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Abstract 
 
 
To introduce robotic applications into real-world environments, robots must be constructed for a 

large variety of tasks and be able to adapt continuously to new and changing working conditions. 

Since it is impossible to model all environments and task conditions, the adaptation to new tasks 

cannot be achieved by regular end-user programming. Rather, the robot must be delivered with 

advanced capabilities to autonomously learn new tasks and new working conditions. 

A common learning approach in robotics is reinforcement learning (RL). In RL the robot (agent) 

acts autonomously in a process guided by reinforcements from the environment, indicating how 

well it is performing the required task. RL is an attractive alternative for programming autonomous 

systems, as it allows the agent to learn behaviors on the basis of sparse, delayed reward signals. 

Nevertheless, RL has several drawbacks preventing it from answering the challenges presented by 

real-world applications, such as the necessity for extensive interaction between the robot and the 

environment, or the fact that it allows only one goal state for the learning task.  

This thesis provides one more step in the continuing struggle to overcome these drawbacks. The 

framework proposed in this research, Collaborative Hierarchical Reinforcement Learning (CHRL), 

combines two known techniques used for addressing the drawbacks, hierarchical RL and Human-

Robot collaboration, in order to scale up RL and alleviate some of its disadvantages. This 

combination enables both the execution of complex tasks and the improvement of the learning 

process. Hierarchical RL reduces the search space and allows efficient learning. Human aid can 

improve or expand already learned behaviors and enable the robot to handle unknown and 

unpredictable events that are beyond the competence of current autonomous robotic systems. 

In the proposed CHRL framework the learning task is decomposed into a two-level learning 

hierarchy. The first level consists of learning the desired sequence of execution of a set of basic sub-

tasks. The second level consists of learning how to perform each of the sub-tasks required. Human 

intervention is allowed at both levels, to expedite the learning process by exploiting human 

intelligence and expertise. The applicability of the framework is proven using an automated toast 

making system presenting both high and low level learning tasks. 

Two RL-based algorithms were developed to support the CHRL framework: A sequencing 

algorithm was developed for providing a sub-task execution sequence, as part of the first level of the 

hierarchy. The algorithm addresses the learning task of scheduling a single transfer agent (a robot 

arm) through a set of sub-tasks in a sequence that will achieve optimal task execution times. In lieu 

of fixed inter-process job transfers, the robot allows the flexibility of job movements at any point in 

time. Execution of complex tasks was demonstrated using two applications – the automated toast 
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making system and a flexible manufacturing system. The algorithm presents good results, matching 

and outperforming the compared methods, Monte-Carlo and random search. 

A collaborative algorithm was developed to allow the introduction of an advisor. This approach 

is referred to as cognitive collaborative reinforcement learning (CCRL). In the CCRL algorithm an 

autonomous learner (RL in this case) is enabled with a self awareness cognitive skill to decide when 

to solicit instructions from the advisor. Furthermore, the learner is able to assess the value of any 

advice given and to decide whether to accept or reject it. This approach of intelligent adjustable 

autonomy was demonstrated and evaluated using the toast making system and a simulated three-

dimensional path planning task. Tests were conducted for advisors with various skill levels from 

expert to novice. The algorithm expedites and improves the learning process by taking advantage of 

the advisor’s knowledge and expertise, and learning to use advice given by an expert while 

discarding advice suggested by a novice. 

The main contribution of this research is in the introduction of the CHRL framework and the 

development of the algorithms supporting its implementation, especially the cognitive collaborative 

reinforcement learning (CCRL) algorithm.  

.  

 

Key words: Hierarchical reinforcement learning, Human-robot collaboration, Cognitive robot 

learning, Path planning, Scheduling. 
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1. Introduction 
Chapter Overview 

This chapter describes the problem addressed in this work and presents the research objectives, 

contributions and innovations. 
 

1.1 Problem Description and Research Motivation 
To expand robotic applications into real-world environments, robots must be constructed for a 

large variety of tasks and be able to adapt continuously to new and changing working conditions. 

Since it is impossible to model all environments and task conditions, the adaptation to new tasks 

cannot be achieved by regular end-user programming. Rather, the robot must be delivered with 

advanced capabilities to autonomously learn new tasks and new working conditions. 

A common learning approach in robotics, which can answer some of these challenges, is 

reinforcement learning (RL) [Watkins, 1989; Peng and Williams, 1996; Sutton and Barto, 1998; 

Ribeiro, 2002]. RL is an unsupervised learning method in which an agent (a robot1) learns 

autonomously through direct interaction with the environment, using trial and error. The basic notion 

is of a learning process in which an agent observes its current state (s) and chooses an action to 

perform (a) from a set of all possible actions, with the ultimate objective of reaching a defined goal 

state. The agent’s actions can change both its state and the environment’s state. Throughout the 

process, the agent receives reinforcements from the environment (r), indicating how well it is 

performing the required task. The robot’s goal is to optimize system responses by maximizing a 

reward function suited for the desired task, i.e., maximize the rewards received during the entire 

process.  

RL is an attractive alternative for programming autonomous systems (agents), as it allows the 

agent to learn behaviors on the basis of sparse, delayed reward signals provided only when the agent 

reaches desired goals [Bakker and Schmidhuber, 2004]. Furthermore, RL does not require a detailed 

model of the environment or training examples, as it creates its own model and examples during the 

learning process. However, standard RL methods do not scale well for larger, more complex tasks. 

The extensive interaction between the robot and the environment, necessary for determining an 

effective policy, implies expensive computability and long learning times in large state-action 

spaces. Another problem, directly derived from the fundamental characteristics of RL, is the fact that 

it allows only one goal state for the learning task. These drawbacks present significant difficulties 

when developing autonomous learning robotic systems, which are characterized by large state-action 

spaces and typically consists of several goal states.  
                                                           
1 The terms “agent” and “robot” will be used interchangeably throughout this work. 
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One promising approach to scaling up RL is hierarchical reinforcement learning (HRL) [Watkins, 

1989; Dietterich, 1999]. Rather than attempting to solve the whole problem at once, decomposition is 

performed to create a hierarchical structure of sub-problems. Low-level policies, which emit the 

actual actions, solve only parts of the overall task. Higher-level policies solve the overall task, 

considering only a few abstract, high-level observations and actions. This reduces each level’s search 

space and facilitates temporal credit assignment [Bakker and Schmidhuber, 2004]. Moreover, HRL 

allows a learning process to consist of more than one goal. When assuming the low-level policies are 

known (i.e., we know how to perform them in an optimal way), what is left is to schedule (or 

sequence) their execution in an order that will lead to optimal execution of the overall task.  

Another way of addressing the drawbacks described is to allow a human advisor or a training 

agent to intervene and provide guidance in the learning process. So, instead of relying solely on 

reinforcements provided by the environment, the learning agent also has access to supervised 

instruction supplied by a training agent or human advisor. A human may aid the robot in its learning 

process by showing it how to solve new tasks and how to improve or expand already learned 

behaviors. This can enable the robot to handle unknown and unpredictable events that are beyond the 

competence of current autonomous robotic systems. Previous research indicated that human-robot 

collaboration is essential to improve the learning and reduce the amount of time it takes a robot to 

accomplish a learning task (e.g., [Papudesi and Huber, 2003; Mihalkova and R. Mooney, 2006; 

Kartoun, 2008]).  

Nevertheless, many of the previous works assumed that human assistance is available at all times. 

Indeed, human intervention can improve the learning process and accelerate the robot learning, but if 

it is required too frequently, the autonomous sense of the learning is lost, along with the initial 

purpose of a robot replacing the human. Hence, a central issue in human-robot collaboration, 

addressed in this research, is adjustable autonomy, the determination of whether and when human 

intervention is required. 

Another deficiency in prior works is the assumption that the human advisor is an expert providing 

only optimal advice. This might not be the case when the instructor is tired for example, or if it is a 

child instructing a service robot performing daily household chores. Hence, this assumption of expert 

advisors is relaxed in this research, so that non-expert instructors are also considered. 

The framework proposed in this research, Collaborative Hierarchical Reinforcement Learning 

(CHRL), combines the two techniques described in the above paragraphs, hierarchical reinforcement 

learning and human-robot collaboration. The framework aims to enable the execution of complex 

tasks and to accelerate the learning process by decomposing the tasks into a two-level learning 

hierarchy. The high level consists of learning the desired sequence of execution of the basic sub-

tasks, and the low level consists of learning how to perform each of the sub-tasks required. Since the 
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sub-tasks may be performed many times, the reuse of learned sub-task problems provides a definite 

advantage. Human intervention is allowed at both levels, to expedite the learning process by 

exploiting human intelligence and expertise. 

In this research two RL-based algorithms were developed to support the CHRL framework: (i) a 

sequencing RL algorithm (SRL), and (ii) a cognitive collaborative RL algorithm (CCRL). The SRL 

algorithm was developed [Gil et al., 2008] for providing a sub-task execution sequence, as part of the 

high level of the hierarchy. The algorithm addresses the learning task of scheduling a single transfer 

agent (a robot arm) through a set of sub-tasks in a sequence that will achieve optimal task execution 

times. In lieu of fixed inter-process job transfers, the robot allows the flexibility of job movements at 

any point in time and to any location. Execution of complex tasks was demonstrated using two 

applications – an automated toast making system and a flexible manufacturing system. The CCRL 

algorithm was developed to allow the introduction of an advisor through intelligent adjustable 

autonomy. The autonomous learner is enabled with two cognitive capabilities: a self awareness skill 

to assess its own performance and decide when it is not sufficient hence advisor guidance should be 

solicited, and the ability to judge the value of the advice given and decide whether to accept or reject 

it.  This approach was demonstrated and evaluated using the toast making system and a simulated 

three-dimensional path planning task. 

 

1.2 Research Objectives 
The fundamental research objective of this work is to introduce a new reinforcement learning 

framework, noted as Collaborative Hierarchical Reinforcement Learning (CHRL), designed to 

enable learning and execution of partially modeled complex tasks by a self learning agent, while 

allowing human collaboration in the process. The specific objectives are to describe the development 

and evaluation of the two novel algorithms supporting the implementation of the CHRL framework - 

the sequencing RL algorithm (SRL) and the cognitive collaborative RL algorithm (CCRL). 

 

1.3 Research Contributions and Innovations 
RL is a common learning method, widely used in the world of robotics. Although RL has many 

advantages over other learning methods, it has several drawbacks preventing it from answering the 

challenges presented by real-world applications. This thesis provides one more step in the continuing 

struggle to overcome these drawbacks. The CHRL framework proposed in this research combines 

two known techniques used for addressing the drawbacks, hierarchical RL and Human-Robot 

collaboration, in order to scale up RL and alleviate some of its disadvantages. This combination 

enables both the execution of complex tasks and the improvement of the learning process.  
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Two new algorithmic tools are introduced to support the new framework: The first algorithm is 

the SRL, a RL-based sequencing algorithm aimed to solve various problems and produce effective 

learning and execution under time and resource limitations, without the requirement of a detailed 

model of the problem or predefined scheduling rules. This work also presents an alternative view of 

the sequencing problem, referring to the robotic transfer agent as the limited resource, and to the 

tasks it has to perform as the “jobs” waiting in its queue. This view can simplify the formulation of 

such problems. 

The second algorithm is a cognitive collaborative RL model (CCRL) which allows the learning 

agent not only to decide when to solicit advice, but also to recognize a less capable advisor and 

decide to stop the interaction, returning to autonomous operation. The CCRL algorithm improves the 

interaction between the learner and the advisor by finding the right balance between independent and 

guided learning, taking into account the advisor’s skills. In this last context, the research also 

suggests a new method of representing various advisor skill levels, allowing the evaluation of 

collaboration algorithms under realistic conditions of imperfect guidance. 

Finally, this work demonstrates the applicability of RL-based methods for a real-world scenario, 

presenting encouraging results to support future research in this area. 
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2. Scientific Background 
Chapter Overview 

This chapter reviews the literature of the relevant research topics, in particular reinforcement 

learning methods and applications. Current human-robot collaboration and robot learning 

applications are also presented. 

 

2.1 Reinforcement Learning 
“Reinforcement learning (RL) is a computational approach to understanding and automating goal-

directed learning and decision-making. It is distinguished from other computational approaches by 

its emphasis on learning by the individual from direct interaction with its environment, without 

relying on exemplary supervision or complete models of the environment” [Sutton and Barto, 1998]. 

RL does not assume the existence of a teacher that provides training examples. The learning agent 

receives signals (reinforcements) from the environment indicating how well it is performing the 

required task. These signals are usually associated to some dramatic condition - e.g., accomplishment 

of a sub-task (reward) or complete failure (punishment), and the agent’s goal is to optimize its 

behavior based on some performance measures (maximization of a reward function) [Kartoun, 

2008]. “The learning agent learns the associations between observed states and chosen actions that 

lead to rewards or punishments, i.e., it learns how to assign credit to past actions and states by 

correctly estimating costs associated to these events” [Ribeiro, 2002]. 

RL algorithms make explorative and exploitative traverses in the state-space trying to find a 

“path” that is highly rewarded. The benefit of the algorithm is its capability of exploration, i.e., 

traversing through states that are not well-rewarded but may yield higher reward in the long run, 

bypassing local maxima this way. It is important to pay attention to the exploration and exploitation 

balancing problem [Sutton and Barto, 1998]. [Stefan, 2003] notes that exploration is interpreted as an 

operation mode of the learning agent where it makes experiments and tries to discover its 

environment. Exploitation, on the other hand, is a mode in which the agent has gathered enough 

knowledge and makes real decisions. 

 
2.2 Common Reinforcement Learning Algorithms1 

The central idea in reinforcement learning is Temporal Difference (TD) learning. TD learning is a 

combination of Monte Carlo (MC) ideas and dynamic programming (DP) ideas. Like MC methods, 

TD methods can learn directly from raw experience without a model of the environment's dynamics. 

                                                           
1 This review is based on material from [Sutton and Barto, 1998]. 



Chapter  2. Scientific Background - Common Reinforcement Learning Algorithms 6  

 
 

Like DP, TD methods update estimates based in part on other learned estimates, without waiting for 

a final outcome (they bootstrap).  

The basic assumption in reinforcement learning studies is that any state 1ts +  made by the agent 

must be a function only of its last state and action:  1 ( , )t tts f s a+ = , where ts S∈  and ta A∈  are the 

state and chosen action at time step t . Q is the system’s estimate of the optimal action-value function. 

The system estimates the optimal action-value function ),( tt asQ  directly and then uses it to derive a 

control policy.  

),( tt asQ  represents the expected discounted cost for taking action ta  when visiting state ts  and 

following an optimal policy thereafter. These characteristics allow an iterative process for calculating 

an optimal action. The first step is to initialize the system’s action-value function, Q. Since no prior 

knowledge is available, the initial values can be arbitrary (e.g., uniformly zero). Next, the system’s 

initial control policy is established. This control policy will chose the action to be taken from the 

current state. The control policy is usually derived from Q, and can change during the process. The 

next action can be chosen such that it will lead the agent to the state with the highest Q value (i.e., 

greedy action selection), or using other methods, such as ε-greedy or softmax (described in Sections 

5.2 and 9.2, respectively), which have a probabilistic feature, allowing better exploration of the state-

space. 

At time-step t , the agent visits state ts S∈  and selects an action ta A∈ , receives from the process 

the reinforcement ( , )t tr s a R∈   and observes the next state 1ts + . Then it updates the action value 

),( tt asQ  according to the used algorithm (e.g., SARSA, Q-learning), thus completing one step. The 

RL notations are described in Table 2.1. 

 
Table  2.1 RL notations 

 
S  State space 
A  Action space 
ts S∈  State at time step t  

1ts S+ ∈  State at time step 1t +  
ta A∈  Action at time step t  

1ta A+ ∈  Action at time step 1t +  
( , )t tr s a  Reward at time step t  

α  Learning rate. Controls the weight given to the new Q estimate, as opposed to the old one 
γ  Discount factor. Determines the present value of future rewards 
( , )t te s a  Eligibility trace 

λ  Eligibility trace factor 
δ  Temporal difference error 

),( tt asQ  State-action value estimate 
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2.2.1 SARSA 
SARSA is an On-Policy TD control algorithm, meaning that the evaluated policy is the policy 

used for control. The Q value estimates are updated after each step. The pseudo code of the SARSA 

algorithm is described in Fig. 2.1. 

 

 
 

Fig.  2.1 SARSA algorithm pseudo code 
 

2.2.2 Q-Learning 
Q -learning is an Off-Policy TD control algorithm, meaning that the evaluated policy is not 

necessarily the policy used for control - the action chosen to be taken, ta , isn’t necessarily the one 

that will locally maximize the action-value, although the Q  updating equation assumes the optimal 

expected cost. This is done in order to encourage exploration of the state-space, and avoid from 

converging to a local optimum. A way to achieve this is to use action selection methods such as ε-

greedy or softmax. The pseudo code of the Q-learning algorithm is described in Fig. 2.2. 

 

 
 

Fig.  2.2 Q-learning algorithm pseudo code 
 

Initialize ( ),Q s a  arbitrarily 
Repeat (for each learning episode n): 

Initialize state ts  
Repeat (for each step t of episode): 

Choose ta for  ts  using a policy derived from Q (e.g., ε-greedy) 

Take action ta , observe tr ,  1ts +  

1 1 1( , ) ( , ) [ max ( , ) ( , )]
tt t t t t t t taQ s a Q s a r Q s a Q s aα γ
+ + +← + + −

 1t ts s +←
 Until ts is terminal 

Until n = N (reached the desired number of learning episodes) 

Initialize ( ),Q s a  arbitrarily 
Repeat (for each learning episode n): 

Initialize state ts , pick initial action ta  
Repeat (for each step t of episode): 

Take action ta , observe tr ,  1ts +  

Choose 1ta + for  1ts +  using a policy derived from Q 

1 1( , ) ( , ) [ ( , ) ( , )]t t t t t t t tQ s a Q s a r Q s a Q s aα γ + +← + + −
 

1 1;t t t ts s a a+ +← ←
 Until ts is terminal 

Until n = N (reached the desired number of learning episodes)
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2.2.3 Q(λ) 
)(λQ  is a generalization of Q -learning. )(λQ  uses eligibility traces, ),( tt ase : the one-step Q -

learning is a particular case with 0=λ . The Q -learning algorithm might learn slowly since only one 

time-step is traced for each action. To boost learning, a multi-step tracing mechanism, the eligibility 

trace, is used in which the Q  values of a sequence of actions can be updated simultaneously 

according to the respective lengths of the eligibility traces. The pseudo code of the Q(λ) algorithm is 

described in Fig. 2.3. 
 

 
 

Fig.  2.3 Q(λ) algorithm pseudo code 
 

2.3 Hierarchical Reinforcement Learning 
The notion of hierarchical reinforcement learning (HRL) presented in this work has been applied 

for various problems. [Dietterich, 1999] states that “the ideal hierarchical RL method would provide 

the benefits of hierarchy (faster learning and sub-task sharing and reuse) while maintaining the 

benefits of RL (optimality, online learning from the environment and autonomy).” Specifically, an 

ideal method should satisfy the following requirements [Dietterich, 1999]: (i) support state 

abstraction, i.e., make it possible for individual sub-tasks to ignore irrelevant aspects of the state 

space, (ii) sharing/reuse of sub-tasks – the method should make it possible to learn an optimal policy 

for a sub-task and then reuse the learned policy for different parent tasks, (iii) efficient learning – 

obviously, hierarchical RL will be useless if it does not provide better performance than non-

hierarchical methods, (iv) optimally – the method should learn optimal or near-optimal policies, and 

(v) online learning – The method should be able to learn online working with the entire task. [Sun 

Initialize ( ),Q s a  arbitrarily and 0( ),e s a = , for all ,s a   
Repeat (for each learning episode n): 

Initialize state ts , ta  
Repeat (for each step t of episode): 

Take action ta , observe tr ,  1ts +  

Choose 1ta + for  1ts +  using a policy derived from Q (e.g., ε-greedy) 

1

* *
1 1 1 1arg max ( , )  (if  ties for the max, than = )

t t t t taa Q s a a a a
+ + + + +←   

*
1( , ) ( , )t t t t tr Q s a Q s aδ γ +← + −  

( , ) ( , )+1t t t te s a e s a←  
For all ,s a  
 ( , ) ( , )+ ( , )Q s a Q s a e s aαδ←  

*If ,  then ( , ) ( , )
                 else ( , ) 0

ta a e s a e s a
e s a

γλ= ←

←
 

1 1;  t t t ts s a a+ +← ←
 Until ts is terminal 

Until n = N (reached the desired number of learning episodes) 
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and Sessions, 2000] separate the many existing models of HRL into two cases: (i) the use of 

structurally pre-determined domain-specific hierarchies and (ii) automatic building of hierarchies. 

Furthermore, they distinguish two directions in automatically building hierarchies: upward and 

downward.   

An application of hierarchical RL to the problem of negotiating obstacles with a quadruped (four 

legged robot) is described in [Honglak et al., 2006]. The algorithm is based on a two-level 

hierarchical decomposition of the task, in which the high-level controller selects the sequence of foot 

placement positions, and the low-level controller generates the continuous motions to move each foot 

to the specified positions. The high-level controller uses an estimate of the value function to guide its 

search. Then, a beam search is used to look multiple steps ahead, and try to find a sequence of 

actions to move the robot towards the goal. The low-level controller is obtained via policy search. A 

reward function penalizes undesirable behaviors such as taking a long time to complete the foot 

movement, passing too close to of an obstacle, or failing to move the foot to the desired goal 

location. After learning the parameters for both the low and the high level controllers, the resulting 

hierarchical policy was tested, in simulation, and later using the real robot, for a large variety of 

obstacles. The experiment demonstrates that the robot can successfully climb over a variety of 

obstacles which were not encountered at the training stage. 

In [Jeni et al., 2007], HRL is employed to a mobile robot navigation task. The environment is 

decomposed into separate sections, and an interconnection function describes the prior knowledge of 

how various parts of the environment are connected. In the first part of the learning process the 

algorithm explores the state space by starting several trajectories. If it reaches an interconnecting 

state it creates a new abstract state, which contains the states of the trajectory. If it finds a path 

between two abstract states, which does not contain a connecting state, it merges the two states. The 

result of this stage is a set of abstract states and each state represents a partition of the original state 

space. In the second part of the learning process the algorithm learns partial policies on the partitions 

represented by the abstract states. The results of simulations performed illustrated that the algorithm 

performs much better than the flat learner algorithm, but it requires some prior knowledge about the 

problem. 

A method called HASSLE (Hierarchical Assignment of Sub-goals to Sub-policies Learning 

algorithm) is presented in [Bakker and Schmidhuber, 2004]. As in other HRL methods, the high-

level value functions cover the state space at a coarse level, and the low-level value functions cover 

only parts of the state space at a fine-grained level, with the aim of reaching the sub-goals assigned 

by the high-level policy. The difference is that unlike other methods, at HASSLE the high-level 

policies not only select the next sub-goal to be reached by a lower-level policy, but also 

autonomously discover and define sub-goals. Both high-level policies and low-level policies use 
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essentially standard value function-based reinforcement learning algorithms. The issue of how to 

autonomously arrive at abstract high-level observations is addressed using an unsupervised 

clustering algorithm. The main requirement is that a clustering of “primitive”, low-level observations 

is accomplished, such that neighboring low-level states tend to be clustered together. The HASSLE 

algorithm was tested using a navigation task in a simulated “office” grid world.  The agent had to 

learn to move from any possible start position to a fixed goal position. Experiments showed that 

HASSLE outperformed standard, “flat” RL methods in deterministic and stochastic tasks, and 

learned significantly faster. Nevertheless, the system has some limitations, such as large number of 

parameters, lack of strict convergence guarantees and the dependence on identifying reasonable 

high-level observations. 

Similarly to HRL, Compositional Q-Learning (CQ-L) [Singh, 1992] is a modular approach to 

learning to perform composite tasks made up of several elemental tasks by RL. In CQ-L, skills 

acquired while performing elemental tasks are also applied to solve composite tasks. Individual skills 

compete for the right to act and only winning skills are included in the decomposition of the 

composite task. [Tham and Prager, 1995] extend the original CQ-L concept in two ways: (i) a more 

general reward function, and (ii) the agent can have more than one actuator. They use the CQ-L 

architecture to acquire skills for performing composite tasks with a simulated two-linked manipulator 

having large state and action spaces. The agent is required to drive the manipulator from an arbitrary 

starting arm configuration to one where its end-effector is brought to a fixed destination in the case 

of elemental tasks, or to several destinations, one after another, for composite tasks. Results indicated 

that the CQ-L architecture can be successfully applied to the learning of complex composite tasks 

with large state and action spaces.  
 

2.4 Reinforcement Learning for Scheduling 
Production scheduling is one of the most important processes in manufacturing systems, and 

when properly executed can provide such benefits as increased throughput, enhanced customer 

satisfaction, lower inventory levels, and increased utilization of resources [Wang and Usher, 2005]. 

Scheduling problems essentially involve completing a set of jobs with a limited number of 

manufacturing resources and under various constraints, with the objective of optimizing performance 

measures such as makespan (total completion time), mean flow time and mean tardiness [Wang and 

Usher, 2005]. 

[Stefan, 2003] describes the three main scheduling concepts: mathematically grounded 

algorithms, heuristic approaches and algorithms supported by machine learning (ML). The first 

concept can be adapted to small-sized scheduling problems. The advantage of the concept is that it is 

well defined, exact and can be generally applied to the wide range of two-machine scheduling tasks. 
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The price is lack of scalability, i.e., no mathematical proof can be given for a larger number of 

machines. He states that “there are two directions of research to overcome the restrictions of 

mathematical formulations: using heuristics and/or machine-learning. While heuristic approaches 

provide direct rules of thumb to follow, but no algorithm to find the solution in a modified decision 

environment, ML methods give a model of a mental process itself. As the knowledge of the learning 

agent improves the method results in solutions that are more and more close to the optimal solution, 

even in a changing environment.” In his research, [Stefan, 2003] propose an RL-based algorithm 

designed to give a quasi-optimal solution to the m-machine flow-shop scheduling problem. Namely, 

given a set of parts to be processed and a set of machines to carry out the process, each part should 

have the same technological path on all machines and the order of jobs can be arbitrary. The goal is 

to find an appropriate sequence of jobs that minimizes the sum of machining idle times. States are 

defined as job sequences, or more precisely job precedence relations. State-changes (or actions) are 

defined as changes in relations. Results indicated that the RL-scheduler was able to find close-to-

optimal solutions. 

In their study, [Wei and Zhao, 2004] developed an adaptive rule selection method for dynamic 

job-shop scheduling. A Q-learning agent performs dynamic scheduling based on information 

provided by the scheduling system. The learning agent’s decision on the rule to be employed for 

selecting a job from the buffer is based on the status of the system’s buffer. The agent was trained by 

the Q-learning algorithm, entailing the capabilities of selecting the appropriate rules in real time 

based on changes in the state of the system. The action selection was performed using an adaptive ε-

greedy strategy1, and the goal was to minimize mean tardiness. The Q-learning algorithm showed 

superiority over most of the conventional rules compared for a simulated environment. [Creighton 

and Nahavandi, 2002] present an intelligent agent-based scheduling system for solving the Economic 

Lot Scheduling Problem (ELSP). This problem refers to the production of multiple parts on a single 

machine, with the restriction that no two parts may he produced at the same time. The production 

facility studied was a multi-product serial line subject to stochastic failure. The agent goal was to 

minimize total production costs, through selection of job sequence and batch size. By applying an 

independent inventory control policy for each product, the agent successfully identified optimal 

operating policies for a real production facility. 

[Gabel and Riedmiller, 2007] note that “most approaches to tackle job-shop scheduling problems 

assume complete task knowledge and search for a centralized solution.” In their work they adopt an 

alternative view where each resource is equipped with an adaptive agent that, independent of other 

agents, makes job dispatching decisions based on its local view on the plant and employs 

                                                           
1 The adaptive ε-greedy action selection method is described in Section 5.2. 
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reinforcement learning to improve its dispatching strategy. This decentralized approach is 

particularly suitable for environments where unexpected events may occur, such as the arrival of new 

tasks or machine breakdowns, hence frequent re-planning would be required. The empirical 

evaluation in the research leads to the conclusion that problems of current standards of difficulty can 

very well be effectively solved by the learning method they suggest.  

 

2.5 Robot Learning 
“Robotics is one of the most challenging applications of machine learning techniques. It is 

characterized by direct interaction with a real world, sensory feedback and complex control tasks” 

[Kreuziger, 1992]. Learning should lead to faster and more reliable solution executions, and to 

development of the ability to solve problems the robot was not able to solve before. [Connell and 

Mahadevan, 1993] state “building robotic systems that learn to perform a task has been 

acknowledged as one of the major challenges facing artificial intelligence. Self-improving robots can 

relieve humans from much of the drudgery of programming and potentially allow their operation in 

unknown and dynamic environments.” Progress towards this goal can contribute to intelligent 

systems by advancing the understanding of how to successfully integrate disparate abilities such as 

perception, planning, learning, and action. 

Common robot learning tasks, such as navigation in an environment, include: (i) localization - the 

process of determining the robot’s location; (ii) mapping - the process of building a model of the 

environment, and (iii) planning - the process of planning the robot’s movements [Howard, 1999]. A 

navigation learning task of a miniature mobile robot equipped with vision capabilities using several 

RL-based algorithms is described in [Bhanu et al., 2001]. Comparison between the Q and Q(λ)  

algorithms for a 6 x 6 maze show only a few significant differences between the two learning 

algorithms. Overall, the Q(λ) algorithm takes fewer actions during the entire experiment, suggesting 

it is faster in finding the shortest path. A RL algorithm for accelerating acquisition of new skills by 

real mobile robot is presented in [Martínez-Marín and Duckett, 2005]. The algorithm, tested using a 

docking task, speeds up Q-learning by applying memory-based sweeping [Touzet, 2003]. 

Autonomous object approaching with an arm-hand robot is a very difficult problem since the 

possible configurations are numerous. [Wang et al., 2006] propose a modified RL algorithm for 

solving the problem of how a multi-fingered robotic hand should approach objects before grasping. 

Learning is divided into two phases, heuristic learning and autonomous learning. In the first phase, 

the heuristic search (a function of A* search) is utilized to help the robot reach the goal quickly, while 

updating a Q table. Once the table has been modified enough to effectively control the robot, the 

second learning phase starts. In this phase, the robot is trained using a standard RL learning method, 
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which impels the robot to find the local optimal policy. The experimental results demonstrate the 

effectiveness of the proposed algorithm.  

It is stated in [Kartoun, 2008] “although Q-learning and Q(λ) were used in many fields of 

robotics, the issue of acceleration of learning towards finding an optimal or close to optimal solution 

is still significant.” 

  

2.6 Collaborative Learning 
Human-robot interaction (HRI) can be defined as the study of humans, robots, and the manner in 

which they influence each other. Sheridan describes a ten-level formulation of robot autonomy, 

viewing the robot as a highly intelligent system that is capable of performing a task by itself in a 

given context [Sheridan, 1987]. The degree of robot autonomy is scaled accordingly based on human 

decisions when performing the task. Through this, a balance of control between the robot and the 

human is achieved. On the one hand, to ensure that highest-quality decisions are made, a robot 

should transfer control and collaborate with a human operator (HO) when it has superior decision-

making expertise. On the other hand, interrupting a user might cause delays or acquiring information 

that is not necessarily beneficial; thus such transfers of control should be optimized.  

Fong and his co-researchers [Fong et al., 2001] determined that there are four key issues that must 

be addressed when constructing a collaborative control system. First, the robot must have self-

awareness, not in the sense of being fully sentient, but merely in having the capabilities for detecting 

and determining if it should ask for help, and recognizing when it has to solve problems on its own. 

Second, the robot must be self-reliant. Since the robot cannot rely on the human to always be 

available or to provide accurate information, it must be able to maintain its own safety. Specifically, 

the robot should be capable of avoiding hazards, when necessary. Third, the system must support 

dialogue, allowing the robot and the human to communicate effectively with each other. Each 

participant must be able to convey information, to ask questions and to judge the quality of responses 

received. Finally, the system must be adaptive. By design, collaborative control provides a 

framework for integrating users with varied skills, knowledge, and experience. [Kartoun, 2008] 

points that collaboration between a robot and a human during learning is beneficial since humans 

have superior intelligence and skills such as perception, intuition and awareness, to direct policy 

adjustments in the most suitable direction. These skills are especially important in real-world 

applications which are characterized by unknown and unstructured environments.  

[Breazeal and Thomaz, 2008] indicate that past work that incorporate human input into a Machine 

Learning process tend to maintain a constant level of human involvement. Several are highly 

dependent on guidance, learning nothing without human interaction, while other approaches are 
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almost entirely exploration based, using limited input from a teacher. They posit that a social learner 

must be able to move flexibly along this guidance-exploration spectrum, explore and learn on its 

own, but also take full advantage of a human partner’s guidance when available. 

Human-robot collaboration research deals with collaboration between the HO and the system and 

the level of automation in aspects of data acquisition, data and information analysis, decision 

making, action selection and action implementation, in accordance to specific task or sub-task goals 

and parameters [Bechar et al., 2006]. Shifting from one collaboration level to another during task 

performance is required in cases in which the robot or the HO parameters change [Bechar et al., 

2003]. [Kartoun, 2008] states “a robot system performing a learning task has to be designed in such a 

way to consider how to achieve optimal cooperation via appropriate degrees of sharing and trading 

between human and robot.” Human-robot collaboration is unnecessary as long as the robot learns 

policies autonomously, and adapts to new states. The collaboration with a HO should be triggered 

when a robot reports to the human that its learning performance is low. Then the human is required 

to intervene and suggest alternative solutions [Kartoun, 2008]. 

Sliding scale autonomy is defined in [Yanco et al., 2005] as the ability to create new levels of 

autonomy between existing, pre-programmed autonomy levels. The suggested sliding scale 

autonomy system allows dynamical combination of human and robot inputs, using a small set of 

variables such as user and robot speeds, speed limitations, and obstacle avoidance. An experimental 

environment called EVIPRO (Virtual Environment for Prototyping and Robotic) was developed 

allowing the assistance of autonomous robots during the realization of a teleoperation mission 

[Heguy et al., 2001]. This project studied man-machine cooperation in a system using virtual reality 

and adaptive tools. The goal of the human users and autonomous robots was to achieve a global task 

in virtual environment. Thanks to virtual reality, the project could have natural and intuitive 

interface, and allowed mixing of different information to increase user perception. A collaborative 

process enabling a robotic learner to acquire concepts and skills from human examples is presented 

in [Lockerd and Breazeal, 2004]. During the teaching process, the robot performs tasks based on 

human instructions. Using a Q-learning approach, the robot learns a button pushing task.  

Mobile robot optimal navigation to a specific target in a two-dimensional world, is achieved by 

changes in rewards and Q-value functions, performed by the user [Papudesi and Huber, 2003; 

Papudesi et al., 2003]. In [Wang et al., 2003], a variable autonomy approach is used. User 

commands serve as training inputs for the robot learning component, which optimizes the 

autonomous control for its task. This is achieved by employing user commands for modifying the 

robot’s reward function. Similarly, [Thomaz and Breazeal, 2006] describe a new RL-based approach 

for giving reward signals by human. The signals depend not only on past actions but also on future 

rewards. The experimental platform, called “Sophie’s Kitchen”, simulates a cake baking learning 
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process. The platform was developed for investigating how human prefer to interact with a robotic 

learner. One feature of “Sophie’s Kitchen” is called the “Interactive Rewards Interface” in which 

humans can give rewards in two ways: (i) rewarding a whole state of the world, and (ii) rewarding a 

state of a particular object. This distinction was made in order to examine the hypothesis that people 

prefer to communicate feedback about particular aspects of a state rather than an entire world state. 

Results achieved indicate that people use the reward signal not only to provide feedback about past 

actions, but also to provide future directed rewards to guide subsequent actions. Given this, and after 

making specific modifications to the simulated RL robot to incorporate guidance, the results show 

significant improvements on several measures. The work demonstrates the importance of 

understanding the human-teacher / robot-learner system as a whole in order to design algorithms that 

support how people want to teach while simultaneously improving the robot’s learning performance. 

The steps involved in taking advice from external entities were defined [Hayes-Roth et al., 1980] 

as: (i) request the advice, (ii) convert the advice to an internal representation, (iii) convert the advice 

into a usable form, (iv) integrate the reformulated advice into the agent’s current knowledge base, 

and (v) judge the value of the advice. The potential of learning from environmental reinforcement 

and human advice is illustrated in [Papudesi and Huber, 2003]. By incorporating advice into an 

additional reward function, the advisor is provided with high degree of freedom in shaping the 

control policy, but cannot prevent the achievement of the overall task. Furthermore, strategic advice 

can accelerate the learning process, while incorrect advice is ultimately ignored, as its effects 

diminish over time. 

[Cetina, 2007] introduce a supervised reinforcement learning architecture for robot control 

problems with high dimensional state spaces. A supervisor is used to dynamically generate subsets of 

relevant actions at each state of the environment. The use of these subsets of actions leads the agent 

to exploit relevant parts of the action space, avoiding the selection of irrelevant actions, and 

accelerate its learning rate very early in the learning process. Once the agent has exploited the 

information provided by the behavior model, it keeps improving its value function without any help, 

by selecting the next actions to be performed from the complete action space. The algorithms were 

tested with the robot dribbling problem, in the framework of the RoboCup simulation league. Such 

problem involves a continuous state space with high dimensionality. Experimental work shows how 

the approach can dramatically speed up the learning process. 

A learning mechanism, Socially Guided Exploration, in which a robot learns new tasks through a 

combination of self-exploration and social interaction, is presented in [Breazeal and Thomaz, 2008]. 

The system’s motivational drives (novelty, mastery), along with social scaffolding from a human 

partner, bias behavior to create learning opportunities for a RL. The system is able to learn on its 

own, but can flexibly use the guidance of a human partner to improve performance, through attention 
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direction, action suggestion, labeling of goal states, and feedback. The research platform is Leonardo 

(“Leo”), a 65 degree of freedom robot specifically designed for human social interaction. Leo has 

speech and vision sensory inputs and uses gestures and facial expressions for social communication. 

An experiment with non-expert human subjects shows a human is able to shape the learning process 

through suggesting actions and drawing attention to goal states. Human guidance results in a task set 

that is significantly more focused and efficient, while self exploration results in a broader set.  

Another implementation of human-robot collaborative learning process is described in [Kartoun, 

2008]. An ER-1 mobile robot was required to navigate toward a target location in a two-dimensional 

world containing undesirable navigation areas. The robot, located remotely from the HO, used 

environmental sensing capabilities. Learning was achieved by sharing knowledge with the HO, using 

a Collaborative Q(λ) learning algorithm, noted as CQ(λ). Two levels of collaboration where defined: 

(i) autonomous - the robot decides which actions to take, acting autonomously according to its Q(λ) 

learning function, and (ii) semi-autonomous - HO suggests actions remotely and the robot combines 

this knowledge into its CQ(λ) learning function. Evaluating robot performance for the navigation 

task revealed the superiority of the collaborative algorithm, CQ(λ), over the standard Q(λ) algorithm 

for various parameter combinations. Results show that the human collaboration accelerated robot 

learning performance for different collaboration threshold values (the threshold values determine the 

balance between autonomous and collaborative learning). On the other hand, the human intervention 

rate was not consistent with the improvement level of the robot. The Introspection Approach (IA) 

[Clouse, 1996] is a similar method by which the learning agent determines when it requires aid from 

a training agent. In IA the agent asks for instruction when it is confused or otherwise unable to 

decide upon a course of action. To implement IA, a test was developed to determine whether the 

learner is unsure of its choices, indicating the need for help in novel situations. The test examines the 

two extreme values of possible actions: if they are close to each other it implies that the learner has 

not experienced this state often enough to produce a clear choice, thus should ask for advice. The IA 

approach was evaluated using two-dimensional maze problems in which the agent is required to 

traverse optimally from a starting cell to a goal cell, and compared against an approach in which the 

learning agent requests help randomly. Guidance received via IA was shown to be more informative 

than random guidance, thus reducing the interaction that the learning agent has with the training 

agent without reducing the speed with which the learner develops its policy. 

 

2.7 Summary 
Significant work related to reinforcement learning applied for robot learning, human-robot 

interaction and scheduling problems is summarized in Table 2.2. 
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Table  2.2 Summary of related work 

 
Robotic Applications 

Method Application Reference 
Socially Guided Exploration (HRI) human social interaction (Leonardo) Breazeal and Thomaz, 2008 

Collaborative Q(λ)-learning Mobile robot navigation Kartoun, 2008 
Hierarchical RL Mobile robot navigation Jeni et al., 2007 

Supervised RL (HRI) robot dribbling (RoboCup) Cetina, 2007 
Q-learning “Relocation” of mobile robots Mihalkova and Mooney, 2006 

A* and Q-learning Object approaching with multi-fingered 
robotic hand Wang et al., 2006 

Human-computer interaction and 
future directed rewards Sophie’s Kitchen Thomaz and Breazeal, 2006 

Hierarchical RL Quadruped robot obstacle negotiation Honglak .et al , 2006 
Q-learning Mobile robot Martínez-Marín and Duckett, 2005 

HRI and sliding scale autonomy Robot speed control and obstacle 
avoidance Yanco .et al , 2005 

Q-learning and human instructions Robot button pushing task Lockerd and Breazeal, 2004 

Hierarchical RL autonomously discover and define 
subgoals (HASSLE) Bakker and Schmidhuber, 2004 

HRI and Q-learning Mobile robot navigation  Papudesi .et al , 2003 

HRI and variable autonomy Modifying mobile robot reward 
function 

Wang .et al , 2003 

Q and Q(λ)-learning Mobile robot navigation Bhanu .et al , 2001 
Virtual reality and behavior 

simulation 
Cooperative assistance in teleoperation 

(EVIPRO) 
Heguy .et al , 2001 

RL-based approach 
involving human interaction 

Human teacher to guide exploration 
during learning Clouse, 1996 

Compositional Q-learning Simulated two-linked manipulator Tham and Prager, 1995 
 

Scheduling Applications 
Method Application Reference 

Q-learning Large scale job-shop problems Gabel and Riedmiller, 2007 
Q-learning Dynamic job-shop scheduling Wei and Zhao, 2004 
Q-learning m-machine flow-shop scheduling Stefan, 2003 

RL and Simulation Economic Lot Scheduling Creighton and Nahavandi, 2002 
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3. Methodology 
Chapter Overview 

This chapter describes the methods used in this research. An overview of the algorithms and 

learning systems developed is introduced first, followed by problem definitions and notations, 

experiments and performance measures. 

 

3.1 Introduction 
The collaborative hierarchical reinforcement learning (CHRL) framework presented in this work 

was developed in order to allow the execution of complex tasks by a self learning agent, and to 

improve and accelerate the learning through the use of advisor guidance. 

Two algorithms were developed in order to support the CHRL approach: (i) a sequencing 

algorithm (SRL) was developed to address the high level learning task of the hierarchical 

reinforcement learning approach, a task of determining the optimal order of execution of low level 

sub-tasks; (ii) a cognitive collaborative reinforcement learning algorithm (CCRL) was developed in 

order to allow the introduction of an instructor into the learning process, endowing the learner with 

the abilities to decide when to ask for guidance and to evaluate the quality of the guidance. 

A robotic toast making system was used to demonstrate the applicability of the CHRL framework 

and to evaluate the two algorithms. Toast making is a complex multi-goal task since it is composed 

of many sub-tasks (such as grasping a toast, inserting it to the toaster or applying butter over it), each 

having its own goal state. In this system, the SRL algorithm was used to create a sequence of 

required sub-tasks (robot movements)1 and the CCRL algorithm was used for learning how to 

perform one of those sub-tasks. The CCRL algorithm was thoroughly evaluated2 using a simulated 

3D path planning task.  

In all applications the learning phase of the task is performed using MATLAB simulations, in 

which the algorithms (SRL and CCRL) are implemented. The use of simulations allows fast learning, 

due to the fact that no real robot manipulations are required. Furthermore, the simulation constitutes 

a convenient and powerful tool for analyzing the performance of the algorithms, by conducting 

various virtual experiments off-line. 

 

                                                           
1 The SRL algorithm was also applied for a Flexible Manufacturing System for further evaluation - see Appendix III. 
2 The CCRL algorithm was employed both for the toast making system (solving a 2D path planning task) and for a 
simulated 3D path planning task. Since the 3D task is more complex and poses greater challenges, a thorough statistical 
evolution was performed only for it. 
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3.2 Robotic Toast Making System 
3.2.1 Problem Definitions and Notations 

The robotic toast making system includes six stations (two processing stations and four storage 

stations) and a transfer “agent” (a fixed-arm robot), utilized to advance the toasts through the system, 

one toast at a time. There are predefined process and transferring times. The complex task of toast 

making is addressed by decomposing it into a two-level learning hierarchy to be solved by CHRL. 

The high-level consists of learning the desired sequence of execution of basic sub-tasks (the 

sequencing of the robot’s toast transfers) and the low-level consists of learning how to perform each 

of the sub-tasks (i.e., learn actual robot movements).  

 

High-level learning task (sub-task sequencing): 

In this application the SRL algorithm is used to generate a sequence of toast (robot) transitions 

through the system stations that will result in the completion of toast making in minimum time. The 

sequencing of the robot’s transitions can be viewed as a job sequencing problem, where the robot is 

the “machine”, and the toasts transitions are the “jobs” waiting in its queue, each requiring a different 

“process time” (robot transition time). Here, as in conventional job sequencing problems, there is a 

need to prioritize the job execution (toast transfers) using a certain policy (i.e., determine which toast 

will be transferred first).  

Learning the high-level sequencing task is performed off-line using an event-based MATLAB 

simulation. On-line fixed-arm robot motions are performed only after the simulation supplies the 

desired sequence. 

To solve the sequencing problem using the SRL algorithm, it is formulated as a RL problem1. The 

system’s overall state at time step t, denoted as Sst ∈ , is defined by the current locations of the 

toasts. A solution is a specific sequence of toast transfers: “move toast 1 to its next station, move 

toast 3 to its next station, move toast 1 to its next station, move toast 3…”. The goal state of the 

learning task is the state where all the toasts have reached the finished plate. An action at step t is 

denoted as ( )t ta A s∈ , where A is the action space of all possible actions (the action space is state 

dependent). The execution of an action constitutes the advancement of a toast to its next station in 

the processing sequence. Rewards are assigned according to the performance, as explained in Section 

 5.2. 

 

 

 
                                                           
1 A detailed formulation is presented in Section  7.5. 
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Low-level learning task (path planning): 

This application includes an example for learning the execution of one of the required low-level 

sub-tasks, a task of path planning for the insertion of a slice of bread into the toaster. In this task the 

robot-arm is required to transfer the bread slice in the shortest path from a starting position to a target 

position above the toaster’s hatch, while avoiding obstacles. During the learning phase a human 

advisor guides the robot when requested. The optimal path is learned using a simulation employing 

the CCRL algorithm integrated with a standard Q(λ) algorithm [Watkins, 1989] and a human advisor. 

Once the path is obtained it is sent to the robot’s controller to carry out the actual robot motions 

accordingly. 

The robot’s state at time step t, Sst ∈ , is represented by its location in a 2D grid world, defined by 

two coordinates. An action Aat ∈ , taken at each step, is traveling left, right, forward, or backward. 

Rewards are defined as ),( tt asr . If the robot reaches the target, the reward is positive. If it passes 

through an undesirable area (obstacle), the reward is negative. Furthermore, a small negative reward 

is assigned after each step in order to facilitate minimal number of steps. 

 

3.2.2 Analysis 
High-level learning task (sub-task sequencing): 

The sequencing algorithm’s performance is tested using two problems: a “3-toast” problem and a 

“4-toast” problem, requiring the generation of a sequence for the optimal production of 3 and 4 

toasts, respectively. Based on a MATLAB simulation, tests are conducted to examine the influence 

of the action selection parameters and the reward factors on the performance, and to evaluate the 

performance by comparison to the Monte-Carlo method [Sutton and Barto, 1998] and to a random 

search algorithm. Three sets of machine processing times and robot transfer times are considered, 

one adjusted to suit the transition times of the real robot and two with increased processing times and 

modified robot transition times. 

 

Low-level learning task (path planning): 

In this experiment the robot-arm is required to transfer the bread slice in the shortest path from a 

starting position to a target position above the toaster’s hatch, while avoiding obstacles. The optimal 

path is learned using a simulation, employing the CCRL algorithm, and the actual robot motions are 

performed later, according to that path. Human advice is introduced during the path learning process, 

using a dedicated interface. 
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3.2.3 Performance Measures 
System performance is evaluated using the following measures: 

High-level learning task (sub-task sequencing): 

1) Average number of learning episodes required to reach convergence1. 

2) Average percentage of learning sessions reaching the optimal solution, for deterministic times. 

3) Average best result achieved in the learning session, for stochastic times, where an optimal 

solution cannot be defined due to the probabilistic feature. 

 

Low-level learning task (path planning): 

The low level task implementation is only intended to prove the applicability of the CHRL 

framework, hence the performance measure is a successful implementation, as described in Chapter 

 8 (See further explanation in Section  8.4).  

 

3.3 Collaborative RL for a 3D Path Planning Task 
3.3.1 Problem Definitions and Notations 

The CCRL algorithm is applied for a simulated 3D path planning task2. Results are compared to 

those achieved by: (i) a fully autonomous learner, (ii) the Introspection Approach3 and (iii) a 

combined method, integrating the advice request rules of both CCRL and IA. A simulated adviser 

with various skill levels is used in the evaluations, to examine the performance achieved with sub-

optimal advice.  

Evaluation is conducted for a simulated mobile robot path planning problem in a three-

dimensional grid environment of size 10×10×10 (1000 states). Two grid-world instances are 

considered, one with a relatively low obstacle density, and another with a higher density. In order to 

evaluate performance in the case of human teleoperated guidance, a limited region of assistance is 

also considered for each world. The objective of the robot is to traverse from a starting state to a goal 

state through the shortest path, while avoiding obstacles. At each state Sst ∈ , defined by three 

coordinates, the robot can choose one of six actions Aat ∈  (up, down, left, right, forward, or 

backward). The RL reward structure is such that the robot receives a positive reward for reaching the 

                                                           
1 Detailed definitions of learning episodes, learning sessions, convergence etc. are found in Chapters 7, 8 and 9. 
2 The CCRL algorithm is applied here for a simulated environment and not a real one due to time constraints. However, 
the simulated environment is sufficient for the algorithmic analysis and in this aspect there is not much added value for a 
real robot implementation.  
3 The Introspection Approach (IA) is described in details in Sections 6.1 and  9.5. 
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target, a small negative reward for each step performed and a large negative reward for colliding 

with an obstacle (similar to the reward structure of the low-level task described in Section  3.2.1). 

  

3.3.2 Analysis 
Extensive analysis is performed using MATLAB simulations in order to examine the suggested 

CCRL algorithm and compare its performance to the base-line fully autonomous learning, the IA 

method, and the combined method integrating CCRL and IA. 

All methods are evaluated using four environments – worlds I and II, each with full and limited 

views, and four different tests are performed for each environment: The first test examines the base-

line fully autonomous learning, the second test evaluates the performance of the CCRL algorithm, 

the third test implements IA for solving the path planning problem and the fourth and final test 

explores the combined method, integrating both CCRL and IA into one algorithm.  

 

3.3.3 Performance Measures 
Performance is evaluated using the following measures: 

1) Average number of requests for advice during the learning session (used only for CCRL, in 

which advice is requested for a whole episode). 

2) Average number of steps performed using advice during the learning session (used for the IA 

method in which advice is requested per step, and for the comparison). 

3) Average percentage of learning sessions reaching the optimal solution (minimal path length). 

4) Weighted normalized scoring based on the 2nd  and 3rd  measures. 
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4. Collaborative Hierarchical Reinforcement Learning 
Chapter Overview 

This chapter describes the CHRL framework suggested in this research. The framework combines 

two known techniques used for addressing the RL drawbacks, hierarchical RL and Human-Robot 

collaboration.  
 

4.1 Introduction 
The Collaborative Hierarchical Reinforcement Learning framework (CHRL), illustrated in Fig. 

 4.1, aims to enable the execution of complex tasks and to accelerate the learning process. This is 

achieved by decomposing the task into a two-level learning hierarchy, while allowing human 

collaboration at both levels. The high level consists of learning the desired sequence of execution of 

basic sub-tasks, and the low level consists of learning how to perform each of the sub-tasks required. 

Human intervention is allowed at both levels, to expedite the learning process and to improve1 it by 

exploiting human intelligence and expertise. The innovation is in combining two known techniques, 

hierarchical RL and human-robot collaboration, into one framework. 

CHRL allows the use of accumulated knowledge gathered in previous learning sessions. Each 

complex task is composed of a set of basic sub-tasks. These sub-tasks can be saved in a “toolbox”, 

ready to be reused by the agent without the need to learn them from the start. The sub-tasks saved in 

the “toolbox” should be general-purposed, allowing them to be used for various high level tasks 

(picking up a tray for example, can be used in a hospital or in a restaurant). They may vary from 

delicate operations such as picking up a glass without spilling its content or performing a precise cut 

during a surgical operation, to obstacle-avoiding navigation and other complex tasks. In the end-

state, the agent will have no need for learning new tasks, but only to learn how to use a set of 

available “tools” suitable for performing a specific task.  

The inherent modularity and agility of the framework can simplify the formation and execution of 

new complex tasks: various tasks can be composed by creating a desired sequence of already known 

sub-tasks, available in the system’s toolbox. The SRL algorithm, presented in Chapter 5 was 

developed for this purpose.  

As both the high and low levels of the hierarchy might still present large-scale, unstructured, 

unpredictable problems, human guidance and assistance should be made available for the agent, in 

order to improve and accelerate the learning process. The CCRL algorithm presented in Chapter 6 

suggests a method of achieving this interaction in an efficient and intelligent way.  

                                                           
1 Improvement means achieving better results than a fully autonomous learning, as demonstrated in Chapter 9.  
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It is important to emphasize that this research lays the foundations for the use of the CHRL 

framework, introducing the necessary tools for its application, but does not present a complete 

implementation. This remains open for future research1. 

 

 
 

Fig.  4.1 Flowchart of the CHRL framework 
 

4.2 Key Concepts 
CHRL has four key concepts: 

1) The complex task is decomposed into a sequence of low level sub-tasks, thus creating a two-

level learning hierarchy: learning the desired sequence of execution (high level) and learning 

how to perform each of the basic sub-tasks required (low level).  

                                                           
1 Areas for future expansion of this work can be found in details in Section 10.2. 
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2) The high level sequence can be constructed by a human operator (HO), when the full task is 

composed of a simple and straightforward set of steps, or by autonomous or collaborative 

learning sessions aimed to optimize a more complex task. The low level tasks can also be 

acquainted to the system by a set of predefined steps supplied by the HO (supervised control), or 

by autonomous or collaborative learning. 

3) Learning the sequence and some of the sub-tasks (such as path planning tasks) can be performed 

using a simulated environment, fitted to the specific system, thus saving time spent while 

learning using real robot moves, and preventing safety issues. After the simulated learning 

sessions generate the desired set of steps, the data will be downloaded to the robot’s controller 

for execution, allowing fast learning and implementation.  

4) Sub-tasks are saved in a toolbox, available for reuse, either within the same application or in 

other applications. 

 

4.3 An illustrative example  
Consider a trash disposing robot required to take a trash can from a certain room in an office 

building, dispose of the trash in a central trash container located in another room, and return the 

empty can to the original room. First, the robot needs to learn how to navigate inside the room to 

reach the trash can and grasp it. Then, it needs to navigate out of the room and through the corridor 

to the container room. Finally, it will need to find the way to the container, empty the can, and return 

to the original room with the empty can. Now, consider emptying all trash cans of the entire floor; 

instead of letting the robot learn the entire task from scratch, it is suggested to create a correct 

sequence of sub-tasks, using the ones the robot had already learned and stored in its toolbox. 

