si

on
s

co
nv

er
gi

ng
 to

 o
pt

im
um

Ω = 1 Ω = 3 Ω = 5 Ω = 7 No Advice Assessment

Expert Novice

Fig. 9.10 CCRL - influence of Ω

Chapter 9. Evaluation of CCRL using a 3D Path Planning Task - Results and Discussion 67

As explained, for the skilled advisors (τ = 0.01, 0.1) higher Ω results with better performance,

while with less competent advisors (τ = 0.3, 1) the trend inverts and higher Ω results with worse

performance (though without statistical significance). As discussed above, when advice is given by

an expert, even better results are achieved when the advice assessment capability is not used at all

(no misjudgment occurs), yet for other advisors this capability is essential for obtaining good results.

9.9.3 IA
When employing IA, the width parameter Ψ influences the learning as described in Section 9.5:

with a small width, the learner is rarely uncertain, asking little advice, while with a large width, the

learner asks for guidance quite frequently. Fig. 9.11 presents the results of learning with various

values of the width parameter Ψ, in world II with a limited view, assisted by an expert (τ = 0.01).

0%

10%

20%

30%

40%

50%

60%

70%

0.1 0.3 0.7 1 1.3
Width parameter

SP
 -

A
ve

ra
ge

 p
er

ce
nt

ag
e

of

se
ss

io
ns

 c
on

ve
rg

in
g

to
 o

pt
im

um

0

50

100

150

200

250

300

350

400

H
S

 -
 A

ve
ra

ge
 n

um
be

r o
f s

te
ps

pe
rf

or
m

ed
 u

si
ng

 a
dv

ic
e

Percentage Helping Steps

Ψ

Fig. 9.11 IA - influence of the width parameter Ψ

With less competent advisors, IA suffers from the same problem described for CCRL – bad

advice leaves the robot uncertain, leading it to ask for more advice, causing even more uncertainty.

When advisor skill level is lower, the agent requests more guidance, and the performance is worse,

as shown in Fig. 9.12 (World II, limited view, Ψ = 1). The difference from CCRL is that IA does not

endow the robot with the advice assessment capability that enables it to cope with such advisors.

Chapter 9. Evaluation of CCRL using a 3D Path Planning Task - Results and Discussion 68

0%

10%

20%

30%

40%

50%

60%

70%

0.01 0.1 0.3 1

τ - human skill level

SP
 -

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 s

es
si

on
s

co
nv

er
gi

ng
 to

 o
pt

im
um

0

100

200

300

400

500

600

H
S

 -
 A

ve
ra

ge
 n

um
be

r o
f s

te
ps

pe

rf
or

m
ed

 u
si

ng
 a

dv
ic

e

Percentage Helping steps

Expert Novice

Fig. 9.12 IA - learning with various advisors

9.9.4 Combined Method

As explained, in the combined algorithm advice is solicited only when both advice request tests

(Eq. 6.2 and 9.3) are passed, and when the advice refusal threshold (Eq. 6.4) in not exceeded. The

severity of the advice request conditions promises that the agent will ask for guidance only when it is

really necessary (to the agent’s understanding). This difference is shown in Fig. 9.13, presenting the

results for World II with limited view and collaboration parameter values of Ψ = 1, Λ = 0.05 and Ω =

5 (similar to the conditions presented in Fig 9.12 for the IA method).

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0.01 0.1 0.3 1

τ - human skill level

SP
 -

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 s

es
si

on
s

co
nv

er
gi

ng
 to

 o
pt

im
um

0

10

20

30

40

50

60

H
S

 -
A

ve
ra

ge
 n

um
be

r o
f s

te
ps

pe

rf
or

m
ed

 u
si

ng
 a

dv
ic

e

Percentage Helping steps

Expert Novice

Fig. 9.13 Combined method - learning with various advisors

Chapter 9. Evaluation of CCRL using a 3D Path Planning Task - Results and Discussion 69

Here, as expected, the results (SP) for the skilled advisors (τ = 0.01, 0.1) are worse than the ones

achieved by IA or CCRL, since less guidance is requested. For the less skilled advisors (τ = 0.3, 1)

the behavior is similar to the one seen for CCRL (Fig. 9.9), where the agent learns to ask for less

guidance and achieves better results by reverting to autonomous learning. In general, the combined

method achieves lower SP than IA with skilled advisors or CCRL. However, it demonstrates robust

performance for all the spectrum of advisor skill levels, and achieves it with much less guidance than

IA and CCRL. A thorough comparison is presented in the following section.

9.9.5 Comparative Analysis
When comparing the methods it is important to notice that unlike CCRL, the assistance request in

the IA method is triggered per step and not for the entire episode. Therefore, the performance

measure used for comparison is HS, the number of steps in the entire session performed using

advisor assistance.

The comparison is problematic, since we have a multi-objective problem with two performance

measures, SP (success percentage) and HS (helped steps). The preferable case, higher performance

with the cost of many interruptions to the advisor, or less interruption with inferior performance,

depends on the specific application. A way to address this difficulty is to base the comparison on a

weighted normalized scoring. The two performance measures receive a weight corresponding to their

relative importance. The results of a specific combination of collaboration parameters (Λ, Ω and Ψ)

are normalized to achieve a common basis for comparison. The score, representing how good was

the learning using these parameters is calculated according to (9.4).

1 2

* *1 2
min() max()

max() min() max() min()

1

i iSP SP HS HS

SP SP HS HS

W W

WWScore

+

+
− −

=
− −

=

 (9.4)

Where W1 and W2 are the weights assigned to SP and HS, respectively. SPi is the average percentage

achieved using the i-th combination of collaboration parameters and HSi is the average number of

helping steps used with that combination. The calculation is designed in a way that will result in the

highest score of 1 when the evaluated combination achieves the highest SP, using the lowest HS.

Lower SPi or higher HSi will reduce the score.

When comparing, one can seek the combination receiving the highest score for a specific advisor

skill level, or the combination that shows the most robust performance, dealing well with all levels of

human expertise (here the final score for a specific combination is an average of the scores received

for the various human skill levels).

Chapter 9. Evaluation of CCRL using a 3D Path Planning Task - Results and Discussion 70

Tables 9.2 - 9.5 summarize the best scores achieved by each of the three methods (CCRL, IA and

combined), for the full and limited view cases of worlds I and II. Equal weights are assigned to each

performance measure (W1 = W2 = 0.5). The scores are compared and ranked using one-way ANOVA

(F-test) and Tukey’s HSD test, demanding 95% confidence level1. The rank column indicates the

relations between the methods. If two or more methods have the same rank, it means they are not

significantly different. Significant best scores are marked in gray. When two scores are marked it

means they are significantly better than the third, but there is no significance between them.

Table 9.2 Scores for world I with full view

Advisor (τ) Method Parameters SP HS Score Rank

CCRL Λ=0.05, Ω=1 99% 292.2 0.96 2
IA Ψ=0.7 98% 268.6 0.96 2 Expert (0.01)
Combined Λ=0.3, Ω=1, Ψ=1 100% 96.8 1.00 1
CCRL Λ=0.3, Ω=1 67% 825.2 0.72 2
IA Ψ=1 99% 200.5 0.98 1

Moderately
expert (0.1)

Combined Λ=0.3, Ω=1, Ψ=1 98% 156.2 0.98 1
CCRL Λ=0.9, Ω=1 11% 593.6 0.47 3
IA Ψ=1.3 96% 747.9 0.87 1

Limited skills
(0.3)

Combined Λ=0.05, Ω=1, Ψ=1 80% 623.7 0.81 2
CCRL Λ=0.9, Ω=1 55% 271.4 0.74 1
IA Ψ=0.1 62% 915.1 0.68 2 Novice (1)
Combined Λ=0.05, Ω=1, Ψ=0.3 61% 308.8 0.77 1
CCRL Λ=0.3, Ω=1 55% 595.4 0.69 3
IA Ψ=0.7 84% 988.9 0.77 2

All levels
(average)

Combined Λ=0.05, Ω=1, Ψ=1 82% 290.9 0.88 1

Table 9.3 Scores for world I with limited view

Advisor (τ) Method Parameters SP HS Score Rank
CCRL Λ=0.05, Ω=7 80% 135.3 0.85 1
IA Ψ=1.3 82% 153.9 0.86 1 Expert (0.01)
Combined Λ=0.05, Ω=7, Ψ=0.3 73% 51.5 0.84 1
CCRL Λ=0.2, Ω=1 66% 25.5 0.78 1
IA Ψ=1.3 80% 171.9 0.82 1

Moderately
expert (0.1)

Combined Λ=0.05, Ω=1,Ψ=0.3 67% 15.9 0.8 1
CCRL Λ=0.05, Ω=1 59% 39.9 0.69 1
IA Ψ=0.1 60% 136.2 0.62 2 Limited skills

(0.3)
Combined Λ=0.5, Ω=1, Ψ=0.3 60% 19.2 0.72 1
CCRL Λ=0.01, Ω=1 63% 28.8 0.74 1
IA Ψ=0.1 63% 149.6 0.63 2 Novice (1)
Combined Λ=0.5, Ω=1, Ψ=0.3 61% 18.9 0.73 1
CCRL Λ=0.3, Ω=1 62% 27.9 0.73 1
IA Ψ=0.1 63% 121.4 0.66 2

All levels
(average)

Combined Λ=0.05, Ω=1,Ψ=0.3 63% 17.4 0.74 1

1 A detailed explanation of the comparison method can be found in Appendix II.

Chapter 9. Evaluation of CCRL using a 3D Path Planning Task - Results and Discussion 71

Table 9.4 Scores for world II with full view

Advisor (τ) Method Parameters SP HS Score Rank
CCRL Λ=0.05, Ω=3 96% 523.0 0.95 2
IA Ψ=0.7 98% 522.1 0.96 2 Expert (0.01)
Combined Λ=0.01, Ω=1, Ψ=1 98% 185.5 0.98 1
CCRL Λ=0.5, Ω=1 47% 1852.7 0.61 3
IA Ψ=0.7 87% 608.1 0.90 2

Moderately
expert (0.1)

Combined Λ=0.01, Ω=1, Ψ=1 91% 347.4 0.94 1
CCRL Λ=0.5, Ω=1 20% 736.2 0.56 2
IA Ψ=1 65% 2216.6 0.67 1

Limited skills
(0.3)

Combined Λ=0.05, Ω=1, Ψ=0.3 36% 150.4 0.68 1
CCRL Λ=0.3, Ω=1 37% 177.1 0.68 1
IA Ψ=0.1 40% 738.4 0.65 2 Novice (1)
Combined Λ=0.05, Ω=1, Ψ=0.3 37% 115.9 0.68 1
CCRL Λ=0.5, Ω=1 49% 819.9 0.70 2
IA Ψ=0.7 70% 2105.5 0.71 2

All levels
(average)

Combined Λ=0.01, Ω=1, Ψ=1 64% 434.3 0.80 1

Table 9.5 Scores for world II with limited view

Advisor (τ) Method Parameters SP HS Score Rank
CCRL Λ=0.05, Ω=7 51% 43.2 0.83 1
IA Ψ=1.0 62% 131.1 0.84 1 Expert (0.01)
Combined Λ=0.05, Ω=5, Ψ=1 44% 24.0 0.78 1
CCRL Λ=0.3, Ω=3 41% 26.6 0.75 1
IA Ψ=0.1 41% 66.1 0.72 1

Moderately
expert (0.1)

Combined Λ=0.05, Ω=1,Ψ=1 40% 11.0 0.76 1
CCRL Λ=0.3, Ω=1 35% 22.2 0.70 1
IA Ψ=0.1 34% 78.3 0.64 2 Limited skills

(0.3)
Combined Λ=0.3, Ω=1, Ψ=1 38% 20.0 0.73 1
CCRL Λ=0.9, Ω=1 36% 16.1 0.72 1
IA Ψ=0.1 34% 86.5 0.64 2 Novice (1)
Combined Λ=0.05, Ω=3, Ψ=0.3 38% 22.9 0.73 1
CCRL Λ=0.5, Ω=1 36% 15.4 0.72 1,2
IA Ψ=0.1 39% 72.7 0.69 2

All levels
(average)

Combined Λ=0.01, Ω=1,Ψ=1 38% 13.7 0.74 1

Overall, the combined method achieves the best results for both worlds and both view cases. It

does so for most of the advisor skill levels separately, and for the average case, demonstrating

robustness in dealing with various levels of advisors. These results are achieved since the robot asks

for aid only when it really requires it, under conditions of uncertainty and deficiency in performance,

and stops asking for it when it is not beneficial.

When considering CCRL and IA, it can be seen that when assisted by skillful advisors (τ = 0.01,

0.1) and in average in the full view cases, IA performs better, while with lesser skilled advisors (τ =

0.3, 1) and in average in the limited cases, CHRL achieves better results, equivalent to those of the

Chapter 9. Evaluation of CCRL using a 3D Path Planning Task - Summary 72

combined method. This can be attributed to the advice assessment capability employed in CCRL and

in the combined method.

Generally, in the limited view cases CCRL performs relatively better in comparison to IA, while

in the full view cases IA has the upper hand. This can be explained by the fact that in the full view

cases, CCRL uses advice during the entire episode, even for states where the robot does not really

require it, thus many help requests are issued in vain. In the limited view cases on the contrary,

advice requests are prompted only on a restricted region, minimizing the described effect and making

better use of the CCRL cognitive capabilities.

9.10 Summary
The CCRL algorithm allows a RL learner to intelligently decide whether and when to solicit

advice from an advisor, by endowing it with the capabilities to evaluate its performance and to assess

the value of the advice. When assisted by highly skilled advisors the agent learns to use them

sufficiently frequently to improve its performance. When dealing with less skilled advisors it learns

to discard bad advice and switch to autonomous learning. The CCRL algorithm and especially the

combined method (CCRL with IA) achieved better results than the base-line fully autonomous

learner and the learner employing IA in many learning scenarios, proving the expediency of the

endowed cognitive capabilities. Furthermore, a method for simulating human advisors with various

skill levels was presented.

Chapter 10. Conclusions and Future Research - Conclusions 73

10. Conclusions and Future Research
Chapter Overview

This concluding section presents the importance and implications of this work, and offers a

comparison between the CHRL framework and algorithms presented here, and the current best

practice in related research. The section ends with a discussion of areas for future work.

10.1 Conclusions
This work introduces a new reinforcement learning framework and the necessary tools for its

application. The proposed framework, Collaborative Hierarchical Reinforcement Learning (CHRL)

is targeted to provide efficient learning and execution of complex tasks otherwise inapplicable by a

reinforcement learning agent, due to large state-action spaces (curse of dimensionality) and multiple

goal states. The framework includes a two-level learning hierarchy, thus reducing the search space

and allowing multiple goals, and a collaboration model, allowing human intervention for the

improvement and acceleration of the learning process.

The framework suggested in this work allows complex tasks to be learned using RL methods, by

defining the required set of sub-tasks and an appropriate sequence for their execution. A RL-based

sequencing algorithm (SRL) is developed to address the high level learning task of determining the

desired sequence, and a cognitive collaborative RL algorithm (CCRL) is introduced to enable

adaptive use of human assistance when learning how to perform the various low level sub-tasks.

Extensive experimentation and analysis demonstrates the applicability of the CHRL framework

and the strengths and weaknesses of the SRL and CCRL supporting algorithms. A robotic toast

making application serves as a test-bed for CHRL, presenting an intelligent environment using a

fixed-arm robot as a transfer agent. A simulated path planning task is used to evaluate the

performance of the CCRL algorithm.

Analysis of the SRL algorithm reveals the superiority of the algorithm over the compared

methods under various configurations. The algorithm does not require any predefined sequencing

rules or specific information on the problem, hence can be adjusted to suit other sequencing

problems presented by various applications, especially those employing a job transfer agent. This is

demonstrated for a flexible manufacturing system (see Appendix III). Note that the algorithm can be

used for general sequencing probems in a broader context, and not necessarily for robotics related

problems as presented in this work.

The CCRL algorithm and the combined method integrating its logic with Clouse’s Introspection

Approach, demonstrated robust performance when dealing with various advisor skill levels, learning

to accept advice received from an expert, while rejecting the aid from lesser skilled collaborators.

Chapter 10. Conclusions and Future Research - Conclusions 74

The CCRL algorithm can be integrated with practically any RL algorithm without requiring

modifications to handle the advisors actions, since it is only added to the outer layer.

It is important to emphasize that the complete CHRL framework, presented in Chapter 4, was not

fully demonstrated in this thesis, but we believe that the necessary foundations were placed for future

research in this area. The aspects yet to be addressed are described in Section 10.2.1.

The following sections provide a fuller elaboration on the contributions of this research, in terms

of a comparison of the CHRL framework and the suggested algorithms with the current best practice

in RL-based robot learning.

10.1.1 Robot learning
Traditionally, robot behaviors are tailored for a specific task. This is not acceptable for a general-

purpose robot learning system. It is noted in [Kartoun, 2008] that to become economically attractive,

the robots of tomorrow will have to be constructed for a wide variety of tasks. As such, robots must

be able to learn new tasks under new working conditions from its new user in its new environment.

Intensive research has shown reinforcement learning to be a suitable tool for enabling such

autonomous learning, but the execution of real-world complex tasks still presents many unanswered

challenges.

The CHRL framework proposed in this research combines two techniques, hierarchical RL and

Human-Robot collaboration, in order to scale up RL, and provide the infrastructure for the execution

of intricate tasks. The novelty lies in the combination of the two methods into one complete learning

framework, benefiting from the advantages of both approaches. Using the CHRL framework, this

work demonstrates the applicability of RL-based methods for real-world scenarios, presenting

encouraging results to support future research in this area. Another innovation in this research is the

method suggested for representing various advisor skill levels, allowing the evaluation of

collaboration algorithms under realistic conditions of imperfect guidance.

10.1.2 Human-robot interaction
It is well established that robot learning should make use of human intelligence in the learning

process [e.g., Ehrenmann et al., 2001; Breazeal and Thomaz, 2008; Kartoun, 2008]. Human

interaction increases the learning capabilities of a robot in realistically complex situations and further

elevated robot intelligence in the post-processing and editing of learned behaviors will further

elevate robot intelligence [Kartoun, 2008]. Many works have attempted to address the many

challenges associated with adding an advisor to the learning process, such as the form of instruction

and the manner in which the learner incorporates the knowledge to its learning function.

Chapter 10. Conclusions and Future Research - Conclusions 75

In many works, the rewards the agent receives are controlled or modified by a human [e.g.,

Papudesi and Huber, 2003; Wang et al., 2003], thus actually modifying the task by altering the

reward function. [Thomaz and Breazeal, 2006] describe an approach in which rewards do not only

provide feedback about past actions, but also provide future directions to guide subsequent actions.

These methods might be problematic when non-expert collaborators are required to perform such

modifications to the reward functions. The CCRL algorithm proposes a more intuitive way of

collaboration, requiring the advisor only to suggest a certain action when at a certain state, thus

guiding the exploration without a demand for any knowledge of the problem formulation and the

reward policy (except a general notion of the goal of the task).

[Breazeal and Thomaz, 2008] indicate that most past work that incorporate human input into a

Machine Learning process tend to maintain a constant level of human involvement. Several are

highly dependent on guidance, learning nothing without human interaction, while other approaches

are almost entirely exploration based, using limited input from a teacher. They posit that a social

learner must be able to move flexibly along this guidance-exploration spectrum, explore and learn on

its own, but also take full advantage of a human partner’s guidance when available. The CCRL

algorithm allows this flexibility using an adjustable autonomy approach, based on the model

suggested by [Kartoun, 2006]. Human-robot collaboration is unnecessary as long as the robot learns

policies and adapts to new states. Only when the robot senses its performance sufficient the advisor

is solicited to intervene and suggest actions.

In his work, [Kartoun, 2006] suggests that advisor intervention should be triggered when the

robot’s learning performance is below a constant predefined threshold, set in the context of the

problem (e.g., number of steps in a navigation problem, accumulated rewards received during the

learning process in other problems). This approach is problematic since in order to determine the

appropriate threshold, one must have a-priori task-specific information about the solution, which

obviously does not exist in practice. The CCRL algorithm resolves this issue by setting a threshold in

terms of improvement rate, expecting only certain performance improvements during the learning,

without the necessity for any preliminary knowledge. Furthermore, Kartoun’s model refers only to

the Q(λ) algorithm, while CCRL can be used with any RL algorithm.

As mentioned in the introduction section, most previous research assumes perfect advisors,

suggesting only optimal actions. Furthermore, even the few approaches found in the literature to

consider less skilled advisors (e.g., Clouse, 1996; Cetina, 2007; Breazeal and Thomaz, 2008), assume

that though the advisor may not provide helpful advice, it at least does not interfere with the robot’s

learning process. However, there are certain contexts where incompetent advisors will damage the

learning process. Such an example is when dealing with extremely tired workers or children

instructing domestic service robots. This research confronts this problem with an innovative

Chapter 10. Conclusions and Future Research - Future Research 76

approach, endowing the learner with a higher cognitive level, enabling it not only to decide when to

solicit advice, but also to conclude that the advisor is not promoting the learning, hence should be

discarded.

10.1.3 Adaptive sequencing
Job sequencing problems are problems in which decision makers must determine the production

sequence of the jobs awaiting their next process in the machine queue. A common approach to

address such problems is to adopt dispatching rules - priority rules used to determine the order in

which the jobs are to be processed. The drawback of using dispatching rules is that in order to

implement them a complete model of the system is required. Furthermore, for dynamically assigning

dispatching rules there is a need to continually compute system parameters, such as: system

utilization, relative machine workloads (points system bottlenecks), machine homogeneity, etc. The

SRL algorithm presented here avoids these requirements by utilizing the basic characteristics of

reinforcement learning - the lack of necessity for a complete model of the environment, and the

relative ease in problem formulation. When implementing it, there is no need for predefining

desirable or undesirable intermediate states. All that must be done is to construct a fairly simple

reward policy (e.g., higher reward for shorter completion times) and the algorithm will supply a

solution. Furthermore, the solution is tailored for the specific parameters of the problem.

This work also suggests an alternative view of the sequencing problem, referring to the robotic

transfer agent as the limited resource, and to the tasks it has to perform as the “jobs” waiting in its

queue. This view can simplify the formulation of such problems.

10.2 Future Research
Many research areas remain open for future expansion of this work:

10.2.1 Complete implementation of the CHRL framework
This work presents implementations of the fundamental aspects of the CHRL framework, but a

full demonstration including all of the elements is still to be achieved. The toast making test-bed

application can serve this purpose, with the following elements to be addressed:

(i) An integration of both the learning of the low level activities and the learning of the required

sequence into one framework. After integration, the transferring times used by the SRL algorithm

will be dynamically updated. First, the robot will learn how to perform the sub-tasks in an optimal

way. Then the found operation times would be automatically taken as an input for the SRL

algorithm, leading to the generation of the execution sequence. This sequential process will lead to

optimal task execution.

Chapter 10. Conclusions and Future Research - Future Research 77

(ii) The noted “toolbox” should be applied, saving low level sub-tasks, such as grasping a toast, to

be used recurrently during the task execution. This should be done to demonstrate the simplicity of

the formation and execution of new composite tasks, based on already learned sub-tasks.

(iii) The introduction of human advice into the high-level learning task.

10.2.2 Further evolution and development of the CCRL algorithm
The CCRL algorithm, demonstrating good results for the path planning task presented by the

toasting system and for the more complex simulated task, should be implemented with other robotic

systems and other machine learning methods. Further evaluation should also be conducted for

various configurations of the maze environment. Furthermore, advanced human-robot interfaces

could be introduced to enhance the interaction. The use of natural language control or virtual reality

technologies could replace the standard interfaces (mouse, keyboard and screen) to achieve more

intuitive interaction and extend human control capabilities.

As a next step, the algorithm could address an opposite direction of knowledge transfer. After the

agent assess the worth of the advice given, it can notify the advisor as to the worth of his

suggestions, thus allowing him to improve his knowledge and guidance for future interaction, and

provide better suggestions.

10.2.3 Further assessment and development of the SRL algorithm
The SRL algorithm could be applied for other systems, for further evaluation. An initial study was

conducted for a Flexible Manufacturing System (see Appendix III). The algorithm can be used to

minimize machine or robot idle times, mean tardiness, number of tardy jobs etc. Furthermore, its

performance could be compared to that of other soft computing methods such as genetic algorithms.

One issue not addressed in this research is the method in which the complex task is decomposed

to the sub-tasks when creating the two-level hierarchy. Previous work [e.g., Bakker and

Schmidhuber, 2004] presented methods in which the high-level policies not only select the sequence

of the sub-task execution, but also autonomously discover and define those sub-tasks. The deficiency

is that these methods are appropriate only for relatively defined environments (e.g., grid-worlds for

path planning tasks), and cannot deal with complex tasks as toast making. This issue should be

addressed in future research. Furthermore, the formulation of the minimum makespan problem as a

single complex problem without the two-level decomposition could be investigated. If this succeeds,

a comparison of the decomposed (two level hierarchy) and full problem results should be made.

Chapter 10. Conclusions and Future Research - Future Research 78

10.2.4 Improvement of the learning algorithms
Though preliminary results for both the algorithms are promising, there are some issues that should

be attended to in future research:

(i) The algorithms include many parameters which can significantly influence the performance.

Evaluation methods could be employed to find the optimal RL and threshold parameters leading to

the best performance.

(ii) The low level learning tasks described in this work consist of relatively small state-action

spaces. In problems with extremely large state-action spaces it is infeasible to use tables for holding

the Q values, due to the huge amount of memory and long running times required to maintain the

tables. In these cases, function approximators employing only a representative sub-set of the entire

state-space are used, to achieve practical performance. The algorithms suggested in this work should

be modified to allow the use of such approximators when applied to larger problems.

(iii) Current research employs multi-agent methods to accelerate and upgrade the learning, profiting

from the advantages of using parallel computation. Again, the algorithms presented here can be

modified to suit multi-agent models. The application of the CCRL cognitive model for multi-agent

learning, where agents could function both as learners and as advisors, should be especially

interesting, addressing the issue of how to handle advice in such a way that facilitates the inclusion

of advice from several sources (with possible conflicting advice because of different skill levels of

the advisors). The advice could be weighted differently or organized as a hierarchical mixture of

experts.

Chapter 11. References 79

11. References

[1] Bakker B. and Schmidhuber J., Hierarchical reinforcement learning based on subgoal

discovery and subpolicy specialization, Proceedings of the 8th Conference on Intelligent

Autonomous Systems, Amsterdam, The Netherlands, pp. 438-445, 2004.

[2] Bechar A., Edan Y. and Meyer J., Performance Measurement of Collaborative Human-Robot

Target Recognition Systems in Unstructured Environments, Proceedings of the 17th

International Conference on Production Research (ICPR), Blacksburg, Virginia, Paper No.

0321, 2003.

[3] Bechar A., Edan Y. and Meyer J., Optimal Collaboration in Human-Robot Target Recognition

Systems, IEEE Conference on Systems, Man, and Cybernetics, Taipei, Taiwan, Paper No.

01113, 2006.

[4] Berman S., CIM-NEGEV – User Manual, Department of Industrial Engineering and

Management, Ben-Gurion University of the Negev, 2003.

[5] Bhanu B., Leang P., Cowden C., Lin Y. and Patterson M., Real-time Robot Learning,

Proceedings of the IEEE International Conference on Robotics and Automation, Seoul, Korea,

pp. 491-498, 2001.

[6] Breazeal C. and Thomaz A., Learning from Human Teachers with Socially Guided

Exploration, IEEE International Conference on Robotics and Automation, Pasadena,

California, USA, pp. 3539-3544, 2008.

[7] Cetina V. U., Supervised Reinforcement Learning Using Behavior Models, IEEE Computer

Society 6th International Conference on Machine Learning and Applications, Cincinnati, Ohio,

USA, pp. 336-341, 2007.

[8] Clouse J. A., An Introspection Approach to Querying a Trainer, Technical Report 96-13,

University of Massachusetts, Amherst, MA, 1996.

[9] Connell J. H. and Mahadevan S., Robot Learning, Kluwer Academic Publishers, Boston, 1993.

[10] Creighton D. C. and Nahavandi S., The Application of a Reinforcement Learning Agent to a

Multi-Product Manufacturing Facility, IEEE International Conference on Industrial

Technology, Bangkok, Thailand, pp. 1229-1234, 2002.

[11] Dietterich T. G., Hierarchical Reinforcement Learning with the MAXQ Value Function

Decomposition, Journal of Artificial Intelligence Research, Vol. 13, pp. 227–303, 1999.

[12] Ehrenmann, M., Rogalla, O., Zollner, R. and Dillmann, R., Teaching Service Robots Complex

Tasks: Programming by Demonstration for Workshop and Household Environments,

Proceedings of the International Conference on Field and Service Robots, Helsinki, Finland,

vol. 1, pp. 397-402, 2001.

Chapter 11. References 80

[13] Fong T., Thorpe C., Baur C., Collaboration, Dialogue, and Human-Robot Interaction, 10th

International Symposium of Robotics Research, Lorne, Victoria, Australia, 2001.

[14] Gabel T. and Riedmiller M., Scaling Adaptive Agent-Based Reactive Job-Shop Scheduling to

Large-Scale Problems, Proceedings of the IEEE Symposium on Computational Intelligence in

Scheduling, Honolulu, Hawaii, pp. 259-266, 2007.

[15] Gil A, Stern H, Edan Y. and Kartoun U., A Scheduling Reinforcement Learning Algorithm,

Proceedings of the ASME International Symposium on Flexible Automation, Atlanta, Georgia,

USA, 2008.

[16] Glorennec P. Y., Reinforcement Learning: an Overview, European Symposium on Intelligent

Techniques, Aachen, Germany, 2000.

[17] Hayes-Roth, F., Klahr, P. and Mostow, D. J., Advice-taking and Knowledge Refinement: An

Iterative View of Skill Acquisition, Technical Report, Rand Corporation, 1980.

[18] Heguy O., Rodriguez N., Luga H., Jessel J. P. and Duthen Y., Virtual Environment for

Cooperative Assistance in Teleoperation, The 9th International Conference in Central Europe

on Computer Graphics, Visualization and Computer Vision, Plzen, Czech Republic, 2001.

[19] Honglak L., Yirong S., Chih-Han Y., Gurjeet S. and Andrew Y. N., Quadruped Robot Obstacle

Negotiation via Reinforcement Learning, Proceedings of the IEEE International Conference

on Robotics and Automation, Orlando, Florida, USA, pp. 3003-3010, 2006.

[20] Howard A., Probabilistic Navigation: Coping With Uncertainty in Robot Navigation Tasks,

Ph.D. Dissertation, Department of Computer Science and Software Engineering, University of

Melbourne, Australia, 1999.

[21] Jeni, L.A., Istenes, Z., Korondi, P. and Hashimoto, H., Hierarchical Reinforcement Learning

for Robot Navigation using the Intelligent Space Concept, 11th International Conference on

Intelligent Engineering Systems, Budapest, Hungary, pp. 149 – 153, 2007.

[22] Kartoun U., Stern H., Edan Y., Feied C., Handler J., Smith M. and Gillam M, Collaborative

)(λQ Reinforcement Learning Algorithm - A Promising Robot Learning Framework, IASTED

International Conference on Robotics and Applications, Cambridge, U.S.A, 2005.

[23] Kartoun U., Stern H., Edan Y., Human-Robot Collaborative Learning System for Inspection,

Conference on Systems, Man, and Cybernetics, Taipei, Taiwan, Paper No. 01191, 2006.

[24] Kartoun U., Human-Robot Collaborative Learning Methods, Ph.D. Dissertation, Department

of Industrial Engineering and Management, Ben-Gurion University, Israel, 2008.

[25] Kreuziger J., Application of Machine Learning to Robotics - an Analysis, Proceedings of the

Second International Conference on Automation, Robotics and Computer Vision, Singapore,

1992.

Chapter 11. References 81

[26] Lockerd A. and Breazeal C., Tutelage and Socially Guided Robot Learning, Proceedings of

IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, pp.

3475-3480, 2004.

[27] Martínez-Marín T. and Duckett T., Fast Reinforcement Learning for Vision-guided Mobile

Robots, Proceedings of the IEEE International Conference on Robotics and Automation,

Barcelona, Spain, pp. 4170-4175, 2005.

[28] Mihalkova L. and Mooney R., Using Active Relocation to Aid Reinforcement, Proceedings of

the 19th International FLAIRS Conference, Melbourne Beach, Florida, USA, 2006.

[29] Papudesi V. N. and Huber M., Learning From Reinforcement and Advice Using Composite

Reward Functions, Proceedings of the 16th International FLAIRS Conference, St. Augustine,

Florida, USA, pp. 361-365, 2003.

[30] Papudesi V. N., Wang Y., Huber M. and Cook D. J., Integrating User Commands and

Autonomous Task Performance in a Reinforcement Learning Framework, AAAI Spring

Symposium on Human Interaction with Autonomous Systems in Complex Environments,

Stanford University, CA, 2003

[31] Park S. C., Raman N. and Shaw M. J., Adaptive Scheduling in Dynamic Flexible

Manufacturing Systems, IEEE Transactions on Robotics and Automation, Vol. 13, No. 4, pp.

486-502, 1997.

[32] Peng J. and Williams R., Incremental Multi-Step Q -learning, Machine Learning, Vol. 22, No.

1-3, pp. 283-290, 1996.

[33] Ribeiro C., Reinforcement Learning Agents, Artificial Intelligence Review, Vol. 17, No. 3, pp.

223-250, 2002.

[34] Sheridan T. B., Supervisory Control, In: Handbook of Human Factors/Ergonomics, G.

Salvevely (Ed.), Wiley, ISBN 0471116, NY, 1987.

[35] Singh S., Transfer of Learning by Composing Solutions of Elemental Sequential Tasks,

Machine Learning, Vol. 8 No. 3-4, pp. 323–339, 1992.

[36] Stefan P., Flow-Shop Scheduling Based on Reinforcement Learning Algorithm, Production

Systems and Information Engineering, Miskolc, Vol. 1, pp. 83-90, 2003.

[37] Sun R. and Sessions C., Self-Segmentation of Sequences: Automatic Formation of Hierarchies

of Sequential Behaviors, IEEE Transaction on Systems, Man and Cybernetics, Vol. 30, No. 3,

pp. 403-418, 2000.

[38] Sutton R. S. and Barto A. G., Reinforcement Learning: An Introduction, Cambridge, MA: MIT

Press, 1998.

[39] Tham C. K. and Prager R.W., A Modular Q-Learning Architecture for Manipulator Task

Decomposition, International Conference on Machine Learning, 1994.

Chapter 11. References 82

[40] Thomaz A. and Breazeal C., Reinforcement Learning with Human Teachers: Evidence of

Feedback and Guidance with Implications for Learning Performance, Proceedings of the 21st

National Conference on Artificial Intelligence, Boston, Massachusetts, USA, 2006.

[41] Touzet C. F., Q-learning for Robots, In: Handbook of brain theory and neural networks,

Cambridge, MA: M. Arbib editor, MIT Press, pp. 934-937, 2003.

[42] Wang B., Li J. W. and Liu H., A heuristic Reinforcement Learning for Robot Approaching

Objects, IEEE Conference on Robotics, Automation and Mechatronics, pp. 1-5, 2006.

[43] Wang Y. and Usher J.M., Application of Reinforcement Learning for Agent-Based Production

Scheduling, Engineering Applications of Artificial Intelligence, Elsevier, Vol. 18, pp. 73–82,

2005.

[44] Wang Y., Huber M., Papudesi V. N. and Cook D. J., User-Guided Reinforcement Learning of

Robot Assistive Tasks for an Intelligent Environment, Proceedings of the IEEE/RJS

International Conference on Intelligent Robots and Systems, pp. 424-429, 2003.

[45] Watkins C. J. C. H., Learning from Delayed Rewards, Ph.D. Dissertation, Cambridge

University, 1989.

[46] Watkins C. J. C. H. and Dayan P., Q-learning, Machine Learning, Vol. 8, pp. 279-292, 1992.

[47] Wei Y. and Zhao M., Composite Rules Selection Using Reinforcement Learning for Dynamic

Job-Shop Scheduling, Proceedings of the IEEE Conference on Robotics, Automation and

Mechatronics, Singapore, pp. 1083-1088, 2004.

[48] Yanco H. A., Baker M., Casey R., Chanler A., Desai M., Hestand D., Keyes B. and Thoren P.,

Improving Human-Robot Interaction for Remote Robot Operation, Robot Competition and

Exhibition Abstract, National Conference on Artificial Intelligence, Pittsburgh, Pennsylvania,

USA, 2005.

Appendix I. Toast Making System – Specifications and Operation 83

Appendix I. Toast Making System – Specifications and Operation

This appendix reviews the toasting system’s components, methods of operation and user

interfaces.

System Components
The system includes several software and hardware components, exchanging data as described in

Fig. I.1.

VB.net Project

Matlab

USB
Camera

XRC
Controller

MOTOMAN
Robot

JBI Files

Motion
Commands

Visual
Feedback

Operational Status
(busy / free)

Learning
Algorithm Results

Learning
Requests

Fig. I.1 System components and data exchange

 VB.net application – this is the system’s framework, managing and synchronizing other system

components. The VB.net project1 manages the communication with robot’s controller: it creates the

motion command files for robot (JBI files), downloaded to the XRC controller, and receives

indication of the operation status from the controller. It also sends the learning requests to the

MATLAB application employing the learning algorithms, and receives the desired results (robot

movements for the high-level sequencing task or path for the low-level bread insertion task). Finally,

the VB.net project includes the user interfaces.

1 The VB.net source code is presented in Appendix VII.

Appendix I. Toast Making System – Specifications and Operation 84

 MATLAB application – the MATLAB application employs the SRL and CCRL learning

algorithms1 according to the requests received from the VB.net application. Furthermore, the

MATLAB application applies the image processing algorithm and displays parts of the user interface

for the low-level task.

 Motoman six degrees of freedom UP-6 Fixed-Arm Robot – this is the “transfer agent” of the

system. The robot (Fig. I.2) is operated according to movement commands received from the XRC

controller.

 XRC controller – the robot’s controller (Fig I.3), executing the programs generated by the

VB.net project (JBI files), sending motion commands to robot.

 USB camera – a simple USB camera (Fig. I.4), located above the experimental setup, supplies

the visual feedback for the image processing algorithm employed in MATLAB.

 Experimental setup – a cardboard mockup of system stations for the sequencing task (Fig I.5),

and a table with obstacles and the toaster for the bread insertion task (Fig. I.6).

Fig. I.2 The Motoman UP-6 fixed-arm robot

1 The Matlab source code is presented in Appendix VII.

Appendix I. Toast Making System – Specifications and Operation 85

Fig. I.3 The XRC controller

Fig. I.4 The USB camera located above the experimental setup

Appendix I. Toast Making System – Specifications and Operation 86

Fig. I.5 The sequencing task experimental setup

Fig. I.6 The bread insertion task experimental setup

Appendix I. Toast Making System – Specifications and Operation 87

Toast Transfer Sequencing Task
The system’s user interface is displayed in Fig. I.7.

Fig. I.7 The sequencing task user interface

The setup (Fig. I.5) includes the six cardboard stations situated on two tables. The bread-slices are

preliminary located in station 1 (starting buffer), to be transferred by the robot during operation.

