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Abstract

Gesture-based interfaces offer an alternative to traditional teach-pendants, menu, and direct
manipulation interfaces. The ability to specify objects, operations, navigation commands, and
additional parameters with a single intuitive gesture appeals to both novice and experienced
users. Gesture interfaces can be seen as an alternative to existing interface techniques, offering
advantages such as natural, sterile and fast response. One of its main contributions is to provide
assistance for people with physical disabilities to access computers and other physical devices.
The main aspect in a non-generic task oriented hand gesture interface is the selection of the hand
gestures (or postures) involved in the control loop. Unfortunately, hand gesture vocabulary design
procedures for human machine interaction have not been extensively researched. The creation of
a hand gesture vocabulary involves a formidable optimization problem in a large search space
and should be based on both human usability and machine recognition factors. The following
three factors are considered as the most important affecting the performance of human-machine
hand gesture vocabulary design:

1. Fatigue (or Comfort): Gestural communication involves more muscles than keyboard
interaction, mouse or speech. The wrist, fingers, hand and arm all contribute to the expression of
commands. Gestures must therefore be concise and comfortable and minimize effort in the whole
hand and arm. In particular, the design of a vocabulary must avoid gestures that require a high
muscles tension over a long period of time. Awkward repetitive postures have an enormous
impact on tissue strain and causes pressure within the carpal tunnel. A successful procedure will
encourage natural postures and deter the ones that aggravate the strain of repetition. Two types of
stress were determined in this thesis: a) the static stress, which is the effort that takes to hold a
static gesture for a defined amount of time, and b) the dynamic stress, which is the effort that is
necessary for performing a transition between static gestures. A fatigue matrix, S, was created to
hold information regarding the stress indices of the gestures used in the current methodology. The
comfort matrix U is some inverse function of S.

2. Intuitiveness: Intuitiveness is the cognitive naturalness of associating a gesture with a
command or intent. This is unrelated to the limitations imposed by hand anatomy. Complex or
unnatural gestures, are rarely remembered by the user when used. The gesture should be easy to
recall even if it has no cognitively associated action. Intuitiveness is associated with learnability
and memorability. Other factors that affect the users preferred set of gestures are general
knowledge, cultural background and linguistic capabilities of the user. Two types of intuitiveness
are presented in this thesis: direct intuitiveness, which is related to the cognitive association
between a gesture and a command, and the complementary intuitiveness, which is related to the
use of complementary gestures to represent complementary commands. The direct intuitiveness
matrix I, is used to store information about the direct intuitiveness of the framework. The
complementary intuitiveness information is contained in the matrix of complementary intuitive
indices, IC. Hence the intuitiveness V is the set {I, IC}.

3. Recognition Accuracy: Recognition accuracy is the percent of accepted gestures that are
classified correctly. Hand gesture recognition is a very difficult vision task which involves
assumptions regarding uniform/complex background, static- dynamic states, and skin color
models. Position, orientation and finger-palm configuration can be used to emphasize the
differences between the gestures and hence yield high discrimination. Image processing and
robust recognition algorithms are a crucial factor for classification of hand gestures. To determine
the recognition accuracy, A, of a gesture vocabulary, a hand gesture recognition algorithm was
developed.
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The first two factors, fatigue and intuitiveness, are human centered while the third factor
accuracy, depends on machine properties (e.g., hardware, software). This thesis deals with the
optimal design of a hand gesture vocabulary, which answers to the need for improving the users
control experience (intuitiveness and comfort) without affecting the technical aspect (recognition
accuracy), as a direct expression of task performance. These three factors will be used to guide
the design of an optimal hand gesture vocabulary.

The main objective of this thesis is to formulate the optimal hand gesture vocabulary design
problem in a rigorous manner, to develop and validate a solution methodology using
mathematical programming, heuristics approaches, image processing algorithms and methods to
estimate human psycho-physical measures.

Methodology
An optimal hand gesture vocabulary, GV, is defined as a set of gesture-command pairs, such

that it will minimize the time t for a user to perform a task T (or tasks). The number of
commands C is determined by the task, while the set of gestures is selected from a large set of
hand postures, G,. The performance of the task depends on the recognition accuracy of the subset
of gestures Gy, on human factors measures representing the naturalness of the gesture-command
associations, and the comfort of the postures.

Problem definition and solution approaches

The main problem is to minimize task performance time over a set of all feasible gesture
vocabularies, GV. Since the task completion time, as a function of GV, has no known analytical
form, three different performance measures are proposed as proxies: intuitiveness Z;(GV),
comfort Z,(GV) and recognition accuracy Z3(GV). Maximizing all the objectives simultaneously
determines a multiobjective optimization problem (MCOP) which can be solved by allowing the
decision maker to select the GV from a pareto frontier according to his own preferences. The
pareto frontier solution can be determined through enumeration however, for even reasonable
size vocabularies, the enumeration approach is untenable.

Two alternative formulations to this problem were presented: a) the three performance
measures were mapped into a single measure by using weights w; to reflect the relative
importance of each of the objectives. b) use of a dual priority objective where accuracy is the first
priority and the human performance objectives are secondary.

Architecture

The optimal hand gesture vocabulary methodology architecture is comprised of three serial
modules. In Module 1, human psycho-physiological input factors are determined. In Module 2, a
search for a feasible gesture subset, subject to machine gesture recognition accuracy is carried
out. Module 3 constitutes a command - gesture matching procedure.

The task set T, the large gesture master set G, and the set of commands C are the input
parameters to Module 1. The union of all commands used to perform all tasks T constitutes C.
The objectives of Module 1 are to establish associations between commands and gestures based
on user intuitiveness (direct and complementary), to find the comfort matrix based on command
transitions and fatigue measures, and to reduce the large set of gestures, to the master set Gy,. For
Module 2, the necessary inputs are the master set of gestures Gy,, and a recognition algorithm to
determine A. This module employs an iterative search procedure to find a single feasible gesture
subset Gy (or alternatively the set of feasible gesture subsets), satisfying a given accuracy level
given by the decision maker. Two metaheuristic approaches were developed for the search
procedure. The first approach is referred to as the Disruptive Confusion Matrix (DCM), and the
second is referred to the Confusion Matrix Derived Solution (CMD). In addition to that, a case of
partial enumeration was demonstrated as well.

A reconfigurable FCM supervised algorithm was used to obtain the recognition accuracy, A.
The parameters of the image processing and clustering algorithm were simultaneously found
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using neighborhood parameter search routines. Two versions of a local neighborhood search
algorithm were designed. These versions were customized for an operational parameter
calibration task system, where the number of parameters in the solution vector was dynamically
changed. To determine the accuracy of a candidate subset of gestures it was necessary to train a
classifier. Two different approaches were used; one retraining the FCM many times for each
different candidate G, , and a second in which the FCM is trained and tuned once for the master
set G, from which the accuracy of candidate G,s are derived. This second method is an
approximate method, but is very fast.

The inputs to the third module are the matrices; intuitiveness V={LIC}, comfort U,
commands C, and the subset of gestures G,«. The goal of this module is to match the set of
gestures G, with the set of given commands, C, such that the human measures are maximized.
The integer QAP solved the problem of matching gestures to commands. The resulting gesture-
command assignment constitutes the gesture vocabulary, GV.

Experiments, Analysis and Results

The subjective measures were obtained through a series of experiments by studying human
subjects responses. The first experiment involved finding intuitive gestures to control a robotic
arm and a VMR. To collect intuitive data, a sequence of commands (from a robotic arm and a
VMR predefined task) was presented to the user, and the user freely associated gestures to these
commands. The actual acquisition of gesture responses was done when the subject physically
generated a gesture, and entered its configuration information. The selection of gestures respected
a 70/30 rule, where 70% of subjects used only 30% of the gestures in a vocabulary. This refutes
the claim that subjects use consistently the same gestures to represent the same commands while
performing tasks, as suggested by Hauptmann [Hauptmann and McAvinney, 1993].

For the stress measure, an ergonomic experiment was conducted which consisted of ranking
hand gestures, by the user, from weak to strong on the Borg scale [Borg, 1982]. Based on the
static stress measures for all the gestures in the master set G, and only a few measures for the
transition stress, a model that describes the transition effort was developed and validated. This
model affirms that, 90% of the dynamic stress (and its duration) was determined by the final
posture in the transition between two postures, and only 10% by the starting posture. Using this
relation the prediction of the dynamic stress and its duration is based on the use of only static
stress measures. This prediction model saved 197 hours of subjective experiments.

To validate the model two sets of GVs were created; Vg as a set of vocabularies that is highly
intuitive, comfortable and easy to recognize, and Vp is a set of low intuitive, stressful and hard to
recognize vocabularies. GVg and GVy are vocabularies samples from Vg and Vp, respectively.
Validation of the analytical procedures for finding the optimal hand gesture vocabularies
consisted of testing the following hypothesis: (a) H;: Min 1(GV*) o« max(Z;), max(Z;) and
max(Z3) - task performance time T can be represented by multiobjective proxy measures.
Moreover, the maximization of the multiobjective function causes a minimization in the
performance time of the task. (b) Hy: 1(GVg)< ©(GVp) — the use of GV results in shorter time
completion task than GV3. (¢) H3: m(GVg)> m(GV3p) - vocabularies GV are easier to remember
than GV3.

To test the first two hypotheses (H;, H,), a t-test was performed between standard completion
times for 8 Vg and 8 Vg vocabularies for both a robotic arm and a VMR task. The mean
completion time for the tasks using Vg was much shorter than the time using Vg (t(GVg) =87.98
sec < 1(GVp)=118.95 sec with p=0.0059) and (1(GVg)=114.67 sec < 1(GVp)=153.04 sec with
p=0.00031), for the robotic arm and the VMR tasks, respectively. The learning time was
expressed in terms of the learning rate of the user’s learning curve in the use of certain GV when
performing a task. It was found that for the Vg the learning rate was lower than for Vg (the
robotic arm task 0.785<0.797, the VMR task 0.827<0.835) representing faster learning. The last
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hypothesis (H3), suggested that the GV is easier to remember than GVg. Memorability was
determined by experienced user’s recall of the gesture-command associations. The average
memorability scores for the robotic task using the Vg were higher than using the Vg (87.5 and
70.83% with p=0.05), however there was no significant difference in memorability for the VMR
task. All these results can be restated as: GVs with high values of the 3 multiobjectives resulted in
decreased performance time, faster learning and increased memory.

Conclusions

This thesis presented a methodology for the design of natural hand gestures vocabularies,
which involves both the psycho-physiological aspect (intuitiveness and comfort) and the
technical aspect (the recognition accuracy), and combines both aspects in a unified approach. The
main contributions of this research are:

Analytical Formulation of the GV design problem: a methodology to find an optimal hand
gesture vocabulary using an analytical approach has been developed. The main goal of this
methodology is to avoid arbitrary selection of hand gestures when designing a human-robotic
application for given tasks and commands. The contribution is a rigorous mathematic formulation
in which optimization methods are applied, constraints are defined, and the quality of the solution
is measured.

Reconfigurable Hand Gesture Recognition Algorithm: the difficult problem of
simultaneous calibration of the parameters of an Image Processing - Fuzzy C Means (FCM) hand
gesture recognition system was addressed and an approach to automate the calibration of the
parameters was proposed. The hand gesture recognition system design is transferred into an
optimization problem.

Two Solution Methods for Solving the GV Design Problem: two solution methods were
developed to solve the optimal design problem: a) a multiobjective decision approach. b) a two
stage decomposition procedure. For the first problem, an approximate enumeration of the
solutions is performed, and a subset of non-dominated solutions is selected for presentation to the
decision maker. The two stage decomposition method is a dual objective problem, where the
maximum accuracy objective and human centered objectives (intuitiveness and comfort) are
given as first and second priorities, respectively.

Development of Intuitiveness and Comfort Gestural Indices, and an Automated Method
for their Collection: contributions regarding human psycho-physical factors, comfort and
intuitiveness, were introduced in this research. Experiments were developed to find the level of
the user's cognitive association (intuitiveness) between command-gesture pairs based on
simulating different scenarios and studying how the user decides about the most natural
associations between commands and gestures. With respect to intuitiveness, the selection of
gestures respects a 70/30 rule, where 70% of subjects use 30% of the gestures in a vocabulary. A
complementary intuitiveness measure was also defined as the cognitive association between a
pair of complementary commands (such us: up - down) to a complementary pair of gestures (such
as: thumb up - thumb down). In addition, two types of stress were identified: a) static, and b)
dynamic. A model was developed to predict the dynamic stress and its duration based on static
stress measures.

Validation and Usability Results: GV with high values of intuitiveness, comfort and
accuracy resulted in shorter task completion time, faster learning and increased memory.

Keywords: hand gesture vocabulary design, machine vision, fuzzy c-means, feature
selection, image processing, hand gesture recognition, human-computer interaction, robotic
control, human factors, gestures intuitiveness, hand stress



X1V

This thesis is in part based on the following publications:

Journal papers

1.

Wachs J., Stern H. and Edan Y. 2005. Cluster labeling and parameter
estimation for the automated set up of a hand-gesture recognition system,
IEEE Transactions on Systems, Man and Cybernetics, Part A, 35(6): 932-
944.

Reviewed conference papers

1.

Wachs J., Kartoun U. Edan Y. and Stern H. 2002. Real-time hand gesture
telerobotic system using the fuzzy C-means clustering algorithm,
Proceedings of the 5th Biannual World Automation Congress, WAC 2002,
Orlando, Florida, USA, 13:403—409.

Wachs J., Stern H. and Edan Y. 2003. Parameter search for an image
processing fuzzy C-means hand gesture recognition system”. Proceedings
of IEEE International Conference on Image Processing ICIP 2003, Spain, 3:
341-346.

Stern H., Wachs J., Edan Y. 2004. Hand gesture vocabulary design: a
multicriteria optimization, Proceedings of the IEEE International
Conference on Systems, Man & Cybernetics. The Hague, Netherlands.
Stern H., Wachs J. and Edan Y. 2006. Optimal hand gesture vocabulary
design using psycho-physiological and technical factors, 7th International
Conference Automatic Face and Gesture Recognition, FG2006,
Southampton, UK, April 10-12.

Stern H., Wachs J. and Edan Y. 2006. Human factors for design of hand
gesture human - machine interaction, 2006 IEEE International Conference
on Systems, Man, and Cybernetics, Oct. 8-11, Taipei, Taiwan.

Eliav A., Lavie T., Parmet Y., Stern H., Wachs J. and Edan Y. 2005. KISS
human-robot interfaces, Presented in the 18th International Conference on
Production Research (ICPR), July, Salerno, Italy.

Stern H., Wachs J. and Edan Y. 2004. Parameter calibration for
reconfiguration of a hand gesture tele-robotic control system. Proceedings
of the U.S.A.-Japan Symposium on Flexible Automation, Denver, Colorado



1 Introduction

1.1 Problem Description

There is strong evidence that future human computer interfaces will enable more natural
intuitive communication with non-human devices such as computers and robots. Convenient and
efficient styles to interact with the real-world devices can be accomplished, by using speech and
gestures [Abowd and Mynatt, 2000; Segen and Kumar, 2000]. Babies use gestures as a basic
communication form to interact with their environment [Acredolo and Goodwyn, 1996]. People
also express themselves using gestures such as body movements, face expressions and pointing
fingers. However, current interface technology rarely adopts this style when designing human-
machine interfaces and, in consequence, the expressiveness element embedded in the message is
missing [Card et al., 1990]. Most human-machine interfaces are based on joysticks, keyboards
and keypads but few use gestures. Two types of interfaces are commonly used with hand
gestures: gloved based and vision based interfaces [Pavlovic et al., 1997]. Vision based interfaces
requires powerful image processing algorithms to: a) segment the hand from stationary
background and lighting conditions [Triesch and Malsburg, 1998; Cui and Weng, 1996b], b)
select features to represent gestures [Wren et al., 1997; Campbell et al., 1996] that enhance
gesture classification accuracy. Glove based gesture requires the user to be tethered to the
computer. This reduces users comfort and constraints the working space of the user. Also,
accurate devices are expensive and hard to calibrate [LaViola, 1999]. Primarily because of these
difficulties, unencumbered vision based gestures will be the focus in this research. Several
reasons limit hand gestures vision based interface implementation: a) gesture recognition is a
problem with high complexity, b) there is a large variability in the user performance of gestures,
their physical features and the environmental conditions, and c) there is no consensus about
which gestures to use, and how to map them into functions.

The recognition problem is not however intractable, and has been intensively investigated
[Pavlovic et al., 1997; Ng and Ranganath, 2002; Gu and Tjahjadi, 2002; Abe et al., 2002; Yin
and Xie, 2003]. Differences between individuals while gesturing and their physical attributes may
be overcome by customizing the recognition system for individual users (user dependent
systems) [Mintyld, 2001; Takahashi and Kishino, 1991; Burschka et al., 2005] or by using as
many gestures samples from different subjects to create user independent systems [Rigoll ef al.,
1997; Parvini and Shahabi, 2005; Alon et al., 2005; Just et al, 2004]. Variability of
environmental conditions may be solved by using reconfigurable systems [Stern et al., 2004b].

The need of a natural hand gestures to control systems requires high learnability, usability,
ergonomic design and comfort [Baudel and Beaudouin-Lafon, 1993]. Unfortunately, technical
considerations overcome human centered aspects which cause frustration to the users of such as
systems. The selection of the hand gestures that favor the ease of learning, lack of stress,
cognitively natural and easy to implement is still an open research question. There is no rigorous
methodology that discusses formally how to obtain and evaluate gestures that are highly
ergonomic and reliable.

An example of intuitive hand gesture vocabulary selection can be found in Pook and Ballard
[Pook and Ballard, 1995]. The value of Pook and Ballard’s work is that it allows the user to act
more naturally since no cognitive effort is required in mapping function keys to robotic hand
actions. This system, like others based in navigation control, implement deictic gestures' to make

" Deictic gestures are gestures that contribute to the identification of an object (or a group of objects) by

indicating their location.



them intuitive. In this context, gestures are created by a static hand or body pose or by physical
motion in two or three dimensions; and can be translated by computer into either symbolic
commands or trajectory motion commands. Examples of symbolic command gestures are “stop”,
“start”, and “turn”. Many applications can be criticized for their idiosyncratic choice of hand
gestures or postures to control or direct the computer-mediated task [Baudel er al., 1992].
However, the choice was probably perfectly natural for the developer of the application. This
shows the dependence of gestures on their cultural and social environment. Within a society,
gestures have standard meanings, but no body motion or gesture has the same meaning in all
societies [Birdwhistell, 1970]. Even in the American Sign Language (ASL), few signs are so
clearly transparent that a non-signer can guess their meaning without additional clues [Klima,
1974]. Additionally, gestures can be culturally defined to have a specific meaning. Even though
the naturalness of hand gestures is different from person to person, there are common gestures
that are similar for a wide range of cultures. For instance, the most natural way for every person
to choose an object to pick, is point to the object; to stop a vehicle, most people open their palm
towards the vehicle; to show that everything is “ok”; people close their fist and extend the thumb
upwards. For specialized, frequent tasks, where the learning of a particular set of gestures and
postures is worth the investment, such applications may have a value. In everyday life, however,
it is quite unlikely that users will be interested in a device for which they have to learn some
specific set of gestures and postures, unless there is an obvious increase in efficiency or ease of
use over existing methods of hand centered input in the adoption of such a gestural protocol. On
the other hand, the economics of the marketplace may dictate such a set independent of its
compatibility with existing cultural and/or social standards, just like the keyboard and mouse
have set a standard. Especially when users are allowed to expand or create their own sets such a
protocol may gain some acceptance. For a gesture set to gain major acceptance in the market
place, it is advisable to examine the tasks and semiotic functions" most frequently executed, and
then choose a hand gesture set that seems to appear natural at least to a number of different
people within a social group or even a culture, when executing those tasks and functions.

Hauptmann and McAvinney [Hauptmann and McAvinney, 1993] found that people
consistently used the same gestures for specific commands. In particular they found that people
are also very proficient at learning new arbitrary gestures. Gesturing is natural for humans, and
only a short amount of training is required before people can consistently use new gestures to
communicate information or control devices. [Hauptmann, 1989; Harwin, 1990]. Test subjects
used very similar gestures for the same operations [Wolf and Morrel-Samuels, 1987]. Hauptmann
also found a high degree of similarity in the gesture types used by different people to perform the
same manipulations. Test subjects were not coached beforehand, indicating that there may be
intuitive, common principles in gesture communication.

There is a growing interest in the adaptability of these common principles in gesture based
interfaces, and in proposing solution methods which result to highly ergonomically and
recognizable hand gestures vocabularies. Nonetheless, the focus of hand gesture vocabulary
design dictated by usability principles is still a virgin area of research. Examination of the
literature reveals unstructured approaches to propose solution methods. Most research has dealt
with the machine aspects of a gesture vocabulary (GV), focusing on recognition algorithms. A
gesture vocabulary (GV) is defined as a set of matched pairs of verbal commands and their
gestural expressions. Current solution methods of GV design may be classified as ad-hoc, and
rule-based [Baudel and Beaudouin-Lafon, 1993], [Kjeldsen and Hartman, 2001], [Abe et al.,
2002]. Ad-hoc methods are the prime method of determining a GV whereby an individual
constructs the vocabulary, mostly with no rational for the choices made. Few researchers have

" Semiotic function is the action of conveying information to the environment



considered the human psycho-physiological aspects of gesture design. In [Nielsen et al., 2003],
where human factors are considered, limited attention is given to the technical aspects, with an
approach heavy on the human interpretation of rules. Matching of gestures to commands is done
empirically through user response queries. Inspired by Nielsen, the “Wizard of Oz experiment” is
used in [Preston et al., 2005] to extract common gestures grouped in classes and further on
converted to a vocabulary. No details of this procedure are given. Kohler [Kohler, 1997] suggests
mapping every gesture to several similar tasks from different devices (for instance, the controls
volume + and — for the CD player, and for the TV are mapped to the same pair of gestures).This
reduces the number of gestures and the mental load. Nevertheless no methodology is presented
by Kohler for this purpose. A hybrid method between the ad-hoc and rule-based approach is
presented in [Munk, 2001] where the set of gestures of interest has been selected in cooperation
with a group of linguists. In spite of this choice, Munk is aware that the gesture set should be
validated by testing it with a group of arbitrary users with different gesturing styles, ages and
background. The same usability rules proposed by Nielsen, are used in [Cabral et al., 2005] while
emphasizing the importance of performance evaluation of hand gesture vocabularies. However,
Cabral and his group only compared between a mouse and gesture interfaces, and do not evaluate
performance of different hand gesture vocabularies. Argyros and Lourakis [Argyros and
Lourakis, 2006] designed 2D and 3D vocabularies based on intuitiveness, ergonomics and easy of
recognition criteria, although the first two factors only included the authors own considerations.

This thesis deals with the design of natural hand gestures recognition systems, which involves
both the ergonomics aspect (the user’s desires) and the technical aspect (the recognition
accuracy), and combines both aspects in a unified approach. To achieve such a design, an optimal
hand gesture vocabulary methodology is extensively developed, tested in true life scenarios, and
discussed in this work. The “optimality” requirement for the vocabulary refers to the need for
improving to the maximum, the users control experience (intuitiveness and comfort) without
affecting the technical aspect (recognition accuracy), as a direct expression of task performance.
The main performance measure used is the completion time to perform a task. However, since the
measurement of using task completion time is time consuming, we proposed, to use instead, other
performance measures as proxies for this completion time. These performance measures are
intuitiveness, comfort and recognition accuracy. Thus, the goal of this thesis is to develop a
rigorous methodology for the design of gesture vocabularies that satisfy human as well as
technical considerations.

1.2 Research Objectives

The main objective is to formulate the gesture design (GV) in a rigorous manner, and to
develop a methodology for optimal hand gesture vocabulary design. This will include the
development of efficient algorithms to find; (a) intuitive associations between command-gestures
pairs, (b) comfort indices for gesture poses and inter-gesture transitions, (c) fast set up of gesture
recognition system, and d) the ability to select a subset of gestures from a large candidate set. The
methodology will be implemented in a system flexible enough to handle single task and multi-
task environments. Specific objectives are the development of:

1. An analytic formulation of the GV design problem

2. A solution method to solve the optimal GV problem using a mathematical programming
search heuristic approach
An automated method for calibrating a joint image processing/gesture recognition system.
4. Methods to estimate human psycho-physical measures of hand gestures comfort and

intuitiveness and to obtain new insight into the human gesture selections.
5. Validate the use of proxy measures of intuitiveness, comfort and accuracy for the task
performance time.

98]



1.3 Research Significance

Examination of the literature reveals random and unstructured approaches to hand gesture
vocabularies design for human-machine interfaces [Baudel and Beaudouin-Lafon, 1993; Kjeldsen
and Hartman, 2001; Abe et al., 2002; Nielsen et al., 2003; Preston et al., 2005; Kohler, 1997;
Munk, 2001] to cite some. Current solution methods of hand GV design may be classified as ad-
hoc, and rule-based [Stern et al., 2006]. In this thesis a systematic methodology for GV design
has been developed. The two main factors considered in the design of a GV are: human
(intuitiveness and comfort) and technical (recognition accuracy). Reliable and effective human
factors are crucial for the success of the hand gesture vocabulary design. The measures most
reflect the cognitive and physiology of the user population. Due to the large number of possible
gestures, the corpus of the data for intuitiveness and stress measures are prohibitory large and
automated methods to acquire the human factors data are neccesary. Using gestures that are
highly discriminated by the recognition algorithm embedded in a rapid reconfigurable system will
reduce the chance of confusion between gestures, and hence fewer errors will occur while
performing the task. The primary need for recalibrations of such systems is frequent relocation to
other environments such as; laboratories, and remote control stations. A secondary need for
recalibration, which is reflected in the method used in this thesis, is the custom redesign of the
gesture control vocabulary. This occurs for new users, new control tasks and new vocabularies.
Allowing for fast recalibration of system parameters provides the system flexibility to respond to
such new system set up.

The GV is designed according to human, as well as, technical factors, and is based on a
reliable and logical analytical method. Identification of a good GV impacts the performance of
the actions involved in the tasks, and is accepted by human robot/computer interface users. The
completion time of a task when used a good GV (intuitive and effortless), was shorter than an
unnatural GV. A hand gesture vocabulary designed with human factors in mind invites users to
adopt it because it is comfortable, easy to learn and remember, and mainly because it is intuitive.
As robots enter the human environment and come in contact with users, they need to interact with
in an intuitive fashion. Keyboard, mouse, and joystick are no longer acceptable as the only input
modalities. Humans communicate with robots using methods as similar as possible to the concise,
rich, and diverse means they use to communicate with one another, such as voice-gesture multi-
modal interfaces. This work presents a methodology to obtain highly natural and recognizable
GVs for virtual robot control.

1.4 Research Contribution and Innovations

Hand gestures interfaces usually rely on ad-hoc or rule based selection of the gestures to
represent a given set of commands. This thesis used the argument that there are underlying
factors, which determine the naturalness of gestures [Hauptmann, 1989] and comfort of gestures.
Following these principles, a methodology for optimal hand gesture vocabulary design was
developed. The usability principles are low fatigue (effortless) and high intuitiveness. The
technical principle is optimal image processing hand gesture features to support high gesture
recognition rates. A methodology to find the optimal gesture vocabulary for device control was
developed based on the gestures, object and the task used. The specific contributions and
innovations of this research are:

1. Analytical Formulation of the GV Design Problem: a methodology to find an optimal
hand gesture vocabulary using an analytical approach has been developed. The main goal of this
methodology is to avoid arbitrary selection of hand gestures when designing a human-robot
application for given tasks and commands. Most of the works that have approached the optimal
hand gesture vocabulary have no objective function to evaluate the quality of a gesture
vocabulary, and therefore no mathematical formulations were used to obtain a quantitative



measure of the solutions proposed. Our contribution is a rigorous mathematic formulation in
which optimization methods are applied, constraints are defined, and the quality of the solution is
measured. Two aspects drive the need for such a method; (i) GV design research is presently an
ad-hoc procedure, and (ii) gesture interfaces are needed to fill the need for more natural intuitive
communication with devices. We believe this is the first conceptualization of the optimal hand
GV design problem in analytical form.

2. Reconfigurable Hand Gesture Recognition Algorithm: the difficult problem of
simultaneous calibration of the parameters of an Image Processing - Fuzzy C Means (FCM) hand
gesture recognition system was addressed. The approach taken to automate the calibration of the
parameters of such a system is that of local neighborhood search. Thus, the design of a hand
gesture recognition system is transferred into an optimization problem. Two versions of the local
neighborhood search algorithm involving a complete and probabilistic neighborhood search were
developed. This satisfies the need for an automated procedure for such calibrations.

3. Two Solution Methods for Solving the GV Design Problem: two solution methods were
developed to solve the optimal design problem: a) the first, is a multiobjective decision approach.
b) the second is based on a two stage decomposition procedure. For the first problem, an
approximated complete enumeration of the solutions is performed, and a subset of non-dominated
solutions is selected for presentation to the decision maker so that he can make the final selection
according to his own desires. This set of non-dominated solutions is called the pareto frontier. As
an exhaustive search is untenable for high complexity problems, where the master set of gestures
is large, and there are a significant number of commands, the second approach was developed.
The two stage decomposition method is a dual objective problem where the maximum accuracy
objective and human centered objectives (intuitiveness and comfort) are given as first and second
priorities, respectively. An optimal matching is performed to only those solutions that have
recognition accuracy above a given threshold. The solutions are obtained by building a tree of
solutions, were the gestures are interchanged according to some implicit rules, or by using initial
solutions obtained from a large classification problem solved in advance.

4. Development of Intuitiveness and Comfort Gestural Indices, and an Automated
Method for their Collection: important contributions regarding human psycho-physical factors,
comfort and intuitiveness, were introduced in this research. The first is related to the direct
intuitiveness measure. The direct intuitiveness is the strength of cognitive association between a
command and its evoking gesture. The selection of gestures respects a 70/30 rule (similar to the
80/20 rule of inventory theory), where 70% of subjects use 30% of the gestures in a vocabulary.
Also was also found that the overall rate of agreement of the use of specific gestures to represent
specific commands was in the range of 18-34%. These results contradict the claim presented by
Hauptmann [Hauptmann, 1989] that users consistently used the same gestures for specific
commands. In the experiments designed by Hauptmann it was shown that users are highly
consistent in the type of gestures that they use for commands such as rotation, translation, and
scaling. However, our research implies that the mapping between gesture and commands should
be based on particular social-cultural context of the users.

The second contribution is the introduction of the complementary intuitiveness measure. This
is defined as the cognitive association between a pair of complementary commands (such us: up —
down) to a complementary pair of gestures (such as: thumb up — thumb down). This cognitive
aspect reflects the empirical fact that users prefer to use complementary gestures (gestures that
have opposite appearance) to evoke complementary actions (have opposite intent).

The third contribution relates to a stress measure. Two types of stress while gesticulating
were identified: a) the static stress, which is the effort that takes to hold a static gesture for a
defined amount of time, and b) the dynamic stress, which is the effort that is necessary for
performing a transition between static gestures. This thesis shows a clear and simple relation



between these two kinds of efforts, and how it is possible predict the dynamic stress and its
duration based on static stress measures.

Specific experiments were developed to find the level of cognitive association (intuitive
index) that the users give to the command-gesture pairs based on simulating different scenarios
and studying how the user decides about the most natural associations between the functions and
gestures. A “bottom-up approach” was adopted to obtain intuitiveness indices, which were a
result of collecting gesture responses to commands stimulants. The static and dynamic effort of
performing gestures was measured using a subjective evaluation experiment. Results were
automatically stored by using an application that through user interaction acquired the necessary
responses to calculate intuitiveness and comfort indices.

6. Validation and Usability Results: The following hypothesis were validated:

H;: Min 1(GV*) o< max(Z,), max(Z,) and max(Zs)

(1.1)
Hs: 1(GVg)< 1(GVp) 1.2)
H;: m(GVg)> m(GVs) (1.3)

The first hypothesis states that task performance time t can be represented by multiobjective
proxy measures. Moreover, the maximization of the multiobjective function causes a
minimization in the task performance time. This was validated through as a second hypothesis
which claims that GV will result is shorter time completion task than GVg. GV is a vocabulary
that is highly intuitive, comfortable and easy to recognize, and GVjp is a low intuitive, stressful
and hard to recognize vocabulary. Memorability m is the subject of the third hypothesis, where it
is suggested that GVg is easier to remember than GVp. Validation of the aforementioned
hypotheses was done by comparing two set of vocabularies one dominating the other. The
learning time was expressed in terms of the learning rate of the user’s learning curve when using
certain GV. It was determined that GV with high values of the three objectives resulted in faster
learning and increased memory. Memorability was determined by experienced user’s recall of the
gesture-command associations.



2 Scientific background

2.1 Gestures and Human Computer Interaction

The increasing number of home computers and other sophisticated gadgets cause researchers
to think of advanced methods to improve interaction between humans and computers [Norman,
1988]. They verified that users felt more comfortable using computers systems (software and
hardware) with such designs that gave them a “natural” feeling of communication between them
and their machines [Shneiderman, 1998]. Recently developers understood the user’s physical and
mental requirements for interfaces, and this was a crucial variable in the success or failure of any
system [Dix et al., 1993].

Gestures are a basic form of communication between human beings. Psychological studies
show that young children use gestures to communicate before they learn to talk [Acredolo and
Goodwyn, 1996]. Rituals, ceremonies and dances are clear examples of how gestures are deep
embedded in communication between individuals from different cultures [Huang and Pavlovic,
1995]. Manipulation, as a form of gesticulation, is often used when people speak to each other
about some object. All these are good reasons to modify or replace the current interface
technology comprised of classic devices as keyboard, mouse and joystick to a more natural
human centered interface.

Although the mouse is one of the most common and best pointing devices developed until
now, it still is not comparable to natural pointing due to limitations of the device itself such as its
flat platform [Card et al., 1990].

Human communication comes in many modalities, including speech, gestures, facial and
bodily expressions. A variety of forms of expression, such as drama, ceremonies, sign language,
imitation, music, religious rituals and dance, exploit specific capacities of one or more of these
modalities. Even though they are expressed through the whole human body, gestures are still
mostly related to the human hand. Hand gestures offer an interface modality that includes control
through symbolic commands, like keyboards, and pointing attributes like mouse; but in a more
flexible, natural and expressive form. This discussion focuses on the design issues involved in
implementing hand gestures for human-robot interaction.

2.2 Types of Gestures and Gesture Vocabularies
2.2.1 Types of Gestures

There are several ways to characterize human hand gestures. From the psycholinguistic point
of view, a gesture has four aspects, which are hand shape (configuration), position, orientation
and movement [Stokoe, 1972]. These aspects are very useful for feature extraction in machine
vision. Another way to characterize hand gestures is by the temporal behavior [Pavlovic et al.,
1997]. A gesture with a fixed position, orientation and configuration over the time is called a
static gesture, or posture. A dynamic gesture is a non-fixed gesture with variation in position,
configuration or orientation over time [Freeman and Roth, 1995]. Hand gestures can also be
classified according to their purpose such as communicative, control, conversational and
manipulative gestures [Wu and Huang, 1999]. An example of communicative gestures is sign
language, the most popular being the American Sign Language [Starner and Pentland, 1995],
which is also used by disabled people to communicate with computer systems. Control gestures
are used to control real or virtual objects. Pointing gestures, for example, would command a
robot to pick up an object [Cipolla and Hollinghurst, 1996]. Another control gesture is the
navigation gesture, where the orientation of the hand can be used like a three dimension
directional input to navigate an object in a real or virtual reality environment. Conversational



gestures are linguistic gestures that happen during conversation and refer to the content of the
speech. They have traditionally been assumed to amplify or modulate the information conveyed
by speech, and hence to serve a communicative function. Manipulative gesture serves as a
natural way to interact with virtual objects and robots where for example, a digitized glove is
used [Balaguer and Mangili, 1991]. They must be associated with manipulative objects such as
screw. Communicative gestures are the basic form of human non-verbal interaction and are
related to the psychological aspect of communication. Communicative gestures can be
decomposed into three-motion phases: preparation, stroke and retraction [Kendon, 1986].
Psycholinguistic studies show that stroke is the richer phase in terms of information content;
therefore most systems capture only this phase to be representative of the gesture [Quek, 1994].

2.2.2 Gestures Typologies

Several schemes for gesture classification have been suggested over the last years originated
from the scheme proposed by Efron [Efron, 1941]. While each scheme has it owns advantages
and special uses, most of them are interconvertible. This means that the subject can employ all
the schemes or start with one and switch to another and cover the same gestural movements.
According to Efron, the two basic uses for gesture are spatio-temporal and linguistic. Spatio-
temporal gestures represent pure movement, free from any conversational or referential context.
These gestures can be categorized according to five aspects: radius (size of the movement), form
(shape of the movement), plane (direction and orientation of the movement), the body part that
performs it, and tempo (the degree of abruptness vs. flow). Conversely, linguistic gestures
happen during conversation and refer to the content of the speech. Efron divides them into two
categories: logical-discursive, and objective. Logical-discursive gestures emphasize and inflect
the content of the conversations that they accompany, either with baton-like indications of time
intervals, or ideographic sketches in the air. Objective gestures have meaning independent of the
speech that they accompany, and are divided into three categories: deictic, physiographic, and
symbolic. Deictic gestures indicate a visually present object, usually by pointing. Physiographic
gestures demonstrate something that is not present, either iconographically, by depicting the form
of an object, or kinetographically, by depicting an action. Symbolic gestures represent an object
by depicting a form that has no actual relationship to the thing, but uses a shared, culturally
specific meaning [Marrin, 1999].

The McNeill’s scheme [McNeill, 1995] classifies gestures in four major categories: iconic,
metaphoric, deictic (pointing) and beat gestures. Iconic gestures are gestures that, by using the
shape, location and movement of your hands, imitates some distinctive features of the referent; its
form, its typical location, the actions performed to it, and those performed by it. For example, a
gesture that express the referent “guitar”, may use its shape, gestures for “hat” its location and
size, gestures for “bird” the flying action, gestures for “espresso coffee” its size, etc. Metaphoric
gestures are like iconic gestures in that they are pictorial, but the pictorial content presents an
abstract idea rather a concrete object. The gesture presents an image of the invisible, an
abstraction of an image, etc. The gesture depicts a concrete metaphor for a concept. For example,
to refer to the genre of drawings and pictures, and not to a specific picture, the subject will make
the concept concrete in a form of an image of bounded object supported in the hands and
presented to the listener. Deictic gestures are used when the referent is in the physical context, the
most remarkable feature is its location, therefore the most intuitive action to do is to point to it,
using hands or fingers to mark in which direction the subject can find the referent. This is one of
the early gestures the can be observed on children. Deictic gestures can be specific, general or
functional. Specific gestures refer to one object. General gestures refer to a class of objects.
Functional gestures represent intentions, such pointing to a dress, when we have the intention to
buy it. Deictic gestures are also useful in gesture language representations. Beats are so named



because they look like beating music time. The hand moves along with the rhythmical pulsation
of speech. Unlike iconics and metaphorics, beats tend to have the same form regardless of the
content. The typical beat is a simple flick of the hand or fingers up and down, or back and forth.

The scheme defined by McNeill has the goal of identifying the referential values of gestures.
The orientation of the scheme is toward the entities, actions, spaces, concepts, relationships, etc.,
that the gestures refer to. The classification scheme thus requires asking what meanings and
functions a gesture possesses.

The Nespoulous scheme [Nespoulous, 1986] uses three categories: mimetic, deictic and
arbitrary. In mimetic gestures, the hand and finger motions describe an object’s main shape or
representative feature [Wundt, 1973]. For example, a waving hand from the nose can be used to
represent an elephant by alluding to its fluttering long nose. His definition of deictic gestures is
similar to the one of McNeill; he also suggests the use of deictic gestures for language
representations. Arbitrary gestures are those whose interpretation must be agreed and learned
due to their opacity. Although they are not common in cultural settings, once learned they can be
used and understood without any complementary verbal clue. An example is the set of gestures
used by for crane training [Link-Belt, 1987]. Arbitrary gestures are useful because they can be
specifically created for use in device control. These gestures types are already arbitrarily defined,
learned and understood without any additional verbal information.

A scheme that seems more appropriated to the context of human machine interfaces (HCI) was
developed by Quek [Quek, 1994] and slightly modified by Pavlovic [Pavlovic et al., 1997]. A
first classification divides hand/arm movements in two main classes: gestures and unintentional
movements. Unintentional movements are those movements that do not express any
meaningful information. Gestures are classified in two groups: communicative and
manipulative. Manipulative gestures are those used to effect objects in an environment (object
movement, rotation, translation, etc). Communicative gestures have an intrinsic
communicational purpose. Communicative gestures are usually accompanied by speech, and can
be presented by acts or symbols. Symbols are gestures that have a linguistic role. They indicate
some referent action (for example, circular motion of index finger may be referent for dialing to a
telephone number), or are used as modalizers, often of speech (“feel the softness of this body
cream” and a modalizing gesture describing the softness of the touch with the tact). In the HCI
context, these gestures are the most commonly used since they can be performed by static hand
gestures. Acts are gestures that are directly related to the meaning of the movements itself. Such
movements are classified as either mimetic (imitate some action) or deictic (pointing gestures).
A concise summary of hand gestures classification categories is given in Table 2.1.

Table 2.1: Summary of hand gestures classification categories

Category References
Iconic — (Features Imitation) [McNeill, 1995; Efron, 1941]
Metaphoric — (Pictorial Abstraction) [McNeill, 1995]
Deictic — (Pointing) [McNeill, 1995; Nespoulous, 1986; Quek, 1994; Efron, 1941]
Beats — (Rhythmic) [McNeill, 1995]
Spatio-temporal — (Pure movement) [Efron, 1941]
Logical-discursive - (Conversation content) [Efron, 1941]
Arbitrary — (No distinction) [Nespoulous, 1986]
Mimetic — (Features Imitation, Action) [Nespoulous, 1986] - [Quek, 1994]
Referential — (Indicate Action) [Quek, 1994]
Modalizing — (Mode Description) [Quek, 1994]
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2.2.3 Gesture Vocabularies

A gesture vocabulary (GV) is a set of commands (notions or words), each of which has a
physical representation in the real world as a gesture, pose or movement. The signs that are used
to carve up complex meanings and then reconstitute the meanings through combinations must
also be stable and recallable, and this implies a lexicon [McNeill, 1995]. Hand gestures systems
can be divided under three major groups according to lexicon size: small, moderate and large
[Oviatt et al., 2000].

2.2.3.1 Large gesture systems (over 1000 gestures)

Finding a suitable and practical approach to design hand gestures systems using a large
vocabulary is still an open research problem. A large vocabulary, continuous Chinese Sign
Language (CSL) recognition used phonemes instead of signs as the basic units, with a 92.8%
successful recognition ratio [Wang et al. 2002]. About 2400 phonemes were defined for CSL.
Experimental results on a large vocabulary of 5113-signs achieved a recognition rate of 95%
using fuzzy decision tree with heterogeneous classifiers [Fang et al., 2004].

2.2.3.2 Moderate gesture systems (25-1000 gestures)

Systems able to recognize a medium set of hand gestures are usually used for hand sign
language recognition. The American Sign Language (ASL) recognition system of Starner and
Pentland [Starner and Pentland, 1995] can recognize a lexicon of 40 words. The Korean Sign
Language (KSL) of Lee et al. can recognize 51 gestures combining postures and gestures. Cui
and Weng [Cui and Weng, 1996a] designed a system able to recognize 40 hand gestures from a
hand sign lexicon. A recognition accuracy of 90.19% for 104 mannerism gestures was achieved,
where the gestures were modeled as a sequence of events that take place within the segments and
the joints of the human body by Kahol e al. [Kahol et al., 2004]

2.2.3.3 Small sized gesture systems (2-25 gestures)

Most systems able to recognize up to 12 gestures are used for man-machine interfaces.
Development including a robotic arm in a pick-and-place scenario used twelve different postures
[Triesch and Malsburg, 1998]; a real-time hand gesture recognition system that controls motion
of a human avatar using dynamic hand gestures [Kim et al., 2000]. This system recognizes 5
kinds of hand motion direction (stop, step, walk-run, turn, rotate and grab) and 4 kinds of hand
postures (stop, turn, step, grab). A hand gesture vocabulary for video navigation consisting of 8
gestures was developed [Bradski et al., 1999] including the commands up, down, left, right, stop,
ok (play), and neutral (null gesture). The gestures were chosen for minimal hand movement and
high discriminately between gestures.

A prototype vision-based interface using the input modality of a wearable computer for indoor
and outdoor operations was able to track and recognize 5 hand postures [Kolsch et al., 2004]. A
hand controlled augmented reality (AR) map navigation system [Yao ef al., 2004]. Two symbolic
hand gestures and gesture tracking are defined as controlling commands. Users can directly move
their hands on a real map and their relative geography information is displayed. A human
machine interface makes use of 22 dynamic gestures for effective operation of a variety of in-car
multimedia devices in [Zob et al., 2003].
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2.3 Hand Gestures Vocabularies Design Approaches

The theory of universality of gestures, states that some gestures have standard cross-cultural
meanings [Aboudan and Beattie, 1996]. This is also true for the most within in societies;
however, some gestures may have different meanings to different individuals [Archer, 1997].
Device control gestures, however, can be freely chosen to have specific meanings related to the
particular device [Cohen, 1999]. For example, there are no universally known gestures for
commanding a robotic arm to “go to the home position” or ”open the robotic arm gripper”. There
has been virtually no research concerned with the issue of how to design an optimal gesture based
control vocabulary. The first step is to decide on a task dependent set of commands to be included
in the vocabulary such as; “move left”, “increase speed”, etc. The second step is to decide how to
express the command in gestural form i.e.,: what physical expression to use such as, waving the
hand left to right or making a "V" sign with the first two fingers. The association (matching) of
each command to a gestural expression is defined here as a “gesture vocabulary” (GV). In the
following, we distinguish GV design according to the type of designer, and solution method.

2.3.1 Gesture Designers

Gesture vocabularies can be overtly or inadvertently designed. The thumps up and down signs
come to us from Roman times whereas; the “OK” sign is more recent. Both can be considered as
inadvertently designed or naturally evolved (emblems is the current term). More complete sign
vocabularies have appeared in this manner without overt determination of the vocabulary by a
designer. For overtly designed vocabularies, the most common practice is for a single individual
(usually a system developer) to decide which gesture vocabulary should be used for all users.
This can be considered as the “Centrist or Authoritarian Approach” (e.g., [Kirishima et al., 2005]
where a GV of size seven is used). Alternatively, we can define a “Consensus Approach” where a
group of users, either implicitly or explicitly, decide on a common vocabulary to express a given
set of commands (e.g., [Munk, 2001]). At the lowest level is the “Customized Approach” where
each individual defines his/her very own vocabulary (e.g., [Kahol et al, 2006]). One may
hypothesize that the consensus and customized approaches will be more comfortable, easier to
remember and more natural to execute. The disadvantage is that the users will not consider other
design factors such as the speed and accuracy of gesture recognition system. In summary, these
three overtly approaches for designing subjective gesture vocabularies are: (a) authoritarian (the
designer decides on the commands and gestures for all users), (b) consensus (multiple users
decide jointly on a set of common gestures), and (c) custom (the user selects his/her own set of
gestures).

2.3.2 Gesture Design Solution Methods

One of the few works that explore the process of gesture design is that of Long et al. [Long et
al., 1999]. The application is that of a pen-based user interface where, gestures are pen drawn
marks or strokes that cause a command to be executed. This work includes a gesture design tool,
which advises designers on how to improve their pen-based gestures. In a more recent work by
Nielsen et al. [Nielsen et al., 2003] a procedure and a benchmark to find gestures based on nine
usability heuristics are presented. However, the important factor of vision recognition was
ignored.

2.3.2.1 Ad-hoc Methods

Ad-hoc methods are the prime method of determining a gesture vocabulary and many
examples prevail in the literature (e.g., [Kortenkamp et al., 1996; Waldherr et al., 1998; Becker et
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al., 1998; Agrawal and Chaudhuri, 2003; Abe et al., 2002; Ng and Ranganath, 2002]). Most are
of the centrist type, whereby an individual constructs the vocabulary, mostly with no mention of
the method or rational for the choices made.

2.3.2.2 Rule Based Approach

The work of Baudel and Beaudouin-Lafon [Baudel and Beaudouin-Lafon, 1993] provides an
example of the use of design rules. They provide such guidelines as: “favor ease of learning”,
“use hand tension at the start of a dynamic gesture, and “use relaxed position of the hand at the
end”. Another is that of Baudel er al. [Baudel et al., 1992], who provide a set of guidelines for
designing gestural commands. No mention is made on how these guidelines are implemented to
generate the actual vocabulary. The application allows a user to give a lecture by navigating
through a set of slides with data glove based gestural commands. Kjeldsen and Hartman
[Kjeldsen and Hartman, 2001], in a vision based computer interaction setting, present a set of
constraints for control actions defined by the permissible motions users can makes to effect
control. Stating that “the choice of such control movements is more art than science”, they
proceed to consider what good control actions for different task types are. Again the approach is
rather intuitive.

2.3.2.3 Analytical Methods

Analytical methods are scientifically based, involving perhaps the use of human factors
aspects, ergonomics, hand biomechanics, cognitive science, experimental statistics, machine
recognition and mathematics. Although, exist sporadic works applying these disciplines to
portions of the hand gesture design problem (i.e., [Wagner et al., 2003] used analytical methods
for the design of an ergonomic keyboard), we have found no work using analytical methods for
the complete design of a GV.

2.3.3 Current Approaches to Measure Human Factors

Intuitiveness is the cognitive association between a command or intent and its physical
gestural expression. Two approaches are used to obtain intuitiveness measures [Nielsen et al.,
2003]; (a) bottom-up - takes functions (commands) and finds matching gestures, and (b) top-
down - presents gestures and finds which functions are logically matched. An example of the
bottom-up approach is used in the Wizard-of-Oz technique [Nielsen et al., 2003; Preston et al.,
2005; Hoysniemi et al., 2005]. The Wizard-of-Oz experiment has persons respond to commands
stimulated under camera surveillance. For this purpose scripts describing the interaction in
specific scenarios, functionalities and context must be prepared. The gestures used in interactions
by the users were extracted from the video obtained, and further on analyzed to find how
consistent different users were with gestures. [Nielsen et al., 2003] exemplifies the top-down
approach in a benchmark designed to test the user’s chosen gesture vocabulary. The final step to
test Nielsen’s methodology is called “Guess the function” where the testee is presented with a list
of gestures and he is asked to guess the commands associated to those gestures.

For stress index measures, experiments vary from subjective questioners [Nielsen et al.,
2003] to electronic devices, such as EMG, to measure muscle activity [Wheeler, 2003]. Postural
comfort based on a "comfort dimension" along which the human feelings are placed in states of
comfort, discomfort, fatigue, and pain [Ko6lsch er al., 2003]. Approaches to the measurement of
stress, comfort can be divided into mathematical model based, physical measurement, and
subjective methods. Brook, et al., [Brook et al., 1995], construct a dynamic model representing
the biomechanics of the index finger's flexion-extension and abduction-adduction motion.
[Yasumuro et al., 1999] constructed a biomechanical model of the entire hand comprised of
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tendons, muscles and bones, where physical stress is simulated through the natural constraints of
the hand. [An et al., 1979] developed a three-dimensional normative model of the hand. The
authors state that the model can be used to perform force and motion analyses, but do not extend
it to estimate stress. Harling and Edwards [Harling ez al., 1996] use a rod string model to estimate
finger tension although no comparison is made with perceived tension of users. The use of EMG
measurement is popular, but the main problem is it usually only measures the activity of part of
the muscles involved in structuring a pose [Shrawan and Anil, 1996]. The model and
measurement approaches are prone to errors and have not, for the most part, been satisfactorily
validated by user studies.

2.4 Implementations of Hand Gesture Vocabularies

Gestures are interpreted to control computer memory and displays or to control actuated
mechanisms. Human-computer interaction (HCI) studies usually focus on the computer
input/output interface [Card et al., 1990], and are useful to examine the design of gesture
language identification systems. Some examples of applications of computer memory and
displays are: Large panel display control [Baudel et al., 1992], graphic image manipulation
[Hauptmann, 1989], video control navigation [Bradski et al., 1999], television control [Freeman,
1994], camera control [Jun-Hyeong et al., 2002], home appliances control [Lenman et al., 2002],
and virtual crane control [Freeman and Roth, 1995].

2.4.1 User types oriented systems

Two different types of systems are used to train and test accuracy. User dependent (D) and
independent (I) recognition systems are those systems that are trained and tested which gesture
instances collected from a single or multiple users, respectively. A user dependent hand gesture
recognition system based on discrete Hidden Markov models and the Viterbi algorithm was
suggested [Mintyld, 2001]. Thirty four user dependent gestures from the Japanese alphabet were
recognized using joint angles and hand orientation from a data glove [Takahashi and Kishino,
1991]. Local based gesture modeling in a 3D interface was developed using a single user skin
color distribution model [Burschka et al., 2005]. Fourteen different people trained a high
performance real-time hand gesture recognition user independent system using Hidden Markov
Models [Rigoll et al., 1997]. The system by [Parvini and Shahabi, 2005] assumes that the range
of motion of each joint of a hand participating in making a gesture is a user-independent
characteristic of that gesture and provides a unique signature across different users.

Other works allow both types of control, user dependent and independent, based on the
person desires [Alon et al., 2005; Just et al., 2004; Triesch and Malsburg, 2001]

2.4.2 Existing Robotic Gesture Systems

Some relevant vision based hand-gesture robot control systems deal with real world
constraints with variable success. In the work of Franklin et al., [Franklin et al., 1996] a robot
waiter is designed, controlled by hand gestures, using the Perseus architecture for gesture
recognition. Although the person to be serviced is detected and tracked, his control gestures are
very limited. There are two gestures recognized by the system, “empty hand” and “holding
hand”. This makes the system very poor in the language understanding view.

The system created by Becker et al., [Becker et al., 1998] is quite robust; users can operate a
semi-autonomous robot able to learn from its environment and tasks. It also can calibrate itself
respect to the image-to-world coordinates. In this work, recognition takes over 82.2 seconds, and
this violates the real-time constraint.
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The work presented by Kotenkamp et al., [Kortenkamp et al., 1996] shows a system able to
recognize six distinct gestures made by an unadorned human in an unaltered environment, using a
coarse three dimensional model of a human. This system recognizes arm-hand configuration and
joints degrees and not hand gestures. The drawback of this system is that the range of possible
arm joints configuration is narrow, and hence that system uses just six gestures.

The work realized by Cipolla et al., [Cipolla et al., 1994] shows a gesture-based interface for
robot guidance based on uncalibrated stereovision and active contours. The robot is guided to a
point determined by a hand pointing gesture over a ground plane. Although the main goal of the
system is the use of stereo vision without calibration, there are some problems that affect the real
world constraints: the vision system needs a strong contrast between the hand and the background
and a set up process consisting of marking with colors the corners of the board where the hand
points. This violates the complex dynamic backgrounds constraint and the variable lighting
constraint.

The research proposed by [Guo et al., 1998] discusses the creation of intelligent highly safe
vehicles controlled by hand gestures, based on segmentation using a color probability distribution
model. To segment the hand from the forearm, the center position of the maximum circular
region is searched; the assumption is that this region occurs only inside the palm. The problem
with this research is that there are some gestures that the maximum circular area occurs above the
beginning of the palm, for example the fist in a profile position. This would cause confusion in
the interpretation between different gestures.

The work of Waldherr et al., [Waldherr et al., 1998] proposed a vision-based interface that has
been designed to instruct a mobile robot through both pose and motion gestures using an adaptive
dual-color tracking algorithm. Besides the fact that this system deals with pose and motion
gestures, it also has a tracking algorithm able to quickly adapt to different lightning conditions.
Despite the robust features, the system has problems like tracking a person with multi-colored
skirt, and the most important drawback is lack of learning new gestures.

Yin and Xie [Yin and Xie, 2001] created a fast and robust system that segment and recognize
hand gestures for human-robot interaction using a novel color segmentation algorithm developed
on the basis of a Restricted Coulomb Energy (RCE) neural network. The recognition of hand
postures is based on the analysis of topological features of the hand. The drawbacks of this
system are the lack of recognition of dynamic gestures and the need of a set up process in which
the user should enclose the hand region.

A system intended to be particular robust is the system presented by Triesch and Malsburg
[Triesch and Malsburg, 1998]. It was designed specially to deal with real world environments
constraints. The system supports three alternative channels to interact between the human and the
robot, first an explicit gestural command, second a spoken command, third an imitation learning
method, and this provides a positive redundant way to send a command to a robot. In addition,
strength of the recognition is based on the combination of features “cues” such motion, color or
stereo. The main drawback of the system is the recognition time process. For twelve distinct
postures it takes between ten and twenty seconds to recognize them. Most of the systems
overviewed rely on the simple idea for detecting and segmenting the gesturing hand from the
background such motion detection or skin color. They assume that there are no other objects in
the near environment that have the same color or motion properties of the hand. When dealing
with uncontrolled environments this assumption is rarely true. The robustness reached by proper
selection of features or clues and their combination, with sophisticated recognition algorithms is
the condition of successful or failure of any existing and future work in the field of human-robot
interaction using hand gestures.

A tele-robotic arm controlled by twelve hand gestures was developed in the telegest project,
for pick and place operations [Wachs et al., 2002]. The system operates in real time, and visual
feedback from the distant scenario is provided by image views of the task. The classification is
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performed using supervised FCM optimized framework, and it relies on static hand poses using a
uniform background. Based in the telegest project, the KISS system was developed [Eliav et al.,
2005] to control a robotic vehicle in real-time, where live video streams were sent back to the
user as feedback visual information.

A concise summary of the characteristics of systems aimed to hand gesture robot control is
presented in Table 2.2.

Table 2.2. Summary of robotic control systems

Application Reference Task Commands Method [Sfll’)esﬁd
. Tracking, . -
Robot waiter [Franklin et navigation and Tracking plus two | Feature maps, decision N.A?
al., 1996] . metaphors trees and grammar
grab objects
. [Triesch and o . .
Robotic arm Malsbure, Pick and place Twelve pointing Elas.tlc graph matching, 110
control 1998] postures motion and color cues
. [Becker et al., . Ten pointing Elastic graph matching,
Gripsee 1998] Pick and place gestures motion and color cues 1730
Mobile Robot [Kortenkamp Tracking, . Arm and Body 3-D
Control et al., 1996] navigation Six gestures Model, 5 DoF. N-A
. [Cipolla and o
Robotic arm Hollinghurst, Pick and Place One pointing Active Contour N.A
control gesture
1996]
Human-Vehicle [Guo et al., N . Template matching,
Interaction 1998] Navigation Six hand gestures RCE neural network NA
Tracking, Two motion Temporal template
Service Robot [Waldherr et navigation, gestures and a matching, Viterbi N.A
al., 1998] . . .
pick and place | pointing gesture Algorithm
Humanoid [Yin and Xie, Navigation, Eicht sestures RCE neural network, S fos
Service Robot 2001] pick and place gnt e geometrical parameters P
[Wachs et al., . Supervised weighted
TeleGest 2002] Pick and Place | Twelve gestures FCM algorithm N.A
[Eliav et al., L . Supervised weighted
KISS 2005] Navigation Six gestures FCM algorithm N.A

% Not available
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3 Research Methodology

3.1 Overview

This chapter describes the methods used in this research. The basic definition, notation and
assumptions of this dissertation are presented in the first section. The second section presents
three different formulations of the GV problem. The following sections present the performance
measures intuitiveness, comfort and accuracy as a function of the given gesture vocabulary GV;
afterwards the architecture of the optimal hand gesture vocabulary methodology and each of the
modules in it are described. The last three sections describe the experimental methodology and
the validation approaches used in this dissertation.

3.2 Problem Definition and Notation

The basic research problem here is to find an optimal hand gesture vocabulary. An optimal
hand gesture vocabulary, GV, defined as a set of gesture-command pairs, such that it will
minimize the time t for a given user (or users) to perform a task, (or collection of tasks). The
number of commands is determined by the task, while the set of gestures is the decision variable
selected from a large set of hand postures, called the gesture “master-set”. Performance depends
on the rate of successful recognition of the subset of gestures by a hand gesture recognition
system (technical factor) and on human factors measures representing the naturalness of the
gesture-command associations and the comfort of the postures. The main problem is to minimize
task performance time over a set of all feasible gesture vocabularies, GV. This problem is stated
in (3.1) :

Min o(GV )=(T,C,G,,F,D,1,ICS,A) 3.1

Gvel”

Where;

©(GV) = the task performance time for a given gesture vocabulary

\ is some function of the following factors:

T=1{t, ..., ta}, the set of tasks that can be performed in the current ontology.