Relevant general purpose sub-tasks could be: grasping a can, navigating in the corridor (each 

corridor is relevant for different office rooms), navigating inside the central container room, 

emptying the can, returning to the original room etc. By composing these general sub-tasks together 

in the right order, the robot’s learning and task execution could be achieved much faster. 
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5. RL Sequencing Algorithm (SRL) 
Chapter Overview 

This chapter presents the RL-based sequencing algorithm developed for providing a sub-task 

execution sequence.  

 

5.1 Introduction 
In real-time control of dynamic manufacturing systems, scheduling decisions are usually 

implemented through a policy that assigns priorities to the jobs waiting at a machine - the job with 

the highest priority is selected for imminent processing [Park et al., 1997]. These problems are also 

referred to as job sequencing problems, where decision makers must determine the production 

sequence of the jobs awaiting their next process in the machine queue. A common approach to 

address such problems is to adopt dispatching rules - priority rules used to determine the order in 

which the jobs are to be processed as soon as a machine becomes available. However, a dispatching 

rule often favors one performance measure at the expense of other measures [Wang and Usher, 

2005]. The relative effectiveness of any rule depends upon the current state of the system. Therefore, 

there should be flexibility in selecting a dispatching rule employed in such a dynamic environment.  

[Park et al., 1997] present an adaptive scheduling policy for dynamic manufacturing systems that 

tailors the dispatching rule to be used at a given point in time according to the state of the system. 

The rule selection logic is embedded in a decision tree that is generated by applying an inductive 

learning algorithm on a set of training examples. Experimental studies indicated the superiority of 

the suggested approach over the alternative approach involving the repeated application of a single 

dispatching rule. 

However, in order to implement dispatching rules, a complete system model is required. 

Furthermore, for dynamically assigning dispatching rules there is a need to continually compute 

system parameters, such as flow allowance (the lead time permitted to any job), system utilization, 

relative machine workloads (points system bottlenecks),  and machine homogeneity. 

RL provides a relatively easy way to model scheduling problems. With RL there is no need for 

predefining desirable or undesirable intermediate states, which is very hard to do in such problems. 

All that must be done is to construct a fairly simple reward policy (e.g., higher reward for shorter 

completion times) and the algorithm will supply a solution. 

 



Chapter  5. RL Sequencing Algorithm (SRL) - The SRL Algorithm 27  

 
 

5.2 The SRL Algorithm 
The sequencing RL algorithm (Fig. 5.1) is developed to solve the job sequencing problem. The 

objective is to sequence the jobs so as to minimize the makespan (total completion time) of the 

desired task. 

 Problem states, denoted as ts S∈ , are defined as system’s overall state at time step t. Problem 

actions, Aat ∈ , which convert the system from state to state, are defined in accordance to the specific 

problem. A value Q, associated with a state-action pair, (st,at), represents how “good” it is to perform 

action at when the system is in state st.  

A learning episode is defined as a finite sequence of time steps, during which the system traverses 

from a starting state to a goal state, according to the agent’s actions. A learning session is a series of 

N learning episodes. 

Action selection in the SRL algorithm is performed using an adaptive ε-greedy method [Sutton 

and Barto, 1998], in which the agent behaves greedily by selecting an action according to Max Q 

most of the time with probability 1- ε, but with a small probability ε, selects a random action instead. 

The probability ε starts with a relatively high value, and is adaptively reduced over time using 

exponential decay as a function of the number of episodes, n, as shown in ( 5.1). The rate of decay is 

controlled by β, a positive parameter specifying how fast ε will decrease towards zero.   

1
nβε =

 
( 5.1) 

At the beginning of the learning session, when the agent has not gathered much information, a 

high value of ε encourages exploration of the state-space by allowing more random actions. As the 

learning session progresses, the probability ε decreases, reducing the number of random actions, and 

allowing the agent to exploit the information already gathered and perform better. 

To solve the scheduling problem there is a need to consider the sequence of steps as a whole and 

not only step by step. The reason is that the policy’s performance can only be evaluated and 

rewarded at the end of the learning episode, when the task completion time is known. This is also the 

reason why standard RL algorithms, such as Q-learning, updating value estimates on a step-to-step 

basis and assigning predefined constant rewards, cannot be applied here. Hence, the algorithm 

includes two updating methods. 

The first method is performed after each step, similar to the SARSA1 control algorithm [Sutton 

and Barto, 1998]. The difference is that because of the characteristics of the scheduling problem, 

there is no way of evaluating whether a certain action taken is good or not, from the narrow 
                                                           
1 The SARSA algorithm is described in Section 2.2.  
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perspective of a single step. Therefore, it is impossible to assign an effective instantaneous reward. 

The one step update of the state-action values is described in ( 5.2). 

1 1( , ) ( , ) [ ( , ) ( , )]t t t t t t t tQ s a Q s a Q s a Q s aα γ + += + −  ( 5.2) 

Where Q(st,at) is the value of performing action at  when the system is in state st, α is the learning 

rate which controls how much weight is given to the new Q estimate, as opposed to the old one, and 

γ is the discount rate, determining the present value of future rewards. 

The second update method is performed at the end of the learning episode n, when it is possible to 

evaluate the performance of the policy used. At this stage there is an update of all the steps in the 

episode sequence, by multiplying their Q values with a reward factor indicating how good the last 

episode was. Two reward factor calculations are suggested, both assigning higher values to lower 

task completion times. A type A reward factor receives a value of 1 if task completion time Tn, 

achieved at episode n, was less than or equal to the best time found so far. Otherwise, the factor will 

be smaller than 1, proportional to the difference between the current episode’s time and the best time 

achieved so far. This way, Q values of states visited during a “good” sequence remain the same, 

while Q values of states included in worse sequences are decreased. The type A reward factor is 

calculated according to ( 5.3). 
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( 5.3) 

Where Rn is the reward factor at episode n, Tn is the completion time achieved at the current episode 

n, and T* n-1  is the best time achieved up to episode n-1. The parameters a and b are used to adjust 

the reward factor to achieve the desired values.  

The type B reward factor, described in ( 5.4), is simply set in inverse proportion to the completion 

time Tn, achieving the desired effect of a higher reward factor for lower completion times. 

1
n

Tn
R =  ( 5.4) 

Here Tn is the time achieved at the current episode n and Rn is the reward factor.  

 

 



Chapter  5. RL Sequencing Algorithm (SRL) - The SRL Algorithm 29  

 
 

 
 

Fig.  5.1 Pseudo-code of the SRL algorithm 
  
  
  
  

Initialize ( ) 1,Q s a =  for a learning session 
Repeat (for each learning episode n): 

Initialize state ts  as starting state, pick initial action ta  
Repeat (for each step t of episode): 

Take action ta , observe next state 1ts +  

Choose 1ta + for  1ts +  using a certain action selection rule (e.g., ε-greedy) 

1 1( , ) ( , ) [ ( , ) ( , )]t t t t t t t tQ s a Q s a Q s a Q s aα γ + +← + −
 

1 1;t t t ts s a a+ +← ←
 Until ts is terminal (reached the goal state) 

Calculate nR  (type A or type B) 

For all ( , )s a visited during the episode: 
( , ) * ( , )nQ s a R Q s a←  

End 
Until n = N (reached the desired number of learning episodes) 
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6. Cognitive Collaborative Reinforcement Learning (CCRL) 
Chapter Overview 

This chapter presents the cognitive collaborative algorithm allowing the introduction of an advisor 

to the learning process.  
 

6.1 Introduction 
As reviewed in the Introduction chapter, a central issue in human-robot collaboration is adjustable 

autonomy, the determination of whether and when human intervention is required. Collaborative Q-

learning, CQ(λ) [Kartoun, 2006; Kartoun, 2008], addresses the issue of accelerated learning through 

the concept of human-robot collaboration and adjustable autonomy. The CQ(λ) algorithm integrates 

the experience of the learning agent with the knowledge of a human operator.  

A similar approach is that of the Introspection Approach (IA) [Clouse, 1996]. The IA is a method 

by which the learning agent determines when it requires aid from a training agent. The main 

challenge in such a method is designing a mechanism for deciding when the learner should ask for 

advice. The goal here is to maximize the impact of the advisor’s instruction, so that the learner 

develops its decision policy quickly and correctly, with as little training as possible [Clouse, 1996].  

When addressing the question of when the agent should ask for advice, Clouse relies on his 

informal perception of when human learners require instructions, noting that humans seek help when 

they are confused or otherwise unable to decide upon a course of action. To implement IA, he 

developed a test to determine whether the learner is unsure of its choices, indicating the need for help 

in novel situations. Clouse notes that “when discussing automated learners, it is fairly easy to specify 

exactly when they are unsure: one has access to the decision policy and the evaluations on which the 

decision is based.” The test examines the two extreme values of possible actions (Q(s,a)): if they are 

close to each other it implies that the learner has not experienced this state often enough to produce a 

clear choice, thus should ask for advice. Guidance received via IA is shown to be more informative 

than random guidance, thus making better use of the training agent. 

In this thesis the question is addressed by employing a result-oriented approach. We argue that 

another case in which humans seek aid is when they come to the understanding that their 

performance is not improving fast enough, or in other words, that their improvement rate is not 

sufficient. Thus, the decision whether assistance is required relies on the objective outcome of the 

learning, evaluated according to certain acceptable performance thresholds.  

The following sections describe a cognitive collaborative reinforcement learning algorithm 

(CCRL) which extends the concept of CQ(λ) to include the cognitive capabilities of performance 

assessment and advice assessment. 
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6.2 The CCRL Algorithm 
The cognitive collaborative reinforcement learning algorithm (CCRL), addresses the questions of 

whether and when the robot should solicit advice by endowing the robot with two human-like 

cognitive abilities: The ability to assess its performance and request advice when it is not 

sufficient, and the ability to assess the value of the offered advice and decide whether to continue 

asking for it or stop the requests and switch to fully autonomous learning. 

The robot applies a result-oriented approach, seeking aid when it comes to the understanding that 

its performance is not sufficient. Furthermore, the robot is given the ability to judge the worth of the 

advice it receives. This self-awareness is achieved by performing self tests designed to evaluate its 

learning performance according to acceptable performance thresholds.  

The CCRL algorithm, as well as the IA approach, uses the basic model of a RL learner 

incorporating advisor-suggested actions online. Upon receipt of an action from the advisor, the robot 

executes the action as if it had chosen the action with its own policy. Thus, the basic RL algorithm 

used (e.g., Q-learning) does not need to be modified to handle the advisors actions. The adjustable 

autonomy method includes two learning modes, supervised and autonomous, following the model 

introduced in [Kartoun, 2006]. 

 

6.3 Collaborative Learning 
Consider a collaborative learning model in which the system can be in one of two modes: (i) 

autonomous (unsupervised learning) and (ii) guided (supervised by an outside intelligent agent). In 

the autonomous mode the robot decides which actions to take according to feedback from the 

environment (reinforcements), using a certain action selection method (e.g., ε-greedy, softmax). It is 

in this mode that the collaborative feature is added in which the learner can switch into the guided 

supervised mode and back. In the guided supervised mode a guidance agent such as a human advisor 

suggests actions. This knowledge is incorporated into the learning function if it is deemed worthy. 

The learning itself can be done using any RL algorithm (e.g., SARSA, Q-learning). The advice from 

an outside guidance agent is unnecessary as long as the robot learns policies and adapts to new states 

while showing improvement. Only when the robot senses its performance is not improving at the 

desired rate, is the advisor solicited to intervene and suggest actions. The robot then performs the 

suggested action, and updates its Q values according to the action taken as though it had chosen the 

action itself. 

The robot is endowed with two cognitive capabilities that allow it to decide whether and when to 

switch between the autonomous and guided modes. These decisions are triggered when two 

performance thresholds are exceeded: Λ, used to determine when to ask for advice, and Ω, used to 
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determine whether the advice is acceptable or not. The robot performs self tests (incorporating these 

thresholds) based on the ability to assess its own learning performance, as detailed in the following 

sections. 

 

6.4 Self-Performance Assessment Capability1 
The robot must determine whether its performance is sufficient in order to decide when to switch 

between the two learning modes. Since the optimal solution (minimal number of steps to reach the 

goal in this case) is unknown a priori, the threshold for triggering a request for advice cannot be set 

as a constant measure, above which advisor assistance will be desired. Furthermore, even if we had 

some idea of the scale of the optimal solution, the robot cannot be expected to achieve it 

immediately, since the learning process is gradual. What can be expected from the robot is to 

continuously improve its performance. Therefore, the threshold used is not a constant value it has to 

reach, but an improvement rate. The way for the robot to sense it is not learning fast enough is by 

comparing its current performance with past performance. The robot wishes to achieve a certain 

improvement rate during the learning session2. When it does not achieve that rate, a request for 

advice is triggered. The improvement rate is defined as a ratio between moving averages of the 

number of steps of previous episodes, as described in ( 6.1). 
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( 6.1) 

Where n is the current episode, Ti is the performance at episode i (number of steps to reach the goal 

in this case) and IR is the actual performance improvement rate, comparing the previous average 

number of steps Tp (average over previous K episodes, n-2K to n-K+1) and the current average Tc 

(average over the most recent K episodes, n-K to n-1). If the current average is smaller than the 

previous one (less steps required to reach the goal – better performance) IR will be positive.  

 

6.5 Advice Request Test  
The CCRL advice request self test compares IR with the threshold Λ, as shown in ( 6.2). 

                                                           
1 The explanations and calculations described here refer to a problem in which the objective is to minimize the number of 
steps to reach the goal state. In maximization problems the formulations would be slightly modified. 
2 A learning episode is defined here as a finite sequence of time steps, during which the agent traverses from the starting 
state to the goal state. A learning session is a series of N learning episodes. 
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If  IR < Λ , then request advice 

                                             Else learn autonomously                       
( 6.2) 

Here Λ is a predefined collaboration threshold, representing the desired improvement in 

performance. Before each learning episode begins, the actual improvement rate is compared to the 

threshold. If IR > Λ, meaning the actual rate is better then the desired, the robot will continue to 

learn autonomously and will not solicit advice. If IR < Λ, the improvement rate is not sufficient, and 

advisor assistance will be requested. When requested, the advisor will assist during the entire 

episode. 

When the robot converges to the optimum, obviously there will not be any improvement in the 

performance, and advisor assistance will be asked recurrently without need. This problem is solved 

by applying the following rule: If after 2K episodes the robot produces the same result, it assumes it 

has reached the optimum and stops asking for aid. Even if the optimum found was a local one, if 2K 

episodes using human assistance did not help the robot escape it, then there is no sense in continuing 

the requests. 

Another rule is that the robot can start asking for advice only after a certain number of episodes X. 

This is done in order to allow the robot to operate autonomously, since at the beginning of the 

session there is a lot of exploration, and it is not expected to show improvement. 

It is important to note, that in the CCRL algorithm switching between the autonomous mode 

(action selection using the Q table of the RL algorithm) and the guided mode (action selection by the 

advisor), occurs only at the end of an episode, whereas in the IA approach this switch can take place 

at any step within an episode. 

 

6.6 Advice Assessment Capability 
Until here the assumption was that the advisor provides good instructions, but what happens if the 

advice is bad? Wrong advice will not promote learning, and might even cause deterioration in 

performance. By endowing the robot with the capability to assess the value of the advice, such 

situations may be avoided. The robot judges the advisor’s suggestions by comparing its performance 

when using the advisor’s aid with past performance. If assistance does not improve the performance, 

the robot learns to stop asking for it. The number of steps achieved at episodes performed with 

advisor assistance is compared to the average number of steps over the K episodes previous to the 

assisted episodes. When the number of steps to reach the goal in the assisted episodes, Ta, is higher 

(worse) than the average, it insinuates that advisor instructions are worthless and maybe even 

misleading. The number of times in which the episode with advisor assistance produced worse 

results than the average, denoted as ML, is counted as shown in ( 6.3) 
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6.7 Advice Rejection Test  
When ML exceeds a predefined threshold, meaning the human misled the robot too many times, 

the robot refuses the advice, and switches to a fully autonomous learning mode until the end of the 

session. The CCRL advice rejection test is elaborated in ( 6.4). 

                                         If  ML  >  Ω, then refuse advice 

                                         Else continue requesting advice when IR < Λ ( 6.4) 

Here ML is the number of occasions in which the human misled the robot causing the episode with 

advisor assistance to achieve worse results than the average results of the K previous episodes, and Ω 

is a predefined advice refusal threshold for such occasions, above which collaboration is stopped. 

When the human has poor expertise, the episodes performed with his assistance will result in 

decreased performance, ML will rapidly rise and exceed Ω, and the robot will stop asking for advisor 

aid, as it should. In this final structure of the algorithm (Fig 6.1), collaboration is defined by the two 

threshold parameters, Λ and Ω, determining the desired improvement rate and the acceptable number 

of human misleads, respectively. A pseudo-code of the algorithm is displayed in Fig.  6.2. An 

example for the collaboration mode switching during a learning session is presented in Fig 9.5. 
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No

Autonomous Mode
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Fig.  6.1 Scheme of the CCRL algorithm 
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Fig.  6.2 Pseudo-code of the CCRL algorithm 
  

 

 

 

Initialize the basic RL algorithm (e.g., Q-learning, SARSA) for the learning session 

Initialize ML = 0 

Set desired Λ, Ω (collaboration thresholds) 

Repeat (for each learning episode n): 

Initialize state ts  as starting state, pick initial action ta  
If  n < X  or  ML > Ω 
 Use Action Selection I (learn autonomously) 
Else 
 If  IR < Λ 
  Use Action Selection II (request advice) 
 Else 
  Use Action Selection I (learn autonomously)   End  
End 
Repeat (for each step t of episode): 

Take action ta , observe reward tr and next state 1ts +  

Action Selection I: Choose 1ta +  for  1ts +  using a certain action selection rule (e.g., ε-greedy) 

Action Selection II: Advisor suggests action 1ta +   

Update basic algorithm’s parameters according to ta , tr  , 1ts +  and 1ta +   

1 1;t t t ts s a a+ +← ←
 Until ts is terminal (reached the goal state) 

( ) /p c pIR T T T= −  

If  
1

( ) ( ) /
n

a i
i n K

T n T K
−

= −

> ∑  
 

1ML ML← +

 End 

Until n = N (reached the desired number of learning episodes) 
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7. Sub-task Sequencing for a Toast Making System 
Chapter Overview 

The applicability of the CHRL framework is demonstrated using an automated toast making 

system, presenting both high and low level learning tasks for its operation. This chapter describes the 

high level learning task of sequencing toast transitions through the system’s stations.  

 

7.1 Introduction 
A test-bed application, robotic toast making system, was developed to demonstrate the 

applicability of the CHRL framework1. Toast making is a complex multi-goal task since it is 

composed of many sub-tasks (such as grasping a toast, inserting it to the toaster or applying butter 

over it), each having its own goal state. The system includes six stations (two of which are 

processing stations) and a transfer “agent”, a fixed-arm robot, advancing the toasts through the 

system, one toast at a time. In lieu of fixed inter-process job transfers, the robot allows the flexibility 

of job movements at any point in time and to any location. The complex task of toast making is 

addressed here by decomposition into a two-level learning hierarchy to be solved by CHRL. The 

high-level consists of learning the desired sequence of execution of basic sub-tasks and the low-level 

consists of learning how to perform the required sub-tasks. In this application the SRL algorithm is 

used to generate a sequence of toast transitions through the system stations, to achieve completion of 

toast making in minimum time, and the CCRL algorithm is employed for learning the execution of 

an exemplary sub-task, the insertion of a bread-slice to the toaster (See Chapter  8).  

 

7.2 High Level Learning Task – Toast Transition Sequencing 
The high level sequencing problem presented by the toast making system is addressed by the SRL 

algorithm. The algorithm’s performance is evaluated by comparison to a Monte-Carlo method and a 

random search through extensive experimentation. The generation of the desired sequence is 

performed off-line using an event-based MATLAB simulation. This solution is implemented on-line 

using a Motoman fixed-arm robot operating on a toast making system in an environment consisting 

of a cardboard mockup of toast objects and processing units.  

 

7.3 Experimental Setup and Method of Operation  
The system consists of six stations (Fig.  7.1): 1- plate for raw slices of bread, 2- a buffer in front 

of a toaster, 3- toaster (with a capacity of one slice), 4- a buffer in front of a butter applier, 5- butter 

                                                           
1 A detailed description of the system and its operation can be found in Appendix I. 
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applier (butter can be applied to only one slice at a time), and 6- finished toasts plate. Each toast has 

to go through all of the stations in the specified order, except for the buffer stations (2 and 4) which 

are used only when needed (the buffers allow bread-slice advancement while the machines are 

occupied, thus may save time in later loading of the machines, since the slices would be located 

closer). The toast transfer “agent” is a fixed-arm six degree of freedom Motoman UP-6 robot with a 

pneumatic gripper (Fig.  7.2), which advances the toasts through the system, one toast at a time.  
 

 
 

Fig.  7.1 General scheme of the toast making system 
 
 

 
 

Fig.  7.2 Motoman robot and cardboard mockup of the system stations 
 
 

Three instances of the robot sequencing problem are examined. We designate these as cases I, II 

and III. Each is described by specific robot transition and machine processing times (Tables 7.1 and 
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7.2). Case I is adjusted to suit the transition times of the real robot1. Cases II and III have increased 

processing times and modified robot transition times.  
 

Table  7.1 System stations and machine processing times 
 

No. Station Processing times (sec.) 
1 Raw slices plate - 
2 Toaster buffer - 
3 Toaster case I - 60; case II - 90; case III - 120 
4 Butter applier buffer - 
5 Butter applier  case I - 60; case II - 90; case III - 120 
6 Finished toasts plate - 

 
 

Table  7.2 Robot transition times (sec.) 
 

* Transition combinations marked with X are inapplicable. 
 
 

7.4 Task Definition 
The objective of the system is to produce butter covered toasts from a fixed number of raw bread 

slices as fast as possible, that is to find a sequence of robot (toast) moves that minimizes total job 

completion time. When addressing the high level learning task, it is assumed that low-level task 

times, achieved via optimal robot motions, are known, such that only the high-level sequencing task 

must be solved.  

When defining the sequencing problem presented by the system in the conventional way, it can be 

regarded as a flow-shop scheduling problem, which requires sequencing of jobs (toasts) with 

different processing times through a set of machines. The difference here is that the jobs have 

identical processing times, and that they are not automatically transferred from station to station. 

Other unique characteristics are: (i) the use of dynamic buffers (unlimited) for the processing 

stations, which are not a part of the technological path, and are used only when a station is busy, and 

(ii) the fact that robot’s arm movements while empty must be considered (duration depends on the 

source and target locations).  

                                                           
1 The robot’s transition times where measured in the real experimental setup. 

Case I Case II Case III 
  To Station 

  1 2 3 4 5 6 
1 X 24 36 X X X 

2 21 X 24 16 15 X 

3 22 X X 22 28 X 

4 24 26 19 X 19 X 

5 26 24 20 X X 12 Fr
om

 S
ta

tio
n 

6 25 23 19 21 X X 
 
 

  To Station 

  1 2 3 4 5 6 
1 X 20 30 X X X 

2 30 X 30 20 30 X 

3 30 X X 30 50 X 

4 30 20 30 X 40 X 

5 30 20 30 X X 20 Fr
om

 S
ta

tio
n 

6 30 20 20 30 X X 
 
 

  To Station 

  1 2 3 4 5 6 
1 X 50 70 X X X 

2 40 X 40 40 50 X 

3 45 X X 30 45 X 

4 50 40 30 X 35 X 

5 55 50 45 X X 30 Fr
om

 S
ta

tio
n 

6 60 55 50 45 X X 
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Due to the system’s unique characteristics, it is easier to approach the problem from a different 

point of view, as described in the Methodology chapter: the problem can be viewed as a job 

sequencing problem, in which the robot is the limited resource (the “machine”), and the toast 

transition tasks are the “jobs” waiting in its queue, requiring a different “process time” (robot 

transition time). Since the transfer agent has limited capacity (the robot can move only one bread 

slice at a time) there is a problem of how to schedule this “limited resource”. 
 

7.5 Implementation of the SRL Algorithm 
To solve the sequencing problem using the SRL algorithm, it is formulated as a RL problem. The 

system’s overall state at time step t, denoted as Sst ∈ , is defined by the current locations of the 

toasts. For a K toast problem, the state will be represented as (L1, L2, L3, …, Lk), where Li is the 

location of the i-th toast ( 1...6iL ∈ ). In a three toast problem for example, states can be: (1,1,1), 

(3,1,1), (3,2,1), (5,2,1) etc. Not all location combinations are feasible, due to system’s characteristics: 

state (3,3,1) for example is not feasible, since the toaster (station 3) can process only one bread slice 

at a time. 

A solution is a specific sequence of toast transfers: “move toast 1 to its next station, move toast 3 

to its next station, move toast 1 to its next station, move toast 2…;” presented as a vector: 

[1,3,1,2,…]. Different sequences might be in different lengths, since some may use the dynamic 

buffer stations (2 and 4) and some may not. The goal state of the learning task is state (6,6,6), where 

all the toasts have reached the finished plate. In this context, it is important to understand the 

distinction between the goal state of the toasting system, which is, as noted, (6,6,6), and the goal of 

the learning task, which is to find the sequence of steps that would lead from state (1,1,1) to state 

(6,6,6) in minimum time1. The sequence’s execution time is composed of transition, processing and 

waiting times. 

An action at step t is denoted as ( )t ta A s∈ , where A is the action space of all possible actions (the 

action space is state dependent). The execution of an action constitutes the advancement of a toast to 

its next station in the processing sequence, causing the system to arrive at a new state. For example, 

at state (3,2,1) there are two possible actions: (i) advance toast number one from station 3 to station 

5, arriving to state (5,2,1), and (ii) advance toast number three from station 1 to station 2, arriving to 

state (3,2,2). Toast number two can not be moved to station 3 (the toaster) because the station is still 

loaded with toast number one.  

Rewards are assigned according to the performance, as explained in Section  5.2. A learning 

episode starts from the state (1,1,1) where all the slices lie on the raw slice plate, and ends in state 
                                                           
1 An example for a state sequence is shown in Fig 7.4.  
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(6,6,6) when the last slice arrives to the serving plate, toasted and covered with butter. A step is the 

transition from one system state to another. 

As a side note, it is important to understand the difference between the problem’s state definition 

here and the definitions in other tasks. In path planning tasks for example, the state is defined as the 

agent’s location, and during the learning it traverses from state to state. In our case, the state is 

defined as the system’s status, and the agent’s actions shift the system from state to state. Hence, not 

the location of the agent (robot) itself counts, but the influence of its actions on the system’s state. 

Therefore, when at a certain state, the real decision considered is which next system state is 

desirable, not which robot’s location. As an outcome of the final robot sequence however, one can 

obtain the location-time trace of the robot’s activities. 

Learning the high-level sequencing task is performed off-line using an event-based MATLAB 

simulation. On-line fixed-arm robot motions are performed only after the simulation supplies the 

desired sequence. The use of simulation allows fast learning, since real robot manipulations are 

extremely time-consuming. Furthermore, the simulation constitutes a convenient and powerful tool 

for analyzing the performance of the SRL algorithm, by conducting various virtual experiments off-

line. The model receives robot transition times and machine processing times as input data. The 

system allows the user to input the number of toasts in a session. 
 

7.6 Analysis 
The SRL performance is tested with two different size problems, using demands of 3 and 4 toasts.  

The 3-toast problem allows better understanding of the algorithm’s characteristics, and its optimal 

solution can be found in reasonable time and compared to the solution reached by the algorithm. The 

4-toast problem is closer to real-world problems, having a larger state-space. Based on a MATLAB 

simulation, various simulated experiments are conducted, to examine the influence of the adaptive ε-

greedy action selection parameter β and of the reward types on the SRL performance, and to evaluate 

the performance by comparison to the Monte-Carlo method [Sutton and Barto, 1998] and to a 

random search algorithm. 

Monte-Carlo (MC) methods are ways of solving the RL problem based on averaging sample 

returns [Sutton and Barto, 1998]. It is only upon the completion of an episode that value estimates 

and policies are changed, thus incremental in an episode-by-episode sense, but not in a step-by-step 

sense (this is the reason MC methods can be applied for scheduling problems). Here the Q values are 

simply the average rewards received after visits to the states during the episodes. The reward for a 

specific episode is set to be 1/Tn, assigning a higher reward for lower times, and is accumulated and 

averaged for each state-action pair encountered during the episode. Action selection here is 

performed using the same adaptive ε-greedy method of the SRL algorithm. When applying the 
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random search method, actions are chosen with equal probability, using a uniform distribution. In all 

tests (Table 7.3), the RL parameters1 are set as follows: α = 0.05, γ = 0.9. These parameters were 

selected empirically. 

The first test examines the SRL performance with various values of the parameter β, controlling 

the decay rate of ε (the probability of choosing random actions).  The values are varied from 1.0 to 

1.7. Each value is evaluated by performing 100 learning sessions with 200 learning episodes. This is 

done for all three cases (I, II and III). 

In a second test the SRL algorithm is compared to the MC and random search methods for the 

three cases (I, II and III) and for both the 3 and 4-toast problems. Comparisons are made using 

various learning session lengths (N). Lengths are varied from 15 to 60 learning episodes in 

increments of 5 for the 3-toast problem, and 50 to 400 learning episodes in increments of 50 for the 

more complex 4-toast problem (requiring more episodes in order to achieve good results). Each 

length is evaluated by performing 10 simulation replications, each containing 100 and 30 sessions of 

a certain length for the 3 and 4-toast problems, respectively2. Each session length is evaluated four 

times, twice for SRL (once using type A reward factor and once using type B) and once for each of 

the other methods (MC and random search). In terms of equation ( 5.1), for the random search β = 0 

(ε = 1 for all n) is used, while for the SRL and MC, using the adaptive ε-greedy method, a value of β 

= 1 is used for the 3-toast problem and β = 0.5 for the 4-toast problem. These values were selected 

since they produced the best performance in the first test.  

A third test is conducted to examine the performance in a stochastic environment. Stochastic 

process times sampled from a Gaussian probability density function are used, with a mean equal to 

the constant process times, and a standard deviation of 10% of the mean3. Similar to the second test, 

various learning session lengths are examined, for cases I, II and III and for the 3 and 4 toast 

problems. 

Performance is evaluated using the following measures: 

1) CE (convergence episode) - Average number of learning episodes required to reach 

convergence. 

2) SP (success percentage) - Average percentage of learning sessions reaching the optimal solution, 

for deterministic times. 

                                                           
1 The RL parameters, α (learning rate) and γ (discount factor), are described in Section 5.2. 
2 10 replications are performed for the statistical analysis of the performance measures. 30 sessions are performed for the 
4-toasts problem,  as opposed to 100 for the 3-toast problem, since the simulation running times are longer. 
3 The variations in robot transition times are negligible and therefore they are represented as deterministic. 
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3) BR (best result) - Average best result achieved in the learning session, for stochastic times, 

where an optimal solution cannot be defined due to the probabilistic feature. 

Convergence (measure 1) means not only reaching the optimal solution, but eventually coming to 

the understanding it is the best solution possible, and continuing to produce it until the end of the 

learning session. The episode at which convergence occurs, n*, is defined as the episode after which 

there is no change in the performance over the interval [n*, N], meaning the algorithm supplied the 

same solution until the end of the session (consisting N episodes), as described in ( 7.1). 

1,...,

( ) 1

0 0
* { } [ , ]

( ) , ,...,
n N

n Tn nT

n Min n over all intervals n N
such that n j j N n

=

∆ = + −

∀
=

+ = = −
 ( 7.1) 

Where ∆(n) = Tn+1 - Tn is the change in performance at episode n and N is the number of episodes in 

the learning session. 

 
Table  7.3 Summary of tests 

 
No. Examined Methods Environments Analyzed Parameters (Values) 

1 SRL 3-toast problem 

Cases I, II and III 

Deterministic 

Decay factor β (1.0 - 1.7) 

 

2 SRL 

MC 

Random Search 

3 and 4 toast problems 

Cases I, II and III  

Deterministic 

Session length N (15 - 60; 50 - 400) 

Reward factor (Types A and B) 

 

3 SRL 

MC 

Random Search 

3 and 4 toast problems 

Cases I, II and III  

Stochastic 

Session length N (15 - 60; 50 - 400) 

Reward factor (Types A and B) 

 

 
 
  

7.7 Results and Discussion1 
7.7.1 SRL Analysis 

The best solutions produced by the SRL algorithm for the 3-toast problem are 513, 700 and 995 

seconds for cases I, II and III respectively2. Fig.  7.3 shows the results for a learning session with case 

II times. It can be seen that the algorithm converges to a solution after 67 episodes.  

                                                           
1 Additional results can be found in Appendix IV. 
2 The optimality of the solution was verified using the Branch and Bound general search technique as illustrated in 
Appendix IV. 
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Fig.  7.3 Convergence to the scheduling problem's solution, case II 

 

The solution achieved at this case is to schedule the toast advancements as follows (from left to 

right): [1,2,1,2,1,2,3,2,3,3]. Fig.  7.4 shows the toast locations, or in other words the system states 

during an episode, for the specified scheduling1.  
 

 
Fig.  7.4 Toast locations for the sequence found, case II 

 

Examining the influence of the action selection parameters on the SRL performance (Fig.  7.5), 

reveals that when using a relatively small β (β = 1) the algorithm reaches the optimal solution with 

very high percentage of success, yet with the cost of a high number of episodes required for 

convergence. As β increases, the percentage of success in reaching the optimal solution decreases, 
                                                           
1 A Gantt chart of the solution can be seen in Appendix IV. 
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but fewer episodes are required to achieve convergence. The reason for this behavior lies in the 

action selection method. As explained in Section 5.2, the algorithm uses an adaptive ε-greedy action 

selection method, allowing a balance between exploration and exploitation. ε, specifying the 

probability in which random actions are chosen, decreases as the episode number increases. At the 

limit 0ε →  actions are always chosen greedily, meaning the best action (to the agent’s knowledge) 

is always chosen. Fig.  7.6 shows the decrease in the probability of choosing a random action as a 

function of the episode number. 
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Fig.  7.5 Action selection analysis, 3-toast problem, type A reward factor, case II 
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Fig.  7.6 Adaptive ε-greedy action selection 

 

When using a small β, the probability of choosing a random action remains relatively high when 

the episode number rises. The action selection rule allows much exploration, resulting in a higher 

percentage of sessions reaching the optimal solution, but also a higher number of episodes required 
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for convergence. When using larger values of β, the probability of choosing a random action 

decreases very fast, resulting in less exploration of the environment, and more exploitation of the 

information already gathered. This allows much faster convergence to a solution, but not necessarily 

the optimal one. 

For all instances (cases I, II and III, 3 and 4 toast problems, deterministic and stochastic), the use 

of a type A reward factor achieves fast learning and good results in a low number of episodes. When 

using the type B reward factor, the algorithm requires more episodes in order to achieve good results, 

but ultimately it outperforms the type A results. Figs. 7.7 and 7.8 illustrate this trade-off for the 

deterministic 3 and 4 toast problems, respectively. 
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Fig.  7.7 Reward factor analysis, 3-toast problem, case I, deterministic environment 
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Fig.  7.8 Reward factor analysis, 4-toast problem, case I, deterministic environment 
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7.7.2 Comparative Analysis – 3 Toast problem 
Comparison of the SRL algorithm to the MC method and random search in solving the 

deterministic 3-toast problem, demonstrates the superiority of the SRL algorithm over a wide range 

of learning conditions (25-60 episode sessions). The same results appear with all three cases: For 15 

to 25 episode sessions, the agent does not achieve enough interaction with the environment therefore 

does not have sufficient information, and its Q values do not reflect the real state-action values. At 

this state, the algorithm acts de facto as a random search method, hence the performance is similar. 

From 25 to 60 episodes, the agent obtains sufficient information on the environment, allowing it to 

correctly update the Q values and reach optimality more times than the other methods. Fig.  7.9 

shows the results for case III. For this case the SRL algorithm reaches up to 37% difference from the 

MC method and 22% difference from the random search method. 
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Fig.  7.9 Performance comparison – 3-toast problem, type B reward factor, case III, deterministic environment 
 

The MC method acts similarly, but converges to worse solutions. For the random search on the 

other hand, more episodes implies a greater chance of reaching the optimal solution in one of them, 

hence its success percentage continues to rise along the full range. 

In the stochastic environment (Fig.  7.10) the SRL algorithm again shows superiority, achieving 

better (lower) times over a wide range, outperforming both the MC method and the random search 

for all cases. Here, as in the deterministic environment, the random search produces better results 

than the MC method. 
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Fig.  7.10 Performance comparison – 3-toast problem, type B reward factor, case I, stochastic environment 
 
 

7.7.3 Comparative Analysis – 4 Toast Problem 
Comparison of performance for the deterministic 4-toast problem (Fig.  7.11) reveals the 

superiority of the SRL algorithm in reaching the best results of 663, 900 and 1,290 seconds (cases I, 

II and III respectively) in the higher range of session lengths (300-400). These results are consistent 

for all three cases. Due to its complexity, the 4-toast problem requires more learning episodes to 

reach the best solution, and the algorithm requires more experience to reach good results. Here, as 

opposed to the 3-toast problem, the MC method shows better results than the random search, which 

apparently requires even more episodes in order to deal with the increased complexity presented by 

the 4-toast problem. 
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Fig.  7.11 Performance comparison – 4-toast problem, type B reward factor, case III, deterministic 
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In the stochastic environment (Fig.  7.12), as in the deterministic one, the SRL algorithm performs 

worse than the MC method when less experience is available (low number of episodes in a session), 

but matches the results when the sessions are longer. These results are again consistent for all cases. 
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Fig.  7.12 Performance comparison – 4-toast problem, type B reward factor, case I, stochastic environment 

 

7.7.4 Summary of Results 
Tables 7.4 - 7.6 summarize the results for the three cases (I, II and III). The results presented for 

the SRL algorithm are for learning performed with the type B reward factor. Significant1 best results 

are marked with gray shading (when two methods are significantly better than the third, both are 

marked). Note that for the deterministic scenarios the highest success percentage is the best, while 

for the stochastic scenarios the lowest average completion time is the best.  
 

Table  7.4 Summary of case I results 
 
Deterministic 3-toast problem 

Session length (number of episodes) 
Method 

15 20 25 30 35 40 45 50 55 60 
SRL 29% 44% 62% 73% 84% 91% 95% 97% 99% 100% 
Random 41% 50% 62% 69% 75% 79% 81% 84% 87% 88% 
MC 34% 44% 50% 50% 52% 58% 60% 62% 60% 65% 

Stochastic 3-toast problem 
Session length (number of episodes) 

Method 
15 20 25 30 35 40 45 50 55 60 

SRL 551.15 541.89 531.44 523.29 518.18 515.92 512.17 509.87 508.49 507.26 
Random 537.59 529.97 525.6 523 519.73 518.87 517.83 516.56 514.96 513.81 
MC 547.24 538.3 531.97 528.24 527.11 523.49 522.46 521.74 518.67 517.74 

                                                           
1 Significance is determined using one-way ANOVA analysis (F-test) and Tukey’s HSD test demanding 95% confidence 
level, as explained in Appendix II. 
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Deterministic 4-toast problem 
Session length (number of episodes) 

Method 
50 100 150 200 250 300 350 400 

SRL 12% 26% 39% 65% 78% 89% 95% 97% 
Random 16% 20% 31% 37% 47% 47% 58% 62% 
MC 27% 54% 70% 79% 83% 86% 91% 93% 

Stochastic 4-toast problem 
Session length (number of episodes) 

Method 
50 100 150 200 250 300 350 400 

SRL 709.92 680.54 670.98 664.47 659.07 655.27 652.81 651.8 
Random 701.84 689.66 680.77 676.39 672.66 671.55 670.29 669.24 
MC 688.79 666.23 658.66 656.99 654.99 653.68 653.22 651.83 

 
Table  7.5 Summary of case II results 

 
Deterministic 3-toast problem 

Session length (number of episodes) 
Method 

15 20 25 30 35 40 45 50 55 60 
SRL 32% 43% 59% 77% 86% 91% 94% 97% 100% 100% 
Random 42% 49% 60% 66% 72% 78% 82% 86% 88% 90% 
MC 34% 40% 44% 52% 54% 56% 54% 56% 61% 60% 

Stochastic 3-toast problem 
Session length (number of episodes) 

Method 
15 20 25 30 35 40 45 50 55 60 

SRL 760.31 745.26 730.44 714.94 706.93 701.6 698.7 695.7 693.1 690.61 
Random 732.61 720.76 715.33 710.88 709.21 707.12 704.75 702.77 701.5 700.97 
MC 746.27 733.88 728.04 719.39 717.14 713.29 710 708.9 706.68 704.96 

Deterministic 4-toast problem 
Session length (number of episodes) 

Method 
50 100 150 200 250 300 350 400 

SRL 8% 23% 39% 64% 79% 93% 96% 98% 
Random 12% 19% 25% 36% 39% 49% 55% 60% 
MC 23% 55% 69% 75% 80% 82% 87% 95% 

Stochastic 4-toast problem 
Session length (number of episodes) 

Method 
50 100 150 200 250 300 350 400 

SRL 964.47 925.31 911.48 903.78 897.89 894.21 890.26 887.84 
Random 947.14 935.82 924.9 920.02 914.5 912.81 909.63 910 
MC 938.36 906.25 898.03 894.82 892.05 890.06 889.16 884.84 

 
Table  7.6 Summary of case III results 

 
Deterministic 3-toast problem 

Session length (number of episodes) 
Method 

15 20 25 30 35 40 45 50 55 60 
SRL 29% 40% 57% 73% 83% 92% 95% 97% 99% 100% 
Random 35% 43% 52% 60% 64% 70% 75% 78% 81% 83% 
MC 32% 38% 45% 49% 56% 56% 58% 61% 63% 64% 
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Stochastic 3-toast problem 
Session length (number of episodes) 

Method 
15 20 25 30 35 40 45 50 55 60 

SRL 1074.06 1055.66 1035.05 1016.16 1006.05 999.36 994.72 990.23 986.86 983.97
Random 1041.20 1030.56 1023.09 1017.69 1011.05 1007.46 1004.06 1003.36 998.51 999.17
MC 1062.67 1049.40 1032.95 1026.31 1020.80 1017.19 1013.74 1011.91 1006.80 1004.63

Deterministic 4-toast problem 
Session length (number of episodes) 

Method 
50 100 150 200 250 300 350 400 

SRL 8% 19% 33% 51% 71% 90% 93% 96% 
Random 6% 15% 25% 30% 34% 37% 36% 48% 
MC 24% 57% 65% 77% 81% 87% 89% 92% 

Stochastic 4-toast problem 
Session length (number of episodes) 

Method 
50 100 150 200 250 300 350 400 

SRL 1390.44 1336.51 1309.87 1298.78 1290.06 1282.53 1278.65 1276.1 
Random 1376.35 1348.41 1331.49 1328.15 1323.66 1315.18 1310.79 1307.7 
MC 1353.09 1305.14 1290.78 1284.69 1280.49 1277.61 1275.03 1274.3 

 

7.8 Summary 
The applicability of the CHRL framework is shown using a robotic toast making system, 

requiring both low and high-level learning for its operation1. The SRL algorithm is used for learning 

high-level policies in the decomposed complex task, where there is a need to sequence the execution 

of a set of sub-tasks in order to optimize a target function. In such learning tasks, where there is a 

need to consider the sequence of steps as a whole, standard step-by-step update RL methods cannot 

be applied. Analyses indicate the SRL algorithm produces good results, matching or outperforming 

both the Monte-Carlo and the random search methods when allowed sufficient experience, in both 

deterministic and stochastic environments. Furthermore, the algorithm can be adjusted to achieve 

desired performance (in aspects of percentage of success in reaching the optimal solution and the 

number of episodes required to achieve convergence) by choosing the proper action selection 

parameters and reward factor type. 

 

                                                           
1 The implementation of the low level learning is shown in the following chapter. 
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8. Path Planning for a Toast Making System 
Chapter Overview 

This chapter describes an exemplary low level learning task of inserting a bread slice into the 

toaster, as part of the toast making system developed to demonstrate the applicability of the CHRL 

framework. 

 

8.1 Introduction 
This application demonstrates an example for learning the execution of one of the required low-

level sub-tasks, a task of path planning for the insertion of a slice of bread into the toaster. In this 

task the robot-arm is required to transfer the bread slice in the shortest path from a starting position 

to a target position above the toaster’s hatch, while avoiding obstacles. The optimal path is learned 

off-line using the CCRL algorithm integrated with a standard Q(λ)1 algorithm and a human advisor. 

After the learning phase it is implemented on-line with actual robot motions. 

Since the low level task implementation is aimed to prove the applicability the CHRL framework, 

and not to assess the performance of the CCRL algorithm, the experiments are only intended to 

demonstrate a successful implementation2.  
 

8.2 Task Definition 
In this task of inserting a bread-slice to the toaster, the robot is required to move its gripper, 

grasping a toast, from a starting location to a target location above the toaster, from which the bread 

will be lowered into the toaster’s hatch. Along the path of traverse, the robot also must avoid 

obstacles found in the environment. This is a two-dimensional path planning task, where an optimal 

path from the starting state to the goal state is sought. 

The problem formulation is as follows:  The robot’s state Sst ∈ , is defined by two coordinates: 

( , )t i js x y=  where , (1, 2,...,12)i j ∈ . An action Aat ∈ , taken at each state is traveling left, right, 

forward, or backward. Rewards are defined as { 1, 0.1, 1.5}tr ∈ − − + . If the robot reaches the target, the 

reward is positive (+1.5). If it collides with an obstacle, the reward is negative (-1). Furthermore, a 

small negative reward (-0.1) is assigned after each step in order to facilitate minimal number of steps. 

A learning episode comprises one event of reaching the target. The Q(λ) algorithm applies softmax 

                                                           
1 The Q(λ) algorithm is presented in Section 2.2. 
2 As mentioned in the Methodology chapter, a thorough evaluation of the CCRL algorithm, using a 3D path planning 
task, is presented in Chapter 9. 
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action selection1 for the autonomous learning, and its parameters2 are set as follows: α = 0.95, γ = 

0.99 and  λ = 0.5. 

   

8.3 Experimental Setup and Method of Operation3 
The experiment is performed using the UP-6 Motoman robot. A USB camera is used to capture 

the state of the system. The setup (Fig.  8.1) includes a table on which the obstacles (wooden cubes) 

and the toaster are located. The bread-slice is preliminary located on the corner of the table (bottom-

left corner in the overhead view), to be taken by the robot during operation.  

  

  
 

Fig.  8.1 Experimental setup – side and overhead views 
 

The task is performed with the following steps: 

1) The robot grasps the bread-slice and moves to the starting location.  

2) A snapshot of the environment is taken using a USB camera situated above the table. 

3) An image processing algorithm (running in MATLAB) is used locate the objects (robot’s 

gripper, obstacls and toaster) and build a model of the environment accordingly. The objects are 

recognized using round markers in differnet colors. The environment is described as a 12 × 12 

grid world.   

4) A MATLAB simulation applying the CCRL algorithm (based on Q(λ)) is employed to learn the 

optimal path from the starting state to the goal state in the world’s model. 

                                                           
1 The softmax action selection method is described in Section 9.3.  
2 The Q(λ) parameters, α (learning rate), γ (discount factor) and λ (eligibility traces factor), are described in Section 2.2.  
3 A detailed description of the system and its operation can be found in Appendix I. 
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5) The robot is operated according to the generated path.  Image processing is used to identify the 

location of the robot and syncrozine the location in the world’s model with the location in the 

real world. 

6) After arriving to the desired location above the toaster, the bread is lowered and the gripper is 

opened to release it into the toaster. 

  

The simulated environment in which the learning is performed (built according to the image of the 

real environment) is displayed in Fig.  8.2. 

 

 
Fig.  8.2 Simulated environment 

 

As mentioned, the CCRL algorithm is employed in the 4th step of the operation. When the robot 

senses that its performance does not improve fast enough, a request for advice is prompted. The 

human advisor is then required to guide the robot using the GUI (Graphical User Interface) shown in 

Fig.  8.3. If the robot concludes that the advice given is not beneficial, it switches to fully autonomous 

learning, and notifies the advisor. 

 
 

(a) Guidance interface (b) Autonomous learning notice 
Fig.  8.3 User interface - low level learning task 
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During the learning session, the robot (agent) updates the state-action values according to the 

employed algorithm (Q(λ) in this case). An example for the state-action value map is presented in 

Fig. 8.4. The height of the surface represents the state’s value, which can be considered as the value 

of taking a certain action when the system is in a given state. After the off-line learning phase ends, 

the real robot is operated on-line according to the value map which represents the learned policy (the 

state-action pairs). At the on-line stage there is no learning, but only exploitation of the information 

gathered in the learning phase. 

  

 
 

Fig.  8.4 State-action value map 
 

8.4 Evaluation and Summary 
A successful execution of a low-level task, the insertion of a bread-slice to the toaster while 

avoiding obstacles, is achieved using the CCRL algorithm integrated with a standard Q(λ) algorithm. 

In this case only a basic experiment was performed to prove applicability. The experiment was kept 

simple, since a thorough evaluation was conducted earlier with a simulated complex 3D environment 

(see Chapter  9), and execution of more complex experiments would not add value to the algorithmic 

analysis. Nonetheless, a full demonstration was conducted using several obstacle layouts to ensure a 

complete and feasible implementation of the CHRL framework.  
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9. Evaluation of CCRL using a 3D Path Planning Task 
Chapter Overview 

The CCRL algorithm is evaluated using a 3D path planning task. The evaluation includes a 

comparison of the CCRL algorithm to (i) a base-line fully autonomous RL algorithm, (ii) learning 

performed using the introspection approach (IA) and (iii) a combained CCRL and IA method. 

Various levels of human advisors are simulated, to assess the robustness of the algorithm under 

realistic conditions of imperfect guidance. 

 

9.1 Introduction 
The cognitive collaborative reinforcement learning algorithm (CCRL) addresses the questions of 

whether and when the robot should solicit advice by endowing the robot with human-like cognitive 

abilities. The robot applies a result-oriented approach, seeking aid when it comes to the 

understanding that its performance is not sufficient. Furthermore, the robot is given the ability to 

judge the worth of the advice it receives and to decide whether to accept or reject it. This self-

awareness is achieved by performing self tests designed to evaluate its learning performance 

according to acceptable performance thresholds. 

The CCRL algorithm is evaluated by applying it to a simulated three-dimensional path planning 

task, comparing the results to those achieved by (i) fully autonomous learning (a base-line used for 

comparison), (ii) learning using the Introspection Approach (IA) and (iii) learning with a combined 

CCRL and IA method. A simulated adviser with various skill levels is used in the evaluations. 

Advisor skill levels are represented by softmax temperature values varying the suggested actions 

from optimal to random, as described in Section 9.2. 

The CCRL algorithm, as well as the IA method, uses the basic model of a RL learner 

incorporating advisor-suggested actions online. Upon receipt of an action from the advisor, the 

learning agent executes the action as if it had chosen the action with its own policy. Thus, the basic 

RL algorithm used (Q-learning in this case) does not need to be modified to handle the advisors 

actions. 

 

9.2 Representation of Advisor Skill Levels 
Since we assume that perfect guidance cannot always be provided, we analyze the effect of 

various skill levels of the human advisor by considering a continuum from novice to expert. When 

asked to give advice, the advisor simply examines the current state of the learner and provides the 

action that it considers best. In case of an expert advisor, this action is optimal. Lesser skilled 

advisors may provide either optimal or suboptimal actions. By adjusting the frequency by which the 
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advisor responds with suboptimal actions, a wide range of problem-solving expertise can be 

simulated, from an expert advisor with perfect knowledge and skills to a novice with poor skills. 

The skill level of the advisor is represented by the softmax action selection rule [Sutton and Barto, 

1998], based on an optimal Q table1. In softmax the action probabilities are varied as a graded 

function of the estimated value. The greedy action is given the highest selection probability, but all 

the others are ranked and weighted according to their value estimates. The softmax method uses a 

Boltzmann distribution, choosing action a on the t-th step with the probability shown in ( 9.1).  
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Where Qt(i) is the value of taking an action i from the current state and τ is a positive parameter 

referred to as the temperature. High temperatures cause the actions to be all (nearly) equiprobable. 

Low temperatures cause a greater difference in selection probability for actions that differ in their 

value estimates. In the limit, as 0τ → , softmax action selection becomes the same as greedy action 

selection.  

Human skill level is adjusted using τ, the temperature parameter. Since the advisor’s action 

selection is performed on the basis of an optimal Q table, the use of very small temperatures, 

meaning choosing actions greedily, will result in suggesting optimal actions at each state. A use of 

higher temperatures will result in more random action suggestions. Therefore, a human with perfect 

skills can be represented by using a very low temperature while a human with poor skills will be 

represented using a relatively high temperature.  

An example for the performance of advisors with various skill levels, represented using a range of 

temperatures, τ = 0.01 – 1, is presented in Fig.  9.1. The most skillful advisor, represented using τ = 

0.01, chooses actions that result in reaching the goal in the optimal number of steps (13 steps in this 

example) in 100% of the cases, while less skilled advisors achieve optimal solution with lower 

percentages and higher average number of steps. The poorest skilled advisor does not achieve the 

optimal solution at all and requires an average of 178 steps to reach the goal state. It is important to 

understand that here there is no learning process of the advisor, but only a use of the optimal Q table 

to simulate the human suggestions to the robot (As a sideline however, it is possible to use the τ 

representation to simulate advisor learning by dynamically modifying its value). 

 
 

                                                           
1 The optimal Q table is assumed to be known for the advisor simulation, but is of course unknown to the learning agent. 
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Fig.  9.1 Human advisor representation 

 

9.3 CCRL 
CCRL is implemented here based on a standard Q-learning algorithm. The performance 

assessment and advice refusal capabilities are employed as described in Chapter  6. The algorithm is 

configured such that the parameter X, defining the episode from which the robot can solicit advice, is 

set to 30, and the parameter K, used for various calculations, is set to 5. The collaboration threshold 

parameters Λ and Ω are varied as described in Section  9.8. 
 

9.4 Fully Autonomous Learning (Base-Line) 
The base-line robotic learner employs Q-learning to develop its policy1. A value Q, associated 

with a state-action pair, (st,at), represents how “good” it is to perform a specific action at when at 

state st. A learning episode is a finite sequence of time steps, during which the agent traverses from 

the starting state to the goal state (the episode is stopped after a predefined number of steps, even if 

the agent haven’t reached the goal state). A learning session is a series of N learning episodes. Action 

selection is performed using the adaptive softmax method, in which the temperature τ is varied as a 

function of the learning episode. In the beginning of the session, when the agent has not gathered 

much information yet, a relatively high temperature encourages exploration of the state-space by 

allowing more non-greedy actions. As the learning session progresses, the temperature decreases, 

reducing the number of random actions, and allowing the agent to exploit the information already 

gathered and perform better. The change in τ as a function of the episode number is shown in ( 9.2). 

1
nβτ =                        ( 9.2) 

                                                           
1 The Q-learning algorithm is described in Section 2.2. 
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Where n is the number of episodes already performed during the current learning session and β is a 

positive parameter specifying how fast τ will exponentially decrease towards zero, meaning how 

greedily the algorithm will act as the learning proceeds (greater β results in sooner exploitation). 

Note that τ is updated similarly to ε in adaptive ε-greedy (Eq. 5.1). 

