Human-Robot Collaborative Learning
Methods

Thesis submitted in partial fulfillment
of the requirements for the degree of

“Doctor of Philosophy”

by
Uri Kartoun

Submitted to the Senate of

Ben-Gurion University of the Negev

2007

BEER - SHEVA

Human-Robot Collaborative Learning
Methods

Thesis submitted in partial fulfillment
of the requirements for the degree of

’Doctor of Philosophy”

by
Uri Kartoun

Submitted to the Senate of

Ben-Gurion University of the Negev

Approved by the advisor Prof. Helman Stern

Approved by the advisor Prof. Yael Edan

Approved by the Dean of The Kreitman School of Advanced Graduate Studies

2007

BEER - SHEVA

This work was carried out under the supervision of
Prof. Helman Stern

Prof. Yael Edan

In the

Department of Industrial Engineering and Management

Faculty of Engineering Sciences

Acknowledgments

Very special thanks go to my supervisors Prof. Helman Stern and Prof. Yael Edan. Without
their motivation and encouragement I would not have completed this research. With their valuable
insights and advices Helman and Yael are educators who truly made a difference in my life.

It has been their tutelage enthusiasm that inspired me to turn to the field of machine learning and
robotics. Their infinite patience, understanding and professional guidance led me steadily and
securely through the research and the entire period of the Ph.D. thesis, and for this I owe them my
deepest gratitude.

I would also like to thank the Department of Industrial Engineering and Management whose
members over the past decade have worked to promote excellence in teaching. Specifically I would
like to thank Prof. Joachim Meyer and Prof. Vladimir Gontar.

I also owe many thanks to the people at the Department of Industrial Engineering and
Management 1’ve had the pleasure to work for over the past years, Prof. Ehud Menipaz, Prof.
Nava Pliskin, and Prof. Gadi Rabinowitz.

I would like to express my appreciation to Dr. Sigal Berman whose expertise understanding
added considerably to my graduate research. I appreciate her vast knowledge and skills in robotics.

Appreciation also goes to Dr. Amir Shapiro from the Department of Mechanical Engineering at
the Ben-Gurion University of the Negev for his support and discussions.

I must express my sincerest gratitude to my friend Dr. Juan Wachs for his suggestions,
exchanging of knowledge and helpful skills.

My thanks to Prof. Mark Nagurka, my colleague from Marquette University, who with patience
and good humor exposed me to new ideas.

I would like to gratefully acknowledge the technical support of Nissim Abuhatzira, Rubi
Gertner, and Yossi Zehavi from the Department of Industrial Engineering and Management and to
Uri Naim from KNT Engineering.

My thanks also to Mouki Cohen and Ariel Plotkin who provided computing support services
during the course of the research.

I am grateful for mathematical suggestions, comments, and contributions from the following
friends and colleagues: Prof. Israel David, Dudi Gabay, Shlomo Kashani, Prof. Ephraim
Korach, Dr. Ofer Levi, Nir Naor, Dr. Luba Sapir, Prof. Edna Schechtman, Uri Shaham, and
Dr. Dvir Shabtay.

I would also like to thank my friends in the Telerobotics Lab: Amit Gil, in the Intelligent Systems
Lab: Yoash Chasidim, Nir Friedman, Olga Grechko, and Oren Shapira, at the Computer
Integrated and Manufacturing Lab: Hadasa Blum, Dr. Ofir Cohen, Keren Kapach, Dr.

II

Alexander Krein, Dr. Shahar Laykin, Greg Piltz, Yael Salzer, and Gil Shayer, and from the
Ergonomics Lab: Noam Ben Asher, Avinoam Borowsky, Pnina Gershon, and Dr. Tal Oron.

I am greatly indebted to the office staff for all the instances in which their assistance helped me
along the way, Iris Abramovitz, Albina Bulgaro, Nilly Manin, Ayelet Mark, llanit Sarder, and
Dorit Vazana.

Although they were not directly involved in the project, I would also like to acknowledge Mor
Atlas, Dr. Peter Bak, Moran Beeri-Goshen, Dr. Avital Bechar, Boris Efros, Paul Erez, Haim
Moyal, Dr. Danny Ratner, and Dr. Moshe Zofi.

I recognize that this research would not have been possible without the financial assistance of the
Paul Ivanier Center for Robotics Research and Production Management, Ben-Gurion University of
the Negev and by the Rabbi W. Gunther Plaut Chair in Manufacturing Engineering.

Special thanks go also for the people I worked with while I was an informatics fellow at the
Institute for Medical Informatics at the Washington Hospital Center (currently Microsoft), Dr.
Craig Feied, Dr. Mark Smith, Dr. Jonathan Handler, Dr. Michael Gillam, Robert Irving, and
Peter Delate.

A person who I owe her many thanks is Simone Gil, my good friend from the Biology
Department who shared with me many evenings full with delightful discussions.

In conclusion I would like to thank my family for the support they provided me through my
entire life and in particular over the period of accomplishing this work. To my grandmother, Zila
Sawitsky, my parents, Aviva and David Kartoun, my sister Talia, her husband Ran and their first

child Yoav Diskin. In particular I owe my father, David, my eternal gratitude for all of his support.

Uri Kartoun
Ben-Gurion University of the Negev
Beer Sheva, 2007

“Would you tell me, please, which way I ought to go from here?”
“That depends a good deal on where you want to get to,” said the Cat.
“I don’t much care where,” said Alice.

“Then it doesn’t matter which way you go,” said the Cat.

“...50 long as I get somewhere,” Alice added as an explanation.

“Oh, you're sure to do that,” said the Cat, “if you only walk long enough.”

' Carroll L., “Alice’s Adventures in Wonderland”, 1865.

I

Table of Contents

LISt Of APPENAIXES ..o v
LSt O FIGUI@S. ..o \Y
LISt OF TaDICS ... e e e, \%

ALCTOTLYIIIS ...ttt VI

ADSITACT. .o VII
PUDLICALIONS. ... e e et XIII
1. T 0 oo (ULt (o] o [OOSR POPSURTPRON

|0 B 5 V0] o) (53 00 B B T3 4 015 10) o OSSP
1.2 RESCAICH ODJECIVES ..ouvieiiiiiieiieeiieiee ettt ettt ettt e et e st eebeesateenbeeseaeenseesaaeenseenseas
1.3 Research SIZNITICANCEiiiiiiiiiiieciee et e et e e eere e e sbeeeseneeeenns
1.4 Research Contributions and INNOVALIONS..............eeeiiviieeiiiiiiec e e e eearee e
2. SCIENtITIC BACKGIOUNDccuiiiiiieiie ettt bbb e e nreas
2.1 INEPOAUCTION ...evveieeciiiiee et et e et e e e ettt e e et e e e e eeaaaeeeeeareeeeeentaeeeeeearaeeeeenareeeean
B (10 21 A [1 /) 4 < TP
2.3 Support VECtOr MACKINESeeiuiieiieiieeiieciie ettt ettt ettt ettt e siaeebeeseseeseesnaeenseeeens
2.4 Reinforcement Learningccceecuieeiiuieeriiieeiiieerieeesteeesiteeeteeesaeeessaeeessseeessseessseeesseesnsseesnnes
2.5 RODOE LEAIMINGietiiiiiiiiieeiieiie ettt ettt ettt e et e st e et e e saaeesseesabeesbeassbeensaesnneenseennns
2.6 Collaborative Learning........cccuveeeuieiiiieiiiieeiiieeiteeeitteesteeesteeesaeeesssaeessseessseesssseessseessseenns 11
2.7 SUINIMATY ...eeieiiieeeiiieeette et ee et ee ettt e st ee sttt e sttt e s bt e e eabeeeanbaeeaaseeeanseeenaseeesseeensseesnnseesnnseesaseennns 15
X N |V (11 g ToTo (o] [0 | PSPPSR 18
3.1 INEEOAUCTION ..uvieiiiiiieee e et e e e e e et e e e e taa e e e eeaaeeeeeeaaeeeeeeateeeeeenareeeean 18
3.2 Problem Definitions and NOTAtIONScoeeuvveiiiiiiiiiiiiiieiieee et ee e e e eeesabaee e e e e e e senanes 18
3.3 Robot Learning AlGOTIthmS.ccccuiiiiiiiiiiieieeee et 20
3.4 PerfOormance IMEASUIESccooevviurreeeieeeeiieiiirreeeeeeeeeeeeiereeeeeeeeeeesistrereesseeeeeissssrrreeeeseessnnines 21
3.5 EXPOIIMENLS ...eeiiiiiiiiiiiie ettt ettt et e h e et eshe e et esa e et e e hteenbe e neeenbeebeeenee 23
4. Robot Learning AlGOTItNMScciiiiiicie et ae e e nre s 27
V4% NN 15 o 1o 11 o1 o) o KUUUURRRRR PR PRI 27
4.2 CQO(A)-Learning for MUltiple AZENtS........cocovieriiiriieiiieiieeiierie ettt eve e e eve s e seneeneees 29
4.3 CQ(A)-Learning for Human-Robot SyStems..........ceeriiiiiiiniiiiiiiiiieiieeee e 32
4.4 Convergence and SUperiority DISCUSSION.........cceiriieriieriieriieeieeiie e esiee e esaeeereeseeeesseeenes 36
5. Multiple Mobile RODOt NaVIGAtIONcccoiiiiiiiiiie s 41
5.1 INEEOAUCTION wevvviiiiiiiiiciieeeec e ee et e e e ee e e e e e e eeeeeaaaaereeeeeeesesnssasrreeeeeeeeannanes 41
5.2 TaSK DEfINItION ...cciiiiiiiiiiiiiie ettt e ettt e e e e e e s e et ereeeesessssssaabaeeeeeeesssnnes 42
5.3 EXPerimental SELUPccccviiiiiiiiiieeiie ettt e ettt e e e e nareeenbee e 42
5.4 ReSUItS and DISCUSSIONeciiiiiiiiiiiiiiiieee ettt e e eeeea e e e e e e s e esata e e e e e eeeessssaaareeeeesessnsines 44
5.5 SUIMMATY ...eiiiiiieeiie ettt et e ettt e e beeestteeetteeesbeeensseeensseeensseeensseeensseesnsneennseanns 50
6. Bag Shaking Experiment with a Fixed-Arm RODOL...........ccooiiiiiiiiiiiccee e 52
0.1 INEEOAUCTION ..vvviiiiiiiiiciiieeeece e et e e e e et e e e e eeeeeataareeeeeeesessssaerreeeeeeeeannanes 52
(S W: 1S3 ' D 1< 103 15 (o) « D UUUU USSR R PP 53
6.3 EXPerimental SELUPcccceiiiiiiiiie ettt et e e eeeaaee e 53
6.4 ReSUILS aNd DISCUSSIONeeiiiiiiiiiiiiiiiieeee ettt e e et e e e e e e s e e tareeeeeeeesssssaaareeeeesessnsnes 65
0.5 SUIMIMATY ...ceiiiiiiiiieeie ettt et e et e e ste e e beeestbeeessbeeensseeensseeesseeensseesnsseesnssessnsseennseenns 75
7. Navigation of @ MoDile RODOT ..ot 77
72 S 315 (oY L1615 0) s U PPRRRRRRNt 77

