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Abstract 

 

Gesture-based interfaces offer an alternative to traditional teach-pendants, menu, and direct 

manipulation interfaces. The ability to specify objects, operations, navigation commands, and 

additional parameters with a single intuitive gesture appeals to both novice and experienced 

users. Gesture interfaces can be seen as an alternative to existing interface techniques, offering 

advantages such as natural, sterile and fast response. One of its main contributions is to provide 

assistance for people with physical disabilities to access computers and other physical devices. 

The main aspect in a non-generic task oriented hand gesture interface is the selection of the hand 

gestures (or postures) involved in the control loop. Unfortunately, hand gesture vocabulary design 

procedures for human machine interaction have not been extensively researched. The creation of 

a hand gesture vocabulary involves a formidable optimization problem in a large search space 

and should be based on both human usability and machine recognition factors. The following 

three factors are considered as the most important affecting the performance of human-machine 

hand gesture vocabulary design: 

1. Fatigue (or Comfort): Gestural communication involves more muscles than keyboard 

interaction, mouse or speech. The wrist, fingers, hand and arm all contribute to the expression of 

commands. Gestures must therefore be concise and comfortable and minimize effort in the whole 

hand and arm. In particular, the design of a vocabulary must avoid gestures that require a high 

muscles tension over a long period of time. Awkward repetitive postures have an enormous 

impact on tissue strain and causes pressure within the carpal tunnel. A successful procedure will 

encourage natural postures and deter the ones that aggravate the strain of repetition. Two types of 

stress were determined in this thesis: a) the static stress, which is the effort that takes to hold a 

static gesture for a defined amount of time, and b) the dynamic stress, which is the effort that is 

necessary for performing a transition between static gestures. A fatigue matrix, S, was created to 

hold information regarding the stress indices of the gestures used in the current methodology. The 

comfort matrix U is some inverse function of S. 

2. Intuitiveness: Intuitiveness is the cognitive naturalness of associating a gesture with a 

command or intent. This is unrelated to the limitations imposed by hand anatomy. Complex or 

unnatural gestures, are rarely remembered by the user when used. The gesture should be easy to 

recall even if it has no cognitively associated action. Intuitiveness is associated with learnability 

and memorability. Other factors that affect the users preferred set of gestures are general 

knowledge, cultural background and linguistic capabilities of the user. Two types of intuitiveness 

are presented in this thesis: direct intuitiveness, which is related to the cognitive association 

between a gesture and a command, and the complementary intuitiveness, which is related to the 

use of complementary gestures to represent complementary commands. The direct intuitiveness 

matrix I, is used to store information about the direct intuitiveness of the framework. The 

complementary intuitiveness information is contained in the matrix of complementary intuitive 

indices, IC. Hence the intuitiveness V is the set {I, IC}. 

3. Recognition Accuracy: Recognition accuracy is the percent of accepted gestures that are 

classified correctly. Hand gesture recognition is a very difficult vision task which involves 

assumptions regarding uniform/complex background, static- dynamic states, and skin color 

models. Position, orientation and finger-palm configuration can be used to emphasize the 

differences between the gestures and hence yield high discrimination. Image processing and 

robust recognition algorithms are a crucial factor for classification of hand gestures. To determine 

the recognition accuracy, A, of a gesture vocabulary, a hand gesture recognition algorithm was 

developed.  
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The first two factors, fatigue and intuitiveness, are human centered while the third factor 

accuracy, depends on machine properties (e.g., hardware, software). This thesis deals with the 

optimal design of a hand gesture vocabulary, which answers to the need for improving the users 

control experience (intuitiveness and comfort) without affecting the technical aspect (recognition 

accuracy), as a direct expression of task performance. These three factors will be used to guide 

the design of an optimal hand gesture vocabulary.  

The main objective of this thesis is to formulate the optimal hand gesture vocabulary design 

problem in a rigorous manner, to develop and validate a solution methodology using 

mathematical programming, heuristics approaches, image processing algorithms and methods to 

estimate human psycho-physical measures. 

 

Methodology 
An optimal hand gesture vocabulary, GV, is defined as a set of gesture-command pairs, such 

that it will minimize the time τ for a user to perform a task T (or tasks). The number of 

commands C is determined by the task, while the set of gestures is selected from a large set of 

hand postures, Gz. The performance of the task depends on the recognition accuracy of the subset 

of gestures Gn, on human factors measures representing the naturalness of the gesture-command 

associations, and the comfort of the postures.  

Problem definition and solution approaches 

The main problem is to minimize task performance time over a set of all feasible gesture 

vocabularies, GV. Since the task completion time, as a function of GV, has no known analytical 

form, three different performance measures are proposed as proxies: intuitiveness Z1(GV), 

comfort Z2(GV) and recognition accuracy Z3(GV). Maximizing all the objectives simultaneously 

determines a multiobjective optimization problem (MCOP) which can be solved by allowing the 

decision maker to select the GV from a pareto frontier according to his own preferences. The 

pareto frontier solution can be determined through enumeration however, for even reasonable 

size vocabularies, the enumeration approach is untenable. 

Two alternative formulations to this problem were presented: a) the three performance 

measures were mapped into a single measure by using weights wi to reflect the relative 

importance of each of the objectives. b) use of a dual priority objective where accuracy is the first 

priority and the human performance objectives are secondary. 

Architecture 

The optimal hand gesture vocabulary methodology architecture is comprised of three serial 

modules. In Module 1, human psycho-physiological input factors are determined. In Module 2, a 

search for a feasible gesture subset, subject to machine gesture recognition accuracy is carried 

out. Module 3 constitutes a command - gesture matching procedure.  

The task set T, the large gesture master set Gz and the set of commands C are the input 

parameters to Module 1. The union of all commands used to perform all tasks T constitutes C. 

The objectives of Module 1 are to establish associations between commands and gestures based 

on user intuitiveness (direct and complementary), to find the comfort matrix based on command 

transitions and fatigue measures, and to reduce the large set of gestures, to the master set Gm. For 

Module 2, the necessary inputs are the master set of gestures Gm, and a recognition algorithm to 

determine A. This module employs an iterative search procedure to find a single feasible gesture 

subset Gn* (or alternatively the set of feasible gesture subsets), satisfying a given accuracy level 

given by the decision maker. Two metaheuristic approaches were developed for the search 

procedure. The first approach is referred to as the Disruptive Confusion Matrix (DCM), and the 

second is referred to the Confusion Matrix Derived Solution (CMD). In addition to that, a case of 

partial enumeration was demonstrated as well.  

A reconfigurable FCM supervised algorithm was used to obtain the recognition accuracy, A. 

The parameters of the image processing and clustering algorithm were simultaneously found 
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using neighborhood parameter search routines. Two versions of a local neighborhood search 

algorithm were designed. These versions were customized for an operational parameter 

calibration task system, where the number of parameters in the solution vector was dynamically 

changed. To determine the accuracy of a candidate subset of gestures it was necessary to train a 

classifier. Two different approaches were used; one retraining the FCM many times for each 

different candidate Gn , and a second in which the FCM is trained and tuned once for the master 

set Gm  from which the accuracy of candidate Gns are derived. This second method is an 

approximate method, but is very fast. 

The inputs to the third module are the matrices; intuitiveness V={I,IC}, comfort U, 

commands C, and the subset of gestures Gn*. The goal of this module is to match the set of 

gestures Gn with the set of given commands, C, such that the human measures are maximized. 

The integer QAP solved the problem of matching gestures to commands. The resulting gesture-

command assignment constitutes the gesture vocabulary, GV. 

 

Experiments, Analysis and Results 

The subjective measures were obtained through a series of experiments by studying human 

subjects responses. The first experiment involved finding intuitive gestures to control a robotic 

arm and a VMR. To collect intuitive data, a sequence of commands (from a robotic arm and a 

VMR predefined task) was presented to the user, and the user freely associated gestures to these 

commands. The actual acquisition of gesture responses was done when the subject physically 

generated a gesture, and entered its configuration information. The selection of gestures respected 

a 70/30 rule, where 70% of subjects used only 30% of the gestures in a vocabulary. This refutes 

the claim that subjects use consistently the same gestures to represent the same commands while 

performing tasks, as suggested by Hauptmann [Hauptmann and McAvinney, 1993]. 

For the stress measure, an ergonomic experiment was conducted which consisted of ranking 

hand gestures, by the user, from weak to strong on the Borg scale [Borg, 1982]. Based on the 

static stress measures for all the gestures in the master set Gm, and only a few measures for the 

transition stress, a model that describes the transition effort was developed and validated. This 

model affirms that, 90% of the dynamic stress (and its duration) was determined by the final 

posture in the transition between two postures, and only 10% by the starting posture. Using this 

relation the prediction of the dynamic stress and its duration is based on the use of only static 

stress measures. This prediction model saved 197 hours of subjective experiments. 

To validate the model two sets of GVs were created; VG as a set of vocabularies that is highly 

intuitive, comfortable and easy to recognize, and VB is a set of low intuitive, stressful and hard to 

recognize vocabularies. GVG and GVB are vocabularies samples from VG and VB, respectively. 

Validation of the analytical procedures for finding the optimal hand gesture vocabularies 

consisted of testing the following hypothesis: (a) H1: Min τ(GV*) ∝  max(Z1), max(Z2) and 

max(Z3) - task performance time τ can be represented by multiobjective proxy measures. 

Moreover, the maximization of the multiobjective function causes a minimization in the 

performance time of the task. (b) H2: τ(GVG)< τ(GVB) – the use of GVG results in shorter time 

completion task than GVB. (c) H3: m(GVG)> m(GVB) - vocabularies GVG are easier to remember 

than GVB. 

To test the first two hypotheses (H1, H2), a t-test was performed between standard completion 

times for 8 VG and 8 VB vocabularies for both a robotic arm and a VMR task. The mean 

completion time for the tasks using VG was much shorter than the time using VB (τ(GVG) =87.98 

sec < τ(GVB)=118.95 sec with p=0.0059) and (τ(GVG)=114.67 sec < τ(GVB)=153.04 sec with 

p=0.00031), for the robotic arm and the VMR tasks, respectively. The learning time was 

expressed in terms of the learning rate of the user’s learning curve in the use of certain GV when 

performing a task. It was found that for the VG the learning rate was lower than for VB (the 

robotic arm task 0.785<0.797, the VMR task 0.827<0.835) representing faster learning. The last 
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hypothesis (H3), suggested that the GVG is easier to remember than GVB. Memorability was 

determined by experienced user’s recall of the gesture-command associations. The average 

memorability scores for the robotic task using the VG were higher than using the VB (87.5 and 

70.83% with p=0.05), however there was no significant difference in memorability for the VMR 

task. All these results can be restated as: GVs with high values of the 3 multiobjectives resulted in 

decreased performance time, faster learning and increased memory.  

 

Conclusions 
This thesis presented a methodology for the design of natural hand gestures vocabularies, 

which involves both the psycho-physiological aspect (intuitiveness and comfort) and the 

technical aspect (the recognition accuracy), and combines both aspects in a unified approach. The 

main contributions of this research are: 

Analytical Formulation of the GV design problem: a methodology to find an optimal hand 

gesture vocabulary using an analytical approach has been developed. The main goal of this 

methodology is to avoid arbitrary selection of hand gestures when designing a human-robotic 

application for given tasks and commands. The contribution is a rigorous mathematic formulation 

in which optimization methods are applied, constraints are defined, and the quality of the solution 

is measured.  

Reconfigurable Hand Gesture Recognition Algorithm: the difficult problem of 

simultaneous calibration of the parameters of an Image Processing - Fuzzy C Means (FCM) hand 

gesture recognition system was addressed and an approach to automate the calibration of the 

parameters was proposed. The hand gesture recognition system design is transferred into an 

optimization problem. 

Two Solution Methods for Solving the GV Design Problem: two solution methods were 

developed to solve the optimal design problem: a) a multiobjective decision approach. b) a two 

stage decomposition procedure. For the first problem, an approximate enumeration of the 

solutions is performed, and a subset of non-dominated solutions is selected for presentation to the 

decision maker. The two stage decomposition method is a dual objective problem, where the 

maximum accuracy objective and human centered objectives (intuitiveness and comfort) are 

given as first and second priorities, respectively. 

Development of Intuitiveness and Comfort Gestural Indices, and an Automated Method 
for their Collection: contributions regarding human psycho-physical factors, comfort and 

intuitiveness, were introduced in this research. Experiments were developed to find the level of 

the user's cognitive association (intuitiveness) between command-gesture pairs based on 

simulating different scenarios and studying how the user decides about the most natural 

associations between commands and gestures. With respect to intuitiveness, the selection of 

gestures respects a 70/30 rule, where 70% of subjects use 30% of the gestures in a vocabulary. A 

complementary intuitiveness measure was also defined as the cognitive association between a 

pair of complementary commands (such us: up - down) to a complementary pair of gestures (such 

as: thumb up - thumb down). In addition, two types of stress were identified: a) static, and b) 

dynamic. A model was developed to predict the dynamic stress and its duration based on static 

stress measures. 

Validation and Usability Results: GV with high values of intuitiveness, comfort and 

accuracy resulted in shorter task completion time, faster learning and increased memory. 

 

Keywords: hand gesture vocabulary design, machine vision, fuzzy c-means, feature 

selection, image processing, hand gesture recognition, human-computer interaction, robotic 

control, human factors, gestures intuitiveness, hand stress 
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1 Introduction 

 

1.1 Problem Description 

There is strong evidence that future human computer interfaces will enable more natural 

intuitive communication with non-human devices such as computers and robots. Convenient and 

efficient styles to interact with the real-world devices can be accomplished, by using speech and 

gestures [Abowd and Mynatt, 2000; Segen and Kumar, 2000]. Babies use gestures as a basic 

communication form to interact with their environment [Acredolo and Goodwyn, 1996]. People 

also express themselves using gestures such as body movements, face expressions and pointing 

fingers. However, current interface technology rarely adopts this style when designing human-

machine interfaces and, in consequence, the expressiveness element embedded in the message is 

missing [Card et al., 1990]. Most human-machine interfaces are based on joysticks, keyboards 

and keypads but few use gestures. Two types of interfaces are commonly used with hand 

gestures: gloved based and vision based interfaces [Pavlovic et al., 1997]. Vision based interfaces 

requires powerful image processing algorithms to: a) segment the hand from stationary 

background and lighting conditions [Triesch and Malsburg, 1998; Cui and Weng, 1996b], b) 

select features to represent gestures [Wren et al., 1997; Campbell et al., 1996] that enhance 

gesture classification accuracy. Glove based gesture requires the user to be tethered to the 

computer. This reduces users comfort and constraints the working space of the user. Also, 

accurate devices are expensive and hard to calibrate [LaViola, 1999]. Primarily because of these 

difficulties, unencumbered vision based gestures will be the focus in this research. Several 

reasons limit hand gestures vision based interface implementation: a) gesture recognition is a 

problem with high complexity, b) there is a large variability in the user performance of gestures, 

their physical features and the environmental conditions, and c) there is no consensus about 

which gestures to use, and how to map them into functions. 

The recognition problem is not however intractable, and has been intensively investigated 

[Pavlovic et al., 1997; Ng and Ranganath, 2002; Gu and Tjahjadi, 2002; Abe et al., 2002; Yin 

and Xie, 2003]. Differences between individuals while gesturing and their physical attributes may 

be overcome by customizing the recognition system for individual users (user dependent 

systems) [Mäntylä, 2001; Takahashi and Kishino, 1991; Burschka et al., 2005] or by using as 

many gestures samples from different subjects to create user independent systems [Rigoll et al., 

1997; Parvini and Shahabi, 2005; Alon et al., 2005; Just et al., 2004]. Variability of 

environmental conditions may be solved by using reconfigurable systems [Stern et al., 2004b].  

The need of a natural hand gestures to control systems requires high learnability, usability, 

ergonomic design and comfort [Baudel and Beaudouin-Lafon, 1993]. Unfortunately, technical 

considerations overcome human centered aspects which cause frustration to the users of such as 

systems. The selection of the hand gestures that favor the ease of learning, lack of stress, 

cognitively natural and easy to implement is still an open research question. There is no rigorous 

methodology that discusses formally how to obtain and evaluate gestures that are highly 

ergonomic and reliable.  

An example of intuitive hand gesture vocabulary selection can be found in Pook and Ballard 

[Pook and Ballard, 1995]. The value of Pook and Ballard’s work is that it allows the user to act 

more naturally since no cognitive effort is required in mapping function keys to robotic hand 

actions. This system, like others based in navigation control, implement deictic gestures
i
 to make 

                                                 

i Deictic gestures are gestures that contribute to the identification of an object (or a group of objects) by 

indicating their location. 
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them intuitive. In this context, gestures are created by a static hand or body pose or by physical 

motion in two or three dimensions; and can be translated by computer into either symbolic 

commands or trajectory motion commands. Examples of symbolic command gestures are “stop”, 

“start”, and “turn”.  Many applications can be criticized for their idiosyncratic choice of hand 

gestures or postures to control or direct the computer-mediated task [Baudel et al., 1992]. 

However, the choice was probably perfectly natural for the developer of the application. This 

shows the dependence of gestures on their cultural and social environment. Within a society, 

gestures have standard meanings, but no body motion or gesture has the same meaning in all 

societies [Birdwhistell, 1970]. Even in the American Sign Language (ASL), few signs are so 

clearly transparent that a non-signer can guess their meaning without additional clues [Klima, 

1974]. Additionally, gestures can be culturally defined to have a specific meaning. Even though 

the naturalness of hand gestures is different from person to person, there are common gestures 

that are similar for a wide range of cultures. For instance, the most natural way for every person 

to choose an object to pick, is point to the object; to stop a vehicle, most people open their palm 

towards the vehicle; to show that everything is “ok”; people close their fist and extend the thumb 

upwards. For specialized, frequent tasks, where the learning of a particular set of gestures and 

postures is worth the investment, such applications may have a value. In everyday life, however, 

it is quite unlikely that users will be interested in a device for which they have to learn some 

specific set of gestures and postures, unless there is an obvious increase in efficiency or ease of 

use over existing methods of hand centered input in the adoption of such a gestural protocol. On 

the other hand, the economics of the marketplace may dictate such a set independent of its 

compatibility with existing cultural and/or social standards, just like the keyboard and mouse 

have set a standard. Especially when users are allowed to expand or create their own sets such a 

protocol may gain some acceptance. For a gesture set to gain major acceptance in the market 

place, it is advisable to examine the tasks and semiotic functions
ii
 most frequently executed, and 

then choose a hand gesture set that seems to appear natural at least to a number of different 

people within a social group or even a culture, when executing those tasks and functions.  

Hauptmann and McAvinney [Hauptmann and McAvinney, 1993] found that people 

consistently used the same gestures for specific commands. In particular they found that people 

are also very proficient at learning new arbitrary gestures. Gesturing is natural for humans, and 

only a short amount of training is required before people can consistently use new gestures to 

communicate information or control devices. [Hauptmann, 1989; Harwin, 1990]. Test subjects 

used very similar gestures for the same operations [Wolf and Morrel-Samuels, 1987]. Hauptmann 

also found a high degree of similarity in the gesture types used by different people to perform the 

same manipulations. Test subjects were not coached beforehand, indicating that there may be 

intuitive, common principles in gesture communication.  

There is a growing interest in the adaptability of these common principles in gesture based 

interfaces, and in proposing solution methods which result to highly ergonomically and 

recognizable hand gestures vocabularies. Nonetheless, the focus of hand gesture vocabulary 

design dictated by usability principles is still a virgin area of research. Examination of the 

literature reveals unstructured approaches to propose solution methods. Most research has dealt 

with the machine aspects of a gesture vocabulary (GV), focusing on recognition algorithms. A 

gesture vocabulary (GV) is defined as a set of matched pairs of verbal commands and their 

gestural expressions. Current solution methods of GV design may be classified as ad-hoc, and 

rule-based [Baudel and Beaudouin-Lafon, 1993], [Kjeldsen and Hartman, 2001], [Abe et al., 

2002]. Ad-hoc methods are the prime method of determining a GV whereby an individual 

constructs the vocabulary, mostly with no rational for the choices made. Few researchers have 

                                                 

ii
 Semiotic function is the action of conveying information to the environment 
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considered the human psycho-physiological aspects of gesture design. In [Nielsen et al., 2003], 

where human factors are considered, limited attention is given to the technical aspects, with an 

approach heavy on the human interpretation of rules. Matching of gestures to commands is done 

empirically through user response queries. Inspired by Nielsen, the “Wizard of Oz experiment” is 

used in [Preston et al., 2005] to extract common gestures grouped in classes and further on 

converted to a vocabulary. No details of this procedure are given. Kohler [Kohler, 1997] suggests 

mapping every gesture to several similar tasks from different devices (for instance, the controls 

volume + and – for the CD player, and for the TV are mapped to the same pair of gestures).This 

reduces the number of gestures and the mental load. Nevertheless no methodology is presented 

by Kohler for this purpose. A hybrid method between the ad-hoc and rule-based approach is 

presented in [Munk, 2001] where the set of gestures of interest has been selected in cooperation 

with a group of linguists. In spite of this choice, Munk is aware that the gesture set should be 

validated by testing it with a group of arbitrary users with different gesturing styles, ages and 

background. The same usability rules proposed by Nielsen, are used in [Cabral et al., 2005] while 

emphasizing the importance of performance evaluation of hand gesture vocabularies. However, 

Cabral and his group only compared between a mouse and gesture interfaces, and do not evaluate 

performance of different hand gesture vocabularies. Argyros and Lourakis [Argyros and 

Lourakis, 2006] designed 2D and 3D vocabularies based on intuitiveness, ergonomics and easy of 

recognition criteria, although the first two factors only included the authors own considerations.  

This thesis deals with the design of natural hand gestures recognition systems, which involves 

both the ergonomics aspect (the user’s desires) and the technical aspect (the recognition 

accuracy), and combines both aspects in a unified approach. To achieve such a design, an optimal 

hand gesture vocabulary methodology is extensively developed, tested in true life scenarios, and 

discussed in this work. The “optimality” requirement for the vocabulary refers to the need for 

improving to the maximum, the users control experience (intuitiveness and comfort) without 

affecting the technical aspect (recognition accuracy), as a direct expression of task performance. 

The main performance measure used is the completion time to perform a task. However, since the 

measurement of using task completion time is time consuming, we proposed, to use instead, other 

performance measures as proxies for this completion time. These performance measures are 

intuitiveness, comfort and recognition accuracy. Thus, the goal of this thesis is to develop a 

rigorous methodology for the design of gesture vocabularies that satisfy human as well as 

technical considerations. 

 

1.2 Research Objectives 

The main objective is to formulate the gesture design (GV) in a rigorous manner, and to 

develop a methodology for optimal hand gesture vocabulary design. This will include the 

development of efficient algorithms to find; (a) intuitive associations between command-gestures 

pairs, (b) comfort indices for gesture poses and inter-gesture transitions, (c) fast set up of gesture 

recognition system, and d) the ability to select a subset of gestures from a large candidate set. The 

methodology will be implemented in a system flexible enough to handle single task and multi-

task environments. Specific objectives are the development of: 

1. An analytic formulation of the GV design problem 

2. A solution method to solve the optimal GV problem using a mathematical programming 

search heuristic approach 

3. An automated method for calibrating a joint image processing/gesture recognition system. 

4. Methods to estimate human psycho-physical measures of hand gestures comfort and 

intuitiveness and to obtain new insight into the human gesture selections. 

5. Validate the use of proxy measures of intuitiveness, comfort and accuracy for the task 

performance time. 

 



 

 

4  

1.3 Research Significance 

Examination of the literature reveals random and unstructured approaches to hand gesture 

vocabularies design for human-machine interfaces [Baudel and Beaudouin-Lafon, 1993; Kjeldsen 

and Hartman, 2001; Abe et al., 2002; Nielsen et al., 2003; Preston et al., 2005; Kohler, 1997; 

Munk, 2001] to cite some. Current solution methods of hand GV design may be classified as ad-

hoc, and rule-based [Stern et al., 2006]. In this thesis a systematic methodology for GV design 

has been developed. The two main factors considered in the design of a GV are: human 

(intuitiveness and comfort) and technical (recognition accuracy). Reliable and effective human 

factors are crucial for the success of the hand gesture vocabulary design. The measures most 

reflect the cognitive and physiology of the user population. Due to the large number of possible 

gestures, the corpus of the data for intuitiveness and stress measures are prohibitory large and 

automated methods to acquire the human factors data are neccesary. Using gestures that are 

highly discriminated by the recognition algorithm embedded in a rapid reconfigurable system will 

reduce the chance of confusion between gestures, and hence fewer errors will occur while 

performing the task. The primary need for recalibrations of such systems is frequent relocation to 

other environments such as; laboratories, and remote control stations. A secondary need for 

recalibration, which is reflected in the method used in this thesis, is the custom redesign of the 

gesture control vocabulary. This occurs for new users, new control tasks and new vocabularies. 

Allowing for fast recalibration of system parameters provides the system flexibility to respond to 

such new system set up.  

The GV is designed according to human, as well as, technical factors, and is based on a 

reliable and logical analytical method. Identification of a good GV impacts the performance of 

the actions involved in the tasks, and is accepted by human robot/computer interface users.  The 

completion time of a task when used a good GV (intuitive and effortless), was shorter than an 

unnatural GV. A hand gesture vocabulary designed with human factors in mind invites users to 

adopt it because it is comfortable, easy to learn and remember, and mainly because it is intuitive. 

As robots enter the human environment and come in contact with users, they need to interact with 

in an intuitive fashion. Keyboard, mouse, and joystick are no longer acceptable as the only input 

modalities. Humans communicate with robots using methods as similar as possible to the concise, 

rich, and diverse means they use to communicate with one another, such as voice-gesture multi-

modal interfaces. This work presents a methodology to obtain highly natural and recognizable 

GVs for virtual robot control.  

 

1.4 Research Contribution and Innovations 

Hand gestures interfaces usually rely on ad-hoc or rule based selection of the gestures to 

represent a given set of commands. This thesis used the argument that there are underlying 

factors, which determine the naturalness of gestures [Hauptmann, 1989] and comfort of gestures. 

Following these principles, a methodology for optimal hand gesture vocabulary design was 

developed. The usability principles are low fatigue (effortless) and high intuitiveness. The 

technical principle is optimal image processing hand gesture features to support high gesture 

recognition rates. A methodology to find the optimal gesture vocabulary for device control was 

developed based on the gestures, object and the task used. The specific contributions and 

innovations of this research are: 

1. Analytical Formulation of the GV Design Problem: a methodology to find an optimal 

hand gesture vocabulary using an analytical approach has been developed. The main goal of this 

methodology is to avoid arbitrary selection of hand gestures when designing a human-robot 

application for given tasks and commands. Most of the works that have approached the optimal 

hand gesture vocabulary have no objective function to evaluate the quality of a gesture 

vocabulary, and therefore no mathematical formulations were used to obtain a quantitative 
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measure of the solutions proposed. Our contribution is a rigorous mathematic formulation in 

which optimization methods are applied, constraints are defined, and the quality of the solution is 

measured. Two aspects drive the need for such a method; (i) GV design research is presently an 

ad-hoc procedure, and (ii) gesture interfaces are needed to fill the need for more natural intuitive 

communication with devices. We believe this is the first conceptualization of the optimal hand 

GV design problem in analytical form. 

2. Reconfigurable Hand Gesture Recognition Algorithm: the difficult problem of 

simultaneous calibration of the parameters of an Image Processing - Fuzzy C Means (FCM) hand 

gesture recognition system was addressed.  The approach taken to automate the calibration of the 

parameters of such a system is that of local neighborhood search. Thus, the design of a hand 

gesture recognition system is transferred into an optimization problem. Two versions of the local 

neighborhood search algorithm involving a complete and probabilistic neighborhood search were 

developed. This satisfies the need for an automated procedure for such calibrations. 

3. Two Solution Methods for Solving the GV Design Problem: two solution methods were 

developed to solve the optimal design problem: a) the first, is a multiobjective decision approach. 

b) the second is based on a two stage decomposition procedure. For the first problem, an 

approximated complete enumeration of the solutions is performed, and a subset of non-dominated 

solutions is selected for presentation to the decision maker so that he can make the final selection 

according to his own desires. This set of non-dominated solutions is called the pareto frontier. As 

an exhaustive search is untenable for high complexity problems, where the master set of gestures 

is large, and there are a significant number of commands, the second approach was developed. 

The two stage decomposition method is a dual objective problem where the maximum accuracy 

objective and human centered objectives (intuitiveness and comfort) are given as first and second 

priorities, respectively. An optimal matching is performed to only those solutions that have 

recognition accuracy above a given threshold.  The solutions are obtained by building a tree of 

solutions, were the gestures are interchanged according to some implicit rules, or by using initial 

solutions obtained from a large classification problem solved in advance. 

4. Development of Intuitiveness and Comfort Gestural Indices, and an Automated 
Method for their Collection: important contributions regarding human psycho-physical factors, 

comfort and intuitiveness, were introduced in this research. The first is related to the direct 

intuitiveness measure. The direct intuitiveness is the strength of cognitive association between a 

command and its evoking gesture.  The selection of gestures respects a 70/30 rule (similar to the 

80/20 rule of inventory theory), where 70% of subjects use 30% of the gestures in a vocabulary. 

Also was also found that the overall rate of agreement of the use of specific gestures to represent 

specific commands was in the range of 18-34%. These results contradict the claim presented by 

Hauptmann [Hauptmann, 1989] that users consistently used the same gestures for specific 

commands. In the experiments designed by Hauptmann it was shown that users are highly 

consistent in the type of gestures that they use for commands such as rotation, translation, and 

scaling. However, our research implies that the mapping between gesture and commands should 

be based on particular social-cultural context of the users. 

The second contribution is the introduction of the complementary intuitiveness measure. This 

is defined as the cognitive association between a pair of complementary commands (such us: up – 

down) to a complementary pair of gestures (such as: thumb up – thumb down). This cognitive 

aspect reflects the empirical fact that users prefer to use complementary gestures (gestures that 

have opposite appearance) to evoke complementary actions (have opposite intent).  

The third contribution relates to a stress measure. Two types of stress while gesticulating 

were identified: a) the static stress, which is the effort that takes to hold a static gesture for a 

defined amount of time, and b) the dynamic stress, which is the effort that is necessary for 

performing a transition between static gestures. This thesis shows a clear and simple relation 
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between these two kinds of efforts, and how it is possible predict the dynamic stress and its 

duration based on static stress measures. 

Specific experiments were developed to find the level of cognitive association (intuitive 

index) that the users give to the command-gesture pairs based on simulating different scenarios 

and studying how the user decides about the most natural associations between the functions and 

gestures. A “bottom-up approach” was adopted to obtain intuitiveness indices, which were a 

result of collecting gesture responses to commands stimulants. The static and dynamic effort of 

performing gestures was measured using a subjective evaluation experiment. Results were 

automatically stored by using an application that through user interaction acquired the necessary 

responses to calculate intuitiveness and comfort indices. 

6. Validation and Usability Results: The following hypothesis were validated: 

 

H1: Min τ(GV*) ∝ max(Z1), max(Z2) and max(Z3) ( 1.1) 

H2: τ(GVG)< τ(GVB) ( 1.2) 

H3: m(GVG)> m(GVB) 
( 1.3) 

The first hypothesis states that task performance time τ can be represented by multiobjective 

proxy measures. Moreover, the maximization of the multiobjective function causes a 

minimization in the task performance time. This was validated through as a second hypothesis 

which claims that GVG will result is shorter time completion task than GVB. GVG is a vocabulary 

that is highly intuitive, comfortable and easy to recognize, and GVB is a low intuitive, stressful 

and hard to recognize vocabulary. Memorability m is the subject of the third hypothesis, where it 

is suggested that GVG is easier to remember than GVB. Validation of the aforementioned 

hypotheses was done by comparing two set of vocabularies one dominating the other. The 

learning time was expressed in terms of the learning rate of the user’s learning curve when using 

certain GV. It was determined that GV with high values of the three objectives resulted in faster 

learning and increased memory. Memorability was determined by experienced user’s recall of the 

gesture-command associations. 
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2 Scientific background 

 

2.1 Gestures and Human Computer Interaction 

The increasing number of home computers and other sophisticated gadgets cause researchers 

to think of advanced methods to improve interaction between humans and computers [Norman, 

1988]. They verified that users felt more comfortable using computers systems (software and 

hardware) with such designs that gave them a “natural” feeling of communication between them 

and their machines [Shneiderman, 1998]. Recently developers understood the user’s physical and 

mental requirements for interfaces, and this was a crucial variable in the success or failure of any 

system [Dix et al., 1993]. 

Gestures are a basic form of communication between human beings. Psychological studies 

show that young children use gestures to communicate before they learn to talk [Acredolo and 

Goodwyn, 1996]. Rituals, ceremonies and dances are clear examples of how gestures are deep 

embedded in communication between individuals from different cultures [Huang and Pavlovic, 

1995]. Manipulation, as a form of gesticulation, is often used when people speak to each other 

about some object. All these are good reasons to modify or replace the current interface 

technology comprised of classic devices as keyboard, mouse and joystick to a more natural 

human centered interface. 

Although the mouse is one of the most common and best pointing devices developed until 

now, it still is not comparable to natural pointing due to limitations of the device itself such as its 

flat platform [Card et al., 1990].  

Human communication comes in many modalities, including speech, gestures, facial and 

bodily expressions. A variety of forms of expression, such as drama, ceremonies, sign language, 

imitation, music, religious rituals and dance, exploit specific capacities of one or more of these 

modalities. Even though they are expressed through the whole human body, gestures are still 

mostly related to the human hand. Hand gestures offer an interface modality that includes control 

through symbolic commands, like keyboards, and pointing attributes like mouse; but in a more 

flexible, natural and expressive form. This discussion focuses on the design issues involved in 

implementing hand gestures for human-robot interaction. 

 

2.2 Types of Gestures and Gesture Vocabularies 

2.2.1 Types of Gestures  

There are several ways to characterize human hand gestures. From the psycholinguistic point 

of view, a gesture has four aspects, which are hand shape (configuration), position, orientation 

and movement [Stokoe, 1972]. These aspects are very useful for feature extraction in machine 

vision. Another way to characterize hand gestures is by the temporal behavior [Pavlovic et al., 

1997]. A gesture with a fixed position, orientation and configuration over the time is called a 

static gesture, or posture. A dynamic gesture is a non-fixed gesture with variation in position, 

configuration or orientation over time [Freeman and Roth, 1995]. Hand gestures can also be 

classified according to their purpose such as communicative, control, conversational and 

manipulative gestures [Wu and Huang, 1999].  An example of communicative gestures is sign 

language, the most popular being the American Sign Language [Starner and Pentland, 1995], 

which is also used by disabled people to communicate with computer systems. Control gestures 

are used to control real or virtual objects. Pointing gestures, for example, would command a 

robot to pick up an object [Cipolla and Hollinghurst, 1996]. Another control gesture is the 

navigation gesture, where the orientation of the hand can be used like a three dimension 

directional input to navigate an object in a real or virtual reality environment. Conversational 
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gestures are linguistic gestures that happen during conversation and refer to the content of the 

speech. They have traditionally been assumed to amplify or modulate the information conveyed 

by speech, and hence to serve a communicative function. Manipulative gesture serves as a 

natural way to interact with virtual objects and robots where for example, a digitized glove is 

used [Balaguer and Mangili, 1991]. They must be associated with manipulative objects such as 

screw. Communicative gestures are the basic form of human non-verbal interaction and are 

related to the psychological aspect of communication. Communicative gestures can be 

decomposed into three-motion phases: preparation, stroke and retraction [Kendon, 1986]. 

Psycholinguistic studies show that stroke is the richer phase in terms of information content; 

therefore most systems capture only this phase to be representative of the gesture [Quek, 1994]. 

 

2.2.2 Gestures Typologies 

Several schemes for gesture classification have been suggested over the last years originated 

from the scheme proposed by Efron [Efron, 1941]. While each scheme has it owns advantages 

and special uses, most of them are interconvertible. This means that the subject can employ all 

the schemes or start with one and switch to another and cover the same gestural movements. 

According to Efron, the two basic uses for gesture are spatio-temporal and linguistic. Spatio-

temporal gestures represent pure movement, free from any conversational or referential context. 

These gestures can be categorized according to five aspects: radius (size of the movement), form 

(shape of the movement), plane (direction and orientation of the movement), the body part that 

performs it, and tempo (the degree of abruptness vs. flow). Conversely, linguistic gestures 

happen during conversation and refer to the content of the speech. Efron divides them into two 

categories: logical-discursive, and objective. Logical-discursive gestures emphasize and inflect 

the content of the conversations that they accompany, either with baton-like indications of time 

intervals, or ideographic sketches in the air. Objective gestures have meaning independent of the 

speech that they accompany, and are divided into three categories: deictic, physiographic, and 

symbolic. Deictic gestures indicate a visually present object, usually by pointing. Physiographic 

gestures demonstrate something that is not present, either iconographically, by depicting the form 

of an object, or kinetographically, by depicting an action. Symbolic gestures represent an object 

by depicting a form that has no actual relationship to the thing, but uses a shared, culturally 

specific meaning [Marrin, 1999]. 

 The McNeill’s scheme [McNeill, 1995] classifies gestures in four major categories: iconic, 

metaphoric, deictic (pointing) and beat gestures. Iconic gestures are gestures that, by using the 

shape, location and movement of your hands, imitates some distinctive features of the referent; its 

form, its typical location, the actions performed to it, and those performed by it. For example, a 

gesture that express the referent “guitar”, may use its shape, gestures for “hat” its location and 

size, gestures for “bird” the flying action, gestures for “espresso coffee” its size, etc. Metaphoric 

gestures are like iconic gestures in that they are pictorial, but the pictorial content presents an 

abstract idea rather a concrete object. The gesture presents an image of the invisible, an 

abstraction of an image, etc. The gesture depicts a concrete metaphor for a concept. For example, 

to refer to the genre of drawings and pictures, and not to a specific picture, the subject will make 

the concept concrete in a form of an image of bounded object supported in the hands and 

presented to the listener. Deictic gestures are used when the referent is in the physical context, the 

most remarkable feature is its location, therefore the most intuitive action to do is to point to it, 

using hands or fingers to mark in which direction the subject can find the referent. This is one of 

the early gestures the can be observed on children. Deictic gestures can be specific, general or 

functional. Specific gestures refer to one object. General gestures refer to a class of objects. 

Functional gestures represent intentions, such pointing to a dress, when we have the intention to 

buy it. Deictic gestures are also useful in gesture language representations. Beats are so named 
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because they look like beating music time. The hand moves along with the rhythmical pulsation 

of speech. Unlike iconics and metaphorics, beats tend to have the same form regardless of the 

content. The typical beat is a simple flick of the hand or fingers up and down, or back and forth.  

The scheme defined by McNeill has the goal of identifying the referential values of gestures. 

The orientation of the scheme is toward the entities, actions, spaces, concepts, relationships, etc., 

that the gestures refer to. The classification scheme thus requires asking what meanings and 

functions a gesture possesses.  

The Nespoulous scheme [Nespoulous, 1986] uses three categories: mimetic, deictic and 

arbitrary. In mimetic gestures, the hand and finger motions describe an object’s main shape or 

representative feature [Wundt, 1973]. For example, a waving hand from the nose can be used to 

represent an elephant by alluding to its fluttering long nose. His definition of deictic gestures is 

similar to the one of McNeill; he also suggests the use of deictic gestures for language 

representations. Arbitrary gestures are those whose interpretation must be agreed and learned 

due to their opacity. Although they are not common in cultural settings, once learned they can be 

used and understood without any complementary verbal clue. An example is the set of gestures 

used by for crane training [Link-Belt, 1987]. Arbitrary gestures are useful because they can be 

specifically created for use in device control. These gestures types are already arbitrarily defined, 

learned and understood without any additional verbal information.  

A scheme that seems more appropriated to the context of human machine interfaces (HCI) was 

developed by Quek [Quek, 1994] and slightly modified by Pavlovic [Pavlovic et al., 1997].  A 

first classification divides hand/arm movements in two main classes: gestures and unintentional 

movements. Unintentional movements are those movements that do not express any 

meaningful information. Gestures are classified in two groups: communicative and 

manipulative. Manipulative gestures are those used to effect objects in an environment (object 

movement, rotation, translation, etc). Communicative gestures have an intrinsic 

communicational purpose. Communicative gestures are usually accompanied by speech, and can 

be presented by acts or symbols. Symbols are gestures that have a linguistic role. They indicate 

some referent action (for example, circular motion of index finger may be referent for dialing to a 

telephone number), or are used as modalizers, often of speech (“feel the softness of this body 

cream” and a modalizing gesture describing the softness of the touch with the tact). In the HCI 

context, these gestures are the most commonly used since they can be performed by static hand 

gestures. Acts are gestures that are directly related to the meaning of the movements itself. Such 

movements are classified as either mimetic (imitate some action) or deictic (pointing gestures). 

A concise summary of hand gestures classification categories is given in Table  2.1. 

 

Table  2.1: Summary of hand gestures classification categories 

Category References 

Iconic – (Features Imitation) [McNeill, 1995; Efron, 1941] 

Metaphoric – (Pictorial Abstraction) [McNeill, 1995] 

Deictic – (Pointing) [McNeill, 1995; Nespoulous, 1986; Quek, 1994; Efron, 1941]   

Beats – (Rhythmic)  [McNeill, 1995] 

Spatio-temporal – (Pure movement) [Efron, 1941] 

Logical-discursive - (Conversation content) [Efron, 1941] 

Arbitrary – (No distinction) [Nespoulous, 1986] 

Mimetic – (Features Imitation, Action) [Nespoulous, 1986] - [Quek, 1994] 

Referential – (Indicate Action) [Quek, 1994] 

Modalizing – (Mode Description) [Quek, 1994] 
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2.2.3 Gesture Vocabularies 

A gesture vocabulary (GV) is a set of commands (notions or words), each of which has a 

physical representation in the real world as a gesture, pose or movement. The signs that are used 

to carve up complex meanings and then reconstitute the meanings through combinations must 

also be stable and recallable, and this implies a lexicon [McNeill, 1995]. Hand gestures systems 

can be divided under three major groups according to lexicon size: small, moderate and large 

[Oviatt et al., 2000]. 

 

2.2.3.1 Large gesture systems (over 1000 gestures) 

Finding a suitable and practical approach to design hand gestures systems using a large 

vocabulary is still an open research problem. A large vocabulary, continuous Chinese Sign 

Language (CSL) recognition used phonemes instead of signs as the basic units, with a 92.8% 

successful recognition ratio [Wang et al. 2002]. About 2400 phonemes were defined for CSL. 

Experimental results on a large vocabulary of 5113-signs achieved a recognition rate of 95% 

using fuzzy decision tree with heterogeneous classifiers [Fang et al., 2004].  

 

2.2.3.2 Moderate gesture systems (25-1000 gestures) 

Systems able to recognize a medium set of hand gestures are usually used for hand sign 

language recognition. The American Sign Language (ASL) recognition system of Starner and 

Pentland [Starner and Pentland, 1995] can recognize a lexicon of 40 words. The Korean Sign 

Language (KSL) of Lee et al. can recognize 51 gestures combining postures and gestures. Cui 

and Weng [Cui and Weng, 1996a] designed a system able to recognize 40 hand gestures from a 

hand sign lexicon. A recognition accuracy of 90.19% for 104 mannerism gestures was achieved, 

where the gestures were modeled as a sequence of events that take place within the segments and 

the joints of the human body by Kahol et al. [Kahol et al., 2004] 

 

2.2.3.3 Small sized gesture systems (2-25 gestures) 

Most systems able to recognize up to 12 gestures are used for man-machine interfaces. 

Development including a robotic arm in a pick-and-place scenario used twelve different postures 

[Triesch and Malsburg, 1998]; a real-time hand gesture recognition system that controls motion 

of a human avatar using dynamic hand gestures [Kim et al., 2000]. This system recognizes 5 

kinds of hand motion direction (stop, step, walk-run, turn, rotate and grab) and 4 kinds of hand 

postures (stop, turn, step, grab). A hand gesture vocabulary for video navigation consisting of 8 

gestures was developed [Bradski et al., 1999] including the commands up, down, left, right, stop, 

ok (play), and neutral (null gesture). The gestures were chosen for minimal hand movement and 

high discriminately between gestures.  

A prototype vision-based interface using the input modality of a wearable computer for indoor 

and outdoor operations was able to track and recognize 5 hand postures [Kolsch et al., 2004]. A 

hand controlled augmented reality (AR) map navigation system [Yao et al., 2004]. Two symbolic 

hand gestures and gesture tracking are defined as controlling commands. Users can directly move 

their hands on a real map and their relative geography information is displayed. A human 

machine interface makes use of 22 dynamic gestures for effective operation of a variety of in-car 

multimedia devices in [Zob et al., 2003].  
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2.3 Hand Gestures Vocabularies Design Approaches 

The theory of universality of gestures, states that some gestures have standard cross-cultural 

meanings  [Aboudan and Beattie, 1996]. This is also true for the most within in societies; 

however, some gestures may have different meanings to different individuals  [Archer, 1997]. 

Device control gestures, however, can be freely chosen to have specific meanings related to the 

particular device  [Cohen, 1999]. For example, there are no universally known gestures for 

commanding a robotic arm to “go to the home position” or ”open the robotic arm gripper”. There 

has been virtually no research concerned with the issue of how to design an optimal gesture based 

control vocabulary. The first step is to decide on a task dependent set of commands to be included 

in the vocabulary such as; “move left”, “increase speed”, etc. The second step is to decide how to 

express the command in gestural form i.e.,: what physical expression to use such as, waving the 

hand left to right or making a "V" sign with the first two fingers. The association (matching) of 

each command to a gestural expression is defined here as a “gesture vocabulary” (GV). In the 

following, we distinguish GV design according to the type of designer, and solution method. 

 

2.3.1 Gesture Designers 

Gesture vocabularies can be overtly or inadvertently designed. The thumps up and down signs 

come to us from Roman times whereas; the “OK” sign is more recent. Both can be considered as 

inadvertently designed or naturally evolved (emblems is the current term). More complete sign 

vocabularies have appeared in this manner without overt determination of the vocabulary by a 

designer. For overtly designed vocabularies, the most common practice is for a single individual 

(usually a system developer) to decide which gesture vocabulary should be used for all users. 

This can be considered as the “Centrist or Authoritarian Approach” (e.g.,  [Kirishima et al., 2005] 

where a GV of size seven is used). Alternatively, we can define a “Consensus Approach” where a 

group of users, either implicitly or explicitly, decide on a common vocabulary to express a given 

set of commands (e.g., [Munk, 2001]). At the lowest level is the “Customized Approach” where 

each individual defines his/her very own vocabulary ( e.g., [Kahol et al., 2006]). One may 

hypothesize that the consensus and customized approaches will be more comfortable, easier to 

remember and more natural to execute. The disadvantage is that the users will not consider other 

design factors such as the speed and accuracy of gesture recognition system. In summary, these 

three overtly approaches for designing subjective gesture vocabularies are: (a) authoritarian (the 

designer decides on the commands and gestures for all users), (b) consensus (multiple users 

decide jointly on a set of common gestures), and (c) custom (the user selects his/her own set of 

gestures). 

 

2.3.2 Gesture Design Solution Methods 

One of the few works that explore the process of gesture design is that of Long et al.  [Long et 

al., 1999]. The application is that of a pen-based user interface where, gestures are pen drawn 

marks or strokes that cause a command to be executed. This work includes a gesture design tool, 

which advises designers on how to improve their pen-based gestures. In a more recent work by 

Nielsen et al.  [Nielsen et al., 2003] a procedure and a benchmark to find gestures based on nine 

usability heuristics are presented. However, the important factor of vision recognition was 

ignored. 

 

2.3.2.1 Ad-hoc Methods 

Ad-hoc methods are the prime method of determining a gesture vocabulary and many 

examples prevail in the literature (e.g.,  [Kortenkamp et al., 1996; Waldherr et al., 1998;  Becker et 
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al., 1998;  Agrawal and Chaudhuri, 2003;  Abe et al., 2002; Ng and Ranganath, 2002]). Most are 

of the centrist type, whereby an individual constructs the vocabulary, mostly with no mention of 

the method or rational for the choices made. 

 

2.3.2.2 Rule Based Approach 

The work of Baudel and Beaudouin-Lafon  [Baudel and Beaudouin-Lafon, 1993] provides an 

example of the use of design rules. They provide such guidelines as: “favor ease of learning”, 

“use hand tension at the start of a dynamic gesture, and “use relaxed position of the hand at the 

end”. Another is that of Baudel et al.  [Baudel et al., 1992], who provide a set of guidelines for 

designing gestural commands. No mention is made on how these guidelines are implemented to 

generate the actual vocabulary. The application allows a user to give a lecture by navigating 

through a set of slides with data glove based gestural commands. Kjeldsen and Hartman 

 [Kjeldsen and Hartman, 2001], in a vision based computer interaction setting, present a set of 

constraints for control actions defined by the permissible motions users can makes to effect 

control. Stating that “the choice of such control movements is more art than science”, they 

proceed to consider what good control actions for different task types are. Again the approach is 

rather intuitive. 

 

2.3.2.3 Analytical Methods 

Analytical methods are scientifically based, involving perhaps the use of human factors 

aspects, ergonomics, hand biomechanics, cognitive science, experimental statistics, machine 

recognition and mathematics. Although, exist sporadic works applying these disciplines to 

portions of the hand gesture design problem (i.e., [Wagner et al., 2003] used analytical methods 

for the design of an ergonomic keyboard), we have found no work using analytical methods for 

the complete design of a GV. 

 

2.3.3 Current Approaches to Measure Human Factors 

Intuitiveness is the cognitive association between a command or intent and its physical 

gestural expression. Two approaches are used to obtain intuitiveness measures [Nielsen et al., 

2003]; (a) bottom-up - takes functions (commands) and finds matching gestures, and (b) top-

down - presents gestures and finds which functions are logically matched. An example of the 

bottom-up approach is used in the Wizard-of-Oz technique [Nielsen et al., 2003; Preston et al., 

2005; Höysniemi et al., 2005]. The Wizard-of-Oz experiment has persons respond to commands 

stimulated under camera surveillance. For this purpose scripts describing the interaction in 

specific scenarios, functionalities and context must be prepared. The gestures used in interactions 

by the users were extracted from the video obtained, and further on analyzed to find how 

consistent different users were with gestures. [Nielsen et al., 2003] exemplifies the top-down 

approach in a benchmark designed to test the user’s chosen gesture vocabulary. The final step to 

test Nielsen’s methodology is called “Guess the function” where the testee is presented with a list 

of gestures and he is asked to guess the commands associated to those gestures. 

For stress index measures, experiments vary from subjective questioners [Nielsen et al., 

2003] to electronic devices, such as EMG, to measure muscle activity [Wheeler, 2003]. Postural 

comfort based on a "comfort dimension" along which the human feelings are placed in states of 

comfort, discomfort, fatigue, and pain [Kölsch et al., 2003]. Approaches to the measurement of 

stress, comfort can be divided into mathematical model based, physical measurement, and 

subjective methods. Brook, et al., [Brook et al., 1995], construct a dynamic model representing 

the biomechanics of the index finger's flexion-extension and abduction-adduction motion. 

[Yasumuro et al., 1999] constructed a biomechanical model of the entire hand comprised of 
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tendons, muscles and bones, where physical stress is simulated through the natural constraints of 

the hand. [An et al., 1979] developed a three-dimensional normative model of the hand. The 

authors state that the model can be used to perform force and motion analyses, but do not extend 

it to estimate stress. Harling and Edwards [Harling et al., 1996] use a rod string model to estimate 

finger tension although no comparison is made with perceived tension of users. The use of EMG 

measurement is popular, but the main problem is it usually only measures the activity of part of 

the muscles involved in structuring a pose [Shrawan and Anil, 1996]. The model and 

measurement approaches are prone to errors and have not, for the most part, been satisfactorily 

validated by user studies. 

 

2.4 Implementations of Hand Gesture Vocabularies 

Gestures are interpreted to control computer memory and displays or to control actuated 

mechanisms. Human-computer interaction (HCI) studies usually focus on the computer 

input/output interface [Card et al., 1990], and are useful to examine the design of gesture 

language identification systems. Some examples of applications of computer memory and 

displays are: Large panel display control [Baudel et al., 1992], graphic image manipulation 

[Hauptmann, 1989], video control navigation [Bradski et al., 1999], television control [Freeman, 

1994], camera control [Jun-Hyeong et al., 2002], home appliances control [Lenman et al., 2002], 

and virtual crane control [Freeman and Roth, 1995].  

 

2.4.1 User types oriented systems 

Two different types of systems are used to train and test accuracy. User dependent (D) and 

independent (I) recognition systems are those systems that are trained and tested which gesture 

instances collected from a single or multiple users, respectively. A user dependent hand gesture 

recognition system based on discrete Hidden Markov models and the Viterbi algorithm was 

suggested [Mäntylä, 2001]. Thirty four user dependent gestures from the Japanese alphabet were 

recognized using joint angles and hand orientation from a data glove [Takahashi and Kishino, 

1991]. Local based gesture modeling in a 3D interface was developed using a single user skin 

color distribution model [Burschka et al., 2005]. Fourteen different people trained a high 

performance real-time hand gesture recognition user independent system using Hidden Markov 

Models [Rigoll et al., 1997]. The system by [Parvini and Shahabi, 2005] assumes that the range 

of motion of each joint of a hand participating in making a gesture is a user-independent 

characteristic of that gesture and provides a unique signature across different users. 

Other works allow both types of control, user dependent and independent, based on the 

person desires [Alon et al., 2005; Just et al., 2004; Triesch and Malsburg, 2001]  

 

2.4.2 Existing Robotic Gesture Systems 

Some relevant vision based hand-gesture robot control systems deal with real world 

constraints with variable success. In the work of Franklin et al., [Franklin et al., 1996] a robot 

waiter is designed, controlled by hand gestures, using the Perseus architecture for gesture 

recognition. Although the person to be serviced is detected and tracked, his control gestures are 

very limited. There are two gestures recognized by the system, “empty hand” and “holding 

hand”. This makes the system very poor in the language understanding view.  

The system created by Becker et al., [Becker et al., 1998] is quite robust; users can operate a 

semi-autonomous robot able to learn from its environment and tasks. It also can calibrate itself 

respect to the image-to-world coordinates. In this work, recognition takes over 82.2 seconds, and 

this violates the real-time constraint. 
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The work presented by Kotenkamp et al., [Kortenkamp et al., 1996] shows a system able to 

recognize six distinct gestures made by an unadorned human in an unaltered environment, using a 

coarse three dimensional model of a human. This system recognizes arm-hand configuration and 

joints degrees and not hand gestures. The drawback of this system is that the range of possible 

arm joints configuration is narrow, and hence that system uses just six gestures.  

The work realized by Cipolla et al., [Cipolla et al., 1994] shows a gesture-based interface for 

robot guidance based on uncalibrated stereovision and active contours. The robot is guided to a 

point determined by a hand pointing gesture over a ground plane. Although the main goal of the 

system is the use of stereo vision without calibration, there are some problems that affect the real 

world constraints: the vision system needs a strong contrast between the hand and the background 

and a set up process consisting of marking with colors the corners of the board where the hand 

points. This violates the complex dynamic backgrounds constraint and the variable lighting 

constraint. 

The research proposed by [Guo et al., 1998] discusses the creation of intelligent highly safe 

vehicles controlled by hand gestures, based on segmentation using a color probability distribution 

model. To segment the hand from the forearm, the center position of the maximum circular 

region is searched; the assumption is that this region occurs only inside the palm. The problem 

with this research is that there are some gestures that the maximum circular area occurs above the 

beginning of the palm, for example the fist in a profile position. This would cause confusion in 

the interpretation between different gestures.  

The work of Waldherr et al., [Waldherr et al., 1998] proposed a vision-based interface that has 

been designed to instruct a mobile robot through both pose and motion gestures using an adaptive 

dual-color tracking algorithm. Besides the fact that this system deals with pose and motion 

gestures, it also has a tracking algorithm able to quickly adapt to different lightning conditions. 

Despite the robust features, the system has problems like tracking a person with multi-colored 

skirt, and the most important drawback is lack of learning new gestures.  

Yin and Xie [Yin and Xie, 2001] created a fast and robust system that segment and recognize 

hand gestures for human-robot interaction using a novel color segmentation algorithm developed 

on the basis of a Restricted Coulomb Energy (RCE) neural network. The recognition of hand 

postures is based on the analysis of topological features of the hand. The drawbacks of this 

system are the lack of recognition of dynamic gestures and the need of a set up process in which 

the user should enclose the hand region. 

A system intended to be particular robust is the system presented by Triesch and Malsburg 

[Triesch and Malsburg, 1998]. It was designed specially to deal with real world environments 

constraints. The system supports three alternative channels to interact between the human and the 

robot, first an explicit gestural command, second a spoken command, third an imitation learning 

method, and this provides a positive redundant way to send a command to a robot. In addition, 

strength of the recognition is based on the combination of features “cues” such motion, color or 

stereo. The main drawback of the system is the recognition time process. For twelve distinct 

postures it takes between ten and twenty seconds to recognize them. Most of the systems 

overviewed rely on the simple idea for detecting and segmenting the gesturing hand from the 

background such motion detection or skin color. They assume that there are no other objects in 

the near environment that have the same color or motion properties of the hand. When dealing 

with uncontrolled environments this assumption is rarely true. The robustness reached by proper 

selection of features or clues and their combination, with sophisticated recognition algorithms is 

the condition of successful or failure of any existing and future work in the field of human-robot 

interaction using hand gestures. 

A tele-robotic arm controlled by twelve hand gestures was developed in the telegest project, 

for pick and place operations [Wachs et al., 2002]. The system operates in real time, and visual 

feedback from the distant scenario is provided by image views of the task. The classification is 
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performed using supervised FCM optimized framework, and it relies on static hand poses using a 

uniform background. Based in the telegest project, the KISS system was developed [Eliav et al., 

2005] to control a robotic vehicle in real-time, where live video streams were sent back to the 

user as feedback visual information. 

A concise summary of the characteristics of systems aimed to hand gesture robot control is 

presented in Table  2.2. 

 

Table  2.2. Summary of robotic control systems 

Application Reference Task Commands Method 
Speed 

[fps] 

Robot waiter 
[Franklin et 

al., 1996] 

Tracking, 

navigation and 

grab objects 

Tracking plus two 

metaphors 

Feature maps, decision 

trees and grammar 
N.Aa 

Robotic arm 

control 

[Triesch and 

Malsburg, 

1998] 

Pick and place 
Twelve pointing 

postures 

Elastic graph matching, 

motion and color cues 
1/10 

 

Gripsee 
[Becker et al., 

1998]   
Pick and place 

Ten pointing 

gestures 

Elastic graph matching, 

motion and color cues 
1/30 

Mobile Robot 

Control 

[Kortenkamp 

et al., 1996] 

Tracking, 

navigation 
Six gestures 

Arm and Body 3-D 

Model, 5 DoF. 
N.A 

Robotic arm 

control 

[Cipolla and 

Hollinghurst, 

1996] 

Pick and Place 
One pointing 

gesture 
Active Contour N.A 

Human-Vehicle 

Interaction 

[Guo et al., 

1998]   
Navigation Six hand gestures 

Template matching, 

RCE neural network 
N.A 

Service Robot 
[Waldherr et 

al., 1998] 

Tracking, 

navigation, 

pick and place 

Two motion 

gestures and a 

pointing gesture 

Temporal template 

matching, Viterbi 

Algorithm 

N.A 

Humanoid  

Service Robot 

[Yin and Xie, 

2001] 

Navigation, 

pick and place 
Eight gestures 

RCE neural network, 

geometrical parameters 
5 fps 

TeleGest 
[Wachs et al., 

2002] 
Pick and Place Twelve gestures 

Supervised weighted 

FCM algorithm 
N.A 

KISS 
[Eliav et al., 

2005] 
Navigation Six gestures 

Supervised weighted 

FCM algorithm 
N.A 

a
  Not available 
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3 Research Methodology 

3.1 Overview 

This chapter describes the methods used in this research. The basic definition, notation and 

assumptions of this dissertation are presented in the first section. The second section presents 

three different formulations of the GV problem. The following sections present the performance 

measures intuitiveness, comfort and accuracy as a function of the given gesture vocabulary GV; 

afterwards the architecture of the optimal hand gesture vocabulary methodology and each of the 

modules in it are described. The last three sections describe the experimental methodology and 

the validation approaches used in this dissertation. 

 

3.2 Problem Definition and Notation 

The basic research problem here is to find an optimal hand gesture vocabulary. An optimal 

hand gesture vocabulary, GV, defined as a set of gesture-command pairs, such that it will 

minimize the time τ for a given user (or users) to perform a task, (or collection of tasks). The 

number of commands is determined by the task, while the set of gestures is the decision variable 

selected from a large set of hand postures, called the gesture “master-set”. Performance depends 

on the rate of successful recognition of the subset of gestures by a hand gesture recognition 

system (technical factor) and on human factors measures representing the naturalness of the 

gesture-command associations and the comfort of the postures. The main problem is to minimize 

task performance time over a set of all feasible gesture vocabularies, GV. This problem is stated 

in ( 3.1) :  

 

)A,SIC,,I,D,F,G,C,T()GV(Min z
GV

Ψτ
Γ

=
∈  

( 3.1) 

 

Where; 

τ(GV) = the task performance time for a given gesture vocabulary 

ψ is some function of the following factors: 

T = {t1 , … , tn}, the set of tasks that can be performed in the current ontology. 

C = {c1,..,cn}, the set of commands spanning all tasks in T. 

Gz = {g1,...,gk}, the large master set of candidate gestures, from this, a subset of gestures is 

matched with commands in C. 

F n x n={fij}, the command transition matrix, or after normalization the stochastic matrix 

P={pij} of commands (where fij is the frequency of transition from command i to command j, and 

pij is the probability of using command i after command j).  

D n x n={dij}, the command duration matrix, for i ≠  j is the time that takes the transition from 

gesture p(i) to p(j), and for i=j is the minimum time that is required for the recognition system to 

sample the current gesture. 

I n x m={aik}, the intuitiveness matrix, where aik is a measure of cognitive association between 

the gesture i and the command k. 

IC nm x nm={aijkl}, matrix of complementary intuitive indices where, aijkl is a measure of how 

natural it is to associate the complementary pair of gestures (gi, gj) with the complementary pair 

of commands (ck, cl). 

S m x m={skl}, the stress or fatigue matrix, where skl is the physical difficulty of a transition 

between gesture k and gesture l. Note that skk is the fatigue of holding the same gesture. 

mmS × is the comfort matrix, some inverse function of S. 
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A(Gn) = the recognition accuracy of a given subset of gestures Gn ⊆ Gz (a scalar). 

GV = { (i, p(i) | all gi ∈ Gn , p(i) ∈ C }, a gesture vocabulary in terms of a set of gesture-

command pairs. 

Here a vocabulary GV is described in terms of an assignment function p where p(i)=j 

indicates that the command i is assigned to gesture j.  

Γ = the set of all feasible GVs. 

 

The measurement of task completion time involves the evaluation of ( 3.1) whose analytical 

form is unknown, time consuming, and difficult to estimate from experimental data. We, 

therefore, propose a set of multiple objective performance measures to act collectively as proxies 

for ( 3.1). The proposed methodology will be developed under the following assumptions: 

(a) The gestures are static postures. The same methodology can be used with small 

modifications for dynamic gestures. 

(b) Each gesture cannot represent more than one command, and each command must be 

expressed by exactly one gesture.  

(c)  Measures of intuitiveness can be collected from a small empirical experiment. 

(d) The static stress measures can be determined empirically, and will yield enough 

information to estimate the dynamic stress measures.  

(e) For this problem recognition accuracy of a set of gestures is determined by a fuzzy means 

classifier (Although any other recognition algorithm can be used). 

 

3.3 Problem Formulation 

The main performance measure is the completion time, τ, to perform a task. However, since 

the task completion time, as a function of GV, has no known analytical form, we propose three 

different performance measures as proxies for the task completion time. These performance 

measures are; intuitiveness Z1(GV), comfort Z2(GV) and recognition accuracy Z3(GV). The first 

two measures are user centered, while the last is machine centered. This multiobjective 

optimization problem (MCOP) may have conflicting solutions where all the objectives can be 

maximized simultaneously. As with most multiobjective problems this difficulty is overcome by 

allowing the decision maker to select the best GV according to his own preferences. 

 

P  3.1 Three priority problem 

Γ∈GV

GVZMaxGVZMaxGVZMax )(),(),( 321

 
( 3.2) 

 

where, 

Z1 = intuitiveness of the GV. 

Z2 = the total comfort of the GV. 

Z3 = the recognition accuracy of the GV.  

 

In ( 3.2) maximizing each of the measures over the set of all feasible GVs defines a MCOP. 

Here the set of Pareto solutions can be used to aid the decision maker to select the GV. The 

pareto frontier solution can be determined through enumeration, for small problems, and through 

the use of heuristic methods for large problems. Selecting optimal GV solutions (optimal from 

the user point of view) from the complete set is a posteriori judgment, which can only be done by 

examining concrete solutions. Because the enumeration approach is untenable, for even 

reasonable size vocabularies, we describe two alternative formulations to this problem. The first 

is to map the three performance measures into a single measure by using weights wi to reflect the 
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relative importance of each of the objectives. Another method of handling the difficulties of the 

sometimes conflicting multiobjective values is to adapt a goal programming approach. The 

difficulty with this approach is in the selection of the goal values.  

 

P  3.2 Single Objective Problem 

Γ∈

++=

GV

GVZwGVZwGVZwGVZMax )()()()( 332211  ( 3.3) 

 

Where, 

wi = the relative importance of factor Zi. 

The weights in ( 3.3) can be found empirically, by letting the decision maker give the 

importance of each factor according to his/her needs and preferences. Alternatively, the weights 

can be varied, and for each unique weighting scheme the corresponding solution can be presented 

to the user for acceptance or rejection.  

As a practical matter, however, it is more convenient to consider a dual priority objective 

where the technical factor, accuracy, will be considered as the most important factor from the 

users stand point as well as its impact on performance time. The reason is that if a gesture is not 

recognized, the command associated to that gesture will not be carried out, and thus the tasks will 

be interrupted. As opposed to this, a lack of comfort or naturalness on the GV, will delay the task 

completion time, but not interrupt it. This is best expressed using dual priority objectives where 

recognition accuracy is considered of prime importance, and the human performance objectives 

are secondary. 

 

P  3.3  The Relaxed Problem 

)GV(Zw)GV(Zw(GV)Z Max 2211 +=
 ( 3.4) 

Γ∈GV   

min3 A)GV(Z.t.s ≥
 ( 3.5) 

 

The P  3.1 is thus relaxed to obtain P  3.3 by considering recognition accuracy as a constraint ( 3.5), 

and combining the human objective measures into one objective function using combination 

weights w1, and w2 ( 3.4). This relaxed problem, based on the dual priorities of the objective 

functions, is the main approach adopted in this thesis and is described in detail in Section  4.3 

 

3.4 Performance Measures 

Each of the performance measures is described as a function of the given gesture vocabulary 

GV. The objective functions Z1(GV) and Z2(GV) are human valued (intuitiveness and comfort) 

measures, while Z3(GV) is machine valued (accuracy). Each in turn is described below. 

 

3.4.1 Intuitiveness – Z1 

Intuitiveness is the naturalness of expressing a given command with a gesture. The 

intuitiveness of a gesture vocabulary is the sum total of the intuitiveness of each gesture-

command pair in the vocabulary, each weighted by frequency of use. 
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The value ai,p(i), represents the strength of natural association between command i and its 

matched gesture p(i). The first term in ( 3.6) represents the sum over all the command-gesture pair 

intuitive values in the vocabulary. The complementary intuitiveness ai,p(i),j,p(j) is the level of 

association expressed by the selection of complementary gestures pairs p(i), p(j) for 

complementary command pairs (i,j). Accordingly, the complementary intuitiveness has a stronger 

effect than regular intuitiveness, which expresses the tendency to reward vocabularies with 

complementary gestures selected for complementary commands, and to punish arbitrary 

mappings. The total complementary intuitiveness for a GV is represented by the second term in 

( 3.6). 

 

3.4.2 Comfort – Z2 

Stress is related to the strength needed to perform a gesture. The difficulty of  composing and 

holding gestures can be explained by the effects of blood flow restriction on the stressed joints 

which causes strain and fatigue on the muscles. Obviously, there are gestures that are easier to 

perform than others. Even when some of them look comfortable in the beginning, after some time 

the user may feel fatigue. The amount of fatigue is related to muscle forces, which causes finger 

and palm tensions. Total stress is a scalar value equal to the sum of the individual stress values to 

hold the postures, and to do the transitions between them, weighted by the duration and frequency 

of use. 
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( 3.7) 

 

Here p is an assignment function where p(i)=j indicates that the command i is assigned to 

gesture j. Let k=p(i) and l=p(j), the value of skl represents the physical difficulty of a transition 

between gestures k and l. The duration to reconfigure the hand between gestures k and l is 

represented by dkl. The symbol fij stands for the frequency of transition between commands i and 

j. The value K is a constant obtained empirically, and thus the difference yields the comfort 

scalar. 