 

9.5 Introspection Approach (IA) 
The IA method [Clouse, 1996] is used here as a benchmark for comparison. To implement IA, 

Clouse developed a test to determine whether the learner is unsure of its choices, indicating the need 

for help in novel situations. When discussing an automated learner, it is fairly easy to specify exactly 

when they are unsure: one has access to the decision policy and the evaluations on which the 

decision is based. The test examines the two extreme values of possible actions (Q(s,a)): if they are 

sufficiently close to each other it implies that the learner has not experienced this state often enough 

to produce a clear choice. In this case the test succeeds and the learner asks for aid. Sufficiency is 

determined by comparing the difference between the minimum and maximum Q values to a width 

parameter Ψ - if the difference is smaller than the width parameter the test succeeds. With a small 

width parameter, the learner rarely asks for assistance, while with a large width parameter, the 

learner asks for aid quite frequently. The IA advice request self test is shown in ( 9.3). 

If  Maxi Q(s,ai) – Mini Q(s,ai) < Ψ 
 

                                          Then request advice for current state s 

                                          Else choose action autonomously 

( 9.3) 

Where Q(s,ai) is the value of taking action ai when at state s, and Ψ is the width parameter. 

 

9.6 Combined Method 
The combined method integrates both CCRL and IA to one algorithm. In this combined 

algorithm, advice is solicited only when both advice request tests (Eq. 6.2 and 9.3) are passed 

(meaning that the learner’s rate of improvement is unsatisfactory and that the learner is unsure of its 

choices in its current state), and when the advise refusal threshold (Eq. 6.4) in not exceeded. 

 

9.7 Task Definition 
Evaluation is conducted using a path planning test problem comprised of a simulated mobile robot 

traversing a three-dimensional grid-world of size 10×10×10 (1000 states). Two grid-world instances 

are considered, one with a relatively low obstacle density (60 obstacle states), and another with 
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higher density (100 obstacle states). In order to evaluate the performance for cases where the human 

advisor has only a limited view of the environment and can supply advice only when the robot is 

within that view, a limited region of assistance is also considered for each grid-world. Such 

situations may arise in systems employing teleoperated guidance, due to various reasons (e.g., hazard 

materials, radiation), and the human operator is located remotely, receiving visual feedback from the 

robot’s operation area through a camera with limited area coverage. 

Fig. 9.2 shows the two grid-worlds. The starting and goal states are represented by light-gray 

cubes. The obstacles are shown as dark-gray cubes. The limited helping region is marked with a 

large transparent cube. The optimal (shortest) path from the starting state to the goal state includes 13 

and 16 steps for worlds I and II, respectively. 

 

  

  

(a) World I – full and limited views (b) World II – full and limited views   
 

Fig.  9.2 The grid-worlds 
 

The objective of the robot is to traverse from a starting state to a goal state through the shortest 

path, while avoiding obstacles. At each state (st), the robot can choose one of six actions (at) - up, 

down, left, right, forward, or backward. When the robot collides with an obstacle, reaches the goal or 

exceeds a maximum number of steps, the learning episode is stopped, and the robot is returned to the 
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starting point. Reinforcements (rt) are set as follows: the robot receives a positive reward of +1.5 

units for reaching the goal, a negative reward of -1.0 units for colliding with an obstacle and a 

negative reward of -0.1 units for each step performed. The state of the system is the position of the 

robot defined by its three coordinate values. 

 

9.8 Analysis 
Analysis is performed using MATLAB simulations. Four different learning methods are 

employed and compared: (i) fully-autonomous learning using a standard Q-learning algorithm 

(serving as base-line for the comparison), (ii) the CCRL algorithm, (iii) the IA method, and (iv) a 

combined method integrating the advice request rules of both CCRL and IA. All methods are 

evaluated using four environments – worlds I and II, each with full and limited views. 

In all of the tests the Q-learning and action selection parameters are set as follows: learning rate α 

= 0.95, discount rate γ = 0.991 (These parameters were selected empirically). Furthermore, all of the 

learning sessions includes 200 learning episodes (N = 200), with a maximum of 200 steps allowed at 

each episode (Also selected empirically). For the collaborative algorithms, human skills, represented 

by τ, is varied from an expert advisor (τ = 0.01) to a novice (τ = 1). 

Four different tests are performed for each environment (Table  9.1): The first test examines the 

base-line fully autonomous learning and the differences in performance using various action 

selection parameters. Sensitivity analysis is performed using various values of the adaptive softmax 

parameter β (0.5 to 1.5). Each value is evaluated by performing 500 learning sessions. 

To evaluate the performance of the CCRL algorithm, a second test is conducted. The 

collaboration threshold Λ is varied from 0.01 (demanding small improvement in performance) to 0.9 

(demanding significant improvement during the session). The advice refusal threshold Ω, defining 

the number of occasions in which the results of learning with an advisor’s aid are allowed to be 

worse than the results of the previous episodes, is varied from 1 to 7. For each combination of τ, Λ 

and Ω, five simulation replications are performed, each composed of 100 learning sessions. In all of 

the tests the parameter X, defining the episode from which the robot can solicit advice, is set to 30, 

and the parameter K, used for various calculations, is set to 5.  

In a third test, IA is implemented to solve the path planning problem under consistent 

assumptions. The width parameter Ψ is varied from 0.1 (representing a learner which is rarely 

uncertain) to 1.3 (representing a learner that asks for aid quite frequently). Each value of Ψ is 

evaluated by performing five simulation replications, each containing 100 learning sessions. 

                                                           
1 The RL parameters, α (learning rate) and γ (discount factor) are described in Section 2.2. 
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A fourth test evaluates the performance of a combined method. For each combination of τ, Λ, Ω 

and Ψ, five replications of 100 sessions are performed. 

Performance is evaluated using the following measures: 

1) AR (advice requests) – Average number of requests for advice during the learning session (used 

only for CCRL, in which advice is requested for a whole episode). 

2) HS (helped steps) – Average number of steps performed using advice during the learning session 

(used for the IA method in which advice is requested per step, and for the comparison) 

3) SP (success percentage) – Average percentage of learning sessions reaching the optimal solution 

(minimal path length). 

4) Score – Weighted normalized scoring based on the HS and SP measures, described in Section 

 9.9.4. 

 
Table  9.1 Summary of tests 

 
No. Examined Methods Environments / Advisors Analyzed Parameters (Values) 

1 Fully Autonomous  Worlds I and II Decay factor β (0.5 - 1.5) 

2 CCRL Worlds I and II 

Full and limited views 

Expert to novice advisors 

Collaboration threshold Λ (0.01 - 0.9) 

Advise refusal threshold Ω (1 - 7) 

Human skill level τ (0.01 - 1) 

3 IA Worlds I and II 

Full and limited views 

Expert to novice advisors 

Width parameter Ψ (0.1 - 1.3) 

Human skill level τ (0.01 - 1) 

4 Combined Method 

(CCRL and IA) 

Worlds I and II 

Full and limited views 

Expert to novice advisors 

Collaboration threshold Λ (0.01 - 0.9) 

Advise refusal threshold Ω (1 - 7) 

Width parameter Ψ (0.1 - 1.3) 

Human skill level τ (0.01 - 1) 

 

9.9 Results and Discussion 
9.9.1 Fully Autonomous Learning 

Fig.  9.3 shows an example of convergence to a solution in a given learning session in world I. In 

this example a value of β = 1.3 is used. Note that in order to distinguish the episodes in which the 

robot collided with an obstacle, they are assigned a value of 201 steps (maximal number of steps +1). 

As can be seen, in the beginning of the session, the robot, still unfamiliar with the environment, 

collides with obstacles many times, and only after about 50 episodes it starts reaching the goal 

regularly, eventually converging to the optimal path of 13 steps at episode number 135. 
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Fig.  9.3 Convergence in a learning session 

 

For world I, the best performance is obtained with β = 1.3, when the learning achieves SP of 

63%. For world II, performance (SP) is 37%, obtained with β = 0.7 (Fig.  9.4). With lower values of 

β, τ decreases to zero relatively slow so actions are chosen more randomly, and the algorithm does 

not achieve convergence fast enough, resulting in low percentage of sessions reaching the optimal 

solution. With higher values of β, τ decreases to zero too fast so actions are chosen greedily, and the 

algorithm converges to a local optimum, hence does not achieve the global optimum. The reason for 

the lower success percentage in world II lies in the fact that it has a higher obstacle density, and 

hence it is harder to reach the goal. This is also the reason why in world II the optimal β is lower – 

more exploration in needed in order to find the optimal path when there are more obstacles, and a 

lower β is required to allow this exploration. The β values achieving best results here (1.3 and 0.7 for 

worlds I and II, respectively) were used for the following tests.  
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Fig.  9.4 Autonomous learning - influence of β 
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9.9.2 CCRL 
When applying CCRL and introducing an expert advisor (τ = 0.01), the results improve drastically 

as expected. The learning achieves 99% and 96% SP for worlds I and II respectively, with 

significant improvements of 36% and 59% with respect to the autonomous learning results. An 

example for the collaboration level switching during a learning session is shown in Fig. 9.5. When 

the improvement rate (IR) is above the threshold (Λ = 0.05 in this case) the robot learns 

autonomously. When it drops below the threshold, human assistance is requested and the system 

switches to the guided mode, until the rate again exceeds the threshold. The IR stabilized to 0 at 

episode number 162, meaning the algorithm converged to a solution.  

 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

130 135 140 145 150 155 160 165

n  - episode number

IR

IR Λ

Autonomous

Guided

 
Fig.  9.5 CCRL - collaboration level switching, example I 

 

Another example, presenting both the number of steps performed in each episode and the IR 

calculated accordingly, is shown in Fig.  9.6. A value of K = 5 is used, meaning that IR is calculated 

(according to Eq. 6.1) using the 10 (2K) previous episodes. The high average number of steps during 

episodes 145 - 149, in comparison to the lower average in the prior episodes, causes IR to drop below 

Λ (0.05) at episode number 148 and triggers requests for human guidance. With the supplied advice, 

the number of steps reduces again, and convergence is achieved at episode 157, followed by the 

stabilization of IR to 0 at episode number 166 (10 episodes later). 
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Fig.  9.6 CCRL – collaboration level switching, example II 

 

To examine the self-assessment capability, learning was performed with various threshold values. 

When setting low values of Λ, the robot is expected to achieve less improvement in each episode, 

hence requests less advice. As Λ rises, high improvement is required and the robot asks for help 

more frequently. When the advisor is an expert (τ = 0.01), more advice leads to better performance, 

as can be seen in Fig.  9.7 (results for world II with limited view). 
 

0%

10%

20%

30%

40%

50%

60%

70%

0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Λ

SP
 - 

A
ve

ra
ge

 p
er

ce
nt

ag
e 

of
 s

es
si

on
s 

co
nv

er
gi

ng
 to

 o
pt

im
um

0

20

40

60

80

100

120

140
A

R
 - 

A
ve

ra
ge

 n
um

be
r o

f r
eq

ue
st

s 
fo

r 
ad

vi
ce

Percentage Requests

 
Fig.  9.7 CCRL - influence of Λ 

 

When the advisor does not supply optimal instructions, an interesting phenomenon appears. Fig. 

 9.8 shows the results for the limited view case of world I, with a collaboration threshold of Λ = 0.05 

and advisors of various skill levels (represented by τ), but without advice assessment capabilities. 

On the one hand, the learning agent senses its performance is not sufficient, and therefore it requests 

human guidance. On the other hand, when the human is not an expert, the advice may not bring the 
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desired improvement in performance and might even cause deterioration. The learning agent keeps 

asking for guidance because it does not improve, and the guidance further deteriorates its 

performance. The situation enters a “vicious cycle” from which there is no escape, resulting in very 

low performance. As expected, when the human skill level is lower, the agent requests guidance 

more often, and the performance deteriorates faster. 
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Fig.  9.8 CCRL - learning without advice assessment capabilities 
 

The introduction of advice assessment capabilities helps to break this “vicious cycle” and 

improves performance significantly. Fig.  9.9 shows results for the same environment (world I, 

limited view), with a collaboration threshold Λ = 0.05 and an advice refusal threshold of Ω = 1, 

again using the aid of advisors with various skill levels (various values of τ). 
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Fig.  9.9 CCRL - learning with advice assessment capabilities 
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Here, when human skill level is low, it is sensed by the robot which accordingly stops asking for 

guidance. Since the robot reverts to autonomous learning, human advice does not interfere and this 

results in improved performance. When the advisor is a novice, the robot understands it very fast and 

stops asking for advice early in the session, achieving better results. The worse performance appears 

when the advisor's expertise is midway (τ = 0.3), not very good and not very bad, so it takes time for 

the robot to notice that the advice is not good enough and to stop asking for it. When the advisor is 

an expert, the results are slightly worse in comparison to those achieved without the advice 

assessment capability (72% vs. 82%). The reason is that the agent sometimes misjudges the advice 

and rejects it, even though the advisor is an expert. In these cases the actions chosen autonomously 

by the agent (who reverted to fully autonomous learning) are worse then those suggested by the 

advisor, leading to worse performance.  

A further study of the effects of the advise refusal threshold Ω (Eq. 6.4) reveals that there is a 

trade-off when setting its values. When Ω is low, poor skilled advisors would be quickly recognized 

and discarded, but experts might be misjudged and unjustly discarded as well. When Ω is high there 

is a smaller chance of discarding an expert, but it also takes longer time for the robot to identify 

worse skilled advisors, and the prolonged use of their advices obstructs the learning. Hence, when 

the advisor is skilled a use of high values of Ω achieves the best performance, while when the 

advisor has limited or no skills lower values of Ω result in better learning. This trade-off is illustrated 

in Fig.  9.10, showing the results of employing CCRL with Λ = 0.05 and various values of Ω (1, 3, 5, 

7) to the limitedly viewed world I. 
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Fig.  9.10 CCRL - influence of Ω 
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As explained, for the skilled advisors (τ = 0.01, 0.1) higher Ω results with better performance, 

while with less competent advisors (τ = 0.3, 1) the trend inverts and higher Ω results with worse 

performance (though without statistical significance). As discussed above, when advice is given by 

an expert, even better results are achieved when the advice assessment capability is not used at all 

(no misjudgment occurs), yet for other advisors this capability is essential for obtaining good results. 

 

9.9.3 IA 
When employing IA, the width parameter Ψ influences the learning as described in Section  9.5: 

with a small width, the learner is rarely uncertain, asking little advice, while with a large width, the 

learner asks for guidance quite frequently. Fig. 9.11 presents the results of learning with various 

values of the width parameter Ψ, in world II with a limited view, assisted by an expert (τ = 0.01). 
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Fig.  9.11 IA - influence of the width parameter Ψ 

 

With less competent advisors, IA suffers from the same problem described for CCRL – bad 

advice leaves the robot uncertain, leading it to ask for more advice, causing even more uncertainty. 

When advisor skill level is lower, the agent requests more guidance, and the performance is worse, 

as shown in Fig. 9.12 (World II, limited view, Ψ = 1). The difference from CCRL is that IA does not 

endow the robot with the advice assessment capability that enables it to cope with such advisors. 
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Fig.  9.12 IA - learning with various advisors 

 
9.9.4 Combined Method 

As explained, in the combined algorithm advice is solicited only when both advice request tests 

(Eq. 6.2 and 9.3) are passed, and when the advice refusal threshold (Eq. 6.4) in not exceeded. The 

severity of the advice request conditions promises that the agent will ask for guidance only when it is 

really necessary (to the agent’s understanding). This difference is shown in Fig. 9.13, presenting the 

results for World II with limited view and collaboration parameter values of Ψ = 1, Λ = 0.05 and Ω = 

5 (similar to the conditions presented in Fig 9.12 for the IA method). 
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Fig.  9.13 Combined method - learning with various advisors 
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Here, as expected, the results (SP) for the skilled advisors (τ = 0.01, 0.1) are worse than the ones 

achieved by IA or CCRL, since less guidance is requested. For the less skilled advisors (τ = 0.3, 1) 

the behavior is similar to the one seen for CCRL (Fig.  9.9), where the agent learns to ask for less 

guidance and achieves better results by reverting to autonomous learning. In general, the combined 

method achieves lower SP than IA with skilled advisors or CCRL. However, it demonstrates robust 

performance for all the spectrum of advisor skill levels, and achieves it with much less guidance than 

IA and CCRL. A thorough comparison is presented in the following section.  

 

9.9.5 Comparative Analysis 
When comparing the methods it is important to notice that unlike CCRL, the assistance request in 

the IA method is triggered per step and not for the entire episode. Therefore, the performance 

measure used for comparison is HS, the number of steps in the entire session performed using 

advisor assistance.  

The comparison is problematic, since we have a multi-objective problem with two performance 

measures, SP (success percentage) and HS (helped steps). The preferable case, higher performance 

with the cost of many interruptions to the advisor, or less interruption with inferior performance, 

depends on the specific application. A way to address this difficulty is to base the comparison on a 

weighted normalized scoring. The two performance measures receive a weight corresponding to their 

relative importance. The results of a specific combination of collaboration parameters (Λ, Ω and Ψ) 

are normalized to achieve a common basis for comparison. The score, representing how good was 

the learning using these parameters is calculated according to ( 9.4).  

1 2

* *1 2
min( ) max( )

max( ) min( ) max( ) min( )

1

i iSP SP HS HS

SP SP HS HS

W W

WWScore

+

+
− −

=
− −

=

                       ( 9.4) 

Where W1 and W2 are the weights assigned to SP and HS, respectively. SPi is the average percentage 

achieved using the i-th combination of collaboration parameters and HSi is the average number of 

helping steps used with that combination. The calculation is designed in a way that will result in the 

highest score of 1 when the evaluated combination achieves the highest SP, using the lowest HS. 

Lower SPi or higher HSi will reduce the score. 

When comparing, one can seek the combination receiving the highest score for a specific advisor 

skill level, or the combination that shows the most robust performance, dealing well with all levels of 

human expertise (here the final score for a specific combination is an average of the scores received 

for the various human skill levels).  
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Tables 9.2 - 9.5 summarize the best scores achieved by each of the three methods (CCRL, IA and 

combined), for the full and limited view cases of worlds I and II. Equal weights are assigned to each 

performance measure (W1 = W2 = 0.5). The scores are compared and ranked using one-way ANOVA 

(F-test) and Tukey’s HSD test, demanding 95% confidence level1. The rank column indicates the 

relations between the methods. If two or more methods have the same rank, it means they are not 

significantly different. Significant best scores are marked in gray. When two scores are marked it 

means they are significantly better than the third, but there is no significance between them.  
 

Table  9.2 Scores for world I with full view 

 
Advisor (τ) Method Parameters SP HS Score Rank 

CCRL Λ=0.05, Ω=1 99% 292.2 0.96 2 
IA Ψ=0.7 98% 268.6 0.96 2 Expert (0.01) 
Combined Λ=0.3, Ω=1, Ψ=1 100% 96.8 1.00 1 
CCRL Λ=0.3, Ω=1 67% 825.2 0.72 2 
IA Ψ=1 99% 200.5 0.98 1 

Moderately 
expert (0.1) 

Combined Λ=0.3, Ω=1, Ψ=1 98% 156.2 0.98 1 
CCRL Λ=0.9, Ω=1 11% 593.6 0.47 3 
IA Ψ=1.3 96% 747.9 0.87 1 

Limited skills 
(0.3) 

Combined Λ=0.05, Ω=1, Ψ=1 80% 623.7 0.81 2 
CCRL Λ=0.9, Ω=1 55% 271.4 0.74 1 
IA Ψ=0.1 62% 915.1 0.68 2 Novice (1) 
Combined Λ=0.05, Ω=1, Ψ=0.3 61% 308.8 0.77 1 
CCRL Λ=0.3, Ω=1 55% 595.4 0.69 3 
IA Ψ=0.7 84% 988.9 0.77 2 

All levels 
(average) 

Combined Λ=0.05, Ω=1, Ψ=1 82% 290.9 0.88 1 
 
 

Table  9.3 Scores for world I with limited view 
 

Advisor (τ) Method Parameters SP HS Score Rank 
CCRL Λ=0.05, Ω=7 80% 135.3 0.85 1 
IA Ψ=1.3 82% 153.9 0.86 1 Expert (0.01) 
Combined Λ=0.05, Ω=7, Ψ=0.3 73% 51.5 0.84 1 
CCRL Λ=0.2, Ω=1 66% 25.5 0.78 1 
IA Ψ=1.3 80% 171.9 0.82 1 

Moderately 
expert (0.1) 

Combined Λ=0.05, Ω=1,Ψ=0.3 67% 15.9 0.8 1 
CCRL Λ=0.05, Ω=1 59% 39.9 0.69 1 
IA Ψ=0.1 60% 136.2 0.62 2 Limited skills 

(0.3) 
Combined Λ=0.5, Ω=1, Ψ=0.3 60% 19.2 0.72 1 
CCRL Λ=0.01, Ω=1 63% 28.8 0.74 1 
IA Ψ=0.1 63% 149.6 0.63 2 Novice (1) 
Combined Λ=0.5, Ω=1, Ψ=0.3 61% 18.9 0.73 1 
CCRL Λ=0.3, Ω=1 62% 27.9 0.73 1 
IA Ψ=0.1 63% 121.4 0.66 2 

All levels 
(average) 

Combined Λ=0.05, Ω=1,Ψ=0.3 63% 17.4 0.74 1 
                                                           
1 A detailed explanation of the comparison method can be found in Appendix II. 
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Table  9.4 Scores for world II with full view 
 

Advisor (τ) Method Parameters SP HS Score Rank 
CCRL Λ=0.05, Ω=3 96% 523.0 0.95 2 
IA Ψ=0.7 98% 522.1 0.96 2 Expert (0.01) 
Combined Λ=0.01, Ω=1, Ψ=1 98% 185.5 0.98 1 
CCRL Λ=0.5, Ω=1 47% 1852.7 0.61 3 
IA Ψ=0.7 87% 608.1 0.90 2 

Moderately 
expert (0.1) 

Combined Λ=0.01, Ω=1, Ψ=1 91% 347.4 0.94 1 
CCRL Λ=0.5, Ω=1 20% 736.2 0.56 2 
IA Ψ=1 65% 2216.6 0.67 1 

Limited skills 
(0.3) 

Combined Λ=0.05, Ω=1, Ψ=0.3 36% 150.4 0.68 1 
CCRL Λ=0.3, Ω=1 37% 177.1 0.68 1 
IA Ψ=0.1 40% 738.4 0.65 2 Novice (1) 
Combined Λ=0.05, Ω=1, Ψ=0.3 37% 115.9 0.68 1 
CCRL Λ=0.5, Ω=1 49% 819.9 0.70 2 
IA Ψ=0.7 70% 2105.5 0.71 2 

All levels 
(average) 

Combined Λ=0.01, Ω=1, Ψ=1 64% 434.3 0.80 1 
 
 

Table  9.5 Scores for world II with limited view 
 

Advisor (τ) Method Parameters SP HS Score Rank 
CCRL Λ=0.05, Ω=7 51% 43.2 0.83 1 
IA Ψ=1.0 62% 131.1 0.84 1 Expert (0.01) 
Combined Λ=0.05, Ω=5, Ψ=1 44% 24.0 0.78 1 
CCRL Λ=0.3, Ω=3 41% 26.6 0.75 1 
IA Ψ=0.1 41% 66.1 0.72 1 

Moderately 
expert (0.1) 

Combined Λ=0.05, Ω=1,Ψ=1 40% 11.0 0.76 1 
CCRL Λ=0.3, Ω=1 35% 22.2 0.70 1 
IA Ψ=0.1 34% 78.3 0.64 2 Limited skills 

(0.3) 
Combined Λ=0.3, Ω=1, Ψ=1 38% 20.0 0.73 1 
CCRL Λ=0.9, Ω=1 36% 16.1 0.72 1 
IA Ψ=0.1 34% 86.5 0.64 2 Novice (1) 
Combined Λ=0.05, Ω=3, Ψ=0.3 38% 22.9 0.73 1 
CCRL Λ=0.5, Ω=1 36% 15.4 0.72 1,2 
IA Ψ=0.1 39% 72.7 0.69 2 

All levels 
(average) 

Combined Λ=0.01, Ω=1,Ψ=1 38% 13.7 0.74 1 
 

Overall, the combined method achieves the best results for both worlds and both view cases. It 

does so for most of the advisor skill levels separately, and for the average case, demonstrating 

robustness in dealing with various levels of advisors. These results are achieved since the robot asks 

for aid only when it really requires it, under conditions of uncertainty and deficiency in performance, 

and stops asking for it when it is not beneficial. 

When considering CCRL and IA, it can be seen that when assisted by skillful advisors (τ = 0.01, 

0.1) and in average in the full view cases, IA performs better, while with lesser skilled advisors (τ = 

0.3, 1) and in average in the limited cases, CHRL achieves better results, equivalent to those of the 



Chapter  9. Evaluation of CCRL using a 3D Path Planning Task - Summary 72  

 
 

combined method. This can be attributed to the advice assessment capability employed in CCRL and 

in the combined method. 

Generally, in the limited view cases CCRL performs relatively better in comparison to IA, while 

in the full view cases IA has the upper hand. This can be explained by the fact that in the full view 

cases, CCRL uses advice during the entire episode, even for states where the robot does not really 

require it, thus many help requests are issued in vain. In the limited view cases on the contrary, 

advice requests are prompted only on a restricted region, minimizing the described effect and making 

better use of the CCRL cognitive capabilities.   

 

9.10 Summary 
The CCRL algorithm allows a RL learner to intelligently decide whether and when to solicit 

advice from an advisor, by endowing it with the capabilities to evaluate its performance and to assess 

the value of the advice. When assisted by highly skilled advisors the agent learns to use them 

sufficiently frequently to improve its performance. When dealing with less skilled advisors it learns 

to discard bad advice and switch to autonomous learning. The CCRL algorithm and especially the 

combined method (CCRL with IA) achieved better results than the base-line fully autonomous 

learner and the learner employing IA in many learning scenarios, proving the expediency of the 

endowed cognitive capabilities. Furthermore, a method for simulating human advisors with various 

skill levels was presented. 
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10. Conclusions and Future Research 
Chapter Overview 

This concluding section presents the importance and implications of this work, and offers a 

comparison between the CHRL framework and algorithms presented here, and the current best 

practice in related research. The section ends with a discussion of areas for future work. 
 

10.1 Conclusions 
This work introduces a new reinforcement learning framework and the necessary tools for its 

application. The proposed framework, Collaborative Hierarchical Reinforcement Learning (CHRL) 

is targeted to provide efficient learning and execution of complex tasks otherwise inapplicable by a 

reinforcement learning agent, due to large state-action spaces (curse of dimensionality) and multiple 

goal states. The framework includes a two-level learning hierarchy, thus reducing the search space 

and allowing multiple goals, and a collaboration model, allowing human intervention for the 

improvement and acceleration of the learning process. 

The framework suggested in this work allows complex tasks to be learned using RL methods, by 

defining the required set of sub-tasks and an appropriate sequence for their execution. A RL-based 

sequencing algorithm (SRL) is developed to address the high level learning task of determining the 

desired sequence, and a cognitive collaborative RL algorithm (CCRL) is introduced to enable 

adaptive use of human assistance when learning how to perform the various low level sub-tasks. 

Extensive experimentation and analysis demonstrates the applicability of the CHRL framework 

and the strengths and weaknesses of the SRL and CCRL supporting algorithms. A robotic toast 

making application serves as a test-bed for CHRL, presenting an intelligent environment using a 

fixed-arm robot as a transfer agent. A simulated path planning task is used to evaluate the 

performance of the CCRL algorithm.  

Analysis of the SRL algorithm reveals the superiority of the algorithm over the compared 

methods under various configurations. The algorithm does not require any predefined sequencing 

rules or specific information on the problem, hence can be adjusted to suit other sequencing 

problems presented by various applications, especially those employing a job transfer agent. This is 

demonstrated for a flexible manufacturing system (see Appendix III). Note that the algorithm can be 

used for general sequencing probems in a broader context, and not necessarily for robotics related 

problems as presented in this work.  

The CCRL algorithm and the combined method integrating its logic with Clouse’s Introspection 

Approach, demonstrated robust performance when dealing with various advisor skill levels, learning 

to accept advice received from an expert, while rejecting the aid from lesser skilled collaborators. 



Chapter  10. Conclusions and Future Research - Conclusions 74  

 
 

The CCRL algorithm can be integrated with practically any RL algorithm without requiring 

modifications to handle the advisors actions, since it is only added to the outer layer. 

It is important to emphasize that the complete CHRL framework, presented in Chapter  4, was not 

fully demonstrated in this thesis, but we believe that the necessary foundations were placed for future 

research in this area. The aspects yet to be addressed are described in Section  10.2.1. 

The following sections provide a fuller elaboration on the contributions of this research, in terms 

of a comparison of the CHRL framework and the suggested algorithms with the current best practice 

in RL-based robot learning. 

 

10.1.1 Robot learning 
Traditionally, robot behaviors are tailored for a specific task. This is not acceptable for a general-

purpose robot learning system. It is noted in [Kartoun, 2008] that to become economically attractive, 

the robots of tomorrow will have to be constructed for a wide variety of tasks. As such, robots must 

be able to learn new tasks under new working conditions from its new user in its new environment. 

Intensive research has shown reinforcement learning to be a suitable tool for enabling such 

autonomous learning, but the execution of real-world complex tasks still presents many unanswered 

challenges. 

The CHRL framework proposed in this research combines two techniques, hierarchical RL and 

Human-Robot collaboration, in order to scale up RL, and provide the infrastructure for the execution 

of intricate tasks. The novelty lies in the combination of the two methods into one complete learning 

framework, benefiting from the advantages of both approaches. Using the CHRL framework, this 

work demonstrates the applicability of RL-based methods for real-world scenarios, presenting 

encouraging results to support future research in this area. Another innovation in this research is the 

method suggested for representing various advisor skill levels, allowing the evaluation of 

collaboration algorithms under realistic conditions of imperfect guidance. 

 

10.1.2 Human-robot interaction 
It is well established that robot learning should make use of human intelligence in the learning 

process [e.g., Ehrenmann et al., 2001; Breazeal and Thomaz, 2008; Kartoun, 2008]. Human 

interaction increases the learning capabilities of a robot in realistically complex situations and further 

elevated robot intelligence in the post-processing and editing of learned behaviors will further 

elevate robot intelligence [Kartoun, 2008]. Many works have attempted to address the many 

challenges associated with adding an advisor to the learning process, such as the form of instruction 

and the manner in which the learner incorporates the knowledge to its learning function. 
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In many works, the rewards the agent receives are controlled or modified by a human [e.g., 

Papudesi and Huber, 2003; Wang et al., 2003], thus actually modifying the task by altering the 

reward function. [Thomaz and Breazeal, 2006] describe an approach in which rewards do not only 

provide feedback about past actions, but also provide future directions to guide subsequent actions. 

These methods might be problematic when non-expert collaborators are required to perform such 

modifications to the reward functions. The CCRL algorithm proposes a more intuitive way of 

collaboration, requiring the advisor only to suggest a certain action when at a certain state, thus 

guiding the exploration without a demand for any knowledge of the problem formulation and the 

reward policy (except a general notion of the goal of the task).  

[Breazeal and Thomaz, 2008] indicate that most past work that incorporate human input into a 

Machine Learning process tend to maintain a constant level of human involvement. Several are 

highly dependent on guidance, learning nothing without human interaction, while other approaches 

are almost entirely exploration based, using limited input from a teacher. They posit that a social 

learner must be able to move flexibly along this guidance-exploration spectrum, explore and learn on 

its own, but also take full advantage of a human partner’s guidance when available. The CCRL 

algorithm allows this flexibility using an adjustable autonomy approach, based on the model 

suggested by [Kartoun, 2006]. Human-robot collaboration is unnecessary as long as the robot learns 

policies and adapts to new states. Only when the robot senses its performance sufficient the advisor 

is solicited to intervene and suggest actions. 

In his work, [Kartoun, 2006] suggests that advisor intervention should be triggered when the 

robot’s learning performance is below a constant predefined threshold, set in the context of the 

problem (e.g., number of steps in a navigation problem, accumulated rewards received during the 

learning process in other problems). This approach is problematic since in order to determine the 

appropriate threshold, one must have a-priori task-specific information about the solution, which 

obviously does not exist in practice. The CCRL algorithm resolves this issue by setting a threshold in 

terms of improvement rate, expecting only certain performance improvements during the learning, 

without the necessity for any preliminary knowledge. Furthermore, Kartoun’s model refers only to 

the Q(λ) algorithm, while CCRL can be used with any RL algorithm. 

As mentioned in the introduction section, most previous research assumes perfect advisors, 

suggesting only optimal actions. Furthermore, even the few approaches found in the literature to 

consider less skilled advisors (e.g., Clouse, 1996; Cetina, 2007; Breazeal and Thomaz, 2008), assume 

that though the advisor may not provide helpful advice, it at least does not interfere with the robot’s 

learning process. However, there are certain contexts where incompetent advisors will damage the 

learning process. Such an example is when dealing with extremely tired workers or children 

instructing domestic service robots. This research confronts this problem with an innovative 
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approach, endowing the learner with a higher cognitive level, enabling it not only to decide when to 

solicit advice, but also to conclude that the advisor is not promoting the learning, hence should be 

discarded. 

10.1.3 Adaptive sequencing  
Job sequencing problems are problems in which decision makers must determine the production 

sequence of the jobs awaiting their next process in the machine queue. A common approach to 

address such problems is to adopt dispatching rules - priority rules used to determine the order in 

which the jobs are to be processed. The drawback of using dispatching rules is that in order to 

implement them a complete model of the system is required. Furthermore, for dynamically assigning 

dispatching rules there is a need to continually compute system parameters, such as: system 

utilization, relative machine workloads (points system bottlenecks), machine homogeneity, etc. The 

SRL algorithm presented here avoids these requirements by utilizing the basic characteristics of 

reinforcement learning - the lack of necessity for a complete model of the environment, and the 

relative ease in problem formulation. When implementing it, there is no need for predefining 

desirable or undesirable intermediate states. All that must be done is to construct a fairly simple 

reward policy (e.g., higher reward for shorter completion times) and the algorithm will supply a 

solution. Furthermore, the solution is tailored for the specific parameters of the problem.  

This work also suggests an alternative view of the sequencing problem, referring to the robotic 

transfer agent as the limited resource, and to the tasks it has to perform as the “jobs” waiting in its 

queue. This view can simplify the formulation of such problems. 

 

10.2 Future Research 
Many research areas remain open for future expansion of this work: 

10.2.1 Complete implementation of the CHRL framework 
This work presents implementations of the fundamental aspects of the CHRL framework, but a 

full demonstration including all of the elements is still to be achieved. The toast making test-bed 

application can serve this purpose, with the following elements to be addressed: 

(i) An integration of both the learning of the low level activities and the learning of the required 

sequence into one framework. After integration, the transferring times used by the SRL algorithm 

will be dynamically updated. First, the robot will learn how to perform the sub-tasks in an optimal 

way. Then the found operation times would be automatically taken as an input for the SRL 

algorithm, leading to the generation of the execution sequence. This sequential process will lead to 

optimal task execution.  
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(ii) The noted “toolbox” should be applied, saving low level sub-tasks, such as grasping a toast, to 

be used recurrently during the task execution. This should be done to demonstrate the simplicity of 

the formation and execution of new composite tasks, based on already learned sub-tasks.  

(iii) The introduction of human advice into the high-level learning task. 

 

10.2.2 Further evolution and development of the CCRL algorithm 
The CCRL algorithm, demonstrating good results for the path planning task presented by the 

toasting system and for the more complex simulated task, should be implemented with other robotic 

systems and other machine learning methods. Further evaluation should also be conducted for 

various configurations of the maze environment. Furthermore, advanced human-robot interfaces 

could be introduced to enhance the interaction. The use of natural language control or virtual reality 

technologies could replace the standard interfaces (mouse, keyboard and screen) to achieve more 

intuitive interaction and extend human control capabilities. 

As a next step, the algorithm could address an opposite direction of knowledge transfer. After the 

agent assess the worth of the advice given, it can notify the advisor as to the worth of his 

suggestions, thus allowing him to improve his knowledge and guidance for future interaction, and 

provide better suggestions. 

 

10.2.3 Further assessment and development of the SRL algorithm 
The SRL algorithm could be applied for other systems, for further evaluation. An initial study was 

conducted for a Flexible Manufacturing System (see Appendix III). The algorithm can be used to 

minimize machine or robot idle times, mean tardiness, number of tardy jobs etc. Furthermore, its 

performance could be compared to that of other soft computing methods such as genetic algorithms. 

One issue not addressed in this research is the method in which the complex task is decomposed 

to the sub-tasks when creating the two-level hierarchy. Previous work [e.g., Bakker and 

Schmidhuber, 2004] presented methods in which the high-level policies not only select the sequence 

of the sub-task execution, but also autonomously discover and define those sub-tasks. The deficiency 

is that these methods are appropriate only for relatively defined environments (e.g., grid-worlds for 

path planning tasks), and cannot deal with complex tasks as toast making. This issue should be 

addressed in future research. Furthermore, the formulation of the minimum makespan problem as a 

single complex problem without the two-level decomposition could be investigated. If this succeeds, 

a comparison of the decomposed (two level hierarchy) and full problem results should be made. 
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10.2.4 Improvement of the learning algorithms 
Though preliminary results for both the algorithms are promising, there are some issues that should 

be attended to in future research: 

(i) The algorithms include many parameters which can significantly influence the performance. 

Evaluation methods could be employed to find the optimal RL and threshold parameters leading to 

the best performance. 

(ii) The low level learning tasks described in this work consist of relatively small state-action 

spaces. In problems with extremely large state-action spaces it is infeasible to use tables for holding 

the Q values, due to the huge amount of memory and long running times required to maintain the 

tables. In these cases, function approximators employing only a representative sub-set of the entire 

state-space are used, to achieve practical performance. The algorithms suggested in this work should 

be modified to allow the use of such approximators when applied to larger problems. 

(iii) Current research employs multi-agent methods to accelerate and upgrade the learning, profiting 

from the advantages of using parallel computation. Again, the algorithms presented here can be 

modified to suit multi-agent models. The application of the CCRL cognitive model for multi-agent 

learning, where agents could function both as learners and as advisors, should be especially 

interesting, addressing the issue of how to handle advice in such a way that facilitates the inclusion 

of advice from several sources (with possible conflicting advice because of different skill levels of 

the advisors). The advice could be weighted differently or organized as a hierarchical mixture of 

experts. 
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Appendix I. Toast Making System – Specifications and Operation 
 

This appendix reviews the toasting system’s components, methods of operation and user 

interfaces.  

 

System Components 
The system includes several software and hardware components, exchanging data as described in 

Fig. I.1.  

VB.net Project

Matlab

USB 
Camera

XRC 
Controller

MOTOMAN 
Robot

JBI Files

Motion 
Commands

Visual 
Feedback

Operational Status 
(busy / free)

Learning 
Algorithm Results

Learning 
Requests

 
 

Fig. I.1 System components and data exchange 

 

 VB.net application – this is the system’s framework, managing and synchronizing other system 

components. The VB.net project1 manages the communication with robot’s controller: it creates the 

motion command files for robot (JBI files), downloaded to the XRC controller, and receives 

indication of the operation status from the controller. It also sends the learning requests to the 

MATLAB application employing the learning algorithms, and receives the desired results (robot 

movements for the high-level sequencing task or path for the low-level bread insertion task). Finally, 

the VB.net project includes the user interfaces. 

                                                           
1 The VB.net source code is presented in Appendix VII. 
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 MATLAB application – the MATLAB application employs the SRL and CCRL learning 

algorithms1 according to the requests received from the VB.net application. Furthermore, the 

MATLAB application applies the image processing algorithm and displays parts of the user interface 

for the low-level task. 

 Motoman six degrees of freedom UP-6 Fixed-Arm Robot – this is the “transfer agent” of the 

system. The robot (Fig. I.2) is operated according to movement commands received from the XRC 

controller. 

 XRC controller – the robot’s controller (Fig I.3), executing the programs generated by the 

VB.net project (JBI files), sending motion commands to robot. 

 USB camera – a simple USB camera (Fig. I.4), located above the experimental setup, supplies 

the visual feedback for the image processing algorithm employed in MATLAB. 

 Experimental setup – a cardboard mockup of system stations for the sequencing task (Fig I.5), 

and a table with obstacles and the toaster for the bread insertion task (Fig. I.6).  
 

 

 
 

Fig. I.2 The Motoman UP-6 fixed-arm robot 

 

                                                           
1 The Matlab source code is presented in Appendix VII. 
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Fig. I.3 The XRC controller 

 

 

 

 
Fig. I.4 The USB camera located above the experimental setup 
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Fig. I.5 The sequencing task experimental setup 

 

 

 
 

Fig. I.6 The bread insertion task experimental setup 
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Toast Transfer Sequencing Task 
The system’s user interface is displayed in Fig. I.7.  

 

 
 

Fig. I.7 The sequencing task user interface 

 

The setup (Fig. I.5) includes the six cardboard stations situated on two tables. The bread-slices are 

preliminary located in station 1 (starting buffer), to be transferred by the robot during operation.  

The system is operated in the following order: 

1) The user chooses the desired number of toasts (1-4) and presses the “Create Scheduling Policy” 

button.  

2) The MATLAB application runs the SRL algorithm and generates the sequence of robot 

movements suitable for the desired number of toasts.  

3) The VB.net application receives the sequence. 

4) When the user presses the “Run Toasting Sequence” button, the application dynamically creates 

the robot movement command files (JBI files) suitable for the sequence.  

During the system’s operation, the machines status, robot’s next location (station), step of the 

sequence and number of finished toasts are presented to the user. 

A flowchart of the process is presented in Fig. I.8. 
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Fig. I.8 Flowchart of the sequencing task operation 

 

Bread Insertion Task 
The system’s user interface is displayed in Fig. I.9.  
 

 
 

Fig. I.9 The bread insertion task user interface 
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The setup (Fig. I.6) includes a table on which the obstacles (wooden cubes) and the toaster are 

located. The bread-slice is preliminary located on the corner of the table, to be taken by the robot 

during operation. The task is performed with the following steps: 

1) The robot grasps the bread-slice and moves to the starting location.  

2) A snapshot of the environment is taken using a simple USB camera (displayed to the user in 

window 2 in Fig. I.9). 

3) An image proceccing algorithm (running in MATLAB) is used locate the objects (robot’s 

gripper, obstacls and toaster) and build a simulated model of environment accordingly. The 

objects are recognized using round markers in differnet colors (displayed in window 3). The 

simulated environment is a 12 × 12 grid world (displayed in windows 4 and 5).   

4) A MATLAB simulation applying the CCRL algorithm (based on Q(λ)) is employed to learn the 

optimal path from the starting state to the goal state in the simulated world. During the learning 

process, the agent traversing the simulaetd environment and the Q table are displayed (Fig I.10). 

When required, user interaction messages are prompted:  when the agent senses that its 

performance does not improve fast enough, a request for advice is prompted. The human advisor 

is then required to guide the agent using the user interface shown in Fig I.11. If the agent 

concludes the advice given is not beneficial, it switches to fully autonomous learning, and 

notifies the advisor. The resulting Q table is displayed to the user in window 6. 

5) The robot is operated according to the generated path.  Image processing is used to identify the 

location of the robot and syncrozine the location in the simulated environment to the location in 

the real world (displayed in windows 3 and 4). 

6) After arriving to the desired location above the toaster, the bread is lowered and the gripper is 

opened to release it into the toaster. 

The buttons for operating the various steps are located in window 1. Furthermore, the system allows 

manual control over the robot’s movements and gripper’s status (open / close) using the interface 

displayed in window 7. 

A flowchart of the process is presented in Fig. I.12. 

 

 

. 
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Fig. I.10 Simulated learning environment 

 

 
 

(a) Guidance request (b) Autonomous learning notice 
 

Fig. I.11 User interaction messages 
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Fig. I.12 Flowchart of the bread insertion task operation 
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Appendix II. Statistical Analysis1 
 

For the analysis of the results for both the sequencing task of the toast making system (Section 

7.7) and the simulated path planning task (Section  9.9) there is a necessity to compare the means 

of three groups -  SRL, MC and random search for the sequencing task, and CCRL, IA and a 

combined method for the path planning task. 

The comparisons are performed using one-way ANOVA (analysis of variance) and Tukey’s HSD 

test. The ANOVA analysis employs an F-test to determine whether there is a significant difference 

between two or more of the means. Tukey’s HSD is a post hoc multiple comparisons test, performed 

after the F-test determines that the means aren’t equal. The HSD test separates and ranks the groups 

demanding 95% confidence level (α = 0.05) for the entire comparison. 

Fig. II.1 shows an example for the results of the tests for the deterministic 3-toasts sequencing 

problem (time set I, 30 episode sessions).  

ANOVA

Percentage

2938.867 2 1469.433 93.794 .000
423.000 27 15.667

3361.867 29

Between Groups
Within Groups
Total

Sum of
Squares df Mean Square F Sig.

 
 

Percentage

10 49.9000
10 68.8000
10 72.5000

1.000 .111

Method
MC
Random
SRL
Sig.

Tukey HSDa
N 1 2

Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
Uses Harmonic Mean Sample Size = 10.000.a. 

 
 

Fig. II.1 ANOVA and Tukey’s HSD test results 

 

The null hypothesis of the ANOVA F-test is that the means are equal. The P-value of the test is 0 

(“Sig.” column), meaning that the null hypothesis is rejected, and that there is a significant difference 

between the means. Tukey’s HSD test separates the means into two separate groups: SRL and the 

random search in one group, and MC on the other. Both SRL and the random search achieved 

                                                           
1 All the statistical tests presented here are performed using SPSS 15.0 software. 
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significantly better success percentages than the MC method, but there is no significant different 

between them. 

The ANOVA’s F-test has 3 assumptions: (i) Independence of the groups, (ii) Normality of the 

distributions and (iii) Equal variances. 

The independence of the groups results from the design of the experiments. The Normality of the 

distributions is validated using one-way Kolmogorov-Smirnov (K-S) test. Fig II.2 shows the test’s 

result for the SRL group of the above example. 

 

One-Sample Kolmogorov-Smirnov Test

10
72.5000
3.86580

.217

.151
-.217
.687
.732

N
Mean
Std. Deviation

Normal Parametersa,b

Absolute
Positive
Negative

Most Extreme
Differences

Kolmogorov-Smirnov Z
Asymp. Sig. (2-tailed)

Percentage

Test distribution is Normal.a. 

Calculated from data.b. 
 

 
Fig. II.2 Kolmogorov-Smirnov test results 

 

The test’s null hypothesis is that the sample distribution is Normal. The high P-value (0.732) 

indicates that the null hypothesis is not rejected, meaning that the distribution is indeed Normal. 

The equality of the groups’ variances in examined using Leven’s test for homogeneity of 

variances. Fig II.3 shows the test’s result for the groups of the above example. 

 

Test of Homogeneity of Variances

Percentage

.007 2 27 .993

Levene
Statistic df1 df2 Sig.

 
 

Fig. II.3 Leven’s test results 

 

Leven’s test null hypothesis is that the variances are equal, and the high P-value (0.993) indicates 

that the null hypothesis is not rejected, and that the variances are equal. 
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Appendix III. Task Sequencing for a Flexible Manufacturing System (FMS)  
 

This appendix describes the application of the SRL algorithm to a second system, a flexible 

manufacturing system performing machining operations, to further examine its performance. 

 

Introduction 
The CIM-NEGEV system in Ben-Gurion University [Berman, 2003] is a decentralized 

manufacturing system composed of a central on-line data base, an Automated Storage and Retrieval 

System (ASRS), a Flexible Manufacturing System (FMS), an assembly station, a quality control 

station and a material handling system based on Automated Guided Vehicles (AGVs). Here we shall 

focus only on the FMS station which performs machining operations. In this station a fixed-arm 

robot transfers the material from location to location, executing such tasks as unloading raw material 

from the AGVs, loading and unloading the various machine-tools, moving pallets from in-buffers to 

out-buffers etc.  

In conventional terms, the FMS presents an n job flow-shop problem with several types of jobs 

(parts), deterministic and stochastic job arrival times, three machines, limited buffers, and a single 

job transfer agent (robot). However, as explained in the Methodology chapter, the problem can also 

be viewed as a much simpler job sequencing problem, in which the robot is the limited resource, and 

the part transfer tasks are the “jobs” waiting in its queue, requiring a different “process time” (robot 

transition time). 

The SRL algorithm is applied here with the learning objective of finding task execution policies 

(sequences) that will minimize the completion time of production of various manufacturing orders. 

The performance of algorithm is compared to that of the currently employed FIFO policy. 

 

Experimental Setup and Task Definition 
The FMS (Figs. III.1, III.2) consists of three machines - one Mill (Emco VMC-100) and two 

lathes (Emco Compact 5 CNC), a 5 degree-of-freedom fixed-arm robot (Intelitek ER-IX) situated on 

a linear slide-base and a docking station for Automated Guided Vehicles (AGVs). Raw material 

arrives to the docking station on pallets carried by an AGV. They are loaded to the machines by the 

robot, processed by the machines, and finally taken by the robot back to the AGV in the docking 

station as finished products, to be transferred to their next destination in the CIM system. 

Each machine has an in-buffer and an out-buffer with a capacity of one pallet. The docking station 

also has a capacity of one incoming pallet and one outgoing pallet (two spaces on the AGV itself). 

System stations are listed in Table III.1. Another feature of the system is that after milling, there is a 
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necessity to vacuum the mill area, in order to allow proper loading of the next part to be processed. 

The vacuuming is done using a designated vacuum cleaner operated by the robot. 

  

 
Fig. III.1 Experimental setup - FMS layout and general scheme 

 

  

 
Fig. III.2 Experimental setup – Lathes, mill and robot 

 

The FMS produces four kinds of products: “Sign”, “Hole-Axis”, “Box” and “Rook”. In this work 

we consider the manufacturing of only two of the products (Fig. III.3): Sign, manufactured from a 

Perspex box by a milling process, and Rook, manufactured from a brass cylinder by a turning 

process. The processing times are 605 seconds for the Sign and 185 seconds for the Rook. The robot 

transition times are specified in Table III.2.  

A general process flow for a part in the system: pallet with raw material arrives to the docking 

station on the AGV; the pallet is transferred by the robot to the machine in-buffer; the raw material is 

loaded to the machine by the robot; the pallet is transferred from the in-buffer to the out-buffer; after 

the machine finished processing the part is unloaded by the robot and placed back on the pallet in the 

out-buffer; the pallet carrying the finished part is transferred by the robot to the docking station 

departure point. 

Station 
Manager 

Linear 
 Slide-base 

Two 
Lathe 
Machines 

Milling 
Machine 

AGV 
Docking 
Station

Buffers 

Articulated Robot 
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Fig. III.3 FMS products - Sign (1-raw material, 2-processed); Rook (3-raw material, 4-processed) 
 
 

The FMS receives orders for the manufacturing of a certain product mix. The raw materials for 

the products of each manufacturing order arrive in a known order and with certain inter-arrival times. 

The process flow of each part is decomposed to several tasks, such as: pallet transfer from docking 

station to machine in-buffer, material loading to machine, pallet transfer from in-buffer to out-buffer, 

unloading part from machine, etc. Currently, these tasks are executed by the robot according to a task 

queue managed by a first-in-first-out (FIFO) policy. Each time the robot finishes a task related to a 

certain part, the next task of the part’s process flow is inserted to the queue, and the robot is assigned 

a new task from the head of the queue. The FIFO policy assures that simultaneous production of 

several parts will be possible without collisions in robot action requests, but it is not directly 

concerned with minimizing makespan. The SRL algorithm is used here with the objective of finding 

task execution policies (sequences) that will minimize the makespan of production of various 

manufacturing orders. 
 

Table III.1 System stations 
 

No. Station 
1 Incoming raw material buffer 
2 Mill in-buffer 
3 Mill (machine) 
4 Mill out-buffer 
5 Lathe I in-buffer 
6 Lathe I (machine) 
7 Lathe I out-buffer 
8 Lathe II in-buffer 
9 Lathe II (machine) 

10 Lathe II out-buffer 
11 Outgoing finished products buffer 

 
 

12

34
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Table III.2 Robot transition times (Sec.) 
 
 

  To Station 

  1 2 3 4 5 6 7 8 9 10 11 

1 X 65 15 45 45 45 25 25 25 40 X 

2 25 X 20 45 45 45 25 25 25 40 X 

3 23 45 X 45 45 45 25 25 25 40 40 

4 45 45 45 X 15 50 50 50 50 60 X 

5 45 45 45 25 X 20 50 50 50 60 X 

6 45 45 45 25 45 X 50 50 50 60 60 

7 25 25 25 50 50 50 X 50 15 30 X 

8 25 25 25 50 50 50 25 X 25 30 X 

9 25 25 25 50 50 50 25 25 X 30 30 

10 40 X X 60 X X 30 X X X X 

Fr
om

 S
ta

tio
n 

11 40 40 40 60 60 60 30 30 30 20 X 

 
 

* Transition combinations marked with X are inapplicable. 
 

 

Implementation of the SRL Algorithm 
Unlike the current FIFO policy, which assigns priorities to the movement tasks on-line, the SRL 

algorithm is implemented off-line. When a manufacturing order is issued, the algorithm takes it as an 

input, along with robot transition times and machine processing times, and generates a sequence of 

robot transitions (fitting the desired task execution sequence) as an output1. This way, the algorithm 

tailors a unique policy for each order. 

To solve the sequencing problem using the SRL algorithm, it is formulated as a RL problem. The 

system’s overall state at time step t, denoted as Sst ∈ , is defined by the current state of the buffers 

(unoccupied, occupied with pallet and part, occupied with pallet only) and the machines (free, in 

process, idle with part after process). An action at step t is denoted as ( )t ta A s∈ , where A is the 

action space of all possible actions (the action space is state dependent). The execution of an action 

constitutes the execution of a certain task that changes the system’s state (e.g., loading a part to the 

mill, changing the state of the in-buffer from “occupied with pallet and part” to “occupied with pallet 

only”, and the state of the Mill from “free” to “in process”). 

                                                           
1 Each system task, such as “pallet transfer from docking station to machine in-buffer”, “material loading to machine” 
etc., can be translated to the appropriate robot movements.  
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A solution is a specific sequence of robot transitions (part and pallet transfers and moving empty 

from station to station), that results in the production of the manufacturing order. The learning task, 

as mentioned, is to find the sequence that would achieve the completion of a manufacturing order in 

minimum time. 

A learning episode starts from the state where all the buffers and machines are free and the system 

waits for the arrival of the first part, and ends when the last part of the manufacturing order has 

arrived to the docking station as a finished product. A step is the transition from one system state to 

another generated by execution of a task. 

Note that in this case, as in the toasting system’s case, the state is defined as the system’s status, 

and the agent’s actions shift the system from state to state. Hence, not the location of the agent 

(robot) itself counts, but the influence of its actions on the system’s state. 

 

Analysis 
Analysis is performed using event-based MATLAB simulations. Three modules are constructed: 

(i) a module simulating the operation of the FMS with the current FIFO dispatching policy, (ii) a 

module implementing the SRL algorithm to produce robot transition sequences and (iii) a module 

simulating the FMS operation using those learned sequences.  

The learning algorithm’s performance is evaluated by comparison to the current FIFO policy. The 

test case is to schedule orders of three sizes: 3, 5 and 8 parts, containing a mix of the two products - 

Sign and Rook. For the 3-part orders, all of the eight possible product combinations are examined 

(e.g. Rook-Rook-Rook; Rook-Rook-Sign; Rook-Sign-Rook; etc.). For the 5 and 8-part orders, 10 

random product mixes are examined. For each order size, three distributions of part inter-arrival 

times are examined, with two mean values for each distribution: Constant with t = 100 / 200 seconds, 

Normal with a mean µ = 100 / 200 and standard deviation σ = 10 / 20 (10% of the mean), and 

Exponential with a rate parameter λ = 100 / 200 seconds. 

For the FIFO policy, one simulation run is performed for each product mix to find the makespan 

in the Constant cases (since these cases are deterministic all runs would yield the same result, hence 

one is sufficient), and 50 simulation replications are performed for each product mix, to find an 

average makespan in the stochastic cases (Normal and Exponential inter-arrival times). 