T2 TASK DEIINITION ..ottt e e e e e e e et eeee e e e e e e e e e aaaeeeeeeaeaaaaaaeeaeeeeenennaan 77

7.3 EXPerimental SELUP........ooiiiiiiiiiieieeie ettt 79

7.4 Results and DISCUSSIONcc.eeiiuiiiiiiiiieiieie ettt ettt e e st e nbee e 82

7.5 SUMMATY .itiiiiiiieeie ettt ettt e ettt e et e e e et eeetbeesaabeesabteesabeeesnbeeesaseeesaseeesaseesnnseas 84
8. Conclusions and FUture RESEAICN ..o 85

8.1 COMCIUSIONS. ...ttt ettt sttt et sb e bt et eebt e bt et saeenbeentesaeenees 85

8.2 FUtUIre RESEACHooiiiiiiiiiiie et sttt st 89
9. RETEIENCES ...t 92

List of Appendixes

Appendix I. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot.........ccccooiieiiiiiiiiiieeeeeeee 101
Appendix II. Convergence Proof for a Single O-Learnercooveoieiiriiiieiieeee ettt 123
Appendix III. Physical Modeling of a Plastic Bag KnOt.........c.ccoiiiiiiiiiiiii et 128
Appendix IV. Bag Classification using Support Vector Machines............cccceieieriirieneneeene e 134
Appendix V. Bag Shaking Experiment: State-ACtion SPACEcoueriiiriririetieieieie sttt see e saesee b eaeeseeneeneas 142
Appendix VI. Rewards Calculating EXamPIESc.ccveruieiiiiiiiiieiieie ettt ere vt e e et sssessaesseesseessessaessaesseessesnsenns 143
Appendix VII. Motoman UP-6 Manual Programmingcccccceeeuerieiienieeniieeeeieseesteeseesesssessaesseessesssesssesssessesssesssenss 148
Appendix VIIL “Softmax” Action Selection EXAmMPIe..........cccvecuiiiieiiiiiiiniieiieie ettt ste et eaesaeseaesreesseenseens 149
Appendix IX. Multiple Mobile Robot Navigation - SOUIce Codececuirirrieriiriiieieiieciesteie ettt eee e saesseeeees 150
Appendix X. Navigation of a Mobile ROD0Ot - SOUICE COUEccuieiieiiriiiriieiieieeie ettt 161
Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code........c..cocevveeievieninininencniniceieneeen 175
Appendix XII. Bag Classification using Support Vector Machines - Source Code..........cocerierirnieninienieieeeieeeeeen 376
Appendix XIII. Multiple Mobile Robot Navigation - Value Maps Example..........cccoccevoiiiiiiniiiiiieeeeeeeeeeeen 388

Appendix XIV. Multiple Mobile Robot Navigation - Detailed Scatter PIOtSccocceiieiieiiiiiiieeeeeeee e 390

List of Figures

Fig. 4.1 CQ(4)-learning pseudo code for Multiple aZENtS.........ccceeiiiiiieriiriiiiieie ettt 30
Fig. 4.2 Flowchart for multiple agents CQ(4)-learning with one collaborative learning agent............cccceecveeirienceneennne 31
Fig. 4.3 Flowchart for robot and a human operator CO(A)-1€arning.............cceeevievuieieriesiierrieteeeeseeseesreeaeseesseesseesseensenns 33
Fig. 4.4 CO(4)-learning pseudo code for a human and @ roDOtc.eeoiiiiiiiiiiiii e 34
Fig. 4.5 Example of moving learning performance aVeTage............coeieruerieieierienienenieeieeieeeeetete e stesbe st ereebesaeebeeseenseneens 35
Fig. 5.1 An 11 x 11 two dimensional WOTLdcciiiiiiiiiiiiei ettt ettt et et e st e saeesaeeeeens 43
Fig. 5.2 An 11 x 11 world state-value map after 100 learning epiSOAEScccvevuieviieierieriierieeieseeseesreeae e sreesreesaeenseens 45
Fig. 5.3 Fifty simulation runs for convergence 0f tWo TODOLScc.iiiiiriiieieieiee et 45
Fig. 5.4 [%] of simulations that CQ(4) learner performed better or equally to Q(4) learnerccoecvevverveniecieeceenieienns 46
Fig. 5.5 Fifty simulation runs for convergence of three rODOLScceiiiiiieiiieee e 47
Fig. 5.6 [%] of simulations that CQ(4) learner performed better or equally to Q(4) learners..........ccoecvevvevvenrecieeieneennenns 47
Fig. 6.1 Bag ShaKing task SALE-SPACE........ceuteuieieieitertiete ettt ettt et e ettt ste ettt e ete et e eat et eeeteeteebeeaeeseeseanseabesbeeaesneeneeneansanaens 54
Fig. 6.2 Experimental setup - Motoman UP-6 fixed-arm robot SYSteImcc.ceceeeeieriinieninenenieieeeiene et 56
Fig. 6.3 Human interface - bag shaking task with a Motoman UP-6 fixed-arm robot SyStemcccceeeeeeerieiieneeneneneene 57
Fig. 6.4 Plastic bag placed on the inspection surface below the Motoman UP-6 fixed-arm robot..........c.cceceveeveveicnennene 58
Fig. 6.5 Digital scale located under an inSPeCtion SUITACEcceiuiiiiiiiiieieeee ettt 58
Fig. 6.6 SUSPICIOUS PIASTIC DAeouiiuiiiiiiiiiitieiietet ettt sttt ettt et ettt bttt e e et e be st s b sbeeae et ennenaens 59
Fig. 6.7 Human interface - bag shaking task with a Motoman UP-6 fixed-arm robot SyStemccccceeeevenieiienienenenanae 60
Fig. 6.8 O-value weight control human INterface..........cceeeeiiiiiieriiniiiiieer ettt ettt 64
Fig. 6.9 Performance for linear-based rewards - CO(4) evaluation in three stages; training, collaboration and testing......65
Fig. 6.10 Performance for linear-based rewards - a comparison between Q(4) and CO(L)c..ccevvevvervenieneecienienieeens 66
Fig. 6.11 Times for cumulative-based TEWATeeuiriiieieieeete ettt sttt ettt ettt et e be st e s be et eseeneansenaens 68
Fig. 6.12 Performance for cumulative-based TEWATScceeoueriiriiriirininiiietet ettt st 69
Fig. 6.13 Times for eVents-bDased TEWAIAScc.eruiiiitiitietietieete ettt sttt ettt sttt sbe et se e st et et enseabesbeebeeneeneeneansanaens 71
Fig. 6.14 Performance for events-based TEWATMS.cceeeriiiiiiiriininierieeieeieet ettt ettt ettt naen 71
Fig. 6.15 Performance times for events-based TEWATdSooeiiiiiiiieie ettt 73
Fig. 6.16 Performance for events-based rewards using O-value weight control human interfacec.coccoecvevvecieneenens 74
Fig. 6.17 The moving average learning performance measure, L,,, during CO(A)-learningccccccevverenoerienienenennnne 74
Fig. 7.1 Example of learning performances for an ER-1 mobile 10bOtcccoceririiiriniiiiiiiciereneseneeeceeeeeeeene 79
Fig. 7.2 Experimental setup - ER-1 MODIle TODOL.c..coouiiiiiiiiiiiiie ettt 80
Fig. 7.3 Examples for optimal and feasible routes for ER-1 navigation............cccccoueverininininieniieieicienenese e 82