 

3.4.3 Accuracy – Z3 

Accuracy is a measure of how well a set of gestures can be recognized. To determine the 

accuracy of a GV it is only necessary to consider the subset of gesture types Gn and not C. So 

technically Z3(GV) is a function of Gn only. To obtain an estimate of gesture accuracy, a set of 

sample gestures for each gesture type in Gn is required. These samples are used to train the given 

hand gesture recognition algorithm. An additional set of samples are used to test the recognition 

accuracy of the algorithm, designated as Tg .The number of gestures in the testing set correctly 

and incorrectly classified is usually presented in a confusion matrix. The number of misclassified 

gestures can be calculated as Te. The recognition accuracy (in percent) is given below (often 

represented with the symbol A): 
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3.5 System Architecture 

The optimal hand gesture vocabulary methodology architecture is comprised of three modules 

(Figure  3.1). In Module 1 human psycho-physiological input factors are determined. In Module 2 

a search for a feasible gesture subset, subject to machine gesture recognition accuracy is carried 

out. Module 3 constitutes a command - gesture matching procedure. The task set T, the large 

gesture master set Gz and the set of commands C are the input parameters to the first Module 1. 

Note, that C is determined by T where given a set of tasks, the union of all commands used to 

perform all tasks constitutes C. The objectives of Module 1 are to establish associations between 

commands and gestures based on user intuitiveness (direct and complementary), to find the 

comfort matrix based on command transitions and fatigue measures, and to reduce the large set of 

gestures, to the master set Gm, (Figure  3.2). For Module 2, the necessary inputs are the reduced 

master set of gestures Gm, and a recognition algorithm to determine A. This module employs an 

iterative search procedure to find a single feasible gesture subset Gn* (or alternatively the set of 

feasible gesture subsets), satisfying a given accuracy level (this level is specified in ( 3.5) is 

usually determined by the decision maker). 

 

T (Tasks)

Hand Gesture Factor

Determination

V (Intuitiveness) U (Comfort)

Gesture Subset Search

Procedure

Gesture

Recogntion
Algorithm

Module 1

Module 2

Gz (Gestures)C (Commands)

A (Accuracy)

Gn (Gesture Subset)

Command Gesture

Matching AlgorithmModule 3

Gn* C

GV

Gm (Gestures)

 

Figure  3.1. Architecture of optimal hand gesture vocabulary methodology 

Complete enumeration or a heuristic search can be used as a search procedure.  

The inputs to the third module are the matrices; intuitiveness V, comfort U, command C, and 

the subset of gestures Gn*. The goal of this module is to match the set of gestures Gn with the set 

of given commands, C, such that the human measures are maximized. The resulting gesture-

command assignment constitutes the gesture vocabulary, GV. 
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T (Tasks)
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Matrix)
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Gm(Gestures)

Module 1

 

Figure  3.2.  Hand gesture factor determination stage 

 

3.5.1 Module 1: Hand Gesture Factor Determination 

In this section the inputs to the first module are described including; the methods taken to 

compose the U and V matrices, and the gesture master set Gm. In addition, the algorithm to 

determine the recognition accuracy, A, is described. 

 

3.5.1.1 Task and Command Sets (T, C)  

The task set can be single element or multiple element (multi-tasks) set. For each task ti , a set 

of Ci commands are defined. For a multi-task set T={t1,..,tn} the command set is the union of the 

individual task commands.  
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( 3.9) 

 

For example for a ‘place’ task with commands C1={‘left’, ‘right’, ‘up’, ‘down’, ‘backward’, 

‘forward’} and for a ‘pick’ task with commands C2={‘up’, ‘down’, ‘backward’, ‘forward’, 

’open’, ’close’}, a new task (multi-task) ‘pick & place’ will include the command set C={‘left’, 

‘right’, ‘up’, ‘down’, ‘backward’, ‘forward’, ’open’, ’close’} 

 

3.5.1.2 Command Transition Matrix (F) 

To estimate the frequency of command usage for the set of selected tasks T it is necessary to 

carry out experiments according to the desired task. For example, using a real or virtual model of 

a mechanism
iii

 or driving a VMR through a maze. For a command set C of size n, a matrix Fnxn is 

constructed where, fij represents the frequency that a command cj is evoked given that the last 

command was ci. This measure is significant in the sense that it is hypothesized that; (a) an 

optimal hand gesture vocabulary will pair high frequency commands to gestures that are easy to 

perform (low fatigue); and (b) the physical ease of movement between gestures will be paired 

with high frequency command transitions. 

 

                                                 

iii To determine the command transition matrix, we make the assumption that it is independent of the gestures or 

the process in which commands are executed. Thus, it can be approximated by, for example, a virtual reality model 

or teach pendant for a robotic task. 
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3.5.1.3 Large Gestures Master Set (Gz) 

Since the set of all possible gestures is infinite, we first establish a set of plausible gesture 

configurations. To create the set of all plausible hand gestures there are two possible approaches; 

(a) visual capture of gesture images, or (b) creation of synthetic gestures. For small hand gesture 

databases, real hand gestures images may captured, and labeled with the configuration parameters 

that characterize that gesture; For large gesture sets (thousands of gestures) a tedious effort is 

required which may be overcome by the use of a synthetic gesture generator. The synthetic 

generation of gestures has a significant advantage over the capture of real hand gestures, as the 

hand gestures and the labeling process are done automatically. 

One possible way is to generate the configurations by specifying a number of primitives such as; 

finger positions (extended, spread), palm orientations (up, down sideways), etc. For additional 

material on gesture primitives and combining them into whole gestures, including those for 

dynamic gestures see [Miners et al., 2002]. This list should exclude in advance those gestures that 

are impossible to perform due to inter and intra joints constraints [Lin et al., 2000] (for example it 

is not possible to spread fingers that are closed in a fist), and those that are extremely stressful, 

such us the gestures only performed by piano players. 

The virtual model used to generate the gestures will be a graphical approximation of a 2D 

hand gesture view, using a discrete digital coding (with base 2 and 3) to represent each gesture. 

The string representing each posture consists of 11 bits (Table  3.1), and each is described in the 

following table. The first bit in the string is the most significant bit MSB (the leftist digit) and the 

last is the least significant bit LSB (the rightist digit). 

 

Table  3.1. Configuration of the hand model 

Order Type Effectors Description

1 3-State Palm 0-Palm Down, 1-Palm Up, 2-Side of the Palm

2 3-State Wrist 0-Straight, 1- Bend to Left, 2-Bend to Right

3 2-State Thumb 0-Closed, 1-Extended

4 2-State Index 0-Closed, 1-Extended

5 2-State Middle 0-Closed, 1-Extended

6 2-State Ring 0-Closed, 1-Extended

7 2-State Little 0-Closed, 1-Extended

8 3-State Thumb-Index 0-Tight, 1-Opened,2-Perpendicular to the Palm

9 2-State Index-Middle 0- Tight, 1- Opened

10 2-State Middle-Ring 0- Tight, 1- Opened

11 2-Stage Ring-Little 0- Tight, 1- Opened
 

 

The first 2 bits, controls the palm, the wrist rotation (0-90-180 degrees) and the ulnar 

deviation (the wrist bent towards the ring finger, in the middle, or towards the thumb finger). The 

next 5 bits indicate whether the finger is bent (flexed towards the palm) or extended, and the last 

4 bits describes whether there is a separation (spread) between two adjacent fingers or not (tight). 

The thumb (bit 8) has an additional degree of freedom, so it can be opened perpendicular to the 

palm. An example of a few configurations codes are depicted in Table  3.2 with their respective 

graphical representations. 
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Table  3.2. Examples of posture encoding 

Code 00000000000 10000000000 20000000000 02010000000 10011000100 10111111111 

Gesture 

      
 

The total number of postures available using the coding described above is 2
8
*3

3
=6912. It is 

still possible to decrease this large gesture set by eliminating those postures that violate inter 

finger constraints [Lin et al., 2000] and are extremely difficult to perform. Also gestures that are 

ambiguous when using only one view of the hand may be eliminated. For example, it is 

impossible to spread two adjacent fingers when they are bent. Is also extremely difficult to 

separate two adjacent fingers, when one of them is closed and the other is extended. An example 

of postures that are ambiguous due to using a single view of a camera are postures shown in Fig. 

3.3 (a)-(c) when they are viewed from the back of the hand they cannot be discerned from posture 

(d).  

 

    
(a) (b) (c) (d) 

Figure  3.3 Ambiguous postures due to using a single view 

 

Therefore the constraints considered were: a) postures with palm up or palm down cannot 

have the thumb perpendicular to the palm. b) postures where two adjacent fingers are one open 

and the other bent, are not allowed to be outspread. c) postures where the fingers are spread out 

are not allowed to have the palm on its side. d) postures where the palm is on its side are allowed 

only if all the four fingers (except thumb) are bent, open, or index open and the rest bent, or index 

bent and all the rest open. e) If the thumb is bent, the thumb cannot be outspread, or 

perpendicular to the palm. f) postures were any two adjacent fingers are closed, are not allowed to 

be outspread. Considering these constraints, it is possible to further reduce the large set of 

feasible gestures Gz to 648 postures.  

 

3.5.1.4 Matrices of Intuitiveness and the Gesture Master Set (V, Gm) 

The intuitive matrices include the direct intuitive matrix and the complementary intuitive 

matrix. Both intuitive matrices are obtained by subjective data collection methods. Based on the 

popularity of the gestures in the direct intuitive, the master set of gestures is reduced to Gm ⊂ Gz.  

 

The direct intuitive matrix, I 

The intuitive index is a measure of how “natural” it is for a user to express a command with a 

particular gesture. These indices are determined empirically. For each command ci a user is 

prompted to select a posture that he/she “cognitively” associates the most with the command. 

Once the user performed the gesture, the next step is to “build” the posture using the virtual 

model primitives described in section  3.5.1.3. In this way, is possible to encode the user’s 

selection in a simple manner, and further on to obtain the distribution of user choices over the 

different gestures. The process to obtain the intuitive indices is described in Figure  3.4  
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Figure  3.4. Empirically determining the intuitive indices 

 

Using this information it is straightforward to construct an intuitiveness matrix, I m x n. The 

entries of I are represented as aik. 
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j
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( 3.10) 

where,  

u = the number of users (j=1,...,u) 

z=number of gestures in the master set (i=1,…,z) 

n= number of commands (k=1,…,n) 

 

a
j
ik = is a binary variable to express whether user j cognitively associates gesture i with 

command k. If the user j selects gesture i to represent command k, is a
j
ik =1, and 0 otherwise. 

Let w
j
ik be the level of strength of belief of user j in making the association between the 

command k and the gesture j then, then a weighted intuitive matrix, with common element
ikâ , 

can be generated  
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( 3.11) 

 

The complementary intuitive matrix, IC 

When analyzing the actions in a task, one of the things that are common to most tasks, is that 

there are commands that have complementary counter parts. This occurs specially for directional 

commands (left-right, up-down) and two-state action commands (open-close). This mapping is 

usually expressed by the users by selecting complementary gestures for complementary 

commands.  

A brief study, presented in Chapter  6, revealed that for complementary commands, 

complementary gestures were selected; however it was found that there is no single rule to 

determine the complementary gesture for any given gesture. Moreover, one gesture may have 

more than one complementary gesture. These gesture can be obtained by flipping the palm, or a 

closing/extending the fingers. See Figure  3.5 (a), (b), (c) respectively. 

The naturalness of matching up a pair of complementary commands (i, j) with a pair of 

complementary gestures (k,l), is represented by a complementary intuitive index of the form aijkl . 

Higher values of complementary intuitive indices will have the effect of forcing complementary 

pairings. The matrix of complementary intuitive indices ICn,m x n,m, can be quite large, but can be 

compacted considerably as most of the entries will be zero. Denote V=[I, IC] as the set of 

matrices including both the direct I and complementary IC intuitiveness matrices. 
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(a) (b) (c) 

Figure  3.5. Complementary gestures: (a). Flipping the palm. (b) Rotating the wrist. (c) Open-closing the 

fingers 

 

The gesture master set, Gm 

Each element of the non-weighted intuitive matrix I indicates the number of times that a gesture i 

was used to represent command j. The row sums indicate how popular a gesture is. The 

normalized popularity of gesture i, pi , is: 
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Zero values of pi point to the fact that some gestures were not selected at all to represent any 

command, and low values shows that this gestures were roughly used to express commands. 

Those gestures are not intuitive to the users, and assuming that they are also awkward to perform, 

and hence they are not “natural” gestures. If these kinds of gestures are not intuitive and stressful, 

the master set of postures can be reduced further by taking this postures out of the master set. 

Hence, a reduced master set of gestures can be defined using ( 3.13). 

 

}|{ tpgG iim ≥=  ( 3.13) 

where, 

Gm is the reduced master set of gestures 

pi is the popularity of gesture i 

gi is a gesture 

t is the threshold of popularity of the gestures 

 

3.5.1.5 Fatigue and Comfort Matrices (S,U) 

The fatigue (or comfort) indices are determined through an experimental a study (see chapter 

 6.4). The results are arranged in a matrix S m x m, whose common element sij represents the 

physical difficulty of performing a transition from gesture i to gesture j. Let the coefficients uijkl 

be the entries of a square matrix, U nm x nm. An entry uijkl=K-fij x skl represents the frequency of 

transition between commands i to j times the transition stress of a k to l commands when i and j 

are paired with gestures k and l, respectively. This product reflects the concept that the total stress 

measure of GV depends on the frequency of use of a gesture or a gesture pair transition. The total 

comfort is the difference between the constant and the total stress detailed above. Note, that the 

diagonal entries sii represent the total stress of using a gesture repeatedly to carry out the same 

command. 

 

3.5.2 Module 2: A feasible subset search procedure 

3.5.2.1 Gesture Recognition Algorithm, A(Gn) 

The goal of the subset search procedure is to evaluate solutions based on recognition accuracy 

of a hand gesture recognition system. The hand gesture recognition process involves two 
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sequential tasks; (a) extracting relevant features from the raw image of a gesture, and (b) using 

those image features as inputs to a classifier. Such an algorithm is described in  [Wachs et al., 

2002] where the segmentation consists of the extraction of the hand gestures from the background 

using grayscale cues. For simplicity gestures are presented with a uniform background. The 

captured hand image is thresholded to a black/white segmented hand silhouette, and partitioned 

into block features. These features are compared to clusters obtained from a trained fuzzy c-

means clustering algorithm. To obtain an estimate of the recognition accuracy a set of training 

samples, consisting of images for each gesture type in Gn, are used. The classification results are 

organized as a confusion matrix. From the confusion matrix, the recognition accuracy Z3(Gn) is 

computed using ( 3.8). Note that the recognition accuracy depend only on the gesture set Gn and 

the commands associated do not play any role by determining Z3(GV), therefore Z3(GV)= Z3(Gn). 

Further details may be found in Wachs et al.    [Wachs et al., 2003] 

To determine the accuracy of a candidate subset of gestures it is necessary to train a classifier. 

Two different approaches will be discussed in this thesis; one, retraining the FCM many times for 

each different candidate Gn, and two, the FCM will be trained and tuned for the master set Gm. 

For the first method, the recognition accuracy is calculated using ( 3.8) based on the confusion 

matrix Cn obtained from the FCM. For the second approximate method, the confusion matrix 

obtained from the master set is Cm. For a candidate set of gestures Gn , the recognition accuracy is 

obtained by creating a new confusion matrix C’n which is obtained by dropping all the columns 

and rows j in Cm where j ∈ { i | all gi ∈ Gm - Gn }, then the recognition accuracy ( 3.8) is obtained 

using the confusion matrix C’n. 
Gesture classifiers such as a neural network, Bayesian, boosting methods require large 

training sets. In this thesis was used a fast FCM classifier for the gesture recognition algorithm, 

which requires a relatively small training set. An automated method, based on a parameter search 

procedure, is used to reconfigure and recalibrate the recognition algorithm for each new set of 

gestures; more details will be offered in Chapter  5. 

 

3.5.2.2 Gesture subset search procedure  

Consider a subset solution Gn that has recognition accuracy below the minimum desired value. 

One notes that by observing the indices of the gestures only, is not possible to predict how to 

order them in the subset or how to interchange them with new gestures from Gm to obtain 

improved recognition accuracy. Thus, given a subset solution, Gn, and its neighborhood solutions 

obtained by some gesture exchange rule, there is no physical reason that the A(Gn) function is 

well behaved within this neighborhood. Hence, attempting to find a local maximum by the 

standard search methods of gradient ascent will fail. To overcome this problem two metaheuristic 

approaches were developed. The first approach is referred to as the Disruptive Confusion Matrix 

(DCM), and the second is referred to the Confusion Matrix Derived Solution method (CMD). In 

the DCM method pairs of gestures are exchanged and maintained in a binary tree. Each of the 

most confused gestures in the subset is discarded, and replaced by a gesture from the remaining 

gestures in the master set Gm using a MaxMin rule, (Figure  3.6). Gesture sets that have associated 

accuracies below some stipulated value Amin are discarded. 

The MaxMin rule selects a gesture from the master set that is least similar (farthest away) 

from all the gestures in Gn-1 (i) (where i is the gesture removed from the current subset). Like 

simulated annealing, the method allows moves towards the direction of inferior solutions possibly 

avoiding pre-convergence to local optima. This method generates a sequence of gesture subsets 

until a depth of the tree is reached. 

The second approach, the CMD, relies on the recognition accuracy obtained from the master 

set Gm and its associated confusion matrix.  
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Figure  3.6. Solution tree 

Given the confusion matrix, the selection of the n least confused gestures result in the highest 

recognition accuracy for a subset Gn. Additional solutions with the same or lower recognition 

accuracies can be obtained by discarding the most confused gesture i over the diagonal of the 

confusion matrix, and instead, selecting the least confused gesture j in the subset Gm-Gn obtained 

from the confusion matrix. Each solution is kept in a stack of solutions. When a solution is 

repeated, i. e., already in the stack, a new solution is generated instead by discarding the most 

confused gesture k ≠ i and selecting a least confused gesture j in the subset Gm-Gn. The feasible 

solutions obtained while employing one of the methods (DCM and CMD) are then used in the 

gesture-command matching problem in Module 3 to obtain candidates GV. 

 

3.5.3 Module 3: Command gesture matching algorithm 

In this module every feasible gesture solution Gn* ∈ { Gh | Gh ∈ Gz , A(Gh)≥ Amin } found 

using the DCM or the CMD procedures, is matched to commands to obtain the final set of GV 

using the integer quadratic assignment problem (QAP) [Koopmans and Beckmann, 1957].This 

can be done in two ways; if w1 and w2 are known, then a single matching is found directly from 

the solution. Otherwise, linear combinations of the weights can be used to obtain an associated 

set of solutions for Gn*. The integer QAP solves a problem of matching gestures to commands. 

The 0-1 integer QAP has attracted a lot of attention and many approaches have been proposed for 

its solution such as: (i) find a proper linearization of the objective to obtain a linear program 

Finke et al. [Finke et al., 1987], and (ii) relax the QAP to a (0, 1) linear integer program by 

introducing new binary variables and new constraints. A practical approach is used in this work, 

adopting the simulated annealing algorithm as described in [Connolly, 1990]. 

 

3.6 Experimental Methods for estimating Intuitiveness and Stress 

A series of experiments were conducted to obtain subjective measures by studying responses 

from human subjects. Intuitiveness is the cognitive association between a command or intent, and 

its physical gestural expression. Two approaches are given for obtaining intuitiveness measures; 

(a) bottom-up - takes functions (commands) and finds matching gestures, and (b) top-down - 

presents gestures and finds which functions are logically matched [Nielsen et al., 2003]. To 

collect intuitive data we used the "bottom- up approach". The actual acquisition of gesture 

responses is not trivial. The following three methods were considered; (a) direct video capture - 

the subject physically forms the gesture and a camera image is taken (here there may be errors in 

recognizing similar gestures), (b) use of a database of candidate gesture images (browsing a large 

database is time consuming, and difficult for the subject to remember and make comparative 

judgments), and (c) coded gesture entry - the subject physically generates the gesture, and enters 

configuration information. The coded gesture entry method was selected as one combining 

reasonable time demands, and accuracy in gesture labeling. For the stress measure, there are two 
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approaches (a) EMG based indices - The use of EMG measurement is popular, but problematic as 

it usually only measures the activity of part of the muscles involved in structuring a hand pose, 

(b) the use of ergonomic tests, where the user may rank poses from weak to strong on some scale. 

Based on the static stress measures for all the gestures in the master set Gm and only a few 

measures for the transition stress, a model that describes the transition effort was developed and 

validated. A test to validate the assumption that task completion times are shorter using VG than 

using VB vocabularies samples was performed. The VG vocabularies are dominating solutions of 

the VB vocabularies, which means that each GV that is from the VG set of vocabularies, has 

higher associated values for the three objectives (accuracy: intuitiveness and comfort) than each 

GV from the VB set, (see  Appendix B for an example). Two scenarios were used to study the 

GVs performances: a robotic arm pick and place, and a VMR maneuvering tasks. Beginner users 

performed those tasks using GVs each obtained using either the robotic arm or the VMR 

framework. The purpose of this test was to measure the time to complete the task, assuming that 

fatigue effects are introduced in long-term tasks, and than intuitive term remains constant during 

the completion of the task. To reduce testing time a virtual three-dimensional model of the 

robotic arm was be developed for the first task, similar to [Ho and Zhang, 1999], and a virtual 

driven VMR was developed for the second task. Learning and memorability tests were two 

additional usability tests performed. The assumption tested was that VG are easier to learn and 

remember than VB vocabularies samples. The learning rate analysis was performed using the task 

completion time obtained for each trial. The memorability test relied on the user’s capability to 

recall gesture-command associations after performing the tasks 

 

3.7 Validation Methodology 

The validation of the analytical procedures for finding the optimal hand gesture vocabularies 

consisted of testing the following hypothesis:  

(a) The multi-objective function ( 3.2) is a proxy measure for performance time ( 3.1) to 

complete a task. 

 (b) The analytical performance measure ( 3.3) is inversely proportional to task execution time 

described in ( 3.1). 

 (c) The use of GVs from VG set, will take shorter to complete a task than using GVs from the 

VB set. 

 (d)  The GVs from the VG set, are easier to remember than those GVs from the VB set. 

 (e) The GVs from the VG set, are easier to learn than those GVs from the VB set.  

 

Hypotheses were tested with two set of hand gesture vocabularies GV, for two different tasks. 

A set of n GV’s from the VG and from the VB sets, obtained using the methodology suggested in 

this work. Each user performed m trials to complete a task, with the same GV. The task 

completion time τ was saved. From the completion time for each trial, a learning curve was 

created. The average of the last k trials was used as a representative task completion time for the 

given GV. The learning curves also allowed obtaining the learning rate (r) for each GV. With this 

information, the t-test was used to validate the hypothesis that the vocabularies from the set VG 

resulted in shorter completion task times, rapidly learned and easier to remember.  

 

3.8 Usability Experimental Methodology 

Two different usability tests were performed involving the task performance and the quality of 

the vocabularies, learnability and memorability tests of the GVs. The first experiment tested 

which a VG or VB vocabulary sample was easier to learn through the use of learning curves. The 

concept of the learning curve is based on the idea that the time required to complete a task 

decreases as the user gains experience. A learning rate corresponding to a learning curve 
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describes the change in performance time each time the cumulative number of trials doubles. A 

0.8 learning rate means that each time the cumulative number of trials doubles, the performance 

improves by 20%. The model for the learning curve is [Schwartz, 1998]: 

 
b

n nYY −= 1  
( 3.14) 

where Yn is the estimated value of the completion time in seconds on the n
th

 trial, n is the trial 

number, Y1 is the time of the first trial, and b is: 

 

2loglogrb =  ( 3.15) 

where r is the learning rate. 

 

A lower learning rate means faster learning. Figure  3.7 shows an example of the learning 

curves expected from GV1 which belong to VG and GV2 that belong to VB. From the figure is 

possible to see that the task using GV1 took shorter time than using GV2, and since they started 

from the same time, the learning rate of GV1 was lower (means faster learning). 
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Figure  3.7. Learning curves for two GVs from the VG and VB vocabulary set 

 

The second experiment was related to test the memorability aspect by comparing VG and VB 

vocabulary samples. This test was performed immediately after the subject completed the task 

performance time trials. Given a list of commands to a trained testee, the memorability index is 

obtained through a software application which examines which gesture the testee associates with 

each given command, selected from a large set gestures (larger than the set of commands). More 

specifically, the memorability index is expressed as: 

 

nnnGVm e )()( −=  ( 3.16) 

Where, 

m(GV) = the memorability index for vocabulary GV 

n=total number of commands in the task 

ne= number of wrong command-gestures matched 
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4 Optimization Approach 

4.1 Overview 

The multiobjective problem and the dual priority problem presented in Chapter  3 can be 

formulated using mathematical programming, and hence analytical methods can be used. For the 

dual priority problem, two methods to find a feasible subset of gestures from the gesture master 

set will be rigorously described in this chapter. Two examples of use will be presented as 

illustrative cases. The first method is the disruptive confusion matrix (DCM) to create a 

metaheuristic search tree. The second method is the confusion matrix derived solutions (CMD) 

based on the creation of a single confusion matrix for the whole gesture master set. The quadratic 

assignment problem is used to model the problem of optimal matching between commands and 

the feasible subset of gestures. To solve this problem an existing simulated annealing scheme was 

applied, and a number of solutions are presented in the end of the chapter. The MCOP was 

solved, alternatively, using a complete enumeration policy, and then presenting the solutions as 

3D representations, including the Pareto optimal front. This gives the user the decision to select 

the best GV according to his own preferences. 

 

4.2 The Multicriteria Optimization Problem 

Before the Dual Priority Problem is discussed it is useful to formulate a “basic” multicriteria 

optimization problem (MCOP) which contains all three objectives without priorities. When 

solving this problem the objectives may be conflicting, i.e., not all can be maximized 

simultaneously. It is then left to the decision maker to provide subjective preferences to select an 

acceptable solution. For this formulation the master set of gestures gj   j=1,..,m, is provided. 

 

P  4.1 Multicrtieria Problem (MCOP) 
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In the P  4.1 formulation there are i=1,..,n commands and j=1,..,m gestures (n<m). The first 

and second terms of the intuitiveness objective ( 4.1) contain intuitiveness indices for the direct 

and complementary gestures-commands assignments. Higher values of vij will force gesture-

command pairings, which are more intuitive. Similarly, higher values of the complementary 

intuitive indices, vijkl will force solutions in which these complementary command gesture pairs 

are matched. The comfort objective Z2 ( 4.2) tends to pair high frequency use commands with less 

stressful gestures. The accuracy objective Z3 ( 4.3) must be determined by a recognition 
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algorithm. In ( 4.7) the binary variable xij =1 represents an assignment of gesture j to command i, 

and 0 otherwise. Constraints ( 4.5) and ( 4.6) insure that each command i is assigned a unique 

gesture, and each gesture j is assigned to no more than one command, respectively. To evaluate 

( 4.3), a recognition algorithm must be called, and solved for the particular GV represented by the 

0-1 assignment variables. When there is more than one non-commensurable objective function to 

be maximized, solutions exist for which the performance in one cannot be improved without 

sacrificing performance in at least one other. Such solutions are called Pareto optimal points 

[Pareto, 1896], and the set of all such points form the Pareto frontier. A solution x* is a Pareto 

point iff there does not exist another solution y such that; fd(y) ≥ fd(x*)   ∀ d=1,..,D, and 

fd(y)<fd(x*) for some d, where fd is the 
th

 objective function. 

Given that the gesture set is of size m and the command set of size n, there are m!/((m-n)!n!) 

different gestures subsets. For each subset of n gestures the total number of command-gesture 

matching is n! so that the total solution space for the MCOP is m!/(m-n)!. The sub problem P  4.1, 

formed from ( 4.1), ( 4.5), ( 4.6) and ( 4.7) , is a quadratic 0-1-integer assignment problem. The P 

 4.1 was solved by a complete enumeration approach, which appears in [Stern et al., 2004a]. The 

results are reproduced in the section  4.6. 

 

4.3 The Dual Priority Problem 

We relax P  4.1 by considering the recognition accuracy as a constraint ( 3.5), while combining 

the human objective measures into a single objective using ( 3.4) the combination weights w1 and 

w2. 

Recall that determination of recognition accuracy does not depend on the matched command-

gesture pairs in the gesture vocabulary, GV, but only on the subset of gestures, Gn. Thus, it is 

possible to use a decomposition approach whereby the first stage is to find a feasible solution that 

satisfies ( 3.5). In a second stage, this feasible solution is substituted in ( 3.4), and solved for 

optimal GV candidates. The first stage problem then, is that of finding a gesture subset Gn from 

the set of all possible Gn s that satisfies a given minimal accuracy Amin.  This feasible subset 

problem is stated below as P  4.2.  

 

P  4.2 Stage 1: Feasible Subset Selection 

Find one or all Gn s 

s.t   
 

 
minn )G( AA ≥  ( 4.8) 

 mnGG mn ≤⊆ ,  ( 4.9) 

 

Because the accuracy function is unknown, the search for a feasible solution to P  4.2 is found 

through the use of two different metaheuristics as described in section  4.4 and  4.5. Denote the 

feasible solution found from P  4.2 as Gn* 
iv

. Let the gestures in Gn* be reindexed as {gi* | j = 

1,2,…,n}. For simplicity, and when understood, we will represent Gn* by the set of indices 

{1,2,..i,..,n} , where i represents the j
th

 gesture type in the feasible subset.  

Given a single set of gestures Gn* is found, the second stage is initiated. Referring back to P 

 4.2, and using Gn* found in the first stage, the relaxed problem can be formulated as a quadratic 

                                                 

iv There are two versions of this problems; ver1: Find the set of all feasible solutions to P  4.2 called g*={Gn | 

( 4.8) and ( 4.9) are satisfied.}, and  ver2: Find one single feasible solution to P  4.2, called Gn*. In what follows we are 

finding the second version of the problem. 
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integer assignment problem (QAP). Given a set of n, commands (i=1,..,n) and n gestures 

(j=1,..,n), and matrices; F = (fij), U = (ukl), I = (aik): define problem P  4.3 below: 

 

P  4.3 Stage 2: Matching Gn* to Commands 
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( 4.10) 

 

Here, 
nΠ  is the set of all permutations of the set of n integers in Gn*. In the first term 

)()( jpips  represents the comfort cost of the pair of assignments (i, p(i)) and (j, p(j)) (assigning 

command i to gesture p(i) and command j to gesture p(j) scaled by the frequency of transition 

between commands i to j, fij . In the second term, aip(i) is the direct intuitiveness of the assignment 

(i, p(i)) and aijp(i)p(j) is the complementary intuitiveness of matching complementary commands (i, 

j) to complementary gestures (p(i), p(j)). 

By defining a set of integer 0,1 decision variables {xij} a quadratic assignment problem 

QAP(Gn*) can be formulated as P  4.4, which is equivalent to P  4.3. A network representation of 

the problem is shown in Figure  4.1. 

 

P  4.4 QAP(Gn*) 
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Here, the xij binary assignment variable equals to 1 if command i is assigned to gesture j, and 

zero otherwise. Constraint ( 4.12) insures that each command is paired with exactly one gesture. 

Constraint ( 4.13) insures that each gesture is paired with exactly one command.  

Many approaches have been proposed for the solution of the  0-1 integer QAP such as: (i) 

find a proper linearization of the objective to obtain a linear program [Finke et al., 1987] (ii) relax 

the QAP to a (0, 1) linear integer program by introducing new binary variables y i j k l = x i j x k l 

and new constraints. A simulated annealing approach [Connolly, 1990] was adopted in this thesis 

to solve the QAP. 

As a side note, one may start with the master set of gestures Gm, which corresponds to using 

m gestures and n nodes in the network of Figure  4.1 to create a giant problem QAP (Gm) with 

( 4.11),( 4.12),( 4.13) replaced by ( 4.1), ( 4.2),( 4.5) and ( 4.6). 
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Figure  4.1. Representation underlying the quadratic assignment problem 

 

The solution will determine simultaneously the subset of gestures Gn, and the command – 

gesture assignment. Hence, the subset Gn* is not given in advance, but is selected directly 

through constraint satisfaction. Since the decision variables are binary, a subset of exactly n 

gestures will be selected from the master set of size m. If a procedure is written to rank the 

solutions according to ( 4.10) than each solution can be tested to determine if it satisfies the 

accuracy constraint ( 3.5), and the first to do so is selected as the best. 

 

4.4 Disruptive Confusion Matrix (DCM) 

The procedure DCM starts with an initial solution for P  4.2, and searches for improved 

solutions moving toward the direction of solutions with higher accuracies using a gesture 

interchange method, and thus avoiding local optima traps. The procedure is initiated by the 

construction of an initial feasible solution. The confusion matrix corresponding to the accuracy 

associated with the current solution is used to provide clues for the disambiguation of confused 

gesture pairs. To aid in the resolution of ambiguities the confusion matrix, Cn, is disrupted by 

switching out (exchanging) the most confused gesture pair with others that have more 

discriminating power from the master set. We refer to this as a dual pair exchange (DPE). The 

most confused pair of gestures is found by the max cij rule: 

 

argmax )','( jicij =  

n,..1j,i =  
( 4.15) 

 

Where, 

i’, j’  = the pair of the most confused gestures. 

 cij = nij /n = level of confusion between gesture i and j. 

 nij = the number of times gestures i is recognized as gesture j. 

 n = the total number of gesture samples. 

 

This generates two new gesture subsets, 1

nG , 2

nG , which must be evaluated. These sets are 

constructed from Gn as follows: For 1

nG , gesture j’ is discarded, and replaced by the most 

dissimilar unused gesture j'' found in the master set. For 2

nG , gesture i’ is discarded, and replaced 

by the second most dissimilar unused gesture i’’, found in the master set. The rules for 

determining the replacement gestures, g j'' and g i’’, are described later in this thesis. 
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A record of repeated operations of this type is maintained in a binary tree. The nodes of the 

tree represent gesture subsets. Associated with each node is triplet, (Gn, A(Gn), δ). Where, δ = 

A(Gn) - Amin. If the solution is not feasible with respect to Amin, delta will be negative. The initial 

node of the tree is associated with the initial solution, obtained in the construction phase. 

Branching is conducted after the two most confused gestures associated with the tree node are 

identified and replaced to create two new descendent nodes each associated with a new gesture 

subset. Figure  4.2 shows a flow chart of the DCM method. 
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Figure  4.2. Flow chart of the DCM method 

 

4.4.1 The Subset Search Tree 

Assume that we are now in node k and δ is negative. We have determined the most confused 

pair of gestures, in the current set Gn
k
, gi’ and gj’. We create and branch to two new descendant 

nodes corresponding to Gn
k1

 and Gn
k2

. These nodes are placed in a list T, where T is the list of all 

unevaluated nodes. There are two possible branching rules to be considered: “Depth First” and 

“Flooding”.  

All unevaluated nodes in the tree are placed in a list T. If any of these nodes are already in the 

T they are removed. Thus, a node in the tree can be terminated if its two offspring have 
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previously been generated (otherwise, cycling will occur). Note, offspring nodes have been 

generated by an exchange of its elements to create neighbor solutions, in such a way as to disrupt 

the confusion between gestures; and thus have a potential for a greater accuracy. This, however, 

can not be guaranteed to be successful at all times, and it may happen that off spring nodes at the 

next lower level have accuracy levels higher than that from which it has been descended. Thus, 

there is really no rationale or verified advantage of pursuing an exploitive path through a depth 

first branching rule of selecting the current best solution. This leads us to use a flooding 

branching policy.  

In flooding, the nodes are evaluated one level at a time from left to right, until the desired 

accuracy is attained, all nodes are terminated or the maximum number of prespecified levels are 

reached. Using this method the current node evaluated may exhibit a lower accuracy then those 

previously examined. Thus, we have increased exploration of the solution space by examining 

nodes with lower accuracy values. Here again a node in the tree is terminated if its two offspring 

have previously been generated. (Otherwise, cycling will occur). Although this method appears to 

be inefficient, the strength of the generation of neighborhood solutions by pair wise exchanges 

has been shown to result in a small number of evaluations as compared to pure enumeration 

Given the binary tree generated by the flood branching rules, index its nodes as i = 0,1,2… 

where, node 0 is the root node. Let the levels of the tree be indexed k = 0,1,2 where the nodes at 

level k are indexed from (2k  -1) to 2(2k-1); and the left son LS(i) and right son RS(i) of node i 

are 2i+1 and 2i+2 , respectively. 

Let K be the deepest level of the tree we designate (based on how much computational power 

we want to use) Note, that the root of the tree corresponds to the initial feasible solution, Gn
0
. The 

stopping rule is: (a) δ(ι)>0, or (b) current level of the tree is K. The exit condition occurs when 

the recognition accuracy of one of the sub-problems is higher than the specified accuracy level 

Amin, then a feasible solution to P  4.2 has been found. Alternatively, one can continue with the 

tree search to find as many solutions Gn as possible that have A(Gn)  ≥  Amin .To avoid cycling 

each new node is checked to see if it has been generated earlier, and if so the node is terminated. 

If all nodes are terminated the problem is found to be infeasible. It is also possible to place a limit 

on the number of levels generated in the tree to avoid the possibility of excessive computation 

time. Once the feasible solution is found (or all feasible solutions) the gesture-command mapping 

P  4.4 is then solved to obtain GV*.  

 

4.4.2 Phase A: Initial Subset Construction 

To find the initial Gn from the master set Gm two heuristic methods are proffered. The first is 

based on maximizing the inter-gesture distances, and is formulated as a quadratic 0-1-integer 

problem. The second is based on the MaxMin inter-gesture distance and is solved by a simple 

algorithm. Both require the construction of a square matrix D with common element dij, (the 

smaller dij the more similar the gestures)  

dij = d(
ig ,

jg ) 

ig ,
jg  = the prototype vector of gesture type i, j. 

This prototype vector is obtained by finding the centroid of the feature vectors of a training 

set of the gesture type. 

 

4.4.2.1 First Initial Gn Selection Method: Max 0-1 Integer Quadratic Problem 

A 1-0 integer quadratic program, P  4.5, is designed to select an initial solution, represented by 

the subset Gn
0
, from Gm. This program selects Gn such that the total intergesture distance of all 

gestures in Gn is maximized. 
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P  4.5 Initial Solution Gn (max intergesture distances) 
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The objective, V, represents the total intergesture distances in Gn, and xi is a binary selection 

variable equal to 1, if gesture i is selected, and 0 otherwise. The constraint assures that only n 

gestures are selected from the master set of size m. The initial subset: Gn
0  

= {all gi such that xi
0
= 

1} where, { xi
0 

} is the optimal solution to P  4.5. 

 

4.4.2.2 Second Method for Initial Gn Selection: MaxMin 0-1 Integer Program 

This method of generating an initial feasible Gn is very simple. The objective is to find a Gn 

among all possible Gn’s from Gm, such that the least discriminating pair of gestures (those two 

gestures in Gn that have minimal similarity between them) is maximized over all subsets Gn. The 

problem is stated below as P  4.6. 

 

P  4.6 Initial Solution Gn (max min intergesture distance) 
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This can be solved simply by a threshold type operation, where the closest pair of gestures in 

Gm is removed until the number of gestures remaining is n. The remaining gestures is then the 

initial subset Gn
0 

 

The Threshold Algorithm  
 
1. Let the number of gestures be N  = Gm  

     (a) If m is even, repeat steps 2 and 3, 4 (m-n)/2 times and go to 7. 

     (b) If m is odd, repeat steps 4 and 5 [(m-n)/2]-1 times then go to step 6. 

2. Find min dij in the matrix D 

3. Remove the corresponding column and row and update D. Place i and j in the set of nodes N 

4. Find min dij in the matrix D. 

5. Remove the corresponding column and row and update D. 

6. Find the min dij in the matrix D. In row i and column i without dij, find the next smallest dij, say di'j' 

   If, it is found in a row i' =i then remove column j' and place j' in N. 

   Otherwise, if, it is found in a column j'=j, then remove row i' and place i' in N. 

7. Stop. Set Gn
0
 = N 

Algorithm  4.1 The Threshold Algorithm 

4.4.2.3 A(Gn): Accuracy of the Set of Gestures, Gn 

Once a new subset of gestures Gn is obtained, its accuracy A(Gn) is determined by calling the 

recognition algorithm. Removing one gesture and replacing it by a new one, affects the partition 

obtained by the FCM algorithm. Thus, the FCM classifier must be retrained. As a side note, in 
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order to speed up the computations in training the FCM clustering algorithm it is wise to select 

the initial cluster centers close to the last optimal positions. The result of the training session is a 

confusion matrix, which is used to guide the next DPE and subsequently the branching of the 

search tree. 

 

4.4.3 Phase B: Improvement by DCM 

Given an initial solution constructed by one of the methods described above, a gesture pair 

exchange method is used to find an improved solution. In this dual pair exchanges (DPE) method 

the two most confused gestures in the confusion matrix are exchanged with two gestures from the 

master set (in this way we “disrupt the confusion matrix).  A record of repeated operations of this 

type is maintained through the construction of a binary tree. The nodes of the tree represent 

gesture subsets. The initial node of the tree is associated with the initial solution. Corresponding 

to the gesture subset of each node the two most confused gestures are identified and replaced to 

create two new descendent nodes.  

 

4.4.3.1 Dual Pair Exchange (DPE) 

Here a double set of pairs of gestures are exchanged. A binary tree is constructed to keep 

track of the exchanges. The information stored at each node of the tree is the subset of gestures, 

its accuracy measure and corresponding confusion matrix. Branching takes place from a father 

node to two new offspring nodes. The left and right off springs correspond to new gesture subsets 

obtained by the replacement of its confused gesture with that of a new gesture selected from the 

master set. The new gesture must be selected so that it can be easily discriminated from the 

remaining gestures in the gesture subset. Two rules for selecting the gestures to be removed from 

the current subset of gestures, plus a rule for selecting new gestures form the master set to replace 

those discarded are provided. The following notation will be helpful. 

Gn-1 (i) = Gn – { gi}, the reduced set after removing gi from Gn .(the gestures in Gn-1 (i) 

reindexed as  i = 1,2,…,n-1 when convenient) 

Gm-n = Gm-Gn be the set difference, with gestures reindexed as k =1,2,..,m-n when convenient. 

 

4.4.3.2 Discard Rule D1 

The two gestures for which it is hardest to discriminate between are intuitively those gestures 

that have the largest confusion (off diagonal) value in Cn. For example, for the confusion matrix 

in Table  4.1 the two most confused gestures can be found as 3 and 2 by: 

 

( ) 2,3'':arg ==≠∀ jiiiijcMax ij  ( 4.19) 

Where, cij is the number of samples of gesture i that was classified as gesture j. 

 

Table  4.1. Sample confusion matrix 

gi gj 1 2 3 4 5 sum

1 4 0 0 1 0 1

2 0 4 0 1 0 1

3 0 2 3 1 0 2

4 1 0 1 2 1 3

5 1 1 1 1 1 4

sum 2 3 2 4 1
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4.4.3.3 Discard Rule D2 

Although D1 is intuitive and simple to implement, it has its disadvantages when the 

misclassified gestures are distributed evenly over the confusion matrix. This is the case in Table 

 4.1 where the off diagonal totals of the matrix are recorded in the last row and column. One sees 

from the maximum of the row totals of the matrix that gesture 5 is the most confused as it was 

misclassified 4 out of 5 trials. Also, gesture 4 is problematic as it is the gesture that attracted the 

most (4 of them) misclassified gestures. This may be due to the fact that samples for this gesture 

may not have been sufficiently compact and dense. This suggests Algorithm  4.2 for selecting the 

two most confused gestures:  

 
1.Let NRi = be the total number of off diagonal positive entries in row i. Let NRj = be the total number 

of off diagonal pos entries in column j. 

2. Find the gesture v’ with the maximum number of off diagonal entries, i.e.;   

( ) vij:NR,NRMaxarg ji =∀  
3.  Find the gesture with the second maximum off diagonal totals.  

( ) w'vij:NR,NRMaxarg ji =≠∀  

Algorithm  4.2. Two most confused gestures 

Gestures v and w are selected as the first and second most confused gestures. Any ties are 

broken arbitrarily. For the above example gestures 5 and 4 will have been be selected. We can 

define the best replacement gesture to enter Gn-1 (i) as the most discriminated gesture in 

comparison with the gestures that remain after using the discard rule, over all the 'free' gestures in 

Gm-n. Calculate the centroid, c, of all the feature vectors in Gn-1 (i). Find the gesture gk in Gm-n that 

is the most distant from c. This rule is problematic since there may still be a very bad gesture in 

Gn(-gi) that is very dissimilar to gk, but is not considered since it is averaged out with very good 

gestures in Gn(-gj). Instead we use a MaxMin replacement rule. 

 

4.4.3.4  Replacement Rule 

The MaxMin replacement rule selects a gesture from the master set that is least similar 

(farthest away) from all the gestures in Gn-1 (i). To clarify this notion we use the following 

notation. 

Let gi, and gj be the selected pair of most confusing gestures in Gn. Suppose we want to 

replace gesture gj with a gesture gk from the master set Gm-n. Use a reduced distance matrix D  of 

size (m-n) x (n-1). The following MaxMin replacement rule finds the replacement gesture k*: 

 

{ } *

ki kdMinMaxarg =  ( 4.20) 

'

 1-nn-m (i)G,G nik ∈∈  
 

 

This can easily be carried out using the distance matrix D  as follows: 

1. For a given gesture k in the master set, find, i’, the most similar gesture in the 

current gesture subset Gn-1 (i) 

 

{ } nm1-nki Gk;'i (i) Gi|dMinarg −∈∀=∈  ( 4.21) 

 

2. Now find the gesture k* from the master set that is farthest away from the nearest gesture 

in Gn’ 
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( ) *

n-m' G|arg kkdMax ki =∈  ( 4.22) 

 

This rule has complexity O(nm) as it takes (n-1)(m-n)log(m-n) to find the row min values and 

(n-1)log((n-1) to find the max of these. 

 

4.4.4 Phase C: Command-Gesture Matching 

In this phase the feasible gesture Gn* found from the DCM procedure is matched to 

commands, using P  4.4, to obtain the final GV. 

 

4.5 Confusion Matrix Derived Solution (CMD) 

An alternative metaheuristic approach to find the feasible gesture set, for P  4.2, is the 

Confusion Matrix Derived Solution Method (CMD) method. This method is initiated by finding 

the accuracy of the gesture master set Gm. A confusion matrix Cm is created for the Gm problem 

from which the recognition accuracies associated with various gesture subsets, Gn is estimated. 

The set of gestures Gn that meet accuracy above Amin are feasible solutions that can be 

approximated from the general confusion matrix built for the Gm set of gestures.  The CMD 

method consists of three phases: (i) create a confusion matrix for the Gm subset of gestures, Cm. 

(ii) solve P  4.2 – find a subset of gestures Gn with the highest recognition accuracy and meets the 

minimum accuracy constraint. (iii) Repeat the previous steps until a given number of solutions 

were found or all the solutions that meet the minimum accuracy constraint were found (iv) solve 

P  4.4 (ver1). – This is done for all the solutions obtained, and the procedure for this is described 

in section  4.6. The confusion matrix is obtained directly from the samples partition result using 

the supervised FCM optimization procedure.  

To solve P  4.2 one may search for all the feasible Gn’s that have accuracies A ≥ Amin or to 

terminate the search after a fixed given number of solutions have been found. The confusion 

derived routine (CD) is used to find the subset of least confused gestures. It receives the 

parameters Gn, which is a subset of gestures (of any size); j, indicates the current number of the 

solution, and Amin is the minimum recognition accuracy accepted.  

 

argmax     ''}{ iiii CC =  

ni ,..1=  

( 4.23) 

 

Where, 

 i’  = the least confused gesture. 

 Cii = nii /n = rate of gesture i being recognized correctly as gesture type i.  

 nii = the number of times gestures i was recognized correctly. 

 n = the total number of gesture samples. 

 

Let j be the current solution number and Amin be the minimum recognition accuracy accepted. 

The first time that this algorithm is called, φ=nG  and j=0. If ( 4.23) returns more than one 

solution, ties are broken arbitrary. This algorithm is similar to the greedy algorithm used to solve 

the knapsack problem. A set of N feasible solutions Gn can be obtained, using the following steps 

in the Confusion Matrix Derived Solution method (CMD algorithm), Algorithm  4.4. 
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The CD Routine (Gn , j, Amin)  
 
1. Let the number of gestures n=|Gn|. Let c be the number of commands 

2. Repeat (c-n) times. 

3. Find the least confused gesture i in the confusion matrix Cm -Gn using ( 4.23). 

4. iGG nn ∪=  

5. Remove the corresponding column and row i from Cm. 

6. Go to step 2 

7. Calculate A using Cn 

8. Stop. If A ≥ Amin  then Gn
j
 = Gn is a feasible solution and keep Gn

j
 is a feasible solution subset. 

Algorithm  4.3. The confusion derived rutine (CD) 

 

The CMD Algorithm(N, Amin) 

1. φ=nG  

2. j=0 

3. Gn
j
=CD (Gn , j, Amin)  

4. Calculate A using Cn 

5. If A ≥ Amin  then Add Gn
j
 to the feasible solution subset 

6. Else Exit 

7. Take out the highest confused gesture i from Gn
j
. 

8. Remove the corresponding column and row i from Cm . 

9. Gn
j+1

=CD(Gn
j
,j) 

10. If Gn
j+1

belong to the feasible solution subset: 

     10.1 . Take out the highest confused gesture k, k!=i, from Gn
j
  

     10.2   Restore the corresponding column and row i from Cm . 

     10.3. Go to 8. 

11. If A ≥ Amin  then add Gn
j+1

 to the feasible solution subset 

12. Restore Cm  to the original 

13. If j<N and A ≥ Amin, return to 7. 

Algorithm  4.4. Confusion matrix derived solution (CMD) 

 

Let N be the number of solutions requested. 

The CMD algorithm obtains N solutions or all the solutions with associated accuracy above a 

given minimum allowed Amin. In every iteration of the CMD algorithm, a solution is created by 

excluding each time a different gesture from the subset of gestures of the current solution, and 

adding a new gesture from the master set. Figure  4.3 shows a flow chart of the DCM method. 

The following is an example shows how the CMD Algorithm can be used to obtain a subset 

of three solutions. Let Cm  be the following matrix 

Let m be |Gm| = 12 

Let n be |Gn| = 8 

After applying the supervised FCM optimization procedure, the recognition accuracy 

associated with Gm is A=93.54%. 

Applying the CMD Algorithm with N=5 and Amin=96.56% (Table  4.2) we get the following 

five solutions: 

Gn
0
={4,6,7,8,9,10,11,12}  A=96.87% 

Gn
1
={2,4,7,8,9,10,11,12}  A=96.87% 

Gn
2
={2,4,6,7,9,10,11,12}  A=96.87% 
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Gn
3
={2,4,6,7,8,9,11,12}  A=96.56% 

Gn
4
={2,4,6,7,8,9,10,11}  A=96.56% 

 

In the example above the algorithm CMD is finished when the number of solutions is five. 

 

 

φ=nm GGAN ,,, min

Determine 

A= A(Gn
j
)Select the j’

 most confused 
gesture from  

Cn

Obtain initial Gn
j=0

Build Cm

Call the  CD Routine (Gn , 

j, Amin) 

A(Gn
j)<= 

Amin

yes

Command Gesture 
Matching

G*

Stop

GV*

Take out gesture 
j’ from Gn 

Call the  CD Routine (Gn , 

j, Amin) 

j’=j’+1

Determine 

A= A(Gn
j)

j<=N

no

no yes

CMD 
Algorithm

 

Figure  4.3. Flowchart of the CMD method 

 

Table  4.2. Sample confusion matrix II 

gi   gj 1 2 3 4 5 6 7 8 9 10 11 12

1 33 0 0 0 0 0 0 0 0 0 0 0

2 0 37 0 0 0 0 0 0 0 0 0 0

3 0 0 34 0 0 5 0 1 0 0 0 0

4 0 0 0 40 0 0 0 0 0 0 0 0

5 0 0 0 0 35 0 0 0 0 0 0 0

6 0 0 0 0 0 37 0 3 0 0 0 0

7 0 0 0 0 0 0 40 0 0 0 0 0

8 0 0 0 0 0 5 0 37 0 0 0 0

9 0 0 0 0 0 0 0 0 40 0 0 0

10 0 0 0 0 0 0 0 0 0 38 0 0

11 0 0 0 0 0 0 0 0 0 0 40 0

12 1 0 0 0 0 0 0 0 0 0 0 38  
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4.6 Illustrative Examples 

The DCM method is illustrated using a small example with twelve gestures in the master set, 

and eight commands as shown in Figure  4.4.  

 
Commands Gestures 

LEFT 

RIGHT 

FORWARD 

BACK 

FAST 

SLOW 

START 

STOP 

 

Figure  4.4. Hand gesture vocabulary 

 

Note, that the gestures at this point have no label associated with them; and are only 

represented as gesture types g0, g1,g2,..,gi,.. g11. The solution space for this small example is 495 

(m!/((m-n)!n!). Two examples are solved using the DPE for two different initial solution 

methods; Max Obj (P  4.5) and MaxMin Obj (P  4.6), called Ex 1 and Ex 2, respectively. For both 

examples we use the max value in the confusion matrix to find the gestures to drop (discard rule 

D1), and the MaxMin rule to select the replacement gestures.  

The command-command transition frequencies, (Table  4.3(a)) were obtained by an 

experiment to maneuver a VMR through a maze. The experiment was repeated seven times and 

the totals of each command transition were recorded in the matrix f. The order of the columns and 

rows, indexed from 0 to 7, correspond to the commands listed in Figure  4.4 

 

Table  4.3.  Matrices. a) Frequency F, b) Intuitiveness Z1 c) Comfort Z2 matrices 
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(c) 

 

Table  4.3(b) shows intuitive indices for each gesture (row) – command (column) pair. The 

values are normalized in the range of zero to 100 with 100 representing the most intuitive. These 

indices are the collective subjective assessments obtained from subject queries. Table  4.3(c) 

contains stress indices for individual gestures and movements between them. They were assessed 

from a hand biomechanics study [Natan et al., 2003]. In addition, twelve complementary 

intuitiveness indices aijkl are set to 100 for complementary command pairs (i,j) = (0,1), (2,3), 

(4,5), (6,7); and complementary gesture pairs (k,l)= (0,1), (2,3), (6,9). These represent command 

pairs: (left, right), (forward, back), (fast, slow), (start, stop); and gesture pairs (go, g1), (g2, g3), 

(g8, g9), respectively. All other aijkl are set to zero. All gestures are right handed. Complementary 

gestures are obtained by flipping the hand at the wrist to create mirrored images. Thirty images of 

each gesture type, collected from six subjects, are used to train the FCM recognition algorithm 

(see [Wachs et al., 2003] for further details) The recognition system is said to be independent 

since in practice it is able to be used by multiple subjects. 

 

4.6.1 Example 1 (Using Max Rule for Initial Sol) 

The Initial subset of eight gestures found by using the Max 0-1 Integer Quadratic P  4.5 is G8
0
 

= {1,2,3,4,7,8,9,11}. The accuracy associated with this subset is 97.08%. The seven misclassified 

gestures can be shown in the confusion matrix in Table  4.4, where it can be seen that the most 

confused pair of gestures is 4 and 8. 

 

Table  4.4. Confusion matrix showing the most confused pair 

gi gj 1 2 3 4 7 8 9 11

1 30 0 0 0 0 0 0 0

2 0 30 0 0 0 0 0 0

3 0 0 28 2 0 0 0 0

4 0 0 0 27 0 3 0 0

7 0 0 0 0 30 0 0 0

8 0 0 0 0 0 30 0 0

9 0 1 0 0 0 0 28 1

11 0 0 0 0 0 0 0 30
 

 

This confusion matrix is disrupted by a DPE using the MinMax replacement rule. The news 

subsets are; G8
1
 = {0,1,2,3,7,8,9,11}, and G8

2
= {0,1,2,4,7,9,11}. The G8

1
 subset is found by 

dropping gesture type 4, and exchanging it for gesture type 0 from the master set. Table  4.5 
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shows that gesture 0 as the most dissimilar gesture to all of the gestures in G8
1
  - {g4}, according 

to the MaxMin replacement rule. 

 

Table  4.5. Exchanging gestures 4 and 0 using the MinMax replacement rule 

 1 2 3 4 (OUT) 7 8 9 11

0 469493 193243 28276 - 313311 45042 78541 51671

5 436592 138656 27527 - 315620 39741 36418 23568

6 151254 19566 178675 - 121280 168717 148794 137238

10 552455 214477 10084 - 415043 8532 33681 16565  
 

Figure  4.5 shows the improvement tree. The search is terminated at node 4, with G8
4
= 

{0,1,2,3,5,7,8,11}, which has an accuracy of 100 percent. Note that this metaheuristic found the 

best solution after creating and evaluating only four solutions out of a solution set of 495. 

 

 

Figure  4.5. Improvement Tree for Ex. 1 

 

Using the best subset of gestures found after the improvement tree these gestures are matched 

to commands by solving the binary integer quadratic assignment problem QAP(Gn) P  4.4, with 

Gn = G8
4
. Here, intuitiveness and comfort are assigned equal weights w1 = w2 =1.0. The resulting 

values of solving the matching problem were 1258032 and 29303 for the intuitiveness of 

representing each command by its associated gesture, Z1(GV) and for the total comfort to 

perform the gesture, Z2(GV), respectively. The final GV is shown by the matching of gestures to 

commands in Figure  4.6. The two complementary gesture pairs (go, g1) and (g2, g3) appearing in 

the subset were successfully matched with complementary command pairs (left, right) and 

(forward, back), respectively. These were not matched with (start, stop) and (fast, slow) as these 

contained low frequency of use weights.  

 

4.6.2 Example 2 (DPE with MaxMin rule for Initial Sol) 

Here we use the initial solution Gn
0
 = {1,2,3,6,7,8,10,12} found by solving P  4.6. The 

solution tree is shown in Figure  4.7 . Note, nodes that have been generated previously have been 

terminated. Such nodes can be identified in the graph by “cyclic arcs” (those without arrowheads) 

which emanate from them and connect to previous generated nodes at a higher level (e.g., (10,7)), 

or to nodes that the same level (e.g., (15,11). 
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Figure  4.6. Ex 1 command – gesture matching found by solving the QAP(Gn) 

 

 

Figure  4.7. Improvement tree for ex. 2 

 

The best solution found is (0,1,2,5,7,8,9,11) (at node 14) with a accuracy of 99.16%. The 

best-matched commands for this gesture subset are depicted in Figure  4.8. Note again, the two 

complementary gesture pairs, which appeared in the selected subset, are matched with 

complementary command pairs. 

 

4.6.3 Example 3 Solution to the Multi-objective Problem 

The same small example of 12 gestures and 8 robotic arm commands is considered in this 

case as well. For this problem the size of the GV solution space is 495. Considering a GV has 8! 

possible matchings, the solution space is ~ 20x106. By examining each gesture subset in turn we 

select the best command-gesture matching by solving a quadratic program comprised of a 

quadratic objective ( 4.1)+( 4.2) subject to the constraints ( 4.5), ( 4.6) and ( 4.7). This assumes the 

human factor weights w1 and w2 are given. Here the indices i, j, k, l are placed in correspondence 

to the n gestures selected in the subset. The optimal assignment variables are used to obtain the 

intuitiveness, Z1(GV), and comfort, Z2(GV), performance values. To evaluate Z3(GV), a 

recognition algorithm must be called, and solved for the particular gesture subset under 
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consideration. Each result can be viewed as a point in 3D space, whose coordinates are; 

intuitiveness, comfort, and accuracy, allowing the decision maker to select the desired solution 

based on his internalized priorities (Figure  4.9). To aid the decision maker we also provide the 

Pareto optimal points shown in the same image, and in Table  4.6. 

 

 

 

Figure  4.8. Ex 2 command–gesture matching found by solving the QAP(Gn) 

 

Table  4.6. Pareto points for the MCOP example 

 Pareto Pts Accuracy(%) Intuitiveness (%) Comfort(%)

1 100 66.88 99.56

2 98.33 100 18.57

3 99.16 64.47 100  
 

 

Figure  4.9. 3D plot of GV solutions 
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4.7 Discussion 

In this chapter we discussed the mathematical programming formulation and solution 

approaches for three analytical methods (a) MCOP, (b) tree based exchange search metaheuristic 

(DCM), and (d) search based on the gesture master set associated confusion matrix (CMD). All 

methods reflect the ergonomic and technical performance measures upon which a GV control 

system is judged. A useful feature included in the formulation is the ability to match opposing 

complementary pairs of gestures to complementary commands. 

By posing the optimal GV design problem as a MCOP, solutions can be presented as 3D 

representations, including Pareto optimal ones. This allows the designer to have an overview of 

possible solutions and select one based on his/her preferences. Calculating the entire Pareto set 

for larger problems is computationally prohibitive and requires an approach such as an 

evolutionary multicriteria procedure.  

The metaheuristic approaches, which is the main topic developed in this chapter, is a variation 

of the MCOP in which the objectives are given priorities. The first objective, max accuracy is 

given the first priority and must be satisfied at some given acceptable level. The human centered 

measures of intuitiveness and comfort are given second priority. The metaheuristic for the dual 

priority problem is based on a two-stage decomposition approach. In the first stage, a feasible 

gesture subset (or set of feasible subsets) is found which satisfies a minimum acceptable accuracy 

level. Two methods have been developed: the first is a disruptive confusion matrix method 

(DCM) to create a tree search metaheuristic. To address the problem of repeated training and 

parameter calibration of a recognition system for each candidate subset of gestures in the tree, a 

second method was introduced: the confusion matrix derived solutions method (CMD). In the 

CMD, the FCM parameter calibration functionality is used only once for the master set of 

gestures. Using the confusion matrix corresponding to the gesture master set, gesture subsets are 

extracted, and their approximate recognition accuracies are derived. The second stage uses a QAP 

to assign the selected gestures to commands such that the human centered measures are 

optimized. Three examples are solved to illustrate the procedure. The first two uses the DCM 

method, with two different strategies for obtaining the initial solutions. The last example uses a 

complete enumeration policy to address the solution of the MCOP problem. 

Examples presented in this section are based in a simple task using 8 commands and a master 

set of 12 gestures. Methods of determining fatigue and intuitiveness indices based on human 

ergonomic and cognitive experiments will be presented in Chapter  6. A case study using the 

strategies presented in this chapter will be depicted in Chapter  7.  
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5 Algorithms 

5.1 Overview 

In this chapter the vision based algorithms of a hand gesture recognition system are 

introduced. The Image Processing - Fuzzy C-Means (FCM) components of the hand gesture 

recognition system are described and the calibration of their operational parameters is performed 

using a neighborhood search algorithm. Two neighborhood search strategies are presented to 

achieve close to optimal recognition, the first based in a classical neighborhood search, and the 

second based in evolutionary strategy search. User-dependent and user-independent system using 

a database of 13 gestures are compared. 

 

5.2 Hand Gesture Recognition System 

The hand gesture recognition system is comprised of an image processing feature extraction 

operation followed by a FCM gesture classifier. The FCM clustering algorithm [Bezdek, 1973] is 

a popular method for image recognition tasks [Wachs et al., 2002]. Although the speed of 

artificial neural network classifiers allows real-time operation and comparable accuracy, a FCM 

is used because it requires smaller training sets and shorter training times. The classical FCM 

algorithm is modified to handle feature weighted clustering, and is supervised using a cluster 

labeling algorithm [Wachs et al., 2005].  

 

5.2.1 Feature Extraction 

A database, denoted as BGU-R-DB, consisting of 13 static hand gestures was constructed for 

training and testing purposes (Figure  5.1). Preprocessing of the image starts with segmentation of 

the hand from the background using a threshold value, τ, to obtain a black and white image. The 

threshold value used is found through a parameter search algorithm to be discussed in Section 

 5.3. Using a component-labeling algorithm, the largest component (assumed a priori to be the 

hand posture), is identified; and a bounding box is constructed around it to represent the 

segmented hand. The box is then partitioned into blocks. Although, the backgrounds of our 

gesture images are simple, more complicated backgrounds can be handled by other methods such 

as color segmentation. 

 

 

Figure  5.1. Set of static hand gestures 

The bounding box and a restriction on the height position of the posture makes the gesture 

position invariant in translation and size. A feature vector of the image is comprised of the aspect 
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ratio of the bounding box, and the average intensity of each block (fraction of white pixels). Let 

Rb and Cb represent the number of rows and columns, respectively, of the block partition. This 

results in a feature vector of length v =1+RbCb, denoted as f = (f1,...., fi,…, fv). The first feature 

represents the aspect ratio of the bounding box, the remaining represent block averages indexed 

row wise from left to right (Figure  5.2).  

 

 
(a) (b) 

Figure  5.2. Feature extraction (a) bounding box of hand gesture (b) 3x4 block partition 

 

For example, the resultant feature vector in Figure  5.2(a) is: f = (102 176 52 2 2 68 249 171 

16 3 13 253 188). All feature values are scaled to lie in the range [0, 255]. One can see that the 

aspect ratio is 102 and blocks 3 and 4 are close to zero (black) while blocks 6 and 11 are close to 

255 (white). Let w = (w1, …, wi,…, wv) represent the weight vector where, wi is the weight 

attributed to feature i. The weights are normalized to sum to one.  

 

10,1
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≤≤=∑
=
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i

i ww
 

( 5.1) 

Let x = (w1 f1, … , wifi ,…, wv fv) be a weighted feature vector (also referred to as a data 

pattern). 

 

5.2.2 Feature Weighted Fuzzy C-Means Gesture Classifier 

In the weighted feature FCM algorithm a weighted feature vector represents each gesture. The 

set of weighted feature vectors are clustered for subsequent use in a recognition system. Note, 

that the particular clustering obtained depends on the number of clusters, and the respective 

values of the feature weights. Let xk be the weighted feature vector of the k
th

 exemplar in a 

training set of gestures. Given q data patterns X={ x1 ,...., xk ,..., xn} and a fixed number of 

clusters c, the FCM algorithm finds: vi (the prototype weighted feature vector of cluster i), and µik 

(the degree of membership of xk in the i
th

 cluster). This is done by minimizing a membership 

weighted within-group sum of squared errors objective function, where m is a weighting 

exponent on each fuzzy membership value. In this application the number of clusters should be 

set greater or equal to the number of gestures in the set Gn.  

After convergence of the FCM algorithm each weighted feature vector xk is assigned to a 

cluster by finding: µi’k = Max {µik , i=1,…,c}. This method is selected to reduce computational 

complexity for real-time operation and to reduce the time taken for large-scale validation studies. 

Once clusters are labeled by gesture class, a new gesture may be classified by selecting the 

cluster for which its membership value is maximal. 

 

5.2.3 Parameter Estimation 

Gestures performed by a user are recognized using the highest membership value. System 

performance is evaluated using a confusion matrix that contains information about actual and 

classified gestures. Recognition accuracy, as defined by ( 3.8), is determined as a function of a set 
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of input parameters of the system. The process of searching for optimal parameters for the 

combined image processing/supervised FCM system is shown in the flow chart of Figure  5.3 
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P=(p1,..,pn)
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Figure  5.3. Supervised FCM gesture recognition algorithm with parameter search 

 

The output of the process is a near optimal set of parameters achieved by maximizing the 

recognition accuracy. The procedures used are a complete neighborhood search (CNS) algorithm 

and a probabilistic neighborhood search algorithm (PNS). 

 

5.2.3.1 Input Parameter Vector, p 

Denote the vector n
Rp ∈  as the set of input parameters in Table  5.1. Two types of input 

parameters are used: image processing features (block partition size, b/w threshold, feature 

weights of the aspect ratio and grayscale block features), and FCM parameters (number of 

clusters, and weighting exponent). 

Table  5.1. Parameter definition 

Parameter Meaning Values

p 1 Number of Clusters, c p 1 = g, g+1, c max

p 2 Weighting Exponent, m p 2 =1.5,1.75,…,4

p 3 b/w threshold, τ p 3 =0,1,…,255

p 4 Number of rows for image partition, R b p 4 =2,3,..,8

p 5 Number of columns for image partition, C b p 5 =2,3,..,8

p 6 Weight of the aspect ratio, w 1 p 6 =0,0.1,..,1

p 7 ,..,p i …,p n Weights of the image block features, w i p i =0,0.1,..,1
 

 

5.2.3.2 Neighborhood Solutions, N(p)  

For any feasible solution p=(p1, …, pn) for the recognition system, define a set N(p) of 

neighboring solutions of the vector p. The number of neighbors of p is 2n as each parameter is 
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incremented up and down (wrap around is used when boundary values are exceeded). The set of 

feature weight parameters are updated in a special way because of their inter-dependence though 

equation ( 5.1). Moreover, the number of feature weights depends on the block partition parameter 

values. Given a block partition of Rb rows and Cb columns, the number of feature weight 

parameters is the same as the number of features, v = 1 + RbCb . The dimensionality, n, of our 

pattern space is variable and depends on the minimum and maximum block partition values. For 

block partition values ranging from 2 to 8, the number of feature weight parameters can vary 

from 5 to 65 resulting in pattern spaces of dimension 10 to 70. To handle such variable length 

parameter vectors p4 and p5 are taken as control parameters, which turn ‘off’ and ‘on’ the 

appropriate weight parameters according to the following rule: whenever p4 or p5 change, the 

length of p is set to n = 5 + v. 