The system is operated in the following order:

1) The user chooses the desired number of toasts (1-4) and presses the “Create Scheduling Policy”

button.

2) The MATLAB application runs the SRL algorithm and generates the sequence of robot

movements suitable for the desired number of toasts.

3) The VB.net application receives the sequence.

4) When the user presses the “Run Toasting Sequence” button, the application dynamically creates

the robot movement command files (JBI files) suitable for the sequence.

During the system’s operation, the machines status, robot’s next location (station), step of the

sequence and number of finished toasts are presented to the user.

A flowchart of the process is presented in Fig. I.8.

Appendix I. Toast Making System – Specifications and Operation 88

Fig. I.8 Flowchart of the sequencing task operation

Bread Insertion Task
The system’s user interface is displayed in Fig. I.9.

Fig. I.9 The bread insertion task user interface

1

2 3 4

5

6
7

Appendix I. Toast Making System – Specifications and Operation 89

The setup (Fig. I.6) includes a table on which the obstacles (wooden cubes) and the toaster are

located. The bread-slice is preliminary located on the corner of the table, to be taken by the robot

during operation. The task is performed with the following steps:

1) The robot grasps the bread-slice and moves to the starting location.

2) A snapshot of the environment is taken using a simple USB camera (displayed to the user in

window 2 in Fig. I.9).

3) An image proceccing algorithm (running in MATLAB) is used locate the objects (robot’s

gripper, obstacls and toaster) and build a simulated model of environment accordingly. The

objects are recognized using round markers in differnet colors (displayed in window 3). The

simulated environment is a 12 × 12 grid world (displayed in windows 4 and 5).

4) A MATLAB simulation applying the CCRL algorithm (based on Q(λ)) is employed to learn the

optimal path from the starting state to the goal state in the simulated world. During the learning

process, the agent traversing the simulaetd environment and the Q table are displayed (Fig I.10).

When required, user interaction messages are prompted: when the agent senses that its

performance does not improve fast enough, a request for advice is prompted. The human advisor

is then required to guide the agent using the user interface shown in Fig I.11. If the agent

concludes the advice given is not beneficial, it switches to fully autonomous learning, and

notifies the advisor. The resulting Q table is displayed to the user in window 6.

5) The robot is operated according to the generated path. Image processing is used to identify the

location of the robot and syncrozine the location in the simulated environment to the location in

the real world (displayed in windows 3 and 4).

6) After arriving to the desired location above the toaster, the bread is lowered and the gripper is

opened to release it into the toaster.

The buttons for operating the various steps are located in window 1. Furthermore, the system allows

manual control over the robot’s movements and gripper’s status (open / close) using the interface

displayed in window 7.

A flowchart of the process is presented in Fig. I.12.

.

Appendix I. Toast Making System – Specifications and Operation 90

Fig. I.10 Simulated learning environment

(a) Guidance request (b) Autonomous learning notice

Fig. I.11 User interaction messages

Appendix I. Toast Making System – Specifications and Operation 91

Preliminary snapshot

CCRL learning
algorithm generates

path

Robot performs step

Identify robot’s
location

Reached
goal state?

Task executed

YES

NO

Lower bread slice into
toaster

Fig. I.12 Flowchart of the bread insertion task operation

Appendix II. Statistical Analysis 92

Appendix II. Statistical Analysis1

For the analysis of the results for both the sequencing task of the toast making system (Section

7.7) and the simulated path planning task (Section 9.9) there is a necessity to compare the means

of three groups - SRL, MC and random search for the sequencing task, and CCRL, IA and a

combined method for the path planning task.

The comparisons are performed using one-way ANOVA (analysis of variance) and Tukey’s HSD

test. The ANOVA analysis employs an F-test to determine whether there is a significant difference

between two or more of the means. Tukey’s HSD is a post hoc multiple comparisons test, performed

after the F-test determines that the means aren’t equal. The HSD test separates and ranks the groups

demanding 95% confidence level (α = 0.05) for the entire comparison.

Fig. II.1 shows an example for the results of the tests for the deterministic 3-toasts sequencing

problem (time set I, 30 episode sessions).

ANOVA

Percentage

2938.867 2 1469.433 93.794 .000
423.000 27 15.667

3361.867 29

Between Groups
Within Groups
Total

Sum of
Squares df Mean Square F Sig.

Percentage

10 49.9000
10 68.8000
10 72.5000

1.000 .111

Method
MC
Random
SRL
Sig.

Tukey HSDa
N 1 2

Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
Uses Harmonic Mean Sample Size = 10.000.a.

Fig. II.1 ANOVA and Tukey’s HSD test results

The null hypothesis of the ANOVA F-test is that the means are equal. The P-value of the test is 0

(“Sig.” column), meaning that the null hypothesis is rejected, and that there is a significant difference

between the means. Tukey’s HSD test separates the means into two separate groups: SRL and the

random search in one group, and MC on the other. Both SRL and the random search achieved

1 All the statistical tests presented here are performed using SPSS 15.0 software.

Appendix II. Statistical Analysis 93

significantly better success percentages than the MC method, but there is no significant different

between them.

The ANOVA’s F-test has 3 assumptions: (i) Independence of the groups, (ii) Normality of the

distributions and (iii) Equal variances.

The independence of the groups results from the design of the experiments. The Normality of the

distributions is validated using one-way Kolmogorov-Smirnov (K-S) test. Fig II.2 shows the test’s

result for the SRL group of the above example.

One-Sample Kolmogorov-Smirnov Test

10
72.5000
3.86580

.217

.151
-.217
.687
.732

N
Mean
Std. Deviation

Normal Parametersa,b

Absolute
Positive
Negative

Most Extreme
Differences

Kolmogorov-Smirnov Z
Asymp. Sig. (2-tailed)

Percentage

Test distribution is Normal.a.

Calculated from data.b.

Fig. II.2 Kolmogorov-Smirnov test results

The test’s null hypothesis is that the sample distribution is Normal. The high P-value (0.732)

indicates that the null hypothesis is not rejected, meaning that the distribution is indeed Normal.

The equality of the groups’ variances in examined using Leven’s test for homogeneity of

variances. Fig II.3 shows the test’s result for the groups of the above example.

Test of Homogeneity of Variances

Percentage

.007 2 27 .993

Levene
Statistic df1 df2 Sig.

Fig. II.3 Leven’s test results

Leven’s test null hypothesis is that the variances are equal, and the high P-value (0.993) indicates

that the null hypothesis is not rejected, and that the variances are equal.

Appendix III. Task Sequencing for a Flexible Manufacturing System (FMS) 94

Appendix III. Task Sequencing for a Flexible Manufacturing System (FMS)

This appendix describes the application of the SRL algorithm to a second system, a flexible

manufacturing system performing machining operations, to further examine its performance.

Introduction
The CIM-NEGEV system in Ben-Gurion University [Berman, 2003] is a decentralized

manufacturing system composed of a central on-line data base, an Automated Storage and Retrieval

System (ASRS), a Flexible Manufacturing System (FMS), an assembly station, a quality control

station and a material handling system based on Automated Guided Vehicles (AGVs). Here we shall

focus only on the FMS station which performs machining operations. In this station a fixed-arm

robot transfers the material from location to location, executing such tasks as unloading raw material

from the AGVs, loading and unloading the various machine-tools, moving pallets from in-buffers to

out-buffers etc.

In conventional terms, the FMS presents an n job flow-shop problem with several types of jobs

(parts), deterministic and stochastic job arrival times, three machines, limited buffers, and a single

job transfer agent (robot). However, as explained in the Methodology chapter, the problem can also

be viewed as a much simpler job sequencing problem, in which the robot is the limited resource, and

the part transfer tasks are the “jobs” waiting in its queue, requiring a different “process time” (robot

transition time).

The SRL algorithm is applied here with the learning objective of finding task execution policies

(sequences) that will minimize the completion time of production of various manufacturing orders.

The performance of algorithm is compared to that of the currently employed FIFO policy.

Experimental Setup and Task Definition
The FMS (Figs. III.1, III.2) consists of three machines - one Mill (Emco VMC-100) and two

lathes (Emco Compact 5 CNC), a 5 degree-of-freedom fixed-arm robot (Intelitek ER-IX) situated on

a linear slide-base and a docking station for Automated Guided Vehicles (AGVs). Raw material

arrives to the docking station on pallets carried by an AGV. They are loaded to the machines by the

robot, processed by the machines, and finally taken by the robot back to the AGV in the docking

station as finished products, to be transferred to their next destination in the CIM system.

Each machine has an in-buffer and an out-buffer with a capacity of one pallet. The docking station

also has a capacity of one incoming pallet and one outgoing pallet (two spaces on the AGV itself).

System stations are listed in Table III.1. Another feature of the system is that after milling, there is a

Appendix III. Task Sequencing for a Flexible Manufacturing System (FMS) 95

necessity to vacuum the mill area, in order to allow proper loading of the next part to be processed.

The vacuuming is done using a designated vacuum cleaner operated by the robot.

Fig. III.1 Experimental setup - FMS layout and general scheme

Fig. III.2 Experimental setup – Lathes, mill and robot

The FMS produces four kinds of products: “Sign”, “Hole-Axis”, “Box” and “Rook”. In this work

we consider the manufacturing of only two of the products (Fig. III.3): Sign, manufactured from a

Perspex box by a milling process, and Rook, manufactured from a brass cylinder by a turning

process. The processing times are 605 seconds for the Sign and 185 seconds for the Rook. The robot

transition times are specified in Table III.2.

A general process flow for a part in the system: pallet with raw material arrives to the docking

station on the AGV; the pallet is transferred by the robot to the machine in-buffer; the raw material is

loaded to the machine by the robot; the pallet is transferred from the in-buffer to the out-buffer; after

the machine finished processing the part is unloaded by the robot and placed back on the pallet in the

out-buffer; the pallet carrying the finished part is transferred by the robot to the docking station

departure point.

Station
Manager

Linear
 Slide-base

Two
Lathe
Machines

Milling
Machine

AGV
Docking
Station

Buffers

Articulated Robot

Appendix III. Task Sequencing for a Flexible Manufacturing System (FMS) 96

Fig. III.3 FMS products - Sign (1-raw material, 2-processed); Rook (3-raw material, 4-processed)

The FMS receives orders for the manufacturing of a certain product mix. The raw materials for

the products of each manufacturing order arrive in a known order and with certain inter-arrival times.

The process flow of each part is decomposed to several tasks, such as: pallet transfer from docking

station to machine in-buffer, material loading to machine, pallet transfer from in-buffer to out-buffer,

unloading part from machine, etc. Currently, these tasks are executed by the robot according to a task

queue managed by a first-in-first-out (FIFO) policy. Each time the robot finishes a task related to a

certain part, the next task of the part’s process flow is inserted to the queue, and the robot is assigned

a new task from the head of the queue. The FIFO policy assures that simultaneous production of

several parts will be possible without collisions in robot action requests, but it is not directly

concerned with minimizing makespan. The SRL algorithm is used here with the objective of finding

task execution policies (sequences) that will minimize the makespan of production of various

manufacturing orders.

Table III.1 System stations

No. Station
1 Incoming raw material buffer
2 Mill in-buffer
3 Mill (machine)
4 Mill out-buffer
5 Lathe I in-buffer
6 Lathe I (machine)
7 Lathe I out-buffer
8 Lathe II in-buffer
9 Lathe II (machine)

10 Lathe II out-buffer
11 Outgoing finished products buffer

12

34

Appendix III. Task Sequencing for a Flexible Manufacturing System (FMS) 97

Table III.2 Robot transition times (Sec.)

 To Station

 1 2 3 4 5 6 7 8 9 10 11

1 X 65 15 45 45 45 25 25 25 40 X

2 25 X 20 45 45 45 25 25 25 40 X

3 23 45 X 45 45 45 25 25 25 40 40

4 45 45 45 X 15 50 50 50 50 60 X

5 45 45 45 25 X 20 50 50 50 60 X

6 45 45 45 25 45 X 50 50 50 60 60

7 25 25 25 50 50 50 X 50 15 30 X

8 25 25 25 50 50 50 25 X 25 30 X

9 25 25 25 50 50 50 25 25 X 30 30

10 40 X X 60 X X 30 X X X X

Fr
om

 S
ta

tio
n

11 40 40 40 60 60 60 30 30 30 20 X

* Transition combinations marked with X are inapplicable.

Implementation of the SRL Algorithm
Unlike the current FIFO policy, which assigns priorities to the movement tasks on-line, the SRL

algorithm is implemented off-line. When a manufacturing order is issued, the algorithm takes it as an

input, along with robot transition times and machine processing times, and generates a sequence of

robot transitions (fitting the desired task execution sequence) as an output1. This way, the algorithm

tailors a unique policy for each order.

To solve the sequencing problem using the SRL algorithm, it is formulated as a RL problem. The

system’s overall state at time step t, denoted as Sst ∈ , is defined by the current state of the buffers

(unoccupied, occupied with pallet and part, occupied with pallet only) and the machines (free, in

process, idle with part after process). An action at step t is denoted as ()t ta A s∈ , where A is the

action space of all possible actions (the action space is state dependent). The execution of an action

constitutes the execution of a certain task that changes the system’s state (e.g., loading a part to the

mill, changing the state of the in-buffer from “occupied with pallet and part” to “occupied with pallet

only”, and the state of the Mill from “free” to “in process”).

1 Each system task, such as “pallet transfer from docking station to machine in-buffer”, “material loading to machine”
etc., can be translated to the appropriate robot movements.

Appendix III. Task Sequencing for a Flexible Manufacturing System (FMS) 98

A solution is a specific sequence of robot transitions (part and pallet transfers and moving empty

from station to station), that results in the production of the manufacturing order. The learning task,

as mentioned, is to find the sequence that would achieve the completion of a manufacturing order in

minimum time.

A learning episode starts from the state where all the buffers and machines are free and the system

waits for the arrival of the first part, and ends when the last part of the manufacturing order has

arrived to the docking station as a finished product. A step is the transition from one system state to

another generated by execution of a task.

Note that in this case, as in the toasting system’s case, the state is defined as the system’s status,

and the agent’s actions shift the system from state to state. Hence, not the location of the agent

(robot) itself counts, but the influence of its actions on the system’s state.

Analysis
Analysis is performed using event-based MATLAB simulations. Three modules are constructed:

(i) a module simulating the operation of the FMS with the current FIFO dispatching policy, (ii) a

module implementing the SRL algorithm to produce robot transition sequences and (iii) a module

simulating the FMS operation using those learned sequences.

The learning algorithm’s performance is evaluated by comparison to the current FIFO policy. The

test case is to schedule orders of three sizes: 3, 5 and 8 parts, containing a mix of the two products -

Sign and Rook. For the 3-part orders, all of the eight possible product combinations are examined

(e.g. Rook-Rook-Rook; Rook-Rook-Sign; Rook-Sign-Rook; etc.). For the 5 and 8-part orders, 10

random product mixes are examined. For each order size, three distributions of part inter-arrival

times are examined, with two mean values for each distribution: Constant with t = 100 / 200 seconds,

Normal with a mean µ = 100 / 200 and standard deviation σ = 10 / 20 (10% of the mean), and

Exponential with a rate parameter λ = 100 / 200 seconds.

For the FIFO policy, one simulation run is performed for each product mix to find the makespan

in the Constant cases (since these cases are deterministic all runs would yield the same result, hence

one is sufficient), and 50 simulation replications are performed for each product mix, to find an

average makespan in the stochastic cases (Normal and Exponential inter-arrival times).

For the SRL algorithm, learning is done based on the deterministic (Constant) cases, by

performing one learning session containing 200 learning episodes for each product mix. The

resulting sequence (policy) is then used for operation in the stochastic cases, and the average

makespan is calculated by performing 50 simulation replications for each product mix.

Appendix III. Task Sequencing for a Flexible Manufacturing System (FMS) 99

In terms of equation (5.1), a value of β = 1 is used for the 3-part orders and β = 0.5 for 5 and 8-

part orders. A type B reward factor is used. These setting were selected since they produced the best

performance in preliminary experiments. In all experiments the RL parameters1 are set as follows: α

= 0.05, γ = 0.9. These parameters were selected empirically.

Performance is evaluated using the following measures:

1) Makespan - Average total completion time of manufacturing orders.

2) IP (improvement percentage) - Percentage of improvement achieved by the SRL algorithm (in

comparison to the FIFO policy).

Results and Discussion
Fig. III.4 shows the makespans achieved by the FIFO policy and by the policies generated by the

SRL algorithm for three example manufacturing orders. For all three examples the algorithm

achieves shorter (better) makespans. Furthermore, it can be seen that the makespans are not equal,

and depend on the product mix and on the order of part arrival.

0

500

1000

1500

2000

2500

FIFO SRL FIFO SRL FIFO SRL

R,S,R S,R,R S,S,R

Order; Policy

M
ak

es
pa

n
(s

ec
.)

Fig. III.4 Makespans for various 3-part orders. R – Rook. S – Sign.
Raw materials for the parts arrive in order from left to right

Comparison between the results of the FIFO policy and the results of the policy generated by the

SRL algorithm was performed using a paired t-test for the mean makespans (examining the

significance of the difference between the means). Fig. III.5 displays the average differences in

1 The RL parameters, α (learning rate) and γ (discount factor), are described in Section 5.2.

Appendix III. Task Sequencing for a Flexible Manufacturing System (FMS) 100

makespans for 5-part orders, with various inter-arrival times. The black square marks the average,

while the gray line indicates a 95% confidence interval (calculated using the paired t-test).

0

100

200

300

400

500

600

700

Const.
100

Normal
100

Expo.
100

Const.
200

Normal
200

Expo.
200

Arrival rate, mean (sec.)

95
%

 c
on

fid
en

se
 in

te
rv

al
 o

f d
iff

er
en

ce

FI
FO

 -
SR

L
(s

ec
.)

Fig. III.5 Makespan differences – 5-part orders

The positive confidence intervals indicate that the algorithm’s makespans are significantly shorter

(better), and the higher the average difference is, the better the algorithm’s performs is in comparison

to the FIFO policy. With Constant and Normal inter-arrival times, the results are approximately the

same, and it can be seen that the makespan difference is higher when a mean of 200 seconds is set

for the inter-arrival time. With Exponential arrivals, the differences are approximately the same for

the 100 and 200 second cases. In average, the differences with a 200 second mean appear to be

higher than the differences with 100 seconds (not statistically significant).

The results for the 3-part orders are similar to the ones of the 5-part orders shown here, while for

the 8-part orders, the Exponential arrival results also show a higher difference with a 200 second

mean (as do the results for the Constant and Normal arrivals).

Fig. III.6 shows another view of the results - the average differences in makespan between the

FIFO policy and the policy generated by the SRL algorithm, for Normal inter-arrival times and

various order sizes. The average difference ranges from 211 seconds for 3-part orders with mean

inter-arrival time of 100 seconds, to 576 seconds for 8-part orders with a mean of 200 seconds.

Appendix III. Task Sequencing for a Flexible Manufacturing System (FMS) 101

0

100

200

300

400

500

600

700

800

3 parts
(100)

3 parts
(200)

5 parts
(100)

5 parts
(200)

8 parts
(100)

8 parts
(200)

Order size (mean inter-arrival time - sec.)

95
%

 c
on

fid
en

se
 in

te
rv

al
 o

f
di

ff
er

en
ce

 F
IF

O
 -

SR
L

(s
ec

.)

Fig. III.6 Makespan differences – Normal inter-arrival times

Two trends can be seen here. The first is that the difference is larger when the mean inter-arrival

time is 200, for all of the orders sizes (especially for 3 and 5-part orders). When the mean is set to be

200 seconds, the standard deviation (which is set to be 10% of the mean) is also higher, introducing

more variance to the process. The results insinuate that the SRL algorithm may deal with increased

variance better than the FIFO policy.

The second trend is that the difference appears to grow larger as the number of parts in an order

increases (similar results appear for Constant and Exponential inter-arrival times). This can be

explained by the fact that when the order is larger and the makespan is longer, there is more room for

improvement. Furthermore, for a given percentage of improvement gained by the algorithm, the

longer the makespan is, the greater the relative difference between the results would be (e.g., 10%

improvement for 1,000 second makespan would yield 100 second difference, while for 2,000 second

makespan it would yield 200 second difference).

Thus, in order to properly asses the performance of the SRL algorithm, and have the ability to

infer from the examined product mixes to others, a better measure would be the percentage of

improvement achieved by the algorithm, calculated as described in (III.1).

 =

T T
f a

T
f

IP
−

 (III.1)

Where IP is the improvement percentage, Tf is the makespan time achieved by the FIFO policy, and

Ta is the makespan time achieved by the policy generated by the SRL algorithm.

Figs. III.7 - III.9 display the average percentage of improvement achieved by the use of the SRL

algorithm for Normal, Constant and Exponential inter-arrival times. As can be seen, the algorithm

Appendix III. Task Sequencing for a Flexible Manufacturing System (FMS) 102

achieves 11-17% improvement for the various combinations of orders sizes and mean inter-arrival

times.

0%

5%

10%

15%

20%

25%

3 parts
(100)

3 parts
(200)

5 parts
(100)

5 parts
(200)

8 parts
(100)

8 parts
(200)

Order size (mean inter-arrival time - sec.)

95
%

 c
on

fid
en

se
 in

te
rv

al
 o

f
im

pr
ov

em
en

t

Fig. III.7 Improvement percentage - Normal inter-arrival times

0%

5%

10%

15%

20%

25%

3 parts
(100)

3 parts
 (200)

5 parts
 (100)

5 parts
 (200)

8 parts
 (100)

8 parts
 (200)

Order size (mean inter-arrival time - sec.)

95
%

 c
on

fid
en

se
 in

te
rv

al
 o

f
im

pr
ov

em
en

t

Fig. III.8 Improvement percentage - Constant inter-arrival times

Appendix III. Task Sequencing for a Flexible Manufacturing System (FMS) 103

0%

5%

10%

15%

20%

25%

3 parts
 (100)

3 parts
 (200)

5 parts
 (100)

5 parts
 (200)

8 parts
 (100)

8 parts
 (200)

Order size (mean inter-arrival time - seconds)

95
%

 c
on

fid
en

se
 in

te
rv

al
 o

f i
m

pr
ov

em
en

t

Fig. III.9 Improvement percentage - Exponential inter-arrival times

As seen also in the previous charts, for the 3 and 5-part orders with Normal inter-arrival times, the

improvement appears to be greater when the mean is 200 seconds (though there is no statistical

significance). For the 8-part orders, the improvement is 11% for both 100 and 200 seconds. Similar

results appear for Constant inter-arrival times, while for Exponential inter-arrival times the results

are generally the same for both 100 and 200 seconds.

Summary
The SRL algorithm is applied to the problem of sequencing tasks executed by a single transfer

agent in a flow-shop system, with the objective of achieving minimal completion times of

manufacturing orders. Analysis indicates that the SRL algorithm outperforms the FIFO policy

currently employed for various combinations of order sizes and part inter-arrival times (deterministic

and stochastic), achieving up to 17% improvement in performance. This is achieved by tailoring a

unique sequence for every manufacturing order according to its specific characteristics.

Appendix IV. Toast Making System – Additional Results 104

Appendix IV. Toast Making System – Additional Results

Gantt Chart
Fig. IV.1 presents a Gantt chart of the solution achieved for the 3-toasts deterministic problem

with case II times.

Toast transferred
Toast in process station
Toast in buffer station
Robot transferring toast
Robot moving empty
Robot Idle

Toast 1 Transferred Toaster - Process
Toast 2 Transferred Toaster Buffer
Toast 3
Robot 2->1 1->3 3->1 1->2 2->3 Idle
Time (sec) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Toast 1 Transferred Butter Applier - Process Idle
Toast 2 Toaster Buffer Transferred Toaster - Process
Toast 3
Robot 3->5 5->2 2->3 3->5
Time (sec) 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

Toast 1 Transferred Finished
Toast 2 Process Transferred Butter Applier - Process
Toast 3 Transferred
Robot 5->6 6->3 3->5 5->1 1->3
Time (sec) 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

Toast 1
Toast 2 Process Idle Transferred Finished
Toast 3 Toaster - Process Transferred
Robot 3->5 5->6 6->3 3->5 Idle
Time (sec) 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

Toast 1
Toast 2
Toast 3 Butter Applier - Process Transferred Finished
Robot Idle 5->6
Time (sec) 610 620 630 640 650 660 670 680 690 700

Fig IV.1 Gantt chart of the toasting process

Appendix IV. Toast Making System – Additional Results 105

Proof of Optimality
The solution’s optimality is proven using “Branch and Bound”, a general search method for

finding optimal solutions of various problems. It is basically an enumeration approach in a fashion

that prunes the non-promising search space. System states are represented by nodes, while each node

is branched to other nodes, representing the possible states following the state of the root node. Each

node receives a value indicating the time passing until reaching the state that node represents. If the

value of a node exceeds the value of an identical node, or a node representing a more advanced state,

then the node is bounded, and that part of the state-space is pruned. This way there is a large part of

the search space which is removed from consideration, allowing a faster and feasible search. Fig.

IV.2 presents an illustration of the “tree” produced in the search process for the 3-toasts deterministic

problem with case II times..

Fig IV.2 Branch and Bound solution tree

The optimal solution reached by the Branch and Bound method is 700 seconds, matching the

solution produced by the algorithm, and proving it is indeed optimal. Fig. IV.3 shows a small part of

the search space, ending with the optimal solution.

Fig. IV.3 Branch and Bound example

Appendix IV. Toast Making System – Additional Results 106

β Analysis
Table IV.1 summarize the results of the analysis of the influence of β on the performance, for the

3-toasts deterministic problem. As described in Section 7.7.1, when using a relatively small β (β = 1)

the algorithm reaches the optimal solution with the highest percentage of success (SP), yet with the

cost of a high number of episodes required for convergence (CE). As β increases, the percentage of

success in reaching the optimal solution decreases, but fewer episodes are required to achieve

convergence.

Table 11IV.1 Summary of β analysis

β

Case Measure
1 1.2 1.5 1.7

SP (Success Percentage) 99% 98% 95% 94% I
CE (Convergence Episode) 155.7 126.3 83.8 69.1
SP (Success Percentage) 99% 96% 88% 87% II
CE (Convergence Episode) 154.7 123.8 85.2 72.9
SP (Success Percentage) 98% 96% 92% 91% III
CE (Convergence Episode) 153.7 126.7 82.4 73.1

Reward Factor Analysis
Table IV.2 summarize the results of the reward factor analysis. As described in Section 7.7.1, for

all instances the use of a type A reward factor achieves fast learning and good results in a low

number of episodes. When using the type B reward factor, the algorithm requires more episodes in

order to achieve good results, but ultimately it outperforms the type A results.

Table IV.2 Summary of reward factor analysis

Deterministic 3-toast problem

Session length (number of episodes)
Case

Reward

Type 15 20 25 30 35 40 45 50 55 60
A 40% 59% 75% 83% 86% 91% 93% 93% 96% 96% I
B 29% 44% 62% 73% 84% 91% 95% 97% 99% 100%
A 42% 61% 73% 83% 88% 91% 92% 94% 95% 96% II
B 32% 43% 59% 77% 86% 91% 94% 97% 100% 100%
A 38% 56% 71% 80% 85% 90% 92% 93% 94% 95% III
B 29% 40% 57% 73% 83% 92% 95% 97% 99% 100%

Appendix IV. Toast Making System – Additional Results 107

Deterministic 4-toast problem

Session length (number of episodes)
Case

Reward

Type 15 20 25 30 35 40 45 50
A 21% 41% 53% 64% 67% 74% 79% 77% I
B 12% 26% 39% 65% 78% 89% 95% 97%
A 23% 33% 48% 52% 61% 70% 71% 78% II
B 8% 23% 39% 64% 79% 93% 96% 98%
A 18% 34% 46% 50% 59% 65% 74% 74% III
B 8% 19% 33% 51% 71% 90% 93% 96%

Stochastic 3-toast problem

Session length (number of episodes)
Case

Reward

Type 15 20 25 30 35 40 45 50 55 60
A 544.22 530.26 522.48 517.13 513.66 511.95 510.48 509.37 508.65 508.58 I
B 551.15 541.89 531.44 523.29 518.18 515.92 512.17 509.87 508.49 507.26
A 746.75 727.28 713.34 705.95 701.43 697.79 696.18 694.27 693.67 692.56 II
B 760.31 745.26 730.44 714.94 706.93 701.6 698.7 695.7 693.1 690.61
A 1041.8 1030.2 1021.9 1017.3 1012.9 1009.9 1005.5 1002.8 999.95 999.26 III
B 1074.1 1055.7 1035.1 1016.2 1006.1 999.36 994.72 990.23 986.86 983.97

Stochastic 4-toast problem

Session length (number of episodes)
Case

Reward

Type 15 20 25 30 35 40 45 50
A 692.42 676.63 668.26 662.87 661.58 658.6 656.63 654.75 I
B 709.92 680.54 670.98 664.47 659.07 655.27 652.81 651.8
A 945.71 926.46 918.16 906.09 906.42 903.3 895.91 895.55 II
B 964.47 925.31 911.48 903.78 897.89 894.21 890.26 887.84
A 1369.1 1335.9 1317.6 1310.5 1301.7 1299.1 1295.3 1293.3 III
B 1390.4 1336.5 1309.9 1298.8 1290.1 1282.5 1278.6 1276.1

Appendix V. 3D Path Planning Task – Additional Results 108

Appendix V. 3D Path Planning Task – Additional Results

The following tables summarize the scores for the various methods and parameter combinations

examined.

Scores for the IA Method

World I, Full view

Advisor (τ) Ψ SP HS Score
0.1 67% 479.36 0.77
0.3 94% 154.92 0.96
0.7 98% 268.62 0.96
1 100% 707.11 0.90

Expert (0.01)

1.3 100% 1149.01 0.83
0.1 67% 595.43 0.75
0.3 83% 349.4 0.88
0.7 96% 215 0.96
1 99% 200.53 0.98

Moderately
expert (0.1)

1.3 49% 1098.84 0.58
0.1 65% 808.46 0.71
0.3 62% 1180 0.64
0.7 80% 829.83 0.78
1 88% 704.06 0.84

Limited skills
(0.3)

1.3 96% 747.87 0.87
0.1 62% 915.15 0.68
0.3 50% 2143.39 0.42
0.7 61% 2642.53 0.39
1 57% 3214.58 0.28

Novice (1.0)

1.3 66% 3250.7 0.33
0.1 65% 699.6 0.73
0.3 70% 956.9 0.72
0.7 84% 988.9 0.77
1 86% 1206.57 0.75

All levels
(average)

1.3 78% 1561.6 0.65

Appendix V. 3D Path Planning Task – Additional Results 109

World I, Limited view

Advisor (τ) Ψ SP HS Score
0.1 65% 92.88 0.71
0.3 78% 98.9 0.85
0.7 78% 101.18 0.85
1 78% 105.45 0.85

Expert (0.01)

1.3 82% 153.95 0.86
0.1 64% 106.77 0.69
0.3 75% 127.75 0.80
0.7 75% 131.78 0.79
1 76% 134.9 0.80

Moderately
expert (0.1)

1.3 80% 171.91 0.82
0.1 60% 136.23 0.62
0.3 59% 240.05 0.51
0.7 65% 265.71 0.57
1 67% 277.55 0.58

Limited skills
(0.3)

1.3 68% 317.51 0.57
0.1 63% 149.554 0.63
0.3 48% 329.76 0.32
0.7 53% 440.72 0.28
1 50% 473.8 0.22

Novice (1.0)

1.3 53% 513.48 0.23
0.1 63% 121.36 0.66
0.3 65% 199.12 0.62
0.7 68% 234.85 0.63
1 68% 247.93 0.61

All levels
(average)

1.3 71% 289.21 0.62

Appendix V. 3D Path Planning Task – Additional Results 110

World II, Full view

Advisor (τ) Ψ SP HS Score
0.1 43% 483.95 0.69
0.3 59% 553.8 0.76
0.7 98% 522.11 0.96
1 100% 954.99 0.94

Expert (0.01)

1.3 100% 1611.92 0.89
0.1 39% 563.84 0.66
0.3 63% 959.62 0.75
0.7 87% 608.11 0.90
1 61% 1097.8 0.73

Moderately
expert (0.1)

1.3 27% 2260.21 0.48
0.1 40% 670.91 0.66
0.3 50% 2104.91 0.61
0.7 60% 2063.29 0.66
1 65% 2216.56 0.67

Limited skills
(0.3)

1.3 64% 3606.93 0.57
0.1 40% 738.4 0.65
0.3 51% 3047.25 0.55
0.7 37% 5228.54 0.32
1 30% 6387.81 0.21

Novice (1.0)

1.3 38% 7205.69 0.19
0.1 41% 614.28 0.67
0.3 56% 1666.40 0.67
0.7 70% 2105.51 0.71
1 64% 2664.29 0.64

All levels
(average)

1.3 57% 3671.19 0.54

Appendix V. 3D Path Planning Task – Additional Results 111

World II, Limited view

Advisor (τ) Ψ SP HS Score
0.1 48% 59.97 0.78
0.3 44% 109.55 0.70
0.7 50% 112.23 0.76
1 62% 131.11 0.84

Expert (0.01)

1.3 67% 369.08 0.68
0.1 41% 66.128 0.72
0.3 41% 144.95 0.65
0.7 37% 154.76 0.60
1 50% 172.57 0.70

Moderately
expert (0.1)

1.3 27% 329.54 0.36
0.1 34% 78.34 0.64
0.3 35% 227.9 0.52
0.7 33% 293.09 0.44
1 19% 338.08 0.27

Limited skills
(0.3)

1.3 12% 412.57 0.15
0.1 34% 86.52 0.64
0.3 31% 295.35 0.43
0.7 21% 438.13 0.20
1 13% 546.05 0.04

Novice (1.0)

1.3 11% 565.06 0.00
0.1 39% 72.74 0.69
0.3 38% 194.44 0.57
0.7 35% 249.55 0.50
1 36% 296.95 0.46

All levels
(average)

1.3 29% 419.06 0.30

Appendix V. 3D Path Planning Task – Additional Results 112

Scores for the CCRL Algorithm

World I, Full view

Advisor (τ) Λ Ω SP HS Score

0.05 1 99% 292.2 0.96
0.3 1 98% 311.64 0.95
0.5 1 98% 309.68 0.96
0.3 3 97% 317.81 0.95

Expert (0.01)

0.9 1 82% 142.42 0.90
0.05 1 61% 768.62 0.70
0.3 1 67% 825.19 0.72
0.5 1 52% 770.25 0.65
0.3 3 65% 911.06 0.69

Moderately
expert (0.1)

0.9 1 27% 210.03 0.61
0.05 1 2% 1476.89 0.28
0.3 1 4% 959.38 0.38
0.5 1 7% 756.97 0.43
0.3 3 1% 1573.2 0.26

Limited skills
(0.3)

0.9 1 11% 593.59 0.47
0.05 1 49% 280.11 0.71
0.3 1 50% 285.36 0.72
0.5 1 55% 278.12 0.74
0.3 3 44% 562.26 0.64

Novice (1.0)

0.9 1 55% 271.42 0.74
0.05 1 53% 704.46 0.66
0.3 1 55% 595.39 0.69
0.5 1 53% 528.76 0.69
0.3 3 52% 841.08 0.64

All levels
(average)

0.9 1 44% 304.37 0.68

Appendix V. 3D Path Planning Task – Additional Results 113

World I, Limited view

Advisor (τ) Λ Ω SP HS Score

0.05 5 77% 88.03 0.85
0.05 3 72% 50.31 0.83
0.3 5 73% 66.58 0.82

0.05 1 63% 20.52 0.74
0.3 1 69% 19.12 0.82

0.15 1 67% 20.01 0.79
0.15 3 69% 46.65 0.79
0.05 7 80% 135.35 0.85
0.3 3 71% 40.8 0.82

Expert (0.01)

0.01 1 61% 20.48 0.73
0.05 5 66% 112.49 0.70
0.05 3 63% 62.83 0.71
0.3 5 66% 86.45 0.72

0.05 1 62% 26.64 0.73
0.3 1 59% 24.71 0.69

0.15 1 64% 26.93 0.76
0.15 3 64% 58.27 0.72
0.05 7 72% 178.87 0.72
0.3 3 63% 52.93 0.72

Moderately
expert (0.1)

0.01 1 61% 30.47 0.71
0.05 5 48% 136.83 0.48
0.05 3 47% 90.4 0.50
0.3 5 50% 122.98 0.51

0.05 1 59% 39.92 0.69
0.3 1 58% 37.98 0.67

0.15 1 54% 36.94 0.63
0.15 3 51% 89.15 0.55
0.05 7 42% 205.6 0.34
0.3 3 52% 80.14 0.57

Limited skills
(0.3)

0.01 1 53% 41.41 0.61
0.05 5 59% 92.22 0.64
0.05 3 57% 57.32 0.65
0.3 5 57% 86.11 0.62

0.05 1 62% 29.17 0.73
0.3 1 62% 29.63 0.72

0.15 1 58% 27.97 0.68
0.15 3 58% 57.58 0.65
0.05 7 52% 125.19 0.53
0.3 3 58% 57.81 0.66

Novice (1.0)

0.01 1 63% 28.85 0.74
0.05 5 63% 107.39 0.67
0.05 3 60% 65.22 0.67
0.3 5 61% 90.53 0.67

0.05 1 62% 29.06 0.72
0.3 1 62% 27.86 0.73

0.15 1 61% 27.96 0.71
0.15 3 60% 62.91 0.68
0.05 7 61% 161.25 0.61
0.3 3 61% 57.92 0.69

All levels
(average)

0.01 1 60% 30.30 0.70

Appendix V. 3D Path Planning Task – Additional Results 114

World II, Full view

Advisor (τ) Λ Ω SP HS Score

0.05 1 94% 507 0.94
0.3 1 93% 505.82 0.94

0.05 3 96% 522.97 0.95
0.3 3 94% 531.41 0.94

0.05 5 95% 541.72 0.94
0.05 7 94% 541.61 0.94
0.5 1 93% 510.95 0.94

Expert (0.01)

0.01 1 96% 556.94 0.95
0.05 1 36% 1999.93 0.55
0.3 1 36% 2541.8 0.51

0.05 3 33% 2065.69 0.52
0.3 3 31% 2555.03 0.48

0.05 5 28% 2110.39 0.50
0.05 7 24% 2173.08 0.47
0.5 1 47% 1852.72 0.61

Moderately
expert (0.1)

0.01 1 36% 1826.38 0.56
0.05 1 9% 1591.23 0.44
0.3 1 14% 950.89 0.51

0.05 3 5% 2901.74 0.33
0.3 3 8% 1578.94 0.44

0.05 5 2% 4012.02 0.23
0.05 7 0% 5016.02 0.15
0.5 1 20% 736.25 0.56

Limited skills
(0.3)

0.01 1 11% 1635.27 0.44
0.05 1 33% 185.16 0.66
0.3 1 37% 177.12 0.68

0.05 3 33% 362.47 0.65
0.3 3 27% 348.6 0.62

0.05 5 32% 537.45 0.63
0.05 7 28% 705.84 0.60
0.5 1 37% 179.8 0.68

Novice (1.0)