List of Tables

Table 2.1 Learning algorithms COMPATISONcecuieriieiieieeiesieesteeiesteste st esteetestesseeseenseensesssessaesseeseensesnsesseesseesseensenns 16
Table 2.2 Summary of “state of the art” robot learning related WOTKScccueiueriiiiiiinieieeee e 17
Table 5.1 Summary of results for the multiple agents navigation task...........cccceevieriieciinieniesiee e 48
Table 5.2 CQ(7) for multiple agents - performance evaluation hypothesescccceriiiiiiiiiiiieieeee e 48
Table 5.3 CQ(4) for multiple agents - learning rates evaluation hypothesesocvrverierieiieieeie et 49
Table 6.1 States description of the three-dimensional grid - the bag shaking task............cccooceieiiiiniiniiiiiiieeeeeee 53
Table 6.2 Comparison between Q(4) and CQO(Z) - cumulative-based rewardscccveeverierienieneeie e 68
Table 6.3 O(4) and CQ(7) using a cumulative-based reward function evaluation.............coceeuereieiinininieieeee e 69
Table 6.4 Comparison between Q(4) and CO(7) - events-based rEWardS.............ccvevierierieriieneeieeie et eee e seeseeeeeens 72
Table 6.5 O(4) and CQ(7) using a events-based reward function evaluationcccceeerieieiieienerese e 72
Table 6.6 Comparison between Q(4) and CQ(4) - events-based rewards (Q-value weight control interface).................... 72
Table 6.7 O(4) and CQ(7) using a events-based reward function (last forty learning episodes)ccceveereroeriecieneniennnne 73
Table 7.1 Results for average number of steps to reach the taget feasiblycccvevieeiieierienieeee e 82
Table 7.2 Results for average number of steps to reach the taget optimallyccccooiiiiiiiiniiiiii e 82
Table 7.3 Hypotheses evaluation for mean number of steps to reach the target..........c.ceceveeiriieiiiniininininnceeeceiene 83

Table 7.4 Percent of trials where human interventions occurred for various RL parameters..........cccccveveevueernieeeeeesreennenns 83

RL
SVMs
HO
DP
CO%)
HRI
OSH
PCA

s €8
St41 €S
a €A
a4 €4

r(sg,ar)

Lz &8 >

~

)
<
Q

~

ave

a
Y
e(sy,ar)

Acronyms’

Reinforcement learning

Support vector machines

Human operator

Dynamic programming

Collaborative Q(4)

Human-robotic interfaces

Optimal separating hyperplane

Principle component analysis

Radial basis function

Neural network

Semi-autonomous mode

Autonomous mode

State space

Action space

State at time step ¢

State at time step ¢+1

Action at time step ¢

Action at time step 7+1

Reward at time step ¢

A minimum acceptable performance threshold above which the human is called to intervene
A maximum acceptable performance threshold in terms of mean number of steps to reach a
goal.

Number of most recent learning episodes

Indicates whether a policy was successful

A moving average learning performance measure in terms of rewarded policies
A moving average learning performance measure in terms of number of steps required to reach
a goal

Learning rate

Discount factor

Eligibility trace

Eligibility trace factor

Temporal difference error

Collaborative learner

Grid world dimensions

Shaking time of a bag

Number of items that fell from a bag during a shaking operation

A reward threshold for a successful episode

the reward achieved for the /" learning episode
Weight measured on a digital scale at time j

Weight of one inspected object
A positive constant to adjust the reward

Convergence to optimality performance measure
Number of learning processes in a multi-agent system (e.g., robots).
Convergence to near optimality performance measure

Number of steps a learning agent performs at the i” trial and gets a reward

' To improve the flow of the reading the abbreviations were not always used.

VI

VII

Abstract

To accelerate the use of robots in everyday tasks they must be able to cope with unstructured,
unpredictable, and continuously changing environments. This requires robots that perform
independently and learn both how to respond to the world and how the world responds to actions the
robots undertake.

One approach to learning is reinforcement learning (RL), in which the robot acts via a process
guided by reinforcements from the environment that indicate how well it is performing the required

task. Common RL algorithms in robotic systems include Q and its variation Q(A1)-learning, which

are model-free off-policy learning algorithms that select actions according to several control
policies. Although O and Q(4) learning have been used in many robotic applications, these
approaches must be improved. Their drawbacks include: (i) extremely expensive computability, (ii)
large state-action spaces, and (iii) long learning times (until convergence to an optimal policy).

This thesis presents a new collaborative learning algorithm, denoted the CQ(1) algorithm, that is
based on the Q(A)-learning algorithm. The CQ(A)-learning algorithm was developed, tested and
applied for two frameworks: (i) learning by multiple agents, and (ii) learning by human-robot

systems. In the first framework, collaboration involves taking the maximum of state-action values,

i.e., the Q -value, across all learning agents at each update step. In the second framework, two levels

of collaboration are defined for a human-robot learning system: (i) autonomous - the robot decides

which actions to take, acting autonomously according to its Q(4) learning function, and (ii) semi-

autonomous - a human operator (HO) guides the robot to take an action or a policy and the robot
uses the suggestion to replace its own exploration process. The key idea here is to give the robot
enough self awareness to adaptively switch its collaboration level from autonomous (self
performing) to semi-autonomous (human intervention and guidance). This awareness is represented
by a self test of its learning performance. The approach of variable autonomy is demonstrated in the
context of an intelligent environment using mobile and fixed-arm robots.

Extensive experimentation with different robotic systems in a variety of applications
demonstrated the strengths and weaknesses of the algorithm. Applications specifically developed for

testing the CQ(A)-learning algorithm are demonstrated in the context of an intelligent environment
using a mobile robot for navigation and a fixed-arm robot for the inspection of suspicious objects.
The results revealed that CQ(1) is superior over the standard Q(1) algorithm. The suggested
learning method is expected to reduce both the number of trials needed and the time required for a

robot to learn a task.

VIII

Methodology
The CQO(A) -learning algorithm was developed, tested and applied for two frameworks:

1) Learning by multiple agents

The CQ(1) learning algorithm for multiple agents is based on a state-action value of an agent or

learning process is updated according to the best performing agent; collaboration is in taking the

maximum of state-action values, i.e., the Q-value, across all learners at each update step. By
applying this method, the O value for a collaborative learner will be the best value.

2) Learning by human-robot systems

In this framework, two levels of collaboration are defined for a human-robot learning system: (i)
autonomous - the robot decides which actions to take, acting autonomously according to its Q(A)
learning function, and (ii) semi-autonomous - a HO guides the robot to take an action or a policy
and the robot uses the suggestion to replace its own exploration process. The key idea here is to give
the robot enough self awareness to adaptively switch its collaboration level from autonomous (self
performing) to semi-autonomous (human intervention and guidance). Here it is assumed that the
learning system consists of one robot and one HO. The robot learns to perform a task by using a

standard Q(A4) -learning function. During its learning it keeps measuring its learning performance.

This is done by defining A, a minimum acceptable performance threshold above which the human

is called to intervene. The measure A is compared with L,,, a moving average learning

performance measure over the last N most recent learning episodes considered. Based on this
learning performance threshold, the robot switches between fully autonomous operation and the
request for human intervention. The procedure is repeated M times where M (set a-priori) is the
maximal number of learning episodes.

A theoretical analysis is presented for both frameworks. For the multiple agents’ framework

where a system consists of one collaborative agent, O, and several independent Q -learners, it was

shown mathematically that the learning function of the collaborative agent converges faster than
those of the independent agents. For the human-robot framework, a theoretical discussion was

conducted to show that collaborative Q -learning is a special case of Q -learning and therefore will

also converge to optimal solution with probability one.