For the SRL algorithm, learning is done based on the deterministic (Constant) cases, by 

performing one learning session containing 200 learning episodes for each product mix. The 

resulting sequence (policy) is then used for operation in the stochastic cases, and the average 

makespan is calculated by performing 50 simulation replications for each product mix. 
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In terms of equation ( 5.1), a value of β = 1 is used for the 3-part orders and β = 0.5 for 5 and 8-

part orders. A type B reward factor is used. These setting were selected since they produced the best 

performance in preliminary experiments. In all experiments the RL parameters1 are set as follows: α 

= 0.05, γ = 0.9. These parameters were selected empirically. 

Performance is evaluated using the following measures: 

1) Makespan - Average total completion time of manufacturing orders. 

2) IP (improvement percentage) - Percentage of improvement achieved by the SRL algorithm (in 

comparison to the FIFO policy). 

 

Results and Discussion 
Fig. III.4 shows the makespans achieved by the FIFO policy and by the policies generated by the 

SRL algorithm for three example manufacturing orders. For all three examples the algorithm 

achieves shorter (better) makespans. Furthermore, it can be seen that the makespans are not equal, 

and depend on the product mix and on the order of part arrival. 
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Fig. III.4 Makespans for various 3-part orders. R – Rook. S – Sign.  
Raw materials for the parts arrive in order from left to right 

 
 

Comparison between the results of the FIFO policy and the results of the policy generated by the 

SRL algorithm was performed using a paired t-test for the mean makespans (examining the 

significance of the difference between the means). Fig. III.5 displays the average differences in 

                                                           
1 The RL parameters, α (learning rate) and γ (discount factor), are described in Section 5.2. 
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makespans for 5-part orders, with various inter-arrival times. The black square marks the average, 

while the gray line indicates a 95% confidence interval (calculated using the paired t-test). 
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Fig. III.5 Makespan differences – 5-part orders 
 

The positive confidence intervals indicate that the algorithm’s makespans are significantly shorter 

(better), and the higher the average difference is, the better the algorithm’s performs is in comparison 

to the FIFO policy. With Constant and Normal inter-arrival times, the results are approximately the 

same, and it can be seen that the makespan difference is higher when a mean of 200 seconds is set 

for the inter-arrival time. With Exponential arrivals, the differences are approximately the same for 

the 100 and 200 second cases. In average, the differences with a 200 second mean appear to be 

higher than the differences with 100 seconds (not statistically significant). 

The results for the 3-part orders are similar to the ones of the 5-part orders shown here, while for 

the 8-part orders, the Exponential arrival results also show a higher difference with a 200 second 

mean (as do the results for the Constant and Normal arrivals). 

Fig. III.6 shows another view of the results - the average differences in makespan between the 

FIFO policy and the policy generated by the SRL algorithm, for Normal inter-arrival times and 

various order sizes. The average difference ranges from 211 seconds for 3-part orders with mean 

inter-arrival time of 100 seconds, to 576 seconds for 8-part orders with a mean of 200 seconds.  
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Fig. III.6 Makespan differences – Normal inter-arrival times 
 

Two trends can be seen here. The first is that the difference is larger when the mean inter-arrival 

time is 200, for all of the orders sizes (especially for 3 and 5-part orders). When the mean is set to be 

200 seconds, the standard deviation (which is set to be 10% of the mean) is also higher, introducing 

more variance to the process. The results insinuate that the SRL algorithm may deal with increased 

variance better than the FIFO policy.   

The second trend is that the difference appears to grow larger as the number of parts in an order 

increases (similar results appear for Constant and Exponential inter-arrival times). This can be 

explained by the fact that when the order is larger and the makespan is longer, there is more room for 

improvement. Furthermore, for a given percentage of improvement gained by the algorithm, the 

longer the makespan is, the greater the relative difference between the results would be (e.g., 10% 

improvement for 1,000 second makespan would yield 100 second difference, while for 2,000 second 

makespan it would yield 200 second difference). 

Thus, in order to properly asses the performance of the SRL algorithm, and have the ability to 

infer from the examined product mixes to others, a better measure would be the percentage of 

improvement achieved by the algorithm, calculated as described in (III.1). 

 
  = 

T T
f a

T
f

IP
−

                       (III.1) 

Where IP is the improvement percentage, Tf is the makespan time achieved by the FIFO policy, and 

Ta is the makespan time achieved by the policy generated by the SRL algorithm. 

Figs. III.7 - III.9 display the average percentage of improvement achieved by the use of the SRL 

algorithm for Normal, Constant and Exponential inter-arrival times. As can be seen, the algorithm 
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achieves 11-17% improvement for the various combinations of orders sizes and mean inter-arrival 

times.  
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Fig. III.7 Improvement percentage - Normal inter-arrival times 
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Fig. III.8 Improvement percentage - Constant inter-arrival times 
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Fig. III.9 Improvement percentage - Exponential inter-arrival times 

 

As seen also in the previous charts, for the 3 and 5-part orders with Normal inter-arrival times, the 

improvement appears to be greater when the mean is 200 seconds (though there is no statistical 

significance). For the 8-part orders, the improvement is 11% for both 100 and 200 seconds. Similar 

results appear for Constant inter-arrival times, while for Exponential inter-arrival times the results 

are generally the same for both 100 and 200 seconds. 

 

Summary 
The SRL algorithm is applied to the problem of sequencing tasks executed by a single transfer 

agent in a flow-shop system, with the objective of achieving minimal completion times of 

manufacturing orders. Analysis indicates that the SRL algorithm outperforms the FIFO policy 

currently employed for various combinations of order sizes and part inter-arrival times (deterministic 

and stochastic), achieving up to 17% improvement in performance. This is achieved by tailoring a 

unique sequence for every manufacturing order according to its specific characteristics. 
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Appendix IV. Toast Making System – Additional Results 
 

Gantt Chart 
Fig. IV.1 presents a Gantt chart of the solution achieved for the 3-toasts deterministic problem 

with case II times. 

 

Toast transferred 
Toast in process station 
Toast in buffer station 
Robot transferring toast 
Robot moving empty 
Robot Idle 

 

Toast 1       Transferred Toaster - Process 
Toast 2                   Transferred Toaster Buffer 
Toast 3                               
Robot 2->1 1->3 3->1 1->2 2->3 Idle 
Time (sec) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  

 

Toast 1 Transferred Butter Applier - Process Idle 
Toast 2 Toaster Buffer Transferred Toaster - Process 
Toast 3                               
Robot 3->5 5->2 2->3 3->5 
Time (sec) 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300  

 

Toast 1 Transferred Finished                       
Toast 2 Process Transferred Butter Applier - Process 
Toast 3                         Transferred 
Robot 5->6 6->3 3->5 5->1 1->3 
Time (sec) 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450  

 

Toast 1                               
Toast 2 Process Idle Transferred Finished             
Toast 3 Toaster - Process Transferred   
Robot 3->5 5->6 6->3 3->5 Idle 
Time (sec) 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600  

 

Toast 1                         
Toast 2                         
Toast 3 Butter Applier - Process Transferred Finished 
Robot Idle 5->6     
Time (sec) 610 620 630 640 650 660 670 680 690 700      

 

Fig IV.1 Gantt chart of the toasting process 
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Proof of Optimality 
The solution’s optimality is proven using “Branch and Bound”, a general search method for 

finding optimal solutions of various problems.  It is basically an enumeration approach in a fashion 

that prunes the non-promising search space. System states are represented by nodes, while each node 

is branched to other nodes, representing the possible states following the state of the root node. Each 

node receives a value indicating the time passing until reaching the state that node represents. If the 

value of a node exceeds the value of an identical node, or a node representing a more advanced state, 

then the node is bounded, and that part of the state-space is pruned. This way there is a large part of 

the search space which is removed from consideration, allowing a faster and feasible search. Fig. 

IV.2 presents an illustration of the “tree” produced in the search process for the 3-toasts deterministic 

problem with case II times..  

 
Fig IV.2 Branch and Bound solution tree 

 

The optimal solution reached by the Branch and Bound method is 700 seconds, matching the 

solution produced by the algorithm, and proving it is indeed optimal. Fig. IV.3 shows a small part of 

the search space, ending with the optimal solution. 

 
Fig. IV.3 Branch and Bound example 
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β Analysis 
Table IV.1 summarize the results of the analysis of the influence of β on the performance, for the 

3-toasts deterministic problem. As described in Section  7.7.1, when using a relatively small β (β = 1) 

the algorithm reaches the optimal solution with the highest percentage of success (SP), yet with the 

cost of a high number of episodes required for convergence (CE). As β increases, the percentage of 

success in reaching the optimal solution decreases, but fewer episodes are required to achieve 

convergence. 

 
Table  11IV.1 Summary of β analysis 

 
β 

Case Measure 
1 1.2 1.5 1.7 

SP (Success Percentage) 99% 98% 95% 94% I 
CE (Convergence Episode) 155.7 126.3 83.8 69.1 
SP (Success Percentage) 99% 96% 88% 87% II 
CE (Convergence Episode) 154.7 123.8 85.2 72.9 
SP (Success Percentage) 98% 96% 92% 91% III 
CE (Convergence Episode) 153.7 126.7 82.4 73.1 

 

 

Reward Factor Analysis 
Table IV.2 summarize the results of the reward factor analysis. As described in Section  7.7.1, for 

all instances the use of a type A reward factor achieves fast learning and good results in a low 

number of episodes. When using the type B reward factor, the algorithm requires more episodes in 

order to achieve good results, but ultimately it outperforms the type A results. 
 

Table IV.2 Summary of reward factor analysis 
 

Deterministic 3-toast problem 
 

Session length (number of episodes) 
Case 

Reward 

Type 15 20 25 30 35 40 45 50 55 60 
A 40% 59% 75% 83% 86% 91% 93% 93% 96% 96% I 
B 29% 44% 62% 73% 84% 91% 95% 97% 99% 100% 
A 42% 61% 73% 83% 88% 91% 92% 94% 95% 96% II 
B 32% 43% 59% 77% 86% 91% 94% 97% 100% 100% 
A 38% 56% 71% 80% 85% 90% 92% 93% 94% 95% III 
B 29% 40% 57% 73% 83% 92% 95% 97% 99% 100% 



Appendix IV. Toast Making System – Additional Results 107  

 
 

 
Deterministic 4-toast problem 
 

Session length (number of episodes) 
Case 

Reward 

Type 15 20 25 30 35 40 45 50 
A 21% 41% 53% 64% 67% 74% 79% 77% I 
B 12% 26% 39% 65% 78% 89% 95% 97% 
A 23% 33% 48% 52% 61% 70% 71% 78% II 
B 8% 23% 39% 64% 79% 93% 96% 98% 
A 18% 34% 46% 50% 59% 65% 74% 74% III 
B 8% 19% 33% 51% 71% 90% 93% 96% 

 
 
Stochastic 3-toast problem 
 

Session length (number of episodes) 
Case 

Reward 

Type 15 20 25 30 35 40 45 50 55 60 
A 544.22 530.26 522.48 517.13 513.66 511.95 510.48 509.37 508.65 508.58 I 
B 551.15 541.89 531.44 523.29 518.18 515.92 512.17 509.87 508.49 507.26 
A 746.75 727.28 713.34 705.95 701.43 697.79 696.18 694.27 693.67 692.56 II 
B 760.31 745.26 730.44 714.94 706.93 701.6 698.7 695.7 693.1 690.61 
A 1041.8 1030.2 1021.9 1017.3 1012.9 1009.9 1005.5 1002.8 999.95 999.26 III 
B 1074.1 1055.7 1035.1 1016.2 1006.1 999.36 994.72 990.23 986.86 983.97 

 
 
Stochastic 4-toast problem 
 

Session length (number of episodes) 
Case 

Reward 

Type 15 20 25 30 35 40 45 50 
A 692.42 676.63 668.26 662.87 661.58 658.6 656.63 654.75 I 
B 709.92 680.54 670.98 664.47 659.07 655.27 652.81 651.8 
A 945.71 926.46 918.16 906.09 906.42 903.3 895.91 895.55 II 
B 964.47 925.31 911.48 903.78 897.89 894.21 890.26 887.84 
A 1369.1 1335.9 1317.6 1310.5 1301.7 1299.1 1295.3 1293.3 III 
B 1390.4 1336.5 1309.9 1298.8 1290.1 1282.5 1278.6 1276.1 
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Appendix V. 3D Path Planning Task – Additional Results 
 

The following tables summarize the scores for the various methods and parameter combinations 

examined.   

 

Scores for the IA Method 
 

World I, Full view 
 

Advisor (τ) Ψ SP HS Score 
0.1 67% 479.36 0.77 
0.3 94% 154.92 0.96 
0.7 98% 268.62 0.96 
1 100% 707.11 0.90 

Expert (0.01) 

1.3 100% 1149.01 0.83 
0.1 67% 595.43 0.75 
0.3 83% 349.4 0.88 
0.7 96% 215 0.96 
1 99% 200.53 0.98 

Moderately 
expert (0.1) 

1.3 49% 1098.84 0.58 
0.1 65% 808.46 0.71 
0.3 62% 1180 0.64 
0.7 80% 829.83 0.78 
1 88% 704.06 0.84 

Limited skills 
(0.3) 
 

1.3 96% 747.87 0.87 
0.1 62% 915.15 0.68 
0.3 50% 2143.39 0.42 
0.7 61% 2642.53 0.39 
1 57% 3214.58 0.28 

Novice (1.0) 

1.3 66% 3250.7 0.33 
0.1 65% 699.6 0.73 
0.3 70% 956.9 0.72 
0.7 84% 988.9 0.77 
1 86% 1206.57 0.75 

All levels 
(average) 

1.3 78% 1561.6 0.65 
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World I, Limited view 
 

Advisor (τ) Ψ SP HS Score 
0.1 65% 92.88 0.71 
0.3 78% 98.9 0.85 
0.7 78% 101.18 0.85 
1 78% 105.45 0.85 

Expert (0.01) 

1.3 82% 153.95 0.86 
0.1 64% 106.77 0.69 
0.3 75% 127.75 0.80 
0.7 75% 131.78 0.79 
1 76% 134.9 0.80 

Moderately 
expert (0.1) 

1.3 80% 171.91 0.82 
0.1 60% 136.23 0.62 
0.3 59% 240.05 0.51 
0.7 65% 265.71 0.57 
1 67% 277.55 0.58 

Limited skills 
(0.3) 
 

1.3 68% 317.51 0.57 
0.1 63% 149.554 0.63 
0.3 48% 329.76 0.32 
0.7 53% 440.72 0.28 
1 50% 473.8 0.22 

Novice (1.0) 

1.3 53% 513.48 0.23 
0.1 63% 121.36 0.66 
0.3 65% 199.12 0.62 
0.7 68% 234.85 0.63 
1 68% 247.93 0.61 

All levels 
(average) 

1.3 71% 289.21 0.62 
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World II, Full view 
 

Advisor (τ) Ψ SP HS Score 
0.1 43% 483.95 0.69 
0.3 59% 553.8 0.76 
0.7 98% 522.11 0.96 
1 100% 954.99 0.94 

Expert (0.01) 

1.3 100% 1611.92 0.89 
0.1 39% 563.84 0.66 
0.3 63% 959.62 0.75 
0.7 87% 608.11 0.90 
1 61% 1097.8 0.73 

Moderately 
expert (0.1) 

1.3 27% 2260.21 0.48 
0.1 40% 670.91 0.66 
0.3 50% 2104.91 0.61 
0.7 60% 2063.29 0.66 
1 65% 2216.56 0.67 

Limited skills 
(0.3) 
 

1.3 64% 3606.93 0.57 
0.1 40% 738.4 0.65 
0.3 51% 3047.25 0.55 
0.7 37% 5228.54 0.32 
1 30% 6387.81 0.21 

Novice (1.0) 

1.3 38% 7205.69 0.19 
0.1 41% 614.28 0.67 
0.3 56% 1666.40 0.67 
0.7 70% 2105.51 0.71 
1 64% 2664.29 0.64 

All levels 
(average) 

1.3 57% 3671.19 0.54 
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World II, Limited view 
 

Advisor (τ) Ψ SP HS Score 
0.1 48% 59.97 0.78 
0.3 44% 109.55 0.70 
0.7 50% 112.23 0.76 
1 62% 131.11 0.84 

Expert (0.01) 

1.3 67% 369.08 0.68 
0.1 41% 66.128 0.72 
0.3 41% 144.95 0.65 
0.7 37% 154.76 0.60 
1 50% 172.57 0.70 

Moderately 
expert (0.1) 

1.3 27% 329.54 0.36 
0.1 34% 78.34 0.64 
0.3 35% 227.9 0.52 
0.7 33% 293.09 0.44 
1 19% 338.08 0.27 

Limited skills 
(0.3) 
 

1.3 12% 412.57 0.15 
0.1 34% 86.52 0.64 
0.3 31% 295.35 0.43 
0.7 21% 438.13 0.20 
1 13% 546.05 0.04 

Novice (1.0) 

1.3 11% 565.06 0.00 
0.1 39% 72.74 0.69 
0.3 38% 194.44 0.57 
0.7 35% 249.55 0.50 
1 36% 296.95 0.46 

All levels 
(average) 

1.3 29% 419.06 0.30 
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Scores for the CCRL Algorithm 
 
World I, Full view 
 

Advisor (τ) Λ Ω SP HS Score 

0.05 1 99% 292.2 0.96 
0.3 1 98% 311.64 0.95 
0.5 1 98% 309.68 0.96 
0.3 3 97% 317.81 0.95 

Expert (0.01) 

0.9 1 82% 142.42 0.90 
0.05 1 61% 768.62 0.70 
0.3 1 67% 825.19 0.72 
0.5 1 52% 770.25 0.65 
0.3 3 65% 911.06 0.69 

Moderately 
expert (0.1) 

0.9 1 27% 210.03 0.61 
0.05 1 2% 1476.89 0.28 
0.3 1 4% 959.38 0.38 
0.5 1 7% 756.97 0.43 
0.3 3 1% 1573.2 0.26 

Limited skills 
(0.3) 
 

0.9 1 11% 593.59 0.47 
0.05 1 49% 280.11 0.71 
0.3 1 50% 285.36 0.72 
0.5 1 55% 278.12 0.74 
0.3 3 44% 562.26 0.64 

Novice (1.0) 

0.9 1 55% 271.42 0.74 
0.05 1 53% 704.46 0.66 
0.3 1 55% 595.39 0.69 
0.5 1 53% 528.76 0.69 
0.3 3 52% 841.08 0.64 

All levels 
(average) 

0.9 1 44% 304.37 0.68 
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World I, Limited view 
 

Advisor (τ) Λ Ω SP HS Score 

0.05 5 77% 88.03 0.85 
0.05 3 72% 50.31 0.83 
0.3 5 73% 66.58 0.82 

0.05 1 63% 20.52 0.74 
0.3 1 69% 19.12 0.82 

0.15 1 67% 20.01 0.79 
0.15 3 69% 46.65 0.79 
0.05 7 80% 135.35 0.85 
0.3 3 71% 40.8 0.82 

Expert (0.01) 

0.01 1 61% 20.48 0.73 
0.05 5 66% 112.49 0.70 
0.05 3 63% 62.83 0.71 
0.3 5 66% 86.45 0.72 

0.05 1 62% 26.64 0.73 
0.3 1 59% 24.71 0.69 

0.15 1 64% 26.93 0.76 
0.15 3 64% 58.27 0.72 
0.05 7 72% 178.87 0.72 
0.3 3 63% 52.93 0.72 

Moderately 
expert (0.1) 

0.01 1 61% 30.47 0.71 
0.05 5 48% 136.83 0.48 
0.05 3 47% 90.4 0.50 
0.3 5 50% 122.98 0.51 

0.05 1 59% 39.92 0.69 
0.3 1 58% 37.98 0.67 

0.15 1 54% 36.94 0.63 
0.15 3 51% 89.15 0.55 
0.05 7 42% 205.6 0.34 
0.3 3 52% 80.14 0.57 

Limited skills 
(0.3) 

 

0.01 1 53% 41.41 0.61 
0.05 5 59% 92.22 0.64 
0.05 3 57% 57.32 0.65 
0.3 5 57% 86.11 0.62 

0.05 1 62% 29.17 0.73 
0.3 1 62% 29.63 0.72 

0.15 1 58% 27.97 0.68 
0.15 3 58% 57.58 0.65 
0.05 7 52% 125.19 0.53 
0.3 3 58% 57.81 0.66 

Novice (1.0) 

0.01 1 63% 28.85 0.74 
0.05 5 63% 107.39 0.67 
0.05 3 60% 65.22 0.67 
0.3 5 61% 90.53 0.67 

0.05 1 62% 29.06 0.72 
0.3 1 62% 27.86 0.73 

0.15 1 61% 27.96 0.71 
0.15 3 60% 62.91 0.68 
0.05 7 61% 161.25 0.61 
0.3 3 61% 57.92 0.69 

All levels 
(average) 

0.01 1 60% 30.30 0.70 



Appendix V. 3D Path Planning Task – Additional Results 114  

 
 

 
World II, Full view 
 

Advisor (τ) Λ Ω SP HS Score 

0.05 1 94% 507 0.94 
0.3 1 93% 505.82 0.94 

0.05 3 96% 522.97 0.95 
0.3 3 94% 531.41 0.94 

0.05 5 95% 541.72 0.94 
0.05 7 94% 541.61 0.94 
0.5 1 93% 510.95 0.94 

Expert (0.01) 

0.01 1 96% 556.94 0.95 
0.05 1 36% 1999.93 0.55 
0.3 1 36% 2541.8 0.51 

0.05 3 33% 2065.69 0.52 
0.3 3 31% 2555.03 0.48 

0.05 5 28% 2110.39 0.50 
0.05 7 24% 2173.08 0.47 
0.5 1 47% 1852.72 0.61 

Moderately 
expert (0.1) 

0.01 1 36% 1826.38 0.56 
0.05 1 9% 1591.23 0.44 
0.3 1 14% 950.89 0.51 

0.05 3 5% 2901.74 0.33 
0.3 3 8% 1578.94 0.44 

0.05 5 2% 4012.02 0.23 
0.05 7 0% 5016.02 0.15 
0.5 1 20% 736.25 0.56 

Limited skills 
(0.3) 

 

0.01 1 11% 1635.27 0.44 
0.05 1 33% 185.16 0.66 
0.3 1 37% 177.12 0.68 

0.05 3 33% 362.47 0.65 
0.3 3 27% 348.6 0.62 

0.05 5 32% 537.45 0.63 
0.05 7 28% 705.84 0.60 
0.5 1 37% 179.8 0.68 

Novice (1.0) 

0.01 1 34% 176.73 0.67 
0.05 1 43% 877.84 0.65 
0.3 1 45% 2063.25 0.66 

0.05 3 42% 3778.91 0.61 
0.3 3 40% 1400.97 0.62 

0.05 5 39% 1565.77 0.58 
0.05 7 37% 1308.11 0.54 
0.5 1 49% 1348.03 0.70 

All levels 
(average) 

0.01 1 44% 1192.07 0.65 
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World II, Limited view 
 

Advisor (τ) Λ Ω SP HS Score 

0.01 1 38% 10.03 0.74 
0.05 1 36% 9.57 0.72 
0.3 1 39% 8.57 0.75 
0.5 1 41% 9.96 0.77 

0.01 3 40% 18.84 0.75 
0.05 3 37% 18.96 0.73 
0.3 3 39% 19.09 0.74 

0.05 5 43% 30.55 0.77 

Expert (0.01) 

0.05 7 51% 43.16 0.83 
0.01 1 37% 11.98 0.73 
0.05 1 37% 12.43 0.73 
0.3 1 37% 11.54 0.73 
0.5 1 38% 12.76 0.73 

0.01 3 35% 28.67 0.70 
0.05 3 38% 25.86 0.72 
0.3 3 41% 26.59 0.75 

0.05 5 42% 40.83 0.75 

Moderately 
expert (0.1) 

0.05 7 41% 62.23 0.72 
0.01 1 32% 24.53 0.68 
0.05 1 32% 25.28 0.68 
0.3 1 35% 22.25 0.70 
0.5 1 33% 23.45 0.68 

0.01 3 34% 49.39 0.67 
0.05 3 34% 48.31 0.67 
0.3 3 31% 45.6 0.64 

0.05 5 30% 74.92 0.61 

Limited skills 
(0.3) 

 

0.05 7 30% 103.75 0.58 
0.01 1 35% 17.1 0.70 
0.05 1 36% 14.94 0.71 
0.3 1 32% 16.23 0.68 
0.5 1 34% 15.41 0.70 

0.01 3 39% 33.06 0.72 
0.05 3 32% 31.38 0.67 
0.3 3 33% 33.53 0.68 

0.05 5 35% 49.23 0.68 

Novice (1.0) 

0.05 7 38% 65.76 0.69 
0.01 1 35% 15.91 0.71 
0.05 1 35% 15.56 0.71 
0.3 1 36% 14.65 0.71 
0.5 1 36% 15.40 0.72 

0.01 3 37% 32.49 0.71 
0.05 3 35% 31.13 0.70 
0.3 3 36% 31.20 0.70 

0.05 5 38% 48.88 0.70 

All levels 
(average) 

0.05 7 40% 68.73 0.71 
 

 



Appendix V. 3D Path Planning Task – Additional Results 116  

 
 

Scores for the Combined Method (CCRL and IA) 
 
World I, Full view 
 

Advisor (τ) Λ Ω Ψ SP HS Score 

0.05 1 1 99% 91.59 0.99 
0.05 1 0.3 94% 120.51 0.96 
0.3 1 1 100% 96.83 1.00 

0.05 3 0.3 93% 123.49 0.96 
Expert (0.01) 

0.05 1 0.7 97% 107.67 0.98 
0.05 1 1 97% 147.46 0.98 
0.05 1 0.3 78% 237.25 0.87 
0.3 1 1 98% 156.19 0.98 

0.05 3 0.3 85% 247.9 0.90 

Moderately 
expert (0.1) 

0.05 1 0.7 94% 188.43 0.95 
0.05 1 1 80% 623.69 0.81 
0.05 1 0.3 53% 428.63 0.71 
0.3 1 1 75% 634.81 0.79 

0.05 3 0.3 53% 641.5 0.68 

Limited skills 
(0.3) 
 

0.05 1 0.7 62% 629.89 0.72 
0.05 1 1 54% 300.78 0.74 
0.05 1 0.3 61% 308.83 0.77 
0.3 1 1 53% 296.16 0.73 

0.05 3 0.3 54% 585.6 0.69 
Novice (1.0) 

0.05 1 0.7 55% 496.18 0.71 
0.05 1 1 82% 290.88 0.88 
0.05 1 0.3 71% 273.81 0.83 
0.3 1 1 81% 296.00 0.87 

0.05 3 0.3 71% 399.62 0.81 

All levels 
(average) 

0.05 1 0.7 77% 355.54 0.84 
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World I, Limited view 
 

Advisor (τ) Λ Ω Ψ SP HS Score 

0.05 1 0.3 66% 12.96 0.79 
0.05 3 0.3 67% 26.51 0.79 
0.05 5 0.3 68% 39.53 0.79 
0.05 7 0.3 73% 51.47 0.84 
0.05 1 0.7 62% 12.65 0.73 
0.05 1 1 63% 14.01 0.75 
0.05 5 1 69% 43.01 0.80 
0.3 3 1 66% 26.91 0.77 
0.3 3 0.3 66% 24.13 0.77 

Expert (0.01) 

0.5 1 0.3 63% 12.45 0.75 
0.05 1 0.3 67% 15.91 0.80 
0.05 3 0.3 62% 29.32 0.73 
0.05 5 0.3 64% 45.11 0.73 
0.05 7 0.3 69% 59.44 0.79 
0.05 1 0.7 61% 15.62 0.73 
0.05 1 1 62% 18.57 0.74 
0.05 5 1 68% 49.85 0.77 
0.3 3 1 65% 31.85 0.76 
0.3 3 0.3 62% 30.43 0.73 

Moderately 
expert (0.1) 

0.5 1 0.3 63% 15.52 0.75 
0.05 1 0.3 58% 20.45 0.68 
0.05 3 0.3 59% 41.1 0.69 
0.05 5 0.3 59% 60 0.66 
0.05 7 0.3 60% 82.74 0.66 
0.05 1 0.7 58% 23.64 0.69 
0.05 1 1 58% 26.28 0.68 
0.05 5 1 63% 75.49 0.70 
0.3 3 1 57% 55.3 0.64 
0.3 3 0.3 58% 41.09 0.67 

Limited skills 
(0.3) 

 

0.5 1 0.3 60% 19.21 0.72 
0.95 1 0.3 60% 20.18 0.71 
0.95 3 0.3 58% 39.08 0.67 
0.95 5 0.3 63% 57.17 0.71 
0.95 7 0.3 59% 78.71 0.65 
0.95 1 0.7 61% 22.12 0.72 
0.95 1 1 60% 23.84 0.71 
0.05 5 1 57% 77.1 0.63 
0.3 3 1 60% 47.51 0.68 
0.3 3 0.3 61% 38 0.71 

Novice (1.0) 

0.5 1 0.3 61% 18.89 0.73 
0.05 1 0.3 63% 17.38 0.74 
0.05 3 0.3 62% 34.00 0.72 
0.05 5 0.3 63% 50.45 0.72 
0.05 7 0.3 65% 68.09 0.73 
0.05 1 0.7 61% 18.51 0.72 
0.05 1 1 61% 20.68 0.72 
0.05 5 1 64% 61.36 0.73 
0.3 3 1 62% 40.39 0.71 
0.3 3 0.3 62% 33.41 0.72 

All levels 
(average) 

0.5 1 0.3 62% 16.52 0.74 



Appendix V. 3D Path Planning Task – Additional Results 118  

 
 

 
World II, Full view 
 

Advisor (τ) Λ Ω Ψ SP HS Score 

0.01 1 1 98% 185.48 0.98 
0.05 1 0.3 43% 111.44 0.71 
0.05 3 0.3 47% 215.05 0.73 
0.05 1 0.7 91% 186.29 0.95 
0.05 1 1 97% 179.73 0.98 

Expert (0.01) 

0.3 1 1 97% 195.1 0.98 
0.01 1 1 91% 347.37 0.94 
0.05 1 0.3 43% 125.78 0.71 
0.05 3 0.3 45% 260.93 0.71 
0.05 1 0.7 74% 370.66 0.85 
0.05 1 1 90% 360.03 0.93 

Moderately 
expert (0.1) 

0.3 1 1 90% 403 0.93 
0.01 1 1 32% 1019.47 0.60 
0.05 1 0.3 36% 150.42 0.68 
0.05 3 0.3 34% 282.39 0.66 
0.05 1 0.7 32% 610.96 0.62 
0.05 1 1 33% 1056.98 0.60 

Limited skills 
(0.3) 
 

0.3 1 1 29% 807.62 0.59 
0.01 1 1 36% 184.96 0.67 
0.05 1 0.3 37% 115.94 0.68 
0.05 3 0.3 35% 229.8 0.67 
0.05 1 0.7 34% 218.36 0.66 
0.05 1 1 33% 176.92 0.66 

Novice (1.0) 

0.3 1 1 36% 166.23 0.67 
0.01 1 1 64% 434.32 0.80 
0.05 1 0.3 40% 125.895 0.70 
0.05 3 0.3 41% 247.0425 0.69 
0.05 1 0.7 58% 346.5675 0.77 
0.05 1 1 63% 443.415 0.79 

All levels 
(average) 

0.3 1 1 63% 392.9875 0.79 
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World II, Limited view 
 

Advisor (τ) Λ Ω Ψ SP HS Score 

0.01 1 1 41% 7.59 0.77 
0.05 1 0.3 38% 7.25 0.74 
0.05 3 0.3 40% 14.51 0.75 
0.05 1 0.7 39% 7.44 0.76 
0.05 1 1 40% 8.56 0.76 
0.05 5 1 44% 23.96 0.78 
0.3 1 1 38% 8.09 0.74 

Expert (0.01) 

0.5 1 0.3 39% 7.14 0.75 
0.01 1 1 39% 11.67 0.75 
0.05 1 0.3 38% 8.69 0.74 
0.05 3 0.3 37% 18.45 0.72 
0.05 1 0.7 38% 10 0.74 
0.05 1 1 40% 11 0.76 
0.05 5 1 37% 31.52 0.72 
0.3 1 1 35% 9.57 0.72 

Moderately 
expert (0.1) 

0.5 1 0.3 35% 9.67 0.72 
0.01 1 1 37% 19.13 0.72 
0.05 1 0.3 35% 12.96 0.71 
0.05 3 0.3 34% 25.44 0.69 
0.05 1 0.7 33% 17.4 0.69 
0.05 1 1 32% 22.36 0.68 
0.05 5 1 36% 54.63 0.68 
0.3 1 1 38% 20.03 0.73 

Limited skills 
(0.3) 

 

0.5 1 0.3 34% 14.19 0.70 
0.01 1 1 35% 16.38 0.71 
0.05 1 0.3 33% 11.85 0.69 
0.05 3 0.3 38% 22.88 0.73 
0.05 1 0.7 37% 15.19 0.72 
0.05 1 1 33% 15.02 0.69 
0.05 5 1 35% 44.16 0.68 
0.3 1 1 36% 13.67 0.72 

Novice (1.0) 

0.5 1 0.3 33% 10.33 0.69 
0.01 1 1 38% 13.69 0.74 
0.05 1 0.3 36% 10.19 0.72 
0.05 3 0.3 37% 20.32 0.72 
0.05 1 0.7 37% 12.51 0.72 
0.05 1 1 36% 14.24 0.72 
0.05 5 1 38% 38.57 0.72 
0.3 1 1 37% 12.84 0.73 

All levels 
(average) 

0.5 1 0.3 35% 10.33 0.71 
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Appendix VI. Toast Making System – Source Code 
 

VB.net Code 
Form1.vb 
Option Strict Off 
Option Explicit On  
Imports Microsoft.Win32 
Imports System.IO 
'Imports System.Security.Permissions 
'Imports System.Math 
'Imports System.Data.SqlClient 
'Imports System.Data.OleDb 
 
Imports System 
Imports System.Drawing 
Imports System.Windows.Forms 
Imports vb = Microsoft.VisualBasic 
 
 
 
Public Class Form1 
    Inherits System.Windows.Forms.Form 
    Dim nCid As Integer 
 
    ' Global Declarations 
    Dim MatLab As Object 
    Dim Sequence(2) As Integer 
    Dim ToasterFree As Boolean 
    Dim ButtererFree As Boolean 
    Dim ToasterFinished As Boolean 
    Dim ButtererFinished As Boolean 
    Dim StopRun As Boolean 'for stoping learning episode 
    Dim NumOfEpisods As Integer ' counting number of learning 
episodes 
    Dim t As New System.Timers.Timer(50000) '106000 
    Dim b As New System.Timers.Timer(48000) '94000 
    Dim p As New System.Timers.Timer(5000) 
 
    Public Const SND_ASYNC = &H1 ' play asynchronously 
    Public Const SND_LOOP = &H8 ' loop the sound until next 
sndPlaySound 
    Public Const SND_NOSTOP = &H10 ' don't stop any currently 
playing sound 
    Public Const SND_NOWAIT = &H2000 ' don't wait if the driver is 
busy 
 
    Private Declare Function PlaySound Lib "winmm.dll" Alias 
"PlaySoundA" (ByVal lpszName As String, ByVal hModule As 
Long, ByVal dwFlags As Long) As Long 
 
 
 
#Region " Windows Form Designer generated code " 
 
    Public Sub New() 
        MyBase.New() 
 
        'This call is required by the Windows Form Designer. 
        InitializeComponent() 
 
        'Add any initialization after the InitializeComponent() call 
 
    End Sub 
 
    'Form overrides dispose to clean up the component list. 
    Protected Overloads Overrides Sub Dispose(ByVal disposing As 
Boolean) 
        If disposing Then 
            If Not (components Is Nothing) Then 
                components.Dispose() 
            End If 
        End If 
        MyBase.Dispose(disposing) 
    End Sub 
 

    'Required by the Windows Form Designer 
    Private components As System.ComponentModel.IContainer 
 
    'NOTE: The following procedure is required by the Windows Form 
Designer 
    'It can be modified using the Windows Form Designer.   
    'Do not modify it using the code editor. 
    Friend WithEvents GroupBox1 As 
System.Windows.Forms.GroupBox 
    Friend WithEvents CheckBox2 As 
System.Windows.Forms.CheckBox 
    Friend WithEvents Button1 As System.Windows.Forms.Button 
    Friend WithEvents Label10 As System.Windows.Forms.Label 
    Public WithEvents Label11 As System.Windows.Forms.Label 
    Friend WithEvents Label12 As System.Windows.Forms.Label 
    Friend WithEvents Label13 As System.Windows.Forms.Label 
    Friend WithEvents Label14 As System.Windows.Forms.Label 
    Friend WithEvents Label15 As System.Windows.Forms.Label 
    Friend WithEvents CheckBox1 As 
System.Windows.Forms.CheckBox 
    Friend WithEvents GroupBox2 As 
System.Windows.Forms.GroupBox 
    Public WithEvents Button7 As System.Windows.Forms.Button 
    Friend WithEvents TextBox4 As System.Windows.Forms.TextBox 
    Public WithEvents Button5 As System.Windows.Forms.Button 
    Public WithEvents Button6 As System.Windows.Forms.Button 
    Friend WithEvents TextBox6 As System.Windows.Forms.TextBox 
    Public WithEvents CmdDownLoad As 
System.Windows.Forms.Button 
    Public WithEvents Button9 As System.Windows.Forms.Button 
    Friend WithEvents GroupBox6 As 
System.Windows.Forms.GroupBox 
    Friend WithEvents Label7 As System.Windows.Forms.Label 
    Friend WithEvents Label8 As System.Windows.Forms.Label 
    Friend WithEvents TextBox1 As System.Windows.Forms.TextBox 
    Friend WithEvents TextBox2 As System.Windows.Forms.TextBox 
    Friend WithEvents Label2 As System.Windows.Forms.Label 
    Friend WithEvents Label3 As System.Windows.Forms.Label 
    Friend WithEvents Label4 As System.Windows.Forms.Label 
    Friend WithEvents Label5 As System.Windows.Forms.Label 
    Friend WithEvents Label6 As System.Windows.Forms.Label 
    Friend WithEvents TextBox3 As System.Windows.Forms.TextBox 
    Friend WithEvents Label9 As System.Windows.Forms.Label 
    Friend WithEvents Button4 As System.Windows.Forms.Button 
    Friend WithEvents GroupBox11 As 
System.Windows.Forms.GroupBox 
    Friend WithEvents TextBox11 As 
System.Windows.Forms.TextBox 
    Friend WithEvents Label18 As System.Windows.Forms.Label 
    Friend WithEvents Label25 As System.Windows.Forms.Label 
    Friend WithEvents CheckBox5 As 
System.Windows.Forms.CheckBox 
    Friend WithEvents Label17 As System.Windows.Forms.Label 
    Friend WithEvents Label1 As System.Windows.Forms.Label 
    Friend WithEvents CheckBox4 As 
System.Windows.Forms.CheckBox 
    Friend WithEvents TextBox10 As 
System.Windows.Forms.TextBox 
    Friend WithEvents Label23 As System.Windows.Forms.Label 
    Friend WithEvents Label24 As System.Windows.Forms.Label 
    Friend WithEvents Label42 As System.Windows.Forms.Label 
    Friend WithEvents TextBox76 As 
System.Windows.Forms.TextBox 
    Friend WithEvents Label39 As System.Windows.Forms.Label 
    Friend WithEvents TextBox75 As 
System.Windows.Forms.TextBox 
    Friend WithEvents Button3 As System.Windows.Forms.Button 
    Public WithEvents Label103 As System.Windows.Forms.Label 
    Friend WithEvents TextBox148 As 
System.Windows.Forms.TextBox 
    Friend WithEvents Button8 As System.Windows.Forms.Button 
    Friend WithEvents TextBox8 As System.Windows.Forms.TextBox 
    Public WithEvents Label16 As System.Windows.Forms.Label 
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    Friend WithEvents TextBox13 As 
System.Windows.Forms.TextBox 
    Public WithEvents Label19 As System.Windows.Forms.Label 
    Friend WithEvents GroupBox3 As 
System.Windows.Forms.GroupBox 
    Public WithEvents Label20 As System.Windows.Forms.Label 
    Public WithEvents Label21 As System.Windows.Forms.Label 
    Public WithEvents Label22 As System.Windows.Forms.Label 
    Friend WithEvents ComboBox1 As 
System.Windows.Forms.ComboBox 
    Public WithEvents Label26 As System.Windows.Forms.Label 
    Public WithEvents Label27 As System.Windows.Forms.Label 
    Public WithEvents Label28 As System.Windows.Forms.Label 
    Friend WithEvents TextBox5 As System.Windows.Forms.TextBox 
    Public WithEvents Label29 As System.Windows.Forms.Label 
    Public WithEvents Label30 As System.Windows.Forms.Label 
    Friend WithEvents MainMenu1 As 
System.Windows.Forms.MainMenu 
    Friend WithEvents MenuItem1 As 
System.Windows.Forms.MenuItem 
    Friend WithEvents TabControl1 As 
System.Windows.Forms.TabControl 
    Friend WithEvents TabPage1 As System.Windows.Forms.TabPage 
    Friend WithEvents TabPage2 As System.Windows.Forms.TabPage 
    Friend WithEvents Button2 As System.Windows.Forms.Button 
    Friend WithEvents Button10 As System.Windows.Forms.Button 
    Friend WithEvents Button11 As System.Windows.Forms.Button 
    Friend WithEvents Button12 As System.Windows.Forms.Button 
    Friend WithEvents Button13 As System.Windows.Forms.Button 
    Friend WithEvents Button14 As System.Windows.Forms.Button 
    Friend WithEvents Button15 As System.Windows.Forms.Button 
    Public WithEvents Label34 As System.Windows.Forms.Label 
    Friend WithEvents GroupBox4 As 
System.Windows.Forms.GroupBox 
    Friend WithEvents GroupBox5 As 
System.Windows.Forms.GroupBox 
    Friend WithEvents Label33 As System.Windows.Forms.Label 
    Friend WithEvents TextBox7 As System.Windows.Forms.TextBox 
    Friend WithEvents Button16 As System.Windows.Forms.Button 
    Friend WithEvents Button17 As System.Windows.Forms.Button 
    Friend WithEvents Button18 As System.Windows.Forms.Button 
    Friend WithEvents TextBox15 As 
System.Windows.Forms.TextBox 
    Friend WithEvents Button19 As System.Windows.Forms.Button 
    Friend WithEvents Button21 As System.Windows.Forms.Button 
    Friend WithEvents Button20 As System.Windows.Forms.Button 
    Friend WithEvents Button22 As System.Windows.Forms.Button 
    Friend WithEvents Button23 As System.Windows.Forms.Button 
    Friend WithEvents Button24 As System.Windows.Forms.Button 
    Friend WithEvents Button25 As System.Windows.Forms.Button 
    Friend WithEvents Button27 As System.Windows.Forms.Button 
    Friend WithEvents Button28 As System.Windows.Forms.Button 
    Friend WithEvents Button30 As System.Windows.Forms.Button 
    Friend WithEvents Button32 As System.Windows.Forms.Button 
    Friend WithEvents Button26 As System.Windows.Forms.Button 
    Friend WithEvents Button29 As System.Windows.Forms.Button 
    <System.Diagnostics.DebuggerStepThrough()> Private Sub 
InitializeComponent() 
        Me.GroupBox1 = New System.Windows.Forms.GroupBox 
        Me.CheckBox2 = New System.Windows.Forms.CheckBox 
        Me.Button1 = New System.Windows.Forms.Button 
        Me.Label10 = New System.Windows.Forms.Label 
        Me.Label11 = New System.Windows.Forms.Label 
        Me.Label12 = New System.Windows.Forms.Label 
        Me.Label13 = New System.Windows.Forms.Label 
        Me.Label14 = New System.Windows.Forms.Label 
        Me.Label15 = New System.Windows.Forms.Label 
        Me.CheckBox1 = New System.Windows.Forms.CheckBox 
        Me.GroupBox2 = New System.Windows.Forms.GroupBox 
        Me.Button7 = New System.Windows.Forms.Button 
        Me.TextBox4 = New System.Windows.Forms.TextBox 
        Me.Button5 = New System.Windows.Forms.Button 
        Me.Button6 = New System.Windows.Forms.Button 
        Me.TextBox6 = New System.Windows.Forms.TextBox 
        Me.CmdDownLoad = New System.Windows.Forms.Button 
        Me.Button9 = New System.Windows.Forms.Button 
        Me.GroupBox6 = New System.Windows.Forms.GroupBox 
        Me.Label7 = New System.Windows.Forms.Label 

        Me.Label8 = New System.Windows.Forms.Label 
        Me.TextBox1 = New System.Windows.Forms.TextBox 
        Me.TextBox2 = New System.Windows.Forms.TextBox 
        Me.Label2 = New System.Windows.Forms.Label 
        Me.Label3 = New System.Windows.Forms.Label 
        Me.Label4 = New System.Windows.Forms.Label 
        Me.Label5 = New System.Windows.Forms.Label 
        Me.Label6 = New System.Windows.Forms.Label 
        Me.TextBox3 = New System.Windows.Forms.TextBox 
        Me.Label9 = New System.Windows.Forms.Label 
        Me.Button4 = New System.Windows.Forms.Button 
        Me.GroupBox11 = New System.Windows.Forms.GroupBox 
        Me.TextBox11 = New System.Windows.Forms.TextBox 
        Me.Label18 = New System.Windows.Forms.Label 
        Me.Label25 = New System.Windows.Forms.Label 
        Me.CheckBox5 = New System.Windows.Forms.CheckBox 
        Me.Label17 = New System.Windows.Forms.Label 
        Me.Label1 = New System.Windows.Forms.Label 
        Me.CheckBox4 = New System.Windows.Forms.CheckBox 
        Me.TextBox10 = New System.Windows.Forms.TextBox 
        Me.Label23 = New System.Windows.Forms.Label 
        Me.Label24 = New System.Windows.Forms.Label 
        Me.Label42 = New System.Windows.Forms.Label 
        Me.TextBox76 = New System.Windows.Forms.TextBox 
        Me.Label39 = New System.Windows.Forms.Label 
        Me.TextBox75 = New System.Windows.Forms.TextBox 
        Me.Button3 = New System.Windows.Forms.Button 
        Me.Label103 = New System.Windows.Forms.Label 
        Me.TextBox148 = New System.Windows.Forms.TextBox 
        Me.Button8 = New System.Windows.Forms.Button 
        Me.TextBox8 = New System.Windows.Forms.TextBox 
        Me.Label16 = New System.Windows.Forms.Label 
        Me.TextBox13 = New System.Windows.Forms.TextBox 
        Me.Label19 = New System.Windows.Forms.Label 
        Me.GroupBox3 = New System.Windows.Forms.GroupBox 
        Me.Label30 = New System.Windows.Forms.Label 
        Me.Label29 = New System.Windows.Forms.Label 
        Me.TextBox5 = New System.Windows.Forms.TextBox 
        Me.Label28 = New System.Windows.Forms.Label 
        Me.Label27 = New System.Windows.Forms.Label 
        Me.Label26 = New System.Windows.Forms.Label 
        Me.ComboBox1 = New System.Windows.Forms.ComboBox 
        Me.Label22 = New System.Windows.Forms.Label 
        Me.Label21 = New System.Windows.Forms.Label 
        Me.Label20 = New System.Windows.Forms.Label 
        Me.Button17 = New System.Windows.Forms.Button 
        Me.MainMenu1 = New System.Windows.Forms.MainMenu 
        Me.MenuItem1 = New System.Windows.Forms.MenuItem 
        Me.TabControl1 = New System.Windows.Forms.TabControl 
        Me.TabPage1 = New System.Windows.Forms.TabPage 
        Me.Button25 = New System.Windows.Forms.Button 
        Me.Button24 = New System.Windows.Forms.Button 
        Me.Button23 = New System.Windows.Forms.Button 
        Me.Button22 = New System.Windows.Forms.Button 
        Me.Button20 = New System.Windows.Forms.Button 
        Me.Button21 = New System.Windows.Forms.Button 
        Me.Button19 = New System.Windows.Forms.Button 
        Me.Button18 = New System.Windows.Forms.Button 
        Me.TextBox15 = New System.Windows.Forms.TextBox 
        Me.TabPage2 = New System.Windows.Forms.TabPage 
        Me.GroupBox5 = New System.Windows.Forms.GroupBox 
        Me.Button32 = New System.Windows.Forms.Button 
        Me.Button30 = New System.Windows.Forms.Button 
        Me.Label33 = New System.Windows.Forms.Label 
        Me.TextBox7 = New System.Windows.Forms.TextBox 
        Me.Button13 = New System.Windows.Forms.Button 
        Me.Button15 = New System.Windows.Forms.Button 
        Me.Button14 = New System.Windows.Forms.Button 
        Me.Label34 = New System.Windows.Forms.Label 
        Me.Button16 = New System.Windows.Forms.Button 
        Me.GroupBox4 = New System.Windows.Forms.GroupBox 
        Me.Button28 = New System.Windows.Forms.Button 
        Me.Button27 = New System.Windows.Forms.Button 
        Me.Button10 = New System.Windows.Forms.Button 
        Me.Button11 = New System.Windows.Forms.Button 
        Me.Button2 = New System.Windows.Forms.Button 
        Me.Button12 = New System.Windows.Forms.Button 
        Me.Button26 = New System.Windows.Forms.Button 



Appendix VI. Toast Making System – Source Code 122  

 
 

        Me.Button29 = New System.Windows.Forms.Button 
        Me.GroupBox1.SuspendLayout() 
        Me.GroupBox2.SuspendLayout() 
        Me.GroupBox6.SuspendLayout() 
        Me.GroupBox11.SuspendLayout() 
        Me.GroupBox3.SuspendLayout() 
        Me.TabControl1.SuspendLayout() 
        Me.TabPage1.SuspendLayout() 
        Me.TabPage2.SuspendLayout() 
        Me.GroupBox5.SuspendLayout() 
        Me.GroupBox4.SuspendLayout() 
        Me.SuspendLayout() 
        ' 
        'GroupBox1 
        ' 
        Me.GroupBox1.Controls.Add(Me.CheckBox2) 
        Me.GroupBox1.Controls.Add(Me.Button1) 
        Me.GroupBox1.Controls.Add(Me.Label10) 
        Me.GroupBox1.Controls.Add(Me.Label11) 
        Me.GroupBox1.Controls.Add(Me.Label12) 
        Me.GroupBox1.Controls.Add(Me.Label13) 
        Me.GroupBox1.Controls.Add(Me.Label14) 
        Me.GroupBox1.Controls.Add(Me.Label15) 
        Me.GroupBox1.Controls.Add(Me.CheckBox1) 
        Me.GroupBox1.Font = New System.Drawing.Font("Arial", 
8.25!, System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.GroupBox1.Location = New System.Drawing.Point(32, 24) 
        Me.GroupBox1.Name = "GroupBox1" 
        Me.GroupBox1.Size = New System.Drawing.Size(240, 184) 
        Me.GroupBox1.TabIndex = 70 
        Me.GroupBox1.TabStop = False 
        Me.GroupBox1.Text = "Communication" 
        ' 
        'CheckBox2 
        ' 
        Me.CheckBox2.Location = New System.Drawing.Point(80, 160) 
        Me.CheckBox2.Name = "CheckBox2" 
        Me.CheckBox2.Size = New System.Drawing.Size(16, 16) 
        Me.CheckBox2.TabIndex = 26 
        Me.CheckBox2.Text = "Servo" 
        ' 
        'Button1 
        ' 
        Me.Button1.BackColor = 
System.Drawing.Color.FromArgb(CType(255, Byte), CType(255, 
Byte), CType(192, Byte)) 
        Me.Button1.Cursor = System.Windows.Forms.Cursors.Default 
        Me.Button1.Font = New System.Drawing.Font("Arial", 8.0!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Button1.ForeColor = 
System.Drawing.SystemColors.ControlText 
        Me.Button1.Location = New System.Drawing.Point(8, 24) 
        Me.Button1.Name = "Button1" 
        Me.Button1.RightToLeft = 
System.Windows.Forms.RightToLeft.No 
        Me.Button1.Size = New System.Drawing.Size(104, 40) 
        Me.Button1.TabIndex = 4 
        Me.Button1.Text = "Open Communication" 
        ' 
        'Label10 
        ' 
        Me.Label10.Location = New System.Drawing.Point(104, 136) 
        Me.Label10.Name = "Label10" 
        Me.Label10.Size = New System.Drawing.Size(80, 16) 
        Me.Label10.TabIndex = 31 
        ' 
        'Label11 
        ' 
        Me.Label11.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label11.Location = New System.Drawing.Point(40, 136) 
        Me.Label11.Name = "Label11" 
        Me.Label11.Size = New System.Drawing.Size(36, 16) 
        Me.Label11.TabIndex = 32 
        Me.Label11.Text = "Mode:" 