0.01 1 34% 176.73 0.67
0.05 1 43% 877.84 0.65
0.3 1 45% 2063.25 0.66

0.05 3 42% 3778.91 0.61
0.3 3 40% 1400.97 0.62

0.05 5 39% 1565.77 0.58
0.05 7 37% 1308.11 0.54
0.5 1 49% 1348.03 0.70

All levels
(average)

0.01 1 44% 1192.07 0.65

Appendix V. 3D Path Planning Task – Additional Results 115

World II, Limited view

Advisor (τ) Λ Ω SP HS Score

0.01 1 38% 10.03 0.74
0.05 1 36% 9.57 0.72
0.3 1 39% 8.57 0.75
0.5 1 41% 9.96 0.77

0.01 3 40% 18.84 0.75
0.05 3 37% 18.96 0.73
0.3 3 39% 19.09 0.74

0.05 5 43% 30.55 0.77

Expert (0.01)

0.05 7 51% 43.16 0.83
0.01 1 37% 11.98 0.73
0.05 1 37% 12.43 0.73
0.3 1 37% 11.54 0.73
0.5 1 38% 12.76 0.73

0.01 3 35% 28.67 0.70
0.05 3 38% 25.86 0.72
0.3 3 41% 26.59 0.75

0.05 5 42% 40.83 0.75

Moderately
expert (0.1)

0.05 7 41% 62.23 0.72
0.01 1 32% 24.53 0.68
0.05 1 32% 25.28 0.68
0.3 1 35% 22.25 0.70
0.5 1 33% 23.45 0.68

0.01 3 34% 49.39 0.67
0.05 3 34% 48.31 0.67
0.3 3 31% 45.6 0.64

0.05 5 30% 74.92 0.61

Limited skills
(0.3)

0.05 7 30% 103.75 0.58
0.01 1 35% 17.1 0.70
0.05 1 36% 14.94 0.71
0.3 1 32% 16.23 0.68
0.5 1 34% 15.41 0.70

0.01 3 39% 33.06 0.72
0.05 3 32% 31.38 0.67
0.3 3 33% 33.53 0.68

0.05 5 35% 49.23 0.68

Novice (1.0)

0.05 7 38% 65.76 0.69
0.01 1 35% 15.91 0.71
0.05 1 35% 15.56 0.71
0.3 1 36% 14.65 0.71
0.5 1 36% 15.40 0.72

0.01 3 37% 32.49 0.71
0.05 3 35% 31.13 0.70
0.3 3 36% 31.20 0.70

0.05 5 38% 48.88 0.70

All levels
(average)

0.05 7 40% 68.73 0.71

Appendix V. 3D Path Planning Task – Additional Results 116

Scores for the Combined Method (CCRL and IA)

World I, Full view

Advisor (τ) Λ Ω Ψ SP HS Score

0.05 1 1 99% 91.59 0.99
0.05 1 0.3 94% 120.51 0.96
0.3 1 1 100% 96.83 1.00

0.05 3 0.3 93% 123.49 0.96
Expert (0.01)

0.05 1 0.7 97% 107.67 0.98
0.05 1 1 97% 147.46 0.98
0.05 1 0.3 78% 237.25 0.87
0.3 1 1 98% 156.19 0.98

0.05 3 0.3 85% 247.9 0.90

Moderately
expert (0.1)

0.05 1 0.7 94% 188.43 0.95
0.05 1 1 80% 623.69 0.81
0.05 1 0.3 53% 428.63 0.71
0.3 1 1 75% 634.81 0.79

0.05 3 0.3 53% 641.5 0.68

Limited skills
(0.3)

0.05 1 0.7 62% 629.89 0.72
0.05 1 1 54% 300.78 0.74
0.05 1 0.3 61% 308.83 0.77
0.3 1 1 53% 296.16 0.73

0.05 3 0.3 54% 585.6 0.69
Novice (1.0)

0.05 1 0.7 55% 496.18 0.71
0.05 1 1 82% 290.88 0.88
0.05 1 0.3 71% 273.81 0.83
0.3 1 1 81% 296.00 0.87

0.05 3 0.3 71% 399.62 0.81

All levels
(average)

0.05 1 0.7 77% 355.54 0.84

Appendix V. 3D Path Planning Task – Additional Results 117

World I, Limited view

Advisor (τ) Λ Ω Ψ SP HS Score

0.05 1 0.3 66% 12.96 0.79
0.05 3 0.3 67% 26.51 0.79
0.05 5 0.3 68% 39.53 0.79
0.05 7 0.3 73% 51.47 0.84
0.05 1 0.7 62% 12.65 0.73
0.05 1 1 63% 14.01 0.75
0.05 5 1 69% 43.01 0.80
0.3 3 1 66% 26.91 0.77
0.3 3 0.3 66% 24.13 0.77

Expert (0.01)

0.5 1 0.3 63% 12.45 0.75
0.05 1 0.3 67% 15.91 0.80
0.05 3 0.3 62% 29.32 0.73
0.05 5 0.3 64% 45.11 0.73
0.05 7 0.3 69% 59.44 0.79
0.05 1 0.7 61% 15.62 0.73
0.05 1 1 62% 18.57 0.74
0.05 5 1 68% 49.85 0.77
0.3 3 1 65% 31.85 0.76
0.3 3 0.3 62% 30.43 0.73

Moderately
expert (0.1)

0.5 1 0.3 63% 15.52 0.75
0.05 1 0.3 58% 20.45 0.68
0.05 3 0.3 59% 41.1 0.69
0.05 5 0.3 59% 60 0.66
0.05 7 0.3 60% 82.74 0.66
0.05 1 0.7 58% 23.64 0.69
0.05 1 1 58% 26.28 0.68
0.05 5 1 63% 75.49 0.70
0.3 3 1 57% 55.3 0.64
0.3 3 0.3 58% 41.09 0.67

Limited skills
(0.3)

0.5 1 0.3 60% 19.21 0.72
0.95 1 0.3 60% 20.18 0.71
0.95 3 0.3 58% 39.08 0.67
0.95 5 0.3 63% 57.17 0.71
0.95 7 0.3 59% 78.71 0.65
0.95 1 0.7 61% 22.12 0.72
0.95 1 1 60% 23.84 0.71
0.05 5 1 57% 77.1 0.63
0.3 3 1 60% 47.51 0.68
0.3 3 0.3 61% 38 0.71

Novice (1.0)

0.5 1 0.3 61% 18.89 0.73
0.05 1 0.3 63% 17.38 0.74
0.05 3 0.3 62% 34.00 0.72
0.05 5 0.3 63% 50.45 0.72
0.05 7 0.3 65% 68.09 0.73
0.05 1 0.7 61% 18.51 0.72
0.05 1 1 61% 20.68 0.72
0.05 5 1 64% 61.36 0.73
0.3 3 1 62% 40.39 0.71
0.3 3 0.3 62% 33.41 0.72

All levels
(average)

0.5 1 0.3 62% 16.52 0.74

Appendix V. 3D Path Planning Task – Additional Results 118

World II, Full view

Advisor (τ) Λ Ω Ψ SP HS Score

0.01 1 1 98% 185.48 0.98
0.05 1 0.3 43% 111.44 0.71
0.05 3 0.3 47% 215.05 0.73
0.05 1 0.7 91% 186.29 0.95
0.05 1 1 97% 179.73 0.98

Expert (0.01)

0.3 1 1 97% 195.1 0.98
0.01 1 1 91% 347.37 0.94
0.05 1 0.3 43% 125.78 0.71
0.05 3 0.3 45% 260.93 0.71
0.05 1 0.7 74% 370.66 0.85
0.05 1 1 90% 360.03 0.93

Moderately
expert (0.1)

0.3 1 1 90% 403 0.93
0.01 1 1 32% 1019.47 0.60
0.05 1 0.3 36% 150.42 0.68
0.05 3 0.3 34% 282.39 0.66
0.05 1 0.7 32% 610.96 0.62
0.05 1 1 33% 1056.98 0.60

Limited skills
(0.3)

0.3 1 1 29% 807.62 0.59
0.01 1 1 36% 184.96 0.67
0.05 1 0.3 37% 115.94 0.68
0.05 3 0.3 35% 229.8 0.67
0.05 1 0.7 34% 218.36 0.66
0.05 1 1 33% 176.92 0.66

Novice (1.0)

0.3 1 1 36% 166.23 0.67
0.01 1 1 64% 434.32 0.80
0.05 1 0.3 40% 125.895 0.70
0.05 3 0.3 41% 247.0425 0.69
0.05 1 0.7 58% 346.5675 0.77
0.05 1 1 63% 443.415 0.79

All levels
(average)

0.3 1 1 63% 392.9875 0.79

Appendix V. 3D Path Planning Task – Additional Results 119

World II, Limited view

Advisor (τ) Λ Ω Ψ SP HS Score

0.01 1 1 41% 7.59 0.77
0.05 1 0.3 38% 7.25 0.74
0.05 3 0.3 40% 14.51 0.75
0.05 1 0.7 39% 7.44 0.76
0.05 1 1 40% 8.56 0.76
0.05 5 1 44% 23.96 0.78
0.3 1 1 38% 8.09 0.74

Expert (0.01)

0.5 1 0.3 39% 7.14 0.75
0.01 1 1 39% 11.67 0.75
0.05 1 0.3 38% 8.69 0.74
0.05 3 0.3 37% 18.45 0.72
0.05 1 0.7 38% 10 0.74
0.05 1 1 40% 11 0.76
0.05 5 1 37% 31.52 0.72
0.3 1 1 35% 9.57 0.72

Moderately
expert (0.1)

0.5 1 0.3 35% 9.67 0.72
0.01 1 1 37% 19.13 0.72
0.05 1 0.3 35% 12.96 0.71
0.05 3 0.3 34% 25.44 0.69
0.05 1 0.7 33% 17.4 0.69
0.05 1 1 32% 22.36 0.68
0.05 5 1 36% 54.63 0.68
0.3 1 1 38% 20.03 0.73

Limited skills
(0.3)

0.5 1 0.3 34% 14.19 0.70
0.01 1 1 35% 16.38 0.71
0.05 1 0.3 33% 11.85 0.69
0.05 3 0.3 38% 22.88 0.73
0.05 1 0.7 37% 15.19 0.72
0.05 1 1 33% 15.02 0.69
0.05 5 1 35% 44.16 0.68
0.3 1 1 36% 13.67 0.72

Novice (1.0)

0.5 1 0.3 33% 10.33 0.69
0.01 1 1 38% 13.69 0.74
0.05 1 0.3 36% 10.19 0.72
0.05 3 0.3 37% 20.32 0.72
0.05 1 0.7 37% 12.51 0.72
0.05 1 1 36% 14.24 0.72
0.05 5 1 38% 38.57 0.72
0.3 1 1 37% 12.84 0.73

All levels
(average)

0.5 1 0.3 35% 10.33 0.71

Appendix VI. Toast Making System – Source Code 120

Appendix VI. Toast Making System – Source Code

VB.net Code
Form1.vb
Option Strict Off
Option Explicit On
Imports Microsoft.Win32
Imports System.IO
'Imports System.Security.Permissions
'Imports System.Math
'Imports System.Data.SqlClient
'Imports System.Data.OleDb

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports vb = Microsoft.VisualBasic

Public Class Form1
 Inherits System.Windows.Forms.Form
 Dim nCid As Integer

 ' Global Declarations
 Dim MatLab As Object
 Dim Sequence(2) As Integer
 Dim ToasterFree As Boolean
 Dim ButtererFree As Boolean
 Dim ToasterFinished As Boolean
 Dim ButtererFinished As Boolean
 Dim StopRun As Boolean 'for stoping learning episode
 Dim NumOfEpisods As Integer ' counting number of learning
episodes
 Dim t As New System.Timers.Timer(50000) '106000
 Dim b As New System.Timers.Timer(48000) '94000
 Dim p As New System.Timers.Timer(5000)

 Public Const SND_ASYNC = &H1 ' play asynchronously
 Public Const SND_LOOP = &H8 ' loop the sound until next
sndPlaySound
 Public Const SND_NOSTOP = &H10 ' don't stop any currently
playing sound
 Public Const SND_NOWAIT = &H2000 ' don't wait if the driver is
busy

 Private Declare Function PlaySound Lib "winmm.dll" Alias
"PlaySoundA" (ByVal lpszName As String, ByVal hModule As
Long, ByVal dwFlags As Long) As Long

#Region " Windows Form Designer generated code "

 Public Sub New()
 MyBase.New()

 'This call is required by the Windows Form Designer.
 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

 'Form overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As
Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub

 'Required by the Windows Form Designer
 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form
Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 Friend WithEvents GroupBox1 As
System.Windows.Forms.GroupBox
 Friend WithEvents CheckBox2 As
System.Windows.Forms.CheckBox
 Friend WithEvents Button1 As System.Windows.Forms.Button
 Friend WithEvents Label10 As System.Windows.Forms.Label
 Public WithEvents Label11 As System.Windows.Forms.Label
 Friend WithEvents Label12 As System.Windows.Forms.Label
 Friend WithEvents Label13 As System.Windows.Forms.Label
 Friend WithEvents Label14 As System.Windows.Forms.Label
 Friend WithEvents Label15 As System.Windows.Forms.Label
 Friend WithEvents CheckBox1 As
System.Windows.Forms.CheckBox
 Friend WithEvents GroupBox2 As
System.Windows.Forms.GroupBox
 Public WithEvents Button7 As System.Windows.Forms.Button
 Friend WithEvents TextBox4 As System.Windows.Forms.TextBox
 Public WithEvents Button5 As System.Windows.Forms.Button
 Public WithEvents Button6 As System.Windows.Forms.Button
 Friend WithEvents TextBox6 As System.Windows.Forms.TextBox
 Public WithEvents CmdDownLoad As
System.Windows.Forms.Button
 Public WithEvents Button9 As System.Windows.Forms.Button
 Friend WithEvents GroupBox6 As
System.Windows.Forms.GroupBox
 Friend WithEvents Label7 As System.Windows.Forms.Label
 Friend WithEvents Label8 As System.Windows.Forms.Label
 Friend WithEvents TextBox1 As System.Windows.Forms.TextBox
 Friend WithEvents TextBox2 As System.Windows.Forms.TextBox
 Friend WithEvents Label2 As System.Windows.Forms.Label
 Friend WithEvents Label3 As System.Windows.Forms.Label
 Friend WithEvents Label4 As System.Windows.Forms.Label
 Friend WithEvents Label5 As System.Windows.Forms.Label
 Friend WithEvents Label6 As System.Windows.Forms.Label
 Friend WithEvents TextBox3 As System.Windows.Forms.TextBox
 Friend WithEvents Label9 As System.Windows.Forms.Label
 Friend WithEvents Button4 As System.Windows.Forms.Button
 Friend WithEvents GroupBox11 As
System.Windows.Forms.GroupBox
 Friend WithEvents TextBox11 As
System.Windows.Forms.TextBox
 Friend WithEvents Label18 As System.Windows.Forms.Label
 Friend WithEvents Label25 As System.Windows.Forms.Label
 Friend WithEvents CheckBox5 As
System.Windows.Forms.CheckBox
 Friend WithEvents Label17 As System.Windows.Forms.Label
 Friend WithEvents Label1 As System.Windows.Forms.Label
 Friend WithEvents CheckBox4 As
System.Windows.Forms.CheckBox
 Friend WithEvents TextBox10 As
System.Windows.Forms.TextBox
 Friend WithEvents Label23 As System.Windows.Forms.Label
 Friend WithEvents Label24 As System.Windows.Forms.Label
 Friend WithEvents Label42 As System.Windows.Forms.Label
 Friend WithEvents TextBox76 As
System.Windows.Forms.TextBox
 Friend WithEvents Label39 As System.Windows.Forms.Label
 Friend WithEvents TextBox75 As
System.Windows.Forms.TextBox
 Friend WithEvents Button3 As System.Windows.Forms.Button
 Public WithEvents Label103 As System.Windows.Forms.Label
 Friend WithEvents TextBox148 As
System.Windows.Forms.TextBox
 Friend WithEvents Button8 As System.Windows.Forms.Button
 Friend WithEvents TextBox8 As System.Windows.Forms.TextBox
 Public WithEvents Label16 As System.Windows.Forms.Label

Appendix VI. Toast Making System – Source Code 121

 Friend WithEvents TextBox13 As
System.Windows.Forms.TextBox
 Public WithEvents Label19 As System.Windows.Forms.Label
 Friend WithEvents GroupBox3 As
System.Windows.Forms.GroupBox
 Public WithEvents Label20 As System.Windows.Forms.Label
 Public WithEvents Label21 As System.Windows.Forms.Label
 Public WithEvents Label22 As System.Windows.Forms.Label
 Friend WithEvents ComboBox1 As
System.Windows.Forms.ComboBox
 Public WithEvents Label26 As System.Windows.Forms.Label
 Public WithEvents Label27 As System.Windows.Forms.Label
 Public WithEvents Label28 As System.Windows.Forms.Label
 Friend WithEvents TextBox5 As System.Windows.Forms.TextBox
 Public WithEvents Label29 As System.Windows.Forms.Label
 Public WithEvents Label30 As System.Windows.Forms.Label
 Friend WithEvents MainMenu1 As
System.Windows.Forms.MainMenu
 Friend WithEvents MenuItem1 As
System.Windows.Forms.MenuItem
 Friend WithEvents TabControl1 As
System.Windows.Forms.TabControl
 Friend WithEvents TabPage1 As System.Windows.Forms.TabPage
 Friend WithEvents TabPage2 As System.Windows.Forms.TabPage
 Friend WithEvents Button2 As System.Windows.Forms.Button
 Friend WithEvents Button10 As System.Windows.Forms.Button
 Friend WithEvents Button11 As System.Windows.Forms.Button
 Friend WithEvents Button12 As System.Windows.Forms.Button
 Friend WithEvents Button13 As System.Windows.Forms.Button
 Friend WithEvents Button14 As System.Windows.Forms.Button
 Friend WithEvents Button15 As System.Windows.Forms.Button
 Public WithEvents Label34 As System.Windows.Forms.Label
 Friend WithEvents GroupBox4 As
System.Windows.Forms.GroupBox
 Friend WithEvents GroupBox5 As
System.Windows.Forms.GroupBox
 Friend WithEvents Label33 As System.Windows.Forms.Label
 Friend WithEvents TextBox7 As System.Windows.Forms.TextBox
 Friend WithEvents Button16 As System.Windows.Forms.Button
 Friend WithEvents Button17 As System.Windows.Forms.Button
 Friend WithEvents Button18 As System.Windows.Forms.Button
 Friend WithEvents TextBox15 As
System.Windows.Forms.TextBox
 Friend WithEvents Button19 As System.Windows.Forms.Button
 Friend WithEvents Button21 As System.Windows.Forms.Button
 Friend WithEvents Button20 As System.Windows.Forms.Button
 Friend WithEvents Button22 As System.Windows.Forms.Button
 Friend WithEvents Button23 As System.Windows.Forms.Button
 Friend WithEvents Button24 As System.Windows.Forms.Button
 Friend WithEvents Button25 As System.Windows.Forms.Button
 Friend WithEvents Button27 As System.Windows.Forms.Button
 Friend WithEvents Button28 As System.Windows.Forms.Button
 Friend WithEvents Button30 As System.Windows.Forms.Button
 Friend WithEvents Button32 As System.Windows.Forms.Button
 Friend WithEvents Button26 As System.Windows.Forms.Button
 Friend WithEvents Button29 As System.Windows.Forms.Button
 <System.Diagnostics.DebuggerStepThrough()> Private Sub
InitializeComponent()
 Me.GroupBox1 = New System.Windows.Forms.GroupBox
 Me.CheckBox2 = New System.Windows.Forms.CheckBox
 Me.Button1 = New System.Windows.Forms.Button
 Me.Label10 = New System.Windows.Forms.Label
 Me.Label11 = New System.Windows.Forms.Label
 Me.Label12 = New System.Windows.Forms.Label
 Me.Label13 = New System.Windows.Forms.Label
 Me.Label14 = New System.Windows.Forms.Label
 Me.Label15 = New System.Windows.Forms.Label
 Me.CheckBox1 = New System.Windows.Forms.CheckBox
 Me.GroupBox2 = New System.Windows.Forms.GroupBox
 Me.Button7 = New System.Windows.Forms.Button
 Me.TextBox4 = New System.Windows.Forms.TextBox
 Me.Button5 = New System.Windows.Forms.Button
 Me.Button6 = New System.Windows.Forms.Button
 Me.TextBox6 = New System.Windows.Forms.TextBox
 Me.CmdDownLoad = New System.Windows.Forms.Button
 Me.Button9 = New System.Windows.Forms.Button
 Me.GroupBox6 = New System.Windows.Forms.GroupBox
 Me.Label7 = New System.Windows.Forms.Label

 Me.Label8 = New System.Windows.Forms.Label
 Me.TextBox1 = New System.Windows.Forms.TextBox
 Me.TextBox2 = New System.Windows.Forms.TextBox
 Me.Label2 = New System.Windows.Forms.Label
 Me.Label3 = New System.Windows.Forms.Label
 Me.Label4 = New System.Windows.Forms.Label
 Me.Label5 = New System.Windows.Forms.Label
 Me.Label6 = New System.Windows.Forms.Label
 Me.TextBox3 = New System.Windows.Forms.TextBox
 Me.Label9 = New System.Windows.Forms.Label
 Me.Button4 = New System.Windows.Forms.Button
 Me.GroupBox11 = New System.Windows.Forms.GroupBox
 Me.TextBox11 = New System.Windows.Forms.TextBox
 Me.Label18 = New System.Windows.Forms.Label
 Me.Label25 = New System.Windows.Forms.Label
 Me.CheckBox5 = New System.Windows.Forms.CheckBox
 Me.Label17 = New System.Windows.Forms.Label
 Me.Label1 = New System.Windows.Forms.Label
 Me.CheckBox4 = New System.Windows.Forms.CheckBox
 Me.TextBox10 = New System.Windows.Forms.TextBox
 Me.Label23 = New System.Windows.Forms.Label
 Me.Label24 = New System.Windows.Forms.Label
 Me.Label42 = New System.Windows.Forms.Label
 Me.TextBox76 = New System.Windows.Forms.TextBox
 Me.Label39 = New System.Windows.Forms.Label
 Me.TextBox75 = New System.Windows.Forms.TextBox
 Me.Button3 = New System.Windows.Forms.Button
 Me.Label103 = New System.Windows.Forms.Label
 Me.TextBox148 = New System.Windows.Forms.TextBox
 Me.Button8 = New System.Windows.Forms.Button
 Me.TextBox8 = New System.Windows.Forms.TextBox
 Me.Label16 = New System.Windows.Forms.Label
 Me.TextBox13 = New System.Windows.Forms.TextBox
 Me.Label19 = New System.Windows.Forms.Label
 Me.GroupBox3 = New System.Windows.Forms.GroupBox
 Me.Label30 = New System.Windows.Forms.Label
 Me.Label29 = New System.Windows.Forms.Label
 Me.TextBox5 = New System.Windows.Forms.TextBox
 Me.Label28 = New System.Windows.Forms.Label
 Me.Label27 = New System.Windows.Forms.Label
 Me.Label26 = New System.Windows.Forms.Label
 Me.ComboBox1 = New System.Windows.Forms.ComboBox
 Me.Label22 = New System.Windows.Forms.Label
 Me.Label21 = New System.Windows.Forms.Label
 Me.Label20 = New System.Windows.Forms.Label
 Me.Button17 = New System.Windows.Forms.Button
 Me.MainMenu1 = New System.Windows.Forms.MainMenu
 Me.MenuItem1 = New System.Windows.Forms.MenuItem
 Me.TabControl1 = New System.Windows.Forms.TabControl
 Me.TabPage1 = New System.Windows.Forms.TabPage
 Me.Button25 = New System.Windows.Forms.Button
 Me.Button24 = New System.Windows.Forms.Button
 Me.Button23 = New System.Windows.Forms.Button
 Me.Button22 = New System.Windows.Forms.Button
 Me.Button20 = New System.Windows.Forms.Button
 Me.Button21 = New System.Windows.Forms.Button
 Me.Button19 = New System.Windows.Forms.Button
 Me.Button18 = New System.Windows.Forms.Button
 Me.TextBox15 = New System.Windows.Forms.TextBox
 Me.TabPage2 = New System.Windows.Forms.TabPage
 Me.GroupBox5 = New System.Windows.Forms.GroupBox
 Me.Button32 = New System.Windows.Forms.Button
 Me.Button30 = New System.Windows.Forms.Button
 Me.Label33 = New System.Windows.Forms.Label
 Me.TextBox7 = New System.Windows.Forms.TextBox
 Me.Button13 = New System.Windows.Forms.Button
 Me.Button15 = New System.Windows.Forms.Button
 Me.Button14 = New System.Windows.Forms.Button
 Me.Label34 = New System.Windows.Forms.Label
 Me.Button16 = New System.Windows.Forms.Button
 Me.GroupBox4 = New System.Windows.Forms.GroupBox
 Me.Button28 = New System.Windows.Forms.Button
 Me.Button27 = New System.Windows.Forms.Button
 Me.Button10 = New System.Windows.Forms.Button
 Me.Button11 = New System.Windows.Forms.Button
 Me.Button2 = New System.Windows.Forms.Button
 Me.Button12 = New System.Windows.Forms.Button
 Me.Button26 = New System.Windows.Forms.Button

Appendix VI. Toast Making System – Source Code 122

 Me.Button29 = New System.Windows.Forms.Button
 Me.GroupBox1.SuspendLayout()
 Me.GroupBox2.SuspendLayout()
 Me.GroupBox6.SuspendLayout()
 Me.GroupBox11.SuspendLayout()
 Me.GroupBox3.SuspendLayout()
 Me.TabControl1.SuspendLayout()
 Me.TabPage1.SuspendLayout()
 Me.TabPage2.SuspendLayout()
 Me.GroupBox5.SuspendLayout()
 Me.GroupBox4.SuspendLayout()
 Me.SuspendLayout()
 '
 'GroupBox1
 '
 Me.GroupBox1.Controls.Add(Me.CheckBox2)
 Me.GroupBox1.Controls.Add(Me.Button1)
 Me.GroupBox1.Controls.Add(Me.Label10)
 Me.GroupBox1.Controls.Add(Me.Label11)
 Me.GroupBox1.Controls.Add(Me.Label12)
 Me.GroupBox1.Controls.Add(Me.Label13)
 Me.GroupBox1.Controls.Add(Me.Label14)
 Me.GroupBox1.Controls.Add(Me.Label15)
 Me.GroupBox1.Controls.Add(Me.CheckBox1)
 Me.GroupBox1.Font = New System.Drawing.Font("Arial",
8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.GroupBox1.Location = New System.Drawing.Point(32, 24)
 Me.GroupBox1.Name = "GroupBox1"
 Me.GroupBox1.Size = New System.Drawing.Size(240, 184)
 Me.GroupBox1.TabIndex = 70
 Me.GroupBox1.TabStop = False
 Me.GroupBox1.Text = "Communication"
 '
 'CheckBox2
 '
 Me.CheckBox2.Location = New System.Drawing.Point(80, 160)
 Me.CheckBox2.Name = "CheckBox2"
 Me.CheckBox2.Size = New System.Drawing.Size(16, 16)
 Me.CheckBox2.TabIndex = 26
 Me.CheckBox2.Text = "Servo"
 '
 'Button1
 '
 Me.Button1.BackColor =
System.Drawing.Color.FromArgb(CType(255, Byte), CType(255,
Byte), CType(192, Byte))
 Me.Button1.Cursor = System.Windows.Forms.Cursors.Default
 Me.Button1.Font = New System.Drawing.Font("Arial", 8.0!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Button1.ForeColor =
System.Drawing.SystemColors.ControlText
 Me.Button1.Location = New System.Drawing.Point(8, 24)
 Me.Button1.Name = "Button1"
 Me.Button1.RightToLeft =
System.Windows.Forms.RightToLeft.No
 Me.Button1.Size = New System.Drawing.Size(104, 40)
 Me.Button1.TabIndex = 4
 Me.Button1.Text = "Open Communication"
 '
 'Label10
 '
 Me.Label10.Location = New System.Drawing.Point(104, 136)
 Me.Label10.Name = "Label10"
 Me.Label10.Size = New System.Drawing.Size(80, 16)
 Me.Label10.TabIndex = 31
 '
 'Label11
 '
 Me.Label11.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label11.Location = New System.Drawing.Point(40, 136)
 Me.Label11.Name = "Label11"
 Me.Label11.Size = New System.Drawing.Size(36, 16)
 Me.Label11.TabIndex = 32
 Me.Label11.Text = "Mode:"

 '
 'Label12
 '
 Me.Label12.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label12.Location = New System.Drawing.Point(40, 160)
 Me.Label12.Name = "Label12"
 Me.Label12.Size = New System.Drawing.Size(36, 16)
 Me.Label12.TabIndex = 33
 Me.Label12.Text = "Servo:"
 '
 'Label13
 '
 Me.Label13.Location = New System.Drawing.Point(104, 160)
 Me.Label13.Name = "Label13"
 Me.Label13.Size = New System.Drawing.Size(80, 16)
 Me.Label13.TabIndex = 34
 '
 'Label14
 '
 Me.Label14.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label14.Location = New System.Drawing.Point(8, 104)
 Me.Label14.Name = "Label14"
 Me.Label14.Size = New System.Drawing.Size(128, 16)
 Me.Label14.TabIndex = 35
 Me.Label14.Text = "Communication Status:"
 '
 'Label15
 '
 Me.Label15.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label15.Location = New System.Drawing.Point(136, 104)
 Me.Label15.Name = "Label15"
 Me.Label15.Size = New System.Drawing.Size(96, 16)
 Me.Label15.TabIndex = 36
 Me.Label15.Text = "Disconnected"
 '
 'CheckBox1
 '
 Me.CheckBox1.Checked = True
 Me.CheckBox1.CheckState =
System.Windows.Forms.CheckState.Checked
 Me.CheckBox1.Location = New System.Drawing.Point(80, 136)
 Me.CheckBox1.Name = "CheckBox1"
 Me.CheckBox1.Size = New System.Drawing.Size(16, 16)
 Me.CheckBox1.TabIndex = 25
 Me.CheckBox1.Text = "Teach / Play"
 '
 'GroupBox2
 '
 Me.GroupBox2.Controls.Add(Me.Button7)
 Me.GroupBox2.Controls.Add(Me.TextBox4)
 Me.GroupBox2.Controls.Add(Me.Button5)
 Me.GroupBox2.Controls.Add(Me.Button6)
 Me.GroupBox2.Controls.Add(Me.TextBox6)
 Me.GroupBox2.Controls.Add(Me.CmdDownLoad)
 Me.GroupBox2.Controls.Add(Me.Button9)
 Me.GroupBox2.Font = New System.Drawing.Font("Arial",
8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.GroupBox2.Location = New System.Drawing.Point(32, 238)
 Me.GroupBox2.Name = "GroupBox2"
 Me.GroupBox2.Size = New System.Drawing.Size(240, 192)
 Me.GroupBox2.TabIndex = 71
 Me.GroupBox2.TabStop = False
 Me.GroupBox2.Text = "Download / Upload"
 '
 'Button7
 '
 Me.Button7.BackColor =
System.Drawing.Color.FromArgb(CType(255, Byte), CType(255,
Byte), CType(192, Byte))
 Me.Button7.Cursor = System.Windows.Forms.Cursors.Default

Appendix VI. Toast Making System – Source Code 123

 Me.Button7.Font = New System.Drawing.Font("Arial", 8.0!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Button7.ForeColor =
System.Drawing.SystemColors.ControlText
 Me.Button7.Location = New System.Drawing.Point(128, 48)
 Me.Button7.Name = "Button7"
 Me.Button7.RightToLeft =
System.Windows.Forms.RightToLeft.No
 Me.Button7.Size = New System.Drawing.Size(104, 40)
 Me.Button7.TabIndex = 27
 Me.Button7.Text = "Upload Job"
 '
 'TextBox4
 '
 Me.TextBox4.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.TextBox4.Location = New System.Drawing.Point(128, 24)
 Me.TextBox4.Name = "TextBox4"
 Me.TextBox4.Size = New System.Drawing.Size(104, 20)
 Me.TextBox4.TabIndex = 28
 Me.TextBox4.Text = "BAGS1.JBI"
 '
 'Button5
 '
 Me.Button5.BackColor =
System.Drawing.Color.FromArgb(CType(255, Byte), CType(255,
Byte), CType(192, Byte))
 Me.Button5.Cursor = System.Windows.Forms.Cursors.Default
 Me.Button5.Font = New System.Drawing.Font("Arial", 8.0!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Button5.ForeColor =
System.Drawing.SystemColors.ControlText
 Me.Button5.Location = New System.Drawing.Point(8, 96)
 Me.Button5.Name = "Button5"
 Me.Button5.RightToLeft =
System.Windows.Forms.RightToLeft.No
 Me.Button5.Size = New System.Drawing.Size(104, 40)
 Me.Button5.TabIndex = 23
 Me.Button5.Text = "Delete Job"
 '
 'Button6
 '
 Me.Button6.BackColor =
System.Drawing.Color.FromArgb(CType(255, Byte), CType(255,
Byte), CType(192, Byte))
 Me.Button6.Cursor = System.Windows.Forms.Cursors.Default
 Me.Button6.Font = New System.Drawing.Font("Arial", 8.0!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Button6.ForeColor =
System.Drawing.SystemColors.ControlText
 Me.Button6.Location = New System.Drawing.Point(8, 144)
 Me.Button6.Name = "Button6"
 Me.Button6.RightToLeft =
System.Windows.Forms.RightToLeft.No
 Me.Button6.Size = New System.Drawing.Size(104, 40)
 Me.Button6.TabIndex = 24
 Me.Button6.Text = "Run Job"
 '
 'TextBox6
 '
 Me.TextBox6.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.TextBox6.Location = New System.Drawing.Point(8, 24)
 Me.TextBox6.Name = "TextBox6"
 Me.TextBox6.Size = New System.Drawing.Size(104, 20)
 Me.TextBox6.TabIndex = 63
 Me.TextBox6.Text = "POLICY1.JBI"
 '
 'CmdDownLoad
 '
 Me.CmdDownLoad.BackColor =
System.Drawing.Color.FromArgb(CType(255, Byte), CType(255,
Byte), CType(192, Byte))

 Me.CmdDownLoad.Cursor =
System.Windows.Forms.Cursors.Default
 Me.CmdDownLoad.Font = New System.Drawing.Font("Arial",
8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.CmdDownLoad.ForeColor =
System.Drawing.SystemColors.ControlText
 Me.CmdDownLoad.Location = New System.Drawing.Point(8,
48)
 Me.CmdDownLoad.Name = "CmdDownLoad"
 Me.CmdDownLoad.RightToLeft =
System.Windows.Forms.RightToLeft.No
 Me.CmdDownLoad.Size = New System.Drawing.Size(104, 40)
 Me.CmdDownLoad.TabIndex = 1
 Me.CmdDownLoad.Text = "Download Job"
 '
 'Button9
 '
 Me.Button9.BackColor = System.Drawing.Color.Red
 Me.Button9.Cursor = System.Windows.Forms.Cursors.Default
 Me.Button9.Font = New System.Drawing.Font("Arial", 8.0!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Button9.ForeColor = System.Drawing.Color.Yellow
 Me.Button9.Location = New System.Drawing.Point(128, 96)
 Me.Button9.Name = "Button9"
 Me.Button9.RightToLeft =
System.Windows.Forms.RightToLeft.No
 Me.Button9.Size = New System.Drawing.Size(104, 40)
 Me.Button9.TabIndex = 30
 Me.Button9.Text = "Emergency Stop"
 '
 'GroupBox6
 '
 Me.GroupBox6.Controls.Add(Me.Label7)
 Me.GroupBox6.Controls.Add(Me.Label8)
 Me.GroupBox6.Controls.Add(Me.TextBox1)
 Me.GroupBox6.Controls.Add(Me.TextBox2)
 Me.GroupBox6.Controls.Add(Me.Label2)
 Me.GroupBox6.Controls.Add(Me.Label3)
 Me.GroupBox6.Controls.Add(Me.Label4)
 Me.GroupBox6.Controls.Add(Me.Label5)
 Me.GroupBox6.Controls.Add(Me.Label6)
 Me.GroupBox6.Controls.Add(Me.TextBox3)
 Me.GroupBox6.Controls.Add(Me.Label9)
 Me.GroupBox6.Controls.Add(Me.Button4)
 Me.GroupBox6.Font = New System.Drawing.Font("Arial",
8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.GroupBox6.Location = New System.Drawing.Point(304, 26)
 Me.GroupBox6.Name = "GroupBox6"
 Me.GroupBox6.Size = New System.Drawing.Size(208, 176)
 Me.GroupBox6.TabIndex = 72
 Me.GroupBox6.TabStop = False
 Me.GroupBox6.Text = "Messeges"
 '
 'Label7
 '
 Me.Label7.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label7.Location = New System.Drawing.Point(152, 72)
 Me.Label7.Name = "Label7"
 Me.Label7.Size = New System.Drawing.Size(32, 16)
 Me.Label7.TabIndex = 18
 Me.Label7.Text = "(1)"
 '
 'Label8
 '
 Me.Label8.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label8.Location = New System.Drawing.Point(152, 40)
 Me.Label8.Name = "Label8"
 Me.Label8.Size = New System.Drawing.Size(48, 16)
 Me.Label8.TabIndex = 19
 Me.Label8.Text = "(not -1)"
 '

Appendix VI. Toast Making System – Source Code 124

 'TextBox1
 '
 Me.TextBox1.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.TextBox1.Location = New System.Drawing.Point(88, 32)
 Me.TextBox1.Name = "TextBox1"
 Me.TextBox1.Size = New System.Drawing.Size(64, 20)
 Me.TextBox1.TabIndex = 8
 Me.TextBox1.Text = ""
 '
 'TextBox2
 '
 Me.TextBox2.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.TextBox2.Location = New System.Drawing.Point(88, 72)
 Me.TextBox2.Name = "TextBox2"
 Me.TextBox2.Size = New System.Drawing.Size(64, 20)
 Me.TextBox2.TabIndex = 9
 Me.TextBox2.Text = ""
 '
 'Label2
 '
 Me.Label2.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label2.Location = New System.Drawing.Point(96, 16)
 Me.Label2.Name = "Label2"
 Me.Label2.Size = New System.Drawing.Size(32, 16)
 Me.Label2.TabIndex = 11
 Me.Label2.Text = "nCid"
 '
 'Label3
 '
 Me.Label3.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label3.Location = New System.Drawing.Point(96, 56)
 Me.Label3.Name = "Label3"
 Me.Label3.Size = New System.Drawing.Size(32, 16)
 Me.Label3.TabIndex = 12
 Me.Label3.Text = "rc"
 '
 'Label4
 '
 Me.Label4.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label4.Location = New System.Drawing.Point(8, 32)
 Me.Label4.Name = "Label4"
 Me.Label4.Size = New System.Drawing.Size(64, 16)
 Me.Label4.TabIndex = 13
 Me.Label4.Text = "BscOpen"
 '
 'Label5
 '
 Me.Label5.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label5.Location = New System.Drawing.Point(8, 72)
 Me.Label5.Name = "Label5"
 Me.Label5.Size = New System.Drawing.Size(64, 16)
 Me.Label5.TabIndex = 14
 Me.Label5.Text = "BscConnect"
 '
 'Label6
 '
 Me.Label6.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label6.Location = New System.Drawing.Point(8, 104)
 Me.Label6.Name = "Label6"
 Me.Label6.Size = New System.Drawing.Size(80, 16)
 Me.Label6.TabIndex = 16
 Me.Label6.Text = "BscDownLoad"
 '
 'TextBox3