The CQ(A)-learning algorithm presented in this thesis was evaluated in three systems that were

specially developed in this thesis:

1) Navigation of multiple robots (simulation)

The system consists of several mobile robots represented in a simulation model. The robots learn

to navigate a two dimensional world that contains undesirable areas choosing the optimum path to

IX
reach a target. A learning system consists of one collaborative robot denoted Q. and one or more
independent Q(1) -based learners. The CQ(A1) algorithm is applied to autonomous mobile robot

navigation where several robot agents serve as learning processes with the objective of choosing the
optimum path to reach a target.

System performance was evaluated using the following measures: (i) N, - convergence to near
optimality - mean of the last N path lengths, and (ii) N, - convergence to optimality - number of

learning episodes required to perform a policy optimally and repeat it an infinite number of times.

2) Human-robot collaboration for a bag shaking task

The system consists of a fixed-arm six degrees of freedom Motoman UP-6 robot, a bag that
contains objects, a digital camera that provides visual feedback from the robotic scene to the HO
interface, an inspection platform on which the inspected bag is manipulated and a digital scale for
measuring rewards. The robot’s learning task is to observe the position of the bag located on an
inspection surface, grasp it and to learn how to shake out its contents in minimum time by
interacting with the environment and by acquiring suggestions from a HO.

System performance was evaluated using: (i) average time to complete emptying the contents of
a bag, (ii) average cumulative reward, i.e., measures learning improvement, and (iii) human
intervention rate, i.e., a measure that represents the percentage of human interventions out of the
total number of learning episodes; the lower it is, the more autonomous the robot is. Three reward
functions were used to evaluate the learning system as follows: (i) linear reward function, (ii)
cumulative-based reward function, and (iii) events-based reward function.

3) Human-robot collaboration for a mobile robot navigating a two dimensional world

The system consists of an Evolution Robotics ER-1 mobile robot equipped with a laptop and a
camera. The robot task is to learn to navigate toward a target location in a two-dimensional world.
The robot is located remotely from the HO. Under pre-defined system conditions, the robot decides
to ask for human advice and guidance or to navigate autonomously. Learning is achieved by
interaction with the environment and by acquiring suggestions from the HO. The purpose of the
learning system is to let the robot start navigating from any starting location in the world and reach
the target using the shortest path while avoiding undesirable areas.

System performance was evaluated using the following measures: (i) mean number of steps to
optimally reach target, (i1) mean number of steps to feasibly reach target, and (iii) percent of human

interventions - measuring how frequently a human collaborated with the robot.

Analysis and Results

Acceleration of learning using collaboration between several learning agents was demonstrated
in simulations of the mobile robot navigation task. Fifty simulation runs showed an average
improvement of 17.02% while measuring the number of learning episodes required reaching definite
optimality and an average improvement of 32.98% for convergence to near optimality by using two
robots compared with the Q(1) algorithm. Significant statistical difference was indicated for both
convergence to optimality and convergence to near optimality while comparing two robots; the first

uses CO(A) and the second uses Q(1). While using three robots; the first uses the CQO(1) and the
second and third use Q(1), it was found that there is no statistical significant differences in both
convergence to optimality and convergence to near optimality while comparing the Q(1)-based

robots’ learning performance. Statistical significance differences were found in both convergence to

optimality and convergence to near optimality while comparing the CQ(4)-based robot to the other

two. Additionally, no statistically significant differences were observed for either convergence to

optimality or convergence to near optimality using a CQ(A) -based robot learning in either two robot
or three robot environments. Superiority of the CQ(1) algorithm over the Q(1) was demonstrated

for both setups. Further, it was shown that collaboration of an agent with additional two learning
agents has no significant advantage over collaboration with only one learning agent.

From a learning rate’ perspective it was shown that the independent agents show a better
improvement of learning than the collaborative agent for both of the experimental setups described;
the lower the learning rate the higher the improvement of learning is. Although the collaborative
agent learns faster than the independent agents and reaches an optimal solution faster, the
independent agents’ improvement of learning is better. This is of course reasonable since the
independent agents learn less efficiently than the collaborative agent at early stages of learning and
since all agents (collaborative and independent) converge eventually to the same optimal solution
(after many episodes) then the independent agents must “catch up” with the collaborative agent.

For the bag shaking task results showed that learning was faster when the HO was asked to

intervene in the robot activity. Using a linear reward function, comparing CQ(1) with Q(4) over 25

learning episodes, indicated an improvement of 45.5% in the average reward while a HO intervened

in 86.7% of the trials. Using a cumulative-based reward function and comparing Q(A1) -learning with
CQO(A), the average time to complete emptying the contents of a bag decreased by 16.6% and the

average reward achieved increased by 25.76%. The human intervention rate for the CQ(1)-learning

' The learning rate parameter determines how significantly an agent improves. The reader should make a distinction
between the learning rate evaluation performance measure which indicates the improvement of learning and a, the RL
learning rate parameter.

XI
experiment was 30%. For the events-based reward function, comparing Q(1) -learning with CQ(4),

the average time to complete emptying the contents of a bag decreased by 34.3% and the average

reward achieved increased by 30.04%. The human intervention rate for the CQ(A)-learning
experiment was 20%. For all three reward functions either for Q(1) or CQ(A4), the robot starts

experiencing the environment by performing a random shaking policy over the X, v, and Z axes.
Intuitionally, vertical shaking would be best, but experiments determine that policies of shaking
most of the time over the ¥ axis and with small number of actions over the X axis were the most
effective. This policy caused the bag sometimes to become entangled, also due to the fact that most
of the plastic bag weight is concentrated most of the time in one place. Possible explanation might
be the type of the plastic bag knot; pulling it sideways makes it loose faster. Further, hypothetically,
if a human would require shaking the bag, she could have seen visually the servo feedback to
determine the optimal time to pull it up in a horizontal strategy, an ability that the robot system used
here does not have.

To interpret the results achieved and to show that there were no subjective influences, a physical
model of opening a plastic bag knot by a robot was developed. The model explains the results
achieved for all three experimental setups. It was shown that acceleration is developed over time;
thereby it is worthwhile to open the bag by activating forces continuously while holding locations as
far as possible over the v axis. Ideally, it is desirable to accelerate the robot arm at an acceleration
that is close to the gravitational acceleration downwards and to oscillate it over the Y axis for
overcoming of most of the friction forces.

For the mobile robot navigation task, significant improvements in comparison with the Q(1)
algorithm (learning with no human intervention) were achieved by using the CQ(1) algorithm. In

particular, for feasible and optimal solutions, improvements of 23.07% and 18.56% respectively
were achieved for by using a collaboration threshold of A=8 using y=0.99 and 1=0.75 while a
HO was asked to intervene in 30% of the robot navigational trials. In three variable autonomy
experiments when the robot learned the environment, human collaboration rate decreased, as

expected, with an increase in A . For the best significant improvement using »=0.99 and 1=0.75,
the combination of high » with high A values that achieved the highest learning performance can

be explained due to choosing values of 4 large enough to allow longer sequence of values of state-
action pairs to be updated while keeping the computational solution to be achieved in reasonable
time. In other experiments for various values of discount factors and eligibility traces, no
consistency was found in achieving a solution that fits all of human-robot threshold collaboration
levels. This may be attributed to cases when a human is collaborating with a robot to accelerate its

learning performance. Here the intervention may impair the ability of the robot to explore the

XII

environment autonomously because its exploitation was enhanced on the account of less exploration

by the human.

Conclusions
The main contribution of this work is in developing a new learning method. The proposed

algorithm, denoted CQ(A) algorithm, enables collaboration of multiple agents in the learning

process. Collaboration can expedite the learning by exploiting human intelligence and expertise.
Extensive experimentation with different robotic systems in a variety of applications

demonstrated the strengths and weaknesses of the CQ(A) -learning algorithm. Specific applications
developed to serve as a test-bed for testing the CQ(A1)-learning algorithm were demonstrated in the

context of an intelligent environment using a mobile robot for navigation and a fixed-arm robot for

suspicious bags inspection. Results revealed the superiority of the CQ(1) over the standard Q(1)

algorithm in the context of acceleration of learning performance of robotic systems.

Key words: Reinforcement learning, Robot learning, Human-robot collaboration

XIII
Publications

Journal Papers (in preparation):

1. Kartoun U., Stern H., Edan Y., A Human-Robot Collaborative Reinforcement Learning
Algorithm.

2. Kartoun U., Stern H., and Edan Y. Collaborative Reinforcement Learning Algorithm applied in
Multi-Robot Framework.

3. Shapiro A., Kartoun U., Stern H., Edan Y. Physical Modeling of a Bag Knot in a Robot

Learning System.