        ' 
        'Label12 
        ' 
        Me.Label12.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label12.Location = New System.Drawing.Point(40, 160) 
        Me.Label12.Name = "Label12" 
        Me.Label12.Size = New System.Drawing.Size(36, 16) 
        Me.Label12.TabIndex = 33 
        Me.Label12.Text = "Servo:" 
        ' 
        'Label13 
        ' 
        Me.Label13.Location = New System.Drawing.Point(104, 160) 
        Me.Label13.Name = "Label13" 
        Me.Label13.Size = New System.Drawing.Size(80, 16) 
        Me.Label13.TabIndex = 34 
        ' 
        'Label14 
        ' 
        Me.Label14.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label14.Location = New System.Drawing.Point(8, 104) 
        Me.Label14.Name = "Label14" 
        Me.Label14.Size = New System.Drawing.Size(128, 16) 
        Me.Label14.TabIndex = 35 
        Me.Label14.Text = "Communication Status:" 
        ' 
        'Label15 
        ' 
        Me.Label15.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label15.Location = New System.Drawing.Point(136, 104) 
        Me.Label15.Name = "Label15" 
        Me.Label15.Size = New System.Drawing.Size(96, 16) 
        Me.Label15.TabIndex = 36 
        Me.Label15.Text = "Disconnected" 
        ' 
        'CheckBox1 
        ' 
        Me.CheckBox1.Checked = True 
        Me.CheckBox1.CheckState = 
System.Windows.Forms.CheckState.Checked 
        Me.CheckBox1.Location = New System.Drawing.Point(80, 136) 
        Me.CheckBox1.Name = "CheckBox1" 
        Me.CheckBox1.Size = New System.Drawing.Size(16, 16) 
        Me.CheckBox1.TabIndex = 25 
        Me.CheckBox1.Text = "Teach / Play" 
        ' 
        'GroupBox2 
        ' 
        Me.GroupBox2.Controls.Add(Me.Button7) 
        Me.GroupBox2.Controls.Add(Me.TextBox4) 
        Me.GroupBox2.Controls.Add(Me.Button5) 
        Me.GroupBox2.Controls.Add(Me.Button6) 
        Me.GroupBox2.Controls.Add(Me.TextBox6) 
        Me.GroupBox2.Controls.Add(Me.CmdDownLoad) 
        Me.GroupBox2.Controls.Add(Me.Button9) 
        Me.GroupBox2.Font = New System.Drawing.Font("Arial", 
8.25!, System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.GroupBox2.Location = New System.Drawing.Point(32, 238) 
        Me.GroupBox2.Name = "GroupBox2" 
        Me.GroupBox2.Size = New System.Drawing.Size(240, 192) 
        Me.GroupBox2.TabIndex = 71 
        Me.GroupBox2.TabStop = False 
        Me.GroupBox2.Text = "Download / Upload" 
        ' 
        'Button7 
        ' 
        Me.Button7.BackColor = 
System.Drawing.Color.FromArgb(CType(255, Byte), CType(255, 
Byte), CType(192, Byte)) 
        Me.Button7.Cursor = System.Windows.Forms.Cursors.Default 
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        Me.Button7.Font = New System.Drawing.Font("Arial", 8.0!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Button7.ForeColor = 
System.Drawing.SystemColors.ControlText 
        Me.Button7.Location = New System.Drawing.Point(128, 48) 
        Me.Button7.Name = "Button7" 
        Me.Button7.RightToLeft = 
System.Windows.Forms.RightToLeft.No 
        Me.Button7.Size = New System.Drawing.Size(104, 40) 
        Me.Button7.TabIndex = 27 
        Me.Button7.Text = "Upload Job" 
        ' 
        'TextBox4 
        ' 
        Me.TextBox4.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.TextBox4.Location = New System.Drawing.Point(128, 24) 
        Me.TextBox4.Name = "TextBox4" 
        Me.TextBox4.Size = New System.Drawing.Size(104, 20) 
        Me.TextBox4.TabIndex = 28 
        Me.TextBox4.Text = "BAGS1.JBI" 
        ' 
        'Button5 
        ' 
        Me.Button5.BackColor = 
System.Drawing.Color.FromArgb(CType(255, Byte), CType(255, 
Byte), CType(192, Byte)) 
        Me.Button5.Cursor = System.Windows.Forms.Cursors.Default 
        Me.Button5.Font = New System.Drawing.Font("Arial", 8.0!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Button5.ForeColor = 
System.Drawing.SystemColors.ControlText 
        Me.Button5.Location = New System.Drawing.Point(8, 96) 
        Me.Button5.Name = "Button5" 
        Me.Button5.RightToLeft = 
System.Windows.Forms.RightToLeft.No 
        Me.Button5.Size = New System.Drawing.Size(104, 40) 
        Me.Button5.TabIndex = 23 
        Me.Button5.Text = "Delete Job" 
        ' 
        'Button6 
        ' 
        Me.Button6.BackColor = 
System.Drawing.Color.FromArgb(CType(255, Byte), CType(255, 
Byte), CType(192, Byte)) 
        Me.Button6.Cursor = System.Windows.Forms.Cursors.Default 
        Me.Button6.Font = New System.Drawing.Font("Arial", 8.0!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Button6.ForeColor = 
System.Drawing.SystemColors.ControlText 
        Me.Button6.Location = New System.Drawing.Point(8, 144) 
        Me.Button6.Name = "Button6" 
        Me.Button6.RightToLeft = 
System.Windows.Forms.RightToLeft.No 
        Me.Button6.Size = New System.Drawing.Size(104, 40) 
        Me.Button6.TabIndex = 24 
        Me.Button6.Text = "Run Job" 
        ' 
        'TextBox6 
        ' 
        Me.TextBox6.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.TextBox6.Location = New System.Drawing.Point(8, 24) 
        Me.TextBox6.Name = "TextBox6" 
        Me.TextBox6.Size = New System.Drawing.Size(104, 20) 
        Me.TextBox6.TabIndex = 63 
        Me.TextBox6.Text = "POLICY1.JBI" 
        ' 
        'CmdDownLoad 
        ' 
        Me.CmdDownLoad.BackColor = 
System.Drawing.Color.FromArgb(CType(255, Byte), CType(255, 
Byte), CType(192, Byte)) 

        Me.CmdDownLoad.Cursor = 
System.Windows.Forms.Cursors.Default 
        Me.CmdDownLoad.Font = New System.Drawing.Font("Arial", 
8.0!, System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.CmdDownLoad.ForeColor = 
System.Drawing.SystemColors.ControlText 
        Me.CmdDownLoad.Location = New System.Drawing.Point(8, 
48) 
        Me.CmdDownLoad.Name = "CmdDownLoad" 
        Me.CmdDownLoad.RightToLeft = 
System.Windows.Forms.RightToLeft.No 
        Me.CmdDownLoad.Size = New System.Drawing.Size(104, 40) 
        Me.CmdDownLoad.TabIndex = 1 
        Me.CmdDownLoad.Text = "Download Job" 
        ' 
        'Button9 
        ' 
        Me.Button9.BackColor = System.Drawing.Color.Red 
        Me.Button9.Cursor = System.Windows.Forms.Cursors.Default 
        Me.Button9.Font = New System.Drawing.Font("Arial", 8.0!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Button9.ForeColor = System.Drawing.Color.Yellow 
        Me.Button9.Location = New System.Drawing.Point(128, 96) 
        Me.Button9.Name = "Button9" 
        Me.Button9.RightToLeft = 
System.Windows.Forms.RightToLeft.No 
        Me.Button9.Size = New System.Drawing.Size(104, 40) 
        Me.Button9.TabIndex = 30 
        Me.Button9.Text = "Emergency Stop" 
        ' 
        'GroupBox6 
        ' 
        Me.GroupBox6.Controls.Add(Me.Label7) 
        Me.GroupBox6.Controls.Add(Me.Label8) 
        Me.GroupBox6.Controls.Add(Me.TextBox1) 
        Me.GroupBox6.Controls.Add(Me.TextBox2) 
        Me.GroupBox6.Controls.Add(Me.Label2) 
        Me.GroupBox6.Controls.Add(Me.Label3) 
        Me.GroupBox6.Controls.Add(Me.Label4) 
        Me.GroupBox6.Controls.Add(Me.Label5) 
        Me.GroupBox6.Controls.Add(Me.Label6) 
        Me.GroupBox6.Controls.Add(Me.TextBox3) 
        Me.GroupBox6.Controls.Add(Me.Label9) 
        Me.GroupBox6.Controls.Add(Me.Button4) 
        Me.GroupBox6.Font = New System.Drawing.Font("Arial", 
8.25!, System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.GroupBox6.Location = New System.Drawing.Point(304, 26) 
        Me.GroupBox6.Name = "GroupBox6" 
        Me.GroupBox6.Size = New System.Drawing.Size(208, 176) 
        Me.GroupBox6.TabIndex = 72 
        Me.GroupBox6.TabStop = False 
        Me.GroupBox6.Text = "Messeges" 
        ' 
        'Label7 
        ' 
        Me.Label7.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label7.Location = New System.Drawing.Point(152, 72) 
        Me.Label7.Name = "Label7" 
        Me.Label7.Size = New System.Drawing.Size(32, 16) 
        Me.Label7.TabIndex = 18 
        Me.Label7.Text = "(1)" 
        ' 
        'Label8 
        ' 
        Me.Label8.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label8.Location = New System.Drawing.Point(152, 40) 
        Me.Label8.Name = "Label8" 
        Me.Label8.Size = New System.Drawing.Size(48, 16) 
        Me.Label8.TabIndex = 19 
        Me.Label8.Text = "(not -1)" 
        ' 
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        'TextBox1 
        ' 
        Me.TextBox1.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.TextBox1.Location = New System.Drawing.Point(88, 32) 
        Me.TextBox1.Name = "TextBox1" 
        Me.TextBox1.Size = New System.Drawing.Size(64, 20) 
        Me.TextBox1.TabIndex = 8 
        Me.TextBox1.Text = "" 
        ' 
        'TextBox2 
        ' 
        Me.TextBox2.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.TextBox2.Location = New System.Drawing.Point(88, 72) 
        Me.TextBox2.Name = "TextBox2" 
        Me.TextBox2.Size = New System.Drawing.Size(64, 20) 
        Me.TextBox2.TabIndex = 9 
        Me.TextBox2.Text = "" 
        ' 
        'Label2 
        ' 
        Me.Label2.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label2.Location = New System.Drawing.Point(96, 16) 
        Me.Label2.Name = "Label2" 
        Me.Label2.Size = New System.Drawing.Size(32, 16) 
        Me.Label2.TabIndex = 11 
        Me.Label2.Text = "nCid" 
        ' 
        'Label3 
        ' 
        Me.Label3.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label3.Location = New System.Drawing.Point(96, 56) 
        Me.Label3.Name = "Label3" 
        Me.Label3.Size = New System.Drawing.Size(32, 16) 
        Me.Label3.TabIndex = 12 
        Me.Label3.Text = "rc" 
        ' 
        'Label4 
        ' 
        Me.Label4.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label4.Location = New System.Drawing.Point(8, 32) 
        Me.Label4.Name = "Label4" 
        Me.Label4.Size = New System.Drawing.Size(64, 16) 
        Me.Label4.TabIndex = 13 
        Me.Label4.Text = "BscOpen" 
        ' 
        'Label5 
        ' 
        Me.Label5.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label5.Location = New System.Drawing.Point(8, 72) 
        Me.Label5.Name = "Label5" 
        Me.Label5.Size = New System.Drawing.Size(64, 16) 
        Me.Label5.TabIndex = 14 
        Me.Label5.Text = "BscConnect" 
        ' 
        'Label6 
        ' 
        Me.Label6.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label6.Location = New System.Drawing.Point(8, 104) 
        Me.Label6.Name = "Label6" 
        Me.Label6.Size = New System.Drawing.Size(80, 16) 
        Me.Label6.TabIndex = 16 
        Me.Label6.Text = "BscDownLoad" 
        ' 
        'TextBox3 

        ' 
        Me.TextBox3.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.TextBox3.Location = New System.Drawing.Point(88, 104) 
        Me.TextBox3.Name = "TextBox3" 
        Me.TextBox3.Size = New System.Drawing.Size(64, 20) 
        Me.TextBox3.TabIndex = 15 
        Me.TextBox3.Text = "" 
        ' 
        'Label9 
        ' 
        Me.Label9.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label9.Location = New System.Drawing.Point(152, 112) 
        Me.Label9.Name = "Label9" 
        Me.Label9.Size = New System.Drawing.Size(32, 16) 
        Me.Label9.TabIndex = 20 
        Me.Label9.Text = "(0)" 
        ' 
        'Button4 
        ' 
        Me.Button4.BackColor = 
System.Drawing.Color.FromArgb(CType(255, Byte), CType(255, 
Byte), CType(192, Byte)) 
        Me.Button4.Cursor = System.Windows.Forms.Cursors.Default 
        Me.Button4.Font = New System.Drawing.Font("Arial", 8.0!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Button4.ForeColor = 
System.Drawing.SystemColors.ControlText 
        Me.Button4.Location = New System.Drawing.Point(72, 136) 
        Me.Button4.Name = "Button4" 
        Me.Button4.RightToLeft = 
System.Windows.Forms.RightToLeft.No 
        Me.Button4.Size = New System.Drawing.Size(56, 32) 
        Me.Button4.TabIndex = 21 
        Me.Button4.Text = "Clear" 
        ' 
        'GroupBox11 
        ' 
        Me.GroupBox11.Controls.Add(Me.TextBox11) 
        Me.GroupBox11.Controls.Add(Me.Label18) 
        Me.GroupBox11.Controls.Add(Me.Label25) 
        Me.GroupBox11.Controls.Add(Me.CheckBox5) 
        Me.GroupBox11.Controls.Add(Me.Label17) 
        Me.GroupBox11.Controls.Add(Me.Label1) 
        Me.GroupBox11.Controls.Add(Me.CheckBox4) 
        Me.GroupBox11.Controls.Add(Me.TextBox10) 
        Me.GroupBox11.Controls.Add(Me.Label23) 
        Me.GroupBox11.Controls.Add(Me.Label24) 
        Me.GroupBox11.Location = New System.Drawing.Point(552, 
27) 
        Me.GroupBox11.Name = "GroupBox11" 
        Me.GroupBox11.Size = New System.Drawing.Size(168, 176) 
        Me.GroupBox11.TabIndex = 83 
        Me.GroupBox11.TabStop = False 
        Me.GroupBox11.Text = "Operational Mode" 
        ' 
        'TextBox11 
        ' 
        Me.TextBox11.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.TextBox11.Location = New System.Drawing.Point(16, 152) 
        Me.TextBox11.Name = "TextBox11" 
        Me.TextBox11.Size = New System.Drawing.Size(72, 20) 
        Me.TextBox11.TabIndex = 88 
        Me.TextBox11.Text = "5" 
        ' 
        'Label18 
        ' 
        Me.Label18.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label18.Location = New System.Drawing.Point(96, 152) 
        Me.Label18.Name = "Label18" 
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        Me.Label18.Size = New System.Drawing.Size(24, 16) 
        Me.Label18.TabIndex = 90 
        Me.Label18.Text = "cm" 
        ' 
        'Label25 
        ' 
        Me.Label25.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label25.Location = New System.Drawing.Point(16, 128) 
        Me.Label25.Name = "Label25" 
        Me.Label25.Size = New System.Drawing.Size(88, 16) 
        Me.Label25.TabIndex = 89 
        Me.Label25.Text = "Wrist Step Size:" 
        ' 
        'CheckBox5 
        ' 
        Me.CheckBox5.Checked = True 
        Me.CheckBox5.CheckState = 
System.Windows.Forms.CheckState.Checked 
        Me.CheckBox5.Location = New System.Drawing.Point(32, 48) 
        Me.CheckBox5.Name = "CheckBox5" 
        Me.CheckBox5.Size = New System.Drawing.Size(16, 16) 
        Me.CheckBox5.TabIndex = 87 
        ' 
        'Label17 
        ' 
        Me.Label17.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Underline, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label17.Location = New System.Drawing.Point(16, 24) 
        Me.Label17.Name = "Label17" 
        Me.Label17.Size = New System.Drawing.Size(80, 16) 
        Me.Label17.TabIndex = 86 
        Me.Label17.Text = "Incremental" 
        ' 
        'Label1 
        ' 
        Me.Label1.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Underline, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label1.Location = New System.Drawing.Point(96, 24) 
        Me.Label1.Name = "Label1" 
        Me.Label1.Size = New System.Drawing.Size(64, 16) 
        Me.Label1.TabIndex = 85 
        Me.Label1.Text = "Continious" 
        ' 
        'CheckBox4 
        ' 
        Me.CheckBox4.Location = New System.Drawing.Point(112, 48) 
        Me.CheckBox4.Name = "CheckBox4" 
        Me.CheckBox4.Size = New System.Drawing.Size(16, 16) 
        Me.CheckBox4.TabIndex = 84 
        ' 
        'TextBox10 
        ' 
        Me.TextBox10.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.TextBox10.Location = New System.Drawing.Point(16, 96) 
        Me.TextBox10.Name = "TextBox10" 
        Me.TextBox10.Size = New System.Drawing.Size(72, 20) 
        Me.TextBox10.TabIndex = 84 
        Me.TextBox10.Text = "10" 
        ' 
        'Label23 
        ' 
        Me.Label23.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label23.Location = New System.Drawing.Point(96, 96) 
        Me.Label23.Name = "Label23" 
        Me.Label23.Size = New System.Drawing.Size(24, 16) 
        Me.Label23.TabIndex = 86 
        Me.Label23.Text = "cm" 
        ' 
        'Label24 
        ' 

        Me.Label24.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label24.Location = New System.Drawing.Point(16, 72) 
        Me.Label24.Name = "Label24" 
        Me.Label24.Size = New System.Drawing.Size(88, 16) 
        Me.Label24.TabIndex = 85 
        Me.Label24.Text = "Arm Step Size:" 
        ' 
        'Label42 
        ' 
        Me.Label42.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label42.Location = New System.Drawing.Point(16, 189) 
        Me.Label42.Name = "Label42" 
        Me.Label42.Size = New System.Drawing.Size(88, 16) 
        Me.Label42.TabIndex = 294 
        Me.Label42.Text = "Matlab Function:" 
        ' 
        'TextBox76 
        ' 
        Me.TextBox76.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.TextBox76.Location = New System.Drawing.Point(16, 205) 
        Me.TextBox76.Name = "TextBox76" 
        Me.TextBox76.Size = New System.Drawing.Size(128, 20) 
        Me.TextBox76.TabIndex = 293 
        Me.TextBox76.Text = "toast18(0,0)" 
        ' 
        'Label39 
        ' 
        Me.Label39.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label39.Location = New System.Drawing.Point(16, 136) 
        Me.Label39.Name = "Label39" 
        Me.Label39.Size = New System.Drawing.Size(112, 16) 
        Me.Label39.TabIndex = 292 
        Me.Label39.Text = "Resulting Sequence:" 
        ' 
        'TextBox75 
        ' 
        Me.TextBox75.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.TextBox75.Location = New System.Drawing.Point(16, 156) 
        Me.TextBox75.Name = "TextBox75" 
        Me.TextBox75.Size = New System.Drawing.Size(128, 20) 
        Me.TextBox75.TabIndex = 291 
        Me.TextBox75.Text = "" 
        ' 
        'Button3 
        ' 
        Me.Button3.BackColor = System.Drawing.Color.SpringGreen 
        Me.Button3.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Button3.Location = New System.Drawing.Point(16, 32) 
        Me.Button3.Name = "Button3" 
        Me.Button3.Size = New System.Drawing.Size(112, 32) 
        Me.Button3.TabIndex = 290 
        Me.Button3.Text = "Create Scheduling  Policy" 
        ' 
        'Label103 
        ' 
        Me.Label103.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label103.Location = New System.Drawing.Point(16, 240) 
        Me.Label103.Name = "Label103" 
        Me.Label103.Size = New System.Drawing.Size(120, 16) 
        Me.Label103.TabIndex = 299 
        Me.Label103.Text = "Directory:" 
        ' 
        'TextBox148 
        ' 
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        Me.TextBox148.Font = New System.Drawing.Font("Arial", 
8.25!, System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.TextBox148.Location = New System.Drawing.Point(16, 
256) 
        Me.TextBox148.Name = "TextBox148" 
        Me.TextBox148.Size = New System.Drawing.Size(128, 20) 
        Me.TextBox148.TabIndex = 298 
        Me.TextBox148.Text = "c:/amit/toast/toast/matlab/temp" 
        ' 
        'Button8 
        ' 
        Me.Button8.BackColor = System.Drawing.Color.Aqua 
        Me.Button8.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Button8.Location = New System.Drawing.Point(200, 32) 
        Me.Button8.Name = "Button8" 
        Me.Button8.Size = New System.Drawing.Size(112, 32) 
        Me.Button8.TabIndex = 300 
        Me.Button8.Text = "Run Toasting Sequence" 
        ' 
        'TextBox8 
        ' 
        Me.TextBox8.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.TextBox8.Location = New System.Drawing.Point(200, 104) 
        Me.TextBox8.Name = "TextBox8" 
        Me.TextBox8.Size = New System.Drawing.Size(128, 20) 
        Me.TextBox8.TabIndex = 301 
        Me.TextBox8.Text = "" 
        ' 
        'Label16 
        ' 
        Me.Label16.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label16.Location = New System.Drawing.Point(200, 80) 
        Me.Label16.Name = "Label16" 
        Me.Label16.Size = New System.Drawing.Size(120, 16) 
        Me.Label16.TabIndex = 302 
        Me.Label16.Text = "Next Station:" 
        ' 
        'TextBox13 
        ' 
        Me.TextBox13.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.TextBox13.Location = New System.Drawing.Point(200, 
154) 
        Me.TextBox13.Name = "TextBox13" 
        Me.TextBox13.Size = New System.Drawing.Size(128, 20) 
        Me.TextBox13.TabIndex = 307 
        Me.TextBox13.Text = "" 
        ' 
        'Label19 
        ' 
        Me.Label19.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label19.Location = New System.Drawing.Point(200, 138) 
        Me.Label19.Name = "Label19" 
        Me.Label19.Size = New System.Drawing.Size(120, 16) 
        Me.Label19.TabIndex = 308 
        Me.Label19.Text = "Sequence Step:" 
        ' 
        'GroupBox3 
        ' 
        Me.GroupBox3.Controls.Add(Me.Label30) 
        Me.GroupBox3.Controls.Add(Me.Label29) 
        Me.GroupBox3.Controls.Add(Me.TextBox5) 
        Me.GroupBox3.Controls.Add(Me.Label28) 
        Me.GroupBox3.Controls.Add(Me.Label27) 
        Me.GroupBox3.Controls.Add(Me.Label26) 
        Me.GroupBox3.Controls.Add(Me.ComboBox1) 
        Me.GroupBox3.Controls.Add(Me.Label22) 
        Me.GroupBox3.Controls.Add(Me.Label21) 

        Me.GroupBox3.Controls.Add(Me.Label20) 
        Me.GroupBox3.Controls.Add(Me.Button3) 
        Me.GroupBox3.Controls.Add(Me.Label42) 
        Me.GroupBox3.Controls.Add(Me.TextBox76) 
        Me.GroupBox3.Controls.Add(Me.Label39) 
        Me.GroupBox3.Controls.Add(Me.TextBox75) 
        Me.GroupBox3.Controls.Add(Me.Label103) 
        Me.GroupBox3.Controls.Add(Me.TextBox148) 
        Me.GroupBox3.Controls.Add(Me.Button8) 
        Me.GroupBox3.Controls.Add(Me.TextBox8) 
        Me.GroupBox3.Controls.Add(Me.Label16) 
        Me.GroupBox3.Controls.Add(Me.TextBox13) 
        Me.GroupBox3.Controls.Add(Me.Label19) 
        Me.GroupBox3.Font = New System.Drawing.Font("Microsoft 
Sans Serif", 8.25!, System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(177, Byte)) 
        Me.GroupBox3.Location = New System.Drawing.Point(309, 
239) 
        Me.GroupBox3.Name = "GroupBox3" 
        Me.GroupBox3.Size = New System.Drawing.Size(488, 304) 
        Me.GroupBox3.TabIndex = 309 
        Me.GroupBox3.TabStop = False 
        Me.GroupBox3.Text = "Toasting System" 
        ' 
        'Label30 
        ' 
        Me.Label30.BackColor = System.Drawing.Color.Orange 
        Me.Label30.BorderStyle = 
System.Windows.Forms.BorderStyle.Fixed3D 
        Me.Label30.Font = New System.Drawing.Font("Arial", 9.75!, 
System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label30.Location = New System.Drawing.Point(200, 200) 
        Me.Label30.Name = "Label30" 
        Me.Label30.Size = New System.Drawing.Size(120, 40) 
        Me.Label30.TabIndex = 320 
        Me.Label30.Text = "Policy Creation Completed" 
        Me.Label30.TextAlign = 
System.Drawing.ContentAlignment.MiddleCenter 
        Me.Label30.Visible = False 
        ' 
        'Label29 
        ' 
        Me.Label29.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label29.Location = New System.Drawing.Point(352, 240) 
        Me.Label29.Name = "Label29" 
        Me.Label29.Size = New System.Drawing.Size(120, 16) 
        Me.Label29.TabIndex = 319 
        Me.Label29.Text = "# Of Finished Toasts" 
        ' 
        'TextBox5 
        ' 
        Me.TextBox5.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.TextBox5.Location = New System.Drawing.Point(352, 256) 
        Me.TextBox5.Name = "TextBox5" 
        Me.TextBox5.Size = New System.Drawing.Size(120, 20) 
        Me.TextBox5.TabIndex = 318 
        Me.TextBox5.Text = "" 
        ' 
        'Label28 
        ' 
        Me.Label28.BackColor = System.Drawing.Color.Red 
        Me.Label28.BorderStyle = 
System.Windows.Forms.BorderStyle.Fixed3D 
        Me.Label28.Font = New System.Drawing.Font("Arial", 9.75!, 
System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label28.Location = New System.Drawing.Point(352, 104) 
        Me.Label28.Name = "Label28" 
        Me.Label28.Size = New System.Drawing.Size(120, 24) 
        Me.Label28.TabIndex = 317 
        Me.Label28.Text = "Not Processing" 
        Me.Label28.TextAlign = 
System.Drawing.ContentAlignment.MiddleCenter 
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        ' 
        'Label27 
        ' 
        Me.Label27.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label27.Location = New System.Drawing.Point(352, 149) 
        Me.Label27.Name = "Label27" 
        Me.Label27.Size = New System.Drawing.Size(120, 16) 
        Me.Label27.TabIndex = 316 
        Me.Label27.Text = "Machine Indicators:" 
        ' 
        'Label26 
        ' 
        Me.Label26.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label26.Location = New System.Drawing.Point(16, 80) 
        Me.Label26.Name = "Label26" 
        Me.Label26.Size = New System.Drawing.Size(120, 16) 
        Me.Label26.TabIndex = 315 
        Me.Label26.Text = "Number Of Toasts:" 
        ' 
        'ComboBox1 
        ' 
        Me.ComboBox1.Items.AddRange(New Object() {"1 Toast", "2 
Toasts", "3 Toasts", "4 Toasts"}) 
        Me.ComboBox1.Location = New System.Drawing.Point(16, 
104) 
        Me.ComboBox1.Name = "ComboBox1" 
        Me.ComboBox1.Size = New System.Drawing.Size(128, 21) 
        Me.ComboBox1.TabIndex = 312 
        Me.ComboBox1.Text = "1 Toast" 
        ' 
        'Label22 
        ' 
        Me.Label22.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label22.Location = New System.Drawing.Point(352, 80) 
        Me.Label22.Name = "Label22" 
        Me.Label22.Size = New System.Drawing.Size(120, 16) 
        Me.Label22.TabIndex = 311 
        Me.Label22.Text = "Process Indicator:" 
        ' 
        'Label21 
        ' 
        Me.Label21.BackColor = System.Drawing.Color.Red 
        Me.Label21.BorderStyle = 
System.Windows.Forms.BorderStyle.Fixed3D 
        Me.Label21.Font = New System.Drawing.Font("Arial", 9.75!, 
System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label21.Location = New System.Drawing.Point(352, 201) 
        Me.Label21.Name = "Label21" 
        Me.Label21.Size = New System.Drawing.Size(120, 24) 
        Me.Label21.TabIndex = 310 
        Me.Label21.Text = "Not Buttering" 
        Me.Label21.TextAlign = 
System.Drawing.ContentAlignment.MiddleCenter 
        ' 
        'Label20 
        ' 
        Me.Label20.BackColor = System.Drawing.Color.Red 
        Me.Label20.BorderStyle = 
System.Windows.Forms.BorderStyle.Fixed3D 
        Me.Label20.Font = New System.Drawing.Font("Arial", 9.75!, 
System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label20.Location = New System.Drawing.Point(352, 169) 
        Me.Label20.Name = "Label20" 
        Me.Label20.Size = New System.Drawing.Size(120, 24) 
        Me.Label20.TabIndex = 309 
        Me.Label20.Text = "Not Toasting" 
        Me.Label20.TextAlign = 
System.Drawing.ContentAlignment.MiddleCenter 
        ' 
        'Button17 

        ' 
        Me.Button17.BackColor = System.Drawing.Color.Aqua 
        Me.Button17.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Button17.Location = New System.Drawing.Point(728, 136) 
        Me.Button17.Name = "Button17" 
        Me.Button17.Size = New System.Drawing.Size(112, 32) 
        Me.Button17.TabIndex = 321 
        Me.Button17.Text = "Run Toasting Sequence" 
        Me.Button17.Visible = False 
        ' 
        'MainMenu1 
        ' 
        Me.MainMenu1.MenuItems.AddRange(New 
System.Windows.Forms.MenuItem() {Me.MenuItem1}) 
        ' 
        'MenuItem1 
        ' 
        Me.MenuItem1.Index = 0 
        Me.MenuItem1.Text = "Exit" 
        ' 
        'TabControl1 
        ' 
        Me.TabControl1.Controls.Add(Me.TabPage1) 
        Me.TabControl1.Controls.Add(Me.TabPage2) 
        Me.TabControl1.Location = New System.Drawing.Point(0, 8) 
        Me.TabControl1.Name = "TabControl1" 
        Me.TabControl1.SelectedIndex = 0 
        Me.TabControl1.Size = New System.Drawing.Size(976, 608) 
        Me.TabControl1.TabIndex = 310 
        ' 
        'TabPage1 
        ' 
        Me.TabPage1.Controls.Add(Me.Button25) 
        Me.TabPage1.Controls.Add(Me.Button24) 
        Me.TabPage1.Controls.Add(Me.Button23) 
        Me.TabPage1.Controls.Add(Me.Button22) 
        Me.TabPage1.Controls.Add(Me.Button20) 
        Me.TabPage1.Controls.Add(Me.Button21) 
        Me.TabPage1.Controls.Add(Me.Button19) 
        Me.TabPage1.Controls.Add(Me.GroupBox2) 
        Me.TabPage1.Controls.Add(Me.GroupBox1) 
        Me.TabPage1.Controls.Add(Me.GroupBox6) 
        Me.TabPage1.Controls.Add(Me.GroupBox11) 
        Me.TabPage1.Controls.Add(Me.GroupBox3) 
        Me.TabPage1.Controls.Add(Me.Button18) 
        Me.TabPage1.Controls.Add(Me.TextBox15) 
        Me.TabPage1.Controls.Add(Me.Button17) 
        Me.TabPage1.Location = New System.Drawing.Point(4, 22) 
        Me.TabPage1.Name = "TabPage1" 
        Me.TabPage1.Size = New System.Drawing.Size(968, 582) 
        Me.TabPage1.TabIndex = 0 
        Me.TabPage1.Text = "Scheduling" 
        ' 
        'Button25 
        ' 
        Me.Button25.Location = New System.Drawing.Point(216, 440) 
        Me.Button25.Name = "Button25" 
        Me.Button25.Size = New System.Drawing.Size(72, 24) 
        Me.Button25.TabIndex = 330 
        Me.Button25.Text = "Button25" 
        Me.Button25.Visible = False 
        ' 
        'Button24 
        ' 
        Me.Button24.BackColor = System.Drawing.Color.Aqua 
        Me.Button24.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Button24.Location = New System.Drawing.Point(840, 424) 
        Me.Button24.Name = "Button24" 
        Me.Button24.Size = New System.Drawing.Size(112, 32) 
        Me.Button24.TabIndex = 329 
        Me.Button24.Text = "Grasp2" 
        Me.Button24.Visible = False 
        ' 
        'Button23 
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        ' 
        Me.Button23.BackColor = System.Drawing.Color.Aqua 
        Me.Button23.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Button23.Location = New System.Drawing.Point(808, 64) 
        Me.Button23.Name = "Button23" 
        Me.Button23.Size = New System.Drawing.Size(112, 32) 
        Me.Button23.TabIndex = 328 
        Me.Button23.Text = "CLOSE" 
        Me.Button23.Visible = False 
        ' 
        'Button22 
        ' 
        Me.Button22.BackColor = System.Drawing.Color.Aqua 
        Me.Button22.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Button22.Location = New System.Drawing.Point(808, 16) 
        Me.Button22.Name = "Button22" 
        Me.Button22.Size = New System.Drawing.Size(112, 32) 
        Me.Button22.TabIndex = 327 
        Me.Button22.Text = "OPEN" 
        Me.Button22.Visible = False 
        ' 
        'Button20 
        ' 
        Me.Button20.BackColor = System.Drawing.Color.Aqua 
        Me.Button20.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Button20.Location = New System.Drawing.Point(832, 272) 
        Me.Button20.Name = "Button20" 
        Me.Button20.Size = New System.Drawing.Size(112, 32) 
        Me.Button20.TabIndex = 326 
        Me.Button20.Text = "HOME4" 
        Me.Button20.Visible = False 
        ' 
        'Button21 
        ' 
        Me.Button21.BackColor = System.Drawing.Color.Aqua 
        Me.Button21.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Button21.Location = New System.Drawing.Point(832, 224) 
        Me.Button21.Name = "Button21" 
        Me.Button21.Size = New System.Drawing.Size(112, 32) 
        Me.Button21.TabIndex = 325 
        Me.Button21.Text = "HOME2" 
        Me.Button21.Visible = False 
        ' 
        'Button19 
        ' 
        Me.Button19.BackColor = System.Drawing.Color.Aqua 
        Me.Button19.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Button19.Location = New System.Drawing.Point(832, 184) 
        Me.Button19.Name = "Button19" 
        Me.Button19.Size = New System.Drawing.Size(112, 32) 
        Me.Button19.TabIndex = 323 
        Me.Button19.Text = "HOME1" 
        Me.Button19.Visible = False 
        ' 
        'Button18 
        ' 
        Me.Button18.BackColor = System.Drawing.Color.Aqua 
        Me.Button18.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Button18.Location = New System.Drawing.Point(832, 312) 
        Me.Button18.Name = "Button18" 
        Me.Button18.Size = New System.Drawing.Size(112, 32) 
        Me.Button18.TabIndex = 322 
        Me.Button18.Text = "Grasp1" 
        Me.Button18.Visible = False 
        ' 
        'TextBox15 

        ' 
        Me.TextBox15.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.TextBox15.Location = New System.Drawing.Point(824, 
376) 
        Me.TextBox15.Name = "TextBox15" 
        Me.TextBox15.Size = New System.Drawing.Size(128, 20) 
        Me.TextBox15.TabIndex = 322 
        Me.TextBox15.Text = "4" 
        Me.TextBox15.Visible = False 
        ' 
        'TabPage2 
        ' 
        Me.TabPage2.Controls.Add(Me.GroupBox5) 
        Me.TabPage2.Controls.Add(Me.GroupBox4) 
        Me.TabPage2.Location = New System.Drawing.Point(4, 22) 
        Me.TabPage2.Name = "TabPage2" 
        Me.TabPage2.Size = New System.Drawing.Size(968, 582) 
        Me.TabPage2.TabIndex = 1 
        Me.TabPage2.Text = "Positioning" 
        ' 
        'GroupBox5 
        ' 
        Me.GroupBox5.Controls.Add(Me.Button32) 
        Me.GroupBox5.Controls.Add(Me.Button30) 
        Me.GroupBox5.Controls.Add(Me.Label33) 
        Me.GroupBox5.Controls.Add(Me.TextBox7) 
        Me.GroupBox5.Controls.Add(Me.Button13) 
        Me.GroupBox5.Controls.Add(Me.Button15) 
        Me.GroupBox5.Controls.Add(Me.Button14) 
        Me.GroupBox5.Controls.Add(Me.Label34) 
        Me.GroupBox5.Controls.Add(Me.Button16) 
        Me.GroupBox5.Location = New System.Drawing.Point(32, 32) 
        Me.GroupBox5.Name = "GroupBox5" 
        Me.GroupBox5.Size = New System.Drawing.Size(448, 376) 
        Me.GroupBox5.TabIndex = 323 
        Me.GroupBox5.TabStop = False 
        Me.GroupBox5.Text = "Autonomous Learning" 
        ' 
        'Button32 
        ' 
        Me.Button32.BackColor = 
System.Drawing.Color.FromArgb(CType(128, Byte), CType(255, 
Byte), CType(255, Byte)) 
        Me.Button32.Location = New System.Drawing.Point(16, 79) 
        Me.Button32.Name = "Button32" 
        Me.Button32.Size = New System.Drawing.Size(120, 32) 
        Me.Button32.TabIndex = 335 
        Me.Button32.Text = "Grasp Toast" 
        ' 
        'Button30 
        ' 
        Me.Button30.BackColor = 
System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, 
Byte), CType(255, Byte)) 
        Me.Button30.Location = New System.Drawing.Point(16, 32) 
        Me.Button30.Name = "Button30" 
        Me.Button30.Size = New System.Drawing.Size(120, 32) 
        Me.Button30.TabIndex = 334 
        Me.Button30.Text = "Home Robot" 
        ' 
        'Label33 
        ' 
        Me.Label33.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label33.Location = New System.Drawing.Point(231, 36) 
        Me.Label33.Name = "Label33" 
        Me.Label33.Size = New System.Drawing.Size(112, 16) 
        Me.Label33.TabIndex = 323 
        Me.Label33.Text = "Next Move:" 
        ' 
        'TextBox7 
        ' 
        Me.TextBox7.Font = New System.Drawing.Font("Arial", 8.25!, 
System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
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        Me.TextBox7.Location = New System.Drawing.Point(231, 54) 
        Me.TextBox7.Name = "TextBox7" 
        Me.TextBox7.Size = New System.Drawing.Size(128, 20) 
        Me.TextBox7.TabIndex = 322 
        Me.TextBox7.Text = "" 
        ' 
        'Button13 
        ' 
        Me.Button13.BackColor = System.Drawing.Color.Aqua 
        Me.Button13.Location = New System.Drawing.Point(16, 128) 
        Me.Button13.Name = "Button13" 
        Me.Button13.Size = New System.Drawing.Size(120, 32) 
        Me.Button13.TabIndex = 5 
        Me.Button13.Text = "Initialize Environment" 
        ' 
        'Button15 
        ' 
        Me.Button15.BackColor = 
System.Drawing.Color.FromArgb(CType(0, Byte), CType(192, 
Byte), CType(192, Byte)) 
        Me.Button15.Location = New System.Drawing.Point(16, 176) 
        Me.Button15.Name = "Button15" 
        Me.Button15.Size = New System.Drawing.Size(120, 32) 
        Me.Button15.TabIndex = 9 
        Me.Button15.Text = "Generate Path" 
        ' 
        'Button14 
        ' 
        Me.Button14.BackColor = 
System.Drawing.Color.FromArgb(CType(0, Byte), CType(192, 
Byte), CType(0, Byte)) 
        Me.Button14.Location = New System.Drawing.Point(16, 224) 
        Me.Button14.Name = "Button14" 
        Me.Button14.Size = New System.Drawing.Size(120, 32) 
        Me.Button14.TabIndex = 6 
        Me.Button14.Text = "Operate Robot" 
        ' 
        'Label34 
        ' 
        Me.Label34.BackColor = System.Drawing.Color.Orange 
        Me.Label34.BorderStyle = 
System.Windows.Forms.BorderStyle.Fixed3D 
        Me.Label34.Font = New System.Drawing.Font("Arial", 9.75!, 
System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.Label34.Location = New System.Drawing.Point(231, 136) 
        Me.Label34.Name = "Label34" 
        Me.Label34.Size = New System.Drawing.Size(128, 80) 
        Me.Label34.TabIndex = 321 
        Me.Label34.Text = "Reached Goal" 
        Me.Label34.TextAlign = 
System.Drawing.ContentAlignment.MiddleCenter 
        Me.Label34.Visible = False 
        ' 
        'Button16 
        ' 
        Me.Button16.BackColor = System.Drawing.Color.Red 
        Me.Button16.Font = New System.Drawing.Font("Microsoft Sans 
Serif", 9.75!, System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(177, Byte)) 
        Me.Button16.ForeColor = System.Drawing.Color.Yellow 
        Me.Button16.Location = New System.Drawing.Point(16, 280) 
        Me.Button16.Name = "Button16" 
        Me.Button16.Size = New System.Drawing.Size(120, 48) 
        Me.Button16.TabIndex = 324 
        Me.Button16.Text = "Stop Operation" 
        ' 
        'GroupBox4 
        ' 
        Me.GroupBox4.Controls.Add(Me.Button29) 
        Me.GroupBox4.Controls.Add(Me.Button26) 
        Me.GroupBox4.Controls.Add(Me.Button28) 
        Me.GroupBox4.Controls.Add(Me.Button27) 
        Me.GroupBox4.Controls.Add(Me.Button10) 
        Me.GroupBox4.Controls.Add(Me.Button11) 
        Me.GroupBox4.Controls.Add(Me.Button2) 
        Me.GroupBox4.Controls.Add(Me.Button12) 
        Me.GroupBox4.Location = New System.Drawing.Point(544, 32) 

        Me.GroupBox4.Name = "GroupBox4" 
        Me.GroupBox4.Size = New System.Drawing.Size(368, 272) 
        Me.GroupBox4.TabIndex = 322 
        Me.GroupBox4.TabStop = False 
        Me.GroupBox4.Text = "Manual Manipulation" 
        ' 
        'Button28 
        ' 
        Me.Button28.Font = New System.Drawing.Font("Microsoft Sans 
Serif", 8.25!, System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(177, Byte)) 
        Me.Button28.Location = New System.Drawing.Point(271, 155) 
        Me.Button28.Name = "Button28" 
        Me.Button28.Size = New System.Drawing.Size(88, 23) 
        Me.Button28.TabIndex = 5 
        Me.Button28.Text = "Down" 
        ' 
        'Button27 
        ' 
        Me.Button27.Font = New System.Drawing.Font("Microsoft Sans 
Serif", 8.25!, System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(177, Byte)) 
        Me.Button27.Location = New System.Drawing.Point(272, 48) 
        Me.Button27.Name = "Button27" 
        Me.Button27.Size = New System.Drawing.Size(88, 23) 
        Me.Button27.TabIndex = 4 
        Me.Button27.Text = "Up" 
        ' 
        'Button10 
        ' 
        Me.Button10.Font = New System.Drawing.Font("Microsoft Sans 
Serif", 8.25!, System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(177, Byte)) 
        Me.Button10.Location = New System.Drawing.Point(160, 96) 
        Me.Button10.Name = "Button10" 
        Me.Button10.Size = New System.Drawing.Size(80, 23) 
        Me.Button10.TabIndex = 1 
        Me.Button10.Text = ">" 
        ' 
        'Button11 
        ' 
        Me.Button11.Font = New System.Drawing.Font("Microsoft Sans 
Serif", 8.25!, System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(177, Byte)) 
        Me.Button11.Location = New System.Drawing.Point(107, 48) 
        Me.Button11.Name = "Button11" 
        Me.Button11.Size = New System.Drawing.Size(80, 23) 
        Me.Button11.TabIndex = 2 
        Me.Button11.Text = "/\" 
        ' 
        'Button2 
        ' 
        Me.Button2.Font = New System.Drawing.Font("Microsoft Sans 
Serif", 8.25!, System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(177, Byte)) 
        Me.Button2.Location = New System.Drawing.Point(48, 96) 
        Me.Button2.Name = "Button2" 
        Me.Button2.Size = New System.Drawing.Size(88, 23) 
        Me.Button2.TabIndex = 0 
        Me.Button2.Text = "<" 
        ' 
        'Button12 
        ' 
        Me.Button12.Font = New System.Drawing.Font("Microsoft Sans 
Serif", 8.25!, System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(177, Byte)) 
        Me.Button12.Location = New System.Drawing.Point(112, 144) 
        Me.Button12.Name = "Button12" 
        Me.Button12.Size = New System.Drawing.Size(72, 23) 
        Me.Button12.TabIndex = 3 
        Me.Button12.Text = "\/" 
        ' 
        'Button26 
        ' 
        Me.Button26.Font = New System.Drawing.Font("Microsoft Sans 
Serif", 8.25!, System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(177, Byte)) 
        Me.Button26.Location = New System.Drawing.Point(16, 224) 
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        Me.Button26.Name = "Button26" 
        Me.Button26.Size = New System.Drawing.Size(88, 23) 
        Me.Button26.TabIndex = 6 
        Me.Button26.Text = "Open" 
        ' 
        'Button29 
        ' 
        Me.Button29.Font = New System.Drawing.Font("Microsoft Sans 
Serif", 8.25!, System.Drawing.FontStyle.Bold, 
System.Drawing.GraphicsUnit.Point, CType(177, Byte)) 
        Me.Button29.Location = New System.Drawing.Point(140, 224) 
        Me.Button29.Name = "Button29" 
        Me.Button29.Size = New System.Drawing.Size(88, 23) 
        Me.Button29.TabIndex = 7 
        Me.Button29.Text = "Close" 
        ' 
        'Form1 
        ' 
        Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13) 
        Me.ClientSize = New System.Drawing.Size(968, 606) 
        Me.Controls.Add(Me.TabControl1) 
        Me.Menu = Me.MainMenu1 
        Me.Name = "Form1" 
        Me.Text = "Toasting System" 
        Me.GroupBox1.ResumeLayout(False) 
        Me.GroupBox2.ResumeLayout(False) 
        Me.GroupBox6.ResumeLayout(False) 
        Me.GroupBox11.ResumeLayout(False) 
        Me.GroupBox3.ResumeLayout(False) 
        Me.TabControl1.ResumeLayout(False) 
        Me.TabPage1.ResumeLayout(False) 
        Me.TabPage2.ResumeLayout(False) 
        Me.GroupBox5.ResumeLayout(False) 
        Me.GroupBox4.ResumeLayout(False) 
        Me.ResumeLayout(False) 
 
    End Sub 
 
#End Region 
 
    'mode:  0...RS-232C   1...Ethernet 
    Function Ms_BscOpenComm(ByVal mode%) As Integer 
        '        Dim nCid As Integer 
        Dim rc As Integer 
        Dim IPAddrress As String 
        Ms_BscOpenComm = -1 
        If mode = 0 Then 
            'Open the port. 
            nCid = BscOpen(CurDir$, 1) 
 
            If nCid < 0 Then GoTo Ms_BscOpenComm_Exit 
 
            'Set serial communications parameters. ' Port, Rate, Parity, 
Bits, Stop 
            rc = BscSetCom(nCid, 1, 9600, 0, 8, 0) 
 
        Else 
            'Open the Ethernet line. 
            nCid = BscOpen(CurDir$, PACKETETHERNET) 
            If nCid < 0 Then GoTo Ms_BscOpenComm_Exit 
 
        End If 
        If rc <> 1 Then 
            rc = BscClose(nCid) 
            nCid = -1 
            GoTo Ms_BscOpenComm_Exit 
        End If 
 
        'Connect communications line. 
        rc = BscConnect(nCid) 
        If rc <> 1 Then 
            rc = BscClose(nCid) 
            nCid = -1 
            GoTo Ms_BscOpenComm_Exit 
        End If 
 
Ms_BscOpenComm_Exit: 
        Ms_BscOpenComm = nCid 

 
        TextBox1.Text = nCid 
        TextBox2.Text = rc 
 
    End Function 
 
    Function Ms_BscCloseComm(ByRef nCid As Short) As Short 
        Dim rc As Short 
        'Cut the communications line. 
        rc = BscDisConnect(nCid) 
        'Close the port. 
        rc = BscClose(nCid) 
        rc = BscEnforcedClose(nCid) ' New 
        Ms_BscCloseComm = rc 
        TextBox1.Text = nCid 
        TextBox2.Text = rc 
    End Function 
 
    Private Sub Button1_Click(ByVal sender As System.Object, ByVal 
e As System.EventArgs) Handles Button1.Click 
        TextBox1.Text = Ms_BscOpenComm(0) 
        If TextBox1.Text <> "-1" And TextBox2.Text = "1" Then 
            Label15.Text = "Connected" 
        Else 
            Label15.Text = "Disconnected" 
        End If 
        CheckBox1.Checked = False 
        CheckBox2.Checked = True 
    End Sub 
 
    Private Sub Button4_Click(ByVal sender As System.Object, ByVal 
e As System.EventArgs) Handles Button4.Click 
        TextBox1.Text = "" 
        TextBox2.Text = "" 
        TextBox3.Text = "" 
    End Sub 
 
    Private Sub CmdDownLoad_Click(ByVal sender As 
System.Object, ByVal e As System.EventArgs) Handles 
CmdDownLoad.Click 
        TextBox3.Text = BscSelectJob(nCid, TextBox6.Text) 
        TextBox3.Text = BscDeleteJob(nCid) 
        TextBox3.Text = "" 
        TextBox3.Text = BscDownLoad(nCid, TextBox6.Text) 
    End Sub 
 
    Private Sub Button7_Click(ByVal sender As System.Object, ByVal 
e As System.EventArgs) Handles Button7.Click 
        TextBox3.Text = BscSelectJob(nCid, TextBox4.Text) 
        TextBox3.Text = BscUpLoad(nCid, TextBox4.Text) 
    End Sub 
 
    Private Sub Button5_Click(ByVal sender As System.Object, ByVal 
e As System.EventArgs) Handles Button5.Click 
        TextBox3.Text = BscSelectJob(nCid, TextBox6.Text) 
        TextBox3.Text = BscDeleteJob(nCid) 
    End Sub 
 
    Private Sub Button9_Click(ByVal sender As System.Object, ByVal 
e As System.EventArgs) Handles Button9.Click 
        Disconnect_Robot() 
    End Sub 
 
    Private Sub Button6_Click(ByVal sender As System.Object, ByVal 
e As System.EventArgs) Handles Button6.Click 
        TextBox3.Text = BscSelectJob(nCid, TextBox6.Text) 
        TextBox3.Text = BscDeleteJob(nCid) 
        TextBox3.Text = "" 
        TextBox3.Text = BscDownLoad(nCid, TextBox6.Text) 
        TextBox3.Text = BscSelOneCycle(nCid) 
        BscHoldOff(nCid) 
        BscSetMasterJob(nCid) 
        BscSelectMode(nCid, 2) 
        BscServoOn(nCid) 
        BscStartJob(nCid) 
    End Sub 
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    Private Sub Form1_Load(ByVal sender As System.Object, ByVal e 
As System.EventArgs) Handles MyBase.Load 
        AddHandler t.Elapsed, AddressOf ToasterTimerFired ' for toast 
timer 
        AddHandler b.Elapsed, AddressOf ButtererTimerFired ' for 
butterer 
        AddHandler p.Elapsed, AddressOf PolicyTimerFired ' for policy 
indicator 
        t.Enabled = False 
        b.Enabled = False 
        p.Enabled = False 
        StopRun = False 'for stoping learning episode 
        NumOfEpisods = 0 ' counting number of learning episodes 
 
    End Sub 
 
    Public Function Disconnect_Robot() 
        CheckBox1.Checked = True 
        BscSelectMode(nCid, 1) 
        BscServoOff(nCid) 
        TextBox2.Text = Ms_BscCloseComm(0) 
        '   TextBox2.Text = BscEnforcedClose(0) 
        Label10.Text = "Teach" 
        Label13.Text = "Off" 
        CheckBox2.Checked = False 
        If TextBox1.Text <> "-1" And TextBox2.Text = "1" Then 
            Label15.Text = "Connected" 
        Else 
            Label15.Text = "Disconnected" 
        End If 
    End Function 
 
    Private Sub CheckBox1_CheckedChanged(ByVal sender As 
System.Object, ByVal e As System.EventArgs) Handles 
CheckBox1.CheckedChanged 
        If CheckBox1.Checked = True Then 
            BscSelectMode(nCid, 1) 
            Label10.Text = "Teach" 
            Label13.Text = "Off" 
        End If 
        If CheckBox1.Checked = False Then 
            BscSelectMode(nCid, 2) 
            Label10.Text = "Play" 
            BscHoldOff(nCid) 
        End If 
    End Sub 
 
    Private Sub CheckBox2_CheckedChanged(ByVal sender As 
System.Object, ByVal e As System.EventArgs) Handles 
CheckBox2.CheckedChanged 
        If CheckBox1.Checked = False Then 
            If CheckBox2.Checked = False Then 
                BscServoOff(nCid) 
                Label13.Text = "Off" 
            End If 
            If CheckBox2.Checked = True Then 
                BscServoOn(nCid) 
                Label13.Text = "On" 
            End If 
        End If 
    End Sub 
 
    Public Function Run_Program(ByVal e As String) As Integer 
        '  TextBox143.Text = "" 
        TextBox3.Text = BscSelectJob(nCid, e) 
        TextBox3.Text = BscDeleteJob(nCid) 
        TextBox3.Text = "" 
        TextBox3.Text = BscDownLoad(nCid, e) 
        If ((e = "CLOSE.JBI") Or (e = "OPEN.JBI")) Then 
 
            BscHoldOff(nCid) 
            TextBox3.Text = BscSelLoopCycle(nCid) 
 
            BscSetMasterJob(nCid) 
            BscSelectMode(nCid, 2) 
            BscServoOn(nCid) 
            'If Finish_Flag = 0 Then 
            BscStartJob(nCid) 

            '   TextBox143.Text = "" 
            'Else 
            '   TextBox143.Text = BscStartJob(nCid) 
            'End If 
            BscHoldOn(nCid) 
        Else 
            If CheckBox4.Checked = False Then 
                TextBox3.Text = BscSelOneCycle(nCid) 
                BscSetMasterJob(nCid) 
                BscSelectMode(nCid, 2) 
                BscServoOn(nCid) 
                'If Finish_Flag = 0 Then 
                BscStartJob(nCid) 
                '   TextBox143.Text = "" 
                'Else 
                '   TextBox143.Text = BscStartJob(nCid) 
                'End If 
                BscHoldOff(nCid) 
            Else 
                TextBox3.Text = BscSelLoopCycle(nCid) 
                BscSetMasterJob(nCid) 
                BscSelectMode(nCid, 2) 
                BscServoOn(nCid) 
                'If Finish_Flag = 0 Then 
                BscStartJob(nCid) 
                '   TextBox143.Text = "" 
                'Else 
                '   TextBox143.Text = BscStartJob(nCid) 
                'End If 
                BscHoldOff(nCid) 
            End If 
        End If 
    End Function 
 
 
 
    Private Sub Write2File(ByVal msg As String, ByVal filePath As 
String) 
        Dim fs As FileStream = New FileStream(filePath, 
FileMode.Append, FileAccess.Write) 
        Dim sw As StreamWriter = New StreamWriter(fs) 
        sw.WriteLine(msg) 
        sw.Flush() 
        sw.Close() 
        fs.Close() 
    End Sub 
 
    Private Sub Button3_Click(ByVal sender As System.Object, ByVal 
e As System.EventArgs) Handles Button3.Click 
 
        Dim Robot_Sequence As String 
        Dim Matlab_Func As String 
        Dim i As Integer 
        Dim NumOfMoves As Integer 
 
 
        Select Case ComboBox1.SelectedIndex 
            Case 0 
                TextBox76.Text = "toast1(1)" 
            Case 1 
                TextBox76.Text = "toast2(0,0)" 
            Case 2 
                TextBox76.Text = "toast3(0,0)" 
            Case 3 
                TextBox76.Text = "toast4(0,0)" 
        End Select 
 
        Matlab_Func = TextBox76.Text ' matlab function name 
        File.Delete(TextBox148.Text + "/sequence.csv") ' deleting old 
csv file 
 
        MatLab = CreateObject("Matlab.Application") ' create matlab 
object 
        Robot_Sequence = MatLab.Execute("cd " + TextBox148.Text) ' 
specifing path to .m file 
        Robot_Sequence = MatLab.Execute(Matlab_Func) ' calling 
function  
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        Robot_Sequence = Mid(Robot_Sequence, 13) ' trimming 
beginning 
        Write2File(Robot_Sequence, TextBox148.Text + 
"/sequence.csv") ' writing result to csv file 
 
        NumOfMoves = Mid(Robot_Sequence, 1, 2) ' number of moves 
at Robot_Sequence 
        Robot_Sequence = Mid(Robot_Sequence, 9) 
 
        ReDim Preserve Sequence(NumOfMoves) 
 
        TextBox75.Text = Robot_Sequence.ToString ' displaying 
sequence 
 
        i = 1 
        Do Until Robot_Sequence.Length < 3 
            Sequence(i) = Mid(Robot_Sequence, 1, 1) 
            Robot_Sequence = Mid(Robot_Sequence, 8) 
            i = i + 1 
        Loop 
 
        'for interface 
        Label30.Visible = True 
        p.Enabled = True 
 
 
    End Sub 
 
 
    Private Sub TextBox77_TextChanged(ByVal sender As 
System.Object, ByVal e As System.EventArgs) 
 
    End Sub 
 
    Private Sub Label42_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Label42.Click 
 
    End Sub 
 
    Private Sub Button8_Click(ByVal sender As System.Object, ByVal 
e As System.EventArgs) Handles Button8.Click 
 
        Dim i As Integer 
        Dim rf As Short ' to check if robot finished 
        Dim StartShift As Integer ' shifts for grasping a toast 
        Dim Queue2A As Integer 
        Dim Queue2B As Integer 
        Dim Queue4A As Integer 
        Dim Queue4B As Integer 
        Dim Shift As Integer 
 
        StartShift = 0 
        Queue2A = 0 
        Queue2B = 0 
        Queue4A = 0 
        Queue4B = 0 
 