C = {cy,..,cn}, the set of commands spanning all tasks in T.

G, = {gi,..-.g}, the large master set of candidate gestures, from this, a subset of gestures is
matched with commands in C.

F » x »={fij}, the command transition matrix, or after normalization the stochastic matrix
P={p;jj} of commands (where fj; is the frequency of transition from command i to command j, and
pij is the probability of using command i after command j).

D , «n={djj}, the command duration matrix, for i # j is the time that takes the transition from
gesture p(i) to p(j), and for i=j is the minimum time that is required for the recognition system to
sample the current gesture.

I, x m={ai}, the intuitiveness matrix, where aj is a measure of cognitive association between
the gesture i and the command k.

IC \m x nm={ajj}, matrix of complementary intuitive indices where, ajjq is a measure of how
natural it is to associate the complementary pair of gestures (g;, g;) with the complementary pair
of commands (cy, ¢).

S mx m={su}, the stress or fatigue matrix, where sy is the physical difficulty of a transition
between gesture k and gesture 1. Note that sy is the fatigue of holding the same gesture.

Smxn is the comfort matrix, some inverse function of S.
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A(G,) = the recognition accuracy of a given subset of gestures G, < G, (a scalar).

GV ={(,pQlall gi € G,, p@i) € C }, a gesture vocabulary in terms of a set of gesture-
command pairs.

Here a vocabulary GV is described in terms of an assignment function p where p(i)=j
indicates that the command i is assigned to gesture j.

I = the set of all feasible GVs.

The measurement of task completion time involves the evaluation of (3.1) whose analytical
form is unknown, time consuming, and difficult to estimate from experimental data. We,
therefore, propose a set of multiple objective performance measures to act collectively as proxies
for (3.1). The proposed methodology will be developed under the following assumptions:

(a) The gestures are static postures. The same methodology can be used with small
modifications for dynamic gestures.

(b) Each gesture cannot represent more than one command, and each command must be
expressed by exactly one gesture.

(c) Measures of intuitiveness can be collected from a small empirical experiment.

(d) The static stress measures can be determined empirically, and will yield enough
information to estimate the dynamic stress measures.

(e) For this problem recognition accuracy of a set of gestures is determined by a fuzzy means
classifier (Although any other recognition algorithm can be used).

3.3 Problem Formulation

The main performance measure is the completion time, 1, to perform a task. However, since
the task completion time, as a function of GV, has no known analytical form, we propose three
different performance measures as proxies for the task completion time. These performance
measures are; intuitiveness Z;(GV), comfort Z,(GV) and recognition accuracy Z3(GV). The first
two measures are user centered, while the last is machine centered. This multiobjective
optimization problem (MCOP) may have conflicting solutions where all the objectives can be
maximized simultaneously. As with most multiobjective problems this difficulty is overcome by
allowing the decision maker to select the best GV according to his own preferences.

P 3.1 Three priority problem

Max Z,(GV),Max Z,(GV),Max Z,(GV)
GVeTl

3.2)

where,

7, = intuitiveness of the GV.

7, = the total comfort of the GV.

Z3 = the recognition accuracy of the GV.

In (3.2) maximizing each of the measures over the set of all feasible GVs defines a MCOP.
Here the set of Pareto solutions can be used to aid the decision maker to select the GV. The
pareto frontier solution can be determined through enumeration, for small problems, and through
the use of heuristic methods for large problems. Selecting optimal GV solutions (optimal from
the user point of view) from the complete set is a posteriori judgment, which can only be done by
examining concrete solutions. Because the enumeration approach is untenable, for even
reasonable size vocabularies, we describe two alternative formulations to this problem. The first
is to map the three performance measures into a single measure by using weights w; to reflect the



18

relative importance of each of the objectives. Another method of handling the difficulties of the
sometimes conflicting multiobjective values is to adapt a goal programming approach. The
difficulty with this approach is in the selection of the goal values.

P 3.2 Single Objective Problem
Max Z(GV)=w,Z,(GV)+w,Z,(GV)+w,Z,(GV)
Gvel

3.3

Where,

w; = the relative importance of factor Z,.

The weights in (3.3) can be found empirically, by letting the decision maker give the
importance of each factor according to his/her needs and preferences. Alternatively, the weights
can be varied, and for each unique weighting scheme the corresponding solution can be presented
to the user for acceptance or rejection.

As a practical matter, however, it is more convenient to consider a dual priority objective
where the technical factor, accuracy, will be considered as the most important factor from the
users stand point as well as its impact on performance time. The reason is that if a gesture is not
recognized, the command associated to that gesture will not be carried out, and thus the tasks will
be interrupted. As opposed to this, a lack of comfort or naturalness on the GV, will delay the task
completion time, but not interrupt it. This is best expressed using dual priority objectives where
recognition accuracy is considered of prime importance, and the human performance objectives
are secondary.

P 3.3 The Relaxed Problem

MaxZ(GV)=w,Z,(GV )+w,Z,(GV) (3.4)
GvVel
st. Z,(GV)=A,, (3.5)

The P 3.1 is thus relaxed to obtain P 3.3 by considering recognition accuracy as a constraint (3.5),
and combining the human objective measures into one objective function using combination
weights wl, and w2 (3.4). This relaxed problem, based on the dual priorities of the objective
functions, is the main approach adopted in this thesis and is described in detail in Section 4.3

3.4 Performance Measures

Each of the performance measures is described as a function of the given gesture vocabulary
GV. The objective functions Z;(GV) and Z,(GV) are human valued (intuitiveness and comfort)
measures, while Z3(GV) is machine valued (accuracy). Each in turn is described below.

3.4.1 Intuitiveness —Z;

Intuitiveness is the naturalness of expressing a given command with a gesture. The
intuitiveness of a gesture vocabulary is the sum total of the intuitiveness of each gesture-
command pair in the vocabulary, each weighted by frequency of use.

n n n
Z,(GV) :Zai,p(i) + Z Zai,pm,pm (3:6)
i=1

=l j=I
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The value a; ) represents the strength of natural association between command i and its
matched gesture p(i). The first term in (3.6) represents the sum over all the command-gesture pair
intuitive values in the vocabulary. The complementary intuitiveness a;pg)jpg 1S the level of
association expressed by the selection of complementary gestures pairs p(i), p(j) for
complementary command pairs (i,j). Accordingly, the complementary intuitiveness has a stronger
effect than regular intuitiveness, which expresses the tendency to reward vocabularies with
complementary gestures selected for complementary commands, and to punish arbitrary
mappings. The total complementary intuitiveness for a GV is represented by the second term in
(3.6).

3.4.2 Comfort-7,

Stress is related to the strength needed to perform a gesture. The difficulty of composing and
holding gestures can be explained by the effects of blood flow restriction on the stressed joints
which causes strain and fatigue on the muscles. Obviously, there are gestures that are easier to
perform than others. Even when some of them look comfortable in the beginning, after some time
the user may feel fatigue. The amount of fatigue is related to muscle forces, which causes finger
and palm tensions. Total stress is a scalar value equal to the sum of the individual stress values to
hold the postures, and to do the transitions between them, weighted by the duration and frequency
of use.

Z(GV)=K- Z Zfij Doy 515 plinnt ) 37

i=l  j=I

Here p is an assignment function where p(i)=j indicates that the command i is assigned to
gesture j. Let k=p(i) and 1=p(j), the value of sy represents the physical difficulty of a transition
between gestures k and 1. The duration to reconfigure the hand between gestures k and 1 is
represented by di. The symbol fj; stands for the frequency of transition between commands i and
j- The value K is a constant obtained empirically, and thus the difference yields the comfort
scalar.

3.4.3 Accuracy -Z;

Accuracy is a measure of how well a set of gestures can be recognized. To determine the
accuracy of a GV it is only necessary to consider the subset of gesture types G, and not C. So
technically Z3(GV) is a function of G, only. To obtain an estimate of gesture accuracy, a set of
sample gestures for each gesture type in G, is required. These samples are used to train the given
hand gesture recognition algorithm. An additional set of samples are used to test the recognition
accuracy of the algorithm, designated as T, .The number of gestures in the testing set correctly
and incorrectly classified is usually presented in a confusion matrix. The number of misclassified
gestures can be calculated as T.. The recognition accuracy (in percent) is given below (often
represented with the symbol A):

(r,-1.)

4

Z,(GV) = 100 38)
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3.5 System Architecture

The optimal hand gesture vocabulary methodology architecture is comprised of three modules
(Figure 3.1). In Module 1 human psycho-physiological input factors are determined. In Module 2
a search for a feasible gesture subset, subject to machine gesture recognition accuracy is carried
out. Module 3 constitutes a command - gesture matching procedure. The task set T, the large
gesture master set G, and the set of commands C are the input parameters to the first Module 1.
Note, that C is determined by T where given a set of tasks, the union of all commands used to
perform all tasks constitutes C. The objectives of Module 1 are to establish associations between
commands and gestures based on user intuitiveness (direct and complementary), to find the
comfort matrix based on command transitions and fatigue measures, and to reduce the large set of
gestures, to the master set G, (Figure 3.2). For Module 2, the necessary inputs are the reduced
master set of gestures Gy, and a recognition algorithm to determine A. This module employs an
iterative search procedure to find a single feasible gesture subset G, (or alternatively the set of
feasible gesture subsets), satisfying a given accuracy level (this level is specified in (3.5) is
usually determined by the decision maker).

T (Tasks) C (Commands) Gz (Gestures)

T~

Module 1 i Hand Gesture Factor i
i Determination !

| \ ‘ i

E V (Intuitiveness) U (Comfort) Gm (Gestures) :

i A (Accuracy) i

Module 2 | | RSceoSg;ﬁ;s)n ! Gesture Subset Search |1
odule i < !

i Algorithm Gn (Gesture Subset) Procedure i

Gn*l C
i ‘( Command Gesture E
Module3 | 1 Matching Algorithm i
GV

Figure 3.1. Architecture of optimal hand gesture vocabulary methodology

Complete enumeration or a heuristic search can be used as a search procedure.

The inputs to the third module are the matrices; intuitiveness V, comfort U, command C, and
the subset of gestures G,+. The goal of this module is to match the set of gestures G, with the set
of given commands, C, such that the human measures are maximized. The resulting gesture-
command assignment constitutes the gesture vocabulary, GV.
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Module 1
F (Transition U (Total
T (Tasks) - » VR Model i’ Matrix) 4’%) "| Comfort Matrix)
Hand . —
Gz (Gestures) || » Biomechanics —» SIS/I'::E;J S S SN Sl\(lli?rgort V (Total
5 Study » Intuitiveness
Matrix)
¢7 User Supplied
Ser supplie I (Intuitiveness
C (Commands) » Gesture-Command ——» Matrix)
Intuitive Indices Gm(Gestures)

Figure 3.2. Hand gesture factor determination stage

3.5.1 Module 1: Hand Gesture Factor Determination

In this section the inputs to the first module are described including; the methods taken to
compose the U and V matrices, and the gesture master set Gy,. In addition, the algorithm to
determine the recognition accuracy, A, is described.

3.5.1.1 Task and Command Sets (T, C)

The task set can be single element or multiple element (multi-tasks) set. For each task t;, a set
of C; commands are defined. For a multi-task set T={ty,..,t;} the command set is the union of the
individual task commands.

c=Ja (3.9)

i=l,,n

For example for a ‘place’ task with commands C;={‘left’, ‘right’, ‘up’, ‘down’, ‘backward’,
‘forward’} and for a ‘pick’ task with commands C,={‘up’, ‘down’, ‘backward’, ‘forward’,
“open’, close’}, a new task (multi-task) ‘pick & place’ will include the command set C={ ‘left’,
‘right’, ‘up’, ‘down’, ‘backward’, ‘forward’, ’open’, ’close’ }

3.5.1.2 Command Transition Matrix (F)

To estimate the frequency of command usage for the set of selected tasks T it is necessary to
carry out experiments according to the desired task. For example, using a real or virtual model of
a mechanism™ or driving a VMR through a maze. For a command set C of size n, a matrix Fyy, is
constructed where, fj; represents the frequency that a command c; is evoked given that the last
command was c¢;. This measure is significant in the sense that it is hypothesized that; (a) an
optimal hand gesture vocabulary will pair high frequency commands to gestures that are easy to
perform (low fatigue); and (b) the physical ease of movement between gestures will be paired
with high frequency command transitions.

i To determine the command transition matrix, we make the assumption that it is independent of the gestures or
the process in which commands are executed. Thus, it can be approximated by, for example, a virtual reality model
or teach pendant for a robotic task.
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3.5.1.3 Large Gestures Master Set (Gz)

Since the set of all possible gestures is infinite, we first establish a set of plausible gesture

configurations. To create the set of all plausible hand gestures there are two possible approaches;
(a) visual capture of gesture images, or (b) creation of synthetic gestures. For small hand gesture
databases, real hand gestures images may captured, and labeled with the configuration parameters
that characterize that gesture; For large gesture sets (thousands of gestures) a tedious effort is
required which may be overcome by the use of a synthetic gesture generator. The synthetic
generation of gestures has a significant advantage over the capture of real hand gestures, as the
hand gestures and the labeling process are done automatically.
One possible way is to generate the configurations by specifying a number of primitives such as;
finger positions (extended, spread), palm orientations (up, down sideways), etc. For additional
material on gesture primitives and combining them into whole gestures, including those for
dynamic gestures see [Miners et al., 2002]. This list should exclude in advance those gestures that
are impossible to perform due to inter and intra joints constraints [Lin ez al., 2000] (for example it
is not possible to spread fingers that are closed in a fist), and those that are extremely stressful,
such us the gestures only performed by piano players.

The virtual model used to generate the gestures will be a graphical approximation of a 2D
hand gesture view, using a discrete digital coding (with base 2 and 3) to represent each gesture.
The string representing each posture consists of 11 bits (Table 3.1), and each is described in the
following table. The first bit in the string is the most significant bit MSB (the leftist digit) and the
last is the least significant bit LSB (the rightist digit).

Table 3.1. Configuration of the hand model

Order |Type Effectors Description

1 3-State |Palm 0-Palm Down, 1-Palm Up, 2-Side of the Palm
2 3-State | Wrist 0-Straight, 1- Bend to Left, 2-Bend to Right

3 2-State | Thumb 0-Closed, 1-Extended

4 2-State |Index 0-Closed, 1-Extended

5 2-State  |Middle 0-Closed, 1-Extended

6 2-State  JRing 0-Closed, 1-Extended

7 2-State  |Little 0-Closed, 1-Extended

8 3-State  |Thumb-Index |O-Tight, 1-Opened,2-Perpendicular to the Palm
9 2-State |Index-Middle JO- Tight, 1- Opened

10 2-State  |Middle-Ring ]O- Tight, 1- Opened

11 2-Stage JRing-Little 0- Tight, 1- Opened

The first 2 bits, controls the palm, the wrist rotation (0-90-180 degrees) and the ulnar
deviation (the wrist bent towards the ring finger, in the middle, or towards the thumb finger). The
next 5 bits indicate whether the finger is bent (flexed towards the palm) or extended, and the last
4 bits describes whether there is a separation (spread) between two adjacent fingers or not (tight).
The thumb (bit 8) has an additional degree of freedom, so it can be opened perpendicular to the
palm. An example of a few configurations codes are depicted in Table 3.2 with their respective
graphical representations.
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Table 3.2. Examples of posture encoding

Code 00000000000 10000000000 | 20000000000 | 02010000000 10011000100 10111111111

Gesture

The total number of postures available using the coding described above is 2843326912. Tt is
still possible to decrease this large gesture set by eliminating those postures that violate inter
finger constraints [Lin et al., 2000] and are extremely difficult to perform. Also gestures that are
ambiguous when using only one view of the hand may be eliminated. For example, it is
impossible to spread two adjacent fingers when they are bent. Is also extremely difficult to
separate two adjacent fingers, when one of them is closed and the other is extended. An example
of postures that are ambiguous due to using a single view of a camera are postures shown in Fig.
3.3 (a)-(c) when they are viewed from the back of the hand they cannot be discerned from posture

(d).
(a) (b) (c) (d

Figure 3.3 Ambiguous postures due to using a single view

Therefore the constraints considered were: a) postures with palm up or palm down cannot
have the thumb perpendicular to the palm. b) postures where two adjacent fingers are one open
and the other bent, are not allowed to be outspread. c) postures where the fingers are spread out
are not allowed to have the palm on its side. d) postures where the palm is on its side are allowed
only if all the four fingers (except thumb) are bent, open, or index open and the rest bent, or index
bent and all the rest open. e) If the thumb is bent, the thumb cannot be outspread, or
perpendicular to the palm. f) postures were any two adjacent fingers are closed, are not allowed to
be outspread. Considering these constraints, it is possible to further reduce the large set of
feasible gestures G, to 648 postures.

3.5.1.4 Matrices of Intuitiveness and the Gesture Master Set (V, G,)

The intuitive matrices include the direct intuitive matrix and the complementary intuitive
matrix. Both intuitive matrices are obtained by subjective data collection methods. Based on the
popularity of the gestures in the direct intuitive, the master set of gestures is reduced to G, C G,.

The direct intuitive matrix, 1

The intuitive index is a measure of how “natural” it is for a user to express a command with a
particular gesture. These indices are determined empirically. For each command c; a user is
prompted to select a posture that he/she “cognitively” associates the most with the command.
Once the user performed the gesture, the next step is to “build” the posture using the virtual
model primitives described in section 3.5.1.3. In this way, is possible to encode the user’s
selection in a simple manner, and further on to obtain the distribution of user choices over the
different gestures. The process to obtain the intuitive indices is described in Figure 3.4
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Task
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Figure 3.4. Empirically determining the intuitive indices

Using this information it is straightforward to construct an intuitiveness matrix, I p, x n. The
entries of [ are represented as ajx.

u
ay =Y ag,i=1I...z k=1..n (3.10)
j=1

where,

u = the number of users (j=1,...,u)

z=number of gestures in the master set (i=1,...,7)
n= number of commands (k=1,...,n)

@jx = is a binary variable to express whether user j cognitively associates gesture i with

command k. If the user j selects gesture i to represent command k, is @ =1, and 0 otherwise.
Let w'y be the level of strength of belief of user j in making the association between the

command k and the gesture j then, then a weighted intuitive matrix, with common elementg,, ,
can be generated

u
a, =Y aiwy i=1..z , k=1I..n @.11)
j=1

The complementary intuitive matrix, IC

When analyzing the actions in a task, one of the things that are common to most tasks, is that
there are commands that have complementary counter parts. This occurs specially for directional
commands (left-right, up-down) and two-state action commands (open-close). This mapping is
usually expressed by the users by selecting complementary gestures for complementary
commands.

A brief study, presented in Chapter 6, revealed that for complementary commands,
complementary gestures were selected; however it was found that there is no single rule to
determine the complementary gesture for any given gesture. Moreover, one gesture may have
more than one complementary gesture. These gesture can be obtained by flipping the palm, or a
closing/extending the fingers. See Figure 3.5 (a), (b), (c) respectively.

The naturalness of matching up a pair of complementary commands (i, j) with a pair of
complementary gestures (k,l), is represented by a complementary intuitive index of the form ajjy .
Higher values of complementary intuitive indices will have the effect of forcing complementary
pairings. The matrix of complementary intuitive indices IC, i, x n.m, can be quite large, but can be
compacted considerably as most of the entries will be zero. Denote V=[I, IC] as the set of
matrices including both the direct I and complementary IC intuitiveness matrices.
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(a) (b (c

Figure 3.5. Complementary gestures: (a). Flipping the palm. (b) Rotating the wrist. (c) Open-closing the
fingers

)

The gesture master set, G,

Each element of the non-weighted intuitive matrix I indicates the number of times that a gesture i
was used to represent command j. The row sums indicate how popular a gesture is. The
normalized popularity of gesture i, p; , is:

n u

P = iaik ZZG_;k 3.12)
k=1

k=1, j=1

Zero values of p; point to the fact that some gestures were not selected at all to represent any
command, and low values shows that this gestures were roughly used to express commands.
Those gestures are not intuitive to the users, and assuming that they are also awkward to perform,
and hence they are not “natural” gestures. If these kinds of gestures are not intuitive and stressful,
the master set of postures can be reduced further by taking this postures out of the master set.
Hence, a reduced master set of gestures can be defined using (3.13).

G,={g p 2t} (3.13)

where,

Gy, is the reduced master set of gestures

pi is the popularity of gesture i

gi is a gesture

t is the threshold of popularity of the gestures

3.5.1.5 Fatigue and Comfort Matrices (S,U)

The fatigue (or comfort) indices are determined through an experimental a study (see chapter
6.4). The results are arranged in a matrix S n, x m, Whose common element s;; represents the
physical difficulty of performing a transition from gesture i to gesture j. Let the coefficients ujjq
be the entries of a square matrix, U ym x nm- An entry uj=K-fj; x s represents the frequency of
transition between commands i to j times the transition stress of a k to | commands when i and j
are paired with gestures k and I, respectively. This product reflects the concept that the total stress
measure of GV depends on the frequency of use of a gesture or a gesture pair transition. The total
comfort is the difference between the constant and the total stress detailed above. Note, that the
diagonal entries s;; represent the total stress of using a gesture repeatedly to carry out the same
command.

3.5.2 Module 2: A feasible subset search procedure
3.5.2.1 Gesture Recognition Algorithm, A(G,)

The goal of the subset search procedure is to evaluate solutions based on recognition accuracy
of a hand gesture recognition system. The hand gesture recognition process involves two
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sequential tasks; (a) extracting relevant features from the raw image of a gesture, and (b) using
those image features as inputs to a classifier. Such an algorithm is described in [Wachs et al.,
2002] where the segmentation consists of the extraction of the hand gestures from the background
using grayscale cues. For simplicity gestures are presented with a uniform background. The
captured hand image is thresholded to a black/white segmented hand silhouette, and partitioned
into block features. These features are compared to clusters obtained from a trained fuzzy c-
means clustering algorithm. To obtain an estimate of the recognition accuracy a set of training
samples, consisting of images for each gesture type in G, are used. The classification results are
organized as a confusion matrix. From the confusion matrix, the recognition accuracy Z3(G,) is
computed using (3.8). Note that the recognition accuracy depend only on the gesture set G, and
the commands associated do not play any role by determining Z3(GV), therefore Z3(GV)= Zs(Gy,).
Further details may be found in Wachs et al. [Wachs et al., 2003]

To determine the accuracy of a candidate subset of gestures it is necessary to train a classifier.
Two different approaches will be discussed in this thesis; one, retraining the FCM many times for
each different candidate G, and two, the FCM will be trained and tuned for the master set G,.
For the first method, the recognition accuracy is calculated using (3.8) based on the confusion
matrix €, obtained from the FCM. For the second approximate method, the confusion matrix
obtained from the master set is €, For a candidate set of gestures G, , the recognition accuracy is
obtained by creating a new confusion matrix €, which is obtained by dropping all the columns
and rows j in G, where j € {ilall g € G, - G, }, then the recognition accuracy (3.8) is obtained
using the confusion matrix €.

Gesture classifiers such as a neural network, Bayesian, boosting methods require large
training sets. In this thesis was used a fast FCM classifier for the gesture recognition algorithm,
which requires a relatively small training set. An automated method, based on a parameter search
procedure, is used to reconfigure and recalibrate the recognition algorithm for each new set of
gestures; more details will be offered in Chapter 5.

3.5.2.2 Gesture subset search procedure

Consider a subset solution G, that has recognition accuracy below the minimum desired value.
One notes that by observing the indices of the gestures only, is not possible to predict how to
order them in the subset or how to interchange them with new gestures from Gy, to obtain
improved recognition accuracy. Thus, given a subset solution, G,, and its neighborhood solutions
obtained by some gesture exchange rule, there is no physical reason that the A(G,) function is
well behaved within this neighborhood. Hence, attempting to find a local maximum by the
standard search methods of gradient ascent will fail. To overcome this problem two metaheuristic
approaches were developed. The first approach is referred to as the Disruptive Confusion Matrix
(DCM), and the second is referred to the Confusion Matrix Derived Solution method (CMD). In
the DCM method pairs of gestures are exchanged and maintained in a binary tree. Each of the
most confused gestures in the subset is discarded, and replaced by a gesture from the remaining
gestures in the master set Gy, using a MaxMin rule, (Figure 3.6). Gesture sets that have associated
accuracies below some stipulated value Ay, are discarded.

The MaxMin rule selects a gesture from the master set that is least similar (farthest away)
from all the gestures in G,; (i) (where i is the gesture removed from the current subset). Like
simulated annealing, the method allows moves towards the direction of inferior solutions possibly
avoiding pre-convergence to local optima. This method generates a sequence of gesture subsets
until a depth of the tree is reached.

The second approach, the CMD, relies on the recognition accuracy obtained from the master
set G, and its associated confusion matrix.
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Figure 3.6. Solution tree

Given the confusion matrix, the selection of the n least confused gestures result in the highest
recognition accuracy for a subset G,. Additional solutions with the same or lower recognition
accuracies can be obtained by discarding the most confused gesture i over the diagonal of the
confusion matrix, and instead, selecting the least confused gesture j in the subset G,,-G, obtained
from the confusion matrix. Each solution is kept in a stack of solutions. When a solution is
repeated, i. e., already in the stack, a new solution is generated instead by discarding the most
confused gesture k # i and selecting a least confused gesture j in the subset Gy,-G,. The feasible
solutions obtained while employing one of the methods (DCM and CMD) are then used in the
gesture-command matching problem in Module 3 to obtain candidates GV.

3.5.3 Module 3: Command gesture matching algorithm

In this module every feasible gesture solution G,* € { Gy | G, € G, , A(Gp)> Anin } found
using the DCM or the CMD procedures, is matched to commands to obtain the final set of GV
using the integer quadratic assignment problem (QAP) [Koopmans and Beckmann, 1957].This
can be done in two ways; if wl and w2 are known, then a single matching is found directly from
the solution. Otherwise, linear combinations of the weights can be used to obtain an associated
set of solutions for G,*. The integer QAP solves a problem of matching gestures to commands.
The 0-1 integer QAP has attracted a lot of attention and many approaches have been proposed for
its solution such as: (i) find a proper linearization of the objective to obtain a linear program
Finke et al. [Finke et al, 1987], and (ii) relax the QAP to a (0, 1) linear integer program by
introducing new binary variables and new constraints. A practical approach is used in this work,
adopting the simulated annealing algorithm as described in [Connolly, 1990].

3.6 Experimental Methods for estimating Intuitiveness and Stress

A series of experiments were conducted to obtain subjective measures by studying responses
from human subjects. Intuitiveness is the cognitive association between a command or intent, and
its physical gestural expression. Two approaches are given for obtaining intuitiveness measures;
(a) bottom-up - takes functions (commands) and finds matching gestures, and (b) top-down -
presents gestures and finds which functions are logically matched [Nielsen et al, 2003]. To
collect intuitive data we used the "bottom- up approach". The actual acquisition of gesture
responses is not trivial. The following three methods were considered; (a) direct video capture -
the subject physically forms the gesture and a camera image is taken (here there may be errors in
recognizing similar gestures), (b) use of a database of candidate gesture images (browsing a large
database is time consuming, and difficult for the subject to remember and make comparative
judgments), and (c) coded gesture entry - the subject physically generates the gesture, and enters
configuration information. The coded gesture entry method was selected as one combining
reasonable time demands, and accuracy in gesture labeling. For the stress measure, there are two



28

approaches (a) EMG based indices - The use of EMG measurement is popular, but problematic as
it usually only measures the activity of part of the muscles involved in structuring a hand pose,
(b) the use of ergonomic tests, where the user may rank poses from weak to strong on some scale.
Based on the static stress measures for all the gestures in the master set G, and only a few
measures for the transition stress, a model that describes the transition effort was developed and
validated. A test to validate the assumption that task completion times are shorter using Vg than
using Vp vocabularies samples was performed. The Vg vocabularies are dominating solutions of
the Vg vocabularies, which means that each GV that is from the Vg set of vocabularies, has
higher associated values for the three objectives (accuracy: intuitiveness and comfort) than each
GV from the Vg set, (see Appendix B for an example). Two scenarios were used to study the
GVs performances: a robotic arm pick and place, and a VMR maneuvering tasks. Beginner users
performed those tasks using GVs each obtained using either the robotic arm or the VMR
framework. The purpose of this test was to measure the time to complete the task, assuming that
fatigue effects are introduced in long-term tasks, and than intuitive term remains constant during
the completion of the task. To reduce testing time a virtual three-dimensional model of the
robotic arm was be developed for the first task, similar to [Ho and Zhang, 1999], and a virtual
driven VMR was developed for the second task. Learning and memorability tests were two
additional usability tests performed. The assumption tested was that Vg are easier to learn and
remember than Vg vocabularies samples. The learning rate analysis was performed using the task
completion time obtained for each trial. The memorability test relied on the user’s capability to
recall gesture-command associations after performing the tasks

3.7 Validation Methodology

The validation of the analytical procedures for finding the optimal hand gesture vocabularies
consisted of testing the following hypothesis:

(a) The multi-objective function (3.2) is a proxy measure for performance time (3.1) to
complete a task.

(b) The analytical performance measure (3.3) is inversely proportional to task execution time
described in (3.1).

(c) The use of GVs from Vg set, will take shorter to complete a task than using GVs from the
V5 set.

(d) The GVs from the Vg set, are easier to remember than those GVs from the Vg set.

(e) The GVs from the Vg set, are easier to learn than those GVs from the Vp set.

Hypotheses were tested with two set of hand gesture vocabularies GV, for two different tasks.
A set of n GV’s from the Vg and from the Vjp sets, obtained using the methodology suggested in
this work. Each user performed m trials to complete a task, with the same GV. The task
completion time T was saved. From the completion time for each trial, a learning curve was
created. The average of the last k trials was used as a representative task completion time for the
given GV. The learning curves also allowed obtaining the learning rate (r) for each GV. With this
information, the t-test was used to validate the hypothesis that the vocabularies from the set Vg
resulted in shorter completion task times, rapidly learned and easier to remember.

3.8 Usability Experimental Methodology

Two different usability tests were performed involving the task performance and the quality of
the vocabularies, learnability and memorability tests of the GVs. The first experiment tested
which a Vg or Vg vocabulary sample was easier to learn through the use of learning curves. The
concept of the learning curve is based on the idea that the time required to complete a task
decreases as the user gains experience. A learning rate corresponding to a learning curve
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describes the change in performance time each time the cumulative number of trials doubles. A
0.8 learning rate means that each time the cumulative number of trials doubles, the performance
improves by 20%. The model for the learning curve is [Schwartz, 1998]:

Y, =Yn" (3.14)

where Y, is the estimated value of the completion time in seconds on the n® trial, n is the trial
number, Y is the time of the first trial, and b is:

b=logr/ log2 (3.15)

where r is the learning rate.

A lower learning rate means faster learning. Figure 3.7 shows an example of the learning
curves expected from GV which belong to Vg and GV, that belong to Vg. From the figure is
possible to see that the task using GV took shorter time than using GV,, and since they started
from the same time, the learning rate of GV was lower (means faster learning).
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Figure 3.7. Learning curves for two GVs from the V; and Vg vocabulary set

The second experiment was related to test the memorability aspect by comparing Vg and Vp
vocabulary samples. This test was performed immediately after the subject completed the task
performance time trials. Given a list of commands to a trained testee, the memorability index is
obtained through a software application which examines which gesture the testee associates with
each given command, selected from a large set gestures (larger than the set of commands). More
specifically, the memorability index is expressed as:

m(GV)=(n-n,)/n (3.16)

Where,

m(GV) = the memorability index for vocabulary GV
n=total number of commands in the task

ne= number of wrong command-gestures matched
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4 Optimization Approach

4.1 Overview

The multiobjective problem and the dual priority problem presented in Chapter 3 can be
formulated using mathematical programming, and hence analytical methods can be used. For the
dual priority problem, two methods to find a feasible subset of gestures from the gesture master
set will be rigorously described in this chapter. Two examples of use will be presented as
illustrative cases. The first method is the disruptive confusion matrix (DCM) to create a
metaheuristic search tree. The second method is the confusion matrix derived solutions (CMD)
based on the creation of a single confusion matrix for the whole gesture master set. The quadratic
assignment problem is used to model the problem of optimal matching between commands and
the feasible subset of gestures. To solve this problem an existing simulated annealing scheme was
applied, and a number of solutions are presented in the end of the chapter. The MCOP was
solved, alternatively, using a complete enumeration policy, and then presenting the solutions as
3D representations, including the Pareto optimal front. This gives the user the decision to select
the best GV according to his own preferences.

4.2 The Multicriteria Optimization Problem

Before the Dual Priority Problem is discussed it is useful to formulate a “basic” multicriteria
optimization problem (MCOP) which contains all three objectives without priorities. When
solving this problem the objectives may be conflicting, i.e., not all can be maximized
simultaneously. It is then left to the decision maker to provide subjective preferences to select an
acceptable solution. For this formulation the master set of gestures g; j=I,..,m, is provided.

P 4.1 Multicrtieria Problem (MCOP)

n m

max Z, :ZZVUXU +ZZZZka,xikxﬂ @.0
i

=l j=1 k=1 I=1
n n m m (4.2)
max Z, :ZZZZuijk,xikxﬂ
i=l j=1 k=1 I=1
max Z, = A(G,) 4.3)
G, ={jlx, =1} 44
S.t m
x,=1, i=1I.,n @3
j=1
le.j <] j=1...m “.6)
i=1
X, € {01}, i=1..,n ; j=1...m .7

In the P 4.1 formulation there are i=1,..,n commands and j=1,..,m gestures (n<m). The first
and second terms of the intuitiveness objective (4.1) contain intuitiveness indices for the direct
and complementary gestures-commands assignments. Higher values of vj; will force gesture-
command pairings, which are more intuitive. Similarly, higher values of the complementary
intuitive indices, vijq will force solutions in which these complementary command gesture pairs
are matched. The comfort objective Z, (4.2) tends to pair high frequency use commands with less
stressful gestures. The accuracy objective Zz (4.3) must be determined by a recognition
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algorithm. In (4.7) the binary variable x;; =1 represents an assignment of gesture j to command 1,
and 0 otherwise. Constraints (4.5) and (4.6) insure that each command i is assigned a unique
gesture, and each gesture j is assigned to no more than one command, respectively. To evaluate
(4.3), a recognition algorithm must be called, and solved for the particular GV represented by the
0-1 assignment variables. When there is more than one non-commensurable objective function to
be maximized, solutions exist for which the performance in one cannot be improved without
sacrificing performance in at least one other. Such solutions are called Pareto optimal points
[Pareto, 1896], and the set of all such points form the Pareto frontier. A solution x* is a Pareto
point iff there does not exist another solution y such that; fy(y) > fux*) vd=I,..,D, and
fuy)<fu(x*) for some d, where f; is the objective function.

Given that the gesture set is of size m and the command set of size n, there are m!/((m-n)!n!)
different gestures subsets. For each subset of n gestures the total number of command-gesture
matching is n! so that the total solution space for the MCOP is m!/(m-n)!. The sub problem P 4.1,
formed from (4.1), (4.5), (4.6) and (4.7) , is a quadratic 0-1-integer assignment problem. The P
4.1 was solved by a complete enumeration approach, which appears in [Stern et al., 2004a]. The
results are reproduced in the section 4.6.

4.3 The Dual Priority Problem

We relax P 4.1 by considering the recognition accuracy as a constraint (3.5), while combining
the human objective measures into a single objective using (3.4) the combination weights w; and
Wo.

Recall that determination of recognition accuracy does not depend on the matched command-
gesture pairs in the gesture vocabulary, GV, but only on the subset of gestures, G,. Thus, it is
possible to use a decomposition approach whereby the first stage is to find a feasible solution that
satisfies (3.5). In a second stage, this feasible solution is substituted in (3.4), and solved for
optimal GV candidates. The first stage problem then, is that of finding a gesture subset G, from
the set of all possible G, s that satisfies a given minimal accuracy A,,. This feasible subset
problem is stated below as P 4.2.

P 4.2 Stage 1: Feasible Subset Selection

Find one or all G, s
S.t

AG, )= A, @.8)

G,cG,,n<m 4.9)

Because the accuracy function is unknown, the search for a feasible solution to P 4.2 is found
through the use of two different metaheuristics as described in section 4.4 and 4.5. Denote the
feasible solution found from P 4.2 as G,* ". Let the gestures in G,* be reindexed as {gi* | j =
1,2,...,n}. For simplicity, and when understood, we will represent G,* by the set of indices
{1,2,..i,..,n} , where i represents the jth gesture type in the feasible subset.

Given a single set of gestures G,* is found, the second stage is initiated. Referring back to P
4.2, and using G,* found in the first stage, the relaxed problem can be formulated as a quadratic

¥ There are two versions of this problems; verl: Find the set of all feasible solutions to P 4.2 called g*={G, |
(4.8) and (4.9) are satisfied.}, and ver2: Find one single feasible solution to P 4.2, called G,*. In what follows we are
finding the second version of the problem.
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integer assignment problem (QAP). Given a set of n, commands (i=1,..,n) and n gestures
(=1,..,n), and matrices; F = (f;j), U = (uy), I = (ajx): define problem P 4.3 below:

P 4.3 Stage 2: Matching Gn* to Commands

max — ., n B
7 Z(G, ):szzfij Spidp())
€11, i=1 j=1
(4.10)
+w1 Z“zmﬁzzawmmu

i=l j=I

Here, I, is the set of all permutations of the set of n integers in G,*. In the first term
S ptirp(i)
command i to gesture p(i) and command j to gesture p(j) scaled by the frequency of transition
between commands i to j, fj; . In the second term, ajp is the direct intuitiveness of the assignment
(1, p(1)) and ajjppg) 18 the complementary intuitiveness of matching complementary commands (i,
j) to complementary gestures (p(i), p(j))-

By defining a set of integer 0,1 decision variables {x;} a quadratic assignment problem
QAP(Gy*) can be formulated as P 4.4, which is equivalent to P 4.3. A network representation of
the problem is shown in Figure 4.1.

represents the comfort cost of the pair of assignments (i, p(i)) and (j, p(j)) (assigning

P 4.4 QAP(G,*)
_ n n n n
maxZ(G, )=w, D > > > Uy Xy X +
i=1 j=1 k=1 I=1
@.11)
ZZ":/ Xy + ZZZZWM
i=1 j=I k=1 I=I]
s.t.
Zx =1, i=L.,n, 4.12)
Zx,.j =1,  j=lL..n, (4.13)
xij € {0’1}’ i=1’---’n’ j=1,...,n, (4.14)

Here, the x;; binary assignment variable equals to 1 if command i is assigned to gesture j, and
zero otherwise. Constraint (4.12) insures that each command is paired with exactly one gesture.
Constraint (4.13) insures that each gesture is paired with exactly one command.

Many approaches have been proposed for the solution of the 0-1 integer QAP such as: (i)
find a proper linearization of the objective to obtain a linear program [Finke et al., 1987] (ii) relax
the QAP to a (0, 1) linear integer program by introducing new binary variables y ;jx1=XjX k1|
and new constraints. A simulated annealing approach [Connolly, 1990] was adopted in this thesis
to solve the QAP.

As a side note, one may start with the master set of gestures G, which corresponds to using
m gestures and n nodes in the network of Figure 4.1 to create a giant problem QAP (G,,) with
(4.11),(4.12),(4.13) replaced by (4.1), (4.2),(4.5) and (4.6).
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Figure 4.1. Representation underlying the quadratic assignment problem

The solution will determine simultaneously the subset of gestures G,, and the command —
gesture assignment. Hence, the subset G,* is not given in advance, but is selected directly
through constraint satisfaction. Since the decision variables are binary, a subset of exactly n
gestures will be selected from the master set of size m. If a procedure is written to rank the
solutions according to (4.10) than each solution can be tested to determine if it satisfies the
accuracy constraint (3.5), and the first to do so is selected as the best.

4.4 Disruptive Confusion Matrix (DCM)

The procedure DCM starts with an initial solution for P 4.2, and searches for improved
solutions moving toward the direction of solutions with higher accuracies using a gesture
interchange method, and thus avoiding local optima traps. The procedure is initiated by the
construction of an initial feasible solution. The confusion matrix corresponding to the accuracy
associated with the current solution is used to provide clues for the disambiguation of confused
gesture pairs. To aid in the resolution of ambiguities the confusion matrix, €,, is disrupted by
switching out (exchanging) the most confused gesture pair with others that have more
discriminating power from the master set. We refer to this as a dual pair exchange (DPE). The
most confused pair of gestures is found by the max c;; rule:

argmax ¢. =(i'. 7'
gmax ¢, =(i', j') 4.15)

i,j=1.n

Where,

i’,j’ = the pair of the most confused gestures.
cij = n;; /n =level of confusion between gesture i and j.
n;; = the number of times gestures i is recognized as gesture j.
n = the total number of gesture samples.

This generates two new gesture subsets, G, Gf, which must be evaluated. These sets are
constructed from G, as follows: For G!, gesture j’ is discarded, and replaced by the most
dissimilar unused gesture j" found in the master set. For G?, gesture i’ is discarded, and replaced
by the second most dissimilar unused gesture i’’, found in the master set. The rules for
determining the replacement gestures, g ;» and g ;», are described later in this thesis.
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A record of repeated operations of this type is maintained in a binary tree. The nodes of the
tree represent gesture subsets. Associated with each node is triplet, (G,, A(G,), 8). Where, & =
A(Gy) - Anin- If the solution is not feasible with respect to A, delta will be negative. The initial
node of the tree is associated with the initial solution, obtained in the construction phase.
Branching is conducted after the two most confused gestures associated with the tree node are
identified and replaced to create two new descendent nodes each associated with a new gesture
subset. Figure 4.2 shows a flow chart of the DCM method.
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Figure 4.2. Flow chart of the DCM method

4.4.1 The Subset Search Tree

Assume that we are now in node k and & is negative. We have determined the most confused
pair of gestures, in the current set Gnk, g and gj. We create and branch to two new descendant
nodes corresponding to Gnkl and Gnkz. These nodes are placed in a list T, where T is the list of all
unevaluated nodes. There are two possible branching rules to be considered: “Depth First” and
“Flooding”.

All unevaluated nodes in the tree are placed in a list T. If any of these nodes are already in the
T they are removed. Thus, a node in the tree can be terminated if its two offspring have
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previously been generated (otherwise, cycling will occur). Note, offspring nodes have been
generated by an exchange of its elements to create neighbor solutions, in such a way as to disrupt
the confusion between gestures; and thus have a potential for a greater accuracy. This, however,
can not be guaranteed to be successful at all times, and it may happen that off spring nodes at the
next lower level have accuracy levels higher than that from which it has been descended. Thus,
there is really no rationale or verified advantage of pursuing an exploitive path through a depth
first branching rule of selecting the current best solution. This leads us to use a flooding
branching policy.

In flooding, the nodes are evaluated one level at a time from left to right, until the desired
accuracy is attained, all nodes are terminated or the maximum number of prespecified levels are
reached. Using this method the current node evaluated may exhibit a lower accuracy then those
previously examined. Thus, we have increased exploration of the solution space by examining
nodes with lower accuracy values. Here again a node in the tree is terminated if its two offspring
have previously been generated. (Otherwise, cycling will occur). Although this method appears to
be inefficient, the strength of the generation of neighborhood solutions by pair wise exchanges
has been shown to result in a small number of evaluations as compared to pure enumeration

Given the binary tree generated by the flood branching rules, index its nodes as i = 0,1,2...
where, node 0 is the root node. Let the levels of the tree be indexed k = 0,1,2 where the nodes at
level k are indexed from (2k -1) to 2(2k-1); and the left son LS(i) and right son RS(i) of node i
are 2i+1 and 2i+2 , respectively.

Let K be the deepest level of the tree we designate (based on how much computational power
we want to use) Note, that the root of the tree corresponds to the initial feasible solution, Gno. The
stopping rule is: (a) 8(1)>0, or (b) current level of the tree is K. The exit condition occurs when
the recognition accuracy of one of the sub-problems is higher than the specified accuracy level
Anin, then a feasible solution to P 4.2 has been found. Alternatively, one can continue with the
tree search to find as many solutions G, as possible that have A(G,) > Anin -To avoid cycling
each new node is checked to see if it has been generated earlier, and if so the node is terminated.
If all nodes are terminated the problem is found to be infeasible. It is also possible to place a limit
on the number of levels generated in the tree to avoid the possibility of excessive computation
time. Once the feasible solution is found (or all feasible solutions) the gesture-command mapping
P 4.4 is then solved to obtain GV*.

4.4.2 Phase A: Initial Subset Construction

To find the initial G, from the master set Gy, two heuristic methods are proffered. The first is
based on maximizing the inter-gesture distances, and is formulated as a quadratic 0-1-integer
problem. The second is based on the MaxMin inter-gesture distance and is solved by a simple
algorithm. Both require the construction of a square matrix D with common element dj;, (the
smaller d;; the more similar the gestures)

dj=d(g,.g,)
2.8, = the prototype vector of gesture type i, j.

This prototype vector is obtained by finding the centroid of the feature vectors of a training
set of the gesture type.

4.4.2.1 First Initial G, Selection Method: Max (-1 Integer Quadratic Problem

A 1-0 integer quadratic program, P 4.5, is designed to select an initial solution, represented by
the subset Gno, from Gy,. This program selects G, such that the total intergesture distance of all
gestures in G, is maximized.
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P 4.5 Initial Solution G, (max intergesture distances)

m m

V= maXZindﬁx_ ; (4.16)
T
S.t.
N 4.17)
Z X, =n
i=1
x; € {01}, i=1,...m

The objective, V, represents the total intergesture distances in Gy, and x; is a binary selection
variable equal to 1, if gesture i is selected, and 0 otherwise. The constraint assures that only n
gestures are selected from the master set of size m. The initial subset: Gn0 = {all g; such that xiO:
1} where, { X } is the optimal solution to P 4.5.

4.4.2.2 Second Method for Initial G, Selection: MaxMin 0-1 Integer Program

This method of generating an initial feasible G, is very simple. The objective is to find a G,
among all possible G,’s from Gy, such that the least discriminating pair of gestures (those two
gestures in G, that have minimal similarity between them) is maximized over all subsets G,. The
problem is stated below as P 4.6.

P 4.6 Initial Solution Gn (max min intergesture distance)
G,? =MaxMin{d; 1(g;,g,)€G,} 4.18)
Gn - Gm

This can be solved simply by a threshold type operation, where the closest pair of gestures in

Gy, is removed until the number of gestures remaining is n. The remaining gestures is then the
initial subset Gn0

The Threshold Algorithm

1. Let the number of gestures be N = Gy,
(a) If m is even, repeat steps 2 and 3, 4 (m-n)/2 times and go to 7.
(b) If m is odd, repeat steps 4 and 5 [(m-n)/2]-1 times then go to step 6.
2. Find min d;; in the matrix D
3. Remove the corresponding column and row and update D. Place i and j in the set of nodes N
4. Find min d;; in the matrix D.
5. Remove the corresponding column and row and update D.
6. Find the min d;; in the matrix D. In row i and column i without dj;, find the next smallest dj;, say d;j
If, it is found in a row i' =i then remove column j' and place j' in N.
Otherwise, if, it is found in a column j'=j, then remove row i' and place i' in N.
7. Stop. Set G,” =N

Algorithm 4.1 The Threshold Algorithm

4.4.2.3 A(Gy): Accuracy of the Set of Gestures, G,

Once a new subset of gestures G, is obtained, its accuracy A(G,) is determined by calling the
recognition algorithm. Removing one gesture and replacing it by a new one, affects the partition
obtained by the FCM algorithm. Thus, the FCM classifier must be retrained. As a side note, in
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order to speed up the computations in training the FCM clustering algorithm it is wise to select
the initial cluster centers close to the last optimal positions. The result of the training session is a
confusion matrix, which is used to guide the next DPE and subsequently the branching of the
search tree.

4.4.3 Phase B: Improvement by DCM

Given an initial solution constructed by one of the methods described above, a gesture pair
exchange method is used to find an improved solution. In this dual pair exchanges (DPE) method
the two most confused gestures in the confusion matrix are exchanged with two gestures from the
master set (in this way we “disrupt the confusion matrix). A record of repeated operations of this
type is maintained through the construction of a binary tree. The nodes of the tree represent
gesture subsets. The initial node of the tree is associated with the initial solution. Corresponding
to the gesture subset of each node the two most confused gestures are identified and replaced to
create two new descendent nodes.

4.4.3.1 Dual Pair Exchange (DPE)

Here a double set of pairs of gestures are exchanged. A binary tree is constructed to keep
track of the exchanges. The information stored at each node of the tree is the subset of gestures,
its accuracy measure and corresponding confusion matrix. Branching takes place from a father
node to two new offspring nodes. The left and right off springs correspond to new gesture subsets
obtained by the replacement of its confused gesture with that of a new gesture selected from the
master set. The new gesture must be selected so that it can be easily discriminated from the
remaining gestures in the gesture subset. Two rules for selecting the gestures to be removed from
the current subset of gestures, plus a rule for selecting new gestures form the master set to replace
those discarded are provided. The following notation will be helpful.

Gy (1) = Gy — { g}, the reduced set after removing g; from G, .(the gestures in G,.; (i)
reindexed as i=1,2,...,n-1 when convenient)

G = Gn-G,, be the set difference, with gestures reindexed as k =1,2,..,m-n when convenient.

4.4.3.2 Discard Rule D,

The two gestures for which it is hardest to discriminate between are intuitively those gestures
that have the largest confusion (off diagonal) value in €,. For example, for the confusion matrix
in Table 4.1 the two most confused gestures can be found as 3 and 2 by:

arg Max(c, : Vij #ii)=1i j'=3,2 4.19)

Where, cj; is the number of samples of gesture i that was classified as gesture j.

Table 4.1. Sample confusion matrix
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4.4.3.3 Discard Rule D,

Although D; is intuitive and simple to implement, it has its disadvantages when the
misclassified gestures are distributed evenly over the confusion matrix. This is the case in Table
4.1 where the off diagonal totals of the matrix are recorded in the last row and column. One sees
from the maximum of the row totals of the matrix that gesture 5 is the most confused as it was
misclassified 4 out of 5 trials. Also, gesture 4 is problematic as it is the gesture that attracted the
most (4 of them) misclassified gestures. This may be due to the fact that samples for this gesture
may not have been sufficiently compact and dense. This suggests Algorithm 4.2 for selecting the
two most confused gestures:

1.Let NR; = be the total number of off diagonal positive entries in row i. Let NR; = be the total number
of off diagonal pos entries in column j.

2. Find the gesture v’ with the maximum number of off diagonal entries, i.e.;

arg Max(NR,,NR , : Yij)=v

3. Find the gesture with the second maximum off diagonal totals.

arg Max(NRl. JNR, :Vij # v’) =w

Algorithm 4.2. Two most confused gestures

Gestures v and w are selected as the first and second most confused gestures. Any ties are
broken arbitrarily. For the above example gestures 5 and 4 will have been be selected. We can
define the best replacement gesture to enter G,; (i) as the most discriminated gesture in
comparison with the gestures that remain after using the discard rule, over all the 'free’ gestures in
G- Calculate the centroid, c, of all the feature vectors in Gy,_; (i). Find the gesture gi in Gy, that
is the most distant from c. This rule is problematic since there may still be a very bad gesture in
Gn(-gi) that is very dissimilar to g, but is not considered since it is averaged out with very good
gestures in G(-g;). Instead we use a MaxMin replacement rule.

4.4.3.4 Replacement Rule

The MaxMin replacement rule selects a gesture from the master set that is least similar
(farthest away) from all the gestures in G,; (i). To clarify this notion we use the following
notation.

Let g;, and g; be the selected pair of most confusing gestures in G,. Suppose we want to

replace gesture g; with a gesture gy from the master set Gy,.,. Use a reduced distance matrix D of
size (m-n) x (n-1). The following MaxMin replacement rule finds the replacement gesture k*:

arg MaxMin{d, .} =k’ (4.20)

keG, ,ie G, (@),
This can easily be carried out using the distance matrix D as follows:
1. For a given gesture k in the master set, find, i’, the most similar gesture in the

current gesture subset Gy (i)
arg Min {d,; lie G,, (i) }=i'; VkeG, 4.21)

2. Now find the gesture k* from the master set that is farthest away from the nearest gesture
in G,’
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argMax(d,. |ke G, )=k 4.22)

This rule has complexity O(nm) as it takes (n-1)(m-n)log(m-n) to find the row min values and
(n-1)log((n-1) to find the max of these.

4.4.4 Phase C: Command-Gesture Matching

In this phase the feasible gesture G,* found from the DCM procedure is matched to
commands, using P 4.4, to obtain the final GV.

4.5 Confusion Matrix Derived Solution (CMD)

An alternative metaheuristic approach to find the feasible gesture set, for P 4.2, is the
Confusion Matrix Derived Solution Method (CMD) method. This method is initiated by finding
the accuracy of the gesture master set Gp,. A confusion matrix €, is created for the G, problem
from which the recognition accuracies associated with various gesture subsets, G, is estimated.
The set of gestures G, that meet accuracy above A.;, are feasible solutions that can be
approximated from the general confusion matrix built for the G,, set of gestures. The CMD
method consists of three phases: (i) create a confusion matrix for the Gy, subset of gestures, Cy,.
(ii) solve P 4.2 — find a subset of gestures G, with the highest recognition accuracy and meets the
minimum accuracy constraint. (iii) Repeat the previous steps until a given number of solutions
were found or all the solutions that meet the minimum accuracy constraint were found (iv) solve
P 4.4 (verl). — This is done for all the solutions obtained, and the procedure for this is described
in section 4.6. The confusion matrix is obtained directly from the samples partition result using
the supervised FCM optimization procedure.

To solve P 4.2 one may search for all the feasible G,’s that have accuracies A > Ay, or to
terminate the search after a fixed given number of solutions have been found. The confusion
derived routine (CD) is used to find the subset of least confused gestures. It receives the
parameters G,, which is a subset of gestures (of any size); j, indicates the current number of the
solution, and A, is the minimum recognition accuracy accepted.

argmax {Ci}=Cy 4.23)

i=1,.n

Where,

i’ = the least confused gesture.
Cii = nj; /n =rate of gesture i being recognized correctly as gesture type i.
n;; = the number of times gestures i was recognized correctly.

n = the total number of gesture samples.

Let j be the current solution number and A, be the minimum recognition accuracy accepted.
The first time that this algorithm is called, G =4 and j=0. If (4.23) returns more than one
solution, ties are broken arbitrary. This algorithm is similar to the greedy algorithm used to solve
the knapsack problem. A set of N feasible solutions G, can be obtained, using the following steps
in the Confusion Matrix Derived Solution method (CMD algorithm), Algorithm 4.4.



40

The CD Routine (G, j, Anin)

1. Let the number of gestures n=IG,l. Let ¢ be the number of commands

2. Repeat (c-n) times.

3. Find the least confused gesture i in the confusion matrix G, -G, using (4.23).

4. G n = Gn Ui

5. Remove the corresponding column and row i from €,,.

6. Go to step 2

7. Calculate A using €, ' .

8. Stop. If A > A, then G = G, is a feasible solution and keep G, is a feasible solution subset.

Algorithm 4.3. The confusion derived rutine (CD)

The CMD Algorithm(N, A yin)

.G =¢

2.j=0

3. G/=CD (Gy, j, Amin)

4. Calculate A using €, .

5.If A > Apin then Add G, to the feasible solution subset

6. Else Exit '

7. Take out the highest confused gesture i from G’

8. Remove the corresponding column and row i from €, .

9. G{"'=CD(G,)

10. If Gn“lbelong to the feasible solution subset: '
10.1 . Take out the highest confused gesture k, k/=i, from G,/
10.2 Restore the corresponding column and row i from G, .
10.3. Go to 8. _

11. If A> A, then add Gn”1 to the feasible solution subset

12. Restore G, to the original

13. If j<N and A > A, return to 7.

Algorithm 4.4. Confusion matrix derived solution (CMD)

Let N be the number of solutions requested.

The CMD algorithm obtains N solutions or all the solutions with associated accuracy above a
given minimum allowed Ap;,. In every iteration of the CMD algorithm, a solution is created by
excluding each time a different gesture from the subset of gestures of the current solution, and
adding a new gesture from the master set. Figure 4.3 shows a flow chart of the DCM method.
The following is an example shows how the CMD Algorithm can be used to obtain a subset
of three solutions. Let €,, be the following matrix

Let m be IG,,| = 12
Letnbe G, =8

After applying the supervised FCM optimization procedure, the recognition accuracy
associated with G, is A=93.54%.
Applying the CMD Algorithm with N=5 and A,,;;=96.56% (Table 4.2) we get the following
five solutions:

G.’={4,6,7,8,9,10,11,12} A=96.87%
Gn'={2,4,7,8,9,10,11,12} A=96.87%
G.’={2,4,6,7,9,10,11,12} A=96.87%
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Gn’={2,4,6,7,8,9,11,12} A=96.56%
G.'={2,4,6,7,8,9,10,11} A=96.56%

In the example above the algorithm CMD is finished when the number of solutions is five.

(N.4,,,G,.G,=¢ |

‘min ?

h 4

Call the CD Routi Gy,
CMD j; Ami:)u lne(
Algorithm v

| Obtain initial G, |

A
Determine

Select the |’ A= A(G,)
most confused
gesture from

G,

v
Take out gesture
j from G,

Call the CD Routine (G,,, G*
j; Amin) A
v Command Gesture
Determine Matching
A= A(G)

yes

GV~

no yes @

Figure 4.3. Flowchart of the CMD method

Table 4.2. Sample confusion matrix IT

1 2 3 4 5 6 7 8 91011 12
138 0 0 0 0 0 0 0 0 O O O
2103 0 0 0 0 0OOOO0OO0ODO
3 0 034 0 05010000
40 0 040 0 0 0 O 0 0 0 O
50 0 0 03 0 0 0 0 O0O0O
6 0 0 0 0 037 0 3 0 0 0 O
7170 0 0 0 0O 0O40 0 O 0 O O
80 0 0 0O O 5 037 0 0 00O
990 0 0 0 0O OO 040 0 0 O
10} 0 0 0 0 0 O 0 O 038 0 O
111 0 0 0 0 0 0 0 O O 040 O
121 0 0 0 0 0 0O O O O O 38
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4.6 Illustrative Examples

The DCM method is illustrated using a small example with twelve gestures in the master set,
and eight commands as shown in Figure 4.4.

Commands Gestures

LEFT
RIGHT
FORWARD
BACK
FAST
SLOW

il [ [.[.

Figure 4.4. Hand gesture vocabulary

Note, that the gestures at this point have no label associated with them; and are only
represented as gesture types go, £1,22,-.,i,.- £11. The solution space for this small example is 495
(m!/((m-n)!n!). Two examples are solved using the DPE for two different initial solution
methods; Max Obj (P 4.5) and MaxMin Obj (P 4.6), called Ex 1 and Ex 2, respectively. For both
examples we use the max value in the confusion matrix to find the gestures to drop (discard rule
D1), and the MaxMin rule to select the replacement gestures.