Reviewed Conference Papers:

4. Kartoun U., Stern H., Edan Y., Human-Robot Collaborative Learning System for Inspection.
IEEE International Conference on Systems, Man, and Cybernetics, Oct. 8 - Oct. 11, Taipei, Taiwan,
2006, Finalist for the Best Student Paper Competition (top 5 papers).

5. Kartoun U., Stern H., Edan Y., Feied C., Handler J., Smith M. and Gillam M., Vision-Based
Autonomous Robot Self-Docking and Recharging, ISORA 2006 11" International Symposium on
Robotics and Applications, World Automation Congress (WAC 2006), Budapest, Hungary, July 24-
27, 2006.

6. Kartoun U., Stern H. and Edan Y., Bag Classification Using Support Vector Machines, Applied
Soft Computing Technologies: The Challenge of Complexity Series: Advances in Soft Computing,
Springer Berlin / Heidelberg, ISBN: 978-3-540-31649-7, pp. 665-674, 2006.

7. Kartoun U., Stern H., Edan Y., Feied C., Handler J., Smith M. and Gillam M., Collaborative
O(1) Reinforcement Learning Algorithm - A Promising Robot Learning Framework, IASTED

International Conference on Robotics and Applications (RA 2005), Cambridge, U.S.A., October 31
- November 2, 2005.

XIv

Conference Papers:

8. Kartoun U., Stern H., Edan Y., Human-Robot Collaborative Learning of a Bag Shaking
Trajectory, The Israel Conference on Robotics (ICR 2006), Tel Aviv University, Faculty of
Engineering, June 29, 2006.

9. Kartoun U., Stern H. and Edan Y., Virtual Reality Telerobotic System, e-ENGDET 2004 4"
International Conference on e-Engineering and Digital Enterprise Technology, Leeds Metropolitan

University Yorkshire, U.K., 2004.

10. Edan Y., Kartoun U. and Stern H., Cooperative Human-Robot Learning System using a Virtual
Reality Telerobotic Interface, Conference on Advances in Internet Technologies and Applications,

Purdue University, West Lafayette, Indiana, U.S.A., 2004.

Chapter 1. Introduction - Problem Description 1

1. Introduction

Chapter Overview
Chapter one describes the problem addressed in this work and lays out the research objective and

its significance followed by a statement of the contributions and innovations.

1.1 Problem Description

To expand the use of robots in everyday tasks they must be able to perform in unpredictable and
continuously changing environments. Since it is impossible to model all environments and task
conditions in a rigorous enough manner, robots must learn independently how to respond to the
world and how the world responds to actions they take.

One approach to robot learning is reinforcement learning (RL) [Watkins, 1989; Peng and
Williams, 1996; Sutton and Barto, 1998; Ribeiro, 2002]. In RL the robot receives positive/negative
rewards from the environment indicating how well it is performing the required task. The robot
learning goal is to optimize system responses by maximizing a reward function. This is achieved
through gaining experience and through direct interaction with the robot’s environment. Under
uncertainty, the robot may fail to make the correct associations between the observed states and
chosen actions that lead to higher rewards. Moreover, certain problems are often too memory
intensive to store the large values for each state. Another disadvantage is that RL-based approaches
require substantial interaction with the environment to test large numbers of state-action values until
an effective policy is determined. One approach to overcome this problem is to avoid storing all
state-action pairs, instead to compute them dynamically as the need arises [Touzet, 2004]. For RL
tasks an optimal policy is usually found by striving for a goal and attaining rewards. However, this
policy is useless when the goal state changes, which means that the policy learned for one problem
cannot be used for other problems [Park and Choi, 2002]. Additional disadvantage of RL tasks
concern the slow convergence toward satisfactory solutions.

The disadvantages of autonomous learning robotic systems involve the large state-space typical of
most robotic environments. In response to some of the requirements, several authors have used RL.

The RL-based learning algorithm Q -learning [Watkins, 1989], and its variation Q(1) [Peng and
Williams, 1996], an incremental multi-step Q -learning algorithm that combines one-step Q -learning

with eligibility traces, have been used in many robotic applications [Zhu and Levinson, 2001; Kui-
Hong et al., 2004; Broadbent and Peterson, 2005; Dahmani and Benyettou, 2005]. The learning
process entailed in learning robot systems must be accelerated to reduce the heavy computational
costs, and to reduce failures. Collaboration of a robot with a human is essential to minimize the

amount of time required by a robot to accomplish a learning task [e.g., Papudesi and Huber, 2003;

Chapter 1. Introduction - Problem Description 2

Papudesi et al., 2003; Mihalkova and Mooney, 2006]. This can be overcome via human intervention

whose guidance can decrease the number of learning episodes and accelerate convergence to reach a
satisfactory solution for a task. The involvement of superior human intelligence in the learning
procedure will affect the learning agent’s behavior.

The learning algorithms Q and Q(1) require no human intervention, and as such the agent is

placed in an unknown environment and explores it independently with the objective of finding an
optimal policy. One drawback to this approach is the large amount of interaction required between
the robot and the environment until an effective policy is determined. One possible solution to this
problem includes guiding the agent using rules that suggest trajectories of successful runs through
the environment [Driessens and Dzeroski, 2004; Mihalkova and Mooney, 2006]. [Mihalkova and
Mooney, 2006] suggest a RL-based framework denoted “relocation”. At any time during training an
agent can request to be placed in a different state of the environment. In the “relocation” approach
the agent accrues a cost for each relocation event, and thus seeks to limit the number of relocations.
Requiring minimal human involvement, the “relocation” approach comprises two agent conditions:
(1) “in trouble” - although the agent learns from the negative experience, the actions taken represent a
poor choice, thereby leading to a waste of time-steps in a part of the state-space that is unlikely to be

visited during optimal behavior; and (ii) “bored” - if the Q -values are being updated by only small

increments, the agent is not learning anything new in the current part of the environment. When

updating a particular Q -value does not change that value, the agent must relocate to a part of the
environment with the greatest probability of changing the O values.

A central issue in human-robot collaboration involves adjustable autonomy levels, including the
determination of whether and when human intervention is required. A learning task performed by a
robot must be designed such that it considers how to achieve cooperation via appropriate degrees of
sharing and trading between human and robot. Sheridan [Sheridan, 1987] describes a ten-level
formulation of robot autonomy, a perspective of relating the degree of robot autonomy to human
control. On the one hand, to ensure that highest-quality decisions are made, a robot should transfer
control and collaborate with a human operator (HO) when it has superior decision-making expertise.
On the other hand, interrupting a user may cause delays or the acquisition of information that is not
necessarily beneficial; thus such transfers of control should be minimized.

Fong et al., 2001, describe key issues that must be addressed:

(1) Robot capability of detecting when it should request help and when it must solve problems on
its own. In this thesis, collaboration with an HO is triggered when a robot reports that its learning
performance is low. Then the human must intervene and suggest alternative solutions. Collaboration

between the robotic learning process and the HO is essential when robot autonomy fails or an

Chapter 1. Introduction - Research Objectives 3

acceleration in learning is desired, but as long as the robot learns policies autonomously and adapts
to new states, human-robot collaboration is unnecessary.
(i1) Robot capability toward self-reliance and safe operation. In this work safety concerns were

taken into account for the robot applications described (e.g., the fixed-arm robot is placed inside a

security cage and it is capable of recognizing when its gripper hits an obstacle. If a human opens one
of the cage’s doors or a collision occurred, the robot is immediately and automatically disabled).

(i11) Human and robot communication dialogue. Linguistic-like human interfaces enhanced with
real-time visual feedback were developed.

(iv) Robot adaptation to various users with different skills, knowledge, and experience. In the
applications suggested, the focus is on human expert operator behavior.

In an effort to reduce the long learning times of the Q(4) algorithm, this thesis presents a
collaborative Q(1) denoted CQ(A), which accelerates learning. The collaborative algorithm
integrates the experience of several agents (e.g., robot, human), and was applied on two real robotic

test-bed applications integrating two learning agents each: a robot and a human working

cooperatively to achieve a common goal.

1.2 Research Objectives
The fundamental research objective of this work is to develop a new reinforcement learning

algorithm, denoted the CQ(1)-learning algorithm, for improving the learning performance of robotic

systems through human collaboration.

1.3 Research Significance
“As robots move into our natural environment, it is easy to envision situations that afford the need

for efficient task learning and collaboration” [Breazeal ef al., 2004]. This thesis provides an

important step toward realizing that goal. Robot learning requires novel algorithms for learning to
identify important events and find efficient action policies. The robot does not have a teacher who
can tell him which actions are optimal in every situation that arises. Therefore, by using RL it can
independently improve its behavior policy.