        Dim Positions(12) As String 
        Positions(1) = "-72547,37586,36316,-1761,1583,19688" 
        Positions(2) = "-60007,17796,10045,-1628,5693,16403" 
        Positions(3) = "-32661,-2931,-11835,-1207,6782,9085" 
        Positions(4) = "1942,-9898,-18530,-515,6924,-203" 
        Positions(5) = "32203,-3025,-10859,157,6500,-8327" 
        Positions(6) = "55551,12919,4204,665,6932,-14596" 
        Positions(7) = "-72549,44593,61186,-1795,-9146,19497" 
        Positions(8) = "-60007,21454,29236,-1621,-3638,16250" 
        Positions(9) = "-32661,-208,4629,-1195,-1475,8985" 
        Positions(10) = "1942,-6205,1685,-511,-3007,-254" 
        Positions(11) = "32203,1659,12570,156,-4767,-8309" 
        Positions(12) = "55551,16831,25180,659,-3324,-14528" 
 
 
        Dim OpenClose As Integer 
        OpenClose = 0 ' 0-Open, 1-Close 
 
        Dim NumFinToasts As Integer 
        NumFinToasts = 0 
 

 
        ' for interface 
        ' process indicator 
        Label28.Text = "In Process" 
        Label28.BackColor = 
System.Drawing.Color.FromName("Green") 
 
 
        ToasterFree = True ' init 
        ButtererFree = True ' init 
        ToasterFinished = False ' init 
        ButtererFinished = False ' init 
 
        TextBox6.Text = "OPEN.JBI" 
        Button6_Click(sender, e) 
        TextBox6.Text = "HOME1.JBI" 
        Button6_Click(sender, e) 
        ' Pause(10) 
 
        TextBox5.Text = NumFinToasts.ToString 
 
 
        For i = 1 To Sequence.Length - 1 
 
 
            TextBox13.Text = i.ToString 
 
            rf = BscJobWait(nCid, -1) 
            If rf = 0 Then ' 0-robot finished former job. we can download 
next job 
 
                TextBox8.Text = Sequence(i).ToString 
 
 
 
                If (Sequence(i) = 1) Or (Sequence(i) = 2) Or (Sequence(i) = 
4) Then ' stations 1,2,4 
 
                    TextBox6.Text = "HOME" + Sequence(i).ToString + 
".JBI" 
                    Button6_Click(sender, e) 
                    OpenClose = 1 - OpenClose 
                    Select Case Sequence(i) 
                        Case 1 
                            Shift = StartShift 
                            StartShift = StartShift + 1 
                        Case 2 ' A upper, B lower 
                            If OpenClose = 0 And Queue2A = 0 And Queue2B 
= 0 Then ' putting in empty Queue 
                                Shift = 1 
                                Queue2B = Queue2B + 1 
                            ElseIf OpenClose = 0 And Queue2A = 0 And 
Queue2B = 1 Then ' puting in queue with toast at B 
                                Shift = 0 
                                Queue2A = Queue2A + 1 
                            ElseIf OpenClose = 1 And Queue2A = 1 Then ' 
taking when toasts at A and B 
                                Shift = 2 
                                Queue2A = Queue2A - 1 
                            ElseIf OpenClose = 1 And Queue2A = 0 And 
Queue2B = 1 Then ' taking when toast at B and A empty 
                                Shift = 3 
                                Queue2B = Queue2B - 1 
                            End If 
 
 
                        Case 4 
                            If OpenClose = 0 And Queue4A = 0 And Queue4B 
= 0 Then ' putting in empty Queue 
                                Shift = 1 
                                Queue4B = Queue4B + 1 
                            ElseIf OpenClose = 0 And Queue4A = 0 And 
Queue4B = 1 Then ' puting in queue with toast at B 
                                Shift = 0 
                                Queue4A = Queue4A + 1 
                            ElseIf OpenClose = 1 And Queue4A = 1 Then ' 
taking when toasts at A and B 
                                Shift = 2 
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                                Queue4A = Queue4A - 1 
                            ElseIf OpenClose = 1 And Queue4A = 0 And 
Queue4B = 1 Then ' taking when toast at B and A empty 
                                Shift = 3 
                                Queue4B = Queue4B - 1 
                            End If 
                    End Select 
 
                    If OpenClose = 0 Then 
                        grasping2(sender, e, Shift, OpenClose) 
                    Else 
                        grasping1(sender, e, Shift, OpenClose) 
                    End If 
 
 
 
                ElseIf (Sequence(i) = 6) Then ' station 6 
 
                    rf = BscJobWait(nCid, -1) 
                    While rf <> 0 ' 0-robot finished former job. we can 
download next job 
                        rf = BscJobWait(nCid, -1) 
                    End While 
 
                    OpenClose = 1 - OpenClose 
                    TextBox6.Text = "FNSHPLC.JBI" 
                    Button6_Click(sender, e) 
 
                    ' for interface 
                    ' Number of finished toasts 
                    NumFinToasts = NumFinToasts + 1 
                    TextBox5.Text = NumFinToasts.ToString 
 
 
                ' if inserting to free station 
            Else ' station 3 or 5 
 
                    If ((Sequence(i) = 3) And (ToasterFree = True)) Or 
((Sequence(i) = 5) And (ButtererFree = True)) Or ((Sequence(i) = 3) 
And (ToasterFinished = True)) Or ((Sequence(i) = 5) And 
(ButtererFinished = True)) Then 
 
                        OpenClose = 1 - OpenClose 
 
                        If Sequence(i) = 3 Then ' toaster is free 
 
                            TextBox6.Text = "HOME3.JBI" 
                            Button6_Click(sender, e) 
 
                            If OpenClose = 0 Then 
                                TextBox6.Text = "TSTRPLC.JBI" 
                            Else 
                                TextBox6.Text = "TSTRPICK.JBI" 
 
                            End If 
 
                            rf = BscJobWait(nCid, -1) 
                            While rf <> 0 ' 0-robot finished former job. we can 
download next job 
                                rf = BscJobWait(nCid, -1) 
                            End While 
                            Button6_Click(sender, e) 
 
                        End If 
 
                        If Sequence(i) = 5 Then ' toaster is free 
 
 
                            If OpenClose = 0 Then 
                                TextBox6.Text = "BTRPLC.JBI" 
                            Else 
                                TextBox6.Text = "BTRPICK.JBI" 
 
                            End If 
 
                            Button6_Click(sender, e) 
 
                        End If 

 
 
 
                        If Sequence(i) = 3 Then ' update toaster to be busy 
                            If ToasterFree = True Then 
                                ToasterFree = False 
                                ToasterFinished = False 
                                t.Enabled = True 
                            Else 
                                ToasterFree = True 
                                ToasterFinished = False 
                                If Sequence(i + 1) = 3 Then 
                                    i = i + 1 
                                End If 
                            End If 
 
 
                        End If 
 
 
                        If Sequence(i) = 5 Then ' update butterer to be busy 
                            If ButtererFree = True Then 
                                ButtererFree = False 
                                ButtererFinished = False 
                                b.Enabled = True 
                            Else 
                                ButtererFree = True 
                                ButtererFinished = False 
                                If Sequence(i + 1) = 5 Then 
                                    i = i + 1 
                                End If 
                            End If 
 
 
                        End If 
 
                    Else ' if going to toaster or butterer and didn't finish 
 
                        ' if not already at position 
                        If Sequence(i) <> Sequence(i - 1) Then 
 
                            TextBox6.Text = "HOME" + Sequence(i).ToString 
+ ".JBI" 
                            Button6_Click(sender, e) 
 
                        End If 
 
                        i = i - 1 
 
 
                    End If 
 
 
                    End If ' if of all stations 
 
 
            Else ' if robot still moving... 
            i = i - 1 
 
            End If ' robot finished 
 
 
 
            ' for interface. 
            ' for toaster indicator 
 
 
            If ToasterFree = True Then 
                Label20.Text = "Not Toasting" 
                Label20.BackColor = 
System.Drawing.Color.FromName("Red") 
            Else 
                If ToasterFinished = True Then 
                    Label20.Text = "Not Toasting" 
                    Label20.BackColor = 
System.Drawing.Color.FromName("Red") 
                Else 
                    Label20.Text = "Toasting" 
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                    Label20.BackColor = 
System.Drawing.Color.FromName("Green") 
                End If 
            End If 
 
            ' for butterer indicator 
            If ButtererFree = True Then 
                Label21.Text = "Not Buttering" 
                Label21.BackColor = 
System.Drawing.Color.FromName("Red") 
            Else 
                If ButtererFinished = True Then 
                    Label21.Text = "Not Buttering" 
                    Label21.BackColor = 
System.Drawing.Color.FromName("Red") 
                Else 
                    Label21.Text = "Buttering" 
                    Label21.BackColor = 
System.Drawing.Color.FromName("Green") 
                End If 
            End If 
 
 
 
        Next 
 
        ' for interface 
        ' process indicator 
 
        Label28.Text = "Process Finished" 
        Label28.BackColor = System.Drawing.Color.FromName("Red") 
 
 
    End Sub 
 
    Public Sub ToasterTimerFired(ByVal sender As Object, ByVal e 
As System.Timers.ElapsedEventArgs) 
        '  TextBox9.Text = "1" 
        ToasterFinished = True 
        t.Enabled = False 
 
 
    End Sub 
    Public Sub ButtererTimerFired(ByVal sender As Object, ByVal e 
As System.Timers.ElapsedEventArgs) 
        ButtererFinished = True 
        b.Enabled = False 
 
    End Sub 
 
    Public Sub PolicyTimerFired(ByVal sender As Object, ByVal e As 
System.Timers.ElapsedEventArgs) 
        Label30.Visible = False 
        p.Enabled = False 
 
    End Sub 
 
 
    Private Sub TextBox8_TextChanged(ByVal sender As 
System.Object, ByVal e As System.EventArgs) Handles 
TextBox8.TextChanged 
 
    End Sub 
 
 
    Private Sub MenuItem1_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles MenuItem1.Click 
        Disconnect_Robot() 
        Close() 
    End Sub 
 
    Private Sub Button11_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Button11.Click 
        Dim direction As String 
        '/\ 
        direction = "1" 
        moving_manual(sender, e, direction) 
    End Sub 

 
    Private Sub Button2_Click(ByVal sender As System.Object, ByVal 
e As System.EventArgs) Handles Button2.Click 
        Dim direction As String 
        '< 
        direction = "2" 
        moving_manual(sender, e, direction) 
    End Sub 
 
    Private Sub Button12_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Button12.Click 
        Dim direction As String 
        '\/ 
        direction = "3" 
        moving_manual(sender, e, direction) 
    End Sub 
 
    Private Sub Button10_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Button10.Click 
        Dim direction As String 
        '> 
        direction = "4" 
        moving_manual(sender, e, direction) 
    End Sub 
 
    Private Sub Button27_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Button27.Click 
        Dim direction As String 
        'Up 
        direction = "5" 
        moving_manual(sender, e, direction) 
    End Sub 
 
    Private Sub Button28_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Button28.Click 
        Dim direction As String 
        'Down 
        direction = "6" 
        moving_manual(sender, e, direction) 
    End Sub 
 
    Private Sub moving(ByVal sender As System.Object, ByVal e As 
System.EventArgs, ByVal direction As String) 
        Dim rf As Short ' to check if robot finished 
        Dim point As String 
        Dim Success As String 
 
        Select Case direction 
            Case "1" 
                point = "P0001=000.000,20,000.000,00.00,00.00,00.00" 
            Case "2" 
                point = "P0001=-20,000.000,000.000,00.00,00.00,00.00" 
            Case "3" 
                point = "P0001=000.000,-20,000.000,00.00,00.00,00.00" 
            Case "4" 
                point = "P0001=20,000.000,000.000,00.00,00.00,00.00" 
        End Select 
 
 
 
        rf = BscJobWait(nCid, -1) 
        If rf = 0 Then ' 0-robot finished former job. we can download 
next job 
 
            If StopRun = False Then 
 
 
 
                File.Delete("POLICY3.JBI") 
                Dim fs As New FileStream("POLICY3.JBI", 
FileMode.OpenOrCreate, FileAccess.Write) 
                Dim s As New StreamWriter(fs) 
                s.WriteLine("/JOB") 
                s.WriteLine("//NAME POLICY3") 
                s.WriteLine("//POS") 
                s.WriteLine("///NPOS 0,0,0,1,0,0") 
                s.WriteLine("///TOOL 0") 
                s.WriteLine("///POSTYPE ROBOT") 
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                s.WriteLine("///RECTAN") 
                s.WriteLine("///RCONF 0,0,0,0,0,0,0,0") 
                s.WriteLine(point) 
 
                s.WriteLine("//INST") 
                s.WriteLine("///DATE 2055/03/01 22:24") 
                s.WriteLine("///ATTR SC,RW") 
                s.WriteLine("///GROUP1 RB1") 
                s.WriteLine("NOP") 
                s.WriteLine("IMOV P001 V=1000") 
                s.WriteLine("END") 
                s.Close() 
 
                TextBox6.Text = "POLICY3.JBI" 
                Button6_Click(sender, e) 
                '        Pause(10) 
 
                '       End If 
 
                rf = BscJobWait(nCid, -1) 
                While rf <> 0 ' 0-robot finished former job. we can 
download next job 
                    rf = BscJobWait(nCid, -1) 
                End While 
 
 
            End If 
 
        End If 
 
    End Sub 
 
 
    Private Sub moving_manual(ByVal sender As System.Object, 
ByVal e As System.EventArgs, ByVal direction As String) 
        Dim rf As Short ' to check if robot finished 
        Dim point As String 
        Dim Success As String 
 
        Select Case direction 
            Case "1" 
                point = "P0001=000.000,20,000.000,00.00,00.00,00.00" 
            Case "2" 
                point = "P0001=-20,000.000,000.000,00.00,00.00,00.00" 
            Case "3" 
                point = "P0001=000.000,-20,000.000,00.00,00.00,00.00" 
            Case "4" 
                point = "P0001=20,000.000,000.000,00.00,00.00,00.00" 
            Case "5" 
                point = "P0001=000.000,000.000,20,00.00,00.00,00.00" 
            Case "6" 
                point = "P0001=000.000,000.000,-20,00.00,00.00,00.00" 
        End Select 
 
 
 
        rf = BscJobWait(nCid, -1) 
        If rf = 0 Then ' 0-robot finished former job. we can download 
next job 
 
            If StopRun = False Then 
 
 
 
                File.Delete("POLICY3.JBI") 
                Dim fs As New FileStream("POLICY3.JBI", 
FileMode.OpenOrCreate, FileAccess.Write) 
                Dim s As New StreamWriter(fs) 
                s.WriteLine("/JOB") 
                s.WriteLine("//NAME POLICY3") 
                s.WriteLine("//POS") 
                s.WriteLine("///NPOS 0,0,0,1,0,0") 
                s.WriteLine("///TOOL 0") 
                s.WriteLine("///POSTYPE ROBOT") 
                s.WriteLine("///RECTAN") 
                s.WriteLine("///RCONF 0,0,0,0,0,0,0,0") 
                s.WriteLine(point) 
 

                s.WriteLine("//INST") 
                s.WriteLine("///DATE 2055/03/01 22:24") 
                s.WriteLine("///ATTR SC,RW") 
                s.WriteLine("///GROUP1 RB1") 
                s.WriteLine("NOP") 
                s.WriteLine("IMOV P001 V=1000") 
                s.WriteLine("END") 
                s.Close() 
 
                TextBox6.Text = "POLICY3.JBI" 
                Button6_Click(sender, e) 
                '        Pause(10) 
 
                '       End If 
 
                rf = BscJobWait(nCid, -1) 
                While rf <> 0 ' 0-robot finished former job. we can 
download next job 
                    rf = BscJobWait(nCid, -1) 
                End While 
 
            End If 
 
        End If 
 
    End Sub 
 
    Private Sub Button30_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Button30.Click 
        Dim rf As Short ' to check if robot finished 
        Dim Success As String 
 
        ' for interface 
        TextBox7.Text = "" 
        Label34.Visible = False 
        StopRun = False 'for stoping learning episode 
 
        NumOfEpisods = 1 
 
        TextBox6.Text = "HOME8.JBI" 
        Button6_Click(sender, e) 
 
        rf = BscJobWait(nCid, -1) 
        While rf <> 0 ' 0-robot finished former job. we can download 
next job 
            rf = BscJobWait(nCid, -1) 
        End While 
 
        MatLab = CreateObject("Matlab.Application") ' create matlab 
object 
        MatLab.Execute("cd " + TextBox148.Text) ' specifing path to .m 
file 
        MatLab.Execute("clear_variables") ' calling function  
 
    End Sub 
 
 
    Private Sub Button32_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Button32.Click 
        Dim rf As Short ' to check if robot finished 
 
        ' for interface 
        TextBox7.Text = "" 
        Label34.Visible = False 
        StopRun = False 'for stoping learning episode 
 
        NumOfEpisods = 1 
 
        TextBox6.Text = "BCA.JBI" 
        Button6_Click(sender, e) 
 
        rf = BscJobWait(nCid, -1) 
        While rf <> 0 ' 0-robot finished former job. we can download 
next job 
            rf = BscJobWait(nCid, -1) 
        End While 
 
    End Sub 
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    Private Sub Button13_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Button13.Click 
        MatLab = CreateObject("Matlab.Application") ' create matlab 
object 
        MatLab.Execute("cd " + TextBox148.Text) ' specifing path to .m 
file 
        MatLab.Execute("environ_init") ' calling function  
 
    End Sub 
 
 
    Private Sub Button14_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Button14.Click 
        Dim rf As Short ' to check if robot finished 
        Dim point As String 
        Dim Success As String 
        Dim nextMove As String 
        Dim EpisodeSteps As Integer 
 
        nextMove = 4 ' init. will be changed anyway 
        'for interface 
        EpisodeSteps = 0 
 
 
        While Val(nextMove) <> 0 ' 0-robot finished former job. we can 
download next job 
 
            If StopRun = True Then 
                Exit While 
            End If 
 
            MatLab = CreateObject("Matlab.Application") ' create matlab 
object 
            MatLab.Execute("cd " + TextBox148.Text) ' specifing path to 
.m file 
            MatLab.Execute("identify") ' calling function  
 
            MatLab = CreateObject("Matlab.Application") ' create matlab 
object 
            nextMove = MatLab.Execute("cd " + TextBox148.Text) ' 
specifing path to .m file 
            nextMove = MatLab.Execute("run") ' calling function  
            nextMove = Mid(nextMove, 14, 1) ' trimming beginning and 
end 
 
 
            Select Case nextMove 
                Case "0" 
                    TextBox7.Text = "Stop" 
                Case "1" 
                    TextBox7.Text = "/\" 
                Case "2" 
                    TextBox7.Text = "<" 
                Case "3" 
                    TextBox7.Text = "\/" 
                Case "4" 
                    TextBox7.Text = ">" 
            End Select 
 
 
            rf = BscJobWait(nCid, -1) 
            While rf <> 0 ' 0-robot finished former job. we can download 
next job 
                rf = BscJobWait(nCid, -1) 
            End While 
            If Val(nextMove) <> 0 Then ' val - to parse to integer 
                moving(sender, e, nextMove) 
 
            Else 
                ' for interface 
                Label34.Visible = True 
 
                Dim direction As String 
                direction = "4" 
                moving_manual(sender, e, direction) 
 
                rf = BscJobWait(nCid, -1) 

                While rf <> 0 ' 0-robot finished former job. we can 
download next job 
                    rf = BscJobWait(nCid, -1) 
                End While 
 
                TextBox6.Text = "FINISH.JBI" 
                Button6_Click(sender, e) 
 
                rf = BscJobWait(nCid, -1) 
                While rf <> 0 ' 0-robot finished former job. we can 
download next job 
                    rf = BscJobWait(nCid, -1) 
                End While 
 
            End If 
 
            'for interface 
            If Val(nextMove) <> 0 Then 
                EpisodeSteps = EpisodeSteps + 1 
            End If 
 
 
        End While 
 
    End Sub 
 
    Private Sub Button15_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Button15.Click 
 
        MatLab = CreateObject("Matlab.Application") ' create matlab 
object 
        MatLab.Execute("cd " + TextBox148.Text) ' specifing path to .m 
file 
        MatLab.Execute("gw('new')") ' calling function  
 
        MatLab = CreateObject("Matlab.Application") ' create matlab 
object 
        MatLab.Execute("cd " + TextBox148.Text) ' specifing path to .m 
file 
        MatLab.Execute("gw('try')") ' calling function  
 
    End Sub 
 
    Private Sub Button16_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Button16.Click 
        StopRun = True 
    End Sub 
 
 
    Private Sub Button17_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Button17.Click 
 
        Dim i As Integer 
        Dim rf As Short ' to check if robot finished 
 
        Dim Positions(12) As String 
        Positions(1) = "-72547,37586,36316,-1761,1583,19688" 
        Positions(2) = "-60007,17796,10045,-1628,5693,16403" 
        Positions(3) = "-32661,-2931,-11835,-1207,6782,9085" 
        Positions(4) = "1942,-9898,-18530,-515,6924,-203" 
        Positions(5) = "32203,-3025,-10859,157,6500,-8327" 
        Positions(6) = "55551,12919,4204,665,6932,-14596" 
        Positions(7) = "-72549,44593,61186,-1795,-9146,19497" 
        Positions(8) = "-60007,21454,29236,-1621,-3638,16250" 
        Positions(9) = "-32661,-208,4629,-1195,-1475,8985" 
        Positions(10) = "1942,-6205,1685,-511,-3007,-254" 
        Positions(11) = "32203,1659,12570,156,-4767,-8309" 
        Positions(12) = "55551,16831,25180,659,-3324,-14528" 
 
 
        Dim OpenClose As Integer 
        OpenClose = 0 ' 0-Open, 1-Close 
 
        Dim NumFinToasts As Integer 
        NumFinToasts = 0 
 
 
        ' for interface 
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        ' process indicator 
        Label28.Text = "In Process" 
        Label28.BackColor = 
System.Drawing.Color.FromName("Green") 
 
 
        ToasterFree = True ' init 
        ButtererFree = True ' init 
        ToasterFinished = False ' init 
        ButtererFinished = False ' init 
 
 
        TextBox6.Text = "HOME.JBI" 
        Button6_Click(sender, e) 
        ' Pause(10) 
 
        TextBox5.Text = NumFinToasts.ToString 
 
 
 
        For i = 1 To Sequence.Length - 1 
 
 
 
            ' for interface 
            ' Number of finished toasts 
            If Sequence(i) = 6 Then 
                NumFinToasts = NumFinToasts + 1 
                TextBox5.Text = NumFinToasts.ToString 
            End If 
 
 
            TextBox13.Text = i.ToString 
 
            rf = BscJobWait(nCid, -1) 
            If rf = 0 Then ' 0-robot finished former job. we can download 
next job 
                TextBox8.Text = Sequence(i).ToString 
 
                ' if inserting to free station 
                If ((Sequence(i) <> 3) And (Sequence(i) <> 5)) Or 
((Sequence(i) = 3) And (ToasterFree = True)) Or ((Sequence(i) = 5) 
And (ButtererFree = True)) Or ((Sequence(i) = 3) And 
(ToasterFinished = True)) Or ((Sequence(i) = 5) And 
(ButtererFinished = True)) Then 
 
                    File.Delete("POLICY1.JBI") 
                    Dim fs As New FileStream("POLICY1.JBI", 
FileMode.OpenOrCreate, FileAccess.Write) 
                    Dim s As New StreamWriter(fs) 
                    s.WriteLine("/JOB") 
                    s.WriteLine("//NAME POLICY1") 
                    s.WriteLine("//POS") 
                    s.WriteLine("///NPOS 3,0,0,0,0,0") 
                    s.WriteLine("///TOOL 0") 
                    s.WriteLine("///POSTYPE PULSE") 
                    s.WriteLine("///PULSE") 
                    s.WriteLine("C00000=" + Positions(Sequence(i) + 
6).ToString) 
                    s.WriteLine("C00001=" + 
Positions(Sequence(i)).ToString) 
                    s.WriteLine("C00002=" + Positions(Sequence(i) + 
6).ToString) 
                    s.WriteLine("//INST") 
                    s.WriteLine("///DATE 2055/03/01 22:24") 
                    s.WriteLine("///ATTR SC,RW") 
                    s.WriteLine("///GROUP1 RB1") 
                    s.WriteLine("NOP") 
                    s.WriteLine("MOVJ C00000 VJ=10.00") 
                    s.WriteLine("MOVJ C00001 VJ=10.00") 
 
                    If OpenClose = 0 Then 
                        s.WriteLine("CALL JOB:CLOSE") 
                    Else 
                        s.WriteLine("CALL JOB:OPEN") 
                    End If 
                    OpenClose = 1 - OpenClose 
                    s.WriteLine("TIMER T=1.00") 

                    s.WriteLine("MOVJ C00002 VJ=10.00") 
                    s.WriteLine("END") 
                    s.Close() 
 
                    TextBox6.Text = "POLICY1.JBI" 
                    Button6_Click(sender, e) 
                    '        Pause(10) 
 
 
                    If Sequence(i) = 3 Then ' update toaster to be busy 
                        If ToasterFree = True Then 
                            ToasterFree = False 
                            ToasterFinished = False 
                            t.Enabled = True 
                        Else 
                            ToasterFree = True 
                            ToasterFinished = False 
                            If Sequence(i + 1) = 3 Then 
                                i = i + 1 
                            End If 
                        End If 
 
 
                    End If 
 
 
                    If Sequence(i) = 5 Then ' update butterer to be busy 
                        If ButtererFree = True Then 
                            ButtererFree = False 
                            ButtererFinished = False 
                            b.Enabled = True 
                        Else 
                            ButtererFree = True 
                            ButtererFinished = False 
                            If Sequence(i + 1) = 5 Then 
                                i = i + 1 
                            End If 
                        End If 
 
 
                    End If 
 
 
 
                Else 
                    ' if going to toaster and didn't finish 
 
                    ' if not already at position 
                    If Sequence(i) <> Sequence(i - 1) Then 
 
                        File.Delete("POLICY2.JBI") 
                        Dim fs1 As New FileStream("POLICY2.JBI", 
FileMode.OpenOrCreate, FileAccess.Write) 
                        Dim s1 As New StreamWriter(fs1) 
 
                        s1.WriteLine("/JOB") 
                        s1.WriteLine("//NAME POLICY2") 
                        s1.WriteLine("//POS") 
                        s1.WriteLine("///NPOS 1,0,0,0,0,0") 
                        s1.WriteLine("///TOOL 0") 
                        s1.WriteLine("///POSTYPE PULSE") 
                        s1.WriteLine("///PULSE") 
                        s1.WriteLine("C00000=" + Positions(Sequence(i) + 
6).ToString) 
                        s1.WriteLine("//INST") 
                        s1.WriteLine("///DATE 2055/03/01 22:24") 
                        s1.WriteLine("///ATTR SC,RW") 
                        s1.WriteLine("///GROUP1 RB1") 
                        s1.WriteLine("NOP") 
                        s1.WriteLine("MOVJ C00000 VJ=10.00") 
                        s1.WriteLine("END") 
                        s1.Close() 
 
                        TextBox6.Text = "POLICY2.JBI" 
                        Button6_Click(sender, e) 
                        '            Pause(8) 
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                    End If 
                    i = i - 1 
 
 
                    '            If Sequence(i) = 3 Then 
                    '           Do Until ToasterFinished = True 
                    '          TextBox9.Text = "2" 
                    '         Loop 
                    '        Else 
                    '       Do Until ButtererFinished = True 
                    '      Loop 
                    '     End If 
 
                    '       If ((Sequence(i) = 3) And (ToasterFinished = True)) 
Or ((Sequence(i) = 5) And (ButtererFinished = True)) Then 
 
 
 
                    '      File.Delete("POLICY3.JBI") 
                    '     Dim fs2 As New FileStream("POLICY3.JBI", 
FileMode.OpenOrCreate, FileAccess.Write) 
                    '    Dim s2 As New StreamWriter(fs2) 
 
                    '   s2.WriteLine("/JOB") 
                    '  s2.WriteLine("//NAME POLICY3") 
                    ' s2.WriteLine("//POS") 
                    's2.WriteLine("///NPOS 2,0,0,0,0,0") 
                    's2.WriteLine("///TOOL 0") 
                    's2.WriteLine("///POSTYPE PULSE") 
                    's2.WriteLine("///PULSE") 
                    's2.WriteLine("C00000=" + 
Positions(Sequence(i)).ToString) 
                    's2.WriteLine("C00001=" + Positions(Sequence(i) + 
6).ToString) 
                    's2.WriteLine("//INST") 
                    's2.WriteLine("///DATE 2055/03/01 22:24") 
                    's2.WriteLine("///ATTR SC,RW") 
                    's2.WriteLine("///GROUP1 RB1") 
                    's2.WriteLine("NOP") 
                    's2.WriteLine("MOVJ C00000 VJ=10.00") 
 
                    'If OpenClose = 0 Then 
                    's2.WriteLine("CALL JOB:CLOSE") 
                    'Else 
                    '   s2.WriteLine("CALL JOB:OPEN") 
                    'End If 
                    'OpenClose = 1 - OpenClose 
                    's2.WriteLine("TIMER T=1.00") 
                    's2.WriteLine("MOVJ C00001 VJ=10.00") 
                    's2.WriteLine("END") 
                    's2.Close() 
 
                    ' If Sequence(i) = 3 Then 
                    'ToasterFree = True ' freeing toaster 
                    'ToasterFinished = False 
                    'Else 
                    '   ButtererFree = True ' freeing butterer 
                    '   ButtererFinished = False 
                    ' End If 
 
 
                    ' TextBox6.Text = "POLICY3.JBI" 
                    ' Button6_Click(sender, e) 
                    '       Pause(7) 
                    ' Else 
                    ' i = i - 1 
                    ' End If 
 
                End If 
 
            Else ' if robot still moving... 
                i = i - 1 
            End If ' robot finished 
 
 
 
            ' for interface. 
            ' for toaster indicator 

 
 
            If ToasterFree = True Then 
                Label20.Text = "Not Toasting" 
                Label20.BackColor = 
System.Drawing.Color.FromName("Red") 
            Else 
                If ToasterFinished = True Then 
                    Label20.Text = "Not Toasting" 
                    Label20.BackColor = 
System.Drawing.Color.FromName("Red") 
                Else 
                    Label20.Text = "Toasting" 
                    Label20.BackColor = 
System.Drawing.Color.FromName("Green") 
                End If 
            End If 
 
            ' for butterer indicator 
            If ButtererFree = True Then 
                Label21.Text = "Not Buttering" 
                Label21.BackColor = 
System.Drawing.Color.FromName("Red") 
            Else 
                If ButtererFinished = True Then 
                    Label21.Text = "Not Buttering" 
                    Label21.BackColor = 
System.Drawing.Color.FromName("Red") 
                Else 
                    Label21.Text = "Buttering" 
                    Label21.BackColor = 
System.Drawing.Color.FromName("Green") 
                End If 
            End If 
 
 
 
        Next 
 
 
        ' for interface 
        ' process indicator 
 
        Label28.Text = "Process Finished" 
        Label28.BackColor = System.Drawing.Color.FromName("Red") 
 
 
    End Sub 
 
    Private Sub Button18_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Button18.Click 
        Dim Shift As Integer 
        Shift = Val(TextBox15.Text) 
        grasping1(sender, e, Shift, 1) 
    End Sub 
 
    Private Sub Button19_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Button19.Click 
        TextBox6.Text = "HOME1.JBI" 
        Button6_Click(sender, e) 
    End Sub 
 
    Private Sub Button21_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Button21.Click 
        TextBox6.Text = "HOME2.JBI" 
        Button6_Click(sender, e) 
    End Sub 
 
    Private Sub Button20_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Button20.Click 
        TextBox6.Text = "HOME4.JBI" 
        Button6_Click(sender, e) 
    End Sub 
 
    Private Sub Button22_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Button22.Click 
        TextBox6.Text = "OPEN.JBI" 
        Button6_Click(sender, e) 
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    End Sub 
 
    Private Sub Button23_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Button23.Click 
        TextBox6.Text = "CLOSE.JBI" 
        Button6_Click(sender, e) 
    End Sub 
 
    Private Sub grasping1(ByVal sender As System.Object, ByVal e 
As System.EventArgs, ByVal Shift As Integer, ByVal OpenClose As 
Integer) 
        Dim StartToasts As Integer ' number of toasts in start station 
        Dim rf As Short ' to check if robot finished 
        Dim OC As String 
        Dim ShiftUp As Integer 
 
        '        StartToasts = Val(TextBox15.Text) 
 
        rf = BscJobWait(nCid, -1) 
        If rf = 0 Then ' 0-robot finished former job. we can download 
next job 
 
            If OpenClose = 0 Then 
                OC = "OPEN" 
            Else 
                OC = "CLOSE" 
            End If 
 
            Shift = -240 - (Shift * 40) 
            ShiftUp = -40 - Shift 
 
            File.Delete("GRASP1.JBI") 
            Dim fs As New FileStream("GRASP1.JBI", 
FileMode.OpenOrCreate, FileAccess.Write) 
            Dim s As New StreamWriter(fs) 
            s.WriteLine("/JOB") 
            s.WriteLine("//NAME GRASP1") 
            s.WriteLine("//POS") 
            s.WriteLine("///NPOS 0,0,0,5,0,0") 
            s.WriteLine("///TOOL 0") 
            s.WriteLine("///POSTYPE ROBOT") 
            s.WriteLine("///RECTAN") 
            s.WriteLine("///RCONF 0,0,0,0,0,0,0,0") 
            s.WriteLine("P0001=00.00,00.00," + Shift.ToString + 
",000.000,000.000,00.00") 
            
s.WriteLine("P0002=00.00,145,000.000,000.000,00.00,00.00") 
            s.WriteLine("P0003=00.00,00.00,40,000.000,000.000,00.00") 
            s.WriteLine("P0004=00.00,-
145,000.000,000.000,00.00,00.00") 
            s.WriteLine("P0005=00.00,00.00," + ShiftUp.ToString + 
",000.000,000.000,00.00") 
            s.WriteLine("//INST") 
            s.WriteLine("///DATE 2055/03/01 22:24") 
            s.WriteLine("///ATTR SC,RW") 
            s.WriteLine("///GROUP1 RB1") 
            s.WriteLine("NOP") 
            s.WriteLine("IMOV P001 V=100") 
            s.WriteLine("IMOV P002 V=100") 
            s.WriteLine("IMOV P003 V=20") 
            s.WriteLine("TIMER T=1.00") 
            s.WriteLine("CALL JOB:" + OC) 
            s.WriteLine("TIMER T=1.00") 
            s.WriteLine("IMOV P004 V=100") 
            s.WriteLine("IMOV P005 V=100") 
            s.WriteLine("END") 
            s.Close() 
 
            TextBox6.Text = "GRASP1.JBI" 
            Button6_Click(sender, e) 
 
            '   StartToasts = StartToasts - 1 
        Else 
            grasping1(sender, e, Shift, OpenClose) 
        End If 
 
 
    End Sub 

 
 
    Private Sub grasping2(ByVal sender As System.Object, ByVal e 
As System.EventArgs, ByVal Shift As Integer, ByVal OpenClose As 
Integer) 
        Dim StartToasts As Integer ' number of toasts in start station 
        Dim rf As Short ' to check if robot finished 
        Dim OC As String 
        Dim ShiftUp As Integer 
 
        '        StartToasts = Val(TextBox15.Text) 
 
        rf = BscJobWait(nCid, -1) 
        If rf = 0 Then ' 0-robot finished former job. we can download 
next job 
 
            If OpenClose = 0 Then 
                OC = "OPEN" 
            Else 
                OC = "CLOSE" 
            End If 
 
            Shift = -240 - (Shift * 40) 
            ShiftUp = 80 - Shift 
 
            File.Delete("GRASP2.JBI") 
            Dim fs As New FileStream("GRASP2.JBI", 
FileMode.OpenOrCreate, FileAccess.Write) 
            Dim s As New StreamWriter(fs) 
            s.WriteLine("/JOB") 
            s.WriteLine("//NAME GRASP2") 
            s.WriteLine("//POS") 
            s.WriteLine("///NPOS 0,0,0,7,0,0") 
            s.WriteLine("///TOOL 0") 
            s.WriteLine("///POSTYPE ROBOT") 
            s.WriteLine("///RECTAN") 
            s.WriteLine("///RCONF 0,0,0,0,0,0,0,0") 
            s.WriteLine("P0001=00.00,00.00," + Shift.ToString + 
",000.000,000.000,00.00") 
            s.WriteLine("P0002=00.00,85,000.000,000.000,00.00,00.00") 
            s.WriteLine("P0003=00.00,00.00,-40,000.000,000.000,00.00") 
            s.WriteLine("P0004=00.00,60,000.000,000.000,00.00,00.00") 
            s.WriteLine("P0005=00.00,00.00,-40,000.000,000.000,00.00") 
            s.WriteLine("P0006=00.00,-
145,000.000,000.000,00.00,00.00") 
            s.WriteLine("P0007=00.00,00.00," + ShiftUp.ToString + 
",000.000,000.000,00.00") 
            s.WriteLine("//INST") 
            s.WriteLine("///DATE 2055/03/01 22:24") 
            s.WriteLine("///ATTR SC,RW") 
            s.WriteLine("///GROUP1 RB1") 
            s.WriteLine("NOP") 
            s.WriteLine("IMOV P001 V=100") 
            s.WriteLine("IMOV P002 V=100") 
            s.WriteLine("TIMER T=1.00") 
            s.WriteLine("CALL JOB:" + OC) 
            s.WriteLine("TIMER T=1.00") 
            s.WriteLine("IMOV P003 V=20") 
            s.WriteLine("IMOV P004 V=20") 
            s.WriteLine("IMOV P005 V=20") 
            s.WriteLine("IMOV P006 V=100") 
            s.WriteLine("IMOV P007 V=100") 
            s.WriteLine("END") 
            s.Close() 
 
            TextBox6.Text = "GRASP2.JBI" 
            Button6_Click(sender, e) 
 
            '   StartToasts = StartToasts - 1 
        Else 
            grasping2(sender, e, Shift, OpenClose) 
        End If 
 
    End Sub 
 
    Private Sub Button24_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Button24.Click 
        'Dim Shift As Integer 
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        'Shift = Val(TextBox15.Text) 
        'grasping2(sender, e, Shift, 0) 
 
 
    End Sub 
 
    Private Sub Button25_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Button25.Click 
        Dim rc As Long 
        rc = 
PlaySound(System.AppDomain.CurrentDomain.BaseDirectory & 
"shaking_a_bag.wav", 0, SND_NOSTOP) 
    End Sub 
 

 
    Private Sub Button26_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Button26.Click 
        TextBox6.Text = "OPEN.JBI" 
        Button6_Click(sender, e) 
    End Sub 
 
    Private Sub Button29_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Button29.Click 
        TextBox6.Text = "CLOSE.JBI" 
        Button6_Click(sender, e) 
    End Sub 
End Class 

 
 
 
MATLAB Code 
SRL.m 
function SRL(arg,arg2,arg3) 
  
% Variable declarations 
global Q 
global tnow_array 
global iteration 
global min_tnow; 
global convergence_iteration 
  
% ------------------------------------------------------------------------- 
  
switch( arg) 
  
% ------------------------------------------------------------------------- 
  
case 0   
  
Q = ones(6,6,6); 
min_tnow = 10000;  
iterations = arg3; 
for iteration=1:iterations 
    SRL(1,0); 
end 
  
% ------------------------------------------------------------------------- 
  
case 1 
  
% Variable declarations 
global tnow 
global toaster % 0-free, 1-busy 
global butterer % 0-free, 1-busy 
global robot % 0-free, 1-busy 
global toasts_free % 0-free, 1-busy 
global toast 
global Gamma 
global Alpha 
global event_stack 
global state %robot state 
global next_state 
global desired_toast 
global impossible_pos 
  
oper_times= zeros(6); 
oper_times(1,2) = 24;  
oper_times(1,3) = 36;  
oper_times(2,1) = 21;  
oper_times(2,3) = 24;  
oper_times(2,4) = 26;  
oper_times(2,5) = 15; 
oper_times(3,1) = 22;  
oper_times(3,4) = 22;  
oper_times(3,5) = 28;  
oper_times(4,1) = 24;  
oper_times(4,2) = 26;  

oper_times(4,3) = 19; 
oper_times(4,5) = 19;  
oper_times(5,1) = 26;  
oper_times(5,2) = 24;  
oper_times(5,3) = 20; 
oper_times(5,6) = 12;  
oper_times(6,1) = 25;  
oper_times(6,2) = 23;  
oper_times(6,3) = 19;  
oper_times(6,4) = 21;  
toast_pos = ones(1,3); % toasts 
robot_pos=0; 
toating_time = 60; 
buttering_time = 60; 
Rew = zeros(6,6,6); 
Rew(6,6,6) = 1.5; 
Gamma = 0.9; 
Alpha = 0.05; 
% event_stack[event,state,time, toast(0=robot)] 
%events: 
% 1: robot move empty 
% 2: robot move full 
% 3: finished toasting 
% 4: finished buttering 
tnow = 0; 
tmax = 20000; 
impossible_pos = 
[112;114;121;122;124;133;134;141;142;143;144;155;211;212;214;22
1;222;224;233;234;241;242;243;244;255;313;314;323;324;331;332;3
33;334;335;336;341;342;343;344;353;355;363;411;412;413;414;421;
422;423;424;431;432;433;434;441;442;443;444;454;455;511;515;525
;533;535;545;551;552;553;554;555;556;565;633;655]; 
[impossible_pos,ind] = sort(impossible_pos); 
toaster =0; 
butterer = 0; 
toasts_free = [0,0,0]; 
toast_taken = true; 
robot=0; 
state=2; % starting point 
seq = toast_pos; 
toast=1; 
next_state = toast_pos(1); 
next_event = [1,next_state, tnow+oper_times(state,next_state),toast]; 
event_stack = [next_event]; 
toast_taken=false; 
robot=1; 
  
% ---------------------------------------------------------------------------------
------------------------------- 
  
while tnow<tmax 
cur_event = event_stack(1,:); 
event = cur_event(1); 
tnow = cur_event(3); 
if event<3 
    toast = cur_event(4); 
    state = cur_event(2); 
    robot =0;% robot is free after reaching state, empty or full 
end 
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if event==2 
    % updating toast position after arrival 
     toast_taken=true; 
    toast_pos(toast) = state; 
    % updating position sequence 
    seq = [toast_pos;seq]; 
    % updating Q of previous step 
    delta = Rew(seq(2,1),seq(2,2),seq(2,3)) + Gamma * Q 
(toast_pos(1), toast_pos(2),toast_pos(3)) - Q 
(seq(2,1),seq(2,2),seq(2,3)); 
    Q (seq(2,1),seq(2,2),seq(2,3)) = Q (seq(2,1),seq(2,2),seq(2,3)) + 
Alpha * delta; 
    % finished if all toasts are finished... 
    test = find (toast_pos==6); 
    if size(test)==size(toast_pos) 
        Q (toast_pos(1), toast_pos(2),toast_pos(3)) = Rew (toast_pos(1), 
toast_pos(2),toast_pos(3)) + Gamma * Q (toast_pos(1), 
toast_pos(2),toast_pos(3)); 
        break; 
  end 
   %cheking optional next steps 
    optional_next_pos = [0,0,0]; 
    for i = toast_pos(1)+1:toast_pos(1)+2 
        if (i<7)  
            temp_pos = [i,toast_pos(2),toast_pos(3)]; 
            num_temp_pos = 
100*temp_pos(1)+10*temp_pos(2)+temp_pos(3); 
            if bsearch(impossible_pos,num_temp_pos) == -1 
                good=true; 
            else 
                good=false; 
            end 
            if good 
                if optional_next_pos(1,1)==0 
                    optional_next_pos  = temp_pos; 
                else 
                        optional_next_pos = [optional_next_pos;temp_pos]; 
                end 
            end 
        end 
    end 
    for i = toast_pos(2)+1:toast_pos(2)+2 
        if (i<7)  
            temp_pos = [toast_pos(1),i,toast_pos(3)]; 
             num_temp_pos = 
100*temp_pos(1)+10*temp_pos(2)+temp_pos(3); 
            if bsearch(impossible_pos,num_temp_pos) == -1 
                good=true; 
            else 
                good=false; 
            end 
            if good 
                if optional_next_pos(1,1)==0 
                    optional_next_pos  = temp_pos; 
                else 
                        optional_next_pos = [optional_next_pos;temp_pos]; 
                end 
            end 
        end 
    end 
    for i = toast_pos(3)+1:toast_pos(3)+2 
        if (i<7)  
            temp_pos = [toast_pos(1),toast_pos(2),i]; 
             num_temp_pos = 
100*temp_pos(1)+10*temp_pos(2)+temp_pos(3); 
            if bsearch(impossible_pos,num_temp_pos) == -1 
                good=true; 
            else 
                good=false; 
            end 
            if good 
                if optional_next_pos(1,1)==0 
                    optional_next_pos  = temp_pos; 
                else 
                        optional_next_pos = [optional_next_pos;temp_pos]; 
                end 
            end 
        end 

    end 
    %finding  best next step 
    max = -10000; 
   for i=1:size(optional_next_pos,1) 
       if 
Q(optional_next_pos(i,1),optional_next_pos(i,2),optional_next_pos(i,
3))>=max 
           max = 
Q(optional_next_pos(i,1),optional_next_pos(i,2),optional_next_pos(i,
3)); 
           ind = i; 
       end              
   end 
   best_next_pos = optional_next_pos(ind,:); 
   %Choosing next step 
    epsilon = 1  / iteration; 
    % epsilon = 1; 
    if rand>epsilon 
        next_pos = best_next_pos; 
    else 
        pos_ind = ceil(rand * size(optional_next_pos,1)); 
        next_pos = optional_next_pos(pos_ind,:); 
    end 
    delta = next_pos - toast_pos; 
    next_toast = find(delta ~=0); 
    % freeing toaster and butterer after toast moved from them 
    if (state == 4) || (state == 5) 
        toaster = 0; 
    elseif state == 6 
        butterer=0; 
    end 
end % if event ==2 
if event ==3 
    toasts_free(cur_event(4))=0; 
end 
if event == 4 
   toasts_free(cur_event(4))=0; 
end 
if (robot==0) && (toast_taken) 
   toast=next_toast; 
   next_state = toast_pos(toast); 
   next_event = [1,next_state, 
tnow+oper_times(state,next_state),toast]; 
   event_stack = [event_stack;next_event]; 
   toast_taken=false; 
   robot=1; 
end 
% checking toast next station 
if (robot==0) && (toasts_free(toast)==0) 
    if ((state~=2) && (state~=4) && (state ~=6)) 
        next_state = toast_pos(toast)+1; 
    else  
        next_state = state; 
    end 
    % toaster is free - no need to go to queue 
    if (next_state == 2) && (toaster==0) 
        next_state = 3; 
        toaster = 1; 
        toasts_free(toast)=1; 
        next_event = [2,next_state, 
tnow+oper_times(toast_pos(toast),next_state),toast]; 
        event_stack = [event_stack;next_event]; 
        % next_event = 
[3,0,tnow+oper_times(toast_pos(toast),next_state)+toating_time,toast
]; 
        next_event = 
[3,0,tnow+oper_times(toast_pos(toast),next_state)+normrnd(toating_t
ime,toating_time/10),toast]; 
        event_stack = [event_stack;next_event]; 
        robot=1; 
        % butterer is free - no need to go to queue 
    elseif (next_state == 4) && (butterer==0) 
        next_state = 5; 
        butterer=1; 
        toasts_free(toast)=1; 
        next_event = [2,next_state, 
tnow+oper_times(toast_pos(toast),next_state),toast]; 
        event_stack = [event_stack;next_event]; 
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        % next_event = 
[4,0,tnow+oper_times(toast_pos(toast),next_state)+buttering_time,toa
st]; 
        next_event = 
[4,0,tnow+oper_times(toast_pos(toast),next_state)+normrnd(buttering
_time,buttering_time/10),toast]; 
        event_stack = [event_stack;next_event];    
        robot=1; 
    else 
        next_event = [2,next_state, 
tnow+oper_times(toast_pos(toast),next_state),toast]; 
        event_stack = [event_stack;next_event]; 
        robot=1; 
    end    
end 
[sorted_stack, ind] = sort(event_stack(:,3)); 
for i = 1:size(ind) 
if i==1  
    temp = event_stack(ind(i),:); 
else 
    temp = [temp;event_stack(ind(i),:)]; 
end 
end 
event_stack=temp(2:1:end,:); 
end %while 
%updating min_tnow 
if tnow<min_tnow 
    min_tnow = tnow; 
end 
%factor = 1/(tnow-min_tnow+5) + 0.8; 
factor  = 1/tnow; 
for i=1:size(seq,1)-1 
    Q(seq(i,1),seq(i,2),seq(i,3)) = Q(seq(i,1),seq(i,2),seq(i,3))*factor; 
end 
if iteration == 1 
    tnow_array = tnow; 
else 
% check when convergence is achieved 
if tnow_array(size(tnow_array)) ~=tnow 
    convergence_iteration = iteration; 
end 
% update tnow_array 
tnow_array = [tnow_array;tnow]; 
end 
  
end%case 
 
MC.m 
function MC(arg,arg2,arg3) 
  
% Variable declarations 
global Q 
global tnow_array 
global iteration 
global min_tnow; 
global convergence_iteration 
global avgR 
global visits 
  
% ------------------------------------------------------------------------ 
  
switch( arg) 
  
% ------------------------------------------------------------------------ 
     
case 0   
  
Q = ones(6,6,6); 
min_tnow = 10000;  
iterations = arg3; 
for iteration=1:iterations 
    MC(1,0); 
 end 
  
% ------------------------------------------------------------------------- 
  
case 1 

     
% Variable declaration 
global tnow 
global toaster % 0-free, 1-busy 
global butterer % 0-free, 1-busy 
global robot % 0-free, 1-busy 
global toasts_free % 0-free, 1-busy 
global toast 
global Gamma 
global Alpha 
global event_stack 
global state %robot state 
global next_state 
global desired_toast 
global impossible_pos 
oper_times= zeros(6); 
oper_times(1,2) = 24;  
oper_times(1,3) = 36;  
oper_times(2,1) = 21;  
oper_times(2,3) = 24;  
oper_times(2,4) = 26;  
oper_times(2,5) = 15; 
oper_times(3,1) = 22;  
oper_times(3,4) = 22;  
oper_times(3,5) = 28;  
oper_times(4,1) = 24;  
oper_times(4,2) = 26;  
oper_times(4,3) = 19; 
oper_times(4,5) = 19;  
oper_times(5,1) = 26;  
oper_times(5,2) = 24;  
oper_times(5,3) = 20; 
oper_times(5,6) = 12;  
oper_times(6,1) = 25;  
oper_times(6,2) = 23;  
oper_times(6,3) = 19;  
oper_times(6,4) = 21;  
toast_pos = ones(1,3); % toasts 
robot_pos=0; 
toating_time = 60; 
buttering_time = 60; 
Rew = zeros(6,6,6); 
Rew(6,6,6) = 1.5; 
Gamma = 0.9; 
Alpha = 0.05; 
% For monte carlo 
avgR = zeros(6,6,6); 
visits = zeros(6,6,6); 
% event_stack[event,state,time, toast(0=robot)] 
%events: 
% 1: robot move empty 
% 2: robot move full 
% 3: finished toasting 
% 4: finished buttering 
tnow = 0; 
tmax = 20000; 
impossible_pos = 
[112;114;121;122;124;133;134;141;142;143;144;155;211;212;214;22
1;222;224;233;234;241;242;243;244;255;313;314;323;324;331;332;3
33;334;335;336;341;342;343;344;353;355;363;411;412;413;414;421;
422;423;424;431;432;433;434;441;442;443;444;454;455;511;515;525
;533;535;545;551;552;553;554;555;556;565;633;655]; 
[impossible_pos,ind] = sort(impossible_pos); 
toaster =0; 
butterer = 0; 
toasts_free = [0,0,0]; 
toast_taken = true; 
robot=0; 
state=2; 
seq = toast_pos; 
toast=1; 
next_state = toast_pos(1); 
next_event = [1,next_state, tnow+oper_times(state,next_state),toast]; 
event_stack = [next_event]; 
toast_taken=false; 
robot=1; 
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% ---------------------------------------------------------------------------------
------------------------------- 
  
while tnow<tmax 
cur_event = event_stack(1,:); 
event = cur_event(1); 
tnow = cur_event(3); 
if event<3 
    toast = cur_event(4); 
    state = cur_event(2); 
    robot =0;% robot is free after reaching state, empty or full 
end 
if event==2 
    % updating toast position after arrival 
     toast_taken=true; 
    toast_pos(toast) = state; 
    % updating position sequence 
    seq = [toast_pos;seq]; 
   % finished if all toasts are finished... 
    test = find (toast_pos==6); 
    if size(test)==size(toast_pos) 
      break; 
    end 
    %cheking optional next steps 
    optional_next_pos = [0,0,0]; 
    for i = toast_pos(1)+1:toast_pos(1)+2 
        if (i<7)  
            temp_pos = [i,toast_pos(2),toast_pos(3)]; 
            num_temp_pos = 
100*temp_pos(1)+10*temp_pos(2)+temp_pos(3); 
            if bsearch(impossible_pos,num_temp_pos) == -1 
                good=true; 
            else 
                good=false; 
            end 
            if good 
                if optional_next_pos(1,1)==0 
                    optional_next_pos  = temp_pos; 
                else 
                        optional_next_pos = [optional_next_pos;temp_pos]; 
                end 
            end 
        end 
    end 
    for i = toast_pos(2)+1:toast_pos(2)+2 
        if (i<7)  
            temp_pos = [toast_pos(1),i,toast_pos(3)]; 
             num_temp_pos = 
100*temp_pos(1)+10*temp_pos(2)+temp_pos(3); 
            if bsearch(impossible_pos,num_temp_pos) == -1 
                good=true; 
            else 
                good=false; 
            end 
            if good 
                if optional_next_pos(1,1)==0 
                    optional_next_pos  = temp_pos; 
                else 
                        optional_next_pos = [optional_next_pos;temp_pos]; 
                end 
            end 
        end 
    end 
    for i = toast_pos(3)+1:toast_pos(3)+2 
        if (i<7)  
            temp_pos = [toast_pos(1),toast_pos(2),i]; 
             num_temp_pos = 
100*temp_pos(1)+10*temp_pos(2)+temp_pos(3); 
            if bsearch(impossible_pos,num_temp_pos) == -1 
                good=true; 
            else 
                good=false; 
            end 
            if good 
                if optional_next_pos(1,1)==0 
                    optional_next_pos  = temp_pos; 
                else 
                        optional_next_pos = [optional_next_pos;temp_pos]; 

                end 
            end 
        end 
    end 
     %finding  best next step 
    max = -10000; 
   for i=1:size(optional_next_pos,1) 
       if 
Q(optional_next_pos(i,1),optional_next_pos(i,2),optional_next_pos(i,
3))>=max 
           max = 
Q(optional_next_pos(i,1),optional_next_pos(i,2),optional_next_pos(i,
3)); 
           ind = i; 
       end              
   end 
   best_next_pos = optional_next_pos(ind,:); 
   %Choosing next step 
   epsilon = 1  / iteration; 
   if rand>epsilon 
        next_pos = best_next_pos; 
    else 
        pos_ind = ceil(rand * size(optional_next_pos,1)); 
        next_pos = optional_next_pos(pos_ind,:); 
    end 
    delta = next_pos - toast_pos; 
    next_toast = find(delta ~=0); 
    % freeing toaster and butterer after toast moved from them 
    if (state == 4) || (state == 5) 
        toaster = 0; 
    elseif state == 6 
        butterer=0; 
    end         
 end % if event ==2 
if event ==3 
    toasts_free(cur_event(4))=0; 
end 
if event == 4 
   toasts_free(cur_event(4))=0; 
end 
if (robot==0) && (toast_taken) 
   toast=next_toast; 
   next_state = toast_pos(toast); 
   next_event = [1,next_state, 
tnow+oper_times(state,next_state),toast]; 
   event_stack = [event_stack;next_event]; 
   toast_taken=false; 
   robot=1; 
end 
% checking toast next station 
if (robot==0) && (toasts_free(toast)==0) 
    if ((state~=2) && (state~=4) && (state ~=6)) 
        next_state = toast_pos(toast)+1; 
    else  
        next_state = state; 
    end 
    % toaster is free - no need to go to queue 
    if (next_state == 2) && (toaster==0) 
        next_state = 3; 
        toaster = 1; 
        toasts_free(toast)=1; 
        next_event = [2,next_state, 
tnow+oper_times(toast_pos(toast),next_state),toast]; 
        event_stack = [event_stack;next_event]; 
        % next_event = 
[3,0,tnow+oper_times(toast_pos(toast),next_state)+toating_time,toast
]; 
        next_event = 
[3,0,tnow+oper_times(toast_pos(toast),next_state)+normrnd(toating_t
ime,toating_time/10),toast]; 
        event_stack = [event_stack;next_event]; 
        robot=1; 
        % butterer is free - no need to go to queue 
    elseif (next_state == 4) && (butterer==0) 
        next_state = 5; 
        butterer=1; 
        toasts_free(toast)=1; 
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        next_event = [2,next_state, 
tnow+oper_times(toast_pos(toast),next_state),toast]; 
        event_stack = [event_stack;next_event]; 
        % next_event = 
[4,0,tnow+oper_times(toast_pos(toast),next_state)+buttering_time,toa
st]; 
        next_event = 
[4,0,tnow+oper_times(toast_pos(toast),next_state)+normrnd(buttering
_time,buttering_time/10),toast]; 
        event_stack = [event_stack;next_event];    
        robot=1; 
    else 
        next_event = [2,next_state, 
tnow+oper_times(toast_pos(toast),next_state),toast]; 
        event_stack = [event_stack;next_event]; 
        robot=1; 
end    
end 
[sorted_stack, ind] = sort(event_stack(:,3)); 
for i = 1:size(ind) 
if i==1  
    temp = event_stack(ind(i),:); 
else 
    temp = [temp;event_stack(ind(i),:)]; 
end 
end 
event_stack=temp(2:1:end,:); 

end %while 
%updating min_tnow 
if tnow<min_tnow 
    min_tnow = tnow; 
end 
factor  = 1/tnow; 
for i=1:size(seq,1)-1 
   avgR(seq(i,1),seq(i,2),seq(i,3)) =  (    visits(seq(i,1),seq(i,2),seq(i,3)) 
* avgR(seq(i,1),seq(i,2),seq(i,3)) + factor  )  /  
(visits(seq(i,1),seq(i,2),seq(i,3)) + 1); 
   visits(seq(i,1),seq(i,2),seq(i,3)) = visits(seq(i,1),seq(i,2),seq(i,3))+1; 
   Q(seq(i,1),seq(i,2),seq(i,3)) = avgR(seq(i,1),seq(i,2),seq(i,3)); 
end 
if iteration == 1 
    tnow_array = tnow; 
else 
% check when convergence is achieved 
if tnow_array(size(tnow_array)) ~=tnow 
    convergence_iteration = iteration; 
end 
% update tnow_array 
    tnow_array = [tnow_array;tnow]; 
end 
  
end%case 
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MATLAB Code 
 
CCRL.m 
function CCRL(arg) 
  