The command-command transition frequencies, (Table 4.3(a)) were obtained by an
experiment to maneuver a VMR through a maze. The experiment was repeated seven times and
the totals of each command transition were recorded in the matrix f. The order of the columns and
rows, indexed from 0 to 7, correspond to the commands listed in Figure 4.4

Table 4.3. Matrices. a) Frequency F, b) Intuitiveness Z; ¢) Comfort Z, matrices

02 1 11 0 3 1 0 0
0 200 8 0 2 0 0 0
15 8 8 2 1 0 0 1
|1 1 0o 8 0o 0o o0 o0
f= 0 0 6 0 1 0 0 0
o0 0 1 0 0 1 0 0

o0 0 1 0 0 0 0 0
Lo 0 0o 0o 0 0 0 O]

(@)

oo o 27 36 73 45 20]

0 100 9 9 9 64 36 20

9 91 55 0 18 0 73 170

82 9 64 8 0 9 100 80

36 36 36 46 27 27 64 40

S |55 45 46 91 9 100 91 83
"Tl73 27 100 73 45 82 55 15
46 55 18 100 100 91 82 30

91 18 82 36 55 55 27 23

18 8 91 18 64 45 18 23

64 64 27 55 82 18 0 13
127 73 73 64 73 36 9 15|

(b)
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[40 35 45 45 64 78 96 96 44 40 81 56
53 47 50 50 77 72 90 90 57 53 94 49
45 50 43 43 70 76 94 94 49 45 86 53
45 50 43 43 70 76 94 94 49 45 86 53
64 77 70 70 16 59 68 68 37 40 33 48
78 72 77 76 59 59 77 71 82 718 81 171
9 90 94 94 68 77 68 68 100 96 63 87
96 90 94 94 68 77 68 68 100 96 63 87
44 57 49 49 37 82 100 100 37 44 73 59
40 53 45 45 40 78 96 96 44 40 81 56
81 94 8 8 33 81 63 63 73 81 0 96
56 49 53 53 48 71 89 89 59 56 96 48

(c)

Table 4.3(b) shows intuitive indices for each gesture (row) — command (column) pair. The
values are normalized in the range of zero to 100 with 100 representing the most intuitive. These
indices are the collective subjective assessments obtained from subject queries. Table 4.3(c)
contains stress indices for individual gestures and movements between them. They were assessed
from a hand biomechanics study [Natan et al, 2003]. In addition, twelve complementary
intuitiveness indices ajjq are set to 100 for complementary command pairs (i,j) = (0,1), (2,3),
(4,5), (6,7); and complementary gesture pairs (k,1)= (0,1), (2,3), (6,9). These represent command
pairs: (left, right), (forward, back), (fast, slow), (start, stop); and gesture pairs (g, g1), (g2, £3),
(gs, o), respectively. All other ajji are set to zero. All gestures are right handed. Complementary
gestures are obtained by flipping the hand at the wrist to create mirrored images. Thirty images of
each gesture type, collected from six subjects, are used to train the FCM recognition algorithm
(see [Wachs et al., 2003] for further details) The recognition system is said to be independent
since in practice it is able to be used by multiple subjects.

4.6.1 Example 1 (Using Max Rule for Initial Sol)

The Initial subset of eight gestures found by using the Max 0-1 Integer Quadratic P 4.5 is Gy’
={1,2,3,4,7,8,9,11}. The accuracy associated with this subset is 97.08%. The seven misclassified
gestures can be shown in the confusion matrix in Table 4.4, where it can be seen that the most
confused pair of gestures is 4 and 8.

Table 4.4. Confusion matrix showing the most confused pair

1 2 3 4 7 8 9 11
1 30 |0 0 0 0 0 0 0
2 0 30 |0 0 0 0 0 0
3 0 0 28 |2 0 0 0 0
4 0 0 0 27 0 3 0 0
7 0 0 0 0 30 |o 0 0
8 0 0 0 0 30 |0 0
9 0 1 0 0 0 0 28 |1
1 |0 0 0 0 0 0 0 30

This confusion matrix is disrupted by a DPE using the MinMax replacement rule. The news
subsets are; Gg' = {0,1,2,3,7,8,9,11}, and Gs’= {0,1,2,4,7,9,11}. The Gs' subset is found by
dropping gesture type 4, and exchanging it for gesture type O from the master set. Table 4.5



44

shows that gesture 0 as the most dissimilar gesture to all of the gestures in Gs' - { g4}, according
to the MaxMin replacement rule.

Table 4.5. Exchanging gestures 4 and 0 using the MinMax replacement rule

1 2 3 4(0UT) 7 8 9 11

0 469493 193243 28276 — 313311 45042 78541 51671
5 436592 138656 27527 - 315620 39741 36418 23568
6 151254 19566 178675 - 121280 168717 148794 137238
10 552455 214477 10084 -~ 415043 8532 33681 16565

Figure 4.5 shows the improvement tree. The search is terminated at node 4, with Gg4=
{0,1,2,3,5,7,8,11}, which has an accuracy of 100 percent. Note that this metaheuristic found the
best solution after creating and evaluating only four solutions out of a solution set of 495.

12341891

97 0€%

9¢ 16%

012357811

Figure 4.5. Improvement Tree for Ex. 1

Using the best subset of gestures found after the improvement tree these gestures are matched
to commands by solving the binary integer quadratic assignment problem QAP(G,) P 4.4, with
G, = Gg4. Here, intuitiveness and comfort are assigned equal weights w; = w, =1.0. The resulting
values of solving the matching problem were 1258032 and 29303 for the intuitiveness of
representing each command by its associated gesture, Z;(GV) and for the total comfort to
perform the gesture, Zo(GV), respectively. The final GV is shown by the matching of gestures to
commands in Figure 4.6. The two complementary gesture pairs (g,, g1) and (g, g3) appearing in
the subset were successfully matched with complementary command pairs (left, right) and
(forward, back), respectively. These were not matched with (start, stop) and (fast, slow) as these
contained low frequency of use weights.

4.6.2 Example 2 (DPE with MaxMin rule for Initial Sol)

Here we use the initial solution Gn0 = {1,2,3,6,7,8,10,12} found by solving P 4.6. The
solution tree is shown in Figure 4.7 . Note, nodes that have been generated previously have been
terminated. Such nodes can be identified in the graph by “cyclic arcs” (those without arrowheads)
which emanate from them and connect to previous generated nodes at a higher level (e.g., (10,7)),
or to nodes that the same level (e.g., (15,11).
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STOP START SLOW FAST BACK FORWARD RIGHT LEFT

RXTR R

Figure 4.6. Ex 1 command - gesture matching found by solving the QAP(G,)

99 16%

0 1[2]5 7 8[9]11 a

98 33%

012567811

98 33%

01256)7 811

95 41%

0125[6]789

99 16°/c

97 9" %
°

0126]7 8911

Figure 4.7. Improvement tree for ex. 2

The best solution found is (0,1,2,5,7,8,9,11) (at node 14) with a accuracy of 99.16%. The
best-matched commands for this gesture subset are depicted in Figure 4.8. Note again, the two
complementary gesture pairs, which appeared in the selected subset, are matched with
complementary command pairs.

4.6.3 Example 3 Solution to the Multi-objective Problem

The same small example of 12 gestures and 8 robotic arm commands is considered in this
case as well. For this problem the size of the GV solution space is 495. Considering a GV has 8!
possible matchings, the solution space is ~ 20x106. By examining each gesture subset in turn we
select the best command-gesture matching by solving a quadratic program comprised of a
quadratic objective (4.1)+(4.2) subject to the constraints (4.5), (4.6) and (4.7). This assumes the
human factor weights w; and w; are given. Here the indices i, j, k, | are placed in correspondence
to the n gestures selected in the subset. The optimal assignment variables are used to obtain the
intuitiveness, Z;(GV), and comfort, Z,(GV), performance values. To evaluate Z3(GV), a
recognition algorithm must be called, and solved for the particular gesture subset under
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consideration. Each result can be viewed as a point in 3D space, whose coordinates are;
intuitiveness, comfort, and accuracy, allowing the decision maker to select the desired solution
based on his internalized priorities (Figure 4.9). To aid the decision maker we also provide the
Pareto optimal points shown in the same image, and in Table 4.6.

STOF START  SLOW FAST BACK FORWARD RIGHT LEFT

A AWALA Y IR KA

Figure 4.8. Ex 2 command-gesture matching found by solving the QAP(G,)

Table 4.6. Pareto points for the MCOP example

Pareto Pts |Accuracy(%) |Intuitiveness (%) |Comfort(%)
1 100 66.88 99.56
2 98.33 100 18.57
3 99.16 64.47 100

N e L

40"

Comfort [50)

e B =T=T=T=Y=T=1=, ===

Intutiveness (%)

Accuracy (%)

Figure 4.9. 3D plot of GV solutions
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4.7 Discussion

In this chapter we discussed the mathematical programming formulation and solution
approaches for three analytical methods (a) MCOP, (b) tree based exchange search metaheuristic
(DCM), and (d) search based on the gesture master set associated confusion matrix (CMD). All
methods reflect the ergonomic and technical performance measures upon which a GV control
system is judged. A useful feature included in the formulation is the ability to match opposing
complementary pairs of gestures to complementary commands.

By posing the optimal GV design problem as a MCOP, solutions can be presented as 3D
representations, including Pareto optimal ones. This allows the designer to have an overview of
possible solutions and select one based on his/her preferences. Calculating the entire Pareto set
for larger problems is computationally prohibitive and requires an approach such as an
evolutionary multicriteria procedure.

The metaheuristic approaches, which is the main topic developed in this chapter, is a variation
of the MCOP in which the objectives are given priorities. The first objective, max accuracy is
given the first priority and must be satisfied at some given acceptable level. The human centered
measures of intuitiveness and comfort are given second priority. The metaheuristic for the dual
priority problem is based on a two-stage decomposition approach. In the first stage, a feasible
gesture subset (or set of feasible subsets) is found which satisfies a minimum acceptable accuracy
level. Two methods have been developed: the first is a disruptive confusion matrix method
(DCM) to create a tree search metaheuristic. To address the problem of repeated training and
parameter calibration of a recognition system for each candidate subset of gestures in the tree, a
second method was introduced: the confusion matrix derived solutions method (CMD). In the
CMD, the FCM parameter calibration functionality is used only once for the master set of
gestures. Using the confusion matrix corresponding to the gesture master set, gesture subsets are
extracted, and their approximate recognition accuracies are derived. The second stage uses a QAP
to assign the selected gestures to commands such that the human centered measures are
optimized. Three examples are solved to illustrate the procedure. The first two uses the DCM
method, with two different strategies for obtaining the initial solutions. The last example uses a
complete enumeration policy to address the solution of the MCOP problem.

Examples presented in this section are based in a simple task using 8 commands and a master
set of 12 gestures. Methods of determining fatigue and intuitiveness indices based on human
ergonomic and cognitive experiments will be presented in Chapter 6. A case study using the
strategies presented in this chapter will be depicted in Chapter 7.
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5 Algorithms

5.1 Overview

In this chapter the vision based algorithms of a hand gesture recognition system are
introduced. The Image Processing - Fuzzy C-Means (FCM) components of the hand gesture
recognition system are described and the calibration of their operational parameters is performed
using a neighborhood search algorithm. Two neighborhood search strategies are presented to
achieve close to optimal recognition, the first based in a classical neighborhood search, and the
second based in evolutionary strategy search. User-dependent and user-independent system using
a database of 13 gestures are compared.

5.2 Hand Gesture Recognition System

The hand gesture recognition system is comprised of an image processing feature extraction
operation followed by a FCM gesture classifier. The FCM clustering algorithm [Bezdek, 1973] is
a popular method for image recognition tasks [Wachs et al., 2002]. Although the speed of
artificial neural network classifiers allows real-time operation and comparable accuracy, a FCM
is used because it requires smaller training sets and shorter training times. The classical FCM
algorithm is modified to handle feature weighted clustering, and is supervised using a cluster
labeling algorithm [Wachs et al., 2005].

5.2.1 Feature Extraction

A database, denoted as BGU-R-DB, consisting of 13 static hand gestures was constructed for
training and testing purposes (Figure 5.1). Preprocessing of the image starts with segmentation of
the hand from the background using a threshold value, 7, to obtain a black and white image. The
threshold value used is found through a parameter search algorithm to be discussed in Section
5.3. Using a component-labeling algorithm, the largest component (assumed a priori to be the
hand posture), is identified; and a bounding box is constructed around it to represent the
segmented hand. The box is then partitioned into blocks. Although, the backgrounds of our
gesture images are simple, more complicated backgrounds can be handled by other methods such
as color segmentation.

LEFT RIGHT OPEN CLOZE HOME

DOWH

ROLL RIGHT ROLLLEFT

Figure 5.1. Set of static hand gestures

The bounding box and a restriction on the height position of the posture makes the gesture
position invariant in translation and size. A feature vector of the image is comprised of the aspect
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ratio of the bounding box, and the average intensity of each block (fraction of white pixels). Let
Ry and G, represent the number of rows and columns, respectively, of the block partition. This
results in a feature vector of length v =1+RC,, denoted as f = (fy,...., f;,..., fy). The first feature
represents the aspect ratio of the bounding box, the remaining represent block averages indexed
row wise from left to right (Figure 5.2).

(a) (b)

Figure 5.2. Feature extraction (a) bounding box of hand gesture (b) 3x4 block partition

For example, the resultant feature vector in Figure 5.2(a) is: f = (102 176 52 2 2 68 249 171
16 3 13 253 188). All feature values are scaled to lie in the range [0, 255]. One can see that the
aspect ratio is 102 and blocks 3 and 4 are close to zero (black) while blocks 6 and 11 are close to
255 (white). Let w = (wy, ..., W;,..., W) represent the weight vector where, w; is the weight
attributed to feature i. The weights are normalized to sum to one.

>w,=1,0<w, <1 (5.1)

i=1
Let x = (w; f1, ..., wifi ,..., wy f,) be a weighted feature vector (also referred to as a data
pattern).

5.2.2 Feature Weighted Fuzzy C-Means Gesture Classifier

In the weighted feature FCM algorithm a weighted feature vector represents each gesture. The
set of weighted feature vectors are clustered for subsequent use in a recognition system. Note,
that the particular clustering obtained depends on the number of clusters, and the respective
values of the feature weights. Let xx be the weighted feature vector of the k" exemplar in a
training set of gestures. Given q data patterns X={ x ,...., Xk ,..., Xn} and a fixed number of
clusters c, the FCM algorithm finds: v; (the prototype weighted feature vector of cluster i), and pix
(the degree of membership of xi in the i™ cluster). This is done by minimizing a membership
weighted within-group sum of squared errors objective function, where m is a weighting
exponent on each fuzzy membership value. In this application the number of clusters should be
set greater or equal to the number of gestures in the set Gy,.

After convergence of the FCM algorithm each weighted feature vector xy is assigned to a
cluster by finding: pyx = Max {p , i=1,...,c}. This method is selected to reduce computational
complexity for real-time operation and to reduce the time taken for large-scale validation studies.
Once clusters are labeled by gesture class, a new gesture may be classified by selecting the
cluster for which its membership value is maximal.

5.2.3 Parameter Estimation

Gestures performed by a user are recognized using the highest membership value. System
performance is evaluated using a confusion matrix that contains information about actual and
classified gestures. Recognition accuracy, as defined by (3.8), is determined as a function of a set
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of input parameters of the system. The process of searching for optimal parameters for the
combined image processing/supervised FCM system is shown in the flow chart of Figure 5.3

— Initial Parameter Set

P=(p1,-..Pn)
A

Preprocessing and
Feature Extraction

Gestures

Training Set
Feature Vector
A
L FCM Module
Clusters P’=(p’1,..,p'n)
Cluster Labeling Pick new

parameters
A

¢ Labeled Clusters

Create Confusion Matrix

Recogntion Accuracy

Optimal P End Condition?

yes

Figure 5.3. Supervised FCM gesture recognition algorithm with parameter search

The output of the process is a near optimal set of parameters achieved by maximizing the
recognition accuracy. The procedures used are a complete neighborhood search (CNS) algorithm
and a probabilistic neighborhood search algorithm (PNS).

5.2.3.1 Input Parameter Vector, p

Denote the vector pe g" as the set of input parameters in Table 5.1. Two types of input

parameters are used: image processing features (block partition size, b/w threshold, feature
weights of the aspect ratio and grayscale block features), and FCM parameters (number of
clusters, and weighting exponent).

Table 5.1. Parameter definition

Parameter Meaning Values

p Number of Clusters, ¢ pi=8 g+, Cpux
D> Weighting Exponent, m p,=1.51.75,..,4
D ; b/w threshold, 7 p;=0,1,..,255

p 4 Number of rows for image partition, R, p.=23,..8

p s Number of columns for image partition, C,, |ps=2,3,..,8

P s Weight of the aspect ratio, w; ps=0,0.1,..,1

P 70D ieeoPn Weights of the image block features, w; pi:=00.1,.,1

5.2.3.2 Neighborhood Solutions, N(p)

For any feasible solution p=(p;, ..., pn) for the recognition system, define a set N(p) of
neighboring solutions of the vector p. The number of neighbors of p is 2n as each parameter is
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incremented up and down (wrap around is used when boundary values are exceeded). The set of
feature weight parameters are updated in a special way because of their inter-dependence though
equation (5.1). Moreover, the number of feature weights depends on the block partition parameter
values. Given a block partition of Ry, rows and C, columns, the number of feature weight
parameters is the same as the number of features, v = 1 + Ry,Cy, . The dimensionality, n, of our
pattern space is variable and depends on the minimum and maximum block partition values. For
block partition values ranging from 2 to 8, the number of feature weight parameters can vary
from 5 to 65 resulting in pattern spaces of dimension 10 to 70. To handle such variable length
parameter vectors ps and ps are taken as control parameters, which turn ‘off’ and ‘on’ the
appropriate weight parameters according to the following rule: whenever ps or ps change, the
length of pissetton=35 +v.

Let {w; : i =1,...,v} be the current set of weights. To find the neighbor values of a feature
weight w; , increment w; up and down by the discrete gradient Aj. Since feature weight
normalization is necessary to ensure that (5.1) is satisfied, the new neighbor feature weights are:

w.

1F A
w; T Aj
1FA

it
w, (£ A)) = (5.2)

5.3 Local Neighborhood Search Algorithms
5.3.1 Complete Neighborhood Search Algorithm (CNS)

The CNS algorithm (Algorithm 5.1) starts with an initial solution po. To determine the
accuracy, A, associated with, p, define a mapping 4: p — A. Determination of the functional
value of 4, for a given solution p, requires extraction of a new set of image features, executing
the FCM algorithm, cluster label assignments, gesture classification, and analysis of the
confusion matrix to determine the recognition accuracy (Figure 5.3). Cluster labeling assignments
are done using the Alg-L algorithm [Wachs et al., 2005].

Algorithm neighborhood search;

1. Begin

2. Create an initial feasible solution pO:(pol, e pon)
3. local_maxima=false

4. Repeat

5 Begin

6 Find 4 (p’) for all p” in N(p)

7. Let p”’= Argmax{ 4 (p’) I N(p)},

8 If there are ties:

9. Pick the last p”’

10. If p”’ notin Stack, Push p’’ into Stack
11. Else local_maxima=true

12. End if

13. If p’ = p then local_maxima=true

14. Replace p by p”’

15. End

16. Until 4 (p’’) = 100% or local_maxima=true do
17. Output p’’, the local or global max solution
18. End

Algorithm 5.1. The classic neighborhood search (CNS).
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The main idea behind the CNS algorithm is to continuously find a better solution by
advancing in the parameter space in one coordinate direction each time. Define an iteration as one
cycle starting from the current solution p until the best neighbor solution p’’ is selected. Note,
that each iteration consists of an evaluation of all 2n neighborhood solutions in N(p). If the
accuracy in the iteration did not increase, i.e., p’’ equals p, then a local maximal was found and
the algorithm stops. However, if there are ties, a plateau has been reached. In case of plateau, the
algorithm will try to find a better solution by advancing in the parameter space along the direction
of a tied solution. However, if the best neighbor p’” has been visited before (kept in a stack) and
no improvement is made in the entire plateau, an expansion of the neighborhood is made by
doubling the step size for the next five iterations, in the hope of escaping from the local maximal.

The recognition accuracy function 4 is a non-decreasing function of the number of iterations
k, i.e.; }l(pk) > ﬂ(pk'l) where pk is the parameter vector at iteration k. The algorithm stops when
two successive iterations give the same accuracy value after exploring all neighbor solutions, if a
plateau is reached. A plateau is the case where at least one neighborhood solution has the same
value as p’’. Since A is bounded above by 100 percent termination in a finite number of steps is
guaranteed. Detailed proofs may be found in [Wachs et al., 2003] and in (Appendix I).

5.3.2 Probabilistic Neighborhood Search Algorithm (PNS)

Unlike the CNS algorithm where the entire neighborhood is examined before a move is made,
in the PNS algorithm, solutions in the neighborhood N(p) are randomly sampled and evaluated. A
move is made to the first improved solution found. If no improvement is made after K
evaluations, the neighborhood is expanded and a probability distribution is sampled to generate a
new solution. For any parameter p; the following is defined:
Ap; = the smallest step size increment taken in any coordinate direction j = 1,...,n in
the solution space.
s = the number of steps made in either the positive or negative coordinate direction j
Aj = the discrete gradient in the j" coordinate direction, where
Aj € {sApj : 5= 0,£1,22,43,..+ 5}
Vp={ Aj } = the gradient direction of a move from p (an n dimensional vector) with

common element Aj.
p=Y¥(p,Vp), = the updated solution, where ¥ is a special operator mapping a vector p

of size n, to a vector p of size n, (n, =or#ny).

Identical neighborhood sampling probability distributions are defined for each coordinate
parameter. Discrete Gaussians or equivalent binomial approximations (using probability of
success = 0.5) have the property that an increased standard deviation not only spreads out the
distribution but also reduces the peak value. To control the proportion of parameter changes, a
special mixture type point distribution model was designed. The characteristics of this
distribution are that the tails can be spread out while the peak probability remains constant.

Where,
S = maximum number of step increments.
h = probability of no change
Xj = a random variable representing the signed (positive or negative coordinate
direction) number of step size changes for parameter p;.
Q ={0,£1,+2,..., S}= the universe of the random variable x of size 2S +1.

Psxiny = Pr(x = s) the probability of step size s, given h.

The probability distribution Pgp is characterized by the two parameters, h and S.



53

h, x=0
PS(x 1h) ={h((1-h)y/2, x=+1,42,,, (S - 1) (5.3)
(1-ms2, x==§

In (5.3) Ixl is the absolute value operation. For example, if h = .9 and S = 3, the probability x
= -2 is .0045.The probability mass function is symmetric, with a peak at x = 0 which represents
the probability that the parameter remains unchanged. The range of the distribution is a linear
function of S. For a fixed h, the probability of x = 0 remains the same. Also, the range of the
distribution increases linearly in S. This expands the neighborhood allowing larger steps while
the probability of not moving remains constant. This will have the effect of, on average, allowing
a same number of parameters to be changed; but by larger possible step sizes, increasing the
chance of escaping from a local extrema. If, for example, h = .9 in the long run 10 percent of the
parameters in the parameter string will change and 90 percent will remain the same.

Algorithm PNS
Given a solution its updated value is determined by:

p="(p,Vp) (5.4)

where,
Aj = sAp;
s = x with probability Ps(x| h)
p;=p;+4;,Vp,
p and p; are same size vectors

If one or more weight parameter changes occur then a repair operation is applied, in order to
insure that the weights are normalized (sum to one). The new neighbor feature weights are
updated using formula (5.5) below.

w,'= {Wi +Aj/1—z A, ,i:I,..,v} (5-5)

k=1

A run starts with an initial solution. Once an improved solution p is found, a new iteration
commences with the improved solution. At the start of iteration the neighborhood size is set to
S=1, If an improvement is found before K evaluations the current solution is updated according to
(5.5). If no improvement was found the neighborhood is further expanded to S = 2 and then to
S=3. If after three-neighborhood expansions, no further improvement is found the algorithm
terminates. As each evaluation of p, to determine the accuracy value of the functional 4, is time
consuming, in order to reduce computation time a list of prior solution vectors p is maintained.
After generating a new parameter vector by sampling from the neighborhood distribution, all
previous solutions on the list are checked. If the new solution appears in the list it is dismissed,
otherwise an evaluation is made. Although, searching the list of previously generated solutions
involves additional computational effort, it is orders of magnitude less than the time spent during
accuracy evaluation. Recall that determination of the functional value 4, for a given solution p,
requires extraction of a new set of image features, executing the FCM algorithm, cluster label
assignments, gesture classification, and analysis of the confusion matrix.
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5.3.3 Comparison of CNS and PNS algorithms

An example test is conducted to illustrate the performance of the CNS and PSN algorithms
using 35 samples per gesture for 13 gestures to obtain a training set of 455 samples. Using nine
heuristics described in [Wachs et al., 2005] the following starting solution were generated.

Table 5.2. Initial solutions used for CNS and PNS runs

Run C m T R b Cb w,— A(%)
1 13 2 | 146 | 2 2 84.84
2 16 2 | 146 | 2 2 0.730.0750.074 0.058 0.063 96.04
3 20 2 | 146 | 2 2 95.60
4 13 2 | 146 | 5 5 77.80
- ” T EG =—]0-343 0.03 0.024 0,023 0.025 0.04 [———

0.0250.022 0.027 ... '
6 20 2 | 146 | 5 5 77.80
7 13 > | 146 | 8 8 83.30
0.1950.016 0.015 0.012 0.012 3
8 16 2 | 146] 8 8 10.0130.0130.0180.02 ... :
9 20 > | 146 | s 8 9033

Both the CNS and PNS algorithms were tested with the same starting solutions. Table 5.3
shows the numerical results obtained for both algorithms. The accuracies obtained from the two
algorithms are shown in columns 6 and 7. Both algorithms obtained the same best accuracies of
99.78 (bold). Columns 4 and 5 contain the total number of iterations and the number of accuracy
evaluations up to the start of the last iteration, which then runs for 3K more evaluations, this sum
was added to column 4. For all PSN runs the values of h =0. 9, and K = 30 were used. Figure 5.4
shows the convergence for run 5.

Table 5.3. Comparison of CNS and PNS algorithms on the basis of computational steps and accuracy

Initial | Number of |Evaluations to | Accuracy,
Solution| Iterations Best Sol * A(%)

Run PNS |CNS|PNS2 | CNS® | PNS | CNS
1 17 3 359 60 97.08 | 97.8
2 5 1 124 20 99.12 | 97.8
3 3 2 20 40 98.02 | 98.02
4 7 69 434 197.14 | 99.12
5 16 12 | 376 744 1 99.78 | 99.78
6 1 8 1 496 | 96.04 | 99.34
7 8 4 115 560 95.6 | 99.12
8 2 3 16 420 ] 96.92 | 98.46
9 1 7 45 980 | 99.34 | 99.56

Total 1,935 | 3,754

U Evaluations to last parameter change for the run

2 3K=90 evaluations added after the last parameter change for each run
(1,125 + 810 = 1,935)

3 (Number of iterations)*No of evaluations /iteration)= total evaluations,
where no of evaluations /iteration is fixed at 20,62 and 140 for sol 1-3, 4-
6 and 7-9,respectively.

For our test run the PNS algorithm finds the same best solution as the CNS in 48.5 percent
shorter computational time (1,935 vs. 3,754 evaluations). The reduction, however, is a
conservative estimate as it is based on equal time evaluations for the PNS algorithm runs. This is
because the times to evaluate a solution are not equal as assumed, but are directly proportional to
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the size of the solution vector p, which is dynamic. Thus, a weighted evaluation time function
should be used whereby, given t(n) as the time to evaluate a solution vector p of length n, an
adjusted evaluation time can be determined as t(n)*r(n) where r(n) is the number of times a
solution vector of size n is evaluated.

100 e
> /"‘_’/v
9%

% —
92 /

A 90 /
88 ‘//
86
84
82 T T T T T T T T T T T T T T T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

iteration

Figure 5.4. Convergence curve for PNS (run 5)

5.4 Performance Testing and Results

An example run is conducted to illustrate the performance of the NS algorithm using the data
from a data set called BGU-R DB. For this database we extracted 35 samples for each of 13
gestures, to obtain a training set of 455 samples. Two different types of systems were used to
train and test user dependent (D) and independent (I) recognition systems. The D and I systems
are defined as the systems which are trained by single and multiple users, respectively. Three
types of subjects were used in the experiments: Owners (O), Experienced Users (E) and Novice
Users (N). Owners trained all I and D systems and are also used to test these systems.
Experienced Users are users that tests systems, which were trained by others. These users were
reused owners who play the role of experienced users at this stage. Novice Users are new users
who have never seen, trained or tested a system. Seven Owners and twelve Novice Users were
elicited to test the D and I systems. For each of the user-system combinations the mean
recognition accuracies were calculated from the results of the k-fold cross validation runs (for
k=4). The mean recognition accuracies between systems were compared using a two-tailed t-test.
Table 5.4 shows the hypothesis formulated, the population used to compare each side of the
hypothesis, recognition accuracy, variance, hypothesis result, and significance level. Recognition
accuracy of system x tested with user y is represented by R (x, y). The number of gesture
instances is n; , the recognition accuracy is x; and the variance is Siz. A summary of the important
results is shown in Table 5.5. When the systems were tested using their own trainers, mean
accuracy of D was better than the I system, (98.9% over 98.2%). This is as expected since any
learning system should have better performance when tested with its trainer. For O users, the
opposite was true, testing recognition accuracies where better for I than D systems (98.2% over
96.0%).This also is expected as E users were testing systems trained by others. Here, the I
system was trained with a wide variation of hand gestures samples, and as a result it had better
generalization properties. These results were statistically significant. Similarly, N user’s testing
accuracy was also better for I than D systems resulting in 95.7% and 94.6%, respectively.
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Table 5.4. Performance comparison between systems

No.| Hypothesis n1 n2 | x1(%) | x2(%)| S S,> | Answer | Signif. (%)
1 A(D,E)>A(D,N) 21840 | 18200 | 96.01 95.19 | 0.0383 | 0.0458 | TRUE 0.0032
2 JA(,0)>A(I,N) 3640 2600 98.21 96.19 | 0.0175 | 0.0366 | TRUE 0

3 A(D,0)>A(D,E) 3640 | 21840 | 98.90 96.01 | 0.0109 | 0.0383 TRUE 0

4 A(D,0)>A(1,0) 3640 3640 98.90 98.21 | 0.0109 | 0.0175 TRUE 0.69

5 |A(LE)>A(D,E) 3640 | 21840 | 98.21 | 96.01 | 0.0175 | 0.0383 | TRUE 0

6 A(I,N)>A(D,N) 2600 18200 | 96.19 95.19 | 0.0366 | 0.4580 TRUE 1.2

Table 5.5. System recognition accuracy

Type of User Type of System

Dependent (D) Independent (1)
Owners (O) 98.9% 98.2%
Experienced (E) 96.0% 98.2%
Novice (N) 94.6% 95.7 %

When compared to previous runs using 5 novice users, slightly better results were obtained as
expected (96.1% and 95.1%). These values had a statistical significance at the .005 level. Again
these results are for novice users who have neither trained systems nor have had experience using
them. Previous research [Wachs et al., 2002] indicates that novice users can reach 98-99 %
accuracy after several trials.

5.5 Discussion

This chapter described a hand gesture recognition system using an optimized Image
Processing-Fuzzy C-Means (FCM) algorithm. The parameters of the image processing and
clustering algorithm were simultaneously found using two neighborhood parameter search
routines, resulting in solutions within 1-2% of optimal. Two versions of a local neighborhood
search algorithm were designed. These versions are customized for a system operational
parameter calibration task, where the number of parameters in our solution vector is dynamically
changing. The first and second methods perform complete and incomplete probabilistic
neighborhood searches, respectively. The primary need for recalibrations of such systems is
frequent relocation to other environments such as laboratories and remote control stations. A
secondary need for recalibration occurs due to demands for custom redesign of the gesture
control language. This occurs for new users, new control tasks and new vocabularies. Allowing
for a fast recalibration of system parameters provides the system flexibility to respond to such
new system set up. The two proposed methods were compared using a test case of 13 gesture
commands and a recognition accuracy of 99.78% was obtained. However, the probabilistic
version performed 48.5% less solution evaluations.

Comparison of user dependent and user independent systems using a database of 13 gestures
were made. When the system was tested with their own trainers, recognition accuracies of 98.9%
and 98.2%, were found for dependent and independent systems, respectively. These results are
statistically significant at the .007 level. For experienced users testing systems they had not
trained, testing recognition accuracies were better for user independent than user dependent
systems (98.2% over 96.0%). These results are statistically significant at the .00 level. Our near
optimal parameter search procedure is easily extended to systems with larger parameters, and
more complex hand gesture recognition systems. The problem is not unique to hand gesture
recognition systems, but is shared by other human-machine systems as well. Thus, the
methodology presented here for automating system set up has far wider application.
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6 Experiments

6.1 Overview

Three groups of experiments were performed; (i) determination of human psycho-
physiological input factors, (ii) validation of the multiobjective proxy measures for designing
good GVs in terms of task performance time, and (iii) usability measures in terms of learning and
memorability rates. Human psycho-physiological input factors were found through a series of
empirical experiments to obtain the intuitiveness V, comfort U, command C, and gesture Gy,
matrices. More specifically, frequency of commands, direct and complementary intuitiveness and
stress experiments were conducted. These empirical measures were used in operator task control
experiments to perform a validation test showing the connection between gesture vocabularies
and task completion time. This validation experiment used a significant group of subjects in the
context of two tasks, (i) a robotic arm pick and place task, and (ii) a VMR drive task. In addition
two usability tests were performed; (i) the learning rate, and (ii) memorability. Statistical tests
were performed to determine the significance of these results.

6.2 Command Frequency Experiment
6.2.1 Overview

Robotic arm and VMR tasks were used in the experiments, to determine the human factors
measures. Both tasks contain ‘navigational’ (directional) commands to control the direction of
movement of an object, its speed, and additional functions to interact with other objects in the
environment. An experiment was set up to determine the frequency of each command from
typical command sequences. The sequence of commands depends on the type of task. In addition
duration of each command and duration of the breaks (intentional and unintentional) between
commands were obtained. For this purpose two virtual reality environments in which the user has
to conduct a task were developed; (i) a robotic arm and (ii) a maneuverable vehicle.

6.2.2 General Set Up

To avoid long delays in the task completion times which result from unavoidable latency
through communications ports, and the slow movement response of a physical robotic arm and a
vehicle robot, virtual reality models were developed. The virtual mechanical devices (robotic arm
and VMR) are controlled by the user to convey actions in the form of a basic set of commands.
The basic set of commands were; C;={‘start’, ‘finish’, ‘up’, ‘down’, ‘forward’, ‘backward’, ‘left’,
‘right’} and C,={‘start’, ‘finish’, ‘up’, ‘down’, ‘left’, ‘right’, ‘forward’, ’backward’, ‘wrist cw’,
‘wrist ccw’, ‘wrist up’, ‘wrist down’ ‘open gripper’, 'close gripper’, ‘home’} for the VMR and
robotic arm tasks respectively.

6.2.3 Software Applications

Both virtual models were developed using MS Visual C++ and OpenGL (Appendix K) to
create a realistic scenario of the tasks. In the VMR task application, the scenario consists of a
road surrounded by a garden which resembles a maze. The path to be traversed by the vehicle is
composed of nine straight linear segments, (Figure 6.1). At every junction there is only one
possible way to turn. At the terminal ends of the road there are both the start and the stop marks,
and the VMR is initially parked at the start mark. Also, a teapot is placed in the middle of the
path which must be visited by the vehicle. The following parameters are displayed: time, hits,
score, speed and engine on the top of the screen during run-time.
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Figure 6.1. VMR maze application

The time indicates the task duration time. Hits represent the number of times that the VMR
hits the side of a road segment and ventures into the garden. The score is based on the task
completion time and the number of hits. Speed shows the current selected velocity of the VMR:
(120 —fast, or 60 slow). The engine of the VMR can be ‘on’ or ‘off’.

In the robotic arm application, a five degree of freedom virtual robotic arm placed over a
table is displayed, (Figure 6.2). On the table are three wooden boxes. On one side, the blue box is
standing on a red box (Point A). At a fixed distance from them, another red box is laying on the
table (Point B). The parameters presented in the top of this screen are time and engine status, and
their meanings are the same as described for the VMR application.

Engine : ON

Foint B

—_Point A

Figure 6.2. Robotic arm application

6.2.4 Procedure

In the VMR pilot study, the user has to control a VMR from the start point to the end point,
within the shortest time and avoid hitting the sides of the road. Every hit on the side of the road
adds a fixed additional time to the total time. The goal is to finish the drive as soon as possible,
and therefore the user is encouraged to drive at high speed. On one part of the road there is a
maximum velocity sign, and the user has to respect the speed limit. The VMR also has to run
over a teapot lying on the road to get full acknowledgement for the completion of the task. The
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VMR is controlled through a standard Qwerty keyboard (ISO9995), and the sequence of key
presses is recorded during the whole task. The mapping between the keys and the commands was
totally arbitrary (the same for each subject) with the purpose of obtaining the sequence of key
presses and rests (mapped to commands). Insignificant short delays are ignored from the
command sequence, and hence delays resulting from finger movement between keys will not
show up in the sequence. This implies that the particular mapping between commands to
keyboard does not affect the resulting sequence of commands. Table 6.1 shows the mapping used
between commands to the keyboard for the VMR task.

Table 6.1. Commands for the VMR task

Index Commands Key press

0 Rest No key

1 Start VK_LSHIFT
2 Finish VK_RSHIFT
3 Forward VK_UP

4 Backward VK_DOWN
5 Turn Left VK_LEFT

6 Turn Right VK_RIGHT
7 Speed=Fast VK_PRIOR
8 Speed=Slow VK_NEXT

In the robotic arm task, the robotic arm’s gripper has to reach a blue wooden box standing
over a red wooden box (Point A), over a flat table, pick up the box, move it to a different
location, and release it over another red wooden box (Point B). To pick the blue box, the gripper
must be in a certain angle with respect to the arm, otherwise the grasp is impossible. To release
the box, from a vertical position over the target object, without dropping it, the gripper must be in
a specific position as well. This operation must be performed by the user in the shortest time. The
user controls the Cartesian coordinates of the arm (world coordinates), a two degree of freedom
gripper and open and close (grasp-release) operations using the computer keyboard (Table 6.2).

Also, in this experiment the sequence of key-presses was saved.

Table 6.2. Commands for the robotic arm task

Index Commands Key press

0 Rest No key

1 Start VK_LSHIFT

2 Finish VK_RSHIFT

3 Up VK_UP

4 Down VK_DOWN

5 Left VK_LCONTROL
6 Right VK_RCONTROL
7 Forward VK_RIGHT

8 Backward VK_LEFT

9 Wrist Up VK_PRIOR

10 Wrist Down VK _NEXT

11 Wrist CW VK_INSERT

12 Wrist CCW VK_HOME

13 Open Gripper VK_END

14 Close Gripper VK_DELETE

15 Home VK_BACK
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For each task 30 trials were conducted. The sequence of key presses is stored as an ordered
vector S, for each type of task, which represents the sequence of commands evoked for each trial.
The keyboard was sampled every 14 ms, and if there was a key press, then its corresponding
index (based on the values in the first column of Table 6.1 and Table 6.2) was added to the
sequence vector, otherwise the value 0 was inserted. Note, that for the robotic task, the average
completion time was 42 seconds obtained from the 30 trials, and hence a typical length of the
sequence vector in that task, was 42/0.014=3000 commands long. A frequency matrix F (of size n
x n) was created by parsing the sequence of commands. The entries in F represent the frequency
of appearance of the same command (diagonal), and the transition between commands (off
diagonal) overall sequences. Algorithm 6.1 shows pseudo-code to perform the extraction along
with an example.

Create Frequency Matrix (F)
F=0
from_A= S(1)
for index=1 to length(S)
to_B=S(index)
F(from_A, to_B)= F(from_A, to_B)+1
from_A= S(index)

next
End
Algorithm 6.1 Frequency Matrix Creation

Example 1
Given a sequence S,=(1,1,1,1,2,2,2,1,1,3,3,3,2,1,3), the frequency matrix found is:

4 1 2
F=|2 2 0

0o 1 2

6.2.5 Results and Analysis

Each experiment was repeated 30 times by an experienced user. For each task a frequency
matrix is constructed as the sum of the frequency matrices obtained in the 30 trials. The column
and row headings of each of the frequency matrix tables (Table D.23 and Table D.24) are indices
representing a command name, according to the coded lists in Table 6.1 and Table 6.2 for the
robotic arm and VMR task, respectively. The mean task completion time was 42.3 (0=4.5040)
and 67.1 (0=4.1312) seconds, for the robotic arm and VMR, respectively. Table D.21 and Table
D.22 show the total frequency matrix for the robotic and VMR tasks including the ‘rest’
command, respectively.

In the case that the ‘rest’command is not included in the command set, and there is no need to
have a gesture for the ‘rest’ action, the appearances of the index representing the pause (0) are
ignored, when parsing S (Table D.23 and Table D.24). There is a significant difference between
the matrices including the ‘rest’” command and the ones excluding it. Besides the additional row
and column for the ‘rest’ posture, the values of the frequencies are also different. For example,
F1,7=30 in Table D.23 is F1,7=0 in Table D.21. The reason is that the command ‘1’ always
transited to ‘rest’(30 times) and from ‘rest’ to “7° (96 times) instead of changing straight from ‘1’
to “7° (30 times).
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Examination of the sequences showed inevitable short pauses between different key presses.
However, these tiny pauses did not represent intentional ‘rests’, but rather delays when allocating
the finger to the correct key. Every pause shorter than 42ms was considered an unintentional
pause. To keep only intentional pauses (rests), the sequence of indices was parsed to eliminate
each single, double or triple consecutive appearance of the index representing the pause (0). For
example, the sequence: S,=[1,2,0,1,2,0,5,6,2,0,0,5,0,0,0] was converted to S;=[1,2,1,2,5,6,2,5]
and S,=[4,2,0,0,0,0,6,5,0,0,0,0,0,0] was converted to S,=[4,2,0,0,0,0,6,5,0,0,0,0,0,0] (no
changes). After all the unintentional pauses were discarded, the sequence was analyzed to
determine the frequency of use of each command and the frequency of transition between them.
These sequences are totally dependent of the type of task addressed to the user, and they may
change according to the representation of the environment. The more realistic the virtual model
is, the closer the sequence of commands is to the real task.

6.2.6 Discussion

Results indicate the importance of experimental analysis of specific tasks. Observing the
frequency matrix for the robotic arm and VMR task using a ‘rest’ command, the occurrence of
the ‘rest’ command is far higher than any other command in the task (42761 and 101462 times,
respectively). This does not mean that there were long rests while doing the task, but the rests
were very frequent. Actually the matrix shows that between any commands to any other
command, there was a short rest. Except for the ‘start’ command, and the ‘finish’ command, that
they occur only in the beginning and the end of the task, therefore there was no transition to
‘start’ and not from ‘finish’ registered in the sequence.

Without using the ‘rest’ command, the most popular command for the VMR task, is ‘forward’
and that is because in the VMR task, the procedure to complete the task is more rigid than the
robotic arm task since there is only one path, clearly stated in the application, which the user must
follow in order to complete the task. This does not make the task easier or shorter, since the user
must correct continuously the direction of the VMR to make sure that he is not reaching the
garden by hitting the sides of the road. This explains why the ‘forward’ command occurs more
frequently than the other commands. For the robotic arm task, the most frequent command is
‘right’. This is because the object to be picked up is placed on the far left side of the robotic arm,
and the place to release the object is on the far right of it. Therefore, assuming the gripper is
somewhere in the middle of both points, the distance to be covered to reach point B, after
reaching point A, is higher than the distance to reach point A. This scenario shows, also, that is
not correct to think that complementary commands are used with the same frequency. Their use
relies on the nature of the task, and its topology. The (forward, backward) command pair is
another example of complementary commands, having different frequencies. The ‘backward’
command is evoked after the VMR picks from the road the teapot, and must go back to the main
road going reverse since there is not enough room to turn in that part of the road. This single
transition occurred in each of the 30 trials, hence the value 30 for the ‘forward’ to ‘backward’
transition. Theoretically the frequency of transition between ‘backward’ to ‘forward’ should be
zero, since such a transition is not necessary to complete the task, however the 7 ‘backward’ to
‘forward’ transitions, might be explained as corrections in the direction of the VMR while turning
left or right, to avoid driving outside of the road and into the garden.

6.3 Intuitiveness Experiments
6.3.1 Overview

The experiment used to obtain the cognitive association between commands and gestures
considered several approaches; (a) present a large database of images and the user will select the
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image that reminds him the most the given command (restrictive); (b) let the user gesticulate with
one and/or both hands and take a picture of the gesture associated to the given command
(unrestrictive), and (c) allow the user to manipulate a rigid hand gesture model, where the intra
and inter joints, rotation and other features are constrained. While the restrictive approach is
advisable when working with small gestures dataset, it will prohibitive for larger datasets. On the
other hand, the dataset obtained by capturing user gestures, can be prohibitively large. Therefore,
the approach used here is to represent the postures by configuring a number of hand segment
primitives. Through the use of an application, a random sequence of commands was presented to
the user after which the user manipulates a hand model until it is configured to represent the
desired gesture. Each command was displayed to a cohort of users, and the gestures-commands
associations according to the number of times they were selected, were ranked accordingly to
popularity. Those gestures highly ranked (most popular), are chosen to be part of the gesture
master set. Complementary intuitiveness indices were obtained by extracting the number of times
that the subjects chose the same pairs of complementary gestures to represent the same pair of
complementary commands.

6.3.2 General Set Up

On the side of a monitor, a WE-160 Panasonic Video Imager was placed (Appendix F), which
included a platform where the users placed their postures (Figure 6.3). While viewing their
posture they configured the virtual hand model to replicate it. The video was not connected to the
computer; therefore the video imager was useful only a comfortable flat surface where the users
can lay their hands and imagine what view of their hand the camera will see.

Figure 6.3. User hand over the WE 160 Panasonic video imager

6.3.3 Software Applications

An intuitive assessment application was developed to find the intuitive mapping between
commands and gestures, (Figure 6.4 and Figure 6.5). The interface window of the application is
divided by four sub areas, the first containing query fields for the user details, the second contains
the name of the current command and below it, a picture or animation that corresponds to this
command. The third sub area has an image of the virtual model of the hand posture, and below it,
a set of checking boxes and combo boxes. The first combo box, from the left, controls the palm
position of the hand, from three possible positions: 1-Down, 2-Up or 3-Side. The second combo
box is for the wrist position, with three options: 1-Middle, 2-Left, 3-Right. The next five check
boxes determine whether the finger is flexed towards the palm (not checked) or extended
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(checked). Under them there is a combo box and three other check boxes to control whether there
is a separation between the fingers (checked) or not (not checked). The combo box allows a third
state only for the thumb, whether it is separated from the extended palm, and perpendicular to it
or not. Checking the boxes, and selecting from the combo boxes, updates the virtual model of the
hand. On the side of the checking boxes, there are radio buttons to express the strength of the
association between the command and gesture selected by the user (Figure 6.6). There are three
options to choose from: “Weak”, “Medium” or “Strong”. The last sub area shows two rows of
thumbnails, each under a command label. These thumbnails are a small size version of the virtual
hand model, selected by the user, for the command prompted, which appears over the respective
thumbnail. Thus, every association command-gesture appears in this area of the screen.

Every selection of a command-gesture pair is added to the intuitiveness database that stores
all the associations of all the subjects. This database has a table, including the following fields:
First name, Last name, SSN, Action, Gesture, and Level. The first three fields are the user details,
while the last two are the command of the task, the encoded gesture (Table 3.1, in Chapter 3), and
the strength of association.
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6.3.4 Procedure

To find the intuitive mapping between commands and gestures, the user needs to see the
entire set of commands required to fulfill a task, and the action that each command represents. At
the start of the experiment each subject is instructed that devices are controlled using hand
gestures only. Also, at the initiation of the experiment the effects of the commands are
demonstrated to the users, using animated models of the robotic arm and VMR which simulates
the actions that they can accomplish. The intuitive assessment application automates the
collection of each user’s choice of gesture in response to each command stimulant. The
commands are presented to the user in random order. The user holds the posture for only 2
seconds on the camera capture field. The hand can be in one of the three states; flat down, flat up,
or on its side. The rotation of the wrist can be to the left, right or to the middle. For every
previous configuration, each finger can be closed or not, and separated from its neighbors or not.
Immediately after the subject removes the hand from under the camera, the user is required to
‘build’ a hand posture model that resembles the posture that he held, using an interactive virtual
model of the hand embedded on the interface. The user sets the configuration of all this
parameters if the virtual model of the hand by checking check boxes and selecting from the
combination lists. In addition to this, the user selects the ‘strength’ of the association using 3
options: weak, medium or strong, (Figure 6.6.).

The gestures and degrees of association were collected from 35 students, from the Industrial
Engineering Department at Ben Gurion-University. In the intuitive matrix, each row is a gesture
type, from the constrained set of 648 gestures, each column a command, and each entry the
number of subjects that selected that gesture to represent that command. This matrix can be
reduced by eliminating all the gestures that no subject picked. A total of 114 and 59 gestures were
selected for the robotic arm and VMR task, respectively. These gestures were selected at least
once to represent a command. A weighted intuitive matrix is similar to the original intuitive
matrix, but each entry represents the number of subjects that selected that gesture for a given
command, multiplied by the users stated strength of association.

6.3.5 Results and Analysis
6.3.5.1 Direct Intuitiveness Matrices

To be able to approach the gesture vocabulary design problem, was necessary to reduce the
number of gestures to a small master set. To do this the intuitive matrix for the robotic arm
experiment was reduced to a subset of the most popular gestures. The most popular gestures were
selected according to those selected by: a) at least five subjects, or b) at least four subjects who
selected the same gesture-command association. For the VMR experiment, only gestures
according to those selected by: a) at least 4 subjects or b) at least 4 subjects who selected the
same gesture-command association were considered. This operation reduced the master set to 23
and 22 gestures for the robotic arm and VMR tasks, respectively. The union of both master sets
resulted in 27 unique gestures, (Figure 6.7). The intuitive matrices for both the robotic and VMR
tasks are presented in Table D.1 and Table D.2 in Appendix D.
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26

Figure 6.7. Common master set of gestures

An agreement measure S; is used for determining the proportions of overall and specific
gesture agreements on representing commands, and is defined as following:

S = % Zn:aik (aik _1)/(iaikj[zn:aik _lj (6.1)
=1 =1 =1

poss -
&

Where,

a; specific agreement between subjects about gesture i

o’ maximum possible agreement between subjects about gesture i
S; = ratio of agreement for gesture i

Then,

m

®=>5p, 62)
i=1

pi=popularity of gesture i (in terms of probability)
®= mean overall agreement

The maximum possible pair wise agreements between those selecting certain gesture gives an
indication of the measure of agreement of the group studied. Table D.7 shows p; (the probability
of selecting gesture i), o; (specific agreement between subjects about gesture i), o”**; (maximum
possible agreement between subjects about gesture i), S; (the ratio of agreement for gesture 1), the
overall agreement measure (D).

The three most popular gestures for the VMR task were selected by 24, 21 and 15
respondents. The next two were tied with 14 each (Figure 6.8).
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(a) 24 (b) 21 (©) 15 d) 14 (e) 14
Figure 6.8. Most popular gestures (number of users) for the VMR study

As expected these gestures are very simple to compose. Gestures 6, 7, and 24 of (a) in Figure
E.1, are strongly association with the “Stop” (Finish) command (column 2) in Table D.7(a).
Gestures 10, 16, 27 are associated with the “Right” command, having been selected with ratios of
10/11, 9/11, 8/9, respectively. These gestures are very intuitive for this command as they all tilt or
point to the right (Figure E.1 (a)). For the robotic arm task, the most popular gestures were 1, 6,
8, 24 and 17 selected by 26,23,19,19 and 18 subjects (Figure 6.9). These gestures are very
natural, and gestures 6,8 and 24 are common and highly popular as found for the VMR task.

(a) 26 (b) 23 ©) 19 (d) 19 (e) 18

Figure 6.9. Most popular gestures (number of users) for the robotic arm study

Gesture 19 was strongly associated with the “open gripper” command, (column 13) in Table
D.7(b), and were selected with ratio 10/13, (it is very natural to think about opening the palm of
the hand for an opening command). Another gesture highly associated was gesture 12, to the
command “left”, with a ratio of selection of 10/14. The pointing to the left direction can be
appreciated in this gesture (Figure E.1 (a)). Maximum agreement was conceived by 100% of
those selecting gesture 12 (39% of the testees) on the command associations in the VMR task.
For the robotic arm task 59% agreed on the command association for gesture 19 (20% of the
testees). The mean total gesture-command agreements gestures was 34% and 18% for the VMR,
and robotic arm tasks, respectively. Similar to the 80:20 rule of inventory theory [Juran, 1975],
we find the 72:31 and 71:29 rules where 72% and 71% of respondents selected 31% and 29% of
all the gesture types, for the VMR and robotic arm task, respectively.

6.3.5.2 Complementary Intuitiveness Matrices

For the VMR task, the following commands are complementary: start-finish, left-right,
forward-backward, and fast-slow. In the robotic arm test, the complementary commands are:
start-finish, left-right, forward-backward, up-down, wrist CW, wrist CCW, wrist up, wrist down,
and open-close. Each command for the VMR task, had a complementary command, while for the
robotic arm task, the ‘home’ command have no complementary. The complementary commands
were straightforward for the user familiar with the task. The complementary gestures g; and g; are
represented by the pairs (g;, g;) (first two columns in Table D.10 and Table D.11). Examples of
complementary gestures appear in Figure 3.5. To avoid any assumption in advance about whether
a pair of gestures are complementary or not, all the pairwise combinations between the gestures
in the master set were initially included in the matrix. Each cell in the complementary intuitive
matrix shows the number of subjects that for a given pair of complementary commands selected
the complementary pair of gestures. Several possible pairs of gestures from the master sets were
discarded since no respondent selected them, to match a pair of complementary commands. For
each task, a complementary intuitive matrix was created (Table D.10 and Table D.11). The first
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two columns stand for a pair of complementary gestures, with indices g; and g, (the indices are
the numbers over the gesture images in Figure E.1. The remaining columns represent pairs of
complementing commands, and each row is a combination of complementary postures of the
master set. Combinations that no participants selected are not part of the matrix.

Figure 6.10 illustrates a number of complementary commands-gestures pairs that appear in
the complementary intuitiveness matrix, the complementary commands (left-right), and the first
pair of complementary gestures (a) were selected by 10 participants, while the second (b) were
selected by 7. In both cases, this matching was considered highly popular. For the complementary
commands up-down, the strength values were lower, only 4 participants for (c) and a single
subject for (d). The matching was ordered from highest strength association (a) to the lowest
strength association (d).

Left-Right
() 10 b)7
Up-Down

(c)4 1

Figure 6.10. Complementary commands and the matching complementary gestures

6.3.6 Discussion

The direct intuitiveness results shed light on the level of agreement of a certain population to
the use of a set of gestures to accomplish certain tasks. Even though agreements for gesture-
command associations ranged from 59%-100% for the VMR and robotic arm tasks, respectively,
the overall agreement was only 34% and 18% for the VMR and robotic arm tasks, respectively.
This seems to refute the claim that subjects use consistently the same gestures to represent the
same commands while performing tasks, as suggested by Hauptmann [Hauptmann and
McAvinney, 1993].

Regarding complementary intuitiveness, an interesting case is the master set for the VMR
task. There are five gestures in the master set for the robotic arm task that are missing in the
master set for the VMR task, and there are four gestures in the master set for the VMR task that
do not appear in the master set for the robotic arm task. From the gestures missing in the VMR
task, the 9-(fist right) and 11-(fist left) were paired as complementary gestures in the robotic task,
for ‘wrist CW/ and wrist CCW” which are commands unique to the robotic arm gripper control,
and the use of the fist is naturally suited for these actions. Some concepts regarding the choice of
complementary matching can be explained using part of the data from the complementary
intuitiveness matrices in Table D.10 and Table D.11. The complementary commands (left-right),
(a-b) are highly popular, and a reason for that is the high intuitiveness between the wrist
movements and their correlation to the direction of the command, for the left command, the wrist
is turned left, and the same for the right direction. The postures based on the palm down are more
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popular since they are more natural to hold (cause less strain). For the complementary commands
up-down (c-d), the strength of belief values were lower, probably due to the fact that is more
difficult to resemble the (up-down) direction, when holding the hand in 2D and when the camera
is located above the hand (Figure 6.3). Nevertheless, it is somehow more natural to match the
“palm-up” gesture to the “up” command, and the same regarding the “down” command, (Figure
6.10 (c)). Also for the up-down commands, the last pair of gestures (Figure 6.10 (d)) are
complementary because of the extension/closing of the index finger. The complementary relation
is not apparent, and the connection to the commands can be explained by the index pointing out
for the “up” command, and the finger retracted to show a lack of the “up” action.

6.4 Stress Experiments
6.4.1 Overview

The experiments aimed to assess the static stress of the postures, transition stress between
different postures, and the duration of static and posture transitions, using subjective evaluations
of the users. Due to the large number of experiments required to assess these measures for all
possible transition gesture pairs, an alternative approach was adopted, in which a predictive
model was developed to predict most of the values for the transition stress and duration of
transition . The model was built based on empirical data obtained from the static stress
experiment.

6.4.2 General Set Up

The experiments involving holding postures required a work environment similar to the real
environment from where the user will control the robots. The WE-160 Panasonic Video Imager
connected to the Matrox Meteor Standard frame grabber is the main unit of capturing gesture
poses. The device included a flat plate. The user evokes the gestures while he is sitting, and his
hand is extended over the surface, or suspended on the air at a fixed height (Figure 6.3). The
camera captures the upper view of the hand, from the wrist to the end of the hand. Because of the
physical set up of the gesture capture system, the application used in the experiments was
designed to reflect this view of the hand, (Figure 6.11).

Figure 6.11. Upper view of the user's hand

6.4.3 Software Applications

The screen layout (Figure 6.12) of the application developed to collect static stress responses
is divided into a number of areas. An area for the user to enter details including first name, last
name and ID, and an instruction on a large text box telling the user how to proceed. An image
with the virtual hand posture on and below it. A time scale to show the current lapse of time. On
the side of the time scale, there is a scale to show the progress of the experiment, in percents.
Thumbnails of the master set of gestures on a display. The thumbnail of the current gesture is
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highlighted to show the current posture selected by the application. A vertical group of radio
buttons ordered according to the “Borg scale for rating perceived exertion” [Borg, 1982] is
presented in the right side of the interface. The scale has 10 levels of fatigue: 0-Nothing at all, 1-
Very Weak, 2-Weak, 3-5 Moderate, 5-6 Strong, 7-9 Very Strong, and 10-Extremely Strong.

All the gestures appear randomly on the image window, and per appearance, the user rates the
gesture according to the effort invested. Every selection is inserted into a static stress table, which
is part of the stress database. Every record in the table includes the user details, the code of the
posture, and a stress level from the Borg scale. Twenty seven gestures are presented in the
application which represents the master set of gestures for the robotic and VMR tasks together
(union of sets of gestures of both tasks). Two additional gestures were included, as well, to
present extreme conditions of fatigue. The database information is later used to find the average
level of effort that the users assigned to every posture in the master set.
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Figure 6.12. Interface for static stress experiment

The application (Figure 6.13) to measure the transition stress is very similar to the one used
for the static stress, with the following differences: 1) there are two images with the virtual hand
on them, the left image is for the beginning gesture, and the right image is for the ending gesture.
2) there is no time scale, 3) there is a button under the virtual hand images. This button has three
different labels: (1) “start “, for the starting gesture, (2) “stop” for the ending gesture, and (3)
“Finish”, is written after that the user ranked the transition between gestures.

Both the start and end gestures appear randomly on the image windows, but the same pair is
never repeated. The user ranks the transition using the Borg scale, which reflects the effort to
change from one posture to another. This value, the user details and the code of both postures in
the gesture master set are inserted in a record entry in the stress database. The total number of
postures pairs presented in the interface was 60, obtained from two subsets of six postures each,
from the robotic arm and VMR master set of gestures. This information was used to find the
average transition effort between gestures. Thus, the dynamic stress matrix was partially
completed.
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Figure 6.13. Interface for the dynamic stress experiment

6.4.4 Procedure

To measure static stress, an experiment was conducted using an application developed for this
purpose. The gestures appear in random order on the screen, and the user is asked to imitate the
gesture, and to hold it in the air for 25 seconds. The user’s hand is placed over the flat surface of
the video imager, so the upper view of his hand appears similar to the gesture proposed in the
interface. As soon as the elapse time is finished, the user rates the effort in holding the pose using
a scale of 1 to 10. Here, 1 is the least stressful and 10 the most. The Borg scale for rating
perceived exertion was used for the rating process. The stress measure was relative to every
subject; however it was shown that there were gestures that were universally difficult to repeat. In
the same tone, there were gestures that were completely effortless. For example the ‘rest’ posture
on which the hand is completely relaxed is one of these gestures. At the start the user was asked
to experiment holding a very difficult posture, and a relaxed one, to have a clear idea of both
extremes of the scale. The 27 gestures discovered in the previous section plus two additional very
stressful gestures (Figure 6.14) were added to the testing set.