Collaboration between a robot and a human during learning is essential, since humans have
superior intelligence and skills such as perception, intuition and awareness, to direct policy
adjustments in the most beneficial direction. Furthermore, in most robotic applications the
environment is unpredictable and unstructured. Thus, if part of the environment is familiar to a HO
or if he has some expertise regarding how to perform a task efficiently with a robot, then the

operator’s intervention in the robot learning process will overcome the uncertainty in the

Chapter 1. Introduction - Research Contributions and Innovations 4

environment. This results in a reduction in the number of learning episodes, thereby accelerating
convergence to achieve a satisfactory solution for a task and overcome long learning times.
Learning algorithms can be improved by transferring acquired knowledge between related tasks

or learning processes [e.g., Matari¢, 1997; Wang et al., 2003; Papudesi and Huber, 2003; Papudesi
et al., 2003; Mihalkova and Mooney, 2006]. The ability of a robot to acquire knowledge that it

learned or to benefit from knowledge achieved via collaboration with another agent or a human
accelerates the entire process of learning. The development of learning algorithms enhanced by
collaboration with a HO leads to a learning task solution significantly faster than if performed by a
single agent only. Collaboration here is similar to a learning application as described in [Thomaz and
Breazeal, 2006], where human reward signals can be treated as an “interactive rewards interface” in
which humans can give rewards to a learning agent by rewarding a whole world state.

The proposed development of a RL Q -learning based algorithm denoted CQ(4) (collaborative
Q(4)) accelerates learning in systems comprising multiple learning agents or designed for human-

robot interaction, thus overcoming the main criticism of the RL approach, i.e., long training periods.

1.4 Research Contributions and Innovations

Collaboration between a learning process and a human advisor is important and essential in many
tasks to reduce the amount of time required for a robot to accomplish a learning task. This research
provides the necessary tools both to improve performance and to reduce the learning times required
by robotic systems via the development of human collaboration learning methods.

A new human-robot collaborative reinforcement learning algorithm, CQ(A) (collaborative Q(1)),
is developed for accelerating learning in robotic tasks. Two frameworks of the CQ(A)-learning
algorithm are described: (i) learning for multiple agents where learning agents can enter into their
learning functions both the information that arrives from the environment and that which arrives
from other learners that exist in the system, and (ii) learning for human-robot systems where a robot
agent learns both from rewards it receives from in its environment as well as from human
suggestions and guidance. Within the framework of the first approach, collaboration is effected by
taking the maximum of state-action values, i.e., the Q -value, across all learners at each update step
[Kartoun ef al., 2005]. In the second approach, two levels of collaboration are defined for human-
robot systems: (i) autonomous - the robot decides which actions to take, acting autonomously
according to its Q(4) learning function, and (ii) semi-autonomous - the HO suggests actions and the
robot incorporates this knowledge into its memory [Kartoun ef al., 2006 (a); Kartoun et al., 2006
(b)]. The robot learns efficient policies applied in certain environments and the human assists the

robot when needed. This variable autonomy approach is demonstrated in the context of an intelligent

Chapter 1. Introduction - Research Contributions and Innovations 5

environment using a mobile and a fixed-arm robots. Evaluating robot performance during two
different tasks revealed the superiority of the CQ(1) over the standard Q(4) algorithm.

The CQ(4) algorithm is based on the Q(A4)-learning algorithm, but it allows for the collaboration
of more than one agent in the environment [Kartoun et al., 2005; Kartoun et al., 2006 (a); Kartoun
et al., 2006 (b)].

The main contribution of this work is in developing a new learning method. The suggested
method was tested and found to reduce the number of trials a robot requires to learn a task.
Furthermore, it enabled reaching solutions that could not be achieved via a single learning process
alone - a time consuming procedure. Another contribution is the development of performance
measures that quantify learning performance. The CQ(A) -learning approach was demonstrated in the

context of an intelligent environment using mobile and fixed-arm robot applications.

Chapter 2. Scientific Background - Introduction 6

2. Scientific Background

Chapter Overview
This chapter reviews the literature of the relevant research topics. In particular, reinforcement
learning is discussed in detail. Furthermore, current human-robot collaboration and robot learning

applications are presented.

2.1 Introduction

Characterized by direct interaction with a real world, sensory feedback, and complex control
systems, robotics is one of the most challenging applications of machine learning techniques
[Kreuziger, 1992]. Several applications of learning include (i) world model and elementary sensor-
based actions [e.g., Kerr and Compton, 2003]: learning object properties (e.g., geometry), world
exploration (e.g., finding objects, determining/detecting obstacles), learning elementary actions in
the world (e.g., effects of actions), learning elementary actions with objects (e.g., manipulation of
an object) and learning to recognize/classify states in the internal world model; (ii) sensors [e.g.,
Harvey efal., 2003]: learning how to classify objects based on image data, learning sensor
strategies/plans (e.g., how to monitor an action to ensure its correct execution or how to determine
certain states of the real world); (iii) error analysis [e.g., Scheffer and Joachims, 1999]: learning
error recognition, error diagnosis, and error repairing rules; (iv) planning [e.g., Theocharous and
Mahadevan, 2002]: improvement (speed-up) of planning module (e.g., planning macros, control
rules), learning action rules or plans (i.e., how to solve a sub-task in principle), learning relationships
between typical task classes and related action plans (e.g., generalized action plan for a set of tasks),
learning at the task level (e.g., which geometrical arrangements/action plans satisfy certain
functional specifications).

Robot systems must be able to operate in environments with a potentially large variety of
unfamiliar objects, materials, and lighting conditions, thus complicating perceptual and manipulation
tasks unless a significant number of domain-dependent techniques are used. Imaging sensors provide
a large amount of information and therefore they are widely employed in robot applications [Unger
and Bajcsy, 1996]. Vision-based grasping and retrieval of objects are skills important in many tasks
[e.g., Coelhoet al., 2001], and a robotic system that is capable of perceiving pertinent target object
features and that can select a viable grasp approach for a robotic arm can perform many useful
functions [Unger and Bajcsy, 1996]. Possible scenarios for such a system range from the handling of
explosive materials in dangerous environments to the assistance of people with physical disabilities

in household and rehabilitation environments.

Chapter 2. Scientific Background - Neural Networks 7

2.2 Neural Networks

Although the use of NN self-learning techniques allows autonomy, robustness to noise and to
errors in data [Ziemke, 1998], disadvantages include long training times, the requirement of many
training examples, and the internal reasoning process is not transparent. Three-layer neural networks
are universal classifiers in that they can classify any labeled data correctly if there are no identical
data in different classes [Young and Downs, 1998; Abe, 2001]. In training multilayer neural network
classifiers, usually network weights are corrected so that the sum of squared errors between the
network outputs and the desired outputs is minimized. But since the decision boundaries between
classes acquired by training are not directly determined, classification performance for the unknown
data, i.e., the generalization ability, depends on the training method and it degrades substaintially

when the amount of training data is small and the overlap among classes is rare [Shigeo, 2001].

2.3 Support Vector Machines

One popular supervised learning method, support vector machines (SVMs) has emerged in recent
years as a successful pattern recognition method [Vapnik, 1998]. SVMs have exhibited superior
performance in various applications including text categorization [Goertzel and Venuto, 2006; Lee

etal., 2006; Lin et al., 2006], face detection [Jiuxian et al., 2006, Shavers et al., 2006], and
content-based image retrieval [Dube et al., 2006; Djordjevic and Izquierdo, 2007].

Among the advantages of SVMs is their maximization of generalization, and they do not confront
situations with local minima as in NN-based systems. Disadvantages include the difficulty in
extending them to multi-class systems and the long training times involved. SVMs are based on a
statistical learning theory developed by [Vapnik, 1995; Vapnik, 1998] that minimizes classification
errors of training data and unknown data. In SVMs, the n-class classification problem is converted
into n-two-class problems, and in the i two-class problem the optimal decision function that
separates the i" class from the remaining classes is determined. In classification, if one of the »
decision functions classifies an unknown datum into a definite class, then it is classified into that
class. If more than one decision function classifies a datum into definite classes, or no decision
functions classify the datum into a definite class, then the datum is unclassifiable. Another limitation
of SVMs is the long training times. Since SVMs are trained by solving a quadratic programming
problem with the number of variables equal to the number of training data, training is slow for a
large number of training data. Another limitation of SVMs is that when the input environment
changes in time, accuracy decreases because the weights are fixed, thus preventing it from adapting

to the changing environment.

Chapter 2. Scientific Background - Reinforcement Learning 8

2.4 Reinforcement Learning

In reinforcement learning (RL), by receiving rewards and punishments the learning system
receives feedback in terms of “good” or “bad.” The advantage is that a detailed model of the problem
and a training set are not required. Instead, the system learns to find an optimal policy by

experiencing negative situations (e.g., robot hitting an obstacle) and positive ones (e.g., robot

reaching a target). This is different from an NN where learning is achieved by getting feedback for
every time step. For RL, often reinforcements are not available until, for example, a goal is achieved,
i.e., typically after a possibly long sequence of actions.