Let {wi : i =1,…,v} be the current set of weights. To find the neighbor values of a feature 

weight wj , increment wj up and down by the discrete gradient ∆j. Since feature weight 

normalization is necessary to ensure that ( 5.1) is satisfied, the new neighbor feature weights are: 
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( 5.2) 

 

5.3 Local Neighborhood Search Algorithms 

5.3.1 Complete Neighborhood Search Algorithm (CNS) 

The CNS algorithm (Algorithm  5.1) starts with an initial solution p0. To determine the 

accuracy, A, associated with, p, define a mapping A: p → A. Determination of the functional 

value of A, for a given solution p, requires extraction of a new set of image features, executing 

the FCM algorithm, cluster label assignments, gesture classification, and analysis of the 

confusion matrix to determine the recognition accuracy (Figure  5.3). Cluster labeling assignments 

are done using the Alg-L algorithm [Wachs et al., 2005]. 

 

Algorithm neighborhood search; 
 1. Begin 

 2. Create an initial feasible solution p0=(p0
1, …,  p0

n) 

 3. local_maxima=false 

 4.  Repeat 

 5.      Begin 

 6.           Find A (p’) for all p’ in N(p) 

 7.           Let p’’= Argmax{ A (p’) | N(p)}, 

 8.           If there are ties: 

 9.                Pick the last p’’  

10.               If  p’’ not in Stack, Push p’’ into Stack  

11.               Else local_maxima=true 

12.          End if  

13.          If p’’ = p then local_maxima=true 

14.          Replace p by p’’ 

15.     End 

16.   Until A (p’’) = 100% or local_maxima=true do 

17.   Output p’’, the local or global max solution 

18.  End 

Algorithm  5.1. The classic neighborhood search (CNS). 
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The main idea behind the CNS algorithm is to continuously find a better solution by 

advancing in the parameter space in one coordinate direction each time. Define an iteration as one 

cycle starting from the current solution p until the best neighbor solution p’’ is selected. Note, 

that each iteration consists of an evaluation of all 2n neighborhood solutions in N(p). If the 

accuracy in the iteration did not increase, i.e., p’’ equals p, then a local maximal was found and 

the algorithm stops. However, if there are ties, a plateau has been reached. In case of plateau, the 

algorithm will try to find a better solution by advancing in the parameter space along the direction 

of a tied solution. However, if the best neighbor p’’ has been visited before (kept in a stack) and 

no improvement is made in the entire plateau, an expansion of the neighborhood is made by 

doubling the step size for the next five iterations, in the hope of escaping from the local maximal.  

The recognition accuracy function A is a non-decreasing function of the number of iterations 

k, i.e.; A(p
k
) ≥ A(p

k-1
) where p

k
 is the parameter vector at iteration k. The algorithm stops when 

two successive iterations give the same accuracy value after exploring all neighbor solutions, if a 

plateau is reached. A plateau is the case where at least one neighborhood solution has the same 

value as p’’. Since A is bounded above by 100 percent termination in a finite number of steps is 

guaranteed. Detailed proofs may be found in [Wachs et al., 2003] and in ( Appendix I). 

 

5.3.2 Probabilistic Neighborhood Search Algorithm (PNS) 

Unlike the CNS algorithm where the entire neighborhood is examined before a move is made, 

in the PNS algorithm, solutions in the neighborhood N(p) are randomly sampled and evaluated. A 

move is made to the first improved solution found. If no improvement is made after K 

evaluations, the neighborhood is expanded and a probability distribution is sampled to generate a 

new solution. For any parameter pj the following is defined: 

           ∆pj = the smallest step size increment taken in any coordinate direction j = 1,…,n in 

the solution space. 

 s  = the number of steps made in either the positive or negative coordinate direction j 

           ∆j = the discrete gradient in the j
th

 coordinate direction, where 

           ∆j { }Sspjs ±±±±=∆∈ ,..3,2,1,0:  

          p∇ ={ ∆j } = the gradient direction of a move from p (an n dimensional vector) with 

common element ∆j. 

           )p,(p̂ p∇Ψ= , = the updated solution, where Ψ is a special operator mapping a vector p 

of size np to a vector p̂  of size p̂n  ( p̂p nn ≠= or ). 

Identical neighborhood sampling probability distributions are defined for each coordinate 

parameter. Discrete Gaussians or equivalent binomial approximations (using probability of 

success = 0.5) have the property that an increased standard deviation not only spreads out the 

distribution but also reduces the peak value. To control the proportion of parameter changes, a 

special mixture type point distribution model was designed. The characteristics of this 

distribution are that the tails can be spread out while the peak probability remains constant. 

 

Where, 

          S = maximum number of step increments.  

          h = probability of no change  

         xj = a random variable representing the signed (positive or negative coordinate 

direction) number of step size changes for parameter pj.  

        { }S2,...,1,0, ±±±=Ω = the universe of the random variable x of size 2S +1. 

        PS(x|h) = Pr(x = s) the probability of step size s , given h. 

 

The probability distribution PS(x|h) is characterized by the two parameters, h and S. 
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In ( 5.3) |x| is the absolute value operation. For example, if h = .9 and S = 3, the probability x 

= -2 is .0045.The probability mass function is symmetric, with a peak at x = 0 which represents 

the probability that the parameter remains unchanged. The range of the distribution is a linear 

function of S. For a fixed h, the probability of x = 0 remains the same. Also, the range of the 

distribution increases linearly in S. This expands the neighborhood allowing larger steps while 

the probability of not moving remains constant. This will have the effect of, on average, allowing 

a same number of parameters to be changed; but by larger possible step sizes, increasing the 

chance of escaping from a local extrema. If, for example, h = .9 in the long run 10 percent of the 

parameters in the parameter string will change and 90 percent will remain the same. 

 

Algorithm PNS 
Given a solution its updated value is determined by: 

 

)p,(p̂ p∇Ψ=  ( 5.4) 

where,   

                            jp∆=∆ sj                        

                            s = x with probability PS(x| h) 

                           
jjjj p,pp̂ ∀∆+=       

                           p and pj are same size vectors 

 

If one or more weight parameter changes occur then a repair operation is applied, in order to 

insure that the weights are normalized (sum to one). The new neighbor feature weights are 

updated using formula ( 5.5) below. 
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( 5.5) 

 

 

A run starts with an initial solution. Once an improved solution p is found, a new iteration 

commences with the improved solution. At the start of iteration the neighborhood size is set to 

S=1, If an improvement is found before K evaluations the current solution is updated according to 

( 5.5). If no improvement was found the neighborhood is further expanded to S = 2 and then to 

S=3. If after three-neighborhood expansions, no further improvement is found the algorithm 

terminates. As each evaluation of p, to determine the accuracy value of the functional A, is time 

consuming, in order to reduce computation time a list of prior solution vectors p is maintained. 

After generating a new parameter vector by sampling from the neighborhood distribution, all 

previous solutions on the list are checked. If the new solution appears in the list it is dismissed, 

otherwise an evaluation is made. Although, searching the list of previously generated solutions 

involves additional computational effort, it is orders of magnitude less than the time spent during 

accuracy evaluation. Recall that determination of the functional value A, for a given solution p, 

requires extraction of a new set of image features, executing the FCM algorithm, cluster label 

assignments, gesture classification, and analysis of the confusion matrix. 
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5.3.3 Comparison of CNS and PNS algorithms 

An example test is conducted to illustrate the performance of the CNS and PSN algorithms 

using 35 samples per gesture for 13 gestures to obtain a training set of 455 samples. Using nine 

heuristics described in [Wachs et al., 2005] the following starting solution were generated. 

 

Table  5.2. Initial solutions used for CNS and PNS runs 

Run c m τ R b C b w i A(%)

1 13 2 146 2 2 84.84

2 16 2 146 2 2 96.04

3 20 2 146 2 2 95.60

4 13 2 146 5 5 77.80

5 16 2 146 5 5 88.35

6 20 2 146 5 5 77.80

7 13 2 146 8 8 83.30

8 16 2 146 8 8 85.93

9 20 2 146 8 8 90.33

0.73 0.075 0.074 0.058 0.063

0.343 0.03 0.024 0.023 0.025 0.04 

0.025 0.022 0.027 ... 

0.195 0.016 0.015 0.012 0.012 

0.013 0.013 0.018 0.02 …

 
 

Both the CNS and PNS algorithms were tested with the same starting solutions. Table  5.3 

shows the numerical results obtained for both algorithms. The accuracies obtained from the two 

algorithms are shown in columns 6 and 7. Both algorithms obtained the same best accuracies of 

99.78 (bold). Columns 4 and 5 contain the total number of iterations and the number of accuracy 

evaluations up to the start of the last iteration, which then runs for 3K more evaluations, this sum 

was added to column 4. For all PSN runs the values of h = 0. 9, and K = 30 were used. Figure  5.4 

shows the convergence for run 5. 

 

Table  5.3. Comparison of CNS and PNS algorithms on the basis of computational steps and accuracy 

 

Run PNS CNS PNS² CNS³ PNS CNS

1 17 3 359 60 97.08 97.8

2 5 1 124 20 99.12 97.8

3 3 2 20 40 98.02 98.02

4 2 7 69 434 97.14 99.12

5 16 12 376 744 99.78 99.78

6 1 8 1 496 96.04 99.34

7 8 4 115 560 95.6 99.12

8 2 3 16 420 96.92 98.46

9 1 7 45 980 99.34 99.56

Total 1,935 3,754

Initial 

Solution

Number of

Iterations

³  (Number of iterations)*No of evaluations /iteration)= total evaluations, 

where no of evaluations /iteration is fixed at 20,62 and 140 for sol 1-3, 4-

6 and 7-9,respectively.

Evaluations to 

Best Sol ¹

Accuracy, 

A(%)

¹  Evaluations to last parameter change for the run

²  3K=90 evaluations added after the last parameter change for each run 

(1,125 + 810 = 1,935)

 
 

For our test run the PNS algorithm finds the same best solution as the CNS in 48.5 percent 

shorter computational time (1,935 vs. 3,754 evaluations). The reduction, however, is a 

conservative estimate as it is based on equal time evaluations for the PNS algorithm runs. This is 

because the times to evaluate a solution are not equal as assumed, but are directly proportional to 
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the size of the solution vector p, which is dynamic. Thus, a weighted evaluation time function 

should be used whereby, given t(n) as the time to evaluate a solution vector p of length n, an 

adjusted evaluation time can be determined as t(n)*r(n) where r(n) is the number of times a 

solution vector of size n is evaluated.  
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Figure  5.4. Convergence curve for PNS (run 5) 

 

5.4 Performance Testing and Results 

An example run is conducted to illustrate the performance of the NS algorithm using the data 

from a data set called BGU-R DB. For this database we extracted 35 samples for each of 13 

gestures, to obtain a training set of 455 samples. Two different types of systems were used to 

train and test user dependent (D) and independent (I) recognition systems. The D and I systems 

are defined as the systems which are trained by single and multiple users, respectively. Three 

types of subjects were used in the experiments: Owners (O), Experienced Users (E) and Novice 

Users (N). Owners trained all I and D systems and are also used to test these systems. 

Experienced Users are users that tests systems, which were trained by others. These users were 

reused owners who play the role of experienced users at this stage. Novice Users are new users 

who have never seen, trained or tested a system. Seven Owners and twelve Novice Users were 

elicited to test the D and I systems. For each of the user-system combinations the mean 

recognition accuracies were calculated from the results of the k-fold cross validation runs (for 

k=4). The mean recognition accuracies between systems were compared using a two-tailed t-test. 

Table  5.4 shows the hypothesis formulated, the population used to compare each side of the 

hypothesis, recognition accuracy, variance, hypothesis result, and significance level. Recognition 

accuracy of system x tested with user y is represented by R (x, y). The number of gesture 

instances is ni , the recognition accuracy is xi and the variance is Si
2
. A summary of the important 

results is shown in Table  5.5. When the systems were tested using their own trainers, mean 

accuracy of D was better than the I system, (98.9% over 98.2%). This is as expected since any 

learning system should have better performance when tested with its trainer. For O users, the 

opposite was true, testing recognition accuracies where better for I than D systems (98.2% over 

96.0%).This also is expected as E users were testing systems trained by others. Here, the I 

system was trained with a wide variation of hand gestures samples, and as a result it had better 

generalization properties. These results were statistically significant. Similarly, N user’s testing 

accuracy was also better for I than D systems resulting in 95.7% and 94.6%, respectively. 
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Table  5.4. Performance comparison between systems 

No. Hypothesis n1 n2 x1 (%) x2 (%) S1
2

S2
2

Answer Signif. (%)

1 A(D,E)>A(D,N) 21840 18200 96.01 95.19 0.0383 0.0458 TRUE 0.0032

2 A(I,O)>A(I,N) 3640 2600 98.21 96.19 0.0175 0.0366 TRUE 0

3 A(D,O)>A(D,E) 3640 21840 98.90 96.01 0.0109 0.0383 TRUE 0

4 A(D,O)>A(I,O) 3640 3640 98.90 98.21 0.0109 0.0175 TRUE 0.69

5 A(I,E)>A(D,E) 3640 21840 98.21 96.01 0.0175 0.0383 TRUE 0

6 A(I,N)>A(D,N) 2600 18200 96.19 95.19 0.0366 0.4580 TRUE 1.2  
 

Table  5.5. System recognition accuracy 

Type of System Type of User 

Dependent (D) Independent (I) 

Owners (O) 98.9% 98.2% 

Experienced (E) 96.0% 98.2% 

Novice (N) 94.6% 95.7% 

 

When compared to previous runs using 5 novice users, slightly better results were obtained as 

expected (96.1% and 95.1%). These values had a statistical significance at the .005 level. Again 

these results are for novice users who have neither trained systems nor have had experience using 

them. Previous research [Wachs et al., 2002] indicates that novice users can reach 98-99 % 

accuracy after several trials. 

 

5.5 Discussion 

This chapter described a hand gesture recognition system using an optimized Image 

Processing-Fuzzy C-Means (FCM) algorithm.  The parameters of the image processing and 

clustering algorithm were simultaneously found using two neighborhood parameter search 

routines, resulting in solutions within 1-2% of optimal. Two versions of a local neighborhood 

search algorithm were designed. These versions are customized for a system operational 

parameter calibration task, where the number of parameters in our solution vector is dynamically 

changing. The first and second methods perform complete and incomplete probabilistic 

neighborhood searches, respectively. The primary need for recalibrations of such systems is 

frequent relocation to other environments such as laboratories and remote control stations. A 

secondary need for recalibration occurs due to demands for custom redesign of the gesture 

control language. This occurs for new users, new control tasks and new vocabularies. Allowing 

for a fast recalibration of system parameters provides the system flexibility to respond to such 

new system set up. The two proposed methods were compared using a test case of 13 gesture 

commands and a recognition accuracy of 99.78% was obtained. However, the probabilistic 

version performed 48.5% less solution evaluations. 

Comparison of user dependent and user independent systems using a database of 13 gestures 

were made. When the system was tested with their own trainers, recognition accuracies of 98.9% 

and 98.2%, were found for dependent and independent systems, respectively. These results are 

statistically significant at the .007 level. For experienced users testing systems they had not 

trained, testing recognition accuracies were better for user independent than user dependent 

systems (98.2% over 96.0%). These results are statistically significant at the .00 level. Our near 

optimal parameter search procedure is easily extended to systems with larger parameters, and 

more complex hand gesture recognition systems. The problem is not unique to hand gesture 

recognition systems, but is shared by other human–machine systems as well. Thus, the 

methodology presented here for automating system set up has far wider application. 
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6 Experiments 

6.1 Overview 

Three groups of experiments were performed; (i) determination of human psycho-

physiological input factors, (ii) validation of the multiobjective proxy measures for designing 

good GVs in terms of task performance time, and (iii) usability measures in terms of learning and 

memorability rates. Human psycho-physiological input factors were found through a series of 

empirical experiments to obtain the intuitiveness V, comfort U, command C, and gesture Gm, 

matrices. More specifically, frequency of commands, direct and complementary intuitiveness and 

stress experiments were conducted. These empirical measures were used in operator task control 

experiments to perform a validation test showing the connection between gesture vocabularies 

and task completion time. This validation experiment used a significant group of subjects in the 

context of two tasks, (i) a robotic arm pick and place task, and (ii) a VMR drive task. In addition 

two usability tests were performed; (i) the learning rate, and (ii) memorability. Statistical tests 

were performed to determine the significance of these results.  

  

6.2 Command Frequency Experiment 

6.2.1 Overview 

Robotic arm and VMR tasks were used in the experiments, to determine the human factors 

measures. Both tasks contain ‘navigational’ (directional) commands to control the direction of 

movement of an object, its speed, and additional functions to interact with other objects in the 

environment. An experiment was set up to determine the frequency of each command from 

typical command sequences. The sequence of commands depends on the type of task. In addition 

duration of each command and duration of the breaks (intentional and unintentional) between 

commands were obtained. For this purpose two virtual reality environments in which the user has 

to conduct a task were developed; (i) a robotic arm and (ii) a maneuverable vehicle.  

 

6.2.2 General Set Up 

To avoid long delays in the task completion times which result from unavoidable latency 

through communications ports, and the slow movement response of a physical robotic arm and a 

vehicle robot, virtual reality models were developed. The virtual mechanical devices (robotic arm 

and VMR) are controlled by the user to convey actions in the form of a basic set of commands. 

The basic set of commands were; C1={‘start’, ‘finish’, ‘up’, ‘down’, ‘forward’, ‘backward’, ‘left’, 

‘right’} and C2={‘start’, ‘finish’, ‘up’, ‘down’, ‘left’, ‘right’, ‘forward’, ’backward’, ‘wrist cw’, 

‘wrist ccw’, ‘wrist up’, ‘wrist down’ ‘open gripper’, ’close gripper’, ‘home’} for the VMR and 

robotic arm tasks respectively. 

 

6.2.3 Software Applications 

Both virtual models were developed using MS Visual C++ and OpenGL ( Appendix K) to 

create a realistic scenario of the tasks. In the VMR task application, the scenario consists of a 

road surrounded by a garden which resembles a maze. The path to be traversed by the vehicle is 

composed of nine straight linear segments, (Figure  6.1). At every junction there is only one 

possible way to turn. At the terminal ends of the road there are both the start and the stop marks, 

and the VMR is initially parked at the start mark. Also, a teapot is placed in the middle of the 

path which must be visited by the vehicle. The following parameters are displayed: time, hits, 

score, speed and engine on the top of the screen during run-time. 
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Figure  6.1. VMR maze application 

 

The time indicates the task duration time. Hits represent the number of times that the VMR 

hits the side of a road segment and ventures into the garden. The score is based on the task 

completion time and the number of hits. Speed shows the current selected velocity of the VMR: 

(120 –fast, or 60 slow). The engine of the VMR can be ‘on’ or ‘off’.  

In the robotic arm application, a five degree of freedom virtual robotic arm placed over a 

table is displayed, (Figure  6.2). On the table are three wooden boxes. On one side, the blue box is 

standing on a red box (Point A). At a fixed distance from them, another red box is laying on the 

table (Point B). The parameters presented in the top of this screen are time and engine status, and 

their meanings are the same as described for the VMR application. 

 

 

Figure  6.2. Robotic arm application 

 

6.2.4 Procedure 

In the VMR pilot study, the user has to control a VMR from the start point to the end point, 

within the shortest time and avoid hitting the sides of the road. Every hit on the side of the road 

adds a fixed additional time to the total time. The goal is to finish the drive as soon as possible, 

and therefore the user is encouraged to drive at high speed.  On one part of the road there is a 

maximum velocity sign, and the user has to respect the speed limit. The VMR also has to run 

over a teapot lying on the road to get full acknowledgement for the completion of the task. The 
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VMR is controlled through a standard Qwerty keyboard (ISO9995), and the sequence of key 

presses is recorded during the whole task. The mapping between the keys and the commands was 

totally arbitrary (the same for each subject) with the purpose of obtaining the sequence of key 

presses and rests (mapped to commands). Insignificant short delays are ignored from the 

command sequence, and hence delays resulting from finger movement between keys will not 

show up in the sequence. This implies that the particular mapping between commands to 

keyboard does not affect the resulting sequence of commands. Table  6.1 shows the mapping used 

between commands to the keyboard for the VMR task. 

 

Table  6.1. Commands for the VMR task 

Index Commands  Key press 

0 Rest   No key 

1 Start VK_LSHIFT 

2 Finish VK_RSHIFT 

3 Forward VK_UP 

4 Backward VK_DOWN 

5 Turn Left VK_LEFT 

6 Turn Right VK_RIGHT 

7 Speed=Fast VK_PRIOR 

8 Speed=Slow VK_NEXT 

 

In the robotic arm task, the robotic arm’s gripper has to reach a blue wooden box standing 

over a red wooden box (Point A), over a flat table, pick up the box, move it to a different 

location, and release it over another red wooden box (Point B). To pick the blue box, the gripper 

must be in a certain angle with respect to the arm, otherwise the grasp is impossible. To release 

the box, from a vertical position over the target object, without dropping it, the gripper must be in 

a specific position as well. This operation must be performed by the user in the shortest time. The 

user controls the Cartesian coordinates of the arm (world coordinates), a two degree of freedom 

gripper and open and close (grasp-release) operations using the computer keyboard (Table  6.2). 

Also, in this experiment the sequence of key-presses was saved. 

Table  6.2. Commands for the robotic arm task 

Index Commands Key press 

0 Rest   No key 

1 Start VK_LSHIFT 

2 Finish VK_RSHIFT 

3 Up VK_UP 

4 Down VK_DOWN 

5 Left VK_LCONTROL 

6 Right VK_RCONTROL 

7 Forward VK_RIGHT 

8 Backward VK_LEFT 

9 Wrist Up VK_PRIOR 

10 Wrist Down VK_NEXT 

11 Wrist CW VK_INSERT 

12 Wrist CCW VK_HOME 

13 Open Gripper VK_END 

14 Close Gripper VK_DELETE 

15 Home VK_BACK 
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For each task 30 trials were conducted. The sequence of key presses is stored as an ordered 

vector S, for each type of task, which represents the sequence of commands evoked for each trial. 

The keyboard was sampled every 14 ms, and if there was a key press, then its corresponding 

index (based on the values in the first column of Table  6.1 and Table  6.2) was added to the 

sequence vector, otherwise the value 0 was inserted. Note, that for the robotic task, the average 

completion time was 42 seconds obtained from the 30 trials, and hence a typical length of the 

sequence vector in that task, was 42/0.014=3000 commands long. A frequency matrix F (of size n 

x n) was created by parsing the sequence of commands. The entries in F represent the frequency 

of appearance of the same command (diagonal), and the transition between commands (off 

diagonal) overall sequences. Algorithm  6.1 shows pseudo-code to perform the extraction along 

with an example. 

 

Create Frequency Matrix (F) 
F = 0 

from_A= S(1) 

for index=1 to length(S) 
to_B=S(index) 

F(from_A, to_B)= F(from_A, to_B)+1 

from_A= S(index) 

next 

End 

Algorithm  6.1 Frequency Matrix Creation 

 

Example 1 

Given a sequence S1=(1,1,1,1,2,2,2,1,1,3,3,3,2,1,3), the frequency matrix found is: 

















=

210

022

214

F

 
 

6.2.5 Results and Analysis 

Each experiment was repeated 30 times by an experienced user. For each task a frequency 

matrix is constructed as the sum of the frequency matrices obtained in the 30 trials. The column 

and row headings of each of the frequency matrix tables (Table  D.23 and Table  D.24) are indices 

representing a command name, according to the coded lists in Table  6.1 and Table  6.2 for the 

robotic arm and VMR task, respectively. The mean task completion time was 42.3 (σ=4.5040) 

and 67.1 (σ=4.1312) seconds, for the robotic arm and VMR, respectively. Table  D.21 and Table 

 D.22 show the total frequency matrix for the robotic and VMR tasks including the ‘rest’ 

command, respectively.  

In the case that the ‘rest’command is not included in the command set, and there is no need to 

have a gesture for the ‘rest’ action, the appearances of the index representing the pause (0) are 

ignored, when parsing S (Table  D.23 and Table  D.24). There is a significant difference between 

the matrices including the ‘rest’ command and the ones excluding it. Besides the additional row 

and column for the ‘rest’ posture, the values of the frequencies are also different. For example, 

F1,7=30 in Table  D.23 is F1,7=0 in Table  D.21. The reason is that the command ‘1’ always 

transited to ‘rest’(30 times) and from ‘rest’ to ‘7’ (96 times) instead of changing straight from ‘1’ 

to ‘7’ (30 times). 
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Examination of the sequences showed inevitable short pauses between different key presses. 

However, these tiny pauses did not represent intentional ‘rests’, but rather delays when allocating 

the finger to the correct key. Every pause shorter than 42ms was considered an unintentional 

pause. To keep only intentional pauses (rests), the sequence of indices was parsed to eliminate 

each single, double or triple consecutive appearance of the index representing the pause (0). For 

example, the sequence: S1=[1,2,0,1,2,0,5,6,2,0,0,5,0,0,0] was converted to S1=[1,2,1,2,5,6,2,5] 

and S2=[4,2,0,0,0,0,6,5,0,0,0,0,0,0] was converted to S2=[4,2,0,0,0,0,6,5,0,0,0,0,0,0] (no 

changes). After all the unintentional pauses were discarded, the sequence was analyzed to 

determine the frequency of use of each command and the frequency of transition between them. 

These sequences are totally dependent of the type of task addressed to the user, and they may 

change according to the representation of the environment. The more realistic the virtual model 

is, the closer the sequence of commands is to the real task. 

 

6.2.6 Discussion 

Results indicate the importance of experimental analysis of specific tasks. Observing the 

frequency matrix for the robotic arm and VMR task using a ‘rest’ command, the occurrence of 

the ‘rest’ command is far higher than any other command in the task (42761 and 101462 times, 

respectively). This does not mean that there were long rests while doing the task, but the rests 

were very frequent. Actually the matrix shows that between any commands to any other 

command, there was a short rest. Except for the ‘start’ command, and the ‘finish’ command, that 

they occur only in the beginning and the end of the task, therefore there was no transition to 

‘start’ and not from ‘finish’ registered in the sequence.  

Without using the ‘rest’ command, the most popular command for the VMR task, is ‘forward’ 

and that is because in the VMR task, the procedure to complete the task is more rigid than the 

robotic arm task since there is only one path, clearly stated in the application, which the user must 

follow in order to complete the task. This does not make the task easier or shorter, since the user 

must correct continuously the direction of the VMR to make sure that he is not reaching the 

garden by hitting the sides of the road. This explains why the ‘forward’ command occurs more 

frequently than the other commands. For the robotic arm task, the most frequent command is 

‘right’. This is because the object to be picked up is placed on the far left side of the robotic arm, 

and the place to release the object is on the far right of it. Therefore, assuming the gripper is 

somewhere in the middle of both points, the distance to be covered to reach point B, after 

reaching point A, is higher than the distance to reach point A. This scenario shows, also, that is 

not correct to think that complementary commands are used with the same frequency. Their use 

relies on the nature of the task, and its topology. The (forward, backward) command pair is 
another example of complementary commands, having different frequencies. The ‘backward’ 

command is evoked after the VMR picks from the road the teapot, and must go back to the main 

road going reverse since there is not enough room to turn in that part of the road. This single 

transition occurred in each of the 30 trials, hence the value 30 for the ‘forward’ to ‘backward’ 

transition. Theoretically the frequency of transition between ‘backward’ to ‘forward’ should be 

zero, since such a transition is not necessary to complete the task, however the 7 ‘backward’ to 

‘forward’ transitions, might be explained as corrections in the direction of the VMR while turning 

left or right, to avoid driving outside of the road and into the garden. 

 

6.3 Intuitiveness Experiments 

6.3.1 Overview 

The experiment used to obtain the cognitive association between commands and gestures 

considered several approaches; (a) present a large database of images and the user will select the 



 

 

62  

image that reminds him the most the given command (restrictive); (b) let the user gesticulate with 

one and/or both hands and take a picture of the gesture associated to the given command 

(unrestrictive), and (c) allow the user to manipulate a rigid hand gesture model, where the intra 

and inter joints, rotation and other features are constrained. While the restrictive approach is 

advisable when working with small gestures dataset, it will prohibitive for larger datasets. On the 

other hand, the dataset obtained by capturing user gestures, can be prohibitively large. Therefore, 

the approach used here is to represent the postures by configuring a number of hand segment 

primitives. Through the use of an application, a random sequence of commands was presented to 

the user after which the user manipulates a hand model until it is configured to represent the 

desired gesture. Each command was displayed to a cohort of users, and the gestures-commands 

associations according to the number of times they were selected, were ranked accordingly to 

popularity. Those gestures highly ranked (most popular), are chosen to be part of the gesture 

master set. Complementary intuitiveness indices were obtained by extracting the number of times 

that the subjects chose the same pairs of complementary gestures to represent the same pair of 

complementary commands.  

  

6.3.2 General Set Up 

On the side of a monitor, a WE-160 Panasonic Video Imager was placed (Appendix F), which 

included a platform where the users placed their postures (Figure  6.3). While viewing their 

posture they configured the virtual hand model to replicate it. The video was not connected to the 

computer; therefore the video imager was useful only a comfortable flat surface where the users 

can lay their hands and imagine what view of their hand the camera will see. 

 

Figure  6.3. User hand over the WE 160 Panasonic video imager 

 

6.3.3 Software Applications 

An intuitive assessment application was developed to find the intuitive mapping between 

commands and gestures, (Figure  6.4 and Figure  6.5). The interface window of the application is 

divided by four sub areas, the first containing query fields for the user details, the second contains 

the name of the current command and below it, a picture or animation that corresponds to this 

command. The third sub area has an image of the virtual model of the hand posture, and below it, 

a set of checking boxes and combo boxes. The first combo box, from the left, controls the palm 

position of the hand, from three possible positions: 1-Down, 2-Up or 3-Side. The second combo 

box is for the wrist position, with three options: 1-Middle, 2-Left, 3-Right. The next five check 

boxes determine whether the finger is flexed towards the palm (not checked) or extended 
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(checked). Under them there is a combo box and three other check boxes to control whether there 

is a separation between the fingers (checked) or not (not checked). The combo box allows a third 

state only for the thumb, whether it is separated from the extended palm, and perpendicular to it 

or not. Checking the boxes, and selecting from the combo boxes, updates the virtual model of the 

hand. On the side of the checking boxes, there are radio buttons to express the strength of the 

association between the command and gesture selected by the user (Figure  6.6). There are three 

options to choose from: “Weak”, “Medium” or “Strong”. The last sub area shows two rows of 

thumbnails, each under a command label. These thumbnails are a small size version of the virtual 

hand model, selected by the user, for the command prompted, which appears over the respective 

thumbnail. Thus, every association command-gesture appears in this area of the screen.  

Every selection of a command-gesture pair is added to the intuitiveness database that stores 

all the associations of all the subjects. This database has a table, including the following fields: 

First name, Last name, SSN, Action, Gesture, and Level. The first three fields are the user details, 

while the last two are the command of the task, the encoded gesture (Table  3.1, in Chapter  3), and 

the strength of association.  

 

 

Figure  6.4. Intuitive assessment application for the robotic arm 

 

 

Figure  6.5. intuitive assessment application for the VMR 
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Figure  6.6. Interfaces for:(a)  set the hand virtual model . (b). Strength of association 

 

6.3.4 Procedure 

To find the intuitive mapping between commands and gestures, the user needs to see the 

entire set of commands required to fulfill a task, and the action that each command represents. At 

the start of the experiment each subject is instructed that devices are controlled using hand 

gestures only. Also, at the initiation of the experiment the effects of the commands are 

demonstrated to the users, using animated models of the robotic arm and VMR which simulates 

the actions that they can accomplish. The intuitive assessment application automates the 

collection of each user’s choice of gesture in response to each command stimulant. The 

commands are presented to the user in random order. The user holds the posture for only 2 

seconds on the camera capture field. The hand can be in one of the three states; flat down, flat up, 

or on its side. The rotation of the wrist can be to the left, right or to the middle. For every 

previous configuration, each finger can be closed or not, and separated from its neighbors or not. 

Immediately after the subject removes the hand from under the camera, the user is required to 

‘build’ a hand posture model that resembles the posture that he held, using an interactive virtual 

model of the hand embedded on the interface. The user sets the configuration of all this 

parameters if the virtual model of the hand by checking check boxes and selecting from the 

combination lists. In addition to this, the user selects the ‘strength’ of the association using 3 

options: weak, medium or strong, (Figure  6.6.). 

The gestures and degrees of association were collected from 35 students, from the Industrial 

Engineering Department at Ben Gurion-University. In the intuitive matrix, each row is a gesture 

type, from the constrained set of 648 gestures, each column a command, and each entry the 

number of subjects that selected that gesture to represent that command. This matrix can be 

reduced by eliminating all the gestures that no subject picked. A total of 114 and 59 gestures were 

selected for the robotic arm and VMR task, respectively. These gestures were selected at least 

once to represent a command. A weighted intuitive matrix is similar to the original intuitive 

matrix, but each entry represents the number of subjects that selected that gesture for a given 

command, multiplied by the users stated strength of association. 

 

6.3.5 Results and Analysis 

6.3.5.1 Direct Intuitiveness Matrices 

To be able to approach the gesture vocabulary design problem, was necessary to reduce the 

number of gestures to a small master set. To do this the intuitive matrix for the robotic arm 

experiment was reduced to a subset of the most popular gestures. The most popular gestures were 

selected according to those selected by: a) at least five subjects, or b) at least four subjects who 

selected the same gesture-command association. For the VMR experiment, only gestures 

according to those selected by: a) at least 4 subjects or b) at least 4 subjects who selected the 

same gesture-command association were considered. This operation reduced the master set to 23 

and 22 gestures for the robotic arm and VMR tasks, respectively. The union of both master sets 

resulted in 27 unique gestures, (Figure  6.7). The intuitive matrices for both the robotic and VMR 

tasks are presented in Table  D.1 and Table  D.2 in Appendix D.  
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Figure  6.7. Common master set of gestures 

 

An agreement measure Si is used for determining the proportions of overall and specific 

gesture agreements on representing commands, and is defined as following: 
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Where, 

αi   specific agreement between subjects about gesture i 

αposs
i   maximum possible agreement between subjects about gesture i 

Si = ratio of agreement for gesture i 

Then, 
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( 6.2) 

pi=popularity of gesture i (in terms of probability) 

Ф= mean overall agreement 

 

The maximum possible pair wise agreements between those selecting certain gesture gives an 

indication of the measure of agreement of the group studied. Table  D.7 shows pi (the probability 

of selecting gesture i), αi (specific agreement between subjects about gesture i), αposs
i (maximum 

possible agreement between subjects about gesture i), Si (the ratio of agreement for gesture i), the 

overall agreement measure (Ф).  

The three most popular gestures for the VMR task were selected by 24, 21 and 15 

respondents. The next two were tied with 14 each (Figure  6.8). 
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(a)   24 (b) 21 (c) 15 (d) 14 (e) 14 

Figure  6.8.  Most popular gestures (number of users) for the VMR study 

 

As expected these gestures are very simple to compose. Gestures 6, 7, and 24 of (a) in Figure 

 E.1, are strongly association with the “Stop” (Finish) command (column 2) in Table  D.7(a). 

Gestures 10, 16, 27 are associated with the “Right” command, having been selected with ratios of 

10/11, 9/11, 8/9, respectively. These gestures are very intuitive for this command as they all tilt or 

point to the right (Figure  E.1 (a)). For the robotic arm task, the most popular gestures were 1, 6, 

8, 24 and 17 selected by 26,23,19,19 and 18 subjects (Figure  6.9). These gestures are very 

natural, and gestures 6,8 and 24 are common and highly popular as found for the VMR task.  

 

     
(a) 26 (b) 23 (c) 19 (d) 19 (e) 18 

Figure  6.9. Most popular gestures (number of users) for the robotic arm study  

 

Gesture 19 was strongly associated with the “open gripper” command, (column 13) in Table 

 D.7(b), and were selected with ratio 10/13, (it is very natural to think about opening the palm of 

the hand for an opening command). Another gesture highly associated was gesture 12, to the 

command “left”, with a ratio of selection of 10/14. The pointing to the left direction can be 

appreciated in this gesture (Figure  E.1 (a)). Maximum agreement was conceived by 100% of 

those selecting gesture 12 (39% of the testees) on the command associations in the VMR task. 

For the robotic arm task 59% agreed on the command association for gesture 19 (20% of the 

testees). The mean total gesture-command agreements gestures was 34% and 18% for the VMR, 

and robotic arm tasks, respectively. Similar to the 80:20 rule of inventory theory [Juran, 1975], 

we find the 72:31 and 71:29 rules where 72% and 71% of respondents selected 31% and 29% of 

all the gesture types, for the VMR and robotic arm task, respectively.  

 

6.3.5.2 Complementary Intuitiveness Matrices 

For the VMR task, the following commands are complementary: start-finish, left-right, 

forward-backward, and fast-slow. In the robotic arm test, the complementary commands are: 

start-finish, left-right, forward-backward, up-down, wrist CW, wrist CCW, wrist up, wrist down, 

and open-close. Each command for the VMR task, had a complementary command, while for the 

robotic arm task, the ‘home’ command have no complementary. The complementary commands 

were straightforward for the user familiar with the task. The complementary gestures gi and gj are 

represented by the pairs (gi, gj) (first two columns in Table  D.10 and Table  D.11). Examples of 

complementary gestures appear in Figure  3.5. To avoid any assumption in advance about whether 

a pair of gestures are complementary or not, all the pairwise combinations between the gestures 

in the master set were initially included in the matrix. Each cell in the complementary intuitive 

matrix shows the number of subjects that for a given pair of complementary commands selected 

the complementary pair of gestures. Several possible pairs of gestures from the master sets were 

discarded since no respondent selected them, to match a pair of complementary commands. For 

each task, a complementary intuitive matrix was created (Table  D.10 and Table  D.11). The first 
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two columns stand for a pair of complementary gestures, with indices g1 and g2 (the indices are 

the numbers over the gesture images in Figure  E.1. The remaining columns represent pairs of 

complementing commands, and each row is a combination of complementary postures of the 

master set. Combinations that no participants selected are not part of the matrix.  

Figure  6.10 illustrates a number of complementary commands-gestures pairs that appear in 

the complementary intuitiveness matrix, the complementary commands (left-right), and the first 

pair of complementary gestures (a) were selected by 10 participants, while the second (b) were 

selected by 7. In both cases, this matching was considered highly popular. For the complementary 

commands up-down, the strength values were lower, only 4 participants for (c) and a single 

subject for (d). The matching was ordered from highest strength association (a) to the lowest 

strength association (d). 

 

Left-Right 

    

(a) 10 (b) 7 

Up-Down 

    

(c) 4 (d) 1 

Figure  6.10. Complementary commands and the matching complementary gestures 

 

6.3.6 Discussion 

The direct intuitiveness results shed light on the level of agreement of a certain population to 

the use of a set of gestures to accomplish certain tasks. Even though agreements for gesture-

command associations ranged from 59%-100% for the VMR and robotic arm tasks, respectively, 

the overall agreement was only 34% and 18% for the VMR and robotic arm tasks, respectively. 

This seems to refute the claim that subjects use consistently the same gestures to represent the 

same commands while performing tasks, as suggested by Hauptmann [Hauptmann and 

McAvinney, 1993].  

Regarding complementary intuitiveness, an interesting case is the master set for the VMR 

task. There are five gestures in the master set for the robotic arm task that are missing in the 

master set for the VMR task, and there are four gestures in the  master set for the VMR task that 

do not appear in the master set for the robotic arm task.  From the gestures missing in the VMR 

task, the 9-(fist right) and 11-(fist left) were paired as complementary gestures in the robotic task, 

for ‘wrist CW/ and wrist CCW” which are commands unique to the robotic arm gripper control, 

and the use of the fist is naturally suited for these actions. Some concepts regarding the choice of 

complementary matching can be explained using part of the data from the complementary 

intuitiveness matrices in Table  D.10 and Table  D.11. The complementary commands (left-right), 

(a-b) are highly popular, and a reason for that is the high intuitiveness between the wrist 

movements and their correlation to the direction of the command, for the left command, the wrist 

is turned left, and the same for the right direction. The postures based on the palm down are more 
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popular since they are more natural to hold (cause less strain). For the complementary commands 

up-down (c-d), the strength of belief values were lower, probably due to the fact that is more 

difficult to resemble the (up-down) direction, when holding the hand in 2D and when the camera 

is located above the hand (Figure  6.3). Nevertheless, it is somehow more natural to match the 

“palm-up” gesture to the “up” command, and the same regarding the “down” command, (Figure 

 6.10 (c)). Also for the up-down commands, the last pair of gestures (Figure  6.10 (d)) are 

complementary because of the extension/closing of the index finger. The complementary relation 

is not apparent, and the connection to the commands can be explained by the index pointing out 

for the “up” command, and the finger retracted to show a lack of the “up” action.  

 

6.4 Stress Experiments 

6.4.1 Overview 

The experiments aimed to assess the static stress of the postures, transition stress between 

different postures, and the duration of static and posture transitions, using subjective evaluations 

of the users. Due to the large number of experiments required to assess these measures for all 

possible transition gesture pairs, an alternative approach was adopted, in which a predictive 

model was developed to predict most of the values for the transition stress and duration of 

transition . The model was built based on empirical data obtained from the static stress 

experiment.  

 

6.4.2 General Set Up 

The experiments involving holding postures required a work environment similar to the real 

environment from where the user will control the robots. The WE-160 Panasonic Video Imager 

connected to the Matrox Meteor Standard frame grabber is the main unit of capturing gesture 

poses. The device included a flat plate. The user evokes the gestures while he is sitting, and his 

hand is extended over the surface, or suspended on the air at a fixed height (Figure  6.3). The 

camera captures the upper view of the hand, from the wrist to the end of the hand. Because of the 

physical set up of the gesture capture system, the application used in the experiments was 

designed to reflect this view of the hand, (Figure  6.11). 

 

 

Figure  6.11.  Upper view of the user's hand 

 

6.4.3 Software Applications 

The screen layout (Figure  6.12) of the application developed to collect static stress responses 

is divided into a number of areas. An area for the user to enter details including first name, last 

name and ID, and an instruction on a large text box telling the user how to proceed. An image 

with the virtual hand posture on and below it. A time scale to show the current lapse of time. On 

the side of the time scale, there is a scale to show the progress of the experiment, in percents. 

Thumbnails of the master set of gestures on a display. The thumbnail of the current gesture is 
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highlighted to show the current posture selected by the application. A vertical group of radio 

buttons ordered according to the “Borg scale for rating perceived exertion” [Borg, 1982] is 

presented in the right side of the interface. The scale has 10 levels of fatigue: 0-Nothing at all, 1-

Very Weak, 2-Weak, 3-5 Moderate, 5-6 Strong, 7-9 Very Strong, and 10-Extremely Strong.  

All the gestures appear randomly on the image window, and per appearance, the user rates the 

gesture according to the effort invested. Every selection is inserted into a static stress table, which 

is part of the stress database. Every record in the table includes the user details, the code of the 

posture, and a stress level from the Borg scale. Twenty seven gestures are presented in the 

application which represents the master set of gestures for the robotic and VMR tasks together 

(union of sets of gestures of both tasks). Two additional gestures were included, as well, to 

present extreme conditions of fatigue. The database information is later used to find the average 

level of effort that the users assigned to every posture in the master set. 

 

 

Figure  6.12. Interface for static stress experiment 

 

The application (Figure  6.13) to measure the transition stress is very similar to the one used 

for the static stress, with the following differences: 1) there are two images with the virtual hand 

on them, the left image is for the beginning gesture, and the right image is for the ending gesture. 

2) there is no time scale, 3) there is a button under the virtual hand images. This button has three 

different labels: (1) “start “, for the starting gesture, (2) “stop” for the ending gesture, and (3) 

“Finish”, is written after that the user ranked the transition between gestures. 

Both the start and end gestures appear randomly on the image windows, but the same pair is 

never repeated. The user ranks the transition using the Borg scale, which reflects the effort to 

change from one posture to another. This value, the user details and the code of both postures in 

the gesture master set are inserted in a record entry in the stress database. The total number of 

postures pairs presented in the interface was 60, obtained from two subsets of six postures each, 

from the robotic arm and VMR master set of gestures. This information was used to find the 

average transition effort between gestures. Thus, the dynamic stress matrix was partially 

completed. 
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Figure  6.13. Interface for the dynamic stress experiment 

 

6.4.4 Procedure 

To measure static stress, an experiment was conducted using an application developed for this 

purpose. The gestures appear in random order on the screen, and the user is asked to imitate the 

gesture, and to hold it in the air for 25 seconds. The user’s hand is placed over the flat surface of 

the video imager, so the upper view of his hand appears similar to the gesture proposed in the 

interface. As soon as the elapse time is finished, the user rates the effort in holding the pose using 

a scale of 1 to 10. Here, 1 is the least stressful and 10 the most. The Borg scale for rating 

perceived exertion was used for the rating process. The stress measure was relative to every 

subject; however it was shown that there were gestures that were universally difficult to repeat. In 

the same tone, there were gestures that were completely effortless. For example the ‘rest’ posture 

on which the hand is completely relaxed is one of these gestures. At the start the user was asked 

to experiment holding a very difficult posture, and a relaxed one, to have a clear idea of both 

extremes of the scale. The 27 gestures discovered in the previous section plus two additional very 

stressful gestures (Figure  6.14) were added to the testing set. 

 

 

Figure  6.14. Extremely difficult postures 

 

Static stress measures were especially useful to develop a predictive model which expresses 

the values of dynamic stress as a function of static stress.  The model was developed using static 

stress measures from 29 hand gestures, obtained from 19 students of the Industrial Engineering 

and Management and Communications Departments at Ben-Gurion University of the Negev. The 

dynamic stress values and their duration were postulated to be a function of the starting and 

ending posture stress values. The current experiment captured the transition duration together 

with the subjective assessment of stress in carrying out the transition. In the dynamic stress 

application, the user controlled the flow of the transition. When the user was ready, he/she 

requested the ‘begin’ gesture of the transition; imitated it with his hand, and then requested the 

‘end’ gesture. He changed the configuration of his hand, to imitate the ‘end’ gesture, and 

following this, he finished the cycle by pressing the ‘finish’ button. The duration time that took 
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the user to imitate the ‘end’ gesture till the user pressed the finish button, was the transition time 

for this pair of gestures. Once the cycle was over, the participant graded the transition (from the 

appearance of the end gesture to the end of the cycle) with the same scale used to rate static 

gestures. Similar to the static gestures rating, the users were instructed to consider both physical 

and mental stress. Both the stress and the duration time for the transition were recorded in a 

database.  

Without the prediction stress model, it would be necessary to find for the robotic arm tasks, 

506 entries (23*23-23). For the VMR task, there are a total of 22 postures, however some of the 

stress transitions can be found when acquiring the stress for the robotic arm, since there are 18 

common postures between the different tasks vocabularies. Four additional postures and their 

transitions must be added to the calculation, then 506 + 4 (new postures) * 22 (rest of the 

postures) * 2 (transition ‘to’ and ‘from’ the posture) = 682 observations are necessary. Since we 

already found 60 observations, it will only be necessary to make 622 observations. To find 30 

transitions, the duration of the experiment was 30 minutes and at least 19 students are necessary. 

For 622 observations, 622*19=11818 minutes were required, therefore a total of 197 hours were 

saved. 

.This number is prohibitive, and hence we formulated a method to gather all this data based 

on the partial information that was already acquired in the static stress experiment. The basic 

intuition that guided this reasoning was that transition stress is a function of the static stress of 

each of the two gestures participating in the transition. Assuming a linear relationship between 

the transition stress and the static stress, it is possible to create a linear regression function. To 

validate the linear assumption, a short experiment including a small subset of the master set, was 

used. Our training subset used all the transitions between the gestures (1,7,25,27,28,29), and 

transitions between all the gestures (4,6,8,10,16,27). The sample set used all the transitions 

between the gestures: (30,31,32,33,34,35). Twelve, seven and seven participants took part using 

the first, second and validation sets respectively. 

 

6.4.5 Results and Analysis 

The average stress and standard deviation of holding each of the master set gestures (a total of 

27 originals plus 2 additional = 29), is shown in Table  D.16. The results for the average transition 

stress using two subsets of six gestures each is presented in Table  D.17 and Table  D.18. 

Collectively both subsets used for the transition stress experiment, result in a total of 60 

observations 2*6(6 -1)
2
. To establish a linear regression function, define SGi and SGj as 

independent variables where here SGi and SGj represent the stress of holding gesture Gi and Gj 

respectively. Let the dependent variable SGij represent the transition stress from changing gesture 
Gi to Gj. The regression function can now be stated as 

SGij=a1*SGi + a2*SGj 

Note that this regression function goes through the origin. The reason for this, is that a 

transition stress between two equal postures takes zero effort to hold (the relax posture, for 

example) must be zero as well.The regression analysis yielded a R
2 

of 0.977 and regression 

coefficients of a1=0.091 and a2=0.905 with the significance levels of 0.01 and a 0, respectively. 

The standardized mean squared error is a good indication of how close the initial assumption was 

to the reality. A scatter plot of the data and the regression line along with the detailed results of 

the regression are presented in Appendix H. 

Similar to the model to predict the transition stress, a function to predict the transition time 

from a start posture to an end posture was pursued. It was reasonable to think that changing the 

posture to a stressful gesture, will take longer, than changing to a comfortable posture. If the 

gesture was highly unpleasant, it will take several minutes or may be even impossible to imitate 
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the gesture correctly. Alternatively, releasing a stressful gesture from tension was almost 

instantly.  

By using all the 60 observations including transition times from transitions between different 

gestures, a prediction model using linear regression through the origin (without constant term) is 

constructed. Let the independent variable be TGij , the transition (duration) time from changing 

gesture Gi to Gj. The hypothesed regression function then becomes: 

TGij=b1*SGi + b2*SGj 

In this case, the R
2
= 0.95, and b1=0.104 and b2=0.973 with the significance of the coefficients 

0.063 and 0 respectively. Results of the regression run and a scatter plot can be found in 

Appendix H. 

A subset 6 out-of-sample gestures (taken from the large master set Gz , not from the master set 

Gm), labeled 30-35 was used to validate the resultant regression functions. Seven participants (not 

those that participated in the training) took part in the validation experiments. To show that the 

model found in the previous experiments would predict, the transition stress and duration six out-

of-sample gestures were used. Figure  6.15 and Figure  6.16 show the regression results for the for 

the transition stress and transition duration experiments, respectively. 

 

6.4.6 Discussion 

From Table  D.16 we see that gestures 29 and 28 received high stress values, and hence, 

corroborates the initial assumption that those gestures appear very stressful to hold, (Figure  6.14). 

These gestures also received higher standard deviations probably, due to the fact, that difficult 

gestures are perceived slightly different by different people, (depending on tendon flexibility and 

the skill of the participant), while there is a wide consensus on how stressful medium and low 

stress level gestures are. For gesture 12 (Figure  6.17) the same situation occurs; as it is the next 

most difficult gesture after 28 and 29 with a high standard deviation. For gesture 12 the wrist is 

bent toward the thumb, which is less stressful than bending the wrist toward the ring finger, 

however this is considered a special case of ulnar deviation, and per se, one of the most 

difficulties cases described above. 
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Figure  6.15. Plot between real and predicted transition stress (validation) 
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Figure  6.16. Plot between the actual and predicted duration time (validation) 

 

12  

Figure  6.17. Difficult gesture caused by ulnar deviation 

The difficulty of gestures can be explained by the effects of static load blood flow restriction 

on the stressed joints which causes strain and fatigue on the muscles. People prefer motion of the 

limbs to static posture. An example of this, is when holding and stressful posture for long time, 

we extend and retract the joint of the fingers to relief from stiffness.  Frequently fatigue is well 

pronounced on the wrist as a result of its posture and as a direct result of fingers and hand 

repetitive motion. Several rules of thumbs are used regarding wrist postures [Griffins, 2001]: 

1) Avoid Extension: Bending the hand upward at the wrist 

2) Avoid Flexion: Bending the hand downward at the wrist 

3) Ulnar Deviation: Bending the wrist toward the ring (little) finger. 

 

Regarding the transition stress, interesting results were obtained from the experiments. The 

regression analysis conducted with both subsets of gestures, points to the fact that the transition 

stress is affected mostly by the ending posture. Actually, 90% of the static stress of the final 

posture is present in the transition stress between the starting and ending posture (the coefficients 

of the regression were a1=0.091 and a2=0.905, respectively). The same observation occurred for 

the duration of the transition, which depended also 90% on the ending posture stress (the 

coefficients of regression were b1= 0.104 and b2=0.973). Without the prediction stress model, it 

would be necessary to find 30 transitions, the duration of the experiment was 30 minutes and at 

least 19 students are necessary. For 622 observations, 622*19=11818 minutes were required, 

therefore a total of 197 hours were saved. 
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6.5 Validation Experiment (Task Completion Time Performance) 

6.5.1 Overview 

The purpose of these experiments was to test the claim presented in the beginning of this 

thesis, that the analytical performance measures Z1, Z2, Z3 may act collectively as proxies for task 

completion time. This implies that good vocabularies as measured by high intuitiveness, comfort, 

and accuracy correspond to reduced task completion time; and bad vocabularies with low 

intuitiveness, high stress (low comfort) and low recognition accuracy correspond to longer task 

times. We state this in terms of the hypothesis ( 1.2) (one for each task). GVG and GVB are sets of 

GVs where GVG GVB i.e.  Z
G

i > Z
B

i (i=1,2,3). With respect to the performance of a task, for 

repeated trials for a given vocabulary we shall obtain a learning rate curve. The learning curve 

shows an improvement in performance as the task is repeated a number of times [Asher, 1956; 

Boston Consulting Group, 1970; Wright, 1936]. We selected the standard times of the learning 

curve to represent the run time performance of a given GV. Thirty two users participated in this 

experiment. Each user tried one different GV for 15 trials. Previous experiments showed that 15 

trials are enough to reach standard times. [Wachs et al., 2002]. 

 

6.5.2 General Set Up 

The following experiments use the hand gesture recognition system, with a similarset up to 

Section 6.4. The only difference is that now the video capture stream is activated, using the WE-

160 Panasonic Video Imager connected to the Matrox Meteor Standard frame grabber. The user 

controls the actions in the applications by evoking commands using hand gestures. A top view of 

the gestures that are captured from the wrist to the finger tips (Figure  6.11). 

 

6.5.3 Software Application 

Three applications were used in this experiment. The first is an interface that lets the user 

select the type of task to complete, and the type of vocabulary to be used in the task. The user’s 

selection must respect a guideline in which a task and vocabulary are assigned to each user. Two 

types are presented to the user: the VMR and the robotic arm tasks and the user must select one. 

The vocabularies are indexed from 1 to 16 for each type of task. The first eight are considered 

“Good GV’s” and the last eight are “Bad GV’s”, to be described in Section  6.5.5.1, however no 

indication is given to the users about this determination. On the right side of the screen the 

number of times that each task is performed by the same user is displayed, (Figure  6.18).  

 

 

Figure  6.18. Main application for task and vocabulary selection 
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The main interface launches either the hand gesture robotic arm control system (Figure  6.19) 

or the hand gesture VMR control system (Figure  6.20) depending on the user selections.  

 

 

Figure  6.19. Hand gesture robotic arm control system 

 

 

Figure  6.20. Hand gesture VMR control system 

 

Each system has a similar layout: in the top left side of the screen, appears the capture 

window, which present continuous video images acquired with the Panasonic Video Imager. The 

hand gesture is displayed when the user holds his hand under the camera, and appears black and 

white as a result of the preprocessing stage. A small label with the name of the command is 

written in the top left of this window, when the gesture is recognized, otherwise is written 

“Unrecognized”. On the top center of the screen, a row of vocabulary images are shown. The row 
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of thumbnails images of gestures in the gesture vocabulary are displayed as a reminder. Above 

each gesture a command name associated to the gesture is presented. This way the user knows 

which command is evoked while the user is holding a posture. Below the capture window, in the 

main area of the screen, the virtual 3D model of a 5 DOF robotic arm or a VMR are presented 

according to the type of task. On the right of the main screen there are two buttons: “Run” used to 

start the video capture process, and “Close” used to close the application.  

 

6.5.4 Procedure 

Sixteen subjects participated in this experiment. One type of task was assigned to each subject 

(Robotic arm or VMR), and one vocabulary from the sixteen available for each task. The 

assignment (user, task type, and vocabulary) is given to the user in a guideline by the tutor. The 

first eight vocabularies are from the VG set (GVG(i) , i=1,..,8), and the last eight are from the VB set 

(GVB(i) , i=1,..,8). Each subject tested one vocabulary. Once the subject selected the task, and 

vocabulary from the main interface, (Figure  6.18), the application with the appropriate task is 

launched, and the controlling commands are configured to work with the hand gesture vocabulary 

selected previously by the user. The task is explained to the user, following the description in 

Sections 6.1.1 and 6.1.2. The procedure to complete the task remains the same, but the user must 

control the devices using only hand gestures. To initiate the user on proper posture position the 

user is allowed some trial exercises. The user is asked to try each gesture sequentially until every 

gesture is recognized and the command assigned to that gesture is presented in the top left of the 

capture window. This process is necessary so the user knows how to hold the posture correctly. 

Of course this does not guaranteed that the testee will hold the gesture correctly during the actual 

execution of the task. Moreover, successful learning of the gesture requires repeated practice. 

Once the user knows the commands using hand gestures, he is allowed to start the task. In 

both applications there is a “start” command to begin the task, and once this action is evoked, the 

completion task time is initialized and displayed in the task view. The completion time is stopped 

and recorded after the user evokes the “stop” command, on task completion. Together with the 

completion time, the first and last name, and the identification number of the user are stored. For 

the VMR task the hits on the sides of the road are stored as well. After the first trial the subjects 

receive feedback on task performance. The subjects can also raise questions about the task. In the 

following trials the user completes the task and no help is provided to him. Each subject repeats 

the experiment, for each assigned task-gesture vocabulary 15 times.  

 

6.5.5 Results and Analysis 

6.5.5.1 Generation of Good and Bad Vocabularies (VG and VB) 

To validate the statement that there is a relation between the GV selected and the task 

completion time, is necessary to find eight VG and VB vocabularies, per task type. The VG 

vocabularies are dominating solutions of the VB vocabularies, which means that each GV that is 

from the VG set of vocabularies, has higher associated values for the three indices (accuracy: 

intuitiveness and comfort) than each GV from the VB set. Both vocabularies VG and VB were 

obtained from a series of solutions generated using an initial subset of solutions and a 

combination of weights. Using the CMD (see Chapter  4.5), the initial subset of solution was 

obtained. The VG and VB sets were obtained from initial solutions with high and low recognition 

accuracy, respectively. To acquire solutions with high recognition accuracy, the CMD can be 

used as presented in Chapter  4.5, however to get low recognition accuracy solutions, instead of 

looking for the argument for the Max in ( 4.11), the argument for the Min is necessary. Eight high 

recognition candidates gestures sets using Amin=96.25% and additional eight low recognition 

candidates gestures sets using Amax=87.81% were selected. The subsets of gestures that yielded 



 

 

77  

high recognition accuracy were called “GHA” and the subsets that yielded low recognition 

accuracy were called “GLA”. The same procedure was used for the robotic arm case, where the 

subset of gestures necessary was ten. The upper and lower bounds were Amin= 98.33% and 

Amax=90.667% for the GHA and GLA respectively. Table  6.3 and Table  6.4 show the 16 subsets of 

gestures for the VMR and 10 subsets of gestures for the robotic arm cases, respectively. The top 

half of the table included the solutions for the GHA and the bottom half for the GLA.  

 

Table  6.3. Initial subset of gestures for the robotic arm case 

 

id GHA+LA Acc(%)

9 6 7 8 10 12 13 17 21 99.38

10 6 7 8 10 12 17 20 21 99.38

11 6 7 8 10 12 17 21 23 96.25

12 6 7 8 10 12 17 21 24 99.06
13 6 7 8 10 12 17 18 21 99.69

14 6 7 8 10 12 17 22 24 97.50

15 6 7 8 10 12 17 18 20 99.38

16 6 7 8 10 17 21 26 27 99.69

1 1 2 3 4 5 10 20 26 88.13
2 1 2 3 4 5 10 20 23 84.69

3 1 2 3 4 5 10 22 26 86.88

4 1 2 3 4 5 10 17 22 86.56

5 1 2 3 4 5 10 13 17 87.81

6 1 2 3 4 5 10 13 23 84.69

7 1 2 3 4 5 10 13 22 86.56
8 1 2 3 4 5 10 18 22 86.88  

 

Table  6.4. Initial subset of gestures for the robotic arm case 

id GHA+LA Acc(%)

1 4 6 7 8 10 11 13 14 16 17 19 20 24 26 27 98.5

2 4 5 6 7 8 10 11 14 16 17 19 20 24 26 27 98.5

3 5 6 7 8 10 11 13 14 16 17 19 20 24 26 27 98.33

4 4 5 6 7 8 10 11 13 14 16 19 20 24 26 27 98.33

5 4 5 6 7 8 10 11 13 14 16 17 19 24 26 27 98.33

6 1 2 3 4 5 9 12 13 15 16 17 19 20 23 27 90.67

7 1 2 3 4 5 6 9 12 13 15 16 17 19 20 23 90.67

8 1 2 3 4 5 7 9 12 13 15 16 17 19 20 23 90.67

9 1 2 3 4 5 8 9 12 13 15 16 17 19 20 23 90.67

10 1 2 3 4 5 9 10 12 13 15 16 17 19 20 23 90.67  
 

From the initial solutions obtained from Table  6.3 and Table  6.4 a series of associated 

solutions was generated. To obtain a set of associated solutions, for a given GV in from GHA or 

GLA the weights w1,w2, given to the intuitiveness and comfort objectives, in the QAP(Gn) (see P 

 4.4) were varied. Each of the weights w1 and w2  were varied from 1 to 10 in steps of 1, such that 

w1+w2=10. Hence, a total of 11 combinations of weights, for each of the 16 solutions for the 

robotic arm case, yield in 176 solution points, and for the VMR case, the 11 weight combinations 

for each of the 10 solutions, yielded in 110 solution points. These solutions appear in Figure  6.21 

and Figure  6.22, where the solutions generated using the same GHA or GLA (same accuracy value) 

are connected with a line.  
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Figure  6.21. Intuitiveness vs. comfort families of 16 curves for the VMR study 
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Figure  6.22. Intuitiveness vs. comfort families of 10 curves for the robotic arm study 
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It should be noted that a few equal solutions were obtained for different values of the weights 

(w1 ,w2), and thus appear as a single point in the graph. It is to be noted that these tradeoff curves 

are mostly piecewise convex (few points do not follow this pattern due to the non-exact solutions 

obtained from the simulated annealing approach used to solve the integer QAP(Gn) (P  4.4). 

Eight dominating and dominated solutions were selected from the 176 and 110 solutions for 

the robotic arm and VMR study, respectively. The selection can be done visually, by picking, for 

the VG set, from the family of curves figures, those points that are placed on the upper right side 

of the curves, and for the VB set then, by selecting points on the bottom left side of the plot. 

These points for the VB set must be dominated by the points selected for the VG set. For an 

explanation of dominating ad dominated solutions, see  Appendix B. Table  B.1 presents the 16 

GV solutions. The first 8 rows are for the VB solutions and the last 8 are for the VG solutions. 

Table  B.2 presents the results for the robotic arm study. To see the images of the gestures 

associated to the commands, for each of the VG and VB sets, see Appendix C. 

 

6.5.5.2 The user learning curves 

The task completion time (the robotic arm and VMR) for all the 16 users in the 15 trials each, 

(total of 240 trials) are presented in the Table  6.5 and Table  6.6, respectively.  

 

Table  6.5. Completion time for the robotic arm task 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 AVG 3AVG

1 283 177 151 153 213 125 96 107 104 107 95 88 86 95 99 93

2 171 229 177 144 165 197 94 99 126 85 96 85 81 99 84 88

3 240 232 150 138 128 115 129 141 111 108 98 88 89 80 85 85

VG 4 207 144 123 92 116 104 93 75 77 80 95 92 71 83 67 74 88

5 208 139 99 112 106 84 88 83 88 159 86 121 80 87 88 85

6 223 183 160 136 162 242 118 97 92 112 100 102 89 90 81 87

7 244 236 292 155 164 147 100 97 109 102 101 97 104 122 96 107

8 167 121 98 81 107 90 87 78 83 115 78 89 84 62 109 85

9 260 300 129 135 150 91 136 133 125 126 131 134 87 103 98 96

10 255 131 118 136 140 142 136 101 96 218 96 83 110 107 80 99

11 300 293 300 236 243 236 300 162 208 157 198 127 100 125 132 119

VB 12 300 229 221 165 123 130 155 169 125 111 111 114 91 115 114 107 119

13 300 300 237 255 300 209 271 250 134 121 191 124 139 164 125 143

14 300 282 296 242 294 257 160 173 187 179 166 122 115 126 155 132

15 300 260 184 300 148 178 137 148 124 115 98 107 102 85 91 93

16 190 196 223 135 226 128 236 265 266 135 267 184 141 182 168 164

GV  \  Trials

 
. 

Table  6.6. Completion time for the VMR task 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 AVG 3AVG

9 300 278 180 188 179 162 149 143 144 114 103 112 121 103 123 116

10 294 174 148 136 151 138 134 130 138 115 120 117 118 126 118 121

11 229 207 186 137 142 133 147 133 145 140 132 129 116 117 119 117

VG 12 177 142 158 170 133 129 119 119 114 115 112 121 113 111 104 109 115

13 300 251 222 181 255 168 163 160 135 133 139 145 121 132 134 129

14 275 182 135 141 127 115 110 110 101 97 97 103 98 104 95 99

15 261 148 145 224 136 160 149 159 143 156 143 130 131 142 113 129

16 160 138 122 130 106 110 111 100 98 105 106 103 96 103 94 98

1 300 283 226 182 173 175 194 170 170 167 178 180 130 147 152

2 255 255 239 186 189 222 214 151 169 169 157 151 144 128 200 157

3 300 300 300 190 183 147 171 147 188 127 180 132 127 153 155 145

VB 4 300 300 265 249 231 233 192 167 177 180 137 126 156 155 143 151 153

5 300 252 212 196 195 171 169 155 173 149 141 130 146 135 143 141

6 300 265 242 233 158 189 144 162 127 147 119 125 113 134 112 120

7 300 326 229 251 243 253 241 202 214 200 192 223 214 157 169 180

8 251 194 173 205 182 161 204 205 300 159 211 228 171 191 170 177

GV  \  Trials
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In these tables, the rows stand for the different GV’s, and the columns for the trial numbers. 

Each GV was tested by a different participant. The last column of the tables shows the average of 

the last 3 trials, for which we consider the standard task completion time. The first eight rows 

used “good GV’s” (VG) while the last eight rows used “bad GV’s” (VB) for the robotic arm task, 

and the opposite for the VMR task. Figure  6.23 show the robotic arm task learning curves for the 

VG and VB vocabularies, respectively. The learning curves for VG and VB obtained in the VMR 

task are presented in Figure  6.24. Scatter plots can be found in Appendix G. 
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Figure  6.23. Learning curve for the VG and VB vocabularies used for the robotic arm task 
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Figure  6.24. Learning curve for the VG and VB vocabularies used for the VMR task 

 

Using best fit learning curve equation ( 3.14) for the VG and VB vocabularies for the robotic 

arm task are Yn=217.89 n
-0.348

 and Yn=298.27 n
-0.327

, respectively. The learning rate, using ( 3.15) 

for the VG and VB are r=0.785 and r=0.797 respectively. In the VMR task the learning equations 

for the VG and VB vocabularies are Yn=229.86 n
-0.273

 and Yn=302.16 n
-0.260

 , and the learning 
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rates, for the VG and VB are r=0.827 and r=0.835, respectively. A lower learning rate means faster 

learning. 

To test the hypothesis in ( 1.2), a t-test was performed between standard completion times for 

the VG and VB sets for both the robotic arm and VMR. To determine the standard times, an 

average of the last three trials of the learning curve was taken. Table  6.5 shows that the mean 

completion time for the robotic arm task using VG was much shorter than the time using VB 

(τ(GVG) =87.98 sec< τ(GVB)=118.95 sec). This is true with a p=0.0059 at the .5% level of 

significance. For the VMR task, (Table  6.6) also the task completion time using VG was shorter 

than using VB (τ(GVG)=114.67 sec< τ(GVB)=153.04 sec). This is true with p=0.00031 at a .03 

percent level of significance. The complete t-test runs are placed in Appendix H 

 

6.5.6 Discussion 

Experimental results indicate the connection between the selected gesture vocabularies and 

task completion and learning times. For the robotic arm task, the learning curves showed that 

standard times are reached after 13 trials. The averaged completion time using the last three trials 

and the VG reached shorter standard times (p= 0.0059) than using the VB. For the VMR task, in 

which the averaged completion time was compared between the VG and VB vocabularies, the time 

to complete the task using VG was also significant shorter than using VB (p=0.000313). 

Regression results provided two exponential learning curves with learning rates of r=0.785 and 

r=0.827 for the VG and VB respectively, for the VMR task, and when using the robotic arm task 

the results were r=0.827 and r=0.835 for the VG and VB, respectively. 

In both tasks, the use of the VG vocabulary yielded shorter standard task completion times 

(the robotic arm task τ(GVG) =88 sec< τ(GVB) =119 sec, and the VMR task τ(GVG) =115 sec < 

τ(GVB) =153 sec). Therefore, the main hypothesis ( 1.2) is true. This indicates that the use of a 

more natural vocabularies have a positive direct impact on the performance of the task, by 

reducing its completion time. In the case of VG, it is possible to see that the first trial is much 

shorter than using VB (the robotic arm task 218 sec< 298 sec, and the VMR task 230 sec < 302 

sec), which corroborates that VG is easier to use for a beginner than VB. Regarding the learning 

rate, it was lower for VG than for VB (the robotic arm task 0.785<0.797, the VMR task 

0.827<0.835). A smaller learning rate represents faster learning. Therefore beginner users should 

find that is faster to learn using a VG than the VB, and standard times will be reached quicker than 

using the VB. 