 '
 Me.TextBox3.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.TextBox3.Location = New System.Drawing.Point(88, 104)
 Me.TextBox3.Name = "TextBox3"
 Me.TextBox3.Size = New System.Drawing.Size(64, 20)
 Me.TextBox3.TabIndex = 15
 Me.TextBox3.Text = ""
 '
 'Label9
 '
 Me.Label9.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label9.Location = New System.Drawing.Point(152, 112)
 Me.Label9.Name = "Label9"
 Me.Label9.Size = New System.Drawing.Size(32, 16)
 Me.Label9.TabIndex = 20
 Me.Label9.Text = "(0)"
 '
 'Button4
 '
 Me.Button4.BackColor =
System.Drawing.Color.FromArgb(CType(255, Byte), CType(255,
Byte), CType(192, Byte))
 Me.Button4.Cursor = System.Windows.Forms.Cursors.Default
 Me.Button4.Font = New System.Drawing.Font("Arial", 8.0!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Button4.ForeColor =
System.Drawing.SystemColors.ControlText
 Me.Button4.Location = New System.Drawing.Point(72, 136)
 Me.Button4.Name = "Button4"
 Me.Button4.RightToLeft =
System.Windows.Forms.RightToLeft.No
 Me.Button4.Size = New System.Drawing.Size(56, 32)
 Me.Button4.TabIndex = 21
 Me.Button4.Text = "Clear"
 '
 'GroupBox11
 '
 Me.GroupBox11.Controls.Add(Me.TextBox11)
 Me.GroupBox11.Controls.Add(Me.Label18)
 Me.GroupBox11.Controls.Add(Me.Label25)
 Me.GroupBox11.Controls.Add(Me.CheckBox5)
 Me.GroupBox11.Controls.Add(Me.Label17)
 Me.GroupBox11.Controls.Add(Me.Label1)
 Me.GroupBox11.Controls.Add(Me.CheckBox4)
 Me.GroupBox11.Controls.Add(Me.TextBox10)
 Me.GroupBox11.Controls.Add(Me.Label23)
 Me.GroupBox11.Controls.Add(Me.Label24)
 Me.GroupBox11.Location = New System.Drawing.Point(552,
27)
 Me.GroupBox11.Name = "GroupBox11"
 Me.GroupBox11.Size = New System.Drawing.Size(168, 176)
 Me.GroupBox11.TabIndex = 83
 Me.GroupBox11.TabStop = False
 Me.GroupBox11.Text = "Operational Mode"
 '
 'TextBox11
 '
 Me.TextBox11.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.TextBox11.Location = New System.Drawing.Point(16, 152)
 Me.TextBox11.Name = "TextBox11"
 Me.TextBox11.Size = New System.Drawing.Size(72, 20)
 Me.TextBox11.TabIndex = 88
 Me.TextBox11.Text = "5"
 '
 'Label18
 '
 Me.Label18.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label18.Location = New System.Drawing.Point(96, 152)
 Me.Label18.Name = "Label18"

Appendix VI. Toast Making System – Source Code 125

 Me.Label18.Size = New System.Drawing.Size(24, 16)
 Me.Label18.TabIndex = 90
 Me.Label18.Text = "cm"
 '
 'Label25
 '
 Me.Label25.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label25.Location = New System.Drawing.Point(16, 128)
 Me.Label25.Name = "Label25"
 Me.Label25.Size = New System.Drawing.Size(88, 16)
 Me.Label25.TabIndex = 89
 Me.Label25.Text = "Wrist Step Size:"
 '
 'CheckBox5
 '
 Me.CheckBox5.Checked = True
 Me.CheckBox5.CheckState =
System.Windows.Forms.CheckState.Checked
 Me.CheckBox5.Location = New System.Drawing.Point(32, 48)
 Me.CheckBox5.Name = "CheckBox5"
 Me.CheckBox5.Size = New System.Drawing.Size(16, 16)
 Me.CheckBox5.TabIndex = 87
 '
 'Label17
 '
 Me.Label17.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label17.Location = New System.Drawing.Point(16, 24)
 Me.Label17.Name = "Label17"
 Me.Label17.Size = New System.Drawing.Size(80, 16)
 Me.Label17.TabIndex = 86
 Me.Label17.Text = "Incremental"
 '
 'Label1
 '
 Me.Label1.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label1.Location = New System.Drawing.Point(96, 24)
 Me.Label1.Name = "Label1"
 Me.Label1.Size = New System.Drawing.Size(64, 16)
 Me.Label1.TabIndex = 85
 Me.Label1.Text = "Continious"
 '
 'CheckBox4
 '
 Me.CheckBox4.Location = New System.Drawing.Point(112, 48)
 Me.CheckBox4.Name = "CheckBox4"
 Me.CheckBox4.Size = New System.Drawing.Size(16, 16)
 Me.CheckBox4.TabIndex = 84
 '
 'TextBox10
 '
 Me.TextBox10.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.TextBox10.Location = New System.Drawing.Point(16, 96)
 Me.TextBox10.Name = "TextBox10"
 Me.TextBox10.Size = New System.Drawing.Size(72, 20)
 Me.TextBox10.TabIndex = 84
 Me.TextBox10.Text = "10"
 '
 'Label23
 '
 Me.Label23.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label23.Location = New System.Drawing.Point(96, 96)
 Me.Label23.Name = "Label23"
 Me.Label23.Size = New System.Drawing.Size(24, 16)
 Me.Label23.TabIndex = 86
 Me.Label23.Text = "cm"
 '
 'Label24
 '

 Me.Label24.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label24.Location = New System.Drawing.Point(16, 72)
 Me.Label24.Name = "Label24"
 Me.Label24.Size = New System.Drawing.Size(88, 16)
 Me.Label24.TabIndex = 85
 Me.Label24.Text = "Arm Step Size:"
 '
 'Label42
 '
 Me.Label42.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label42.Location = New System.Drawing.Point(16, 189)
 Me.Label42.Name = "Label42"
 Me.Label42.Size = New System.Drawing.Size(88, 16)
 Me.Label42.TabIndex = 294
 Me.Label42.Text = "Matlab Function:"
 '
 'TextBox76
 '
 Me.TextBox76.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.TextBox76.Location = New System.Drawing.Point(16, 205)
 Me.TextBox76.Name = "TextBox76"
 Me.TextBox76.Size = New System.Drawing.Size(128, 20)
 Me.TextBox76.TabIndex = 293
 Me.TextBox76.Text = "toast18(0,0)"
 '
 'Label39
 '
 Me.Label39.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label39.Location = New System.Drawing.Point(16, 136)
 Me.Label39.Name = "Label39"
 Me.Label39.Size = New System.Drawing.Size(112, 16)
 Me.Label39.TabIndex = 292
 Me.Label39.Text = "Resulting Sequence:"
 '
 'TextBox75
 '
 Me.TextBox75.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.TextBox75.Location = New System.Drawing.Point(16, 156)
 Me.TextBox75.Name = "TextBox75"
 Me.TextBox75.Size = New System.Drawing.Size(128, 20)
 Me.TextBox75.TabIndex = 291
 Me.TextBox75.Text = ""
 '
 'Button3
 '
 Me.Button3.BackColor = System.Drawing.Color.SpringGreen
 Me.Button3.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Button3.Location = New System.Drawing.Point(16, 32)
 Me.Button3.Name = "Button3"
 Me.Button3.Size = New System.Drawing.Size(112, 32)
 Me.Button3.TabIndex = 290
 Me.Button3.Text = "Create Scheduling Policy"
 '
 'Label103
 '
 Me.Label103.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label103.Location = New System.Drawing.Point(16, 240)
 Me.Label103.Name = "Label103"
 Me.Label103.Size = New System.Drawing.Size(120, 16)
 Me.Label103.TabIndex = 299
 Me.Label103.Text = "Directory:"
 '
 'TextBox148
 '

Appendix VI. Toast Making System – Source Code 126

 Me.TextBox148.Font = New System.Drawing.Font("Arial",
8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.TextBox148.Location = New System.Drawing.Point(16,
256)
 Me.TextBox148.Name = "TextBox148"
 Me.TextBox148.Size = New System.Drawing.Size(128, 20)
 Me.TextBox148.TabIndex = 298
 Me.TextBox148.Text = "c:/amit/toast/toast/matlab/temp"
 '
 'Button8
 '
 Me.Button8.BackColor = System.Drawing.Color.Aqua
 Me.Button8.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Button8.Location = New System.Drawing.Point(200, 32)
 Me.Button8.Name = "Button8"
 Me.Button8.Size = New System.Drawing.Size(112, 32)
 Me.Button8.TabIndex = 300
 Me.Button8.Text = "Run Toasting Sequence"
 '
 'TextBox8
 '
 Me.TextBox8.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.TextBox8.Location = New System.Drawing.Point(200, 104)
 Me.TextBox8.Name = "TextBox8"
 Me.TextBox8.Size = New System.Drawing.Size(128, 20)
 Me.TextBox8.TabIndex = 301
 Me.TextBox8.Text = ""
 '
 'Label16
 '
 Me.Label16.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label16.Location = New System.Drawing.Point(200, 80)
 Me.Label16.Name = "Label16"
 Me.Label16.Size = New System.Drawing.Size(120, 16)
 Me.Label16.TabIndex = 302
 Me.Label16.Text = "Next Station:"
 '
 'TextBox13
 '
 Me.TextBox13.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.TextBox13.Location = New System.Drawing.Point(200,
154)
 Me.TextBox13.Name = "TextBox13"
 Me.TextBox13.Size = New System.Drawing.Size(128, 20)
 Me.TextBox13.TabIndex = 307
 Me.TextBox13.Text = ""
 '
 'Label19
 '
 Me.Label19.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label19.Location = New System.Drawing.Point(200, 138)
 Me.Label19.Name = "Label19"
 Me.Label19.Size = New System.Drawing.Size(120, 16)
 Me.Label19.TabIndex = 308
 Me.Label19.Text = "Sequence Step:"
 '
 'GroupBox3
 '
 Me.GroupBox3.Controls.Add(Me.Label30)
 Me.GroupBox3.Controls.Add(Me.Label29)
 Me.GroupBox3.Controls.Add(Me.TextBox5)
 Me.GroupBox3.Controls.Add(Me.Label28)
 Me.GroupBox3.Controls.Add(Me.Label27)
 Me.GroupBox3.Controls.Add(Me.Label26)
 Me.GroupBox3.Controls.Add(Me.ComboBox1)
 Me.GroupBox3.Controls.Add(Me.Label22)
 Me.GroupBox3.Controls.Add(Me.Label21)

 Me.GroupBox3.Controls.Add(Me.Label20)
 Me.GroupBox3.Controls.Add(Me.Button3)
 Me.GroupBox3.Controls.Add(Me.Label42)
 Me.GroupBox3.Controls.Add(Me.TextBox76)
 Me.GroupBox3.Controls.Add(Me.Label39)
 Me.GroupBox3.Controls.Add(Me.TextBox75)
 Me.GroupBox3.Controls.Add(Me.Label103)
 Me.GroupBox3.Controls.Add(Me.TextBox148)
 Me.GroupBox3.Controls.Add(Me.Button8)
 Me.GroupBox3.Controls.Add(Me.TextBox8)
 Me.GroupBox3.Controls.Add(Me.Label16)
 Me.GroupBox3.Controls.Add(Me.TextBox13)
 Me.GroupBox3.Controls.Add(Me.Label19)
 Me.GroupBox3.Font = New System.Drawing.Font("Microsoft
Sans Serif", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))
 Me.GroupBox3.Location = New System.Drawing.Point(309,
239)
 Me.GroupBox3.Name = "GroupBox3"
 Me.GroupBox3.Size = New System.Drawing.Size(488, 304)
 Me.GroupBox3.TabIndex = 309
 Me.GroupBox3.TabStop = False
 Me.GroupBox3.Text = "Toasting System"
 '
 'Label30
 '
 Me.Label30.BackColor = System.Drawing.Color.Orange
 Me.Label30.BorderStyle =
System.Windows.Forms.BorderStyle.Fixed3D
 Me.Label30.Font = New System.Drawing.Font("Arial", 9.75!,
System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label30.Location = New System.Drawing.Point(200, 200)
 Me.Label30.Name = "Label30"
 Me.Label30.Size = New System.Drawing.Size(120, 40)
 Me.Label30.TabIndex = 320
 Me.Label30.Text = "Policy Creation Completed"
 Me.Label30.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 Me.Label30.Visible = False
 '
 'Label29
 '
 Me.Label29.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label29.Location = New System.Drawing.Point(352, 240)
 Me.Label29.Name = "Label29"
 Me.Label29.Size = New System.Drawing.Size(120, 16)
 Me.Label29.TabIndex = 319
 Me.Label29.Text = "# Of Finished Toasts"
 '
 'TextBox5
 '
 Me.TextBox5.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.TextBox5.Location = New System.Drawing.Point(352, 256)
 Me.TextBox5.Name = "TextBox5"
 Me.TextBox5.Size = New System.Drawing.Size(120, 20)
 Me.TextBox5.TabIndex = 318
 Me.TextBox5.Text = ""
 '
 'Label28
 '
 Me.Label28.BackColor = System.Drawing.Color.Red
 Me.Label28.BorderStyle =
System.Windows.Forms.BorderStyle.Fixed3D
 Me.Label28.Font = New System.Drawing.Font("Arial", 9.75!,
System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label28.Location = New System.Drawing.Point(352, 104)
 Me.Label28.Name = "Label28"
 Me.Label28.Size = New System.Drawing.Size(120, 24)
 Me.Label28.TabIndex = 317
 Me.Label28.Text = "Not Processing"
 Me.Label28.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter

Appendix VI. Toast Making System – Source Code 127

 '
 'Label27
 '
 Me.Label27.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label27.Location = New System.Drawing.Point(352, 149)
 Me.Label27.Name = "Label27"
 Me.Label27.Size = New System.Drawing.Size(120, 16)
 Me.Label27.TabIndex = 316
 Me.Label27.Text = "Machine Indicators:"
 '
 'Label26
 '
 Me.Label26.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label26.Location = New System.Drawing.Point(16, 80)
 Me.Label26.Name = "Label26"
 Me.Label26.Size = New System.Drawing.Size(120, 16)
 Me.Label26.TabIndex = 315
 Me.Label26.Text = "Number Of Toasts:"
 '
 'ComboBox1
 '
 Me.ComboBox1.Items.AddRange(New Object() {"1 Toast", "2
Toasts", "3 Toasts", "4 Toasts"})
 Me.ComboBox1.Location = New System.Drawing.Point(16,
104)
 Me.ComboBox1.Name = "ComboBox1"
 Me.ComboBox1.Size = New System.Drawing.Size(128, 21)
 Me.ComboBox1.TabIndex = 312
 Me.ComboBox1.Text = "1 Toast"
 '
 'Label22
 '
 Me.Label22.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label22.Location = New System.Drawing.Point(352, 80)
 Me.Label22.Name = "Label22"
 Me.Label22.Size = New System.Drawing.Size(120, 16)
 Me.Label22.TabIndex = 311
 Me.Label22.Text = "Process Indicator:"
 '
 'Label21
 '
 Me.Label21.BackColor = System.Drawing.Color.Red
 Me.Label21.BorderStyle =
System.Windows.Forms.BorderStyle.Fixed3D
 Me.Label21.Font = New System.Drawing.Font("Arial", 9.75!,
System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label21.Location = New System.Drawing.Point(352, 201)
 Me.Label21.Name = "Label21"
 Me.Label21.Size = New System.Drawing.Size(120, 24)
 Me.Label21.TabIndex = 310
 Me.Label21.Text = "Not Buttering"
 Me.Label21.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 '
 'Label20
 '
 Me.Label20.BackColor = System.Drawing.Color.Red
 Me.Label20.BorderStyle =
System.Windows.Forms.BorderStyle.Fixed3D
 Me.Label20.Font = New System.Drawing.Font("Arial", 9.75!,
System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label20.Location = New System.Drawing.Point(352, 169)
 Me.Label20.Name = "Label20"
 Me.Label20.Size = New System.Drawing.Size(120, 24)
 Me.Label20.TabIndex = 309
 Me.Label20.Text = "Not Toasting"
 Me.Label20.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 '
 'Button17

 '
 Me.Button17.BackColor = System.Drawing.Color.Aqua
 Me.Button17.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Button17.Location = New System.Drawing.Point(728, 136)
 Me.Button17.Name = "Button17"
 Me.Button17.Size = New System.Drawing.Size(112, 32)
 Me.Button17.TabIndex = 321
 Me.Button17.Text = "Run Toasting Sequence"
 Me.Button17.Visible = False
 '
 'MainMenu1
 '
 Me.MainMenu1.MenuItems.AddRange(New
System.Windows.Forms.MenuItem() {Me.MenuItem1})
 '
 'MenuItem1
 '
 Me.MenuItem1.Index = 0
 Me.MenuItem1.Text = "Exit"
 '
 'TabControl1
 '
 Me.TabControl1.Controls.Add(Me.TabPage1)
 Me.TabControl1.Controls.Add(Me.TabPage2)
 Me.TabControl1.Location = New System.Drawing.Point(0, 8)
 Me.TabControl1.Name = "TabControl1"
 Me.TabControl1.SelectedIndex = 0
 Me.TabControl1.Size = New System.Drawing.Size(976, 608)
 Me.TabControl1.TabIndex = 310
 '
 'TabPage1
 '
 Me.TabPage1.Controls.Add(Me.Button25)
 Me.TabPage1.Controls.Add(Me.Button24)
 Me.TabPage1.Controls.Add(Me.Button23)
 Me.TabPage1.Controls.Add(Me.Button22)
 Me.TabPage1.Controls.Add(Me.Button20)
 Me.TabPage1.Controls.Add(Me.Button21)
 Me.TabPage1.Controls.Add(Me.Button19)
 Me.TabPage1.Controls.Add(Me.GroupBox2)
 Me.TabPage1.Controls.Add(Me.GroupBox1)
 Me.TabPage1.Controls.Add(Me.GroupBox6)
 Me.TabPage1.Controls.Add(Me.GroupBox11)
 Me.TabPage1.Controls.Add(Me.GroupBox3)
 Me.TabPage1.Controls.Add(Me.Button18)
 Me.TabPage1.Controls.Add(Me.TextBox15)
 Me.TabPage1.Controls.Add(Me.Button17)
 Me.TabPage1.Location = New System.Drawing.Point(4, 22)
 Me.TabPage1.Name = "TabPage1"
 Me.TabPage1.Size = New System.Drawing.Size(968, 582)
 Me.TabPage1.TabIndex = 0
 Me.TabPage1.Text = "Scheduling"
 '
 'Button25
 '
 Me.Button25.Location = New System.Drawing.Point(216, 440)
 Me.Button25.Name = "Button25"
 Me.Button25.Size = New System.Drawing.Size(72, 24)
 Me.Button25.TabIndex = 330
 Me.Button25.Text = "Button25"
 Me.Button25.Visible = False
 '
 'Button24
 '
 Me.Button24.BackColor = System.Drawing.Color.Aqua
 Me.Button24.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Button24.Location = New System.Drawing.Point(840, 424)
 Me.Button24.Name = "Button24"
 Me.Button24.Size = New System.Drawing.Size(112, 32)
 Me.Button24.TabIndex = 329
 Me.Button24.Text = "Grasp2"
 Me.Button24.Visible = False
 '
 'Button23

Appendix VI. Toast Making System – Source Code 128

 '
 Me.Button23.BackColor = System.Drawing.Color.Aqua
 Me.Button23.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Button23.Location = New System.Drawing.Point(808, 64)
 Me.Button23.Name = "Button23"
 Me.Button23.Size = New System.Drawing.Size(112, 32)
 Me.Button23.TabIndex = 328
 Me.Button23.Text = "CLOSE"
 Me.Button23.Visible = False
 '
 'Button22
 '
 Me.Button22.BackColor = System.Drawing.Color.Aqua
 Me.Button22.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Button22.Location = New System.Drawing.Point(808, 16)
 Me.Button22.Name = "Button22"
 Me.Button22.Size = New System.Drawing.Size(112, 32)
 Me.Button22.TabIndex = 327
 Me.Button22.Text = "OPEN"
 Me.Button22.Visible = False
 '
 'Button20
 '
 Me.Button20.BackColor = System.Drawing.Color.Aqua
 Me.Button20.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Button20.Location = New System.Drawing.Point(832, 272)
 Me.Button20.Name = "Button20"
 Me.Button20.Size = New System.Drawing.Size(112, 32)
 Me.Button20.TabIndex = 326
 Me.Button20.Text = "HOME4"
 Me.Button20.Visible = False
 '
 'Button21
 '
 Me.Button21.BackColor = System.Drawing.Color.Aqua
 Me.Button21.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Button21.Location = New System.Drawing.Point(832, 224)
 Me.Button21.Name = "Button21"
 Me.Button21.Size = New System.Drawing.Size(112, 32)
 Me.Button21.TabIndex = 325
 Me.Button21.Text = "HOME2"
 Me.Button21.Visible = False
 '
 'Button19
 '
 Me.Button19.BackColor = System.Drawing.Color.Aqua
 Me.Button19.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Button19.Location = New System.Drawing.Point(832, 184)
 Me.Button19.Name = "Button19"
 Me.Button19.Size = New System.Drawing.Size(112, 32)
 Me.Button19.TabIndex = 323
 Me.Button19.Text = "HOME1"
 Me.Button19.Visible = False
 '
 'Button18
 '
 Me.Button18.BackColor = System.Drawing.Color.Aqua
 Me.Button18.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Button18.Location = New System.Drawing.Point(832, 312)
 Me.Button18.Name = "Button18"
 Me.Button18.Size = New System.Drawing.Size(112, 32)
 Me.Button18.TabIndex = 322
 Me.Button18.Text = "Grasp1"
 Me.Button18.Visible = False
 '
 'TextBox15

 '
 Me.TextBox15.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.TextBox15.Location = New System.Drawing.Point(824,
376)
 Me.TextBox15.Name = "TextBox15"
 Me.TextBox15.Size = New System.Drawing.Size(128, 20)
 Me.TextBox15.TabIndex = 322
 Me.TextBox15.Text = "4"
 Me.TextBox15.Visible = False
 '
 'TabPage2
 '
 Me.TabPage2.Controls.Add(Me.GroupBox5)
 Me.TabPage2.Controls.Add(Me.GroupBox4)
 Me.TabPage2.Location = New System.Drawing.Point(4, 22)
 Me.TabPage2.Name = "TabPage2"
 Me.TabPage2.Size = New System.Drawing.Size(968, 582)
 Me.TabPage2.TabIndex = 1
 Me.TabPage2.Text = "Positioning"
 '
 'GroupBox5
 '
 Me.GroupBox5.Controls.Add(Me.Button32)
 Me.GroupBox5.Controls.Add(Me.Button30)
 Me.GroupBox5.Controls.Add(Me.Label33)
 Me.GroupBox5.Controls.Add(Me.TextBox7)
 Me.GroupBox5.Controls.Add(Me.Button13)
 Me.GroupBox5.Controls.Add(Me.Button15)
 Me.GroupBox5.Controls.Add(Me.Button14)
 Me.GroupBox5.Controls.Add(Me.Label34)
 Me.GroupBox5.Controls.Add(Me.Button16)
 Me.GroupBox5.Location = New System.Drawing.Point(32, 32)
 Me.GroupBox5.Name = "GroupBox5"
 Me.GroupBox5.Size = New System.Drawing.Size(448, 376)
 Me.GroupBox5.TabIndex = 323
 Me.GroupBox5.TabStop = False
 Me.GroupBox5.Text = "Autonomous Learning"
 '
 'Button32
 '
 Me.Button32.BackColor =
System.Drawing.Color.FromArgb(CType(128, Byte), CType(255,
Byte), CType(255, Byte))
 Me.Button32.Location = New System.Drawing.Point(16, 79)
 Me.Button32.Name = "Button32"
 Me.Button32.Size = New System.Drawing.Size(120, 32)
 Me.Button32.TabIndex = 335
 Me.Button32.Text = "Grasp Toast"
 '
 'Button30
 '
 Me.Button30.BackColor =
System.Drawing.Color.FromArgb(CType(192, Byte), CType(255,
Byte), CType(255, Byte))
 Me.Button30.Location = New System.Drawing.Point(16, 32)
 Me.Button30.Name = "Button30"
 Me.Button30.Size = New System.Drawing.Size(120, 32)
 Me.Button30.TabIndex = 334
 Me.Button30.Text = "Home Robot"
 '
 'Label33
 '
 Me.Label33.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label33.Location = New System.Drawing.Point(231, 36)
 Me.Label33.Name = "Label33"
 Me.Label33.Size = New System.Drawing.Size(112, 16)
 Me.Label33.TabIndex = 323
 Me.Label33.Text = "Next Move:"
 '
 'TextBox7
 '
 Me.TextBox7.Font = New System.Drawing.Font("Arial", 8.25!,
System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Appendix VI. Toast Making System – Source Code 129

 Me.TextBox7.Location = New System.Drawing.Point(231, 54)
 Me.TextBox7.Name = "TextBox7"
 Me.TextBox7.Size = New System.Drawing.Size(128, 20)
 Me.TextBox7.TabIndex = 322
 Me.TextBox7.Text = ""
 '
 'Button13
 '
 Me.Button13.BackColor = System.Drawing.Color.Aqua
 Me.Button13.Location = New System.Drawing.Point(16, 128)
 Me.Button13.Name = "Button13"
 Me.Button13.Size = New System.Drawing.Size(120, 32)
 Me.Button13.TabIndex = 5
 Me.Button13.Text = "Initialize Environment"
 '
 'Button15
 '
 Me.Button15.BackColor =
System.Drawing.Color.FromArgb(CType(0, Byte), CType(192,
Byte), CType(192, Byte))
 Me.Button15.Location = New System.Drawing.Point(16, 176)
 Me.Button15.Name = "Button15"
 Me.Button15.Size = New System.Drawing.Size(120, 32)
 Me.Button15.TabIndex = 9
 Me.Button15.Text = "Generate Path"
 '
 'Button14
 '
 Me.Button14.BackColor =
System.Drawing.Color.FromArgb(CType(0, Byte), CType(192,
Byte), CType(0, Byte))
 Me.Button14.Location = New System.Drawing.Point(16, 224)
 Me.Button14.Name = "Button14"
 Me.Button14.Size = New System.Drawing.Size(120, 32)
 Me.Button14.TabIndex = 6
 Me.Button14.Text = "Operate Robot"
 '
 'Label34
 '
 Me.Label34.BackColor = System.Drawing.Color.Orange
 Me.Label34.BorderStyle =
System.Windows.Forms.BorderStyle.Fixed3D
 Me.Label34.Font = New System.Drawing.Font("Arial", 9.75!,
System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Label34.Location = New System.Drawing.Point(231, 136)
 Me.Label34.Name = "Label34"
 Me.Label34.Size = New System.Drawing.Size(128, 80)
 Me.Label34.TabIndex = 321
 Me.Label34.Text = "Reached Goal"
 Me.Label34.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 Me.Label34.Visible = False
 '
 'Button16
 '
 Me.Button16.BackColor = System.Drawing.Color.Red
 Me.Button16.Font = New System.Drawing.Font("Microsoft Sans
Serif", 9.75!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))
 Me.Button16.ForeColor = System.Drawing.Color.Yellow
 Me.Button16.Location = New System.Drawing.Point(16, 280)
 Me.Button16.Name = "Button16"
 Me.Button16.Size = New System.Drawing.Size(120, 48)
 Me.Button16.TabIndex = 324
 Me.Button16.Text = "Stop Operation"
 '
 'GroupBox4
 '
 Me.GroupBox4.Controls.Add(Me.Button29)
 Me.GroupBox4.Controls.Add(Me.Button26)
 Me.GroupBox4.Controls.Add(Me.Button28)
 Me.GroupBox4.Controls.Add(Me.Button27)
 Me.GroupBox4.Controls.Add(Me.Button10)
 Me.GroupBox4.Controls.Add(Me.Button11)
 Me.GroupBox4.Controls.Add(Me.Button2)
 Me.GroupBox4.Controls.Add(Me.Button12)
 Me.GroupBox4.Location = New System.Drawing.Point(544, 32)

 Me.GroupBox4.Name = "GroupBox4"
 Me.GroupBox4.Size = New System.Drawing.Size(368, 272)
 Me.GroupBox4.TabIndex = 322
 Me.GroupBox4.TabStop = False
 Me.GroupBox4.Text = "Manual Manipulation"
 '
 'Button28
 '
 Me.Button28.Font = New System.Drawing.Font("Microsoft Sans
Serif", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))
 Me.Button28.Location = New System.Drawing.Point(271, 155)
 Me.Button28.Name = "Button28"
 Me.Button28.Size = New System.Drawing.Size(88, 23)
 Me.Button28.TabIndex = 5
 Me.Button28.Text = "Down"
 '
 'Button27
 '
 Me.Button27.Font = New System.Drawing.Font("Microsoft Sans
Serif", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))
 Me.Button27.Location = New System.Drawing.Point(272, 48)
 Me.Button27.Name = "Button27"
 Me.Button27.Size = New System.Drawing.Size(88, 23)
 Me.Button27.TabIndex = 4
 Me.Button27.Text = "Up"
 '
 'Button10
 '
 Me.Button10.Font = New System.Drawing.Font("Microsoft Sans
Serif", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))
 Me.Button10.Location = New System.Drawing.Point(160, 96)
 Me.Button10.Name = "Button10"
 Me.Button10.Size = New System.Drawing.Size(80, 23)
 Me.Button10.TabIndex = 1
 Me.Button10.Text = ">"
 '
 'Button11
 '
 Me.Button11.Font = New System.Drawing.Font("Microsoft Sans
Serif", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))
 Me.Button11.Location = New System.Drawing.Point(107, 48)
 Me.Button11.Name = "Button11"
 Me.Button11.Size = New System.Drawing.Size(80, 23)
 Me.Button11.TabIndex = 2
 Me.Button11.Text = "/\"
 '
 'Button2
 '
 Me.Button2.Font = New System.Drawing.Font("Microsoft Sans
Serif", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))
 Me.Button2.Location = New System.Drawing.Point(48, 96)
 Me.Button2.Name = "Button2"
 Me.Button2.Size = New System.Drawing.Size(88, 23)
 Me.Button2.TabIndex = 0
 Me.Button2.Text = "<"
 '
 'Button12
 '
 Me.Button12.Font = New System.Drawing.Font("Microsoft Sans
Serif", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))
 Me.Button12.Location = New System.Drawing.Point(112, 144)
 Me.Button12.Name = "Button12"
 Me.Button12.Size = New System.Drawing.Size(72, 23)
 Me.Button12.TabIndex = 3
 Me.Button12.Text = "\/"
 '
 'Button26
 '
 Me.Button26.Font = New System.Drawing.Font("Microsoft Sans
Serif", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))
 Me.Button26.Location = New System.Drawing.Point(16, 224)

Appendix VI. Toast Making System – Source Code 130

 Me.Button26.Name = "Button26"
 Me.Button26.Size = New System.Drawing.Size(88, 23)
 Me.Button26.TabIndex = 6
 Me.Button26.Text = "Open"
 '
 'Button29
 '
 Me.Button29.Font = New System.Drawing.Font("Microsoft Sans
Serif", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))
 Me.Button29.Location = New System.Drawing.Point(140, 224)
 Me.Button29.Name = "Button29"
 Me.Button29.Size = New System.Drawing.Size(88, 23)
 Me.Button29.TabIndex = 7
 Me.Button29.Text = "Close"
 '
 'Form1
 '
 Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)
 Me.ClientSize = New System.Drawing.Size(968, 606)
 Me.Controls.Add(Me.TabControl1)
 Me.Menu = Me.MainMenu1
 Me.Name = "Form1"
 Me.Text = "Toasting System"
 Me.GroupBox1.ResumeLayout(False)
 Me.GroupBox2.ResumeLayout(False)
 Me.GroupBox6.ResumeLayout(False)
 Me.GroupBox11.ResumeLayout(False)
 Me.GroupBox3.ResumeLayout(False)
 Me.TabControl1.ResumeLayout(False)
 Me.TabPage1.ResumeLayout(False)
 Me.TabPage2.ResumeLayout(False)
 Me.GroupBox5.ResumeLayout(False)
 Me.GroupBox4.ResumeLayout(False)
 Me.ResumeLayout(False)

 End Sub

#End Region

 'mode: 0...RS-232C 1...Ethernet
 Function Ms_BscOpenComm(ByVal mode%) As Integer
 ' Dim nCid As Integer
 Dim rc As Integer
 Dim IPAddrress As String
 Ms_BscOpenComm = -1
 If mode = 0 Then
 'Open the port.
 nCid = BscOpen(CurDir$, 1)

 If nCid < 0 Then GoTo Ms_BscOpenComm_Exit

 'Set serial communications parameters. ' Port, Rate, Parity,
Bits, Stop
 rc = BscSetCom(nCid, 1, 9600, 0, 8, 0)

 Else
 'Open the Ethernet line.
 nCid = BscOpen(CurDir$, PACKETETHERNET)
 If nCid < 0 Then GoTo Ms_BscOpenComm_Exit

 End If
 If rc <> 1 Then
 rc = BscClose(nCid)
 nCid = -1
 GoTo Ms_BscOpenComm_Exit
 End If

 'Connect communications line.
 rc = BscConnect(nCid)
 If rc <> 1 Then
 rc = BscClose(nCid)
 nCid = -1
 GoTo Ms_BscOpenComm_Exit
 End If

Ms_BscOpenComm_Exit:
 Ms_BscOpenComm = nCid

 TextBox1.Text = nCid
 TextBox2.Text = rc

 End Function

 Function Ms_BscCloseComm(ByRef nCid As Short) As Short
 Dim rc As Short
 'Cut the communications line.
 rc = BscDisConnect(nCid)
 'Close the port.
 rc = BscClose(nCid)
 rc = BscEnforcedClose(nCid) ' New
 Ms_BscCloseComm = rc
 TextBox1.Text = nCid
 TextBox2.Text = rc
 End Function

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles Button1.Click
 TextBox1.Text = Ms_BscOpenComm(0)
 If TextBox1.Text <> "-1" And TextBox2.Text = "1" Then
 Label15.Text = "Connected"
 Else
 Label15.Text = "Disconnected"
 End If
 CheckBox1.Checked = False
 CheckBox2.Checked = True
 End Sub

 Private Sub Button4_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles Button4.Click
 TextBox1.Text = ""
 TextBox2.Text = ""
 TextBox3.Text = ""
 End Sub

 Private Sub CmdDownLoad_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
CmdDownLoad.Click
 TextBox3.Text = BscSelectJob(nCid, TextBox6.Text)
 TextBox3.Text = BscDeleteJob(nCid)
 TextBox3.Text = ""
 TextBox3.Text = BscDownLoad(nCid, TextBox6.Text)
 End Sub

 Private Sub Button7_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles Button7.Click
 TextBox3.Text = BscSelectJob(nCid, TextBox4.Text)
 TextBox3.Text = BscUpLoad(nCid, TextBox4.Text)
 End Sub

 Private Sub Button5_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles Button5.Click
 TextBox3.Text = BscSelectJob(nCid, TextBox6.Text)
 TextBox3.Text = BscDeleteJob(nCid)
 End Sub

 Private Sub Button9_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles Button9.Click
 Disconnect_Robot()
 End Sub

 Private Sub Button6_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles Button6.Click
 TextBox3.Text = BscSelectJob(nCid, TextBox6.Text)
 TextBox3.Text = BscDeleteJob(nCid)
 TextBox3.Text = ""
 TextBox3.Text = BscDownLoad(nCid, TextBox6.Text)
 TextBox3.Text = BscSelOneCycle(nCid)
 BscHoldOff(nCid)
 BscSetMasterJob(nCid)
 BscSelectMode(nCid, 2)
 BscServoOn(nCid)
 BscStartJob(nCid)
 End Sub

Appendix VI. Toast Making System – Source Code 131

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MyBase.Load
 AddHandler t.Elapsed, AddressOf ToasterTimerFired ' for toast
timer
 AddHandler b.Elapsed, AddressOf ButtererTimerFired ' for
butterer
 AddHandler p.Elapsed, AddressOf PolicyTimerFired ' for policy
indicator
 t.Enabled = False
 b.Enabled = False
 p.Enabled = False
 StopRun = False 'for stoping learning episode
 NumOfEpisods = 0 ' counting number of learning episodes

 End Sub

 Public Function Disconnect_Robot()
 CheckBox1.Checked = True
 BscSelectMode(nCid, 1)
 BscServoOff(nCid)
 TextBox2.Text = Ms_BscCloseComm(0)
 ' TextBox2.Text = BscEnforcedClose(0)
 Label10.Text = "Teach"
 Label13.Text = "Off"
 CheckBox2.Checked = False
 If TextBox1.Text <> "-1" And TextBox2.Text = "1" Then
 Label15.Text = "Connected"
 Else
 Label15.Text = "Disconnected"
 End If
 End Function

 Private Sub CheckBox1_CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
CheckBox1.CheckedChanged
 If CheckBox1.Checked = True Then
 BscSelectMode(nCid, 1)
 Label10.Text = "Teach"
 Label13.Text = "Off"
 End If
 If CheckBox1.Checked = False Then
 BscSelectMode(nCid, 2)
 Label10.Text = "Play"
 BscHoldOff(nCid)
 End If
 End Sub

 Private Sub CheckBox2_CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
CheckBox2.CheckedChanged
 If CheckBox1.Checked = False Then
 If CheckBox2.Checked = False Then
 BscServoOff(nCid)
 Label13.Text = "Off"
 End If
 If CheckBox2.Checked = True Then
 BscServoOn(nCid)
 Label13.Text = "On"
 End If
 End If
 End Sub

 Public Function Run_Program(ByVal e As String) As Integer
 ' TextBox143.Text = ""
 TextBox3.Text = BscSelectJob(nCid, e)
 TextBox3.Text = BscDeleteJob(nCid)
 TextBox3.Text = ""
 TextBox3.Text = BscDownLoad(nCid, e)
 If ((e = "CLOSE.JBI") Or (e = "OPEN.JBI")) Then

 BscHoldOff(nCid)
 TextBox3.Text = BscSelLoopCycle(nCid)

 BscSetMasterJob(nCid)
 BscSelectMode(nCid, 2)
 BscServoOn(nCid)
 'If Finish_Flag = 0 Then
 BscStartJob(nCid)