28 29

=

Figure 6.14. Extremely difficult postures

Static stress measures were especially useful to develop a predictive model which expresses
the values of dynamic stress as a function of static stress. The model was developed using static
stress measures from 29 hand gestures, obtained from 19 students of the Industrial Engineering
and Management and Communications Departments at Ben-Gurion University of the Negev. The
dynamic stress values and their duration were postulated to be a function of the starting and
ending posture stress values. The current experiment captured the transition duration together
with the subjective assessment of stress in carrying out the transition. In the dynamic stress
application, the user controlled the flow of the transition. When the user was ready, he/she
requested the ‘begin’ gesture of the transition; imitated it with his hand, and then requested the
‘end’ gesture. He changed the configuration of his hand, to imitate the ‘end’ gesture, and
following this, he finished the cycle by pressing the ‘finish’ button. The duration time that took
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the user to imitate the ‘end’ gesture till the user pressed the finish button, was the transition time
for this pair of gestures. Once the cycle was over, the participant graded the transition (from the
appearance of the end gesture to the end of the cycle) with the same scale used to rate static
gestures. Similar to the static gestures rating, the users were instructed to consider both physical
and mental stress. Both the stress and the duration time for the transition were recorded in a
database.

Without the prediction stress model, it would be necessary to find for the robotic arm tasks,
506 entries (23*%23-23). For the VMR task, there are a total of 22 postures, however some of the
stress transitions can be found when acquiring the stress for the robotic arm, since there are 18
common postures between the different tasks vocabularies. Four additional postures and their
transitions must be added to the calculation, then 506 + 4 (new postures) * 22 (rest of the
postures) * 2 (transition ‘to’ and ‘from’ the posture) = 682 observations are necessary. Since we
already found 60 observations, it will only be necessary to make 622 observations. To find 30
transitions, the duration of the experiment was 30 minutes and at least 19 students are necessary.
For 622 observations, 622*19=11818 minutes were required, therefore a total of 197 hours were
saved.

.This number is prohibitive, and hence we formulated a method to gather all this data based
on the partial information that was already acquired in the static stress experiment. The basic
intuition that guided this reasoning was that transition stress is a function of the static stress of
each of the two gestures participating in the transition. Assuming a linear relationship between
the transition stress and the static stress, it is possible to create a linear regression function. To
validate the linear assumption, a short experiment including a small subset of the master set, was
used. Our training subset used all the transitions between the gestures (1,7,25,27,28,29), and
transitions between all the gestures (4,6,8,10,16,27). The sample set used all the transitions
between the gestures: (30,31,32,33,34,35). Twelve, seven and seven participants took part using
the first, second and validation sets respectively.

6.4.5 Results and Analysis

The average stress and standard deviation of holding each of the master set gestures (a total of
27 originals plus 2 additional = 29), is shown in Table D.16. The results for the average transition
stress using two subsets of six gestures each is presented in Table D.17 and Table D.18.

Collectively both subsets used for the transition stress experiment, result in a total of 60
observations 2*6(6 —1)2. To establish a linear regression function, define Sg; and Sg; as
independent variables where here Sg; and Sg; represent the stress of holding gesture G; and G;
respectively. Let the dependent variable Sg;; represent the transition stress from changing gesture
G; to G;j. The regression function can now be stated as

Sagij=a1*Sai + a2*Sg;

Note that this regression function goes through the origin. The reason for this, is that a
transition stress between two equal postures takes zero effort to hold (the relax posture, for
example) must be zero as well.The regression analysis yielded a R* of 0.977 and regression
coefficients of a;=0.091 and a,=0.905 with the significance levels of 0.01 and a 0, respectively.
The standardized mean squared error is a good indication of how close the initial assumption was
to the reality. A scatter plot of the data and the regression line along with the detailed results of
the regression are presented in Appendix H.

Similar to the model to predict the transition stress, a function to predict the transition time
from a start posture to an end posture was pursued. It was reasonable to think that changing the
posture to a stressful gesture, will take longer, than changing to a comfortable posture. If the
gesture was highly unpleasant, it will take several minutes or may be even impossible to imitate
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the gesture correctly. Alternatively, releasing a stressful gesture from tension was almost
instantly.

By using all the 60 observations including transition times from transitions between different
gestures, a prediction model using linear regression through the origin (without constant term) is
constructed. Let the independent variable be Tgj; , the transition (duration) time from changing
gesture G;j to G;. The hypothesed regression function then becomes:

Tai=b1*Sai + ba*Sg;

In this case, the R’= 0.95, and b;=0.104 and b,=0.973 with the significance of the coefficients
0.063 and O respectively. Results of the regression run and a scatter plot can be found in
Appendix H.

A subset 6 out-of-sample gestures (taken from the large master set G, , not from the master set
Gp), labeled 30-35 was used to validate the resultant regression functions. Seven participants (not
those that participated in the training) took part in the validation experiments. To show that the
model found in the previous experiments would predict, the transition stress and duration six out-
of-sample gestures were used. Figure 6.15 and Figure 6.16 show the regression results for the for
the transition stress and transition duration experiments, respectively.

6.4.6 Discussion

From Table D.16 we see that gestures 29 and 28 received high stress values, and hence,
corroborates the initial assumption that those gestures appear very stressful to hold, (Figure 6.14).
These gestures also received higher standard deviations probably, due to the fact, that difficult
gestures are perceived slightly different by different people, (depending on tendon flexibility and
the skill of the participant), while there is a wide consensus on how stressful medium and low
stress level gestures are. For gesture 12 (Figure 6.17) the same situation occurs; as it is the next
most difficult gesture after 28 and 29 with a high standard deviation. For gesture 12 the wrist is
bent toward the thumb, which is less stressful than bending the wrist toward the ring finger,
however this is considered a special case of ulnar deviation, and per se, one of the most
difficulties cases described above.
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Figure 6.15. Plot between real and predicted transition stress (validation)
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Figure 6.16. Plot between the actual and predicted duration time (validation)
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Figure 6.17. Difficult gesture caused by ulnar deviation
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The difficulty of gestures can be explained by the effects of static load blood flow restriction
on the stressed joints which causes strain and fatigue on the muscles. People prefer motion of the
limbs to static posture. An example of this, is when holding and stressful posture for long time,
we extend and retract the joint of the fingers to relief from stiffness. Frequently fatigue is well
pronounced on the wrist as a result of its posture and as a direct result of fingers and hand
repetitive motion. Several rules of thumbs are used regarding wrist postures [Griffins, 2001]:

1) Avoid Extension: Bending the hand upward at the wrist

2) Avoid Flexion: Bending the hand downward at the wrist

3) Ulnar Deviation: Bending the wrist toward the ring (little) finger.

Regarding the transition stress, interesting results were obtained from the experiments. The
regression analysis conducted with both subsets of gestures, points to the fact that the transition
stress is affected mostly by the ending posture. Actually, 90% of the static stress of the final
posture is present in the transition stress between the starting and ending posture (the coefficients
of the regression were a;=0.091 and a,=0.905, respectively). The same observation occurred for
the duration of the transition, which depended also 90% on the ending posture stress (the
coefficients of regression were b;= 0.104 and b,=0.973). Without the prediction stress model, it
would be necessary to find 30 transitions, the duration of the experiment was 30 minutes and at
least 19 students are necessary. For 622 observations, 622*19=11818 minutes were required,
therefore a total of 197 hours were saved.
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6.5 Validation Experiment (Task Completion Time Performance)
6.5.1 Overview

The purpose of these experiments was to test the claim presented in the beginning of this
thesis, that the analytical performance measures Z;, Z,, Z3 may act collectively as proxies for task
completion time. This implies that good vocabularies as measured by high intuitiveness, comfort,
and accuracy correspond to reduced task completion time; and bad vocabularies with low
intuitiveness, high stress (low comfort) and low recognition accuracy correspond to longer task
times. We state this in terms of the hypothesis (1.2) (one for each task). GV and GVy are sets of
GVs where GVg GV3p i.e. ZGi > ZBi (i=1,2,3). With respect to the performance of a task, for
repeated trials for a given vocabulary we shall obtain a learning rate curve. The learning curve
shows an improvement in performance as the task is repeated a number of times [Asher, 1956;
Boston Consulting Group, 1970; Wright, 1936]. We selected the standard times of the learning
curve to represent the run time performance of a given GV. Thirty two users participated in this
experiment. Each user tried one different GV for 15 trials. Previous experiments showed that 15
trials are enough to reach standard times. [Wachs et al., 2002].

6.5.2 General Set Up

The following experiments use the hand gesture recognition system, with a similarset up to
Section 6.4. The only difference is that now the video capture stream is activated, using the WE-
160 Panasonic Video Imager connected to the Matrox Meteor Standard frame grabber. The user
controls the actions in the applications by evoking commands using hand gestures. A top view of
the gestures that are captured from the wrist to the finger tips (Figure 6.11).

6.5.3 Software Application

Three applications were used in this experiment. The first is an interface that lets the user
select the type of task to complete, and the type of vocabulary to be used in the task. The user’s
selection must respect a guideline in which a task and vocabulary are assigned to each user. Two
types are presented to the user: the VMR and the robotic arm tasks and the user must select one.
The vocabularies are indexed from 1 to 16 for each type of task. The first eight are considered
“Good GV’s” and the last eight are “Bad GV’s”, to be described in Section 6.5.5.1, however no
indication is given to the users about this determination. On the right side of the screen the
number of times that each task is performed by the same user is displayed, (Figure 6.18).

i) GY Manager o] x|

Hand Gesture Control Tasks

Task ——  —Gesture Wocabulary —Trial
" Robat

% Car

Figure 6.18. Main application for task and vocabulary selection
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The main interface launches either the hand gesture robotic arm control system (Figure 6.19)
or the hand gesture VMR control system (Figure 6.20) depending on the user selections.
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Figure 6.20. Hand gesture VMR control system

Each system has a similar layout: in the top left side of the screen, appears the capture
window, which present continuous video images acquired with the Panasonic Video Imager. The
hand gesture is displayed when the user holds his hand under the camera, and appears black and
white as a result of the preprocessing stage. A small label with the name of the command is
written in the top left of this window, when the gesture is recognized, otherwise is written
“Unrecognized”. On the top center of the screen, a row of vocabulary images are shown. The row
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of thumbnails images of gestures in the gesture vocabulary are displayed as a reminder. Above
each gesture a command name associated to the gesture is presented. This way the user knows
which command is evoked while the user is holding a posture. Below the capture window, in the
main area of the screen, the virtual 3D model of a 5 DOF robotic arm or a VMR are presented
according to the type of task. On the right of the main screen there are two buttons: “Run” used to
start the video capture process, and “Close” used to close the application.

6.5.4 Procedure

Sixteen subjects participated in this experiment. One type of task was assigned to each subject
(Robotic arm or VMR), and one vocabulary from the sixteen available for each task. The
assignment (user, task type, and vocabulary) is given to the user in a guideline by the tutor. The
first eight vocabularies are from the Vg set (GVgg,1=1,..,8), and the last eight are from the Vg set
(GVs) , i=1,..,8). Each subject tested one vocabulary. Once the subject selected the task, and
vocabulary from the main interface, (Figure 6.18), the application with the appropriate task is
launched, and the controlling commands are configured to work with the hand gesture vocabulary
selected previously by the user. The task is explained to the user, following the description in
Sections 6.1.1 and 6.1.2. The procedure to complete the task remains the same, but the user must
control the devices using only hand gestures. To initiate the user on proper posture position the
user is allowed some trial exercises. The user is asked to try each gesture sequentially until every
gesture is recognized and the command assigned to that gesture is presented in the top left of the
capture window. This process is necessary so the user knows how to hold the posture correctly.
Of course this does not guaranteed that the testee will hold the gesture correctly during the actual
execution of the task. Moreover, successful learning of the gesture requires repeated practice.

Once the user knows the commands using hand gestures, he is allowed to start the task. In
both applications there is a “start” command to begin the task, and once this action is evoked, the
completion task time is initialized and displayed in the task view. The completion time is stopped
and recorded after the user evokes the “stop” command, on task completion. Together with the
completion time, the first and last name, and the identification number of the user are stored. For
the VMR task the hits on the sides of the road are stored as well. After the first trial the subjects
receive feedback on task performance. The subjects can also raise questions about the task. In the
following trials the user completes the task and no help is provided to him. Each subject repeats
the experiment, for each assigned task-gesture vocabulary 15 times.

6.5.5 Results and Analysis
6.5.5.1 Generation of Good and Bad Vocabularies (Vg and Vp)

To validate the statement that there is a relation between the GV selected and the task
completion time, is necessary to find eight Vg and Vg vocabularies, per task type. The Vg
vocabularies are dominating solutions of the Vg vocabularies, which means that each GV that is
from the Vg set of vocabularies, has higher associated values for the three indices (accuracy:
intuitiveness and comfort) than each GV from the Vg set. Both vocabularies Vg and Vg were
obtained from a series of solutions generated using an initial subset of solutions and a
combination of weights. Using the CMD (see Chapter 4.5), the initial subset of solution was
obtained. The Vg and Vy sets were obtained from initial solutions with high and low recognition
accuracy, respectively. To acquire solutions with high recognition accuracy, the CMD can be
used as presented in Chapter 4.5, however to get low recognition accuracy solutions, instead of
looking for the argument for the Max in (4.11), the argument for the Min is necessary. Eight high
recognition candidates gestures sets using Anin=96.25% and additional eight low recognition
candidates gestures sets using Amax=87.81% were selected. The subsets of gestures that yielded
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2

high recognition accuracy were called “Gps” and the subsets that yielded low recognition
accuracy were called “Gp”. The same procedure was used for the robotic arm case, where the
subset of gestures necessary was ten. The upper and lower bounds were Apis= 98.33% and
Amax=90.667% for the Gya and G, respectively. Table 6.3 and Table 6.4 show the 16 subsets of
gestures for the VMR and 10 subsets of gestures for the robotic arm cases, respectively. The top
half of the table included the solutions for the Gy and the bottom half for the Gya.

Table 6.3. Initial subset of gestures for the robotic arm case

Guasra Acc(%)
67810121317 21 99.38
678101217 20 21 99.38
6781012172123 96.25
6781012172124 99.06
678101217 18 21 99.69
6781012172224 97.50
67810121718 20 99.38
6781017 21 26 27 99.69

12345102026 88.13
12345102023 84.69
12345102226 86.88
123451017 22 86.56
12345101317 87.81
12345101323 84.69
12345101322 86.56
12345101822 86.88

— ek | ] | —
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Table 6.4. Initial subset of gestures for the robotic arm case

id GHA+LA ACC(O/O)
1 467810111314 161719 20 24 26 27 98.5
2 45678101114 16171920 24 26 27 98.5
3 567810111314 16 17192024 26 27 98.33
4 1456781011 131416 1920 24 26 27 98.33
5 45678101113 141617 19 24 26 27 98.33
6 12345912131516 17 1920 23 27 90.67
7 12345691213151617 1920 23 90.67
8 12345791213151617 1920 23 90.67|
9 123458912131516 171920 23 90.67]
10 (123459101213 151617 1920 23 90.67]

From the initial solutions obtained from Table 6.3 and Table 6.4 a series of associated
solutions was generated. To obtain a set of associated solutions, for a given GV in from Gga or
GLa the weights wy,w,, given to the intuitiveness and comfort objectives, in the QAP(G,) (see P
4.4) were varied. Each of the weights w; and w, were varied from 1 to 10 in steps of 1, such that
wi+w,=10. Hence, a total of 11 combinations of weights, for each of the 16 solutions for the
robotic arm case, yield in 176 solution points, and for the VMR case, the 11 weight combinations
for each of the 10 solutions, yielded in 110 solution points. These solutions appear in Figure 6.21
and Figure 6.22, where the solutions generated using the same Gya or Gp 4 (same accuracy value)
are connected with a line.
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Figure 6.21. Intuitiveness vs. comfort families of 16 curves for the VMR study
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It should be noted that a few equal solutions were obtained for different values of the weights
(w1 ,w2), and thus appear as a single point in the graph. It is to be noted that these tradeoff curves
are mostly piecewise convex (few points do not follow this pattern due to the non-exact solutions
obtained from the simulated annealing approach used to solve the integer QAP(G,) (P 4.4).

Eight dominating and dominated solutions were selected from the 176 and 110 solutions for
the robotic arm and VMR study, respectively. The selection can be done visually, by picking, for
the Vg set, from the family of curves figures, those points that are placed on the upper right side
of the curves, and for the Vp set then, by selecting points on the bottom left side of the plot.
These points for the Vg set must be dominated by the points selected for the Vg set. For an
explanation of dominating ad dominated solutions, see Appendix B. Table B.1 presents the 16
GV solutions. The first 8 rows are for the Vg solutions and the last 8 are for the Vg solutions.
Table B.2 presents the results for the robotic arm study. To see the images of the gestures
associated to the commands, for each of the Vg and Vj sets, see Appendix C.

6.5.5.2 The user learning curves

The task completion time (the robotic arm and VMR) for all the 16 users in the 15 trials each,
(total of 240 trials) are presented in the Table 6.5 and Table 6.6, respectively.

Table 6.5. Completion time for the robotic arm task

GV \ Trials | 1] 2] 3] 4] 5] 6] 7] 8] 9] 10] 11] 12] 13] 14] 15]AVGJAVG
283] 177] 151] 153] 213] 125] 96| 107] 104] 107] 95] 88| 86| 95| 99| o3
171] 229 177 144] 165] 197] 94| oo 126] 85| 96| 85| 81| 99| 84| 8s
240] 232] 150] 138] 128] 115] 129] 141] 111] 108] 98] 88| 89| 80| 85| 85
207] 144] 123 92[ 116 104] 93] 75| 77] 80| 95 92| 71| 83| 67] 74| 88
208] 139] 99] 112] 106] 84] 88| 83 88| 159] 86| 121] 80| 87 88 85
223] 183] 160] 136] 162] 242] 118] 97] 92| 112] 100] 102] 89] 90| 81| 87
244] 236] 292] 155] 164] 147] 100] 97] 109] 102] 101] 97| 104 122] 96| 107
167] 121] 98] 81[ 107] 90| 87] 78] 83 115 78] 89 84] 62 109] 85
260] 300] 129] 135] 150 91| 136 133] 125| 126] 131] 134] 87| 103] 98] 96
255] 131] 118] 136] 140] 142] 136] 101] 96 218] 96] 83] 110 107] 80| 99
300] 293] 300] 236] 243| 236] 300] 162] 208 157 198 127 100| 125 132] 119
300] 229] 221] 165] 123] 130] 155] 169] 125] 111] 111] 114] 91] 115] 114] 107 119
300] 300] 237 255| 300[ 209 271| 250] 134] 121] 191] 124 139] 164] 125] 143
300] 282] 296] 242] 294] 257] 160] 173] 187] 179] 166| 122] 115 126] 155 132
300] 260] 184] 300] 148| 178] 137] 148] 124] 115] 98| 107] 102] 85| 91| 93
T90| 196 223| 135] 226 128| 236 265| 266| 135| 267| 184| 141] 182] 168| 164
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Table 6.6. Completion time for the VMR task

GV \ Trials | 1] 2] 3] 4] 5] 6] 7] 8] 9] 10] 11] 12] 13] 14] 15]AVGJAVG
ol 300] 278] 180] 188] 179] 162] 149] 143] 144] 114] 103[ 112] 121] 103 123] 116
10| 294] 174] 148 136] 151] 138 134] 130] 138| 115 120 117] 118] 126] 118] 121
11| 229] 207| 186] 137] 142| 133] 147] 133 145 140] 132 129] 116 117] 119 117
VG 12| 177] 142] 158] 170] 133] 129] 119] 119] 114] 115 112 121] 113 111 104] 109] 115
13| 300] 251] 222] 181] 255 168 163] 160] 135] 133] 139 145] 121] 132 134] 129
14 275] 182] 135] 141] 127] 15| 110] 110] 101] 97] 97] 103] 98] 104] 95| 99
15| 261] 148] 145] 224] 136] 160] 149] 159 143] 156 143 130] 131] 142 113 129
16| 160] 138| 122] 130] 106| 110] 111] 100 98| 105| 106| 103| 96| 103| 94] o8
1] 300] 283 226] 182] 173] 175] 194 170] 170] 167] 178 180 130] 147] 152
255] 255| 239] 186| 189 222] 214] 151] 169] 169] 157 151] 144| 128 200 157
300] 300| 300] 190] 183] 147] 171] 147] 188 127] 180] 132] 127] 153] 155 145
300] 300| 265] 249[ 231] 233] 192 167] 177] 180] 137] 126] 156] 155] 143 151] 153
300] 252] 212] 196] 195] 171] 169 155] 173] 149] 141] 130] 146] 135 143] 141
300] 265| 242| 233] 158] 189 144] 162] 127] 147] 119 125] 113 134 112] 120
300] 326] 229 251| 243| 253 241] 202] 214] 200] 192 223] 214 157 169] 180
251[ 194] 173| 205| 182] 161| 204] 205| 300] 159 211] 228 171 191 170| 177

VB
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In these tables, the rows stand for the different GV’s, and the columns for the trial numbers.
Each GV was tested by a different participant. The last column of the tables shows the average of
the last 3 trials, for which we consider the standard task completion time. The first eight rows
used “good GV’s” (V) while the last eight rows used “bad GV’s” (V) for the robotic arm task,
and the opposite for the VMR task. Figure 6.23 show the robotic arm task learning curves for the
Vi and Vg vocabularies, respectively. The learning curves for Vg and Vg obtained in the VMR
task are presented in Figure 6.24. Scatter plots can be found in Appendix G.
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Figure 6.23. Learning curve for the V; and Vg vocabularies used for the robotic arm task
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Figure 6.24. Learning curve for the V; and Vg vocabularies used for the VMR task

Using best fit learning curve equation (3.14) for the Vg and Vg vocabularies for the robotic
arm task are Y,=217.89 n % and Y.=298.27 n’0‘327, respectively. The learning rate, using (3.15)
for the Vg and Vp are r=0.785 and r=0.797 respectively. In the VMR task the learning equations
for the Vg and Vg vocabularies are Y,=229.86 n%2" and Y.=302.16 n 0260 , and the learning
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rates, for the Vg and Vp are r=0.827 and r=0.835, respectively. A lower learning rate means faster
learning.

To test the hypothesis in (1.2), a t-test was performed between standard completion times for
the Vg and Vg sets for both the robotic arm and VMR. To determine the standard times, an
average of the last three trials of the learning curve was taken. Table 6.5 shows that the mean
completion time for the robotic arm task using Vg was much shorter than the time using Vg
(t(GVg) =87.98 sec< 1(GVp)=118.95 sec). This is true with a p=0.0059 at the .5% level of
significance. For the VMR task, (Table 6.6) also the task completion time using Vg was shorter
than using Vg (1(GVg)=114.67 sec< 1(GVp)=153.04 sec). This is true with p=0.00031 at a .03
percent level of significance. The complete t-test runs are placed in Appendix H

6.5.6 Discussion

Experimental results indicate the connection between the selected gesture vocabularies and
task completion and learning times. For the robotic arm task, the learning curves showed that
standard times are reached after 13 trials. The averaged completion time using the last three trials
and the Vg reached shorter standard times (p= 0.0059) than using the V. For the VMR task, in
which the averaged completion time was compared between the Vg and Vg vocabularies, the time
to complete the task using Vg was also significant shorter than using Vg (p=0.000313).
Regression results provided two exponential learning curves with learning rates of r=0.785 and
r=0.827 for the Vg and Vp respectively, for the VMR task, and when using the robotic arm task
the results were r=0.827 and r=0.835 for the Vs and V3, respectively.

In both tasks, the use of the Vg vocabulary yielded shorter standard task completion times
(the robotic arm task ©(GVg) =88 sec< 1(GVg) =119 sec, and the VMR task 1(GVg) =115 sec <
©(GVp) =153 sec). Therefore, the main hypothesis (1.2) is true. This indicates that the use of a
more natural vocabularies have a positive direct impact on the performance of the task, by
reducing its completion time. In the case of Vg, it is possible to see that the first trial is much
shorter than using Vy (the robotic arm task 218 sec< 298 sec, and the VMR task 230 sec < 302
sec), which corroborates that Vg is easier to use for a beginner than Vy. Regarding the learning
rate, it was lower for Vg than for Vg (the robotic arm task 0.785<0.797, the VMR task
0.827<0.835). A smaller learning rate represents faster learning. Therefore beginner users should
find that is faster to learn using a Vg than the Vp, and standard times will be reached quicker than
using the V.

The process of learning is related strongly to the intuitiveness aspect of the vocabulary, while
the performance time is also affected by the stress factors of the vocabulary.

6.6 The Memorability Test Experiment
6.6.1 Overview

To establish whether there is a relation between the naturalness of a GV and the memorability
of the subject when using that GV, a post-validity experiment was conducted. This experiment
was performed immediately after finishing the task completion time experiment (Chapter 6.5).
The users connect, through an application, commands to gestures, reflecting the associations
existing in the GV that was assigned to them, in the previous experiment. The goal of this chapter
is to validate the hypothesis (1.3).

6.6.2 General Set Up

The memorability experiment required only a computer station, placed opposed to the
computer with the Panasonic Video Imager, and hence the user was not able to see the previous
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set up to avoid clues in the memory testing process. In this PC station, an application was
executed for the subjects use.

6.6.3 Software Application

The memorability application (Appendix A), is based on a computer screen display where on
the left side there are a list of all the commands necessary to complete the task. Close to each
command there is an arrow icon pointing to the opposite side to the command. On the bottom part
of the form there is a collection of thumbnails, representing the common set of gestures. Each
thumbnail can be dragged to the right side of the arrow, connecting it to a command.

6.6.4 Procedure

At the completion of each of the 15 trials for each task completion time experiment, the
subject is presented with the memorability application discussed above. For the robotic task the
list includes 15 commands, while for the VMR it only includes 8. At the bottom of the form there
is a group of 27 gesture postures thumbnails. The user is instructed for each command to select
and drag a thumbnail adjacent to it. This represents the gesture the subject remembered as being
associated with the command during the experiments. It is explained to the user that he will
remain with extra thumbnails that were not selected to be associated with the commands at the
end of the test. In case that the user does not remember the association he can choose to leave the
command without a paired thumbnail. When the memorability test is finished, the user fills out a
hardcopy feedback form, where he can express any problems that he/she encountered, suggested
improvements, etc. Additional information about gender, whether he is left or right handed, or
has coordination problems are also collected in this form. See Figure A.3, for a copy of the
feedback form.

6.6.5 Results and Analysis

The score for this task is a measure of memorability, based on the percent of correct
associations. For the robotic task, Table 6.7 and Table 6.8 show the result of the memorability
test for the robotic and VMR tasks, respectively. The success column stands for the memorability
score in percent. The last column indicates the type of vocabulary (Vg for Good GV, and Vp for
Bad GV). The average memorability scores for the robotic task were found to be 87.5 and
70.83% for the Vg and Vg, respectively. To confirm whether this is a significantly different, a t-
test was conducted. The t-test results are shown in Table H.9 in Appendix H. The result shows
that the mean scores are significantly different (0.053 ~= 0.05) at the 5 percent level.

For the VMR task, the average percent memorability scores were high at, 96.66 and 95%. The
t-test showed that the difference was far from being significant (0.58>>0.05) at the 5% level. The
t-test results are shown in Table H.10 in Appendix H.

6.6.6 Discussion

The robotic Vg vocabulary memorability test performed immediately after the 15 repetitions
of the task trials shows that two individuals found all matchings between commands and gestures
with no errors. The worst test was done by one individual who confused four matchings. With the
same task however, using the Vg, only one subject succeeded in matching all commands-gestures
correctly. The worst performance included nine matching mistakes. It can be concluded that the
more natural vocabulary was easier to remember than the less natural (p=0.053).
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Table 6.7. Memorability score test for the robotic arm task

Subj N GV Gender  Errors Success (%) Type
1 1 F 4 73.33 GG
2 2 M 0 100 GG
3 3 M 0 100 GG
4 4 M 2 86.67 GG
5 5 F 2 86.67 GG
6 6 M 3 80.00 GG
7 7 F 3 80.00 GG
8 8 M 1 93.33 GG
9 9 M 5 66.67 GB
10 10 M 3 80.00 GB
11 11 F 8 46.67 GB
12 12 F 9 40.00 GB
13 13 M 2 86.67 GB
14 14 F 5 66.67 GB
15 15 F 3 80.00 GB
16 16 F 0 100 GB

Table 6.8. Memorability score test for the VMR task

Subj N GV  Gender Errors Success (%) Type
1 1 M 0 100 GB
2 2 M 0 100 GB
3 3 M 1 93.33 GB
4 4 F 0 100 GB
5 5 M 1 93.33 GB
6 6 M 3 80.00 GB
7 7 M 1 93.33 GB
8 8 M 0 100 GB
9 9 M 1 93.33 GG
10 10 M 1 93.33 GG
11 11 F 0 100 GG
12 12 M 0 100 GG
13 13 F 2 86.67 GG
14 14 M 0 100 GG
15 15 F 0 100 GG
16 16 M 0 100 GG

The same test was performed on the VMR task. It was found that using the Vg, 5 subjects
matched all commands to the correct gestures. In the worst case, two mismatchings were done by
one subject. Using the Vg, 4 subjects found all the associations (0 mistakes) and in the worst
performance one subject made 3 mistakes. However the results for the VMR task were not
statistically significant. It seems that the reason that there was no significant difference in
memorability for good and bad vocabularies is that the VMR task included only eight commands-
gestures associations. It is not difficult to remember a limited number of associations even when
there is no correlation at all between the objects to be associated. When the number of
associations grows, any clue that may help to find a correct association is highly valuable.
Evidently, the naturalness of a vocabulary is a considerable clue for large vocabularies as shown
in the robotic arm memorability test.
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7 Case Studies

7.1 Overview

The previous chapter described all the steps required to obtain the human psycho-
physiological input factors (Figure 3.1) for the robotic arm pick and place, and a VMR drive
tasks. The present chapter adopts the same two tasks as case studies to obtain candidates of hand
gesture vocabularies for use in a multiobjective criterion problem (3.2). Specifically, shows how
the input factor matrices obtained in module 1 of the architecture (Figure 3.1) were applied to
modules 1 and 2 of the vocabulary methodology. This means firstly, to find a feasible subset of
gestures using either of two decomposition methods (DCM or CMD), or secondly to use a
complete enumeration method. In the last case, a limited complete enumeration run is presented
due to the complexity of the problem. For module 3, the command matching algorithm is used for
each subset of gestures. The feasible solutions (GVs) are presented to the decision maker together
with an approximate set of pareto points GV’ to aid the decision maker in the selection of a single
GV. Denote the set of feasible GV solutions found as I'. A solution GV’€ T is said to be Pareto
optimal (or a non —dominated solution for the MCOP), if and only if, there is no other GV€ T’
such that Z;(GV)> Zi(GV’) for all i=1,2,3, with at least one strict inequality.

7.2 Determination of Input Matrices — Module 1

As a result of the human factors experiments, the frequency, direct and complementary
intuitiveness, stress and duration matrices were obtained. A normalization step was necessary to
have all the matrices in the same range of values. Let b;; be elements of any arbitrary matrix B
that we want to normalize, let Q be the sum of all the elements in the matrix. Let ¢be the

scaling factor, and Eij the elements of normalized matrix B. The values of Eii are obtained by

applying (7.1) and (7.2). The scaling factor ¢was 1000 for the frequency, direct and
complementary matrices, and was 100000 for the stress and duration matrices to get normalized
values from 0-999.

O =iif,,- (1.1)
i

_ b,
b, =Ef><£ (7.2)

y

Normalized matrices for the robotic arm and VMR task respectively were calculated using
(7.1) and (7.2). In Table D.25 and Table D.26 the frequency matrices have rows and column
indices corresponding to commands. For the intuitive matrices, (Table D.5 and Table D.6), the
indices of the gestures appear in the first column, and the indices for the commands appear in the
first row. The commands and their respective index are presented in Table 6.1 and Table 6.2.
Table D.13 and Table D.14 show the complementary matrix with the indices of each gesture in
the first and second columns, the rest of the columns are for the indices of pairs of
complementary commands. For example, the index ‘1’ represent the first two commands in Table
6.1 or Table 6.2, the index ‘2’ represent the second pair of commands in those tables, and so on.
Both the direct and complementary intuitiveness matrices used were weighted. The stress and
duration matrices show values for the union of gestures used in both tasks. There are 22 and 23
gestures in the VMR and robotic arm gesture master set, respectively (Appendix E). The process
to obtain these master sets was detailed in section 6.3.5.1. There are 27 gestures in common
between both master sets therefore only one matrix for the stress and duration values is necessary.
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7.3 Finding the Recognition Accuracy for G, using the calibrated FCM
— Module 2

The proposed methodology explained in chapter 5 was used to calibrate the FCM algorithm
This procedure requires several iterations to converge for a given subset of gestures instances. Its
complexity grows with the number of gestures used in the training set. Since is not known which
subset yield the best accuracy, was proposed earlier to find this subset through the construction of
a tree of solutions, where each child of the tree, is a subset of gestures obtained with the help of a
Disruptive Confusion Matrix (DCM). For every node, the supervised FCM must find the best set
of operational parameters, and hence the best recognition accuracy.

This method is useful for systems with a small number of gestures in the master set (<20),
however for larger master sets of gestures or larger subset sizes, this process may take several
days, to find a candidate solution GV.

7.3.1 Approximate Accuracy Method

A different approach suggests that instead of running the optimization procedure for every
“small” subset of gestures, to run it only once for the master set, and derive the candidate subset
of gestures from this single run. Gesture classification is achieved through a fuzzy clustering
algorithm, where each cluster means a gesture class. Let assume that for a data set of m gestures,
the supervised FCM was optimized to achieve optimal recognition accuracy. When the
supervised FCM procedure was ran again for a subset of n<m gestures, it was discovered that
centroids of each of the n clusters were very close to the centroids found the first time the
supervised FCM procedure was used. Therefore, to find the accuracy of subsets of gestures of
size n from the master set of gestures of size m, an approximation retains all the n centroids for
the selected subsets of gestures of size n and removes the remaining m gestures. The main
advantage of this approach is that the supervised FCM optimization procedure is ran only once
for the master set, and the recognition accuracy for any smaller gesture set, is deduced from the
original partition. The recognition accuracy of any smaller subset of gestures than the master set
can be obtained using the confusion matrix created from the original partition €. The confusion
matrix for the smaller subset of gestures €, will include only the rows and columns for the
gestures in Gy,

7.3.2 Training the FCM Classifier thru Parameter Search

The gestures used to train the FCM classifier with the parameter neighborhood search were
those in the master set for the robotic arm and the VMR tasks. Each master set was used to train a
different independent system. Both systems were trained by eight participants. For each gesture
in the master set, five images were acquired from each participant, and therefore 40 samples per
gesture. The first system was used for the VMR task, and with n=22 gestures, and therefore a
total of 880 samples were used to train it. In the robotic arm system, m=23 gestures and therefore
920 samples were used.

The supervised FCM optimization procedure was applied first on the independent system for
the VMR master set. To find a good initial solution of the parameter vector for the optimization
of the supervised FCM, nine solutions were generated using the five heuristic rules explained in
[Wachs et al., 2005]. In Table J.1 the nine starting solutions are presented.

Using initial cluster-value limits of 15 and 25, the nine starting solutions in Table J.1 were
used to start the NS algorithm, for the supervised FCM. Using each starting solution, the
corresponding final solution was compared. The initial solution that yields the best accuracy was
the solution number 5. The sequence of solutions starting from initial solution 5 is shown in
Table J.2 and Figure 7.1.
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Figure 7.1. Recognition accuracy versus iterations for solution 5 — VMR gesture set

From this run, one sees the parameter changes throughout the convergence profile. To speed
up the convergence process, in the beginning only 30 samples per user, for each gesture were
used. Once it converged in iteration 11, another 10 instances per user were added to each sample
set, for each gesture. This caused a decrease in the accuracy, since the total instances grew from
690 to 880. However it took another 13 iterations to achieve the near optimal accuracy.

In order to find the near optimal parameter vector for the robotic arm master set of gestures,
the near optimal parameter vector found for the VMR gesture set, was used as a good initial
solution. Here the assumption was that this initial guess was probably better than any of the nine
solutions obtained using the five heuristics rules. The reason for this was that the master set for
the VMR has only four new gestures, that the master set for the robotic arm is lacking of, on the
other hand the robotic arm master set has five gestures that were not in the master set of the
VMR. Therefore, most of the centroids representing the gestures, remained in the same places,
and five new centroids were added, and four were discarded from the partition for the VMR
example. The parameter optimal solution for the robotic arm case appears in Table J.3 and Figure
7.2 shows that convergence was reached only three iterations. The final confusion matrices for
the optimal parameter vector obtained for the VMR and robotic arm cases are presented in Table
J.4 and Table J.5.

The confusion matrices reveal the possible reasons for the recognition accuracy lower than
100%. For the VMR and robotic arm cases, the most significant confusion happened between
gestures 1 and 3. Only 42.5% instances of gesture 1 were satisfactory recognized for the VMR
case. In the robotic arm case, 72.5% instances of gesture 3 were recognized. Visual inspection of
both gestures shows a high similarity between them, both are very close to a fist, and therefore
the block features used might not be robust enough to discriminate between these gestures
(Figure 7.3).

The best recognition accuracy 93.41% for the VMR task was obtained after 24 iterations
(Table J.2). For the robotic arm task, the best recognition accuracy 93.91% was obtained only
after 4 iterations, using the optimal solution for the robotic arm task, as the initial solution for the
run (Table 1.3).
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Figure 7.2. Recognition accuracy versus iterations - robotic arm gesture set

Figure 7.3. Gesture 1 and 3 highly confused, in the VMR case

7.4 Solution by two Stage Decomposition Method — (Modules 2 and 3)

The two stage decomposition approach suggests relaxing the multiobjective problem to two
sub problems. The first stage, finds a feasible subset of gestures from the master set, given some
recognition accuracy threshold. Ap, (module 2). The second stage uses the human factors
matrices values for the subset of gestures found in the first stage. The solution of the second stage
is a set of GVs, each obtained by finding the best match between n commands and gestures so the
sum of the total intuitiveness and comfort are maximized (module 3). The matching solution
depends also on the weights assigned to each of the intuitiveness and comfort components, as
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expressed by (3.4). Section 4.3 discussed two different methods for the subset selection. The first
is the Disruptive Confusion Matrix (DCM) and the second is the Confusion Matrix Derived
Solution (CMD). The CMD method was used here because of the size of the master set of
gestures G, was large (>20), and hence the computational time to compute the recognition
accuracy for each is untenable. The CMD method is an approximation method for determining
subsets of gestures and their associated accuracies. It requires using the supervised FCM
optimization procedure only once and values from the confusion matrix to approximate the
recognition accuracy of the subset. The feasible solutions of gestures subsets were obtained using
the confusion matrix derived solution method algorithm (CMD), as described in Section 4.5

The algorithm CMD was used to generate five solutions, for the robotic arm and the VMR
cases. The value of the minimum accuracy accepted was Api,=100% and Ani,=98.33% for the
VMR and robotic arm studies respectively (Table 7.1 and Table 7.2).

Once the subset of gestures that meet the constraint of the minimal recognition accuracy were
found it was possible to proceed to Stage 2. This stage matches the commands to gestures in such
a way that the psycho-physiological measures are maximized by solving the binary integer
quadratic assignment problem QAP(G,). Each the intuitiveness and the comfort measures were
scaled by weights that reflects the importance of each factor on the solution. A set of candidate
solutions associated with each subset G,, selected in Module 2, was determined. These were
obtained by changing each weight w;,w, from 0 to 10, in steps of 1, such that w;+w,=10. The
solutions generated reflect the gradually effect of intuitiveness over the comfort, and part of them
reflect the opposite. The enhanced simulated annealing algorithm was used to solve the quadratic
assignment problem QAP(G,).

Table 7.1. The subset of gestures for the VMR case

Gn Acc(%)
678101216 18 21 100
67810121618 25 100
678101216 18 26 100

678101216 18 27 100
6781012162125 100

gl jwId|—=] —

Table 7.2. The subset of gestures for the robotic arm case

id Gn Acc(%)
1 467810111314 1617 1920 24 26 27 98.5
2 145678101114 1617 192024 26 27 98.5
3 |5678101113141617 192024 26 27 98.33
4 1456781011131416 192024 26 27 98.33
5 4567810111314 16 1719242627 98.33

For each pair of weights combination (w;,w;) and a subset of gestures G,, a solution was
obtained in terms of a gesture-command matching and values of Z, and Z3. Since there were 5
different subsets of gestures, and 11 combinations of weights, a total of 55 solutions were
obtained, for the VMR. For the robotic arm case, also 5 subset of gestures were used, and hence a
total of 55 solutions were obtained. The plots in Figure 7.4 and Figure 7.5 show the intuitiveness
versus the comfort for each solution G,. The solutions obtained through combinations of weights
for each solution G,, are connected together, forming a curve. Therefore they show a family of
curves for the VMR and the robotic arm studies respectively. These views are orthogonal to the
recognition accuracy. From this set of solutions, it is possible to find the pareto set of GVs.
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Table B.3 and Table B.4 show the Pareto points (non dominated solutions), found from the
families of curves generated using the different weights for the VMR and robotic arm,
respectively. The number of pareto points were 11 and 13 shown in Table B.3 and Table B.4 for
the VMR and robotic arm, respectively. The first column shows the solution number from which
the curve was generated, the second shows the point number from the 155 points, the third shows
the subset of gestures used G,. The fourth column shows the solution, where the place of each
gesture index, means the command that was matched with that gesture. The next three columns
are for the intuitiveness, comfort and accuracy indices. The last two columns are the weights for
the intuitiveness and comfort respectively. Figure 7.6 and Figure 7.7 show the GV solutions and
the pareto points, for the VMR and robotic arm study respectively, plotted in the 3D coordinate
system of the three multiobjectives. Each point represents a solution in terms of intuitiveness,
comfort and accuracy values.

7.5 Solution by Multiobjective Method

Due to the large computer run times this method was used in the VMR study only. The two
stage decomposition method does not assure to find the best GV, since only a promising subset of
solutions is investigated. Those solutions are the subset of gestures, G,, with high accuracy (over
the Anin specified minimal accuracy estimated acceptable by the user) from the reduced master
set Gy,. However is not possible to say whether there are other subsets of gestures in the solution
space that will yield in the pareto points. The only way to find all the pareto solutions GV is
through a complete exhaustive search of the solution space or the use of heuristic multiobjectives
like the evolutionary (GA) multiobjective method [Deb et al., 2000]. Given a gesture set of size
m and a command set of size n, there are m!/((m-n)!n!) different possible subsets. Each subset of
gestures can be matched with commands in n! different ways, hence the total number of subsets
is m!/(m-n)! . Hence, the search space is 1.2%10" and 6.4%10" for the VMR (n=8 and m=22) and
the robotic arm (n=15 and m=23) respectively. Alternatively, a limited search around an initial
high recognition accuracy solution will reduce the solution space (a single initial high recognition
accuracy associated solution was obtained using the CMD method with A,;;=100%). For each of
the 600 set of gestures Gy, a set of associated GV solutions were generated by changing each
weight wi,w, associated to Z; and Z, , from O to 10, in steps of 1, such that w;+w,=10 and
solving the integer QAP problem, (see the P 4.4) . The set of basic solutions (before the extension
due to the changes in the weights) was obtained using the following pseudo code based on a
limited complete enumeration. The parameters used were g';=6 and g'y=20 and N=600. The
lower and upper bounds were selected such that in the first iteration, the first solution inspected
is= GV,={6,7,8,10,12,13,16,17}. This solution was obtained with the CMD method, so the
associated recognition accuracy was 100%. A search starting from this high recognition accuracy
assures solution with high recognition accuracy as well.

The gestures g4, g6, g9 and gjo were not included in GV; due to the fact that some gestures are
missing in the gesture master set for the VMR (the gestures are 9,11,14,15 and 19), since they are
in the robotic arm master set.

The set of non dominated solutions (pareto front) can be determined from this limited search
(Table B.5). For the VMR study 6600 solutions were generated, including 98 pareto solutions,
and this process lasted for 48 hours. Each GV was represented as a point in a 3D space whose
coordinates are; intuitiveness, comfort, and accuracy (Figure 7.8).
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Figure 7.4. Intuitiveness vs. comfort families of 5 curves for the VMR study
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Figure 7.5. Intuitiveness vs. comfort families of 5 curves of the robotic arm study
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The Semi Complete Enumeration Algorithm(N, glL, ng)
For g1=g1L to ng,
For g141=(g;+1) to (gu+1)

For g;,n=(g;+h) to (gg+h)
GVi={ g1,-., 14k > C14h }
If >N) exit
End
End
End

Algorithm 7.1 The Semi Complete Enumeration Algorithm

Car Large GV points and pareto

*

Accuracy
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Figure 7.8. 3D plot of the GV solutions obtained using a semi-complete search for the VMR study

7.6 Discussion

Two case studies where the two stage decomposition approach and the multiobjective
solution methods were demonstrated. Two stage decomposition procedure included two different
metaheuristic approaches to obtain G, from Gp. Those are the Disruptive Confusion Matrix
Method (DCM) and the Confusion Matrix Derived Solution Method (CMD). The CMD method
was used in this chapter because its main advantages are the short running times required for the
approximated accuracy calculations. The supervised FCM optimization method is only run once
for the whole reduced master set G,,. The main disadvantage of the CMD method is that the
solutions are based on a larger (m classes) clustering problem, instead of being obtained from a
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smaller problem (n classes). In such a case, is likely that the recognition accuracy will be higher
for fewer classes than for a problem with more classes, when using the supervised FCM
optimization method. Moreover, using the DCM method, the FCM algorithm is called for every
subset of solutions G, and optimized according to this subset, as opposed to the CMD method,
on which, the FCM is called only once, and the optimization is based on the general master set of
solutions Gy,.

The CMD was used to obtain five initial gesture subsets G, with An;;=100% and
Anin=98.33%, for the VMR and for the robotic arm, respectively. For each G, a set of associated
GVs were obtained and their objective values. For the VMR study, eleven pareto points belonged
to only curves generated from solutions 1,3 and 5. For the robotic arm study thirteen pareto points
were obtained using all the 5 solutions, however more than 50% of the points in the pareto set,
were generated using the first solution. These solutions were showed in a 3D plot, were each axis
represented the intuitiveness, the comfort and the accuracy. For the multiobjective decision
approach, a reduced complete search was adopted. Instead of inspecting 1.2*%10" and 6.4%10"
for the VMR (n=8 and m=22) and the robotic arm (n=15 and m=23), respectively, an
approximation method was employed for the VMR task. A total of 6600 solutions were
generated. Using these solutions, 98 pareto solutions were obtained. These solutions can be
offered to the decision maker to select the GV according to his/her own preferences. The decision
maker may wish to prioritize the objectives such that the accuracy Z3 is 1% priority, comfort Z, is
o priority and intuitiveness Z; is 3nd priority, using this criteria, the following solution is
obtained: GV (i=4744)={21,16,6,18,7,8,25,10}(row 42 in Table B.5). The associated indices to this
solution are Z,=72, Z,=4167 and Z3=100%. If, alternatively, the decision maker is willing to
accept a lower comfort in turn for higher intuitiveness he may pick the GV with intuitiveness of
2907 which has a comfort of 2992, without affecting the recognition accuracy,
GVi=1804={8,6,26,27,12,10,18,7}(row 6 in Table B.5). Images of the solutions GV i=4744) and
GV i=1304) and are presented in Figure 7.9(a) and (b), respectively.

FINISH FORMARL BACKWARD =] SLOW

FIMIEH FORMWARD: BACKWARD A SLOW

(b)

Figure 7.9. Two different GV selected by the decision maker. (a) First priority is accuracy. (b) First
priority is intuitiveness

Examining the solutions obtained, it is clear that the solution in Figure 7.9(a) is less intuitive
as compared to the solution in Figure 7.9(b). For example, note the lack of complementary
intuitive pairings in Figure 7.9(a); and the presence of them in Figure 7.9(b). However, the
comfort decreased significantly in Figure 7.9(b). Slanted gestures cause ulnar deviation,
extension and flexion at the wrist, and therefore are hard to perform [Griffins, 2001].
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8 Conclusions and Future Work

8.1 Conclusions

This thesis presented an optimal hand gesture vocabulary design methodology that considers
both human factors aspects and technical aspects (the recognition accuracy). The first aspect
includes the intuitiveness and comfort attributes of gesture vocabularies, while the last is related
to the development of a hand recognition algorithm. The most salient advantage of the approach
presented is a structured formulation of the GV design problem in a rigorous manner so human
psycho-physiological and technical aspects are combined in a unified approach.

The methodology developed consists of an analytical formulation of the GV design problem,
reconfigurable hand gesture recognition algorithm, development of two quantitative solution
methods for solving the GV design problem, and methods for quantifying and automating the
collection of intuitiveness and comfort gestural indices.

This research suggests an analytical approach which included quantitative methods to
measure and to compare the different aspects of a GV, by mapping psycho-physiological indices
in one objective function. Previous works dealt with selection of hand gestures vocabularies using
rule based [Baudel and Beaudouin-Lafon, 1993] and ad-hoc methods [Kjeldsen and Hartman,
2001]. An analytical approach allows to consider a multitude of performance measures in an
objective function, and hence to establish a quantitative method to measure the naturalness of a
GV, or to compare the performance of different GVs. This corresponds to previous research
conclusions as stated in the following. Munk, 2001 suggested highly ergonomic vocabularies;
however was not able to perform a comparison among them. He suggested that a future
implementation of his methodology should provide a benchmark for the exploration of different
gestures from two standpoints; computer recognizability and subjective naturalness of those
gestures experienced by the user. [Nielsen et al., 2003] recommended as future work to extend
his benchmark procedure to include technical aspects.

The analytical formulation presented in this dissertation considered both the ergonomic and

technical factors as opposed to [Wagner et al, 2003] where only the ergonomic factor was
considered in a mathematical function.
The unified methodology presented in this thesis, also is a clear demonstration of the future need
defined by [Pavlovic et al, 1997] “substantial research effort that connects advances in
computer vision with the basic study of human-computer interaction will be needed in the future
to develop an effective and natural hand gesture interface”. Our methodology is based on merely
vision and hence no devices are required to be attached to the hand (unencumbered interface).
Guidelines for defining gestural command sets from an ergonomics stand point were presented by
[Baudel and Beaudouin-Lafon, 1993] who expressed the need of a similar procedure for
unencumbered interfaces.

While this thesis is a breakthrough in the hard problem of GV design, a limitation of this
research is the assumptions made regarding the hand gesture vocabulary design problem. To
reduce the complexity of this problem several assumptions were undertaken: a) each gesture in
the GV is associated to one command, and each command is associated to only one gesture. b)
gestures are static poses. In real life, gestures are dynamic, and their trajectories and
configurations over time usually express additional information. Future recommendations address
this. c) stress of holding a gesture increases linearly with the duration of the pose and with the
frequency of use. Further experimentation is required to model the increase of effort with time;
however it can be that the effort increases quadratic with time. d) task completion time was
considered the only performance index of a GV. Other indices can be used jointly to assess the
performance of the GV, such us number of errors while performing the task. e) intuitiveness and
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comfort were considered the only human factors in the analytical formulation. However, other
human factors such us learnability, memorability, efficiency and mental load should be included
in the model even if there exists a correlation between them.

Recognition accuracy, intuitiveness and comfort were used in this thesis as proxy performance
measures for task completion time. The reason for this is twofold; (a) measuring the task
completion time empirically for a large set of vocabularies is untenable, and (b) these proxy
measures are easier to quantify than the determination of an analytical function for task
completion time. One of the problems faced in this work was finding appropriate experimental
methods to obtain reliable psycho-physiological measures. This aspect apparently was not
addressed in the past by other researchers, while for the technical factor, many hand gesture
recognition algorithms are available.

In this work, experimental methods to automate the collection of intuitiveness and comfort
indices were developed. For the collection of intuitiveness measures an automate tool was
developed which simulated different scenarios, and through user interaction, collected data on
cognitive associations between commands and gestures. Even though the functions (commands),
the context, and the available master set of gestures are defined in advance, the collection of
user’s responses and the computation of the intuitive index are fully automatic. Previous research
[Nielsen et al., 2003; Preston et al., 2005; Hoysniemi et al., 2005] used Wizard-of-Oz techniques
to collect data regarding cognitive associations between command-gestures pairs. The Wizard-of-
Oz experiment has persons respond to commands stimulated under camera surveillance. For this
purpose scripts describing the interaction in specific scenarios, functionalities and context must
be prepared. The gestures used in interactions by the users were extracted from the video
obtained, and further on analyzed to find how consistent different users were with gestures.
However, this video extraction method is rather time consuming, and the scenarios must be
carefully written, as expressed by Nielsen. As for the stress index measures, in this thesis, a
subjective evaluation tool was used to obtain the static and dynamic stress of performing
gestures. This tool stored automatically and associated static and dynamic stress indices for each
gesture and inter-gesture transitions. Previous works collected stress measures through
experiments that vary from subjective questioners [Nielsen et al., 2003] to electronic devices,
such as EMG, to measure muscle activity [Wheeler, 2003].

Once the collection of intuitiveness and stress indices are obtained, it is possible to answer the
following questions presented by [Wolf and Rhyne, 1987]: a) how consistent are people in their
use of gestures, and b). what are the most common gestures used in a given domain, and how
easily are they recalled. c) do gestures contain identifiable spatial components which correspond
to the functional components of command (the action to be performed), scope (the object to
which the command is applied), and target (the location where the object is moved, inserted,
copied, etc.). Analysis of the experimental results leads provides some answers to the questions
asked by Wolf and Rhyne.

When examining a pair of complementary commands; it was found that the response was
often a pair of complementary gestures. Complementary gestures possess the property of
"mirrored gestures" or "present-absent"; such as when flipping the palm of the hand,
closing/opening fingers, spreading or keeping the fingers together, etc. This is evidence that there
is a type of intuitiveness related to pairing complementary commands to complementary gestures.
The type of intuitiveness is called “complementary intuitiveness”, while the intuitiveness of a
single command-gesture matching is called the “direct intuitiveness”. Therefore a finding with
respect to the third question presented by [Wolf and Rhyne, 1987] is that there are spatial
components that the users identify in gestures, and moreover they are used as “complementary”
gestures to match complementary commands.

With regards to the second question by [Wolf and Rhyne, 1987] (not including the recall
factor), our results indicate that the selection of gestures respected a 70/30 rule (similar to the
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80/20 rule of inventory theory), where 70% of subjects gesture responses were comprised of only
30% of all of the different gestures used by the respondents. Even though agreements for a
gesture-command associations ranged from 59%-100% for the VMR and robotic arm tasks,
respectively, the overall agreement was only 34% and 18% for the VMR and robotic arm tasks.
This refutes the claim that subjects use consistently the same gestures to represent the same
commands while performing tasks, as suggested by Hauptmann [Hauptmann and McAvinney,
1993; Hauptmann, 1989].

A question not addressed by [Wolf and Rhyne, 1987] is related to selection of the most
comfortable gestures so the effects of strain and fatigue on the muscles are minimized while
performing the task. Two types of stress were defined: a) static stress, which is the effort that
takes to hold a static gesture for a defined amount of time. b) dynamic stress, which is the effort
that is necessary for performing a transition between static gestures. It was found that 90% of the
dynamic stress (and its duration) was determined by the final posture in the transition between
two postures, and only 10% by the starting posture. This relation allows us to predict the dynamic
stress and its duration based on the use of only static stress measures.

The tools used in the methodology can be used to design high recognition, easy to learn and
remember, hand gesture vocabularies, answering to the need expressed by Long ef al. that it is
important that designers will not only be “able to design gesture sets that are easy for the
computer to recognize, but also for humans to learn and remember”. They also concluded “To
perform this difficult task, designers will require significantly better gesture design tools than are
currently available™. This methodology does require effort to obtain human ergonomic and
cognitive indices. The saving face is that it provides a rigorous structure for replacement and
expansion. More accurate fatigue or intuitiveness indices can easily replace old data by updating
the gesture knowledge database. This effort will not be lost as it can provide a database for
subsequent

Another problem addressed in this thesis, related to hand gesture recognition, is the issue of
reconfigurability and calibration of the recognition system. The primary need for recalibrations of
a gesture recognition system is its frequent relocation to other environments such as laboratories
and remote control stations. A secondary need for recalibration occurs due to demands for custom
redesign of the gesture control language. This occurs for new users, new control tasks and new
vocabularies. Allowing for a fast recalibration of system parameters provides the system
flexibility to respond to such new system setups. To address this issue of reconfigurability or
flexibility, a stand alone methodology was developed for simultaneous calibration of the
parameters of an Image Processing - Fuzzy C Means (FCM) hand gesture recognition system.
Local neighborhood search was used to automate the calibration of the parameters of the system.
Thus, the design of a hand gesture recognition system is transferred into an optimization problem
and the proposed solutions were compared using a reduced master set of gestures.[Kray and
Strohbach, 2004] provided an application with the ability to create and dynamically reconfigure a
vision based user interface that recognizes basic interaction gestures. However, this configuration
used a weight table (a standard table enhanced with load sensors), as opposed to our system that
does not require any additional hardware. [Kjeldsen et al., 2003] presented an interface that can
be dynamically reconfigured, changing both form and location on the fly. A device that combines
a steerable projector/camera system, dynamic correction for oblique distortion, is required to use
this interface.

The following hypothesis were validated; task performance time t can be represented by
multiobjective proxy measures, and the maximization of the multiobjective function causes a
minimization in the performance time of the task. This was validated through an additional

" Results of the learning and memorability tests appear later in this chapter
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hypothesis which claimed that vocabularies from the Vg set results in shorter time completion
task than the ones from the Vjp set. Mean completion time for the robotic arm task using Vg was
much shorter than the time using Vy at the .5% level of significance (p=0.0059). For the VMR
task, also the task completion time using Vg was shorter than using Vg at a .03% level of
significance (p=0.00031). Regarding learning rates, it was found that for the Vg the learning rate
was lower than for Vg, The last hypothesis suggested that the GV is easier to remember than
GVg. Memorability was determined by experienced user’s recall of the gesture-command
associations during the task performance trials. The average memorability scores for the robotic
task were found to be higher for the Vg than for the Vg at the 5% (p=0.05). For the VMR task,
the difference was not significant at the 5% level (p=0.58). Summarizing the results, the use of
the Vg compared to the Vg vocabulary samples resulted in shorter task completion time, high
learning rate and high memorability. Therefore can be restated that GVs with high values of the 3
objectives, result in decreased performance time, faster learning and increased memory.

To summarize, a methodology for the design of natural hand gestures vocabularies, which
considered both the psycho-physiological and the technical aspects in a unified approach was
presented. This provides several advantages. First, it makes possible to obtain highly
ergonomically and recognizable hand gesture vocabularies using a rigorous procedure. Secondly,
it offers a data repository of intuitiveness and comfort measures, and an automated methodology
for their collection. This approach results in improved task oriented hand gesture vocabularies.
The developed framework is an important contribution to the development of hand gesture
recognition systems for human-robot interaction.

8.2 Future Work

Future research should address the following issues:

8.2.1 Algorithms

The hand gesture recognition algorithm is an image processing based - Fuzzy C-Means
(FCM) algorithm which was capable to classify static gestures in a uniform background. Future
research should implement robust image processing algorithms for the detection and
classification of static/dynamic hand gestures in an unconstrained environment [such as detailed
in Just et al., 2006; Zhou et al., 2004; Zhenyao and Neumann, 2006]. The hand gesture
recognition algorithm developed in this work included a feature that allowed fast recalibration of
system parameters providing system flexibility to respond to demands for custom redesign of the
gesture vocabularies, new users, and new control tasks. Future work should investigate the effect
of various dynamic strategies for expanding and contracting the neighborhood size.

For the metaheuristic two stage decomposition algorithm, two approaches were presented in
this thesis, the DCM and the CMD methods. Future research should investigate extended
comparative testing between the DCM and CMD algorithms, such as complexity, calculation
times, simplicity and optimality of their solutions. This includes evaluation times of each
algorithm, the dynamic nature of the size of the vocabulary and the maximum number of
solutions required. Both algorithms perform the search by changing a gesture from the solution
(adding and discarding a gesture) using some interchange rule. The DMC looks to improve the
accuracy at every stage, where the CMD decreases it. Both cases do not consider in the
interchange rule the possibility that one of the gestures from a complementary pair will be
discarded while the other is part of the solution. Further work should modify the rules so always
the complementary pair of gestures remains together or are changed by a new couple of
complementary gestures as well.
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The feasible gesture solutions found using the DCM or the CMD procedures, are matched to
commands to obtain the final set of GV using the integer quadratic assignment problem (QAP) (P
3.3). In future work the matching problem can be solved also using a GA approach [Holland,
1975]. In this case each individual can be encoded as a chromosome of length n which represents
the associations between commands C ={ci,...,c,} and a subset of gestures G, ={gj,..., g}
[Wachs et al., 2004]. The simulated annealing algorithm [Connolly, 1990] was implemented in
this thesis to solve the QAP. Other techniques may be exploited in future work, to solve the QAP
such as particle swarm approach [Liu ef al., 2006] or using grid computing optimization systems
[Goux et al., 2000].