The process of learning is related strongly to the intuitiveness aspect of the vocabulary, while 

the performance time is also affected by the stress factors of the vocabulary. 

 

6.6 The Memorability Test Experiment 

6.6.1 Overview 

To establish whether there is a relation between the naturalness of a GV and the memorability 

of the subject when using that GV, a post-validity experiment was conducted. This experiment 

was performed immediately after finishing the task completion time experiment (Chapter  6.5). 

The users connect, through an application, commands to gestures, reflecting the associations 

existing in the GV that was assigned to them, in the previous experiment. The goal of this chapter 

is to validate the hypothesis ( 1.3).  

 

6.6.2 General Set Up 

The memorability experiment required only a computer station, placed opposed to the 

computer with the Panasonic Video Imager, and hence the user was not able to see the previous 



 

 

83  

set up to avoid clues in the memory testing process. In this PC station, an application was 

executed for the subjects use. 

 

6.6.3 Software Application 

The memorability application (Appendix A), is based on a computer screen display where  on 

the left side there are a list of all the commands necessary to complete the task.  Close to each 

command there is an arrow icon pointing to the opposite side to the command. On the bottom part 

of the form there is a collection of thumbnails, representing the common set of gestures. Each 

thumbnail can be dragged to the right side of the arrow, connecting it to a command. 

 

6.6.4 Procedure 

At the completion of each of the 15 trials for each task completion time experiment, the 

subject is presented with the memorability application discussed above. For the robotic task the 

list includes 15 commands, while for the VMR it only includes 8. At the bottom of the form there 

is a group of 27 gesture postures thumbnails. The user is instructed for each command to select 

and drag a thumbnail adjacent to it. This represents the gesture the subject remembered as being 

associated with the command during the experiments. It is explained to the user that he will 

remain with extra thumbnails that were not selected to be associated with the commands at the 

end of the test. In case that the user does not remember the association he can choose to leave the 

command without a paired thumbnail. When the memorability test is finished, the user fills out a 

hardcopy feedback form, where he can express any problems that he/she encountered, suggested 

improvements, etc. Additional information about gender, whether he is left or right handed, or 

has coordination problems are also collected in this form. See Figure  A.3, for a copy of the 

feedback form. 

 

6.6.5 Results and Analysis 

The score for this task is a measure of memorability, based on the percent of correct 

associations. For the robotic task, Table  6.7 and Table  6.8 show the result of the memorability 

test for the robotic and VMR tasks, respectively. The success column stands for the memorability 

score in percent. The last column indicates the type of vocabulary (VG for Good GV, and VB for 

Bad GV). The average memorability scores for the robotic task were found to be 87.5 and 

70.83% for the VG and VB, respectively. To confirm whether this is a significantly different, a t-

test was conducted. The t-test results are shown in Table  H.9 in Appendix H. The result shows 

that the mean scores are significantly different (0.053 ~= 0.05) at the 5 percent level. 

For the VMR task, the average percent memorability scores were high at, 96.66 and 95%. The 
t-test showed that the difference was far from being significant (0.58>>0.05) at the 5% level. The 

t-test results are shown in Table  H.10 in  Appendix H. 

 

6.6.6 Discussion 

The robotic VG vocabulary memorability test performed immediately after the 15 repetitions 

of the task trials shows that two individuals found all matchings between commands and gestures 

with no errors. The worst test was done by one individual who confused four matchings. With the 

same task however, using the VB, only one subject succeeded in matching all commands-gestures 

correctly. The worst performance included nine matching mistakes. It can be concluded that the 

more natural vocabulary was easier to remember than the less natural (p=0.053). 
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Table  6.7. Memorability score test for the robotic arm task 

Subj N GV Gender Errors Success (%) Type

1 1 F 4 73.33 GG

2 2 M 0 100 GG

3 3 M 0 100 GG

4 4 M 2 86.67 GG

5 5 F 2 86.67 GG

6 6 M 3 80.00 GG
7 7 F 3 80.00 GG

8 8 M 1 93.33 GG

9 9 M 5 66.67 GB

10 10 M 3 80.00 GB

11 11 F 8 46.67 GB

12 12 F 9 40.00 GB

13 13 M 2 86.67 GB

14 14 F 5 66.67 GB

15 15 F 3 80.00 GB

16 16 F 0 100 GB  
 

Table  6.8. Memorability score test for the VMR task 

Subj N GV Gender Errors Success (%) Type

1 1 M 0 100 GB

2 2 M 0 100 GB

3 3 M 1 93.33 GB

4 4 F 0 100 GB

5 5 M 1 93.33 GB
6 6 M 3 80.00 GB
7 7 M 1 93.33 GB

8 8 M 0 100 GB

9 9 M 1 93.33 GG

10 10 M 1 93.33 GG

11 11 F 0 100 GG

12 12 M 0 100 GG

13 13 F 2 86.67 GG

14 14 M 0 100 GG

15 15 F 0 100 GG

16 16 M 0 100 GG  
 

The same test was performed on the VMR task. It was found that using the VG, 5 subjects 

matched all commands to the correct gestures. In the worst case, two mismatchings were done by 

one subject. Using the VB, 4 subjects found all the associations (0 mistakes) and in the worst 

performance one subject made 3 mistakes. However the results for the VMR task were not 

statistically significant. It seems that the reason that there was no significant difference in 

memorability for good and bad vocabularies is that the VMR task included only eight commands-

gestures associations. It is not difficult to remember a limited number of associations even when 

there is no correlation at all between the objects to be associated. When the number of 

associations grows, any clue that may help to find a correct association is highly valuable. 

Evidently, the naturalness of a vocabulary is a considerable clue for large vocabularies as shown 

in the robotic arm memorability test. 
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7 Case Studies 

7.1 Overview 

The previous chapter described all the steps required to obtain the human psycho-

physiological input factors (Figure  3.1) for the robotic arm pick and place, and a VMR drive 

tasks. The present chapter adopts the same two tasks as case studies to obtain candidates of hand 

gesture vocabularies for use in a multiobjective criterion problem ( 3.2). Specifically, shows how 

the input factor matrices obtained in module 1 of the architecture (Figure  3.1) were applied to 

modules 1 and 2 of the vocabulary methodology. This means firstly, to find a feasible subset of 

gestures using either of two decomposition methods (DCM or CMD), or secondly to use a 

complete enumeration method. In the last case, a limited complete enumeration run is presented 

due to the complexity of the problem. For module 3, the command matching algorithm is used for 

each subset of gestures. The feasible solutions (GVs) are presented to the decision maker together 

with an approximate set of pareto points GV’ to aid the decision maker in the selection of a single 

GV. Denote the set of feasible GV solutions found as Γ. A solution GV’∈ Γ is said to be Pareto 

optimal (or a non –dominated solution for the MCOP), if and only if, there is no other GV∈ Γ 

such that Zi(GV)≥ Zi(GV’) for all i=1,2,3, with at least one strict inequality. 

 

7.2 Determination of Input Matrices – Module 1 

As a result of the human factors experiments, the frequency, direct and complementary 

intuitiveness, stress and duration matrices were obtained. A normalization step was necessary to 

have all the matrices in the same range of values. Let bij be elements of any arbitrary matrix B 

that we want to normalize, let Qtot be the sum of all the elements in the matrix. Let l be the 

scaling factor, and 
ijb  the elements of normalized matrix B. The values of 

ijb  are obtained by 

applying ( 7.1) and ( 7.2). The scaling factor lwas 1000 for the frequency, direct and 

complementary matrices, and was 100000 for the stress and duration matrices to get normalized 

values from 0-999.  

 

∑∑=
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i

m

j

ljtot fQ
 

( 7.1) 

l×=
Q

b
b

ij

ij
 ( 7.2) 

 

Normalized matrices for the robotic arm and VMR task respectively were calculated using 

( 7.1) and ( 7.2). In Table  D.25 and Table  D.26 the frequency matrices have rows and column 

indices corresponding to commands. For the intuitive matrices, (Table  D.5 and Table  D.6), the 

indices of the gestures appear in the first column, and the indices for the commands appear in the 

first row. The commands and their respective index are presented in Table  6.1 and Table  6.2. 

Table  D.13 and Table  D.14 show the complementary matrix with the indices of each gesture in 

the first and second columns, the rest of the columns are for the indices of pairs of 

complementary commands. For example, the index ‘1’ represent the first two commands in Table 

 6.1 or Table  6.2, the index ‘2’ represent the second pair of commands in those tables, and so on. 

Both the direct and complementary intuitiveness matrices used were weighted. The stress and 

duration matrices show values for the union of gestures used in both tasks. There are 22 and 23 

gestures in the VMR and robotic arm gesture master set, respectively (Appendix E). The process 

to obtain these master sets was detailed in section  6.3.5.1. There are 27 gestures in common 

between both master sets therefore only one matrix for the stress and duration values is necessary. 
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7.3 Finding the Recognition Accuracy for Gn using the calibrated FCM 

– Module 2 

The proposed methodology explained in chapter  5 was used to calibrate the FCM algorithm 

This procedure requires several iterations to converge for a given subset of gestures instances. Its 

complexity grows with the number of gestures used in the training set. Since is not known which 

subset yield the best accuracy, was proposed earlier to find this subset through the construction of 

a tree of solutions, where each child of the tree, is a subset of gestures obtained with the help of a 

Disruptive Confusion Matrix (DCM). For every node, the supervised FCM must find the best set 

of operational parameters, and hence the best recognition accuracy. 

This method is useful for systems with a small number of gestures in the master set (<20), 

however for larger master sets of gestures or larger subset sizes, this process may take several 

days, to find a candidate solution GV.  

 

7.3.1 Approximate Accuracy Method 

A different approach suggests that instead of running the optimization procedure for every 

“small” subset of gestures, to run it only once for the master set, and derive the candidate subset 

of gestures from this single run. Gesture classification is achieved through a fuzzy clustering 

algorithm, where each cluster means a gesture class. Let assume that for a data set of m gestures, 

the supervised FCM was optimized to achieve optimal recognition accuracy. When the 

supervised FCM procedure was ran again for a subset of n<m gestures, it was discovered that 

centroids of each of the n clusters were very close to the centroids found the first time the 

supervised FCM procedure was used. Therefore, to find the accuracy of subsets of gestures of 

size n from the master set of gestures of size m, an approximation retains all the n centroids for 

the selected subsets of gestures of size n and removes the remaining m gestures. The main 

advantage of this approach is that the supervised FCM optimization procedure is ran only once 

for the master set, and the recognition accuracy for any smaller gesture set, is deduced from the 

original partition. The recognition accuracy of any smaller subset of gestures than the master set 

can be obtained using the confusion matrix created from the original partition Cm. The confusion 

matrix for the smaller subset of gestures Cn will include only the rows and columns for the 

gestures in Gn. 

 

7.3.2 Training the FCM Classifier thru Parameter Search 

The gestures used to train the FCM classifier with the parameter neighborhood search were 

those in the master set for the robotic arm and the VMR tasks. Each master set was used to train a 

different independent system. Both systems were trained by eight participants. For each gesture 

in the master set, five images were acquired from each participant, and therefore 40 samples per 

gesture. The first system was used for the VMR task, and with n=22 gestures, and therefore a 

total of 880 samples were used to train it. In the robotic arm system, m=23 gestures and therefore 

920 samples were used. 

The supervised FCM optimization procedure was applied first on the independent system for 

the VMR master set. To find a good initial solution of the parameter vector for the optimization 

of the supervised FCM, nine solutions were generated using the five heuristic rules explained in 

[Wachs et al., 2005]. In Table  J.1 the nine starting solutions are presented. 

Using initial cluster-value limits of 15 and 25, the nine starting solutions in Table  J.1 were 

used to start the NS algorithm, for the supervised FCM. Using each starting solution, the 

corresponding final solution was compared. The initial solution that yields the best accuracy was 

the solution number 5. The sequence of solutions starting from initial solution 5 is shown in 

Table  J.2 and Figure  7.1. 
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Figure  7.1.  Recognition accuracy versus iterations for solution 5 – VMR gesture set 

 

From this run, one sees the parameter changes throughout the convergence profile. To speed 

up the convergence process, in the beginning only 30 samples per user, for each gesture were 

used. Once it converged in iteration 11, another 10 instances per user were added to each sample 

set, for each gesture. This caused a decrease in the accuracy, since the total instances grew from 

690 to 880. However it took another 13 iterations to achieve the near optimal accuracy. 

In order to find the near optimal parameter vector for the robotic arm master set of gestures, 

the near optimal parameter vector found for the VMR gesture set, was used as a good initial 

solution. Here the assumption was that this initial guess was probably better than any of the nine 

solutions obtained using the five heuristics rules. The reason for this was that the  master set for 

the VMR has only four new gestures, that the  master set for the robotic arm is lacking of, on the 

other hand the robotic arm master set has five gestures that were not in the master set of the 

VMR. Therefore, most of the centroids representing the gestures, remained in the same places, 

and five new centroids were added, and four were discarded from the partition for the VMR 

example. The parameter optimal solution for the robotic arm case appears in Table  J.3 and Figure 

 7.2 shows that convergence was reached only three iterations. The final confusion matrices for 

the optimal parameter vector obtained for the VMR and robotic arm cases are presented in Table 

 J.4 and Table  J.5. 

The confusion matrices reveal the possible reasons for the recognition accuracy lower than 

100%. For the VMR and robotic arm cases, the most significant confusion happened between 

gestures 1 and 3. Only 42.5% instances of gesture 1 were satisfactory recognized for the VMR 

case. In the robotic arm case, 72.5% instances of gesture 3 were recognized. Visual inspection of 

both gestures shows a high similarity between them, both are very close to a fist, and therefore 

the block features used might not be robust enough to discriminate between these gestures 

(Figure  7.3). 

The best recognition accuracy 93.41% for the VMR task was obtained after 24 iterations 

(Table  J.2). For the robotic arm task, the best recognition accuracy 93.91% was obtained only 

after 4 iterations, using the optimal solution for the robotic arm task, as the initial solution for the 

run (Table  J.3).  
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Figure  7.2. Recognition accuracy versus iterations  - robotic arm  gesture set 

 

  

  

  

Figure  7.3. Gesture 1 and 3 highly confused, in the VMR case 

 

7.4 Solution by two Stage Decomposition Method – (Modules 2 and 3) 

The two stage decomposition approach suggests relaxing the multiobjective problem to two 

sub problems. The first stage, finds a feasible subset of gestures from the master set, given some 

recognition accuracy threshold. Amin (module 2). The second stage uses the human factors 

matrices values for the subset of gestures found in the first stage. The solution of the second stage 

is a set of GVs, each obtained by finding the best match between n commands and gestures so the 

sum of the total intuitiveness and comfort are maximized (module 3). The matching solution 

depends also on the weights assigned to each of the intuitiveness and comfort components, as 
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expressed by ( 3.4). Section  4.3 discussed two different methods for the subset selection. The first 

is the Disruptive Confusion Matrix (DCM) and the second is the Confusion Matrix Derived 

Solution (CMD). The CMD method was used here because of the size of the master set of 

gestures Gm was large (>20), and hence the computational time to compute the recognition 

accuracy for each is untenable. The CMD method is an approximation method for determining 

subsets of gestures and their associated accuracies. It requires using the supervised FCM 

optimization procedure only once and values from the confusion matrix to approximate the 

recognition accuracy of the subset. The feasible solutions of gestures subsets were obtained using 

the confusion matrix derived solution method algorithm (CMD), as described in Section  4.5 

The algorithm CMD was used to generate five solutions, for the robotic arm and the VMR 

cases. The value of the minimum accuracy accepted was Amin=100% and Amin=98.33% for the 

VMR and robotic arm studies respectively (Table  7.1 and Table  7.2).  

Once the subset of gestures that meet the constraint of the minimal recognition accuracy were 

found it was possible to proceed to Stage 2. This stage matches the commands to gestures in such 

a way that the psycho-physiological measures are maximized by solving the binary integer 

quadratic assignment problem QAP(Gn). Each the intuitiveness and the comfort measures were 

scaled by weights that reflects the importance of each factor on the solution. A set of candidate 

solutions associated with each subset Gn, selected in Module 2, was determined. These were 

obtained by changing each weight w1,w2 from 0 to 10, in steps of 1, such that w1+w2=10. The 

solutions generated reflect the gradually effect of intuitiveness over the comfort, and part of them 

reflect the opposite. The enhanced simulated annealing algorithm was used to solve the quadratic 

assignment problem QAP(Gn).  

 

Table  7.1. The subset of gestures for the VMR case 

i Gn Acc(%)

1 6 7 8 10 12 16 18 21 100

2 6 7 8 10 12 16 18 25 100

3 6 7 8 10 12 16 18 26 100

4 6 7 8 10 12 16 18 27 100
5 6 7 8 10 12 16 21 25 100  

 

Table  7.2. The subset of gestures for the robotic arm case 

id Gn Acc(%)

1 4 6 7 8 10 11 13 14 16 17 19 20 24 26 27 98.5

2 4 5 6 7 8 10 11 14 16 17 19 20 24 26 27 98.5

3 5 6 7 8 10 11 13 14 16 17 19 20 24 26 27 98.33

4 4 5 6 7 8 10 11 13 14 16 19 20 24 26 27 98.33
5 4 5 6 7 8 10 11 13 14 16 17 19 24 26 27 98.33

 

 

For each pair of weights combination (w1,w2) and a subset of gestures Gn, a solution was 

obtained in terms of a gesture-command matching and values of Z2 and Z3. Since there were 5 

different subsets of gestures, and 11 combinations of weights, a total of 55 solutions were 

obtained, for the VMR. For the robotic arm case, also 5 subset of gestures were used, and hence a 

total of 55 solutions were obtained. The plots in Figure  7.4 and Figure  7.5 show the intuitiveness 

versus the comfort for each solution Gn. The solutions obtained through combinations of weights 

for each solution Gn, are connected together, forming a curve. Therefore they show a family of 

curves for the VMR and the robotic arm studies respectively. These views are orthogonal to the 

recognition accuracy. From this set of solutions, it is possible to find the pareto set of GVs. 



 

 

90  

Table  B.3 and Table  B.4 show the Pareto points (non dominated solutions), found from the 

families of curves generated using the different weights for the VMR and robotic arm, 

respectively. The number of pareto points were 11 and 13 shown in Table  B.3 and Table  B.4 for 

the VMR and robotic arm, respectively. The first column shows the solution number from which 

the curve was generated, the second shows the point number from the 155 points, the third shows 

the subset of gestures used Gn. The fourth column shows the solution, where the place of each 

gesture index, means the command that was matched with that gesture. The next three columns 

are for the intuitiveness, comfort and accuracy indices. The last two columns are the weights for 

the intuitiveness and comfort respectively. Figure  7.6 and Figure  7.7 show the GV solutions and 

the pareto points, for the VMR and robotic arm study respectively, plotted in the 3D coordinate 

system of the three multiobjectives. Each point represents a solution in terms of intuitiveness, 

comfort and accuracy values. 

 

7.5 Solution by Multiobjective Method 

Due to the large computer run times this method was used in the VMR study only. The two 

stage decomposition method does not assure to find the best GV, since only a promising subset of 

solutions is investigated. Those solutions are the subset of gestures, Gn, with high accuracy (over 

the Amin specified minimal accuracy estimated acceptable by the user) from the reduced master 

set Gm. However is not possible to say whether there are other subsets of gestures in the solution 

space that will yield in the pareto points. The only way to find all the pareto solutions GV is 

through a complete exhaustive search of the solution space or the use of heuristic multiobjectives 

like the evolutionary (GA) multiobjective method [Deb et al., 2000]. Given a gesture set of size 

m and a command set of size n, there are m!/((m-n)!n!) different possible subsets. Each subset of 

gestures can be matched with commands in n! different ways, hence the total number of subsets 

is m!/(m-n)! . Hence, the search space is 1.2*10
10

 and 6.4*10
17

 for the VMR (n=8 and m=22) and 

the robotic arm (n=15 and m=23) respectively. Alternatively, a limited search around an initial 

high recognition accuracy solution will reduce the solution space (a single initial high recognition 

accuracy associated solution was obtained using the CMD method with Amin=100%). For each of 

the 600 set of gestures Gn, a set of associated GV solutions were generated by changing each 

weight w1,w2 associated to Z1 and Z2 , from 0 to 10, in steps of 1, such that w1+w2=10 and 

solving the integer QAP problem, (see the P  4.4) . The set of basic solutions (before the extension 

due to the changes in the weights) was obtained using the following pseudo code based on a 

limited complete enumeration. The parameters used were g
1

L=6 and g
1

H=20 and N=600. The 

lower and upper bounds were selected such that in the first iteration, the first solution inspected 

is= GV1={6,7,8,10,12,13,16,17}. This solution was obtained with the CMD method, so the 

associated recognition accuracy was 100%. A search starting from this high recognition accuracy 

assures solution with high recognition accuracy as well.  

The gestures g4, g6, g9 and g10 were not included in GVj due to the fact that some gestures are 

missing in the gesture master set for the VMR (the gestures are 9,11,14,15 and 19), since they are 

in the robotic arm master set.  

The set of non dominated solutions (pareto front) can be determined from this limited search 

(Table  B.5). For the VMR study 6600 solutions were generated, including 98 pareto solutions, 

and this process lasted for 48 hours. Each GV was represented as a point in a 3D space whose 

coordinates are; intuitiveness, comfort, and accuracy (Figure  7.8). 
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Figure  7.4. Intuitiveness vs. comfort families of 5 curves for the VMR study 
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Figure  7.5. Intuitiveness vs. comfort families of 5 curves of the robotic arm study 
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Figure  7.6. 3D plot for the solutions generated with 5 GV for the VMR study 

 

Figure  7.7.  3D plot for the solutions generated with 5 GV for the robotic arm study 
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The Semi Complete Enumeration Algorithm(N, g
1
L, g

1
H) 

For g1=g
1

L to g
1
H, 

   For g1+1=(g1+1) to (gH+1) 

       ……………………………. 

         For g1+k=(g1+k) to (gH+k) 

………………………………….. 

             For g1+h=(g1+h) to (gH+h) 

                   GVj={ g1,.., g1+k ,.., g1+h } 

                   If (j>N) exit 

            End 

      End 

End 

Algorithm  7.1 The Semi Complete Enumeration Algorithm 
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Figure  7.8. 3D plot of the GV solutions obtained using a semi-complete search for the VMR study 

 

7.6 Discussion 

Two case studies where the two stage decomposition approach and the multiobjective 

solution methods were demonstrated. Two stage decomposition procedure included two different 

metaheuristic approaches to obtain Gn from Gm. Those are the Disruptive Confusion Matrix 

Method (DCM) and the Confusion Matrix Derived Solution Method (CMD). The CMD method 

was used in this chapter because its main advantages are the short running times required for the 

approximated accuracy calculations. The supervised FCM optimization method is only run once 

for the whole reduced master set Gm. The main disadvantage of the CMD method is that the 

solutions are based on a larger (m classes) clustering problem, instead of being obtained from a 
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smaller problem (n classes). In such a case, is likely that the recognition accuracy will be higher 

for fewer classes than for a problem with more classes, when using the supervised FCM 

optimization method. Moreover, using the DCM method, the FCM algorithm is called for every 

subset of solutions Gn, and optimized according to this subset, as opposed to the CMD method, 

on which, the FCM is called only once, and the optimization is based on the general master set of 

solutions Gm.  

The CMD was used to obtain five initial gesture subsets Gn with Amin=100% and 

Amin=98.33%, for the VMR and for the robotic arm, respectively. For each Gn a set of associated 

GVs were obtained and their objective values. For the VMR study, eleven pareto points belonged 

to only curves generated from solutions 1,3 and 5. For the robotic arm study thirteen pareto points 

were obtained using all the 5 solutions, however more than 50% of the points in the pareto set, 

were generated using the first solution. These solutions were showed in a 3D plot, were each axis 

represented the intuitiveness, the comfort and the accuracy. For the multiobjective decision 

approach, a reduced complete search was adopted. Instead of inspecting 1.2*10
10

 and 6.4*10
17

 

for the VMR (n=8 and m=22) and the robotic arm (n=15 and m=23), respectively, an 

approximation method was employed for the VMR task. A total of 6600 solutions were 

generated. Using these solutions, 98 pareto solutions were obtained. These solutions can be 

offered to the decision maker to select the GV according to his/her own preferences. The decision 

maker may wish to prioritize the objectives such that the accuracy Z3 is 1
st
 priority, comfort Z2 is 

2
nd

 priority and intuitiveness Z1 is 3
nd

 priority, using this criteria, the following solution is 

obtained: GV(i=4744)={21,16,6,18,7,8,25,10}(row 42 in Table  B.5). The associated indices to this 

solution are Z1=72, Z2=4167 and Z3=100%. If, alternatively, the decision maker is willing to 

accept a lower comfort in turn for higher intuitiveness he may pick the GV with intuitiveness of 

2907 which has a comfort of 2992, without affecting the recognition accuracy, 

GV(i=1804)={8,6,26,27,12,10,18,7}(row 6 in Table  B.5). Images of the solutions GV(i=4744) and 

GV(i=1804) and are presented in Figure  7.9(a) and (b), respectively.  

 

 
(a) 

 

 
(b) 

Figure  7.9. Two different GV selected by the decision maker. (a) First priority is accuracy. (b) First 

priority is intuitiveness 

 

Examining the solutions obtained, it is clear that the solution in Figure  7.9(a) is less intuitive 

as compared to the solution in Figure  7.9(b). For example, note the lack of complementary 

intuitive pairings in Figure  7.9(a); and the presence of them in Figure  7.9(b). However, the 

comfort decreased significantly in Figure  7.9(b). Slanted gestures cause ulnar deviation, 

extension and flexion at the wrist, and therefore are hard to perform [Griffins, 2001]. 
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8 Conclusions and Future Work 

 

8.1 Conclusions 

This thesis presented an optimal hand gesture vocabulary design methodology that considers 

both human factors aspects and technical aspects (the recognition accuracy). The first aspect 

includes the intuitiveness and comfort attributes of gesture vocabularies, while the last is related 

to the development of a hand recognition algorithm. The most salient advantage of the approach 

presented is a structured formulation of the GV design problem in a rigorous manner so human 

psycho-physiological and technical aspects are combined in a unified approach. 

The methodology developed consists of an analytical formulation of the GV design problem, 

reconfigurable hand gesture recognition algorithm, development of two quantitative solution 

methods for solving the GV design problem, and methods for quantifying and automating the 

collection of intuitiveness and comfort gestural indices.  

This research suggests an analytical approach which included quantitative methods to 

measure and to compare the different aspects of a GV, by mapping psycho-physiological indices 

in one objective function. Previous works dealt with selection of hand gestures vocabularies using 

rule based [Baudel and Beaudouin-Lafon, 1993] and ad-hoc methods [Kjeldsen and Hartman, 

2001]. An analytical approach allows to consider a multitude of performance measures in an 

objective function, and hence to establish a quantitative method to measure the naturalness of a 

GV, or to compare the performance of different GVs. This corresponds to previous research 

conclusions as stated in the following. Munk, 2001 suggested highly ergonomic vocabularies; 

however was not able to perform a comparison among them. He suggested that a future 

implementation of his methodology should provide a benchmark for the exploration of different 

gestures from two standpoints; computer recognizability and subjective naturalness of those 

gestures experienced by the user. [Nielsen et al., 2003] recommended as future work to extend 

his benchmark procedure to include technical aspects.  

The analytical formulation presented in this dissertation considered both the ergonomic and 

technical factors as opposed to [Wagner et al., 2003] where only the ergonomic factor was 

considered in a mathematical function.  

The unified methodology presented in this thesis, also is a clear demonstration of the future need 

defined by [Pavlovic et al., 1997] “substantial research effort that connects advances in 

computer vision with the basic study of human-computer interaction will be needed in the future 

to develop an effective and natural hand gesture interface”. Our methodology is based on merely 

vision and hence no devices are required to be attached to the hand (unencumbered interface). 

Guidelines for defining gestural command sets from an ergonomics stand point were presented by 

[Baudel and Beaudouin-Lafon, 1993] who expressed the need of a similar procedure for 

unencumbered interfaces. 

While this thesis is a breakthrough in the hard problem of GV design, a limitation of this 

research is the assumptions made regarding the hand gesture vocabulary design problem. To 

reduce the complexity of this problem several assumptions were undertaken: a) each gesture in 

the GV is associated to one command, and each command is associated to only one gesture. b) 

gestures are static poses. In real life, gestures are dynamic, and their trajectories and 

configurations over time usually express additional information. Future recommendations address 

this. c) stress of holding a gesture increases linearly with the duration of the pose and with the 

frequency of use. Further experimentation is required to model the increase of effort with time; 

however it can be that the effort increases quadratic with time. d) task completion time was 

considered the only performance index of a GV. Other indices can be used jointly to assess the 

performance of the GV, such us number of errors while performing the task. e) intuitiveness and 
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comfort were considered the only human factors in the analytical formulation. However, other 

human factors such us learnability, memorability, efficiency and mental load should be included 

in the model even if there exists a correlation between them. 

Recognition accuracy, intuitiveness and comfort were used in this thesis as proxy performance 

measures for task completion time. The reason for this is twofold; (a) measuring the task 

completion time empirically for a large set of vocabularies is untenable, and (b) these proxy 

measures are easier to quantify than the determination of an analytical function for task 

completion time. One of the problems faced in this work was finding appropriate experimental 

methods to obtain reliable psycho-physiological measures. This aspect apparently was not 

addressed in the past by other researchers, while for the technical factor, many hand gesture 

recognition algorithms are available. 

In this work, experimental methods to automate the collection of intuitiveness and comfort 

indices were developed. For the collection of intuitiveness measures an automate tool was 

developed which simulated different scenarios, and through user interaction, collected data on 

cognitive associations between commands and gestures. Even though the functions (commands), 

the context, and the available master set of gestures are defined in advance, the collection of 

user’s responses and the computation of the intuitive index are fully automatic. Previous research 

[Nielsen et al., 2003; Preston et al., 2005; Höysniemi et al., 2005] used Wizard-of-Oz techniques 

to collect data regarding cognitive associations between command-gestures pairs. The Wizard-of-

Oz experiment has persons respond to commands stimulated under camera surveillance. For this 

purpose scripts describing the interaction in specific scenarios, functionalities and context must 

be prepared. The gestures used in interactions by the users were extracted from the video 

obtained, and further on analyzed to find how consistent different users were with gestures. 

However, this video extraction method is rather time consuming, and the scenarios must be 

carefully written, as expressed by Nielsen. As for the stress index measures, in this thesis, a 

subjective evaluation tool was used to obtain the static and dynamic stress of performing 

gestures. This tool stored automatically and associated static and dynamic stress indices for each 

gesture and inter-gesture transitions. Previous works collected stress measures through 

experiments that vary from subjective questioners [Nielsen et al., 2003] to electronic devices, 

such as EMG, to measure muscle activity [Wheeler, 2003].  

Once the collection of intuitiveness and stress indices are obtained, it is possible to answer the 

following questions presented by [Wolf and Rhyne, 1987]: a) how consistent are people in their 

use of gestures, and b). what are the most common gestures used in a given domain, and how 

easily are they recalled. c) do gestures contain identifiable spatial components which correspond 

to the functional components of command (the action to be performed), scope (the object to 
which the command is applied), and target (the location where the object is moved, inserted, 

copied, etc.). Analysis of the experimental results leads provides some answers to the questions 

asked by Wolf and Rhyne. 

When examining a pair of complementary commands; it was found that the response was 

often a pair of complementary gestures. Complementary gestures possess the property of 

"mirrored gestures" or "present-absent"; such as when flipping the palm of the hand, 

closing/opening fingers, spreading or keeping the fingers together, etc. This is evidence that there 

is a type of intuitiveness related to pairing complementary commands to complementary gestures. 

The type of intuitiveness is called “complementary intuitiveness”, while the intuitiveness of a 

single command-gesture matching is called the “direct intuitiveness”. Therefore a finding with 

respect to the third question presented by [Wolf and Rhyne, 1987] is that there are spatial 

components that the users identify in gestures, and moreover they are used as “complementary” 

gestures to match complementary commands. 

With regards to the second question by [Wolf and Rhyne, 1987] (not including the recall 

factor), our results indicate that the selection of gestures respected a 70/30 rule (similar to the 
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80/20 rule of inventory theory), where 70% of subjects gesture responses were comprised of only 

30% of all of the different gestures used by the respondents. Even though agreements for a 

gesture-command associations ranged from 59%-100% for the VMR and robotic arm tasks, 

respectively, the overall agreement was only 34% and 18% for the VMR and robotic arm tasks. 

This refutes the claim that subjects use consistently the same gestures to represent the same 

commands while performing tasks, as suggested by Hauptmann [Hauptmann and McAvinney, 

1993; Hauptmann, 1989]. 

A question not addressed by [Wolf and Rhyne, 1987] is related to selection of the most 

comfortable gestures so the effects of strain and fatigue on the muscles are minimized while 

performing the task. Two types of stress were defined: a) static stress, which is the effort that 

takes to hold a static gesture for a defined amount of time. b) dynamic stress, which is the effort 

that is necessary for performing a transition between static gestures. It was found that 90% of the 

dynamic stress (and its duration) was determined by the final posture in the transition between 

two postures, and only 10% by the starting posture. This relation allows us to predict the dynamic 

stress and its duration based on the use of only static stress measures.  

The tools used in the methodology can be used to design high recognition, easy to learn and 

remember, hand gesture vocabularies, answering to the need expressed by Long et al.  that it is 

important that designers will not only be “able to design gesture sets that are easy for the 

computer to recognize, but also for humans to learn and remember”. They also concluded “To 

perform this difficult task, designers will require significantly better gesture design tools than are 

currently available”
v
. This methodology does require effort to obtain human ergonomic and 

cognitive indices. The saving face is that it provides a rigorous structure for replacement and 

expansion. More accurate fatigue or intuitiveness indices can easily replace old data by updating 

the gesture knowledge database. This effort will not be lost as it can provide a database for 

subsequent  

Another problem addressed in this thesis, related to hand gesture recognition, is the issue of 

reconfigurability and calibration of the recognition system. The primary need for recalibrations of 

a gesture recognition system is its frequent relocation to other environments such as laboratories 

and remote control stations. A secondary need for recalibration occurs due to demands for custom 

redesign of the gesture control language. This occurs for new users, new control tasks and new 

vocabularies. Allowing for a fast recalibration of system parameters provides the system 

flexibility to respond to such new system setups. To address this issue of reconfigurability or 

flexibility, a stand alone methodology was developed for simultaneous calibration of the 

parameters of an Image Processing - Fuzzy C Means (FCM) hand gesture recognition system. 

Local neighborhood search was used to automate the calibration of the parameters of the system. 
Thus, the design of a hand gesture recognition system is transferred into an optimization problem 

and the proposed solutions were compared using a reduced master set of gestures.[Kray and 

Strohbach, 2004] provided an application with the ability to create and dynamically reconfigure a 

vision based user interface that recognizes basic interaction gestures. However, this configuration 

used a weight table (a standard table enhanced with load sensors), as opposed to our system that 

does not require any additional hardware. [Kjeldsen et al., 2003] presented an interface that can 

be dynamically reconfigured, changing both form and location on the fly. A device that combines 

a steerable projector/camera system, dynamic correction for oblique distortion, is required to use 

this interface. 

The following hypothesis were validated; task performance time τ can be represented by 

multiobjective proxy measures, and the maximization of the multiobjective function causes a 

minimization in the performance time of the task. This was validated through an additional 

                                                 

v
 Results of the learning and memorability tests appear later in this chapter 
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hypothesis which claimed that vocabularies from the VG set results in shorter time completion 

task than the ones from the VB set. Mean completion time for the robotic arm task using VG was 

much shorter than the time using VB at the .5% level of significance (p=0.0059). For the VMR 

task, also the task completion time using VG was shorter than using VB at a .03% level of 

significance (p=0.00031). Regarding learning rates, it was found that for the VG the learning rate 

was lower than for VB. The last hypothesis suggested that the GVG is easier to remember than 

GVB. Memorability was determined by experienced user’s recall of the gesture-command 

associations during the task performance trials. The average memorability scores for the robotic 

task were found to be higher for the VG than for the VB at the 5% (p=0.05). For the VMR task, 

the difference was not significant at the 5% level (p=0.58). Summarizing the results, the use of 

the VG compared to the VB vocabulary samples resulted in shorter task completion time, high 

learning rate and high memorability. Therefore can be restated that GVs with high values of the 3 

objectives, result in decreased performance time, faster learning and increased memory. 

To summarize, a methodology for the design of natural hand gestures vocabularies, which 

considered both the psycho-physiological and the technical aspects in a unified approach was 

presented. This provides several advantages. First, it makes possible to obtain highly 

ergonomically and recognizable hand gesture vocabularies using a rigorous procedure. Secondly, 

it offers a data repository of intuitiveness and comfort measures, and an automated methodology 

for their collection. This approach results in improved task oriented hand gesture vocabularies. 

The developed framework is an important contribution to the development of hand gesture 

recognition systems for human-robot interaction. 

 

 

8.2 Future Work 

Future research should address the following issues: 

 

8.2.1 Algorithms  

The hand gesture recognition algorithm is an image processing based - Fuzzy C-Means 

(FCM) algorithm which was capable to classify static gestures in a uniform background. Future 

research should implement robust image processing algorithms for the detection and 

classification of static/dynamic hand gestures in an unconstrained environment [such as detailed 

in Just et al., 2006; Zhou et al., 2004; Zhenyao and Neumann, 2006]. The hand gesture 

recognition algorithm developed in this work included a feature that allowed fast recalibration of 

system parameters providing system flexibility to respond to demands for custom redesign of the 

gesture vocabularies, new users, and new control tasks. Future work should investigate the effect 

of various dynamic strategies for expanding and contracting the neighborhood size. 

For the metaheuristic two stage decomposition algorithm, two approaches were presented in 

this thesis, the DCM and the CMD methods. Future research should investigate extended 

comparative testing between the DCM and CMD algorithms, such as complexity, calculation 

times, simplicity and optimality of their solutions. This includes evaluation times of each 

algorithm, the dynamic nature of the size of the vocabulary and the maximum number of 

solutions required. Both algorithms perform the search by changing a gesture from the solution 

(adding and discarding a gesture) using some interchange rule. The DMC looks to improve the 

accuracy at every stage, where the CMD decreases it. Both cases do not consider in the 

interchange rule the possibility that one of the gestures from a complementary pair will be 

discarded while the other is part of the solution. Further work should modify the rules so always 

the complementary pair of gestures remains together or are changed by a new couple of 

complementary gestures as well. 
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The feasible gesture solutions found using the DCM or the CMD procedures, are matched to 

commands to obtain the final set of GV using the integer quadratic assignment problem (QAP) (P 

 3.3). In future work the matching problem can be solved also using a GA approach [Holland, 

1975]. In this case each individual can be encoded as a chromosome of length n which represents 

the associations between commands C ={c1,…,cn} and a subset of gestures Gn ={g1,…, gn} 

[Wachs et al., 2004]. The simulated annealing algorithm [Connolly, 1990] was implemented in 

this thesis to solve the QAP. Other techniques may be exploited in future work, to solve the QAP 

such as particle swarm approach [Liu et al., 2006] or using grid computing optimization systems 

[Goux et al., 2000]. 

 

8.2.2 Problem Modeling 

Different modeling and representations can be used to solve the optimal hand gesture 

vocabulary problem. For example, in this thesis, one of the main assumptions is that the number 

of commands and gestures in the GV is the same, and each command is mapped to only one 

gesture, and each gesture is associated to one command. However, other types of GV can be 

defined such that, for example where two commands are associated to the same gesture to 

alleviate memory load. When evoked the gesture, the right command is called according to the 

context of the task and the operation mode [Kohler, 1997]. In addition, it is possible to extend the 

work to include several gestures as representations of a single command. Thus, for example a 

closed fist with the left thumb out, as well as, an open hand with the left thumb out can both be 

used to represent a "left command". 

 

8.2.3 Performance measures 

One of the formulations presented in this thesis consists of mapping the three performance 

measures into a single measure by using weights wi to reflect the relative importance of each of 

the objectives in Eq. ( 3.3). These weights were varied, and for each unique weighting scheme a 

corresponding solution was presented to the decision maker for acceptance or rejection. An 

alternative method to find these weights is through empirical tests. For this, it is necessary to 

generate vocabularies where each of the objectives is dominating in turn, and then use these 

vocabularies in experiments, where the task completion time is recorded. A linear/non linear 

regression can then be performed to obtain these weights.  

Three main objectives (accuracy, intuitiveness, comfort) were included as proxies of task 

performance using a GV. Additional psycho-physiological indices may be included to the 

methodology presented in this thesis, such as mental load and mental stress, user satisfaction, 

learnability, memorability and efficiency. 
 

8.2.4 Psycho-physiological methods 

The stress measure can be obtained using two approaches: EMG based indices and the use of 

ergonomic tests. In this thesis, the ergonomics approach was adopted, where the user may rank 

poses from weak to strong on some scale. Future work may include the use of EMG to record the 

electrical activity of muscles, and thereby obtaining the static and dynamic stress measures 

[Natan et al., 2003]. These can be used to validate the data obtained using the ergonomic test 

approach and to confirm the prediction model to obtain dynamic stress proposed in this work. 

Preliminary work in this area [Ronen et al., 2005] indicated the many research problems with this 

approach. In this vein, the next step may be the development of a bio-mechanical model to 

determine the hand effort based on its configuration. The hand can be represented by the 

primitives described in Table  3.1 in Chapter  3. An interesting question to solve could be whether 
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there are functions fs and fd such that the static and dynamic stress, are described by Si=fs(pi
1
, …, 

pi
k
,.., pi

n
) and the dynamic stress is Sij= fd{(pi

1
, …, pi

k
,.., pi

n
) , (pj

1
, …, pj

k
,.., pj

n
)}, respectively. 

Results were presented regarding how consistent a population selecting certain gestures to 

given commands is. An interesting observation is the one regarding the use of complementary 

gestures to represent complementary commands. In this thesis we mentioned that complementary 

gestures can be obtained usually by flipping the palm, rotating to opposite sides the hand, or by 

closing or opening the palm or fingers, however a reason for that was not given. The finding in 

this thesis may suggest that gestures contain identifiable spatial components which correspond to 

the functional components of command (the action to be performed). Complementary gestures 

can be obtained by reversing/mirroring or rotating these spatial components. A future research 

can focus on finding the identifiable spatial components of the gestures, and therefore examining 

if people are consistent while associating similar commands to gestures with similar spatial 

components. This work was done for the handheld stylus writing symbols [Wolf and Rhyne, 

1987; Long et al., 1999] but no one investigated the hand gestures domain.  

 

8.2.5 Dynamic Hand Gestures 

A more flexible methodology should apply the principles presented in this thesis to dynamic 

hand gestures. In this case, the experimental methods presented here can be applied to obtain the 

intuitive measure, however a different hand gesture recognition capable to recognize dynamic 

gestures will be necessary. To obtain the stress measure, the principles presented in [Kölsch, 

2003] can be used. Starting and ending positions may be identified by the tension required for 

issuing the gesture, and relaxed position of the hand will indicate the end of the gesture [Baudel 

and Beaudouin-Lafon, 1993]. Additionally, the rest position between gestures may be included in 

the methodology as a ‘rest’ command. 

 

8.2.6 Expanded experimentation 

By posing the optimal GV design problem as a MCOP, solutions can be presented as 3D 

representations, including Pareto optimal ones. Calculating the entire Pareto set for the large 

problems presented in the case study, Chapter  7 was computationally prohibitive using the 

presented procedures. However, future work may overcome the complexity problem by: a) 

running a complete enumeration over the solution space using parallel computing so the 

complexity of the problem is approachable. b) using the CMD algorithm and allowing a 

significant amount of feasible solutions (>10,000) and c) calculating the Pareto frontier using as 

an evolutionary multicriteria procedure. 

To validate the hypothesis that high accurate, intuitive, and comfortable vocabularies eight 
vocabularies of the VG and VB set were used. In future work more vocabularies should be 

compared. Moreover, larger vocabularies (n>20) should be evaluated and additional tasks should 

be investigated. The current methodology was applied to the control of virtual robots. The 

implementation of real robots in this framework will be a natural extension to this work. 

Further validation experiments should include an increased number of users in order to cover 

cultural diversity and allow a better generalization. 
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Appendix A Memorability Test Application and Queries 

This appendix presents two forms used to measure the memorability indices, and two queries 

used for user feedback  
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Figure  A.1. Memorability test application for the robot task 
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Figure  A.2. Memorability test application for the VMR task 
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Figure  A.3. Feedback form for the VMR and robot tasks 
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Appendix B. Dominate Set Partition: Good and Bad GV Solutions 

This appendix introduces the definitions of dominating and dominated solutions, presents an 

example of how these solutions can be found and their relation to the good and bad gesture 

vocabularies.  

 

Let the i
th

 Multiobjective solution be Z (i) = [z(i,1),z(i,2),z(i,3)]  Let N be the set of 

multiobjective solutions, such that N = {1,..i,..,n} 

 

Definition: Dominate solution pairs 

For any pair i,j of solutions from N  we say solution i dominates solution j, iff 

z(i,k) > z(j,k), k=1,2,3 

Let 

ji f  (B.1) 

Denote the relation solution i dominates solution j 

An example of a pair of solutions where i dominates j is given below: 

Z(i) = [98.33, 5086, 5687] and Z(j) = [90.66, 4739, 4359]  

It may be that a pair of solutions do not satisfy the dominance relation for example. 

 Then we write  

i  j (B.1) 

An example of a pair of solution where one does not dominate the other is 

Z(i) = [98.33, 5086, 56] and Z(j) = [90.66, 47, 4359]  

[D, D'] is a dominant pair partition of n solutions, if the following holds: 

(i) [D, D '] is a partition of the n solutions, where D intersection D' = empty set, and D union 

D' = N 

(ii) for any two solutions (i,j),  i is an element of D, and j is an element of D'  iff      

ji f  
 

Example: 

Let D = VG and D' = VB then for the robotic arm a DSP is given by the following two tables: 

                             

D= VG 

 

I Z(i,1) Acc Z(i,2) Int Z(i,3) Conf 

1 98.33 5086(min) 5687 

2 98.33 6203 5439 

3 98.33 6224 5259 (min) 

4 98.33 6658 5393 

5 98.33 5541 5647 

6 98.5 6335 5633 

7 98.5 6677 5458 

8 98.5 6421 5396 

 

D'= VB 

 

I Z(i,1) Acc Z(i,2) Int Z(i,3) Conf 

1 90.66 4798(max) 4405 

2 90.66 4766 3535 

3 90.66 4739 4359 
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4 90.66 4136 5075 

5 90.66 4115 5007 

6 90.66 1390 5128 

7 90.66 331 5192 

8 90.66 262 5196 (max) 

   

Any solution i in set D dominates all the other solutions in the set D' (check the min /max 

values in indicated in the tables. 

Using the procedure explained above, 16 GVs were obtained for each the car and the robot tasks. 

Eight dominating solutions (VG) and eight dominated solutions (VB) for the car and robot tasks 

(Table  B.1 and Table  B.2). 

 

Table  B.1. VG and VB for the VMR case 

i Gn GV Z(i,1) Z(i,2) Z(i,3) w1 w2

1 1 2 3 4 5 10 20 26 5 1 2 3 4 10 26 20 405 3490 88.125 10 0

2 1 2 3 4 5 10 20 23 5 1 2 23 4 10 3 20 418 3499 84.6875 10 0

3 1 2 3 4 5 10 22 26 5 1 2 22 4 10 26 3 402 3488 86.875 9 1

4 1 2 3 4 5 10 17 22 5 1 2 17 4 10 3 22 411 3497 86.5625 10 0

5 1 2 3 4 5 10 13 17 5 1 2 17 4 10 3 13 422 3496 87.8125 10 0

6 1 2 3 4 5 10 13 23 5 1 2 23 4 10 3 13 424 3496 84.6875 9 1

7 1 2 3 4 5 10 13 22 5 1 2 13 4 10 3 22 420 3493 86.5625 9 1

8 1 2 3 4 5 10 18 22 5 1 2 22 4 10 18 3 409 3492 86.875 10 0

9 6 7 8 10 12 13 17 21 21 7 6 17 12 10 8 13 3389 3546 99.375 9 1

10 6 7 8 10 12 17 20 21 21 7 6 17 12 10 8 20 3383 3549 99.375 7 3

11 6 7 8 10 12 17 21 23 21 7 6 17 12 10 8 23 3380 3548 96.25 10 0

12 6 7 8 10 12 17 21 24 21 7 6 17 12 10 8 24 3376 3552 99.0625 9 1

13 6 7 8 10 12 17 18 21 21 8 6 17 12 10 18 7 3157 3541 99.6875 10 0

14 6 7 8 10 12 17 22 24 22 8 6 17 12 10 24 7 3151 3556 97.5 8 2

15 6 7 8 10 12 17 18 20 8 20 6 17 12 10 18 7 3142 3539 99.375 9 1
16 6 7 8 10 17 21 26 27 21 7 6 17 26 27 8 10 3020 3801 99.6875 10 0  

 

Table  B.2. VG and VB for the robotic arm case 

i Gn GV Z(i,1) Z(i,2) Z(i,3) w1 w2

1 4 5 6 7 8 10 11 13 14 16 17 19 24 26 27 5 7 17 6 4 16 14 24 10 11 26 27 19 13 8 6979 5287 98.33 10 0

2 4 6 7 8 10 11 13 14 16 17 19 20 24 26 27 14 7 17 6 4 16 24 20 10 11 26 27 19 13 8 6671 5458 98.5 9 1

3 4 5 6 7 8 10 11 13 14 16 17 19 24 26 27 5 7 17 6 4 16 24 8 10 11 26 27 19 13 14 6658 5398 98.33 8 2

4 4 5 6 7 8 10 11 14 16 17 19 20 24 26 27 5 7 17 6 4 16 24 20 10 11 26 27 19 8 14 6421 5396 98.5 8 2

5 4 5 6 7 8 10 11 13 14 16 19 20 24 26 27 5 7 14 6 4 16 24 20 10 11 26 27 19 13 8 6224 5259 98.33 9 1

6 4 6 7 8 10 11 13 14 16 17 19 20 24 26 27 10 8 17 6 4 16 24 20 26 27 7 11 19 13 14 6335 5633 98.5 8 2

7 4 5 6 7 8 10 11 13 14 16 19 20 24 26 27 5 7 8 6 4 16 24 20 10 11 26 27 19 13 14 6203 5439 98.33 8 2

8 4 6 7 8 10 11 13 14 16 17 19 20 24 26 27 10 14 17 6 4 16 24 20 26 27 7 11 19 13 8 6331 5645 98.5 7 3

9 1 2 3 4 5 9 12 13 15 16 17 19 20 23 27 2 1 17 12 4 16 5 20 15 3 9 27 19 13 23 4766 3535 90.67 10 0

10 1 2 3 4 5 8 9 12 13 15 16 17 19 20 23 8 1 17 5 4 16 2 20 15 3 9 12 19 13 23 4739 4359 90.67 10 0

11 1 2 3 4 5 9 10 12 13 15 16 17 19 20 23 9 15 17 1 4 3 2 20 16 12 23 10 19 13 5 1390 5128 90.67 4 6

12 1 2 3 4 5 9 10 12 13 15 16 17 19 20 23 10 9 20 1 3 4 23 19 16 12 17 15 2 5 13 262 5196 90.67 0 10

13 1 2 3 4 5 9 12 13 15 16 17 19 20 23 27 9 15 17 1 4 3 2 20 16 12 23 27 19 13 5 1394 5128 90.67 4 6

14 1 2 3 4 5 9 10 12 13 15 16 17 19 20 23 9 15 20 1 4 19 17 3 16 12 23 10 2 13 5 331 5192 90.67 3 7

15 1 2 3 4 5 9 10 12 13 15 16 17 19 20 23 5 15 17 1 4 16 2 20 10 12 3 9 19 13 23 4675 4939 90.67 8 2

16 1 2 3 4 5 9 10 12 13 15 16 17 19 20 23 3 15 17 1 4 16 2 20 10 12 9 5 19 13 23 5124 4735 90.67 10 0  
 



 

 

116  

Table  B.3. Pareto set for the VMR study 

Sol i Gn Gn* Z(i,1) Z(i,2) Z(i,3) w1 w2

1 7 6 7 8 10 12 16 18 21 21 12 6 16 7 8 18 10 74 4152 100 6 4

1 8 6 7 8 10 12 16 18 21 21 8 6 12 7 16 18 10 140 4018 100 7 3

1 11 6 7 8 10 12 16 18 21 21 6 8 16 12 10 18 7 2797 3278 100 10 0

2 13 6 7 8 10 12 16 18 25 12 10 6 18 7 8 25 16 47 4167 100 1 9

2 15 6 7 8 10 12 16 18 25 12 25 6 16 7 8 18 10 57 4163 100 3 7

2 18 6 7 8 10 12 16 18 25 12 18 6 16 7 8 25 10 61 4161 100 6 4

2 19 6 7 8 10 12 16 18 25 12 8 6 18 7 16 25 10 123 4047 100 7 3

5 50 6 7 8 10 12 16 21 25 21 12 6 16 7 8 25 10 78 4148 100 5 5

5 51 6 7 8 10 12 16 21 25 21 12 6 16 7 8 25 10 78 4148 100 6 4

5 52 6 7 8 10 12 16 21 25 21 8 6 12 7 16 25 10 144 4014 100 7 3

5 55 6 7 8 10 12 16 21 25 21 7 6 16 12 10 8 25 2791 3531 100 10 0  
 

Table  B.4. Pareto set for the robotic arm study 

sol i Gn Gn* Z(i,1) Z(i,2) Z(i,3) w1 w2

1 1 4 6 7 8 10 11 13 14 16 17 19 20 24 26 27 27 14 8 6 4 7 20 24 13 10 19 11 17 26 16 67 5930 98.5 0 10

1 2 4 6 7 8 10 11 13 14 16 17 19 20 24 26 27 27 14 24 6 4 7 20 8 26 10 19 11 17 13 16 424 5929 98.5 1 9

1 3 4 6 7 8 10 11 13 14 16 17 19 20 24 26 27 10 14 24 6 4 7 20 8 26 27 19 11 17 13 16 651 5927 98.5 2 8

1 7 4 6 7 8 10 11 13 14 16 17 19 20 24 26 27 10 14 17 6 4 7 24 20 26 27 8 11 19 13 16 3602 5862 98.5 6 4

1 8 4 6 7 8 10 11 13 14 16 17 19 20 24 26 27 10 14 17 6 4 16 24 20 26 27 7 11 19 13 8 6331 5645 98.5 7 3

1 9 4 6 7 8 10 11 13 14 16 17 19 20 24 26 27 10 8 17 6 4 16 24 20 26 27 7 11 19 13 14 6335 5633 98.5 8 2

1 10 4 6 7 8 10 11 13 14 16 17 19 20 24 26 27 14 7 17 6 4 16 24 20 10 11 26 27 19 13 8 6671 5458 98.5 9 1

2 15 4 5 6 7 8 10 11 14 16 17 19 20 24 26 27 10 14 8 6 4 7 24 20 26 27 19 11 17 5 16 1092 5883 98.5 3 7

3 30 5 6 7 8 10 11 13 14 16 17 19 20 24 26 27 10 14 17 6 8 7 24 20 16 11 26 27 19 13 5 3890 5710 98.33 7 3

4 37 4 5 6 7 8 10 11 13 14 16 19 20 24 26 27 10 14 8 6 4 7 24 20 26 27 19 11 5 13 16 1117 5866 98.33 3 7

4 41 4 5 6 7 8 10 11 13 14 16 19 20 24 26 27 10 14 7 6 4 16 24 20 26 27 8 11 19 13 5 5086 5687 98.33 7 3

5 50 4 5 6 7 8 10 11 13 14 16 17 19 24 26 27 10 14 17 6 4 16 24 7 26 27 8 11 19 13 5 5541 5647 98.33 5 5

5 55 4 5 6 7 8 10 11 13 14 16 17 19 24 26 27 5 7 17 6 4 16 14 24 10 11 26 27 19 13 8 6979 5287 98.33 10 0
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Table  B.5. Pareto set for the VMR study using the multiobjective decision approach 

num i Z(i,1) Z(i,2) Z(i,3) num i Z(i,1) Z(i,2) Z(i,3)

1 140 3389 3546 99.4 50 4878 69 4206 99.4

2 726 2797 3278 100 51 4888 59 4210 99.4

3 913 2791 3531 100 52 4907 40 4173 100

4 1196 3383 3549 99.4 53 4908 47 4172 100

5 1230 3037 3553 98.8 54 4910 53 4170 100

6 1273 3450 3547 98.1 55 4911 57 4168 100

7 1296 3376 3552 99.1 56 4936 2378 3806 100

8 1307 3374 3543 99.7 57 5167 2375 3814 99.7

9 1351 3151 3556 97.5 58 5274 100 4194 99.4

10 1614 2757 3544 100 59 5311 572 3845 100

11 1625 2753 3547 100 60 5321 148 4034 100

12 1804 2907 2992 100 61 5323 557 3949 100

13 2197 2383 3798 100 62 5331 2437 3789 100

14 2209 3456 3361 94.4 63 5343 913 4117 94.4

15 2936 1153 3905 99.4 64 5441 2434 3820 98.4

16 2961 657 4224 98.8 65 5552 2382 3801 100

17 3037 40 4231 98.4 66 5558 862 4181 99.4

18 3038 660 4227 98.4 67 5565 1147 3908 99.4

19 3040 666 4226 98.4 68 5589 44 4230 98.8

20 3052 717 4186 99.1 69 5590 651 4227 98.8

21 3111 1159 3949 98.8 70 5593 663 4221 98.8

22 3308 2596 3810 99.4 71 5601 633 4192 99.4

23 3345 59 4228 98.8 72 5603 721 4185 99.4

24 3847 2386 3823 99.4 73 5612 633 4192 99.4

25 4023 924 4116 94.1 74 5615 641 4187 99.4

26 4221 2391 3830 99.1 75 5657 667 4216 99.1

27 4232 2393 3810 99.7 76 5659 679 4210 99.1

28 4254 729 4056 99.7 77 5668 661 4176 99.7

29 4256 1138 3971 99.7 78 5671 665 4174 99.7

30 4331 918 4065 99.4 79 5711 718 4226 97.5

31 4333 1144 3949 99.4 80 5728 938 4097 98.1

32 4430 1144 4015 99.1 81 5799 642 4222 99.1

33 4441 733 4052 99.7 82 5831 636 4182 99.7

34 4443 1142 3967 99.7 83 5835 640 4180 99.7

35 4453 1189 3845 99.7 84 5860 2778 3805 99.7

36 4665 40 4225 99.1 85 5887 868 4219 98.8

37 4666 60 4224 99.1 86 5894 1153 3952 98.8

38 4676 54 4185 99.7 87 5895 1221 3923 98.8

39 4733 68 4209 99.4 88 5899 866 4177 99.4

40 4734 84 4204 99.4 89 5906 1223 3903 99.4

41 4735 96 4198 99.4 90 5941 50 4232 97.2

42 4744 72 4167 100 91 5942 721 4229 97.2

43 4745 78 4164 100 92 5987 730 4227 95.3

44 4746 82 4162 100 93 6114 1220 3950 97.5

45 4749 144 4048 100 94 6198 683 4206 99.1

46 4751 553 3963 100 95 6255 3020 3801 99.7

47 4761 568 3849 100 96 6366 2657 3812 98.1

48 4874 47 4215 99.4 97 6557 48 4230 97.5

49 4876 53 4214 99.4 98 6558 136 4229 97.5  
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Appendix C. Good and Bad Vocabularies – Graphical 

Representation  

In this appendix sixteen GVs are presented for each the VMR and the robotic arm tasks. The 

first eight are VG and the last eight are VB. 
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Figure  C.1. Gesture vocabularies for the VMR study. 1-8 Bad GV. 9-16 Good GV 
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Figure  C.2. Gesture vocabularies for the robotic arm study. 1-8 Good GV. 9-16 Bad GV 
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Appendix D. Human Factors Matrices 

This appendix includes all the matrices obtained from the psycho-physiological experiments. 

The weighted intuitiveness, the extended intuitiveness using the extended master set of gestures, 

the complementary weighted intuitiveness, the stress, the duration and the frequency matrices are 

presented below.  