%-------------------------------------------------------------------------- 
  
%Variable Declarations 
global block 
global goal 
global start 
global nx ny nz ns na 
global robot 
global R 
global Q 
global alpha tau gamma delta 
global human_tau 
global move loss 
global num_of_steps 
global episode_number 
global reached_goal 
global enable_graphics 
global enable_result_graphics 
global enable_human_collaboration 
global human_collaboration 
global episodes 
global human_next_state 
global HumanQ 
global convergence_episode 
global collaboration_requests 
global enable_rejection 
global human_misleads 
global reject_human_assistance 
global check_conv 
global stop_requests 
global counter 
global max_steps 
global helping_steps 
  
%----------------------------------------------------------------------- 
  
switch( arg) 
     
%----------------------------------------------------------------------- 
  
% variable Assignment 
case 'init' 
     
% obstacles 
block = [ 10,5,1; 10,6,1; 10,7,1;  
                    10,5,2; 10,6,2; 10,7,2; 
                    10,5,3; 10,6,3; 10,7,3;         
                    8,5,1; 8,6,1; 8,7,1; 
                    8,5,2; 8,6,2; 8,7,2;   
                    8,5,3; 8,6,3; 8,7,3;   
                    9,5,1; 9,5,2; 9,5,3; 
                    9,7,1; 9,7,2; 9,7,3;  
                    1,10,10; 2,10,10;3,10,10; 4,10,10; 5,10,10; 6,10,10; 
7,10,10; 8,10,10; 9, 10, 10; 10,10,10; 
                    1,10,9; 2,10,9;3,10,9; 4,10,9; 5,10,9; 6,10,9; 7,10,9; 
8,10,9; 9, 10, 9; 10,10,9; 
                    1,1,1; 1,2,1; 2,1,1; 2,2,1; 
                    10,1,10; 
                    3,10,2; 4,10,2; 5,10,2; 6,10,2; 
                    5,6,1; 5,7,1;  
                    5,6,2; 5,7,2;  
                    5,6,3; 5,7,3;   
                    ]; 
%goal point                     
goal = [9,6,4];                         
% starting point 

start = [1,8,2]; 
% world size 
nx = 10;    ny = 10;    nz = 10;    ns = nx*ny*nz ; 
% actions 
na = 6;     % Right,Left,Up,Down, Forward, Backward 
move = [0,-1,0; 0,1,0; 0,0,1; 0,0,-1; 1,0,0; -1,0,0]; 
loss = -0.1*[ 1; 1; 1; 1; 1; 1]; 
% reward field 
R = zeros( nx, ny, nz); 
for i = 1:size(block,1) 
    R(block(i,1),block(i,2),block(i,3)) = -1; 
end 
R(goal(1),goal(2),goal(3)) = 1.5; 
% value field 
Q = zeros( nx, ny, nz); 
% learning parameters 
alpha = 0.95; gamma = 0.99;  
% maximum steps for learning episode 
max_steps = 200;  
% Number of times agent is asking for human collaboration 
collaboration_requests = 0; 
% for stoppingassistance requests if converged 
stop_requests = false;  
counter = 0; 
check_conv=0; 
% numner of times human gave bad suggetions 
human_misleads = 0; 
% Helping steps 
helping_steps = 0; 
% rejecting human assistance 
reject_human_assistance = false; 
% simulated human value matrix 
load HumanQ 
%graphics 
enable_graphics = false; 
enable_result_graphics  = false; % just for results.  
% human collaboration 
enable_human_collaboration = true; 
human_collaboration = false; % updated during session. 
% rejection of human assitance 
enable_rejection = true; 
  
% ----------------------------------------------------------------------- 
     
% Learning Session (made out of N episodes)     
case 'run' 
     
CCRL('init') 
episodes = 200; 
for  episode_number=1:episodes 
reached_goal = false; % for printing data to excel - know if reached 
target or block 
K = 5; % parameter for averages and convergence calculation  
% rejection of human assitance 
if (enable_rejection) && (~reject_human_assistance) % after 
rejection no need to go in the if again 
    if human_collaboration == true % meaning human helped at 
previous episode 
        if num_of_steps(size(num_of_steps,1)) >= 
mean(num_of_steps(size(num_of_steps,1)-K:size(num_of_steps,1)-
1)) 
            human_misleads = human_misleads +1; 
        end 
        if human_misleads > 5 
            reject_human_assistance = true; 
            human_collaboration = false; 
            enable_graphics = false; 
        end 
    end 
end % rejection 
X = 30; %number of episodes from which to start checking 
if (enable_human_collaboration) && (episode_number >= X)  && 
(~reject_human_assistance) % don't get in if rejection.  
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    % evalute learning rate to deside whether to request human 
intervention - averages of K episdods 
    prev_avg = mean(num_of_steps(size(num_of_steps,1)-(2*K-
1):size(num_of_steps,1)-K)); 
    curr_avg = mean(num_of_steps(size(num_of_steps,1)-(K-
1):size(num_of_steps,1))); 
    % checking if converged for at least 2 human assisttances - if so, 
stop asking for help 
    if (check_conv == num_of_steps(size(num_of_steps,1))) && 
(check_conv < max_steps) 
        counter = counter + 1; 
        if counter > (2 * K) 
            stop_requests = true;                         
        end 
    else 
        check_conv = num_of_steps(size(num_of_steps,1)); 
        counter = 0; 
    end 
    % asking for assistance only if performance is not good enough . 
    if (curr_avg/prev_avg > 0.95)  &&  (~stop_requests) && 
(episode_number < episodes) 
        human_collaboration = true; 
        collaboration_requests = collaboration_requests+1; 
    else 
        human_collaboration = false; 
        enable_graphics = false; 
    end 
end % enable_human_collaboration 
CCRL('episode') 
end % for 
  
% ------------------------------------------------------------------------- 
     
% Display Resulting Path (achieved by the learning process) 
case 'result' 
  
enable_graphics = true; 
enable_result_graphics = true; 
episode_number = 200;  
CCRL('world'), pause(0.0005) 
CCRL('episode') 
enable_result_graphics  = false; 
  
% --------------------------------------------------------------------- 
     
% Display Graphics    
case 'world'     
  
clf 
axis([1 11 1 11 1 11]); % grid world size 
grid on; 
for i = 1:size(block,1) 
    voxel(block(i,:),[1 1 1],'r',0.7); % obstacles 
end 
voxel(goal,[1 1 1],'g',0.7); % goal 
  
% --------------------------------------------------------------------- 
     
% Learning Episode 
case 'episode' 
     
robot = start; 
for step = 1:max_steps % episode steps 
% display graphics (pause for display) 
if enable_graphics 
    if ~enable_result_graphics 
        CCRL('world'), pause(0.0005) 
    end 
    voxel(robot,[1 1 1],'m',0.7);pause(0.000005); % dislpay robot 
moves 
end 
if R(robot(1), robot(2), robot(3)) == 1.5 % reached goal 
    Q(robot(1), robot(2), robot(3)) = R(robot(1), robot(2), robot(3)); 
    reached_goal = true; 
    break; 
end 
if R(robot(1), robot(2), robot(3)) == -1 % hit an obstacle 
    Q(robot(1), robot(2), robot(3)) = R(robot(1), robot(2), robot(3)); 

    break; 
end 
%Choosing next action - autonomus or semi-autonomus... 
if (human_collaboration)  % human can help everywhere 
%if (human_collaboration) && (robot(1)>5) && ( (robot(2) >2) && 
(robot(2)<10) ) && ( (robot(3)>2) && (robot(3)<9) ) % human can 
help just at a certain region 
    % automatic human collaboration 
    CCRL('human') 
    next_state  = human_next_state; 
    helping_steps = helping_steps+1; 
else % choose action autonomously 
    % predict next possible states: each row for an action 
    pstate = repmat( robot, na, 1) + move; 
    pstate = min( max( pstate,1), repmat([nx,ny,nz],na,1)); % set of 
possible states to move to (inside grid only) 
    % linear index 
    istate = sub2ind( [nx,ny,nz], pstate(:,1), pstate(:,2), pstate(:,3)); 
     tau = 1 / episode_number^1.3; 
    pq = loss + gamma*Q(istate);    % each row for an action 
    prob = exp(pq/tau); 
    prob = prob./(sum(prob));   % selection probablity 
    act = find( cumsum(prob) > rand(1)); 
    softmax_move = act(1); 
    next_state =  pstate(softmax_move,:);  
end % choosing next action 
% update Q value 
delta =  - 0.1 + gamma*Q(next_state(1),next_state(2),next_state(3)) - 
Q(robot(1),robot(2),robot(3)); 
Q(robot(1),robot(2),robot(3)) = Q(robot(1),robot(2),robot(3)) + 
alpha*delta; 
robot = next_state; % moving to next state 
end % episode steps 
% update number of steps array 
if episode_number == 1 % first value in the array 
    if reached_goal 
        num_of_steps = step; % reached goal 
    else 
        num_of_steps  = max_steps + 1; % hit block - assign max_steps 
+  1 to note it and penalise  for average calculation 
    end 
else % rest of array 
    % check when convergence is achieved 
    if num_of_steps(size(num_of_steps,1)) ~=step 
        convergence_episode = episode_number; 
    end 
    if reached_goal 
        num_of_steps = [num_of_steps;step]; 
    else 
    num_of_steps = [num_of_steps; max_steps + 1]; 
    end 
end 
   
%-------------------------------------------------------------------------- 
  
% simulated human collaboration 
case 'human' 
  
% predict next possible states: each row for an action 
pstate = repmat( robot, na, 1) + move; 
pstate = min( max( pstate,1), repmat([nx,ny,nz],na,1)); % set of 
possible states to move to (inside grid only) 
% linear index 
istate = sub2ind( [nx,ny,nz], pstate(:,1), pstate(:,2), pstate(:,3)); 
human_tau = 0.01; % human expertise 
% suggest next action using softmax 
pq = loss + gamma*HumanQ(istate);% each row for an action 
prob = exp(pq/human_tau); 
prob = prob./(sum(prob));   % selection probablity 
act = find( cumsum(prob) > rand(1)); 
softmax_move = act(1); 
human_next_state =  pstate(softmax_move,:);  
  
end % case 
 

IA.m 
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function IA(arg) 
  
%-------------------------------------------------------------------------- 
  
%Variable Declarations 
global block 
global goal 
global start 
global nx ny nz ns na 
global robot 
global R 
global Q 
global alpha tau gamma delta  
global human_tau 
global move loss 
global num_of_steps 
global episode_number 
global reached_goal 
global enable_graphics 
global enable_result_graphics 
global enable_human_collaboration 
global human_collaboration 
global episodes 
global human_next_state 
global HumanQ 
global convergence_episode 
global max_steps 
global helping_steps 
%----------------------------------------------------------------------- 
  
switch( arg) 
     
%----------------------------------------------------------------------- 
     
% variable Assignment 
case 'init' 
  
% obstacles 
block = [ 10,5,1; 10,6,1; 10,7,1;  
                    10,5,2; 10,6,2; 10,7,2; 
                    10,5,3; 10,6,3; 10,7,3;         
                    8,5,1; 8,6,1; 8,7,1; 
                    8,5,2; 8,6,2; 8,7,2;   
                    8,5,3; 8,6,3; 8,7,3;   
                    9,5,1; 9,5,2; 9,5,3; 
                    9,7,1; 9,7,2; 9,7,3;  
                    1,10,10; 2,10,10;3,10,10; 4,10,10; 5,10,10; 6,10,10; 
7,10,10; 8,10,10; 9, 10, 10; 10,10,10; 
                    1,10,9; 2,10,9;3,10,9; 4,10,9; 5,10,9; 6,10,9; 7,10,9; 
8,10,9; 9, 10, 9; 10,10,9; 
                    1,1,1; 1,2,1; 2,1,1; 2,2,1; 
                    10,1,10; 
                    3,10,2; 4,10,2; 5,10,2; 6,10,2; 
                    5,6,1; 5,7,1;  
                    5,6,2; 5,7,2;  
                    5,6,3; 5,7,3;   
                    ]; 
 %goal point                     
goal = [9,6,4];                         
% starting point 
start = [1,8,2]; 
% world size 
nx = 10;    ny = 10;    nz = 10;    ns = nx*ny*nz ; 
% actions 
na = 6;     % Right,Left,Up,Down, Forward, Backward 
move = [0,-1,0; 0,1,0; 0,0,1; 0,0,-1; 1,0,0; -1,0,0]; 
loss = -0.1*[ 1; 1; 1; 1; 1; 1]; 
% reward field 
R = zeros( nx, ny, nz); 
for i = 1:size(block,1) 
    R(block(i,1),block(i,2),block(i,3)) = -1; 
end 
R(goal(1),goal(2),goal(3)) = 1.5; 
% value field 
Q = zeros( nx, ny, nz); 
% learning parameters 
alpha = 0.95; gamma = 0.99; lambda = 0.5;  
% maximum steps for learning episode 

max_steps = 200;  
% Helping steps 
helping_steps = 0; 
% simulated human value matrix 
load HumanQ 
%graphics 
enable_graphics = false; 
enable_result_graphics  = false; % just for results. 
  
% ----------------------------------------------------------------------- 
     
% Learning Session (made out of N episodes)     
case 'run' 
     
IA('init') 
episodes = 200; 
for  episode_number=1:episodes 
reached_goal = false;  
IA('episode') 
end % for 
  
% ------------------------------------------------------------------------- 
     
% Display Resulting Path (achieved by the learning process) 
case 'result' 
  
enable_graphics = true; 
enable_result_graphics = true;% show trail of moves just for results 
episode_number = 200;  
IA('world'), pause(0.0005) 
IA('episode') 
enable_result_graphics  = false; 
  
% --------------------------------------------------------------------- 
     
% Display Graphics    
case 'world'     
  
clf 
axis([1 11 1 11 1 11]); % grid world size 
grid on; 
for i = 1:size(block,1) 
    voxel(block(i,:),[1 1 1],'r',0.7); % undesired areas 
end 
voxel(goal,[1 1 1],'g',0.7); % goal 
  
% --------------------------------------------------------------------- 
     
% Learning Episode 
case 'episode' 
     
robot = start; 
for step = 1:max_steps % episode steps 
% display graphics (pause for display) 
if enable_graphics 
    if ~enable_result_graphics 
        IA('world'), pause(0.0005) 
    end 
    voxel(robot,[1 1 1],'m',0.7);pause(0.000005); % dislpay robot 
moves 
end 
  
if R(robot(1), robot(2), robot(3)) == 1.5 % reached goal 
    Q(robot(1), robot(2), robot(3)) = R(robot(1), robot(2), robot(3)); 
    reached_goal = true; 
    break; 
end 
if R(robot(1), robot(2), robot(3)) == -1 % hit a block 
    Q(robot(1), robot(2), robot(3)) = R(robot(1), robot(2), robot(3)); 
    break; 
end 
  
  %Choosing next action - autonomus or semi-autonomus... 
% for introspection 
 width_parameter = 1.3; 
% for introspection and choosing steps autonomously later...  
 pstate = repmat( robot, na, 1) + move; 



Appendix VII. 3D Path Planning Task – Source Code 148  

 
 

pstate = min( max( pstate,1), repmat([nx,ny,nz],na,1)); % set of 
possible states to move to (inside grid only) 
% linear index 
istate = sub2ind( [nx,ny,nz], pstate(:,1), pstate(:,2), pstate(:,3)); 
minimum = min(Q(istate));  
maximum = max(Q(istate));  
X = 30; 
if (maximum-minimum<=width_parameter) && 
(episode_number>=X)  % human can help everywhere 
%if (maximum-minimum<=width_parameter) && 
(episode_number>=K) && (robot(1)>5) && ( (robot(2) >2) && 
(robot(2)<10) ) && ( (robot(3)>2) && (robot(3)<9) ) % human can 
help just at a certain region   
    % automatic human collaboration 
    IA('human') 
    next_state  = human_next_state; 
    helping_steps = helping_steps+1; 
else % choose action autonomously 
    tau = 1 / episode_number^1.3; 
    pq = loss + gamma*Q(istate);    % each row for an action 
    prob = exp(pq/tau); 
    prob = prob./(sum(prob));   % selection probablity 
    act = find( cumsum(prob) > rand(1)); 
    softmax_move = act(1); 
    next_state =  pstate(softmax_move,:);  
end % choosing next action 
% update Q value 
delta =  - 0.1 + gamma*Q(next_state(1),next_state(2),next_state(3)) - 
Q(robot(1),robot(2),robot(3)); 
Q(robot(1),robot(2),robot(3)) = Q(robot(1),robot(2),robot(3)) + 
alpha*delta; 
robot = next_state; % moving to next state 
end % episode steps 
% update number of steps array 
if episode_number == 1 % first value in the array 
    if reached_goal 
        num_of_steps = step; % reached goal 
    else 
        num_of_steps  = max_steps + 1; % hit block  
    end 
else % rest of array 
    % check when convergence is achieved 
    if num_of_steps(size(num_of_steps,1)) ~=step 
        convergence_episode = episode_number; 
    end 
    if reached_goal 
        num_of_steps = [num_of_steps;step]; 
    else 
    num_of_steps = [num_of_steps; max_steps + 1]; 
    end 
end 
   
%-------------------------------------------------------------------------- 
  
% simulated human collaboration 
case 'human' 
  
% predict next possible states: each row for an action 
pstate = repmat( robot, na, 1) + move; 
pstate = min( max( pstate,1), repmat([nx,ny,nz],na,1)); % set of 
possible states to move to (inside grid only) 
% linear index 
istate = sub2ind( [nx,ny,nz], pstate(:,1), pstate(:,2), pstate(:,3)); 
% suggest next action using softmax 
human_tau = 0.01; % human expertise 
pq = loss + gamma*HumanQ(istate);% each row for an action 
prob = exp(pq/human_tau); 
prob = prob./(sum(prob));   % selection probablity 
act = find( cumsum(prob) > rand(1)); 
softmax_move = act(1); 
human_next_state =  pstate(softmax_move,:);  
  
end % case 
 
Combined.m 
function Combined(arg) 
  

%-------------------------------------------------------------------------- 
  
%Variable Declarations 
global block 
global goal 
global start 
global nx ny nz ns na 
global robot 
global R 
global Q 
global alpha tau gamma delta  
global human_tau 
global move loss 
global num_of_steps 
global episode_number 
global reached_goal 
global enable_graphics 
global enable_result_graphics 
global enable_human_collaboration 
global human_collaboration 
global episodes 
global human_next_state 
global HumanQ 
global convergence_episode 
global collaboration_requests 
global enable_rejection 
global human_misleads 
global reject_human_assistance 
global check_conv 
global stop_requests 
global counter 
global max_steps 
global helping_steps 
  
%----------------------------------------------------------------------- 
  
switch( arg) 
     
%----------------------------------------------------------------------- 
     
% variable Assignment 
case 'init' 
  
% obstacles 
block = [ 10,5,1; 10,6,1; 10,7,1;  
                    10,5,2; 10,6,2; 10,7,2; 
                    10,5,3; 10,6,3; 10,7,3;         
                    8,5,1; 8,6,1; 8,7,1; 
                    8,5,2; 8,6,2; 8,7,2;   
                    8,5,3; 8,6,3; 8,7,3;   
                    9,5,1; 9,5,2; 9,5,3; 
                    9,7,1; 9,7,2; 9,7,3;  
                    1,10,10; 2,10,10;3,10,10; 4,10,10; 5,10,10; 6,10,10; 
7,10,10; 8,10,10; 9, 10, 10; 10,10,10; 
                    1,10,9; 2,10,9;3,10,9; 4,10,9; 5,10,9; 6,10,9; 7,10,9; 
8,10,9; 9, 10, 9; 10,10,9; 
                    1,1,1; 1,2,1; 2,1,1; 2,2,1; 
                    10,1,10; 
                    3,10,2; 4,10,2; 5,10,2; 6,10,2; 
                    5,6,1; 5,7,1;  
                    5,6,2; 5,7,2;  
                    5,6,3; 5,7,3;   
                    ]; 
                   
%goal point                     
goal = [9,6,4];                         
% starting point 
start = [1,8,2]; 
% world size 
nx = 10;    ny = 10;    nz = 10;    ns = nx*ny*nz ; 
% actions 
na = 6;     % Right,Left,Up,Down, Forward, Backward 
move = [0,-1,0; 0,1,0; 0,0,1; 0,0,-1; 1,0,0; -1,0,0]; 
loss = -0.1*[ 1; 1; 1; 1; 1; 1]; 
% reward field 
R = zeros( nx, ny, nz); 
for i = 1:size(block,1) 
    R(block(i,1),block(i,2),block(i,3)) = -1; 
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end 
R(goal(1),goal(2),goal(3)) = 1.5; 
% value field 
Q = zeros( nx, ny, nz); 
% learning parameters 
alpha = 0.95; gamma = 0.99; lambda = 0.5;  
% maximum steps for learning episode 
max_steps = 200;  
% Number of times agent is asking for human collaboration 
collaboration_requests = 0; 
% for stoppingassistance requests if converged 
stop_requests = false;  
counter = 0; 
check_conv=0; 
% numner of times human gave bad suggetions 
human_misleads = 0; 
% Helping steps 
helping_steps = 0; 
% rejecting human assistance 
reject_human_assistance = false; 
% simulated human value matrix 
load HumanQ 
%graphics 
enable_graphics = false; 
enable_result_graphics  = false; % just for results 
% human collaboration 
enable_human_collaboration = true; 
human_collaboration = false; % updated during session 
% rejection human assitance 
enable_rejection = true; 
  
% ----------------------------------------------------------------------- 
     
% Learning Session (made out of N episodes)     
case 'run' 
     
Combined('init') 
episodes = 200; 
for  episode_number=1:episodes 
reached_goal = false; 
K = 5; % parameter for averages and convergence calculation  
% rejection of human assitance 
if (enable_rejection) && (~reject_human_assistance) % after 
rejection no need to go in the if again 
    if human_collaboration == true % meaning human helped at 
previous episode 
        if num_of_steps(size(num_of_steps,1)) >= 
mean(num_of_steps(size(num_of_steps,1)-K:size(num_of_steps,1)-
1)); 
            human_misleads = human_misleads +1; 
        end 
        if human_misleads > 1 
            reject_human_assistance = true; 
            human_collaboration = false; 
             enable_graphics = false; 
          end 
    end 
end % rejection 
X = 30; %number of episodes from which to start checking (checking 
2 K backwards....)  
if (enable_human_collaboration) && (episode_number >= X)  && 
(~reject_human_assistance) % don't get in if rejection.  
    % evalute learning rate to deside whether to request human 
intervention - averages of K episdods 
    prev_avg = mean(num_of_steps(size(num_of_steps,1)-(2*K-
1):size(num_of_steps,1)-K)); 
    curr_avg = mean(num_of_steps(size(num_of_steps,1)-(K-
1):size(num_of_steps,1))); 
    % checking if converged for at least 2 human assisttances - if so, 
stop asking for help 
    if (check_conv == num_of_steps(size(num_of_steps,1))) && 
(check_conv < max_steps) 
        counter = counter + 1; 
        if counter > (2 * K) 
            stop_requests = true;                         
        end 
    else 
        check_conv = num_of_steps(size(num_of_steps,1)); 

        counter = 0; 
    end 
    % asking for assistance only if performance is not good enough . 
    if (curr_avg/prev_avg > 0.95)  &&  (~stop_requests) && 
(episode_number < episodes) 
         human_collaboration = true; 
         collaboration_requests = collaboration_requests+1; 
    else 
        human_collaboration = false; 
        enable_graphics = false; 
    end 
end % enable_human_collaboration 
Combined('episode') 
end % for 
  
% ------------------------------------------------------------------------- 
     
% Display Resulting Path (achieved by the learning process) 
case 'result' 
  
enable_graphics = true; 
enable_result_graphics = true;% show trail of moves just for results 
episode_number = 200;  
Combined('world'), pause(0.0005) 
Combined('episode') 
enable_result_graphics  = false; 
  
% --------------------------------------------------------------------- 
     
% Display Graphics    
case 'world'     
  
clf 
axis([1 11 1 11 1 11]); % grid world size 
grid on; 
for i = 1:size(block,1) 
    voxel(block(i,:),[1 1 1],'r',0.7); % obstacles 
end 
voxel(goal,[1 1 1],'g',0.7); % goal 
  
  
% --------------------------------------------------------------------- 
     
% Learning Episode 
case 'episode' 
     
robot = start; 
for step = 1:max_steps % episode steps 
% display graphics (pause for display) 
if enable_graphics 
    if ~enable_result_graphics 
        Combined('world'), pause(0.0005) 
    end 
    voxel(robot,[1 1 1],'m',0.7);pause(0.000005); % dislpay robot 
moves 
end 
if R(robot(1), robot(2), robot(3)) == 1.5 % reached goal 
    Q(robot(1), robot(2), robot(3)) = R(robot(1), robot(2), robot(3)); 
    reached_goal = true; 
    break; 
end 
if R(robot(1), robot(2), robot(3)) == -1 % hit an obstacle 
        Q(robot(1), robot(2), robot(3)) = R(robot(1), robot(2), robot(3)); 
    break; 
end 
%Choosing next action - autonomus or semi-autonomus... 
% for introspection 
width_parameter = 0.7; 
 % for introspection and choosing steps autonomously later...  
 pstate = repmat( robot, na, 1) + move; 
pstate = min( max( pstate,1), repmat([nx,ny,nz],na,1)); % set of 
possible states to move to (inside grid only) 
% linear index 
istate = sub2ind( [nx,ny,nz], pstate(:,1), pstate(:,2), pstate(:,3)); 
minimum = min(Q(istate));  
maximum = max(Q(istate));  
if (maximum-minimum<=width_parameter)  && 
(human_collaboration)  % human can help everywhere 
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% if (maximum-minimum<=width_parameter)  && 
(human_collaboration) && (robot(1)>5) && ( (robot(2) >2) && 
(robot(2)<10) ) && ( (robot(3)>2) && (robot(3)<9) ) % human can 
help just at a certain region 
    % automatic human collaboration 
    Combined('human') 
    next_state  = human_next_state; 
    helping_steps = helping_steps+1; 
else % choose action autonomously 
    tau = 1 / episode_number^1.3; 
    pq = loss + gamma*Q(istate);    % each row for an action 
    prob = exp(pq/tau); 
    prob = prob./(sum(prob));   % selection probablity 
    act = find( cumsum(prob) > rand(1)); 
    softmax_move = act(1); 
    next_state =  pstate(softmax_move,:);  
end % choosing next action 
% update Q value 
  
delta =  - 0.1 + gamma*Q(next_state(1),next_state(2),next_state(3)) - 
Q(robot(1),robot(2),robot(3)); 
Q(robot(1),robot(2),robot(3)) = Q(robot(1),robot(2),robot(3)) + 
alpha*delta; 
robot = next_state; % moving to next state 
end % episode steps 
      
  
% update number of steps 
if episode_number == 1 % first value in the array 
    if reached_goal 
        num_of_steps = step; % reached goal 
    else 
        num_of_steps  = max_steps + 1; % hit block - assign max_steps 
+  1 to note it and penalise  for average calculation 
    end 

else % rest of array 
    % check when convergence is achieved 
    if num_of_steps(size(num_of_steps,1)) ~=step 
        convergence_episode = episode_number; 
    end 
    if reached_goal 
        num_of_steps = [num_of_steps;step]; 
    else 
    num_of_steps = [num_of_steps; max_steps + 1]; 
    end 
end 
  
%-------------------------------------------------------------------------- 
  
% simulated human collaboration 
case 'human' 
  
% predict next possible states: each row for an action 
pstate = repmat( robot, na, 1) + move; 
pstate = min( max( pstate,1), repmat([nx,ny,nz],na,1)); % set of 
possible states to move to (inside grid only) 
% linear index 
istate = sub2ind( [nx,ny,nz], pstate(:,1), pstate(:,2), pstate(:,3)); 
% suggest next action using softmax 
human_tau = 0.01; % human expertise 
pq = loss + gamma*HumanQ(istate);% each row for an action 
prob = exp(pq/human_tau); 
prob = prob./(sum(prob));   % selection probablity 
act = find( cumsum(prob) > rand(1)); 
softmax_move = act(1); 
human_next_state =  pstate(softmax_move,:);  
  
end % case 
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Appendix VIII. Task Sequencing for a FMS – Source Code 
  
MATLAB Code 
SRL.m 
function SRL(arg,arg2,arg3,arg4) 
  
global Q 
global tnow_array 
global iteration 
global min_tnow 
global seq 
global robot_seq 
global best_seq 
global best_robot_seq 
  
% ------------------------------------------------------------------------- 
  
switch( arg) 
  
% ------------------------------------------------------------------------- 
     
case 0   
  
Q = ones(3,3,3,3,3,3,3,3,3); 
min_tnow = 100000000; 
iterations = 200; 
for iteration=1:iterations 
    SRL(1,0,0,arg4); 
end 
  
% ------------------------------------------------------------------------- 
  
case 1 
  
global enable_graphics 
global tnow 
global sys_state 
global proc_time 
global order 
global processed_parts 
global part_waiting 
global station 
global target_station 
global next_part 
global vacuum_time 
global Gamma % algorithm parameter 
global Alpha % algorithm parameter 
global trans_time 
global event_stack 
global SIGMA %for normal arrival times 
global MU %for exponential inter arrival times 
  
vacuum_time = 240;  
trans_time= zeros(11); 
trans_time(1,2) = 65; %  
trans_time(1,3) = 15; %  
trans_time(1,4) = 45; %  
trans_time(1,5) = 45; %  
trans_time(1,6) = 45; %  
trans_time(1,7) = 25; %  
trans_time(1,8) = 25; %  
trans_time(1,9) = 25; %  
trans_time(1,10) = 40; % 
% trans_time(1,11) = 50; % N/A 
trans_time(2,1) = 25; %  
trans_time(2,3) = 20; %  
trans_time(2,4) = 45; %  
trans_time(2,5) = 45; %  
trans_time(2,6) = 45; %  
trans_time(2,7) = 25; %  
trans_time(2,8) = 25; %  
trans_time(2,9) = 25; %  
trans_time(2,10) = 40; % 

% trans_time(2,11) = 50; % N/A 
trans_time(3,1) = 25; %  
trans_time(3,2) = 45; %  
trans_time(3,4) = 45; %  
trans_time(3,5) = 45; %  
trans_time(3,6) = 45; %  
trans_time(3,7) = 25; %  
trans_time(3,8) = 25; %  
trans_time(3,9) = 25; %  
trans_time(3,10) = 40; % 
trans_time(3,11) = 40; %  
trans_time(4,1) = 45; %  
trans_time(4,2) = 45; %  
trans_time(4,3) = 45; %  
trans_time(4,5) = 65; %  
trans_time(4,6) = 15; %  
trans_time(4,7) = 50; %  
trans_time(4,8) = 50; %  
trans_time(4,9) = 50; %  
trans_time(4,10) = 60; % 
% trans_time(4,11) = 50; % N/A 
trans_time(5,1) = 45; %  
trans_time(5,2) = 45; %  
trans_time(5,3) = 45; %  
trans_time(5,4) = 25; %  
trans_time(5,6) = 20; %  
trans_time(5,7) = 50; %  
trans_time(5,8) = 50; %  
trans_time(5,9) = 50; %  
trans_time(5,10) = 60; % 
% trans_time(5,11) = 50; % N/A 
trans_time(6,1) = 45; %  
trans_time(6,2) = 45; %  
trans_time(6,3) = 45; %  
trans_time(6,4) = 25; %  
trans_time(6,5) = 45; %  
trans_time(6,7) = 50; %  
trans_time(6,8) = 50; %  
trans_time(6,9) = 50; %  
trans_time(6,10) = 60; % 
trans_time(6,11) = 60; % 
trans_time(7,1) = 25; %  
trans_time(7,2) = 25; %  
trans_time(7,3) = 25; %  
trans_time(7,4) = 50; %  
trans_time(7,5) = 50; %  
trans_time(7,6) = 50; %  
trans_time(7,8) = 50; %  
trans_time(7,9) = 15; %  
trans_time(7,10) = 30; % 
% % trans_time(7,11) = 50; %N/A 
trans_time(8,1) = 25; %  
trans_time(8,2) = 25; %  
trans_time(8,3) = 25; %  
trans_time(8,4) = 50; %  
trans_time(8,5) = 50; %  
trans_time(8,6) = 50; %  
trans_time(8,7) = 25; %  
trans_time(8,9) = 25; %  
trans_time(8,10) = 30; % 
% trans_time(8,11) = 50; %N/A 
trans_time(9,1) = 25; %  
trans_time(9,2) = 25; %  
trans_time(9,3) = 25; %  
trans_time(9,4) = 50; %  
trans_time(9,5) = 50; %  
trans_time(9,6) = 50; %  
trans_time(9,7) = 25; %  
trans_time(9,8) = 25; %  
trans_time(9,10) = 30; % 
trans_time(9,11) = 30; % 
trans_time(10,1) = 40; %  
trans_time(10,4) = 60; %  
trans_time(10,7) = 30; %  



Appendix VIII. Task Sequencing for a FMS – Source Code 152  

 
 

trans_time(11,1) = 40; %  
trans_time(11,2) = 40; %  
trans_time(11,3) = 40; %  
trans_time(11,4) = 60; %  
trans_time(11,5) = 60; %  
trans_time(11,6) = 60; %  
trans_time(11,7) = 30; %  
trans_time(11,8) = 30; %  
trans_time(11,9) = 30; % 
trans_time(11,10) = 20; % 
% M1 - Mill, M2 - Lathe 1,  M3 - LAthe 2 
proc_time = zeros(1,3); 
proc_time(1) = 185; %M2 
proc_time(2) = 185; %M3 
proc_time(3) = 600; %M1 
enable_graphics = arg2; 
Gamma = 0.9; 
Alpha = 0.05; 
% order = [1;1;2;1;2]; % 1 - ROOK, 2 - SIGN 
order = arg4; 
order = [order;-1]; %mark order is finished with -1 (end of list) 
part_number = 1; % starting with part in the head of the batch 
next_part = order(part_number); 
sys_state = zeros(1,9); 
processed_parts = 0; 
tnow = 0; 
seq = [sys_state,tnow]; 
robot_seq = [10,tnow]; 
MU = 200; 
SIGMA = MU/10; 
  
%-------------------------------------------------------------------------- 
  
%Stations: 
% 1 - M2_IB 
% 2 - M2 
% 3 - M2_OB 
% 4 - M3_IB 
% 5 - M3 
% 6 - M3_OB 
% 7 - M1_IB 
% 8 - M1 
% 9 - M1_OB 
% 10 - AGV_raw 
% 11 - AGV_proccessed 
% event structure: 
% [event,station,time, target_station] 
%events: 
% 1: robot arrive empty 
% 2: robot arrive with template 
% 3: robot arrive with part 
% 4: robot arrive with template +part 
% 5:M2 finish proccessing 
% 6:M3 finish proccessing 
% 7:M1 finish proccessing 
% 8: part arriveal 
% system states: 
% [M2_IB, M2, M2_OB, M3_IB, M3, M3_OB, M1_IB, M1, 
M1_OB] 
%Machine: 0-free, 1-Working, 2-full after process 
%Buffer:0-free, 1-template, 2-template+part 
% arrival from store: 
% next_part = 1 %rook 
% next_part = 2 %sign 
% next_part = 0 %no part arrived 
% next_part = -1 %end of order 
%station = robot state 
  
%-------------------------------------------------------------------------- 
  
%init 
  
% inter_arrival_time = round(normrnd(MU,SIGMA)); 
% inter_arrival_time = exprnd(MU); 
inter_arrival_time = MU; 
event_stack = [8,-1, tnow+inter_arrival_time,-1]; 
station = 10; % robot starts at AGV _raw 
if next_part == 1 

    target_station = 1; %go to M2 
else 
    target_station = 7; % go to M1 
end 
  
%-------------------------------------------------------------------------- 
  
while 0<1 % endless loop. will end with break 
prev_sys_state = sys_state;     
event_arr = event_stack(1,:); 
event = event_arr(1); 
tnow = event_arr(3); 
if ((event==1) || (event==2) || (event ==3) || (event==4)) % only robot 
moving events change the station 
    station = event_arr(2); 
    target_station = event_arr(4); 
    %update robot_seq 
    if event == 2 
        if station == 3 
            robot_seq = [1,tnow-trans_time(1,3);robot_seq]; 
        elseif station == 6 
            robot_seq = [4,tnow-trans_time(4,6);robot_seq]; 
        elseif station == 9 
            robot_seq = [7,tnow-trans_time(7,9);robot_seq]; 
        end 
    end 
    if event == 3 
        if station == 2 
            robot_seq = [1,tnow-trans_time(1,2);robot_seq];     
        elseif station == 5 
            robot_seq = [4,tnow-trans_time(4,5);robot_seq]; 
        elseif station == 8 
            robot_seq = [7,tnow-trans_time(7,8);robot_seq]; 
        elseif station == 3 
            robot_seq = [2,tnow-trans_time(2,3);robot_seq];     
        elseif station == 6 
            robot_seq = [5,tnow-trans_time(5,6);robot_seq]; 
        elseif station == 9 
            robot_seq = [8,tnow-trans_time(8,9);robot_seq]; 
        end 
    end 
   if (event == 4) && (station == 11) 
        if target_station == 3 
            robot_seq = [3,tnow-trans_time(3,11);robot_seq];  
        elseif target_station == 6 
            robot_seq = [6,tnow-trans_time(6,11);robot_seq];  
       elseif target_station == 9                         
            robot_seq = [9,tnow-trans_time(9,11);robot_seq];  
        end 
    end                
    robot_seq = [station,tnow;robot_seq]; 
end 
if (event == 8) % part arrives 
    if (station == 10) %robot waiting for it 
       new_event = [4,target_station, 
tnow+trans_time(station,target_station),target_station];% taking part 
to IB 
       event_stack = [event_stack;new_event]; 
       part_waiting = 0; 
       part_number = part_number +1; 
       next_part = order(part_number); 
       if next_part ~= -1 
            % inter_arrival_time = round(normrnd(MU,SIGMA)); 
            % inter_arrival_time = exprnd(MU); 
           inter_arrival_time = MU; 
           new_event = [8,-1, tnow+inter_arrival_time,-1];% new part 
arrival 
           event_stack = [event_stack;new_event]; 
       end 
    else 
        part_waiting = 1; % part arrived and waiting 
    end 
end % event == 8 
if(event == 1) % robot arrives empty 
    if (station == 10) %came to take part 
        if (part_waiting == 1) %part waiting 
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            new_event = [4,target_station, 
tnow+trans_time(station,target_station),target_station];% taking part 
to IB 
            event_stack = [event_stack;new_event]; 
            part_waiting = 0; 
            part_number = part_number +1; 
           next_part = order(part_number); 
           if next_part ~= -1 
                % inter_arrival_time = round(normrnd(MU,SIGMA)); 
                % inter_arrival_time = exprnd(MU); 
                inter_arrival_time = MU; 
                new_event = [8,-1, tnow+inter_arrival_time,-1];% new part 
arrival 
                event_stack = [event_stack;new_event]; 
           end 
       end 
    end % station == 10 
    if (station == 2) % M2 
        if (sys_state(2) == 2) % M2 finished process 
            new_event = [3,target_station, 
tnow+trans_time(station,target_station),target_station];% taking part 
to OB 
            event_stack = [event_stack;new_event]; 
            end 
    end % station == 2 
    if (station == 5) 
        if (sys_state(5) == 2) % M3 finished process 
            new_event = [3,target_station, 
tnow+trans_time(station,target_station),target_station];% taking part 
to OB 
            event_stack = [event_stack;new_event]; 
        end 
    end % station == 5 
    if (station == 8) 
        if (sys_state(8) == 2) % M1 finished process 
            new_event = [3,target_station, 
tnow+vacuum_time+trans_time(station,target_station),target_station];
% vacuum + taking part to OB 
            event_stack = [event_stack;new_event]; 
        end 
    end % station == 8 
end     % event == 1 
if (event ==2 ) % robot arrives with empty template to OB        
    if (station == 3)  
         sys_state(3) = 1; % update sys_state - OB  with template 
         sys_state(1) = 0; % update sys_state - OB  with template 
    end 
    if (station == 6)  
         sys_state(6) = 1; % update sys_state - OB  with template 
        sys_state(4) = 0; % update sys_state - OB  with template 
    end 
    if (station == 9)  
         sys_state(9) = 1; % update sys_state - OB  with template 
         sys_state(7) = 0; % update sys_state - OB  with template 
     end 
 end % event == 2 
if (event ==3 ) % robot arrives with part to OB  or to machine      
    if (station == 2) % inserting to M2  
        sys_state(1) = 1; % update sys_state - IB  with template alone 
        sys_state(2) = 1; % update sys_state - M2 proccessing 
        new_event = [5, -1, tnow+proc_time(1),-1];% M2 finish 
proccessing  
        event_stack = [event_stack;new_event]; 
    end 
    if (station == 3)  % arrive to M2_OB with part 
        sys_state(3) = 2; % update sys_state - OB  with template+part 
        sys_state(2) = 0; % M2 is free 
    end 
    if (station == 5) % inserting to M3 
        sys_state(4) = 1; % update sys_state - IB  with template alone 
        sys_state(5) = 1; % update sys_state - M3 proccessing 
        new_event = [6, -1, tnow+proc_time(2),-1];% M3 finish 
proccessing  
        event_stack = [event_stack;new_event]; 
     end 
     if (station == 6) % arrive to M3_OB with part 
        sys_state(6) = 2; % update sys_state - OB  with template+part 
        sys_state(5) = 0; % M3 is free 

      end 
      if (station == 8) % inserting to M1  
        sys_state(7) = 1; % update sys_state - IB  with template alone 
        sys_state(8) = 1; % update sys_state - M3 proccessing 
        new_event = [7, -1, tnow+proc_time(3),-1];% M3 finish 
proccessing  
        event_stack = [event_stack;new_event]; 
      end 
      if (station == 9) % arrive to M1_OB with part 
          sys_state(9) = 2; % update sys_state - OB  with template+part 
          sys_state(8) = 0; % M1 is free 
      end 
  end % event == 3 
 if (event == 4 ) % robot arrives with tempale + part to IB or to 
AGV_proccessed 
     if (station ==  1)  
         sys_state(1) = 2; % update sys_state - OB  with template+part 
     end 
     if (station == 4)  
         sys_state(4) = 2; % update sys_state - OB  with template+part 
     end 
     if (station == 7)  
         sys_state(7) = 2; % update sys_state - OB  with template+part 
     end 
          if (station == 11)    
         processed_parts = processed_parts +1; % finished proccessing 
one more part 
         sys_state(target_station) = 0; 
        if processed_parts == size(order,1)-1 
            break 
        end 
    end 
 end % event == 4 
 if (event == 5 ) % M2 finished processing 
    sys_state(2) = 2; % M2 after process 
    if (station ==  2)  % robot waiting for part 
        new_event = [3,target_station, 
tnow+trans_time(station,target_station),target_station];% taking part 
to OB 
        event_stack = [event_stack;new_event]; 
    end 
  end % event == 5 
  if (event == 6 ) % M3 finished processing 
       sys_state(5) = 2; % M3 after process is free 
      if (station ==  5)  % robot waiting for part 
            new_event = [3,target_station, 
tnow+trans_time(station,target_station),target_station];% taking part 
to OB 
            event_stack = [event_stack;new_event]; 
      end 
   end % event == 6 
  if (event == 7 ) % M1 finished processing 
   sys_state(8) = 2; % M1 after process 
      if (station ==  8)  % robot waiting for part 
            new_event = [3,target_station, 
tnow+vacuum_time+trans_time(station,target_station),target_station];
% vacuum + taking part to OB 
            event_stack = [event_stack;new_event]; 
     end 
end % event == 7 
  
% ------------------------------------------------------------------------- 
  
 if ( (event == 2)  || (event==3)  || (event==4) )  % choose next state 
only at there events 
% not choosing next event if robot is waiting for part to finish 
processing.... 
optional_next_state = [0,0,0,0,0,0,0,0,0]; %initiate array with fictive 
state 
optional_next_event = [0,0,0,0]; %initiate array with fictive event 
% M1: 
if (sys_state(7) == 0) && (next_part == 2)  % M1_IB free + next part 
is sign 
    optional_next_state = [optional_next_state; 
sys_state+[0,0,0,0,0,0,2,0,0]]; 
    optional_next_event = [optional_next_event; 
1,10,tnow+trans_time(station,10),7]; % go and take part or wait for it 
and then take to M1_IB 
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end 
if (sys_state(7) == 2) && (sys_state(8) == 0)  % M1_IB 
template+part + M1 free 
    optional_next_state = [optional_next_state; sys_state+[0,0,0,0,0,0,-
1,1,0]]; 
    optional_next_event = [optional_next_event; 
3,8,tnow+trans_time(station,7)+trans_time(7,8),8]; % go to template. 
take part from template and insert to M1 
end 
if (sys_state(7) == 1) && (sys_state(9) == 0)  % M1_IB template + 
M1_OB free 
    optional_next_state = [optional_next_state; sys_state+[0,0,0,0,0,0,-
1,0,1]]; 
    optional_next_event = [optional_next_event; 
2,9,tnow+trans_time(station,7)+trans_time(7,9),9]; % go to template. 
take template from IB to OB 
end 
if (sys_state(8) == 1 ) && (sys_state(9) ==1)  % M1 during process + 
M1_OB tempale 
    optional_next_state = [optional_next_state; 
sys_state+[0,0,0,0,0,0,0,-1,1]]; 
    optional_next_event = [optional_next_event; 
1,8,tnow+trans_time(station,8),9]; % go to M1. take part to template 
or wait for it and then take to template 
end 
if (sys_state(8) == 2) && (sys_state(9) ==1)  % M1 after process + 
M1_OB tempale 
    optional_next_state = [optional_next_state; 
sys_state+[0,0,0,0,0,0,0,-2,1]]; 
    optional_next_event = [optional_next_event; 
1,8,tnow+trans_time(station,8),9]; % go to M1. take part to template 
or wait for it and then take to template     
end 
if (sys_state(9) == 2)  % M1_OB tempale+part (move tempalate + 
part to AGV) 
    optional_next_state = [optional_next_state; 
sys_state+[0,0,0,0,0,0,0,0,-2]]; 
    optional_next_event = [optional_next_event; 
4,11,tnow+trans_time(station,9)+trans_time(9,11),9]; % go to 
M1_OB. take template + part to AGV_proccessed 
        %here target_station in the origin station 
end 
% M2: 
if (sys_state(1) == 0) && (next_part == 1)  % M2_IB free + next part 
is rook 
    optional_next_state = [optional_next_state; 
sys_state+[2,0,0,0,0,0,0,0,0]]; 
    optional_next_event = [optional_next_event; 
1,10,tnow+trans_time(station,10),1]; % go and take part or wait for it 
and then take to M2_IB 
end 
if (sys_state(1) == 2) && (sys_state(2) == 0)  % M2_IB 
template+part + M2 free 
    optional_next_state = [optional_next_state; sys_state+[-
1,1,0,0,0,0,0,0,0]]; 
    optional_next_event = [optional_next_event; 
3,2,tnow+trans_time(station,1)+trans_time(1,2),2]; % go to template. 
take part from template and insert to M2 
end 
if (sys_state(1) == 1) && (sys_state(3) == 0)  % M2_IB template + 
M2_OB free 
    optional_next_state = [optional_next_state; sys_state+[-
1,0,1,0,0,0,0,0,0]]; 
    optional_next_event = [optional_next_event; 
2,3,tnow+trans_time(station,1)+trans_time(1,3),3]; % go to template. 
take template from IB to OB 
end 
if (sys_state(2) == 1)  && (sys_state(3) == 1)  % M2 during process + 
M2_OB tempale 
    optional_next_state = [optional_next_state; sys_state+[0,-
1,1,0,0,0,0,0,0]]; 
    optional_next_event = [optional_next_event; 
1,2,tnow+trans_time(station,2),3]; % go to M2. take part to template 
of wait for it and than take to template 
end 
if (sys_state(2) == 2) && (sys_state(3) == 1)  % M2 after process + 
M2_OB tempale 

    optional_next_state = [optional_next_state; sys_state+[0,-
2,1,0,0,0,0,0,0]]; 
    optional_next_event = [optional_next_event; 
1,2,tnow+trans_time(station,2),3]; % go to M2. take part to template 
of wait for it and than take to template 
end 
if (sys_state(3) ==2)  % M2_OB tempale+part (move tempalate + part 
to AGV) 
    optional_next_state = [optional_next_state; sys_state+[0,0,-
2,0,0,0,0,0,0]]; 
    optional_next_event = [optional_next_event; 
4,11,tnow+trans_time(station,3)+trans_time(3,11),3]; % go to 
M2_OB. take template + part to AGV_proccessed 
    %here target_station in the origin station 
end     
% M3: 
if (sys_state(4) == 0) && (next_part == 1)  % M3_IB free + next part 
is rook 
    optional_next_state = [optional_next_state; 
sys_state+[0,0,0,2,0,0,0,0,0]]; 
    optional_next_event = [optional_next_event; 
1,10,tnow+trans_time(station,10),4]; % go and take part or wait for it 
and then take to M3_IB 
end 
if (sys_state(4) == 2) && (sys_state(5) == 0)  % M3_IB 
template+part + M3 free 
    optional_next_state = [optional_next_state; sys_state+[0,0,0,-
1,1,0,0,0,0]]; 
    optional_next_event = [optional_next_event; 
3,5,tnow+trans_time(station,4)+trans_time(4,5),5]; % go to template. 
take part from template and insert to M3 
end 
if (sys_state(4) == 1) && (sys_state(6) == 0)  % M3_IB template + 
M3_OB free 
    optional_next_state = [optional_next_state; sys_state+[0,0,0,-
1,0,1,0,0,0]]; 
    optional_next_event = [optional_next_event; 
2,6,tnow+trans_time(station,4)+trans_time(4,6),6]; % go to template. 
take template from IB to OB 
end 
if (sys_state(5) == 1) && (sys_state(6) == 1)  % M3 during process + 
M3_OB tempale 
    optional_next_state = [optional_next_state; sys_state+[0,0,0,0,-
1,1,0,0,0]]; 
    optional_next_event = [optional_next_event; 
1,5,tnow+trans_time(station,5),6]; % go to M3. take part to template 
or wait for it and then take to template 
end 
if (sys_state(5) == 2) && (sys_state(6) == 1)  % M3 after process + 
M3_OB tempale 
    optional_next_state = [optional_next_state; sys_state+[0,0,0,0,-
2,1,0,0,0]]; 
    optional_next_event = [optional_next_event; 
1,5,tnow+trans_time(station,5),6]; % go to M3. take part to template 
or wait for it and then take to template 
end 
if (sys_state(6) == 2)  % M3_OB tempale+part (move tempalate + 
part to AGV) 
    optional_next_state = [optional_next_state; sys_state+[0,0,0,0,0,-
2,0,0,0]]; 
    optional_next_event = [optional_next_event; 
4,11,tnow+trans_time(station,6)+trans_time(6,11),6]; % go to 
M2_OB. take template + part to AGV_proccessed 
        %here target_station in the origin station 
end 
optional_next_state=optional_next_state(2:1:end,:); % erase fictive 
state 
optional_next_event=optional_next_event(2:1:end,:); % erase fictive 
event 
  
%-------------------------------------------------------------------------- 
  
%finding  best next step 
% +1 to work in array from 1 to 3 insteed of 0 to 2 
max = -10000; 
    for i=1:size(optional_next_state,1) 
        if 
Q(optional_next_state(i,1)+1,optional_next_state(i,2)+1,optional_nex
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t_state(i,3)+1,optional_next_state(i,4)+1,optional_next_state(i,5)+1,o
ptional_next_state(i,6)+1,optional_next_state(i,7)+1,optional_next_st
ate(i,8)+1,optional_next_state(i,9)+1)>=max 
            max = 
Q(optional_next_state(i,1)+1,optional_next_state(i,2)+1,optional_nex
t_state(i,3)+1,optional_next_state(i,4)+1,optional_next_state(i,5)+1,o
ptional_next_state(i,6)+1,optional_next_state(i,7)+1,optional_next_st
ate(i,8)+1,optional_next_state(i,9)+1); 
            ind = i; 
       end              
   end 
best_next_state = optional_next_state(ind,:); 
best_next_event =  optional_next_event(ind,:); 
%Choosing next step 
% epsilon = 1; 
epsilon = 1  / iteration; 
if rand>epsilon 
    next_state = best_next_state; 
    new_event = best_next_event; 
else 
     state_ind = ceil(rand * size(optional_next_state,1)); 
     next_state = optional_next_state(state_ind,:); 
     new_event = optional_next_event(state_ind,:); 
end 
event_stack = [event_stack;new_event]; 
end %if ( (event == 2) || (event==3)  || (event==4) )  % choose next 
state 
  