8.2.2 Problem Modeling

Different modeling and representations can be used to solve the optimal hand gesture
vocabulary problem. For example, in this thesis, one of the main assumptions is that the number
of commands and gestures in the GV is the same, and each command is mapped to only one
gesture, and each gesture is associated to one command. However, other types of GV can be
defined such that, for example where two commands are associated to the same gesture to
alleviate memory load. When evoked the gesture, the right command is called according to the
context of the task and the operation mode [Kohler, 1997]. In addition, it is possible to extend the
work to include several gestures as representations of a single command. Thus, for example a
closed fist with the left thumb out, as well as, an open hand with the left thumb out can both be
used to represent a "left command".

8.2.3 Performance measures

One of the formulations presented in this thesis consists of mapping the three performance
measures into a single measure by using weights w; to reflect the relative importance of each of
the objectives in Eq. (3.3). These weights were varied, and for each unique weighting scheme a
corresponding solution was presented to the decision maker for acceptance or rejection. An
alternative method to find these weights is through empirical tests. For this, it is necessary to
generate vocabularies where each of the objectives is dominating in turn, and then use these
vocabularies in experiments, where the task completion time is recorded. A linear/non linear
regression can then be performed to obtain these weights.

Three main objectives (accuracy, intuitiveness, comfort) were included as proxies of task
performance using a GV. Additional psycho-physiological indices may be included to the
methodology presented in this thesis, such as mental load and mental stress, user satisfaction,
learnability, memorability and efficiency.

8.2.4 Psycho-physiological methods

The stress measure can be obtained using two approaches: EMG based indices and the use of
ergonomic tests. In this thesis, the ergonomics approach was adopted, where the user may rank
poses from weak to strong on some scale. Future work may include the use of EMG to record the
electrical activity of muscles, and thereby obtaining the static and dynamic stress measures
[Natan et al, 2003]. These can be used to validate the data obtained using the ergonomic test
approach and to confirm the prediction model to obtain dynamic stress proposed in this work.
Preliminary work in this area [Ronen et al., 2005] indicated the many research problems with this
approach. In this vein, the next step may be the development of a bio-mechanical model to
determine the hand effort based on its configuration. The hand can be represented by the
primitives described in Table 3.1 in Chapter 3. An interesting question to solve could be whether
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there are functions f; and f4 such that the static and dynamic stress, are described by Si:fs(pil, .
pik,.., pi") and the dynamic stress is S;= fa{(pi's ... pik,.., pi") , (pjl, s pjk,.., pi")}, respectively.

Results were presented regarding how consistent a population selecting certain gestures to
given commands is. An interesting observation is the one regarding the use of complementary
gestures to represent complementary commands. In this thesis we mentioned that complementary
gestures can be obtained usually by flipping the palm, rotating to opposite sides the hand, or by
closing or opening the palm or fingers, however a reason for that was not given. The finding in
this thesis may suggest that gestures contain identifiable spatial components which correspond to
the functional components of command (the action to be performed). Complementary gestures
can be obtained by reversing/mirroring or rotating these spatial components. A future research
can focus on finding the identifiable spatial components of the gestures, and therefore examining
if people are consistent while associating similar commands to gestures with similar spatial
components. This work was done for the handheld stylus writing symbols [Wolf and Rhyne,
1987; Long et al., 1999] but no one investigated the hand gestures domain.

8.2.5 Dynamic Hand Gestures

A more flexible methodology should apply the principles presented in this thesis to dynamic
hand gestures. In this case, the experimental methods presented here can be applied to obtain the
intuitive measure, however a different hand gesture recognition capable to recognize dynamic
gestures will be necessary. To obtain the stress measure, the principles presented in [Kdlsch,
2003] can be used. Starting and ending positions may be identified by the tension required for
issuing the gesture, and relaxed position of the hand will indicate the end of the gesture [Baudel
and Beaudouin-Lafon, 1993]. Additionally, the rest position between gestures may be included in
the methodology as a ‘rest” command.

8.2.6 Expanded experimentation

By posing the optimal GV design problem as a MCOP, solutions can be presented as 3D
representations, including Pareto optimal ones. Calculating the entire Pareto set for the large
problems presented in the case study, Chapter 7 was computationally prohibitive using the
presented procedures. However, future work may overcome the complexity problem by: a)
running a complete enumeration over the solution space using parallel computing so the
complexity of the problem is approachable. b) using the CMD algorithm and allowing a
significant amount of feasible solutions (>10,000) and c) calculating the Pareto frontier using as
an evolutionary multicriteria procedure.

To validate the hypothesis that high accurate, intuitive, and comfortable vocabularies eight
vocabularies of the Vg and Vg set were used. In future work more vocabularies should be
compared. Moreover, larger vocabularies (n>20) should be evaluated and additional tasks should
be investigated. The current methodology was applied to the control of virtual robots. The
implementation of real robots in this framework will be a natural extension to this work.

Further validation experiments should include an increased number of users in order to cover
cultural diversity and allow a better generalization.
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Appendix A Memorability Test Application and Queries

This appendix presents two forms used to measure the memorability indices, and two queries
used for user feedback

0-START

1-FINISH

2-UP

3-DOWN

4-LEFT

5-RIGHT

6-FORWARD

7-BACKWARD

q Y
20
n
4
—- !

6 14

Figure A.1. Memorability test application for the robot task

8-WRIST UP

9-WRIST DOWN

10-WRIST CW

11-WRIST CCW

12-OPEN-GRIP

13-CLOSE-GRIP

14-HOME
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0-START —pp

1-FINISH -

3-RIGHT e

4-FORWARD e

5-BACKWARD e

6-FAST ol

12 16 17 18
21 22 23 24 25 26

Figure A.2. Memorability test application for the VMR task
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Figure A.3. Feedback form for the VMR and robot tasks
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Appendix B. Dominate Set Partition: Good and Bad GV Solutions

This appendix introduces the definitions of dominating and dominated solutions, presents an
example of how these solutions can be found and their relation to the good and bad gesture
vocabularies.

Let the i" Multiobjective solution be Z (i) = [z(i,1),2(1,2),z(1,3)] Let N be the set of
multiobjective solutions, such that N = {1,..i,..,n}

Definition: Dominate solution pairs

For any pair i,j of solutions from N we say solution i dominates solution j, iff

z(1,k) > z(j.k), k=1,2,3

Let

1>] (B.1)

Denote the relation solution i dominates solution j

An example of a pair of solutions where i dominates j is given below:

Z(1) = [98.33, 5086, 5687] and Z(j) = [90.66, 4739, 4359]

It may be that a pair of solutions do not satisfy the dominance relation for example.

Then we write

i 7 (B.1)

An example of a pair of solution where one does not dominate the other is

Z(i) =[98.33, 5086, 56] and Z(j) = [90.66, 47, 4359]

[D, D] is a dominant pair partition of n solutions, if the following holds:

(i) [D, D '] is a partition of the n solutions, where D intersection D' = empty set, and D union
D'=N

(i1) for any two solutions (i,j), iis an element of D, and j is an element of D' iff

i~ j

Example:
Let D = Vg and D' = Vg then for the robotic arm a DSP is given by the following two tables:

D: VG

| Z(i,1) Acc 7(1,2) Int Z(i,3) Conf
1 98.33 5086(min) 5687

2 98.33 6203 5439

3 98.33 6224 5259 (min)
4 98.33 6658 5393

5 98.33 5541 5647

6 98.5 6335 5633

7 98.5 6677 5458

8 98.5 6421 5396

D'= Vg

| Z(,1) Acc Z(1,2) Int Z(i,3) Conf
1 90.66 4798(max) 4405

2 90.66 4766 3535

3 90.66 4739 4359
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4 90.66 4136 5075
5 90.66 4115 5007
6 90.66 1390 5128
7 90.66 331 5192
8 90.66 262 5196 (max)

Any solution i in set D dominates all the other solutions in the set D' (check the min /max
values in indicated in the tables.
Using the procedure explained above, 16 GVs were obtained for each the car and the robot tasks.
Eight dominating solutions (V) and eight dominated solutions (V) for the car and robot tasks
(Table B.1 and Table B.2).

Table B.1. Vg and Vj for the VMR case

i Gn GV 7(i,1) 7(i,2) 7(i,3) w; | W,

1112345102026 51234102620 405 3490 88.125 10 0

2/12345102023 51223410320 418 3499] 84.6875 10 0

3]123451022 26 51222410263 402 3488 86.875 9 1

4123451017 22 512174103 22 411 3497 86.5625 10 0

5112345101317 51217410313 422 3496] 87.8125 10 0

6/12345101323 51223410313 424 3496] 84.6875 9 1

7112345101322 51213410322 420 3493 86.5625 9 1

8]123451018 22 5122241018 3 409 3492 86.875 10 0

916 781012131721 21761712108 13 3389 3546 99.375 9 1

10]6 781012172021 [21 76171210820 3383 3549 99.375 7 3

1116 781012172123 2176171210823 3380 3548 96.25 10 0

12|16 781012172124 121761712108 24 3376 3552 99.0625 9 1

13]6 781012171821 |2186171210187 3157 3541 99.6875 10 0

1416 781012172224 1228617121024 7 3151 3556 97.5 8 2

15/6 781012171820 [8206171210187 3142 3539 99.375 9 1

166 781017212627 21761726278 10 3020 3801 99.6875 10 0

Table B.2. V; and Vj for the robotic arm case

i Gn GV 7Z(,1)| Z1,2) (Z2G,3)] Wi | Ws
1]4567810111314161719242627 |5717641614241011262719138 6979 |5287 |98.33[10 |0
2|146781011131416171920242627 |14717641624201011262719138 16671 |5458 98.5 |9 1
3]1456781011 13141617 19 24 26 27 57176416248 10112627 1913 14 6658 |[5398 98.33 |8 2
4145678101114 1617 19 20 24 26 27 57176416242010112627 198 14 6421 |5396 98.5 |8 2
5]45678101113 14 16 1920 24 26 27 57146416242010112627 19138 6224 [5259 98.33 [9 1
6/]46781011131416171920242627 ]10817641624202627711191314 16335 |5633 98.5 |8 2
7145678101113 14 16 19 20 24 26 27 5786416242010112627 1913 14 6203 |[5439 98.33 |8 2
8l46781011131416171920242627 |101417641624202627 71119138 [6331 [5645 98.5 [7 3
9]12345912131516 17 19 20 23 27 2117124165201539271913 23 4766|3535 90.67 |10 0
10{12345891213151617 192023 81175416220153912191323 4739 |4359 90.67 |10 0
11]1234591012131516 17 19 20 23 91517143220161223 1019135 1390 |5128 90.67 |4 6
12]1234591012131516 17 19 20 23 109201342319161217152513 262 5196 90.67 |0 10
13]12345912131516 17 19 20 23 27 9151714322016122327 19135 1394 |5128 90.67 |4 6
14]1234591012131516 17 1920 23 915201419173161223102135 331 5192 90.67 |3 7
15[]1234591012131516 17 1920 23 5151714162201012391913 23 4675 [4939 90.67 |8 2
16]{1234591012131516 17 1920 23 3151714162201012951913 23 5124 4735 90.67 [10 0
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Table B.3. Pareto set for the VMR study

Sol| i Gn Gn* Z(i,1)] Z(i,2) | Z(i,3)| w1 | w2

1 7 [6781012161821 |[211261678 18 10 74 4152] 100] 6| 4

1 8 [6781012161821 [2186127161810 | 140 4018] 100] 7| 3

1 11 |[6781012161821 [2168 161210187 | 2797] 3278 100f 10| O

2 13 |[6781012161825 [12106 187 825 16 47) 4167] 100f 1| 9

2 15 |6 781012161825 |[12256 1678 18 10 57| 4163] 100] 3| 7

2 18 |6781012161825 [12186 167 82510 61] 4161] 100] 6] 4

2 19 |6781012161825 [1286187 162510 123] 4047[ 100] 7[ 3

5 50 |6781012162125 |21 12616782510 78] 4148[ 100] 5| 5

5 51 |6781012162125 |21126167 82510 78] 4148 100] 6| 4

5 52 |6781012162125 |[2186127 162510 144] 4014f 100] 7[ 3

5 55 |6781012162125 |21 76161210825 | 2791 3531 100f 10| O

Table B.4. Pareto set for the robotic arm study

sol i Gn Gn* Z(i,1) | Z(i,2) | Z(i,3) ] wi | w2
1 1 46781011131416171920242627 | 271486472024 131019111726 16 67 5930 | 985 | 0 | 10
1 2 46781011131416171920242627 | 27142464720826101911 171316 | 424 5929 | 985 | 1 9
1 3 46781011131416171920242627 | 1014246472082627 1911171316 | 651 5927 | 985 | 2 | 8
1 7 46781011131416171920242627 | 10141764724202627811 191316 | 3602 | 5862 | 985 | 6 | 4
1 8 46781011131416171920242627 | 1014176416242026277 1119138 | 6331 5645 | 985 | 7 | 3
1 9 46781011131416171920242627 | 10817641624202627711191314 | 6335 | 5633 [ 985 | 8 | 2
1 10 | 46781011131416171920242627 | 1471764 1624201011 2627 19138 | 6671 5458 | 985 | 9 1
2 15 4567810111416 17 19 20 24 26 27 1014864724202627191117516 | 1092 | 5883 | 985 | 3 | 7
3 30 | 56781011131416171920242627 | 10141768 7242016112627 19135 | 3890 | 5710 |98.33] 7 | 3
4 37 4567810111314 16 19 20 24 26 27 1014864724202627191151316 | 1117 | 5866 |98.33| 3 | 7
4 41 4567810111314 16 19 20 24 26 27 1014764162420262781119135 | 5086 | 5687 |98.33| 7 | 3
5 50 456781011 13141617 1924 26 27 101417641624726278 1119135 | 5541 5647 198.33] 5 | 5
5 55 4567810111314 1617 1924 26 27 5717641614241011262719138 | 6979 | 5287 |98.33[ 10| O
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Table B.S. Pareto set for the VMR study using the multiobjective decision approach

num] 1] 261 ] 20,2) | 20,3)
1 140] 3389 3546] 99.4
2| 726] 2797] 3278 100
3] 913| 2791] 3531] 100
4] 1196] 3383 3549] 994
5| 1230 3037] 3553 98.8
6] 1273] 3450 3547] 981
7] 1296] 3376] 3552] 991
8] 1307| 3374] 3543] 99.7
o] 1351] 3151] 3556] 97.5

10 1614] 2757] 3544] 100
11| 1625| 2753] 3547] 100
12| 1804 2907] 2992| 100
13| 2197] 2383] 3798] 100
14| 2209] 3456| 3361] 94.4
15| 2936 1153] 3905 99.4
16] 2961] 657| 4224] 98.8
17| 3037] 40| 4231] 98.4
18] 3038 660] 4227] 98.4
19| 3040] 666] 4226 98.4
20| 3052] 717] 4186] 99.1
21| 3111] 1159 3949] 98.8
22| 3308] 2596] 3810] 99.4
23| 3345| 59| 4228] 988
24| 3847 2386] 3823| 99.4
25 4023 924] 4116] 94.1
26| 4221 2391] 3830 99.1
27| 4232 2393 3810] 99.7
28| 4254] 729| 4056 99.7
29| 4256 1138 3971] 99.7
30| 4331] 918 4065 99.4
31| 4333 1144] 3949 99.4
32| 4430 1144] 4015 99.1
33| 4441 733 4052] 99.7
34| 4443 1142 3967| 99.7
35 4453 1189] 3845 99.7
36| 4665 40| 4225 99.1
37| 4666 60| 4224] 99.1
38| 4676] 54| 4185 99.7
39| 4733 68| 4209 99.4
20| 4734 84| 4204] 994
41| 4735] 96| 4198] 994
22| a7aal 72[ 4167 100
43| 4745 78| 4164] 100
44| 4746] 82| 4162] 100
45| 4749 144| 4048] 100
46| 4751] 553| 3963 100
47| 4761] 568 3849 100
48| 4874 47| 4215| 994
49| 4876| 53| 4214] 99.4

num] 1 | 26,1 | 20.2) | 2G,3)
50 4878 69|  4206] 99.4
51 4888 59| 4210 99.4
52| 4907 40 4173|100
53] 4908 47| 4172 100
54] 4910 53] 4170] 100
55 4911 57]  4168] 100
56| 4936] 2378 3806 100
57| 5167] 2375 3814] 99.7
58| 5274]  100] 4194 99.4
59 5311]  572] 3845|100
60| 5321]  148] 4034|100
61] 5323]  557] 3949] 100
62 5331] 2437] 3789 100
63| 5343 913 4117] 94.4
64| 5441] 2434] 3820 98.4
65| 5552] 2382] 3801|100
66] 5558]  862] 4181] 99.4
67] 5565 1147] 3908| 99.4
68| 5589 44| 4230] 98.8
69 5590]  651] 4227] 98.8
70| 5593  663] 4221| 98.8
71] 5601 633 4192] 99.4
72| 5603] 721 4185 99.4
73| 5612] 633 4192 99.4
74| 5615] 641 4187 99.4
75| 5657] 667 4216] 99.1
76| 5659] 679 4210] 99.1
77| 5668] 661 4176] 99.7
78] 5671] 665 4174 99.7
79| 5711] 718 4226 97.5
80| 5728] 938 4097] 98.1
81| 5799] 642 4222] 99.1
82| 5831] 636 4182 99.7
83| 5835] 640 4180 99.7
84| 5860] 2778 3805 99.7
85| 5887]  868| 4219 98.8
86| 5894] 1153| 3952 98.8
87| 5895] 1221 3923 98.8
88| 5899]  866] 4177] 99.4
89| 5906] 1223 3903 99.4
90| 5941 50 4232] 97.2
91| 5942] 721| 4229 97.2
92| 5987] 730 4227] 95.3
93] 6114] 1220] 3950] 97.5
94 6198] 683 4206 99.1
95 6255 3020 3801| 99.7
96] 6366] 2657] 3812] 98.1
97| 6557 48] 4230] 975
98] 6558  136] 4229] 975
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Appendix C. Good and Bad Vocabularies - Graphical
Representation

In this appendix sixteen GVs are presented for each the VMR and the robotic arm tasks. The
first eight are Vg and the last eight are V.

1 3 FINIEH FORWARD BACKMARD: 311G E SLoW
2 ST FINIEH FORWARL: BACKWARD: G AE SLOW
3 STAR FINIEH FORWARL: A CHMEARD AE SLOW

4 STAR FIMIEH FORWARD BACKWARD GHT S SLOW

5 STAR FIMIEH FORWARD BACKWARD
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10 STAR NIS FORWARL BACKWARD
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&=
-

11 STAR NIS FORWARL BACKWARD

12 FINIEH FORWARL:

[ M <
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13 STAR FINISH FORWARL:

14 Bl FINISH
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Figure C.2. Gesture vocabularies for the robotic arm study. 1-8 Good GV. 9-16 Bad GV
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Appendix D. Human Factors Matrices

This appendix includes all the matrices obtained from the psycho-physiological experiments.
The weighted intuitiveness, the extended intuitiveness using the extended master set of gestures,
the complementary weighted intuitiveness, the stress, the duration and the frequency matrices are
presented below.

Table D.1 Robot task intuitiveness matrix

Index Gesture 1 21 3| 4] 516 7]|8]|9]10]11]12]13] 14] 15]|sum
1{00000000000 1 3 1 6 1 1 6 7| 26
2(00010000000 4 2 3| 1 1 2 13
3/00100000000 2 2 2 1 2 9
4{00100001000 1 2| 8§ 2 1 1 1 16
500110000000 3 1 1 1 1 7
600111110000 3] 11 4 3 1 1 23
700111111000 1 5 2 2 1 2 2l 15
800111111111 5 4 6] 1 3 19
901000000000 1 3l 1 2 7

10J01111110000 10] 1 2 1 14
1102000000000 1 1 41 1 7
1202111110000 10 1 2l 1 14
1310000000000 1 1 4 2 9 17
14{10010000000 4 2 1 7
1510100000000 3 1 1 2 7
1610100001000 1 2 8 1 1 2 15
17]10111110000 2 1 6 2 1 1 1 4 18
19]10111111111 1 10) 2l 13
20]20000000000 2l 2 3 1 4 1 1 1 15
23]20100000000 1 1 3 1 2l 3 11
24]20111110000 1 2 1 6] 1 1 1 1 5 19
2621111110000 1 7 11 1| 2 1 2 15
27]22111110000 1 g 1 1 15
sum 26| 32| 22| 23| 29| 28] 19| 21| 12| 8| 12| 10| 21| 28] 31| 8322
Table D.2. VMR task intuitiveness matrix

Index Gesture 1 2131 4]5]|6] 7] 8 |sum

100000000000 1 5 3 3 2 14

2/00010000000 3 3 1 1 8

3/00100000000 2 1 1 1 5

4100100001000 2 9 11

5]00110000000 2 2 2 2] 8

6/00111110000 2 9 6 1 4 2] 24

7100111111000 4 4 1 2 1 3 15

8{00111111111 5 4 5 14

10J01111110000 10 11 11

1202111110000 10 10

1310000000000 6 4 10

1610100001000 2 9 11

17]10111110000 2 1 1 3 1 1 9

1810111111000 1 1 2 4

20]20000000000 2 2 1 3] 8

21]20010000000 4 4

22]20011110000 1 1 2 1 5

23]20100000000 1 1 3 1 1 7

24]120111110000 3 2l 11 2 2 11 21

25]20111112000 1 4 5

26]21111110000 1 8 1 10

27]122111110000 1 8 9

sum 30] 32[ 26| 27] 29] 29] 28| 22223
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Table D.3. Robot task intuitiveness weighted matrix

Index Gesture 1] 2131415161 7]18]9]10]J11)12]13] 14] 15|sum
1100000000000 31 9 2 11 1 1 15 15| 57
2/00010000000 10 6 8 1 2 2l 29
3/00100000000 4 6 4 3| 5 22
4100100001000 1 4 24 5 2] 2) 3 41
5/00110000000 6| 3 1 2] 2] 14
6/00111110000 7] 30 11 6 2l 3 59
7]00111111000 2l 13 4 4 1 4 4 32
8/00111111111 120 9 18 2| 6 47
9/01000000000 2 6l 3 3 14

10]01111110000 26| 3 5 2) 36
11]02000000000 2 3 7 2 14
12]02111110000 26 2 5 2 35
13/10000000000 3l 2 8§ 4 22 39
14]10010000000 10 6| 18
15/10100000000 6 2] 3| 17
16]10100001000 2] 4 24 1 3 36
17]10111110000 4 2 15 3 3| 3 11 8 39
19]10111111111 3 25 5 33
20]20000000000 5 4 § 2l 10 2 3 2] 33
23]20100000000 3| 3| 4 1 5 6 22
24]20111110000 2] 5 3 14 3 2 3] 2 8 42
26]21111110000 1 18 2l 3 4 2 § 35
27]22111110000 1 19 3 28 3 2 5 35

sum 57| 81| 54| 46| 79] 74| 46| 42] 27| 19| 23] 21| 55| 63] 62| 749

Table D.4. VMR task intuitiveness weighted matrix

Index Gesture 1 2 3 415] 6] 7] 8 |sum
1/00000000000 2] 14 7] 4 4 31
2{00010000000 7] 8| 1 3| 19
3]00100000000 3| 2| 20 21 9
4]00100001000 3 27| 30
5{00110000000 6) 6] 4 4 20
6/00111110000 5 23] 17 2| 11 2] 60
7{00111111000 8| 10 3 4 1 6| 32
8[00111111111 11 12 8 31

10]01111110000 29 2| 31
12]02111110000 28 28
13]10000000000 12 8l 20
16]10100001000 3| 27 30
17]10111110000 4 3 2l 7 2] 2 20
18]10111111000 2| 1 5 8
20[20000000000 4 4 3] 5 16
21]20010000000 11 11
22(20011110000 2) 2l 3 2l 9
23(20100000000 2l 3 8 2l 3 18
24]20111110000 6]l 4 29 5 6 1] 51
25(20111112000 2 7] 9
26[21111110000 2 24 1 27
27]22111110000 2 24 26

sum 67] 80| 69| 57| 82| 83| 56| 42|536
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Table D.5. Intuitiveness normalized weighted matrix for the robotic arm task
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Table D.6. .Intuitiveness normalized weighted matrix for the VMR task

1]2]3]4]5]e6]7]s

4

013 0 0 7 7

26

6

2
0 6 0 4 0 0 4 4

13 015 0 0 O

0 7 7

0 1

11

4
0O 0 11
0 15

9 43 32 0 4 0 21
1519 6 7 2

21

0

0 0

0

22

0 0 0 0 054 0 4

0 0 0 0 52

0 0 O

0

15

0
0

022 0

0

0 50

6
7 6 413 0 4 4 0

0 4 0 0 0 2 9 0

0

7 0 7 0

0 0 0 0 0 0O

21

4 0 4 6 0 0 0 4

4

11

0 4 6
0 11

0
0

0 15
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2
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7 54
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0
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0 0 4 045 O

0 4 0 45
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Table D.7. Agreement measures. (a) VMR task. (b) Robot task

Car Commands
id gi|1|2]s]a|ls|e|7|8|sum| P o o] Si | @ |sidew) Epi (%] zidee)+zpi %)
i 1] 1| s 3 3| 2| 14| o0.05] 34] 182] 0.187] 0.009] 1.6949 5| 6.695
o o s 3 1| 1| 8l o.0286] 12| s6| 0.214] 0.006] 3.3808] 7.8571]  11.247
3 3 B 1 1| 1| sl 00179l 2l 20 0.1] 0.002] 5.0847] 9.6429]  14.728
4 4 2 9 11] 0.0393] 74| 110] 0.673] 0.026] 6.7797] 13.571]  20.351
5| 5| 2 P 2| 2| slo.o028] 8] 56| 0.143] 0.004] 8.4746] 16.420]  24.903
6] 6 2 9 6 1 4 2| 24 0.0857] 118] 552] 0.214] 0.018[ 10.169] 25|  35.169
IR BEEE 3| 15| 0.0s36] 32| 210] 0.152] 0.008] 11.864| 30.357]  42.222
g| 8 5 4 5 14| 005 52|  182] 0.286] 0.014] 13.559] 35.357]  4s.916
ol 10 10 1| 11[0.0393] 90| 110] 0.818] 0.032] 15.254] 39.286]  54.540
10| 12 10 10] 0.0357]  90] 90| 1] 0.036] 16.949] 42.857]  59.806
1| 13 B 4 10[0.0357] 42| 90| 0.467] 0.017] 18.644] 46.429]  65.073
12| 16 7 9 11] 0.0393] 74| 110] 0.673] 0.026] 20.339] 50.357]  70.696
10| 12 10 10] 0.0357]  90]  9o] 1] 0.036] 16.949] 53.920]  70.878
18] 23] 1] 1 3 1 1| 7] oo02s] 6] 42| 0.143] 0.004] 30.508] 63.571]  94.080
10| 24| 3 2 11| 2 o 1 21 0075 122]  420] o0.29] 0.02032.203] 71.071]  103.275
20 25 1 4 51 0.0179] 12| 20| 0.6] 0.011] 33.808] 72.857]  106.755
21| 26 1 g 1 10] 0.0357] 58] 90| 0.622] 0.022] 35.503] 76.420]  112.022
22| 27 1 g ol 0.0321] s6| 72| 0.778] 0.025] 37.288] 79.643]  116.931
sol 64/ | | | | | | | | 1]ooose] of o o of 100 100] 200.000
35 35 35 35 35 35 35 35 280 1 o924 2634] 1| 0.338
(a)
Robot Commands
id gi|1|2|3la|s|e|7]|s]ofto]t1]12]13]14]15]sum| P & | Si | @ |=zidee)| i %) |sidee)+zpi @)
HEREE B 1 1 26| 0.05] 108] e50] 0.17] 0.01]0.8772] 4.9524]  s5.830
> | 2| 4 2 3 1 1 | 13] 0.02]  22] is6| 0.14]  of 1.7544] 7.4286]  9.183
3 | 3| 2 B 2 1 2 ol 0.02] 8| 72| 0.11] o] 2.6316] 9.1420] 11.774
4| 4 1 ENE 2 1 1 1] 16] 0.03]  e0| 240] 0.25] 0.01]3.5088] 12.19]  15.699
5| 5| 3 1 1 1 71001l 6l 42| 014 o 4.386] 13524 17.910
6| 6 311 4 3 | 1 23] 0.04] 134] 506 0.26] 0.01]5.2632] 17.905] 23.168
7| 7 1 s 2 2 1 2 | 15] 0.03] 28] 210] 0.13] o 6.1404] 20.762]  26.902
8| 8 5 4 6| 1| 3 19] 0.04] e8| 342| 02| 0.01]7.0175] 24.381] 31.308
9| o 1 K 2 7l 001 8] 2] 019 o] 7.8047] 25.714] 33609
10 10 0] 1 2 1 14 0.03] 92| 182] 0.51] 0.01]8.7719] 28.381] 37.153
1| 11 [ 4 1 7| 001] 12| 42| 029] o 9.ea91| 20.714] 39.363
12| 12 10 1 EBE 14 0.03] 92| 182] 051] 0.01] 10.526] 32.381]  42.907
17] 17 o 1] 4 2 1 1| 1] 4] 18] 0.03] 6] 308| 0.15] 0.01] 14.912] 44.571]  59.484
18 | 19 1 10 2| 13[ 0.02] 92| 156] 0.59] 0.01] 15.789] 47.048] 62.837
19| 20 EEERE 14 1 1| 1] 15| 0.08] 22| 210 0] ol 16.667] 29.905] e6.571
20| 23] 1 3 1 2 d 11 002 14 110 013 of17.544] 52| 69.544
21| 24] 1 2 1 6 1 1 | 1] 5| 19| 0.04] 2] 342| 0.15] 0.01] 18.421] 55.619]  74.040
lsslszl 1) LAl 1T L Labab b | | 1 sloot] of 20 o ©o]2s9s7]71.238] 100.185
ar1 RAE I T I I O I I I I I I O I O I ) of o ol 100] 100] 200.000
35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 525 1] 1174 5202] 1] 0.18|

(b)
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Table D.8. Robot task intuitiveness complete matrix

Gesture

7

8

9

10

11

12 13 14

15

00000000000
00111110000
00111111111
20111110000
10111110000
10000000000
00100001000
00111111000
10100001000
20000000000
21111110000
22111110000
01111110000
02111110000
00010000000
10111111111
20100000000
00100000000
00110000000
01000000000
02000000000
10010000000
10100000000

—_ A

N NN =

1

N = — -

6 7]

@_x_;_;_;

A~ O W =

.y

10111111000
20111112000
00011000000
10011000000
10110001000
12111110000
20010000000
20011110000
21000000000
22000000000
00000010000
00001110000
11111110000
20100002000
20110000000
21100002000
00011000100
00011110000
00101110000
00110001000
00111110111
01111111111
02111111111
10011110000
10101111000
11100001000
12000000000
12100001000
21111112000
22100002000
22111112000
00110011000

_

—_
—_
_

_ AN =N

sum
26
23
19
19
18
17
16
15
15
15
15
15
14
14
13

DD W LW W W W WWWWWWWWWWahcPIEDR,E,PAEDRAoOoOoo OO 9 9 9 9 9 O —
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56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

00111000000
00111111001
00111111100
01010000000
01100000000
01111111000
02010000000
02100000000
10110000000
10111000000
11000000000
11111111000
12111111000
21010000000
21011110000
21100000000
21110000000
22010000000
22011110000
22100000000
22110000000
00001000000
00001010000
00001100000
00001100010
00100010000
00101111000
00111001000
00111100000
00111101110
00111110001
00111110011
00111110100
01011000100
01011110011
01100001000
01110001000
01111111001
02011110011
02100001000
02111000100
02111001000
02111111000
02111111001
10001000000
10011000100
10100010000
10101110000
10110011000
10111110111
11010000000
11110000000
11110001000
11111111111
12010000000
12110000000
12111111111
21001110000
21101110000

T T e S e S S T e T T S e e T S S eSS S S T S R S SR SO SR I R S SR SR SR SR SR S SR R SR O )

35

35

35

35

35

35

35

35

35

35

35 35 35

35 35 525
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Table D.9. VMR task intuitiveness complete matrix

re-index

Gesture

1

2

3

2

5

6

7

8

sum

007111110000

9

[§

1

7

N
=

20711110000

11

2|

n
pare

00111111000

T

_
[é)]

00000000000

\e] K] B LS

-
»

00711111711

sof s

—
»~

00700007000

N o =] B W

—_
—_

01111110000

-
—_

[oo] N1 K221 Kl B K S

10100001000

-
—_

©

027111110000

e
o

10

10000000000

e
o

21111110000

_
o

12

10111110000

©

13

22111110000

—_

14

00010000000

15

00110000000

16

20000000000

17

20100000000

18

00100000000

Y [y e S Y

19

20011110000

N = wl

ol ol 2wl o] =

20

20111112000

21

10111111000

22

20070000000

23

00111000000

24

10010000000

25

10011110000

26

20100002000

27

20110000000

28

00011000000

29

00011110000

30

00110001000

3

=

00110010000

32

02100001000

33

10100000000

34

10111000000

35

20101112000

36

21110000000

37

22110000000

38

00001110000

39

00010010000

40

00101110000

4

iy

01000000000

42

01010000000

13

01100001000

44

01111111000

45

02010000000

46

02111117000

47

10010070000

48

10011000100

49

10110001000

50

10111111111

51

11110000000

52

111171110000

53

12100001000

54

12110000000

55

12117170000

56

21010000000

57

21011110000

58

22010000000

59

22011110000

=== = =l = = === == = == == == = 2 = o o o o o oo o o] ool o] el wo] sl s |o]oalo] ]| o]e]o
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35

35

35

35

35
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Table D.10. Complementary intuitiveness matrix (robotic arm)

gl | g2 | start/stop| up/down | left/right | fwrd/bwrd |w-up/w-down|wrist cw/ccw | open/close | sum
1 8 1 1
1 11 1 1
1 13 1 1
2 1 1 1 2
2| 6 3 3
2 13| 1 1
3 15) 2 1 3
4 16 8| 8
5 3 1 1
5 7 3 3
6 1 1 1
6 17] 1 2 3
7| 3 1 1
7 15) 1 1
71 23 1 1
8 1 1 3 4
8 6 3 3
8 13] 3 3
8 19 1 1
9 11 3| 3
10 12 1 2] 3
1 d 1 ! 4 3
12) 10} 10 1 11
13 1 1 1
14 1 1 1
14 2 1 1
14 13 2 2)
14 24 1 1
15 3 1 1
15 17 1 1
16 4 2 1 1 4
16 6 1 1
17 6 1 4 5
17 13| 1 1 1 3
17 15 1 1
19 1 2 2|
19 8 1 1
19 13] 4 4
19 16) 1 1
19 17 1 1
19 20| 1 1
20 1 1 1
20| 23 1 1
23 7 1 1
23] 20 1 1
24 6 1 1
24 20 3| 3
24 23 1 1 2
24 27 1 1
26| 27 1 7 1 1 2 12
27 26 1 1 2
sum 24 16 28 14 7 9 21] 119




130

Table D.11. Complementary intuitiveness matrix (VMR)

gl | g2 | start/stop| frwd/bkwd | left/right | fast/slow | sum

1 6l 1 1

1 8| 1 1

1| 13| 1 1
2| 1 1 1 2
2| [& 1 1
2| 7l 1 1
4 3| 1 1
4 7l 1 1
4] 16 9 9
5 1 1 1
5 3| 1 1
5] 8| 1 1
6] 1 1 1 2
[ 2] 1 1
6] 7l 2 2
[§ 8| 1 1
6] 10 1 1
6] 17 3 1 4
7| [& 2| 2
71 17 1 1
71 18 1 1 2
71 24 1 1
8| 1 3| 3
8| 5 1 1
8| 6| 1 1 2
8| 7l 1 1
8l 22 1 1
8l 24 1 1
12] 10| 10 10
17 [& 2| 2
17| 13| 1 1
18 7l 2 2
20| 1 1 1
21 [& 1 1
21 7l 2| 2
211 20 1 1
22, 8| 1 1
22 20 1 1
23] 3| 1 1
23] 20 1 1
24 6l 1 1
24 13 2 2
24 16 2 2
24 20 1 1 2
24 22 2 2
24 23 1 3 1 5
24 25 1 1
25| 20 1 1
26| 24 1 1
26| 27 1 8 9
sum 29 21 29 18 97
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Table D.12. Complementary gesture-commands weighted intuitiveness matrix: (a) Robot task, (b) VMR

task
| 91| g2 | start/stop| up/down | left/right | fwrd/back | w. up/down | w. cw/ccw | open/close | sum
NIE 6 6
1 11 2 2
1 13 4 4
2 1 6 5 11
2 6l 15 15
2 13 4 4
3 15 8 6 14
4 16 48| 48
5 3 4 4
5 7l 14 14
6 1 6
6 17 4 7| 11
7] 3] 4 4
7] 15 4 4
71 23 4 4
8 1 5 18 23
8 [& 16 16
8 13 14 14
8 19 6 6
9 11 12 12
10 12 5 10 15
11 9 4 6 4 14
12 10 52 4 56
13 1 4
14 1 3 3
14 2] 4 4
14 13 9 9
14] 24 6 6
15 3] 6) 6
15 17 6
16 4 8] 3 15
16 6) 5 5
17 6) 4 22 26
17 13 5 4 6 15
17 15 4

19 1 8| 8

19 8| 4
19 13 221 22
19 16 4 4
19 17 4 4
19 20| 6 6
20, 1 4 4
20, 23] 4 4
23 7| 5 5
23 20) 6 6
24 6 4 4
24 20| 14 14
24 23] 2 6 8
24 27| 5] 5
26 27 2 35 4 4 10 55
27| 26| 6 5 11
sum 115 73 150 60 35 37 104| 574

(a)
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Table D.13. Complementary intuitiveness normalized weighted matrix for the robotic arm task
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Table D.14. Complementary intuitiveness normalized weighted matrix for the VMR task
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Table D.15. Stress normalized matrix for the robot and VMR tasks

Gest
00000000000
00010000000
00100000000
00100001000
00110000000
00111110000
00111111000
00111111111
01000000000
01111110000
02000000000
02111110000
10000000000
10010000000
10100000000
10100001000
10111110000
10111111000
10111111111
20000000000
20010000000
20011110000
20100000000
20111110000
20111112000
21111110000
22111110000

00000000000

—_
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g a g
a o

155
157
152
152
154
159
159
159
161
156
158
158
157
156
156
155
155
158
156
156
154
157
157
158

01111110000

162
164
163
163
165
160
160
163
166
168
167
169
164
166
166
165
164
165
163
163
166
164
164
162
165
165
166

02000000000

163
165
165
164
166
161
162
164
168
168
169
170
166
168
168
167
165
166
164
165
168
165
165
163
167
166
168

02111110000

—_
o
o

179
179
181
176
177
179
182
183
183
186
180
182
183
182
180
181

179
179
182
180
180
178
181

181

183

10000000000

-
w
.|>

136
135
134
137
131
132
134
138
139
139
141
137
138
138
137
136
136
135
135
138
136
135
134
137
137
138

10010000000

—_
a1 o
[o2 IS

155
155
157
152
152
154
158
159
159
161
156
159
158
157
156
156
155
155
158
156
156
154
157
157
158

10100000000

155
157
156
156
158
153
154
156
160
160
161
162
158
160
160
159
157
158
156
156
159
157
157
155
159
158
160

10100001000

146
148
147
147
149
144
144
146
150
151
151
153
148
150
150
150
148
148
147
147
150
148
147
146
149
149
150

10111110000

—_
n
oo

131
130
129
131
126
127
129
133
134
134
135
131

133
133
132
131

131

129
130
133
130
130
128
132
131

133

10111111000

—_
w
(o]

139
138
137
140
134
135
137
141

142
142
143
139
141

141

140
138
140
137
138
141

138
138
136
140
140
141

10111111111

—_
—_
©

121
120
120
122
117
117
120
123
124
124
126
121
123
123
122
121
122
120
120
123
121
121
119
122
122
123

20000000000

—_
NN
a1 W

124
124
126
121
122
124
127
128
128
130
125
127
127
127
125
126
124
125
127
125
125
123
126
126
127

20010000000

—_
)]
w

155
154
153
156
150
151
153
157
158
158
159
155
157
157
156
154
155
153
154
157
154
154
152
156
156
157

20011110000

128
131
130
129
131

126
127
129
133
134
134
135
131

133
133
132
130
131

129
130
133
131

130
128
132
131

133

20100000000

127
129
128
128
130
125
126
128
131

132
132
134
129
131

132
131

129
130
128
128
131

129
129
127
130
130
132

20111110000

110
112
111
110
113
107
108
110
114
115
115
116
112
114
114
113
111

112
110
111

114
111

111

110
113
113
114

20111112000

21111110000

142
144
143
142
145
140
140
142
146
147
147
149
144
146
146
145
144
144
143
143
146
144
143
142
145
146
146

22111110000

159
157]
156
156]
158
153
154]
156
160)
160)
161
162]
158]
160)
160)
159
157]
158]
156]
156
159
157]
157]
159
159
15|
160)




136

Table D.16. Average and std dev static stress values for 19 subjects

gi Code AVG STD

1 00000000000 | 2.586207] 1.592779
2 00010000000 | 3.137931] 1.457104
3 00100000000 | 2.896552] 1.113066
4 00100001000 | 2.758621] 1.353703
5 00110000000 3.37931] 1.236752
6 00111110000 2] 1.28174
7 00111111000 | 2.206897] 1.14577/8
8 00111111111 | 2.724138] 1.532891
9 01000000000 | 3.689655] 1.853634
10 01111110000 | 3.896552| 1.472239
11 02000000000 | 3.931034] 1.486391
12 02111110000 | 4.310345] 1.794902
13 10000000000 | 3.172414]| 1.465532
14 10010000000 | 3.689655| 1.441811
15 10100000000 | 3.724138] 1.306483
16 10100001000 | 3.482759| 1.66091
17 10111110000 | 3.034483| 1.451176
18 10111111000 | 3.241379| 1.479748
19 10111111111 | 2.793103| 1.544097
20 20000000000 | 2.896552] 1.739146
21 20010000000 | 3.655172] 1.758162
22 20011110000 | 3.034483| 1.475581
23 20100000000 3] 1.558387
24 20111110000 [ 2.551724] 1.297971
25 20111112000 | 3.448276] 1.616571
26 21111110000 3.37931] 1.760961
27 22111110000 [ 3.724138] 1.386067
28 02110101000 | 8.137931 2.26
29 12001010000 [ /.034483 2.16

Table D.17. Subset 1 for the transition stress experiment
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Table D.18. Subset 2 for the transition stress experiment

[N

10
16
27

4 6 8 10 16 27

o o — o o o

o o — o o o
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. — o ~— o — (=}

NG Slzl=zlzlsl=z

o — S S o —

o — — — o —

S |loalal=]32]&

o o o o Ao (aV}
00100001000 X 314 257 4 3  3.86
00111110000 2286 X 2 1371357 3.7
00111111111 1571 229 X 457 3.86 243

01111110000 3.857 157 3 X 1457 3
10100001000 1.857 3.57  3.71 5 X | 3.86

22111110000 3143 2 257 4 | 3.7 X

Table D.19. Subset 3 for the validation of the transition stress experiment
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00011100110 X 3 343 343 543 4
01111111000 2143 X 3.14 3.86 4 3
02111111000 3.143 2 X 3.57 4.86 4
10111001100 2.857 3.43 3.86 X 486 4.43
12111001000 2714 329 429 329 X 4

20101112000 2714 2.86 3.43 4.71 543 X




138

Table D.20. Duration normalized matrix for the robot and VMR tasks
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Table D.21 The frequency matrix for the robotic arm task with the ‘rest’ command
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Table D.22. The frequency matrix for the VMR task with the ‘rest’ command
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Table D.23. The frequency matrix for the robotic arm task

11 12 13 14 15

10

o %000000000100
o OMOOOOO4I¢IOOOOO
o ~—f—~O AN AN OST —O
[ap] ~— ANl —
o O~ OO0 00000~ OO
—
o OMOOrrr~rOLONOANTT™O
— n A
N~
—
o OM~¥rO AN~ O~ NOO
—
o OYTO~MNONO©DO+~OOO
— N~
8V}
o DO AND-IHDOOOOOOO
A ~— QA 1o}
Al
™
o Ot OJTOOoOO0OOOOOOoO
(<] — (aV]
<
o NI~ OOOOOOO
™ <
—
©
o —TMOMOT O+~ O O0OOOo
-0 -
—
(sp]
o —TO 0O MOLITOHOO,OOo
K N+~~~ A
sV}
o]
o S NOOOMmMOOoOOoOOoO~qNO
sV} [aVles]
(o]
(<]
o 000000000000%
o [eNeoNeololNololNo oo oo No Nl
— OTOONOODO~ANMT WO
-—_r -




140

Table D.24. The frequency matrix for the VMR task
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Table D.25. Normalized frequency matrix for the robotic arm task
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Table D.26. Normalized frequency matrix for the VMR task

12

18

463

56

202

17
12

208




141

Appendix E. Gesture Master Sets

This appendix presents the master set gestures images used for the robotic arm and VMR
tasks. The combined set of gestures is presented in the last image.

7
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22 23 24 25
26 27

Figure E.1 Gestures master set. (a) Robot task vocabulary. (b) VMR task vocabulary




143

—_ _

I\
N

27

Figure E.2. Combined gestures master set
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Appendix F. Panasonic WE-160 Image Viewer

This appendix shows the Panasonic WE-160 Image Viewer major operating controls and their
function, from the original operating instructions manual.
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10.

11

12.

13.

14,

15,

. Stage

Place the decument or the object on here,

. Power ON/OFF Switch (POWER, ONIOFFI

. Lighting case

Two fluorescent lamps on both sides light up when the
Light Selection Switch {10) is turned on.

. Lighting Arm
. Lock Release buiton
. Camera Arm

. Auto White Balance Control Button (AWC)

This button is used to set the White Balance of the
camera. Press the button shooting the white object by
the camera.

. Input Selection Switch (INPUT SELECT, VIDEO

IMAGER, AfV 1, AfV 2}

This switch is used to select the audio/Video signal
from three source signals.

When VIDEQ IMAGER button is selected, the camera
signal of the WE-160 is provided tc the videc outpul
connector {18, 19).

When either A/V 1 or A/V 2 button is selected, the
external audio/video signal is provided to the audio
output jack (17) and the video output connectors {18,
19).

. Backlight Connector (BACKLIGHT)

The power tor the optional Backlight Unit WE-163 is
supplied form this connector.

Light Selection Switch {LIGHT SELECT, ARM,
BACKLIGHT)

This switch is used to select Arm Light or Backlight.

Focus Adjusting Switch (FOCUS, FAR, NEAR}
This switch is used to adjust the focus of the camera.
Press FAR or NEAR to adjust the focus of video.

Zoom Adjusting Switch (ZOOM, IN, OUT)

This switch is used to adjust the angle of view of the
camera,

Press IN or OUT to adjust the angle of view of video.

Power Indicator (POWER)
The power is turned on, this indicator lights up.

Audio Input Jack (AUDIO IN 1, 2}
The audic signal supplied to this jack is provided bath
Audio Output Jack {(17) via input Selection Switch (B)

ANV 1or AV 2,

Composite Video input Connector (VIDEO IN §, 2)
This comnector accepts the 1.0 Vp-p / 75 chms
composite video signal.  The video signal supplied
fo this connector is provided both Composite Video
Output Connector (18} via input Selection Switch (8)
AfVA or AV 2,

17.

18.

19,

20.

21.

22.

23,

. S-Video Input Connector (S-VIDEQ IN 1, 2}

This connector accepts the S-Video signal. The
S-Video signal supplied to this connector is provided
the §-Video Output Connector {19) via Input Selection
Switch (B} A/V 1 or AfV 2,

Audio Qutput Jack (AUDIO OUT 1, 2)
The audio signal selected by the Input Selection Switch
(8} is provided lo both jacks.

Compaosite Video OQutput Connector (VIDED QUT 1,
2) '
The Video Selected by the Input Selection Switch (8) is
pravided to both connectors.

S-Video Output Connector {S-VIDEO)
The 3-Video signal selected by the Input Selection
Switch (B) is provided at this Connector.

Power Cord.

Gen-Lock Termination Switch (75 chms, ON/OFF})
Whnen looping through the gen-lock video input signal
sel this switch to the OFF position and other cases
sel this to the ON position,

Gen-Lock Input Cannector {GEN LOCK IN)
The color video signal of the camera is avtomatically
synchronized to the gen-lock signal {composite or
black burst) which is supplied to this cennector, The
gen-lock signal is used for system reference.

Lens Remote Control Connector

Remove two screws and take the cover away. The

lens remote cenirol connector (DIN type} appears.

Pin allocation is shown below.
1. GROUND

FOCUS/FAR

FOCUS/NEAR

ZOOM/IN

ZOOM/OUT

POWER

o ma W

Note:

1. This connector can be used to remotely control the
WE-180in a custom designed system application.
A connection between pin 6 and pin 2 or pin 3 will
controf the camera focus, ’
A connection between pin 6 and pin 4 or pin 5 will
control the zoom.

2. Prepare the plug purchased locally and fix it to
compare with above pin allocation.

3. Connect plug and receptacle,

.
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Appendix G. Learning Curves

The following appendix shows the learning curves for the task performance for the robotic
arm and tasks applications. The first learning curve is based in 8 runs using 8 different V¢ for the
robotic arm task. The following learning curve corresponds to the 8 runs using 8 Vg for the
robotic arm task. The last two learning curves are similar to the first two but resulting from the

VMR task.

Time (sec)

VG Robot

Trials

Figure G.1. Learning curve for the Vg vocabulary used in the robotic arm task

VB Robot
350
300*+‘—Q—Q—Q—Q—
250 |48 T
o * . * o
(V]
2 150
= MR
100
50
0 T T T T T T T
0 2 4 6 8 10 12 14 16

Trials

Figure G.2 Learning curve for the Vi vocabulary used in the robotic arm task
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VG Car

350
300

Time (sec)
g O o ©o O,
o O O o o

o

0 2 4 6 8 10 12 14 16
Trials

Figure G.3 Learning curve for the V¢ vocabulary used in the VMR task

VB Car

nNn N
a
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[$ =]
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Figure G.4. Learning curve for the Vi vocabulary used in the VMR task
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Appendix H. Statistical Analysis

This appendix presents statistical results regarding different analysis done on the learning
curve experiments, stress and duration prediction model, task completion time and memorability
tests.

The table Table H.1 was obtained using the SPSS statistics package, and shows the regression
results for the transition stress versus the static stress of the beginning and ending poses. The
graph in Figure H.1 shows the result of the regression in a scatter plot. The same analysis was
done regarding the duration time of the transition between poses versus the duration time of
holding each pose see Table H.2 and Figure H.2.

Regression results for the linearization of the learning curves are presented in tables Table
H.3- Table H.6. The tables present the results for the Vg and Vp for each the robotic arm (Table
H.3 and Table H.4) and for the VMR (Table H.5 and Table H.6) tasks.

Table H.7 and Table H.8 shows the results of the t-test comparing the task completion time
between the Vg and Vg for the robotic arm and VMR tasks. The last tables, Table H.9 and Table
H.10, show the results of the t-test comparing the memorability index between the Vg and Vg
vocabularies.

Table H.1. Regression results for the transition stress model

Model Summary

R Adjusted R Std. Error of
Model R Square(a) Square the Estimate
1 .988(b) 977 .976 .6476997
ANOVA
Mean
Model Sum of Squares Df Square F Sig.
1 Regression 1024.757 2 512.379 1221.360 .000(a)
Residual 24.332 58 420
Total 1049.089(b) 60

Coefficients

Unstandardized Standardized
Model Coefficients Coefficients T Sig.
Std.
B Error Beta
1 Stress_A .091 .034 .092 2.660 .010
Stress_B .905 .034 .912 26.449 .000

Residuals Statistics

Std.
Minimum Maximum Mean Deviation N
Predicted Value 2.057517 8.003403 3.794374 1.6515060 60
Std. Predicted Value -1.052 2.549 .000 1.000 60
Standard Error of Predicted

Value .051 221 106 .054 60

Adjusted Predicted Value 2.052688 7.986944 3.792189 1.6441112 60
Residual - -

1 9716382 1.4448731 0360409 .6411580 60

Std. Residual -1.963 2.231 -.056 .990 60

Stud. Residual -1.977 2.246 -.054 1.003 60

Deleted Residual - 1.4643981 - 6585088 60
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1.2891288 .0338558
Stud. Deleted Residual -2.029 2.330 -.053 1.016 60
Mahal. Distance 378 7.002 2.000 2.034 60
Cook's Distance .000 131 .014 .021 60
Centered Leverage Value .006 117 .033 .034 60
Transition Stress
10
9 4
8 P e
7 1 * *
6 1 .
:g 5 *
n .o
. . L <24
3 - © ¥ o o
RS
2] 2,
* *
1 4
0 ‘ ‘ ‘ ‘ : : ;
0 1 2 3 4 5 7 8 9 10
b1*SGi+b2*SGj
Figure H.1. Plot between real and predicted transition stress
Table H.2. Regression results for the transition duration time model
Model Summary
Std. Error
R Adjusted of the
Model R Square(a) R Square Estimate
1 .975(b) .950 .949 1.03757
ANOVA
Mean
Model Sum of Squares Df Square F Sig.
1 Regression 1195.560 2 597.780 555.275 .000(a)
Residual 62.440 58 1.077
Total 1258.000(b) 60
Coefficients
Unstandardized Standardized
Model Coefficients Coefficients t Sig.
Std.
B Error Beta
1 Stress_A 104 .055 .096 1.894 .063
Stress_B 973 .055 .895 17.748 .000
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Residuals Statistics

Minimum Maximum Mean Std. Deviation N
Predicted Value 2.2281 8.6455 41016 1.77630 60
Std. Predicted Value -1.055 2.558 .000 1.000 60
Standard Error of Predicted
Value .082 .354 .169 .086 60
Adjusted Predicted Value 2.2260 8.5551 4.0928 1.75303 60
Residual -2.02673 3.31321 -.13496 1.01969 60
Std. Residual -1.953 3.193 -.130 .983 60
Stud. Residual -1.968 3.298 -.126 1.009 60
Deleted Residual -2.05777 3.53435 -.12617 1.07549 60
Stud. Deleted Residual -2.020 3.627 -.118 1.043 60
Mahal. Distance .378 7.002 2.000 2.034 60
Cook's Distance .000 499 .027 .080 60
Centered Leverage Value .006 A17 .033 .034 60
Transition Time
12
*
10 1 *
* »
8 m
*
5 6
-
*
4 4 * o * >
000 & 0 0000000 o
2 (24 400 *0
0 ‘ ‘ ‘ ‘ ‘ . .
0 1 2 3 4 5 7 8 9 10

b1*SGi+b2*SGj

Figure H.2. Plot between the actual and predicted duration time
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Table H.3. Results for the linear regression for the robotic arm task, V; vocabulary (learning curve)

Model Variables Entered Variables Removed Method
1 In_n(a) Enter
a All requested variables entered.
b Dependent Variable: In_Yn
Model Summary(b)
Adjust Std. Error
M R ed R of the
odel R Square Square Estimate
1 .775(a) .601 597 .2159597
a Predictors: (Constant), In_n
b Dependent Variable: In_Yn
ANOVA(b)
Mode Mean
I Sum of Squares df Square F Sig.
1 Regression 8.276 1 8.276 177.443 .000(a)
Residual 5.503 118 .047
Total 13.779 119
a Predictors: (Constant), In_n
b Dependent Variable: In_Yn
Coefficients(a)
Mod Unstandardized
el Coefficients Standardized Coefficients t Sig.
Std.
B Error Beta
1 (Constant) 5.384 .052 102.772 .000
In_n -.348 .026 -.775 -13.321 .000
a Dependent Variable: In_Yn
Casewise Diagnostics(a)
Case Std.
Number Residual In_Yn
81 3.370 5.4889
93 3.124 5.6768

a Dependent Variable: In_Yn
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Residuals Statistics(a)

Minimum Maximum Mean Std. Deviation N
Predicted Value 4.737
4.442648 5.384013 2637112 120
462
Std. Predicted Value -1.118 2.452 .000 1.000 120
Standard  Error  of
.020 .052 .027 .008 120
Predicted Value
Adjusted Predicted 4.737
4.437874 5.400646 .2638318 120
Value 458
Residual .0000
-.5076640 7277712 .2150504 120
000
Std. Residual -2.351 3.370 .000 .996 120
Stud. Residual -2.364 3.384 .000 1.003 120
Deleted Residual .0000
-.5136268 .7339372 .2184021 120
034
Stud. Deleted
-2.412 3.546 .003 1.018 120
Residual
Mahal. Distance .008 6.011 .992 1.477 120
Cook's Distance .000 .085 .008 .014 120
Centered Leverage
.000 .051 .008 .012 120
Value

a Dependent Variable: In_Yn

Table H.4. Results for the linear regression for the robotic arm task, Vg vocabulary (learning curve)

Variables Entered/Removed(b)

Model

Variables Entered

Variables Removed

Method

1

Ln_n(a)

Enter

a All requested variables entered.
b Dependent Variable: In_Yn

Model Summary(b)

Model R R Square

Adjusted R Square

Std. Error of the Estimate

1 650(a) 422

417

.2910501

a Predictors: (Constant), In_n
b Dependent Variable: In_Yn
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ANOVA(b)
Model Sum of Squares df Mean Square F Sig.
1 Regression 7.301 1 7.301 86.188 .000(a)
Residual 9.996 118 .085
Total 17.297 119
a Predictors: (Constant), In_n
b Dependent Variable: In_Yn
Coefficients(a)
Mod Unstandardized
el Coefficients Standardized Coefficients t Sig.
Std.
B Error Beta
1 (Constant) 5.69
8 .071 80.702 .000
In_n -.327 .035 -.650 -9.284 .000

a Dependent Variable: In_Yn

Residuals Statistics(a)

Std.
Minimum Maximum Mean Deviation N
Predicted Value 5.090
4.813634 5.697828 .2476953 120
544
Std. Predicted Value -1.118 2.452 .000 1.000 120
Standard  Error  of
.027 .071 .036 .011 120
Predicted Value
Adjusted Predicted 5.090
4.807677 5.726015 .2483787 120
Value 992
Residual .0000
-.6019490 .6723468 .2898246 120
000
Std. Residual -2.068 2.310 .000 .996 120
Stud. Residual -2.078 2.325 -.001 1.003 120
Deleted Residual -
-.6136261 .6808980 .2939772 120
.0004487
Stud. Deleted
) -2.108 2.370 .000 1.009 120
Residual
Mahal. Distance .008 6.011 .992 1.477 120
Cook's Distance .000 .080 .007 .011 120
Centered Leverage
.000 .051 .008 .012 120
Value

a Dependent Variable: In_Yn
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Table H.S. Results for the linear regression for the VMR task, V vocabulary (learning curve)

Variables Entered/Removed(b)

Model Variables Entered Variables Removed Method

1 Ln_n(a) . Enter

a All requested variables entered.
b Dependent Variable: In_Yn

Model Summary(b)

Model R R Square Adjusted R Square Std. Error of the Estimate

1 .770(a) .593 .590 1721787

a Predictors: (Constant), In_n
b Dependent Variable: In_Yn

ANOVA(b)
Model Sum of Squares df Mean Square F Sig.
1 Regression 5.103 1 5.103 172.126 .000(a)
Residual 3.498 118 .030
Total 8.601 119

a Predictors: (Constant), In_n
b Dependent Variable: In_Yn

Coefficients(a)

Unstandardized
Model Coefficients Standardized Coefficients t Sig.
Std.
B Error Beta
1 (Constant) 5.43
8 .042 130.185 .000
In_n -.273 .021 -.770 -13.120 .000

a Dependent Variable: In_Yn

Casewise Diagnostics(a)

Case Number Std. Residual In_Yn

65 3.154 5.5413

a Dependent Variable: In_Yn
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Residuals Statistics(a)

Std.
Minimum Maximum Mean Deviation N
Predicted Value 4.929
4.698318 5.437511 .2070754 120
816
Std. Predicted Value -1.118 2.452 .000 1.000 120
Standard  Error  of
.016 .042 .021 .007 120
Predicted Value
Adjusted Predicted 4.929
4.694488 5.460166 .2066966 120
Value 624
Residual .0000
-.3623374 .5430669 1714537 120
000
Std. Residual -2.104 3.154 .000 .996 120
Stud. Residual -2.169 3.169 .001 1.006 120
Deleted Residual .0001
-.3849927 .5481370 921 1751525 120
Stud. Deleted
-2.204 3.299 .001 1.015 120
Residual
Mahal. Distance .008 6.011 .992 1.477 120
Cook's Distance .000 147 .011 .022 120
Centered Leverage
.000 .051 .008 .012 120
Value

a Dependent Variable: In_Yn

Table H.6. Results for the linear regression for the VMR task, Vi vocabulary (learning curve)

Variables Entered/Removed(b)

Model Variables Entered Variables Removed Method

1 In_n(a) . Enter

a All requested variables entered.
b Dependent Variable: In_Yn
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Model Summary(b)

Std. Error
R of the
Model R Square Adjusted R Square Estimate
1 .768(a) .590 .586 .1656439
a Predictors: (Constant), In_n
b Dependent Variable: In_Yn
ANOVA(b)
Sum
of Mean
Model Squares df Square F Sig.
1 Regression 4618 1 4618 168.300 .000(a)
Residual 3.210 117 .027
Total 7.828 118
a Predictors: (Constant), In_n
b Dependent Variable: In_Yn
Coefficients(a)
Unstandardized Standardized
Model Coefficients Coefficients t Sig.
Std.
B Error Beta
1 (Constant) 5.711 .040 142.119 .000
In_n -.260 .020 -.768 -12.973 .000
a Dependent Variable: In_Yn
Casewise Diagnostics(a)
Case Std.
Number Residual In_Yn
113 3.402 5.7038
a Dependent Variable: In_Yn
Residuals Statistics(a)
Minimum Maximum Mean Std. Deviation N
Predicted Value 5.228
5.007515 5.710957 296 .1978232 119
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Std. Predicted Value

Standard
Predicted Value

Adjusted
Value

Error  of

Predicted

Residual

Std. Residual
Stud. Residual
Deleted Residual

Stud.
Residual

Deleted

Mahal. Distance
Cook's Distance
Centered Leverage

Value

-1.116

.015

5.001895

-.3172990

-1.916
-1.931

-.3223614

-1.954

.008
.000

.000

2.440

.040

5.722557

.5635756

3.402
3.420

.5693164

3.589

5.953
.060

.050

.000

.021

5.228
407
.0000
000
.000
.000

.0001113

.001

.992
.007

.008

1.000

.006

.1981446

.1649406

.996
1.003

.1673656

1.013

1.466
.011

.012

119

119

119

119

119
119

119

119

119
119

119

a Dependent Variable: In_Yn

Table H.7 t-test for the time completion time between V and Vg (robotic arm task)

Table H.8. t-test for the time completion time between Vg and Vg (VMR task)

Time VG Time VB

Mean

Variance
Observations
Pooled Variance

Hypothesized Mean Difference

df

t Stat

P(T<=t) one-tail
t Critical one-tail
P(T<=t) two-tail
t Critical two-tail

87.95833 118.958

91.22024 642.681

8 8
366.9504
0
14
-3.236592
0.002985
1.761309
0.00597
2.144789

Time VG Time VB

Mean

Variance
Observations
Pooled Variance

Hypothesized Mean Difference

df

t Stat

P(T<=t) one-tail
t Critical one-tail
P(T<=t) two-tail
t Critical two-tail

114.667 153.04167

144.063 379.18849

8 8
261.626
0
14
-4.74502
0.00016
1.76131
0.00031
2.14479
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Table H.9. t-test for the memorability score for the robotic arm task

Memo VG Memo VB

Mean

Variance
Observations
Pooled Variance
Hypothesized Mean Difference
df

t Stat

P(T<=t) one-tail
t Critical one-tail
P(T<=t) two-tail
t Critical two-tail

87.5

70.83333

94.444444 405.5556

8

250

0

14
2.1081851
0.0267581
1.7613092
0.0535161
2.1447886

8

Table H.10. t-test for the memorability score for the VMR task

Memo VG Memo VB

Mean

Variance
Observations
Pooled Variance
Hypothesized Mean Difference
df

t Stat

P(T<=t) one-tall
t Critical one-tall
P(T<=t) two-tail
t Critical two-tail

96.666667
25.396825
8
36.507937
0

14
0.5516773
0.2949337
1.7613092
0.5898673
2.1447886

95
47.619048
8
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Appendix I. Proof of convergance of the CNS method

Let p be the vector of parameters, and A the recognition accuracy. For any feasible solution
p=Ipi, .-, pu] for the recognition system, define a set N(p) of neighboring solutions of vector p.
The number of neighbors of p is 2n as each parameter is incremented up and down. This
neighborhood search method starts with an arbitrary initial solution. A pseudo code of the
algorithm is shown below:

Algorithm neighborhood search
Begin
Create an initial feasible solution p=[pl, ..., pn]
While there is a neighbor p” N(p) with A(p’) > A(p) do
Begin
Replace p by p’
End
Output p, which is the locally optimal solution
End

Algorithm I-1 Neighborhood search

Define an iteration as one cycle starting from an initial solution p until the next neighbor
solution p’ is selected. An example sequence of the parameter vectors p, appears in Table 2.
Recognition accuracy in each iteration is shown in Fig. 4.