Table  D.1 Robot task intuitiveness matrix 

Index Gesture 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 sum

1 00000000000 1 3 1 6 1 1 6 7 26

2 00010000000 4 2 3 1 1 2 13

3 00100000000 2 2 2 1 2 9

4 00100001000 1 2 8 2 1 1 1 16

5 00110000000 3 1 1 1 1 7

6 00111110000 3 11 4 3 1 1 23

7 00111111000 1 5 2 2 1 2 2 15

8 00111111111 5 4 6 1 3 19

9 01000000000 1 3 1 2 7

10 01111110000 10 1 2 1 14

11 02000000000 1 1 4 1 7

12 02111110000 10 1 2 1 14

13 10000000000 1 1 4 2 9 17

14 10010000000 4 2 1 7

15 10100000000 3 1 1 2 7

16 10100001000 1 2 8 1 1 2 15

17 10111110000 2 1 6 2 1 1 1 4 18

19 10111111111 1 10 2 13

20 20000000000 2 2 3 1 4 1 1 1 15

23 20100000000 1 1 3 1 2 3 11

24 20111110000 1 2 1 6 1 1 1 1 5 19

26 21111110000 1 7 1 1 2 1 2 15

27 22111110000 1 8 1 1 1 1 2 15

sum 26 32 22 23 29 28 19 21 12 8 12 10 21 28 31 322  
 

Table  D.2. VMR task intuitiveness  matrix 

Index Gesture 1 2 3 4 5 6 7 8 sum

1 00000000000 1 5 3 3 2 14

2 00010000000 3 3 1 1 8

3 00100000000 2 1 1 1 5

4 00100001000 2 9 11

5 00110000000 2 2 2 2 8

6 00111110000 2 9 6 1 4 2 24

7 00111111000 4 4 1 2 1 3 15

8 00111111111 5 4 5 14

10 01111110000 10 1 11

12 02111110000 10 10

13 10000000000 6 4 10

16 10100001000 2 9 11

17 10111110000 2 1 1 3 1 1 9

18 10111111000 1 1 2 4

20 20000000000 2 2 1 3 8

21 20010000000 4 4

22 20011110000 1 1 2 1 5

23 20100000000 1 1 3 1 1 7

24 20111110000 3 2 11 2 2 1 21

25 20111112000 1 4 5

26 21111110000 1 8 1 10

27 22111110000 1 8 9

sum 30 32 26 27 29 29 28 22 223  
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 Table  D.3. Robot task intuitiveness weighted matrix  

Index Gesture 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 sum

1 00000000000 3 9 2 11 1 1 15 15 57

2 00010000000 10 6 8 1 2 2 29

3 00100000000 4 6 4 3 5 22

4 00100001000 1 4 24 5 2 2 3 41

5 00110000000 6 3 1 2 2 14

6 00111110000 7 30 11 6 2 3 59

7 00111111000 2 13 4 4 1 4 4 32

8 00111111111 12 9 18 2 6 47

9 01000000000 2 6 3 3 14

10 01111110000 26 3 5 2 36

11 02000000000 2 3 7 2 14

12 02111110000 26 2 5 2 35

13 10000000000 3 2 8 4 22 39

14 10010000000 10 6 2 18

15 10100000000 6 2 3 6 17

16 10100001000 2 4 24 2 1 3 36

17 10111110000 4 2 15 3 3 3 1 8 39

19 10111111111 3 25 5 33

20 20000000000 5 4 5 2 10 2 3 2 33

23 20100000000 3 3 4 1 5 6 22

24 20111110000 2 5 3 14 3 2 3 2 8 42

26 21111110000 1 18 2 3 4 2 5 35

27 22111110000 1 19 3 2 3 2 5 35

sum 57 81 54 46 79 74 46 42 27 19 23 21 55 63 62 749  

 

Table  D.4. VMR task intuitiveness weighted matrix  

Index Gesture 1 2 3 4 5 6 7 8 sum

1 00000000000 2 14 7 4 4 31

2 00010000000 7 8 1 3 19

3 00100000000 3 2 2 2 9

4 00100001000 3 27 30

5 00110000000 6 6 4 4 20

6 00111110000 5 23 17 2 11 2 60

7 00111111000 8 10 3 4 1 6 32

8 00111111111 11 12 8 31

10 01111110000 29 2 31

12 02111110000 28 28

13 10000000000 12 8 20

16 10100001000 3 27 30

17 10111110000 4 3 2 7 2 2 20

18 10111111000 2 1 5 8

20 20000000000 4 4 3 5 16

21 20010000000 11 11

22 20011110000 2 2 3 2 9

23 20100000000 2 3 8 2 3 18

24 20111110000 6 4 29 5 6 1 51

25 20111112000 2 7 9

26 21111110000 2 24 1 27

27 22111110000 2 24 26

sum 67 80 69 57 82 83 56 42 536  
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Table  D.5. Intuitiveness normalized weighted matrix for the robotic arm task 

g 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4 12 3 15 0 0 0 1 0 0 1 0 0 20 20

2 13 0 8 0 0 0 11 1 0 0 0 3 0 0 3

3 5 0 0 0 8 0 0 5 0 4 0 0 0 7 0

4 1 0 0 5 32 0 0 7 0 3 0 3 0 0 4

5 8 0 4 1 0 0 3 0 0 3 0 0 0 0 0

6 9 40 0 15 0 0 8 0 0 0 0 0 0 3 4

7 3 17 0 5 0 0 0 0 5 0 1 0 5 0 5

8 16 12 0 0 0 0 0 0 0 0 0 0 24 3 8

9 0 0 0 0 0 3 0 0 0 0 8 4 0 4 0

10 0 0 0 0 0 35 4 0 7 0 0 3 0 0 0

11 0 0 0 0 3 0 0 0 0 0 4 9 3 0 0

12 0 0 0 0 35 0 0 3 0 7 3 0 0 0 0

13 0 4 3 11 0 0 0 5 0 0 0 0 0 29 0

14 0 0 13 0 0 0 8 0 3 0 0 0 0 0 0

15 0 8 0 3 0 4 0 0 8 0 0 0 0 0 0

16 3 0 5 0 0 32 0 0 3 0 1 0 0 4 0

17 5 3 20 0 0 0 0 4 0 4 0 0 4 1 11

19 0 4 0 0 0 0 0 0 0 0 0 0 33 0 7

20 0 7 5 7 0 0 3 13 0 0 3 0 0 4 3

23 4 0 4 0 0 0 0 5 1 0 0 0 0 7 8

24 3 0 7 0 4 0 19 4 0 0 3 0 4 3 11

26 1 0 0 0 24 0 3 4 5 3 7 0 0 0 0

27 0 1 0 0 0 25 4 3 4 3 0 7 0 0 0
 

 

 

Table  D.6. .Intuitiveness normalized weighted matrix for the VMR task 

g 1 2 3 4 5 6 7 8

1 4 26 0 13 0 0 7 7

2 13 0 15 0 0 0 2 6

3 0 6 0 4 0 0 4 4

4 6 0 0 0 50 0 0 0

5 11 0 11 0 0 0 7 7

6 9 43 32 0 4 0 21 4

7 15 19 6 7 2 0 0 11

8 21 22 0 0 0 0 15 0

10 0 0 0 0 0 54 0 4

12 0 0 0 0 52 0 0 0

13 0 0 0 22 0 0 0 15

16 0 0 0 6 0 50 0 0

17 7 6 4 13 0 4 4 0

18 0 4 0 0 0 2 9 0

20 0 7 0 7 0 0 6 9

21 21 0 0 0 0 0 0 0

22 4 0 4 6 0 0 0 4

23 4 6 0 15 0 0 4 6

24 11 7 54 9 0 0 11 2

25 0 4 0 0 0 0 13 0

26 0 0 4 0 45 0 2 0

27 0 0 0 4 0 45 0 0  
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Table  D.7. Agreement measures. (a) VMR task. (b) Robot task 

Car Commands

id gi 1 2 3 4 5 6 7 8 sum pi αi αposs
i Si Ф Σid(%) Σpi (%)Σid(%)+Σpi (%)

1 1 1 5 3 3 2 14 0.05 34 182 0.187 0.009 1.6949 5 6.695

2 2 3 3 1 1 8 0.0286 12 56 0.214 0.006 3.3898 7.8571 11.247

3 3 2 1 1 1 5 0.0179 2 20 0.1 0.002 5.0847 9.6429 14.728

4 4 2 9 11 0.0393 74 110 0.673 0.026 6.7797 13.571 20.351

5 5 2 2 2 2 8 0.0286 8 56 0.143 0.004 8.4746 16.429 24.903

6 6 2 9 6 1 4 2 24 0.0857 118 552 0.214 0.018 10.169 25 35.169

7 7 4 4 1 2 1 3 15 0.0536 32 210 0.152 0.008 11.864 30.357 42.222

8 8 5 4 5 14 0.05 52 182 0.286 0.014 13.559 35.357 48.916

9 10 10 1 11 0.0393 90 110 0.818 0.032 15.254 39.286 54.540

10 12 10 10 0.0357 90 90 1 0.036 16.949 42.857 59.806

11 13 6 4 10 0.0357 42 90 0.467 0.017 18.644 46.429 65.073

12 16 2 9 11 0.0393 74 110 0.673 0.026 20.339 50.357 70.696

10 12 10 10 0.0357 90 90 1 0.036 16.949 53.929 70.878

… … … … … … … … … … … … … … … … … … …

… … … … … … … … … … … … … … … … … … …

18 23 1 1 3 1 1 7 0.025 6 42 0.143 0.004 30.508 63.571 94.080

19 24 3 2 11 2 2 1 21 0.075 122 420 0.29 0.022 32.203 71.071 103.275

20 25 1 4 5 0.0179 12 20 0.6 0.011 33.898 72.857 106.755

21 26 1 8 1 10 0.0357 56 90 0.622 0.022 35.593 76.429 112.022

22 27 1 8 9 0.0321 56 72 0.778 0.025 37.288 79.643 116.931

… … … … … … … … … … … … … … … … … … …

… … … … … … … … … … … … … … … … … … …

59 64 1 1 0.0036 0 0 0 0 100 100 200.000

35 35 35 35 35 35 35 35 280 1 924 2634 1 0.338  

(a) 
Robot Commands

id gi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 sum pi αi α
poss

i Si Ф Σid(%) Σpi (%) Σid(%)+Σpi (%)

1 1 1 3 1 6 1 1 6 7 26 0.05 108 650 0.17 0.01 0.8772 4.9524 5.830

2 2 4 2 3 1 1 2 13 0.02 22 156 0.14 0 1.7544 7.4286 9.183

3 3 2 2 2 1 2 9 0.02 8 72 0.11 0 2.6316 9.1429 11.774

4 4 1 2 8 2 1 1 1 16 0.03 60 240 0.25 0.01 3.5088 12.19 15.699

5 5 3 1 1 1 1 7 0.01 6 42 0.14 0 4.386 13.524 17.910

6 6 3 11 4 3 1 1 23 0.04 134 506 0.26 0.01 5.2632 17.905 23.168

7 7 1 5 2 2 1 2 2 15 0.03 28 210 0.13 0 6.1404 20.762 26.902

8 8 5 4 6 1 3 19 0.04 68 342 0.2 0.01 7.0175 24.381 31.398

9 9 1 3 1 2 7 0.01 8 42 0.19 0 7.8947 25.714 33.609

10 10 10 1 2 1 14 0.03 92 182 0.51 0.01 8.7719 28.381 37.153

11 11 1 1 4 1 7 0.01 12 42 0.29 0 9.6491 29.714 39.363

12 12 10 1 2 1 14 0.03 92 182 0.51 0.01 10.526 32.381 42.907

… … … … … … … … … … … … … … … … … … … … … … … … … …

… … … … … … … … … … … … … … … … … … … … … … … … … …

17 17 2 1 6 2 1 1 1 4 18 0.03 46 306 0.15 0.01 14.912 44.571 59.484

18 19 1 10 2 13 0.02 92 156 0.59 0.01 15.789 47.048 62.837

19 20 2 2 3 1 4 1 1 1 15 0.03 22 210 0.1 0 16.667 49.905 66.571

20 23 1 1 3 1 2 3 11 0.02 14 110 0.13 0 17.544 52 69.544

21 24 1 2 1 6 1 1 1 1 5 19 0.04 52 342 0.15 0.01 18.421 55.619 74.040

… … … … … … … … … … … … … … … … … … … … … … … … … …

… … … … … … … … … … … … … … … … … … … … … … … … … …

33 37 1 1 1 1 1 5 0.01 0 20 0 0 28.947 71.238 100.185

… … … … … … … … … … … … … … … … … … … … … … … … … …

… … … … … … … … … … … … … … … … … … … … … … … … … …

114 118 1 1 0 0 0 0 0 100 100 200.000

35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 525 1 1174 5202 1 0.18  
(b) 
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Table  D.8. Robot task intuitiveness complete matrix 

re-

index Gesture 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 sum 

1 00000000000 1 3 1 6       1     1     6 7 26 

2 00111110000 3 11   4     3             1 1 23 

3 00111111111 5 4                     6 1 3 19 

4 20111110000 1   2   1   6 1     1   1 1 5 19 

5 10111110000 2 1 6         2   1     1 1 4 18 

6 10000000000   1 1 4       2           9   17 

7 00100001000 1     2 8     2   1   1     1 16 

8 00111111000 1 5   2         2   1   2   2 15 

9 10100001000 1   2     8     1   1     2   15 

10 20000000000   2 2 3     1 4     1     1 1 15 

11 21111110000 1       7   1 1 2 1 2         15 

12 22111110000   1       8 1 1 1 1   2       15 

13 01111110000           10 1   2     1       14 

14 02111110000         10     1   2 1         14 

15 00010000000 4   2       3 1       1     2 13 

16 10111111111   1                     10   2 13 

17 20100000000 1   1         3 1         2 3 11 

18 00100000000 2       2     2   1       2   9 

19 00110000000 3   1 1     1     1           7 

20 01000000000           1         3 1   2   7 

21 02000000000         1           1 4 1     7 

22 10010000000     4       2   1             7 

23 10100000000   3   1   1     2             7 

24 10111111000     2             1   1 2     6 

25 20111112000       2     1 1 1     1       6 

26 00011000000             1 1   1 1     1   5 

27 10011000000               1   1   1 1 1   5 

28 10110001000 1   2           1           1 5 

29 12111110000           1       1   2 1     5 

30 20010000000 2           2         1       5 

31 20011110000 2             1       2       5 

32 21000000000     1           1 1 1 1       5 

33 22000000000       1         1 1 1 1       5 

34 00000010000   1       1   1     1         4 

35 00001110000 1 1   1         1             4 

36 11111110000         1       1   2         4 

37 20100002000     1         1   1         1 4 

38 20110000000 1           2       1         4 

39 21100002000       1         1 1   1       4 

40 00011000100         1       1       1     3 

41 00011110000             1     1       1   3 

42 00101110000       2     1                 3 

43 00110001000       1     1     1           3 

44 00111110111     1             1     1     3 

45 01111111111                     2 1       3 

46 02111111111                     1 2       3 

47 10011110000               1 1       1     3 

48 10101111000     1         1 1             3 

49 11100001000                 1   1 1       3 

50 12000000000             1       1     1   3 

51 12100001000             1     1 1         3 

52 21111112000                 2   1         3 

53 22100002000                   1 1 1       3 

54 22111112000                   2     1     3 

55 00110011000                     1       1 2 
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56 00111000000       1               1       2 

57 00111111001                 1 1           2 

58 00111111100                 1 1           2 

59 01010000000             1         1       2 

60 01100000000                     2         2 

61 01111111000                 1       1     2 

62 02010000000               1   1           2 

63 02100000000                       2       2 

64 10110000000     2                         2 

65 10111000000             1       1         2 

66 11000000000               1       1       2 

67 11111111000         1         1           2 

68 12111111000           1         1         2 

69 21010000000         1               1     2 

70 21011110000                   1 1         2 

71 21100000000         1         1           2 

72 21110000000             1 1               2 

73 22010000000           1               1   2 

74 22011110000                 1     1       2 

75 22100000000           1     1             2 

76 22110000000             1 1               2 

77 00001000000     1                         1 

78 00001010000                         1     1 

79 00001100000                           1   1 

80 00001100010           1                   1 

81 00100010000                   1           1 

82 00101111000                   1           1 

83 00111001000     1                         1 

84 00111100000                           1   1 

85 00111101110                         1     1 

86 00111110001                   1           1 

87 00111110011                             1 1 

88 00111110100                         1     1 

89 01011000100                   1           1 

90 01011110011                 1             1 

91 01100001000 1                             1 

92 01110001000             1                 1 

93 01111111001                     1         1 

94 02011110011                   1           1 

95 02100001000               1               1 

96 02111000100                 1             1 

97 02111001000       1                       1 

98 02111111000                       1       1 

99 02111111001                       1       1 

100 10001000000       1                       1 

101 10011000100                         1     1 

102 10100010000                 1             1 

103 10101110000     1                         1 

104 10110011000                       1       1 

105 10111110111                 1             1 

106 11010000000                 1             1 

107 11110000000         1                     1 

108 11110001000               1               1 

109 11111111111 1                             1 

110 12010000000                     1         1 

111 12110000000           1                   1 

112 12111111111   1                           1 

113 21001110000                   1           1 

114 21101110000       1                       1 

    35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 525 
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Table  D.9. VMR task intuitiveness complete matrix 

re-index Gesture 1 2 3 4 5 6 7 8 sum

1 00111110000 2 9 6 1 4 2 24

2 20111110000 3 2 11 2 2 1 21

3 00111111000 4 4 1 2 1 3 15

4 00000000000 1 5 3 3 2 14

5 00111111111 5 4 5 14

6 00100001000 2 9 11

7 01111110000 10 1 11

8 10100001000 2 9 11

9 02111110000 10 10

10 10000000000 6 4 10

11 21111110000 1 8 1 10

12 10111110000 2 1 1 3 1 1 9

13 22111110000 1 8 9

14 00010000000 3 3 1 1 8

15 00110000000 2 2 2 2 8

16 20000000000 2 2 1 3 8

17 20100000000 1 1 3 1 1 7

18 00100000000 2 1 1 1 5

19 20011110000 1 1 2 1 5

20 20111112000 1 4 5

21 10111111000 1 1 2 4

22 20010000000 4 4

23 00111000000 1 2 3

24 10010000000 1 1 1 3

25 10011110000 1 1 1 3

26 20100002000 1 2 3

27 20110000000 1 1 1 3

28 00011000000 1 1 2

29 00011110000 1 1 2

30 00110001000 2 2

31 00110010000 2 2

32 02100001000 2 2

33 10100000000 1 1 2

34 10111000000 1 1 2

35 20101112000 1 1 2

36 21110000000 1 1 2

37 22110000000 1 1 2

38 00001110000 1 1

39 00010010000 1 1

40 00101110000 1 1

41 01000000000 1 1

42 01010000000 1 1

43 01100001000 1 1

44 01111111000 1 1

45 02010000000 1 1

46 02111111000 1 1

47 10010010000 1 1

48 10011000100 1 1

49 10110001000 1 1

50 10111111111 1 1

51 11110000000 1 1

52 11111110000 1 1

53 12100001000 1 1

54 12110000000 1 1

55 12111110000 1 1

56 21010000000 1 1

57 21011110000 1 1

58 22010000000 1 1

59 22011110000 1 1

35 35 35 35 35 35 35 35 280  
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Table  D.10. Complementary intuitiveness matrix (robotic arm) 

g1 g2 start/stop up/down left/right fwrd/bwrd w-up/w-down wrist cw/ccw open/close sum

1 8 1 1

1 11 1 1

1 13 1 1

2 1 1 1 2

2 6 3 3

2 13 1 1

3 15 2 1 3

4 16 8 8

5 3 1 1

5 7 3 3

6 1 1 1

6 17 1 2 3

7 3 1 1

7 15 1 1

7 23 1 1

8 1 1 3 4

8 6 3 3

8 13 3 3

8 19 1 1

9 11 3 3

10 12 1 2 3

11 9 1 1 1 3

12 10 10 1 11

13 1 1 1

14 1 1 1

14 2 1 1

14 13 2 2

14 24 1 1

15 3 1 1

15 17 1 1

16 4 2 1 1 4

16 6 1 1

17 6 1 4 5

17 13 1 1 1 3

17 15 1 1

19 1 2 2

19 8 1 1

19 13 4 4

19 16 1 1

19 17 1 1

19 20 1 1

20 1 1 1

20 23 1 1

23 7 1 1

23 20 1 1

24 6 1 1

24 20 3 3

24 23 1 1 2

24 27 1 1

26 27 1 7 1 1 2 12

27 26 1 1 2

sum 24 16 28 14 7 9 21 119  
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Table  D.11. Complementary intuitiveness matrix (VMR) 

g1 g2 start/stop frwd/bkwd left/right fast/slow sum

1 6 1 1

1 8 1 1

1 13 1 1

2 1 1 1 2

2 6 1 1

2 7 1 1

4 3 1 1

4 7 1 1

4 16 9 9

5 1 1 1

5 3 1 1

5 8 1 1

6 1 1 1 2

6 2 1 1

6 7 2 2

6 8 1 1

6 10 1 1

6 17 3 1 4

7 6 2 2

7 17 1 1

7 18 1 1 2

7 24 1 1

8 1 3 3

8 5 1 1

8 6 1 1 2

8 7 1 1

8 22 1 1

8 24 1 1

12 10 10 10

17 6 2 2

17 13 1 1

18 7 2 2

20 1 1 1

21 6 1 1

21 7 2 2

21 20 1 1

22 8 1 1

22 20 1 1

23 3 1 1

23 20 1 1

24 6 1 1

24 13 2 2

24 16 2 2

24 20 1 1 2

24 22 2 2

24 23 1 3 1 5

24 25 1 1

25 20 1 1

26 24 1 1

26 27 1 8 9

sum 29 21 29 18 97  
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Table  D.12. Complementary gesture-commands weighted intuitiveness matrix: (a) Robot task, (b) VMR 

task 

g1 g2 start/stop up/down left/right fwrd/back w. up/down w. cw/ccw open/close sum

1 8 6 6

1 11 2 2

1 13 4 4

2 1 6 5 11

2 6 15 15

2 13 4 4

3 15 8 6 14

4 16 48 48

5 3 4 4

5 7 14 14

6 1 6 6

6 17 4 7 11

7 3 4 4

7 15 4 4

7 23 4 4

8 1 5 18 23

8 6 16 16

8 13 14 14

8 19 6 6

9 11 12 12

10 12 5 10 15

11 9 4 6 4 14

12 10 52 4 56

13 1 4 4

14 1 3 3

14 2 4 4

14 13 9 9

14 24 6 6

15 3 6 6

15 17 6 6

16 4 8 4 3 15

16 6 5 5

17 6 4 22 26

17 13 5 4 6 15

17 15 4 4

19 1 8 8

19 8 4 4

19 13 22 22

19 16 4 4

19 17 4 4

19 20 6 6

20 1 4 4

20 23 4 4

23 7 5 5

23 20 6 6

24 6 4 4

24 20 14 14

24 23 2 6 8

24 27 5 5

26 27 2 35 4 4 10 55

27 26 6 5 11

sum 115 73 150 60 35 37 104 574  
(a) 
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g1 g2 start/stop frwrd/back left/right fast/slow sum

1 6 2 2

1 8 5 5

1 13 2 2

2 1 5 3 8

2 6 5 5

2 7 5 5

4 3 3 3

4 7 4 4

4 16 54 54

5 1 6 6

5 3 5 5

5 8 6 6

6 1 4 6 10

6 2 6 6

6 7 10 10

6 8 6 6

6 10 4 4

6 17 15 4 19

7 6 9 9

7 17 5 5

7 18 4 2 6

7 24 6 6

8 1 17 17

8 5 3 3

8 6 5 2 7

8 7 2 2

8 22 4 4

8 24 3 3

12 10 57 57

17 6 8 8

17 13 4 4

18 7 10 10

20 1 5 5

21 6 6 6

21 7 11 11

21 20 5 5

22 8 5 5

22 20 4 4

23 3 4 4

23 20 4 4

24 6 4 4

24 13 10 10

24 16 8 8

24 20 5 4 9

24 22 7 7

24 23 5 16 6 27

24 25 4 4

25 20 4 4

26 24 2 2

26 27 4 48 52

sum 139 101 165 67 472  
(b) 
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Table  D.13. Complementary intuitiveness normalized weighted matrix for the robotic arm task 

g1 g2 1 2 3 4 5 6 7

1 8 10 0 0 0 0 0 0

1 11 0 0 0 0 0 3 0

1 13 0 7 0 0 0 0 0

2 1 10 9 0 0 0 0 0

2 6 26 0 0 0 0 0 0

2 13 0 0 0 7 0 0 0

3 15 14 0 10 0 0 0 0

4 16 0 0 84 0 0 0 0

5 3 0 0 0 7 0 0 0

5 7 24 0 0 0 0 0 0

6 1 10 0 0 0 0 0 0

6 17 7 0 0 12 0 0 0

7 3 0 0 0 0 0 0 7

7 15 7 0 0 0 0 0 0

7 23 0 0 0 0 0 0 7

8 1 9 0 0 0 0 0 31

8 6 28 0 0 0 0 0 0

8 13 0 0 0 0 0 0 24

8 19 10 0 0 0 0 0 0

9 11 0 0 0 0 0 21 0

10 12 0 0 0 9 17 0 0

11 9 0 0 7 0 0 10 7

12 10 0 0 91 0 0 7 0

13 1 0 7 0 0 0 0 0

14 1 0 5 0 0 0 0 0

14 2 0 0 0 7 0 0 0

14 13 0 16 0 0 0 0 0

14 24 0 0 0 10 0 0 0

15 3 0 0 0 0 10 0 0

15 17 0 0 0 0 10 0 0

16 4 0 14 0 0 7 5 0

16 6 9 0 0 0 0 0 0

17 6 7 38 0 0 0 0 0

17 13 9 7 0 0 0 0 10

17 15 0 7 0 0 0 0 0

19 1 0 0 0 0 0 0 14

19 8 0 0 0 0 0 0 7

19 13 0 0 0 0 0 0 38

19 16 0 0 0 0 0 0 7

19 17 0 0 0 0 0 0 7

19 20 0 0 0 0 0 0 10

20 1 0 7 0 0 0 0 0

20 23 0 0 0 7 0 0 0

23 7 9 0 0 0 0 0 0

23 20 0 10 0 0 0 0 0

24 6 7 0 0 0 0 0 0

24 20 0 0 0 24 0 0 0

24 23 0 0 0 3 0 0 10

24 27 0 0 9 0 0 0 0

26 27 3 0 61 7 7 17 0

27 26 0 0 0 10 9 0 0
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Table  D.14. Complementary intuitiveness normalized weighted matrix for the VMR task 

g1 g2 1 2 3 4

1 6 0 0 0 4

1 8 11 0 0 0

1 13 0 0 0 4

2 1 0 11 0 6

2 6 11 0 0 0

2 7 11 0 0 0

4 3 6 0 0 0

4 7 8 0 0 0

4 16 0 0 114 0

5 1 13 0 0 0

5 3 0 11 0 0

5 8 13 0 0 0

6 1 8 13 0 0

6 2 0 0 0 13

6 7 0 21 0 0

6 8 13 0 0 0

6 10 0 0 0 8

6 17 0 32 8 0

7 6 19 0 0 0

7 17 11 0 0 0

7 18 8 0 4 0

7 24 0 13 0 0

8 1 36 0 0 0

8 5 0 0 0 6

8 6 11 0 0 4

8 7 0 0 0 4

8 22 0 0 0 8

8 24 6 0 0 0

12 10 0 0 121 0

17 6 17 0 0 0

17 13 0 0 0 8

18 7 0 0 0 21

20 1 0 0 0 11

21 6 13 0 0 0

21 7 23 0 0 0

21 20 11 0 0 0

22 8 11 0 0 0

22 20 0 8 0 0

23 3 8 0 0 0

23 20 0 0 0 8

24 6 8 0 0 0

24 13 0 21 0 0

24 16 0 17 0 0

24 20 0 11 0 8

24 22 0 15 0 0

24 23 11 34 0 13

24 25 8 0 0 0

25 20 0 0 0 8

26 24 0 0 0 4

26 27 0 8 102 0  
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Table  D.15. Stress normalized matrix for the robot and VMR tasks 

Gest 0
0
0
0
0
0

0
0
0
0
0

0
0
0
1
0
0

0
0
0
0
0

0
0
1
0
0
0

0
0
0
0
0

0
0
1
0
0
0

0
1
0
0
0

0
0
1
1
0
0

0
0
0
0
0

0
0
1
1
1
1

1
0
0
0
0

0
0
1
1
1
1

1
1
0
0
0

0
0
1
1
1
1

1
1
1
1
1

0
1
0
0
0
0

0
0
0
0
0

0
1
1
1
1
1

1
0
0
0
0

0
2
0
0
0
0

0
0
0
0
0

0
2
1
1
1
1

1
0
0
0
0

1
0
0
0
0
0

0
0
0
0
0

1
0
0
1
0
0

0
0
0
0
0

1
0
1
0
0
0

0
0
0
0
0

1
0
1
0
0
0

0
1
0
0
0

1
0
1
1
1
1

1
0
0
0
0

1
0
1
1
1
1

1
1
0
0
0

1
0
1
1
1
1

1
1
1
1
1

2
0
0
0
0
0

0
0
0
0
0

2
0
0
1
0
0

0
0
0
0
0

2
0
0
1
1
1

1
0
0
0
0

2
0
1
0
0
0

0
0
0
0
0

2
0
1
1
1
1

1
0
0
0
0

2
0
1
1
1
1

1
2
0
0
0

2
1
1
1
1
1

1
0
0
0
0

2
2
1
1
1
1

1
0
0
0
0

00000000000 111 132 123 118 142 88 96 116 154 162 163 178 134 154 155 146 128 136 119 123 153 128 127 110 145 142 155

00010000000 113 135 125 120 144 90 98 118 156 164 165 180 136 156 157 148 131 139 121 125 155 131 129 112 147 144 157

00100000000 112 134 125 119 143 89 97 118 155 163 165 179 135 155 156 147 130 138 120 124 154 130 128 111 146 143 156

00100001000 112 133 124 119 142 89 97 117 155 163 164 179 134 155 156 147 129 137 120 124 153 129 128 110 145 142 156

00110000000 114 136 126 121 146 91 99 119 157 165 166 181 137 157 158 149 131 140 122 126 156 131 130 113 148 145 158

00111110000 109 130 121 115 140 86 94 114 152 160 161 176 131 152 153 144 126 134 117 121 150 126 125 107 142 140 153

00111111000 109 131 122 116 140 87 95 115 152 160 162 177 132 152 154 144 127 135 117 122 151 127 126 108 143 140 154

00111111111 111 133 124 118 142 89 97 117 154 163 164 179 134 154 156 146 129 137 120 124 153 129 128 110 145 142 156

01000000000 115 137 127 122 146 92 100 121 159 166 168 182 138 158 160 150 133 141 123 127 157 133 131 114 149 146 160

01111110000 116 138 128 123 147 93 101 121 159 168 168 183 139 159 160 151 134 142 124 128 158 134 132 115 150 147 160

02000000000 116 138 128 123 147 93 101 122 159 167 169 183 139 159 161 151 134 142 124 128 158 134 132 115 150 147 161

02111110000 118 139 130 124 149 95 103 123 161 169 170 186 141 161 162 153 135 143 126 130 159 135 134 116 151 149 162

10000000000 113 135 125 120 144 90 98 119 156 164 166 180 137 156 158 148 131 139 121 125 155 131 129 112 147 144 158

10010000000 115 137 127 122 146 92 100 121 158 166 168 182 138 159 160 150 133 141 123 127 157 133 131 114 149 146 160

10100000000 115 137 127 122 146 93 101 121 158 166 168 183 138 158 160 150 133 141 123 127 157 133 132 114 149 146 160

10100001000 114 136 127 121 145 92 100 120 157 165 167 182 137 157 159 150 132 140 122 127 156 132 131 113 148 145 159

10111110000 113 134 125 119 144 90 98 118 156 164 165 180 136 156 157 148 131 138 121 125 154 130 129 111 146 144 157

10111111000 113 135 126 120 144 91 99 119 156 165 166 181 136 156 158 148 131 140 122 126 155 131 130 112 147 144 158

10111111111 112 133 124 118 143 89 97 117 155 163 164 179 135 155 156 147 129 137 120 124 153 129 128 110 145 143 156

20000000000 112 134 124 119 143 89 97 118 155 163 165 179 135 155 156 147 130 138 120 125 154 130 128 111 146 143 156

20010000000 115 137 127 122 146 92 100 120 158 166 168 182 138 158 159 150 133 141 123 127 157 133 131 114 149 146 159

20011110000 113 134 125 119 144 90 98 118 156 164 165 180 136 156 157 148 130 138 121 125 154 131 129 111 146 144 157

20100000000 113 134 125 119 143 90 98 118 156 164 165 180 135 156 157 147 130 138 121 125 154 130 129 111 146 143 157

20111110000 111 132 123 118 142 88 96 116 154 162 163 178 134 154 155 146 128 136 119 123 152 128 127 110 144 142 155

20111112000 114 136 126 121 145 91 100 120 157 165 167 181 137 157 159 149 132 140 122 126 156 132 130 113 148 145 159

21111110000 114 136 126 121 145 91 99 119 157 165 166 181 137 157 158 149 131 140 122 126 156 131 130 113 148 146 158

22111110000 115 137 127 122 146 93 101 121 158 166 168 183 138 158 160 150 133 141 123 127 157 133 132 114 149 146 160
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Table  D.16. Average and std dev static stress values for 19 subjects 

gi Code AVG STD
1 00000000000 2.586207 1.592779
2 00010000000 3.137931 1.457104
3 00100000000 2.896552 1.113066
4 00100001000 2.758621 1.353703
5 00110000000 3.37931 1.236752
6 00111110000 2 1.28174
7 00111111000 2.206897 1.145778
8 00111111111 2.724138 1.532891
9 01000000000 3.689655 1.853634
10 01111110000 3.896552 1.472239
11 02000000000 3.931034 1.486391
12 02111110000 4.310345 1.794902
13 10000000000 3.172414 1.465532
14 10010000000 3.689655 1.441811
15 10100000000 3.724138 1.306483
16 10100001000 3.482759 1.66091
17 10111110000 3.034483 1.451176
18 10111111000 3.241379 1.479748
19 10111111111 2.793103 1.544097
20 20000000000 2.896552 1.739146
21 20010000000 3.655172 1.758162
22 20011110000 3.034483 1.475581
23 20100000000 3 1.558387
24 20111110000 2.551724 1.297971
25 20111112000 3.448276 1.616571
26 21111110000 3.37931 1.760961
27 22111110000 3.724138 1.386067
28 02110101000 8.137931 2.26
29 12001010000 7.034483 2.16  

 

Table  D.17. Subset 1 for the transition stress experiment 

1 7 25 27 28 29

Gi   Gj

0
0
0
0
0
0
0

0
0
0
0

0
0
1
1
1
1
1

1
0
0
0

2
0
1
1
1
1
1

2
0
0
0

2
2
1
1
1
1
1

0
0
0
0

0
2
1
1
0
1
0

1
0
0
0

1
2
0
0
1
0
1

0
0
0
0

1 00000000000 X 2.17 2.83 2.33 8.5 6.58

7 00111111000 1.917 X 2.33 2.67 8.17 5.92

25 20111112000 2.167 2.5 X 2.67 7.08 7

27 22111110000 2.25 2.17 2.83 X 8.17 6.58

28 02110101000 2.833 3.08 3.67 4.17 X 7.92

29 12001010000 2.417 3.17 3.5 3.67 8.25 X  
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Table  D.18. Subset 2 for the transition stress experiment 

4 6 8 10 16 27

Gi   Gj

0
0
1
0
0
0
0
1
0
0
0

0
0
1
1
1
1
1
0
0
0
0

0
0
1
1
1
1
1
1
1
1
1

0
1
1
1
1
1
1
0
0
0
0

1
0
1
0
0
0
0
1
0
0
0

2
2
1
1
1
1
1
0
0
0
0

4 00100001000 X 3.14 2.57 4 3 3.86

6 00111110000 2.286 X 2 3.71 3.57 3.71

8 00111111111 1.571 2.29 X 4.57 3.86 2.43

10 01111110000 3.857 1.57 3 X 4.57 3

16 10100001000 1.857 3.57 3.71 5 X 3.86

27 22111110000 3.143 2 2.57 4 3.71 X  
 

Table  D.19. Subset 3 for the validation of the transition stress experiment 

30 31 32 33 34 35

Gi   Gj

0
0
0
1
1
1
0
0
1
1
0

0
1
1
1
1
1
1
1
0
0
0

0
2
1
1
1
1
1
1
0
0
0

1
0
1
1
1
0
0
1
1
0
0

1
2
1
1
1
0
0
1
0
0
0

2
0
1
0
1
1
1
2
0
0
0

30 00011100110 X 3 3.43 3.43 5.43 4

31 01111111000 2.143 X 3.14 3.86 4 3

32 02111111000 3.143 2 X 3.57 4.86 4

33 10111001100 2.857 3.43 3.86 X 4.86 4.43

34 12111001000 2.714 3.29 4.29 3.29 X 4

35 20101112000 2.714 2.86 3.43 4.71 5.43 X  
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Table  D.20. Duration normalized matrix for the robot and VMR tasks 

Gest 0
0
0
0
0
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0
0
0

0
0
1
0
0
0
0
1
0
0
0

0
0
1
1
0
0
0
0
0
0
0

0
0
1
1
1
1
1
0
0
0
0

0
0
1
1
1
1
1
1
0
0
0

0
0
1
1
1
1
1
1
1
1
1

0
1
0
0
0
0
0
0
0
0
0

0
1
1
1
1
1
1
0
0
0
0

0
2
0
0
0
0
0
0
0
0
0

0
2
1
1
1
1
1
0
0
0
0

1
0
0
0
0
0
0
0
0
0
0

1
0
0
1
0
0
0
0
0
0
0

1
0
1
0
0
0
0
0
0
0
0

1
0
1
0
0
0
0
1
0
0
0

1
0
1
1
1
1
1
0
0
0
0

1
0
1
1
1
1
1
1
0
0
0

1
0
1
1
1
1
1
1
1
1
1

2
0
0
0
0
0
0
0
0
0
0

2
0
0
1
0
0
0
0
0
0
0

2
0
0
1
1
1
1
0
0
0
0

2
0
1
0
0
0
0
0
0
0
0

2
0
1
1
1
1
1
0
0
0
0

2
0
1
1
1
1
1
2
0
0
0

2
1
1
1
1
1
1
0
0
0
0

2
2
1
1
1
1
1
0
0
0
0

00000000000 1 137 128 122 147 92 100 121 160 168 169 185 139 160 161 151 133 142 124 128 158 133 132 114 150 147 161

00010000000 118 1 130 124 149 94 102 123 162 170 172 187 141 162 163 154 136 144 126 130 161 136 134 116 152 149 163

00100000000 117 139 1 123 148 93 101 122 161 169 171 186 140 161 162 153 135 143 125 129 160 135 133 115 151 148 162

00100001000 116 138 128 1 148 92 101 121 160 169 170 185 140 160 162 152 134 142 124 128 159 134 133 115 151 148 162

00110000000 119 141 131 126 1 95 103 124 163 171 173 188 142 163 164 155 137 145 127 131 162 137 135 117 153 151 164

00111110000 113 135 125 120 145 1 97 118 157 165 167 182 136 157 158 149 131 139 121 125 156 131 129 111 147 145 158

00111111000 114 136 126 120 145 90 1 119 158 166 168 183 137 158 159 150 132 140 122 126 157 132 130 112 148 145 159

00111111111 116 138 128 123 148 92 101 1 160 168 170 185 139 160 162 152 134 142 124 128 159 134 132 114 150 148 162

01000000000 120 142 132 127 152 96 105 125 1 173 174 189 144 164 166 156 138 146 128 132 163 138 137 119 155 152 166

01111110000 121 143 133 128 153 97 106 126 165 1 175 190 144 165 167 157 139 147 129 133 164 139 137 119 156 153 167

02000000000 121 143 133 128 153 97 106 127 165 174 1 190 145 165 167 157 139 147 129 133 164 139 138 120 156 153 167

02111110000 123 145 135 130 155 99 107 128 167 175 177 1 146 167 168 159 141 149 131 135 166 141 139 121 157 155 168

10000000000 118 140 130 125 150 94 102 123 162 170 172 187 1 162 163 154 136 144 126 130 161 136 134 116 152 150 163

10010000000 120 142 132 127 152 96 105 125 164 173 174 189 144 1 166 156 138 146 128 132 163 138 137 119 155 152 166

10100000000 120 142 133 127 152 96 105 126 164 173 174 189 144 164 1 156 138 146 128 133 163 138 137 119 155 152 166

10100001000 119 141 132 126 151 95 104 125 163 172 173 188 143 163 165 1 137 145 127 132 162 137 136 118 154 151 165

10111110000 117 139 130 124 149 94 102 123 162 170 171 186 141 162 163 153 1 143 125 130 160 135 134 116 152 149 163

10111111000 118 140 130 125 150 94 103 124 162 171 172 187 142 162 164 154 136 1 126 130 161 136 135 117 153 150 164

10111111111 116 138 129 123 148 92 101 122 160 169 170 185 140 160 162 152 134 142 1 129 159 134 133 115 151 148 162

20000000000 117 139 129 123 148 93 101 122 161 169 171 186 140 161 162 153 135 143 125 1 160 135 133 115 151 148 162

20010000000 120 142 132 127 152 96 105 125 164 173 174 189 143 164 166 156 138 146 128 132 1 138 136 118 154 152 166

20011110000 117 139 130 124 149 94 102 123 162 170 171 186 141 162 163 153 135 143 125 130 160 1 134 116 152 149 163

20100000000 117 139 129 124 149 93 102 123 161 170 171 186 141 161 163 153 135 143 125 129 160 135 1 116 152 149 163

20111110000 115 137 128 122 147 91 100 121 159 168 169 184 139 159 161 151 133 141 123 128 158 133 132 1 150 147 161

20111112000 119 141 131 126 151 95 104 124 163 172 173 188 142 163 165 155 137 145 127 131 162 137 136 118 1 151 165

21111110000 119 141 131 126 151 95 103 124 163 171 173 188 142 163 164 155 137 145 127 131 162 137 135 117 153 1 164

22111110000 120 142 133 127 152 96 105 126 164 173 174 189 144 164 166 156 138 146 128 133 163 138 137 119 155 152 1  
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Table  D.21 The frequency matrix for the robotic arm task with the ‘rest’ command 

0 (rest) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 (r)  42761 0 30 125 231 86 80 96 98 89 22 97 3 72 35 26

1 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 96 0 0 3560 0 0 0 0 28 0 0 0 0 0 0 4

4 212 0 0 1 5150 3 0 1 0 7 1 2 0 4 8 0

5 88 0 0 0 0 3110 0 1 1 0 0 0 0 0 0 0

6 91 0 0 0 1 0 6075 0 20 0 0 0 0 0 0 0

7 98 0 0 0 0 0 0 371 0 0 0 0 0 0 0 0

8 109 0 0 2 3 1 32 0 3182 0 0 0 0 0 0 0

9 96 0 0 0 0 0 0 0 0 208 0 0 0 0 0 0

10 22 0 0 0 0 0 0 0 0 0 7 0 0 0 1 0

11 95 0 0 0 4 0 0 0 0 0 0 1696 0 0 0 0

12 3 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0

13 76 0 0 0 0 0 0 0 0 0 0 0 0 18 0 0

14 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 

Table  D.22. The frequency matrix for the VMR task with the ‘rest’ command 

0 (rest) 1 2 3 4 5 6 7 8

0 (r) 101462 0 23 986 61 336 367 24 20

1 30 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 1058 0 7 11772 13 294 177 25 0

4 64 0 0 0 1469 0 24 1 0

5 249 0 0 370 0 5290 0 1 10

6 329 0 0 215 15 0 5401 9 0

7 57 0 0 3 0 0 0 0 0

8 30 0 0 0 0 0 0 0 0  

 

Table  D.23. The frequency matrix for the robotic arm task 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 3624 1 1 3 0 29 0 0 0 0 1 0 29

4 0 0 2 5270 13 1 1 3 14 3 13 1 34 34 0

5 0 0 0 9 3159 4 14 12 0 1 0 0 1 0 0

6 0 0 0 20 3 6134 0 29 1 0 0 0 0 0 0

7 0 0 0 13 18 1 424 1 7 2 1 0 2 0 0

8 0 0 3 19 4 44 0 3255 0 1 1 0 2 0 0

9 0 0 0 15 1 0 0 0 272 4 5 0 7 0 0

10 0 0 0 4 0 0 0 0 9 15 0 0 1 1 0

11 0 0 0 29 1 0 0 0 0 1 1752 0 11 1 0

12 0 0 0 0 0 0 0 0 1 1 0 17 0 0 0

13 0 0 27 9 0 0 0 0 0 2 22 1 24 8 1

14 0 0 32 0 0 0 0 0 0 0 1 0 11 0 0

15 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0  
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Table  D.24. The frequency matrix for the VMR task  

1 2 3 4 5 6 7 8

1 0 0 30 0 0 0 0 0

2 0 0 0 0 0 0 0 0

3 0 29 12460 30 475 313 32 7

4 0 0 7 1505 1 44 1 0

5 0 1 456 1 5436 4 1 21

6 0 0 314 19 1 5607 26 2

7 0 0 58 1 0 1 0 0

8 0 0 21 2 7 0 0 0  
 

Table  D.25. Normalized frequency matrix for the robotic arm task 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 147 0 0 0 0 1 0 0 0 0 0 0 1

4 0 0 0 214 1 0 0 0 1 0 1 0 1 1 0

5 0 0 0 0 128 0 1 0 0 0 0 0 0 0 0

6 0 0 0 1 0 249 0 1 0 0 0 0 0 0 0

7 0 0 0 1 1 0 17 0 0 0 0 0 0 0 0

8 0 0 0 1 0 2 0 132 0 0 0 0 0 0 0

9 0 0 0 1 0 0 0 0 11 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

11 0 0 0 1 0 0 0 0 0 0 71 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

13 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0

14 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

15 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  

 

Table  D.26. Normalized frequency matrix for the VMR task 

1 2 3 4 5 6 7 8

1 0 0 1 0 0 0 0 0

2 0 0 0 0 0 0 0 0

3 0 1 463 1 18 12 1 0

4 0 0 0 56 0 2 0 0

5 0 0 17 0 202 0 0 1

6 0 0 12 1 0 208 1 0

7 0 0 2 0 0 0 0 0

8 0 0 1 0 0 0 0 0  



 

 

141  

Appendix E. Gesture Master Sets  

This appendix presents the master set gestures images used for the robotic arm and VMR 

tasks. The combined set of gestures is presented in the last image. 

 

 
(a) 
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(b) 

Figure  E.1 Gestures master set. (a) Robot task vocabulary. (b) VMR task vocabulary 
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Figure  E.2. Combined gestures master set 
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Appendix F. Panasonic WE-160 Image Viewer 

This appendix shows the Panasonic WE-160 Image Viewer major operating controls and their 

function, from the original operating instructions manual. 
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Appendix G. Learning Curves 

The following appendix shows the learning curves for the task performance for the robotic 

arm and tasks applications.  The first learning curve is based in 8 runs using 8 different VG for the 

robotic arm task. The following learning curve corresponds to the 8 runs using 8 VB for the 

robotic arm task. The last two learning curves are similar to the first two but resulting from the 

VMR task. 
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Figure  G.1. Learning curve for the VG vocabulary used in the robotic arm task 
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Figure  G.2 Learning curve for the VB vocabulary used in the robotic arm task 
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VG Car
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Figure  G.3 Learning curve for the VG vocabulary used in the VMR task 
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Figure  G.4. Learning curve for the VB vocabulary used in the VMR task 
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Appendix H. Statistical Analysis 

This appendix presents statistical results regarding different analysis done on the learning 

curve experiments, stress and duration prediction model, task completion time and memorability 

tests.  

The table Table  H.1 was obtained using the SPSS statistics package, and shows the regression 

results for the transition stress versus the static stress of the beginning and ending poses. The 

graph in Figure  H.1 shows the result of the regression in a scatter plot. The same analysis was 

done regarding the duration time of the transition between poses versus the duration time of 

holding each pose see Table  H.2 and Figure  H.2. 

Regression results for the linearization of the learning curves are presented in tables Table 

 H.3- Table  H.6. The tables present the results for the VG and VB for each the robotic arm (Table 

 H.3 and Table  H.4) and for the VMR (Table  H.5 and Table  H.6) tasks. 

Table  H.7 and Table  H.8 shows the results of the t-test comparing the task completion time 

between the VG and VB for the robotic arm and VMR tasks. The last tables, Table  H.9 and Table 

 H.10, show the results of the t-test comparing the memorability index between the VG and VB 

vocabularies. 

 

Table  H.1. Regression results for the transition stress model 

Model Summary 

Model R 
R 

Square(a) 
Adjusted R 
Square 

Std. Error of 
the Estimate 

1 .988(b) .977 .976 .6476997 

 
ANOVA 

Model   Sum of Squares Df 
Mean 

Square F Sig. 

1 Regression 1024.757 2 512.379 1221.360 .000(a) 

  Residual 24.332 58 .420     

  Total 1049.089(b) 60       

 
Coefficients 

Model   
Unstandardized 
Coefficients 

Standardized 
Coefficients T Sig. 

    B 
Std. 

Error Beta     

1 Stress_A .091 .034 .092 2.660 .010 

  Stress_B .905 .034 .912 26.449 .000 

 
Residuals Statistics 

  Minimum Maximum Mean 
Std. 

Deviation N 

Predicted Value 2.057517 8.003403 3.794374 1.6515060 60 

Std. Predicted Value -1.052 2.549 .000 1.000 60 

Standard Error of Predicted 
Value .051 .221 .106 .054 60 

Adjusted Predicted Value 2.052688 7.986944 3.792189 1.6441112 60 

Residual -
1.2716382 

1.4448731 
-

.0360409 
.6411580 60 

Std. Residual -1.963 2.231 -.056 .990 60 

Stud. Residual -1.977 2.246 -.054 1.003 60 

Deleted Residual - 1.4643981 - .6585088 60 
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1.2891288 .0338558 

Stud. Deleted Residual -2.029 2.330 -.053 1.016 60 

Mahal. Distance .378 7.002 2.000 2.034 60 

Cook's Distance .000 .131 .014 .021 60 

Centered Leverage Value .006 .117 .033 .034 60 
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Figure  H.1. Plot between real and predicted transition stress 

 

Table  H.2. Regression results for the transition duration time model 

Model Summary 

Model R 
R 

Square(a) 
Adjusted 

R Square 

Std. Error 
of the 

Estimate 

1 .975(b) .950 .949 1.03757 

 
ANOVA 

Model   Sum of Squares Df 
Mean 

Square F Sig. 

1 Regression 1195.560 2 597.780 555.275 .000(a) 

  Residual 62.440 58 1.077     

  Total 1258.000(b) 60       

 
 

Coefficients 

Model   
Unstandardized 
Coefficients 

Standardized 
Coefficients t Sig. 

    B 
Std. 

Error Beta     

1 Stress_A .104 .055 .096 1.894 .063 

  Stress_B .973 .055 .895 17.748 .000 
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Residuals Statistics 

  Minimum Maximum Mean Std. Deviation N 

Predicted Value 2.2281 8.6455 4.1016 1.77630 60 

Std. Predicted Value -1.055 2.558 .000 1.000 60 

Standard Error of Predicted 
Value .082 .354 .169 .086 60 

Adjusted Predicted Value 2.2260 8.5551 4.0928 1.75303 60 

Residual -2.02673 3.31321 -.13496 1.01969 60 

Std. Residual -1.953 3.193 -.130 .983 60 

Stud. Residual -1.968 3.298 -.126 1.009 60 

Deleted Residual -2.05777 3.53435 -.12617 1.07549 60 

Stud. Deleted Residual -2.020 3.627 -.118 1.043 60 

Mahal. Distance .378 7.002 2.000 2.034 60 

Cook's Distance .000 .499 .027 .080 60 

Centered Leverage Value .006 .117 .033 .034 60 
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Figure  H.2. Plot between the actual and predicted duration time 
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Table  H.3. Results for the linear regression for the robotic arm task, VG vocabulary (learning curve) 

Model Variables Entered Variables Removed Method 

1 ln_n(a) . Enter 

a  All requested variables entered. 

b  Dependent Variable: ln_Yn 

 

 Model Summary(b) 

 

M

odel R 

R 

Square 

Adjust

ed R 

Square 

Std. Error 

of the 

Estimate 

1 .775(a) .601 .597 .2159597 

a  Predictors: (Constant), ln_n 

b  Dependent Variable: ln_Yn 

 

 ANOVA(b) 

 

Mode

l   Sum of Squares df 

Mean 

Square F Sig. 

1 Regression 8.276 1 8.276 177.443 .000(a) 

  Residual 5.503 118 .047     

  Total 13.779 119       

a  Predictors: (Constant), ln_n 

b  Dependent Variable: ln_Yn 

 

 Coefficients(a) 

 

Mod

el   

Unstandardized 

Coefficients Standardized Coefficients t Sig. 

    B 

Std. 

Error Beta     

1 (Constant) 5.384 .052   102.772 .000 

  ln_n -.348 .026 -.775 -13.321 .000 

a  Dependent Variable: ln_Yn 

 

 Casewise Diagnostics(a) 

 

Case 

Number 

Std. 

Residual ln_Yn 

81 3.370 5.4889 

93 3.124 5.6768 

   

a  Dependent Variable: ln_Yn 
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 Residuals Statistics(a) 

 

  Minimum Maximum Mean Std. Deviation N 

Predicted Value 
4.442648 5.384013 

4.737

462 
.2637112 120 

Std. Predicted Value -1.118 2.452 .000 1.000 120 

Standard Error of 

Predicted Value 
.020 .052 .027 .008 120 

Adjusted Predicted 

Value 
4.437874 5.400646 

4.737

458 
.2638318 120 

Residual 
-.5076640 .7277712 

.0000

000 
.2150504 120 

Std. Residual -2.351 3.370 .000 .996 120 

Stud. Residual -2.364 3.384 .000 1.003 120 

Deleted Residual 
-.5136268 .7339372 

.0000

034 
.2184021 120 

Stud. Deleted 

Residual 
-2.412 3.546 .003 1.018 120 

Mahal. Distance .008 6.011 .992 1.477 120 

Cook's Distance .000 .085 .008 .014 120 

Centered Leverage 

Value 
.000 .051 .008 .012 120 

a  Dependent Variable: ln_Yn 

 

 

 

Table  H.4. Results for the linear regression for the robotic arm task, VB vocabulary (learning curve) 

 

 Variables Entered/Removed(b) 

 

Model Variables Entered Variables Removed Method 

1 Ln_n(a) . Enter 

a  All requested variables entered. 

b  Dependent Variable: ln_Yn 

 

 Model Summary(b) 

 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 .650(a) .422 .417 .2910501 

a  Predictors: (Constant), ln_n 

b  Dependent Variable: ln_Yn 
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 ANOVA(b) 

 

Model   Sum of Squares df Mean Square F Sig. 

1 Regression 7.301 1 7.301 86.188 .000(a) 

  Residual 9.996 118 .085     

  Total 17.297 119       

a  Predictors: (Constant), ln_n 

b  Dependent Variable: ln_Yn 

 

 Coefficients(a) 

 

Mod

el   

Unstandardized 

Coefficients Standardized Coefficients t Sig. 

    B 

Std. 

Error Beta     

1 (Constant) 5.69

8 
.071   80.702 .000 

  ln_n -.327 .035 -.650 -9.284 .000 

a  Dependent Variable: ln_Yn 

 Residuals Statistics(a) 

 

  Minimum Maximum Mean 

Std. 

Deviation N 

Predicted Value 
4.813634 5.697828 

5.090

544 
.2476953 120 

Std. Predicted Value -1.118 2.452 .000 1.000 120 

Standard Error of 

Predicted Value 
.027 .071 .036 .011 120 

Adjusted Predicted 

Value 
4.807677 5.726015 

5.090

992 
.2483787 120 

Residual 
-.6019490 .6723468 

.0000

000 
.2898246 120 

Std. Residual -2.068 2.310 .000 .996 120 

Stud. Residual -2.078 2.325 -.001 1.003 120 

Deleted Residual 
-.6136261 .6808980 

-

.0004487 
.2939772 120 

Stud. Deleted 

Residual 
-2.108 2.370 .000 1.009 120 

Mahal. Distance .008 6.011 .992 1.477 120 

Cook's Distance .000 .080 .007 .011 120 

Centered Leverage 

Value 
.000 .051 .008 .012 120 

a  Dependent Variable: ln_Yn 
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Table  H.5. Results for the linear regression for the VMR task, VG vocabulary (learning curve) 

 

 Variables Entered/Removed(b) 

 

Model Variables Entered Variables Removed Method 

1 Ln_n(a) . Enter 

a  All requested variables entered. 

b  Dependent Variable: ln_Yn 

 

 Model Summary(b) 

 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 .770(a) .593 .590 .1721787 

a  Predictors: (Constant), ln_n 

b  Dependent Variable: ln_Yn 

 

 ANOVA(b) 

 

Model   Sum of Squares df Mean Square F Sig. 

1 Regression 5.103 1 5.103 172.126 .000(a) 

  Residual 3.498 118 .030     

  Total 8.601 119       

a  Predictors: (Constant), ln_n 

b  Dependent Variable: ln_Yn 

 

 Coefficients(a) 

 

Model   

Unstandardized 

Coefficients Standardized Coefficients t Sig. 

    B 

Std. 

Error Beta     

1 (Constant) 5.43

8 
.042   130.185 .000 

  ln_n -.273 .021 -.770 -13.120 .000 

a  Dependent Variable: ln_Yn 

 

 Casewise Diagnostics(a) 

 

Case Number Std. Residual ln_Yn 

65 3.154 5.5413 

a  Dependent Variable: ln_Yn 
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 Residuals Statistics(a) 

 

  Minimum Maximum Mean 

Std. 

Deviation N 

Predicted Value 
4.698318 5.437511 

4.929

816 
.2070754 120 

Std. Predicted Value -1.118 2.452 .000 1.000 120 

Standard Error of 

Predicted Value 
.016 .042 .021 .007 120 

Adjusted Predicted 

Value 
4.694488 5.460166 

4.929

624 
.2066966 120 

Residual 
-.3623374 .5430669 

.0000

000 
.1714537 120 

Std. Residual -2.104 3.154 .000 .996 120 

Stud. Residual -2.169 3.169 .001 1.006 120 

Deleted Residual 
-.3849927 .5481370 

.0001

921 
.1751525 120 

Stud. Deleted 

Residual 
-2.204 3.299 .001 1.015 120 

Mahal. Distance .008 6.011 .992 1.477 120 

Cook's Distance .000 .147 .011 .022 120 

Centered Leverage 

Value 
.000 .051 .008 .012 120 

a  Dependent Variable: ln_Yn 

 

 

Table  H.6. Results for the linear regression for the VMR task, VB vocabulary (learning curve) 

 
 

 Variables Entered/Removed(b) 

 

Model Variables Entered Variables Removed Method 

1 ln_n(a) . Enter 

a  All requested variables entered. 

b  Dependent Variable: ln_Yn 
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 Model Summary(b) 

 

Model R 

R 

Square Adjusted R Square 

Std. Error 

of the 

Estimate 

1 .768(a) .590 .586 .1656439 

a  Predictors: (Constant), ln_n 

b  Dependent Variable: ln_Yn 

 

 ANOVA(b) 

 

Model   

Sum 

of 

Squares df 

Mean 

Square F Sig. 

1 Regression 4.618 1 4.618 168.300 .000(a) 

  Residual 3.210 117 .027     

  Total 7.828 118       

a  Predictors: (Constant), ln_n 

b  Dependent Variable: ln_Yn 

 

 Coefficients(a) 

 

Model   

Unstandardized 

Coefficients 

Standardized 

Coefficients t Sig. 

    B 

Std. 

Error Beta     

1 (Constant) 5.711 .040   142.119 .000 

  ln_n -.260 .020 -.768 -12.973 .000 

a  Dependent Variable: ln_Yn 

 

 Casewise Diagnostics(a) 

 

Case 

Number 

Std. 

Residual ln_Yn 

113 3.402 5.7038 

a  Dependent Variable: ln_Yn 

 

 Residuals Statistics(a) 

 

  Minimum Maximum Mean Std. Deviation N 

Predicted Value 
5.007515 5.710957 

5.228

296 
.1978232 119 
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Std. Predicted Value -1.116 2.440 .000 1.000 119 

Standard Error of 

Predicted Value 
.015 .040 .021 .006 119 

Adjusted Predicted 

Value 
5.001895 5.722557 

5.228

407 
.1981446 119 

Residual 
-.3172990 .5635756 

.0000

000 
.1649406 119 

Std. Residual -1.916 3.402 .000 .996 119 

Stud. Residual -1.931 3.420 .000 1.003 119 

Deleted Residual 
-.3223614 .5693164 

-

.0001113 
.1673656 119 

Stud. Deleted 

Residual 
-1.954 3.589 .001 1.013 119 

Mahal. Distance .008 5.953 .992 1.466 119 

Cook's Distance .000 .060 .007 .011 119 

Centered Leverage 

Value 
.000 .050 .008 .012 119 

a  Dependent Variable: ln_Yn 

 

Table  H.7 t-test for the time completion time between VG and VB (robotic arm task) 

Time V G Time V B

Mean 87.95833 118.958

Variance 91.22024 642.681

Observations 8 8

Pooled Variance 366.9504

Hypothesized Mean Difference 0

df 14

t Stat -3.236592

P(T<=t) one-tail 0.002985

t Critical one-tail 1.761309

P(T<=t) two-tail 0.00597

t Critical two-tail 2.144789  
 

Table  H.8. t-test for the time completion time between VG and VB (VMR task) 

Time V G Time V B

Mean 114.667 153.04167

Variance 144.063 379.18849

Observations 8 8

Pooled Variance 261.626

Hypothesized Mean Difference 0

df 14

t Stat -4.74502

P(T<=t) one-tail 0.00016

t Critical one-tail 1.76131

P(T<=t) two-tail 0.00031

t Critical two-tail 2.14479  
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Table  H.9. t-test for the memorability score for the robotic arm task 

Memo V G Memo V B

Mean 87.5 70.83333

Variance 94.444444 405.5556

Observations 8 8

Pooled Variance 250

Hypothesized Mean Difference 0

df 14

t Stat 2.1081851

P(T<=t) one-tail 0.0267581

t Critical one-tail 1.7613092

P(T<=t) two-tail 0.0535161

t Critical two-tail 2.1447886  
 

Table  H.10. t-test for the memorability score for the VMR task 

Memo V G Memo V B

Mean 96.666667 95

Variance 25.396825 47.619048

Observations 8 8

Pooled Variance 36.507937

Hypothesized Mean Difference 0

df 14

t Stat 0.5516773

P(T<=t) one-tail 0.2949337

t Critical one-tail 1.7613092

P(T<=t) two-tail 0.5898673

t Critical two-tail 2.1447886  
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Appendix I. Proof of convergance of the CNS method 
 

Let p be the vector of parameters, and A the recognition accuracy. For any feasible solution 

p=[p1, …, pn] for the recognition system, define a set N(p) of neighboring solutions of vector p. 

The number of neighbors of p is 2n as each parameter is incremented up and down. This 

neighborhood search method starts with an arbitrary initial solution. A pseudo code of the 

algorithm is shown below: 

 

Algorithm neighborhood search 
     Begin 

 Create an initial feasible solution p=[p1, …, pn] 

  While there is a neighbor p’ N(p) with A(p’) > A(p) do 

  Begin 
      Replace p by p’ 

 End 

Output p, which is the locally optimal solution 
     End 

Algorithm  I-1 Neighborhood search 

Define an iteration as one cycle starting from an initial solution p until the next neighbor 

solution p’ is selected. An example sequence of the parameter vectors p, appears in Table 2. 

Recognition accuracy in each iteration is shown in Fig. 4. 

 

Table  I.1 Optimal Parameter Search 

Parameters

Iterations p1 p2 p3 p4

1 2 2 3.5 17

2 2 3 3.5 17

3 2 4 3.5 17

4 2 4 3.5 18

5 2 4 3.5 18  
 

 

Figure Apx  I.1Recognition Accuracy vs. Iterations 
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Average complexity of the neighborhood search algorithm is O(n) (where n is the size of the 

parameter vector) times the number of iterations. In the previous example, for the given p, the 

number of neighborhood solutions examined is 2 x 4 x Ave. no. of iterations = 8 x 5 = 40 

(convergence was fast in the order of 3 to 8 iterations). Complete evaluation requires an 

evaluation of 2940 (the size of the search space =  ). It should be noted that the evaluation of each 

solution requires the determination of a new set of image features, executing the FCM algorithm, 

cluster label assignments, gesture recognition, and analysis of the confusion matrix. 
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Appendix J. Supervised FCM optimization procedure 
 

The supervised FCM optimization procedure was applied first on the independent system for the VMR master set. To find a good initial 

solution of the parameter vector for the optimization of the supervised FCM, nine solutions were generated using the five heuristic rules 

explained in [Wachs et al., 2005]. In the following tables the nine starting solutions are presented, and used to search for optimal parameter 

vector. Then the confusion matrices are presented, obtained using the optimal parameter vector set. The confusion matrices correspond to the car 

and robotic master set of gestures. 

 

Table  J.1. Parameter search results for VMR gesture set initial solutions 

num Rb Cb C m t w

1 2 2 15 2 142 0.2058    0.2000    0.1924    0.2111    0.1907

2 2 2 19 2 142 0.2058    0.2000    0.1924    0.2111    0.1907

3 2 2 23 2 142 0.2058    0.2000    0.1924    0.2111    0.1907

4 5 5 15 2 142 0.0373    0.0940    0.0398    0.0304    0.0363    0.0434    0.0561    0.0389    0.0314    0.0297    0.0307    0.0366    
5 5 5 19 2 142  0.0467    0.0438    0.0341    0.0355    0.0353    0.0427    0.0363    0.0306    0.0330    0.0305    0.0300    0.0374    

6 5 5 23 2 142 0.0373    0.0940    0.0398    0.0304    0.0363    0.0434    0.0561    0.0389    0.0314    0.0297    0.0307    0.0366    
7 8 8 15 2 142 0.0201    0.0200    0.0179    0.0148    0.0149    0.0155    0.0154    0.0160    0.0199    0.0157    0.0126    0.0118    

8 8 8 19 2 142 0.0201    0.0200    0.0179    0.0148    0.0149    0.0155    0.0154    0.0160    0.0199    0.0157    0.0126    0.0118    

9 8 8 23 2 142 0.0128    0.0128    0.0201    0.0200    0.0179    0.0148    0.0149    0.0155    0.0154    0.0160    0.0199    0.0157    
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Table  J.2. Parameter search result for initial solution 5 – VMR gesture set 

num Rb Cb w c m t A(%) n

1 5 5 0.047 0.044 0.034 0.036 0.035 0.043 0.036 0.031 0.033 0.031 0.03 

0.037 0.037 0.094 0.04 0.03 0.036 0.043 0.056 0.039 0.031 0.03 
23 2 142 77.25 690

2 5 5 0.512 0.023 0.017 0.018 0.018 0.022 0.018 0.016 0.017 0.016 0.015 

0.019 0.019 0.048 0.02 0.015 0.018 0.022 0.029 0.02 0.016 0.015 
23 2 142 90.43 690

3 4 5 0.557 0.024 0.019 0.02 0.019 0.024 0.02 0.017 0.018 0.017 0.017 

0.021 0.021 0.052 0.022 0.017 0.02 0.024 0.031 0.022 0.017
23 2 142 90.72 690

4 4 5 0.557 0.024 0.019 0.02 0.019 0.024 0.02 0.017 0.018 0.017 0.017 

0.021 0.021 0.052 0.022 0.017 0.02 0.024 0.031 0.022 0.017
25 1.5 142 94.35 690

5 4 5 0.557 0.024 0.019 0.02 0.019 0.024 0.02 0.017 0.018 0.017 0.017 

0.021 0.021 0.052 0.022 0.017 0.02 0.024 0.031 0.022 0.017
25 1.5 142 94.35 690

6 4 5 0.557 0.024 0.019 0.02 0.019 0.024 0.02 0.017 0.018 0.017 0.017 

0.021 0.021 0.052 0.022 0.017 0.02 0.024 0.031 0.022 0.017
24 1.5 142 95.07 690

7 4 4 0.615 0.027 0.021 0.022 0.022 0.026 0.022 0.019 0.02 0.019 0.018 

0.023 0.023 0.058 0.025 0.018 0.022
24 1.5 142 96.23 690

8 4 4 0.615 0.027 0.021 0.022 0.022 0.026 0.022 0.019 0.02 0.019 0.018 

0.023 0.023 0.058 0.025 0.018 0.022
24 1.5 142 96.23 690

9 4 4 0.615 0.027 0.021 0.022 0.022 0.026 0.022 0.019 0.02 0.019 0.018 

0.023 0.023 0.058 0.025 0.018 0.022
24 1.5 142 96.23 690

10 4 4 0.615 0.027 0.021 0.022 0.022 0.026 0.022 0.019 0.02 0.019 0.018 

0.023 0.023 0.058 0.025 0.018 0.022
24 1.5 142 96.23 690

11 4 4 0.629 0.028 0.021 0.023 0.022 0.027 0.023 0.019 0.021 0.019 0.019 

0.023 0.023 0.059 0.025 0.019 0
24 1.5 142 96.52 690

12 4 4 .693 .023 .017 .019 .018 .022 .019 .016 .017 .016 .016 .019 .019 

.049 .021 .016 0
23 1.5 152 91.59 880

13 4 4 .744 .019 .014 .016 .015 .018 .016 .013 .014 .013 .013 .016 .016 

.041 .018 .013 0
23 1.5 152 91.7 880

14 4 4 .744 .019 .014 .016 .015 .018 .016 .013 .014 .013 .013 .016 .016 

.041 .018 .013 0
23 1.5 162 92.27 880

15 4 4 .744 .019 .014 .016 .015 .018 .016 .013 .014 .013 .013 .016 .016 

.041 .018 .013 0
23 1.5 162 92.27 880

16 4 4 .744 .019 .014 .016 .015 .018 .016 .013 .014 .013 .013 .016 .016 

.041 .018 .013 0
37 1.5 162 92.61 880

17 4 4 .744 .019 .014 .016 .015 .018 .016 .013 .014 .013 .013 .016 .016 

.041 .018 .013 0
37 1.5 152 92.84 880

18 4 4 .744 .019 .014 .016 .015 .018 .016 .013 .014 .013 .013 .016 .016 

.041 .018 .013 0
36 1.5 152 92.84 880

19 4 4 .744 .019 .014 .016 .015 .018 .016 .013 .014 .013 .013 .016 .016 

.041 .018 .013 0
36 1.5 152 92.84 880

20 4 4 .744 .019 .014 .016 .015 .018 .016 .013 .014 .013 .013 .016 .016 

.041 .018 .013 0
36 1.5 152 92.84 880

21 4 4 .754 .019 .014 .016 .015 .019 .016 .014 .014 .014 .014 .016 .016 

.041 .018 0 0
36 1.5 152 93.41 880

22 4 4 .754 .019 .014 .016 .015 .019 .016 .014 .014 .014 .014 .016 .016 

.041 .018 0 0
35 1.5 152 93.41 880

23 4 4 .754 .019 .014 .016 .015 .019 .016 .014 .014 .014 .014 .016 .016 

.041 .018 0 0
37 1.5 152 93.41 880

24 4 4 .754 .019 .014 .016 .015 .019 .016 .014 .014 .014 .014 .016 .016 

.041 .018 0 0

37 1.5 152 93.41 880  
 

 

Table  J.3. Parameter search result using VMR optimal solution –robotic arm gesture set 

num Rb Cb w c m t A(%) n

1 4 4 .693 .023 .017 .019 .018 .022 .019 .016 .017 .016 

.016 .019 .019 .049 .021 .016 0
37 1.5 152 91.63 920

2 3 4 .758 .025 .019 .021 .02 .024 .021 .018 .019 .018 

.018 .021 .021
37 1.5 152 93.696 920

3 3 4 .758 .025 .019 .021 .02 .024 .021 .018 .019 .018 

.018 .021 .021
36 1.5 152 93.913 920

4 3 4 .758 .025 .019 .021 .02 .024 .021 .018 .019 .018 

.018 .021 .021

36 1.5 152 93.913 920  
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Table  J.4. Confusion matrix for optimal solution - VMR case 

gi   gj 1 2 3 4 5 6 7 8 10 12 13 16 17 18 20 21 22 23 24 25 26 27

1 17 0 19 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0

2 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 2 0 37 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

4 0 0 4 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 7 0 0 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0

13 1 0 0 0 0 0 0 0 0 0 39 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 39 0 0 0 0 1 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0

20 0 0 1 0 0 0 0 0 0 0 0 0 0 0 39 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 0 5 0 0 0

23 7 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 29 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 38 0 0 0

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40  
 

Table  J.5. Confusion matrix for optimal solution -robotic arm case 

gi   gj 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 23 24 26 27

1 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0

2 0 35 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 11 0 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 2 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 3 0 0 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 34 0 0 0 5 0 1 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 5 35 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 37 0 3 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 5 0 35 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38 0 0 2 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0

20 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38 1 0 0 0

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 35 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40  
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Appendix K. Software code 

 

The robotic arm software is written in Microsoft MFC (using Visual Studio version 6.0), 

using the OpenCV machine vision library routines, under Windows2000).  

The dissertation includes two main systems: a) the system that controls a telerobot/virtual 

robotic arm according to hand gestures evoked by the user, called “GestureRec” and, b) the 

system that finds GV solutions (matching commands to gestures), called “QAPI”. 

Additional smaller systems uses small variation of the codes presented for the “GestureRec” 

system, such the one to control the virtual VMR. 

 

GestureRec 

This system is used to train, test and run the recognition module for the hand gesture system. 

This system uses an optimized supervised FCM to cluster feature vectors that represent gesture 

instances. Each centroid represents a gesture class. Once the FCM classifier is trained and 

calibrated using a training set of gesture images, it is used to assign classes to gesture samples 

provided in real-time by the user. These gestures have assigned commands that are sent to a 

virtual robotic arm to carry out an action. A flowchart describing the operation of the system is 

presented in Figure  K.1. 

 

 

Figure  K.1. Flowchart of the GestureRec system 

 

GestureRec Object and Methods Description 
 

The following tables present the objects used in each system, all their members and methods, 

and the description of each of them.  

 

GestureRec Class 

Members Description 

long SizeX; Buffer Size X of the frame grabber 

long SizeY; Buffer Size Y of the frame grabber 

long DigSizeX; Digitizer input width of the frame grabber 

long DigSizeY; Digitizer input height of the frame grabber 



 

 

165  

long nBands; 
Number of input color bands of the digitizer of the 
frame grabber 

BOOL GrabIsStarted; State of the grab of the frame grabber 

CView *GrabInViewPtr; 
Pointer to the view that has the grab of the frame 
grabber 

long NumberOfDigitizer;    Number of digitizers available on the system 

MIL_ID MilApplication; The MIL application ID 

MIL_ID MilSystem;   

MIL_ID MilDisplay; The MIL system ID  

MIL_ID MilDigitizer; The MIL display ID 

MIL_ID MilImage; The MIL digitizer ID 

  The MIL image ID   

    

void MV1_Open(); Initialize the frame grabber 

void MV1_Close(); Closes the frame grabber 

void MV1_StartGrabIt(); Start grabbing images to the frame grabber 

void MV1_StopGrabIt(); Stop grabbing images from the frame grabber 

    

Methods Description 

 int RoiNorm( int NumRows,int NumCols,IplImage 
*src,int minX,int maxX,int minY,int maxY); 

Given a ROI rectangular, blocks are created as a 
result of rows and columns. Each block has a value 
which is the average of the grayscale values in the 
block  

void Bouncing_Box(IplImage *src,int &minX,int 
&maxX,int &minY,int &maxY ); 

A bounding box is created around the biggest blob in 
the image. The biggest blob is obtained by calculating 
the largest perimeter of the contour of each blob 

void CopyVector2Buffer(int counter,int minX,int 
maxX,int minY,int maxY,short int flag,int the_contador); 

A vector including the values of the block partition is 
stored in the buffer memory 

void CopyBuffer2DB(const int Nframes); 
The buffer memory content including the feature 
vectors is copied to a database 

int CopyDB2Buffer(); 
Copy the content of the feature vector table of the 
database to the buffer memory 

void StringVector2ValueVector(int counter); 
The string representing the feature vector is converted 
to a vector of numerical values 

void Weight_String2Weight_Vector(); // Convert a 
string of weights to a vector of weights 

The weighted string is converted to a weighted 
numerical vector 

void CreateFeaturesMatrix(); 
The string vectors matrix is converted to a matrix of 
numerical values 

void DisplayFeatures(int counter,int Rows,int Cols); 
Displays an image composed of blocks with different 
grayscales values for a given feature vector 

void AddValue2Vector(int value,int index); 
Adds a value of grayscale for the current block to the 
feature vector 

void RandomClusters(int Nclusters,int NumFrames); 
Randomize the clusters centroids to init the FCM 
algorithm 

float D(int i,int j); Find the Euclidian distance between two vectors 

float Find_MiuIJ(int i,int j); Find the membership value for a given feature vector 

void  CreateMembership(); Creates the membership matrix (FCM algorithm) 

void CreateCentroids(); Creates the centroids matrix (FCM algorithm) 

void Find_Ci(int i); 
Updates the current centroid using the information of 
the membership values (FCM algorithm) 

float CostFunction(); Find the cost function (FCM algorithm) 

void Membership2DB(); 
Copy the membership matrix to the membership table 
in the database 
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void Centroid2DB(); 
Copy the centroid matrix to the centroid table in the 
database 

void Cost2DB(float cost); 
Copy the cost values of every iteration to the cost 
table in the database 

int DB2Centroid(); 
Copy from the centroids table of the database to the 
memory 

int DB2Membership(); 
Copy from the membership table of the database to 
the memory 

void CopyVector2Mat(int counter,short int flag); Copy a vector to a matrix data type 

void CreateNewMembership(int j,short int flag); 
For a new feature vector from a real-time image, find 
the membership value 

void NewMembership2DB(short int flag); 
Copy the new membership value to the membership 
table in the database 

void DrawGraphico(int j,short int flag); 
Shows a bar graph representing the membership 
values of the current feature vector 

int Pictures_inDB();   Count the number of feature vectors in the database 

void RandomOneCluster(int Nclusters,int Nframes); Randomize the initial position of only one new cluster 

int Clusters_inDB(); Counts the number of clusters stored in the database 

int Input_Parameters(char file_name[250]); 
Copy the tuning parameters for the FCM, from the 
database to the memory 

void AutomaticBatchMode(char file_name[250]); 
Runs automatically a training session of the FCM 
without user interaction 

void AutomaticTestMode(char file_name[250]); 
Runs automatically a testing session of the FCM 
without user interaction 

    

void SendTcpMessage(int j,short int flag,char 
sTotal[50],int &cont); //uses TCP/IP, send the 
command 

Uses TCP protocol to send a message to the robotic 
arm server 

void CloseTcpMessage(); //uses TCP/IP, send the 
command 

Close the communication port between the client to 
the robotic arm server 

int OpenTcpMessage(); //uses TCP/IP, send the 
command 

Open the communication port between the client and 
the robotic arm server 

void ShowLab(int &conter); //show an image of the lab, 
jpg pic 

Shows an image of the distant scenario and sends it 
through FTP 

bool Listen(int PortNum); Listen to the server for specific command 
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// GestureRec.h : main header file for the GESTUREREC application 

// 

 

#if !defined(AFX_GESTUREREC_H__D111738D_241B_49C7_A936_F33231E3B2D6__INCLUDED_) 

#define AFX_GESTUREREC_H__D111738D_241B_49C7_A936_F33231E3B2D6__INCLUDED_ 

 

#if _MSC_VER > 1000 

#pragma once 

#endif // _MSC_VER > 1000 

 

#ifndef __AFXWIN_H__ 

 #error include 'stdafx.h' before including this file for PCH 

#endif 

 

#include "resource.h"  // main symbols 

 

///////////////////////////////////////////////////////////////////////////// 

// CGestureRecApp: 

// See GestureRec.cpp for the implementation of this class 

// 

 

class CGestureRecApp : public CWinApp 

{ 

public: 

 CGestureRecApp(); 

 

// Overrides 

 // ClassWizard generated virtual function overrides 

 //{{AFX_VIRTUAL(CGestureRecApp) 

 public: 

 virtual BOOL InitInstance(); 

 //}}AFX_VIRTUAL 

 

// Implementation 

 

 //{{AFX_MSG(CGestureRecApp) 

  // NOTE - the ClassWizard will add and remove member functions here. 