 ' TextBox143.Text = ""
 'Else
 ' TextBox143.Text = BscStartJob(nCid)
 'End If
 BscHoldOn(nCid)
 Else
 If CheckBox4.Checked = False Then
 TextBox3.Text = BscSelOneCycle(nCid)
 BscSetMasterJob(nCid)
 BscSelectMode(nCid, 2)
 BscServoOn(nCid)
 'If Finish_Flag = 0 Then
 BscStartJob(nCid)
 ' TextBox143.Text = ""
 'Else
 ' TextBox143.Text = BscStartJob(nCid)
 'End If
 BscHoldOff(nCid)
 Else
 TextBox3.Text = BscSelLoopCycle(nCid)
 BscSetMasterJob(nCid)
 BscSelectMode(nCid, 2)
 BscServoOn(nCid)
 'If Finish_Flag = 0 Then
 BscStartJob(nCid)
 ' TextBox143.Text = ""
 'Else
 ' TextBox143.Text = BscStartJob(nCid)
 'End If
 BscHoldOff(nCid)
 End If
 End If
 End Function

 Private Sub Write2File(ByVal msg As String, ByVal filePath As
String)
 Dim fs As FileStream = New FileStream(filePath,
FileMode.Append, FileAccess.Write)
 Dim sw As StreamWriter = New StreamWriter(fs)
 sw.WriteLine(msg)
 sw.Flush()
 sw.Close()
 fs.Close()
 End Sub

 Private Sub Button3_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles Button3.Click

 Dim Robot_Sequence As String
 Dim Matlab_Func As String
 Dim i As Integer
 Dim NumOfMoves As Integer

 Select Case ComboBox1.SelectedIndex
 Case 0
 TextBox76.Text = "toast1(1)"
 Case 1
 TextBox76.Text = "toast2(0,0)"
 Case 2
 TextBox76.Text = "toast3(0,0)"
 Case 3
 TextBox76.Text = "toast4(0,0)"
 End Select

 Matlab_Func = TextBox76.Text ' matlab function name
 File.Delete(TextBox148.Text + "/sequence.csv") ' deleting old
csv file

 MatLab = CreateObject("Matlab.Application") ' create matlab
object
 Robot_Sequence = MatLab.Execute("cd " + TextBox148.Text) '
specifing path to .m file
 Robot_Sequence = MatLab.Execute(Matlab_Func) ' calling
function

Appendix VI. Toast Making System – Source Code 132

 Robot_Sequence = Mid(Robot_Sequence, 13) ' trimming
beginning
 Write2File(Robot_Sequence, TextBox148.Text +
"/sequence.csv") ' writing result to csv file

 NumOfMoves = Mid(Robot_Sequence, 1, 2) ' number of moves
at Robot_Sequence
 Robot_Sequence = Mid(Robot_Sequence, 9)

 ReDim Preserve Sequence(NumOfMoves)

 TextBox75.Text = Robot_Sequence.ToString ' displaying
sequence

 i = 1
 Do Until Robot_Sequence.Length < 3
 Sequence(i) = Mid(Robot_Sequence, 1, 1)
 Robot_Sequence = Mid(Robot_Sequence, 8)
 i = i + 1
 Loop

 'for interface
 Label30.Visible = True
 p.Enabled = True

 End Sub

 Private Sub TextBox77_TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs)

 End Sub

 Private Sub Label42_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Label42.Click

 End Sub

 Private Sub Button8_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles Button8.Click

 Dim i As Integer
 Dim rf As Short ' to check if robot finished
 Dim StartShift As Integer ' shifts for grasping a toast
 Dim Queue2A As Integer
 Dim Queue2B As Integer
 Dim Queue4A As Integer
 Dim Queue4B As Integer
 Dim Shift As Integer

 StartShift = 0
 Queue2A = 0
 Queue2B = 0
 Queue4A = 0
 Queue4B = 0

 Dim Positions(12) As String
 Positions(1) = "-72547,37586,36316,-1761,1583,19688"
 Positions(2) = "-60007,17796,10045,-1628,5693,16403"
 Positions(3) = "-32661,-2931,-11835,-1207,6782,9085"
 Positions(4) = "1942,-9898,-18530,-515,6924,-203"
 Positions(5) = "32203,-3025,-10859,157,6500,-8327"
 Positions(6) = "55551,12919,4204,665,6932,-14596"
 Positions(7) = "-72549,44593,61186,-1795,-9146,19497"
 Positions(8) = "-60007,21454,29236,-1621,-3638,16250"
 Positions(9) = "-32661,-208,4629,-1195,-1475,8985"
 Positions(10) = "1942,-6205,1685,-511,-3007,-254"
 Positions(11) = "32203,1659,12570,156,-4767,-8309"
 Positions(12) = "55551,16831,25180,659,-3324,-14528"

 Dim OpenClose As Integer
 OpenClose = 0 ' 0-Open, 1-Close

 Dim NumFinToasts As Integer
 NumFinToasts = 0

 ' for interface
 ' process indicator
 Label28.Text = "In Process"
 Label28.BackColor =
System.Drawing.Color.FromName("Green")

 ToasterFree = True ' init
 ButtererFree = True ' init
 ToasterFinished = False ' init
 ButtererFinished = False ' init

 TextBox6.Text = "OPEN.JBI"
 Button6_Click(sender, e)
 TextBox6.Text = "HOME1.JBI"
 Button6_Click(sender, e)
 ' Pause(10)

 TextBox5.Text = NumFinToasts.ToString

 For i = 1 To Sequence.Length - 1

 TextBox13.Text = i.ToString

 rf = BscJobWait(nCid, -1)
 If rf = 0 Then ' 0-robot finished former job. we can download
next job

 TextBox8.Text = Sequence(i).ToString

 If (Sequence(i) = 1) Or (Sequence(i) = 2) Or (Sequence(i) =
4) Then ' stations 1,2,4

 TextBox6.Text = "HOME" + Sequence(i).ToString +
".JBI"
 Button6_Click(sender, e)
 OpenClose = 1 - OpenClose
 Select Case Sequence(i)
 Case 1
 Shift = StartShift
 StartShift = StartShift + 1
 Case 2 ' A upper, B lower
 If OpenClose = 0 And Queue2A = 0 And Queue2B
= 0 Then ' putting in empty Queue
 Shift = 1
 Queue2B = Queue2B + 1
 ElseIf OpenClose = 0 And Queue2A = 0 And
Queue2B = 1 Then ' puting in queue with toast at B
 Shift = 0
 Queue2A = Queue2A + 1
 ElseIf OpenClose = 1 And Queue2A = 1 Then '
taking when toasts at A and B
 Shift = 2
 Queue2A = Queue2A - 1
 ElseIf OpenClose = 1 And Queue2A = 0 And
Queue2B = 1 Then ' taking when toast at B and A empty
 Shift = 3
 Queue2B = Queue2B - 1
 End If

 Case 4
 If OpenClose = 0 And Queue4A = 0 And Queue4B
= 0 Then ' putting in empty Queue
 Shift = 1
 Queue4B = Queue4B + 1
 ElseIf OpenClose = 0 And Queue4A = 0 And
Queue4B = 1 Then ' puting in queue with toast at B
 Shift = 0
 Queue4A = Queue4A + 1
 ElseIf OpenClose = 1 And Queue4A = 1 Then '
taking when toasts at A and B
 Shift = 2

Appendix VI. Toast Making System – Source Code 133

 Queue4A = Queue4A - 1
 ElseIf OpenClose = 1 And Queue4A = 0 And
Queue4B = 1 Then ' taking when toast at B and A empty
 Shift = 3
 Queue4B = Queue4B - 1
 End If
 End Select

 If OpenClose = 0 Then
 grasping2(sender, e, Shift, OpenClose)
 Else
 grasping1(sender, e, Shift, OpenClose)
 End If

 ElseIf (Sequence(i) = 6) Then ' station 6

 rf = BscJobWait(nCid, -1)
 While rf <> 0 ' 0-robot finished former job. we can
download next job
 rf = BscJobWait(nCid, -1)
 End While

 OpenClose = 1 - OpenClose
 TextBox6.Text = "FNSHPLC.JBI"
 Button6_Click(sender, e)

 ' for interface
 ' Number of finished toasts
 NumFinToasts = NumFinToasts + 1
 TextBox5.Text = NumFinToasts.ToString

 ' if inserting to free station
 Else ' station 3 or 5

 If ((Sequence(i) = 3) And (ToasterFree = True)) Or
((Sequence(i) = 5) And (ButtererFree = True)) Or ((Sequence(i) = 3)
And (ToasterFinished = True)) Or ((Sequence(i) = 5) And
(ButtererFinished = True)) Then

 OpenClose = 1 - OpenClose

 If Sequence(i) = 3 Then ' toaster is free

 TextBox6.Text = "HOME3.JBI"
 Button6_Click(sender, e)

 If OpenClose = 0 Then
 TextBox6.Text = "TSTRPLC.JBI"
 Else
 TextBox6.Text = "TSTRPICK.JBI"

 End If

 rf = BscJobWait(nCid, -1)
 While rf <> 0 ' 0-robot finished former job. we can
download next job
 rf = BscJobWait(nCid, -1)
 End While
 Button6_Click(sender, e)

 End If

 If Sequence(i) = 5 Then ' toaster is free

 If OpenClose = 0 Then
 TextBox6.Text = "BTRPLC.JBI"
 Else
 TextBox6.Text = "BTRPICK.JBI"

 End If

 Button6_Click(sender, e)

 End If

 If Sequence(i) = 3 Then ' update toaster to be busy
 If ToasterFree = True Then
 ToasterFree = False
 ToasterFinished = False
 t.Enabled = True
 Else
 ToasterFree = True
 ToasterFinished = False
 If Sequence(i + 1) = 3 Then
 i = i + 1
 End If
 End If

 End If

 If Sequence(i) = 5 Then ' update butterer to be busy
 If ButtererFree = True Then
 ButtererFree = False
 ButtererFinished = False
 b.Enabled = True
 Else
 ButtererFree = True
 ButtererFinished = False
 If Sequence(i + 1) = 5 Then
 i = i + 1
 End If
 End If

 End If

 Else ' if going to toaster or butterer and didn't finish

 ' if not already at position
 If Sequence(i) <> Sequence(i - 1) Then

 TextBox6.Text = "HOME" + Sequence(i).ToString
+ ".JBI"
 Button6_Click(sender, e)

 End If

 i = i - 1

 End If

 End If ' if of all stations

 Else ' if robot still moving...
 i = i - 1

 End If ' robot finished

 ' for interface.
 ' for toaster indicator

 If ToasterFree = True Then
 Label20.Text = "Not Toasting"
 Label20.BackColor =
System.Drawing.Color.FromName("Red")
 Else
 If ToasterFinished = True Then
 Label20.Text = "Not Toasting"
 Label20.BackColor =
System.Drawing.Color.FromName("Red")
 Else
 Label20.Text = "Toasting"

Appendix VI. Toast Making System – Source Code 134

 Label20.BackColor =
System.Drawing.Color.FromName("Green")
 End If
 End If

 ' for butterer indicator
 If ButtererFree = True Then
 Label21.Text = "Not Buttering"
 Label21.BackColor =
System.Drawing.Color.FromName("Red")
 Else
 If ButtererFinished = True Then
 Label21.Text = "Not Buttering"
 Label21.BackColor =
System.Drawing.Color.FromName("Red")
 Else
 Label21.Text = "Buttering"
 Label21.BackColor =
System.Drawing.Color.FromName("Green")
 End If
 End If

 Next

 ' for interface
 ' process indicator

 Label28.Text = "Process Finished"
 Label28.BackColor = System.Drawing.Color.FromName("Red")

 End Sub

 Public Sub ToasterTimerFired(ByVal sender As Object, ByVal e
As System.Timers.ElapsedEventArgs)
 ' TextBox9.Text = "1"
 ToasterFinished = True
 t.Enabled = False

 End Sub
 Public Sub ButtererTimerFired(ByVal sender As Object, ByVal e
As System.Timers.ElapsedEventArgs)
 ButtererFinished = True
 b.Enabled = False

 End Sub

 Public Sub PolicyTimerFired(ByVal sender As Object, ByVal e As
System.Timers.ElapsedEventArgs)
 Label30.Visible = False
 p.Enabled = False

 End Sub

 Private Sub TextBox8_TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
TextBox8.TextChanged

 End Sub

 Private Sub MenuItem1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MenuItem1.Click
 Disconnect_Robot()
 Close()
 End Sub

 Private Sub Button11_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button11.Click
 Dim direction As String
 '/\
 direction = "1"
 moving_manual(sender, e, direction)
 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles Button2.Click
 Dim direction As String
 '<
 direction = "2"
 moving_manual(sender, e, direction)
 End Sub

 Private Sub Button12_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button12.Click
 Dim direction As String
 '\/
 direction = "3"
 moving_manual(sender, e, direction)
 End Sub

 Private Sub Button10_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button10.Click
 Dim direction As String
 '>
 direction = "4"
 moving_manual(sender, e, direction)
 End Sub

 Private Sub Button27_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button27.Click
 Dim direction As String
 'Up
 direction = "5"
 moving_manual(sender, e, direction)
 End Sub

 Private Sub Button28_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button28.Click
 Dim direction As String
 'Down
 direction = "6"
 moving_manual(sender, e, direction)
 End Sub

 Private Sub moving(ByVal sender As System.Object, ByVal e As
System.EventArgs, ByVal direction As String)
 Dim rf As Short ' to check if robot finished
 Dim point As String
 Dim Success As String

 Select Case direction
 Case "1"
 point = "P0001=000.000,20,000.000,00.00,00.00,00.00"
 Case "2"
 point = "P0001=-20,000.000,000.000,00.00,00.00,00.00"
 Case "3"
 point = "P0001=000.000,-20,000.000,00.00,00.00,00.00"
 Case "4"
 point = "P0001=20,000.000,000.000,00.00,00.00,00.00"
 End Select

 rf = BscJobWait(nCid, -1)
 If rf = 0 Then ' 0-robot finished former job. we can download
next job

 If StopRun = False Then

 File.Delete("POLICY3.JBI")
 Dim fs As New FileStream("POLICY3.JBI",
FileMode.OpenOrCreate, FileAccess.Write)
 Dim s As New StreamWriter(fs)
 s.WriteLine("/JOB")
 s.WriteLine("//NAME POLICY3")
 s.WriteLine("//POS")
 s.WriteLine("///NPOS 0,0,0,1,0,0")
 s.WriteLine("///TOOL 0")
 s.WriteLine("///POSTYPE ROBOT")

Appendix VI. Toast Making System – Source Code 135

 s.WriteLine("///RECTAN")
 s.WriteLine("///RCONF 0,0,0,0,0,0,0,0")
 s.WriteLine(point)

 s.WriteLine("//INST")
 s.WriteLine("///DATE 2055/03/01 22:24")
 s.WriteLine("///ATTR SC,RW")
 s.WriteLine("///GROUP1 RB1")
 s.WriteLine("NOP")
 s.WriteLine("IMOV P001 V=1000")
 s.WriteLine("END")
 s.Close()

 TextBox6.Text = "POLICY3.JBI"
 Button6_Click(sender, e)
 ' Pause(10)

 ' End If

 rf = BscJobWait(nCid, -1)
 While rf <> 0 ' 0-robot finished former job. we can
download next job
 rf = BscJobWait(nCid, -1)
 End While

 End If

 End If

 End Sub

 Private Sub moving_manual(ByVal sender As System.Object,
ByVal e As System.EventArgs, ByVal direction As String)
 Dim rf As Short ' to check if robot finished
 Dim point As String
 Dim Success As String

 Select Case direction
 Case "1"
 point = "P0001=000.000,20,000.000,00.00,00.00,00.00"
 Case "2"
 point = "P0001=-20,000.000,000.000,00.00,00.00,00.00"
 Case "3"
 point = "P0001=000.000,-20,000.000,00.00,00.00,00.00"
 Case "4"
 point = "P0001=20,000.000,000.000,00.00,00.00,00.00"
 Case "5"
 point = "P0001=000.000,000.000,20,00.00,00.00,00.00"
 Case "6"
 point = "P0001=000.000,000.000,-20,00.00,00.00,00.00"
 End Select

 rf = BscJobWait(nCid, -1)
 If rf = 0 Then ' 0-robot finished former job. we can download
next job

 If StopRun = False Then

 File.Delete("POLICY3.JBI")
 Dim fs As New FileStream("POLICY3.JBI",
FileMode.OpenOrCreate, FileAccess.Write)
 Dim s As New StreamWriter(fs)
 s.WriteLine("/JOB")
 s.WriteLine("//NAME POLICY3")
 s.WriteLine("//POS")
 s.WriteLine("///NPOS 0,0,0,1,0,0")
 s.WriteLine("///TOOL 0")
 s.WriteLine("///POSTYPE ROBOT")
 s.WriteLine("///RECTAN")
 s.WriteLine("///RCONF 0,0,0,0,0,0,0,0")
 s.WriteLine(point)

 s.WriteLine("//INST")
 s.WriteLine("///DATE 2055/03/01 22:24")
 s.WriteLine("///ATTR SC,RW")
 s.WriteLine("///GROUP1 RB1")
 s.WriteLine("NOP")
 s.WriteLine("IMOV P001 V=1000")
 s.WriteLine("END")
 s.Close()

 TextBox6.Text = "POLICY3.JBI"
 Button6_Click(sender, e)
 ' Pause(10)

 ' End If

 rf = BscJobWait(nCid, -1)
 While rf <> 0 ' 0-robot finished former job. we can
download next job
 rf = BscJobWait(nCid, -1)
 End While

 End If

 End If

 End Sub

 Private Sub Button30_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button30.Click
 Dim rf As Short ' to check if robot finished
 Dim Success As String

 ' for interface
 TextBox7.Text = ""
 Label34.Visible = False
 StopRun = False 'for stoping learning episode

 NumOfEpisods = 1

 TextBox6.Text = "HOME8.JBI"
 Button6_Click(sender, e)

 rf = BscJobWait(nCid, -1)
 While rf <> 0 ' 0-robot finished former job. we can download
next job
 rf = BscJobWait(nCid, -1)
 End While

 MatLab = CreateObject("Matlab.Application") ' create matlab
object
 MatLab.Execute("cd " + TextBox148.Text) ' specifing path to .m
file
 MatLab.Execute("clear_variables") ' calling function

 End Sub

 Private Sub Button32_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button32.Click
 Dim rf As Short ' to check if robot finished

 ' for interface
 TextBox7.Text = ""
 Label34.Visible = False
 StopRun = False 'for stoping learning episode

 NumOfEpisods = 1

 TextBox6.Text = "BCA.JBI"
 Button6_Click(sender, e)

 rf = BscJobWait(nCid, -1)
 While rf <> 0 ' 0-robot finished former job. we can download
next job
 rf = BscJobWait(nCid, -1)
 End While

 End Sub

Appendix VI. Toast Making System – Source Code 136

 Private Sub Button13_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button13.Click
 MatLab = CreateObject("Matlab.Application") ' create matlab
object
 MatLab.Execute("cd " + TextBox148.Text) ' specifing path to .m
file
 MatLab.Execute("environ_init") ' calling function

 End Sub

 Private Sub Button14_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button14.Click
 Dim rf As Short ' to check if robot finished
 Dim point As String
 Dim Success As String
 Dim nextMove As String
 Dim EpisodeSteps As Integer

 nextMove = 4 ' init. will be changed anyway
 'for interface
 EpisodeSteps = 0

 While Val(nextMove) <> 0 ' 0-robot finished former job. we can
download next job

 If StopRun = True Then
 Exit While
 End If

 MatLab = CreateObject("Matlab.Application") ' create matlab
object
 MatLab.Execute("cd " + TextBox148.Text) ' specifing path to
.m file
 MatLab.Execute("identify") ' calling function

 MatLab = CreateObject("Matlab.Application") ' create matlab
object
 nextMove = MatLab.Execute("cd " + TextBox148.Text) '
specifing path to .m file
 nextMove = MatLab.Execute("run") ' calling function
 nextMove = Mid(nextMove, 14, 1) ' trimming beginning and
end

 Select Case nextMove
 Case "0"
 TextBox7.Text = "Stop"
 Case "1"
 TextBox7.Text = "/\"
 Case "2"
 TextBox7.Text = "<"
 Case "3"
 TextBox7.Text = "\/"
 Case "4"
 TextBox7.Text = ">"
 End Select

 rf = BscJobWait(nCid, -1)
 While rf <> 0 ' 0-robot finished former job. we can download
next job
 rf = BscJobWait(nCid, -1)
 End While
 If Val(nextMove) <> 0 Then ' val - to parse to integer
 moving(sender, e, nextMove)

 Else
 ' for interface
 Label34.Visible = True

 Dim direction As String
 direction = "4"
 moving_manual(sender, e, direction)

 rf = BscJobWait(nCid, -1)

 While rf <> 0 ' 0-robot finished former job. we can
download next job
 rf = BscJobWait(nCid, -1)
 End While

 TextBox6.Text = "FINISH.JBI"
 Button6_Click(sender, e)

 rf = BscJobWait(nCid, -1)
 While rf <> 0 ' 0-robot finished former job. we can
download next job
 rf = BscJobWait(nCid, -1)
 End While

 End If

 'for interface
 If Val(nextMove) <> 0 Then
 EpisodeSteps = EpisodeSteps + 1
 End If

 End While

 End Sub

 Private Sub Button15_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button15.Click

 MatLab = CreateObject("Matlab.Application") ' create matlab
object
 MatLab.Execute("cd " + TextBox148.Text) ' specifing path to .m
file
 MatLab.Execute("gw('new')") ' calling function

 MatLab = CreateObject("Matlab.Application") ' create matlab
object
 MatLab.Execute("cd " + TextBox148.Text) ' specifing path to .m
file
 MatLab.Execute("gw('try')") ' calling function

 End Sub

 Private Sub Button16_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button16.Click
 StopRun = True
 End Sub

 Private Sub Button17_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button17.Click

 Dim i As Integer
 Dim rf As Short ' to check if robot finished

 Dim Positions(12) As String
 Positions(1) = "-72547,37586,36316,-1761,1583,19688"
 Positions(2) = "-60007,17796,10045,-1628,5693,16403"
 Positions(3) = "-32661,-2931,-11835,-1207,6782,9085"
 Positions(4) = "1942,-9898,-18530,-515,6924,-203"
 Positions(5) = "32203,-3025,-10859,157,6500,-8327"
 Positions(6) = "55551,12919,4204,665,6932,-14596"
 Positions(7) = "-72549,44593,61186,-1795,-9146,19497"
 Positions(8) = "-60007,21454,29236,-1621,-3638,16250"
 Positions(9) = "-32661,-208,4629,-1195,-1475,8985"
 Positions(10) = "1942,-6205,1685,-511,-3007,-254"
 Positions(11) = "32203,1659,12570,156,-4767,-8309"
 Positions(12) = "55551,16831,25180,659,-3324,-14528"

 Dim OpenClose As Integer
 OpenClose = 0 ' 0-Open, 1-Close

 Dim NumFinToasts As Integer
 NumFinToasts = 0

 ' for interface

Appendix VI. Toast Making System – Source Code 137

 ' process indicator
 Label28.Text = "In Process"
 Label28.BackColor =
System.Drawing.Color.FromName("Green")

 ToasterFree = True ' init
 ButtererFree = True ' init
 ToasterFinished = False ' init
 ButtererFinished = False ' init

 TextBox6.Text = "HOME.JBI"
 Button6_Click(sender, e)
 ' Pause(10)

 TextBox5.Text = NumFinToasts.ToString

 For i = 1 To Sequence.Length - 1

 ' for interface
 ' Number of finished toasts
 If Sequence(i) = 6 Then
 NumFinToasts = NumFinToasts + 1
 TextBox5.Text = NumFinToasts.ToString
 End If

 TextBox13.Text = i.ToString

 rf = BscJobWait(nCid, -1)
 If rf = 0 Then ' 0-robot finished former job. we can download
next job
 TextBox8.Text = Sequence(i).ToString

 ' if inserting to free station
 If ((Sequence(i) <> 3) And (Sequence(i) <> 5)) Or
((Sequence(i) = 3) And (ToasterFree = True)) Or ((Sequence(i) = 5)
And (ButtererFree = True)) Or ((Sequence(i) = 3) And
(ToasterFinished = True)) Or ((Sequence(i) = 5) And
(ButtererFinished = True)) Then

 File.Delete("POLICY1.JBI")
 Dim fs As New FileStream("POLICY1.JBI",
FileMode.OpenOrCreate, FileAccess.Write)
 Dim s As New StreamWriter(fs)
 s.WriteLine("/JOB")
 s.WriteLine("//NAME POLICY1")
 s.WriteLine("//POS")
 s.WriteLine("///NPOS 3,0,0,0,0,0")
 s.WriteLine("///TOOL 0")
 s.WriteLine("///POSTYPE PULSE")
 s.WriteLine("///PULSE")
 s.WriteLine("C00000=" + Positions(Sequence(i) +
6).ToString)
 s.WriteLine("C00001=" +
Positions(Sequence(i)).ToString)
 s.WriteLine("C00002=" + Positions(Sequence(i) +
6).ToString)
 s.WriteLine("//INST")
 s.WriteLine("///DATE 2055/03/01 22:24")
 s.WriteLine("///ATTR SC,RW")
 s.WriteLine("///GROUP1 RB1")
 s.WriteLine("NOP")
 s.WriteLine("MOVJ C00000 VJ=10.00")
 s.WriteLine("MOVJ C00001 VJ=10.00")

 If OpenClose = 0 Then
 s.WriteLine("CALL JOB:CLOSE")
 Else
 s.WriteLine("CALL JOB:OPEN")
 End If
 OpenClose = 1 - OpenClose
 s.WriteLine("TIMER T=1.00")

 s.WriteLine("MOVJ C00002 VJ=10.00")
 s.WriteLine("END")
 s.Close()

 TextBox6.Text = "POLICY1.JBI"
 Button6_Click(sender, e)
 ' Pause(10)

 If Sequence(i) = 3 Then ' update toaster to be busy
 If ToasterFree = True Then
 ToasterFree = False
 ToasterFinished = False
 t.Enabled = True
 Else
 ToasterFree = True
 ToasterFinished = False
 If Sequence(i + 1) = 3 Then
 i = i + 1
 End If
 End If

 End If

 If Sequence(i) = 5 Then ' update butterer to be busy
 If ButtererFree = True Then
 ButtererFree = False
 ButtererFinished = False
 b.Enabled = True
 Else
 ButtererFree = True
 ButtererFinished = False
 If Sequence(i + 1) = 5 Then
 i = i + 1
 End If
 End If

 End If

 Else
 ' if going to toaster and didn't finish

 ' if not already at position
 If Sequence(i) <> Sequence(i - 1) Then

 File.Delete("POLICY2.JBI")
 Dim fs1 As New FileStream("POLICY2.JBI",
FileMode.OpenOrCreate, FileAccess.Write)
 Dim s1 As New StreamWriter(fs1)

 s1.WriteLine("/JOB")
 s1.WriteLine("//NAME POLICY2")
 s1.WriteLine("//POS")
 s1.WriteLine("///NPOS 1,0,0,0,0,0")
 s1.WriteLine("///TOOL 0")
 s1.WriteLine("///POSTYPE PULSE")
 s1.WriteLine("///PULSE")
 s1.WriteLine("C00000=" + Positions(Sequence(i) +
6).ToString)
 s1.WriteLine("//INST")
 s1.WriteLine("///DATE 2055/03/01 22:24")
 s1.WriteLine("///ATTR SC,RW")
 s1.WriteLine("///GROUP1 RB1")
 s1.WriteLine("NOP")
 s1.WriteLine("MOVJ C00000 VJ=10.00")
 s1.WriteLine("END")
 s1.Close()

 TextBox6.Text = "POLICY2.JBI"
 Button6_Click(sender, e)
 ' Pause(8)

Appendix VI. Toast Making System – Source Code 138

 End If
 i = i - 1

 ' If Sequence(i) = 3 Then
 ' Do Until ToasterFinished = True
 ' TextBox9.Text = "2"
 ' Loop
 ' Else
 ' Do Until ButtererFinished = True
 ' Loop
 ' End If

 ' If ((Sequence(i) = 3) And (ToasterFinished = True))
Or ((Sequence(i) = 5) And (ButtererFinished = True)) Then

 ' File.Delete("POLICY3.JBI")
 ' Dim fs2 As New FileStream("POLICY3.JBI",
FileMode.OpenOrCreate, FileAccess.Write)
 ' Dim s2 As New StreamWriter(fs2)

 ' s2.WriteLine("/JOB")
 ' s2.WriteLine("//NAME POLICY3")
 ' s2.WriteLine("//POS")
 's2.WriteLine("///NPOS 2,0,0,0,0,0")
 's2.WriteLine("///TOOL 0")
 's2.WriteLine("///POSTYPE PULSE")
 's2.WriteLine("///PULSE")
 's2.WriteLine("C00000=" +
Positions(Sequence(i)).ToString)
 's2.WriteLine("C00001=" + Positions(Sequence(i) +
6).ToString)
 's2.WriteLine("//INST")
 's2.WriteLine("///DATE 2055/03/01 22:24")
 's2.WriteLine("///ATTR SC,RW")
 's2.WriteLine("///GROUP1 RB1")
 's2.WriteLine("NOP")
 's2.WriteLine("MOVJ C00000 VJ=10.00")

 'If OpenClose = 0 Then
 's2.WriteLine("CALL JOB:CLOSE")
 'Else
 ' s2.WriteLine("CALL JOB:OPEN")
 'End If
 'OpenClose = 1 - OpenClose
 's2.WriteLine("TIMER T=1.00")
 's2.WriteLine("MOVJ C00001 VJ=10.00")
 's2.WriteLine("END")
 's2.Close()

 ' If Sequence(i) = 3 Then
 'ToasterFree = True ' freeing toaster
 'ToasterFinished = False
 'Else
 ' ButtererFree = True ' freeing butterer
 ' ButtererFinished = False
 ' End If

 ' TextBox6.Text = "POLICY3.JBI"
 ' Button6_Click(sender, e)
 ' Pause(7)
 ' Else
 ' i = i - 1
 ' End If

 End If

 Else ' if robot still moving...
 i = i - 1
 End If ' robot finished

 ' for interface.
 ' for toaster indicator

 If ToasterFree = True Then
 Label20.Text = "Not Toasting"
 Label20.BackColor =
System.Drawing.Color.FromName("Red")
 Else
 If ToasterFinished = True Then
 Label20.Text = "Not Toasting"
 Label20.BackColor =
System.Drawing.Color.FromName("Red")
 Else
 Label20.Text = "Toasting"
 Label20.BackColor =
System.Drawing.Color.FromName("Green")
 End If
 End If

 ' for butterer indicator
 If ButtererFree = True Then
 Label21.Text = "Not Buttering"
 Label21.BackColor =
System.Drawing.Color.FromName("Red")
 Else
 If ButtererFinished = True Then
 Label21.Text = "Not Buttering"
 Label21.BackColor =
System.Drawing.Color.FromName("Red")
 Else
 Label21.Text = "Buttering"
 Label21.BackColor =
System.Drawing.Color.FromName("Green")
 End If
 End If

 Next

 ' for interface
 ' process indicator

 Label28.Text = "Process Finished"
 Label28.BackColor = System.Drawing.Color.FromName("Red")

 End Sub

 Private Sub Button18_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button18.Click
 Dim Shift As Integer
 Shift = Val(TextBox15.Text)
 grasping1(sender, e, Shift, 1)
 End Sub

 Private Sub Button19_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button19.Click
 TextBox6.Text = "HOME1.JBI"
 Button6_Click(sender, e)
 End Sub

 Private Sub Button21_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button21.Click
 TextBox6.Text = "HOME2.JBI"
 Button6_Click(sender, e)
 End Sub

 Private Sub Button20_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button20.Click
 TextBox6.Text = "HOME4.JBI"
 Button6_Click(sender, e)
 End Sub

 Private Sub Button22_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button22.Click
 TextBox6.Text = "OPEN.JBI"
 Button6_Click(sender, e)

Appendix VI. Toast Making System – Source Code 139

 End Sub

 Private Sub Button23_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button23.Click
 TextBox6.Text = "CLOSE.JBI"
 Button6_Click(sender, e)
 End Sub

 Private Sub grasping1(ByVal sender As System.Object, ByVal e
As System.EventArgs, ByVal Shift As Integer, ByVal OpenClose As
Integer)
 Dim StartToasts As Integer ' number of toasts in start station
 Dim rf As Short ' to check if robot finished
 Dim OC As String
 Dim ShiftUp As Integer

 ' StartToasts = Val(TextBox15.Text)

 rf = BscJobWait(nCid, -1)
 If rf = 0 Then ' 0-robot finished former job. we can download
next job

 If OpenClose = 0 Then
 OC = "OPEN"
 Else
 OC = "CLOSE"
 End If

 Shift = -240 - (Shift * 40)
 ShiftUp = -40 - Shift

 File.Delete("GRASP1.JBI")
 Dim fs As New FileStream("GRASP1.JBI",
FileMode.OpenOrCreate, FileAccess.Write)
 Dim s As New StreamWriter(fs)
 s.WriteLine("/JOB")
 s.WriteLine("//NAME GRASP1")
 s.WriteLine("//POS")
 s.WriteLine("///NPOS 0,0,0,5,0,0")
 s.WriteLine("///TOOL 0")
 s.WriteLine("///POSTYPE ROBOT")
 s.WriteLine("///RECTAN")
 s.WriteLine("///RCONF 0,0,0,0,0,0,0,0")
 s.WriteLine("P0001=00.00,00.00," + Shift.ToString +
",000.000,000.000,00.00")

s.WriteLine("P0002=00.00,145,000.000,000.000,00.00,00.00")
 s.WriteLine("P0003=00.00,00.00,40,000.000,000.000,00.00")
 s.WriteLine("P0004=00.00,-
145,000.000,000.000,00.00,00.00")
 s.WriteLine("P0005=00.00,00.00," + ShiftUp.ToString +
",000.000,000.000,00.00")
 s.WriteLine("//INST")
 s.WriteLine("///DATE 2055/03/01 22:24")
 s.WriteLine("///ATTR SC,RW")
 s.WriteLine("///GROUP1 RB1")
 s.WriteLine("NOP")
 s.WriteLine("IMOV P001 V=100")
 s.WriteLine("IMOV P002 V=100")
 s.WriteLine("IMOV P003 V=20")
 s.WriteLine("TIMER T=1.00")
 s.WriteLine("CALL JOB:" + OC)
 s.WriteLine("TIMER T=1.00")
 s.WriteLine("IMOV P004 V=100")
 s.WriteLine("IMOV P005 V=100")
 s.WriteLine("END")
 s.Close()

 TextBox6.Text = "GRASP1.JBI"
 Button6_Click(sender, e)

 ' StartToasts = StartToasts - 1
 Else
 grasping1(sender, e, Shift, OpenClose)
 End If

 End Sub

 Private Sub grasping2(ByVal sender As System.Object, ByVal e
As System.EventArgs, ByVal Shift As Integer, ByVal OpenClose As
Integer)
 Dim StartToasts As Integer ' number of toasts in start station
 Dim rf As Short ' to check if robot finished
 Dim OC As String
 Dim ShiftUp As Integer

 ' StartToasts = Val(TextBox15.Text)

 rf = BscJobWait(nCid, -1)
 If rf = 0 Then ' 0-robot finished former job. we can download
next job

 If OpenClose = 0 Then
 OC = "OPEN"
 Else
 OC = "CLOSE"
 End If

 Shift = -240 - (Shift * 40)
 ShiftUp = 80 - Shift

 File.Delete("GRASP2.JBI")
 Dim fs As New FileStream("GRASP2.JBI",
FileMode.OpenOrCreate, FileAccess.Write)
 Dim s As New StreamWriter(fs)
 s.WriteLine("/JOB")
 s.WriteLine("//NAME GRASP2")
 s.WriteLine("//POS")
 s.WriteLine("///NPOS 0,0,0,7,0,0")
 s.WriteLine("///TOOL 0")
 s.WriteLine("///POSTYPE ROBOT")
 s.WriteLine("///RECTAN")
 s.WriteLine("///RCONF 0,0,0,0,0,0,0,0")
 s.WriteLine("P0001=00.00,00.00," + Shift.ToString +
",000.000,000.000,00.00")
 s.WriteLine("P0002=00.00,85,000.000,000.000,00.00,00.00")
 s.WriteLine("P0003=00.00,00.00,-40,000.000,000.000,00.00")
 s.WriteLine("P0004=00.00,60,000.000,000.000,00.00,00.00")
 s.WriteLine("P0005=00.00,00.00,-40,000.000,000.000,00.00")
 s.WriteLine("P0006=00.00,-
145,000.000,000.000,00.00,00.00")
 s.WriteLine("P0007=00.00,00.00," + ShiftUp.ToString +
",000.000,000.000,00.00")
 s.WriteLine("//INST")
 s.WriteLine("///DATE 2055/03/01 22:24")
 s.WriteLine("///ATTR SC,RW")
 s.WriteLine("///GROUP1 RB1")
 s.WriteLine("NOP")
 s.WriteLine("IMOV P001 V=100")
 s.WriteLine("IMOV P002 V=100")
 s.WriteLine("TIMER T=1.00")
 s.WriteLine("CALL JOB:" + OC)
 s.WriteLine("TIMER T=1.00")
 s.WriteLine("IMOV P003 V=20")
 s.WriteLine("IMOV P004 V=20")
 s.WriteLine("IMOV P005 V=20")
 s.WriteLine("IMOV P006 V=100")
 s.WriteLine("IMOV P007 V=100")
 s.WriteLine("END")
 s.Close()

 TextBox6.Text = "GRASP2.JBI"
 Button6_Click(sender, e)

 ' StartToasts = StartToasts - 1
 Else
 grasping2(sender, e, Shift, OpenClose)
 End If

 End Sub

 Private Sub Button24_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button24.Click
 'Dim Shift As Integer

Appendix VI. Toast Making System – Source Code 140

 'Shift = Val(TextBox15.Text)
 'grasping2(sender, e, Shift, 0)

 End Sub

 Private Sub Button25_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button25.Click
 Dim rc As Long
 rc =
PlaySound(System.AppDomain.CurrentDomain.BaseDirectory &
"shaking_a_bag.wav", 0, SND_NOSTOP)
 End Sub

 Private Sub Button26_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button26.Click
 TextBox6.Text = "OPEN.JBI"
 Button6_Click(sender, e)
 End Sub

 Private Sub Button29_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button29.Click
 TextBox6.Text = "CLOSE.JBI"
 Button6_Click(sender, e)
 End Sub
End Class

MATLAB Code
SRL.m
function SRL(arg,arg2,arg3)

% Variable declarations
global Q
global tnow_array
global iteration
global min_tnow;
global convergence_iteration

% ---

switch(arg)

% ---

case 0

Q = ones(6,6,6);
min_tnow = 10000;
iterations = arg3;
for iteration=1:iterations
 SRL(1,0);
end