In this work, RL involves learning through direct experimentation [Peng and Williams, 1996;
Smart, 2002]. It does not assume the existence of a teacher that provides training examples. Instead,
experience is the only teacher. The learner receives signals (reinforcements) from the process via
indications about how well it is performing the required task. These signals are usually associated

with some dramatic condition, - e.g., accomplishment of a subtask (reward) or complete failure

(punishment), and the learner’s goal is to optimize its behavior based on some performance measure
(maximization of a reward function). It learns the associations between observed states and chosen
actions that lead to rewards or punishments, i.e., it learns how to assign credit to past actions and
states by correctly estimating costs associated with these events [Ribeiro, 2002]. RL algorithms can
model actions with non-deterministic outcomes and can learn optimal policies from non-optimal
training sets. The disadvantages of RL algorithms include the dependency on a real valued reward
signal for each transition. Additionally, convergence can be slow and space requirements can be very

large and computationally expensive.

2.5 Robot Learning

Nowadays, robots are migrating from factory production lines and into our everyday lives. Unlike
stationary and pre-engineered factory buildings, an everyday environment, such as an office,
museum, hospital, or home, is an open and dynamic place where robots and humans can co-exist and

cooperate. The office robot, Jijo-2 [Asoh et al., 2001], was built as a test-bed for autonomous

intelligent systems that interact and learn in the real world. Jijo-2’s most notable properties are its
communication and learning skills: it can communicate with humans through a sophisticated
Japanese spoken-dialogue system, and it navigates using models that it learns by itself or through
human supervision. Self learning is accomplished via a combination of a microphone array, a speech
recognition module, and a dialogue management module. Supervised learning occurs using statistical
learning procedures in which the robot applies what it learns from landmarks or features in its

environment to construct useful navigation models.

Chapter 2. Scientific Background - Robot Learning 9

Modern robot systems entail increasing intelligence and autonomy requiring new and powerful

man-machine interfaces [Léangle ef al., 1996]. For example, a robot’s capability to autonomously

recover from error situations corresponds with how well the robot can dynamically adjust its activity

during execution of an action [Léangle et al., 1996]. Langle et al., 1996, provide a natural language

explanation for the error recovery of an autonomous mobile robot named KAMRO.

It is stated in [Nehmzow and Walker, 2005] “a mobile robot interacting with its environment can
be described as an analog computer, taking environmental, morphological and task-related data as
input, and computing behavior as output.” While navigating in an environment, robot tasks include
[Howard, 1999] (i) localization - determining the robot’s location; (ii) mapping - building a model
of the environment; and (iii) planning - planning the robot’s movements. Robots have an inherent
uncertainty about the state of their environments due to sensor limitations, noise, and the
unpredictability of the real-world environment [Howard, 1999]. Learning to navigate in realistic
environments requires novel algorithms for identifying important events and planning efficient
action policies.

Carreras et al., 2002, propose a Neural Q -learning approach designed for on-line learning of
simple and reactive robot behaviors. In this approach, the QO function is generalized by a multi-layer

neural network allowing the use of continuous states and actions. The algorithm uses a database of

the most recent learning samples to accelerate and guarantee convergence. Each Neural Q -learning

function represents an independent, reactive, and adaptive behavior that maps sensorial states to
robot control actions. A group of these behaviors constitutes a reactive control scheme designed to
fulfill simple missions. Another on-line learning example is given in [Bakker ef al., 2006], who
propose a quasi on-line RL method: while a robot is exploring its environment, a probabilistic model
of the environment is parallelly built in the background as new experiences present themselves, and
the policy is trained concurrently based on this model.

[Wang ef al., 2006], suggest a modified RL algorithm for a multi-fingered hand for solving the

problem of how an arm-hand robot approaches objects before grasping. Learning is divided into two
phases, heuristic learning and autonomous learning. In the first phase of learning, the heuristic search
is utilized to help the robot reach the goal quickly. The action selection of the robot is guided by the
heuristic function of 4" search, which, via rewards, can make the robot move toward a goal. The

learning system uses these rewards to update a Q table. Once the table has been modified enough to

effectively control the robot, the second learning phase starts. In this phase, the robot is trained using
a standard RL learning method, which impels the robot to find the local optimal policy.
Navigation learning by a miniature mobile robot equipped with vision capabilities using several

RL-based algorithms is described in [Bhanu ef al., 2001]. Comparison between the QO and Q(1)

Chapter 2. Scientific Background - Robot Learning 10

algorithms for a 6 x 6 maze show only a few significant differences between the two learning
algorithms. Both begin to converge on the shortest path at approximately the same number of trials.

Overall, the O(4) algorithm requires fewer actions during the entire experiment, which suggests that
it is faster in finding the shortest path. [Kui-Hong et al., 2004], demonstrate two mode Q -learning
on a humanoid robot in a 17 x 17 maze for improving Q -learning performance. A RL algorithm for

accelerating a real mobile robot’s acquisition of new skills is described in [Martinez-Marin and

Duckett, 2005]. The algorithm speeds up Q -learning by applying memory-based sweeping [Touzet,

2003], and it was tested for a docking task within an image-based visual servoing framework on an
ActivMedia PeopleBot mobile robot. A solution for robotic docking based on neural and

reinforcement is presented in [Weber ef al., 2004]. The solution was partially achieved by training a

value function unit and four motor units via RL.

[Kollar and Roy, 2006], suggest an approach to trajectory control for a mobile robot performing
exploration. RL was used to learn the best trajectory for a robot tracking its position in a 35 x 35
world with an Extended Kalman filter. The control problem was to generate a motion trajectory for
the robot from its current estimated pose to a destination position (or sequence of destinations). It
was shown that the reinforcement learner successfully generated motion trajectories that minimized
the posterior covariance of the robot in contrast to a standard hand-tuned controller that minimized
distance.

[Kretchmar, 2002], investigates the problem of multiple reinforcement-learning agents attempting
in parallel to learn the value function of a particular task for the n-armed bandit. A parallel RL
solution is suggested to avoid statistical overload from, for example, the information of an agent with
correspondingly greater accumulated experience than the other agents. To overcome this problem
each agent keeps track of two sets of parameters: (i) one set for the actual, independently
experienced trials of a particular agent, and (ii) an additional set for combined trials among all other
agents. The agents share accumulated experience by keeping separate parameters for their own
independent experience and for the combined experience of all other agents. Additionally, the agents

can compute an estimate (general Q value which is a weighted combination of a particular agent

with all the other agents) based upon global experience. This estimate is computed from a weighted
average of the agent’s own independent experience and the accumulated experience of all other
agents. Results show that as agents are added, learning is accelerated because there is a larger pool of
accumulated experience upon which to base future estimates. The experiment with ten parallel agents
(the largest number of agents in any of Kretchmar’s experiments) learns the fastest. [Ambrym-

Maillard et al., 2005], present a method to parallelize the TD(4) algorithm to reduce computation

times for various learning tasks. An extension to Kretchmar’s work is presented, in which agents

Chapter 2. Scientific Background - Collaborative Learning 11

share their experience by averaging their value functions. This is done for multi-state episodic tasks

using the 7D(1) algorithm to generalize function approximators. Experiments using the same 7D(A1)

algorithm were conducted on three kinds of problems, the pendulum problem; the cart-pole problem,
and the swimmer problem, and they showed that using more than an average of seven processes in
no way reduces computation times.

Experiments on a group of four foraging mobile robots learning to map their conditions to
corresponding behaviors was conducted by [Matari¢, 1997]. The learning algorithm of the robots
consists of reward functions that combine individual conditions of a robot (such as, “grasped a
puck”, “dropped puck away from home”) and collaborative conditions, i.e., how close the robots are
to each other. Individually, each robot learns to select the behavior with the maximum value for each
condition, in this case to find and take home the most pucks. An evaluation of groups of three and
four robots found that interference was a detriment; in general, the greater the number of robots
learning at the same time, the longer it took for each individual to converge. Additionally, [Mataric,
1997] found that while measuring the “percent of the correct policy the robots learned in 15 minutes,
averaged over twenty trials,” the use of heterogeneous reward functions resulted in better

performance.