  //    DO NOT EDIT what you see in these blocks of generated code ! 

 //}}AFX_MSG 

 DECLARE_MESSAGE_MAP() 

}; 

 

 

///////////////////////////////////////////////////////////////////////////// 

 

//{{AFX_INSERT_LOCATION}} 

// Microsoft Visual C++ will insert additional declarations immediately before the previous line. 

 

#endif // !defined(AFX_GESTUREREC_H__D111738D_241B_49C7_A936_F33231E3B2D6__INCLUDED_) 
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// GestureRecDlg.h : header file 

// 

 

#if 

!defined(AFX_GESTURERECDLG_H__CBD8D3DF_8219_4531_AE49_9855E11BC1BD__INCLUDED_) 

#define AFX_GESTURERECDLG_H__CBD8D3DF_8219_4531_AE49_9855E11BC1BD__INCLUDED_ 

 

#if _MSC_VER > 1000 

#pragma once 

#endif // _MSC_VER > 1000 

 

CV_TURN_ON_IPL_COMPATIBILITY(); 

 

//#include <ipl.h> 

#include <cv.h> 

#include "HighGUI.h" 

#include "mil.h" 

#include "mwinmil.h" 

#include "milsetup.h" 

#include "milerr.h" 

#include <stdio.h> 

 

#ifndef _WIN32 // If not compiling on a Windows system 

 #include <sys/types.h> 

 #include <sys/socket.h> 

 #include <netinet/in.h> 

 #include <unistd.h> 

 #include <netdb.h> 

 #include <arpa/inet.h> 

 #define SOCKET   int 

 #define INVALID_SOCKET -1 

 #define closesocket  close 

 #include <pthread.h> 

#else // Yes this is a Windows system 

 #include <winsock.h> 

 #define socklen_t int 

 // Programmatically setup the necessary library files 

 #if defined(_MSC_VER) 

  #pragma comment(lib, "wsock32.lib") 

 #elif defined(__BORLANDC__) 

  #pragma(lib, "mswsock.lib") 

 #endif 

#endif 

 

//***** All this files were for the TCP/IP client**************// 

 

 

///////////////////////////////////////////////////////////////////////////// 

// CGestureRecDlg dialog 

 

class CGestureRecDlg : public CDialog 

{ 

// Construction 

public: 

 CGestureRecDlg(CWnd* pParent = NULL); // standard constructor 

 

// Dialog Data 

 //{{AFX_DATA(CGestureRecDlg) 

 CButton m_ok; 
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 enum { IDD = IDD_GESTUREREC_DIALOG }; 

 

 long  SizeX;       // Buffer Size X 

 long  SizeY;       // Buffer Size Y 

 long  DigSizeX;      // Digitizer input width 

 long  DigSizeY;      // Digitizer input heigh 

 long  nBands;          // Number of input color bands of the digitizer 

 BOOL   GrabIsStarted;       // State of the grab 

 CView       *GrabInViewPtr;    // Pointer to the view that has the grab 

 long  NumberOfDigitizer;   // Number of digitizers available on the system 

 

 MIL_ID MilApplication;  // The MIL application ID 

 MIL_ID MilSystem;   // The MIL system ID  

 MIL_ID MilDisplay;   // The MIL display ID 

 MIL_ID MilDigitizer;  // The MIL digitizer ID 

 MIL_ID MilImage;   // The MIL image ID   

  

 MAPPHOOKFCTPTR  HandlerPtr; 

 void*       HandlerUserPtr; 

  // NOTE: the ClassWizard will add data members here 

 //}}AFX_DATA 

 

 // ClassWizard generated virtual function overrides 

 //{{AFX_VIRTUAL(CGestureRecDlg) 

 protected: 

 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support 

 

 

 //}}AFX_VIRTUAL 

 

// Implementation 

protected: 

 HICON m_hIcon; 

 

  void ChangeSize(); 

 void MV1_Open(); 

 void MV1_Close(); 

 void MV1_StartGrabIt(); 

 void MV1_StopGrabIt(); 

 

  int RoiNorm( int NumRows,int NumCols,IplImage *src,int minX,int maxX,int minY,int maxY);  

 void Bouncing_Box(IplImage *src,int &minX,int &maxX,int &minY,int &maxY ); 

 void CopyVector2Buffer(int counter,int minX,int maxX,int minY,int maxY,short int flag,int the_contador); 

 void CopyBuffer2DB(const int Nframes); 

 int CopyDB2Buffer(); 

 void StringVector2ValueVector(int counter); 

 void Weight_String2Weight_Vector(); // Convert a string of weights to a vector of weights 

 void CreateFeaturesMatrix(); 

 void DisplayFeatures(int counter,int Rows,int Cols); 

 void AddValue2Vector(int value,int index); 

 void RandomClusters(int Nclusters,int NumFrames); 

 float D(int i,int j); 

 float Find_MiuIJ(int i,int j); 

 void  CreateMembership(); 

 void CreateCentroids(); 

 void Find_Ci(int i); 

 float CostFunction(); 

 void Membership2DB(); 

 void Centroid2DB(); 

 void Cost2DB(float cost); 



 

 

170  

 int DB2Centroid(); 

 int DB2Membership(); 

 void CopyVector2Mat(int counter,short int flag); 

 void CreateNewMembership(int j,short int flag); 

 void NewMembership2DB(short int flag); 

 void DrawGraphico(int j,short int flag); 

 int Pictures_inDB();   

 void RandomOneCluster(int Nclusters,int Nframes); 

 int Clusters_inDB(); 

 int Input_Parameters(char file_name[250]); 

 void AutomaticBatchMode(char file_name[250]); 

 void AutomaticTestMode(char file_name[250]); 

 

 void SendTcpMessage(int j,short int flag,char sTotal[50],int &cont); //uses TCP/IP, send the command 

 // the flag says if we use database, so continue add to array of frames 

 // or stay always at the end of the array of frames (same place) 

 // sTotal is the bunch of strings (each string is a number-gesture 

 // cont is a counter of the bunch, for example 5.  

 void CloseTcpMessage(); //uses TCP/IP, send the command 

 int OpenTcpMessage(); //uses TCP/IP, send the command 

 void ShowLab(int &conter); //show an image of the lab, jpg pic 

 

 

  //************ TCP/IP Functions ********/// 

 bool SendMsg(char *Msg, int Len, char *host, short port); 

 bool Listen(int PortNum); 

 

 static void *ListenThread(void *data); 

 SOCKET ListenSocket; // the socket that we're listening for connections on 

 sockaddr_in srv;   // the address that the server is listening on 

 sockaddr_in client;   // the address that the last message was received from 

 //************ Were TCP/IP Functions ********/// 

 

  

 // Generated message map functions 

 //{{AFX_MSG(CGestureRecDlg) 

  virtual BOOL OnInitDialog(); 

  virtual void OnOK(); 

  virtual void OnCancel(); 

  afx_msg void OnSysCommand(UINT nID, LPARAM lParam); 

  afx_msg void OnPaint(); 

  afx_msg HCURSOR OnQueryDragIcon(); 

  afx_msg void OnStart(); 

  afx_msg void OnProcess(); 

  afx_msg void OnFindClusters(); 

  afx_msg void OnLoad_Clusters(); 

  afx_msg void OnCapture_Gesture(); 

  afx_msg void OnAdd_Gesture(); 

  afx_msg void OnBatchMode(); 

  afx_msg void OnRunBatchMode(); 

 

  void EndDialog(int nResult); // Destructor TCP/IP 

 //}}AFX_MSG 

 DECLARE_MESSAGE_MAP() 

}; 

//{{AFX_INSERT_LOCATION}} 

// Microsoft Visual C++ will insert additional declarations immediately before the previous line. 

#endif // 

!defined(AFX_GESTURERECDLG_H__CBD8D3DF_8219_4531_AE49_9855E11BC1BD__INCLUDED_) 
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// GestureRec.cpp : Defines the class behaviors for the application. 

// 

 

#include "stdafx.h" 

#include "GestureRec.h" 

#include "GestureRecDlg.h" 

 

#ifdef _DEBUG 

#define new DEBUG_NEW 

#undef THIS_FILE 

static char THIS_FILE[] = __FILE__; 

#endif 

 

///////////////////////////////////////////////////////////////////////////// 

// CGestureRecApp 

 

BEGIN_MESSAGE_MAP(CGestureRecApp, CWinApp) 

 //{{AFX_MSG_MAP(CGestureRecApp) 

  // NOTE - the ClassWizard will add and remove mapping macros here. 

  //    DO NOT EDIT what you see in these blocks of generated code! 

 //}}AFX_MSG 

 ON_COMMAND(ID_HELP, CWinApp::OnHelp) 

END_MESSAGE_MAP() 

 

///////////////////////////////////////////////////////////////////////////// 

// CGestureRecApp construction 

 

CGestureRecApp::CGestureRecApp() 

{ 

 // TODO: add construction code here, 

 // Place all significant initialization in InitInstance 

} 

 

///////////////////////////////////////////////////////////////////////////// 

// The one and only CGestureRecApp object 

 

CGestureRecApp theApp; 

 

///////////////////////////////////////////////////////////////////////////// 

// CGestureRecApp initialization 

 

BOOL CGestureRecApp::InitInstance() 

{ 

 AfxEnableControlContainer(); 

 

 // Standard initialization 

 // If you are not using these features and wish to reduce the size 

 //  of your final executable, you should remove from the following 

 //  the specific initialization routines you do not need. 

 

#ifdef _AFXDLL 

 Enable3dControls();   // Call this when using MFC in a shared DLL 

#else 

 Enable3dControlsStatic(); // Call this when linking to MFC statically 

#endif 

 

 CGestureRecDlg dlg; 

 m_pMainWnd = &dlg; 

 int nResponse = dlg.DoModal(); 

 if (nResponse == IDOK) 
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 { 

  // TODO: Place code here to handle when the dialog is 

  //  dismissed with OK 

 } 

 else if (nResponse == IDCANCEL) 

 { 

  // TODO: Place code here to handle when the dialog is 

  //  dismissed with Cancel 

 } 

 

 // Since the dialog has been closed, return FALSE so that we exit the 

 //  application, rather than start the application's message pump. 

 return FALSE; 

} 
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// GestureRecDlg.cpp : implementation file 

// 

 

// For the independent system found to be the best: Clusters=18, Rows=4, Cols=5,weight=3 Accuracy= 98.2% 

// // For the dependent system found to be the best: Clusters=15, Rows=3, Cols=4,weight=2.5  

// For the old dependent system found to be the best: Clusters=13, Rows=3, Cols=4,weight=2.5  

 

#include "stdafx.h" 

#include "GestureRec.h" 

#include "GestureRecDlg.h" 

#include "assert.h" 

#include <time.h> 

#include <stdio.h> 

#include <string.h> 

#include <math.h> 

#include <iostream> 

#include <ole2.h> 

#include "conio.h" 

 

#ifdef _DEBUG 

#define new DEBUG_NEW 

#undef THIS_FILE 

static char THIS_FILE[] = __FILE__; 

#endif 

 

long nCols, nRows;  // MIL image dimensions 

 

#import "C:\Program Files\Common Files\System\ADO\msado15.dll" \ 

    no_namespace rename("EOF", "EndOfFile") 

 

inline void TESTHR(HRESULT x) {if FAILED(x) _com_issue_error(x);}; 

 

CImage imagen,resized,blackwh,featu,grafico,lab,i,im; 

CStatic mimg,mimg2,mimg3,mimg4,mimg5; 

 

char buffer[640*480]; 

 

//const int Rows=4;   // originally=3 

//const int Cols=5; // originally=4 

int Rows=3; 

int Cols=4; 

int Nframes=0; //((((((((())))))))))samples to learn, suggested 390; 

     // We'll find the number of pictures in DB.   

const int grab_cycle=60;   // how many pictures grab per cycle   

//int Nclusters=18,CLUSTERS=Nclusters; // number of clusters (partitions)   // before this was 13 

int Nclusters=18,CLUSTERS=Nclusters; // number of clusters (partitions)   // before this was 13 

int FeatureLen=Rows*Cols+1; 

int Old_FeatureLen=0; //number of features (incl. aspect ratio from the prev. run) 

float m=2; // fixed value for fuzzy clustering 

//int seed=1;   // best produced by 100000 

const int NewFrames=10000; // images to grab in testing stage 

double weights_val[100]; //weights in float format 

int bw_threshold=0; // threshold for image processing grayscale to black and white 

const double threshold=0.8; // Every gesture bigger than this value (membership) is recognized 

int number_of_files=260; 

char weights[1000]; 

int IMG_WIDTH=320;   //Width of all the working images beside the frame-grabber 

int IMG_HEIGHT=240;  //Height of all the working images beside the frame-grabber 

 

char vector[1000]; 
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float IntVector[200]; 

 

struct BufferMem 

{               

     char gest[256]; 

     char file[256];  

  char width[256]; 

  char height[256]; 

     char data[4000];         

}; 

 

struct BufferValue 

{               

     //float data[FeatureLen]; 

  float data[101]; 

     unsigned int width;  

  unsigned int height; 

         

}; 

 

struct BufferCentroid 

{               

     //float data[FeatureLen]; 

 float data[101]; 

     

}; 

 

 

BufferMem Buffer[20000]; 

BufferMem DestBuffer[20000]; 

BufferValue MatFeatures[20000]; 

 

CvMat Uij = cvMat(100,Nframes+NewFrames,CV_MAT32F,NULL); 

//CvMat Ci = {Nclusters,FeatureLen,CV_MAT32F,0,NULL}; 

BufferCentroid Ci[100]; 

 

 

///////////////////////////////////////////////////////////////////////////// 

// CAboutDlg dialog used for App About 

 

class CAboutDlg : public CDialog 

{ 

public: 

 CAboutDlg(); 

 

// Dialog Data 

 //{{AFX_DATA(CAboutDlg) 

 enum { IDD = IDD_ABOUTBOX }; 

 //}}AFX_DATA 

 

 // ClassWizard generated virtual function overrides 

 //{{AFX_VIRTUAL(CAboutDlg) 

 protected: 

 virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV support 

 //}}AFX_VIRTUAL 

 

// Implementation 

protected: 

 //{{AFX_MSG(CAboutDlg) 

 //}}AFX_MSG 
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 DECLARE_MESSAGE_MAP() 

}; 

 

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD) 

{ 

 //{{AFX_DATA_INIT(CAboutDlg) 

 //}}AFX_DATA_INIT 

} 

 

void CAboutDlg::DoDataExchange(CDataExchange* pDX) 

{ 

 CDialog::DoDataExchange(pDX); 

 //{{AFX_DATA_MAP(CAboutDlg) 

 //}}AFX_DATA_MAP 

} 

 

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog) 

 //{{AFX_MSG_MAP(CAboutDlg) 

  // No message handlers 

 //}}AFX_MSG_MAP 

END_MESSAGE_MAP() 

 

///////////////////////////////////////////////////////////////////////////// 

// CGestureRecDlg dialog 

 

CGestureRecDlg::CGestureRecDlg(CWnd* pParent /*=NULL*/) 

 : CDialog(CGestureRecDlg::IDD, pParent) 

{ 

 //{{AFX_DATA_INIT(CGestureRecDlg) 

  // NOTE: the ClassWizard will add member initialization here 

 //}}AFX_DATA_INIT 

 // Note that LoadIcon does not require a subsequent DestroyIcon in Win32 

 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME); 

} 

 

void CGestureRecDlg::DoDataExchange(CDataExchange* pDX) 

{ 

 CDialog::DoDataExchange(pDX); 

 //{{AFX_DATA_MAP(CGestureRecDlg) 

  DDX_Control(pDX, IDOK, m_ok); 

  DDX_Control(pDX, IDC_IMG, mimg); 

  DDX_Control(pDX, IDC_IMG2, mimg2); 

  DDX_Control(pDX, IDC_IMG3, mimg3); 

  DDX_Control(pDX, IDC_IMG4, mimg4); 

  DDX_Control(pDX, IDC_IMG5, mimg5); 

  // NOTE: the ClassWizard will add DDX and DDV calls here 

 //}}AFX_DATA_MAP 

} 

 

BEGIN_MESSAGE_MAP(CGestureRecDlg, CDialog) 

 //{{AFX_MSG_MAP(CGestureRecDlg) 

 ON_WM_SYSCOMMAND() 

 ON_WM_PAINT() 

 ON_WM_QUERYDRAGICON() 

 ON_BN_CLICKED(IDC_BUTTON1, OnStart) 

 ON_BN_CLICKED(IDC_BUTTON2, OnProcess) 

 ON_BN_CLICKED(IDC_BUTTON3, OnFindClusters) 

 ON_BN_CLICKED(IDC_BUTTON4, OnLoad_Clusters) 

 ON_BN_CLICKED(IDC_BUTTON5, OnCapture_Gesture) 

 ON_BN_CLICKED(IDC_BUTTON6, OnAdd_Gesture) 
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 ON_BN_CLICKED(IDC_BUTTON7, OnBatchMode) 

 ON_BN_CLICKED(IDC_BUTTON8, OnRunBatchMode) 

  

 //}}AFX_MSG_MAP 

END_MESSAGE_MAP() 

 

///////////////////////////////////////////////////////////////////////////// 

// CGestureRecDlg message handlers 

 

BOOL CGestureRecDlg::OnInitDialog() 

{ 

 CDialog::OnInitDialog(); 

 

 char file_name[250]; 

 //**** TCP/IP Files ****** 

 ListenSocket = INVALID_SOCKET; // Set to INVALID to begin with 

 #ifdef _WIN32 // don't need to do anything if not a Windows machine 

  WORD VersionRequested = MAKEWORD(1,1); 

  WSADATA wsaData; 

  WSAStartup(VersionRequested, &wsaData); // starts the Winsock service 

  if ( wsaData.wVersion != VersionRequested ) 

  { 

   //printf("Wrong version or WinSock not loaded\n"); 

   AfxMessageBox("Wrong version or WinSock not loaded\n"); 

   fflush(0);  

  } 

 #endif 

  //**** Were TCP/IP Files ****** 

 Nframes=Pictures_inDB(); // Find how many pictures are already in DB 

    int status=Input_Parameters(file_name); // Find ROWS, COLS, WEIGHTS,M,BW_THRESHOLD 

number_of_files (samples per gesture) 

 FeatureLen=Rows*Cols+1; 

 CLUSTERS=Nclusters; 

 Weight_String2Weight_Vector(); // Convert the weights string to a weight vector 

 

 // Add "About..." menu item to system menu. 

 

 // IDM_ABOUTBOX must be in the system command range. 

 ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX); 

 ASSERT(IDM_ABOUTBOX < 0xF000); 

 

 CMenu* pSysMenu = GetSystemMenu(FALSE); 

 if (pSysMenu != NULL) 

 { 

  CString strAboutMenu; 

  strAboutMenu.LoadString(IDS_ABOUTBOX); 

  if (!strAboutMenu.IsEmpty()) 

  { 

   pSysMenu->AppendMenu(MF_SEPARATOR); 

   pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu); 

  } 

 } 

 

 // Set the icon for this dialog.  The framework does this automatically 

 //  when the application's main window is not a dialog 

 SetIcon(m_hIcon, TRUE);   // Set big icon 

 SetIcon(m_hIcon, FALSE);  // Set small icon 

  

 // TODO: Add extra initialization here 
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 // All the automatic part will be here ***************** 

 

 if (status==1) // status show if is train or test run (status=1 => train) 

 { 

  AutomaticBatchMode(file_name);// //++++++++++++++++++++++++++UNCOMMENT IT FOR 

EXTERNAL RUN 

  OnProcess();// //++++++++++++++++++++++++++UNCOMMENT IT FOR EXTERNAL RUN 

  OnFindClusters();// //++++++++++++++++++++++++++UNCOMMENT IT FOR EXTERNAL 

RUN 

 } 

 else 

 { 

  OnLoad_Clusters();//  //++++++++++++++++++++++++++UNCOMMENT IT FOR EXTERNAL 

RUN 

  AutomaticTestMode(file_name);// //++++++++++++++++++++++++++UNCOMMENT IT FOR 

EXTERNAL RUN 

 } 

 OnOK();  //++++++++++++++++++++++++++UNCOMMENT IT FOR EXTERNAL RUN 

  return TRUE;  // return TRUE  unless you set the focus to a control 

} 

 

void CGestureRecDlg::OnSysCommand(UINT nID, LPARAM lParam) 

{ 

 if ((nID & 0xFFF0) == IDM_ABOUTBOX) 

 { 

  CAboutDlg dlgAbout; 

  dlgAbout.DoModal(); 

 } 

 else 

 { 

  CDialog::OnSysCommand(nID, lParam); 

 } 

} 

 

// If you add a minimize button to your dialog, you will need the code below 

//  to draw the icon.  For MFC applications using the document/view model, 

//  this is automatically done for you by the framework. 

 

void CGestureRecDlg::OnPaint()  

{ 

if (IsIconic()) 

 { 

  CPaintDC dc(this); // device context for painting 

 

  SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0); 

 

  // Center icon in client rectangle 

  int cxIcon = GetSystemMetrics(SM_CXICON); 

  int cyIcon = GetSystemMetrics(SM_CYICON); 

  CRect rect; 

  GetClientRect(&rect); 

  int x = (rect.Width() - cxIcon + 1) / 2; 

  int y = (rect.Height() - cyIcon + 1) / 2; 

 

  // Draw the icon 

  dc.DrawIcon(x, y, m_hIcon); 

 } 

 else 

 { 

  CDialog::OnPaint(); 
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  CDC *dc1 = mimg.GetDC();  

  CDC *dc2 = mimg2.GetDC(); 

  CDC *dc3 = mimg3.GetDC();  

  CDC *dc4 = mimg4.GetDC(); 

  CDC *dc5 = mimg5.GetDC(); 

 

 

  i.Show (dc1->m_hDC, 0, 0, i.Width(), i.Height(), 0, 0); 

  blackwh.Show (dc2->m_hDC, 0, 0, blackwh.Width(), blackwh.Height(), 0, 0); 

  featu.Show (dc3->m_hDC, 0, 0, featu.Width(), featu.Height(), 0, 0); 

  grafico.Show(dc4->m_hDC,0,0, grafico.Width(),grafico.Height(),0,0); 

  lab.Show(dc5->m_hDC,0,0, lab.Width(),lab.Height(),0,0); 

   

  featu.Destroy(); 

  grafico.Destroy(); 

 

  mimg.ReleaseDC( dc1 ); 

  mimg2.ReleaseDC( dc2 ); 

  mimg3.ReleaseDC( dc3 ); 

  mimg4.ReleaseDC( dc4 ); 

  mimg5.ReleaseDC( dc5 ); 

 } 

} 

 

// The system calls this to obtain the cursor to display while the user drags 

//  the minimized window. 

HCURSOR CGestureRecDlg::OnQueryDragIcon() 

{ 

 return (HCURSOR) m_hIcon; 

} 

 

 

void CGestureRecDlg::ChangeSize() 

{ 

  // resize window 

  RECT r; 

  GetWindowRect (&r); 

  r.bottom=r.top+max(resized.Height()+40, 400); 

  r.right=r.left+resized.Width()+165; 

  MoveWindow (&r); 

  mimg.MoveWindow (10, 10, resized.Width(), resized.Height()); 

   

} 

 

void CGestureRecDlg::MV1_Open() 

{ 

    MappAllocDefault(M_SETUP,&MilApplication,&MilSystem,&MilDisplay,&MilDigitizer,NULL); 

 MdigInquire(MilDigitizer, M_SIZE_BAND, &nBands); 

 MdigInquire(MilDigitizer, M_SIZE_X,    &nCols); 

 MdigInquire(MilDigitizer, M_SIZE_Y,    &nRows); 

 MbufAllocColor(MilSystem, nBands, nCols, 

nRows,8L+M_UNSIGNED,M_IMAGE+M_DISP+M_GRAB+M_PROC+M_OFF_BOARD+M_BGR24+M_PACK

ED,&MilImage); 

  

}  

 

void CGestureRecDlg::MV1_Close() 

{ 
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  MappFreeDefault(MilApplication,MilSystem,MilDisplay,MilDigitizer,MilImage);  

} 

  

void CGestureRecDlg::MV1_StartGrabIt() 

{ 

     MdigGrabContinuous(MilDigitizer, MilImage); 

} 

  

 

void CGestureRecDlg::MV1_StopGrabIt() 

{ 

    MdigHalt(MilDigitizer); 

} 

 

// Find the number of pictures already in the DB 

int CGestureRecDlg::Pictures_inDB() 

{ 

  

 int number=0; 

 HRESULT  hr = S_OK; 

 _bstr_t gest_num;   

 

   if(FAILED(::CoInitialize(NULL))) 

   { 

     AfxMessageBox("Problems opening Gesture DB."); 

    exit(1); 

      return 1; 

   } 

   if (SUCCEEDED(hr)) 

   { 

 _RecordsetPtr pRstGestures("ADODB.Recordset"); 

        // Connection String 

    _bstr_t strCnn("DSN=gesture;"); 

          // Open table 

    try 

    { 

  pRstGestures->Open("SELECT COUNT(*) AS result FROM GESTURE;", strCnn, adOpenStatic, 

adLockReadOnly, adCmdText);  

        gest_num =((_bstr_t) pRstGestures->GetFields()->GetItem("result")->GetValue()); 

        number=atoi(gest_num); 

  pRstGestures->Close(); 

  } 

    catch (_com_error &e) 

    { 

       // Notify the user of errors if any. 

       // Pass a connection pointer accessed from the Recordset. 

        _variant_t vtConnect = pRstGestures->GetActiveConnection(); 

 

 

   AfxMessageBox((char*) e.Description()); 

 

   exit(1); 

 

        // GetActiveConnection returns connect string if connection 

        // is not open, else returns Connection object. 

        

    } 

 // Clean up objects before exit. 

    if (pRstGestures) 

        if (pRstGestures->State == adStateOpen) 
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            pRstGestures->Close(); 

 

    

   } 

   return number; 

 

} 

 

// This function finds the number of clusters (centroids) that already exist in the DB 

int CGestureRecDlg::Clusters_inDB() 

{ 

  

 int number=0; 

 HRESULT  hr = S_OK; 

 _bstr_t gest_num;   

 

   if(FAILED(::CoInitialize(NULL)))  

      return 1;  

   if (SUCCEEDED(hr)) 

   {    

 _RecordsetPtr pRstGestures("ADODB.Recordset"); 

        // Connection String 

        _bstr_t strCnn("DSN=gesture;"); 

          // Open table 

 try 

 { 

  pRstGestures->Open("SELECT COUNT(*) AS result FROM CENTROID;", strCnn, 

adOpenStatic, adLockReadOnly, adCmdText);  

        gest_num =((_bstr_t) pRstGestures->GetFields()->GetItem("result")->GetValue()); 

     number=atoi(gest_num);  

        pRstGestures->Close(); 

 } 

 catch (_com_error &e) 

    { 

       // Notify the user of errors if any. 

       // Pass a connection pointer accessed from the Recordset. 

        _variant_t vtConnect = pRstGestures->GetActiveConnection(); 

 

 

   AfxMessageBox((char*) e.Description()); 

 

   exit(1); 

        // GetActiveConnection returns connect string if connection 

        // is not open, else returns Connection object. 

        

    } 

   } 

   return number; 

 

} 

 

 

void CGestureRecDlg::AddValue2Vector(int value,int index)  

{ 

   char val[10]=""; 

   char zeros[10]=""; 

          

   IntVector[index]=value; // add the integer value to a vector 

   sprintf(val, "%d",value); // add the string... 

 if (value < 10) //padd with 0 zero 
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 { 

    strcpy(zeros,"00"); 

    strcat(zeros,val); 

    strcpy(val,zeros); 

 } 

 else if (value < 100) // padd with 00 zeros 

 { 

    strcpy(zeros,"0"); 

    strcat(zeros,val); 

    strcpy(val,zeros); 

 } 

 // put inside inside an string (string of vectors) 

 strcat(vector,val); 

 strcat(vector," "); 

  

} 

 

 

int CGestureRecDlg::RoiNorm( int NumRows,int NumCols,IplImage *src,int minX,int maxX,int minY,int 

maxY) 

{ 

    

   strcpy(vector,""); //init vector with features  

   const rawSizex = IMG_WIDTH;/// raw size of image 

   const rawSizey = IMG_HEIGHT;/// raw size of image 

   int tsizeX = (maxX-minX) / NumCols; 

   int tsizeY = (maxY-minY) / NumRows; 

   int tarea = tsizeX*tsizeY; 

   int index=0; 

    

   if (tsizeX<=0) tsizeX=1; 

   if (tsizeY<=0) tsizeY=1; 

    

   if (minX>=maxX) minX=1; 

   if (minY>=maxY) minY=1; 

 

 

   featu.Create(IMG_WIDTH,IMG_HEIGHT,8); 

   IplImage *dst=featu.GetImage(); 

   cvSet( dst, CV_RGB(0,0,0) ); 

    

   //insert the size ratio (height/width) in the beginning of the feature vector 

   AddValue2Vector((int) (weights_val[0]*97.32*(maxY-minY)/(maxX-minX)),index);  

 //AddValue2Vector(maxY-minY); 

   __try { 

      /// the images will use ROI for operations, 

      /// the source image uses the ROI to calculate L1 norm, 

      /// the destination image uses the ROI to set value 

      IplROI roiSource = { 0, 0,0, tsizeX,tsizeY }; 

   IplROI roiDest = { 0, 0,0, tsizeX,tsizeY }; 

      src->roi = &roiSource; 

   dst->roi = &roiDest; 

 

    

      /// for each ROI 

      for( int y=0; y<NumRows; ++y ) { 

         roiSource.yOffset = tsizeY * y + minY; 

   roiDest.yOffset = tsizeY * y;  // fixed in place 

         for( int x=0; x<NumCols; ++x ) { 

            roiSource.xOffset = tsizeX * x + minX; 
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   roiDest.xOffset = tsizeX * x; // fixed in place 

            /// get mean value from source 

            int value = (int)( cvNorm( src, NULL, CV_L1 ) / tarea ); 

            /// put this value to destination 

             

   cvSet(dst,cvScalar(value)); 

 

   // transforms the value to a string. 

   index++; 

   AddValue2Vector((int)floor(10*weights_val[index]*value),index); //add the other 

features 

         } 

      } 

   } 

   __finally { 

      /// preserve automatic variable and free memory 

      src->roi = dst->roi = NULL;  

      //iplDeallocate( src, IPL_IMAGE_ALL ); 

      //iplDeallocate( dst, IPL_IMAGE_ALL ); 

   } 

   //memcpy(vec,vector, sizeof(buffer)); 

      

   return(0); 

} 

  

void CGestureRecDlg::Bouncing_Box(IplImage *src,int &minX,int &maxX,int &minY,int &maxY ) 

{ 

   

  CImage cont; 

  cont.Create(IMG_WIDTH,IMG_HEIGHT,8); 

  IplImage* contur = cont.GetImage(); 

  cvCopy(src,contur); 

  int surface=0; 

  CvSeq *contour = NULL; 

  CvSeqReader reader; 

  CvMemStorage *storage = cvCreateMemStorage(0); 

  surface=cvCountNonZero (contur); 

  CvPoint corner1; 

  CvPoint corner2; 

  

  minX=IMG_WIDTH; 

  maxX=0; 

  minY=IMG_HEIGHT; 

  maxY=0; 

  //cvRect windo; 

 

  if (surface>80)  // if this surface is bigger than 80 pixels 

  { 

   cvFindContours(contur, storage,&contour,sizeof (CvContour), 

CV_RETR_LIST,CV_CHAIN_APPROX_SIMPLE);  

   if( contour ) 

   { 

     for( CvSeq* copycontour = contour; copycontour != 0; copycontour = 

copycontour->h_next ) 

     { 

      cvStartReadSeq( copycontour, &reader, 0 ); 

     if (copycontour->total>40) 

     { 

       for( int i = 0; i < copycontour->total; i++ ) 

       { 
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        CvPoint pt; 

        CV_READ_SEQ_ELEM( pt, reader ); 

        if (pt.x<minX) minX=abs(pt.x); 

       if (pt.x>maxX) maxX=abs(pt.x); 

       if (pt.y<minY) minY=abs(pt.y); 

       if (pt.y>maxY) maxY=abs(pt.y);   

  

      } 

     } 

     } 

    corner1.x=minX; 

    corner1.y=minY; 

    corner2.x=maxX; 

    corner2.y=maxY; 

   } 

  } 

  cvRectangle(src,corner1,corner2,CV_RGB(128,128,128),1); 

   

  cont.Destroy(); 

  cvReleaseMemStorage(&storage); 

   

} 

  

void CGestureRecDlg::CopyVector2Buffer(int counter,int minX,int maxX,int minY,int maxY,short int flag,int 

the_contador) 

{ 

  char filen[255]=""; 

 char fpath[255]=""; 

 char width[255]=""; 

 char height[255]=""; 

// time_t long_time; 

// long int i; 

 

// i=time(&long_time); 

 //i=1066962813; 

// i=i+counter; 

  

 sprintf(filen, "%d", the_contador); 

 strcat(filen,".bmp"); 

 if (flag==1) 

  strcat(fpath,"C:\\OpenCV_projects\\GestureRec\\pics\\"); 

 else 

     strcat(fpath,"C:\\OpenCV_projects\\GestureRec\\picsNew\\"); 

 

 strcat(fpath,filen); // create a filename based in path  

 //and a big number (time in seconds). 

 sprintf(width, "%d", maxX-minX); 

 sprintf(height, "%d", maxY-minY); 

 

 if (flag!=3)  

  resized.Save(fpath); //save the picture with this unique name 

  

 if (flag!=3) 

 { 

  strcpy(Buffer[counter].gest,fpath); 

  strcpy(Buffer[counter].file,fpath); //save in buffer the filename 

  strcpy(Buffer[counter].data,vector); //save in buffer the vector of picture 

  strcpy(Buffer[counter].width,width);//save in buffer the width of the bounc box 

  strcpy(Buffer[counter].height,height);//save in buffer the hight of the bounc box 

 } 
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 else 

 { 

  strcpy(Buffer[Nframes].gest,fpath); 

  strcpy(Buffer[Nframes].file,fpath); //save in buffer the filename 

  strcpy(Buffer[Nframes].data,vector); //save in buffer the vector of picture 

  strcpy(Buffer[Nframes].width,width);//save in buffer the width of the bounc box 

  strcpy(Buffer[Nframes].height,height);//s 

 } 

} 

 

void CGestureRecDlg::CopyBuffer2DB(const int num_frames) 

{ 

  char vec[600]=""; 

 char number_pics[50]=""; 

 HRESULT  hr = S_OK; 

 _bstr_t feat; 

 _bstr_t filen; 

 _bstr_t width; 

 _bstr_t height; 

 _bstr_t n_pics;  

 

   if(FAILED(::CoInitialize(NULL)))  

      return;  

 

   if (SUCCEEDED(hr)) 

   { 

     // Define ADO object pointers. 

    // Initialize pointers on define. 

   _RecordsetPtr pRstGestures = NULL; 

   _ConnectionPtr pConnection  = NULL; 

 

   HRESULT hr = S_OK; 

  

  //Replace Data Source value with your server name. 

   _bstr_t strCnn("DSN=gesture;"); 

    _bstr_t strMessage; 

  

    

  try 

  { 

   //Open a connection 

   TESTHR(pConnection.CreateInstance(__uuidof(Connection))); 

   pConnection->Open(strCnn,"","",adConnectUnspecified); 

       

 

   //Open gestures table  

   TESTHR(pRstGestures.CreateInstance(__uuidof(Recordset))); 

 

   //You have to explicitly pass the Cursor type and LockType to the Recordset here 

   pRstGestures->Open("gesture",_variant_t((IDispatch *) pConnection, 

true),adOpenKeyset,adLockOptimistic,adCmdTable); 

    

   for (int num_pics=Nframes; num_pics<num_frames; num_pics++) 

   { 

    //strncpy(vec,(Buffer+num_pics)->data,576); 

//    vec[576]='\0'; 

    feat=(Buffer+num_pics)->data; 

    filen=(Buffer+num_pics)->file; 

    width=(Buffer+num_pics)->width; 

    height=(Buffer+num_pics)->height; 
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    sprintf(number_pics,"%d",num_pics); 

    n_pics=number_pics; 

     

    pConnection->Execute("INSERT INTO GESTURE 

(filename,gest_name,features,width,height,numb,membership) VALUES 

('"+filen+"',1,'"+feat+"','"+width+"','"+height+"','"+n_pics+"',0);",NULL,adCmdText); 

    //pConnection->Execute("INSERT INTO GESTURE 

(filename,gest_name,features,width,height,number,membership) VALUES 

('"+filen+"',1,'"+feat+"','"+width+"','"+height+"','"+n_pics+"','0');",NULL,adCmdText); 

   }  

   pRstGestures->Close(); 

   pConnection->Close();  

 

  } 

  catch (_com_error &e) 

            { 

            (char*) e.Description(); 

  } 

    

       ::CoUninitialize(); 

   } 

} 

 

int CGestureRecDlg::CopyDB2Buffer() 

{ 

 char vec[600]=""; 

 int num_pics=0; 

 HRESULT  hr = S_OK; 

 _bstr_t feat; 

 _bstr_t filen; 

 _bstr_t width; 

 _bstr_t height; 

 

 

   if(FAILED(::CoInitialize(NULL)))  

      return 1;  

   if (SUCCEEDED(hr)) 

   {    

 _RecordsetPtr pRstGestures("ADODB.Recordset"); 

        // Connection String 

        _bstr_t strCnn("DSN=gesture;"); 

          // Open table 

 

 try 

 { 

  pRstGestures->Open("SELECT * FROM GESTURE ORDER BY ordered;", strCnn, 

adOpenStatic, adLockReadOnly, adCmdText); 

          

          pRstGestures->MoveFirst(); 

    

     

              while (!pRstGestures->EndOfFile) {                

     feat =((_bstr_t) pRstGestures->GetFields()->GetItem("features")-

>GetValue()); 

     width =((_bstr_t) pRstGestures->GetFields()->GetItem("width")-

>GetValue()); 

     height =((_bstr_t) pRstGestures->GetFields()->GetItem("height")-

>GetValue()); 

              strcpy(DestBuffer[num_pics].data,feat); 

     strcpy(DestBuffer[num_pics].width,width); 
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     strcpy(DestBuffer[num_pics].height,height); 

     pRstGestures->MoveNext(); 

      num_pics++; 

              } 

              pRstGestures->Close(); 

 } 

  catch (_com_error &e) 

  { 

       // Notify the user of errors if any. 

       // Pass a connection pointer accessed from the Recordset. 

        _variant_t vtConnect = pRstGestures->GetActiveConnection(); 

 

        // GetActiveConnection returns connect string if connection 

        // is not open, else returns Connection object. 

     

  AfxMessageBox((char*) e.Description()); 

              //  printf("Errors occured."); 

    //   (char*) e.Description(); 

        exit(1); 

  } 

 

   } 

   return 0; 

} 

 

void CGestureRecDlg::StringVector2ValueVector(int counter) 

{ 

 int digit,total,width,height,index=0; 

 char *tokenPtr; 

 total = Rows*Cols; 

 width=atoi(DestBuffer[counter].width); 

 height=atoi(DestBuffer[counter].height); 

 

 strcpy(vector,DestBuffer[counter].data); 

 tokenPtr=strtok(vector, " "); 

 

 while (tokenPtr !=NULL )  

 { 

  digit=atof(tokenPtr); 

  tokenPtr = strtok(NULL," "); 

  MatFeatures[counter].data[index]=digit; 

  index++; 

 } 

 MatFeatures[counter].width=width; 

 MatFeatures[counter].height=height; 

 

} 

 

 

void CGestureRecDlg::Weight_String2Weight_Vector() 

{ 

 float weight; 

 char *tokenPtr; 

 int index=0; 

 

 tokenPtr=strtok(weights, " "); 

 

 while (tokenPtr !=NULL )  

 { 

  weight=atof(tokenPtr); 
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  tokenPtr = strtok(NULL," "); 

  weights_val[index]=weight; 

  index++; 

 } 

 

} 

 

 

 

 

void CGestureRecDlg::CreateFeaturesMatrix() 

{ 

 for (int counter=0;counter<Nframes;counter++) 

    { 

  StringVector2ValueVector(counter); 

 } 

 

} 

 

void CGestureRecDlg::DisplayFeatures(int counter,int Rows,int Cols) 

{ 

   int tsizeX = MatFeatures[counter].width / Cols; 

   int tsizeY = MatFeatures[counter].height / Rows; 

   int tarea = tsizeX*tsizeY; 

    

   featu.Create(IMG_WIDTH,IMG_HEIGHT,8); 

   IplImage *dst=featu.GetImage(); 

   __try { 

      /// the images will use ROI for operations, 

      /// the source image uses the ROI to calculate L1 norm, 

      /// the destination image uses the ROI to set value 

   IplROI roiDest = { 0, 0,0, tsizeX,tsizeY }; 

//      src->roi = &roiSource; 

   dst->roi = &roiDest; 

   

   //from the second place exist features of greyscale 

   // before this there is the SizeX and the SizeY of the image 

   int index=1; //because the place 0 is for the size ratio 

      /// for each ROI 

      for( int y=0; y<Rows; ++y ) { 

//         roiSource.yOffset = tsizeY * y + minY; 

   roiDest.yOffset = tsizeY * y;  // fixed in place 

         for( int x=0; x<Cols; ++x ) { 

//            roiSource.xOffset = tsizeX * x + minX; 

   roiDest.xOffset = tsizeX * x; // fixed in place 

            /// get mean value from source 

            int value = MatFeatures[counter].data[index]; 

            /// put this value to destination 

            cvSet(dst,cvScalar(value)); 

   index++; 

   } 

   } 

   } 

   __finally { 

      /// preserve automatic variable and free memory 

      dst->roi = NULL;  

   OnPaint(); 

   featu.Destroy(); 

   } 

} 
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//Creates a matrix of N clusters containing features vectors of N 

// random pictures 

void CGestureRecDlg::RandomClusters(int Nclusters,int NumFrames) 

{ 

 

 bool sign[20000]; 

 int Upper=NumFrames; 

 float r; 

 int ran=0; 

 for (int index=0;index<NumFrames;index++) 

  sign[index]=false;   //sets all to false, in order to know 

       // which number already been choosen 

 for (index=0;index<Nclusters;index++) 

 { 

  r=((double) rand() / (double) (RAND_MAX+1)); 

  ran = (int) (r*Upper); 

  //ran=rand() % NumFrames; 

  while (sign[ran]==true) 

  { 

     r=((double) rand() / (double) (RAND_MAX+1)); 

     ran = (int) (r*Upper); 

     //ran=rand() % NumFrames; 

  } 

  sign[ran]=true; 

  memcpy(Ci[index].data,MatFeatures[ran].data,FeatureLen*4); 

 } 

} 

 

//Creates a matrix of N clusters containing features vectors of the last cycle 

// random pictures 

void CGestureRecDlg::RandomOneCluster(int Nclusters,int NumFrames) 

{ 

 

 int Upper=grab_cycle; 

 float r; 

 int ran=0,rando; 

  

 r=((double) rand() / (double) (RAND_MAX+1)); 

 r=((double) rand() / (double) (RAND_MAX+1)); 

  

 ran = (int) (r*Upper); 

  

 rando = NumFrames-ran; 

 int index = Nclusters; 

 memcpy(Ci[index].data,MatFeatures[rando].data,FeatureLen*4); 

 

} 

 

 

// Euclidian Distance between the cluster i(vector) and the cluster 

// j (vector). 

 

float CGestureRecDlg::D(int i,int j) 

{ 

 float u=0; 

 CvMat PointI = cvMat(1,FeatureLen,CV_MAT32F,NULL); 

 CvMat PointJ = cvMat(1,FeatureLen,CV_MAT32F,NULL); 

 CvMat PointDiff = cvMat(1,FeatureLen,CV_MAT32F,NULL); 

 //CvMat Result = {1,1,CV_MAT32F,0,NULL}; 
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 CvMat Result = cvMat(1,1,CV_MAT32F,NULL); 

 

 cvmAlloc(&PointI); 

 cvmAlloc(&PointJ); 

 cvmAlloc(&PointDiff); 

 cvmAlloc(&Result); 

 

 float *pI = PointI.data.fl; 

 float *pJ = PointJ.data.fl; 

 

 memcpy(pI,Ci[i].data,FeatureLen*4); 

 //memcpy(pI,Ci[i].data,sizeof(Ci[i].data)); 

 

 //for (int index=0;index<FeatureLen;index++) 

 // cvmSet(&PointI,0,index ,Ci[i].data[index]); 

 

 memcpy(pJ,MatFeatures[j].data,FeatureLen*4); 

 //memcpy(pJ,MatFeatures[j].data,sizeof(MatFeatures[j].data)); 

 

 //for (index=0;index<FeatureLen;index++) 

 // cvmSet(&PointJ,0,index, MatFeatures[j].data[index]); 

  

 cvmSub(&PointI,&PointJ,&PointDiff); 

 cvmMulTransposed(&PointDiff,&Result,0); 

  

 u=cvmGet(&Result,0,0); 

  

 cvmFree(&PointJ); 

 cvmFree(&Result); 

 cvmFree(&PointDiff); 

 cvmFree(&PointI);  

 return u; 

} 

 

float CGestureRecDlg::Find_MiuIJ(int i,int j) 

{ 

 float numerador,denominador; 

 float result,acc=0; 

 int num=1; 

 

 numerador=D(i,j); 

 for (int index=0;index<Nclusters;index++) 

 { 

  denominador=D(index,j); 

  if ((denominador==0) && (numerador!=0)) //centroid very far! 

  { 

   acc=1; 

   num=0; 

   break; 

  } 

 

  if ((denominador==0) && (numerador==0)) //centroid overlap!! 

  { 

   acc=1; 

   num=1; 

   break; 

  } 

 

  acc=acc+pow((numerador/denominador),2/(m-1)); 

 } 
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 result=num/acc; 

 return result; 

} 

 

void CGestureRecDlg::CreateMembership() 

{ 

 float acc=0,u=0; 

 float sums[20000]; 

 

 for (int j=0; j<Nframes; j++) 

 { 

  acc=0; 

  for (int i=0; i<Nclusters; i++) 

  { 

   u=Find_MiuIJ(i,j); 

   cvmSet(&Uij,i,j,u); 

   acc=acc+u; 

  } 

  sums[j]=acc; 

 } 

} 

 

 

void CGestureRecDlg::Find_Ci(int i) 

{ 

 float u_ij=0,Acc_Denominador=0,val=0; 

  

 CvMat uij = cvMat(1,1,CV_MAT32F,NULL); 

 CvMat multi = cvMat(FeatureLen,1,CV_MAT32F,NULL); 

 CvMat Xj= cvMat(FeatureLen,1,CV_MAT32F,NULL); 

 CvMat Acc_Numerador= cvMat(FeatureLen,1,CV_MAT32F,NULL); 

 CvMat ci=cvMat(FeatureLen,1,CV_MAT32F,NULL); 

 

 cvmAlloc(&uij); 

 cvmAlloc(&multi); 

 cvmAlloc(&Xj); 

 cvmAlloc(&Acc_Numerador); 

 cvmAlloc(&ci); 

  

 cvmSetZero(&Acc_Numerador); 

 Acc_Denominador=0; 

 

 for (int j=0;j<Nframes;j++) 

 { 

   

 // remeber to improve this loop to an array of vectors using cvMatArray 

 // ontherways it'll remains very slowly 

  for (int index=0;index<FeatureLen;index++) 

   cvmSet(&Xj,index,0, MatFeatures[j].data[index]); 

 

  u_ij=cvmGet(&Uij,i,j); 

  u_ij=pow(u_ij,m); 

  cvmScale(&Xj,&multi,u_ij); 

  cvmAdd(&Acc_Numerador,&multi,&Acc_Numerador); 

 } 

 

 for (j=0;j<Nframes;j++) 

 { 

   

  u_ij=cvmGet(&Uij,i,j); 
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  u_ij=pow(u_ij,m); 

  Acc_Denominador=Acc_Denominador+u_ij; 

 } 

  

 Acc_Denominador=1/Acc_Denominador; 

 cvmScale(&Acc_Numerador,&ci,Acc_Denominador); 

  

 for (int index=0;index<FeatureLen;index++) 

 { 

  val=cvmGet(&ci,index,0); 

  Ci[i].data[index]=val; 

 } 

 

// clean pointers!!! 

 cvmFree(&uij); 

 cvmFree(&multi); 

 cvmFree(&Xj); 

 cvmFree(&Acc_Numerador); 

 cvmFree(&ci); 

} 

 

void CGestureRecDlg::CreateCentroids() 

{ 

 for (int i=0;i<Nclusters;i++) 

  Find_Ci(i); 

} 

 

float CGestureRecDlg::CostFunction() 

{ 

 float first,second,acc,total=0; 

  

 for (int i=0;i<Nclusters;i++) 

 { 

  acc=0; 

  for(int j=0;j<Nframes;j++) 

  { 

   first=cvmGet(&Uij,i,j); 

   first=pow(first,m); 

   second=D(i,j); 

   second=pow(second,1); 

   // Sholud be second=pow(second,1);   

   // but I didn't use the root in the calculation of the ditance 

   // so now, I can eliminate the power 2 

   acc=acc+first*second; 

  } 

  total=total+acc; 

 } 

 return total; 

} 

 

void CGestureRecDlg::Membership2DB() 

{ 

 float u,max=0; 

 int max_i; 

 char vec[600]=""; 

 char number_pics[50]=""; 

 char member[500]=""; 

 char Su[100]=""; 

 char Suu[15]=""; 

 char gestu[100]=""; 
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 char s_max[100]=""; 

 

 HRESULT  hr = S_OK; 

 _bstr_t n_pics; 

 _bstr_t memberF;  

 _bstr_t centro; 

 _bstr_t bs_max; 

  

   if(FAILED(::CoInitialize(NULL)))  

      return;  

 

   if (SUCCEEDED(hr)) 

   { 

     // Define ADO object pointers. 

    // Initialize pointers on define. 

   _RecordsetPtr pRstGestures = NULL; 

   _ConnectionPtr pConnection  = NULL; 

 

   HRESULT hr = S_OK; 

  

  //Replace Data Source value with your server name. 

   _bstr_t strCnn("DSN=gesture;"); 

    _bstr_t strMessage; 

  

    

  try 

  { 

   //Open a connection 

   TESTHR(pConnection.CreateInstance(__uuidof(Connection))); 

   pConnection->Open(strCnn,"","",adConnectUnspecified); 

       

 

   //Open gestures table  

   TESTHR(pRstGestures.CreateInstance(__uuidof(Recordset))); 

 

   //You have to explicitly pass the Cursor type and LockType to the Recordset here 

   pRstGestures->Open("gesture",_variant_t((IDispatch *) pConnection, 

true),adOpenKeyset,adLockOptimistic,adCmdTable); 

   for(int j=0;j<Nframes;j++) 

   { 

     strcpy(Su,""); 

     strcpy(member,""); 

     max=0; 

 

     for (int i=0;i<Nclusters;i++) 

     { 

    u=cvmGet(&Uij,i,j); 

   // if ((u*1000-floor(u*1000)) > 0.5) 

   // { 

   //  u=ceil(u*1000); 

     //u=u/1000;    //added 

   // } 

   // else 

   //  u=floor(u*1000); 

        //u=u/1000;   //added 

     

    if (u>max) 

    { 

     max=u; 

     max_i=i; 
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    } 

     

 

    sprintf(Su,"%f",u); 

    strncpy(Suu,Su,5); 

    strcat(member,Suu); 

    strcat(member," "); 

 

 

    sprintf(s_max,"%d",max_i); 

    bs_max=s_max; 

    //sprintf(Su,"%d",(int)u); 

    //strcat(member,Su); 

    //strcat(member," "); 

     

     } 

     sprintf(number_pics,"%d",j); 

     n_pics=number_pics; 

     memberF=member;    

     pConnection->Execute("UPDATE GESTURE SET 

membership='"+memberF+"',gest_name='"+bs_max+"' WHERE numb='"+n_pics+"';",NULL,adCmdText);  

  

   } 

       

   pRstGestures->Close(); 

   pConnection->Close();  

 

  } 

  catch (_com_error &e) 

            { 

            (char*) e.Description(); 

  } 

    

       ::CoUninitialize(); 

   } 

} 

 

void CGestureRecDlg::Centroid2DB() 

{ 

 char ci[500]="",c[15]="",s_i[15]=""; 

  

  

  

 HRESULT  hr = S_OK; 

 _bstr_t centro; 

 _bstr_t bs_i; 

  

   if(FAILED(::CoInitialize(NULL)))  

      return;  

 

   if (SUCCEEDED(hr)) 

   { 

     // Define ADO object pointers. 

    // Initialize pointers on define. 

   _RecordsetPtr pRstGestures = NULL; 

   _ConnectionPtr pConnection  = NULL; 

 

   HRESULT hr = S_OK; 

  

  //Replace Data Source value with your server name. 
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   _bstr_t strCnn("DSN=gesture;"); 

   _bstr_t strMessage; 

  

    

  try 

  { 

   //Open a connection 

   TESTHR(pConnection.CreateInstance(__uuidof(Connection))); 

   pConnection->Open(strCnn,"","",adConnectUnspecified); 

       

 

   //Open gestures table  

   TESTHR(pRstGestures.CreateInstance(__uuidof(Recordset))); 

 

   //You have to explicitly pass the Cursor type and LockType to the Recordset here 

   pRstGestures->Open("centroid",_variant_t((IDispatch *) pConnection, 

true),adOpenKeyset,adLockOptimistic,adCmdTable); 

 

   pConnection->Execute("DELETE * FROM CENTROID;",NULL,adCmdText); 

 

   for (int i=0;i<Nclusters;i++) 

   { 

    strcpy(ci,""); 

    for (int index=0;index<FeatureLen;index++) 

    { 

     sprintf(c,"%d",(int)Ci[i].data[index]); 

     strcat(ci,c); 

     strcat(ci," "); 

    } 

     

    sprintf(s_i,"%d",i); 

    bs_i=s_i; 

    centro=ci; 

    pConnection->Execute("INSERT INTO CENTROID (gest_num,center) 

VALUES ('"+bs_i+"','"+centro+"');",NULL,adCmdText); 

   }  

   pRstGestures->Close(); 

   pConnection->Close();  

 

  } 

  catch (_com_error &e) 

        { 

            (char*) e.Description(); 

  } 

    

       ::CoUninitialize(); 

   } 

 

} 

 

void CGestureRecDlg::Cost2DB(float cost) 

{ 

 char s_cost[30]=""; 

   

 HRESULT  hr = S_OK; 

 _bstr_t bs_cost; 

  

   if(FAILED(::CoInitialize(NULL)))  

      return;  
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   if (SUCCEEDED(hr)) 

   { 

     // Define ADO object pointers. 

    // Initialize pointers on define. 

   _RecordsetPtr pRstGestures = NULL; 

   _ConnectionPtr pConnection  = NULL; 

 

   HRESULT hr = S_OK; 

  

  //Replace Data Source value with your server name. 

   _bstr_t strCnn("DSN=gesture;"); 

   _bstr_t strMessage; 

  

    

  try 

  { 

   //Open a connection 

   TESTHR(pConnection.CreateInstance(__uuidof(Connection))); 

   pConnection->Open(strCnn,"","",adConnectUnspecified); 

       

 

   //Open gestures table  

   TESTHR(pRstGestures.CreateInstance(__uuidof(Recordset))); 

 

   //You have to explicitly pass the Cursor type and LockType to the Recordset here 

   pRstGestures->Open("cost",_variant_t((IDispatch *) pConnection, 

true),adOpenKeyset,adLockOptimistic,adCmdTable); 

   sprintf(s_cost,"%f",cost); 

   bs_cost=s_cost; 

   pConnection->Execute("INSERT INTO COST (cost) VALUES 

('"+bs_cost+"');",NULL,adCmdText);  

   pRstGestures->Close(); 

   pConnection->Close();  

 

  } 

  catch (_com_error &e) 

        { 

            (char*) e.Description(); 

  }    

       ::CoUninitialize(); 

   } 

} 

 

int CGestureRecDlg::DB2Centroid() 

{ 

  

 char vec[600]=""; 

 int num_pics=0,number=0; 

 HRESULT  hr = S_OK; 

 _bstr_t gest_num; 

 _bstr_t center; 

  

 int digit,index=0; 

 char *tokenPtr; 

      

 

   if(FAILED(::CoInitialize(NULL)))  

      return 1;  

   if (SUCCEEDED(hr)) 

   {    
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 _RecordsetPtr pRstGestures("ADODB.Recordset"); 

        // Connection String 

        _bstr_t strCnn("DSN=gesture;"); 

          // Open table 

  try 

  { 

  pRstGestures->Open("SELECT * FROM CENTROID ORDER BY gest_num;", strCnn, 

adOpenStatic, adLockReadOnly, adCmdText); 

          

          pRstGestures->MoveFirst(); 

    

     

              while (!pRstGestures->EndOfFile) 

     {                

     gest_num =((_bstr_t) pRstGestures->GetFields()-

>GetItem("gest_num")->GetValue()); 

     center =((_bstr_t) pRstGestures->GetFields()->GetItem("center")-

>GetValue()); 

      

     number=atoi(gest_num); 

      

     strcpy(vec,center); 

     tokenPtr=strtok(vec, " "); 

     index=0; 

 

     while (tokenPtr !=NULL )  

     { 

      digit=atof(tokenPtr); 

      tokenPtr = strtok(NULL," "); 

      Ci[number].data[index]=digit; 

      index++; 

     } 

 

      

               pRstGestures->MoveNext(); 

      num_pics++; 

              } 

              pRstGestures->Close(); 

  } 

   catch (_com_error &e) 

  { 

       // Notify the user of errors if any. 

       // Pass a connection pointer accessed from the Recordset. 

        _variant_t vtConnect = pRstGestures->GetActiveConnection(); 

 

        // GetActiveConnection returns connect string if connection 

        // is not open, else returns Connection object. 

     

  AfxMessageBox((char*) e.Description()); 

              //  printf("Errors occured."); 

    //   (char*) e.Description(); 

  exit(1); 

     }          

   } 

   return index; 

} 

 

int CGestureRecDlg::DB2Membership() 

{ 

  char vec[600]=""; 
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 int num_pics=0,number=0; 

 HRESULT  hr = S_OK; 

 _bstr_t numb; 

 _bstr_t membership; 

  

 int index=0; 

 float acc=0,digit; 

 char *tokenPtr; 

      

 

   if(FAILED(::CoInitialize(NULL)))  

      return 1;  

   if (SUCCEEDED(hr)) 

   {    

 _RecordsetPtr pRstGestures("ADODB.Recordset"); 

        // Connection String 

        _bstr_t strCnn("DSN=gesture;"); 

          // Open table 

 

  try 

  { 

  pRstGestures->Open("SELECT * FROM GESTURE ORDER BY ordered;", strCnn, 

adOpenStatic, adLockReadOnly, adCmdText); 

          

          pRstGestures->MoveFirst(); 

    int u=0; 

     

              while (!pRstGestures->EndOfFile) 

     {                

     numb =((_bstr_t) pRstGestures->GetFields()->GetItem("numb")-

>GetValue()); 

     membership =((_bstr_t) pRstGestures->GetFields()-

>GetItem("membership")->GetValue()); 

      

     number=atoi(numb); 

      

     strcpy(vec,membership); 

     tokenPtr=strtok(vec, " "); 

     index=0; 

     acc=0; 

 

     while (tokenPtr !=NULL )  

     { 

      digit=atof(tokenPtr); 

      tokenPtr = strtok(NULL," "); 

      cvmSet(&Uij,index,number,digit);  // delete 1000 

      u=cvmGet(&Uij,index,number); 

      index++; 

      acc=acc+digit;  // delete 1000 

     } 

      

               pRstGestures->MoveNext(); 

      num_pics++; 

              } 

              pRstGestures->Close(); 

  } 

  catch (_com_error &e) 

  { 

       // Notify the user of errors if any. 

       // Pass a connection pointer accessed from the Recordset. 
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        _variant_t vtConnect = pRstGestures->GetActiveConnection(); 

 

        // GetActiveConnection returns connect string if connection 

        // is not open, else returns Connection object. 

     

  AfxMessageBox((char*) e.Description()); 

              //  printf("Errors occured."); 

    //   (char*) e.Description(); 

  exit(1); 

              

  } 

   } 

   return 0; 

} 

 

void CGestureRecDlg::CopyVector2Mat(int counter,short int flag) 

{ 

 if (flag!=3) 

  memcpy(MatFeatures[counter].data,IntVector,FeatureLen*4);  

 else 

  memcpy(MatFeatures[Nframes].data,IntVector,FeatureLen*4);  

} 

 

void CGestureRecDlg::CreateNewMembership(int j,short int flag) 

{ 

 float acc=0,u=0; 

 float sums; 

 acc=0; 

 if (flag==3) j=Nframes; 

 

 for (int i=0; i<Nclusters; i++) 

 { 

  u=Find_MiuIJ(i,j); 

  cvmSet(&Uij,i,j,u); 

  u=cvmGet(&Uij,i,j); 

  acc=acc+u; 

 } 

 sums=acc;  

} 

 

void CGestureRecDlg::NewMembership2DB(short int flag) 

{ 

 float u,max=0; 

 int max_i,num_pics=0; 

 char vec[600]=""; 

 char number_pics[50]=""; 

 char member[500]=""; 

 char Su[15]=""; 

 char Suu[15]=""; 

 char gestu[15]=""; 

 char s_max[15]=""; 

 

 HRESULT  hr = S_OK; 

 _bstr_t n_pics; 

 _bstr_t memberF;  

 _bstr_t centro; 

 _bstr_t bs_max; 

  _bstr_t feat; 

 _bstr_t filen; 

 _bstr_t width; 
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 _bstr_t height;  

 

 

   if((FAILED(::CoInitialize(NULL)))|| (flag==3))  

      return;  

 

   if (SUCCEEDED(hr)) 

   { 

     // Define ADO object pointers. 

    // Initialize pointers on define. 

   _RecordsetPtr pRstGestures = NULL; 

   _ConnectionPtr pConnection  = NULL; 

 

   HRESULT hr = S_OK; 

  

  //Replace Data Source value with your server name. 

   _bstr_t strCnn("DSN=gesture;"); 

    _bstr_t strMessage; 

  

    

  try 

  { 

   //Open a connection 

   TESTHR(pConnection.CreateInstance(__uuidof(Connection))); 

   pConnection->Open(strCnn,"","",adConnectUnspecified); 

       

 

   //Open gestures table  

   TESTHR(pRstGestures.CreateInstance(__uuidof(Recordset))); 

 

   //You have to explicitly pass the Cursor type and LockType to the Recordset here 

   pRstGestures->Open("actual",_variant_t((IDispatch *) pConnection, 

true),adOpenKeyset,adLockOptimistic,adCmdTable); 

   for(int j=Nframes;j<(Nframes+NewFrames);j++) 

   { 

     strcpy(Su,""); 

     strcpy(member,""); 

     max=0; 

 

     for (int i=0;i<Nclusters;i++) 

     { 

    u=cvmGet(&Uij,i,j); 

    if (u>max) 

    { 

     max=u; 

     max_i=i; 

    } 

     

       sprintf(Su,"%f",u); 

    strncpy(Suu,Su,5); 

    strcat(member,Suu); 

    strcat(member," "); 

     

     } 

   

     feat=Buffer[j].data; 

     filen=Buffer[j].file; 

     width=Buffer[j].width; 

     height=Buffer[j].height; 
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     sprintf(number_pics,"%d",num_pics); 

     n_pics=number_pics; 

     sprintf(s_max,"%d",max_i); 

     bs_max=s_max;      

     memberF=member;  

     

     pConnection->Execute("INSERT INTO ACTUAL 

(filename,gest_name,features,width,height,numb,membership) VALUES 

('"+filen+"','"+bs_max+"','"+feat+"','"+width+"','"+height+"','"+n_pics+"','"+memberF+"');",NULL,adCmdText); 

     num_pics++; 

   } 

       

   pRstGestures->Close(); 

   pConnection->Close();  

 

  } 

  catch (_com_error &e) 

            { 

            (char*) e.Description(); 

  } 

    

       ::CoUninitialize(); 

   } 

} 

 

void CGestureRecDlg::DrawGraphico(int j,short int flag) 

{   

  int space1=5; 

  int space2=8; 

  int color=20; 

  float u; 

 

  CvPoint pt1[100]; 

  CvPoint pt2[100]; 

 

  CvPoint p1,p2; 

   

  p1.x=0; 

  p1.y=25; 

  p2.x=IMG_WIDTH; 

  p2.y=24; 

   

  if (flag==3) j=Nframes; 

 

  for (int index=0;index<Nclusters;index++) 

  { 

 pt1[index].x=space1; 

 pt2[index].x=space2; 

 space1=space1 + (int)(330/Nclusters); 

 space2=space2 + (int)(330/Nclusters); 

 pt1[index].y=100; 

 u=cvmGet(&Uij,index,j); 

 pt2[index].y=100-u*100; 

  } 

   

  grafico.Create(IMG_WIDTH,100,24); 

  grafico.Fill(RGB(255,255,255)); 

  IplImage* graphi = grafico.GetImage(); 

   

  cvRectangle(graphi,p1,p2,CV_RGB(0,0,255),1); 



 

 

201  

 

  for (index=0;index<Nclusters;index++) 

  { 

 cvRectangle(graphi,pt1[index],pt2[index],CV_RGB(150,color,color),8); 

 color=color+15; 

  

  } 

   

 // grafico.Destroy(); 

} 

 

int CGestureRecDlg::OpenTcpMessage() 

{ 

 

 short listeningport;  // port to listen on 

 short destport;     // port to send to 

 char *desthost;   // address of destination machine 

  

 listeningport=10001; 

 destport=10000; 

 desthost="132.72.135.14"; 

 

  if (! Listen(listeningport)) // Try to listen to requested port 

  { 

   AfxMessageBox("Error listening to port"); // Made a booboo, exit the app 

   return 1; 

  } 

 return 0; 

} 

 

void CGestureRecDlg::CloseTcpMessage() 

{ 

 

 if ( ListenSocket != INVALID_SOCKET ) 

  closesocket( ListenSocket ); // close if socket was created  

} 

 

 

void CGestureRecDlg::SendTcpMessage(int j,short int flag,char sTotal[1500],int &cont) 

{ 

 

 char buffer[100];  // buffer we'll use to store msg read in from stdin 

 short listeningport;  // port to listen on 

 short destport;     // port to send to 

 char *desthost;   // address of destination machine 

 float u=0,maxU=0; 

 int maxIndex; 

 char filen[255]=""; 

 char fpath[255]=""; 

 time_t long_time; 

 long int ii=0; 

   

 listeningport=10001; 

 destport=10000; 

 desthost="132.72.135.14"; 

 

 if (flag==3) j=Nframes; //Stocks the Array always in Nframes posi 

 

 for (int index=0;index<Nclusters;index++) 

 { 
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  u=cvmGet(&Uij,index,j); 

  if (u>maxU)  

  { 

   maxU=u; 

   maxIndex=index; 

  } 

 } 

  

 if (maxU>threshold) 

  sprintf(buffer,"%d",maxIndex); 

 else 

  sprintf(buffer,"%d",-1); 

 

 strcat(buffer," "); 

 strcat(sTotal,buffer); 

 cont++; 

 if (cont==140) // A BUNCH OF n GESTURES IS SENT TO THE SERVER 

 { 

  SendMsg( sTotal, strlen(sTotal), desthost, destport ); // Forward the msg to destination machine 

  cont=0; 

  strcpy(sTotal,""); 

  ii=time(&long_time); 

  ii=ii+j; 

  sprintf(filen, "%d", ii); 

  strcat(filen,".bmp"); 

     strcat(fpath,"C:\\OpenCV_projects\\GestureRec\\sequence\\"); 

  strcat(fpath,filen); // create a filename based in path  

//     i.Save(fpath); 

 } 

  

} 

 

 

void CGestureRecDlg::ShowLab(int &conter) 

{ 

 if (conter==7)  // EACH n SNAPS SHOWS THE LAB PICTURE 

 { 

  lab.Load("C:\\OpenCV_projects\\GestureRec\\dest_pics\\webcam32.jpg",8); 

  conter=0; 

 } 

 conter++; 

} 

 

void CGestureRecDlg::OnOK()  

{ 

 EndDialog(0); 

 

 CDialog::OnOK(); 

} 

 

void CGestureRecDlg::OnCancel()  

{ 

 // TODO: Add extra cleanup here 

  

 CDialog::OnCancel(); 

} 

 

 

//* TCP/IP Function 

void CGestureRecDlg::EndDialog(int nResult) 
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{ 

 

 if ( ListenSocket != INVALID_SOCKET ) 

  closesocket( ListenSocket ); // close if socket was created 

 

 #ifdef _WIN32 // Windows only 

  WSACleanup(); 

 #endif 

  cvmFree(&Uij); 

} 

 

//* TCP/IP Function 

bool CGestureRecDlg::SendMsg( char *Msg, int Len, char *host, short port ) 

{ 

 signed int Sent; 

 hostent *hostdata; 

 if ( atoi(host) ) // Is the host passed in IP format? 