% ---

case 1

% Variable declarations
global tnow
global toaster % 0-free, 1-busy
global butterer % 0-free, 1-busy
global robot % 0-free, 1-busy
global toasts_free % 0-free, 1-busy
global toast
global Gamma
global Alpha
global event_stack
global state %robot state
global next_state
global desired_toast
global impossible_pos

oper_times= zeros(6);
oper_times(1,2) = 24;
oper_times(1,3) = 36;
oper_times(2,1) = 21;
oper_times(2,3) = 24;
oper_times(2,4) = 26;
oper_times(2,5) = 15;
oper_times(3,1) = 22;
oper_times(3,4) = 22;
oper_times(3,5) = 28;
oper_times(4,1) = 24;
oper_times(4,2) = 26;

oper_times(4,3) = 19;
oper_times(4,5) = 19;
oper_times(5,1) = 26;
oper_times(5,2) = 24;
oper_times(5,3) = 20;
oper_times(5,6) = 12;
oper_times(6,1) = 25;
oper_times(6,2) = 23;
oper_times(6,3) = 19;
oper_times(6,4) = 21;
toast_pos = ones(1,3); % toasts
robot_pos=0;
toating_time = 60;
buttering_time = 60;
Rew = zeros(6,6,6);
Rew(6,6,6) = 1.5;
Gamma = 0.9;
Alpha = 0.05;
% event_stack[event,state,time, toast(0=robot)]
%events:
% 1: robot move empty
% 2: robot move full
% 3: finished toasting
% 4: finished buttering
tnow = 0;
tmax = 20000;
impossible_pos =
[112;114;121;122;124;133;134;141;142;143;144;155;211;212;214;22
1;222;224;233;234;241;242;243;244;255;313;314;323;324;331;332;3
33;334;335;336;341;342;343;344;353;355;363;411;412;413;414;421;
422;423;424;431;432;433;434;441;442;443;444;454;455;511;515;525
;533;535;545;551;552;553;554;555;556;565;633;655];
[impossible_pos,ind] = sort(impossible_pos);
toaster =0;
butterer = 0;
toasts_free = [0,0,0];
toast_taken = true;
robot=0;
state=2; % starting point
seq = toast_pos;
toast=1;
next_state = toast_pos(1);
next_event = [1,next_state, tnow+oper_times(state,next_state),toast];
event_stack = [next_event];
toast_taken=false;
robot=1;

% ---

while tnow<tmax
cur_event = event_stack(1,:);
event = cur_event(1);
tnow = cur_event(3);
if event<3
 toast = cur_event(4);
 state = cur_event(2);
 robot =0;% robot is free after reaching state, empty or full
end

Appendix VI. Toast Making System – Source Code 141

if event==2
 % updating toast position after arrival
 toast_taken=true;
 toast_pos(toast) = state;
 % updating position sequence
 seq = [toast_pos;seq];
 % updating Q of previous step
 delta = Rew(seq(2,1),seq(2,2),seq(2,3)) + Gamma * Q
(toast_pos(1), toast_pos(2),toast_pos(3)) - Q
(seq(2,1),seq(2,2),seq(2,3));
 Q (seq(2,1),seq(2,2),seq(2,3)) = Q (seq(2,1),seq(2,2),seq(2,3)) +
Alpha * delta;
 % finished if all toasts are finished...
 test = find (toast_pos==6);
 if size(test)==size(toast_pos)
 Q (toast_pos(1), toast_pos(2),toast_pos(3)) = Rew (toast_pos(1),
toast_pos(2),toast_pos(3)) + Gamma * Q (toast_pos(1),
toast_pos(2),toast_pos(3));
 break;
 end
 %cheking optional next steps
 optional_next_pos = [0,0,0];
 for i = toast_pos(1)+1:toast_pos(1)+2
 if (i<7)
 temp_pos = [i,toast_pos(2),toast_pos(3)];
 num_temp_pos =
100*temp_pos(1)+10*temp_pos(2)+temp_pos(3);
 if bsearch(impossible_pos,num_temp_pos) == -1
 good=true;
 else
 good=false;
 end
 if good
 if optional_next_pos(1,1)==0
 optional_next_pos = temp_pos;
 else
 optional_next_pos = [optional_next_pos;temp_pos];
 end
 end
 end
 end
 for i = toast_pos(2)+1:toast_pos(2)+2
 if (i<7)
 temp_pos = [toast_pos(1),i,toast_pos(3)];
 num_temp_pos =
100*temp_pos(1)+10*temp_pos(2)+temp_pos(3);
 if bsearch(impossible_pos,num_temp_pos) == -1
 good=true;
 else
 good=false;
 end
 if good
 if optional_next_pos(1,1)==0
 optional_next_pos = temp_pos;
 else
 optional_next_pos = [optional_next_pos;temp_pos];
 end
 end
 end
 end
 for i = toast_pos(3)+1:toast_pos(3)+2
 if (i<7)
 temp_pos = [toast_pos(1),toast_pos(2),i];
 num_temp_pos =
100*temp_pos(1)+10*temp_pos(2)+temp_pos(3);
 if bsearch(impossible_pos,num_temp_pos) == -1
 good=true;
 else
 good=false;
 end
 if good
 if optional_next_pos(1,1)==0
 optional_next_pos = temp_pos;
 else
 optional_next_pos = [optional_next_pos;temp_pos];
 end
 end
 end

 end
 %finding best next step
 max = -10000;
 for i=1:size(optional_next_pos,1)
 if
Q(optional_next_pos(i,1),optional_next_pos(i,2),optional_next_pos(i,
3))>=max
 max =
Q(optional_next_pos(i,1),optional_next_pos(i,2),optional_next_pos(i,
3));
 ind = i;
 end
 end
 best_next_pos = optional_next_pos(ind,:);
 %Choosing next step
 epsilon = 1 / iteration;
 % epsilon = 1;
 if rand>epsilon
 next_pos = best_next_pos;
 else
 pos_ind = ceil(rand * size(optional_next_pos,1));
 next_pos = optional_next_pos(pos_ind,:);
 end
 delta = next_pos - toast_pos;
 next_toast = find(delta ~=0);
 % freeing toaster and butterer after toast moved from them
 if (state == 4) || (state == 5)
 toaster = 0;
 elseif state == 6
 butterer=0;
 end
end % if event ==2
if event ==3
 toasts_free(cur_event(4))=0;
end
if event == 4
 toasts_free(cur_event(4))=0;
end
if (robot==0) && (toast_taken)
 toast=next_toast;
 next_state = toast_pos(toast);
 next_event = [1,next_state,
tnow+oper_times(state,next_state),toast];
 event_stack = [event_stack;next_event];
 toast_taken=false;
 robot=1;
end
% checking toast next station
if (robot==0) && (toasts_free(toast)==0)
 if ((state~=2) && (state~=4) && (state ~=6))
 next_state = toast_pos(toast)+1;
 else
 next_state = state;
 end
 % toaster is free - no need to go to queue
 if (next_state == 2) && (toaster==0)
 next_state = 3;
 toaster = 1;
 toasts_free(toast)=1;
 next_event = [2,next_state,
tnow+oper_times(toast_pos(toast),next_state),toast];
 event_stack = [event_stack;next_event];
 % next_event =
[3,0,tnow+oper_times(toast_pos(toast),next_state)+toating_time,toast
];
 next_event =
[3,0,tnow+oper_times(toast_pos(toast),next_state)+normrnd(toating_t
ime,toating_time/10),toast];
 event_stack = [event_stack;next_event];
 robot=1;
 % butterer is free - no need to go to queue
 elseif (next_state == 4) && (butterer==0)
 next_state = 5;
 butterer=1;
 toasts_free(toast)=1;
 next_event = [2,next_state,
tnow+oper_times(toast_pos(toast),next_state),toast];
 event_stack = [event_stack;next_event];

Appendix VI. Toast Making System – Source Code 142

 % next_event =
[4,0,tnow+oper_times(toast_pos(toast),next_state)+buttering_time,toa
st];
 next_event =
[4,0,tnow+oper_times(toast_pos(toast),next_state)+normrnd(buttering
_time,buttering_time/10),toast];
 event_stack = [event_stack;next_event];
 robot=1;
 else
 next_event = [2,next_state,
tnow+oper_times(toast_pos(toast),next_state),toast];
 event_stack = [event_stack;next_event];
 robot=1;
 end
end
[sorted_stack, ind] = sort(event_stack(:,3));
for i = 1:size(ind)
if i==1
 temp = event_stack(ind(i),:);
else
 temp = [temp;event_stack(ind(i),:)];
end
end
event_stack=temp(2:1:end,:);
end %while
%updating min_tnow
if tnow<min_tnow
 min_tnow = tnow;
end
%factor = 1/(tnow-min_tnow+5) + 0.8;
factor = 1/tnow;
for i=1:size(seq,1)-1
 Q(seq(i,1),seq(i,2),seq(i,3)) = Q(seq(i,1),seq(i,2),seq(i,3))*factor;
end
if iteration == 1
 tnow_array = tnow;
else
% check when convergence is achieved
if tnow_array(size(tnow_array)) ~=tnow
 convergence_iteration = iteration;
end
% update tnow_array
tnow_array = [tnow_array;tnow];
end

end%case

MC.m
function MC(arg,arg2,arg3)

% Variable declarations
global Q
global tnow_array
global iteration
global min_tnow;
global convergence_iteration
global avgR
global visits

% --

switch(arg)

% --

case 0

Q = ones(6,6,6);
min_tnow = 10000;
iterations = arg3;
for iteration=1:iterations
 MC(1,0);
 end

% ---

case 1

% Variable declaration
global tnow
global toaster % 0-free, 1-busy
global butterer % 0-free, 1-busy
global robot % 0-free, 1-busy
global toasts_free % 0-free, 1-busy
global toast
global Gamma
global Alpha
global event_stack
global state %robot state
global next_state
global desired_toast
global impossible_pos
oper_times= zeros(6);
oper_times(1,2) = 24;
oper_times(1,3) = 36;
oper_times(2,1) = 21;
oper_times(2,3) = 24;
oper_times(2,4) = 26;
oper_times(2,5) = 15;
oper_times(3,1) = 22;
oper_times(3,4) = 22;
oper_times(3,5) = 28;
oper_times(4,1) = 24;
oper_times(4,2) = 26;
oper_times(4,3) = 19;
oper_times(4,5) = 19;
oper_times(5,1) = 26;
oper_times(5,2) = 24;
oper_times(5,3) = 20;
oper_times(5,6) = 12;
oper_times(6,1) = 25;
oper_times(6,2) = 23;
oper_times(6,3) = 19;
oper_times(6,4) = 21;
toast_pos = ones(1,3); % toasts
robot_pos=0;
toating_time = 60;
buttering_time = 60;
Rew = zeros(6,6,6);
Rew(6,6,6) = 1.5;
Gamma = 0.9;
Alpha = 0.05;
% For monte carlo
avgR = zeros(6,6,6);
visits = zeros(6,6,6);
% event_stack[event,state,time, toast(0=robot)]
%events:
% 1: robot move empty
% 2: robot move full
% 3: finished toasting
% 4: finished buttering
tnow = 0;
tmax = 20000;
impossible_pos =
[112;114;121;122;124;133;134;141;142;143;144;155;211;212;214;22
1;222;224;233;234;241;242;243;244;255;313;314;323;324;331;332;3
33;334;335;336;341;342;343;344;353;355;363;411;412;413;414;421;
422;423;424;431;432;433;434;441;442;443;444;454;455;511;515;525
;533;535;545;551;552;553;554;555;556;565;633;655];
[impossible_pos,ind] = sort(impossible_pos);
toaster =0;
butterer = 0;
toasts_free = [0,0,0];
toast_taken = true;
robot=0;
state=2;
seq = toast_pos;
toast=1;
next_state = toast_pos(1);
next_event = [1,next_state, tnow+oper_times(state,next_state),toast];
event_stack = [next_event];
toast_taken=false;
robot=1;

Appendix VI. Toast Making System – Source Code 143

% ---

while tnow<tmax
cur_event = event_stack(1,:);
event = cur_event(1);
tnow = cur_event(3);
if event<3
 toast = cur_event(4);
 state = cur_event(2);
 robot =0;% robot is free after reaching state, empty or full
end
if event==2
 % updating toast position after arrival
 toast_taken=true;
 toast_pos(toast) = state;
 % updating position sequence
 seq = [toast_pos;seq];
 % finished if all toasts are finished...
 test = find (toast_pos==6);
 if size(test)==size(toast_pos)
 break;
 end
 %cheking optional next steps
 optional_next_pos = [0,0,0];
 for i = toast_pos(1)+1:toast_pos(1)+2
 if (i<7)
 temp_pos = [i,toast_pos(2),toast_pos(3)];
 num_temp_pos =
100*temp_pos(1)+10*temp_pos(2)+temp_pos(3);
 if bsearch(impossible_pos,num_temp_pos) == -1
 good=true;
 else
 good=false;
 end
 if good
 if optional_next_pos(1,1)==0
 optional_next_pos = temp_pos;
 else
 optional_next_pos = [optional_next_pos;temp_pos];
 end
 end
 end
 end
 for i = toast_pos(2)+1:toast_pos(2)+2
 if (i<7)
 temp_pos = [toast_pos(1),i,toast_pos(3)];
 num_temp_pos =
100*temp_pos(1)+10*temp_pos(2)+temp_pos(3);
 if bsearch(impossible_pos,num_temp_pos) == -1
 good=true;
 else
 good=false;
 end
 if good
 if optional_next_pos(1,1)==0
 optional_next_pos = temp_pos;
 else
 optional_next_pos = [optional_next_pos;temp_pos];
 end
 end
 end
 end
 for i = toast_pos(3)+1:toast_pos(3)+2
 if (i<7)
 temp_pos = [toast_pos(1),toast_pos(2),i];
 num_temp_pos =
100*temp_pos(1)+10*temp_pos(2)+temp_pos(3);
 if bsearch(impossible_pos,num_temp_pos) == -1
 good=true;
 else
 good=false;
 end
 if good
 if optional_next_pos(1,1)==0
 optional_next_pos = temp_pos;
 else
 optional_next_pos = [optional_next_pos;temp_pos];

 end
 end
 end
 end
 %finding best next step
 max = -10000;
 for i=1:size(optional_next_pos,1)
 if
Q(optional_next_pos(i,1),optional_next_pos(i,2),optional_next_pos(i,
3))>=max
 max =
Q(optional_next_pos(i,1),optional_next_pos(i,2),optional_next_pos(i,
3));
 ind = i;
 end
 end
 best_next_pos = optional_next_pos(ind,:);
 %Choosing next step
 epsilon = 1 / iteration;
 if rand>epsilon
 next_pos = best_next_pos;
 else
 pos_ind = ceil(rand * size(optional_next_pos,1));
 next_pos = optional_next_pos(pos_ind,:);
 end
 delta = next_pos - toast_pos;
 next_toast = find(delta ~=0);
 % freeing toaster and butterer after toast moved from them
 if (state == 4) || (state == 5)
 toaster = 0;
 elseif state == 6
 butterer=0;
 end
 end % if event ==2
if event ==3
 toasts_free(cur_event(4))=0;
end
if event == 4
 toasts_free(cur_event(4))=0;
end
if (robot==0) && (toast_taken)
 toast=next_toast;
 next_state = toast_pos(toast);
 next_event = [1,next_state,
tnow+oper_times(state,next_state),toast];
 event_stack = [event_stack;next_event];
 toast_taken=false;
 robot=1;
end
% checking toast next station
if (robot==0) && (toasts_free(toast)==0)
 if ((state~=2) && (state~=4) && (state ~=6))
 next_state = toast_pos(toast)+1;
 else
 next_state = state;
 end
 % toaster is free - no need to go to queue
 if (next_state == 2) && (toaster==0)
 next_state = 3;
 toaster = 1;
 toasts_free(toast)=1;
 next_event = [2,next_state,
tnow+oper_times(toast_pos(toast),next_state),toast];
 event_stack = [event_stack;next_event];
 % next_event =
[3,0,tnow+oper_times(toast_pos(toast),next_state)+toating_time,toast
];
 next_event =
[3,0,tnow+oper_times(toast_pos(toast),next_state)+normrnd(toating_t
ime,toating_time/10),toast];
 event_stack = [event_stack;next_event];
 robot=1;
 % butterer is free - no need to go to queue
 elseif (next_state == 4) && (butterer==0)
 next_state = 5;
 butterer=1;
 toasts_free(toast)=1;

Appendix VI. Toast Making System – Source Code 144

 next_event = [2,next_state,
tnow+oper_times(toast_pos(toast),next_state),toast];
 event_stack = [event_stack;next_event];
 % next_event =
[4,0,tnow+oper_times(toast_pos(toast),next_state)+buttering_time,toa
st];
 next_event =
[4,0,tnow+oper_times(toast_pos(toast),next_state)+normrnd(buttering
_time,buttering_time/10),toast];
 event_stack = [event_stack;next_event];
 robot=1;
 else
 next_event = [2,next_state,
tnow+oper_times(toast_pos(toast),next_state),toast];
 event_stack = [event_stack;next_event];
 robot=1;
end
end
[sorted_stack, ind] = sort(event_stack(:,3));
for i = 1:size(ind)
if i==1
 temp = event_stack(ind(i),:);
else
 temp = [temp;event_stack(ind(i),:)];
end
end
event_stack=temp(2:1:end,:);

end %while
%updating min_tnow
if tnow<min_tnow
 min_tnow = tnow;
end
factor = 1/tnow;
for i=1:size(seq,1)-1
 avgR(seq(i,1),seq(i,2),seq(i,3)) = (visits(seq(i,1),seq(i,2),seq(i,3))
* avgR(seq(i,1),seq(i,2),seq(i,3)) + factor) /
(visits(seq(i,1),seq(i,2),seq(i,3)) + 1);
 visits(seq(i,1),seq(i,2),seq(i,3)) = visits(seq(i,1),seq(i,2),seq(i,3))+1;
 Q(seq(i,1),seq(i,2),seq(i,3)) = avgR(seq(i,1),seq(i,2),seq(i,3));
end
if iteration == 1
 tnow_array = tnow;
else
% check when convergence is achieved
if tnow_array(size(tnow_array)) ~=tnow
 convergence_iteration = iteration;
end
% update tnow_array
 tnow_array = [tnow_array;tnow];
end

end%case

Appendix VII. 3D Path Planning Task – Source Code 145

Appendix VII. 3D Path Planning Task – Source Code

MATLAB Code

CCRL.m
function CCRL(arg)

%--

%Variable Declarations
global block
global goal
global start
global nx ny nz ns na
global robot
global R
global Q
global alpha tau gamma delta
global human_tau
global move loss
global num_of_steps
global episode_number
global reached_goal
global enable_graphics
global enable_result_graphics
global enable_human_collaboration
global human_collaboration
global episodes
global human_next_state
global HumanQ
global convergence_episode
global collaboration_requests
global enable_rejection
global human_misleads
global reject_human_assistance
global check_conv
global stop_requests
global counter
global max_steps
global helping_steps

%---

switch(arg)

%---

% variable Assignment
case 'init'

% obstacles
block = [10,5,1; 10,6,1; 10,7,1;
 10,5,2; 10,6,2; 10,7,2;
 10,5,3; 10,6,3; 10,7,3;
 8,5,1; 8,6,1; 8,7,1;
 8,5,2; 8,6,2; 8,7,2;
 8,5,3; 8,6,3; 8,7,3;
 9,5,1; 9,5,2; 9,5,3;
 9,7,1; 9,7,2; 9,7,3;
 1,10,10; 2,10,10;3,10,10; 4,10,10; 5,10,10; 6,10,10;
7,10,10; 8,10,10; 9, 10, 10; 10,10,10;
 1,10,9; 2,10,9;3,10,9; 4,10,9; 5,10,9; 6,10,9; 7,10,9;
8,10,9; 9, 10, 9; 10,10,9;
 1,1,1; 1,2,1; 2,1,1; 2,2,1;
 10,1,10;
 3,10,2; 4,10,2; 5,10,2; 6,10,2;
 5,6,1; 5,7,1;
 5,6,2; 5,7,2;
 5,6,3; 5,7,3;
];
%goal point
goal = [9,6,4];
% starting point

start = [1,8,2];
% world size
nx = 10; ny = 10; nz = 10; ns = nx*ny*nz ;
% actions
na = 6; % Right,Left,Up,Down, Forward, Backward
move = [0,-1,0; 0,1,0; 0,0,1; 0,0,-1; 1,0,0; -1,0,0];
loss = -0.1*[1; 1; 1; 1; 1; 1];
% reward field
R = zeros(nx, ny, nz);
for i = 1:size(block,1)
 R(block(i,1),block(i,2),block(i,3)) = -1;
end
R(goal(1),goal(2),goal(3)) = 1.5;
% value field
Q = zeros(nx, ny, nz);
% learning parameters
alpha = 0.95; gamma = 0.99;
% maximum steps for learning episode
max_steps = 200;
% Number of times agent is asking for human collaboration
collaboration_requests = 0;
% for stoppingassistance requests if converged
stop_requests = false;
counter = 0;
check_conv=0;
% numner of times human gave bad suggetions
human_misleads = 0;
% Helping steps
helping_steps = 0;
% rejecting human assistance
reject_human_assistance = false;
% simulated human value matrix
load HumanQ
%graphics
enable_graphics = false;
enable_result_graphics = false; % just for results.
% human collaboration
enable_human_collaboration = true;
human_collaboration = false; % updated during session.
% rejection of human assitance
enable_rejection = true;

% ---

% Learning Session (made out of N episodes)
case 'run'

CCRL('init')
episodes = 200;
for episode_number=1:episodes
reached_goal = false; % for printing data to excel - know if reached
target or block
K = 5; % parameter for averages and convergence calculation
% rejection of human assitance
if (enable_rejection) && (~reject_human_assistance) % after
rejection no need to go in the if again
 if human_collaboration == true % meaning human helped at
previous episode
 if num_of_steps(size(num_of_steps,1)) >=
mean(num_of_steps(size(num_of_steps,1)-K:size(num_of_steps,1)-
1))
 human_misleads = human_misleads +1;
 end
 if human_misleads > 5
 reject_human_assistance = true;
 human_collaboration = false;
 enable_graphics = false;
 end
 end
end % rejection
X = 30; %number of episodes from which to start checking
if (enable_human_collaboration) && (episode_number >= X) &&
(~reject_human_assistance) % don't get in if rejection.

Appendix VII. 3D Path Planning Task – Source Code 146

 % evalute learning rate to deside whether to request human
intervention - averages of K episdods
 prev_avg = mean(num_of_steps(size(num_of_steps,1)-(2*K-
1):size(num_of_steps,1)-K));
 curr_avg = mean(num_of_steps(size(num_of_steps,1)-(K-
1):size(num_of_steps,1)));
 % checking if converged for at least 2 human assisttances - if so,
stop asking for help
 if (check_conv == num_of_steps(size(num_of_steps,1))) &&
(check_conv < max_steps)
 counter = counter + 1;
 if counter > (2 * K)
 stop_requests = true;
 end
 else
 check_conv = num_of_steps(size(num_of_steps,1));
 counter = 0;
 end
 % asking for assistance only if performance is not good enough .
 if (curr_avg/prev_avg > 0.95) && (~stop_requests) &&
(episode_number < episodes)
 human_collaboration = true;
 collaboration_requests = collaboration_requests+1;
 else
 human_collaboration = false;
 enable_graphics = false;
 end
end % enable_human_collaboration
CCRL('episode')
end % for

% ---

% Display Resulting Path (achieved by the learning process)
case 'result'

enable_graphics = true;
enable_result_graphics = true;
episode_number = 200;
CCRL('world'), pause(0.0005)
CCRL('episode')
enable_result_graphics = false;

% ---

% Display Graphics
case 'world'

clf
axis([1 11 1 11 1 11]); % grid world size
grid on;
for i = 1:size(block,1)
 voxel(block(i,:),[1 1 1],'r',0.7); % obstacles
end
voxel(goal,[1 1 1],'g',0.7); % goal

% ---

% Learning Episode
case 'episode'

robot = start;
for step = 1:max_steps % episode steps
% display graphics (pause for display)
if enable_graphics
 if ~enable_result_graphics
 CCRL('world'), pause(0.0005)
 end
 voxel(robot,[1 1 1],'m',0.7);pause(0.000005); % dislpay robot
moves
end
if R(robot(1), robot(2), robot(3)) == 1.5 % reached goal
 Q(robot(1), robot(2), robot(3)) = R(robot(1), robot(2), robot(3));
 reached_goal = true;
 break;
end
if R(robot(1), robot(2), robot(3)) == -1 % hit an obstacle
 Q(robot(1), robot(2), robot(3)) = R(robot(1), robot(2), robot(3));

 break;
end
%Choosing next action - autonomus or semi-autonomus...
if (human_collaboration) % human can help everywhere
%if (human_collaboration) && (robot(1)>5) && ((robot(2) >2) &&
(robot(2)<10)) && ((robot(3)>2) && (robot(3)<9)) % human can
help just at a certain region
 % automatic human collaboration
 CCRL('human')
 next_state = human_next_state;
 helping_steps = helping_steps+1;
else % choose action autonomously
 % predict next possible states: each row for an action
 pstate = repmat(robot, na, 1) + move;
 pstate = min(max(pstate,1), repmat([nx,ny,nz],na,1)); % set of
possible states to move to (inside grid only)
 % linear index
 istate = sub2ind([nx,ny,nz], pstate(:,1), pstate(:,2), pstate(:,3));
 tau = 1 / episode_number^1.3;
 pq = loss + gamma*Q(istate); % each row for an action
 prob = exp(pq/tau);
 prob = prob./(sum(prob)); % selection probablity
 act = find(cumsum(prob) > rand(1));
 softmax_move = act(1);
 next_state = pstate(softmax_move,:);
end % choosing next action
% update Q value
delta = - 0.1 + gamma*Q(next_state(1),next_state(2),next_state(3)) -
Q(robot(1),robot(2),robot(3));
Q(robot(1),robot(2),robot(3)) = Q(robot(1),robot(2),robot(3)) +
alpha*delta;
robot = next_state; % moving to next state
end % episode steps
% update number of steps array
if episode_number == 1 % first value in the array
 if reached_goal
 num_of_steps = step; % reached goal
 else
 num_of_steps = max_steps + 1; % hit block - assign max_steps
+ 1 to note it and penalise for average calculation
 end
else % rest of array
 % check when convergence is achieved
 if num_of_steps(size(num_of_steps,1)) ~=step
 convergence_episode = episode_number;
 end
 if reached_goal
 num_of_steps = [num_of_steps;step];
 else
 num_of_steps = [num_of_steps; max_steps + 1];
 end
end

%--

% simulated human collaboration
case 'human'

% predict next possible states: each row for an action
pstate = repmat(robot, na, 1) + move;
pstate = min(max(pstate,1), repmat([nx,ny,nz],na,1)); % set of
possible states to move to (inside grid only)
% linear index
istate = sub2ind([nx,ny,nz], pstate(:,1), pstate(:,2), pstate(:,3));
human_tau = 0.01; % human expertise
% suggest next action using softmax
pq = loss + gamma*HumanQ(istate);% each row for an action
prob = exp(pq/human_tau);
prob = prob./(sum(prob)); % selection probablity
act = find(cumsum(prob) > rand(1));
softmax_move = act(1);
human_next_state = pstate(softmax_move,:);

end % case

IA.m

Appendix VII. 3D Path Planning Task – Source Code 147

function IA(arg)

%--

%Variable Declarations
global block
global goal
global start
global nx ny nz ns na
global robot
global R
global Q
global alpha tau gamma delta
global human_tau
global move loss
global num_of_steps
global episode_number
global reached_goal
global enable_graphics
global enable_result_graphics
global enable_human_collaboration
global human_collaboration
global episodes
global human_next_state
global HumanQ
global convergence_episode
global max_steps
global helping_steps
%---

switch(arg)

%---

% variable Assignment
case 'init'

% obstacles
block = [10,5,1; 10,6,1; 10,7,1;
 10,5,2; 10,6,2; 10,7,2;
 10,5,3; 10,6,3; 10,7,3;
 8,5,1; 8,6,1; 8,7,1;
 8,5,2; 8,6,2; 8,7,2;
 8,5,3; 8,6,3; 8,7,3;
 9,5,1; 9,5,2; 9,5,3;
 9,7,1; 9,7,2; 9,7,3;
 1,10,10; 2,10,10;3,10,10; 4,10,10; 5,10,10; 6,10,10;
7,10,10; 8,10,10; 9, 10, 10; 10,10,10;
 1,10,9; 2,10,9;3,10,9; 4,10,9; 5,10,9; 6,10,9; 7,10,9;
8,10,9; 9, 10, 9; 10,10,9;
 1,1,1; 1,2,1; 2,1,1; 2,2,1;
 10,1,10;
 3,10,2; 4,10,2; 5,10,2; 6,10,2;
 5,6,1; 5,7,1;
 5,6,2; 5,7,2;
 5,6,3; 5,7,3;
];
 %goal point
goal = [9,6,4];
% starting point
start = [1,8,2];
% world size
nx = 10; ny = 10; nz = 10; ns = nx*ny*nz ;
% actions
na = 6; % Right,Left,Up,Down, Forward, Backward
move = [0,-1,0; 0,1,0; 0,0,1; 0,0,-1; 1,0,0; -1,0,0];
loss = -0.1*[1; 1; 1; 1; 1; 1];
% reward field
R = zeros(nx, ny, nz);
for i = 1:size(block,1)
 R(block(i,1),block(i,2),block(i,3)) = -1;
end
R(goal(1),goal(2),goal(3)) = 1.5;
% value field
Q = zeros(nx, ny, nz);
% learning parameters
alpha = 0.95; gamma = 0.99; lambda = 0.5;
% maximum steps for learning episode

max_steps = 200;
% Helping steps
helping_steps = 0;
% simulated human value matrix
load HumanQ
%graphics
enable_graphics = false;
enable_result_graphics = false; % just for results.

% ---

% Learning Session (made out of N episodes)
case 'run'

IA('init')
episodes = 200;
for episode_number=1:episodes
reached_goal = false;
IA('episode')
end % for

% ---

% Display Resulting Path (achieved by the learning process)
case 'result'

enable_graphics = true;
enable_result_graphics = true;% show trail of moves just for results
episode_number = 200;
IA('world'), pause(0.0005)
IA('episode')
enable_result_graphics = false;

% ---

% Display Graphics
case 'world'

clf
axis([1 11 1 11 1 11]); % grid world size
grid on;
for i = 1:size(block,1)
 voxel(block(i,:),[1 1 1],'r',0.7); % undesired areas
end
voxel(goal,[1 1 1],'g',0.7); % goal

% ---

% Learning Episode
case 'episode'

robot = start;
for step = 1:max_steps % episode steps
% display graphics (pause for display)
if enable_graphics
 if ~enable_result_graphics
 IA('world'), pause(0.0005)
 end
 voxel(robot,[1 1 1],'m',0.7);pause(0.000005); % dislpay robot
moves
end

if R(robot(1), robot(2), robot(3)) == 1.5 % reached goal
 Q(robot(1), robot(2), robot(3)) = R(robot(1), robot(2), robot(3));
 reached_goal = true;
 break;
end
if R(robot(1), robot(2), robot(3)) == -1 % hit a block
 Q(robot(1), robot(2), robot(3)) = R(robot(1), robot(2), robot(3));
 break;
end

 %Choosing next action - autonomus or semi-autonomus...
% for introspection
 width_parameter = 1.3;
% for introspection and choosing steps autonomously later...
 pstate = repmat(robot, na, 1) + move;

Appendix VII. 3D Path Planning Task – Source Code 148

pstate = min(max(pstate,1), repmat([nx,ny,nz],na,1)); % set of
possible states to move to (inside grid only)
% linear index
istate = sub2ind([nx,ny,nz], pstate(:,1), pstate(:,2), pstate(:,3));
minimum = min(Q(istate));
maximum = max(Q(istate));
X = 30;
if (maximum-minimum<=width_parameter) &&
(episode_number>=X) % human can help everywhere
%if (maximum-minimum<=width_parameter) &&
(episode_number>=K) && (robot(1)>5) && ((robot(2) >2) &&
(robot(2)<10)) && ((robot(3)>2) && (robot(3)<9)) % human can
help just at a certain region
 % automatic human collaboration
 IA('human')
 next_state = human_next_state;
 helping_steps = helping_steps+1;
else % choose action autonomously
 tau = 1 / episode_number^1.3;
 pq = loss + gamma*Q(istate); % each row for an action
 prob = exp(pq/tau);
 prob = prob./(sum(prob)); % selection probablity
 act = find(cumsum(prob) > rand(1));
 softmax_move = act(1);
 next_state = pstate(softmax_move,:);
end % choosing next action
% update Q value
delta = - 0.1 + gamma*Q(next_state(1),next_state(2),next_state(3)) -
Q(robot(1),robot(2),robot(3));
Q(robot(1),robot(2),robot(3)) = Q(robot(1),robot(2),robot(3)) +
alpha*delta;
robot = next_state; % moving to next state
end % episode steps
% update number of steps array
if episode_number == 1 % first value in the array
 if reached_goal
 num_of_steps = step; % reached goal
 else
 num_of_steps = max_steps + 1; % hit block
 end
else % rest of array
 % check when convergence is achieved
 if num_of_steps(size(num_of_steps,1)) ~=step
 convergence_episode = episode_number;
 end
 if reached_goal
 num_of_steps = [num_of_steps;step];
 else
 num_of_steps = [num_of_steps; max_steps + 1];
 end
end

%--

% simulated human collaboration
case 'human'

% predict next possible states: each row for an action
pstate = repmat(robot, na, 1) + move;
pstate = min(max(pstate,1), repmat([nx,ny,nz],na,1)); % set of
possible states to move to (inside grid only)
% linear index
istate = sub2ind([nx,ny,nz], pstate(:,1), pstate(:,2), pstate(:,3));
% suggest next action using softmax
human_tau = 0.01; % human expertise
pq = loss + gamma*HumanQ(istate);% each row for an action
prob = exp(pq/human_tau);
prob = prob./(sum(prob)); % selection probablity
act = find(cumsum(prob) > rand(1));
softmax_move = act(1);
human_next_state = pstate(softmax_move,:);

end % case

Combined.m
function Combined(arg)

%--

%Variable Declarations
global block
global goal
global start
global nx ny nz ns na
global robot
global R
global Q
global alpha tau gamma delta
global human_tau
global move loss
global num_of_steps
global episode_number
global reached_goal
global enable_graphics
global enable_result_graphics
global enable_human_collaboration
global human_collaboration
global episodes
global human_next_state
global HumanQ
global convergence_episode
global collaboration_requests
global enable_rejection
global human_misleads
global reject_human_assistance
global check_conv
global stop_requests
global counter
global max_steps
global helping_steps

%---

switch(arg)

%---

% variable Assignment
case 'init'

% obstacles
block = [10,5,1; 10,6,1; 10,7,1;
 10,5,2; 10,6,2; 10,7,2;
 10,5,3; 10,6,3; 10,7,3;
 8,5,1; 8,6,1; 8,7,1;
 8,5,2; 8,6,2; 8,7,2;
 8,5,3; 8,6,3; 8,7,3;
 9,5,1; 9,5,2; 9,5,3;
 9,7,1; 9,7,2; 9,7,3;
 1,10,10; 2,10,10;3,10,10; 4,10,10; 5,10,10; 6,10,10;
7,10,10; 8,10,10; 9, 10, 10; 10,10,10;
 1,10,9; 2,10,9;3,10,9; 4,10,9; 5,10,9; 6,10,9; 7,10,9;
8,10,9; 9, 10, 9; 10,10,9;
 1,1,1; 1,2,1; 2,1,1; 2,2,1;
 10,1,10;
 3,10,2; 4,10,2; 5,10,2; 6,10,2;
 5,6,1; 5,7,1;
 5,6,2; 5,7,2;
 5,6,3; 5,7,3;
];

%goal point
goal = [9,6,4];
% starting point
start = [1,8,2];
% world size
nx = 10; ny = 10; nz = 10; ns = nx*ny*nz ;
% actions
na = 6; % Right,Left,Up,Down, Forward, Backward
move = [0,-1,0; 0,1,0; 0,0,1; 0,0,-1; 1,0,0; -1,0,0];
loss = -0.1*[1; 1; 1; 1; 1; 1];
% reward field
R = zeros(nx, ny, nz);
for i = 1:size(block,1)
 R(block(i,1),block(i,2),block(i,3)) = -1;

Appendix VII. 3D Path Planning Task – Source Code 149

end
R(goal(1),goal(2),goal(3)) = 1.5;
% value field
Q = zeros(nx, ny, nz);
% learning parameters
alpha = 0.95; gamma = 0.99; lambda = 0.5;
% maximum steps for learning episode
max_steps = 200;
% Number of times agent is asking for human collaboration
collaboration_requests = 0;
% for stoppingassistance requests if converged
stop_requests = false;
counter = 0;
check_conv=0;
% numner of times human gave bad suggetions
human_misleads = 0;
% Helping steps
helping_steps = 0;
% rejecting human assistance
reject_human_assistance = false;
% simulated human value matrix
load HumanQ
%graphics
enable_graphics = false;
enable_result_graphics = false; % just for results
% human collaboration
enable_human_collaboration = true;
human_collaboration = false; % updated during session
% rejection human assitance
enable_rejection = true;

% ---

% Learning Session (made out of N episodes)
case 'run'

Combined('init')
episodes = 200;
for episode_number=1:episodes
reached_goal = false;
K = 5; % parameter for averages and convergence calculation
% rejection of human assitance
if (enable_rejection) && (~reject_human_assistance) % after
rejection no need to go in the if again
 if human_collaboration == true % meaning human helped at
previous episode
 if num_of_steps(size(num_of_steps,1)) >=
mean(num_of_steps(size(num_of_steps,1)-K:size(num_of_steps,1)-
1));
 human_misleads = human_misleads +1;
 end
 if human_misleads > 1
 reject_human_assistance = true;
 human_collaboration = false;
 enable_graphics = false;
 end
 end
end % rejection
X = 30; %number of episodes from which to start checking (checking
2 K backwards....)
if (enable_human_collaboration) && (episode_number >= X) &&
(~reject_human_assistance) % don't get in if rejection.
 % evalute learning rate to deside whether to request human
intervention - averages of K episdods
 prev_avg = mean(num_of_steps(size(num_of_steps,1)-(2*K-
1):size(num_of_steps,1)-K));
 curr_avg = mean(num_of_steps(size(num_of_steps,1)-(K-
1):size(num_of_steps,1)));
 % checking if converged for at least 2 human assisttances - if so,
stop asking for help
 if (check_conv == num_of_steps(size(num_of_steps,1))) &&
(check_conv < max_steps)
 counter = counter + 1;
 if counter > (2 * K)
 stop_requests = true;
 end
 else
 check_conv = num_of_steps(size(num_of_steps,1));

 counter = 0;
 end
 % asking for assistance only if performance is not good enough .
 if (curr_avg/prev_avg > 0.95) && (~stop_requests) &&
(episode_number < episodes)
 human_collaboration = true;
 collaboration_requests = collaboration_requests+1;
 else
 human_collaboration = false;
 enable_graphics = false;
 end
end % enable_human_collaboration
Combined('episode')
end % for

% ---

% Display Resulting Path (achieved by the learning process)
case 'result'

enable_graphics = true;
enable_result_graphics = true;% show trail of moves just for results
episode_number = 200;
Combined('world'), pause(0.0005)
Combined('episode')
enable_result_graphics = false;

% ---

% Display Graphics
case 'world'

clf
axis([1 11 1 11 1 11]); % grid world size
grid on;
for i = 1:size(block,1)
 voxel(block(i,:),[1 1 1],'r',0.7); % obstacles
end
voxel(goal,[1 1 1],'g',0.7); % goal