% ---------------------------------------------------------------------------------
-------- 
  
if   sum(prev_sys_state==sys_state) ~=9 % only if changed state 
    % updating position sequence 
    seq = [sys_state,tnow; seq]; 
    % updating Q of previous step 
    delta = Gamma * Q 
(sys_state(1)+1,sys_state(2)+1,sys_state(3)+1,sys_state(4)+1,sys_stat
e(5)+1,sys_state(6)+1,sys_state(7)+1,sys_state(8)+1,sys_state(9)+1)  - 
Q 
(prev_sys_state(1)+1,prev_sys_state(2)+1,prev_sys_state(3)+1,prev_s
ys_state(4)+1,prev_sys_state(5)+1,prev_sys_state(6)+1,prev_sys_stat
e(7)+1,prev_sys_state(8)+1,prev_sys_state(9)+1); 
    Q 
(prev_sys_state(1)+1,prev_sys_state(2)+1,prev_sys_state(3)+1,prev_s
ys_state(4)+1,prev_sys_state(5)+1,prev_sys_state(6)+1,prev_sys_stat
e(7)+1,prev_sys_state(8)+1,prev_sys_state(9)+1) = Q 
(prev_sys_state(1)+1,prev_sys_state(2)+1,prev_sys_state(3)+1,prev_s
ys_state(4)+1,prev_sys_state(5)+1,prev_sys_state(6)+1,prev_sys_stat
e(7)+1,prev_sys_state(8)+1,prev_sys_state(9)+1) + Alpha * delta; 
 end 
% removing event that was performed and sorting event_stack   
event_stack=event_stack(2:1:end,:); 
event_stack=sortrows(event_stack,3); 
end %while 
  
% ------------------------------------------------------------------------- 
  
% after "break" update seq with last move to AVG_processed  
tnow = tnow+trans_time(station,11); 
sys_state = zeros(1,9); 
seq = [sys_state,tnow; seq]; 
% update Q with last move 
Q 
(sys_state(1)+1,sys_state(2)+1,sys_state(3)+1,sys_state(4)+1,sys_stat
e(5)+1,sys_state(6)+1,sys_state(7)+1,sys_state(8)+1,sys_state(9)+1) = 
1.5 + Gamma * Q 
(sys_state(1)+1,sys_state(2)+1,sys_state(3)+1,sys_state(4)+1,sys_stat
e(5)+1,sys_state(6)+1,sys_state(7)+1,sys_state(8)+1,sys_state(9)+1); 
% reward of 1.5 
% update best_seq, best_robot_seq 
 if tnow<min_tnow 
    min_tnow = tnow; 
    best_seq = seq; 
    best_robot_seq = robot_seq; 
 end 
%updating Q according to tnow, episode results 
factor = 1/tnow; 
for i=1:size(seq,1)-1 

    
Q(seq(i,1)+1,seq(i,2)+1,seq(i,3)+1,seq(i,4)+1,seq(i,5)+1,seq(i,6)+1,se
q(i,7)+1,seq(i,8)+1,seq(i,9)+1) = 
Q(seq(i,1)+1,seq(i,2)+1,seq(i,3)+1,seq(i,4)+1,seq(i,5)+1,seq(i,6)+1,se
q(i,7)+1,seq(i,8)+1,seq(i,9)+1)*factor; 
end 
% update tnow_array (for chart) 
if iteration == 1 
    tnow_array = tnow; 
else 
    tnow_array = [tnow_array;tnow]; 
end 
  
end%case 
 
 
FIFO.m 
function FIFO(arg,arg2,arg3,arg4) 
  
global tnow_array 
global iteration 
global min_tnow 
global seq 
global best_seq 
global best_robot_seq 
  
switch( arg) 
  
% ------------------------------------------------------------------------- 
  
case 0   
  
min_tnow = 100000000; %just a big number 
iterations = 1; 
for iteration=1:iterations 
    FIFO(1,0,0,arg4); 
end 
  
% ------------------------------------------------------------------------- 
  
case 1 
  
global enable_graphics 
global tnow 
global sys_state 
global proc_time % machine processing times 
global order % parts batch 
global processed_parts 
global part_waiting 
global station 
global target_station  
global next_part % next part arriveing to system 
global vacuum_time % vacuuming time 
global prev_tasks % previous tasks isnerted to task_queue for the 
various machines [M1,M2,M3] 
global trans_time 
global event_stack 
global MU %for exponential and normal inter arrival times 
global SIGMA % for normal inter arrival times 
global next_lathe % for taking parts to M2 and M3 alternately 
global task_queue % fifo queue [task] 
global next_M1_task 
global next_M2_task 
global next_M3_task 
global last_lathe 
global M1_part_taken 
  
%-------------------------------------------------------------------------- 
  
vacuum_time = 240;  
trans_time= zeros(11); 
trans_time(1,2) = 65; %  
trans_time(1,3) = 15; %  
trans_time(1,4) = 45; %  
trans_time(1,5) = 45; %  
trans_time(1,6) = 45; %  
trans_time(1,7) = 25; %  
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trans_time(1,8) = 25; %  
trans_time(1,9) = 25; %  
trans_time(1,10) = 40; % 
% trans_time(1,11) = 50; % N/A 
trans_time(2,1) = 25; %  
trans_time(2,3) = 20; %  
trans_time(2,4) = 45; %  
trans_time(2,5) = 45; %  
trans_time(2,6) = 45; %  
trans_time(2,7) = 25; %  
trans_time(2,8) = 25; %  
trans_time(2,9) = 25; %  
trans_time(2,10) = 40; % 
% trans_time(2,11) = 50; % N/A 
 trans_time(3,1) = 25; %  
trans_time(3,2) = 45; %  
trans_time(3,4) = 45; %  
trans_time(3,5) = 45; %  
trans_time(3,6) = 45; %  
trans_time(3,7) = 25; %  
trans_time(3,8) = 25; %  
trans_time(3,9) = 25; %  
trans_time(3,10) = 40; % 
trans_time(3,11) = 40; %  
 trans_time(4,1) = 45; %  
trans_time(4,2) = 45; %  
trans_time(4,3) = 45; %  
trans_time(4,5) = 65; %  
trans_time(4,6) = 15; %  
trans_time(4,7) = 50; %  
trans_time(4,8) = 50; %  
trans_time(4,9) = 50; %  
trans_time(4,10) = 60; % 
% trans_time(4,11) = 50; % N/A 
trans_time(5,1) = 45; %  
trans_time(5,2) = 45; %  
trans_time(5,3) = 45; %  
trans_time(5,4) = 25; %  
trans_time(5,6) = 20; %  
trans_time(5,7) = 50; %  
trans_time(5,8) = 50; %  
trans_time(5,9) = 50; %  
trans_time(5,10) = 60; % 
% trans_time(5,11) = 50; % N/A 
 trans_time(6,1) = 45; %  
trans_time(6,2) = 45; %  
trans_time(6,3) = 45; %  
trans_time(6,4) = 25; %  
trans_time(6,5) = 45; %  
trans_time(6,7) = 50; %  
trans_time(6,8) = 50; %  
trans_time(6,9) = 50; %  
trans_time(6,10) = 60; % 
trans_time(6,11) = 60; % 
trans_time(7,1) = 25; %  
trans_time(7,2) = 25; %  
trans_time(7,3) = 25; %  
trans_time(7,4) = 50; %  
trans_time(7,5) = 50; %  
trans_time(7,6) = 50; %  
trans_time(7,8) = 50; %  
trans_time(7,9) = 15; %  
trans_time(7,10) = 30; % 
% % trans_time(7,11) = 50; %N/A 
trans_time(8,1) = 25; %  
trans_time(8,2) = 25; %  
trans_time(8,3) = 25; %  
trans_time(8,4) = 50; %  
trans_time(8,5) = 50; %  
trans_time(8,6) = 50; %  
trans_time(8,7) = 25; %  
trans_time(8,9) = 25; %  
trans_time(8,10) = 30; % 
% trans_time(8,11) = 50; %N/A 
 trans_time(9,1) = 25; %  
trans_time(9,2) = 25; %  
trans_time(9,3) = 25; %  
trans_time(9,4) = 50; %  

trans_time(9,5) = 50; %  
trans_time(9,6) = 50; %  
trans_time(9,7) = 25; %  
trans_time(9,8) = 25; %  
trans_time(9,10) = 30; % 
trans_time(9,11) = 30; % 
trans_time(10,1) = 40; %  
trans_time(10,4) = 60; %  
trans_time(10,7) = 30; %  
trans_time(11,1) = 40; %  
trans_time(11,2) = 40; %  
trans_time(11,3) = 40; %  
trans_time(11,4) = 60; %  
trans_time(11,5) = 60; %  
trans_time(11,6) = 60; %  
trans_time(11,7) = 30; %  
trans_time(11,8) = 30; %  
trans_time(11,9) = 30; % 
trans_time(11,10) = 20; % 
enable_graphics = arg2; 
prev_tasks = [-1,-1,-1]; 
% M1 - Mill, M2 - Lathe 1, M3 - LAthe 2 
proc_time = zeros(1,3); 
proc_time(1) = 185; %M2  
proc_time(2) = 185; %M3 
proc_time(3) = 600; %M1 
% order = [1;1;2;1;2]; % 1 - ROOK, 2 - SIGN 
order = arg4; 
order = [order;-1]; %mark order is finished with -1 (end of list) 
part_number = 1; % starting with part in the head of the batch 
next_part = order(part_number); 
sys_state = zeros(1,9); 
processed_parts = 0; 
tnow = 0; 
seq = [sys_state,tnow]; 
robot_seq = [10,tnow]; 
MU = 100; 
SIGMA = MU/10; 
task_queue = []; 
  
%-------------------------------------------------------------------------- 
  
% Tasks: 
% 300 - load part from M2_IB to M2 
% 301 - move template from M2_ID to M2_OB 
% 302 - move part out of M2 to M2_OB 
% 400 - load part from M3_IB to M3 
% 401 - move template from M3_ID to M3_OB 
% 402 - move part out of M3 to M3_OB 
% 500 - load part from M1_IB to M1 
% 501 - move template from M1_ID to M1_OB 
% 502 - move part out of M1 to M1_OB 
% 6 - taking template from M1_OB to AGV_processed 
% 7 - taking template from M2_OB to AGV_processed 
% 8 - taking template from M3_OB to AGV_processed 
% 9 - taking template from AGV_raw to M1_IB 
% 10 - taking template from AGV_raw to M2_IB 
% 11 - taking template from AGV_raw to M3_IB 
%Stations: 
 % 1 - M2_IB 
% 2 - M2 
% 3 - M2_OB 
% 4 - M3_IB 
% 5 - M3 
% 6 - M3_OB 
% 7 - M1_IB 
% 8 - M1 
% 9 - M1_OB 
% 10 - AGV_raw 
% 11 - AGV_proccessed 
% event structure: 
% [event,station,time, target_station] 
%events: 
% 1: robot arrive empty 
% 2: robot arrive with template 
% 3: robot arrive with part 
% 4: robot arrive with template +part 
% 5:M2 finish proccessing 
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% 6:M3 finish proccessing 
% 7:M1 finish proccessing 
% 8: part arriveal 
% system states 
% [M2_IB, M2, M2_OB, M3_IB, M3, M3_OB, M1_IB, M1, 
M1_OB] 
%Machine: 0-free, 1-Working, 2-full after process 
%Buffer:0-free, 1-template, 2-template+part, (-1)-part+template 
headed towards it 
% arrival from store 
% next_part = 1 %rook 
% next_part = 2 %sign 
% next_part = 0 %no part arrived 
% next_part = -1 %end of order 
%station = robot state 
  
%-------------------------------------------------------------------------- 
  
%init: 
  
% inter_arrival_time = round(normrnd(MU,SIGMA)); 
% inter_arrival_time = exprnd(MU); 
inter_arrival_time = MU; 
event_stack = [8,-1, tnow+inter_arrival_time,-1]; 
station = 10; % robot starts at AGV _raw 
if next_part == 1 
    target_station = 1; % go to M2 
else 
    target_station = 7; % go to M1 
end 
next_lathe = 2; 
last_lathe = -1; 
M1_part_taken = 0; 
  
%-------------------------------------------------------------------------- 
  
while 0<1 % endless loop.  ends with  "break" 
prev_sys_state = sys_state;     
event_arr = event_stack(1,:); 
event = event_arr(1); 
tnow = event_arr(3); 
if ((event==1) || (event==2) || (event ==3) || (event==4)) % only robot 
moving events change the station 
    station = event_arr(2); 
    target_station = event_arr(4);  
     %update robot_seq 
    if event == 2 
        if station == 3 
            robot_seq = [1,tnow-trans_time(1,3);robot_seq]; 
        elseif station == 6 
            robot_seq = [4,tnow-trans_time(4,6);robot_seq]; 
        elseif station == 9 
            robot_seq = [7,tnow-trans_time(7,9);robot_seq]; 
        end 
    end 
    if event == 3 
        if station == 2 
            robot_seq = [1,tnow-trans_time(1,2);robot_seq];     
        elseif station == 5 
            robot_seq = [4,tnow-trans_time(4,5);robot_seq]; 
        elseif station == 8 
            robot_seq = [7,tnow-trans_time(7,8);robot_seq]; 
        elseif station == 3 
            robot_seq = [2,tnow-trans_time(2,3);robot_seq];     
        elseif station == 6 
            robot_seq = [5,tnow-trans_time(5,6);robot_seq]; 
        elseif station == 9 
            robot_seq = [8,tnow-trans_time(8,9);robot_seq]; 
        end 
    end 
    if (event == 4) && (station == 11) 
        if target_station == 3 
            robot_seq = [3,tnow-trans_time(3,11);robot_seq];  
        elseif target_station == 6 
            robot_seq = [6,tnow-trans_time(6,11);robot_seq];  
       elseif target_station == 9                         
            robot_seq = [9,tnow-trans_time(9,11);robot_seq];  
        end 

    end                
   robot_seq = [station,tnow;robot_seq]; 
end 
if (event == 8) % part arrives 
        part_waiting = 1; % part arrived and waiting 
end % event == 8 
if(event == 1) % robot arrives empty 
    if (station == 10) %came to take part 
        if (part_waiting == 1) %part waiting 
            new_event = [4,target_station, 
tnow+trans_time(station,target_station),target_station];% taking part 
to IB 
            event_stack = [event_stack;new_event]; 
       if target_station == 1 
           next_lathe = 3; 
       end 
       if target_station == 4 
           next_lathe = 2; 
       end            
       part_waiting = 0; 
       part_number = part_number +1; 
       next_part = order(part_number); 
       if next_part ~= -1 
            % inter_arrival_time = round(normrnd(MU,SIGMA)); 
            % inter_arrival_time = exprnd(MU); 
            inter_arrival_time = MU; 
            new_event = [8,-1, tnow+inter_arrival_time,-1];% new part 
arrival 
            event_stack = [event_stack;new_event]; 
       end 
       end 
    end % station == 10 
    if (station == 2) % M2 
        if (sys_state(2) == 2) % M2 finished process 
            new_event = [3,target_station, 
tnow+trans_time(station,target_station),target_station];% taking part 
to OB 
            event_stack = [event_stack;new_event]; 
        end 
    end % station == 2 
    if (station == 5) 
        if (sys_state(5) == 2) % M3 finished process 
            new_event = [3,target_station, 
tnow+trans_time(station,target_station),target_station];% taking part 
to OB 
            event_stack = [event_stack;new_event]; 
        end 
    end % station ==5 
    if (station == 8) 
        if (sys_state(8) == 2) % M1 finished process 
            new_event = [3,target_station, 
tnow+vacuum_time+trans_time(station,target_station),target_station];
% vauucm + taking part to OB 
            event_stack = [event_stack;new_event]; 
        end 
    end % station == 8 
end     % event == 1 
if (event ==2 ) % robot arrives with empty template to OB        
     if (station == 3)  
         sys_state(3) = 1; % update sys_state - OB  with template 
         sys_state(1) = 0; % update sys_state - OB  with template 
     end 
     if (station == 6)  
         sys_state(6) = 1; % update sys_state - OB  with template 
        sys_state(4) = 0; % update sys_state - OB  with template 
     end 
     if (station == 9)  
         sys_state(9) = 1; % update sys_state - OB  with template 
         sys_state(7) = 0; % update sys_state - OB  with template 
     end 
 end % event == 2 
 if (event ==3 ) % robot arrives with part to OB  or to machine      
       if (station == 2) % inserting to M2  
         sys_state(1) = 1; % update sys_state - IB  with template alone 
         sys_state(2) = 1; % update sys_state - M2 proccessing 
         new_event = [5, -1, tnow+proc_time(1),-1];% M2 finish 
proccessing  
         event_stack = [event_stack;new_event]; 
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     end 
     if (station == 3)  % arrive to M2_OB with part 
         sys_state(3) = 2; % update sys_state - OB  with template+part 
         sys_state(2) = 0; % M2 is free 
      end 
      if (station == 5) % inserting to M3  
         sys_state(4) = 1; % update sys_state - IB  with template alone 
         sys_state(5) = 1; % update sys_state - M3 proccessing 
         new_event = [6, -1, tnow+proc_time(2),-1];% M3 finish 
proccessing  
         event_stack = [event_stack;new_event]; 
     end 
      if (station == 6) % arrive to M3_OB with part 
         sys_state(6) = 2; % update sys_state - OB  with template+part 
         sys_state(5) = 0; % M3 is free 
      end 
      if (station == 8) % inserting to M1  
         sys_state(7) = 1; % update sys_state - IB  with template alone 
         sys_state(8) = 1; % update sys_state - M3 proccessing 
         new_event = [7, -1, tnow+proc_time(3),-1];% M3 finish 
proccessing  
         event_stack = [event_stack;new_event]; 
     end 
      if (station == 9) % arrive to M1_OB with part 
         sys_state(9) = 2; % update sys_state - OB  with template+part 
         sys_state(8) = 0; % M1 is free 
      end 
  end % event == 3 
 if (event == 4 ) % robot arrives with tempale + part to IB or to 
AGV_proccessed 
     if (station ==  1)  
         sys_state(1) = 2; % update sys_state - OB  with template+part 
     end 
     if (station == 4)  
         sys_state(4) = 2; % update sys_state - OB  with template+part 
     end 
     if (station == 7)  
         sys_state(7) = 2; % update sys_state - OB  with template+part 
     end 
     if (station == 11)    
         processed_parts = processed_parts +1; % finished proccessing 
one more part 
         sys_state(target_station) = 0; 
         if target_station == 9 % note part taken from M1_OB 
             M1_part_taken = 0; 
         end 
         if processed_parts == size(order,1)-1 
             break 
          end 
      end 
 end % event == 4 
  if (event == 5 ) % M2 finished processing 
      sys_state(2) = 2; % M2 after process 
      if (station ==  2)  % robot waiting for part 
            new_event = [3,target_station, 
tnow+trans_time(station,target_station),target_station];% taking part 
to OB 
            event_stack = [event_stack;new_event]; 
      end 
end % event == 5 
if (event == 6 ) % M3 finished processing 
      sys_state(5) = 2; % M3 after process is free 
      if (station ==  5)  % robot waiting for part 
            new_event = [3,target_station, 
tnow+trans_time(station,target_station),target_station];% taking part 
to OB 
            event_stack = [event_stack;new_event]; 
      end 
end % event == 6 
if (event == 7 ) % M1 finished processing 
   sys_state(8) = 2; % M1 after process 
      if (station ==  8)  % robot waiting for part 
            new_event = [3,target_station, 
tnow+vacuum_time+trans_time(station,target_station),target_station];
% vacuum + taking part to OB 
            event_stack = [event_stack;new_event]; 
      end 
end % event == 7 

  
%-------------------------------------------------------------------------- 
  
if (event ~= 1) % choose next task only at there events. not choosing 
next event if robot is coming empty to take part 
% M1: 
if (sys_state(7) == 0) && (next_part == 2) && (part_waiting == 1) % 
M1_IB free + next part is sign + part has arrived + there is no part 
already headed to M3 
    if isempty(task_queue) ==1 && prev_tasks(1) ~=9 
        task_queue = [task_queue;9]; 
        prev_tasks(1)  = 9; 
    else 
        if isempty(task_queue) ~=1 
            if bsearch(task_queue,9) == -1 && prev_tasks(1) ~=9 
                task_queue = [task_queue;9]; % go and take part or wait for 
it and then take to M1_IB 
                prev_tasks(1)  = 9; 
            end        
        end 
    end     
end 
if (sys_state(7) == 2) && (sys_state(8) == 0)  % M1_IB 
template+part + M1 free 
    next_M1_task = [next_M1_task;500];% go to template. take part 
from template and insert to M1 
end 
if (sys_state(7) == 1) && (sys_state(9) == 0)  % M1_IB template + 
M1_OB free 
    next_M1_task = [next_M1_task;501]; % go to template. take 
template from IB to OB 
end 
if (sys_state(8) == 2) && (sys_state(9) ==1)  % M1 after process + 
M1_OB tempale 
    next_M1_task = [next_M1_task;502]; % go to M1. vacuum. take 
part to template 
end 
if isempty(next_M1_task) ~=1 
    for i = 1:length(next_M1_task) 
        if next_M1_task(i) ~= prev_tasks(1)  
            task_queue = [task_queue;next_M1_task(i)];            
            prev_tasks(1) = next_M1_task(i); 
        end  
    end % for 
end % isempty 
next_M1_task = []; 
if (sys_state(9) == 2)  % M1_OB tempale+part (move tempalate + 
part to AGV) 
    %next_M1_task = [next_M1_task;6]; % go to M1_OB. take 
template + part to AGV_proccessed 
    if isempty(task_queue) ==1  
        if M1_part_taken == 0 
        task_queue = [task_queue;6]; 
        M1_part_taken = 1; 
        end         
    else 
        if bsearch(task_queue,6) == -1 && M1_part_taken == 0 
            task_queue = [task_queue;6]; % go and take part or wait for it 
and then take to M1_IB 
            M1_part_taken = 1; 
       end        
    end     
end 
% M2: 
if (sys_state(1) == 0) && (next_part == 1)  && (part_waiting == 1) 
&& (next_lathe==2)  % M2_IB free + next part is rook + and part has 
arrived + there is no part already headed to M2 
    if  last_lathe == 3 || last_lathe == -1 
        if isempty(task_queue) ==1  
            task_queue = [task_queue;10]; 
           last_lathe = 2;  
        else 
            if bsearch(task_queue,10) == -1 
                task_queue = [task_queue;10]; % go and take part or wait 
for it and then take to M2_IB 
               last_lathe = 2; 
            end 
        end       
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    end 
end 
if (sys_state(1) == 2) && (sys_state(2) == 0)  % M2_IB 
template+part + M2 free 
    next_M2_task = 300;% go to template. take part from template and 
insert to M2 
end 
if (sys_state(1) == 1) && (sys_state(3) == 0)  % M2_IB template + 
M2_OB free 
    next_M2_task = 301; % go to template. take template from IB to 
OB 
end 
if (sys_state(2) == 2) && (sys_state(3) == 1)  % M2 after process + 
M2_OB tempale 
    next_M2_task = 302;% go to M2. take part to template 
end 
if (sys_state(3) ==2)  % M2_OB tempale+part (move tempalate + part 
to AGV) 
    next_M2_task =  7;  % go to M2_OB. take template + part to 
AGV_proccessed 
end     
 if isempty(next_M2_task) ~=1 
   if next_M2_task ~= prev_tasks(2)  
       task_queue = [task_queue;next_M2_task];            
        prev_tasks(2) = next_M2_task; 
   end  
end 
next_M2_task = []; 
% M3: 
if (sys_state(4) == 0) && (next_part == 1)  && (part_waiting == 1) 
&& (next_lathe==3)  % M3_IB free + next part is rook + part has 
arrived + there is no part already headed to M3 
    if  last_lathe == 2 || last_lathe == -1 
        if isempty(task_queue) ==1 
            task_queue = [task_queue;11]; 
            last_lathe = 3; 
        else 
            if bsearch(task_queue,11) == -1 
                  task_queue = [task_queue;11]; % go and take part or wait 
for it and then take to M3_IB 
                  last_lathe = 3; 
            end 
        end 
    end 
end 
if (sys_state(4) == 2) && (sys_state(5) == 0)  % M3_IB 
template+part + M3 free 
    next_M3_task = 400; % go to template. take part from template and 
insert to M3 
end 
if (sys_state(4) == 1) && (sys_state(6) == 0)  % M3_IB template + 
M3_OB free 
    next_M3_task = 401; % go to template. take template from IB to 
OB 
end 
if (sys_state(5) == 2) && (sys_state(6) == 1)  % M3 after process + 
M3_OB tempale 
    next_M3_task = 402; % go to M3. take part to template or wait for 
it and then take to template 
end 
if (sys_state(6) == 2)  % M3_OB tempale+part (move tempalate + 
part to AGV) 
    next_M3_task = 8; % go to M2_OB. take template + part to 
AGV_proccessed    
end 
if isempty(next_M3_task) ~=1 
   if next_M3_task ~= prev_tasks(3)  
       task_queue = [task_queue;next_M3_task];            
        prev_tasks(3) = next_M3_task; 
   end  
end 
next_M3_task = []; 
%end % if M3 
  
%----------------------------------------------------------------------------------
-------------------------------------  
  
% updating event_stack according to next task 

if isempty(task_queue) ~=1 
next_task = task_queue(1); 
if ((event~=5) && (event ~=6) && (event~=7) && (event~=8)) || 
(size(event_stack,1) == 1)  
    if next_task == 10; 
        event_stack = [event_stack; 1,10,tnow+trans_time(station,10),1]; 
% go and take part and then take to M2_IB 
    end 
    if next_task == 300; 
        event_stack = [event_stack; 
3,2,tnow+trans_time(station,1)+trans_time(1,2),2]; % go to template. 
take part from template and insert to M2 
    end 
    if next_task == 301; 
        event_stack = [event_stack; 
2,3,tnow+trans_time(station,1)+trans_time(1,3),3]; % go to template. 
take template from IB to OB 
    end 
    if next_task == 302; 
        event_stack = [event_stack; 1,2,tnow+trans_time(station,2),3]; % 
go to M2. take part to template  
    end 
    if next_task == 7; 
        event_stack = [event_stack; 
4,11,tnow+trans_time(station,3)+trans_time(3,11),3];% go to 
M2_OB. take template + part to AGV_proccessed 
        % here target station is origin station for robot_seq 
    end 
    if next_task == 11; 
        event_stack = [event_stack; 1,10,tnow+trans_time(station,10),4]; 
% go and take part or wait for it and then take to M3_IB 
    end 
    if next_task == 400; 
       event_stack = [event_stack; 
3,5,tnow+trans_time(station,4)+trans_time(4,5),5]; % go to template. 
take part from template and insert to M3 
    end 
    if next_task == 401; 
        event_stack = [event_stack; 
2,6,tnow+trans_time(station,4)+trans_time(4,6),6]; % go to template. 
take template from IB to OB 
    end 
    if next_task == 402; 
        event_stack = [event_stack; 1,5,tnow+trans_time(station,5),6]; % 
go to M3. take part to template or wait for it and then take to template 
    end 
    if next_task == 8; 
        event_stack = [event_stack; 
4,11,tnow+trans_time(station,6)+trans_time(6,11),6]; % go to 
M2_OB. take template + part to AGV_proccessed 
        % here target station is origin station for robot_seq 
    end 
    if next_task == 9; 
        event_stack = [event_stack; 1,10,tnow+trans_time(station,10),7]; 
% go and take part or wait for it and then take to M1_IB 
    end 
    if next_task == 500; 
      event_stack = [event_stack; 
3,8,tnow+trans_time(station,7)+trans_time(7,8),8]; % go to template. 
take part from template and insert to M1 
    end 
    if next_task == 501; 
       event_stack = [event_stack; 
2,9,tnow+trans_time(station,7)+trans_time(7,9),9]; % go to template. 
take template from IB to OB 
    end 
    if next_task == 502; 
        event_stack = [event_stack; 1,8,tnow+trans_time(station,8),9]; % 
go to M1. vacuum. take part to template or wait for it and then take to 
template 
    end 
    if next_task == 6; 
        event_stack = [event_stack; 
4,11,tnow+trans_time(station,9)+trans_time(9,11),9]; % go to 
M1_OB. take template + part to AGV_proccessed 
       % here target station is origin station for robot_seq 
    end 
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%   updating task_queue (deleting first task which have been 
converted to event 
    if size(task_queue,1) == 1 
        task_queue = []; 
    else 
        task_queue = task_queue(2:end,:);  
    end 
end % if ((event~=5( && (event ~=6) && (event~=7))... 
end %if isempty(task_queue) ~=1 
end %if (event ~= 1)  
  
%-------------------------------------------------------------------------- 
  
% updating system state  sequence 
if   sum(prev_sys_state==sys_state) ~=9 % only if changed state 
       seq = [sys_state,tnow; seq]; 
end 
% removing event that was performed and sorting event_stack   
event_stack=event_stack(2:1:end,:); 
event_stack=sortrows(event_stack,3); 
if size(event_stack,1) == 0 
    event_stack = [-2,station, tnow, -2]; % fictive event if stack is 
empty 
end 
end %while 
  
%--------------------------------------------------------------------------------- 
  
% after "break" update seq with last move to AVG_processed 
 sys_state = [0,0,0,0,0,0,0,0,0]; 
 seq = [sys_state,tnow; seq]; 
if tnow<min_tnow 
    min_tnow = tnow; 
    best_seq = seq; 
    best_robot_seq = robot_seq; 
end 
  
%-------------------------------------------------------------------------- 
  
if iteration == 1 
    tnow_array = tnow; 
else 
    tnow_array = [tnow_array;tnow]; 
end 
  
end%case 
 
 

FMS.m 
function FMS(arg,arg2,arg3,arg4,arg5) 
  
global Q 
global tnow_array 
global iteration 
global min_tnow 
global seq 
global robot_seq 
global best_seq 
global best_robot_seq 
  
% ------------------------------------------------------------------------- 
  
switch( arg) 
  
% ------------------------------------------------------------------------- 
     
case 0   
  
Q = ones(3,3,3,3,3,3,3,3,3); 
min_tnow = 100000000; %just a big number 
iterations = 1; 
for iteration=1:iterations 
    FMS(1,0,0,arg4,arg5); 
end 
  
% ------------------------------------------------------------------------- 
  

case 1 
  
global enable_graphics 
global tnow 
global sys_state 
global proc_time 
global order 
global processed_parts 
global part_waiting 
global station 
global origin_station 
global next_part 
global vacuum_time 
global Gamma % algorithm parameter 
global Alpha % algorithm parameter 
global trans_time 
global event_stack 
global SIGMA %for normal arrival times 
global MU %for exponential inter arrival times 
global seq_ind 
global next_station 
  
vacuum_time = 240; % the vacuum time will be regarded as part of 
the trans time, to make sure the robot is not free for the whole time 
trans_time= zeros(11); 
trans_time(1,2) = 65; %  
trans_time(1,3) = 15; %  
trans_time(1,4) = 45; %  
trans_time(1,5) = 45; %  
trans_time(1,6) = 45; %  
trans_time(1,7) = 25; %  
trans_time(1,8) = 25; %  
trans_time(1,9) = 25; %  
trans_time(1,10) = 40; % 
% trans_time(1,11) = 50; % N/A 
trans_time(2,1) = 25; %  
trans_time(2,3) = 20; %  
trans_time(2,4) = 45; %  
trans_time(2,5) = 45; %  
trans_time(2,6) = 45; %  
trans_time(2,7) = 25; %  
trans_time(2,8) = 25; %  
trans_time(2,9) = 25; %  
trans_time(2,10) = 40; % 
% trans_time(2,11) = 50; % N/A 
trans_time(3,1) = 25; %  
trans_time(3,2) = 45; %  
trans_time(3,4) = 45; %  
trans_time(3,5) = 45; %  
trans_time(3,6) = 45; %  
trans_time(3,7) = 25; %  
trans_time(3,8) = 25; %  
trans_time(3,9) = 25; %  
trans_time(3,10) = 40; % 
trans_time(3,11) = 40; %  
 trans_time(4,1) = 45; %  
trans_time(4,2) = 45; %  
trans_time(4,3) = 45; %  
trans_time(4,5) = 65; %  
trans_time(4,6) = 15; %  
trans_time(4,7) = 50; %  
trans_time(4,8) = 50; %  
trans_time(4,9) = 50; %  
trans_time(4,10) = 60; % 
% trans_time(4,11) = 50; % N/A 
trans_time(5,1) = 45; %  
trans_time(5,2) = 45; %  
trans_time(5,3) = 45; %  
trans_time(5,4) = 25; %  
trans_time(5,6) = 20; %  
trans_time(5,7) = 50; %  
trans_time(5,8) = 50; %  
trans_time(5,9) = 50; %  
trans_time(5,10) = 60; % 
% trans_time(5,11) = 50; % N/A 
 trans_time(6,1) = 45; %  
trans_time(6,2) = 45; %  
trans_time(6,3) = 45; %  
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trans_time(6,4) = 25; %  
trans_time(6,5) = 45; %  
trans_time(6,7) = 50; %  
trans_time(6,8) = 50; %  
trans_time(6,9) = 50; %  
trans_time(6,10) = 60; % 
trans_time(6,11) = 60; % 
trans_time(7,1) = 25; %  
trans_time(7,2) = 25; %  
trans_time(7,3) = 25; %  
trans_time(7,4) = 50; %  
trans_time(7,5) = 50; %  
trans_time(7,6) = 50; %  
trans_time(7,8) = 50; %  
trans_time(7,9) = 15; %  
trans_time(7,10) = 30; % 
% % trans_time(7,11) = 50; %N/A 
trans_time(8,1) = 25; %  
trans_time(8,2) = 25; %  
trans_time(8,3) = 25; %  
trans_time(8,4) = 50; %  
trans_time(8,5) = 50; %  
trans_time(8,6) = 50; %  
trans_time(8,7) = 25; %  
trans_time(8,9) = 25; %  
trans_time(8,10) = 30; % 
% trans_time(8,11) = 50; %N/A 
trans_time(9,1) = 25; %  
trans_time(9,2) = 25; %  
trans_time(9,3) = 25; %  
trans_time(9,4) = 50; %  
trans_time(9,5) = 50; %  
trans_time(9,6) = 50; %  
trans_time(9,7) = 25; %  
trans_time(9,8) = 25; %  
trans_time(9,10) = 30; % 
trans_time(9,11) = 30; % 
trans_time(10,1) = 40; %  
trans_time(10,4) = 60; %  
trans_time(10,7) = 30; %  
trans_time(11,1) = 40; %  
trans_time(11,2) = 40; %  
trans_time(11,3) = 40; %  
trans_time(11,4) = 60; %  
trans_time(11,5) = 60; %  
trans_time(11,6) = 60; %  
trans_time(11,7) = 30; %  
trans_time(11,8) = 30; %  
trans_time(11,9) = 30; % 
trans_time(11,10) = 20; % 
% M1 - Mill, M2 - Lathe 1,  M3 - LAthe 2 
proc_time = zeros(1,3); 
proc_time(1) = 185; %M2 
proc_time(2) = 185; %M3 
proc_time(3) = 600; %M1 
enable_graphics = arg2; 
Gamma = 0.9; 
Alpha = 0.05; 
%order = [1;1;2;1;2]; % 1 - ROOK, 2 - SIGN 
order = arg4; 
order = [order;-1]; %mark order is finished with -1 (end of list) 
part_number = 1; % starting with part in the head of the batch 
next_part = order(part_number); 
sys_state = zeros(1,9); 
processed_parts = 0; 
tnow = 0; 
seq = [sys_state,tnow]; 
robot_seq = [10,tnow]; 
MU = 100; 
SIGMA = MU/10; 
  
%-------------------------------------------------------------------------- 
  
%Stations: 
% 1 - M2_IB 
% 2 - M2 
% 3 - M2_OB 
% 4 - M3_IB 

% 5 - M3 
% 6 - M3_OB 
% 7 - M1_IB 
% 8 - M1 
% 9 - M1_OB 
% 10 - AGV_raw 
% 11 - AGV_proccessed 
% event structure: 
% [event,station,time, target_station] 
%events: 
% 1: robot arrive empty 
% 2: robot arrive with template 
% 3: robot arrive with part 
% 4: robot arrive with template +part 
% 5:M2 finish proccessing 
% 6:M3 finish proccessing 
% 7:M1 finish proccessing 
% 8: part arriveal 
% system states: 
% [M2_IB, M2, M2_OB, M3_IB, M3, M3_OB, M1_IB, M1, 
M1_OB] 
%Machine: 0-free, 1-Working, 2-full after process 
%Buffer:0-free, 1-template, 2-template+part 
% arrival from store: 
% next_part = 1 %rook 
% next_part = 2 %sign 
% next_part = 0 %no part arrived 
% next_part = -1 %end of order 
%station = robot state 
  
%-------------------------------------------------------------------------- 
  
%init 
  
% inter_arrival_time = round(normrnd(MU,SIGMA)); 
% inter_arrival_time = exprnd(MU); 
inter_arrival_time = MU; 
event_stack = [8,-1, tnow+inter_arrival_time,-1]; 
station = 10; % robot starts at AGV _raw 
sequence = arg5; 
seq_ind= size(sequence,1); 
seq_ind = seq_ind-1; 
next_station = sequence(seq_ind); 
  
%-------------------------------------------------------------------------- 
  
while 0<1 % endless loop. will end with break 
prev_sys_state = sys_state;     
  
event_arr = event_stack(1,:); 
event = event_arr(1); 
tnow = event_arr(3); 
  
% '=============================' 
% sys_state 
% event_stack 
  
if ((event==1) || (event==2) || (event ==3) || (event==4)) % only robot 
moving events change the station 
     
    station = event_arr(2); 
    origin_station = event_arr(4); 
    
    if seq_ind>1 
    seq_ind = seq_ind-1; 
    next_station = sequence(seq_ind); 
    while next_station == station % remove redundancies in seq 
        seq_ind = seq_ind-1; 
        next_station = sequence(seq_ind); 
    end 
    end 
% next_station 
end 
if (event == 8) % part arrives 
    part_waiting = 1; 
    if (station == 10) %robot waiting for it 
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        new_event = [4,next_station, 
tnow+trans_time(station,next_station),next_station]; % % take 
part+template to M3_IB 
                    event_stack = [event_stack;new_event]; 
        part_waiting = 0; 
        part_number = part_number +1; 
       next_part = order(part_number); 
       if next_part ~= -1 
            % inter_arrival_time = round(normrnd(MU,SIGMA)); 
            % inter_arrival_time = exprnd(MU); 
            inter_arrival_time = MU; 
           new_event = [8,-1, tnow+inter_arrival_time,-1];% new part 
arrival 
           event_stack = [event_stack;new_event]; 
       end 
    end 
end % event == 8 
if(event == 1) % robot arrives empty 
    if (station == 10) %came to take part 
        if (part_waiting == 1) %part waiting 
                    new_event = [4,next_station, 
tnow+trans_time(station,next_station),next_station]; % % take 
part+template to M3_IB 
                                event_stack = [event_stack;new_event]; 
        part_waiting = 0; 
            part_number = part_number +1; 
            next_part = order(part_number); 
           if next_part ~= -1 
            % inter_arrival_time = round(normrnd(MU,SIGMA)); 
            % inter_arrival_time = exprnd(MU); 
          inter_arrival_time = MU; 
              new_event = [8,-1, tnow+inter_arrival_time,-1];% new part 
arrival 
              event_stack = [event_stack;new_event]; 
           end 
       end 
    end % station == 10 
    if (station == 2) % M2 
        if (sys_state(2) == 2) % M2 finished process 
            new_event = [3,next_station, 
tnow+trans_time(station,next_station),next_station];% taking part to 
OB 
            event_stack = [event_stack;new_event]; 
            end 
    end % station == 2 
    if (station == 5) 
        if (sys_state(5) == 2) % M3 finished process 
            new_event = [3,next_station, 
tnow+trans_time(station,next_station),next_station];% taking part to 
OB 
            event_stack = [event_stack;new_event]; 
        end 
    end % station == 5 
    if (station == 8) 
        if (sys_state(8) == 2) % M1 finished process 
            new_event = [3,next_station, 
tnow+vacuum_time+trans_time(station,next_station),next_station];% 
vacuum + taking part to OB 
            event_stack = [event_stack;new_event]; 
        end 
    end % station == 8 
 end     % event == 1 
 if (event ==2 ) % robot arrives with empty template to OB        
    if (station == 3)  
         sys_state(3) = 1; % update sys_state - OB  with template 
         sys_state(1) = 0; % update sys_state - OB  with template 
    end 
    if (station == 6)  
         sys_state(6) = 1; % update sys_state - OB  with template 
        sys_state(4) = 0; % update sys_state - OB  with template 
    end 
    if (station == 9)  
         sys_state(9) = 1; % update sys_state - OB  with template 
         sys_state(7) = 0; % update sys_state - OB  with template 
     end 
 end % event == 2 
 if (event ==3 ) % robot arrives with part to OB  or to machine      
     if (station == 2) % inserting to M2  

        sys_state(1) = 1; % update sys_state - IB  with template alone 
        sys_state(2) = 1; % update sys_state - M2 proccessing 
        new_event = [5, -1, tnow+proc_time(1),-1]; % M2 finish 
proccessing  
        event_stack = [event_stack;new_event]; 
    end 
    if (station == 3)  % arrive to M2_OB with part 
        sys_state(3) = 2; % update sys_state - OB  with template+part 
        sys_state(2) = 0; % M2 is free 
     end 
     if (station == 5) % inserting to M3 
        sys_state(4) = 1; % update sys_state - IB  with template alone 
        sys_state(5) = 1; % update sys_state - M3 proccessing 
        new_event = [6, -1, tnow+proc_time(2),-1];% M3 finish 
proccessing  
        event_stack = [event_stack;new_event]; 
     end 
     if (station == 6) % arrive to M3_OB with part 
        sys_state(6) = 2; % update sys_state - OB  with template+part 
        sys_state(5) = 0; % M3 is free 
      end 
      if (station == 8) % inserting to M1  
        sys_state(7) = 1; % update sys_state - IB  with template alone 
        sys_state(8) = 1; % update sys_state - M3 proccessing 
        new_event = [7, -1, tnow+proc_time(3),-1];% M3 finish 
proccessing  
        event_stack = [event_stack;new_event]; 
      end 
        if (station == 9) % arrive to M1_OB with part 
          sys_state(9) = 2; % update sys_state - OB  with template+part 
          sys_state(8) = 0; % M1 is free 
      end 
  end % event == 3 
 if (event == 4 ) % robot arrives with tempale + part to IB or to 
AGV_proccessed 
     if (station ==  1)  
         sys_state(1) = 2; % update sys_state - OB  with template+part 
     end 
     if (station == 4)  
         sys_state(4) = 2; % update sys_state - OB  with template+part 
     end 
     if (station == 7)  
         sys_state(7) = 2; % update sys_state - OB  with template+part 
     end 
          if (station == 11)    
         processed_parts = processed_parts +1; % finished proccessing 
one more part 
         sys_state(origin_station) = 0; 
        if processed_parts == size(order,1)-1 
            break 
        end 
    end 
 end % event == 4 
 if (event == 5 ) % M2 finished processing 
        sys_state(2) = 2; % M2 after process 
       if (station ==  2)  % robot waiting for part 
            new_event = [3,next_station, 
tnow+trans_time(station,next_station),next_station];% taking part to 
OB 
            event_stack = [event_stack;new_event]; 
     end 
end % event == 5 
if (event == 6 ) % M3 finished processing 
              sys_state(5) = 2; % M3 after process is free 
      if (station ==  5)  % robot waiting for part 
            new_event = [3,next_station, 
tnow+trans_time(station,next_station),next_station];% taking part to 
OB 
            event_stack = [event_stack;new_event]; 
     end 
end % event == 6 
if (event == 7 ) % M1 finished processing 
   sys_state(8) = 2; % M1 after process 
      if (station ==  8)  % robot waiting for part 
            new_event = [3,next_station, 
tnow+vacuum_time+trans_time(station,next_station),next_station];% 
vacuum + taking part to OB 
            event_stack = [event_stack;new_event]; 
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     end 
end % event == 7 
  
% ------------------------------------------------------------------------- 
  
if ( (event == 1) || (event == 2)  || (event==3)  || (event==4) )  % 
choose next state only at there events 
% not choosing next event if robot is waiting for part to finish 
processing.... 
new_event = []; 
% M2 Stations 
if next_station == 1 
    if station == 10 %&& part_waiting == 1 % at AGV_raw and part is 
waiting there 
    else 
        new_event = [1,next_station, 
tnow+trans_time(station,next_station),next_station]; % robot goes 
empty to M2_IB 
    end 
end 
if next_station == 2 
    if station == 1 && sys_state(1) == 2  && sys_state(2) ==0 % 
template+part at M2_IB and M2 free 
        new_event = [3,next_station, 
tnow+trans_time(station,next_station),next_station]; % insert part to 
M2 
    else  
        new_event = [1,next_station, 
tnow+trans_time(station,next_station),next_station]; % robot comes 
empty to take part out from M2 
    end 
end 
if next_station == 3 
    if  station == 1 && sys_state(1) == 1  % at M2_IB and template 
there 
        new_event = [2,next_station, 
tnow+trans_time(station,next_station),next_station]; % robot comes 
with template to M2_OB 
    elseif station == 2 && sys_state(2) == 2 % at M2 and it finished 
process 
 %       new_event = [3,next_station, 
tnow+trans_time(station,next_station),next_station];% take finished 
part from M2 to M2_OB 
    elseif station == 2 && sys_state(3) == 2 % going to M2_OB to 
take part+template to finish 
        new_event = [1,next_station, 
tnow+trans_time(station,next_station),next_station]; % robot comes 
empty to take part+template from M2_OB 
    elseif station ~=2 
        new_event = [1,next_station, 
tnow+trans_time(station,next_station),next_station]; % robot comes 
empty to take part+template from M2_OB 
    end 
end 
% M3 Stations 
if next_station == 4 
    if station == 10 % && part_waiting == 1 % at AGV_raw and part 
is waiting there 
    else 
        new_event = [1,next_station, 
tnow+trans_time(station,next_station),next_station]; % robot goes 
empty to M3_IB 
    end 
end 
if next_station == 5 
    if station == 4 && (sys_state(4) == 2)  && sys_state(5) ==0 % 
template+part at M3_IB and M3 free 
        new_event = [3,next_station, 
tnow+trans_time(station,next_station),next_station]; % insert part to 
M3 
    else  
        new_event = [1,next_station, 
tnow+trans_time(station,next_station),next_station]; % robot comes 
empty to take part out from M2 
    end 
end 
if next_station == 6 

    if  station == 4 && (sys_state(4) == 1)  % at M3_IB and template 
there 
        new_event = [2,next_station, 
tnow+trans_time(station,next_station),next_station]; % robot comes 
with template to M3_OB 
    elseif station == 5 && sys_state(5) == 2 % at M2 and it finished 
process 
    elseif station == 5 && sys_state(6) == 2 % going to M3_OB to 
take part+template to finish 
        new_event = [1,next_station, 
tnow+trans_time(station,next_station),next_station]; % robot comes 
empty to take part+template from M3_OB 
    elseif station~=5 
        new_event = [1,next_station, 
tnow+trans_time(station,next_station),next_station]; % robot comes 
empty to take part+template from M3_OB 
    end 
end 
% M1 Stations 
if next_station == 7 
    if station == 10 %&& part_waiting == 1 % at AGV_raw and part is 
waiting there 
    else 
        new_event = [1,next_station, 
tnow+trans_time(station,next_station),next_station]; % robot goes 
empty to M1_IB 
    end 
end 
if next_station == 8 
    if station == 7 && (sys_state(7) == 2)  && sys_state(8) ==0 % 
template+part at M1_IB and M1 free 
        new_event = [3,next_station, 
tnow+trans_time(station,next_station),next_station]; % insert part to 
M1 
    else  
        new_event = [1,next_station, 
tnow+trans_time(station,next_station),next_station]; % robot comes 
empty to take part out from M1 
    end 
end 
if next_station == 9 
    if  station == 7 && (sys_state(7) == 1)  % at M1_IB and template 
there 
        new_event = [2,next_station, 
tnow+trans_time(station,next_station),next_station]; % robot comes 
with template to M1_OB 
    elseif station == 8 && sys_state(8) == 2 % at M1 and it finished 
process 
    elseif station == 8 && sys_state(9) == 2 % going to M1_OB to 
take part+template to finish 
        new_event = [1,next_station, 
tnow+trans_time(station,next_station),next_station]; % robot comes 
empty to take part+template from M1_OB 
    elseif station~=8 
        new_event = [1,next_station, 
tnow+trans_time(station,next_station),next_station]; % robot comes 
empty to take part+template from M1_OB 
    end 
end 
if next_station == 10 % going to bring new part 
    new_event = [1,next_station, 
tnow+trans_time(station,next_station),next_station]; % robot comes 
to take part form AGV_raw 
end 
if next_station == 11 % taking template + finished part to 
AGV_processed  
    new_event = [4,next_station, 
tnow+trans_time(station,next_station),station]; % robot comes to 
AGV_processed with template+part 
end 
event_stack = [event_stack;new_event]; 
end %if ( (event == 2) || (event==3)  || (event==4) )  % choose next 
state 
  
% ---------------------------------------------------------------------------------
-------- 
  
if   sum(prev_sys_state==sys_state) ~=9 % only if changed state 
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    % updating position sequence 
    seq = [sys_state,tnow; seq]; 
end 
% removing event that was performed and sorting event_stack   
new_event = []; 
event_stack=event_stack(2:1:end,:); 
 event_stack=sortrows(event_stack,3); 
end %while 
  
% ------------------------------------------------------------------------- 
  
% after "break" update seq with last move to AVG_processed  
tnow = tnow+trans_time(station,11); 
sys_state = zeros(1,9); 
seq = [sys_state,tnow; seq]; 
% update best_seq, best_robot_seq 

 if tnow<min_tnow 
    min_tnow = tnow; 
    best_seq = seq; 
    best_robot_seq = robot_seq; 
 end 
% update tnow_array (for chart) 
if iteration == 1 
    tnow_array = tnow; 
else 
    tnow_array = [tnow_array;tnow]; 
end 
  
end%case 
 

 
 
 
 



 

 
 

 

 תקציר
  

  
קיים הכרח שיתוכננו , על מנת שמערכות רובוטיות יוכלו להשתלב בסביבות עבודה משתנות בעולם האמיתי

משום שלא ניתן למדל . בצורה שתאפשר להן להתמודד עם מגוון רחב של משימות ותנאי עבודה חדשים ומשתנים

 .ה עצמאיתיש להעניק לרובוטים את היכולת ללמוד ולהסתגל בצור, כל סביבה או תנאי למידה
נקראת שיטת החיזוקים , אשר יכולה לתת מענה לחלק מהנושאים שתוארו, אחת הגישות ללמידה

)Reinforcement Learning .(בשיטה זו הרובוט מונחה על ידי קבלת חיזוקים מן הסביבה בה הוא מתפקד .

 שיטת החיזוקים . ונהחיזוקים אלו מספקים לרובוט אינדיקציה לגבי רמת התפקוד שלו בעת ביצוע משימה נת

משום שהיא מאפשרת למידה על בסיס משובים מועטים , מהווה אלטרנטיבה טובה לתכנות מערכות אוטונומיות

 היא כוללת גם, יישומים רובוטייםנרחב עבור ונעשה בה שימוש , רבים יתרונות הלמרות שלשיט, אולם. מהסביבה

כגון הצורך , ידי יישומים מעשיים-המוצגים עלם מספר חסרונות המונעים ממנה לתת מענה ראוי לאתגרי

  . באינטראקציה נרחבת עם הסביבה או העובדה שהיא מתקשה להתמודד עם משימות מורכבות

למידה הירארכית , הגישה המוצעת. המתמשך להתגבר על חסרונות אלה" מאבק" נדבך נוסף במהווהעבודה זו 

- אדםושיתוף פעולהרכית אלמידת חיזוקים היר, מוכרותמשלבת שתי שיטות , משולבת אדם בשיטת החיזוקים

ידי פירוק - על, הגישה מאפשרת ביצוע משימות מורכבות ושיפור של תהליך הלמידה. לשם  שדרוג הלמידה, רובוט

רמה ראשונה בה מתבצעת בנייה של רצף הפעולות הנדרש לביצוע המשימה . המשימה לשתי רמות של הירארכיה

החלוקה לשתי רמות ההירארכיה מקטינה את . בה מתבצעת למידה של ביצוע הפעולות עצמןורמה שנייה , הכוללת

צו בכדי להאי, בשתי הרמות מתאפשר שילוב אדם בתהליך הלמידה. מרחב החיפוש ומאפשרת למידה אפקטיבית

 כתתפעול מערל יושמההגישה , בכדי להוכיח את מעשיותה. האדם ובנסיונו ביכולותידי שימוש -עלולקדמו 

  .רכיהאהמציבה משימות למידה בשתי רמות ההיר,  לייצור טוסטיםרובוטית

אלגוריתם זימון פותח בכדי : שני אלגוריתמים מבוססי שיטת החיזוקים פותחו בכדי לתמוך בגישה המוצעת

האלגוריתם נבחן . רכיהאכחלק מהרמה הראשונה של ההיר, לספק רצף פעולות אופטימלי לביצוע משימה מורכבת

  .והציג תוצאות טובות, ידי יישומו במערכת ייצור הטוסטים שהוזכרה ובמערכת ייצור גמישה נוספת- על

לרובוט מוענקות היכולת . אלגוריתם מבוסס מודל קוגניטיבי פותח בכדי לאפשר שילוב אדם בתהליך הלמידה

ות את העזרה והיכולת להחליט לדח, בהתבסס על מודעות לרמת הביצועים שלו, להחליט מתי לבקש עזרה

 ישומהידי י- גישה זו של אוטונומיה גמישה נבחנה על.  כי אינה תורמת לתהליך הלמידהמזההאם הוא , המוצעת

 האלגוריתם . רמות שונות של יועציםעבורן דומו, מימדית-ידי משימת ניווט תלת- ן עלוכ, במערכת ייצור הטוסטים

ולמד להתעלם מעצות שהתקבלו מיועצים , יועצים טוביםידי שימוש בידע של - שיפר והאיץ את תהליך הלמידה על

  .טובים פחות
, אדם בשיטת החיזוקיםההירארכית משולבת הלמידה תרומתו העיקרית של מחקר זה הינה בהצגת גישת ה

 .ובפיתוח האלגוריתם התומכים במימושה

 

  .זימון, רובוט-םשיתוף פעולה אד, למידה רובוטית, רכיתאלמידה היר, שיטת החיזוקים: מילות מפתח

 

 

 



 

 
 

 

 
  

  

  

  

  

  בהדרכתבוצעה העבודה 

   הלמן שטרן' פרופ

   יעל אידן'פרופ

 
  

  

 

 
  מחלקה להנדסת תעשיה וניהולב

  הפקולטה למדעי ההנדסה
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     משולבת אדם למידה הירארכית מסגרת 
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  חיבור זה מהווה חלק מהדרישות לקבלת תואר מגיסטר בהנדסה

  

  

  

  עמית גיל: מאת

  הלמן שטרן: מנחים

         יעל אידן

  

  

  

  

  ________                       תאריך                         __________  מחברחתימת ה

  ________                                            תאריך     __________אישור מנחה     
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  2008  ח"תשס  

  
  שבע-באר
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  הפקולטה למדעי ההנדסה
  המחלקה להנדסת תעשייה וניהול

 
  

     למידה הירארכית משולבת אדם מסגרת 

  בשיטת החיזוקים
  

  

 

  חיבור זה מהווה חלק מהדרישות לקבלת תואר מגיסטר בהנדסה
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  עמית גיל

  

  

  

  

  

  

  2008  ח"תשס  

  

  

  שבע-באר
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