 { 

  u_long ip = inet_addr( host ); 

  hostdata = gethostbyaddr( (char *)&ip, sizeof(ip), PF_INET ); 

 } 

 else // otherwise, assume it's a name 

 { 

  hostdata = gethostbyname( host ); 

 } 

 

 if ( !hostdata ) 

 { 

  printf("Error getting host address\n"); 

  fflush(0); 

  return false; 

 } 

 

 sockaddr_in dest; // the address of the destination computer 

 dest.sin_family = PF_INET; 

 dest.sin_addr = *(in_addr *)(hostdata->h_addr_list[0]); 

 dest.sin_port = htons( port ); 

 printf("Message being sent to host %s port %i\n", inet_ntoa(dest.sin_addr), ntohs(dest.sin_port)); 

 Sent = sendto(ListenSocket, Msg, Len, 0, (sockaddr *)&dest, sizeof(sockaddr_in)); 

 

 if ( Sent != Len ) 

 { 

  printf("Error sending UDP packet from listen socket\n"); 

  fflush(0); 

  return false; 

 } 

  

 return true; 

} 

 

//****** TCP/IP  

void *CGestureRecDlg::ListenThread( void *data ) 

{ 

 char buf[4096]; 

 CGestureRecDlg *Comm = (CGestureRecDlg *)data; 

 int len = sizeof(Comm->client); 

 while(1) // loop forever 

 { 

  int result = recvfrom( Comm->ListenSocket, buf, sizeof(buf)-1, 0, (sockaddr *)&Comm->client, 

(socklen_t *)&len); 
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  if ( result > 0 ) 

  { 

   buf[result] = 0; 

   printf("Message received from host %s port %i\n", inet_ntoa(Comm->client.sin_addr), 

ntohs(Comm->client.sin_port)); 

   printf(">> %s", buf); 

   fflush(0); 

  } // end check to see if socket read was ok 

 } // end infinite loop 

} 

 

//****** TCP/IP 

bool CGestureRecDlg::Listen( int PortNum ) 

{ 

 ListenSocket = socket(PF_INET, SOCK_DGRAM, 0); 

 if ( ListenSocket == INVALID_SOCKET ) 

 { 

  printf("Error: listen socket creation failed\n"); 

  fflush(0); 

  return false; 

 } 

 

 srv.sin_family = PF_INET; 

 srv.sin_addr.s_addr = htonl( INADDR_ANY ); // any address 

 srv.sin_port = htons( PortNum ); 

 

 if ( bind( ListenSocket, (struct sockaddr *)&srv, sizeof(srv)) != 0 ) 

 { 

  printf("Error: bind on listen socket failed\n"); 

  fflush(0); 

  closesocket( ListenSocket ); 

  return false; 

 } 

 

 int ThreadID; // the listening thread's handle 

  

 #ifdef _WIN32  

  DWORD thread; 

  ThreadID = (int)CreateThread(NULL, 0, 

(LPTHREAD_START_ROUTINE)(CGestureRecDlg::ListenThread), (void *)this, 0, &thread); 

  ThreadID = ThreadID ? 0 : 1; // reverse the value for Windows 

 #else // not windows machine 

  pthread_t thread; 

  ThreadID = pthread_create(&thread, 0, CComm::ListenThread, (void *)this); 

 #endif 

 

 if(ThreadID) // if failed creating thread 

 { 

  printf("Error creating listen thread\n"); 

  return false; 

 } 

 else 

  return true; 

} 

 

void CGestureRecDlg::OnProcess()  

{ 

 CopyDB2Buffer(); 
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// if (CLUSTERS==Clusters_inDB()) //if the new number of clusters now is the same from the prev. run (in 

the DB there is the same number of centroids) 

//   Old_FeatureLen=DB2Centroid(); // you can use the centroids that you found instead of 

randmozing them again 

 

 CreateFeaturesMatrix(); 

// for (int index=0;index<Nframes;index++) 

// { 

//  DisplayFeatures(index,Rows,Cols); 

//  Sleep(300); 

// } 

} 

 

 

 

void CGestureRecDlg::OnStart()  

{ 

    

   short int flag=1;  // the flag tells if we do setup=1, run time with 

 // saving & DB =2, or just run time=3. // here always is 1 

 int counter=0; 

 int minX,maxX,minY,maxY; 

 imagen.Create(640,480,8); 

 blackwh.Create(IMG_WIDTH,IMG_HEIGHT,8); 

 i.Create(IMG_WIDTH,IMG_HEIGHT,24); 

 im.Create(IMG_WIDTH,IMG_HEIGHT,8); 

 

 IplImage* img =imagen.GetImage(); 

 IplImage* blac =blackwh.GetImage(); 

 IplImage *imgIPL=i.GetImage(); 

 IplImage *tmpIPL=im.GetImage(); 

    IplImage *sndIPL=cvCreateImage( cvSize( 768, 576 ), IPL_DEPTH_8U, 3 ); 

 resized.Create(IMG_WIDTH,IMG_HEIGHT,8);  

 IplImage *temp = resized.GetImage();  

 OnPaint();  

 MV1_Open(); 

 MV1_StartGrabIt();  

 

 while (counter<grab_cycle) 

    {  

  sndIPL->imageData = (char *)MbufInquire(MilImage,M_HOST_ADDRESS,M_NULL); 

  cvResize(sndIPL,imgIPL);  

  cvCvtColor(imgIPL,temp,CV_BGR2GRAY); 

  //bw_threshold=cvOtsuThreshold(imgIPL); 

  cvThreshold( temp, blac, bw_threshold, 255, CV_THRESH_BINARY ); 

  Bouncing_Box(blac,minX,maxX,minY,maxY); 

  RoiNorm(Rows,Cols,blac,minX,maxX,minY,maxY); 

  CopyVector2Buffer(counter+Nframes,minX,maxX,minY,maxY,flag,counter); 

  OnPaint(); 

  counter++; 

     Sleep(300); 

  if (GetAsyncKeyState(VK_ESCAPE) & 0x0001) 

  break; // ESCAPE key is currently pressed 

 } 

 MV1_StopGrabIt(); 

 MV1_Close(); 

 CopyBuffer2DB(Nframes+counter); 

 Nframes=Pictures_inDB(); 

 imagen.Destroy(); 

 blackwh.Destroy(); 
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 resized.Destroy();  

} 

 

void CGestureRecDlg::OnFindClusters()  

{ 

 float result=0,min_cost=9000000000; 

 float old_cost=9000000000; 

 float cost=8000000000; 

 int min_seed; 

 int contad=0; 

 float epsilon=2; 

  

 cvmAlloc(&Uij); 

 cvmSetZero(&Uij); 

 

// if (CLUSTERS!=Clusters_inDB()|| Old_FeatureLen!=FeatureLen) //if the new number of clusters now is 

the same from the prev. run (in the DB there is the same number of centroids) 

     // you can use the centroids that you found instead of randmozing them again 

  //  { 

  //for (int seed=1;seed<=20;seed++) 

 for (int seed=1;seed<=10;seed++) 

  { 

   srand(seed); 

   RandomClusters(Nclusters, Nframes); 

   //for (int index=0;index<10;index++) 

   for (int index=0;index<4;index++) //just to make this go faster, but is less accurate than 

the line above 

   { 

    CreateMembership(); 

    CreateCentroids(); 

    cost=CostFunction(); 

   } 

   if (cost<min_cost) 

   { 

    min_cost=cost; 

    min_seed=seed; 

   } 

  } 

 

  srand(min_seed); 

  RandomClusters(Nclusters, Nframes);  

 //} 

  

 while ((abs(cost-old_cost)>=epsilon) && (contad<40)) 

 { 

  old_cost=cost; 

  CreateMembership(); 

  CreateCentroids(); 

  cost=CostFunction(); 

  contad=contad+1; 

 } 

 

 Centroid2DB(); 

 Membership2DB(); 

 Cost2DB(cost); 

 cvmFree(&Uij); 

 

} 

 

void CGestureRecDlg::OnLoad_Clusters()  
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{ 

 cvmAlloc(&Uij); 

 cvmSetZero(&Uij); 

 DB2Centroid(); 

 DB2Membership(); 

 OnProcess(); 

  

} 

 

// Add a new gesture by re-evaluating the membership value and the centroids. Doesn't Rand all 

// from a scratch, just rand the new cluster (between the last cycle of images) 

 

void CGestureRecDlg::OnAdd_Gesture()  

{ 

 float result=0,cost; 

 int seed=5; 

  

 Nclusters=Clusters_inDB(); // actual number of clusters in DB 

 Nclusters=Nclusters++; 

 cvmAlloc(&Uij); 

 cvmSetZero(&Uij); 

  

 OnStart(); 

 

 DB2Centroid(); 

 DB2Membership(); 

 OnProcess(); 

 

 srand(seed); 

 RandomOneCluster(Nclusters, Nframes); 

 for (int index=0;index<10;index++) 

 { 

  CreateMembership(); 

  CreateCentroids(); 

  cost=CostFunction(); 

 } 

 

 Centroid2DB(); 

 Membership2DB(); 

 Cost2DB(cost); 

 cvmFree(&Uij);  

} 

 

// Automatic Load of images from 1-XXX 

// This function call the batch mode without user choice of files. This means that you can prepare a set of BMP 

files in  

// some directory, and instead of grabbing live images to future cluster creation, you just 

// load the BMP files for future cluster creation in order from 1 to XXX. 

 

void CGestureRecDlg::AutomaticBatchMode(char file_name[250]) 

{ 

  

 short int flag=1;  // the flag tells if we do setup (learn) =1, run time with 

 // saving & DB =2, or just run time=3. // here always is 1 

 int counter=0; 

 int indice=0; 

 int the_contador=100000; //for old images (or smaller set of gestures, this should be 10,000) 

 int minX,maxX,minY,maxY; 

 char filen[255]=""; 

 char fpath[255]=""; 
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 CFileFind finder; 

 BOOL bWorking; 

  

 imagen.Create(640,480,8); 

 blackwh.Create(IMG_WIDTH,IMG_HEIGHT,8); 

 i.Create(IMG_WIDTH,IMG_HEIGHT,24); 

 im.Create(IMG_WIDTH,IMG_HEIGHT,8); 

 

 IplImage* img =imagen.GetImage(); 

 IplImage* blac =blackwh.GetImage(); 

 IplImage *imgIPL=i.GetImage(); 

 IplImage *tmpIPL=im.GetImage(); 

 IplImage *sndIPL=cvCreateImage( cvSize( 768, 576 ), IPL_DEPTH_8U, 3 ); 

 

  

 resized.Create(IMG_WIDTH,IMG_HEIGHT,8);  

 IplImage *temp = resized.GetImage();  

 //OnPaint(); 

 //int indice=0; 

 bWorking=0; 

 

 while (indice<number_of_files) 

// for (int indice=0;indice<number_of_files;indice++) 

 { 

  bWorking=0; 

   

  while (bWorking==0) 

  { 

   strcpy(filen,""); 

   strcpy(fpath,""); 

   sprintf(filen, "%d", the_contador); 

   strcat(filen,".bmp"); 

   strcat(fpath,file_name); 

   strcat(fpath,filen); 

    

   bWorking=finder.FindFile(fpath); 

    

   if (the_contador>1110000000) 

   { 

    AfxMessageBox("Gestures images files not found. TIME OUT!"); 

    bWorking=1; 

    exit(1); 

   } 

 

   the_contador=the_contador++; 

    

  } 

   i.Load(fpath,8); 

   cvCvtColor(imgIPL,temp,CV_BGR2GRAY); 

   //bw_threshold=cvOtsuThreshold(temp); 

   cvThreshold(temp,blac,bw_threshold,255,CV_THRESH_BINARY); 

   Bouncing_Box(blac,minX,maxX,minY,maxY); 

   RoiNorm(Rows,Cols,blac,minX,maxX,minY,maxY); 

   CopyVector2Buffer(counter+Nframes,minX,maxX,minY,maxY,flag,the_contador-1); 

   counter++; 

   indice++; 

    }  

    

 CopyBuffer2DB(Nframes+counter); 

 Nframes=Pictures_inDB(); 
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 imagen.Destroy(); 

 blackwh.Destroy(); 

 resized.Destroy();   

 

} 

 

// Automatic Load of images from 1-XXX 

// This function call the batch mode without user choice of files. This means that you can prepare a set of BMP 

files in  

// some directory, and instead of grabbing live images to future cluster creation, you just 

// load the BMP files for future cluster creation in order from 1 to XXX. 

 

void CGestureRecDlg::AutomaticTestMode(char file_name[250]) 

{ 

 short int flag=2;  // the flag tells if we do setup (learn) =1, run time with 

 // saving & DB =2, or just run time=3. // here always is 1 

 int counter=Nframes; 

 int indice=0; 

 int the_contador=100000; //for old images (or smaller set of gestures, this should be 10,000); 

 int cont=0,conter=0; 

 char sTotal[500]; 

 char filen[255]=""; 

 char fpath[255]=""; 

 CFileFind finder; 

 BOOL bWorking=0; 

 

 strcpy(sTotal,""); 

 

 int minX,maxX,minY,maxY; 

 imagen.Create(640,480,8); 

 blackwh.Create(IMG_WIDTH,IMG_HEIGHT,8); 

  

 i.Create(IMG_WIDTH,IMG_HEIGHT,24); 

 im.Create(IMG_WIDTH,IMG_HEIGHT,8); 

 

 IplImage* img =imagen.GetImage(); 

 IplImage* blac =blackwh.GetImage(); 

 IplImage *imgIPL=i.GetImage(); 

 IplImage *tmpIPL=im.GetImage(); 

 IplImage *sndIPL=cvCreateImage( cvSize( 768, 576 ), IPL_DEPTH_8U, 3 ); 

 

  

 resized.Create(IMG_WIDTH,IMG_HEIGHT,8);  

 IplImage *temp = resized.GetImage(); 

  

 // Now the part of the choosing files for loading with GUI 

  while (indice<number_of_files) 

  { 

  //for (int indice=0;indice<number_of_files;indice++) 

   bWorking=0; 

 

   while (bWorking==0) 

   { 

    strcpy(filen,""); 

    strcpy(fpath,""); 

    sprintf(filen, "%d", the_contador); 

    strcat(filen,".bmp"); 

    strcat(fpath,file_name); 

    strcat(fpath,filen); 
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    bWorking=finder.FindFile(fpath);     

    the_contador++; 

 

   } 

 

    i.Load(fpath,8); 

    cvCvtColor(imgIPL,temp,CV_BGR2GRAY); 

    //bw_threshold=cvOtsuThreshold(temp); 

    cvThreshold(temp,blac,bw_threshold,255,CV_THRESH_BINARY); 

    Bouncing_Box(blac,minX,maxX,minY,maxY); 

    RoiNorm(Rows,Cols,blac,minX,maxX,minY,maxY); 

    CopyVector2Buffer(counter,minX,maxX,minY,maxY,flag,the_contador-1); 

    CopyVector2Mat(counter,flag); 

    CreateNewMembership(counter,flag); 

    counter++; 

    indice++; 

    

        }  

 NewMembership2DB(flag); 

 imagen.Destroy(); 

 blackwh.Destroy(); 

 resized.Destroy();   

 

} 

 

 

// This function call the batch mode. This means that you can prepare a set of BMP files in  

// some directory, and instead of grabbing live images to future cluster creation, you just 

// load the BMP files for future cluster creation. 

 

void CGestureRecDlg::OnBatchMode() 

{ 

  

 short int flag=1;  // the flag tells if we do setup (learn) =1, run time with 

 // saving & DB =2, or just run time=3. // here always is 1 

 int counter=0; 

 int minX,maxX,minY,maxY; 

 imagen.Create(640,480,8); 

 blackwh.Create(IMG_WIDTH,IMG_HEIGHT,8); 

 i.Create(IMG_WIDTH,IMG_HEIGHT,24); 

 im.Create(IMG_WIDTH,IMG_HEIGHT,8); 

 

 IplImage* img =imagen.GetImage(); 

 IplImage* blac =blackwh.GetImage(); 

 IplImage *imgIPL=i.GetImage(); 

 IplImage *tmpIPL=im.GetImage(); 

 IplImage *sndIPL=cvCreateImage( cvSize( 768, 576 ), IPL_DEPTH_8U, 3 ); 

 

  

 resized.Create(IMG_WIDTH,IMG_HEIGHT,8);  

 IplImage *temp = resized.GetImage();  

 OnPaint();  

 //MV1_Open(); 

 //MV1_StartGrabIt();  

 

 int iBufferSize = 300000; 

 CFileDialog dlg(TRUE, NULL, NULL, 

OFN_FILEMUSTEXIST|OFN_HIDEREADONLY|OFN_ALLOWMULTISELECT,  

  "Images (*.jpg, *.bmp)|*.jpg; *.bmp|Windows Bitmap (*.bmp)|*.bmp|JPEG-File (*.jpg)|*.jpg|All 

Files (*.*)|*.*||"); 
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 dlg.m_ofn.lpstrTitle = "My File Dialog";  

  

 dlg.m_ofn.nMaxFile = iBufferSize;  

    char* cNewBuffer = new char[iBufferSize]; 

    dlg.m_ofn.lpstrFile = cNewBuffer; 

    dlg.m_ofn.lpstrFile[0] = NULL;  

     

  

 int result = dlg.DoModal(); 

 

 

 if (result==IDOK) 

 { 

  POSITION ps=dlg.GetStartPosition(); // 

  while (ps)  

  { 

   CString name=dlg.GetNextPathName(ps); 

   i.Load(name,8); 

   

   //sndIPL->imageData = (char 

*)MbufInquire(MilImage,M_HOST_ADDRESS,M_NULL); 

   //cvResize(sndIPL,imgIPL);  

   cvCvtColor(imgIPL,temp,CV_BGR2GRAY); 

   //bw_threshold=cvOtsuThreshold(temp); 

   cvThreshold(temp,blac,bw_threshold,255,CV_THRESH_BINARY); 

   Bouncing_Box(blac,minX,maxX,minY,maxY); 

   RoiNorm(Rows,Cols,blac,minX,maxX,minY,maxY); 

   CopyVector2Buffer(counter+Nframes,minX,maxX,minY,maxY,flag,counter); 

   OnPaint(); 

   counter++; 

   Sleep(20); 

   

  // AfxMessageBox(dlg.GetNextPathName(ps));//  

        }  

 } 

   delete []cNewBuffer;//  

 

 //MV1_StopGrabIt(); 

 //MV1_Close(); 

 CopyBuffer2DB(Nframes+counter); 

 Nframes=Pictures_inDB(); 

 imagen.Destroy(); 

 blackwh.Destroy(); 

 resized.Destroy();   

 

} 

 

void CGestureRecDlg::OnRunBatchMode() 

{ 

  

 short int flag=2;  // the flag tells if we do setup (learn) =1, run time with 

 // saving & DB =2, or just run time=3. // here always is 1 

 int counter=Nframes; 

 int cont=0,conter=0; 

 char sTotal[500]; 

 strcpy(sTotal,""); 

 

 int minX,maxX,minY,maxY; 

 imagen.Create(640,480,8); 
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 blackwh.Create(IMG_WIDTH,IMG_HEIGHT,8); 

  

 i.Create(IMG_WIDTH,IMG_HEIGHT,24); 

 im.Create(IMG_WIDTH,IMG_HEIGHT,8); 

 

 IplImage* img =imagen.GetImage(); 

 IplImage* blac =blackwh.GetImage(); 

 IplImage *imgIPL=i.GetImage(); 

 IplImage *tmpIPL=im.GetImage(); 

 IplImage *sndIPL=cvCreateImage( cvSize( 768, 576 ), IPL_DEPTH_8U, 3 ); 

 

  

 resized.Create(IMG_WIDTH,IMG_HEIGHT,8);  

 IplImage *temp = resized.GetImage();  

 OnPaint();  

 //MV1_Open(); 

 //MV1_StartGrabIt();  

 OpenTcpMessage(); 

 

 // Now the part of the choosing files for loading with GUI 

  

 int iBufferSize = 300000; 

 CFileDialog dlg(TRUE, NULL, NULL, 

OFN_FILEMUSTEXIST|OFN_HIDEREADONLY|OFN_ALLOWMULTISELECT,  

  "Images (*.jpg, *.bmp)|*.jpg; *.bmp|Windows Bitmap (*.bmp)|*.bmp|JPEG-File (*.jpg)|*.jpg|All 

Files (*.*)|*.*||"); 

  

 dlg.m_ofn.lpstrTitle = "My File Dialog";  

  

 dlg.m_ofn.nMaxFile = iBufferSize;  

    char* cNewBuffer = new char[iBufferSize]; 

    dlg.m_ofn.lpstrFile = cNewBuffer; 

    dlg.m_ofn.lpstrFile[0] = NULL;  

     

  

 int result = dlg.DoModal(); 

 

 

 if (result==IDOK) 

 { 

  POSITION ps=dlg.GetStartPosition(); // 

  while (ps)  

  { 

   CString name=dlg.GetNextPathName(ps); 

   i.Load(name,8); 

   

   //sndIPL->imageData = (char 

*)MbufInquire(MilImage,M_HOST_ADDRESS,M_NULL); 

   //cvResize(sndIPL,imgIPL);  

   cvCvtColor(imgIPL,temp,CV_BGR2GRAY); 

   //bw_threshold=cvOtsuThreshold(temp); 

   cvThreshold(temp,blac,bw_threshold,255,CV_THRESH_BINARY); 

   Bouncing_Box(blac,minX,maxX,minY,maxY); 

   RoiNorm(Rows,Cols,blac,minX,maxX,minY,maxY); 

   CopyVector2Buffer(counter,minX,maxX,minY,maxY,flag,counter); 

   CopyVector2Mat(counter,flag); 

   CreateNewMembership(counter,flag); 

   DrawGraphico(counter,flag); 

   // SendTcpMessage(counter,flag,sTotal,cont); 

   ShowLab(conter); 
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   OnPaint(); 

   counter++; 

   Sleep(20); 

        }  

 } 

   delete []cNewBuffer;//  

 

 //MV1_StopGrabIt(); 

 //MV1_Close(); 

   //CloseTcpMessage(); 

 NewMembership2DB(flag); 

 imagen.Destroy(); 

 blackwh.Destroy(); 

 resized.Destroy();   

 

} 

 

int CGestureRecDlg::Input_Parameters(char file_name[250]) 

{ 

  

 int status; 

 HRESULT  hr = S_OK; 

 _bstr_t rows_s; 

 _bstr_t cols_s; 

 _bstr_t weights_s; 

 _bstr_t clusters_s; 

 _bstr_t m_s; 

 _bstr_t bw_threshold_s; 

 _bstr_t number_of_files_s; 

 _bstr_t status_s; 

 _bstr_t file_name_s; 

  

   if(FAILED(::CoInitialize(NULL)))  

   { 

    AfxMessageBox("Problems opening Gesture DB."); 

    exit(1); 

 

      return 1;  

   } 

   if (SUCCEEDED(hr)) 

   {    

 _RecordsetPtr pRstGestures("ADODB.Recordset"); 

        // Connection String 

        _bstr_t strCnn("DSN=gesture;"); 

          // Open table 

 

  try 

  { 

  pRstGestures->Open("SELECT * FROM PARAMETER ORDER BY ID;", strCnn, adOpenStatic, 

adLockReadOnly, adCmdText); 

          

          //pRstGestures->MoveFirst(); 

      pRstGestures->MoveLast(); 

    

     

              while (!pRstGestures->EndOfFile) 

     {                

     rows_s =((_bstr_t) pRstGestures->GetFields()->GetItem("rows")-

>GetValue()); 
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     cols_s=((_bstr_t) pRstGestures->GetFields()->GetItem("cols")-

>GetValue()); 

     weights_s=((_bstr_t) pRstGestures->GetFields()->GetItem("weights")-

>GetValue()); 

     clusters_s=((_bstr_t) pRstGestures->GetFields()->GetItem("clusters")-

>GetValue()); 

     m_s=((_bstr_t) pRstGestures->GetFields()->GetItem("m")-

>GetValue()); 

     bw_threshold_s=((_bstr_t) pRstGestures->GetFields()-

>GetItem("bw_threshold")->GetValue()); 

     number_of_files_s=((_bstr_t) pRstGestures->GetFields()-

>GetItem("samples")->GetValue()); 

     status_s=((_bstr_t) pRstGestures->GetFields()->GetItem("train")-

>GetValue()); 

     file_name_s=((_bstr_t) pRstGestures->GetFields()->GetItem("path")-

>GetValue()); 

     

     Rows=atoi(rows_s); 

     Cols=atoi(cols_s); 

     //weight=atof(weight_s); 

     Nclusters=atoi(clusters_s); 

     m=atof(m_s); 

     bw_threshold=atoi(bw_threshold_s); 

     number_of_files=atoi(number_of_files_s); 

     status = atoi(status_s); 

        strcpy(weights,weights_s); 

     strcpy(file_name,file_name_s); 

      

              pRstGestures->MoveNext(); 

              } 

              pRstGestures->Close(); 

  } 

    catch (_com_error &e) 

  { 

       // Notify the user of errors if any. 

       // Pass a connection pointer accessed from the Recordset. 

        _variant_t vtConnect = pRstGestures->GetActiveConnection(); 

 

        // GetActiveConnection returns connect string if connection 

        // is not open, else returns Connection object. 

     

  AfxMessageBox((char*) e.Description()); 

 

  exit(1); 

              //  printf("Errors occured."); 

    //   (char*) e.Description(); 

              

  } 

   } 

   return status; 

 

} 

 

void CGestureRecDlg::OnCapture_Gesture()  

{ 

    

    short int flag=3;  // the flag tells if we do setup=1, run time with 

 // saving in DB =2, or just run time=3 

 int counter=Nframes; 

 int cont=0,conter=0; //group of discret gestures numbers 
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 char sTotal[500];  // string containig the bunch message to TCP/IP 

 strcpy(sTotal,"");  // Initialize 

 int minX,maxX,minY,maxY; 

 

 imagen.Create(640,480,8); 

 blackwh.Create(IMG_WIDTH,IMG_HEIGHT,8); 

 

 i.Create(IMG_WIDTH,IMG_HEIGHT,24); 

 im.Create(IMG_WIDTH,IMG_HEIGHT,8); 

 resized.Create(IMG_WIDTH,IMG_HEIGHT,8);  

 

 IplImage* img =imagen.GetImage(); 

 IplImage* blac =blackwh.GetImage(); 

 IplImage *imgIPL=i.GetImage(); 

 IplImage *tmpIPL=im.GetImage(); 

 IplImage *sndIPL=cvCreateImage( cvSize( 768, 576 ), IPL_DEPTH_8U, 3 ); 

 IplImage *temp = resized.GetImage();  

 

 OnPaint();  

 MV1_Open(); 

 MV1_StartGrabIt(); 

 OpenTcpMessage(); 

 

 while (counter<Nframes+NewFrames) 

    {  

  sndIPL->imageData = (char *)MbufInquire(MilImage,M_HOST_ADDRESS,M_NULL); 

  cvResize(sndIPL,imgIPL);  

  cvCvtColor(imgIPL,temp,CV_BGR2GRAY); 

  //bw_threshold=cvOtsuThreshold(temp); 

  cvThreshold(temp,blac,bw_threshold,255,CV_THRESH_BINARY);   

  Bouncing_Box(blac,minX,maxX,minY,maxY); 

  RoiNorm(Rows,Cols,blac,minX,maxX,minY,maxY); 

  CopyVector2Buffer(counter,minX,maxX,minY,maxY,flag,counter);   

  CopyVector2Mat(counter,flag);   

  CreateNewMembership(counter,flag); 

  DrawGraphico(counter,flag);   

  SendTcpMessage(counter,flag,sTotal,cont);  //++++++++++++++++++++++++++COMMENT IT 

FOR EXTERNAL RUN 

  ShowLab(conter); 

  OnPaint(); 

  counter++; 

  if (GetAsyncKeyState(VK_ESCAPE) & 0x0001)  break; // ESCAPE key is currently 

pressed 

  

 } 

 MV1_StopGrabIt(); 

 MV1_Close(); 

 CloseTcpMessage(); 

 NewMembership2DB(flag);  

 imagen.Destroy(); 

 blackwh.Destroy(); 

 resized.Destroy(); 

 

} 
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QAPI 

This system uses the matrices obtained from ergonomic studies and the results obtained from 

the GestureRec system to find the best GV. The matrices used as inputs are the intuitiveness, 

stress, duration and frequency. For each subset of gestures, the recognition accuracy is calculated 

using the CMD or the DCM methods. For this subset, the associations to the commands are 

found, in such a way so the intuitiveness and comfort are maximized. For this, the quadratic 

assignment problem (QAP) is used to model this problem. It implementation code is based on an 

enhanced simulated annealing scheme proposed by Mr. Eric Taillard. A flowchart of the system 

is presented in Figure  K.2. 
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Figure  K.2. Flowchart of the QAPI system 
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class 
Gmanager   Name Description 

Members     

public:     

  int *confus_vect; 
Keeps here the confusion matrix (in vector form) of the last 
run  of the name_gesture_VMR application 

  int commando;  Number of commands 

  char *vec; The centroids vector, string  

  int *vector;  The centroids vector, numeral 

  float acc; 
 The Accuracy of the last run of the name_gesture_VMR 
application 

  float fcm_time;  time in seconds that takes to run the FCM 

  int confused_A,confused_B;  The two most confused gestures 

  long *gestures_subset; Vector of gestures ordered from low to high 

  long *gestures_matched;  
Vector of gestures not ordered, matched with their index 
(command) 

  int gestures;  Total number of gestures in the reduced master set 

Methods     

  
Gmanager(int commands,int 
total_gestures);  

Object constructor, receives the subset of gestures indices, 
and also the number of total commands 

      

  virtual ~Gmanager(); Destructor 

  void FindAccuracy(); Call the GestureRec system to find the Accuracy 

  
int RenameLabelsDB(long 
*gestures_matched); 

 After the tree process, the centroids of the gesture DB are 
re-named according to the QAP result match. 

  void RunGL_map();  
Draws an image with all the gestures and the commands 
written on it 

private:     

  

bool RunProcessAndWait(char 
*sCmdLine, char *sRunningDir, 
int *nRetValue); 

This calls a process is ran as a console window to run the 
Gesture VMR application 

  int DB2Accuracy();   
Extract from the DB Gestures, the accuracy and confusion 
matrix data 

  void FindMostConf();  Find the two most confused gestures 

  void Acc2DB();  Copy the Accuracy and 2 most confused gestures to the DB 
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class 
OrganizeImages    Name  Description 

public:     

Members     

  long *gestures_subset;  Pointer to subset of gestures indices 

Methods     

  OrganizeImages(int commands);  Constructor receives the number of commands 

  virtual ~OrganizeImages(); The main procedure, call all the others 

  void MovePics();  
 Moves the subset of gesture images to the 
working folder 

private:     

Members     

  int actions;  Number of commands 

  char *pics_path;  Path of the gesture images 

Methods     

  int DB2Path(int index);  
Get a index of a gesture, and set the path for all 
the pictures samples of that gesture 

  void Move2Temp(int m_from);  Rename images in temp directory  

 

 
class 
qap   Name Description 

public:     

Members     

  long  n,nb_iterations, nb_res;   nb - Number of iterations , nb - Number of iterations 

  long Z1, Z2, Zt;   Zt-total cost, Z1 comfort measure, Z2  intuitve measure 

  long *p;    Permutation, Result of the QAP 

  long ** a, ** b,** w, ** d, ** ic;  
 Pointers to: Matrix a is F, matrix b is S', matrix w is I, ic is the 
complementary intuitveness matrix IC 

     Pointers to: Matrix d is D (duration), 

   

Important remark: IC is a matrix where the rows are the 
gestures, and the columns pairs of complementary 
commands. 

   
the first two columns are gestures g1 and g2, the following 
ones are pair of complementary commands.  

   

 To convert this to a fast access matrix, we create a matrix 
where the column index is obtianed by: g1*commands+g2.  
The rows are the values for 

    Complementary pairs of commands. 

      

  int *oG,*oC;  
Pointers to vector of opposed of gestures, and to vector to 
opposed commands 

  float k1,k2,k3;  
weights for the intuitiveness, for the stress, and for the 
complementary intuitiveness respectively 

  double h2;  
coefficient to reduce the size of the stress to match the range 
of intuitveness 

  double tperiod;  period of time to solve the QAP (all the iterations included) 

  void solve();   
 Solve the QAP problem. Maximization of Total comfort and 
intutiveness 

Methods     

  qap(long N); Contructor of the qap object, receives numfer of commands 
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  virtual ~qap(); Destructor of the qap object 

private:       

Members     

  
long n_max, infini, 
nb_iter_initialisation, no_res; Internal parameters of the simulated annealing 

  long Cout; Value of the goal function 

Methods     

  double max(double a, double b); Finds maximum between two values 

  double min(double a, double b); Finds minimum between two values 

  void swap(long &a, long &b);  Swap content of the cells, between the places a and b 

  double temps();  CPU time in milliseconds 

  double mon_rand(); Returns a random value within limits 

  long unif(long low, long high); Returns a random value from uniform distribution 

  

long calc_delta_complet2(long n, 
long ** a, long ** b,  long ** w, long 
**d, long * p, long r, long s); 

Finds the delta increment (step) according the simmulated 
annealing formula 

      

  

long calcule_cout(long n, long ** a, 
long ** b, long ** w, long **d, long * 
p); Calculates the goal function Zt=Z1+Z2 

  

void calcule_cout_bout(long & co, 
long & bo,long n, long ** a, long ** b, 
long ** w, long **d,long * p); Calculates the goal function for Z1 and Z2 individually 

  
void tire_solution_aleatoire(long n, 
long * p); Swaps in random order the solution vector 

  
void recuit(long n, long ** a, long ** 
b, long ** w, long **d, Main body of the simmulated annealing procedure 

  
long * meilleure_sol, long & 
meilleur_cout,   

  long nb_iterations);   

 

 

class 
QAP_DB   Names Description 

public:     

Members     

  long *gestures_subset;  Data from the QAP object (the combinative solution) 

  long *pai;  
 Data from QAP (weight for direct intuitiveness, for stress, 
and for comp. intuitiveness) 

  float W1,W2,W3;    

  double H2;  
coefficient to reduce the size of the stress to be in the same 
range of the intuitiveness 

Methods     

  QAP_DB(long n); Constructor, includes vector with the indices of the gestures 

      from the big matrix and num of nodes 

  virtual ~QAP_DB(); Destructor of the main object 

  long commands,gestures;   Number of Commands and Gestures in DB 

  void Initial(); The indexes of the n gestures in the big matrix 

private:     

Members     

  long ** F, ** S,** UI,**D, ** IC;   Big matrices containing all the data in DB 
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  long ** f, ** s, **ui,**d, **ic; Small matrices containing just the data to be passed to QAP 

  int *oC;  
Small vectors of Opposed Commands, and Opposed 
Gestures, to be passed to QAP 

  int *equiv_table; 

  vector with equivalences between the gestures names, and 
their order in the task master set, for example: gesture 27 is 
the 23 in the robotic arm task 

  long  Z1,Z2,Zt;  Data accessible from the QAP object.  

  qap *qap_obj;  Pointer to the QAP object 

  int number_comp_gestures;  
number of records in the comp intuitive table, this is the 
number of comp. gestures in the database 

  double tperiod;  period of time to solve the QAP 

Methods     

  int CandG_inDB();  Find number of gestures, and commands. 

  int DB2Matrices();    Copy the matrices data from DB to memory 

  void Allocate_Mem();   Allocate memory of all the kinds of matrices 

  void ExtractSubMatrix();    Extract the small matrix of size nxn 

  void RunQAP();  
Run the QAP object using the sub matrices data and some 
parameters 

  void Insert_Results2DB();  Insert the results on the DB 

  int renumbered_index(int i);  
returns the new index of the gesture of the subset, according 
to renumbering it from 0 to num. of commands 

  int extract_equiv_index(int i); 

 finds the equiv order number of the gesture number as 
presented, for ex: the gesture 27, is may be the 22 in the 
order 

 

 

 

class SimilarityMat   Name Description 

public:     

Members     

  long *gestures_indices;  

Pointer to subset of gestures 
indices 

  
SimilarityMat(int 
total_gestures,int n); 

Constructor of the object. 
Receives the number of 
gestures and commands in 
the GV 

  virtual ~SimilarityMat();   

  float Dist(int i,int j);  

 Euclidian Distance between 
the cluster i (vector) and the 
cluster j (vector). 

      

  int  GetDistinct(int j);  

You change the gesture j, by 
a new gesture not included in 
the GV, but yes in DB. 

  int GetIndexOfGesture(int g); 

  for a given gesture g, we can 
get it index in the vector    
gesture_indices 

Methods     

  void OrderGestureVector(); 

 Order the gesture vector from 
low to high, to get always  the 
same Accuracy for the same 
vector  

      

private:     
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Members     

  float Ci[100][200]; 

Memory to hold the centroids 
matrix 

  void DB2Centroid(); 

Copy the centroids from the 
DB to the memory buffer 

  int FeatureLen,commands; 

Length of features and 
number of commands 

Methods     

  
void CreateCentroid2DB(int 
total_gestures);   

Creates the feature averages 
of each gesture types 

  void RunGestureCentroids();   

Run execute for Centroids 
creation 

  
bool RunProcessAndWait(char 
*sCmdLine,  

Calls a external shell 
execution process, the 
GestureRec 

  
char *sRunningDir,int 
*nRetValue);  

waits until execute die 

  int all_gestures;  Number of gestures 

  

  

long *gestures_indices_out 
  

gestures not selected in GV 
but in DB, are signed with 1/ 
the others are signed with 0 
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// Gmanager.h: interface for the Gmanager class. 

// 

////////////////////////////////////////////////////////////////////// 

#include "windows.h" 

#include <process.h> 

#include <shellapi.h> 

#include "string.h" 

//#include "afx.h" 

 

#if !defined(AFX_GMANAGER_H__27D218ED_0630_41DC_BFDC_51F37BB8A63B__INCLUDED_) 

#define AFX_GMANAGER_H__27D218ED_0630_41DC_BFDC_51F37BB8A63B__INCLUDED_ 

#if _MSC_VER > 1000 

#pragma once 

#endif // _MSC_VER > 1000 

 

class Gmanager   

{ 

public: 

 Gmanager(int commands,int total_gestures); //Constructor, recieves the subset of gestures 

 // indices, and also the number of total commands 

 virtual ~Gmanager(); 

 void FindAccuracy(); // Run all the others functions 

 int *confus_vect;//Keeps here the confusion matrix (in vector form) of the last run 

     // of the name_gesture_VMR application 

 char *vec; 

 int *vector; 

 float acc;  // The Accuracy of the last run of the name_gesture_VMR appl. 

 float fcm_time; //time in seconds that takes to run the FCM 

 int confused_A,confused_B; //The two most confused gestures 

 long *gestures_subset;// vector of gestures ordered from low to high 

 long *gestures_matched; //vector of gestures not ordered, matched with their index (command) 

 int gestures; //total number of gestures in the reduced master set 

 

 int RenameLabelsDB(long *gestures_matched); //After the tree process, the centroids of the gesture DB// 

      // are re-named according to the QAP result match. 

 int commando; //Number of commands 

 

 void RunGL_map(); //draws an image with all the gestures and the commands written on it 

  

private: 

 

//--------------------------------------------------------- 

// 

// Run a synchronized other command line EXE. Returns only  

// after this exits. The process is runned as a console window. 

// Returns Values : TRUE if the process was created 

//                  FALSE if not. 

// see *nRetValue for the LastError number 

 

 bool RunProcessAndWait(char *sCmdLine,  

                       char *sRunningDir,  

                       int *nRetValue);  

 void RunGestureName(); // Run the name_gesture_VMR 

 int DB2Accuracy();  //Extract from the DB Gestures, the accuracy and confusion data 

 void FindMostConf(); //Find the two most confused gestures 

 void Acc2DB(); //Pass the Accuracy and 2 most confused gestures to DB 

}; 

 

#endif // !defined(AFX_GMANAGER_H__27D218ED_0630_41DC_BFDC_51F37BB8A63B__INCLUDED_) 
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// OrganizeImages.h: interface for the OrganizeImages class. 

// 

////////////////////////////////////////////////////////////////////// 

 

//#include <iostream> 

//#include <fstream> 

#include <windows.h> 

#include <stdio.h> 

#include <shellapi.h> 

#include "string.h" 

 

#if 

!defined(AFX_ORGANIZEIMAGES_H__B3F1CA14_7BCA_4A9F_B861_A3645D69077D__INCLUDED_) 

#define AFX_ORGANIZEIMAGES_H__B3F1CA14_7BCA_4A9F_B861_A3645D69077D__INCLUDED_ 

 

#if _MSC_VER > 1000 

#pragma once 

#endif // _MSC_VER > 1000 

 

class OrganizeImages   

{ 

public: 

 long *gestures_subset; //Pointer to subset of gestures indices 

 OrganizeImages(int commands); 

 virtual ~OrganizeImages(); 

 void MovePics(); //The main procedure, call all the others 

 

 

private: 

 int actions; //Number of commands 

 char *pics_path; 

 int DB2Path(int index); //Get a index of a gesture, and set the path for all 

 // the pictures samples of that gesture 

 void Move2Temp(int m_from); //Rename images in temp directory  

 

}; 

 

#endif // 

!defined(AFX_ORGANIZEIMAGES_H__B3F1CA14_7BCA_4A9F_B861_A3645D69077D__INCLUDED_) 
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// qap.h: interface for the qap class. 

#include <iostream.h> 

#include <fstream.h> 

#include <math.h> 

#include <time.h> 

#include <memory> 

#if !defined(AFX_QAP_H__9F486B0B_1D89_46FB_B988_8DF5ECD8B4EF__INCLUDED_) 

#define AFX_QAP_H__9F486B0B_1D89_46FB_B988_8DF5ECD8B4EF__INCLUDED_ 

#if _MSC_VER > 1000 

#pragma once 

#endif // _MSC_VER > 1000 

enum booleen {faux, vrai}; 

class qap   

{ 

public: 

 qap(long N); 

 virtual ~qap(); 

 long  n,nb_iterations, nb_res; // n - Number of nodes ,  

 // nb - Number of iterations , nb - Number of iterationa 

 long Z1, Z2, Zt; // Zt-total cost, Z1 comfort measure, Z2  intuitve measure 

 long *p;  // Permutation, Result of the QAP 

 long ** a, ** b,** w, ** d, ** ic; // Pointers to: Matrix a is F, matrix b is S', matrix w is I, ic is the 

complementary intuitveness matrix IC 

                                    // Pointers to: Matrix d is D (duration), 

 //important remark: IC is a matrix where the rows are the gestures, and the columns pairs of complementary 

commands. 

 //the first two columns are gestures g1 and g2, the following ones are pair of complementary commands.  

 // to convert this to a fast access matrix, we create a matrix where the column index is obtianed by: 

g1*commands+g2.  The rows are the values for 

 // complementary pairs of commands. 

 int *oG,*oC; //Pointers to vector of opposed of gestures, and to vector to opposed commands 

 float k1,k2,k3; //weights for the intuitiveness, for the stress, and for the complementary intuitiveness 

respectively 

 double h2; //coefficient to reduce the size of the stress to match the range of intuitveness 

 double tperiod; //period of time to solve the QAP (all the iterations included) 

 void solve();  // Solve the QAP problem. Maximization of Total comfort and intutiveness 

private:   

 long n_max, infini, nb_iter_initialisation, no_res; 

 long Cout; 

 //long maxi(long a, long b); 

 long max(long a, long b); 

 double max(double a, double b); 

 long min(long a, long b); 

 double min(double a, double b); 

  void swap(long &a, long &b);  

 double temps();  

// void a_la_ligne(ifstream & fichier_donnees); 

 double mon_rand(); 

 long unif(long low, long high); 

// void lire(long &n, long ** a,long ** b,long ** w); 

 long calc_delta_complet2(long n, long ** a, long ** b, 

       long ** w, long **d, long * p, long r, long s); 

 long calcule_cout(long n, long ** a, long ** b, long ** w, long **d, long * p); 

    void calcule_cout_bout(long & co, long & bo,long n, long ** a, long ** b, long ** w, long **d,long * p); 

 void tire_solution_aleatoire(long n, long * p); 

 void recuit(long n, long ** a, long ** b, long ** w, long **d, 

            long * meilleure_sol, long & meilleur_cout, 

            long nb_iterations); 

}; 

#endif // !defined(AFX_QAP_H__9F486B0B_1D89_46FB_B988_8DF5ECD8B4EF__INCLUDED_) 
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// QAP_DB.h: interface for the QAP_DB class. 

// 

////////////////////////////////////////////////////////////////////// 

#include "qap.h" 

 

#if !defined(AFX_QAP_DB_H__1B9E5B52_1EA9_4A26_A9EB_AC1233E8BE46__INCLUDED_) 

#define AFX_QAP_DB_H__1B9E5B52_1EA9_4A26_A9EB_AC1233E8BE46__INCLUDED_ 

 

#if _MSC_VER > 1000 

#pragma once 

#endif // _MSC_VER > 1000 

 

// Object that extract from db data of 3 matrices (F,S',I) Freq, Stres and Intuitivness 

 // and run the QAP, and after that insert Z1,Z2,Zt to the gl databse 

 

class QAP_DB   

{ 

public: 

 QAP_DB(long n); // Constructor, includes vector wiht the indices of the gestures 

         // from the big matrix and num of nodes 

 virtual ~QAP_DB(); 

 long commands,gestures; // Number of Commands and Gestures in DB 

 void Initial(); 

 long *gestures_subset; //The indexes of the n gestures in the big matrix 

 long *pai; //Data from the QAP object (the combinaty solution) 

 float W1,W2,W3; // Data from QAP (weight for direct intuitiveness, for stress, and for compl. intuitveness) 

 double H2; //coefficient to reduce the size of the stress to be in the same range of the intuitiveness 

 

 

private: 

 long ** F, ** S,** UI,**D, ** IC;  //Big matrices containing all the data in DB 

 long ** f, ** s, **ui,**d, **ic; //Small matrices containing just the data to be passed to QAP 

 int *oC; //Small vectors of Opposed Commands, and Opposed Gestures, to be passed to QAP 

 int *equiv_table; // vector with equivalneces between the gestures names, and their order in the task master 

set, for exampl: ges 27 is the 23 in the robotic arm tassk 

 long  Z1,Z2,Zt; //Data accesible from the QAP object.  

 qap *qap_obj; //Pointer to the QAP object 

 int number_comp_gestures; //number of records in the comp intutive table, this is the number of compl 

gestures in the database 

 double tperiod;// period of time to solve the QAP 

 int CandG_inDB(); //Find number of gestures, and commands. 

 int DB2Matrices();  // Copy the matrices data from DB to memory 

 void Allocate_Mem(); // Allocate memory of all the kinds of matrices 

 void ExtractSubMatrix();  // Extract the small matrix of size nxn 

 void RunQAP(); //Run the QAP object using the submatrices data and some parameters 

 void Insert_Results2DB(); //Insert the results on the DB 

 int renumbered_index(int i); //returns the new index of the gesture of the subset, according to renumbering it 

from 0 to num. of commands 

 int extract_equiv_index(int i); //finds the equiv order number of the gesture number as presented, for ex: the 

gest 27, is may be the 22 in the order 

 

}; 

#endif // !defined(AFX_QAP_DB_H__1B9E5B52_1EA9_4A26_A9EB_AC1233E8BE46__INCLUDED_) 
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// SimilarityMat.h: interface for the SimilarityMat class. 

// 

////////////////////////////////////////////////////////////////////// 

 

#if !defined(AFX_SIMILARITYMAT_H__68C27103_CB12_4815_9B8C_AAADB1354947__INCLUDED_) 

#define AFX_SIMILARITYMAT_H__68C27103_CB12_4815_9B8C_AAADB1354947__INCLUDED_ 

 

#if _MSC_VER > 1000 

#pragma once 

#endif // _MSC_VER > 1000 

 

//This object creates a similarity matrix between all the gestures in the DB. So, if there 

// are a total voacbulary of 12 gestures, so the matrix will be 12x12. Each entry Simi(i,j) 

// represent the distance (simliariyty) between gesture i and j.   

class SimilarityMat   

{ 

public: 

 SimilarityMat(int total_gestures,int n); 

 virtual ~SimilarityMat(); 

 float Dist(int i,int j); // Euclidian Distance between the cluster i(vector) and the cluster 

       // j (vector). 

 long *gestures_indices; //Pointer to subset of gestures indices 

 int  GetDistinct(int j); //You change the gesture j, by a new gesture not included 

           /// in the GV, but yes in DB. 

 int GetIndexOfGesture(int g); // for a given gesture g, we can get it index in the vector 

          // gesture_indices  

    void OrderGestureVector(); //Order thr gesture vector from low to high, to get always  

        //the same Accuracy for the same vector  

 

private: 

 float Ci[100][200]; 

 void DB2Centroid(); 

 int FeatureLen,commands; 

 void CreateCentroid2DB(int total_gestures);  //Creates the feature averages of each gesture types 

 void RunGestureCentroids();  //Run execute for Centroids creation 

 bool RunProcessAndWait(char *sCmdLine,  

                       char *sRunningDir,int *nRetValue); //waits until execute die 

 int all_gestures; 

 long *gestures_indices_out; //gestures not selected in GV but in DB, are signed with 1 

        // the others are signed with 0 

}; 

 

 

#endif // 

!defined(AFX_SIMILARITYMAT_H__68C27103_CB12_4815_9B8C_AAADB1354947__INCLUDED_) 
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// Gmanager.cpp: implementation of the Gmanager class. 

// 

////////////////////////////////////////////////////////////////////// 

 

#include "stdafx.h" 

#include "Gmanager.h" 

#include "math.h" 

 

#import "C:\Program Files\Common Files\System\ADO\msado15.dll" \ 

    no_namespace rename("EOF", "EndOfFile") 

 

inline void TESTHR(HRESULT x) {if FAILED(x) _com_issue_error(x);}; 

 

////////////////////////////////////////////////////////////////////// 

// Construction/Destruction 

////////////////////////////////////////////////////////////////////// 

 

Gmanager::Gmanager(int commands, int total_gestures) 

{ 

  gestures=total_gestures; 

  vec=new char[gestures*gestures*4]; //="0"; 

  vector=new int[gestures*gestures]; 

  confus_vect=new int[600]; 

  commando=commands; 

   

} 

 

 

Gmanager::~Gmanager() 

{ 

 delete [] vec; 

 delete [] vector; 

 delete [] confus_vect; 

 

 

} 

 

void Gmanager::FindAccuracy() 

{ 

 RunGestureName();//******************** REMEMBER TO UNCOMMENT THIS COMMANDS 

 DB2Accuracy(); 

 FindMostConf(); 

 Acc2DB(); 

} 

 

 

int Gmanager::DB2Accuracy() 

{ 

  

 int row=0,number=0; 

 HRESULT  hr = S_OK; 

 //_bstr_t gest_num; 

 _bstr_t acc_data; 

 _bstr_t fcm_time_data; 

 _bstr_t confus_data; 

  

 int digit,col=0; 

 char *tokenPtr; 
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   if(FAILED(::CoInitialize(NULL)))  

      return 1;  

   if (SUCCEEDED(hr)) 

   {    

 _RecordsetPtr pRstGestures("ADODB.Recordset"); 

        // Connection String 

        _bstr_t strCnn("DSN=gesture;"); 

          // Open table 

 

  try 

  { 

  pRstGestures->Open("SELECT * FROM parameter ORDER BY id;", strCnn, adOpenStatic, 

adLockReadOnly, adCmdText); 

          

          pRstGestures->MoveLast(); 

    

     acc_data =((_bstr_t) pRstGestures->GetFields()-

>GetItem("recognized")->GetValue()); 

     acc=(float)atof(acc_data); 

     fcm_time_data =((_bstr_t) pRstGestures->GetFields()-

>GetItem("fcm_time")->GetValue()); 

     fcm_time=(float)atof(fcm_time_data); 

     confus_data =((_bstr_t) pRstGestures->GetFields()-

>GetItem("confusion")->GetValue()); 

     strcpy(vec,confus_data); 

     tokenPtr=strtok(vec, " "); 

     col=0; 

 

     while (tokenPtr !=NULL )  

     { 

      digit=atoi(tokenPtr); 

      tokenPtr = strtok(NULL," "); 

      confus_vect[col]=digit; 

      col++; 

     }    

           

             pRstGestures->Close(); 

  } 

   catch (_com_error &e) 

  { 

       // Notify the user of errors if any. 

       // Pass a connection pointer accessed from the Recordset. 

        _variant_t vtConnect = pRstGestures->GetActiveConnection(); 

 

        // GetActiveConnection returns connect string if connection 

        // is not open, else returns Connection object. 

     

 // AfxMessageBox((char*) e.Description()); 

              printf("Errors occured."); 

     (char*) e.Description(); 

              

  } 

 

   } 

 

    

 return 1; 

} 
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void Gmanager::RunGestureName() 

{ 

 int memor[5]; 

 int *nRetValue=memor; 

 char sCmdLine[200]="D:\\PHD_PROJECTS\\name_gest_robotic arm_batch2\\name_gestures_batch"; 

 char sRunningDir[200]="D:\\"; 

 RunProcessAndWait(sCmdLine,sRunningDir ,nRetValue); 

} 

 

 

 

void Gmanager::RunGL_map() 

{ 

  char runa[200]=""; 

  char digit[8]=""; 

 

  for (int i=0;i<commando;i++) 

   { 

       sprintf(digit,"%d",gestures_matched[i]); 

    strcat(runa,digit);  

    strcat(runa," ");  

   } 

  //ShellExecute(NULL, "open","C:\\WINDOWS\\SYSTEM32\\cmd.exe", runa, 

NULL,SW_SHOWNORMAL ); 

  ShellExecute(NULL, "open","D:\\PHD_Projects\\QAPI\\GL_map.exe",runa, 

NULL,SW_SHOWNORMAL ); 

} 

 

 

bool Gmanager::RunProcessAndWait(char *sCmdLine,  

                       char *sRunningDir,int *nRetValue) 

{ 

 

 int nRetWait; 

 int nError; 

 

 // That means wait 300 s before returning an error 

 // You can change it to the value you need. 

 // If you want to wait for ever just use 'dwTimeout = INFINITE'> 

 DWORD dwTimeout = 1000 *300;  

      

      

 STARTUPINFO stInfo; 

 PROCESS_INFORMATION prInfo; 

 BOOL bResult; 

 ZeroMemory( &stInfo, sizeof(stInfo) ); 

 stInfo.cb = sizeof(stInfo); 

 stInfo.dwFlags=STARTF_USESHOWWINDOW; 

 stInfo.wShowWindow=SW_MINIMIZE; 

 

 bResult = CreateProcess(NULL,  

                         (LPSTR)(LPCSTR)sCmdLine,  

                         NULL,  

                         NULL,  

                         TRUE, 

                         CREATE_NEW_CONSOLE  

                         | NORMAL_PRIORITY_CLASS, 

                         NULL, 

                         (LPCSTR)sRunningDir, 

                         &stInfo,  
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                         &prInfo); 

 *nRetValue = nError = GetLastError(); 

  

 if (!bResult) return FALSE; 

  nRetWait =  WaitForSingleObject(prInfo.hProcess,dwTimeout); 

 

 CloseHandle(prInfo.hThread);  

 CloseHandle(prInfo.hProcess);  

 

 if (nRetWait == WAIT_TIMEOUT) return FALSE; 

  return TRUE; 

} 

 

void Gmanager::FindMostConf() 

{ 

 int ind,indice; 

 int max=0; 

 int min=100000; 

 int row; 

 int col; 

 

 // Create a copy of the confus_vector, and damage it!, in order to avoid the diagonals 

 

 //for (int i=0; i<pow(commando,2); i++)  

 // vector[i]=confus_vect[i]; 

  

 for (int i=0; i<pow(commando,2); i++)  

  vector[i]=0; 

  

 for (i=0;i<commando;i++)   // Take all the diagonals 

  vector[i]=confus_vect[i+i*commando]; 

 

 for (i=0;i<commando;i++)   // Take min over all the diagonals 

  if (vector[i]<=min) 

  { 

   min=vector[i]; 

   ind=i; 

  } 

 for (i=0; i<pow(commando,2); i++)  //Copy the original matrix  

  vector[i]=confus_vect[i]; 

 

 vector[ind+commando*ind]=0; //destroy it a little 

  

 for (i=0;i<commando;i++)   // Take max over the row with the min diag. 

  if (vector[i+commando*ind]>=max) 

  { 

   max=vector[i+commando*ind]; 

   indice=i; 

  } 

    indice=ind*commando+indice; 

 

 //for (i=0;i<commando;i++) 

 // vector[i+i*commando]=0; 

  

//  

// for (i=(int)pow(commando,2);i>0;i--) 

// { 

//  if (vector[i]>=max) 

//  { 

//   max=vector[i]; 
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//   indice=i; 

//  } 

// } 

 

 //Now find the rows and cols of the conf. matrix form the vector 

 row=(indice/commando); 

 col=(indice%commando); 

 

 confused_A=gestures_subset[row]; 

 confused_B=gestures_subset[col]; 

  

} 

 

void Gmanager::Acc2DB() 

{ 

 

 char str_confus1[15]=""; 

 char str_confus2[15]=""; 

 char sAcc[15]=""; 

 char sfcm_time[15]=""; 

 

 HRESULT  hr = S_OK; 

  

 _bstr_t sstr_confus1,sstr_confus2,sstr_Acc,ssfcm_time; 

 

   if (FAILED(::CoInitialize(NULL))) 

      return;  

 

   if (SUCCEEDED(hr)) 

   { 

     // Define ADO object pointers. 

    // Initialize pointers on define. 

   _RecordsetPtr pRstGL = NULL; 

   _ConnectionPtr pConnection  = NULL; 

 

   HRESULT hr = S_OK; 

 

  

  //Replace Data Source value with your server name. 

   _bstr_t strCnn("DSN=gl;"); 

    _bstr_t strMessage; 

  

    

  try 

  { 

   //Open a connection 

   TESTHR(pConnection.CreateInstance(__uuidof(Connection))); 

   pConnection->Open(strCnn,"","",adConnectUnspecified); 

       

 

   //Open results table  

   TESTHR(pRstGL.CreateInstance(__uuidof(Recordset))); 

 

   //You have to explicitly pass the Cursor type and LockType to the Recordset here 

   pRstGL->Open("results",_variant_t((IDispatch *) pConnection, 

true),adOpenKeyset,adLockOptimistic,adCmdTable); 

   

    

   

     sprintf(sAcc,"%f",acc); 
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     sprintf(sfcm_time,"%f",fcm_time); 

     sprintf(str_confus1,"%d",confused_A); 

     sprintf(str_confus2,"%d",confused_B); 

 

     sstr_Acc=sAcc; 

     ssfcm_time=sfcm_time; 

     sstr_confus1=str_confus1; 

     sstr_confus2=str_confus2; 

     

     pConnection->Execute("UPDATE results SET Acc='"+ sstr_Acc+"',fcm_time='"+ 

ssfcm_time+"',confused1='"+sstr_confus1+"', confused2='"+sstr_confus2+"' WHERE id=(SELECT max(id) FROM 

results);",NULL,adCmdText);    

    

   pRstGL->Close(); 

   pConnection->Close(); 

  } 

   catch (_com_error &e) 

  { 

       // Notify the user of errors if any. 

       // Pass a connection pointer accessed from the Recordset. 

        _variant_t vtConnect = pRstGL 

   ->GetActiveConnection(); 

 

        // GetActiveConnection returns connect string if connection 

        // is not open, else returns Connection object. 

     

  //AfxMessageBox((char*) e.Description()); 

                //printf("Errors occured."); 

     fprintf(stderr, "Database gl Problems: %s\n",(char*) e.Description()); 

     exit(1); 

       

              

  } 

    

       ::CoUninitialize(); 

   } 

} 

 

int Gmanager::RenameLabelsDB(long *gestures_matched) 

{ 

 

 char sold_lbl[15]=""; 

 char snew_lbl[15]=""; 

    char sold_ind[10]=""; 

 char snew_ind[10]=""; 

 char tmp[1]=""; 

  

 int old_ind,new_ind; 

 

  HRESULT  hr = S_OK; 

              

    if(FAILED(::CoInitialize(NULL)))  

    return 1;  

    

    if (SUCCEEDED(hr)) 

    { 

   // Define ADO object pointers. 

  // Initialize pointers on define. 

     _RecordsetPtr pRstGesture = NULL; 

     _ConnectionPtr pConnection  = NULL; 
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     HRESULT hr = S_OK; 

 

    

    //Replace Data Source value with your server name. 

     _bstr_t strCnn("DSN=gesture;"); 

   _bstr_t strMessage; 

    

    

    try 

    { 

     //Open a connection 

     TESTHR(pConnection.CreateInstance(__uuidof(Connection))); 

     pConnection->Open(strCnn,"","",adConnectUnspecified); 

       

 

     //Open results table  

     TESTHR(pRstGesture.CreateInstance(__uuidof(Recordset))); 

 

     //You have to explicitly pass the Cursor type and LockType to the 

Recordset here 

     pRstGesture->Open("centroid",_variant_t((IDispatch *) pConnection, 

true),adOpenKeyset,adLockOptimistic,adCmdTable); 

       

       pConnection->Execute("UPDATE centroid SET 

command='';",NULL,adCmdText);    

      

     pRstGesture->Close(); 

     pConnection->Close(); 

    } 

     catch (_com_error &e) 

    { 

      // Notify the user of errors if any. 

      // Pass a connection pointer accessed from the Recordset. 

    _variant_t vtConnect = pRstGesture 

     ->GetActiveConnection(); 

 

    // GetActiveConnection returns connect string if connection 

    // is not open, else returns Connection object. 

     

    //AfxMessageBox((char*) e.Description()); 

      //printf("Errors occured."); 

       fprintf(stderr, "Database gl Problems: %s\n",(char*) 

e.Description()); 

       exit(1); 

         

              

    }   

   } 

 

 for (int j=0;j<commando;j++) 

 { 

  old_ind=j; 

  new_ind=gestures_matched[j]; 

   

 

  HRESULT  hr = S_OK; 

            

        _bstr_t scmdo_ind;  

  //_bstr_t gest_num; 
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  _bstr_t ssold_lbl; 

  _bstr_t ssnew_lbl; 

  _bstr_t ssold_ind; 

  _bstr_t ssnew_ind; 

 

       

    if(FAILED(::CoInitialize(NULL)))  

    return 1;  

    if (SUCCEEDED(hr)) 

    {    

  _RecordsetPtr pRstGL("ADODB.Recordset"); 

   // Connection String 

   _bstr_t strCnn("DSN=gl;"); 

           // Open table 

 

   sprintf(sold_ind,"%d",old_ind); 

   sprintf(snew_ind,"%d",new_ind); 

 

   ssold_ind=sold_ind; 

   ssnew_ind=snew_ind; 

 

   try 

   {     

   pRstGL->Open("SELECT * FROM commands WHERE id="+ ssold_ind +";", strCnn, 

adOpenStatic, adLockReadOnly, adCmdText);  

   ssold_lbl =((_bstr_t) pRstGL->GetFields()->GetItem("command")->GetValue()); 

   strcpy(sold_lbl, ssold_lbl);  

   pRstGL->Close(); 

   } 

    catch (_com_error &e) 

   { 

      _variant_t vtConnect = pRstGL->GetActiveConnection(); 

             printf("Errors occured."); 

      (char*) e.Description();     

   } 

             

    } 

  

    if (SUCCEEDED(hr)) 

    { 

   // Define ADO object pointers. 

  // Initialize pointers on define. 

     _RecordsetPtr pRstGesture = NULL; 

     _ConnectionPtr pConnection  = NULL; 

 

     HRESULT hr = S_OK; 

 

    

    //Replace Data Source value with your server name. 

     _bstr_t strCnn("DSN=gesture;"); 

   _bstr_t strMessage; 

    

    

    try 

    { 

     //Open a connection 

     TESTHR(pConnection.CreateInstance(__uuidof(Connection))); 

     pConnection->Open(strCnn,"","",adConnectUnspecified); 
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     //Open results table  

     TESTHR(pRstGesture.CreateInstance(__uuidof(Recordset))); 

 

     //You have to explicitly pass the Cursor type and LockType to the 

Recordset here 

     pRstGesture->Open("centroid",_variant_t((IDispatch *) pConnection, 

true),adOpenKeyset,adLockOptimistic,adCmdTable); 

       

       pConnection->Execute("UPDATE centroid SET command='"+ 

ssold_lbl +"' WHERE name='"+ ssnew_ind +"';",NULL,adCmdText);    

      

     pRstGesture->Close(); 

     pConnection->Close(); 

    } 

     catch (_com_error &e) 

    { 

      // Notify the user of errors if any. 

      // Pass a connection pointer accessed from the Recordset. 

    _variant_t vtConnect = pRstGesture 

     ->GetActiveConnection(); 

 

    // GetActiveConnection returns connect string if connection 

    // is not open, else returns Connection object. 

     

    //AfxMessageBox((char*) e.Description()); 

      //printf("Errors occured."); 

       fprintf(stderr, "Database gl Problems: %s\n",(char*) 

e.Description()); 

       exit(1); 

         

              

    }   

    } 

 

 } 

 return (0); 

 

} 
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// qap.cpp: implementation of the qap class. 