% ---

% Learning Episode
case 'episode'

robot = start;
for step = 1:max_steps % episode steps
% display graphics (pause for display)
if enable_graphics
 if ~enable_result_graphics
 Combined('world'), pause(0.0005)
 end
 voxel(robot,[1 1 1],'m',0.7);pause(0.000005); % dislpay robot
moves
end
if R(robot(1), robot(2), robot(3)) == 1.5 % reached goal
 Q(robot(1), robot(2), robot(3)) = R(robot(1), robot(2), robot(3));
 reached_goal = true;
 break;
end
if R(robot(1), robot(2), robot(3)) == -1 % hit an obstacle
 Q(robot(1), robot(2), robot(3)) = R(robot(1), robot(2), robot(3));
 break;
end
%Choosing next action - autonomus or semi-autonomus...
% for introspection
width_parameter = 0.7;
 % for introspection and choosing steps autonomously later...
 pstate = repmat(robot, na, 1) + move;
pstate = min(max(pstate,1), repmat([nx,ny,nz],na,1)); % set of
possible states to move to (inside grid only)
% linear index
istate = sub2ind([nx,ny,nz], pstate(:,1), pstate(:,2), pstate(:,3));
minimum = min(Q(istate));
maximum = max(Q(istate));
if (maximum-minimum<=width_parameter) &&
(human_collaboration) % human can help everywhere

Appendix VII. 3D Path Planning Task – Source Code 150

% if (maximum-minimum<=width_parameter) &&
(human_collaboration) && (robot(1)>5) && ((robot(2) >2) &&
(robot(2)<10)) && ((robot(3)>2) && (robot(3)<9)) % human can
help just at a certain region
 % automatic human collaboration
 Combined('human')
 next_state = human_next_state;
 helping_steps = helping_steps+1;
else % choose action autonomously
 tau = 1 / episode_number^1.3;
 pq = loss + gamma*Q(istate); % each row for an action
 prob = exp(pq/tau);
 prob = prob./(sum(prob)); % selection probablity
 act = find(cumsum(prob) > rand(1));
 softmax_move = act(1);
 next_state = pstate(softmax_move,:);
end % choosing next action
% update Q value

delta = - 0.1 + gamma*Q(next_state(1),next_state(2),next_state(3)) -
Q(robot(1),robot(2),robot(3));
Q(robot(1),robot(2),robot(3)) = Q(robot(1),robot(2),robot(3)) +
alpha*delta;
robot = next_state; % moving to next state
end % episode steps

% update number of steps
if episode_number == 1 % first value in the array
 if reached_goal
 num_of_steps = step; % reached goal
 else
 num_of_steps = max_steps + 1; % hit block - assign max_steps
+ 1 to note it and penalise for average calculation
 end

else % rest of array
 % check when convergence is achieved
 if num_of_steps(size(num_of_steps,1)) ~=step
 convergence_episode = episode_number;
 end
 if reached_goal
 num_of_steps = [num_of_steps;step];
 else
 num_of_steps = [num_of_steps; max_steps + 1];
 end
end

%--

% simulated human collaboration
case 'human'

% predict next possible states: each row for an action
pstate = repmat(robot, na, 1) + move;
pstate = min(max(pstate,1), repmat([nx,ny,nz],na,1)); % set of
possible states to move to (inside grid only)
% linear index
istate = sub2ind([nx,ny,nz], pstate(:,1), pstate(:,2), pstate(:,3));
% suggest next action using softmax
human_tau = 0.01; % human expertise
pq = loss + gamma*HumanQ(istate);% each row for an action
prob = exp(pq/human_tau);
prob = prob./(sum(prob)); % selection probablity
act = find(cumsum(prob) > rand(1));
softmax_move = act(1);
human_next_state = pstate(softmax_move,:);

end % case

Appendix VIII. Task Sequencing for a FMS – Source Code 151

Appendix VIII. Task Sequencing for a FMS – Source Code

MATLAB Code
SRL.m
function SRL(arg,arg2,arg3,arg4)

global Q
global tnow_array
global iteration
global min_tnow
global seq
global robot_seq
global best_seq
global best_robot_seq

% ---

switch(arg)

% ---

case 0

Q = ones(3,3,3,3,3,3,3,3,3);
min_tnow = 100000000;
iterations = 200;
for iteration=1:iterations
 SRL(1,0,0,arg4);
end

% ---

case 1

global enable_graphics
global tnow
global sys_state
global proc_time
global order
global processed_parts
global part_waiting
global station
global target_station
global next_part
global vacuum_time
global Gamma % algorithm parameter
global Alpha % algorithm parameter
global trans_time
global event_stack
global SIGMA %for normal arrival times
global MU %for exponential inter arrival times

vacuum_time = 240;
trans_time= zeros(11);
trans_time(1,2) = 65; %
trans_time(1,3) = 15; %
trans_time(1,4) = 45; %
trans_time(1,5) = 45; %
trans_time(1,6) = 45; %
trans_time(1,7) = 25; %
trans_time(1,8) = 25; %
trans_time(1,9) = 25; %
trans_time(1,10) = 40; %
% trans_time(1,11) = 50; % N/A
trans_time(2,1) = 25; %
trans_time(2,3) = 20; %
trans_time(2,4) = 45; %
trans_time(2,5) = 45; %
trans_time(2,6) = 45; %
trans_time(2,7) = 25; %
trans_time(2,8) = 25; %
trans_time(2,9) = 25; %
trans_time(2,10) = 40; %

% trans_time(2,11) = 50; % N/A
trans_time(3,1) = 25; %
trans_time(3,2) = 45; %
trans_time(3,4) = 45; %
trans_time(3,5) = 45; %
trans_time(3,6) = 45; %
trans_time(3,7) = 25; %
trans_time(3,8) = 25; %
trans_time(3,9) = 25; %
trans_time(3,10) = 40; %
trans_time(3,11) = 40; %
trans_time(4,1) = 45; %
trans_time(4,2) = 45; %
trans_time(4,3) = 45; %
trans_time(4,5) = 65; %
trans_time(4,6) = 15; %
trans_time(4,7) = 50; %
trans_time(4,8) = 50; %
trans_time(4,9) = 50; %
trans_time(4,10) = 60; %
% trans_time(4,11) = 50; % N/A
trans_time(5,1) = 45; %
trans_time(5,2) = 45; %
trans_time(5,3) = 45; %
trans_time(5,4) = 25; %
trans_time(5,6) = 20; %
trans_time(5,7) = 50; %
trans_time(5,8) = 50; %
trans_time(5,9) = 50; %
trans_time(5,10) = 60; %
% trans_time(5,11) = 50; % N/A
trans_time(6,1) = 45; %
trans_time(6,2) = 45; %
trans_time(6,3) = 45; %
trans_time(6,4) = 25; %
trans_time(6,5) = 45; %
trans_time(6,7) = 50; %
trans_time(6,8) = 50; %
trans_time(6,9) = 50; %
trans_time(6,10) = 60; %
trans_time(6,11) = 60; %
trans_time(7,1) = 25; %
trans_time(7,2) = 25; %
trans_time(7,3) = 25; %
trans_time(7,4) = 50; %
trans_time(7,5) = 50; %
trans_time(7,6) = 50; %
trans_time(7,8) = 50; %
trans_time(7,9) = 15; %
trans_time(7,10) = 30; %
% % trans_time(7,11) = 50; %N/A
trans_time(8,1) = 25; %
trans_time(8,2) = 25; %
trans_time(8,3) = 25; %
trans_time(8,4) = 50; %
trans_time(8,5) = 50; %
trans_time(8,6) = 50; %
trans_time(8,7) = 25; %
trans_time(8,9) = 25; %
trans_time(8,10) = 30; %
% trans_time(8,11) = 50; %N/A
trans_time(9,1) = 25; %
trans_time(9,2) = 25; %
trans_time(9,3) = 25; %
trans_time(9,4) = 50; %
trans_time(9,5) = 50; %
trans_time(9,6) = 50; %
trans_time(9,7) = 25; %
trans_time(9,8) = 25; %
trans_time(9,10) = 30; %
trans_time(9,11) = 30; %
trans_time(10,1) = 40; %
trans_time(10,4) = 60; %
trans_time(10,7) = 30; %

Appendix VIII. Task Sequencing for a FMS – Source Code 152

trans_time(11,1) = 40; %
trans_time(11,2) = 40; %
trans_time(11,3) = 40; %
trans_time(11,4) = 60; %
trans_time(11,5) = 60; %
trans_time(11,6) = 60; %
trans_time(11,7) = 30; %
trans_time(11,8) = 30; %
trans_time(11,9) = 30; %
trans_time(11,10) = 20; %
% M1 - Mill, M2 - Lathe 1, M3 - LAthe 2
proc_time = zeros(1,3);
proc_time(1) = 185; %M2
proc_time(2) = 185; %M3
proc_time(3) = 600; %M1
enable_graphics = arg2;
Gamma = 0.9;
Alpha = 0.05;
% order = [1;1;2;1;2]; % 1 - ROOK, 2 - SIGN
order = arg4;
order = [order;-1]; %mark order is finished with -1 (end of list)
part_number = 1; % starting with part in the head of the batch
next_part = order(part_number);
sys_state = zeros(1,9);
processed_parts = 0;
tnow = 0;
seq = [sys_state,tnow];
robot_seq = [10,tnow];
MU = 200;
SIGMA = MU/10;

%--

%Stations:
% 1 - M2_IB
% 2 - M2
% 3 - M2_OB
% 4 - M3_IB
% 5 - M3
% 6 - M3_OB
% 7 - M1_IB
% 8 - M1
% 9 - M1_OB
% 10 - AGV_raw
% 11 - AGV_proccessed
% event structure:
% [event,station,time, target_station]
%events:
% 1: robot arrive empty
% 2: robot arrive with template
% 3: robot arrive with part
% 4: robot arrive with template +part
% 5:M2 finish proccessing
% 6:M3 finish proccessing
% 7:M1 finish proccessing
% 8: part arriveal
% system states:
% [M2_IB, M2, M2_OB, M3_IB, M3, M3_OB, M1_IB, M1,
M1_OB]
%Machine: 0-free, 1-Working, 2-full after process
%Buffer:0-free, 1-template, 2-template+part
% arrival from store:
% next_part = 1 %rook
% next_part = 2 %sign
% next_part = 0 %no part arrived
% next_part = -1 %end of order
%station = robot state

%--

%init

% inter_arrival_time = round(normrnd(MU,SIGMA));
% inter_arrival_time = exprnd(MU);
inter_arrival_time = MU;
event_stack = [8,-1, tnow+inter_arrival_time,-1];
station = 10; % robot starts at AGV _raw
if next_part == 1

 target_station = 1; %go to M2
else
 target_station = 7; % go to M1
end

%--

while 0<1 % endless loop. will end with break
prev_sys_state = sys_state;
event_arr = event_stack(1,:);
event = event_arr(1);
tnow = event_arr(3);
if ((event==1) || (event==2) || (event ==3) || (event==4)) % only robot
moving events change the station
 station = event_arr(2);
 target_station = event_arr(4);
 %update robot_seq
 if event == 2
 if station == 3
 robot_seq = [1,tnow-trans_time(1,3);robot_seq];
 elseif station == 6
 robot_seq = [4,tnow-trans_time(4,6);robot_seq];
 elseif station == 9
 robot_seq = [7,tnow-trans_time(7,9);robot_seq];
 end
 end
 if event == 3
 if station == 2
 robot_seq = [1,tnow-trans_time(1,2);robot_seq];
 elseif station == 5
 robot_seq = [4,tnow-trans_time(4,5);robot_seq];
 elseif station == 8
 robot_seq = [7,tnow-trans_time(7,8);robot_seq];
 elseif station == 3
 robot_seq = [2,tnow-trans_time(2,3);robot_seq];
 elseif station == 6
 robot_seq = [5,tnow-trans_time(5,6);robot_seq];
 elseif station == 9
 robot_seq = [8,tnow-trans_time(8,9);robot_seq];
 end
 end
 if (event == 4) && (station == 11)
 if target_station == 3
 robot_seq = [3,tnow-trans_time(3,11);robot_seq];
 elseif target_station == 6
 robot_seq = [6,tnow-trans_time(6,11);robot_seq];
 elseif target_station == 9
 robot_seq = [9,tnow-trans_time(9,11);robot_seq];
 end
 end
 robot_seq = [station,tnow;robot_seq];
end
if (event == 8) % part arrives
 if (station == 10) %robot waiting for it
 new_event = [4,target_station,
tnow+trans_time(station,target_station),target_station];% taking part
to IB
 event_stack = [event_stack;new_event];
 part_waiting = 0;
 part_number = part_number +1;
 next_part = order(part_number);
 if next_part ~= -1
 % inter_arrival_time = round(normrnd(MU,SIGMA));
 % inter_arrival_time = exprnd(MU);
 inter_arrival_time = MU;
 new_event = [8,-1, tnow+inter_arrival_time,-1];% new part
arrival
 event_stack = [event_stack;new_event];
 end
 else
 part_waiting = 1; % part arrived and waiting
 end
end % event == 8
if(event == 1) % robot arrives empty
 if (station == 10) %came to take part
 if (part_waiting == 1) %part waiting

Appendix VIII. Task Sequencing for a FMS – Source Code 153

 new_event = [4,target_station,
tnow+trans_time(station,target_station),target_station];% taking part
to IB
 event_stack = [event_stack;new_event];
 part_waiting = 0;
 part_number = part_number +1;
 next_part = order(part_number);
 if next_part ~= -1
 % inter_arrival_time = round(normrnd(MU,SIGMA));
 % inter_arrival_time = exprnd(MU);
 inter_arrival_time = MU;
 new_event = [8,-1, tnow+inter_arrival_time,-1];% new part
arrival
 event_stack = [event_stack;new_event];
 end
 end
 end % station == 10
 if (station == 2) % M2
 if (sys_state(2) == 2) % M2 finished process
 new_event = [3,target_station,
tnow+trans_time(station,target_station),target_station];% taking part
to OB
 event_stack = [event_stack;new_event];
 end
 end % station == 2
 if (station == 5)
 if (sys_state(5) == 2) % M3 finished process
 new_event = [3,target_station,
tnow+trans_time(station,target_station),target_station];% taking part
to OB
 event_stack = [event_stack;new_event];
 end
 end % station == 5
 if (station == 8)
 if (sys_state(8) == 2) % M1 finished process
 new_event = [3,target_station,
tnow+vacuum_time+trans_time(station,target_station),target_station];
% vacuum + taking part to OB
 event_stack = [event_stack;new_event];
 end
 end % station == 8
end % event == 1
if (event ==2) % robot arrives with empty template to OB
 if (station == 3)
 sys_state(3) = 1; % update sys_state - OB with template
 sys_state(1) = 0; % update sys_state - OB with template
 end
 if (station == 6)
 sys_state(6) = 1; % update sys_state - OB with template
 sys_state(4) = 0; % update sys_state - OB with template
 end
 if (station == 9)
 sys_state(9) = 1; % update sys_state - OB with template
 sys_state(7) = 0; % update sys_state - OB with template
 end
 end % event == 2
if (event ==3) % robot arrives with part to OB or to machine
 if (station == 2) % inserting to M2
 sys_state(1) = 1; % update sys_state - IB with template alone
 sys_state(2) = 1; % update sys_state - M2 proccessing
 new_event = [5, -1, tnow+proc_time(1),-1];% M2 finish
proccessing
 event_stack = [event_stack;new_event];
 end
 if (station == 3) % arrive to M2_OB with part
 sys_state(3) = 2; % update sys_state - OB with template+part
 sys_state(2) = 0; % M2 is free
 end
 if (station == 5) % inserting to M3
 sys_state(4) = 1; % update sys_state - IB with template alone
 sys_state(5) = 1; % update sys_state - M3 proccessing
 new_event = [6, -1, tnow+proc_time(2),-1];% M3 finish
proccessing
 event_stack = [event_stack;new_event];
 end
 if (station == 6) % arrive to M3_OB with part
 sys_state(6) = 2; % update sys_state - OB with template+part
 sys_state(5) = 0; % M3 is free

 end
 if (station == 8) % inserting to M1
 sys_state(7) = 1; % update sys_state - IB with template alone
 sys_state(8) = 1; % update sys_state - M3 proccessing
 new_event = [7, -1, tnow+proc_time(3),-1];% M3 finish
proccessing
 event_stack = [event_stack;new_event];
 end
 if (station == 9) % arrive to M1_OB with part
 sys_state(9) = 2; % update sys_state - OB with template+part
 sys_state(8) = 0; % M1 is free
 end
 end % event == 3
 if (event == 4) % robot arrives with tempale + part to IB or to
AGV_proccessed
 if (station == 1)
 sys_state(1) = 2; % update sys_state - OB with template+part
 end
 if (station == 4)
 sys_state(4) = 2; % update sys_state - OB with template+part
 end
 if (station == 7)
 sys_state(7) = 2; % update sys_state - OB with template+part
 end
 if (station == 11)
 processed_parts = processed_parts +1; % finished proccessing
one more part
 sys_state(target_station) = 0;
 if processed_parts == size(order,1)-1
 break
 end
 end
 end % event == 4
 if (event == 5) % M2 finished processing
 sys_state(2) = 2; % M2 after process
 if (station == 2) % robot waiting for part
 new_event = [3,target_station,
tnow+trans_time(station,target_station),target_station];% taking part
to OB
 event_stack = [event_stack;new_event];
 end
 end % event == 5
 if (event == 6) % M3 finished processing
 sys_state(5) = 2; % M3 after process is free
 if (station == 5) % robot waiting for part
 new_event = [3,target_station,
tnow+trans_time(station,target_station),target_station];% taking part
to OB
 event_stack = [event_stack;new_event];
 end
 end % event == 6
 if (event == 7) % M1 finished processing
 sys_state(8) = 2; % M1 after process
 if (station == 8) % robot waiting for part
 new_event = [3,target_station,
tnow+vacuum_time+trans_time(station,target_station),target_station];
% vacuum + taking part to OB
 event_stack = [event_stack;new_event];
 end
end % event == 7

% ---

 if ((event == 2) || (event==3) || (event==4)) % choose next state
only at there events
% not choosing next event if robot is waiting for part to finish
processing....
optional_next_state = [0,0,0,0,0,0,0,0,0]; %initiate array with fictive
state
optional_next_event = [0,0,0,0]; %initiate array with fictive event
% M1:
if (sys_state(7) == 0) && (next_part == 2) % M1_IB free + next part
is sign
 optional_next_state = [optional_next_state;
sys_state+[0,0,0,0,0,0,2,0,0]];
 optional_next_event = [optional_next_event;
1,10,tnow+trans_time(station,10),7]; % go and take part or wait for it
and then take to M1_IB

Appendix VIII. Task Sequencing for a FMS – Source Code 154

end
if (sys_state(7) == 2) && (sys_state(8) == 0) % M1_IB
template+part + M1 free
 optional_next_state = [optional_next_state; sys_state+[0,0,0,0,0,0,-
1,1,0]];
 optional_next_event = [optional_next_event;
3,8,tnow+trans_time(station,7)+trans_time(7,8),8]; % go to template.
take part from template and insert to M1
end
if (sys_state(7) == 1) && (sys_state(9) == 0) % M1_IB template +
M1_OB free
 optional_next_state = [optional_next_state; sys_state+[0,0,0,0,0,0,-
1,0,1]];
 optional_next_event = [optional_next_event;
2,9,tnow+trans_time(station,7)+trans_time(7,9),9]; % go to template.
take template from IB to OB
end
if (sys_state(8) == 1) && (sys_state(9) ==1) % M1 during process +
M1_OB tempale
 optional_next_state = [optional_next_state;
sys_state+[0,0,0,0,0,0,0,-1,1]];
 optional_next_event = [optional_next_event;
1,8,tnow+trans_time(station,8),9]; % go to M1. take part to template
or wait for it and then take to template
end
if (sys_state(8) == 2) && (sys_state(9) ==1) % M1 after process +
M1_OB tempale
 optional_next_state = [optional_next_state;
sys_state+[0,0,0,0,0,0,0,-2,1]];
 optional_next_event = [optional_next_event;
1,8,tnow+trans_time(station,8),9]; % go to M1. take part to template
or wait for it and then take to template
end
if (sys_state(9) == 2) % M1_OB tempale+part (move tempalate +
part to AGV)
 optional_next_state = [optional_next_state;
sys_state+[0,0,0,0,0,0,0,0,-2]];
 optional_next_event = [optional_next_event;
4,11,tnow+trans_time(station,9)+trans_time(9,11),9]; % go to
M1_OB. take template + part to AGV_proccessed
 %here target_station in the origin station
end
% M2:
if (sys_state(1) == 0) && (next_part == 1) % M2_IB free + next part
is rook
 optional_next_state = [optional_next_state;
sys_state+[2,0,0,0,0,0,0,0,0]];
 optional_next_event = [optional_next_event;
1,10,tnow+trans_time(station,10),1]; % go and take part or wait for it
and then take to M2_IB
end
if (sys_state(1) == 2) && (sys_state(2) == 0) % M2_IB
template+part + M2 free
 optional_next_state = [optional_next_state; sys_state+[-
1,1,0,0,0,0,0,0,0]];
 optional_next_event = [optional_next_event;
3,2,tnow+trans_time(station,1)+trans_time(1,2),2]; % go to template.
take part from template and insert to M2
end
if (sys_state(1) == 1) && (sys_state(3) == 0) % M2_IB template +
M2_OB free
 optional_next_state = [optional_next_state; sys_state+[-
1,0,1,0,0,0,0,0,0]];
 optional_next_event = [optional_next_event;
2,3,tnow+trans_time(station,1)+trans_time(1,3),3]; % go to template.
take template from IB to OB
end
if (sys_state(2) == 1) && (sys_state(3) == 1) % M2 during process +
M2_OB tempale
 optional_next_state = [optional_next_state; sys_state+[0,-
1,1,0,0,0,0,0,0]];
 optional_next_event = [optional_next_event;
1,2,tnow+trans_time(station,2),3]; % go to M2. take part to template
of wait for it and than take to template
end
if (sys_state(2) == 2) && (sys_state(3) == 1) % M2 after process +
M2_OB tempale

 optional_next_state = [optional_next_state; sys_state+[0,-
2,1,0,0,0,0,0,0]];
 optional_next_event = [optional_next_event;
1,2,tnow+trans_time(station,2),3]; % go to M2. take part to template
of wait for it and than take to template
end
if (sys_state(3) ==2) % M2_OB tempale+part (move tempalate + part
to AGV)
 optional_next_state = [optional_next_state; sys_state+[0,0,-
2,0,0,0,0,0,0]];
 optional_next_event = [optional_next_event;
4,11,tnow+trans_time(station,3)+trans_time(3,11),3]; % go to
M2_OB. take template + part to AGV_proccessed
 %here target_station in the origin station
end
% M3:
if (sys_state(4) == 0) && (next_part == 1) % M3_IB free + next part
is rook
 optional_next_state = [optional_next_state;
sys_state+[0,0,0,2,0,0,0,0,0]];
 optional_next_event = [optional_next_event;
1,10,tnow+trans_time(station,10),4]; % go and take part or wait for it
and then take to M3_IB
end
if (sys_state(4) == 2) && (sys_state(5) == 0) % M3_IB
template+part + M3 free
 optional_next_state = [optional_next_state; sys_state+[0,0,0,-
1,1,0,0,0,0]];
 optional_next_event = [optional_next_event;
3,5,tnow+trans_time(station,4)+trans_time(4,5),5]; % go to template.
take part from template and insert to M3
end
if (sys_state(4) == 1) && (sys_state(6) == 0) % M3_IB template +
M3_OB free
 optional_next_state = [optional_next_state; sys_state+[0,0,0,-
1,0,1,0,0,0]];
 optional_next_event = [optional_next_event;
2,6,tnow+trans_time(station,4)+trans_time(4,6),6]; % go to template.
take template from IB to OB
end
if (sys_state(5) == 1) && (sys_state(6) == 1) % M3 during process +
M3_OB tempale
 optional_next_state = [optional_next_state; sys_state+[0,0,0,0,-
1,1,0,0,0]];
 optional_next_event = [optional_next_event;
1,5,tnow+trans_time(station,5),6]; % go to M3. take part to template
or wait for it and then take to template
end
if (sys_state(5) == 2) && (sys_state(6) == 1) % M3 after process +
M3_OB tempale
 optional_next_state = [optional_next_state; sys_state+[0,0,0,0,-
2,1,0,0,0]];
 optional_next_event = [optional_next_event;
1,5,tnow+trans_time(station,5),6]; % go to M3. take part to template
or wait for it and then take to template
end
if (sys_state(6) == 2) % M3_OB tempale+part (move tempalate +
part to AGV)
 optional_next_state = [optional_next_state; sys_state+[0,0,0,0,0,-
2,0,0,0]];
 optional_next_event = [optional_next_event;
4,11,tnow+trans_time(station,6)+trans_time(6,11),6]; % go to
M2_OB. take template + part to AGV_proccessed
 %here target_station in the origin station
end
optional_next_state=optional_next_state(2:1:end,:); % erase fictive
state
optional_next_event=optional_next_event(2:1:end,:); % erase fictive
event

%--

%finding best next step
% +1 to work in array from 1 to 3 insteed of 0 to 2
max = -10000;
 for i=1:size(optional_next_state,1)
 if
Q(optional_next_state(i,1)+1,optional_next_state(i,2)+1,optional_nex

Appendix VIII. Task Sequencing for a FMS – Source Code 155

t_state(i,3)+1,optional_next_state(i,4)+1,optional_next_state(i,5)+1,o
ptional_next_state(i,6)+1,optional_next_state(i,7)+1,optional_next_st
ate(i,8)+1,optional_next_state(i,9)+1)>=max
 max =
Q(optional_next_state(i,1)+1,optional_next_state(i,2)+1,optional_nex
t_state(i,3)+1,optional_next_state(i,4)+1,optional_next_state(i,5)+1,o
ptional_next_state(i,6)+1,optional_next_state(i,7)+1,optional_next_st
ate(i,8)+1,optional_next_state(i,9)+1);
 ind = i;
 end
 end
best_next_state = optional_next_state(ind,:);
best_next_event = optional_next_event(ind,:);
%Choosing next step
% epsilon = 1;
epsilon = 1 / iteration;
if rand>epsilon
 next_state = best_next_state;
 new_event = best_next_event;
else
 state_ind = ceil(rand * size(optional_next_state,1));
 next_state = optional_next_state(state_ind,:);
 new_event = optional_next_event(state_ind,:);
end
event_stack = [event_stack;new_event];
end %if ((event == 2) || (event==3) || (event==4)) % choose next
state

% ---

if sum(prev_sys_state==sys_state) ~=9 % only if changed state
 % updating position sequence
 seq = [sys_state,tnow; seq];
 % updating Q of previous step
 delta = Gamma * Q
(sys_state(1)+1,sys_state(2)+1,sys_state(3)+1,sys_state(4)+1,sys_stat
e(5)+1,sys_state(6)+1,sys_state(7)+1,sys_state(8)+1,sys_state(9)+1) -
Q
(prev_sys_state(1)+1,prev_sys_state(2)+1,prev_sys_state(3)+1,prev_s
ys_state(4)+1,prev_sys_state(5)+1,prev_sys_state(6)+1,prev_sys_stat
e(7)+1,prev_sys_state(8)+1,prev_sys_state(9)+1);
 Q
(prev_sys_state(1)+1,prev_sys_state(2)+1,prev_sys_state(3)+1,prev_s
ys_state(4)+1,prev_sys_state(5)+1,prev_sys_state(6)+1,prev_sys_stat
e(7)+1,prev_sys_state(8)+1,prev_sys_state(9)+1) = Q
(prev_sys_state(1)+1,prev_sys_state(2)+1,prev_sys_state(3)+1,prev_s
ys_state(4)+1,prev_sys_state(5)+1,prev_sys_state(6)+1,prev_sys_stat
e(7)+1,prev_sys_state(8)+1,prev_sys_state(9)+1) + Alpha * delta;
 end
% removing event that was performed and sorting event_stack
event_stack=event_stack(2:1:end,:);
event_stack=sortrows(event_stack,3);
end %while

% ---

% after "break" update seq with last move to AVG_processed
tnow = tnow+trans_time(station,11);
sys_state = zeros(1,9);
seq = [sys_state,tnow; seq];
% update Q with last move
Q
(sys_state(1)+1,sys_state(2)+1,sys_state(3)+1,sys_state(4)+1,sys_stat
e(5)+1,sys_state(6)+1,sys_state(7)+1,sys_state(8)+1,sys_state(9)+1) =
1.5 + Gamma * Q
(sys_state(1)+1,sys_state(2)+1,sys_state(3)+1,sys_state(4)+1,sys_stat
e(5)+1,sys_state(6)+1,sys_state(7)+1,sys_state(8)+1,sys_state(9)+1);
% reward of 1.5
% update best_seq, best_robot_seq
 if tnow<min_tnow
 min_tnow = tnow;
 best_seq = seq;
 best_robot_seq = robot_seq;
 end
%updating Q according to tnow, episode results
factor = 1/tnow;
for i=1:size(seq,1)-1

Q(seq(i,1)+1,seq(i,2)+1,seq(i,3)+1,seq(i,4)+1,seq(i,5)+1,seq(i,6)+1,se
q(i,7)+1,seq(i,8)+1,seq(i,9)+1) =
Q(seq(i,1)+1,seq(i,2)+1,seq(i,3)+1,seq(i,4)+1,seq(i,5)+1,seq(i,6)+1,se
q(i,7)+1,seq(i,8)+1,seq(i,9)+1)*factor;
end
% update tnow_array (for chart)
if iteration == 1
 tnow_array = tnow;
else
 tnow_array = [tnow_array;tnow];
end

end%case

FIFO.m
function FIFO(arg,arg2,arg3,arg4)

global tnow_array
global iteration
global min_tnow
global seq
global best_seq
global best_robot_seq

switch(arg)

% ---

case 0

min_tnow = 100000000; %just a big number
iterations = 1;
for iteration=1:iterations
 FIFO(1,0,0,arg4);
end

% ---

case 1

global enable_graphics
global tnow
global sys_state
global proc_time % machine processing times
global order % parts batch
global processed_parts
global part_waiting
global station
global target_station
global next_part % next part arriveing to system
global vacuum_time % vacuuming time
global prev_tasks % previous tasks isnerted to task_queue for the
various machines [M1,M2,M3]
global trans_time
global event_stack
global MU %for exponential and normal inter arrival times
global SIGMA % for normal inter arrival times
global next_lathe % for taking parts to M2 and M3 alternately
global task_queue % fifo queue [task]
global next_M1_task
global next_M2_task
global next_M3_task
global last_lathe
global M1_part_taken

%--

vacuum_time = 240;
trans_time= zeros(11);
trans_time(1,2) = 65; %
trans_time(1,3) = 15; %
trans_time(1,4) = 45; %
trans_time(1,5) = 45; %
trans_time(1,6) = 45; %
trans_time(1,7) = 25; %

Appendix VIII. Task Sequencing for a FMS – Source Code 156

trans_time(1,8) = 25; %
trans_time(1,9) = 25; %
trans_time(1,10) = 40; %
% trans_time(1,11) = 50; % N/A
trans_time(2,1) = 25; %
trans_time(2,3) = 20; %
trans_time(2,4) = 45; %
trans_time(2,5) = 45; %
trans_time(2,6) = 45; %
trans_time(2,7) = 25; %
trans_time(2,8) = 25; %
trans_time(2,9) = 25; %
trans_time(2,10) = 40; %
% trans_time(2,11) = 50; % N/A
 trans_time(3,1) = 25; %
trans_time(3,2) = 45; %
trans_time(3,4) = 45; %
trans_time(3,5) = 45; %
trans_time(3,6) = 45; %
trans_time(3,7) = 25; %
trans_time(3,8) = 25; %
trans_time(3,9) = 25; %
trans_time(3,10) = 40; %
trans_time(3,11) = 40; %
 trans_time(4,1) = 45; %
trans_time(4,2) = 45; %
trans_time(4,3) = 45; %
trans_time(4,5) = 65; %
trans_time(4,6) = 15; %
trans_time(4,7) = 50; %
trans_time(4,8) = 50; %
trans_time(4,9) = 50; %
trans_time(4,10) = 60; %
% trans_time(4,11) = 50; % N/A
trans_time(5,1) = 45; %
trans_time(5,2) = 45; %
trans_time(5,3) = 45; %
trans_time(5,4) = 25; %
trans_time(5,6) = 20; %
trans_time(5,7) = 50; %
trans_time(5,8) = 50; %
trans_time(5,9) = 50; %
trans_time(5,10) = 60; %
% trans_time(5,11) = 50; % N/A
 trans_time(6,1) = 45; %
trans_time(6,2) = 45; %
trans_time(6,3) = 45; %
trans_time(6,4) = 25; %
trans_time(6,5) = 45; %
trans_time(6,7) = 50; %
trans_time(6,8) = 50; %
trans_time(6,9) = 50; %
trans_time(6,10) = 60; %
trans_time(6,11) = 60; %
trans_time(7,1) = 25; %
trans_time(7,2) = 25; %
trans_time(7,3) = 25; %
trans_time(7,4) = 50; %
trans_time(7,5) = 50; %
trans_time(7,6) = 50; %
trans_time(7,8) = 50; %
trans_time(7,9) = 15; %
trans_time(7,10) = 30; %
% % trans_time(7,11) = 50; %N/A
trans_time(8,1) = 25; %
trans_time(8,2) = 25; %
trans_time(8,3) = 25; %
trans_time(8,4) = 50; %
trans_time(8,5) = 50; %
trans_time(8,6) = 50; %
trans_time(8,7) = 25; %
trans_time(8,9) = 25; %
trans_time(8,10) = 30; %
% trans_time(8,11) = 50; %N/A
 trans_time(9,1) = 25; %
trans_time(9,2) = 25; %
trans_time(9,3) = 25; %
trans_time(9,4) = 50; %

trans_time(9,5) = 50; %
trans_time(9,6) = 50; %
trans_time(9,7) = 25; %
trans_time(9,8) = 25; %
trans_time(9,10) = 30; %
trans_time(9,11) = 30; %
trans_time(10,1) = 40; %
trans_time(10,4) = 60; %
trans_time(10,7) = 30; %
trans_time(11,1) = 40; %
trans_time(11,2) = 40; %
trans_time(11,3) = 40; %
trans_time(11,4) = 60; %
trans_time(11,5) = 60; %
trans_time(11,6) = 60; %
trans_time(11,7) = 30; %
trans_time(11,8) = 30; %
trans_time(11,9) = 30; %
trans_time(11,10) = 20; %
enable_graphics = arg2;
prev_tasks = [-1,-1,-1];
% M1 - Mill, M2 - Lathe 1, M3 - LAthe 2
proc_time = zeros(1,3);
proc_time(1) = 185; %M2
proc_time(2) = 185; %M3
proc_time(3) = 600; %M1
% order = [1;1;2;1;2]; % 1 - ROOK, 2 - SIGN
order = arg4;
order = [order;-1]; %mark order is finished with -1 (end of list)
part_number = 1; % starting with part in the head of the batch
next_part = order(part_number);
sys_state = zeros(1,9);
processed_parts = 0;
tnow = 0;
seq = [sys_state,tnow];
robot_seq = [10,tnow];
MU = 100;
SIGMA = MU/10;
task_queue = [];

%--

% Tasks:
% 300 - load part from M2_IB to M2
% 301 - move template from M2_ID to M2_OB
% 302 - move part out of M2 to M2_OB
% 400 - load part from M3_IB to M3
% 401 - move template from M3_ID to M3_OB
% 402 - move part out of M3 to M3_OB
% 500 - load part from M1_IB to M1
% 501 - move template from M1_ID to M1_OB
% 502 - move part out of M1 to M1_OB
% 6 - taking template from M1_OB to AGV_processed
% 7 - taking template from M2_OB to AGV_processed
% 8 - taking template from M3_OB to AGV_processed
% 9 - taking template from AGV_raw to M1_IB
% 10 - taking template from AGV_raw to M2_IB
% 11 - taking template from AGV_raw to M3_IB
%Stations:
 % 1 - M2_IB
% 2 - M2
% 3 - M2_OB
% 4 - M3_IB
% 5 - M3
% 6 - M3_OB
% 7 - M1_IB
% 8 - M1
% 9 - M1_OB
% 10 - AGV_raw
% 11 - AGV_proccessed
% event structure:
% [event,station,time, target_station]
%events:
% 1: robot arrive empty
% 2: robot arrive with template
% 3: robot arrive with part
% 4: robot arrive with template +part
% 5:M2 finish proccessing

Appendix VIII. Task Sequencing for a FMS – Source Code 157

% 6:M3 finish proccessing
% 7:M1 finish proccessing
% 8: part arriveal
% system states
% [M2_IB, M2, M2_OB, M3_IB, M3, M3_OB, M1_IB, M1,
M1_OB]
%Machine: 0-free, 1-Working, 2-full after process
%Buffer:0-free, 1-template, 2-template+part, (-1)-part+template
headed towards it
% arrival from store
% next_part = 1 %rook
% next_part = 2 %sign
% next_part = 0 %no part arrived
% next_part = -1 %end of order
%station = robot state

%--

%init:

% inter_arrival_time = round(normrnd(MU,SIGMA));
% inter_arrival_time = exprnd(MU);
inter_arrival_time = MU;
event_stack = [8,-1, tnow+inter_arrival_time,-1];
station = 10; % robot starts at AGV _raw
if next_part == 1
 target_station = 1; % go to M2
else
 target_station = 7; % go to M1
end
next_lathe = 2;
last_lathe = -1;
M1_part_taken = 0;