Table I.1 Optimal Parameter Search

|Parameters
lterations] p1 p2 03 04
1 2 2 3.5 17
2 2 3 3.5 17
3 2 4 3.5 17
4 2 4 3.5 18
5 2 4 3.5 18

99.00 -

497.00

£ 96.00
= ./’
§35.00
9400
§3.00 7 T T :
1 2 3 4 q
Iteration

Figure Apx I.1Recognition Accuracy vs. Iterations
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Average complexity of the neighborhood search algorithm is O(n) (where n is the size of the
parameter vector) times the number of iterations. In the previous example, for the given p, the
number of neighborhood solutions examined is 2 x 4 x Ave. no. of iterations = 8 x 5 = 40
(convergence was fast in the order of 3 to 8 iterations). Complete evaluation requires an
evaluation of 2940 (the size of the search space = ). It should be noted that the evaluation of each
solution requires the determination of a new set of image features, executing the FCM algorithm,
cluster label assignments, gesture recognition, and analysis of the confusion matrix.
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Appendix J. Supervised FCM optimization procedure

The supervised FCM optimization procedure was applied first on the independent system for the VMR master set. To find a good initial
solution of the parameter vector for the optimization of the supervised FCM, nine solutions were generated using the five heuristic rules
explained in [Wachs et al., 2005]. In the following tables the nine starting solutions are presented, and used to search for optimal parameter
vector. Then the confusion matrices are presented, obtained using the optimal parameter vector set. The confusion matrices correspond to the car

and robotic master set of gestures.

Table J.1. Parameter search results for VMR gesture set initial solutions

num| Rb|Cb| C|m]| t w
1] 2| 2] 15| 2]|142]0.2058 0.2000 0.1924 0.2111 0.1907
2| 2| 2| 19] 2|142]0.2058 0.2000 0.1924 0.2111 0.1907
3| 2| 2| 23] 2|142]0.2058 0.2000 0.1924 0.2111 0.1907
4] 5| 5| 15| 2|142]0.0373 0.0940 0.0398 0.0304 0.0363 0.0434 0.0561 0.0389 0.0314 0.0297 0.0307 0.0366
5] 5] 5] 19] 2[142] 0.0467 0.0438 0.0341 0.0355 0.0353 0.0427 0.0363 0.0306 0.0330 0.0305 0.0300 0.0374
6] 5| 5| 23] 2|142]0.0373 0.0940 0.0398 0.0304 0.0363 0.0434 0.0561 0.0389 0.0314 0.0297 0.0307 0.0366
7 8| 8| 151 2[142]0.0201 0.0200 0.0179 0.0148 0.0149 0.0155 0.0154 0.0160 0.0199 0.0157 0.0126 0.0118
8| 8| 8| 19] 2|142]0.0201 0.0200 0.0179 0.0148 0.0149 0.0155 0.0154 0.0160 0.0199 0.0157 0.0126 0.0118
9| 8| 8| 23] 2[142[0.0128 0.0128 0.0201 0.0200 0.0179 0.0148 0.0149 0.0155 0.0154 0.0160 0.0199 0.0157
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Table J.2. Parameter search result for initial solution 5 — VMR gesture set

754 019 .014 .016 .015 .019 .016 .014 .014 .014 .014 .016 .016 |35 |1.5 |152 | 93.41|880

I\
\S]

754 019 .014 016 .015 .019 .016 .014 014 .014 014 016 016 |37 |1.5 |152 | 93.41|880

N
w

num| Rb | Cb w C m t JA%)] n
1|5 5 |0.047 0.044 0.034 0.036 0.035 0.043 0.036 0.031 0.033 0.031 0.03 [23 |2 142 77.25|690
2|5 5 ]0.5120.023 0.017 0.018 0.018 0.022 0.018 0.016 0.017 0.016 0.015 [23 |2 142 90.431690
3l4 5 10.557 0.024 0.019 0.02 0.019 0.024 0.02 0.017 0.018 0.017 0.017 |23 |2 142 90.72|690
4|4 5 0.557 0.024 0.019 0.02 0.019 0.024 0.02 0.017 0.018 0.017 0.017 |25 |15 |142 94.35(690
5|4 5 ]10.557 0.024 0.019 0.02 0.019 0.024 0.02 0.017 0.018 0.017 0.017 |25 |15 |142 94.35|690
6la 5 10.557 0.024 0.019 0.02 0.019 0.024 0.02 0.017 0.018 0.017 0.017 |24 |15 |142 95.07]|690
714 4 ]0.6150.027 0.021 0.022 0.022 0.026 0.022 0.019 0.02 0.019 0.018 (24 |15 [142 96.23|690
8la 4 ]0.6150.027 0.021 0.022 0.022 0.026 0.022 0.019 0.02 0.019 0.018 (24 |15 [|142 96.23|690
al4 4 10.6150.027 0.021 0.022 0.022 0.026 0.022 0.019 0.02 0.019 0.018 (24 |15 [|142 96.23|690

10l4 4 ]0.6150.027 0.021 0.022 0.022 0.026 0.022 0.019 0.02 0.019 0.018 (24 |15 [142 96.23|690
11|4 4 10.629 0.028 0.021 0.023 0.022 0.027 0.023 0.019 0.021 0.0190.019 (24 |15 |142 96.52|690
12|4 4 .693.023.017 .019 .018 .022 .019 .016 .017 .016 .016 .019 .019 23 .5 |152 91.59|880
134 4 .744 .019 .014 .016 .015.018 .016 .013 .014 .013 .013 .016 .016 23 .5 |152 91.7|880
14|4 4 .744 .019 .014 .016 .015.018 .016 .013 .014 .013 .013.016 .016 23 1.5 |162 92.27/880
15|4 4 .744 .019 .014 .016 .015.018 .016 .013 .014 .013 .013 .016 .016 23 1.5 |162 92.27|880
16l4 4 .744 .019 .014 .016 .015.018 .016 .013 .014 .013 .013 .016 .016 37 |15 |162 92.61|880
17|4 4 .744 .019 .014 .016 .015 .018 .016 .013 .014 .013 .013 .016 .016 37 1.5 152 92.84]/880
18|4 4 .744 .019 .014 .016 .015.018 .016 .013 .014 .013 .013 .016 .016 36 1.5 152 92.84]880
194 4 .744 .019 .014 .016 .015.018 .016 .013 .014 .013 .013 .016 .016 36 1.5 152 92.84]880
2014 4 .744 .019 .014 .016 .015.018 .016 .013 .014 .013 .013 .016 .016 36 1.5 152 92.84]880
21|4 4 .754 .019 .014 .016 .015 .019 .016 .014 .014 .014 .014 .016 .016 36 15 152 93.411880

4 4

4 4

4 4

n
N

.754 .019 .014 .016 .015.019 .016 .014 .014 .014 .014 .016 .016 37 1.5 [|152 93.41|880

Table J.3. Parameter search result using VMR optimal solution —robotic arm gesture set

num| Rb | Cb w c m t JA(%) n
1l4 4 .693 .023 .017 .019 .018 .022 .019 .016 .017 .016 |37 1.5]152 91.63 |920
213 4 .758 .025 .019 .021 .02 .024 .021 .018 .019.018 |37 151152 93.696 |920
3|3 4 .758 .025 .019 .021 .02 .024 .021 .018 .019.018 |36 1.5]152 93.913 |920
413 4 .758 .025 .019 .021 .02 .024 .021 .018 .019.018 |36 1.5]152 93.913 |920
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Table J.4. Confusion matrix for optimal solution - VMR case

2 3 4 5 6 7 81012 13 16 17 18 20 21 22 23 24 25 26 27

1

ij1i7 019 0 0 0 0 O O O O O O O 4 0 O O O O O O

2104 0 O O OO OOOOOOOOOOOTOOTOTO

3 2 037 0 0 0 0O O OO

0 00 0O O0OOOOT OO ODWO

1

4 0 0 436 0 0 0O OOOOOOOOOOOTOGOTOTGO

507 0 03 00 00 OO0OO0OOO0OOO0OO0OOTO0OOTGOTGO

6 0 0O 0O OO4 0 0 OO O0OOOOOOOOOOODO

7170 0 0 00 O40 0 O O OOOOOOOOOTOOTO

80 00O OO 040 0O O OOOOOOOOOUOTOTO

0 00 0OOOOUO3 00 0OO0OO0OO0OO0OO0ODO0OO0OTGO

1

0 0 0O

1

0 00 O0OOOOUOTOUOO33 0O0O0O0OO0OO0O0

1

00 0O0OOOOOOOOOOOO40 0 00 0o00O

i) 0 0 0 0 O 0 0O 040 O O O O OO O OO OOU OO

1210 0 0 0 0O 0O OO O4 0 00 O0OOOOOOOODO

13

i6f 0 0 0 0 O 0 0O O 0O O 040 O O O O O O O O O O

i77 0 0 0 0 0O 0 O O OO O 03 0O0O0O

184 0 0 0 0 O 0 0O 0O 0O O O O 0O40 O O O O O O O O

201 0 O

21

221 0 0 0000 O0O0OOO0OO0OOOTOGOO3 05000
23 7 0 00OOOOOOOOOZ202 002 00O0O
2490 0 0 0OOOOOOOOOOTOGOO=2H038 000
2510 0 0O O OOOOOOUOOUOUO OO OO OGO OO O0O4 0O
26/ 0 0 0O 0OOOOOOOUOOOUOOUO OO OO OO OO0O4 O
27170 0 0 0 0O OOO OOO0OO0OOOOOOUOO 0 040

Table J.5. Confusion matrix for optimal solution -robotic arm case

2 3 45 6 7 8 91011 12 13 14 15 16 17 19 20 23 24 26 27

1

029 0 0 00OOOO0OO0OO0OO0OO0OO0OO0OOOOOOODPO

00 0O0O0OO0OTO OO

1

0 0O0OOTOOOOO4 0 00 OOOOOOOOTO

000

00 00 0O0OOOOOOOOOOOTGOTOS38 1

1

1133 0 0 0 0 0 0O 0 0O O O OO O OOOOOZYT77OO OO

2103 0 05 000O0OO0O0OO0OO0ODO0ODO0ODO0ODO0OO0OO0OO0OO0OO0OO

3] 11

40 0 238 0 0 0O 0O OOOOOOOOOOOOOODO

50 3 0 037 0 0O 0OOOOOOOOOOOOOOODO

6l 0 0O 0OOO40 0 0 OOOOOOOOOOOOOTODO

770 0 00O O40 0O0OOO0OOOOOOOOOOOTGOTGO

80 0 0O0O0OOO4 O0OOOOOOOOOOOOOOOQO

90 0 0 00O OO 034 00 0S50

100 0 0 0 0 0 0O 0O 0O 040 0 O 0 0 O OO O OOOU ODWO

11

1220 0 0 0O OOOOOOS53 00O0O0O0O0OO0O0O0OTO0TO
130 0 0 0O OOOOO0OOOO0O33 03 0O0O0O0O0O0O0OTO
140 0 0 0 0O 0O O OOO OO 040 0 O O OO OO OTDO
1590 0 0 0 O OOOOOOO 503 00O0O0O0O0O0TO
16y 0 0 0 0 0 0O 0O O O O O OO O 040 0 O O 0 O 0 O
i770 0 0 0 0 O 0O 0O O OO OO OO O3 002000
1990 0 0 0 0O O OO OOOOOTGOTUOT O O4 0 0 0 0O

20

230 0 0O OOOOOOOOOOT OO OZ®20 33 000
2400 0 0 0OOOOOO0OOOOOOT O OO OGO OO4 00O
26 0 0 0 0OOOOOOOOOO OO OO OOO 040 O
2710 0 0 0 0O OOOOOOOOOOOOOO 0 0 040
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Appendix K. Software code

The robotic arm software is written in Microsoft MFC (using Visual Studio version 6.0),
using the OpenCV machine vision library routines, under Windows2000).

The dissertation includes two main systems: a) the system that controls a telerobot/virtual
robotic arm according to hand gestures evoked by the user, called “GestureRec” and, b) the
system that finds GV solutions (matching commands to gestures), called “QAPI”.

Additional smaller systems uses small variation of the codes presented for the “GestureRec”
system, such the one to control the virtual VMR.

GestureRec

This system is used to train, test and run the recognition module for the hand gesture system.
This system uses an optimized supervised FCM to cluster feature vectors that represent gesture
instances. Each centroid represents a gesture class. Once the FCM classifier is trained and
calibrated using a training set of gesture images, it is used to assign classes to gesture samples
provided in real-time by the user. These gestures have assigned commands that are sent to a
virtual robotic arm to carry out an action. A flowchart describing the operation of the system is
presented in Figure K.1.

Fed,... L Camera
zer Gesture w  Capture p Pre-Processing
System .
Evoked Y l Classified Gesture, G
i - p Add & ta
Feature Extraction - Recognition * gesture packe

Feature Vectar = [, .., izl of Gesture G,

End of

'y " e packet?
Imeges
Convert gesture
| | Sendimages | Execite | Fobot controller Setl;':: DPua;ket packet to =
from remote site [ command FIFO [7 bLifier comnan o
TCR/IP packet

Figure K.1. Flowchart of the GestureRec system

GestureRec Object and Methods Description

The following tables present the objects used in each system, all their members and methods,
and the description of each of them.

GestureRec Class

Members Description

long SizeX; Buffer Size X of the frame grabber

long SizeY; Buffer Size Y of the frame grabber

long DigSizeX; Digitizer input width of the frame grabber
long DigSizeY; Digitizer input height of the frame grabber
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long nBands;

Number of input color bands of the digitizer of the
frame grabber

BOOL GrablsStarted;

State of the grab of the frame grabber

CView *GrablnViewPtr;

Pointer to the view that has the grab of the frame
grabber

long NumberOfDigitizer;

Number of digitizers available on the system

MIL_ID MilApplication;

The MIL application ID

MIL_ID MilSystem;

MIL_ID MilDisplay;

The MIL system ID

MIL_ID MilDigitizer;

The MIL display ID

MIL_ID Millmage;

The MIL digitizer ID

The MIL image ID

void MV1_Open();

Initialize the frame grabber

void MV1_Close();

Closes the frame grabber

void MV1_StartGrablt();

Start grabbing images to the frame grabber

void MV1_StopGrablt();

Stop grabbing images from the frame grabber

Methods

Description

int RoiNorm( int NumRows,int NumCols,Iplimage
*src,int minX,int maxX,int minY,int maxyY);

Given a ROI rectangular, blocks are created as a
result of rows and columns. Each block has a value
which is the average of the grayscale values in the
block

void Bouncing_Box(Iplimage *src,int &minX,int
&maxX,int &minY,int &maxyY );

A bounding box is created around the biggest blob in
the image. The biggest blob is obtained by calculating
the largest perimeter of the contour of each blob

void CopyVector2Buffer(int counter,int minX,int
maxX,int minY,int maxY,short int flag,int the_contador);

A vector including the values of the block partition is
stored in the buffer memory

void CopyBuffer2DB(const int Nframes);

The buffer memory content including the feature
vectors is copied to a database

int CopyDB2Buffer();

Copy the content of the feature vector table of the
database to the buffer memory

void StringVector2ValueVector(int counter);

The string representing the feature vector is converted
to a vector of numerical values

void Weight_String2Weight_Vector(); // Convert a
string of weights to a vector of weights

The weighted string is converted to a weighted
numerical vector

void CreateFeaturesMatrix();

The string vectors matrix is converted to a matrix of
numerical values

void DisplayFeatures(int counter,int Rows,int Cols);

Displays an image composed of blocks with different
grayscales values for a given feature vector

void AddValue2Vector(int value,int index);

Adds a value of grayscale for the current block to the
feature vector

void RandomClusters(int Nclusters,int NumFrames);

Randomize the clusters centroids to init the FCM
algorithm

float D(int i,int j);

Find the Euclidian distance between two vectors

float Find_MiulJ(int i,int j)

Find the membership value for a given feature vector

void CreateMembership();

Creates the membership matrix (FCM algorithm)

void CreateCentroids();

Creates the centroids matrix (FCM algorithm)

void Find_Gi(int i);

Updates the current centroid using the information of
the membership values (FCM algorithm)

float CostFunction();

Find the cost function (FCM algorithm)

void Membership2DB();

Copy the membership matrix to the membership table
in the database




166

void Centroid2DB();

Copy the centroid matrix to the centroid table in the
database

void Cost2DB(float cost);

Copy the cost values of every iteration to the cost
table in the database

int DB2Centroid();

Copy from the centroids table of the database to the
memory

int DB2Membership();

Copy from the membership table of the database to
the memory

void CopyVector2Mat(int counter,short int flag);

Copy a vector to a matrix data type

void CreateNewMembership(int j,short int flag);

For a new feature vector from a real-time image, find
the membership value

void NewMembership2DB(short int flag);

Copy the new membership value to the membership
table in the database

void DrawGraphico(int j,short int flag);

Shows a bar graph representing the membership
values of the current feature vector

int Pictures_inDB();

Count the number of feature vectors in the database

void RandomOneCluster(int Nclusters,int Nframes);

Randomize the initial position of only one new cluster

int Clusters_inDB();

Counts the number of clusters stored in the database

int Input_Parameters(char file_name[250]);

Copy the tuning parameters for the FCM, from the
database to the memory

void AutomaticBatchMode(char file_name[250]);

Runs automatically a training session of the FCM
without user interaction

void AutomaticTestMode(char file_name[250]);

Runs automatically a testing session of the FCM
without user interaction

void SendTcpMessage(int j,short int flag,char
sTotal[50],int &cont); //uses TCP/IP, send the
command

Uses TCP protocol to send a message to the robotic
arm server

void CloseTcpMessage(); //uses TCP/IP, send the
command

Close the communication port between the client to
the robotic arm server

int OpenTcpMessage(); //uses TCP/IP, send the
command

Open the communication port between the client and
the robotic arm server

void ShowLab(int &conter); //show an image of the lab,
jpg pic

Shows an image of the distant scenario and sends it
through FTP

bool Listen(int PortNum);

Listen to the server for specific command
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/! GestureRec.h : main header file for the GESTUREREC application
I

#if !defined(AFX_GESTUREREC_H__D111738D_241B_49C7_A936_F33231E3B2D6__INCLUDED_)
#define AFX_GESTUREREC_H__D111738D_241B_49C7_A936_F33231E3B2D6__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif / _"MSC_VER > 1000

#ifndef _ AFXWIN_H__
#error include 'stdafx.h' before including this file for PCH
#endif

#include "resource.h" // main symbols

it

/I CGestureRecApp:

/I See GestureRec.cpp for the implementation of this class
"

class CGestureRecApp : public CWinApp

{
public:

CGestureRecApp();

/I Overrides
/I ClassWizard generated virtual function overrides
II{{AFX_VIRTUAL(CGestureRecApp)
public:
virtual BOOL InitInstance();
/I}YAFX_VIRTUAL

// Implementation

I {AFX_MSG(CGestureRecApp)
// NOTE - the ClassWizard will add and remove member functions here.
/' DO NOT EDIT what you see in these blocks of generated code !

I} }AFX_MSG

DECLARE_MESSAGE_MAP()

I
Y

II{{AFX_INSERT_LOCATION}}
/I Microsoft Visual C++ will insert additional declarations immediately before the previous line.

#endif // !defined(AFX_GESTUREREC_H__D111738D_241B_49C7_A936_F33231E3B2D6__INCLUDED_)
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// GestureRecDIg.h : header file
1

#if
!defined(AFX_GESTURERECDLG_H__CBDSD3DF_8219_4531_AE49_9855E11BC1BD__INCLUDED_)
#define AFX_GESTURERECDLG_H__CBD8D3DF_8219_4531_AE49_9855E11BC1BD__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _"MSC_VER > 1000

CV_TURN_ON_IPL_COMPATIBILITY ();

/f#include <ipl.h>
#include <cv.h>
#include "HighGULh"
#include "mil.h"
#include "mwinmil.h"
#include "milsetup.h”
#include "milerr.h"
#include <stdio.h>

#iftndef _WIN32 // If not compiling on a Windows system
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <unistd.h>
#include <netdb.h>
#include <arpa/inet.h>

#define SOCKET int
#define INVALID_SOCKET -1
#define closesocket close
#include <pthread.h>

#else // Yes this is a Windows system

#include <winsock.h>
#define socklen_tint
// Programmatically setup the necessary library files
#if defined(_MSC_VER)
#pragma comment(lib, "wsock32.1ib")
#elif defined(_ BORLANDC_ )
#pragma(lib, "mswsock.lib")
#endif
#endif

[FxkE% Al this files were for the TCP/IP client ks skeskksieskestsk /f

i
/I CGestureRecDlg dialog

class CGestureRecDlg : public CDialog
{
/I Construction
public:
CGestureRecDlg(CWnd* pParent = NULL);// standard constructor

// Dialog Data
I{{AFX_DATA(CGestureRecDIg)
CButton m_ok;
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enum { IDD = IDD_GESTUREREC_DIALOG };

long SizeX; // Buffer Size X

long SizeY; // Buffer Size Y

long DigSizeX; // Digitizer input width

long DigSizeY;; /I Digitizer input heigh

long nBands; // Number of input color bands of the digitizer
BOOL GrablsStarted; // State of the grab

CView *GrabInViewPtr; // Pointer to the view that has the grab

long NumberOfDigitizer; // Number of digitizers available on the system
MIL_ID MilApplication; // The MIL application ID

MIL_ID MilSystem; /I The MIL system ID

MIL_ID MilDisplay; // The MIL display ID

MIL_ID MilDigitizer; /I The MIL digitizer ID

MIL_ID Millmage; /I The MIL image ID
MAPPHOOKFCTPTR HandlerPtr;

void* HandlerUserPtr;

// NOTE: the ClassWizard will add data members here
/11 YAFX_DATA

/I ClassWizard generated virtual function overrides
II{{AFX_VIRTUAL(CGestureRecDIg)

protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

/[}}AFX_VIRTUAL

// Implementation
protected:
HICON m_hlIcon;

void ChangeSize();
void MV 1_Open();
void MV 1_Close();
void MV 1_StartGrablt();
void MV 1_StopGrablt();

int RoiNorm( int NumRows,int NumCols,IplImage *src,int minX,int maxX,int minY,int maxY);
void Bouncing_Box(Ipllmage *src,int &minX,int &maxX,int &minY,int &maxY );

void CopyVector2Buffer(int counter,int minX,int maxX,int minY,int maxY,short int flag,int the_contador);
void CopyBuffer2DB(const int Nframes);

int CopyDB2Buffer();

void StringVector2ValueVector(int counter);

void Weight_String2Weight_Vector(); // Convert a string of weights to a vector of weights

void CreateFeaturesMatrix();

void DisplayFeatures(int counter,int Rows,int Cols);

void AddValue2Vector(int value,int index);

void RandomClusters(int Nclusters,int NumFrames);

float D(int i,int j);

float Find_MiulJ(int i,int j);

void CreateMembership();

void CreateCentroids();

void Find_Ci(int i);

float CostFunction();

void Membership2DB();

void Centroid2DB();

void Cost2DB(float cost);
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int DB2Centroid();

int DB2Membership();

void CopyVector2Mat(int counter,short int flag);
void CreateNewMembership(int j,short int flag);
void NewMembership2DB(short int flag);

void DrawGraphico(int j,short int flag);

int Pictures_inDB();

void RandomOneCluster(int Nclusters,int Nframes);
int Clusters_inDB();

int Input_Parameters(char file_name[250]);

void AutomaticBatchMode(char file_name[250]);
void AutomaticTestMode(char file_name[250]);

void SendTcpMessage(int j,short int flag,char sTotal[50],int &cont); //uses TCP/IP, send the command
// the flag says if we use database, so continue add to array of frames

// or stay always at the end of the array of frames (same place)

/ sTotal is the bunch of strings (each string is a number-gesture

// cont is a counter of the bunch, for example 5.

void CloseTcpMessage(); //uses TCP/IP, send the command

int OpenTcpMessage(); //uses TCP/IP, send the command

void ShowLab(int &conter); //show an image of the lab, jpg pic

//************ TCP/IP FunCtiOnS ********///
bool SendMsg(char *Msg, int Len, char *host, short port);
bool Listen(int PortNum);

static void *ListenThread(void *data);
SOCKET ListenSocket; // the socket that we're listening for connections on
sockaddr_in srv; /I the address that the server is listening on

sockaddr_in client; /I the address that the last message was received from
[k Were TCP/IP Functions %%k ///

/l Generated message map functions
{{AFX_MSG(CGestureRecDIg)
virtual BOOL OnlnitDialog();
virtual void OnOKJ();
virtual void OnCancel();
afx_msg void OnSysCommand(UINT nID, LPARAM IParam);
afx_msg void OnPaint();
afx_msg HCURSOR OnQueryDraglcon();
afx_msg void OnStart();
afx_msg void OnProcess();
afx_msg void OnFindClusters();
afx_msg void OnLoad_Clusters();
afx_msg void OnCapture_Gesture();
afx_msg void OnAdd_Gesture();
afx_msg void OnBatchMode();
afx_msg void OnRunBatchMode();

void EndDialog(int nResult); // Destructor TCP/IP
/Y YAFX_MSG
DECLARE_MESSAGE_MAP()
1
II{{AFX_INSERT_LOCATION}}
/I Microsoft Visual C++ will insert additional declarations immediately before the previous line.
#endif
!defined(AFX_GESTURERECDLG_H__CBDSD3DF_8219_4531_AE49 9855E11BC1BD__INCLUDED_)
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/I GestureRec.cpp : Defines the class behaviors for the application.
1

#include "stdafx.h"
#include "GestureRec.h"
#include "GestureRecDlg.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] =_ FILE__;
#endif

i
/I CGestureRecApp

BEGIN_MESSAGE_MAP(CGestureRecApp, CWinApp)
I{{AFX_MSG_MAP(CGestureRecApp)

// NOTE - the ClassWizard will add and remove mapping macros here.

// DO NOT EDIT what you see in these blocks of generated code!
/1Y YAFX_MSG
ON_COMMAND(ID_HELP, CWinApp::OnHelp)
END_MESSAGE_MAP()

i
/I CGestureRec App construction

CGestureRecApp::CGestureRecApp()
{

// TODO: add construction code here,
/ Place all significant initialization in InitInstance

}

i
/l The one and only CGestureRecApp object

CGestureRecApp theApp;

i
/I CGestureRecApp initialization

BOOL CGestureRecApp::InitInstance()
{

AfxEnableControlContainer();

// Standard initialization

// If you are not using these features and wish to reduce the size

/I of your final executable, you should remove from the following
/I the specific initialization routines you do not need.

#ifdef _AFXDLL

Enable3dControls(); // Call this when using MFC in a shared DLL

#else
Enable3dControlsStatic(); // Call this when linking to MFC statically
#endif

CGestureRecDlg dlg;
m_pMainWnd = &dlg;

int nResponse = dlg.DoModal();
if (nResponse == IDOK)
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// TODO: Place code here to handle when the dialog is
/I dismissed with OK

1
else if (nResponse == IDCANCEL)

{
// TODO: Place code here to handle when the dialog is

// dismissed with Cancel

}

/I Since the dialog has been closed, return FALSE so that we exit the
/I application, rather than start the application's message pump.
return FALSE;
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/I GestureRecDlg.cpp : implementation file
/I

/l For the independent system found to be the best: Clusters=18, Rows=4, Cols=5,weight=3 Accuracy= 98.2%
/1 /] For the dependent system found to be the best: Clusters=15, Rows=3, Cols=4,weight=2.5
// For the old dependent system found to be the best: Clusters=13, Rows=3, Cols=4,weight=2.5

#include "stdafx.h"
#include "GestureRec.h"
#include "GestureRecDlg.h"
#include "assert.h"
#include <time.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <iostream>
#include <ole2.h>
#include "conio.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] =_ FILE__;
#endif

long nCols, nRows; /I MIL image dimensions

#import "C:\Program Files\Common Files\System\ADO\msado15.d11" \
no_namespace rename("EOF", "EndOfFile")

inline void TESTHR(HRESULT x) {if FAILED(x) _com_issue_error(x);};

CImage imagen,resized,blackwh,featu,grafico,lab,i,im;
CStatic mimg,mimg2,mimg3,mimg4,mimg5;

char buffer[640%480];

/lconst int Rows=4; // originally=3
/lconst int Cols=5;  // originally=4
int Rows=3;
int Cols=4;
int Nframes=0; //(((((((())))))))))samples to learn, suggested 390;
// We'll find the number of pictures in DB.
const int grab_cycle=60; // how many pictures grab per cycle
//int Nclusters=18,CLUSTERS=Nclusters; // number of clusters (partitions) // before this was 13
int Nclusters=18,CLUSTERS=Nclusters; // number of clusters (partitions) // before this was 13
int FeatureLen=Rows*Cols+1;
int Old_FeatureLen=0; /number of features (incl. aspect ratio from the prev. run)
float m=2; // fixed value for fuzzy clustering
/fint seed=1; // best produced by 100000
const int NewFrames=10000; // images to grab in testing stage
double weights_val[100]; //weights in float format
int bw_threshold=0; // threshold for image processing grayscale to black and white
const double threshold=0.8; // Every gesture bigger than this value (membership) is recognized
int number_of files=260;
char weights[1000];
int IMG_WIDTH=320; //Width of all the working images beside the frame-grabber
int IMG_HEIGHT=240; //Height of all the working images beside the frame-grabber

char vector[1000];
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float IntVector[200];

struct BufferMem
{
char gest[256];
char file[256];
char width[256];
char height[256];
char data[4000];
|5

struct BufferValue

{
//float data[FeatureLen];
float data[101];
unsigned int width;
unsigned int height;

|

struct BufferCentroid

{
//float data[FeatureLen];

float data[101];

BufferMem Buffer[20000];

BufferMem DestBuffer[20000];
BufferValue MatFeatures[20000];

CvMat Uij = cvMat(100,Nframes+NewFrames,CV_MAT32F,NULL);
//CvMat Ci = {Nclusters,FeatureLen,CV_MAT32F,0,NULL};

BufferCentroid Ci[100];

i
/I CAboutDlg dialog used for App About

class CAboutDlg : public CDialog

{
public:

CAboutDIg();

// Dialog Data

II{{AFX_DATA(CAboutDlg)
enum { IDD = IDD_ABOUTBOX };

//}}AFX_DATA

/I ClassWizard generated virtual function overrides
II{{AFX_VIRTUAL(CAboutDlg)

protected:

virtual void DoDataExchange(CDataExchange* pDX);

I} }AFX_VIRTUAL

// Implementation
protected:

II{{AFX_MSG(CAboutDlg)

/1Y YAFX_MSG

/I DDX/DDV support
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DECLARE_MESSAGE_MAP()
|

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{

I{{AFX_DATA_INIT(CAboutDlg)

/11 YAFX_DATA_INIT

}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
CDialog::DoDataExchange(pDX);
I{{AFX_DATA_MAP(CAboutDlg)
/11 YAFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
II{{AFX_MSG_MAP(CAboutDlg)
// No message handlers
/1Y YAFX_MSG_MAP
END_MESSAGE_MAP()

i
/I CGestureRecDlg dialog

CGestureRecDlg::CGestureRecDlg(CWnd* pParent /*=NULL*/)

: CDialog(CGestureRecDlg::IDD, pParent)

{
II{{AFX_DATA_INIT(CGestureRecDlg)

// NOTE: the ClassWizard will add member initialization here

/1Y YAFX_DATA_INIT

// Note that LoadIcon does not require a subsequent Destroylcon in Win32
m_hlcon = AfxGetApp()->Loadlcon(IDR_MAINFRAME);

}

void CGestureRecDlg::DoDataExchange(CDataExchange* pDX)

{

CDialog::DoDataExchange(pDX);

II{{AFX_DATA_MAP(CGestureRecDlg)
DDX_Control(pDX, IDOK, m_ok);
DDX_Control(pDX, IDC_IMG, mimg);
DDX_Control(pDX, IDC_IMG2, mimg2);
DDX_Control(pDX, IDC_IMG3, mimg3);
DDX_Control(pDX, IDC_IMG4, mimg4);
DDX_Control(pDX, IDC_IMGS, mimg5);

// NOTE: the ClassWizard will add DDX and DDV calls here

//}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CGestureRecDlg, CDialog)
II{{AFX_MSG_MAP(CGestureRecDlg)
ON_WM_SYSCOMMAND()

ON_WM_PAINT()

ON_WM_QUERYDRAGICON()
ON_BN_CLICKED(IDC_BUTTONI1, OnStart)
ON_BN_CLICKED(DC_BUTTON?2, OnProcess)
ON_BN_CLICKED(DC_BUTTON?3, OnFindClusters)
ON_BN_CLICKED(IDC_BUTTON4, OnLoad_Clusters)

ON_BN_CLICKED(IDC_BUTTONS, OnCapture_Gesture)

ON_BN_CLICKED(IDC_BUTTONG6, OnAdd_Gesture)
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ON_BN_CLICKED(IDC_BUTTON7, OnBatchMode)
ON_BN_CLICKED(IDC_BUTTONS, OnRunBatchMode)

//}}AFX_MSG_MAP
END_MESSAGE_MAP()

i
/I CGestureRecDlg message handlers

BOOL CGestureRecDIg::OnlnitDialog()

{
CDialog::OnlnitDialog();

char file_name[250];
//#%*% TCP/IP Files **#*%*
ListenSocket = INVALID_SOCKET; /I Set to INVALID to begin with
#ifdef _WIN32 // don't need to do anything if not a Windows machine
WORD VersionRequested = MAKEWORD(1,1);
WSADATA wsaData;
WSAStartup(VersionRequested, &wsaData); // starts the Winsock service
if ( wsaData.wVersion != VersionRequested )

/fprintf("Wrong version or WinSock not loaded\n");
AfxMessageBox("Wrong version or WinSock not loaded\n");
fflush(0);
}
#endif
/1E%%% Were TCP/IP Files *#%#%*
Nframes=Pictures_inDB(); // Find how many pictures are already in DB
int status=Input_Parameters(file_name); // Find ROWS, COLS, WEIGHTS,M,BW_THRESHOLD
number_of_files (samples per gesture)
FeatureLen=Rows*Cols+1;
CLUSTERS=NCclusters;
Weight_String2Weight_Vector(); // Convert the weights string to a weight vector

// Add "About..." menu item to system menu.

// IDM_ABOUTBOX must be in the system command range.
ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < 0xF000);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL)

CString strAboutMenu;

strAboutMenu.LoadString(IDS_ABOUTBOX);

if (!strAboutMenu.IsEmpty())

{
pSysMenu->AppendMenu(MF_SEPARATOR);
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);

}

/I Set the icon for this dialog. The framework does this automatically
/I when the application's main window is not a dialog
Setlcon(m_hIcon, TRUE); /I Set big icon
Setlcon(m_hIcon, FALSE); // Set small icon

// TODO: Add extra initialization here
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/1 All the automatic part will be here *### ks sk wokdokk
if (status==1) // status show if is train or test run (status=1 => train)

{
AutomaticBatchMode(file_name);// //++++++++++++++++++++++++++UNCOMMENT IT FOR
EXTERNAL RUN
OnProcess();// /++++++++++++++++++++++++++UNCOMMENT IT FOR EXTERNAL RUN
OnFindClusters();// //++++++++++++++++++++++++++UNCOMMENT IT FOR EXTERNAL
RUN

else

OnLoad_Clusters();// //++++++++++++++++++++++++++UNCOMMENT IT FOR EXTERNAL
RUN
AutomaticTestMode(file_name);// //[++++++++++++++++++++++++++UNCOMMENT IT FOR
EXTERNAL RUN
}
OnOK(); /++++++++++++++++++++++++++UNCOMMENT IT FOR EXTERNAL RUN
return TRUE; // return TRUE unless you set the focus to a control

}

void CGestureRecDlg::OnSysCommand(UINT nID, LPARAM IParam)

{
if ((nID & 0xFFF0) == IDM_ABOUTBOX)

{
CAboutDlg digAbout;
digAbout.DoModal();

CDialog::OnSysCommand(nID, 1Param);

/I If you add a minimize button to your dialog, you will need the code below
/I to draw the icon. For MFC applications using the document/view model,
/I this is automatically done for you by the framework.

void CGestureRecDIg::OnPaint()

{
if (IsIconic())

{
CPaintDC dc(this); // device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

// Center icon in client rectangle

int cxIcon = GetSystemMetrics(SM_CXICON);
int cylcon = GetSystemMetrics(SM_CYICON);
CRect rect;

GetClientRect(&rect);

int X = (rect. Width() - cxIcon + 1) / 2;

int y = (rect.Height() - cylcon + 1) / 2;

// Draw the icon
dc.Drawlcon(x, y, m_hlcon);

else

CDialog::OnPaint();
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CDC *dcl = mimg.GetDC();

CDC *dc2 = mimg2.GetDC();
CDC *dc3 = mimg3.GetDC();
CDC *dc4 = mimg4.GetDC();
CDC *dc5 = mimg5.GetDC();

i.Show (dc1->m_hDC, 0, 0, i.Width(), i.Height(), 0, 0);

blackwh.Show (dc2->m_hDC, 0, 0, blackwh.Width(), blackwh.Height(), 0, 0);
featu.Show (dc3->m_hDC, 0, 0, featu.Width(), featu.Height(), 0, 0);
grafico.Show(dc4->m_hDC,0,0, grafico.Width(),grafico.Height(),0,0);
lab.Show(dc5->m_hDC,0,0, lab.Width(),lab.Height(),0,0);

featu.Destroy();
grafico.Destroy();

mimg.ReleaseDC( dc1 );

mimg2.ReleaseDC( dc2 );
mimg3.ReleaseDC( dc3 );
mimg4.ReleaseDC( dc4 );
mimg5.ReleaseDC( dc5 );

}

/I The system calls this to obtain the cursor to display while the user drags
/I the minimized window.
HCURSOR CGestureRecDlg::OnQueryDraglcon()

{
}

return (HCURSOR) m_hlIcon;

void CGestureRecDlg::ChangeSize()

{
// resize window
RECT r;
GetWindowRect (&r);
r.bottom=r.top+max(resized.Height()+40, 400);
r.right=r.left+resized. Width()+165;
MoveWindow (&r);
mimg.MoveWindow (10, 10, resized. Width(), resized.Height());
}
void CGestureRecDIg::MV1_Open()
{

MappAllocDefault(M_SETUP,&MilApplication,&MilSystem,&MilDisplay,&MilDigitizer, NULL);
Mdiglnquire(MilDigitizer, M_SIZE_BAND, &nBands);
Mdiglnquire(MilDigitizer, M_SIZE_X, &nCols);
Mdiglnquire(MilDigitizer, M_SIZE_Y, &nRows);
MbufAllocColor(MilSystem, nBands, nCols,
nRows,8L+M_UNSIGNED ,M_IMAGE+M_DISP+M_GRAB+M_PROC+M_OFF_BOARD+M_BGR24+M_PACK
ED,&Millmage);

}

void CGestureRecDlg::MV1_Close()
{
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MappFreeDefault(MilApplication,MilSystem,MilDisplay,MilDigitizer,Millmage);
}

void CGestureRecDlg::MV 1_StartGrablt()

{
MdigGrabContinuous(MilDigitizer, Millmage);

}

void CGestureRecDlg::MV1_StopGrablt()
{

}

MdigHalt(MilDigitizer);

// Find the number of pictures already in the DB
int CGestureRecDlg::Pictures_inDB()

{

int number=0;
HRESULT hr=S_OK;
_bstr_t gest_num;

if(FAILED(::Colnitialize(NULL)))
{
AfxMessageBox("Problems opening Gesture DB.");
exit(1);
return 1;

1
if (SUCCEEDED(hr))
{
_RecordsetPtr pRstGestures("ADODB.Recordset");
/I Connection String
_bstr_t strCnn("DSN=gesture;");
/I Open table

try

{
pRstGestures->Open("SELECT COUNT(*) AS result FROM GESTURE;", strCnn, adOpenStatic,
adLockReadOnly, adCmdText);
gest_num =((_bstr_t) pRstGestures->GetFields()->Getltem("result")->GetValue());
number=atoi(gest_num);
pRstGestures->Close();

}

catch (_com_error &e)

{

/I Notify the user of errors if any.
// Pass a connection pointer accessed from the Recordset.
_variant_t vtConnect = pRstGestures->GetActiveConnection();

AfxMessageBox((char*) e.Description());
exit(1);

/I GetActiveConnection returns connect string if connection
/I is not open, else returns Connection object.

}

// Clean up objects before exit.
if (pRstGestures)
if (pRstGestures->State == adStateOpen)
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pRstGestures->Close();

}

return number;

}

// This function finds the number of clusters (centroids) that already exist in the DB
int CGestureRecDlg::Clusters_inDB()

{

int number=0;
HRESULT hr=S_OK;
_bstr_t gest_num;

if(FAILED(::Colnitialize(NULL)))
return 1;
if (SUCCEEDED(hr))
{
_RecordsetPtr pRstGestures("ADODB.Recordset");
// Connection String
_bstr_t strCnn("DSN=gesture;");
// Open table

try

{
pRstGestures->Open("SELECT COUNT(*) AS result FROM CENTROID;", strCnn,
adOpenStatic, adLockReadOnly, adCmdText);
gest_num =((_bstr_t) pRstGestures->GetFields()->Getltem("result")->GetValue());
number=atoi(gest_num);
pRstGestures->Close();
1
catch (_com_error &e)
{
/I Notify the user of errors if any.
// Pass a connection pointer accessed from the Recordset.
_variant_t vtConnect = pRstGestures->GetActiveConnection();

AfxMessageBox((char*) e.Description());

exit(1);
/I GetActiveConnection returns connect string if connection
/I is not open, else returns Connection object.

}
}

return number;

void CGestureRecDlg:: AddValue2 Vector(int value,int index)

{
char val[10]="";

char zeros[10]="";

IntVector[index]=value; // add the integer value to a vector
sprintf(val, "%d",value); // add the string...
if (value < 10) //padd with 0 zero
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{
strepy(zeros,"00");
strcat(zeros,val);
strcpy(val,zeros);
1
else if (value < 100) // padd with 00 zeros
{
strepy(zeros,"0");
strcat(zeros,val);
strepy(val,zeros);
}

// put inside inside an string (string of vectors)
strcat(vector,val);
strcat(vector," ");

int CGestureRecDlg::RoiNorm( int NumRows,int NumCols,Ipllmage *src,int minX,int maxX,int minY,int
maxY)

{

strepy(vector,""); //init vector with features

const rawSizex = IMG_WIDTH;/// raw size of image
const rawSizey = IMG_HEIGHT;/// raw size of image
int tsizeX = (maxX-minX) / NumCols;

int tsizeY = (maxY-minY) / NumRows;

int tarea = tsizeX*tsizeY;

int index=0;

if (tsizeX<=0) tsizeX=1;
if (tsizeY<=0) tsizeY=1;

if (minX>=maxX) minX=1;
if (minY>=maxY) minY=1;

featu.Create(IMG_WIDTH,IMG_HEIGHT,8);
IplImage *dst=featu.GetImage();
cvSet( dst, CV_RGB(0,0,0) );

/finsert the size ratio (height/width) in the beginning of the feature vector
AddValue2Vector((int) (weights_val[0]*97.32*(maxY-minY)/(maxX-minX)),index);
//AddValue2Vector(maxY-minY);
_try {
/// the images will use ROI for operations,
//1 the source image uses the ROI to calculate L1 norm,
/// the destination image uses the ROI to set value
IpIROI roiSource = { 0, 0,0, tsizeX,tsizeY };
IpIROI roiDest = { 0, 0,0, tsizeX,tsizeY };
src->rol = &roiSource;
dst->roi = &roiDest;

/Il for each ROI
for( int y=0; y<NumRows; ++y ) {
roiSource.yOffset = tsizeY * y + minY;
roiDest.yOffset = tsizeY * y; // fixed in place
for( int x=0; x<NumCols; ++x ) {
roiSource.xOffset = tsizeX * X + minX;
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roiDest.xOffset = tsizeX * x; // fixed in place
/I get mean value from source
int value = (int)( cvNorm( src, NULL, CV_L1 )/ tarea );
/] put this value to destination

cvSet(dst,cvScalar(value));

/I transforms the value to a string.
index++;
AddValue2Vector((int)floor(10*weights_val[index]*value),index); //add the other
features
}
}

1

__finally {
/Il preserve automatic variable and free memory
src->roi = dst->roi = NULL;
/fipIDeallocate( src, IPL_IMAGE_ALL );
/fipIDeallocate( dst, IPL_IMAGE_ALL );

1

//memcpy(vec,vector, sizeof(buffer));

return(0);

}

void CGestureRecDlg::Bouncing_Box(Ipllmage *src,int &minX,int &maxX,int &minY,int &maxy )

{

CImage cont;
cont.Create(IMG_WIDTH,IMG_HEIGHT,38);
Ipllmage* contur = cont.GetImage();
cvCopy(src,contur);

int surface=0;

CvSeq *contour = NULL,;

CvSeqReader reader;

CvMemStorage *storage = cvCreateMemStorage(0);
surface=cvCountNonZero (contur);

CvPoint cornerl;

CvPoint corner2;

minX=IMG_WIDTH;
maxX=0;
minY=IMG_HEIGHT;
maxY=0;

/lcvRect windo;

if (surface>80) //if this surface is bigger than 80 pixels

{
cvFindContours(contur, storage,&contour,sizeof (CvContour),
CV_RETR_LIST,CV_CHAIN_APPROX_SIMPLE);
if ( contour )

{

for( CvSeq* copycontour = contour; copycontour != 0; copycontour =
copycontour->h_next )

{
cvStartReadSeq( copycontour, &reader, 0 );

if (copycontour->total>40)

{

for(inti = 0; i < copycontour->total; i++ )

{
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CvPoint pt;

CV_READ_SEQ_ELEM( pt, reader );
if (pt.x<minX) minX=abs(pt.x);

if (pt.x>maxX) maxX=abs(pt.x);

if (pt.y<minY) minY=abs(pt.y);

if (pt.y>maxY) maxY=abs(pt.y);

}
}

cornerl.x=minX;
cornerl.y=minY;
corner2.x=maxxX;
corner2.y=maxyY;
}
}
cvRectangle(src,cornerl,corner2, CV_RGB(128,128,128),1);

cont.Destroy();
cvReleaseMemStorage(&storage);

}

void CGestureRecDlg::CopyVector2Buffer(int counter,int minX,int maxX,int minY,int maxY,short int flag,int
the_contador)
{
char filen[255]="";
char fpath[255]="";
char width[255]="";
char height[255]="";
/I time_t long_time;
/I long int i;

/I i=time(&long_time);
/li=1066962813;
//  i=i+counter;

sprintf(filen, "%d", the_contador);
strcat(filen,".bmp");
if (flag==1)
strcat(fpath,"C:\\OpenCV_projects\\GestureRec\\pics\\");
else
strcat(fpath,"C:\\OpenCV_projects\\GestureRec\\picsNew\\");

strcat(fpath,filen); // create a filename based in path
//and a big number (time in seconds).

sprintf(width, "%d", maxX-minX);

sprintf(height, "%d", maxY-minY);

if (flag!=3)
resized.Save(fpath); //save the picture with this unique name

if (flag!=3)

{
strcpy(Buffer[counter].gest,fpath);
strcpy(Buffer[counter].file,fpath); //save in buffer the filename
strcpy(Buffer[counter].data,vector); //save in buffer the vector of picture
strcpy(Buffer[counter].width,width);//save in buffer the width of the bounc box
strepy(Buffer[counter].height,height);//save in buffer the hight of the bounc box
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else

{
strcpy(Buffer[Nframes].gest,fpath);
strcpy(Buffer[Nframes].file,fpath); //save in buffer the filename
strcpy(Buffer[Nframes].data,vector); //save in buffer the vector of picture
strcpy(Buffer[Nframes].width,width);//save in buffer the width of the bounc box
strepy(Buffer[Nframes].height,height);//s

1

}

void CGestureRecDlg::CopyBuffer2DB(const int num_frames)
{

char vec[600]="";

char number_pics[50]="";

HRESULT hr=S_OK;

_bstr_t feat;

_bstr_t filen;

_bstr_t width;

_bstr_t height;

_bstr_t n_pics;

if(FAILED(::Colnitialize(NULL)))
return;

if (SUCCEEDED (hr))

/I Define ADO object pointers.
// Initialize pointers on define.
_RecordsetPtr pRstGestures = NULL;
_ConnectionPtr pConnection = NULL;

HRESULT hr = S_OK;

//Replace Data Source value with your server name.
_bstr_t strCnn("DSN=gesture;");
_bstr_t strMessage;

try

{
//Open a connection
TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

neonn

pConnection->Open(strCnn,"","",adConnectUnspecified);

//Open gestures table
TESTHR(pRstGestures.Createlnstance(__uuidof(Recordset)));

/Y ou have to explicitly pass the Cursor type and LockType to the Recordset here
pRstGestures->Open("gesture"”,_variant_t((IDispatch *) pConnection,
true),adOpenKeyset,adLockOptimistic,adCmdTable);

for (int num_pics=Nframes; num_pics<num_frames; num_pics++)

{
/Istrncpy(vec,(Buffer+num_pics)->data,576);
/l vec[576]="\0";
feat=(Buffer+num_pics)->data;
filen=(Buffer+num_pics)->file;
width=(Buffer+num_pics)->width;
height=(Buffer+num_pics)->height;
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sprintf(number_pics,"%d" ,num_pics);
n_pics=number_pics;

pConnection->Execute("INSERT INTO
(filename,gest_name,features,width,height,numb,membership)
("+filen+"',1,""+feat+",""+width+"',""+height+"',""+n_pics+"',0);",NULL,adCmdText);
//pConnection->Execute("INSERT INTO
(filename,gest_name,features,width,height,number,membership)
("+filen+"',1,""+feat+",""+width+"",""+height+"",""+n_pics+"','0");",NULL,adCmdText);
}

pRstGestures->Close();
pConnection->Close();

"

}

catch (_com_error &e)
{
(char*) e.Description();

}

::CoUninitialize();
}
}

int CGestureRecDlg::CopyDB2Buffer()
{

char vec[600]="";

int num_pics=0;

HRESULT hr=S_OK;

_bstr_t feat;

_bstr_t filen;

_bstr_t width;

_bstr_t height;

if(FAILED(::Colnitialize(NULL)))
return 1;
if (SUCCEEDED(hr))
{
_RecordsetPtr pRstGestures("ADODB.Recordset");
// Connection String
_bstr_t strtCnn("DSN=gesture;");
// Open table

try

{

adOpenStatic, adLockReadOnly, adCmdText);

pRstGestures->Open("SELECT * FROM GESTURE ORDER BY

pRstGestures->MoveFirst();

while (!pRstGestures->EndOfFile) {

GESTURE
VALUES

GESTURE
VALUES

ordered;", strCnn,

feat =((_bstr_t)  pRstGestures->GetFields()->Getltem("features")-

>GetValue());

width =((_bstr_t) pRstGestures->GetFields()->Getltem("width")-
>GetValue());

height =((_bstr_t)  pRstGestures->GetFields()->Getltem("height")-
>GetValue());

strcpy(DestBuffer[num_pics].data,feat);
strepy(DestBuffer[num_pics].width,width);
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strcpy(DestBuffer[num_pics].height,height);
pRstGestures->MoveNext();
num_pics++;

}
pRstGestures->Close();
1
catch (_com_error &e)

{
/I Notify the user of errors if any.
// Pass a connection pointer accessed from the Recordset.
_variant_t vtConnect = pRstGestures->GetActiveConnection();

/I GetActiveConnection returns connect string if connection
/I is not open, else returns Connection object.

AfxMessageBox((char*) e.Description());
/I printf("Errors occured.");
// (char*) e.Description();
exit(1);
}

}

return O;

}

void CGestureRecDlg::StringVector2ValueVector(int counter)
{
int digit,total,width,height,index=0;
char *tokenPtr;
total = Rows*Cols;
width=atoi(DestBuffer[counter].width);
height=atoi(DestBuffer[counter].height);

strcpy(vector,DestBuffer[counter].data);
tokenPtr=strtok(vector, " ");

while (tokenPtr !=NULL )

{
digit=atof(tokenPtr);
tokenPtr = strtok(NULL," ");
MatFeatures[counter].data[index]=digit;
index++;

1

MatFeatures[counter].width=width;
MatFeatures[counter].height=height;

void CGestureRecDlg::Weight_String2Weight_Vector()
{

float weight;
char *tokenPtr;
int index=0;

tokenPtr=strtok(weights, " ");
while (tokenPtr [=NULL )
{

weight=atof(tokenPtr);
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tokenPtr = strtok(NULL," ");
weights_val[index]=weight;
index++;

void CGestureRecDIg::CreateFeaturesMatrix()

{
for (int counter=0;counter<Nframes;counter++)

{

StringVector2ValueVector(counter);

}

void CGestureRecDlg::DisplayFeatures(int counter,int Rows,int Cols)
{

int tsizeX = MatFeatures[counter].width / Cols;

int tsizeY = MatFeatures[counter].height / Rows;

int tarea = tsizeX*tsizeY;

featu.Create(IMG_WIDTH,IMG_HEIGHT,38);
Ipllmage *dst=featu.GetImage();
_try {
/// the images will use ROI for operations,
/1/ the source image uses the ROI to calculate L1 norm,
/l/ the destination image uses the ROI to set value
IpIROI roiDest = { 0, 0,0, tsizeX,tsizeY };
/l src->roi = &roiSource;
dst->roi = &roiDest;

//from the second place exist features of greyscale
// before this there is the SizeX and the SizeY of the image
int index=1; //because the place 0 is for the size ratio
/1] for each ROI
for( int y=0; y<Rows; ++y ) {
I roiSource.yOffset = tsizeY * y + minY;
roiDest.yOffset = tsizeY * y; // fixed in place
for( int x=0; x<Cols; ++x ) {
1/ roiSource.xOffset = tsizeX * x + minX;
roiDest.xOffset = tsizeX * x; // fixed in place
/Il get mean value from source
int value = MatFeatures[counter].data[index];
/I/ put this value to destination
cvSet(dst,cvScalar(value));
index++;
}
}
}
__finally {
/Il preserve automatic variable and free memory
dst->roi = NULL;
OnPaint();
featu.Destroy();

}
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/[Creates a matrix of N clusters containing features vectors of N
// random pictures
void CGestureRecDlg::RandomClusters(int Nclusters,int NumFrames)

{

}

bool sign[20000];

int Upper=NumFrames;

float r;

int ran=0;

for (int index=0;index<NumFrames;index++)
sign[index]=false; //sets all to false, in order to know

// which number already been choosen

for (index=0;index<Nclusters;index++)
{
r=((double) rand() / (double) (RAND_MAX+1));
ran = (int) (r*Upper);
/fran=rand() % NumFrames;
while (sign[ran]==true)

r=((double) rand() / (double) (RAND_MAX+1));

ran = (int) (r*Upper);

/lran=rand() % NumFrames;
1
sign[ran]=true;
memcpy(Ci[index].data,MatFeatures[ran].data,FeatureLen*4);

/[Creates a matrix of N clusters containing features vectors of the last cycle
// random pictures
void CGestureRecDlg::RandomOneCluster(int Nclusters,int NumFrames)

{

int Upper=grab_cycle;
float r;
int ran=0,rando;

r=((double) rand() / (double) (RAND_MAX+1));
r=((double) rand() / (double) (RAND_MAX+1));

ran = (int) (r*Upper);
rando = NumFrames-ran;

int index = Nclusters;
memcpy(Ci[index].data,MatFeatures[rando].data,FeatureLen*4);

// Euclidian Distance between the cluster i(vector) and the cluster
/'j (vector).

float CGestureRecDlg::D(int i,int j)

{

float u=0;

CvMat Pointl = cvMat(1,FeatureLen,CV_MAT32F,NULL);
CvMat Point] = cvMat(1,FeatureLen,CV_MAT32F,NULL);
CvMat PointDiff = cvMat(1,FeatureLen,CV_MAT32F,NULL);
//ICvMat Result = {1,1,CV_MAT32F,0,NULL};
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}

CvMat Result = cvMat(1,1,CV_MAT32F,NULL);

cvmAlloc(&Pointl);
cvmAlloc(&Pointl));
cvmAlloc(&PointDiff);
cvmAlloc(&Result);

float *pl = Pointl.data.fl;
float *pJ = PointJ.data.fl;

memcpy(pl,Ci[i].data,FeatureLen*4);
/lmemcpy(pl,Ci[i].data,sizeof (Ci[i].data));

//for (int index=0;index<FeatureLen;index++)
/! cvmSet(&Pointl,0,index ,Ci[i].data[index]);

memcpy(pJ,MatFeatures[j].data,FeatureLen*4);
//memcpy(pJ,MatFeatures[j].data,sizeof(MatFeatures[j].data));

//for (index=0;index<FeatureLen;index++)
Vi cvmSet(&Point],0,index, MatFeatures[j].data[index]);

cvmSub(&Pointl,&Point],&PointDiff);
cvmMulTransposed(&PointDiff,&Result,0);

u=cvmGet(&Result,0,0);

cvmFree(&Point]);
cvmFree(&Result);
cvmFree(&PointDiff);
cvmFree(&Pointl);
return u;

float CGestureRecDlg::Find_MiulJ(int i,int j)

{

float numerador,denominador;
float result,acc=0;
int num=1;

numerador=D(i,j);
for (int index=0;index<Nclusters;index++)

{

denominador=D(index,});

if ((denominador==0) && (numerador!=0)) //centroid very far!