// 

////////////////////////////////////////////////////////////////////// 

 

#include "stdafx.h" 

#include "qap.h" 

 

////////////////////////////////////////////////////////////////////// 

// Construction/Destruction 

////////////////////////////////////////////////////////////////////// 

 

qap::qap(long N) 

{  

 p = new long [N]; 

 

 n_max=851; 

 infini=1399999999; 

 nb_iter_initialisation = 1000;  

 n=N; 

 

// k1=1000; //for intu 

//    k2=1; //for stress; 

//    k3=k1; //for compl. intutivenss 

 

} 

 

qap::~qap() 

{ 

 delete [] p; 

 

} 

 

long qap::max(long a, long b){if (a > b) return(a);else return(b);}; 

double qap::max(double a, double b) {if (a > b) return(a); else return(b);} 

long qap::min(long a, long b) {if (a < b) return(a); else return(b);} 

double qap::min(double a, double b) {if (a < b) return(a); else return(b);} 

 

void qap::swap(long &a, long &b) {long temp = a; a = b; b = temp;} 

double qap::temps() {return(double(clock())/double(1000000));} 

 

/*-------------------------------------------------*/ 

 

/************* random number generators ****************/ 

 

const long m = 2147483647; const long m2 = 2145483479;  

const long a12 = 63308; const long q12 = 33921; const long r12 = 12979;  

const long a13 = -183326; const long q13 = 11714; const long r13 = 2883;  

const long a21 = 86098; const long q21 = 24919; const long r21 = 7417;  

const long a23 = -539608; const long q23 = 3976; const long r23 = 2071; 

const double invm = 4.656612873077393e-10; 

long x10 = 12345, x11 = 67890, x12 = 13579,  

     x20 = 24680, x21 = 98765, x22 = 43210; 

 

double qap::mon_rand() 

 {long h, p12, p13, p21, p23; 

  h = x10/q13; p13 = -a13*(x10-h*q13)-h*r13; 

  h = x11/q12; p12 = a12*(x11-h*q12)-h*r12; 

  if (p13 < 0) p13 = p13 + m; if (p12 < 0) p12 = p12 + m; 

  x10 = x11; x11 = x12; x12 = p12-p13; if (x12 < 0) x12 = x12 + m; 

  h = x20/q23; p23 = -a23*(x20-h*q23)-h*r23; 
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  h = x22/q21; p21 = a21*(x22-h*q21)-h*r21; 

  if (p23 < 0) p23 = p23 + m2; if (p21 < 0) p21 = p21 + m2; 

  x20 = x21; x21 = x22; x22 = p21-p23; if(x22 < 0) x22 = x22 + m2; 

  if (x12 < x22) h = x12 - x22 + m; else h = x12 - x22; 

  if (h == 0) return(1.0); else return(h*invm); 

 } 

 

long qap::unif(long low, long high) 

 {return(low + long(double(high - low + 1) *  mon_rand() - 0.5)); 

 } 

 

/************************** sa for qap ********************************/ 

 

long qap::calc_delta_complet2(long n, long ** a, long ** b, 

       long ** w, long ** d, long * p, long r, long s) 

 { 

  

  long dd; 

 

 // if ((p[0]==2) && (p[1]==7) && (p[2]==0) && (p[3]==5) && (p[4]==4) && (p[5]==3) && 

   //   (p[6]==6) && (p[7]==1)) 

   // int toti=0; 

 

   

  //effect of (conitrbution or not) this couple of commands and their assignment, when sweeped. 

  dd = k1*(w[r][p[s]]+w[s][p[r]]-w[r][p[r]]-w[s][p[s]]); // new added by Juan  - intuitve term 

   

  dd = dd  - h2*k2*((a[r][r]-a[s][s])*(b[p[s]][p[s]]*d[p[s]][p[s]]-b[p[r]][p[r]]*d[p[r]][p[r]])+  

  (a[r][s]-a[s][r])*(b[p[s]][p[r]]*d[p[s]][p[r]]-b[p[r]][p[s]]*d[p[r]][p[s]])); //stress term   

  //see above that the stress has a minus sign before, since we want that a high delta means low stress (high 

comfort) 

    

   

  //effect on the other nodes (except the couple). Minus sign before stress is becasue we want to minimize stress 

  for (long k = 0; k < n; k = k + 1) if (k!=r && k!=s) 

    dd = dd - h2*k2*((a[k][r]-a[k][s])*(b[p[k]][p[s]]*d[p[k]][p[s]]-b[p[k]][p[r]]*d[p[k]][p[r]]) + 

            (a[r][k]-a[s][k])*(b[p[s]][p[k]]*d[p[s]][p[k]]-b[p[r]][p[k]]*d[p[r]][p[k]]));    

 

   if (oC[r]==s)// if the n are complementary  

   dd=dd+k3*(ic[int(r/2)][p[s]*n+p[r]]-ic[int(r/2)][p[r]*n+p[s]]);  

   else 

   if (oC[s]==r)// if the n are complementary 

        dd=dd+k3*(ic[int(s/2)][p[r]*n+p[s]]-ic[int(s/2)][p[s]*n+p[r]]);  

 

   for (k = 0; k < n; k = k + 1) if (k!=r && k!=s) //check how the swap will affect the other relations. Add reward 

for new couples, punish demolition of couples 

   { 

    if (oC[k]==s)  //if there is a command that is complementary of one of the pair candidates for swaping, 

check the contribution for the swap of the pair  

     dd= dd + k3*ic[int(k/2)][p[k]*n+p[r]]; 

    else 

     if (oC[s]==k) // same as above, but check the n in reverse, first command2 and them command1 

      dd= dd + k3*ic[int(s/2)][p[r]*n+p[k]]; 

                

  if (oC[k]==s) //if is a comnd compli of one of the pair, check the lost for the swap of the pair  

     dd= dd - k3*ic[int(k/2)][p[k]*n+p[s]]; 

  else 

   if (oC[s]==k) // same as above, but check the n in reverse, first command2 and them 

command1 

      dd= dd - k3*ic[int(s/2)][p[s]*n+p[k]];  
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  if (oC[k]==r)  //if there is a command that is complementary of one of the pair candidates (check 

the second candidate) for swaping, check the contribution for the swap of the pair  

     dd= dd + k3*ic[int(k/2)][p[k]*n+p[s]]; 

    else 

     if (oC[r]==k) // same as above, but check the n in reverse, first command2 and them command1 

      dd= dd + k3*ic[int(r/2)][p[s]*n+p[k]]; 

                

  if (oC[k]==r) //if is a comnd compli of one of the pair, check the lost for the swap of the pair  

     dd= dd - k3*ic[int(k/2)][p[k]*n+p[r]]; 

  else 

   if (oC[r]==k) // same as above, but check the n in reverse, first command2 and them 

command1 

      dd= dd - k3*ic[int(r/2)][p[r]*n+p[k]]; 

   } 

  return(dd); 

 } 

 

long qap::calcule_cout(long n, long ** a, long ** b, long ** w,long ** d,long * p) 

 {long i, j; 

  long c = 0; 

  int comp_intu; 

 // long sk = 400000000; 

  

 

  for (i = 0; i < n; i = i + 1) for (j = 0; j < n; j = j + 1) 

    c = c - h2*k2*a[i][j] * b[p[i]][p[j]]*d[p[i]][p[j]]; //total stress       

 // c=c+sk; 

 

  for (i = 0; i < n; i = i + 1) 

   c = c + k1*w[i][p[i]]; //total intutiveness (added to total comfort) 

  

 

  for (i = 0; i < n; i = i + 1)  //complementary intuitveness 

   for (j = 0; j < n; j = j + 1) 

   { 

    comp_intu=0; 

 

    if (oC[i]==j)  

     comp_intu=ic[int(i/2)][p[i]*n+p[j]]; 

    else 

     if (oC[j]==i)  

          comp_intu=ic[int(j/2)][p[j]*n+p[i]]; 

 

    c = c + k3*comp_intu;  

   } 

   

  return(c); 

 } 

 

void qap::calcule_cout_bout(long & co, long & bo,long n, long ** a, long ** b, long ** w,long ** d, long * p) 

 {long i, j; 

   

  long c = 0; 

  int comp_intu=0; 

  co=0; 

  bo=0; 

  //long sk = 400000000; 

 

  for (i = 0; i < n; i = i + 1)    //This is the total comfort  
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   for (j = 0; j < n; j = j + 1) 

   c = c  - h2*a[i][j] * b[p[i]][p[j]] * d[p[i]][p[j]] ; // a-freq, b-comfort, w-intutivenss, d- 

duration ---   

            //c = c  - k2*a[i][j] * b[p[i]][p[j]] * d[p[i]][p[j]] ; // a-freq, b-comfort, w-intutivenss, d- duration ---   

   //c = c + sk; 

   

  co=c; 

   

  for (i = 0; i < n; i = i + 1) 

  { 

   c = c + w[i][p[i]]; 

   bo = bo + w[i][p[i]];  //  This is the total intuitveness   

      //c = c + k1*w[i][p[i]]; 

   //bo = bo + k1*w[i][p[i]];  //  This is the total intuitveness   

  } 

 

  for (i = 0; i < n; i = i + 1)  //this is complementary intuitveness  

   for (j = 0; j < n; j = j + 1) 

   { 

    if (oC[i]==j)  

     comp_intu=ic[int(i/2)][p[i]*n+p[j]]; 

    else 

     if (oC[j]==i)  

          comp_intu=ic[int(j/2)][p[j]*n+p[i]]; 

           

    bo = bo + comp_intu ; //total  

    //bo = bo + k3*comp_intu ; //total  

   } 

 

  c=c+bo; 

  

 } 

 

 

void qap::tire_solution_aleatoire(long n, long * p) 

 {long i; 

  for (i = 0; i < n; i = i+1) p[i] = i; 

  for (i = 1; i < n; i = i+1) swap(p[i], p[unif(i, n-1)]); 

 } 

 

void qap::recuit(long n, long ** a, long ** b, long ** w,long ** d, 

            long * meilleure_sol, long & meilleur_cout, 

            long nb_iterations) 

 

 {long * pp; 

  long i, r, s; 

  long delta; 

  double cpu = temps(); 

  long k = n*(n-1)/2, mxfail = k, nb_fail, no_iteration; 

  long dmin = infini, dmax = 0; 

  double t0, tf, beta, tfound, temperature; 

  long co=0; 

  long bo=0; 

//  long Cout1; 

  

  pp = new long[n]; //added by me! 

 

  for (i = 0; i < n; i = i + 1) pp[i] = meilleure_sol[i]; 

  long Cout = calcule_cout(n, a, b,w,d, pp); 

  meilleur_cout = Cout; 
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  for (no_iteration = 0; no_iteration < nb_iter_initialisation; 

       no_iteration = no_iteration+1) 

   { 

  r = unif(0, n-1); 

  s = unif(0, n-2); 

  if (s >= r) s = s+1; 

 

  delta = calc_delta_complet2(n,a,b,w,d,pp,r,s); 

  if (delta > 0) 

   {dmin = min(dmin, delta); dmax = max(dmax, delta);};  

  Cout = Cout + delta; 

  swap(pp[r], pp[s]); 

  //Cout1 = calcule_cout(n, a, b,w,d, pp); 

   }; 

 

  t0 = dmin + (dmax - dmin)/10.0; 

  tf = dmin; 

  beta = (t0 - tf)/(nb_iterations*t0*tf); 

 

  nb_fail = 0; 

  tfound = t0; 

  temperature = t0; 

  r = 0; s = 1; 

  for (no_iteration = 0;  

       no_iteration < nb_iterations - nb_iter_initialisation;  

       no_iteration = no_iteration + 1) 

    { temperature = temperature / (1.0 + beta*temperature); 

 

      s = s + 1; 

      if (s > n-1) 

       {r = r + 1;  

        if (r > n - 2) r = 0; 

        s = r + 1; 

       }; 

  

      delta = calc_delta_complet2(n,a,b,w,d,pp,r,s); 

 

      if ((delta > 0) || (mon_rand() <= exp(double(delta)/temperature)) || //Modified to Maximiz 

           mxfail == nb_fail) 

   {  

    Cout = Cout + delta; swap(pp[r], pp[s]); 

    //Cout1=calcule_cout(n, a, b, w,d,pp); //just added 

       nb_fail = 0; 

   } 

      else nb_fail = nb_fail + 1; 

 

      if (mxfail == nb_fail) 

   {beta = 0; temperature = tfound;}; 

      if (Cout > meilleur_cout) //Modified to Maximiza 

       { 

   meilleur_cout = Cout; 

   for (i = 0; i < n; i = i + 1)  

    meilleure_sol[i] = pp[i]; 

   tfound = temperature; 

   //Cout=calcule_cout(n, a, b, w,d,meilleure_sol); //just added 

   // cout << "Iteration = " << no_iteration   

   //  << "  Cost = " << meilleur_cout  

   //  << "  Cout = " << Cout <<  '\n'; 

     //<< "  Computational time = " << temps() - cpu <<  '\n'; 
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       }; 

  

   }; 

 // cout << "Best solution found : \n"; 

 

  Cout=calcule_cout(n, a, b, w,d,meilleure_sol); 

  calcule_cout_bout(co,bo, n, a, b, w,d,meilleure_sol); 

  Z1=co; //Stress 

  Z2=bo; //Total Intutiveness (Normal + Complementary ) 

  Zt=k2*co+k1*bo; 

  // for (i = 0; i < n; i = i + 1) meilleure_sol[i] = meilleure_sol[i]+1;  

  /// End 

 

 //  cout << "Best solution for distance : "; 

//  cout << co << ' '; 

//  cout << bo << ' '; 

//  cout << '\n'; 

 

  delete [] pp; 

 } 

 

 

void qap::solve() 

{ 

 

    long best_Z1,best_Z2,best_Zt,*best_p; 

 best_p = new long [n]; 

 double cpu = temps(); 

 

 tire_solution_aleatoire(n, p); 

    recuit(n,a,b,w,d,p,Cout, nb_iterations); 

 

 best_Z1=Z1; 

 best_Z2=Z2; 

 best_Zt=Zt; 

 

    memcpy(best_p, p, n * sizeof(long)); 

 

 for (no_res = 0; no_res < nb_res-1; no_res = no_res + 1) 

   { 

  tire_solution_aleatoire(n, p); 

  recuit(n,a,b,w,d,p,Cout, nb_iterations); 

  if (Zt>best_Zt) 

  { 

     best_Z1=Z1; 

     best_Z2=Z2; 

     best_Zt=Zt; 

     memcpy(best_p, p, n * sizeof(long)); 

  } 

 

 } 

   Z1=best_Z1; 

   Z2=best_Z2; 

   Zt=best_Zt; 

    

   memcpy(p, best_p, n * sizeof(long)); 

   tperiod=temps()-cpu; 
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/* 

   long co=0; 

   long bo=0; 

 

   p[0]=4; 

   p[1]=0; 

   p[2]=3; 

   p[3]=5; 

   p[4]=1; 

   p[5]=2; 

   p[6]=7; 

   p[7]=6; 

 

   calcule_cout_bout(co,bo, n, a, b, w,d,p); 

   Z1=co; //Stress 

   Z2=bo; //Total Intutiveness (Normal + Complementary ) 

   Zt=k2*co+k1*bo; 

*/ 

 

   delete [] best_p; 

 

} 
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// QAP_DB.cpp: implementation of the QAP_DB class. 

// 

////////////////////////////////////////////////////////////////////// 

 

#include "stdafx.h" 

#include "QAP_DB.h" 

 

////////////////////////////////////////////////////////////////////// 

// Construction/Destruction 

////////////////////////////////////////////////////////////////////// 

 

#import "C:\Program Files\Common Files\System\ADO\msado15.dll" \ 

    no_namespace rename("EOF", "EndOfFile") 

 

inline void TESTHR(HRESULT x) {if FAILED(x) _com_issue_error(x);}; 

 

 

QAP_DB::QAP_DB(long n)  //Constructor recieves the indeces of n gestures in the 

        // big matrix 

{ 

// gestures_subset=subset; 

 qap_obj=new qap(n); 

 qap_obj->nb_iterations=600000;   // can be more than this (inner iterations)  600000 

 qap_obj->nb_res=4;   // can be more iterations (outter iterations)               4 

 int ans=0; 

 ans=CandG_inDB();  //extracts the data from DB called GL 

 Allocate_Mem(); 

 

 

} 

 

int QAP_DB::CandG_inDB() 

{ 

  

 // Find the number of commands and gestures in DB 

 int number=0; 

 commands=0; 

 gestures=0; 

 HRESULT  hr = S_OK; 

 _bstr_t num;    

 

   if(FAILED(::CoInitialize(NULL)))  

      return 0;  

   if (SUCCEEDED(hr)) 

   {    

    _RecordsetPtr pRstGL("ADODB.Recordset"); 

        // Connection String 

        _bstr_t strCnn("DSN=GL;"); 

          // Open table 

 try 

 { 

  pRstGL->Open("SELECT COUNT(*) AS result FROM COMMANDS;", strCnn, adOpenStatic, 

adLockReadOnly, adCmdText);  

        num =((_bstr_t) pRstGL->GetFields()->GetItem("result")->GetValue()); 

     number=atoi(num);  

        pRstGL->Close(); 

  commands=number; 

   

  pRstGL->Open("SELECT COUNT(*) AS result FROM stress_matrix;", strCnn, adOpenStatic, 

adLockReadOnly, adCmdText);  
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        num =((_bstr_t) pRstGL->GetFields()->GetItem("result")->GetValue()); 

     number=atoi(num);  

        pRstGL->Close(); 

  gestures=number; 

 } 

  catch (_com_error &e) 

 { 

       // Notify the user of errors if any. 

       // Pass a connection pointer accessed from the Recordset. 

        _variant_t vtConnect = pRstGL->GetActiveConnection(); 

 

        // GetActiveConnection returns connect string if connection 

        // is not open, else returns Connection object. 

     

   fprintf(stderr, "Database gl Problems: %s\n",(char*) e.Description()); 

   exit(1); 

       

 // AfxMessageBox((char*) e.Description()); 

               // printf("Errors occured."); 

    //   (char*) e.Description(); 

              

 } 

   } 

    

  return 1; 

} 

 

int QAP_DB::DB2Matrices() 

{  

 

 char vec[1000]="0"; 

 int row=0,number=0; 

 HRESULT  hr = S_OK; 

 //_bstr_t gest_num; 

 _bstr_t ui_data, stress_data, duration_data, frequency_data, oC_data, oG_data; 

  

 int digit,digit2,col=0; 

 char *tokenPtr; 

      

 

   if(FAILED(::CoInitialize(NULL)))  

      return 1;  

   if (SUCCEEDED(hr)) 

   {    

 _RecordsetPtr pRstGL("ADODB.Recordset"); 

        // Connection String 

        _bstr_t strCnn("DSN=gl;"); 

          // Open table 

 

 try 

 { 

  pRstGL->Open("SELECT * FROM intutive_matrix ORDER BY id;", strCnn, adOpenStatic, 

adLockReadOnly, adCmdText); 

          

          pRstGL->MoveFirst(); 

    

     

              while (!pRstGL->EndOfFile) 

     {                

      col=0; 
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      ui_data =((_bstr_t) pRstGL->GetFields()->GetItem("id")-

>GetValue()); 

      strcpy(vec,ui_data); 

      digit=atoi(vec); 

      equiv_table[row]=digit;  

 

      ui_data =((_bstr_t) pRstGL->GetFields()->GetItem("data")-

>GetValue()); 

      strcpy(vec,ui_data); 

      tokenPtr=strtok(vec, " "); 

      

 

     while (tokenPtr !=NULL )  

     { 

      digit=atoi(tokenPtr); 

      tokenPtr = strtok(NULL," "); 

      UI[row][col]=digit; 

      col++; 

     } 

 

      

               pRstGL->MoveNext(); 

      row++; 

              } 

              pRstGL->Close(); 

    

    

   pRstGL->Open("SELECT * FROM stress_matrix ORDER BY id;", strCnn, 

adOpenStatic, adLockReadOnly, adCmdText); 

          

          pRstGL->MoveFirst(); 

    

     row=0;  

              while (!pRstGL->EndOfFile) 

     {                

     stress_data =((_bstr_t) pRstGL->GetFields()->GetItem("data")-

>GetValue());      

      

     strcpy(vec,stress_data); 

     tokenPtr=strtok(vec, " "); 

     col=0; 

 

     while (tokenPtr !=NULL )  

     { 

      digit=atoi(tokenPtr); 

      tokenPtr = strtok(NULL," "); 

      S[row][col]=digit; 

      col++; 

     } 

 

      

               pRstGL->MoveNext(); 

      row++; 

              } 

              pRstGL->Close(); 

 

         pRstGL->Open("SELECT * FROM duration_matrix ORDER BY id;", strCnn, adOpenStatic, 

adLockReadOnly, adCmdText); 
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          pRstGL->MoveFirst(); 

    

     row=0;  

              while (!pRstGL->EndOfFile) 

     {                

     duration_data =((_bstr_t) pRstGL->GetFields()->GetItem("data")-

>GetValue());      

      

     strcpy(vec,duration_data); 

     tokenPtr=strtok(vec, " "); 

     col=0; 

 

     while (tokenPtr !=NULL )  

     { 

      digit=atoi(tokenPtr); 

      tokenPtr = strtok(NULL," "); 

      D[row][col]=digit; 

      col++; 

     } 

 

      

               pRstGL->MoveNext(); 

      row++; 

              } 

              pRstGL->Close(); 

 

        

 

  pRstGL->Open("SELECT * FROM frequency_matrix ORDER BY id;", strCnn, adOpenStatic, 

adLockReadOnly, adCmdText); 

          

          pRstGL->MoveFirst(); 

    

     row=0;  

              while (!pRstGL->EndOfFile) 

     {                

     frequency_data =((_bstr_t) pRstGL->GetFields()->GetItem("data")-

>GetValue());      

      

     strcpy(vec,frequency_data); 

     tokenPtr=strtok(vec, " "); 

     col=0; 

 

     while (tokenPtr !=NULL )  

     { 

      digit=atoi(tokenPtr); 

      tokenPtr = strtok(NULL," "); 

      F[row][col]=digit; 

      col++; 

     } 

 

      

               pRstGL->MoveNext(); 

      row++; 

              } 

              pRstGL->Close(); 

 

 

  pRstGL->Open("SELECT * FROM comp_commands ORDER BY id;", strCnn, adOpenStatic, 

adLockReadOnly, adCmdText); 
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          pRstGL->MoveFirst(); 

    

    for (int index=0;index<commands;index++) 

     oC[index]=-1; 

 

     col=0;  

              while (!pRstGL->EndOfFile) 

     {                

     oC_data =((_bstr_t) pRstGL->GetFields()->GetItem("data")-

>GetValue());      

     strcpy(vec,oC_data); 

     digit=atoi(vec);  

      

     oC_data =((_bstr_t) pRstGL->GetFields()->GetItem("id")-

>GetValue());      

     strcpy(vec,oC_data); 

     digit2=atoi(vec); 

     oC[digit2]=digit; 

     col++; 

              pRstGL->MoveNext(); 

              } 

              pRstGL->Close(); 

 

   

     pRstGL->Open("SELECT * FROM comp_intuitive ORDER BY id,id2;", strCnn, adOpenStatic, 

adLockReadOnly, adCmdText); 

          

          pRstGL->MoveFirst(); 

    row=0;  

    col=0; 

 

              while (!pRstGL->EndOfFile) 

     {       

     col=0; 

     oG_data =((_bstr_t) pRstGL->GetFields()->GetItem("id")-

>GetValue()); 

     strcpy(vec,oG_data); 

     digit=atoi(vec); 

                    IC[row][col]=digit; 

     col=col+1; 

 

     oG_data =((_bstr_t) pRstGL->GetFields()->GetItem("id2")-

>GetValue()); 

     strcpy(vec,oG_data); 

     digit=atoi(vec); 

                    IC[row][col]=digit; 

     col=col+1; 

 

 

     oG_data =((_bstr_t) pRstGL->GetFields()->GetItem("data")-

>GetValue()); 

     strcpy(vec,oG_data); 

     tokenPtr=strtok(vec, " "); 

 

     while (tokenPtr !=NULL )  

     { 

      digit=atoi(tokenPtr); 

      tokenPtr = strtok(NULL," "); 

      IC[row][col]=digit; 

      col++; 
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     } 

 

      

               pRstGL->MoveNext(); 

      row++; 

              } 

              pRstGL->Close(); 

     number_comp_gestures=row; 

    

 

 } 

  catch (_com_error &e) 

  { 

       // Notify the user of errors if any. 

       // Pass a connection pointer accessed from the Recordset. 

        _variant_t vtConnect = pRstGL->GetActiveConnection(); 

 

        // GetActiveConnection returns connect string if connection 

        // is not open, else returns Connection object. 

     

//  AfxMessageBox((char*) e.Description()); 

                //printf("Errors occured."); 

       //(char*) e.Description(); 

   fprintf(stderr, "Database gl Problems: %s\n",(char*) e.Description()); 

   exit(1);  

              

  } 

    

   } 

  

 

 //  delete vec; 

   return 0; 

 

} 

 

 

void QAP_DB::Allocate_Mem() 

{ 

 

   // Allocate memory for big Matrices according to this quantities 

   long i,j; 

 

   for (i = 0; i < gestures; i++) 

 { 

     F = new long *[gestures]; 

  S = new long *[gestures]; 

  D = new long *[gestures]; 

  UI = new long *[gestures]; 

 } 

 

 for (i = 0; i < gestures*3; i++) 

  IC = new long *[gestures*3]; 

 

 for (i = 0; i < gestures*3; i++) 

    IC[i]=new long[gestures*3]; //Complementary  intuitivety 

 

 for (i = 0; i < gestures; i++) 

 { 

  F[i] = new long[gestures]; //frequency 
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  S[i] = new long[gestures];  // Stress 

  D[i] = new long[gestures]; //Duration 

  UI[i] = new long[gestures]; //intutiveness 

 } 

 

 for (i = 0; i < commands; i++) 

 { 

     //ui = new long *[gestures]; // you must fix this!!!!!!!!!!!!!!!!! 

  f = new long *[commands]; 

 } 

  

 for (i = 0; i < gestures; i++) 

 {  

  ui = new long *[commands]; 

  s = new long *[gestures]; 

  d = new long *[gestures]; 

  

 } 

 

 for (i = 0; i < commands; i++) 

    { 

  f[i] = new long[commands]; 

  ui[i] = new long[gestures]; 

 } 

 

 

 for (i = 0; i < gestures; i++) 

 { 

 // ui[i] = new long[commands]; 

  s[i] = new long[gestures]; 

  d[i] = new long[gestures]; 

 } 

 

 for (i = 0; i < commands*commands; i++) 

        ic=new long *[commands];  

 

    for (i = 0; i < commands; i++) 

  ic[i]=new long[commands*commands]; 

 

// ic[1][150]=7; 

 

 // cleaning before use 

 for(i=0;i<3*gestures;i++) 

          for(j=0;j<3*gestures;j++) 

                IC[i][j]=0; 

 

 oC=new int[commands]; //opposed command. entry oC[i]=j means that command 'j' is the complementary 

of command 'i' (like 'fast' and 'slow') 

 equiv_table=new int[gestures]; //table of equivalences between the gesture number, and it order in the 

subset. For example, gesture 27, will be 5 (23 gestures maximum) 

 

  

  

} 

 

void QAP_DB::ExtractSubMatrix() 

{ 

 long rowcol,row,col,rowcol_equiv; 

 long index=0; 

 int gest=0; 
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 int g1,g2; 

 int composite_index; 

 

     

 //cleaning a little bit the old matrices 

 for(int i=0;i<commands;i++) //makes zero all the complementary matrix, so later on, the compl not filled, 

wiill have automatically zero 

    for (int j=0;j<commands*commands;j++) 

         ic[i][j]=0; 

 

 // Copy the matrix UI to a submatrix ui 

 for (i=0; i<commands;i++) // Assumption that the number of sub-gestures is 

 {          // equal to number of commands 

  rowcol=gestures_subset[i];  //CHANGED 19/03/06 BECAUSE now we enumerate the gestures 

from 1 to 27, instead of from 0. 

 

  rowcol_equiv=extract_equiv_index(rowcol); 

 

  for (int j=0; j<commands;j++) 

  { 

  ui[j][index]=UI[rowcol_equiv][j];  //ui is transposed of UI. So now, rows are commands, and cols 

are gestures. 

//  op[j][index]=OP[rowcol][j]; 

  } 

  index++; 

 } 

 

 index=0; 

 //Copy the matrix S to a submatrix s, including only the rows/cols of the subset of gestures 

 //Copy the matrix D to a submatrix d  including only the rows/cols of the subset of gestures 

 for (i=0;i<commands;i++) 

 { 

    

   row=gestures_subset[i]-1;  //CHANGED 19/03/06 BECAUSE now we enumerate the gestures from 1 to 

27, instead of from 0. 

   for (long j=0; j<commands;j++) 

   { 

    col=gestures_subset[j]-1;  //CHANGED 19/03/06 BECAUSE now we enumerate the gestures 

from 1 to 27, instead of from 0. 

    s[index][j]=S[row][col];  

    d[index][j]=D[row][col];  

 

 

   } 

   index++; 

 } 

 

 //This parts takes the IC matrix, with the first two columns are g1 and g2 respectively, and g1 and g2 are 

complementary gestures. 

 //The rest of the values in the row is the value of intuitivety for each column.  

 // The other columns represents the pairs of complementary commands, left-right, up-down, etc. 

 //We want to cpy this to a new matrix ic, that the columns are a composite index of both g1, and g2: 

g1*commands + g2.  

 // The rows of ic are the values of the intuitivety for each pair of complementary commands  

 for (index=0; index<number_comp_gestures;index++) 

 { 

  g1=IC[index][0]; 

  g2=IC[index][1]; 

  row=0; 
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  int in1=renumbered_index(g1); 

  int in2=renumbered_index(g2); 

 

 // ic[1][150]=7; 

   

  if ((in1!=-1) && (in2!=-1)) 

        { 

              composite_index=in1*commands+in2; 

              for (int indice=2;indice<commands;indice++) 

              { 

       ic[row][composite_index]=IC[index][indice]; 

                    row=row+1; 

      

     } 

  } 

     

  if (composite_index==206) 

   int tio=1; 

 

 } 

 

 //Copy the matrix F to the submatrix f  (nothing to do, they are equal) 

 f=F; 

 

} 

 

int QAP_DB::renumbered_index(int i) 

{ 

 int indi; 

 indi=-1; 

    

   for (int index=0; index<commands; index++) 

    if (i==gestures_subset[index])  

              indi=index; 

     

   return (indi);   

} 

 

 

int QAP_DB::extract_equiv_index(int i) 

{ 

   int indi; 

 indi=-1; 

    

   for (int index=0; index<gestures; index++) 

    if (i==equiv_table[index])  

              indi=index; 

     

   return (indi);   

 

} 

 

void QAP_DB::RunQAP() 

{ 

 long val; 

 

 //copies all the matrices here to the qap object 

 qap_obj->a=f;  

 qap_obj->b=s; 

 qap_obj->w=ui; 
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 qap_obj->d=d; 

 qap_obj->ic=ic; 

 qap_obj->oC=oC; 

 

 qap_obj->k1=W1; //weight for direct intuitveness 

 qap_obj->k2=W2; // for stress (the increments of stress are more signif than the intu) 

 qap_obj->k3=W3; //weight for complementary intuitveness 

 qap_obj->h2=H2; //coefficient to reduce the size of the stress, to make in same scale as intuitive 

 

 

 

 qap_obj->solve(); 

    Z1=qap_obj->Z1; 

 Z2=qap_obj->Z2; 

 Zt=qap_obj->Zt; 

 tperiod=qap_obj->tperiod*1000; 

  

 pai=qap_obj->p;  // comb[1], comb[2], etc 

 

 //Here we try to copy the gesture permutation, using their original indexes 

 for (long i=0;i<commands;i++) 

 { 

  val=pai[i]; 

  pai[i]=gestures_subset[val]; 

 } 

 

} 

 

void QAP_DB::Insert_Results2DB() 

{ 

 

 char str_pai[1000]=""; 

 char str_subset[1000]=""; 

 char Su[15]=""; 

 char sZ1[15]=""; 

 char sZ2[15]=""; 

 char sZt[15]=""; 

 char sW1[15]=""; 

 char sW2[15]=""; 

 char sW3[15]=""; 

 char sTime[15]=""; 

 

 HRESULT  hr = S_OK; 

  

 _bstr_t sstr_pai,sstr_subset,ssZ1,ssZ2,ssZt,ssW1,ssW2,ssW3,ssTime; 

 

   if (FAILED(::CoInitialize(NULL))) 

      return;  

 

   if (SUCCEEDED(hr)) 

   { 

     // Define ADO object pointers. 

    // Initialize pointers on define. 

   _RecordsetPtr pRstGL = NULL; 

   _ConnectionPtr pConnection  = NULL; 

 

   HRESULT hr = S_OK; 

 

  

  //Replace Data Source value with your server name. 
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   _bstr_t strCnn("DSN=gl;"); 

    _bstr_t strMessage; 

  

    

  try 

  { 

   //Open a connection 

   TESTHR(pConnection.CreateInstance(__uuidof(Connection))); 

   pConnection->Open(strCnn,"","",adConnectUnspecified); 

       

 

   //Open results table  

   TESTHR(pRstGL.CreateInstance(__uuidof(Recordset))); 

 

   //You have to explicitly pass the Cursor type and LockType to the Recordset here 

   pRstGL->Open("results",_variant_t((IDispatch *) pConnection, 

true),adOpenKeyset,adLockOptimistic,adCmdTable); 

   

   for(int j=0;j<commands;j++) 

   { 

       strcpy(Su,"");  

       sprintf(Su,"%d",pai[j]); 

    strcat(str_pai,Su); 

    strcat(str_pai," "); 

 

    strcpy(Su,"");  

       sprintf(Su,"%d",gestures_subset[j]); 

    strcat(str_subset,Su); 

    strcat(str_subset," "); 

      

   } 

   

     sprintf(sZ1,"%d",Z1); 

     sprintf(sZ2,"%d",Z2); 

     sprintf(sZt,"%d",Zt); 

     sprintf(sW1,"%f",W1); 

     sprintf(sW2,"%f",W2); 

     sprintf(sW3,"%f",W3); 

     sprintf(sTime,"%f",tperiod); 

 

     sstr_pai=str_pai; 

     sstr_subset=str_subset; 

     ssZ1=sZ1; 

     ssZ2=sZ2; 

     ssZt=sZt; 

     ssW1=sW1; 

     ssW2=sW2; 

     ssW3=sW3; 

     ssTime=sTime; 

      

              pConnection->Execute("INSERT INTO results (solution,ordered,z_str,z_int,zt,w_int,w_str,Tann) 

VALUES 

('"+sstr_pai+"','"+sstr_subset+"','"+ssZ1+"','"+ssZ2+"','"+ssZt+"','"+ssW1+"','"+ssW2+"','"+ssTime+"');",NULL,adC

mdText); 

      

   pRstGL->Close(); 

   pConnection->Close(); 

  } 

   catch (_com_error &e) 

  { 
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       // Notify the user of errors if any. 

       // Pass a connection pointer accessed from the Recordset. 

        _variant_t vtConnect = pRstGL 

   ->GetActiveConnection(); 

 

        // GetActiveConnection returns connect string if connection 

        // is not open, else returns Connection object. 

     

  //AfxMessageBox((char*) e.Description()); 

                //printf("Errors occured."); 

     fprintf(stderr, "Database gl Problems: %s\n",(char*) e.Description()); 

     exit(1); 

       

              

  } 

    

       ::CoUninitialize(); 

   } 

} 

 

 

 

void QAP_DB::Initial() 

{ 

 int ans=0; 

// ans=CandG_inDB(); 

// Allocate_Mem(); 

 ans=DB2Matrices(); 

 ExtractSubMatrix(); 

 RunQAP(); 

 Insert_Results2DB(); 

 

} 

 

QAP_DB::~QAP_DB() 

{ 

 delete [] qap_obj;   //are you sure that you destroy the object this way??  I think that the object destroys 

itself 

 delete [] F; 

 delete [] S; 

 delete [] UI; 

 delete [] IC; 

 delete [] D; 

// delete [] f; Commented since f=F and already deallocated (before 2 lines ago) 

 delete [] ui; 

 delete [] ic; 

 delete [] s; 

    delete [] d; 

 delete [] oC; 

 delete [] equiv_table; 

 

} 
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// QAPI.cpp : Defines the entry point for the console application. 

// 

 

#include "stdafx.h" 

#include "QAP_DB.h" 

#include  "Gmanager.h" 

#include "OrganizeImages.h" 

#include "SimilarityMat.h" 

#include "string.h" 

 

 

void main() 

{ 

 

 long a,b,c,d,e,f,g,h; 

 long n=8;   // Number of n nodes of the problem 

 long total_gestures=22; //Number of Gestures in Master Set Vocabulary 

 long *gestures_indices; 

 long *gestures_indices_matched; //the same indices, but in the order corresponding each command 

 gestures_indices=new long[n]; 

 gestures_indices_matched=gestures_indices; 

 float distan=0;  

 

 // Object that extract from db data of 3 matrices (F,S,I) 

 // and run the QAP, and after that insert Z1,Z2,Zt to the gl databse 

 

 SimilarityMat Simat(total_gestures,n); //Constructor of Simlarity Matrix 

 

 QAP_DB qap_db_obj(n); //Constructor 

 OrganizeImages oi(n);  //Constructor 

 Gmanager Gman(n,total_gestures); //Constructor 

 

 int iterat=0; 

 int W1,W2; 

 

 W1=0; 

 W2=10; 

 

// while (iterat<=10) 

// { 

  iterat++; 

 

/* 

 for (a=1;a<20;a++) 

  for (b=a+1;b<21;b++) 

   for (c=b+1;c<22;c++) 

    for (d=c+1;d<23;d++) 

  for (e=d+1;e<24;e++) 

   for (f=e+1;f<25;f++) 

        for (g=f+1;g<26;g++) 

     for (h=g+1;h<27;h++) 

     { 

 

 iterat++; 

 

    gestures_indices[0]=a; 

 gestures_indices[1]=b; 

 gestures_indices[2]=c; 

 gestures_indices[3]=d; 

 gestures_indices[4]=e; 
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 gestures_indices[5]=f; 

 gestures_indices[6]=g; 

 gestures_indices[7]=h; 

*/ 

 W1=8; 

 W2=2; 

 

 gestures_indices[0]=6; 

 gestures_indices[1]=7; 

 gestures_indices[2]=8; 

 gestures_indices[3]=10; 

 gestures_indices[4]=12; 

 gestures_indices[5]=18; 

 gestures_indices[6]=23; 

 gestures_indices[7]=24; 

 

 qap_db_obj.W1=W1; //intu weight 

 qap_db_obj.W2=W2;    //stress weight 

 qap_db_obj.W3=qap_db_obj.W1;   //compl. intu 

 qap_db_obj.H2=0.001;   //reduction factor for the stress. 

 

 W1=W1+1; 

 W2=W2-1; 

 

 qap_db_obj.gestures_subset=gestures_indices; //Give the subset of gestures indices 

             // to 

object 

 qap_db_obj.Initial(); //Run the object 

 

 gestures_indices_matched=qap_db_obj.pai; 

             // to 

object 

 oi.gestures_subset=gestures_indices;//Give the subset of gestures indices 

             // to 

object 

 

// oi.MovePics();  //Move the gestures pics to train folder 

 

 //Object that run the accuracy module with preselected gestures 

 // and extract the accuracy, and put it in the gl db. 

             // to 

object 

 Gman.gestures_subset=gestures_indices;//Give the subset of gestures indices // to object 

 

 Gman.gestures_matched=gestures_indices_matched;//Give the subset of gestures indices  

 

 Gman.FindAccuracy(); 

 

 distan=Simat.Dist(Gman.confused_A,Gman.confused_B); 

 

 distan=Simat.Dist(Gman.confused_A,0); 

 

 Gman.RunGL_map(); 

  

// } 

 Gman.RenameLabelsDB(gestures_indices_matched); 

 

 //************ Remember to uncomment the name_gesture_VMR running applic 

 delete [] gestures_indices; 

} 
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// SimilarityMat.cpp: implementation of the SimilarityMat class. 

// 

////////////////////////////////////////////////////////////////////// 

 

#include "stdafx.h" 

#include "SimilarityMat.h" 

#include "OrganizeImages.h" 

#include <cv.h> 

 

#import "C:\Program Files\Common Files\System\ADO\msado15.dll" \ 

    no_namespace rename("EOF", "EndOfFile") 

 

inline void TESTHR(HRESULT x) {if FAILED(x) _com_issue_error(x);}; 

 

////////////////////////////////////////////////////////////////////// 

// Construction/Destruction 

////////////////////////////////////////////////////////////////////// 

 

SimilarityMat::SimilarityMat(int total_gestures,int n) 

{ 

   gestures_indices=new long[total_gestures]; 

   gestures_indices_out=new long[total_gestures]; 

 

   all_gestures=total_gestures; 

   commands=n; 

  

   for (int i=0;i<total_gestures;i++)  

    gestures_indices[i]=i; //Order the images by their oginially index order: 1,2,3,..12 

 

 // CreateCentroid2DB(total_gestures); //Creates for the first time a prototype...  

          //..vector matrix of the 

gestures. You can comment 

           // this line, after the first run 

   // THIS DATA is saved in a DB called INITIAL.DBM (the centroids of each group of gestures type) 

 

   DB2Centroid(); 

    

} 

 

void SimilarityMat::CreateCentroid2DB(int total_gestures) 

{ 

 

  OrganizeImages oi(total_gestures);  //Constructor of the pictures organizer object 

  oi.gestures_subset=gestures_indices;//Give the subset of gestures indices 

            // to object 

   oi.MovePics();  //Move the gestures pics to train folder 

 

 

  // *** RUN THE GestureRecCentroids ***// 

   RunGestureCentroids(); 

 

} 

 

void SimilarityMat::RunGestureCentroids() 

{ 

 int memor[5]; 

 int *nRetValue=memor; 

 char sCmdLine[200]="D:\\PHD_PROJECTS\\GestureRecCentroids\\Debug\\GestureRec.exe"; 

 char sRunningDir[200]="D:\\"; 

 RunProcessAndWait(sCmdLine,sRunningDir ,nRetValue); 
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} 

bool SimilarityMat::RunProcessAndWait(char *sCmdLine,  

                       char *sRunningDir,int *nRetValue) 

{ 

 

 int nRetWait; 

 int nError; 

 

 // That means wait 300 s before returning an error 

 // You can change it to the value you need. 

 // If you want to wait for ever just use 'dwTimeout = INFINITE'> 

 DWORD dwTimeout = 1000 *300;  

      

      

 STARTUPINFO stInfo; 

 PROCESS_INFORMATION prInfo; 

 BOOL bResult; 

 ZeroMemory( &stInfo, sizeof(stInfo) ); 

 stInfo.cb = sizeof(stInfo); 

 stInfo.dwFlags=STARTF_USESHOWWINDOW; 

 stInfo.wShowWindow=SW_MINIMIZE; 

 

 bResult = CreateProcess(NULL,  

                         (LPSTR)(LPCSTR)sCmdLine,  

                         NULL,  

                         NULL,  

                         TRUE, 

                         CREATE_NEW_CONSOLE  

                         | NORMAL_PRIORITY_CLASS, 

                         NULL, 

                         (LPCSTR)sRunningDir, 

                         &stInfo,  

                         &prInfo); 

 *nRetValue = nError = GetLastError(); 

  

 if (!bResult) return FALSE; 

  nRetWait =  WaitForSingleObject(prInfo.hProcess,dwTimeout); 

 

 CloseHandle(prInfo.hThread);  

 CloseHandle(prInfo.hProcess);  

 

 if (nRetWait == WAIT_TIMEOUT) return FALSE; 

  return TRUE; 

} 

 

void SimilarityMat::DB2Centroid() 

{ 

  

 char vec[600]=""; 

 int num_pics=0,number=0; 

 HRESULT  hr = S_OK; 

 _bstr_t gest_num; 

 _bstr_t center; 

  

 int digit,index=0; 

 char *tokenPtr; 

      

 

   if(FAILED(::CoInitialize(NULL)))  

      return;  
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   if (SUCCEEDED(hr)) 

   {    

 _RecordsetPtr pRstGestures("ADODB.Recordset"); 

        // Connection String 

        _bstr_t strCnn("DSN=initial;"); 

          // Open table 

  try 

  { 

  pRstGestures->Open("SELECT * FROM CENTROID ORDER BY gest_num;", strCnn, 

adOpenStatic, adLockReadOnly, adCmdText); 

          

          pRstGestures->MoveFirst(); 

    

     

              while (!pRstGestures->EndOfFile) 

     {                

     gest_num =((_bstr_t) pRstGestures->GetFields()-

>GetItem("gest_num")->GetValue()); 

     center =((_bstr_t) pRstGestures->GetFields()->GetItem("center")-

>GetValue()); 

      

     number=atoi(gest_num); 

      

     strcpy(vec,center); 

     tokenPtr=strtok(vec, " "); 

     index=0; 

 

     while (tokenPtr !=NULL )  

     { 

      digit=atoi(tokenPtr); 

      tokenPtr = strtok(NULL," "); 

      Ci[number][index]=digit; 

      index++; 

     } 

 

      

               pRstGestures->MoveNext(); 

      num_pics++; 

              } 

     FeatureLen=index; 

              pRstGestures->Close(); 

  } 

   catch (_com_error &e) 

  { 

       // Notify the user of errors if any. 

       // Pass a connection pointer accessed from the Recordset. 

        _variant_t vtConnect = pRstGestures->GetActiveConnection(); 

 

        // GetActiveConnection returns connect string if connection 

        // is not open, else returns Connection object. 

     

   

          printf("Errors occured."); 

  (char*) e.Description(); 

  exit(1); 

     }          

   } 

   return; 

} 

 



 

 

260  

float SimilarityMat::Dist(int i,int j) 

{ 

 float u=0; 

 CvMat PointI = cvMat(1,FeatureLen,CV_MAT32F,NULL); 

 CvMat PointJ = cvMat(1,FeatureLen,CV_MAT32F,NULL); 

 CvMat PointDiff = cvMat(1,FeatureLen,CV_MAT32F,NULL); 

 //CvMat Result = {1,1,CV_MAT32F,0,NULL}; 

 CvMat Result = cvMat(1,1,CV_MAT32F,NULL); 

 

 cvmAlloc(&PointI); 

 cvmAlloc(&PointJ); 

 cvmAlloc(&PointDiff); 

 cvmAlloc(&Result) 

 

 float *pI = PointI.data.fl; 

 float *pJ = PointJ.data.fl; 

 

 memcpy(pI,Ci[i],FeatureLen*4); 

 //memcpy(pI,Ci[i].data,sizeof(Ci[i].data)); 

 

 //for (int index=0;index<FeatureLen;index++) 

 // cvmSet(&PointI,0,index ,Ci[i].data[index]); 

 

 memcpy(pJ,Ci[j],FeatureLen*4); 

 //memcpy(pJ,MatFeatures[j].data,sizeof(MatFeatures[j].data)); 

 

 //for (index=0;index<FeatureLen;index++) 

 // cvmSet(&PointJ,0,index, MatFeatures[j].data[index]); 

  

 cvmSub(&PointI,&PointJ,&PointDiff); 

 cvmMulTransposed(&PointDiff,&Result,0); 

  

 u=(float)cvmGet(&Result,0,0); 

  

 cvmFree(&PointJ); 

 cvmFree(&Result); 

 cvmFree(&PointDiff); 

 cvmFree(&PointI);  

 return u; 

} 

 

int SimilarityMat::GetDistinct(int j)  

{ 

   int max=0; 

   int index=-1; 

   int x,y,min,c; 

   long *gestures_min;  

 

   gestures_min=new long[all_gestures]; 

   for (c=0;c<all_gestures;c++)  //Initialization 

    gestures_indices_out[c]=1;  

 

   for (c=0;c<all_gestures;c++)  //Initialization 

    gestures_min[c]=0;  

 

   for (c=0;c<commands;c++) //gestures_indices_out[x]=1, mean x is not used in subset 

    gestures_indices_out[gestures_indices[c]]=0;   

//Helman way MinmMax 

   // Now find the MIN distances between OUT and IN 

    for (x=0;x<all_gestures;x++) 
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 { 

  min=100000000; //Start from some value to compare 

  for (y=0;y<all_gestures;y++) 

   if ((Dist(x,y)<=min) && (gestures_indices_out[x]==1)  

    && (gestures_indices_out[y]==0) && (y!=j))  

   { 

    min=cvRound(Dist(x,y)); 

    gestures_min[x]=min; 

   } 

 } 

   // Now find the MAX over the mins. 

 for (x=0;x<all_gestures;x++) 

    if (gestures_min[x]>=max)  

    { 

     max=gestures_min[x]; 

     index=x; 

    } 

 

/// JUAN OLD WAY 

//   for (c=0;c<all_gestures;c++) 

//     if  ((Dist(j,c)>=max) && (gestures_indices_out[c]==1)) 

//  { 

//        max=Dist(j,c); 

//  index=c; 

//  } 

     

    delete [] gestures_min; 

 return(index); 

} 

int SimilarityMat::GetIndexOfGesture(int g) 

{ 

   int ind,c; 

   for (c=0;c<commands;c++) 

    if (g==gestures_indices[c]) 

     ind=c; 

 return(ind); 

} 

void SimilarityMat::OrderGestureVector() 

{ 

   int contador=0; 

   long *gestvector_cpy;  

   gestvector_cpy=new long[commands]; 

   for (int g=0;g<all_gestures;g++) 

     for (int c=0;c<commands;c++) 

    if (g==gestures_indices[c]) 

    { 

     gestvector_cpy[contador]=g; 

     contador++; 

    } 

   for (int c=0;c<commands;c++) 

 gestures_indices[c]=gestvector_cpy[c]; 

 delete [] gestvector_cpy; 

} 

SimilarityMat::~SimilarityMat() 

{ 

//   delete [] gestures_indices; //Don't delete this now, it is deleted 

                    //later, at the end of the main program 

   delete [] gestures_indices_out; 

} 
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  תקציר

 

 

תפריטים וממשקי מניפולציה , ממשקים מבוססי מחוות ידיים מציעים חלופה לממשקים מסורתיים יותר כגון שלטים
פקודות ניווט ופרמרטים נוספים באמצעות מחווה אינטואיטיבית אחת ,פעולות , היכולת לציין עצמים. ישירה

בממשקים מבוססי מחוות ידיים כחלופה ניתן לראות . מושכת משתמשים מתחילים ומשתמשים מנוסים כאחד
אחד . סטריליות ותגובה מהירה, מועדפת לטכניקות ממשק קיימות מכוון שהן מציעות יתרונות כגון טבעיות

שלב ... מהיתרונות הבולטים הוא סיוע לאנשים בעלי מוגבלויות פיזיות לגשת למחשבים ולהתקנים פיזיים נוספים
הנועד למשימות לא גנריות הוא הבחירה של מחוות הידיים הנכללות במשוב מכריע בממשק מבוסס מחוות ידיים 

.  בין אדם למחשב לא נחקרו לעומקאינטראקציהפרוצדורות לתכנון שפות מחוות ידיים ל, לרוע המזל. בקרה
יצירת שפת מחוות ידיים קשורה לבעיית אופטימיזציה בעלת מרחב חיפוש גדול במיוחד ואמורה להתבסס על 

הגורמים הבאים הם המשפיעים ביותר על הביצועים של תכנון . שימושיות המשתמשים וגם זיהוי המכונהגורמי 
  . מחשב- שפת מחוות ידיים מכוון אדם

  
תקשורת מבוססת מחוות ידיים כוללת יותר אינטרקציה של השרירים מאשר עכבר או ): או נוחיות (עייפות. 1

לכן מחוות ידיים צריכות להיות תמציתיות . מים לביטוי הפקודותהאצבעות והזרוע כולם תור, פרק היד. דיבור
תכנון השפה חייב להימנע ממחוות ידיים שדורשות מתיחת , במיוחד.  ולמזער את המאמץ ביד ובזרוע, ונוחות

מחוות חוזרות ומגושמות משפיעות באופן משמעותי על מתיחת הרקמות וגורם . שרירים גבוהה במשך זמן ממושך
שני . פרוצדורה מוצלחת תעודד תנוחות טבעיות ותזנח אלו שגורמות מאמץ חוזר. צם שורש כף הידלחץ על ע

שהוא המאמץ הדרוש על מנת להחזיק מחווה סטטית במשך , מאמץ סטטי) א: סוגים של מאמץ נקבעו בתיזה הזאת
 נוצרה Sטריצת מאמץ מ. שהוא המאמץ הדרוש לביצוע מעבר בין מחוות סטטיות, מאמץ דינאמי) ב-ו, זמן מוגדר

 היא פונקציה Uמטריצה . על מנת לשמור את המידע אודות מדדי המאמץ של המחוות שנכללו במטודולוגיה נוכחית
  .Sשל 

  
דבר זה לא . הקשר הטבעי בין מחווה לפקודה או כוונה,  היא הקוגניטיביותאינטואיטיביות:  אינטואיטיביות.2

מחוות מסובכות ולא טבעיות מוזכרות לעתים רחוקות על ידי המשתמשים  . קשור לאילוצים הנובעים אנטומית היד
שניתן לזכור אותה אפילו כאשר אין פעולה קוגניטיבית ברורה , המחווה צריכה להיות פשוטה. בעת ביצוע משימה

ת גורמים נוספים שמשפיעים על המחוות המועדפו.  קשורה ללמידה ויכולת זיכרוןאינטואיטיביות. הקשורה אליה
 אינטואיטיביותשני סוגים של . רקע תרבותי ויכולות בלשניות של המשתמש, י המשתמשים הם רקע כללי"ע

 אינטואיטיביותו, שהיא קשורה לקשר הקוגניטיבי בין מחווה לפקודה,  ישירהאינטואיטיביות: מוצגים בתיזה זאת
 אינטואיטיביותמטריצת ה. מותשהיא קשורה לשימוש מחוות משלימות על מנת להציג פקודות משלי, משלימה
 המשלימה אינטואיטיביותמידע לגבי ה.  ישירה של  סביבת העבודהאינטואיטיביות מכילה מידע על Iהישירה 

  .}I,IC{ת היא אינטואיטיביולכן קבוצת ה. IC,  משלימהאינטואיטיביותנשמר במטריצת 
  
זיהוי מחוות ידיים היא משימה קשה בתחום . נכוןדיוק הזיהוי הוא אחוז המחוות שהתקבלו שזוהו : דיוק הזיהוי. 3

, מיקום. במודלים צבע של עור, דינאמיים-מצבים סטטיים, מורכב/הראייה שהיא כוללת הנחות לגבי רקע אחיד
. כיוון ותצורת אצבעות כף היד יכולות להוות דגש על הבדלים בין מחוות ידיים ולכן להשפיע על ההבחנה ביניהן

על מנת למצוא את דיוק הזיהוי . ריתמים יעילים לזיהוי מהווים גורם מכריע לסיווג מחוות ידייםעיבוד תמונה ואלגו
  .פותח אלגוריתם לזיהוי מחוות ידיים, A, של שפת מחוות ידיים

   
תלוי בתכונות , דיוק, הם ממוקדי אדם כאשר הגורם השלישי, אינטואיטיביותעייפות ו, שני גורמים הראשונים

תוך שיפור חווית , תיזה זו עוסקת בתכנון אופטימאלי של שפות מחוות ידיים). תוכנה, חומרה: למשל(המכונה 
שלושת גורמים . .)דיוק הזיהוי(מבלי להשפיע על ההיבט הטכני )  ונוחותאינטואיטיביות(השליטה של המשתמשים 

  .אלו יקבעו את התכנון האופטימאלי של שפת מחוות הידיים
לפתח , היא לנסח את בעיית התכנון האופטימאלי של שפת מחוות הידיים באופן קפדנימטרתה העיקרית של התיזה 

אלגוריתמים לעיבוד תמונה והערכת , ותיוריסטיגישות , ידי שימוש בתכנות מתמטי-ולאמת מטודולוגיה לפתרון על
  פיזיולוגיים -מדדים פסיכו

  



 

 

II   

  מטודולוגיה
פקודה אשר מביא למינימום את זמן ביצוע -וגות מחווהמוגדרת כאוסף ז, GV, שפת מחוות ידיים אופטימאלית

פי המשימה ואוסף המחוות נבחר מאוסף רחב של מחוות -  מוגדר עלCאוסף הפקודות ). . או המשימות(המשימה 
התלוי במדדי גורמי אנוש המייצגים את , Gnביצוע המשימה תלוי בדיוק הזיהוי של תת קבוצת המחוות . Gz, ידיים

  .ונוחות המחוות, פקודה-ציות מחווהטבעיות האסוציא
  הגדרת הבעיה וגישות לפתרון

מאחר שזמן . GV, הבעיה העיקרית היא לצמצם זמן ביצוע משימה עבור אוסף שפות מחוות הידיים האפשריות
: שלושה מדדי ביצוע מומלצים כקירובים, אינו בעל צורה ידוע מראש, GVכפונקציה של , ביצוע משימה
מציאת המקסימום של כל המטרות בו זמנית . Z3(GV)ודיוק הזיהוי , Z2(GV)נוחות , Z1(GV) אינטואיטיביות

פ " מתוך גבול הפראטו עGVידי בחירת -הניתנת לפתרון על) MCOP(מגדיר בעיית אופטימיזציה מרובה מטרות 
ישה זו איננה אך ג, ידי מספור הפתרונות-ניתן למצוא את פתרון גבול הפראטו על". מקבל ההחלטות"עדיפויות 

  . מוצדקת אפילו עבור שפות בעלות ממדים סבירים בשל זמן חישוב גבוה
  

  ארכיטקטורה
 נקבעים גורמי 1במודול . ארכיטקטורת המטודולוגיה של שפות מחוות ידיים מורכבת משלושה מודולים טוריים

ידי דיוק זיהוי - אולץ עלהמ, אוסף מחוות ידיים אפשרי- מתבצע חיפוש תת2במודול . פסיכולוגים-אנוש פיזיו
  . מורכב מתהליך שידוך בין פקודות למחוות3מודול . המחוות במכונה
. 1הם פרמטרי הקלט של מודול , C ואוסף הפקודות Gzאוסף מחוות הידיים הראשי הרחב , Tאוסף המשימות 

יצירת אסוציאציות  הן 1מטרות מודול . C מסומן ב Tאוסף כל הפקודות הדרושות על מנת לבצע את כל המשימות 
חיפוש מטריצת נוחות מבוססת על , )ישירה ומשלימה( המשתמש אינטואיטיביותבין פקודות למחוות על סמך 

, 2עבור מודול . Gmמדדי עייפות וצמצום האוסף הרחב של מחוות הידיים לאוסף הראשי , מעברים בין פקודות
מודול זה משתמש . Aואלגוריתם זיהוי למציאת , Gmנתוני הקלט ההכרחיים הם האוסף הראשי של מחוות הידיים 

או לחלופין אוסף תתי קבוצות  (*Gnבתהליך חיפוש איטרטיבי למציאת תת קבוצת מחוות הידיים האפשרי היחיד 
 -שתי גישות מטה. ידי מקבל ההחלטות- המספקת רמת דיוק זיהוי המוגדרת מראש על) מחוות הידיים האפשריים

והשנייה , )DCM" (מטריצת שגיאה מתפלגת"הגישה הראשונה נקראת . הליך החיפושות פותחו עבור תיוריסטי
 .מוצגת דוגמה של מספור חלקי, בנוסף). CMD" (פתרון נגזר ממטריצת שגיאה"נקראת 

הפרמטרים של אלגורתים עיבוד . A,  הניתן לשינוי תצורה פותח לצורך קבלת דיוק זיהויFCMאלגוריתם מבוקר 
כמו כן פותחו שתי גרסאות ". חיפוש פרמטרים שכנים"ידי רוטינות - נמצאו בו זמנית עלהתמונה והאישקול 

, שתי גרסאות אלו הותאמו למערכת לכיול פרמטרי ביצוע עבור משימה". חיפוש שכנים מקומי"לאלגוריתם ל
  .כאשר מספר הפרמטרים בווקטור הפתרון השתנה באופן דינאמי

שתי גישות שונות . היה צורך לאמן את המסווג, צת מחוות הידיים המועמדתלצורך מציאת דיוק הזיהוי של תת קבו
  וכיולו FCM-והשנייה אימון ה, Gn פעמים רבות עבור כל מועמד FCM-ידי אימון חוזר של ה-אחת על, אומצו

הגישה שנייה הינה מקורבת אך . Gn וממנו גזירת דיוק הזיהוי עבור מועמדי  Gmפעם אחת עבור האוסף הראשי
  .מהירה יותר

ותת אוסף , Cפקודות , Uמטריצת הנוחות , V={I,IC} אינטואיטיביותהקלט למודול השלישי הוא המטריצת 
באופן כזה שמדדי גורמי , C עם אוסף הפקודות Gn מטרת מודול זה היא לשדך את אוסף המחוות .*Gnהמחוות 

תוצאת . בעית שידוך המחוות לפקודות לפתרון בשלמים פותר את QAP-אלגוריתם ה. האנוש יובאו למקסימום
  .GV, פקודות מהווה את שפת המחוות-ההשמה מחוות

  
 

  ניתוח ותוצאות, ניסויים
הניסוי הראשון כלל מציאת מחוות . המדדים הסובייקטים נתקבלו באמצעות סדרת ניסויים החוקרים תגובת בני אדם

, אינטואיטיביותעל מנת לאסוף נתונים על . VMR- לבקרת מודל וירטואלי של זרוע רובוטית ואינטואיטיביות
והמשתמש שייך את , )VMRממשימות מוגדרות מראש על זרוע רובוטית ועל (הוצגה למשתמש סדרת פקודות 

והזין , מחוות הידיים של המשתמש נתקבלו כאשר הוא יצר פיזית את המחווה. המחוות לפקודות אלו באופן חופשי
 של הפרטים 70%כאשר , 70/30בחירת המחוות שמר על הכלל . והאת המידע הקשור לתצורה של המחו

נתון זה סותר את הטענה שפריטים משתמשים באופן עקבי באותן מחוות .  מהמחוות שבשפה30%-השתמשו רק ב
 Hauptmann and McAvinney[ידי האופטמן -כפי שהוצע על, על מנת להציג את אותן פקודות לביצוע משימות

, 1993 .[  



 

 

III   

 ,Borg]מחלש לחזק בסקלת בורג , ניסוי ארגונומי התנהל ובו המחוות דורגו על ידי המשתמש, דדי העייפותלגבי מ

המעבר פותח ואומת על סמך מדדי עייפות סטטית עבור כל המחוות ) עייפות(המודל המתאר את מאמץ . [1982
מהמאמץ הדינאמי ומשך  90%, על פי המודל. אוסף מצומצם של מדדי מאמץ המעבר, באוסף המחוות הראשי

באמצעות . ידי המחווה ההתחלתית- על10%ורק , ידי המחווה סופית במעבר בין שתי מחוות- פעולתו נקבעים על
 שעות 86מודל חיזוי זה חסך . יחס זה חיזוי המאמץ הדינאמי ומשך פעולתו מבוססים על סמך מדדי מאמץ סטטי

  .מניסויים סובייקטיביים
נוחות וקלות ,  גבוההאינטואיטיביות קבוצת השפות בעלות VG,  נוצרוGVקבוצות של לצורך אימות המודל שתי 

 GVB - וGVG. קשות לביצוע ובעלות דיוק זיהוי נמוך,  נמוכהאינטואיטיביות קבוצת השפות בעלות VB -ו, לזיהוי
  . בהתאמהVB ו  VG-מייצגות מדגם של שפות מ

 H1: Min) א:  ידיים אופטימאלי מורכב מבדיקת ההנחות הבאותאימות התהליכים האנליטיים למציאת שפות מחוות

τ(GV*) ∝ max(Z1), max(Z2) ו- max(Z3) – זמן ביצוע משימה τידי מדדי קירוב - יכול להיות מוצג על
 :H2)  ב.מיקסום פונקציה מרובת מטרות גורם למזעור זמן ביצוע המשימה, יתר על כך. לפונקציה מרובת מטרות

τ(GVG)< τ(GVB) -שימוש ב - GVG  גורם לזמני השלמת משימה קצרים יותר מאשרGVB .ג (H3: m(GVG)> 

m(GVB) – שפות מסוג GVG קלות יותר לזכרון מאשר שפות מסוג GVB.  

 בין זמנים סטנדרטים להשלמת tבוצע מבחן סטטיסטי , (H1, H2)על מנת לבדוק את שתי ההנחות הראשונות 
הזמן הממוצע להשלמת . VMR- למשימות הזרוע הרובוטית וגם הVB  שפות 8- וVG שפות 8בור המשימה ע

 > VB (τ(GVG) =87.98 sec -היה קצר יותר מהזמן כאשר משתמשים בVG -המשימות כאשר משתמשים  ב

τ(GVB)=118.95 sec עם p=0.0059 (ו - )τ(GVG)=114.67 sec < τ(GVB)=153.04 sec עם 
p=0.00031( ,ור משימות הזרוע הרובוטית והעב-VMR ,זמן הלמידה של משתמש עבור . בהתאמהGV ומשימה 

 VGנמצא שזמן הלמידה היה נמוך עבור . ספציפיים חושב במונחים של קצב הלמידה הנובע מעקומת הלמידה שלו
) 0.835>0.827 היה VMR- ועבור משימת ה0.797>0.785עבור המשימה עם הזרוע הרובוטית (VB -ביחס ל

זכירה . GVBהינה קלה לזכירה מאשר GVG -הציעה שה, (H3)ההנחה האחרונה . המעיד על למידה מהירה יותר
ציון הזכירה הממוצע עבור . פקודה של משתמש מנוסה- ידי יכולת הזיכרון של אסוציאציות מחוות-נקבעה על

- וVB) 87.5 - משימוש בהיה גבוה מהציון הממוצע שהתקבלVG -משימת הזרוע הרובוטית כאשר משתמשים ב
כל התוצאות . VMR-בכל אופן לא היה הבדל משמעותי בין הזכירה עבור המשימות עם ה, )p=0.05 עם 70.83%

 ים עם ערכים גבוהים עבור שלושת המטרות גורם להקטנת זמן GV -שימוש ב:האלו ניתנות לניסוח באופן הבא
  .למידה מהירה וזכירה גבוהה, ביצוע

  
  מסקנות
 אינטואיטיביות(פיזיולוגים - הכוללת היבטים פסיכו, זו הוצגה מטודולוגיה לתכנון שפות מחוות ידיים טבעיותבתיזה 
  .ומאחדת את שני ההיבטים בגישה אחידה, )דיוק זיהוי(וטכניים ) ונוחות

  :התרומות העיקריות במחקר זה הן
ות ידיים אופטימאלית באמצעות גישה  פותחה מטודולוגיה למציאת שפת מחו:GVניסוח אנליטי של בעיית תכנון 

המטרה העיקרית של המטודולוגיה היא למנוע בחירה שרירותית של מחוות ידיים כאשר מתכננים יישום . אנליטית
התרומה היא ניסוח מתמטי קפדני הכולל שיטות אופטימיזציה . רובוט למשימות בפקודות ידועות מראש-אדם

  .רוןומדידת איכות הפת, אילוצים, מיושמות
בעיית כיול הפרמטרים בו זמנית של מערכת לזיהוי מחוות : אלגוריתם לזיהוי מחוות ידיים הניתן לשינוי תצורה

. הוצע אלגוריתם למיכון תהליך כיול הפרמטרים. Fuzzy C Means (FCM) -ידיים מבוסס על עיבוד תמונה
  .תכנון מערכת מונחה מחוות ידיים הוגדר כבעיית אופטימיזציה

) א.  פותחו שתי שיטות לפתרון בעיית התכנון האופטימאלי של השפה:GVיטות לפתרון בעיית תכנון שתי ש
, בוצע מספור מקורב של הפתרונות, לבעיה ראשונה. תהליך לפירוק לשני שלבים) ב. גישה מרובת מטרות החלטה

י שלבים הינה בעיית שיטת פירוק לשנ. ותת קבוצה של פתרונות בלתי נשלטות נבחר לתצוגה למקבל החלטות
מקבלות עדיפות ראשונה )  ונוחותאינטואיטיביות(כאשר מטרות דיוק זיהוי ומטרות ממוקדי אדם , מטרות דואלית
  .ושנייה בהתאם

-מטרות הקשורות לגורמים פסיכו: ושיטה אוטומטית לאוספן,  ונוחותאינטואיטיביותפיתוח אינדקסים ל
עוצבו ניסויים למציאת רמת אסוציאטיביות . התווספו למחקר זה, יביות אינטואיטנוחות ו, פיזילוגיים אנושיים

מחוות על סמך הדמיית תרחישים שונים ולימוד אופן -בין זוגות פקודות) אינטואיטיביות(קוגניטיבית של המשתמש 
ות בחירת המחו, אינטואיטיביותבנוגע ל. החלטת המשתמש על האסוציאציות הטבעיות ביותר בין פקודות למחוות

הוגדר מדד .  מהמחוות בשפה30%-  מן הפרטים משתמשים ב70%כאשר  , 70/30 –שמר על הכלל 
לזוג מחוות ) למטה- למעלה: כגון( משלימה כאסוציאציה קוגניטיבית בין זוגות פקודות משלימות אינטואיטיביותל



 

 

IV   

) ב-ו, סטטי) א: זוהו) פותעיי(שני סוגים של מאמץ , בנוסף על כך). אגודל למטה-אגודל למעלה: כגון(משלימות 
  .מודל פותח על מנת לחזות את המאמץ הדינאמי ומשכו על סמך מדדי מאמץ סטטיים. דינאמי

  
  

נוחות ודיוק זיהוי גבוהים גורם לזמני ביצוע משימה קצרים  ,אינטואיטיביות בעל GV: תוצאות אימות ושימושיות
  .לימוד מהיר יותר וזכירה גבוהה, יותר

  
, עיבוד תמונה, בחירת מאפיינים, fuzzy c-means, ראיית מכונה, כנון שפת מחוות ידייםת: מילות מפתח

  .עייפות היד, אינטואיטיביותמחוות , גורמי אנוש, שליטה רובוטית, ממשקי אדם מחשב, זיהוי מחוות ידיים
  



 

 

  

 

  

 

 

 

 

 

  יעל אידן' הלמן שטרן ופרופ' העבודה נעשתה בהדרכה של פרופ

 

 

 

 

  תעשיה וניהולהמחלקה להנדסת 

 

 

  הפקולטה למדעי ההנדסה



 

 

  

  

  

  

 ידיים לשליטת  מחוות לפיתוח שפתמיטבית שיטה

   וירטואלירובוט

  

  

  

 

  מחקר לשם מילוי חלקי של הדרישות לקבלת

  "דוקטורט לפילוסופיה"

  

  

  

  מאת

  חואן ווקס

  

  גוריון בנגב-הוגש לסינאט אוניברסיטת בן

  

  _______________ ___      ןרהלמן שט' אישור מנחה      פרופ

  __________________  יעל אידן'                       פרופ

  __________________  אישור דיקן בית הספר ללימודי מחקר מתקדמים 

  

    ו"תשס  

  
  שבע-באר



 

 

  

  

  

  

לפיתוח שפת מחוות ידיים לשליטת שיטה מיטבית 

   וירטואלירובוט

  

  

 

  מחקר לשם מילוי חלקי של הדרישות לקבלת

  "ורט לפילוסופיהדוקט"

  

  

  

  מאת

  חואן ווקס

  

  גוריון בנגב-הוגש לסינאט אוניברסיטת בן

  

  

  

  

  

    ז  "תשס  

  

  

 שבע-באר