%--

while 0<1 % endless loop. ends with "break"
prev_sys_state = sys_state;
event_arr = event_stack(1,:);
event = event_arr(1);
tnow = event_arr(3);
if ((event==1) || (event==2) || (event ==3) || (event==4)) % only robot
moving events change the station
 station = event_arr(2);
 target_station = event_arr(4);
 %update robot_seq
 if event == 2
 if station == 3
 robot_seq = [1,tnow-trans_time(1,3);robot_seq];
 elseif station == 6
 robot_seq = [4,tnow-trans_time(4,6);robot_seq];
 elseif station == 9
 robot_seq = [7,tnow-trans_time(7,9);robot_seq];
 end
 end
 if event == 3
 if station == 2
 robot_seq = [1,tnow-trans_time(1,2);robot_seq];
 elseif station == 5
 robot_seq = [4,tnow-trans_time(4,5);robot_seq];
 elseif station == 8
 robot_seq = [7,tnow-trans_time(7,8);robot_seq];
 elseif station == 3
 robot_seq = [2,tnow-trans_time(2,3);robot_seq];
 elseif station == 6
 robot_seq = [5,tnow-trans_time(5,6);robot_seq];
 elseif station == 9
 robot_seq = [8,tnow-trans_time(8,9);robot_seq];
 end
 end
 if (event == 4) && (station == 11)
 if target_station == 3
 robot_seq = [3,tnow-trans_time(3,11);robot_seq];
 elseif target_station == 6
 robot_seq = [6,tnow-trans_time(6,11);robot_seq];
 elseif target_station == 9
 robot_seq = [9,tnow-trans_time(9,11);robot_seq];
 end

 end
 robot_seq = [station,tnow;robot_seq];
end
if (event == 8) % part arrives
 part_waiting = 1; % part arrived and waiting
end % event == 8
if(event == 1) % robot arrives empty
 if (station == 10) %came to take part
 if (part_waiting == 1) %part waiting
 new_event = [4,target_station,
tnow+trans_time(station,target_station),target_station];% taking part
to IB
 event_stack = [event_stack;new_event];
 if target_station == 1
 next_lathe = 3;
 end
 if target_station == 4
 next_lathe = 2;
 end
 part_waiting = 0;
 part_number = part_number +1;
 next_part = order(part_number);
 if next_part ~= -1
 % inter_arrival_time = round(normrnd(MU,SIGMA));
 % inter_arrival_time = exprnd(MU);
 inter_arrival_time = MU;
 new_event = [8,-1, tnow+inter_arrival_time,-1];% new part
arrival
 event_stack = [event_stack;new_event];
 end
 end
 end % station == 10
 if (station == 2) % M2
 if (sys_state(2) == 2) % M2 finished process
 new_event = [3,target_station,
tnow+trans_time(station,target_station),target_station];% taking part
to OB
 event_stack = [event_stack;new_event];
 end
 end % station == 2
 if (station == 5)
 if (sys_state(5) == 2) % M3 finished process
 new_event = [3,target_station,
tnow+trans_time(station,target_station),target_station];% taking part
to OB
 event_stack = [event_stack;new_event];
 end
 end % station ==5
 if (station == 8)
 if (sys_state(8) == 2) % M1 finished process
 new_event = [3,target_station,
tnow+vacuum_time+trans_time(station,target_station),target_station];
% vauucm + taking part to OB
 event_stack = [event_stack;new_event];
 end
 end % station == 8
end % event == 1
if (event ==2) % robot arrives with empty template to OB
 if (station == 3)
 sys_state(3) = 1; % update sys_state - OB with template
 sys_state(1) = 0; % update sys_state - OB with template
 end
 if (station == 6)
 sys_state(6) = 1; % update sys_state - OB with template
 sys_state(4) = 0; % update sys_state - OB with template
 end
 if (station == 9)
 sys_state(9) = 1; % update sys_state - OB with template
 sys_state(7) = 0; % update sys_state - OB with template
 end
 end % event == 2
 if (event ==3) % robot arrives with part to OB or to machine
 if (station == 2) % inserting to M2
 sys_state(1) = 1; % update sys_state - IB with template alone
 sys_state(2) = 1; % update sys_state - M2 proccessing
 new_event = [5, -1, tnow+proc_time(1),-1];% M2 finish
proccessing
 event_stack = [event_stack;new_event];

Appendix VIII. Task Sequencing for a FMS – Source Code 158

 end
 if (station == 3) % arrive to M2_OB with part
 sys_state(3) = 2; % update sys_state - OB with template+part
 sys_state(2) = 0; % M2 is free
 end
 if (station == 5) % inserting to M3
 sys_state(4) = 1; % update sys_state - IB with template alone
 sys_state(5) = 1; % update sys_state - M3 proccessing
 new_event = [6, -1, tnow+proc_time(2),-1];% M3 finish
proccessing
 event_stack = [event_stack;new_event];
 end
 if (station == 6) % arrive to M3_OB with part
 sys_state(6) = 2; % update sys_state - OB with template+part
 sys_state(5) = 0; % M3 is free
 end
 if (station == 8) % inserting to M1
 sys_state(7) = 1; % update sys_state - IB with template alone
 sys_state(8) = 1; % update sys_state - M3 proccessing
 new_event = [7, -1, tnow+proc_time(3),-1];% M3 finish
proccessing
 event_stack = [event_stack;new_event];
 end
 if (station == 9) % arrive to M1_OB with part
 sys_state(9) = 2; % update sys_state - OB with template+part
 sys_state(8) = 0; % M1 is free
 end
 end % event == 3
 if (event == 4) % robot arrives with tempale + part to IB or to
AGV_proccessed
 if (station == 1)
 sys_state(1) = 2; % update sys_state - OB with template+part
 end
 if (station == 4)
 sys_state(4) = 2; % update sys_state - OB with template+part
 end
 if (station == 7)
 sys_state(7) = 2; % update sys_state - OB with template+part
 end
 if (station == 11)
 processed_parts = processed_parts +1; % finished proccessing
one more part
 sys_state(target_station) = 0;
 if target_station == 9 % note part taken from M1_OB
 M1_part_taken = 0;
 end
 if processed_parts == size(order,1)-1
 break
 end
 end
 end % event == 4
 if (event == 5) % M2 finished processing
 sys_state(2) = 2; % M2 after process
 if (station == 2) % robot waiting for part
 new_event = [3,target_station,
tnow+trans_time(station,target_station),target_station];% taking part
to OB
 event_stack = [event_stack;new_event];
 end
end % event == 5
if (event == 6) % M3 finished processing
 sys_state(5) = 2; % M3 after process is free
 if (station == 5) % robot waiting for part
 new_event = [3,target_station,
tnow+trans_time(station,target_station),target_station];% taking part
to OB
 event_stack = [event_stack;new_event];
 end
end % event == 6
if (event == 7) % M1 finished processing
 sys_state(8) = 2; % M1 after process
 if (station == 8) % robot waiting for part
 new_event = [3,target_station,
tnow+vacuum_time+trans_time(station,target_station),target_station];
% vacuum + taking part to OB
 event_stack = [event_stack;new_event];
 end
end % event == 7

%--

if (event ~= 1) % choose next task only at there events. not choosing
next event if robot is coming empty to take part
% M1:
if (sys_state(7) == 0) && (next_part == 2) && (part_waiting == 1) %
M1_IB free + next part is sign + part has arrived + there is no part
already headed to M3
 if isempty(task_queue) ==1 && prev_tasks(1) ~=9
 task_queue = [task_queue;9];
 prev_tasks(1) = 9;
 else
 if isempty(task_queue) ~=1
 if bsearch(task_queue,9) == -1 && prev_tasks(1) ~=9
 task_queue = [task_queue;9]; % go and take part or wait for
it and then take to M1_IB
 prev_tasks(1) = 9;
 end
 end
 end
end
if (sys_state(7) == 2) && (sys_state(8) == 0) % M1_IB
template+part + M1 free
 next_M1_task = [next_M1_task;500];% go to template. take part
from template and insert to M1
end
if (sys_state(7) == 1) && (sys_state(9) == 0) % M1_IB template +
M1_OB free
 next_M1_task = [next_M1_task;501]; % go to template. take
template from IB to OB
end
if (sys_state(8) == 2) && (sys_state(9) ==1) % M1 after process +
M1_OB tempale
 next_M1_task = [next_M1_task;502]; % go to M1. vacuum. take
part to template
end
if isempty(next_M1_task) ~=1
 for i = 1:length(next_M1_task)
 if next_M1_task(i) ~= prev_tasks(1)
 task_queue = [task_queue;next_M1_task(i)];
 prev_tasks(1) = next_M1_task(i);
 end
 end % for
end % isempty
next_M1_task = [];
if (sys_state(9) == 2) % M1_OB tempale+part (move tempalate +
part to AGV)
 %next_M1_task = [next_M1_task;6]; % go to M1_OB. take
template + part to AGV_proccessed
 if isempty(task_queue) ==1
 if M1_part_taken == 0
 task_queue = [task_queue;6];
 M1_part_taken = 1;
 end
 else
 if bsearch(task_queue,6) == -1 && M1_part_taken == 0
 task_queue = [task_queue;6]; % go and take part or wait for it
and then take to M1_IB
 M1_part_taken = 1;
 end
 end
end
% M2:
if (sys_state(1) == 0) && (next_part == 1) && (part_waiting == 1)
&& (next_lathe==2) % M2_IB free + next part is rook + and part has
arrived + there is no part already headed to M2
 if last_lathe == 3 || last_lathe == -1
 if isempty(task_queue) ==1
 task_queue = [task_queue;10];
 last_lathe = 2;
 else
 if bsearch(task_queue,10) == -1
 task_queue = [task_queue;10]; % go and take part or wait
for it and then take to M2_IB
 last_lathe = 2;
 end
 end

Appendix VIII. Task Sequencing for a FMS – Source Code 159

 end
end
if (sys_state(1) == 2) && (sys_state(2) == 0) % M2_IB
template+part + M2 free
 next_M2_task = 300;% go to template. take part from template and
insert to M2
end
if (sys_state(1) == 1) && (sys_state(3) == 0) % M2_IB template +
M2_OB free
 next_M2_task = 301; % go to template. take template from IB to
OB
end
if (sys_state(2) == 2) && (sys_state(3) == 1) % M2 after process +
M2_OB tempale
 next_M2_task = 302;% go to M2. take part to template
end
if (sys_state(3) ==2) % M2_OB tempale+part (move tempalate + part
to AGV)
 next_M2_task = 7; % go to M2_OB. take template + part to
AGV_proccessed
end
 if isempty(next_M2_task) ~=1
 if next_M2_task ~= prev_tasks(2)
 task_queue = [task_queue;next_M2_task];
 prev_tasks(2) = next_M2_task;
 end
end
next_M2_task = [];
% M3:
if (sys_state(4) == 0) && (next_part == 1) && (part_waiting == 1)
&& (next_lathe==3) % M3_IB free + next part is rook + part has
arrived + there is no part already headed to M3
 if last_lathe == 2 || last_lathe == -1
 if isempty(task_queue) ==1
 task_queue = [task_queue;11];
 last_lathe = 3;
 else
 if bsearch(task_queue,11) == -1
 task_queue = [task_queue;11]; % go and take part or wait
for it and then take to M3_IB
 last_lathe = 3;
 end
 end
 end
end
if (sys_state(4) == 2) && (sys_state(5) == 0) % M3_IB
template+part + M3 free
 next_M3_task = 400; % go to template. take part from template and
insert to M3
end
if (sys_state(4) == 1) && (sys_state(6) == 0) % M3_IB template +
M3_OB free
 next_M3_task = 401; % go to template. take template from IB to
OB
end
if (sys_state(5) == 2) && (sys_state(6) == 1) % M3 after process +
M3_OB tempale
 next_M3_task = 402; % go to M3. take part to template or wait for
it and then take to template
end
if (sys_state(6) == 2) % M3_OB tempale+part (move tempalate +
part to AGV)
 next_M3_task = 8; % go to M2_OB. take template + part to
AGV_proccessed
end
if isempty(next_M3_task) ~=1
 if next_M3_task ~= prev_tasks(3)
 task_queue = [task_queue;next_M3_task];
 prev_tasks(3) = next_M3_task;
 end
end
next_M3_task = [];
%end % if M3

%--

% updating event_stack according to next task

if isempty(task_queue) ~=1
next_task = task_queue(1);
if ((event~=5) && (event ~=6) && (event~=7) && (event~=8)) ||
(size(event_stack,1) == 1)
 if next_task == 10;
 event_stack = [event_stack; 1,10,tnow+trans_time(station,10),1];
% go and take part and then take to M2_IB
 end
 if next_task == 300;
 event_stack = [event_stack;
3,2,tnow+trans_time(station,1)+trans_time(1,2),2]; % go to template.
take part from template and insert to M2
 end
 if next_task == 301;
 event_stack = [event_stack;
2,3,tnow+trans_time(station,1)+trans_time(1,3),3]; % go to template.
take template from IB to OB
 end
 if next_task == 302;
 event_stack = [event_stack; 1,2,tnow+trans_time(station,2),3]; %
go to M2. take part to template
 end
 if next_task == 7;
 event_stack = [event_stack;
4,11,tnow+trans_time(station,3)+trans_time(3,11),3];% go to
M2_OB. take template + part to AGV_proccessed
 % here target station is origin station for robot_seq
 end
 if next_task == 11;
 event_stack = [event_stack; 1,10,tnow+trans_time(station,10),4];
% go and take part or wait for it and then take to M3_IB
 end
 if next_task == 400;
 event_stack = [event_stack;
3,5,tnow+trans_time(station,4)+trans_time(4,5),5]; % go to template.
take part from template and insert to M3
 end
 if next_task == 401;
 event_stack = [event_stack;
2,6,tnow+trans_time(station,4)+trans_time(4,6),6]; % go to template.
take template from IB to OB
 end
 if next_task == 402;
 event_stack = [event_stack; 1,5,tnow+trans_time(station,5),6]; %
go to M3. take part to template or wait for it and then take to template
 end
 if next_task == 8;
 event_stack = [event_stack;
4,11,tnow+trans_time(station,6)+trans_time(6,11),6]; % go to
M2_OB. take template + part to AGV_proccessed
 % here target station is origin station for robot_seq
 end
 if next_task == 9;
 event_stack = [event_stack; 1,10,tnow+trans_time(station,10),7];
% go and take part or wait for it and then take to M1_IB
 end
 if next_task == 500;
 event_stack = [event_stack;
3,8,tnow+trans_time(station,7)+trans_time(7,8),8]; % go to template.
take part from template and insert to M1
 end
 if next_task == 501;
 event_stack = [event_stack;
2,9,tnow+trans_time(station,7)+trans_time(7,9),9]; % go to template.
take template from IB to OB
 end
 if next_task == 502;
 event_stack = [event_stack; 1,8,tnow+trans_time(station,8),9]; %
go to M1. vacuum. take part to template or wait for it and then take to
template
 end
 if next_task == 6;
 event_stack = [event_stack;
4,11,tnow+trans_time(station,9)+trans_time(9,11),9]; % go to
M1_OB. take template + part to AGV_proccessed
 % here target station is origin station for robot_seq
 end

Appendix VIII. Task Sequencing for a FMS – Source Code 160

% updating task_queue (deleting first task which have been
converted to event
 if size(task_queue,1) == 1
 task_queue = [];
 else
 task_queue = task_queue(2:end,:);
 end
end % if ((event~=5(&& (event ~=6) && (event~=7))...
end %if isempty(task_queue) ~=1
end %if (event ~= 1)

%--

% updating system state sequence
if sum(prev_sys_state==sys_state) ~=9 % only if changed state
 seq = [sys_state,tnow; seq];
end
% removing event that was performed and sorting event_stack
event_stack=event_stack(2:1:end,:);
event_stack=sortrows(event_stack,3);
if size(event_stack,1) == 0
 event_stack = [-2,station, tnow, -2]; % fictive event if stack is
empty
end
end %while

%---

% after "break" update seq with last move to AVG_processed
 sys_state = [0,0,0,0,0,0,0,0,0];
 seq = [sys_state,tnow; seq];
if tnow<min_tnow
 min_tnow = tnow;
 best_seq = seq;
 best_robot_seq = robot_seq;
end

%--

if iteration == 1
 tnow_array = tnow;
else
 tnow_array = [tnow_array;tnow];
end

end%case

FMS.m
function FMS(arg,arg2,arg3,arg4,arg5)

global Q
global tnow_array
global iteration
global min_tnow
global seq
global robot_seq
global best_seq
global best_robot_seq

% ---

switch(arg)

% ---

case 0

Q = ones(3,3,3,3,3,3,3,3,3);
min_tnow = 100000000; %just a big number
iterations = 1;
for iteration=1:iterations
 FMS(1,0,0,arg4,arg5);
end

% ---

case 1

global enable_graphics
global tnow
global sys_state
global proc_time
global order
global processed_parts
global part_waiting
global station
global origin_station
global next_part
global vacuum_time
global Gamma % algorithm parameter
global Alpha % algorithm parameter
global trans_time
global event_stack
global SIGMA %for normal arrival times
global MU %for exponential inter arrival times
global seq_ind
global next_station

vacuum_time = 240; % the vacuum time will be regarded as part of
the trans time, to make sure the robot is not free for the whole time
trans_time= zeros(11);
trans_time(1,2) = 65; %
trans_time(1,3) = 15; %
trans_time(1,4) = 45; %
trans_time(1,5) = 45; %
trans_time(1,6) = 45; %
trans_time(1,7) = 25; %
trans_time(1,8) = 25; %
trans_time(1,9) = 25; %
trans_time(1,10) = 40; %
% trans_time(1,11) = 50; % N/A
trans_time(2,1) = 25; %
trans_time(2,3) = 20; %
trans_time(2,4) = 45; %
trans_time(2,5) = 45; %
trans_time(2,6) = 45; %
trans_time(2,7) = 25; %
trans_time(2,8) = 25; %
trans_time(2,9) = 25; %
trans_time(2,10) = 40; %
% trans_time(2,11) = 50; % N/A
trans_time(3,1) = 25; %
trans_time(3,2) = 45; %
trans_time(3,4) = 45; %
trans_time(3,5) = 45; %
trans_time(3,6) = 45; %
trans_time(3,7) = 25; %
trans_time(3,8) = 25; %
trans_time(3,9) = 25; %
trans_time(3,10) = 40; %
trans_time(3,11) = 40; %
 trans_time(4,1) = 45; %
trans_time(4,2) = 45; %
trans_time(4,3) = 45; %
trans_time(4,5) = 65; %
trans_time(4,6) = 15; %
trans_time(4,7) = 50; %
trans_time(4,8) = 50; %
trans_time(4,9) = 50; %
trans_time(4,10) = 60; %
% trans_time(4,11) = 50; % N/A
trans_time(5,1) = 45; %
trans_time(5,2) = 45; %
trans_time(5,3) = 45; %
trans_time(5,4) = 25; %
trans_time(5,6) = 20; %
trans_time(5,7) = 50; %
trans_time(5,8) = 50; %
trans_time(5,9) = 50; %
trans_time(5,10) = 60; %
% trans_time(5,11) = 50; % N/A
 trans_time(6,1) = 45; %
trans_time(6,2) = 45; %
trans_time(6,3) = 45; %

Appendix VIII. Task Sequencing for a FMS – Source Code 161

trans_time(6,4) = 25; %
trans_time(6,5) = 45; %
trans_time(6,7) = 50; %
trans_time(6,8) = 50; %
trans_time(6,9) = 50; %
trans_time(6,10) = 60; %
trans_time(6,11) = 60; %
trans_time(7,1) = 25; %
trans_time(7,2) = 25; %
trans_time(7,3) = 25; %
trans_time(7,4) = 50; %
trans_time(7,5) = 50; %
trans_time(7,6) = 50; %
trans_time(7,8) = 50; %
trans_time(7,9) = 15; %
trans_time(7,10) = 30; %
% % trans_time(7,11) = 50; %N/A
trans_time(8,1) = 25; %
trans_time(8,2) = 25; %
trans_time(8,3) = 25; %
trans_time(8,4) = 50; %
trans_time(8,5) = 50; %
trans_time(8,6) = 50; %
trans_time(8,7) = 25; %
trans_time(8,9) = 25; %
trans_time(8,10) = 30; %
% trans_time(8,11) = 50; %N/A
trans_time(9,1) = 25; %
trans_time(9,2) = 25; %
trans_time(9,3) = 25; %
trans_time(9,4) = 50; %
trans_time(9,5) = 50; %
trans_time(9,6) = 50; %
trans_time(9,7) = 25; %
trans_time(9,8) = 25; %
trans_time(9,10) = 30; %
trans_time(9,11) = 30; %
trans_time(10,1) = 40; %
trans_time(10,4) = 60; %
trans_time(10,7) = 30; %
trans_time(11,1) = 40; %
trans_time(11,2) = 40; %
trans_time(11,3) = 40; %
trans_time(11,4) = 60; %
trans_time(11,5) = 60; %
trans_time(11,6) = 60; %
trans_time(11,7) = 30; %
trans_time(11,8) = 30; %
trans_time(11,9) = 30; %
trans_time(11,10) = 20; %
% M1 - Mill, M2 - Lathe 1, M3 - LAthe 2
proc_time = zeros(1,3);
proc_time(1) = 185; %M2
proc_time(2) = 185; %M3
proc_time(3) = 600; %M1
enable_graphics = arg2;
Gamma = 0.9;
Alpha = 0.05;
%order = [1;1;2;1;2]; % 1 - ROOK, 2 - SIGN
order = arg4;
order = [order;-1]; %mark order is finished with -1 (end of list)
part_number = 1; % starting with part in the head of the batch
next_part = order(part_number);
sys_state = zeros(1,9);
processed_parts = 0;
tnow = 0;
seq = [sys_state,tnow];
robot_seq = [10,tnow];
MU = 100;
SIGMA = MU/10;

%--

%Stations:
% 1 - M2_IB
% 2 - M2
% 3 - M2_OB
% 4 - M3_IB

% 5 - M3
% 6 - M3_OB
% 7 - M1_IB
% 8 - M1
% 9 - M1_OB
% 10 - AGV_raw
% 11 - AGV_proccessed
% event structure:
% [event,station,time, target_station]
%events:
% 1: robot arrive empty
% 2: robot arrive with template
% 3: robot arrive with part
% 4: robot arrive with template +part
% 5:M2 finish proccessing
% 6:M3 finish proccessing
% 7:M1 finish proccessing
% 8: part arriveal
% system states:
% [M2_IB, M2, M2_OB, M3_IB, M3, M3_OB, M1_IB, M1,
M1_OB]
%Machine: 0-free, 1-Working, 2-full after process
%Buffer:0-free, 1-template, 2-template+part
% arrival from store:
% next_part = 1 %rook
% next_part = 2 %sign
% next_part = 0 %no part arrived
% next_part = -1 %end of order
%station = robot state

%--

%init

% inter_arrival_time = round(normrnd(MU,SIGMA));
% inter_arrival_time = exprnd(MU);
inter_arrival_time = MU;
event_stack = [8,-1, tnow+inter_arrival_time,-1];
station = 10; % robot starts at AGV _raw
sequence = arg5;
seq_ind= size(sequence,1);
seq_ind = seq_ind-1;
next_station = sequence(seq_ind);

%--

while 0<1 % endless loop. will end with break
prev_sys_state = sys_state;

event_arr = event_stack(1,:);
event = event_arr(1);
tnow = event_arr(3);

% '============================='
% sys_state
% event_stack

if ((event==1) || (event==2) || (event ==3) || (event==4)) % only robot
moving events change the station

 station = event_arr(2);
 origin_station = event_arr(4);

 if seq_ind>1
 seq_ind = seq_ind-1;
 next_station = sequence(seq_ind);
 while next_station == station % remove redundancies in seq
 seq_ind = seq_ind-1;
 next_station = sequence(seq_ind);
 end
 end
% next_station
end
if (event == 8) % part arrives
 part_waiting = 1;
 if (station == 10) %robot waiting for it

Appendix VIII. Task Sequencing for a FMS – Source Code 162

 new_event = [4,next_station,
tnow+trans_time(station,next_station),next_station]; % % take
part+template to M3_IB
 event_stack = [event_stack;new_event];
 part_waiting = 0;
 part_number = part_number +1;
 next_part = order(part_number);
 if next_part ~= -1
 % inter_arrival_time = round(normrnd(MU,SIGMA));
 % inter_arrival_time = exprnd(MU);
 inter_arrival_time = MU;
 new_event = [8,-1, tnow+inter_arrival_time,-1];% new part
arrival
 event_stack = [event_stack;new_event];
 end
 end
end % event == 8
if(event == 1) % robot arrives empty
 if (station == 10) %came to take part
 if (part_waiting == 1) %part waiting
 new_event = [4,next_station,
tnow+trans_time(station,next_station),next_station]; % % take
part+template to M3_IB
 event_stack = [event_stack;new_event];
 part_waiting = 0;
 part_number = part_number +1;
 next_part = order(part_number);
 if next_part ~= -1
 % inter_arrival_time = round(normrnd(MU,SIGMA));
 % inter_arrival_time = exprnd(MU);
 inter_arrival_time = MU;
 new_event = [8,-1, tnow+inter_arrival_time,-1];% new part
arrival
 event_stack = [event_stack;new_event];
 end
 end
 end % station == 10
 if (station == 2) % M2
 if (sys_state(2) == 2) % M2 finished process
 new_event = [3,next_station,
tnow+trans_time(station,next_station),next_station];% taking part to
OB
 event_stack = [event_stack;new_event];
 end
 end % station == 2
 if (station == 5)
 if (sys_state(5) == 2) % M3 finished process
 new_event = [3,next_station,
tnow+trans_time(station,next_station),next_station];% taking part to
OB
 event_stack = [event_stack;new_event];
 end
 end % station == 5
 if (station == 8)
 if (sys_state(8) == 2) % M1 finished process
 new_event = [3,next_station,
tnow+vacuum_time+trans_time(station,next_station),next_station];%
vacuum + taking part to OB
 event_stack = [event_stack;new_event];
 end
 end % station == 8
 end % event == 1
 if (event ==2) % robot arrives with empty template to OB
 if (station == 3)
 sys_state(3) = 1; % update sys_state - OB with template
 sys_state(1) = 0; % update sys_state - OB with template
 end
 if (station == 6)
 sys_state(6) = 1; % update sys_state - OB with template
 sys_state(4) = 0; % update sys_state - OB with template
 end
 if (station == 9)
 sys_state(9) = 1; % update sys_state - OB with template
 sys_state(7) = 0; % update sys_state - OB with template
 end
 end % event == 2
 if (event ==3) % robot arrives with part to OB or to machine
 if (station == 2) % inserting to M2

 sys_state(1) = 1; % update sys_state - IB with template alone
 sys_state(2) = 1; % update sys_state - M2 proccessing
 new_event = [5, -1, tnow+proc_time(1),-1]; % M2 finish
proccessing
 event_stack = [event_stack;new_event];
 end
 if (station == 3) % arrive to M2_OB with part
 sys_state(3) = 2; % update sys_state - OB with template+part
 sys_state(2) = 0; % M2 is free
 end
 if (station == 5) % inserting to M3
 sys_state(4) = 1; % update sys_state - IB with template alone
 sys_state(5) = 1; % update sys_state - M3 proccessing
 new_event = [6, -1, tnow+proc_time(2),-1];% M3 finish
proccessing
 event_stack = [event_stack;new_event];
 end
 if (station == 6) % arrive to M3_OB with part
 sys_state(6) = 2; % update sys_state - OB with template+part
 sys_state(5) = 0; % M3 is free
 end
 if (station == 8) % inserting to M1
 sys_state(7) = 1; % update sys_state - IB with template alone
 sys_state(8) = 1; % update sys_state - M3 proccessing
 new_event = [7, -1, tnow+proc_time(3),-1];% M3 finish
proccessing
 event_stack = [event_stack;new_event];
 end
 if (station == 9) % arrive to M1_OB with part
 sys_state(9) = 2; % update sys_state - OB with template+part
 sys_state(8) = 0; % M1 is free
 end
 end % event == 3
 if (event == 4) % robot arrives with tempale + part to IB or to
AGV_proccessed
 if (station == 1)
 sys_state(1) = 2; % update sys_state - OB with template+part
 end
 if (station == 4)
 sys_state(4) = 2; % update sys_state - OB with template+part
 end
 if (station == 7)
 sys_state(7) = 2; % update sys_state - OB with template+part
 end
 if (station == 11)
 processed_parts = processed_parts +1; % finished proccessing
one more part
 sys_state(origin_station) = 0;
 if processed_parts == size(order,1)-1
 break
 end
 end
 end % event == 4
 if (event == 5) % M2 finished processing
 sys_state(2) = 2; % M2 after process
 if (station == 2) % robot waiting for part
 new_event = [3,next_station,
tnow+trans_time(station,next_station),next_station];% taking part to
OB
 event_stack = [event_stack;new_event];
 end
end % event == 5
if (event == 6) % M3 finished processing
 sys_state(5) = 2; % M3 after process is free
 if (station == 5) % robot waiting for part
 new_event = [3,next_station,
tnow+trans_time(station,next_station),next_station];% taking part to
OB
 event_stack = [event_stack;new_event];
 end
end % event == 6
if (event == 7) % M1 finished processing
 sys_state(8) = 2; % M1 after process
 if (station == 8) % robot waiting for part
 new_event = [3,next_station,
tnow+vacuum_time+trans_time(station,next_station),next_station];%
vacuum + taking part to OB
 event_stack = [event_stack;new_event];

Appendix VIII. Task Sequencing for a FMS – Source Code 163

 end
end % event == 7

% ---

if ((event == 1) || (event == 2) || (event==3) || (event==4)) %
choose next state only at there events
% not choosing next event if robot is waiting for part to finish
processing....
new_event = [];
% M2 Stations
if next_station == 1
 if station == 10 %&& part_waiting == 1 % at AGV_raw and part is
waiting there
 else
 new_event = [1,next_station,
tnow+trans_time(station,next_station),next_station]; % robot goes
empty to M2_IB
 end
end
if next_station == 2
 if station == 1 && sys_state(1) == 2 && sys_state(2) ==0 %
template+part at M2_IB and M2 free
 new_event = [3,next_station,
tnow+trans_time(station,next_station),next_station]; % insert part to
M2
 else
 new_event = [1,next_station,
tnow+trans_time(station,next_station),next_station]; % robot comes
empty to take part out from M2
 end
end
if next_station == 3
 if station == 1 && sys_state(1) == 1 % at M2_IB and template
there
 new_event = [2,next_station,
tnow+trans_time(station,next_station),next_station]; % robot comes
with template to M2_OB
 elseif station == 2 && sys_state(2) == 2 % at M2 and it finished
process
 % new_event = [3,next_station,
tnow+trans_time(station,next_station),next_station];% take finished
part from M2 to M2_OB
 elseif station == 2 && sys_state(3) == 2 % going to M2_OB to
take part+template to finish
 new_event = [1,next_station,
tnow+trans_time(station,next_station),next_station]; % robot comes
empty to take part+template from M2_OB
 elseif station ~=2
 new_event = [1,next_station,
tnow+trans_time(station,next_station),next_station]; % robot comes
empty to take part+template from M2_OB
 end
end
% M3 Stations
if next_station == 4
 if station == 10 % && part_waiting == 1 % at AGV_raw and part
is waiting there
 else
 new_event = [1,next_station,
tnow+trans_time(station,next_station),next_station]; % robot goes
empty to M3_IB
 end
end
if next_station == 5
 if station == 4 && (sys_state(4) == 2) && sys_state(5) ==0 %
template+part at M3_IB and M3 free
 new_event = [3,next_station,
tnow+trans_time(station,next_station),next_station]; % insert part to
M3
 else
 new_event = [1,next_station,
tnow+trans_time(station,next_station),next_station]; % robot comes
empty to take part out from M2
 end
end
if next_station == 6

 if station == 4 && (sys_state(4) == 1) % at M3_IB and template
there
 new_event = [2,next_station,
tnow+trans_time(station,next_station),next_station]; % robot comes
with template to M3_OB
 elseif station == 5 && sys_state(5) == 2 % at M2 and it finished
process
 elseif station == 5 && sys_state(6) == 2 % going to M3_OB to
take part+template to finish
 new_event = [1,next_station,
tnow+trans_time(station,next_station),next_station]; % robot comes
empty to take part+template from M3_OB
 elseif station~=5
 new_event = [1,next_station,
tnow+trans_time(station,next_station),next_station]; % robot comes
empty to take part+template from M3_OB
 end
end
% M1 Stations
if next_station == 7
 if station == 10 %&& part_waiting == 1 % at AGV_raw and part is
waiting there
 else
 new_event = [1,next_station,
tnow+trans_time(station,next_station),next_station]; % robot goes
empty to M1_IB
 end
end
if next_station == 8
 if station == 7 && (sys_state(7) == 2) && sys_state(8) ==0 %
template+part at M1_IB and M1 free
 new_event = [3,next_station,
tnow+trans_time(station,next_station),next_station]; % insert part to
M1
 else
 new_event = [1,next_station,
tnow+trans_time(station,next_station),next_station]; % robot comes
empty to take part out from M1
 end
end
if next_station == 9
 if station == 7 && (sys_state(7) == 1) % at M1_IB and template
there
 new_event = [2,next_station,
tnow+trans_time(station,next_station),next_station]; % robot comes
with template to M1_OB
 elseif station == 8 && sys_state(8) == 2 % at M1 and it finished
process
 elseif station == 8 && sys_state(9) == 2 % going to M1_OB to
take part+template to finish
 new_event = [1,next_station,
tnow+trans_time(station,next_station),next_station]; % robot comes
empty to take part+template from M1_OB
 elseif station~=8
 new_event = [1,next_station,
tnow+trans_time(station,next_station),next_station]; % robot comes
empty to take part+template from M1_OB
 end
end
if next_station == 10 % going to bring new part
 new_event = [1,next_station,
tnow+trans_time(station,next_station),next_station]; % robot comes
to take part form AGV_raw
end
if next_station == 11 % taking template + finished part to
AGV_processed
 new_event = [4,next_station,
tnow+trans_time(station,next_station),station]; % robot comes to
AGV_processed with template+part
end
event_stack = [event_stack;new_event];
end %if ((event == 2) || (event==3) || (event==4)) % choose next
state

% ---

if sum(prev_sys_state==sys_state) ~=9 % only if changed state

Appendix VIII. Task Sequencing for a FMS – Source Code 164

 % updating position sequence
 seq = [sys_state,tnow; seq];
end
% removing event that was performed and sorting event_stack
new_event = [];
event_stack=event_stack(2:1:end,:);
 event_stack=sortrows(event_stack,3);
end %while

% ---

% after "break" update seq with last move to AVG_processed
tnow = tnow+trans_time(station,11);
sys_state = zeros(1,9);
seq = [sys_state,tnow; seq];
% update best_seq, best_robot_seq

 if tnow<min_tnow
 min_tnow = tnow;
 best_seq = seq;
 best_robot_seq = robot_seq;
 end
% update tnow_array (for chart)
if iteration == 1
 tnow_array = tnow;
else
 tnow_array = [tnow_array;tnow];
end

end%case

 תקציר

קיים הכרח שיתוכננו , על מנת שמערכות רובוטיות יוכלו להשתלב בסביבות עבודה משתנות בעולם האמיתי

משום שלא ניתן למדל . בצורה שתאפשר להן להתמודד עם מגוון רחב של משימות ותנאי עבודה חדשים ומשתנים

 .ה עצמאיתיש להעניק לרובוטים את היכולת ללמוד ולהסתגל בצור, כל סביבה או תנאי למידה
נקראת שיטת החיזוקים , אשר יכולה לתת מענה לחלק מהנושאים שתוארו, אחת הגישות ללמידה

)Reinforcement Learning .(בשיטה זו הרובוט מונחה על ידי קבלת חיזוקים מן הסביבה בה הוא מתפקד .

 שיטת החיזוקים . ונהחיזוקים אלו מספקים לרובוט אינדיקציה לגבי רמת התפקוד שלו בעת ביצוע משימה נת

משום שהיא מאפשרת למידה על בסיס משובים מועטים , מהווה אלטרנטיבה טובה לתכנות מערכות אוטונומיות

 היא כוללת גם, יישומים רובוטייםנרחב עבור ונעשה בה שימוש , רבים יתרונות הלמרות שלשיט, אולם. מהסביבה

כגון הצורך , ידי יישומים מעשיים-המוצגים עלם מספר חסרונות המונעים ממנה לתת מענה ראוי לאתגרי

 . באינטראקציה נרחבת עם הסביבה או העובדה שהיא מתקשה להתמודד עם משימות מורכבות

למידה הירארכית , הגישה המוצעת. המתמשך להתגבר על חסרונות אלה" מאבק" נדבך נוסף במהווהעבודה זו

- אדםושיתוף פעולהרכית אלמידת חיזוקים היר, מוכרותמשלבת שתי שיטות , משולבת אדם בשיטת החיזוקים

ידי פירוק - על, הגישה מאפשרת ביצוע משימות מורכבות ושיפור של תהליך הלמידה. לשם שדרוג הלמידה, רובוט

רמה ראשונה בה מתבצעת בנייה של רצף הפעולות הנדרש לביצוע המשימה . המשימה לשתי רמות של הירארכיה

החלוקה לשתי רמות ההירארכיה מקטינה את . בה מתבצעת למידה של ביצוע הפעולות עצמןורמה שנייה , הכוללת

צו בכדי להאי, בשתי הרמות מתאפשר שילוב אדם בתהליך הלמידה. מרחב החיפוש ומאפשרת למידה אפקטיבית

 כתתפעול מערל יושמההגישה , בכדי להוכיח את מעשיותה. האדם ובנסיונו ביכולותידי שימוש -עלולקדמו

 .רכיהאהמציבה משימות למידה בשתי רמות ההיר, לייצור טוסטיםרובוטית

אלגוריתם זימון פותח בכדי : שני אלגוריתמים מבוססי שיטת החיזוקים פותחו בכדי לתמוך בגישה המוצעת

האלגוריתם נבחן . רכיהאכחלק מהרמה הראשונה של ההיר, לספק רצף פעולות אופטימלי לביצוע משימה מורכבת

 .והציג תוצאות טובות, ידי יישומו במערכת ייצור הטוסטים שהוזכרה ובמערכת ייצור גמישה נוספת- על

לרובוט מוענקות היכולת . אלגוריתם מבוסס מודל קוגניטיבי פותח בכדי לאפשר שילוב אדם בתהליך הלמידה

ות את העזרה והיכולת להחליט לדח, בהתבסס על מודעות לרמת הביצועים שלו, להחליט מתי לבקש עזרה

 ישומהידי י- גישה זו של אוטונומיה גמישה נבחנה על. כי אינה תורמת לתהליך הלמידהמזההאם הוא , המוצעת

 האלגוריתם . רמות שונות של יועציםעבורן דומו, מימדית-ידי משימת ניווט תלת- ן עלוכ, במערכת ייצור הטוסטים

ולמד להתעלם מעצות שהתקבלו מיועצים , יועצים טוביםידי שימוש בידע של - שיפר והאיץ את תהליך הלמידה על

 .טובים פחות
, אדם בשיטת החיזוקיםההירארכית משולבת הלמידה תרומתו העיקרית של מחקר זה הינה בהצגת גישת ה

 .ובפיתוח האלגוריתם התומכים במימושה

 .זימון, רובוט-םשיתוף פעולה אד, למידה רובוטית, רכיתאלמידה היר, שיטת החיזוקים: מילות מפתח

 בהדרכתבוצעה העבודה

 הלמן שטרן' פרופ

 יעל אידן'פרופ

 מחלקה להנדסת תעשיה וניהולב

 הפקולטה למדעי ההנדסה

גוריון בנגב-אוניברסיטת בן

 גוריון בנגב-אוניברסיטת בן
 הפקולטה למדעי ההנדסה

 המחלקה להנדסת תעשייה וניהול

 משולבת אדם למידה הירארכית מסגרת

 בשיטת החיזוקים

 חיבור זה מהווה חלק מהדרישות לקבלת תואר מגיסטר בהנדסה

 עמית גיל: מאת

 הלמן שטרן: מנחים

 יעל אידן

 ________ תאריך __________ מחברחתימת ה

 ________ תאריך __________אישור מנחה

 ________ תאריך__________אישור מנחה

 ________ תאריך_______ ר ועדת הוראה מחלקתית תואר שני"יואישור

 2008 ח"תשס

 שבע-באר

 ן בנגבגוריו-אוניברסיטת בן

 הפקולטה למדעי ההנדסה
 המחלקה להנדסת תעשייה וניהול

 למידה הירארכית משולבת אדם מסגרת

 בשיטת החיזוקים

 חיבור זה מהווה חלק מהדרישות לקבלת תואר מגיסטר בהנדסה

 מאת

 עמית גיל

 2008 ח"תשס

 שבע-באר

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