{
acc=1;
num=0;
break;

1

if ((denominador==0) && (numerador==0)) //centroid overlap!!

{
acc=1;
num=1;
break;

1

acc=acc+pow((numerador/denominador),2/(m-1));
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}

result=num/acc;
return result;

void CGestureRecDlg::CreateMembership()

{

float acc=0,u=0;

float sums[20000];
for (int j=0; j<Nframes; j++)
{
acc=0;
for (int i=0; i<Nclusters; i++)
{
u=Find_MiulJ(i,));
cvmSet(&Uij,i,j,u);
acc=acc+u;
}
sums[j]=acc;
}

void CGestureRecDlg::Find_Ci(int i)

{

float u_ij=0,Acc_Denominador=0,val=0;

CvMat uij = cvMat(1,1,CV_MAT32F,NULL);

CvMat multi = cvMat(FeatureLen,1,CV_MAT32F,NULL);

CvMat Xj= cvMat(FeatureLen,1,CV_MAT32F,NULL);

CvMat Acc_Numerador= cvMat(FeatureLen,1,CV_MAT32F,NULL);
CvMat ci=cvMat(FeatureLen,1,CV_MAT32F,NULL);

cvmAlloc(&uij);
cvmAlloc(&multi);
cvmAlloc(&Xj);
cvmAlloc(&Acc_Numerador);
cvmAlloc(&ci);

cvmSetZero(&Acc_Numerador);
Acc_Denominador=0;

for (int j=0;j<Nframes;j++)

// remeber to improve this loop to an array of vectors using cvMatArray
// ontherways it'll remains very slowly
for (int index=0;index<FeatureLen;index++)
cvmSet(&Xj,index,0, MatFeatures[j].data[index]);

u_ij=cvmGet(&Uij,i,j);

u_ij=pow(u_ij,m);

cvmScale(&Xj,&multi,u_ij);

cvmAdd(&Acc_Numerador,&multi,&Acc_Numerador);
1

for (j=0;j<Nframes;j++)

{

u_ij=cvmGet(&Uij,i,j);
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u_ij=pow(u_ij,m);
Acc_Denominador=Acc_Denominador+u_ij;

}

Acc_Denominador=1/Acc_Denominador;
cvmScale(&Acc_Numerador,&ci,Acc_Denominador);

for (int index=0;index<FeatureLen;index++)
{
val=cvmGet(&ci,index,0);
Ci[i].data[index]=val;

}

/I clean pointers!!!
cvmFree(&uij);
cvmFree(&multi);
cvmFree(&Xj);
cvmFree(&Acc_Numerador);
cvmFree(&ci);

}

void CGestureRecDlg::CreateCentroids()
{
for (int i=0;i<Nclusters;i++)
Find_Ci(i);
}

float CGestureRecDlg::CostFunction()
{

float first,second,acc,total=0;

for (int i=0;i<Nclusters;i++)
{
acc=0;
for(int j=0;j<Nframes;j++)

first=cvmGet(&Uij,1,j);

first=pow(first,m);

second=D(i,j);

second=pow(second, 1);

/I Sholud be second=pow(second,1);

// but I didn't use the root in the calculation of the ditance
// so now, I can eliminate the power 2
acc=acc+first*second;

}

total=total+acc;
1
return total;

}

void CGestureRecDlg::Membership2DB()
{

float u,max=0;

int max_i;

char vec[600]="";

char number_pics[50]="";

char member[500]="";

char Su[100]="";

char Suu[15]="";

char gestu[100]="";
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char s_max[100]="";

HRESULT hr =S_OK;

_bstr_t n_pics;
_bstr_t memberF;
_bstr_t centro;
_bstr_t bs_max;

if(FAILED(::Colnitialize(NULL)))

return;

if SUCCEEDED(hr))

{
// Define ADO

// Initialize pointers

object pointers.
on define.

_RecordsetPtr pRstGestures = NULL;

_ConnectionPtr pCo

nnection = NULL;

HRESULT hr = S_OK;

//Replace Data Source value with your server name.
_bstr_t strCnn("DSN=gesture;");

_bstr_t strMessage;

ry

{

true),adOpenKeyset,adLoc

//Open a connection
TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

nonn

pConnection->Open(strCnn,"","",adConnectUnspecified);

//Open gestures table
TESTHR(pRstGestures.CreateInstance(__uuidof(Recordset)));

/You have to explicitly pass the Cursor type and LockType to the Recordset here
pRstGestures->Open("gesture”,_variant_t((IDispatch *) pConnection,
kOptimistic,adCmdTable);
for(int j=0;j<Nframes;j++)
{

strepy(Su,"");

strcpy(member,"");

max=0;

for (int i=0;i<Nclusters;i++)

{
u=cvmGet(&Uij,i,j);

I if ((u*1000-floor(u*1000)) > 0.5)
I {
1/ u=ceil(u*1000);
/lu=u/1000; //added
I }
1/ else
1/ u=floor(u*1000);
/lu=u/1000; //added
if (u>max)
{

max=u;
max_i=i;
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sprintf(Su,"%t" ,u);
strncpy(Suu,Su,5);
strcat(member,Suu);
strcat(member," ");

sprintf(s_max,"%d",max_i);
bs_max=s_max;
/Isprintf(Su,"%d",(int)u);
//strcat(member,Su);
//strcat(member," ");

}

sprintf(number_pics,"%d",j);

n_pics=number_pics;

memberF=member;

pConnection->Execute("UPDATE GESTURE SET
membership=""+memberF+"',gest_name=""+bs_max+"' WHERE numb=""+n_pics+"";" ,NULL,adCmdText);

}

pRstGestures->Close();
pConnection->Close();

}

catch (_com_error &e)

{

(char*) e.Description();

}

::CoUninitialize();
}
}

void CGestureRecDlg::Centroid2DB()

{
char ¢i[500]=""c[15]=""s_i[15]="";

HRESULT hr=S_OK;
_bstr_t centro;
_bstr_t bs_i;

if(FAILED(::Colnitialize(NULL)))
return;

if (SUCCEEDED (hr))

{
/I Define ADO object pointers.

// Initialize pointers on define.
_RecordsetPtr pRstGestures = NULL;
_ConnectionPtr pConnection = NULL;

HRESULT hr = S_OK;

//Replace Data Source value with your server name.
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_bstr_t strCnn("DSN=gesture;");
_bstr_t strMessage;

try

{
//Open a connection
TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

nonn

pConnection->Open(strCnn,"","",adConnectUnspecified);

//Open gestures table
TESTHR(pRstGestures.CreateInstance(__uuidof(Recordset)));

/You have to explicitly pass the Cursor type and LockType to the Recordset here

pRstGestures->Open("centroid”,_variant_t((IDispatch *)
true),adOpenKeyset,adLockOptimistic,adCmdTable);

pConnection,

pConnection->Execute("DELETE * FROM CENTROID;",NULL,adCmdText);

for (int i=0;i<Nclusters;i++)
{

strepy(ci,"");
for (int index=0;index<FeatureLen;index++)

{
sprintf(c,"%d",(int)Ci[i].data[index]);
strcat(ci,c);
strcat(ci," ");

}

sprintf(s_i,"%d",i);

bs_i=s_i;

centro=ci;

pConnection->Execute("INSERT INTO CENTROID
VALUES ("+bs_i+"",""+centro+"");",NULL,adCmdText);

}

pRstGestures->Close();
pConnection->Close();

}

catch (_com_error &e)

{

(char*) e.Description();

::CoUninitialize();

}
}

void CGestureRecDlg::Cost2DB(float cost)
{

char s_cost[30]="";

HRESULT hr=S_OK;
_bstr_t bs_cost;

if(FAILED(::Colnitialize(NULL)))
return;

(gest_num,center)



if (SUCCEEDED(hr))
{

// Define ADO object pointers.
// Initialize pointers on define.
_RecordsetPtr pRstGestures = NULL;
_ConnectionPtr pConnection = NULL;

HRESULT hr = S_OK;

//Replace Data Source value with your server name.
_bstr_t strCnn("DSN=gesture;");
_bstr_t strMessage;

try

{
//Open a connection
TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

nmeonn

pConnection->Open(strCnn,"","",adConnectUnspecified);

//Open gestures table
TESTHR(pRstGestures.Createlnstance(__uuidof(Recordset)));

/Y ou have to explicitly pass the Cursor type and LockType to the Recordset here

pRstGestures->Open("cost",_variant_t((IDispatch *)
true),adOpenKeyset,adLockOptimistic,adCmdTable);

sprintf(s_cost,"%t" cost);

bs_cost=s_cost;

pConnection->Execute("INSERT INTO COST
("+bs_cost+"');",NULL,adCmdText);

pRstGestures->Close();

pConnection->Close();

}

catch (_com_error &e)

{

(char*) e.Description();

::CoUninitialize();
}
}

int CGestureRecDlg::DB2Centroid()
{

char vec[600]="";

int num_pics=0,number=0;
HRESULT hr=S_OK;
_bstr_t gest_num;

_bstr_t center;

int digit,index=0;
char *tokenPtr;

if(FAILED(::Colnitialize(NULL)))
return 1;

if (SUCCEEDED(hr))

{

pConnection,
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_RecordsetPtr pRstGestures("ADODB.Recordset");
// Connection String
_bstr_t strtCnn("DSN=gesture;");

// Open table

try

{

pRstGestures->Open("SELECT * FROM CENTROID ORDER

adOpenStatic, adLockReadOnly, adCmdText);

pRstGestures->MoveFirst();

while (!pRstGestures->EndOfFile)
{
gest_num =((_bstr_t)
>Getltem("gest_num")->GetValue());

BY gest_num;", strCnn,

pRstGestures->GetFields()-

center =((_bstr_t)  pRstGestures->GetFields()->Getltem("center")-

>GetValue());
number=atoi(gest_num);
strepy(vec,center);
tokenPtr=strtok(vec, " ");

index=0;

while (tokenPtr !=NULL )

{
digit=atof(tokenPtr);
tokenPtr = strtok(NULL," ");
Ci[number].data[index]=digit;
index++;

1

pRstGestures->MoveNext();
num_pics++;

}

pRstGestures->Close();

}

catch (_com_error &e)

{
/I Notify the user of errors if any.
// Pass a connection pointer accessed from the Recordset.
_variant_t vtConnect = pRstGestures->GetActiveConnection();

/I GetActiveConnection returns connect string if connection
/I is not open, else returns Connection object.

AfxMessageBox((char*) e.Description());
/I printf("Errors occured.");
// (char*) e.Description();
exit(1);
1
1

return index;

}

int CGestureRecDlg::DB2Membership()

{
char vec[600]="";
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int num_pics=0,number=0;
HRESULT hr=S_OK;
_bstr_t numb;

_bstr_t membership;

int index=0;
float acc=0,digit;
char *tokenPtr;

if(FAILED(::Colnitialize(NULL)))
return 1;
if (SUCCEEDED(hr))
{
_RecordsetPtr pRstGestures("ADODB.Recordset");
// Connection String
_bstr_t strtCnn("DSN=gesture;");
// Open table

try
{
pRstGestures->Open("SELECT * FROM GESTURE ORDER BY ordered;", strCnn,

adOpenStatic, adLockReadOnly, adCmdText);

pRstGestures->MoveFirst();
int u=0;

while (!pRstGestures->EndOfFile)
{
numb  =((_bstr_t)  pRstGestures->GetFields()->Getltem("numb")-
>GetValue());
membership =((_bstr_t) pRstGestures->GetFields()-
>Getltem("membership")->GetValue());

number=atoi(numb);

strcpy(vec,membership);
tokenPtr=strtok(vec, " ");
index=0;

acc=0;

while (tokenPtr !=NULL )

{
digit=atof(tokenPtr);
tokenPtr = strtok(NULL," ");
cvmSet(&Uij,index,number,digit); // delete 1000
u=cvmGet(&Uij,index,number);
index++;
acc=acc+digit; // delete 1000

}

pRstGestures->MoveNext();
num_pics++;
}
pRstGestures->Close();
}
catch (_com_error &e)
{
/I Notify the user of errors if any.
// Pass a connection pointer accessed from the Recordset.
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_variant_t vtConnect = pRstGestures->GetActiveConnection();

/I GetActiveConnection returns connect string if connection
/I is not open, else returns Connection object.

AfxMessageBox((char*) e.Description());
/I printf("Errors occured.");
/! (char*) e.Description();
exit(1);

}
}

return O;

}

void CGestureRecDlg::CopyVector2Mat(int counter,short int flag)

{

if (flag!=3)
memcpy(MatFeatures[counter].data,IntVector,FeatureLen*4);
else
memcpy(MatFeatures[Nframes].data,IntVector,FeatureLen*4);
}
void CGestureRecDlg::CreateNewMembership(int j,short int flag)
{
float acc=0,u=0;
float sums;
acc=0;
if (flag==3) j=Nframes;
for (int i=0; i<Nclusters; i++)
{
u=Find_Miull(i,j);
cvmSet(&Uij,1,j,u);
u=cvmGet(&Uij,i,j);
acc=acc+u;
1
sums=acc;
}
void CGestureRecDlg::NewMembership2DB(short int flag)
{

float u,max=0;

int max_i,num_pics=0;
char vec[600]="";

char number_pics[50]="";
char member[500]="";
char Su[15]="";

char Suu[15]="";

char gestu[15]="";

",

char s_max[15]="";

HRESULT hr=S_OK;
_bstr_t n_pics;

_bstr_t memberF;
_bstr_t centro;

_bstr_t bs_max;

_bstr_t feat;

_bstr_t filen;

_bstr_t width;
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_bstr_t height;

if(FAILED(::Colnitialize(NULL)))Il (flag==3))

return;

if SUCCEEDED(hr))
{

// Define ADO object pointers.

// Initialize pointers o

n define.

_RecordsetPtr pRstGestures = NULL;
_ConnectionPtr pConnection = NULL;

HRESULT hr = S_OK;

//Replace Data Source

_bstr_t strCnn("DSN=

_bstr_t strMessage;

ry

{
11

value with your server name.
gesture;");

Open a connection

TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

pConnection->Open(strCnn,

nmeeonn
bl

,adConnectUnspecified);

//Open gestures table
TESTHR(pRstGestures.Createlnstance(__uuidof(Recordset)));

/lYou have to explicitly pass the Cursor type and LockType to the Recordset here

p
true),adOpenKeyset,adLock

RstGestures->Open("actual",_variant_t((IDispatch *) pConnection,

Optimistic,adCmdTable);

for(int j=Nframes;j<(Nframes+NewFrames);j++)

{

strepy(Su,"");
strcpy(member,"");
max=0;

for (int i=0;i<Nclusters;i++)

{

il

u=cvmGet(&Uij,i,j)

if (u>max)
{
max=u;
max_i=i;
1

sprintf(Su," %{f" ,u);
strncpy(Suu,Su,5);
strcat(member,Suu);
strcat(member," ");

}

feat=Buffer[j].data;
filen=Buffer[j].file;
width=Buffer[j].width;
height=Buffer[j].height;
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("+filen+"",

}

sprintf(number_pics,"%d" ,num_pics);

n_pics=number_pics;

sprintf(s_max,"%d",max_i);

bs_max=s_max;
memberF=member;

pConnection->Execute("INSERT
(filename,gest_name,features,width,height,numb,membership)

"o nem

+bs_max+"",

"mon nem

+feat+"',"+width+"",
num_pics++;

}

pRstGestures->Close();

pConnection->Close();

}

catch (_com_error &e)

{

(char*) e.Description();

}

::CoUninitialize();

}

+height+

"mom
il

void CGestureRecDlg::DrawGraphico(int j,short int flag)

{

int spacel=5;
int space2=8;
int color=20;
float u;

CvPoint pt1[100];
CvPoint pt2[100];

CvPoint p1,p2;

pl.x=0;

pl.y=25;
p2.x=IMG_WIDTH;
p2.y=24;

if (flag==3) j=Nframes;

for (int index=0;index<Nclusters;index++)

{
ptl[index].x=spacel;
pt2[index].x=space2;
spacel=spacel + (int)(330/Nclusters);
space2=space2 + (int)(330/Nclusters);
pt1[index].y=100;
u=cvmGet(&Uij,index,j);
pt2[index].y=100-u*100;

1

grafico.Create(IMG_WIDTH,100,24);
grafico.Fill(RGB(255,255,255));
Ipllmage* graphi = grafico.GetImage();

cvRectangle(graphi,pl,p2,CV_RGB(0,0,255),1);

+n_pics+

"mon
il

INTO ACTUAL
VALUES

+memberF+"");",NULL,adCmdText);
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for (index=0;index<Nclusters;index++)

{
cvRectangle(graphi,pt1[index],pt2[index],CV_RGB(150,color,color),8);
color=color+15;
1
/1 grafico.Destroy();
}

int CGestureRecDlg::OpenTcpMessage()
{

short listeningport; // port to listen on
short destport; // port to send to
char *desthost; // address of destination machine

listeningport=10001;
destport=10000;
desthost="132.72.135.14";

if (! Listen(listeningport)) // Try to listen to requested port

{
AfxMessageBox("Error listening to port"); // Made a booboo, exit the app
return 1;
}
return O;
}
void CGestureRecDlg::CloseTcpMessage()
{
if ( ListenSocket != INVALID_SOCKET )
closesocket( ListenSocket ); // close if socket was created
}

void CGestureRecDlg::SendTcpMessage(int j,short int flag,char sTotal[1500],int &cont)
{

char buffer[100]; // buffer we'll use to store msg read in from stdin
short listeningport; // port to listen on

short destport; // port to send to

char *desthost; // address of destination machine

float u=0,maxU=0;
int maxIndex;

char filen[255]="";
char fpath[255]="";
time_t long_time;
long int ii=0;

listeningport=10001;

destport=10000;

desthost="132.72.135.14";

if (flag==3) j=Nframes; //Stocks the Array always in Nframes posi

for (int index=0;index<Nclusters;index++)

{
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u=cvmGet(&Uij,index,j);
if (u>maxU)
{
maxU=u;
maxIndex=index;

}

if (maxU>threshold)
sprintf(buffer,"%d",maxIndex);

else

sprintf(buffer,"%d",-1);

strcat(buffer," ");

strcat(sTotal,buffer);

cont++;

if (cont==140) // A BUNCH OF n GESTURES IS SENT TO THE SERVER
{

SendMsg( sTotal, strlen(sTotal), desthost, destport ); // Forward the msg to destination machine
cont=0;
strepy(sTotal,"");
ii=time(&long_time);
ii=ii+j;
sprintf(filen, "%d", ii);
strcat(filen,".bmp");
strcat(fpath,"C:\OpenCV_projects\\GestureRec\\sequence\\");

strcat(fpath,filen); // create a filename based in path

/l i.Save(fpath);

1

void CGestureRecDlg::ShowLab(int &conter)

{
if (conter==7) // EACH n SNAPS SHOWS THE LAB PICTURE

{
lab.Load("C:\\OpenCV_projects\\GestureRec\\dest_pics\\webcam32.jpg",8);
conter=0;

}

conter++;

}

void CGestureRecDIg::OnOK()
{

EndDialog(0);
CDialog::0OnOK();

}

void CGestureRecDlg::OnCancel()

{ // TODO: Add extra cleanup here
CDialog::OnCancel();

}

//* TCP/IP Function
void CGestureRecDlg::EndDialog(int nResult)
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{
if ( ListenSocket != INVALID_SOCKET )
closesocket( ListenSocket ); // close if socket was created
#ifdef _"WIN32 // Windows only
WSACleanup();
#endif
cvmFree(&Uij);
}

//* TCP/IP Function
bool CGestureRecDlg::SendMsg( char *Msg, int Len, char *host, short port )
{
signed int Sent;
hostent *hostdata;
if (atoi(host) )  //Is the host passed in IP format?
{
u_long ip = inet_addr( host );
hostdata = gethostbyaddr( (char *)&ip, sizeof(ip), PF_INET );
1

else // otherwise, assume it's a name

{
}

if ( 'hostdata )
{

hostdata = gethostbyname( host );

printf("Error getting host address\n");
fflush(0);
return false;

}

sockaddr_in dest; // the address of the destination computer

dest.sin_family = PF_INET;

dest.sin_addr = *(in_addr *)(hostdata->h_addr_list[0]);

dest.sin_port = htons( port );

printf("Message being sent to host %s port %i\n", inet_ntoa(dest.sin_addr), ntohs(dest.sin_port));
Sent = sendto(ListenSocket, Msg, Len, 0, (sockaddr *)&dest, sizeof(sockaddr_in));

if ( Sent !=Len)

{
printf("Error sending UDP packet from listen socket\n");
fflush(0);
return false;

}

return true;

}

[[FxExEx TCP/IP
void *CGestureRecDlg::ListenThread( void *data )
{
char buf[4096];
CGestureRecDlg *Comm = (CGestureRecDlg *)data;
int len = sizeof(Comm->client);
while(1) // loop forever

{
int result = recvfrom( Comm->ListenSocket, buf, sizeof(buf)-1, 0, (sockaddr *)&Comm->client,
(socklen_t *)&len);
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if (result>0)

{
buf[result] = 0;
printf("Message received from host %s port %i\n", inet_ntoa(Comm->client.sin_addr),
ntohs(Comm->client.sin_port));
printf(">> %s", buf);

fflush(0);
} /I end check to see if socket read was ok
} // end infinite loop

}

[[F***F%Ex TCP/IP

bool CGestureRecDlg::Listen( int PortNum )

{
ListenSocket = socket(PF_INET, SOCK_DGRAM, 0);
if ( ListenSocket == INVALID_SOCKET )

{
printf("Error: listen socket creation failed\n");
fflush(0);
return false;
1
srv.sin_family = PF_INET;
srv.sin_addr.s_addr = htonl( INADDR_ANY ); // any address

srv.sin_port = htons( PortNum );

if ( bind( ListenSocket, (struct sockaddr *)&srv, sizeof(srv)) !=0)

{
printf("Error: bind on listen socket failed\n");
fflush(0);
closesocket( ListenSocket );
return false;
}

int ThreadID; /I the listening thread's handle

#ifdef _WIN32

DWORD thread;

ThreadID = (int)CreateThread(NULL, 0,
(LPTHREAD_START_ROUTINE)(CGestureRecDlg::ListenThread), (void *)this, 0, &thread);

ThreadID = ThreadID ? 0 : 1; // reverse the value for Windows

#else  // not windows machine

pthread_t thread;

ThreadID = pthread_create(&thread, 0, CComm::ListenThread, (void *)this);
#endif

if(ThreadID) // if failed creating thread

{
printf("Error creating listen thread\n");
return false;

}

else

return true;

}

void CGestureRecDlg::OnProcess()

{
CopyDB2Buffer();
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"

if (CLUSTERS==Clusters_inDB()) //if the new number of clusters now is the same from the prev. run (in

the DB there is the same number of centroids)

1

Old_FeatureLen=DB2Centroid(); // you can use the centroids that you found instead of

randmozing them again

CreateFeaturesMatrix();

for (int index=0;index<Nframes;index++)

{
DisplayFeatures(index,Rows,Cols);
Sleep(300);

void CGestureRecDIg::OnStart()

{

short int flag=1; // the flag tells if we do setup=1, run time with
// saving & DB =2, or just run time=3. // here always is 1

int counter=0;

int minX,maxX,minY,maxY;

imagen.Create(640,480,8);
blackwh.Create(IMG_WIDTH,IMG_HEIGHT,38);
i.Create(IMG_WIDTH,IMG_HEIGHT,24);
im.Create(IMG_WIDTH,IMG_HEIGHT,8);

Ipllmage* img =imagen.GetIlmage();
IplImage* blac =blackwh.GetImage();
IplImage *imgIPL=i.GetImage();
IplIlmage *tmpIPL=im.GetImage();

Ipllmage *sndIPL=cvCreatelmage( cvSize( 768, 576 ), IPL_DEPTH_8U, 3 );

resized.Create(IMG_WIDTH,IMG_HEIGHT,S);
Ipllmage *temp = resized.GetImage();
OnPaint();

MV1_Open();

MV 1_StartGrablt();

while (counter<grab_cycle)

sndIPL->imageData = (char *)MbufInquire(Millmage,M_HOST_ADDRESS,M_NULL);
cvResize(sndIPL,imgIPL);
cvCvtColor(imgIPL,temp,CV_BGR2GRAY);
/fbw_threshold=cvOtsuThreshold(imgIPL);
cvThreshold( temp, blac, bw_threshold, 255, CV_THRESH_BINARY );
Bouncing_Box(blac,minX,maxX,minY,maxY);
RoiNorm(Rows,Cols,blac,minX,maxX,minY,maxY);
CopyVector2Buffer(counter+Nframes,minX,maxX,minY,maxY,flag,counter);
OnPaint();
counter++;
Sleep(300);

if (GetAsyncKeyState(VK_ESCAPE) & 0x0001)
break; // ESCAPE key is currently pressed

}

MV 1_StopGrablt();

MV1_Close();

CopyBuffer2DB(Nframes+counter);

Nframes=Pictures_inDB();

imagen.Destroy();

blackwh.Destroy();
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resized.Destroy();
}
void CGestureRecDlg::OnFindClusters()
{

float result=0,min_cost=9000000000;
float old_cost=9000000000;

float cost=8000000000;

int min_seed;

int contad=0;

float epsilon=2;

cvmAlloc(&Uij);
cvmSetZero(&Uij);

/I if (CLUSTERS!=Clusters_inDB()Il Old_FeatureLen!=FeatureLen) //if the new number of clusters now is
the same from the prev. run (in the DB there is the same number of centroids)
// 'you can use the centroids that you found instead of randmozing them again
/R
//for (int seed=1;seed<=20;seed++)
for (int seed=1;seed<=10;seed++)
{

srand(seed);

RandomClusters(Nclusters, Nframes);

//for (int index=0;index<10;index++)

for (int index=0;index<4;index++) //just to make this go faster, but is less accurate than

the line above

{
CreateMembership();
CreateCentroids();
cost=CostFunction();

1

if (cost<min_cost)

{
min_cost=cost;
min_seed=seed;

}

srand(min_seed);
RandomClusters(Nclusters, Nframes);
1}

while ((abs(cost-old_cost)>=epsilon) && (contad<40))

old_cost=cost;
CreateMembership();
CreateCentroids();
cost=CostFunction();
contad=contad+1;

}
Centroid2DB();
Membership2DB();

Cost2DB(cost);
cvmFree(&Uij);

}

void CGestureRecDIlg::OnLoad_Clusters()
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cvmAlloc(&Uij);
cvmSetZero(&Uij);
DB2Centroid();
DB2Membership();
OnProcess();

}

/I Add a new gesture by re-evaluating the membership value and the centroids. Doesn't Rand all
/I from a scratch, just rand the new cluster (between the last cycle of images)

void CGestureRecDIg::OnAdd_Gesture()
{

float result=0,cost;

int seed=5;

Nclusters=Clusters_inDB(); // actual number of clusters in DB
Nclusters=Nclusters++;

cvmAlloc(&Uij);

cvmSetZero(&Uij);

OnStart();

DB2Centroid();
DB2Membership();
OnProcess();

srand(seed);
RandomOneCluster(Nclusters, Nframes);
for (int index=0;index<10;index++)
{
CreateMembership();
CreateCentroids();
cost=CostFunction();

}

Centroid2DB();
Membership2DB();
Cost2DB(cost);
cvmFree(&Uij);

}

/I Automatic Load of images from 1-XXX

// This function call the batch mode without user choice of files. This means that you can prepare a set of BMP
files in

/I some directory, and instead of grabbing live images to future cluster creation, you just

//'load the BMP files for future cluster creation in order from 1 to XXX.

void CGestureRecDlg:: AutomaticBatchMode(char file_name[250])
{

short int flag=1; // the flag tells if we do setup (learn) =1, run time with

// saving & DB =2, or just run time=3. // here always is 1

int counter=0;

int indice=0;

int the_contador=100000; //for old images (or smaller set of gestures, this should be 10,000)
int minX,maxX,minY,maxY;

char filen[255]="";

char fpath[255]="";
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CFileFind finder;
BOOL bWorking;

imagen.Create(640,480,8);
blackwh.Create(IMG_WIDTH,IMG_HEIGHT,38);
i.Create(IMG_WIDTH,IMG_HEIGHT,24);
im.Create(IMG_WIDTH,IMG_HEIGHT,S);

Ipllmage* img =imagen.GetImage();

Ipllmage* blac =blackwh.GetImage();

IplImage *imgIPL=i.GetImage();

IplIlmage *tmpIPL=im.GetImage();

IplImage *sndIPL=cvCreateImage( cvSize( 768, 576 ), IPL_DEPTH_8U, 3 );

resized.Create(IMG_WIDTH,IMG_HEIGHT,8);
Ipllmage *temp = resized.GetImage();
//OnPaint();

//int indice=0;

bWorking=0;

while (indice<number_of_files)
/l for (int indice=0;indice<number_of_files;indice++)
{
bWorking=0;

while (bWorking==0)

{
strepy(filen,"");
strepy(fpath,"");
sprintf(filen, "%d", the_contador);
strcat(filen,".bmp");
strcat(fpath,file_name);
strcat(fpath,filen);

bWorking=finder.FindFile(fpath);

if (the_contador>1110000000)

{
AfxMessageBox("Gestures images files not found. TIME OUT!");
bWorking=1;
exit(1);

}

the_contador=the_contador++;

i.Load(fpath,8);

cvCvtColor(imgIPL,temp,CV_BGR2GRAY);
/fow_threshold=cvOtsuThreshold(temp);
cvThreshold(temp,blac,bw_threshold,255,CV_THRESH_BINARY);
Bouncing_Box(blac,minX,maxX,minY,maxY);
RoiNorm(Rows,Cols,blac,minX,maxX,minY,maxY);
CopyVector2Buffer(counter+Nframes,minX,maxX,minY,maxY ,flag,the_contador-1);
counter++;

indice++;

CopyBuffer2DB(Nframes+counter);
Nframes=Pictures_inDB();
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}

imagen.Destroy();
blackwh.Destroy();
resized.Destroy();

/I Automatic Load of images from 1-XXX
// This function call the batch mode without user choice of files. This means that you can prepare a set of BMP

files in

/l some directory, and instead of grabbing live images to future cluster creation, you just
// load the BMP files for future cluster creation in order from 1 to XXX.

void CGestureRecDlg::AutomaticTestMode(char file_name[250])

{

short int flag=2; // the flag tells if we do setup (learn) =1, run time with
// saving & DB =2, or just run time=3. // here always is 1

int counter=Nframes;

int indice=0;

int the_contador=100000; //for old images (or smaller set of gestures, this should be 10,000);
int cont=0,conter=0;

char sTotal[500];

char filen[255]="";

char fpath[255]="";

CFileFind finder;

BOOL bWorking=0;

strepy(sTotal,"");

int minX,maxX,minY,maxY;
imagen.Create(640,480,8);
blackwh.Create(IMG_WIDTH,IMG_HEIGHT,38);

i.Create(IMG_WIDTH,IMG_HEIGHT,24);
im.Create(IMG_WIDTH,IMG_HEIGHT,8);

Ipllmage* img =imagen.GetImage();

Ipllmage* blac =blackwh.GetImage();

IplImage *imgIPL=i.GetImage();

IplIlmage *tmpIPL=im.GetImage();

IplImage *sndIPL=cvCreateImage( cvSize( 768, 576 ), IPL_DEPTH_8U, 3 );

resized.Create(IMG_WIDTH,IMG_HEIGHT,S);
Ipllmage *temp = resized.GetImage();

// Now the part of the choosing files for loading with GUI
while (indice<number_of_files)
{
//for (int indice=0;indice<number_of_files;indice++)
bWorking=0;

while (bWorking==0)

{
strepy(filen,"");
strepy(fpath,"");
sprintf(filen, "%d", the_contador);
strcat(filen,".bmp");
strcat(fpath,file_name);
strcat(fpath,filen);
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bWorking=finder.FindFile(fpath);
the_contador++;

i.Load(fpath,8);

cvCvtColor(imgIPL,temp,CV_BGR2GRAY);
//bw_threshold=cvOtsuThreshold(temp);
cvThreshold(temp,blac,bw_threshold,255,CV_THRESH_BINARY);
Bouncing_Box(blac,minX,maxX,minY,maxY);
RoiNorm(Rows,Cols,blac,minX,maxX,minY,maxY);
CopyVector2Buffer(counter,minX,maxX,minY,maxY,flag,the_contador-1);

CopyVector2Mat(counter,flag);
CreateNewMembership(counter,flag);
counter++;

indice++;

}
NewMembership2DB(flag);

imagen.Destroy();
blackwh.Destroy();
resized.Destroy();

// This function call the batch mode. This means that you can prepare a set of BMP files in
/I some directory, and instead of grabbing live images to future cluster creation, you just

// 1oad the BMP files for future cluster creation.

void CGestureRecDlg::OnBatchMode()
{

short int flag=1; // the flag tells if we do setup (learn) =1, run time with
// saving & DB =2, or just run time=3. // here always is 1

int counter=0;

int minX,maxX,minY,maxY;

imagen.Create(640,480,8);
blackwh.Create(IMG_WIDTH,IMG_HEIGHT,8);
i.Create(IMG_WIDTH,IMG_HEIGHT,24);
im.Create(IMG_WIDTH,IMG_HEIGHT,38);

Ipllmage* img =imagen.GetIlmage();

Ipllmage* blac =blackwh.GetImage();

IplIlmage *imgIPL=i.GetImage();

IplImage *tmpIPL=im.GetImage();

IplImage *sndIPL=cvCreateImage( cvSize( 768, 576 ), IPL_DEPTH_8U, 3 );

resized.Create(IMG_WIDTH,IMG_HEIGHT,S);
Ipllmage *temp = resized.GetImage();
OnPaint();

//IMV1_Open();

/IMV 1_StartGrablt();

int iBufferSize = 300000;
CFileDialog dlg(TRUE, NULL,
OFN_FILEMUSTEXISTIOFN_HIDEREADONLYIOFN_ALLOWMULTISELECT,

NULL,

"Images (*.jpg, *.bmp)I*.jpg; *.bmp/Windows Bitmap (*.bmp)I*.bmplJPEG-File (*.jpg)*.jpglAll

Files (*.*)I*.*II");
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dlg.m_ofn.IpstrTitle = "My File Dialog";

dlg.m_ofn.nMaxFile = iBufferSize;
char* cNewBuffer = new char[iBufferSize];
dlg.m_ofn.IpstrFile = cNewBuffer;
dlg.m_ofn.IpstrFile[0] = NULL,;

int result = dlg.DoModal();

if (result==IDOK)

POSITION ps=dlg.GetStartPosition(); 1
while (ps)
{
CString name=dlg.GetNextPathName(ps);
i.Load(name,8);

//sndIPL->imageData

*)Mbuflnquire(Millmage,M_HOST_ADDRESS,M_NULL);

}

/lcvResize(sndIPL,imgIPL);
cvCvtColor(imgIPL,temp,CV_BGR2GRAY);
/fow_threshold=cvOtsuThreshold(temp);

cvThreshold(temp,blac,bw_threshold,255,CV_THRESH_BINARY);
Bouncing_Box(blac,minX,maxX,minY,maxY);
RoiNorm(Rows,Cols,blac,minX,maxX,minY,maxY);
CopyVector2Buffer(counter+Nframes,minX,maxX,minY,maxY,flag,counter);

OnPaint();
counter++;
Sleep(20);
/! AfxMessageBox(dlg.GetNextPathName(ps));//
}
}

delete [JcNewBuffer;//

//IMV1_StopGrablt();
//IMV1_Close();
CopyBuffer2DB(Nframes+counter);
Nframes=Pictures_inDB();
imagen.Destroy();
blackwh.Destroy();
resized.Destroy();

void CGestureRecDlg::OnRunBatchMode()

{

short int flag=2; // the flag tells if we do setup (learn) =1, run time with

// saving & DB =2, or just run time=3. // here always is 1
int counter=Nframes;

int cont=0,conter=0;

char sTotal[500];

strepy(sTotal,"");

int minX,maxX,minY,maxY;
imagen.Create(640,480,8);

(char
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blackwh.Create(IMG_WIDTH,IMG_HEIGHT,38);

i.Create(IMG_WIDTH,IMG_HEIGHT,24);
im.Create(IMG_WIDTH,IMG_HEIGHT,8);

Ipllmage* img =imagen.GetImage();

Ipllmage* blac =blackwh.GetImage();

IplImage *imgIPL=i.GetImage();

IplImage *tmpIPL=im.GetImage();

IplImage *sndIPL=cvCreateImage( cvSize( 768, 576 ), IPL_DEPTH_8U, 3 );

resized.Create(IMG_WIDTH,IMG_HEIGHT,8);
Ipllmage *temp = resized.GetImage();
OnPaint();

//IMV1_Open();

/IMV 1_StartGrablt();

OpenTcpMessage();

// Now the part of the choosing files for loading with GUI

int iBufferSize = 300000;
CFileDialog dlg(TRUE, NULL, NULL,
OFN_FILEMUSTEXISTIOFN_HIDEREADONLYIOFN_ALLOWMULTISELECT,
"Images (*.jpg, *.bmp)l*.jpg; *.bmplWindows Bitmap (*.bmp)/*.bmplJPEG-File (*.jpg)I*.jpglAll
Files (*.%)I*.*II");

dlg.m_ofn.lpstrTitle = "My File Dialog";

dlg.m_ofn.nMaxFile = iBufferSize;
char* cNewBuffer = new char[iBufferSize];
dlg.m_ofn.IpstrFile = cNewBuffer;
dlg.m_ofn.IpstrFile[0] = NULL;

int result = dlg.DoModal();

if (result==IDOK)
{
POSITION ps=dlg.GetStartPosition(); /!
while (ps)
{
CString name=dlg.GetNextPathName(ps);
i.Load(name,8);

//sndIPL->imageData = (char
*)Mbuflnquire(Millmage,M_HOST_ADDRESS,M_NULL);

/lcvResize(sndIPL,imgIPL);

cvCvtColor(imgIPL,temp,CV_BGR2GRAY);

/fow_threshold=cvOtsuThreshold(temp);

cvThreshold(temp,blac,bw_threshold,255,CV_THRESH_BINARY);

Bouncing_Box(blac,minX,maxX,minY,maxY);

RoiNorm(Rows,Cols,blac,minX,maxX,minY,maxY);

CopyVector2Buffer(counter,minX,maxX,minY,maxY ,flag,counter);

CopyVector2Mat(counter,flag);

CreateNewMembership(counter,flag);

DrawGraphico(counter,flag);

/I SendTcpMessage(counter,flag,sTotal,cont);

ShowLab(conter);
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OnPaint();
counter++;
Sleep(20);
}
}

delete [JcNewBuffer;//

//IMV1_StopGrablt();
//IMV1_Close();
/ICloseTcpMessage();
NewMembership2DB(flag);
imagen.Destroy();
blackwh.Destroy();
resized.Destroy();

}

int CGestureRecDlg::Input_Parameters(char file_name[250])
{

int status;

HRESULT hr=S_OK;
_bstr_t rows_s;

_bstr_t cols_s;

_bstr_t weights_s;
_bstr_t clusters_s;
_bstr_tm_s;

_bstr_t bw_threshold_s;
_bstr_t number_of_files_s;
_bstr_t status_s;

_bstr_t file_name_s;

if(FAILED(::Colnitialize(NULL)))

{
AfxMessageBox("Problems opening Gesture DB.");
exit(1);

return 1;
1
if (SUCCEEDED(hr))
{
_RecordsetPtr pRstGestures("ADODB.Recordset");
/I Connection String
_bstr_t strCnn("DSN=gesture;");
// Open table

try
{
pRstGestures->Open("SELECT * FROM PARAMETER ORDER BY ID;", strCnn, adOpenStatic,

adLockReadOnly, adCmdText);

/IpRstGestures->MoveFirst();
pRstGestures->MoveLast();

while (!pRstGestures->EndOfFile)
{

rows_s  =((_bstr_t)  pRstGestures->GetFields()->Getltem("rows")-
>GetValue());
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>GetValue());
>GetValue());
>GetValue());

>GetValue());

cols_s=((_bstr_t) pRstGestures->GetFields()->Getltem("cols")-
weights_s=((_bstr_t) pRstGestures->GetFields()->Getltem("weights")-
clusters_s=((_bstr_t) pRstGestures->GetFields()->Getltem("clusters")-
m_s=((_bstr_t) pRstGestures->GetFields()->Getltem("m")-

bw_threshold_s=((_bstr_t) pRstGestures->GetFields()-

>Getltem("bw_threshold")->GetValue());

>Getltem("samples")->GetValue());
>GetValue());

>GetValue());

number_of_files_s=((_bstr_t) pRstGestures->GetFields()-
status_s=((_bstr_t) pRstGestures->GetFields()->Getltem("train")-

file_name_s=((_bstr_t)  pRstGestures->GetFields()->Getltem("path")-

Rows=atoi(rows_s);

Cols=atoi(cols_s);

/Iweight=atof(weight_s);

Nclusters=atoi(clusters_s);

m=atof(m_s);

bw_threshold=atoi(bw_threshold_s);

number_of_files=atoi(number_of_files_s);

status = atoi(status_s);
strepy(weights,weights_s);

strepy(file_name,file_name_s);

pRstGestures->MoveNext();

}

pRstGestures->Close();

}

catch (_com_error &e)

{

/I Notify the user of errors if any.
// Pass a connection pointer accessed from the Recordset.
_variant_t vtConnect = pRstGestures->GetActiveConnection();

/I GetActiveConnection returns connect string if connection
/I is not open, else returns Connection object.

AfxMessageBox((char*) e.Description());

exit(1);

/I printf("Errors occured.");

1"

}
}

return status;

}

(char*) e.Description();

void CGestureRecDIg::OnCapture_Gesture()

{

short int flag=3; // the flag tells if we do setup=1, run time with
// saving in DB =2, or just run time=3

int counter=Nframes;

int cont=0,conter=0; //group of discret gestures numbers
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char sTotal[500]; // string containig the bunch message to TCP/IP
strepy(sTotal,""); // Initialize
int minX,maxX,minY,maxY;

imagen.Create(640,480,8);
blackwh.Create(IMG_WIDTH,IMG_HEIGHT,38);

i.Create(IMG_WIDTH,IMG_HEIGHT,24);
im.Create(IMG_WIDTH,IMG_HEIGHT,?8);
resized.Create(IMG_WIDTH,IMG_HEIGHT,8);

Ipllmage* img =imagen.GetImage();

Ipllmage* blac =blackwh.GetImage();

Ipllmage *imgIPL=i.GetImage();

IplImage *tmpIPL=im.GetImage();

IplImage *sndIPL=cvCreateImage( cvSize( 768, 576 ), IPL_DEPTH_8U, 3 );
Ipllmage *temp = resized.GetImage();

OnPaint();
MV1_Open();

MV 1_StartGrablt();
OpenTcpMessage();

while (counter<Nframes+NewFrames)

sndIPL->imageData = (char *)MbufInquire(Millmage,M_HOST_ADDRESS,M_NULL);

cvResize(sndIPL,imgIPL);

cvCvtColor(imgIPL,temp,CV_BGR2GRAY);

/fow_threshold=cvOtsuThreshold(temp);

cvThreshold(temp,blac,bw_threshold,255,CV_THRESH_BINARY);

Bouncing_Box(blac,minX,maxX,minY,maxY);

RoiNorm(Rows,Cols,blac,minX,maxX,minY,maxY);

CopyVector2Buffer(counter,minX,maxX,minY,maxY ,flag,counter);

CopyVector2Mat(counter,flag);

CreateNewMembership(counter,flag);

DrawGraphico(counter,flag);

SendTcpMessage(counter,flag,sTotal,cont); //++++++++++++++++++++++++++COMMENT IT
FOR EXTERNAL RUN

ShowLab(conter);

OnPaint();

counter++;

if (GetAsyncKeyState(VK_ESCAPE) & 0x0001) break; // ESCAPE key is currently
pressed

}

MV 1_StopGrablt();
MV1_Close();
CloseTcpMessage();
NewMembership2DB(flag);
imagen.Destroy();
blackwh.Destroy();
resized.Destroy();
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OAPI

This system uses the matrices obtained from ergonomic studies and the results obtained from
the GestureRec system to find the best GV. The matrices used as inputs are the intuitiveness,
stress, duration and frequency. For each subset of gestures, the recognition accuracy is calculated
using the CMD or the DCM methods. For this subset, the associations to the commands are
found, in such a way so the intuitiveness and comfort are maximized. For this, the quadratic
assignment problem (QAP) is used to model this problem. It implementation code is based on an
enhanced simulated annealing scheme proposed by Mr. Eric Taillard. A flowchart of the system

is presented in Figure K.2.
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Figure K.2. Flowchart of the QAPI system
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class
Gmanager Name Description
Members
public:
Keeps here the confusion matrix (in vector form) of the last
int *confus_vect; run_of the name_gesture_VMR application
int commando; Number of commands
char *vec; The centroids vector, string
int *vector; The centroids vector, numeral
The Accuracy of the last run of the name_gesture_ VMR
float acc; application
float fcm_time; time in seconds that takes to run the FCM
int confused_A,confused B; The two most confused gestures
long *gestures_subset; Vector of gestures ordered from low to high
Vector of gestures not ordered, matched with their index
long *gestures_matched; (command)
int gestures; Total number of gestures in the reduced master set
Methods
Gmanager(int commands,int Object constructor, receives the subset of gestures indices,
total_gestures); and also the number of total commands
virtual ~Gmanager(); Destructor
void FindAccuracy(); Call the GestureRec system to find the Accuracy
int RenamelLabelsDB(long After the tree process, the centroids of the gesture DB are
*gestures_matched); re-named according to the QAP result match.
Draws an image with all the gestures and the commands
void RunGL_map(); written on it
private:

bool RunProcessAndWait(char
*sCmdLine, char *sRunningDir,
int “nRetValue);

This calls a process is ran as a console window to run the
Gesture VMR application

int DB2Accuracy();

Extract from the DB Gestures, the accuracy and confusion
matrix data

void FindMostConf();

Find the two most confused gestures

void Acc2DB();

Copy the Accuracy and 2 most confused gestures to the DB
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class
Organizelmages | Name Description
public:
Members
long *gestures_subset; Pointer to subset of gestures indices
Methods
Organizelmages(int commands); Constructor receives the number of commands
virtual ~Organizelmages(); The main procedure, call all the others
Moves the subset of gesture images to the
void MovePics(); working folder
private:
Members
int actions; Number of commands
char *pics_path; Path of the gesture images
Methods
Get a index of a gesture, and set the path for all
int DB2Path(int index); the pictures samples of that gesture
void Move2Temp(int m_from); Rename images in temp directory
class
qap Name Description
public:
Members
long n,nb_iterations, nb_res; nb - Number of iterations , nb - Number of iterations
long Z1, 72, Zt; Zt-total cost, Z1 comfort measure, Z2 intuitve measure
long *p; Permutation, Result of the QAP
Pointers to: Matrix a is F, matrix b is S', matrix w is |, ic is the
long ** a, ** b, w, *™* d, **ic; complementary intuitveness matrix IC
Pointers to: Matrix d is D (duration),
Important remark: IC is a matrix where the rows are the
gestures, and the columns pairs of complementary
commands.
the first two columns are gestures g1 and g2, the following
ones are pair of complementary commands.
To convert this to a fast access matrix, we create a matrix
where the column index is obtianed by: g1*commands+g2.
The rows are the values for
Complementary pairs of commands.
Pointers to vector of opposed of gestures, and to vector to
int *0G,*0oC; opposed commands
weights for the intuitiveness, for the stress, and for the
float k1,k2,k3; complementary intuitiveness respectively
coefficient to reduce the size of the stress to match the range
double h2; of intuitveness
double tperiod; period of time to solve the QAP (all the iterations included)
Solve the QAP problem. Maximization of Total comfort and
void solve(); intutiveness
Methods
gap(long N); Contructor of the gap object, receives numfer of commands
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virtual ~gap();

Destructor of the gap object

private:
Members
long n_max, infini,
nb_iter initialisation, no_res; Internal parameters of the simulated annealing
long Cout; Value of the goal function
Methods
double max(double a, double b); Finds maximum between two values
double min(double a, double b); Finds minimum between two values
void swap(long &a, long &b); Swap content of the cells, between the places a and b
double temps(); CPU time in milliseconds
double mon_rand(); Returns a random value within limits
long unif(long low, long high); Returns a random value from uniform distribution
long calc_delta_complet2(long n,
long ** a, long ** b, long ** w, long | Finds the delta increment (step) according the simmulated
**d, long * p, long r, long s); annealing formula
long calcule_cout(long n, long ** a,
long ** b, long ** w, long **d, long *
p); Calculates the goal function Zt=Z1+22
void calcule_cout_bout(long & co,
long & bo,long n, long ** a, long ** b,
long ** w, long **d,long * p); Calculates the goal function for Z1 and Z2 individually
void tire_solution_aleatoire(long n,
long * p); Swaps in random order the solution vector
void recuit(long n, long ** a, long **
b, long ** w, long **d, Main body of the simmulated annealing procedure
long * meilleure_sol, long &
meilleur cout,
long nb_iterations);
class
QAP_DB Names Description
public:
Members
long *gestures_subset; Data from the QAP object (the combinative solution)
Data from QAP (weight for direct intuitiveness, for stress,
long *pai; and for comp. intuitiveness)
float W1,W2,W3;
coefficient to reduce the size of the stress to be in the same
double H2; range of the intuitiveness
Methods
QAP_DB(long n); Constructor, includes vector with the indices of the gestures
from the big matrix and num of nodes
virtual ~QAP_DB(); Destructor of the main object
long commands,gestures; Number of Commands and Gestures in DB
void Initial(); The indexes of the n gestures in the big matrix
private:
Members

long ** F, ** §,** U,**D, ** IC;

Big matrices containing all the data in DB




220

long ** f, ** s, **ui,**d, **ic;

Small matrices containing just the data to be passed to QAP

int *oC;

Small vectors of Opposed Commands, and Opposed
Gestures, to be passed to QAP

int *equiv_table;

vector with equivalences between the gestures names, and
their order in the task master set, for example: gesture 27 is
the 23 in the robotic arm task

long Z1,72,Zt;

Data accessible from the QAP object.

gap *qap_obyj;

Pointer to the QAP object

int number_comp_gestures;

number of records in the comp intuitive table, this is the
number of comp. gestures in the database

double tperiod;

period of time to solve the QAP

Methods

int CandG_inDB();

Find number of gestures, and commands.

int DB2Matrices();

Copy the matrices data from DB to memory

void Allocate_Mem();

Allocate memory of all the kinds of matrices

void ExtractSubMatrix();

Extract the small matrix of size nxn

void RunQAP();

Run the QAP object using the sub matrices data and some
parameters

void Insert_Results2DB();

Insert the results on the DB

int renumbered_index(int i);

returns the new index of the gesture of the subset, according
to renumbering it from 0 to num. of commands

int extract_equiv_index(int i);

finds the equiv order number of the gesture number as
presented, for ex: the gesture 27, is may be the 22 in the
order

class SimilarityMat | Name Description
public:
Members
Pointer to subset of gestures
long *gestures_indices; indices
Constructor of the object.
Receives the number of
SimilarityMat(int gestures and commands in
total _gestures,int n); the GV
virtual ~SimilarityMat();
Euclidian Distance between
the cluster i (vector) and the
float Dist(int i,int j); cluster j (vector).
You change the gesture j, by
a new gesture not included in
int GetDistinct(int j); the GV, but yes in DB.
for a given gesture g, we can
get it index in the vector
int GetlndexOfGesture(int g); gesture_indices
Methods

void OrderGestureVector();

Order the gesture vector from
low to high, to get always the
same Accuracy for the same
vector

private:
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Members
Memory to hold the centroids
float Ci[100][200]; matrix
Copy the centroids from the
void DB2Centroid(); DB to the memory buffer
Length of features and
int FeatureLen,commands; number of commands
Methods

void CreateCentroid2DB(int
total_gestures);

Creates the feature averages
of each gesture types

void RunGestureCentroids();

Run execute for Centroids
creation

bool RunProcessAndWait(char
*sCmdLine,

Calls a external shell
execution process, the
GestureRec

char *sRunningDir,int
*nRetValue);

waits until execute die

int all_gestures;

Number of gestures

long *gestures_indices_out

gestures not selected in GV
but in DB, are signed with 1/
the others are signed with 0
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// Gmanager.h: interface for the Gmanager class.
/I
i
#include "windows.h"

#include <process.h>

#include <shellapi.h>

#include "string.h"

/f#include "afx.h"

#f !defined(AFX_GMANAGER_H__27D218ED_0630_41DC_BFDC_51F37BB8A63B__INCLUDED_)
#define AFX_GMANAGER_H__27D218ED_0630_41DC_BFDC_51F37BB8A63B__INCLUDED _

#if _MSC_VER > 1000

#pragma once

#endif // _/MSC_VER > 1000

class Gmanager
{
public:
Gmanager(int commands,int total_gestures); //Constructor, recieves the subset of gestures
// indices, and also the number of total commands
virtual ~Gmanager();
void FindAccuracy(); / Run all the others functions
int *confus_vect;//Keeps here the confusion matrix (in vector form) of the last run
/I of the name_gesture_ VMR application
char *vec;
int *vector;
float acc; // The Accuracy of the last run of the name_gesture_ VMR appl.
float fcm_time; //time in seconds that takes to run the FCM
int confused_A,confused_B; //The two most confused gestures
long *gestures_subset;// vector of gestures ordered from low to high
long *gestures_matched; //vector of gestures not ordered, matched with their index (command)
int gestures; //total number of gestures in the reduced master set

int RenameLabelsDB(long *gestures_matched); //After the tree process, the centroids of the gesture DB//
1 are re-named according to the QAP result match.
int commando; //Number of commands

void RunGL_map(); //draws an image with all the gestures and the commands written on it
private:

I/
I
/I Run a synchronized other command line EXE. Returns only
/I after this exits. The process is runned as a console window.

/I Returns Values : TRUE if the process was created

I FALSE if not.

/I see *nRetValue for the LastError number

bool RunProcessAndWait(char *sCmdLine,
char *sRunningDir,
int *nRetValue);
void RunGestureName(); // Run the name_gesture_ VMR
int DB2Accuracy(); //Extract from the DB Gestures, the accuracy and confusion data
void FindMostConf(); //Find the two most confused gestures
void Acc2DB(); //Pass the Accuracy and 2 most confused gestures to DB

|

#endif // !defined(AFX_GMANAGER_H__ 27D218ED_0630_41DC_BFDC_51F37BB8A63B__INCLUDED_)
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/I Organizelmages.h: interface for the Organizelmages class.
/1
i

//#include <iostream>
/M#include <fstream>
#include <windows.h>
#include <stdio.h>
#include <shellapi.h>
#include "string.h"

#if
!defined(AFX_ORGANIZEIMAGES_H__B3F1CA14_7BCA_4A9F B861_A3645D69077D__INCLUDED_)
#define AFX_ORGANIZEIMAGES_H__B3F1CA14_7BCA_4A9F_B861_A3645D69077D__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _/MSC_VER > 1000

class Organizelmages
{
public:
long *gestures_subset; //Pointer to subset of gestures indices
Organizelmages(int commands);
virtual ~Organizelmages();
void MovePics(); /The main procedure, call all the others

private:
int actions; /Number of commands
char *pics_path;
int DB2Path(int index); //Get a index of a gesture, and set the path for all
// the pictures samples of that gesture
void Move2Temp(int m_from); /Rename images in temp directory

b

#endif //
!defined(AFX_ORGANIZEIMAGES_H__B3F1CA14_7BCA_4A9F_B861_A3645D69077D__INCLUDED._)
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// qap.h: interface for the qap class.
#include <iostream.h>
#include <fstream.h>
#include <math.h>
#include <time.h>
#include <memory>
#if !defined(AFX_QAP_H__9F486B0B_1D89_46FB_B988_8DF5ECD8B4EF__INCLUDED_)
#define AFX_QAP_H__9F486B0OB_1D89_46FB_B988_8DFSECDSB4EF__INCLUDED_
#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
enum booleen {faux, vrai};
class qap
{
public:
qap(long N);
virtual ~qap();
long n,nb_iterations, nb_res; // n - Number of nodes ,
// nb - Number of iterations , nb - Number of iterationa
long Z1, 72, Zt; I/ Zt-total cost, Z1 comfort measure, Z2 intuitve measure
long *p; // Permutation, Result of the QAP
long ** a, ** b,** w, ** d, ** ic; // Pointers to: Matrix a is F, matrix b is S', matrix w is L, ic is the
complementary intuitveness matrix IC
// Pointers to: Matrix d is D (duration),
/fimportant remark: IC is a matrix where the rows are the gestures, and the columns pairs of complementary
commands.
//the first two columns are gestures gl and g2, the following ones are pair of complementary commands.
// to convert this to a fast access matrix, we create a matrix where the column index is obtianed by:
gl*commands+g2. The rows are the values for
// complementary pairs of commands.
int *0G,*oC; //Pointers to vector of opposed of gestures, and to vector to opposed commands
float k1,k2,k3; //weights for the intuitiveness, for the stress, and for the complementary intuitiveness
respectively
double h2; //coefficient to reduce the size of the stress to match the range of intuitveness
double tperiod; //period of time to solve the QAP (all the iterations included)
void solve(); // Solve the QAP problem. Maximization of Total comfort and intutiveness
private:
long n_max, infini, nb_iter_initialisation, no_res;
long Cout;
//long maxi(long a, long b);
long max(long a, long b);
double max(double a, double b);
long min(long a, long b);
double min(double a, double b);
void swap(long &a, long &b);
double temps();
/I void a_la_ligne(ifstream & fichier_donnees);
double mon_rand();
long unif(long low, long high);
/I void lire(long &n, long ** a,long ** b,long ** w);
long calc_delta_complet2(long n, long ** a, long ** b,
long ** w, long **d, long * p, long 1, long s);
long calcule_cout(long n, long ** a, long ** b, long ** w, long **d, long * p);
void calcule_cout_bout(long & co, long & bo,long n, long ** a, long ** b, long ** w, long **d,long * p);
void tire_solution_aleatoire(long n, long * p);
void recuit(long n, long ** a, long ** b, long ** w, long **d,
long * meilleure_sol, long & meilleur_cout,
long nb_iterations);
Y
#endif // !defined(AFX_QAP_H__9F486B0OB_1D89_46FB_B988_8DFSECDSB4EF__INCLUDED_)
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// QAP_DB.h: interface for the QAP_DB class.
/
i
#include "qap.h"

#if !defined(AFX_QAP_DB_H__1B9E5B52_1EA9_4A26_A9EB_ACI1233E8BE46__INCLUDED_)
#define AFX_QAP_DB_H__1B9E5B52_1EA9_4A26_A9EB_AC1233E8BE46__ INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _/MSC_VER > 1000

/I Object that extract from db data of 3 matrices (F,S',I) Freq, Stres and Intuitivness
// and run the QAP, and after that insert Z1,Z2,Zt to the gl databse

class QAP_DB
{
public:
QAP_DB(long n); // Constructor, includes vector wiht the indices of the gestures
// from the big matrix and num of nodes
virtual ~QAP_DB();
long commands,gestures; // Number of Commands and Gestures in DB
void Initial();
long *gestures_subset; //The indexes of the n gestures in the big matrix
long *pai; //Data from the QAP object (the combinaty solution)
float W1,W2,W3; // Data from QAP (weight for direct intuitiveness, for stress, and for compl. intuitveness)
double H2; //coefficient to reduce the size of the stress to be in the same range of the intuitiveness

private:
long ** F, ** S ** UL **D, ** IC; //Big matrices containing all the data in DB
long ** f, ¥* g, **uj,**d, **ic; //Small matrices containing just the data to be passed to QAP

int *oC; //Small vectors of Opposed Commands, and Opposed Gestures, to be passed to QAP

int *equiv_table; // vector with equivalneces between the gestures names, and their order in the task master
set, for exampl: ges 27 is the 23 in the robotic arm tassk

long Z1,72,7t; //Data accesible from the QAP object.

qap *qap_obj; //Pointer to the QAP object

int number_comp_gestures; /number of records in the comp intutive table, this is the number of compl
gestures in the database

double tperiod;// period of time to solve the QAP

int CandG_inDB(); //Find number of gestures, and commands.

int DB2Matrices(); // Copy the matrices data from DB to memory

void Allocate_Mem(); // Allocate memory of all the kinds of matrices

void ExtractSubMatrix(); // Extract the small matrix of size nxn

void RunQAP(); //Run the QAP object using the submatrices data and some parameters

void Insert_Results2DB(); //Insert the results on the DB

int renumbered_index(int i); //returns the new index of the gesture of the subset, according to renumbering it
from 0 to num. of commands

int extract_equiv_index(int i); //finds the equiv order number of the gesture number as presented, for ex: the
gest 27, is may be the 22 in the order

|
#endif // !defined(AFX_QAP_DB_H__1B9E5B52_1EA9_4A26_A9EB_AC1233ES8BE46__INCLUDED.)
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// SimilarityMat.h: interface for the SimilarityMat class.
/I
i

#if !defined(AFX_SIMILARITYMAT_H__ 68C27103_CB12_4815_9B8C_AAADB1354947__INCLUDED_)
#define AFX_SIMILARITYMAT _H__68C27103_CB12_4815_9B8C_AAADB1354947__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _"MSC_VER > 1000

/[This object creates a similarity matrix between all the gestures in the DB. So, if there
/I are a total voacbulary of 12 gestures, so the matrix will be 12x12. Each entry Simi(i,j)
/I represent the distance (simliariyty) between gesture i and j.
class SimilarityMat
{
public:
SimilarityMat(int total_gestures,int n);
virtual ~SimilarityMat();
float Dist(int i,int j); // Euclidian Distance between the cluster i(vector) and the cluster
/1'j (vector).
long *gestures_indices; //Pointer to subset of gestures indices
int GetDistinct(int j); //You change the gesture j, by a new gesture not included
//l in the GV, but yes in DB.
int GetIndexOfGesture(int g); // for a given gesture g, we can get it index in the vector
/I gesture_indices
void OrderGestureVector(); //Order thr gesture vector from low to high, to get always
//the same Accuracy for the same vector

private:
float Ci[100][200];
void DB2Centroid();
int FeatureLLen,commands;
void CreateCentroid2DB(int total_gestures); //Creates the feature averages of each gesture types
void RunGestureCentroids(); //Run execute for Centroids creation
bool RunProcessAndWait(char *sCmdLine,
char *sRunningDir,int *nRetValue); //waits until execute die
int all_gestures;
long *gestures_indices_out; //gestures not selected in GV but in DB, are signed with 1
// the others are signed with 0

#endif //
!defined(AFX_SIMILARITYMAT_H_ 68C27103_CB12_4815_9B8C_AAADB1354947__INCLUDED_)
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// Gmanager.cpp: implementation of the Gmanager class.
1
i

#include "stdafx.h"
#include "Gmanager.h"
#include "math.h"

#import "C:\Program Files\Common Files\System\ADO\msado15.d11" \
no_namespace rename("EOF", "EndOfFile")

inline void TESTHR(HRESULT x) {if FAILED(x) _com_issue_error(x);};

I
// Construction/Destruction
T T

Gmanager::Gmanager(int commands, int total_gestures)
{
gestures=total_gestures;
vec=new char[gestures*gestures*4]; //="0";
vector=new int[gestures*gestures];
confus_vect=new int[600];
commando=commands;

Gmanager::~Gmanager()

{
delete [] vec;
delete [] vector;
delete [] confus_vect;
}
void Gmanager::FindAccuracy()
{
RunGestureName();//*##### ket sk koo x REMEMBER TO UNCOMMENT THIS COMMANDS
DB2Accuracy();
FindMostConf();
Acc2DB();
}

int Gmanager::DB2Accuracy()
{

int row=0,number=0;
HRESULT hr=S_OK;
//_bstr_t gest_num;
_bstr_t acc_data;
_bstr_t fcm_time_data;
_bstr_t confus_data;

int digit,col=0;
char *tokenPtr;
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if(FAILED(::Colnitialize(NULL)))
return 1;
if (SUCCEEDED(hr))
{
_RecordsetPtr pRstGestures("ADODB.Recordset");
// Connection String
_bstr_t strCnn("DSN=gesture;");
// Open table

try

{

pRstGestures->Open("SELECT * FROM parameter ORDER BY id;", strCnn, adOpenStatic,
adLockReadOnly, adCmdText);

pRstGestures->MoveLast();

acc_data =((_bstr_t) pRstGestures->GetFields()-
>Getltem("recognized")->GetValue());

acc=(float)atof(acc_data);

fcm_time_data =((_bstr_t) pRstGestures->GetFields()-
>Getltem("fcm_time")->GetValue());

fem_time=(float)atof(fcm_time_data);

confus_data =((_bstr_t) pRstGestures->GetFields()-
>Getltem("confusion")->GetValue());

strepy(vec,confus_data);

tokenPtr=strtok(vec, " ");

col=0;
while (tokenPtr !=NULL )
{
digit=atoi(tokenPtr);
tokenPtr = strtok(NULL," ");
confus_vect[col]=digit;
col++;
}
pRstGestures->Close();
}
catch (_com_error &e)
{

/I Notify the user of errors if any.
// Pass a connection pointer accessed from the Recordset.
_variant_t vtConnect = pRstGestures->GetActiveConnection();

/I GetActiveConnection returns connect string if connection
/1 is not open, else returns Connection object.

1/ AfxMessageBox((char*) e.Description());

printf("Errors occured.");
(char*) e.Description();

return 1;
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void Gmanager::RunGestureName()
{
int memor|[5];
int *nRetValue=memor;
char sCmdLine[200]="D:\\PHD_PROJECTS\\name_gest_robotic arm_batch2\\name_gestures_batch";
char sRunningDir[200]="D:\\";
RunProcessAndWait(sCmdLine,sRunningDir ,nRetValue);

void Gmanager::RunGL_map()
{

char runa[200]="";

char digit[8]="";

for (int i=0;i<commando;i++)
{
sprintf(digit,"%d",gestures_matched[i]);
strcat(runa,digit);
strcat(runa," ");

}
//ShellExecute(NULL, "open","C:\WINDOWSW\SYSTEM32\\cmd.exe", runa,
NULL,SW_SHOWNORMAL );
ShellExecute(NULL, "open","D:\\PHD_Projects\QAPI\GL_map.exe",runa,
NULL,SW_SHOWNORMAL );

}

bool Gmanager::RunProcessAndWait(char *sCmdLine,
char *sRunningDir,int *nRetValue)

{

int nRetWait;
int nError;

// That means wait 300 s before returning an error

// ' You can change it to the value you need.

/I If you want to wait for ever just use 'dwTimeout = INFINITE>
DWORD dwTimeout = 1000 *300;

STARTUPINFO stInfo;
PROCESS_INFORMATION prinfo;

BOOL bResult;

ZeroMemory( &stlnfo, sizeof(stInfo) );

stInfo.cb = sizeof(stInfo);
stInfo.dwFlags=STARTF_USESHOWWINDOW;
stinfo.wShowWindow=SW_MINIMIZE;

bResult = CreateProcess(NULL,
(LPSTR)(LPCSTR)sCmdLine,
NULL,
NULL,
TRUE,
CREATE_NEW_CONSOLE
| NORMAL_PRIORITY_CLASS,
NULL,
(LPCSTR)sRunningDir,
&stlnfo,
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&prInfo);

*nRetValue = nError = GetLastError();

if (!bResult) return FALSE;
nRetWait = WaitForSingleObject(prInfo.hProcess,dwTimeout);

CloseHandle(prInfo.hThread);
CloseHandle(prInfo.hProcess);

if (nRetWait == WAIT_TIMEOUT) return FALSE;
return TRUE;

}

void Gmanager::FindMostConf()

{

int ind,indice;
int max=0;

int min=100000;
int row;

int col;

// Create a copy of the confus_vector, and damage it!, in order to avoid the diagonals

/ffor (int i=0; i<pow(commando,2); i++)
1/ vector[i]=confus_vect[i];

for (int i=0; i<pow(commando,2); i++)
vector[i]=0;

for (i=0;i<commando;i++) // Take all the diagonals
vector[i]=confus_vect[i+i*commando];

for (i=0;i<commando;i++) // Take min over all the diagonals
if (vector[i]<=min)
{
min=vector[i];
ind=i;
1
for (i=0; i<pow(commando,2); i++) //Copy the original matrix
vector[i]=confus_vect[i];

vector[ind+commando*ind]=0; //destroy it a little

for (i=0;i<commando;i++) // Take max over the row with the min diag.
if (vector[i+commando*ind]>=max)
{
max=vector[i+commando*ind];
indice=i;
1

indice=ind*commando+indice;

//for (i=0;i<commando;i++)
1/ vector[i+i*commando]=0;

for (i=(int)pow(commando,2);i>0;i--)

{

if (vector[i]>=max)

{

max=vector[i];
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/! indice=i;
/ }
/I }

//Now find the rows and cols of the conf. matrix form the vector
row=(indice/commando);
col=(indice%commando);

confused_A=gestures_subset[row];
confused_B=gestures_subset[col];

}

void Gmanager::Acc2DB()
{

nn,

char str_confus1[15]="";
char str_confus2[15]="";
char sAcc[15]="";

char sfcm_time[15]=

",
s

HRESULT hr=S_OK;
_bstr_t sstr_confus1,sstr_confus2,sstr_Acc,ssfcm_time;

if (FAILED(::Colnitialize(NULL)))
return;

if (SUCCEEDED(hr))
{

// Define ADO object pointers.
// Initialize pointers on define.
_RecordsetPtr pRstGL = NULL,;
_ConnectionPtr pConnection = NULL;

HRESULT hr = S_OK;

//Replace Data Source value with your server name.
_bstr_t strCnn("DSN=gl;");
_bstr_t strMessage;

try

{
//Open a connection
TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

neonn

pConnection->Open(strCnn,"","",adConnectUnspecified);

//Open results table
TESTHR(pRstGL.Createlnstance(__uuidof(Recordset)));

/You have to explicitly pass the Cursor type and LockType to the Recordset here
pRstGL->Open("results",_variant_t((IDispatch *) pConnection,
true),adOpenKeyset,adLockOptimistic,adCmdTable);

sprintf(sAcc,"%{f",acc);
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sprintf(sfcm_time," %f",fcm_time);
sprintf(str_confus1,"%d",confused_A);
sprintf(str_confus2,"%d",confused_B);

sstr_Acc=sAcc;
ssfcm_time=sfcm_time;
sstr_confusl=str_confusl;
sstr_confus2=str_confus2;

pConnection->Execute("UPDATE results SET Acc=""+ sstr_Acc+"",fcm_time=""+
ssfem_time+"',confused1=""+sstr_confus1+"', confused2=""+sstr_confus2+"' WHERE id=(SELECT max(id) FROM
results);",NULL,adCmdText);

pRstGL->Close();
pConnection->Close();

}

catch (_com_error &e)

/I Notify the user of errors if any.

// Pass a connection pointer accessed from the Recordset.

_variant_t vtConnect = pRstGL
->GetActiveConnection();

/I GetActiveConnection returns connect string if connection
// is not open, else returns Connection object.

//AfxMessageBox((char*) e.Description());
/lprintf("Errors occured.");
fprintf(stderr, "Database gl Problems: %s\n",(char*) e.Description());
exit(1);

}

::CoUninitialize();
}
}

int Gmanager::RenameLabelsDB(long *gestures_matched)

{

char sold_lbl[15]="";
char snew_Ibl[15]="";
char sold_ind[10]="";

",

char snew_ind[10]="";

char tmp[1]="";
int old_ind,new_ind;
HRESULT hr=S_OK;

if(FAILED(::Colnitialize(NULL)))
return 1;

if (SUCCEEDED(hr))
{
// Define ADO object pointers.
// Initialize pointers on define.
_RecordsetPtr pRstGesture = NULL,;
_ConnectionPtr pConnection = NULL;
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HRESULT hr = S_OK;

//Replace Data Source value with your server name.
_bstr_t strCnn("DSN=gesture;");
_bstr_t strMessage;

try

{
//Open a connection
TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

pConnection->Open(strCnn,"","",adConnectUnspecified);

//Open results table
TESTHR(pRstGesture.CreateInstance(__uuidof(Recordset)));

/Y ou have to explicitly pass the Cursor type and LockType to the
Recordset here

pRstGesture->Open("centroid”,_variant_t((IDispatch *) pConnection,
true),adOpenKeyset,adLockOptimistic,adCmdTable);

pConnection->Execute("UPDATE centroid SET
command=";",NULL,adCmdText);

pRstGesture->Close();
pConnection->Close();

}

catch (_com_error &e)

/I Notify the user of errors if any.
// Pass a connection pointer accessed from the Recordset.
_variant_t vtConnect = pRstGesture
->GetActiveConnection();

/I GetActiveConnection returns connect string if connection
// is not open, else returns Connection object.

/IAfxMessageBox((char*) e.Description());
/fprintf("Errors occured.");

fprintf(stderr, "Database gl Problems: %s\n",(char*)
e.Description());

exit(1);

}

for (int j=0;j<commando;j++)

{
old_ind=j;
new_ind=gestures_matched[j];

HRESULT hr=S_OK;

_bstr_t scmdo_ind;
//_bstr_t gest_num;
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_bstr_t ssold_lIbl;
_bstr_t ssnew_1bl;
_bstr_t ssold_ind;
_bstr_t ssnew_ind;

if(FAILED(::Colnitialize(NULL)))
return 1;
if (SUCCEEDED(hr))
{
_RecordsetPtr pRstGL("ADODB.Recordset");

// Connection String
_bstr_t strCnn("DSN=gl;");
// Open table

sprintf(sold_ind,"%d",old_ind);
sprintf(snew_ind,"%d",new_ind);

ssold_ind=sold_ind;
ssnew_ind=snew_ind;

try

pRstGL->Open("SELECT * FROM commands WHERE id="+ ssold_ind +";", strCnn,
adOpenStatic, adLockReadOnly, adCmdText);

ssold_Ibl =((_bstr_t) pRstGL->GetFields()->Getltem("command")->GetValue());
strepy(sold_lbl, ssold_lbl);
pRstGL->Close();
1

catch (_com_error &e)
{
_variant_t vtConnect = pRstGL->GetActiveConnection();

printf("Errors occured.");

(char*) e.Description();

}
}

if (SUCCEEDED(hr))
{
// Define ADO object pointers.
// Initialize pointers on define.
_RecordsetPtr pRstGesture = NULL,;
_ConnectionPtr pConnection = NULL;

HRESULT hr = S_OK;

//Replace Data Source value with your server name.
_bstr_t strCnn("DSN=gesture;");
_bstr_t strMessage;

try

{
//Open a connection
TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

pConnection->Open(strCnn,"","",adConnectUnspecified);
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Recordset here

//Open results table
TESTHR(pRstGesture.CreateInstance(__uuidof(Recordset)));

/Y ou have to explicitly pass the Cursor type and LockType to the

pRstGesture->Open("centroid”,_variant_t((IDispatch *) pConnection,

true),adOpenKeyset,adLockOptimistic,adCmdTable);

pConnection->Execute("UPDATE centroid SET command=""+

ssold_Ibl +" WHERE name=""+ ssnew_ind +"";",NULL,adCmdText);

e.Description());

}

return (0);

}

pRstGesture->Close();
pConnection->Close();

}

catch (_com_error &e)

{

/I Notify the user of errors if any.
// Pass a connection pointer accessed from the Recordset.

_variant_t vtConnect = pRstGesture
->GetActiveConnection();

/I GetActiveConnection returns connect string if connection
// is not open, else returns Connection object.

/[AfxMessageBox((char*) e.Description());
/lprintf("Errors occured.");

fprintf(stderr, "Database gl Problems: %s\n",(char*)

exit(1);
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/! qap.cpp: implementation of the qap class.
1
i

#include "stdafx.h"
#include "qap.h"

T T
// Construction/Destruction
T T

qap::qap(long N)
{
p = new long [N];

n_max=851;
infini=1399999999;
nb_iter_initialisation = 1000;
n=N;

/l k1=1000; //for intu
/I k2=1; //for stress;
/I k3=kl; //for compl. intutivenss

}

qap::~qap()
{
delete [] p;

}

long qap::max(long a, long b){if (a > b) return(a);else return(b);};
double gap::max(double a, double b) {if (a > b) return(a); else return(b); }
long gap::min(long a, long b) {if (a < b) return(a); else return(b); }
double gap::min(double a, double b) {if (a < b) return(a); else return(b); }

void qap::swap(long &a, long &b) {long temp = a; a =b; b = temp; }
double qap::temps() {return(double(clock())/double(1000000));}

/% */

[k Rk kR Rk ran Jom number generators ek ste st sk sfe sk skt steskoskestokoskok

const long m = 2147483647; const long m2 = 2145483479;
const long al2 = 63308; const long q12 = 33921; const long r12 = 12979;
const long al3 = -183326; const long q13 = 11714; const long r13 = 2883;
const long a21 = 86098; const long q21 = 24919; const long 121 = 7417;
const long a23 = -539608; const long q23 = 3976; const long 123 = 2071;
const double invm = 4.656612873077393e-10;
long x10 = 12345, x11 = 67890, x12 = 13579,

x20 = 24680, x21 = 98765, x22 = 43210;

double gap::mon_rand()
{long h, p12, p13, p21, p23;
h=x10/q13; p13 = -al3*(x10-h*q13)-h*r13;
h=x11/q12; p12 = al2*(x11-h*q12)-h*r12;
if (p13<0)pl3=pl3 +m;if (p12<0)pl2=pl2 + m;
x10=x11; x11 =x12; x12 = p12-p13; if (x12 < 0) x12 =x12 + m;
h =x20/q23; p23 = -a23*(x20-h*q23)-h*r23;
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h = x22/q21; p21 = a21*(x22-h*q21)-h*r21;

if (p23 < 0) p23 =p23 + m2; if (p21 < 0) p21 = p21 + m2;

x20 = x21; x21 = x22; x22 = p21-p23; if(x22 < 0) x22 = x22 + m2;
if (x12<x22) h=x12-x22 + m;else h=x12 - x22;

if (h == 0) return(1.0); else return(h*invm);

}

long gap::unif(long low, long high)
{return(low + long(double(high - low + 1) ¥ mon_rand() - 0.5));
}

[ stk skckoskskeskckoskeksickokokskoslkolkoickek ek gg for qap e ke stesie st steste s ke st sk stk stetosioclokokoskoskoksiokesksokokokok /

long qap::calc_delta_complet2(long n, long ** a, long ** b,

long ** w, long ** d, long * p, long r, long s)
{
long dd;

/it ((p[0]==2) && (p[1]==T) && (p[2]==0) && (p[3]==5) && (p[4]==4) && (p[5]==3) &&
/I (pl6]==6) && (p[7]==1))
// int toti=0;

/leffect of (conitrbution or not) this couple of commands and their assignment, when sweeped.
dd = k1*(w[r][p[s]]+w[s][plr]]-wlr][p[r]]-w[s][p[s]]); // new added by Juan - intuitve term

dd=dd - h2*k2*((a[r][r]-a[s][s])*(b[p[s]1[p[s]]*d[p[s]][p[s]]-bp[rl[p[r]]*d[p[r]][p[r]])+
(a[r][s]-a[s][r])*(b[p[s]I[p[r]]*d[p[s]1[p[r]]-blp[r]][p[s]1*d[p[r]][p[s]])); //stress term

//see above that the stress has a minus sign before, since we want that a high delta means low stress (high
comfort)

/leffect on the other nodes (except the couple). Minus sign before stress is becasue we want to minimize stress
for longk =0; k <n; k=k + 1) if (kl=r && k!=s)
dd = dd - h2*k2*((a[k][r]-a[k][s])*(b[p[k]][p[s]]*d[p[k]][p[s]]-b[p(k]][p[r]]*d[p(k]I[p[r]]) +
(alr](k]-a[s](k])*(b[p[s]1[p[k]1*d[p[s]][p(k]]-blp[r]][p(kIT*d[p[r]][p[k]]);

if (oC[r]==s)// if the n are complementary
dd=dd+k3*(ic[int(r/2)][p[s]*n+p[r]]-ic[int(r/2)][p[r]*n+p[s]]);
else

if (oC[s]==r)// if the n are complementary
dd=dd+k3*(ic[int(s/2)][p[r]*n+p[s]]-ic[int(s/2)][p[s]*n+p[r]]);

for (k=0; k <n; k=k+ 1) if (k!=r && k!=s) //check how the swap will affect the other relations. Add reward
for new couples, punish demolition of couples

{

if (oC[k]==s) //if there is a command that is complementary of one of the pair candidates for swaping,
check the contribution for the swap of the pair
dd=dd + k3*ic[int(k/2)][p[k]*n+p[r]];
else

if (0C[s]==k) // same as above, but check the n in reverse, first command2 and them command|1
dd=dd + k3*ic[int(s/2)][p[r]*n+p[k]];

if (oC[k]==s) //if is a comnd compli of one of the pair, check the lost for the swap of the pair
dd=dd - k3*ic[int(k/2)][p[k]*n+p[s]];
else

if (oC[s]==k) // same as above, but check the n in reverse, first command2 and them
command1

dd= dd - k3*ic[int(s/2)][p[s]*n+plk]];
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if (oC[k]==r) //if there is a command that is complementary of one of the pair candidates (check
the second candidate) for swaping, check the contribution for the swap of the pair

dd=dd + k3*ic[int(k/2)][p[k]*n+p[s]];

else
if (oC[r]==k) // same as above, but check the n in reverse, first command2 and them command1
dd= dd + k3*ic[int(t/2)][p[s]*n+plk]];
if (oC[k]==r) //if is a comnd compli of one of the pair, check the lost for the swap of the pair
dd= dd - k3*ic[int(k/2)][p[k]*n+p[r]];
else
if (oC[r]==k) // same as above, but check the n in reverse, first command2 and them
command1
dd=dd - k3*ic[int(r/2)][p[r]*n+p[k]];
1
return(dd);
1
long qap::calcule_cout(long n, long ** a, long ** b, long ** w,long ** d,long * p)
{long i, j;
long ¢ =0;

int comp_intu;
// long sk = 400000000,

for(i=0;i<n;i=i+DforG=0;j<n;j=j+1)

¢ = ¢ - h2*k2*a[i][j] * blp[ill[p[jlI*d[p[ill[p[jl]; /total stress
// c=c+sk;

fori=0;i<n;i=i+1)
¢ = ¢ + k1*w[i][p[i]]; //total intutiveness (added to total comfort)

for(i=0;i<n;i=1i+ 1) //complementary intuitveness
forG=0;j<n;j=j+1)
{

comp_intu=0;

if (0Clil==j)

comp_intu=ic[int(i/2)][p[i]*n+p[j]l];
else

if (oC[j]==1)
comp_intu=ic[int(j/2)][p[j]*n+p[il];

¢ =c + k3*comp_intu;

}

return(c);

}

void qap::calcule_cout_bout(long & co, long & bo,long n, long ** a, long ** b, long ** w,long ** d, long * p)
{long i, j;

long ¢ =0;

int comp_intu=0;
co=0;

bo=0;

/Nong sk = 400000000;

fori=0;i<n;i=i+1) //This is the total comfort
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forG=0;j<n;j=j+1)
c=c -h2*a[i][j] * b[plill[p[j1] * dlplill[pl[j]l] ; // a-freq, b-comfort, w-intutivenss, d-
duration ---
/lc =c -k2*al[i][j] * blplilllp[j1] * dlplill[p[j]] ; // a-freq, b-comfort, w-intutivenss, d- duration ---
/lc =c + sk;

CO=C;

fori=0;i<n;i=i+1)

{

¢ = c + wlil[plill;

bo =bo + w[i][pl[i]]; / This is the total intuitveness

/lc = ¢ + k1*wl[i][plil];

/fbo =bo + k1*wl[i][p[i]]; // This is the total intuitveness
1

for i=0;i<n;i=1i+ 1) //this is complementary intuitveness
forG=0;j<n;j=j+1)

{
if (oClil==))
comp_intu=ic[int(i/2)][p[i]*n+pljl];
else
if (oCl[j]==1)
comp_intu=ic[int(j/2)][p[j]*n+p[il];
bo = bo + comp_intu ; //total
//bo = bo + k3*comp_intu ; //total
}
c=c+bo;

void gap::tire_solution_aleatoire(long n, long * p)
{long i;
for(i=0;i<n;i=i+l)pli]=1;
for (i =1;i<n;i=i+1) swap(p[i], p[unif(i, n-1)]);
}

void gap::recuit(long n, long ** a, long ** b, long ** w,long ** d,
long * meilleure_sol, long & meilleur_cout,
long nb_iterations)

{long * pp;
longi,r,s;
long delta;
double cpu = temps();
long k = n*(n-1)/2, mxfail = k, nb_fail, no_iteration;
long dmin = infini, dmax = 0;
double t0, tf, beta, tfound, temperature;
long co=0;
long bo=0;
/I long Coutl;

pp = new long[n]; //added by me!
for i=0;i<n;i=1i+ 1) pp[i] = meilleure_sol[i];

long Cout = calcule_cout(n, a, b,w,d, pp);
meilleur_cout = Cout;
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for (no_iteration = 0; no_iteration < nb_iter_initialisation;
no_iteration = no_iteration+1)
{
r = unif(0, n-1);
s = unif(0, n-2);
if (s>=r1)s=s+1;

delta = calc_delta_complet2(n,a,b,w,d,pp.r,s);
if (delta > 0)
{dmin = min(dmin, delta); dmax = max(dmax, delta);};
Cout = Cout + delta;
swap(pplr], ppls]);
//Coutl = calcule_cout(n, a, b,w,d, pp);
|5

t0 = dmin + (dmax - dmin)/10.0;
tf = dmin;
beta = (t0 - tf)/(nb_iterations*t0*tf);

nb_fail = 0;

tfound = t0;

temperature = t0;

r=0;s=1;

for (no_iteration = 0;
no_iteration < nb_iterations - nb_iter_initialisation;
no_iteration = no_iteration + 1)

{ temperature = temperature / (1.0 + beta*temperature);

s=s+1;

if (s >n-1)
{r=r+1;
ifr>n-2)r=0;
s=r+1;

1
delta = calc_delta_complet2(n,a,b,w,d,pp.r,s);

if ((delta > 0) Il (mon_rand() <= exp(double(delta)/temperature)) Il //Modified to Maximiz
mxfail == nb_fail)
{
Cout = Cout + delta; swap(pplr], ppls]);
//Coutl=calcule_cout(n, a, b, w,d,pp); //just added
nb_fail = 0;
}

else nb_fail = nb_fail + 1;

if (mxfail == nb_fail)
{beta = 0; temperature = tfound; };
if (Cout > meilleur_cout) /Modified to Maximiza
{
meilleur_cout = Cout;
fori=0;i<n;i=i+1)
meilleure_sol[i] = pp[i];
tfound = temperature;
//[Cout=calcule_cout(n, a, b, w,d,meilleure_sol); //just added
/] cout << "Iteration = " << no_iteration
/! << " Cost =" << meilleur_cout
1/ <<" Cout =" << Cout << '\n';
/l<<" Computational time = " << temps() - cpu << "\n';
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};

// cout << "Best solution found : \n";

Cout=calcule_cout(n, a, b, w,d,meilleure_sol);
calcule_cout_bout(co,bo, n, a, b, w,d,meilleure_sol);

Z1=co; //Stress

Z2=bo; //Total Intutiveness (Normal + Complementary )
Zt=k2*co+k1*bo;

// for (i=0;i<n;i=1+ 1) meilleure_sol[i] = meilleure_sol[i]+1;
/// End

// cout << "Best solution for distance : ";
/l cout<<co<<'"

/l cout<<bo<<'";

// cout << "\n';

delete [] pp;
}

void qap::solve()
{

long best_Z1,best_Z2,best_Zt,*best_p;
best_p = new long [n];
double cpu = temps();

tire_solution_aleatoire(n, p);
recuit(n,a,b,w,d,p,Cout, nb_iterations);

best_7Z1=71;
best_72=72;
best_Zt=Z7t;

memcpy(best_p, p, n * sizeof(long));

for (no_res = 0; no_res < nb_res-1; no_res = no_res + 1)
{
tire_solution_aleatoire(n, p);
recuit(n,a,b,w,d,p,Cout, nb_iterations);
if (Zt>best_7Zt)

{
best_Z1=71;
best_7Z2=72;
best_Zt=7t;
memcpy(best_p, p, n * sizeof(long));
}
}
Zl=best_Z1;
Z2=best_72;
Zt=best_Zt;

memcpy(p, best_p, n * sizeof(long));
tperiod=temps()-cpu;
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/*
long co=0;
long bo=0;

p[0]=4;
p[1]=0;
p[2]=3;
pl3]=5;
pl4]=1;
p[5]1=2;
pl6]=7;
pl7]=6;

calcule_cout_bout(co,bo, n, a, b, w,d,p);
Z1=co; //Stress
Z2=Dbo; //Total Intutiveness (Normal + Complementary )
Zt=k2*co+k1*bo;
*/

delete [] best_p;
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// QAP_DB.cpp: implementation of the QAP_DB class.
/I
i

#include "stdafx.h"
#include "QAP_DB.h"

T T
// Construction/Destruction
T T

#import "C:\Program Files\Common Files\System\ADO\msado15.d11" \
no_namespace rename("EOF", "EndOfFile")

inline void TESTHR(HRESULT x) {if FAILED(x) _com_issue_error(x);};

QAP_DB::QAP_DB(long n) //Constructor recieves the indeces of n gestures in the
// big matrix
{
/I gestures_subset=subset;
qap_obj=new qap(n);
gap_obj->nb_iterations=600000; // can be more than this (inner iterations) 600000
qap_obj->nb_res=4; // can be more iterations (outter iterations) 4
int ans=0;
ans=CandG_inDB(); //extracts the data from DB called GL
Allocate_Mem();

}

int QAP_DB::CandG_inDB()
{

// Find the number of commands and gestures in DB
int number=0;

commands=0;

gestures=0;

HRESULT hr =S_OK;

_bstr_t num;

if(FAILED(::Colnitialize(NULL)))
return O;
if (SUCCEEDED(hr))
{
_RecordsetPtr pRstGL("ADODB.Recordset");
/I Connection String
_bstr_t strCnn("DSN=GL;");
// Open table
try

{
pRstGL->Open("SELECT COUNT(*) AS result FROM COMMANDS:;", strCnn, adOpenStatic,
adLockReadOnly, adCmdText);
num =((_bstr_t) pRstGL->GetFields()->Getltem("result")->GetValue());
number=atoi(num);
pRstGL->Close();
commands=number;

pRstGL->Open("SELECT COUNT(*) AS result FROM stress_matrix;", strCnn, adOpenStatic,
adLockReadOnly, adCmdText);
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num =((_bstr_t) pRstGL->GetFields()->Getltem("result")->GetValue());
number=atoi(num);
pRstGL->Close();
gestures=number;

}

catch (_com_error &e)

{

/I Notify the user of errors if any.
// Pass a connection pointer accessed from the Recordset.
_variant_t vtConnect = pRstGL->GetActiveConnection();

/I GetActiveConnection returns connect string if connection
/I is not open, else returns Connection object.

fprintf(stderr, "Database gl Problems: %s\n",(char*) e.Description());

exit(1);
1/ AfxMessageBox((char*) e.Description());
// printf("Errors occured.");
// (char*) e.Description();
1
1
return 1;

}

int QAP_DB::DB2Matrices()
{

char vec[1000]="0";
int row=0,number=0;
HRESULT hr=S_OK;

//_bstr_t gest_num;
_bstr_t ui_data, stress_data, duration_data, frequency_data, oC_data, oG_data;

int digit,digit2,col=0;
char *tokenPtr;

if(FAILED(::Colnitialize(NULL)))
return 1;
if (SUCCEEDED(hr))

{
_RecordsetPtr pRstGL("ADODB.Recordset");

/I Connection String
_bstr_t strCnn("DSN=gl;");
// Open table

try
{
pRstGL->Open("SELECT * FROM intutive_matrix ORDER BY id;", strCnn, adOpenStatic,
adLockReadOnly, adCmdText);

pRstGL->MoveFirst();

while (!pRstGL->EndOfFile)

{
col=0;
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ui_data =((_bstr_t) pRstGL->GetFields()->Getltem("id")-

>GetValue());

strepy(vec,ui_data);

digit=atoi(vec);

equiv_table[row]=digit;

ui_data =((_bstr_t) pRstGL->GetFields()->Getltem("data")-
>GetValue());

strepy(vec,ui_data);
tokenPtr=strtok(vec, " ");

while (tokenPtr !=NULL )

{
digit=atoi(tokenPtr);
tokenPtr = strtok(NULL," ");
Ul[row][col]=digit;
col++;

1

pRstGL->MoveNext();
row-++;

}
pRstGL->Close();

pRstGL->Open("SELECT * FROM stress_matrix ORDER BY id;", strCnn,
adOpenStatic, adLockReadOnly, adCmdText);
pRstGL->MoveFirst();

row=0;
while (!pRstGL->EndOfFile)

stress_data =((_bstr_t) pRstGL->GetFields()->Getltem("data")-
>GetValue());

strcpy(vec,stress_data);
tokenPtr=strtok(vec, " ");

col=0;

while (tokenPtr !=NULL )

{
digit=atoi(tokenPtr);
tokenPtr = strtok(NULL," ");
S[row][col]=digit;
col++;

1

pRstGL->MoveNext();
TOW++;

}
pRstGL->Close();

pRstGL->Open("SELECT * FROM duration_matrix ORDER BY id;", strCnn, adOpenStatic,
adLockReadOnly, adCmdText);



246

pRstGL->MoveFirst();

row=0;
while (!pRstGL->EndOfFile)
{
duration_data =((_bstr_t) pRstGL->GetFields()->Getltem("data")-
>GetValue());

strepy(vec,duration_data);
tokenPtr=strtok(vec, " ");

col=0;

while (tokenPtr !=NULL )

{
digit=atoi(tokenPtr);
tokenPtr = strtok(NULL," ");
D[row][col]=digit;
col++;

1

pRstGL->MoveNext();
row-++;

}
pRstGL->Close();

pRstGL->Open("SELECT * FROM frequency_matrix ORDER BY id;", strCnn, adOpenStatic,
adLockReadOnly, adCmdText);

pRstGL->MoveFirst();

row=0;
while (!pRstGL->EndOfFile)

frequency_data =((_bstr_t) pRstGL->GetFields()->Getltem("data")-
>GetValue());

strepy(vec,frequency_data);
tokenPtr=strtok(vec, " ");

col=0;

while (tokenPtr !=NULL )

{
digit=atoi(tokenPtr);
tokenPtr = strtok(NULL," ");
Flrow][col]=digit;
col++;

1

pRstGL->MoveNext();
rOW++;

}
pRstGL->Close();

pRstGL->Open("SELECT * FROM comp_commands ORDER BY id;", strCnn, adOpenStatic,
adLockReadOnly, adCmdText);
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pRstGL->MoveFirst();

for (int index=0;index<commands;index++)
oC[index]=-1;

col=0;
while (!pRstGL->EndOfFile)

{
oC_data =((_bstr_t) pRstGL->GetFields()->Getltem("data")-

>GetValue());

strepy(vec,0C_data);

digit=atoi(vec);

oC_data =((_bstr_t) pRstGL->GetFields()->Getltem("id")-
>GetValue());

strepy(vec,0C_data);
digit2=atoi(vec);
oC[digit2]=digit;
col++;
pRstGL->MoveNext();

}
pRstGL->Close();

pRstGL->Open("SELECT * FROM comp_intuitive ORDER BY id,id2;", strCnn, adOpenStatic,
adLockReadOnly, adCmdText);

pRstGL->MoveFirst();
row=0;
col=0;

while (!pRstGL->EndOfFile)
{
col=0;
0oG_data =((_bstr_t) pRstGL->GetFields()->Getltem("id")-
>GetValue());
strepy(vec,0G_data);
digit=atoi(vec);
IC[row][col]=digit;
col=col+1;

0oG_data =((_bstr_t) pRstGL->GetFields()->Getltem("id2")-
>GetValue());
strepy(vec,0G_data);
digit=atoi(vec);
IC[row][col]=digit;
col=col+1;

0oG_data =((_bstr_t) pRstGL->GetFields()->Getltem("data")-
>GetValue());

strepy(vec,0G_data);

tokenPtr=strtok(vec, " ");

while (tokenPtr !=NULL )

{
digit=atoi(tokenPtr);
tokenPtr = strtok(NULL," ");
IC[row][col]=digit;
col++;
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pRstGL->MoveNext();
row-++;

}
pRstGL->Close();
number_comp_gestures=row;

}

catch (_com_error &e)

{
/I Notify the user of errors if any.
// Pass a connection pointer accessed from the Recordset.

_variant_t vtConnect = pRstGL->GetActiveConnection();

/I GetActiveConnection returns connect string if connection
/1 is not open, else returns Connection object.

/ AfxMessageBox((char*) e.Description());

/lprintf("Errors occured.");
//(char*) e.Description();
fprintf(stderr, "Database gl Problems: %s\n",(char*) e.Description());

exit(1);

}

// delete vec;
return O;

void QAP_DB::Allocate_Mem()
{

/I Allocate memory for big Matrices according to this quantities
long i,j;

for (i = 0; i < gestures; i++)
{
F = new long *[gestures];
S = new long *[gestures];
D = new long *[gestures];
UI = new long *[gestures];

}

for (i=0; i < gestures*3; i++)
IC = new long *[gestures*3];

for (i=0; i < gestures*3; i++)
IC[i]=new long[gestures*3]; /Complementary intuitivety

for (i = 0; i < gestures; i++)

{

F[i] = new long[gestures]; //frequency
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S[i] = new long[gestures]; // Stress
DIi] = new long[gestures]; //Duration
UI[i] = new long[gestures]; //intutiveness

}

for (i = 0; i < commands; i++)

{

f = new long *[commands];

}

for (i = 0; i < gestures; i++)

{
ui = new long *[commands];
s = new long *[gestures];
d = new long *[gestures];

}

for (i = 0; i < commands; i++)

{

f[i] = new long[commands];
ui[i] = new long[gestures];

}

for (i = 0; i < gestures; i++)

{

" ui[i] = new long[commands];
s[i] = new long[gestures];
d[i] = new long[gestures];

}

for (i = 0; 1 < commands*commands; i++)
ic=new long *[commands];

for (i = 0; i < commands; i++)
ic[i]J=new long[commands*commands];

/I ic[1][150]=7,

// cleaning before use
for(i=0;i<3*gestures;i++)
for(j=0;j<3*gestures;j++)
IC[il[j1=0;

oC=new int[commands]; //opposed command. entry oC[i]=j means that command 'j' is the complementary

of command '1' (like 'fast' and 'slow")
equiv_table=new int[gestures]; //table of equivalences between the gesture number, and it order in the

subset. For example, gesture 27, will be 5 (23 gestures maximum)

}

void QAP_DB::ExtractSubMatrix()

{
long rowcol,row,col,rowcol_equiv;
long index=0;
int gest=0;
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int gl,g2;
int composite_index;

//cleaning a little bit the old matrices
for(int i=0;i<commands;i++) //makes zero all the complementary matrix, so later on, the compl not filled,
wiill have automatically zero
for (int j=0;j<commands*commands;j++)

ic[i][j]=0;

/I Copy the matrix Ul to a submatrix ui
for (i=0; i<commands;i++) // Assumption that the number of sub-gestures is
{ /l equal to number of commands

rowcol=gestures_subset[i]; /CHANGED 19/03/06 BECAUSE now we enumerate the gestures
from 1 to 27, instead of from 0.

rowcol_equiv=extract_equiv_index(rowcol);
for (int j=0; j<commands;j++)

ui[j][index]=Ul[rowcol_equiv][j]; //ui is transposed of Ul So now, rows are commands, and cols
are gestures.
/l op[jl[index]=OP[rowcol][j];
}

index++;

}

index=0;

//Copy the matrix S to a submatrix s, including only the rows/cols of the subset of gestures
//Copy the matrix D to a submatrix d including only the rows/cols of the subset of gestures
for (i=0;i<commands;i++)

{

row=gestures_subset[i]-1; /CHANGED 19/03/06 BECAUSE now we enumerate the gestures from 1 to
27, instead of from 0.
for (long j=0; j<commands;j++)
{
col=gestures_subset[j]-1; /CHANGED 19/03/06 BECAUSE now we enumerate the gestures
from 1 to 27, instead of from 0.
s[index][j]=S[row][col];
d[index][j]=D[row][col];

}

index++;

}

//This parts takes the IC matrix, with the first two columns are gl and g2 respectively, and gl and g2 are
complementary gestures.
//The rest of the values in the row is the value of intuitivety for each column.
// The other columns represents the pairs of complementary commands, left-right, up-down, etc.
//We want to cpy this to a new matrix ic, that the columns are a composite index of both g1, and g2:
gl*commands + g2.
// The rows of ic are the values of the intuitivety for each pair of complementary commands
for (index=0; index<number_comp_gestures;index++)
{
g1=IC[index][0];
22=IC[index][1];
row=0;
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int inl=renumbered_index(gl);
int in2=renumbered_index(g2);

Il ic[1][150]=7;
if ((inl!=-1) && (in2!=-1))

composite_index=inl*commands+in2;
for (int indice=2;indice<commands;indice++)

{
ic[row][composite_index]=IC[index][indice];
row=row+1;
}
}
if (composite_index==206)
int tio=1;
}
//Copy the matrix F to the submatrix f (nothing to do, they are equal)
f=F;
}
int QAP_DB::renumbered_index(int i)
{
int indi;
indi=-1;

for (int index=0; index<commands; index++)
if (i==gestures_subset[index])
indi=index;

return (indi);

}

int QAP_DB::extract_equiv_index(int i)
{

int indi;

indi=-1;

for (int index=0; index<gestures; index++)
if (i==equiv_table[index])
indi=index;

return (indi);

}

void QAP_DB::RunQAP()
{

long val;

//copies all the matrices here to the qap object
qap_obj->a=f;

qap_obj->b=s;

qap_obj->w=ui;
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qap_obj->d=d;
qap_obj->ic=ic;
qap_obj->0C=0C;

qap_obj->k1=W1; //weight for direct intuitveness

qap_obj->k2=W2; // for stress (the increments of stress are more signif than the intu)
qap_obj->k3=W3; //weight for complementary intuitveness

qap_obj->h2=H2; //coefficient to reduce the size of the stress, to make in same scale as intuitive

qap_obj->solve();
Z1=qap_obj->Z1;
Z2=qap_obj->7Z2;
Zt=qap_obj->Zt;
tperiod=qap_obj->tperiod*1000;

pai=qap_obj->p; // comb[1], comb[2], etc

//Here we try to copy the gesture permutation, using their original indexes
for (long i=0;i<commands;i++)
{

val=pail[i];

pai[i]=gestures_subset[val];

}

void QAP_DB::Insert_Results2DB()
{

char str_pai[1000]="";
char str_subset[1000]="";
char Su[15]="";

char sZ1[15]="";

char sZ2[15]="";

char sZt[15]="";

char sW1[15]="";

char sW2[15]="";

char sW3[15]="";

char sTime[15]="";

HRESULT hr=S_OK;
_bstr_t sstr_pai,sstr_subset,ssZ1,ssZ2,85Zt,ssW 1,ssW2,ssW3,ssTime;

if (FAILED(::Colnitialize(NULL)))
return;

if (SUCCEEDED(hr))

{

/I Define ADO object pointers.
// Initialize pointers on define.
_RecordsetPtr pRstGL = NULL;
ConnectionPtr pConnection = NULL;

HRESULT hr = S_OK;

//Replace Data Source value with your server name.
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_bstr_t strCnn("DSN=gl;");
_bstr_t strMessage;

try

{
//Open a connection
TESTHR(pConnection.CreateInstance(__uuidof(Connection)));

nonn

pConnection->Open(strCnn,"","",adConnectUnspecified);

//Open results table
TESTHR(pRstGL.CreateInstance(__uuidof(Recordset)));

/You have to explicitly pass the Cursor type and LockType to the Recordset here
pRstGL->Open("results",_variant_t((IDispatch *) pConnection,
true),adOpenKeyset,adLockOptimistic,adCmdTable);

for(int j=0;j<commands;j++)
{
strepy(Su,"");
sprintf(Su,"%d" ,pai[j]);
strcat(str_pai,Su);
strcat(str_pai," ");

strepy(Su,"");
sprintf(Su,"%d",gestures_subset[j]);

strcat(str_subset,Su);

strcat(str_subset," ");

sprintf(sZ1,"%d",Z1);
sprintf(sZ2,"%d",Z2);
sprintf(sZt,"%d",Zt);
sprintf(sW1,"%f",W1);
sprintf(sW2,"%f",W2);
sprintf(sW3,"%f",W3);
sprintf(sTime," %t" tperiod);

sstr_pai=str_pai;
sstr_subset=str_subset;
ssZ1=s71;

$872=s72;

ssZt=sZt;

ssW1=sW1;
ssW2=sW2;
ssW3=sW3;
ssTime=sTime;

pConnection->Execute("INSERT INTO results (solution,ordered,z_str,z_int,zt,w_int,w_str,Tann)
VALUES
("+sstr_pai+"',""+sstr_subset+"',"+ssZ1+"", " +ssZ2+"" " +ssZt+"" " +ssW1+",""+ssW2+"",""+ssTime+"");",NULL,adC
mdText);

pRstGL->Close();
pConnection->Close();

}

catch (_com_error &e)

{
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/I Notify the user of errors if any.

// Pass a connection pointer accessed from the Recordset.

_variant_t vtConnect = pRstGL
->GetActiveConnection();

/I GetActiveConnection returns connect string if connection
/I is not open, else returns Connection object.

/IAfxMessageBox((char*) e.Description());
/lprintf("Errors occured.");
fprintf(stderr, "Database gl Problems: %s\n",(char*) e.Description());
exit(1);

}

::CoUninitialize();
}
}

void QAP_DB::Initial()

{
int ans=0;

// ans=CandG_inDB();

/I Allocate_Mem();
ans=DB2Matrices();
ExtractSubMatrix();
RunQAP();
Insert_Results2DB();

}

QAP_DB::~QAP_DB()
{
delete [] qap_obj; //are you sure that you destroy the object this way?? I think that the object destroys
itself
delete [] F;
delete [] S;
delete [] UL,
delete [] IC;
delete [] D;
/I delete [] f; Commented since f=F and already deallocated (before 2 lines ago)
delete [] ui;
delete [] ic;
delete [] s;
delete [] d;
delete [] oC;
delete [] equiv_table;
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// QAPL.cpp : Defines the entry point for the console application.
/I

#include "stdafx.h"

#include "QAP_DB.h"
#include "Gmanager.h"
#include "OrganizeImages.h"
#include "SimilarityMat.h"
#include "string.h"

void main()

{

long a,b,c,d,e,f,g,h;

long n=8; // Number of n nodes of the problem

long total_gestures=22; //Number of Gestures in Master Set Vocabulary

long *gestures_indices;

long *gestures_indices_matched; //the same indices, but in the order corresponding each command
gestures_indices=new long[n];

gestures_indices_matched=gestures_indices;

float distan=0;

// Object that extract from db data of 3 matrices (F,S,I)
// and run the QAP, and after that insert Z1,Z2,Zt to the gl databse

SimilarityMat Simat(total_gestures,n); //Constructor of Simlarity Matrix
QAP_DB qap_db_obj(n); /Constructor
Organizelmages oi(n); //Constructor

Gmanager Gman(n,total_gestures); /Constructor

int iterat=0;

int W1,W2;
W1=0;
W2=10;
/I while (iterat<=10)
/B
iterat++;
/*

for (a=1;a<20;a++)
for (b=a+1;b<21;b++)
for (c=b+1;c<22;c++)
for (d=c+1;d<23;d++)
for (e=d+1;e<24;e++)
for (f=e+1;f<25;f++)
for (g=f+1;g<26;g++)
for (h=g+1;h<27;h++)
{

iterat++;

gestures_indices[0]=a;
gestures_indices[ 1]=b;
gestures_indices[2]=c;
gestures_indices[3]=d;
gestures_indices[4]=e;
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*/

object

object

object

I

object

1"

gestures_indices[5]=f;
gestures_indices[6]=g;
gestures_indices[7]=h;

W1=8;
W2=2;

gestures_indices[0]=6;
gestures_indices[1]=7;
gestures_indices[2]=8;
gestures_indices[3]=10;
gestures_indices[4]=12;
gestures_indices[5]=18;
gestures_indices[6]=23;
gestures_indices[7]=24;

qap_db_obj.W1=W1; //intu weight
qap_db_obj.W2=W2; //stress weight
qap_db_obj.W3=qgap_db_obj.W1; //compl. intu
qap_db_obj.H2=0.001; //reduction factor for the stress.

WI=W1+1;
W2=W2-1;

qap_db_obj.gestures_subset=gestures_indices; //Give the subset of gestures indices

qap_db_obj.Initial(); //Run the object

gestures_indices_matched=qap_db_obj.pai;

oi.gestures_subset=gestures_indices;//Give the subset of gestures indices

oi.MovePics(); //Move the gestures pics to train folder

//Object that run the accuracy module with preselected gestures
// and extract the accuracy, and put it in the gl db.

Gman.gestures_subset=gestures_indices;//Give the subset of gestures indices  // to object

Gman.gestures_matched=gestures_indices_matched;//Give the subset of gestures indices

Gman.FindAccuracy();
distan=Simat.Dist(Gman.confused_A,Gman.confused_B);
distan=Simat.Dist(Gman.confused_A,0);

Gman.RunGL_map();

}

Gman.RenameLabelsDB(gestures_indices_matched);

[[FRFFFRR R Remember to uncomment the name_gesture_ VMR running applic
delete [] gestures_indices;

// to

/] to

// to

/] to
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// SimilarityMat.cpp: implementation of the SimilarityMat class.
1
T T T

#include "stdafx.h"

#include "SimilarityMat.h"
#include "OrganizeImages.h"
#include <cv.h>

#import "C:\Program Files\Common Files\System\ADO\msado15.d11" \
no_namespace rename("EOF", "EndOfFile")

inline void TESTHR(HRESULT x) {if FAILED(x) _com_issue_error(x);};

T T
// Construction/Destruction
i

SimilarityMat::SimilarityMat(int total_gestures,int n)
{
gestures_indices=new long[total_gestures];
gestures_indices_out=new long[total_gestures];

all_gestures=total_gestures;
commands=n;

for (int i=0;i<total_gestures;i++)
gestures_indices[i]=i;  //Order the images by their oginially index order: 1,2,3,..12

// CreateCentroid2DB(total_gestures); //Creates for the first time a prototype...
/l..vector matrix of the
gestures. You can comment
// this line, after the first run
// THIS DATA is saved in a DB called INITTAL.DBM (the centroids of each group of gestures type)

DB2Centroid();

}

void SimilarityMat::CreateCentroid2DB(int total_gestures)

{

Organizelmages oi(total_gestures); //Constructor of the pictures organizer object
oi.gestures_subset=gestures_indices;//Give the subset of gestures indices

// to object
oi.MovePics(); //Move the gestures pics to train folder

// #** RUN THE GestureRecCentroids ***//
RunGestureCentroids();

}

void SimilarityMat::RunGestureCentroids()
{
int memor|[5];
int *nRetValue=memor;
char sCmdLine[200]="D:\PHD_PROJECTS\\GestureRecCentroids\\Debug\\GestureRec.exe";
char sRunningDir[200]="D:\\";
RunProcessAndWait(sCmdLine,sRunningDir ,nRetValue);
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}

bool SimilarityMat::RunProcessAndWait(char *sCmdLine,
char *sRunningDir,int *nRetValue)

{

int nRetWait;
int nError;

// That means wait 300 s before returning an error

// ' You can change it to the value you need.

/I If you want to wait for ever just use 'dwTimeout = INFINITE>
DWORD dwTimeout = 1000 *300;

STARTUPINFO stInfo;
PROCESS_INFORMATION prlnfo;

BOOL bResult;

ZeroMemory( &stlnfo, sizeof(stInfo) );

stInfo.cb = sizeof(stInfo);
stInfo.dwFlags=STARTF_USESHOWWINDOW;
stInfo.wShowWindow=SW_MINIMIZE;

bResult = CreateProcess(NULL,
(LPSTR)(LPCSTR)sCmdLine,
NULL,
NULL,
TRUE,
CREATE_NEW_CONSOLE
| NORMAL_PRIORITY_CLASS,
NULL,
(LPCSTR)sRunningDir,
&stInfo,
&prInfo);

*nRetValue = nError = GetLastError();

if (!bResult) return FALSE;
nRetWait = WaitForSingleObject(prInfo.hProcess,dwTimeout);

CloseHandle(prInfo.hThread);
CloseHandle(prInfo.hProcess);

if (nRetWait == WAIT_TIMEOUT) return FALSE;
return TRUE;
}

void SimilarityMat::DB2Centroid()
{

char vec[600]="";

int num_pics=0,number=0;
HRESULT hr=S_OK;
_bstr_t gest_num;

_bstr_t center;

int digit,index=0;

char *tokenPtr;

if(FAILED(::Colnitialize(NULL)))
return;
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if (SUCCEEDED (hr))

{

_RecordsetPtr pRstGestures("ADODB.Recordset");

/I Connection String

_bstr_t strCnn("DSN=initial;");
/I Open table
try
{
pRstGestures->Open("SELECT * FROM CENTROID ORDER BY gest_num;", strCnn,

adOpenStatic, adLockReadOnly, adCmdText);

pRstGestures->MoveFirst();

while (!pRstGestures->EndOfFile)
{

gest_num =((_bstr_t) pRstGestures->GetFields()-
>Getltem("gest_num")->GetValue());

center =((_bstr_t) pRstGestures->GetFields()->Getltem("center")-
>GetValue());

number=atoi(gest_num);
strepy(vec,center);
tokenPtr=strtok(vec, " ");

index=0;

while (tokenPtr !=NULL )

{
digit=atoi(tokenPtr);
tokenPtr = strtok(NULL," ");
Ci[number][index]=digit;
index++;

1

pRstGestures->MoveNext();
num_pics++;
}
FeatureLen=index;
pRstGestures->Close();
}
catch (_com_error &e)
{
/I Notify the user of errors if any.
// Pass a connection pointer accessed from the Recordset.
_variant_t vtConnect = pRstGestures->GetActiveConnection();

/I GetActiveConnection returns connect string if connection

/I is not open, else returns Connection object.

printf("Errors occured.");
(char*) e.Description();
exit(1);

return;
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float SimilarityMat::Dist(int i,int j)

{
float u=0;
CvMat Pointl = cvMat(1,FeatureLen,CV_MAT32F,NULL);
CvMat Point] = cvMat(1,FeatureLen,CV_MAT32F,NULL);
CvMat PointDiff = cvMat(1,FeatureLen,CV_MAT32F,NULL);
//ICvMat Result = {1,1,CV_MAT32F,0,NULL};
CvMat Result = cvMat(1,1,CV_MAT32F,NULL);

cvmAlloc(&Pointl);
cvmAlloc(&Pointl]);
cvmAlloc(&PointDiff);
cvmAlloc(&Result)

float *pl = Pointl.data.fl;
float *pJ = PointJ.data.fl;

memcpy(plL,Ci[i],FeatureLen*4);
/fmemcpy(pl,Ci[i].data,sizeof (Ci[i].data));

/Mfor (int index=0;index<FeatureLen;index++)
1/ cvmSet(&Pointl,0,index ,Ci[i].data[index]);

memcpy(pJ,Ci[j],FeatureLen*4);
//memcpy(pJ,MatFeatures[j].data,sizeof(MatFeatures[j].data));

//for (index=0;index<FeatureLen;index++)
1/ cvmSet(&PointJ,0,index, MatFeatures[j].data[index]);

cvmSub(&Pointl,&Point],&PointDiff);
cvmMul Transposed(&PointDiff,&Result,0);

u=(float)cvmGet(&Result,0,0);

cvmFree(&Point]);
cvmFree(&Result);
cvmFree(&PointDiff);
cvmFree(&Pointl);
return u;

}

int SimilarityMat::GetDistinct(int j)
{

int max=0;

int index=-1;

int X,y,min,c;

long *gestures_min;

gestures_min=new long[all_gestures];
for (c=0;c<all_gestures;c++) //Initialization
gestures_indices_out[c]=1;

for (c=0;c<all_gestures;c++) //Initialization
gestures_min[c]=0;

for (c=0;c<commands;c++) //gestures_indices_out[x]=1, mean x is not used in subset
gestures_indices_out[gestures_indices[c]]=0;
//Helman way MinmMax
// Now find the MIN distances between OUT and IN
for (x=0;x<all_gestures;x++)
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{
min=100000000; //Start from some value to compare
for (y=0;y<all_gestures;y++)
if ((Dist(x,y)<=min) && (gestures_indices_out[x]==1)
&& (gestures_indices_out[y]==0) && (y!=j))
{
min=cvRound(Dist(x,y));
gestures_min[x]=min;
1
1

// Now find the MAX over the mins.
for (x=0;x<all_gestures;x++)
if (gestures_min[x]>=max)

{
max=gestures_min[x];
index=x;
}
/// JUAN OLD WAY

/I for (c=0;c<all_gestures;c++)
/I if ((Dist(j,c)>=max) && (gestures_indices_out[c]==1))

/A

/! max=Dist(j,c);
/! index=c;
N}

delete [] gestures_min;
return(index);
}
int SimilarityMat::GetIndexOfGesture(int g)
{
int ind,c;
for (c=0;c<commands;c++)
if (g==gestures_indices[c])
ind=c;
return(ind);
}
void SimilarityMat::OrderGesture Vector()
{
int contador=0;
long *gestvector_cpy;
gestvector_cpy=new long[commands];
for (int g=0;g<all_gestures;g++)
for (int c=0;c<commands;c++)
if (g==gestures_indices[c])
{
gestvector_cpy[contador]=g;
contador++;
}
for (int c=0;c<commands;c++)
gestures_indices[c]=gestvector_cpy|[c];
delete [] gestvector_cpy;
}
SimilarityMat::~SimilarityMat()
{
/I delete [] gestures_indices; //Don't delete this now, it is deleted
/Nater, at the end of the main program
delete [] gestures_indices_out;

}
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