2.6 Collaborative Learning

To build a semi-autonomous collaborative control system, Fong et al., 2001, describe four key
issues that must be addressed. First, the robot must have self-awareness [Fong ef al., 2001]. This

does not imply that the robot needs to be fully sentient, merely that it be capable of distinguishing the
conditions under which it should ask for help and those under which it has to solve problems on its
own. Second, the robot must be self-reliant. Since the robot cannot always rely on the human to be
available or to provide accurate information, it must be able to maintain its own safety. Specifically,
the robot should be capable of avoiding unnecessary hazards. Third, the system must support
dialogue. That is, the robot and the human need to be able to communicate effectively with each
other. Each participant must be able to convey information, to ask questions, and to judge the quality
of responses received. To an extent, traditional teleoperation has dialogue (i.e., the feedback loop),
but the conversation is limited. With collaborative control, dialogue is two-way and requires a richer
vocabulary. Finally, the system must be adaptive. By design, collaborative control provides a
framework for integrating users with varied skills, knowledge, and experience. As a consequence,

the robot must be able to adapt to different operators and to adjust its behavior accordingly, e.g.,

asking questions based on the operator’s capacity to answer.

Chapter 2. Scientific Background - Collaborative Learning 12

Human-robot interaction (HRI) can be defined as the study of humans, robots, and the ways they
influence each other. Sheridan notes that one of the challenges for HRI is to provide humans and
robots with models of each other [Sheridan, 1997]. In recent years, much effort has focused on

developing robots that work directly with humans, as assistants or teammates [Nourbakhsh et al.,
1999; Baltus et al., 2000]. Crucial aspects for the human-robot cooperation include simulation,

distribution, robot autonomy, behavior descriptions, and natural human-machine communication

[Heguy et al., 2001]. An experimental environment called EVIPRO (Virtual Environment for

Prototyping and Robotic) was developed allowing the assistance of autonomous robots while

carrying out a teleoperation mission [Heguy ef al., 2001]. In this project, man-machine cooperation

to carry out teleoperated missions in a system using virtual reality and adaptive tools was studied.
The goal for the human users and the autonomous robots was to achieve a global task in a virtual
environment. This project used both virtual reality and behavior simulation technologies. Thanks to
virtual reality, the project could have a natural, intuitive interface and mix different information to
increase user perception. Behavior simulation tools were used to help a human user via autonomous
robots. Affordable commercial simulators are now available for practicing tasks such as threading
flexible endoscopes down a virtual patient’s throat or manipulating long surgical instruments [Sorid
and Moore, 2000].

[Clouse, 1996] introduces the “Introspection Approach” (IA) in which a learning RL agent
determines when to ask a training agent for aid. In IA, an automated Q-learner relies on on-line
trainer-suggested actions for given situations. When the trainer is asked to intervene, the task state is
changed, i.e., the suggested action is executed by the learner as it had chosen with its own policy.
The goals here are to: (i) maximize the impact of the trainer’s instruction to allow the learner to
develop its decision policy quickly, and (ii) minimize the trainer’s usage while simultaneously
minimizing the training time. Experiments including graph-traversal in the form of two-dimensional
mazes were performed. The learner’s objective was to traverse a maze optimally from top-left cell to
the bottom-right cell. In the experiments performed, automated trainers with varying levels of
proficiency instructed the learning agents. When two extreme (Q-values were sufficiently close, the
learner asked for aid. “Sufficiently” is defined by examining the minimum and maximum values and
comparing the result to a pre-defined width parameter. The width’s value determines how
conservative the learner is; the larger it is, the learner asks for aid more frequently. The results
showed that the same number of trainer’s responses produced a faster learning than letting the
learner to ask aid randomly. Thus, guidance received via IA is more informative than random

guidance.

Chapter 2. Scientific Background - Collaborative Learning 13

[Blumberg et al., 2002] describe autonomous animated dog training using an RL-based approach

involving human interaction to promote real-time learning for synthetic characters. Their approach
simplifies the learning task for characters by (i) exploiting predictable regularities, (i1) allowing the
use of supervisory signals, and (iii) allowing training by humans. The approach presented, denoted
“clicker training,” entails training to recognize and use acoustic patterns as cues for actions as well as
to synthesize new actions from novel paths. The work describes RL techniques in which a dog learns

to maximize reward (e.g., scratching the dog’s head) and allows it to make maximal use of

supervisory signals. The described “clicker training” technique has three steps: (i) making an
association between the sound of a toy clicker and a food reward, (ii) marking behaviors by users,
and (iii) subsequently treating for performing a behavior more frequently. Several learning tasks

involving a human are described, such as (i) learning to relate to a new percept-action pair (e.g.,

recognizing the phrase “sit”), (ii) a demonstration of luring the dog through a novel trajectory - when
rewarded, this lured trajectory is added to the action space as a new action, and (iii) shaping -
shaking a paw.

[Hellstrom, 2005] addresses the problem of making intelligent robots that learn reactive behaviors
from demonstrations. His paper describes experiments conducted with a Khepera robot equipped
with eight IR sensors for obstacle avoidance. To control the robot, a rule base that included a set of
stimuli-response pairs was generated, demonstrating the required behavior. The experiments
performed (the road sign problem [Lindker and Jacobsson, 2001] and mimicking the behavior of a
light-avoiding cockroach) demonstrate the power of using association rules to model reactive
behaviors.

[Aminaiee and Ahmadabadi, 2006] developed a team Q -learning approach to the distributed

object pushing task. In the proposed approach, the required individual skills for single-robot object
pushing are learned first using a fuzzy RL method. Then the robots learn how to coordinate their
actions to push the object cooperatively. Such an RL method consists of two steps: each robot
learned to push the object by controlling its arm to move a defined point on the object to its
corresponding desired goal or final position; then the robots learned to cooperate with each other in
pushing the object with the goal of avoiding a block in the system through maximization of their
individual average rewards.

[Lockerd and Breazeal, 2004] describe a collaborative process enabling a robotic learner to
acquire concepts and skills from human examples. During teaching the robot is required to perform
tasks based on human instructions. It executes the tasks, and by incorporating feedback its hypothesis

space is converged. With the Q -learning approach, the robot learns a button pushing task.

Chapter 2. Scientific Background - Collaborative Learning 14

[Bowling and Veloso, 2003] describe GraWoLF, a general-purpose, scalable, multi-agent learning
algorithm that combines gradient-based policy learning techniques with the WoLF (“Win or Learn
Fast”) variable learning rate. The algorithm was applied to an adversarial multi-robot task with
simultaneous learning. They showed that learning does considerably improves performance relative
to the starting policies.

[Gu and Hu, 2005] present a cooperative RL algorithm of multi-agent systems denoted as the

“leader-following @ -learning algorithm.” The algorithm is based on a Markov or stochastic game, in

which there are multiple stages and each stage is a static Stackelberg game. [Kretchmar, 2002]
investigates the problem of multiple RL agents attempting to learn the value function of a particular
task in parallel for the »-armed bandit task. A parallel RL solution is suggested to overcome the
problem of statistical overload from the information presented by an agent with correspondingly
more accumulated experience than the other agents. Another multi-agent learning system is the

Cobot; [Isbell et al., 2001], describe a multi-user chat software agent, the Cobot, that collects social

statistics and reports them to users. The human-computer interaction application is RL-based and its
action selection is determined by using multiple resources of human rewards. Cobot can initiate
actions such as proposing conversation topics and introducing users by learning their individual and
commercial preferences. Cobot is rewarded or punished via explicit verbal feedback from users

(e.g., the verbs hug and spank). Because Cobot can be understood as running a large number of

separate RL processes in parallel with a different state-action space for each process, linear function
approximation was used. Results indicated that repeated user feedback for a non-uniform set of
preferences pays off with a corresponding policy. In particular, for a specific group of users, Cobot
learned that its presence causes a significant shift toward its preferences, i.e., Cobot responds to his
dedicated users.

[Rosenstein ef al., 2005], describe an HRI (human-robot interface) that supports both adjustable

autonomy and hierarchical task selection. With adjustable autonomy, a computer switches among
several control modes ranging from full supervision to full autonomy. With hierarchical task
selection, the interface allows an operator to easily solve a high-level task autonomously or else to
guide a robot through a sequence of lower-level subtasks that may or may not involve autonomous

control. [Yanco et al., 2005], define sliding scale autonomy as the ability to create new levels of

autonomy between existing, pre-programmed autonomy levels. The sliding scale autonomy system
shows the ability to dynamically combine human and robot inputs using a small set of variables such
as user and robot speeds, speed limitations, and obstacle avoidance.

In [Wang et al., 2003], a variable autonomy approach is used. User commands serve as training

inputs for the robot learning component, which optimizes autonomous control for its task. This is

Chapter 2. Scientific Background - Summary 15

achieved by employing user commands for modifying the robot’s reward function. Using the
potential of learning from reinforcement and human rewards illustrate the changes in user reward and

Q -value functions, accordingly [Papudesi and Huber, 2003; Papudesi et al., 2003]. The task was to

learn how to optimally navigate to a specific target in a two-dimensional world with obstacles.
Similarly, [Thomaz and Breazeal, 2006] describe a new RL-based approach for providing reward
signals by human. The signals depend not only on past actions but also on future rewards called
“Future Directed Rewards.” The experimental platform described is a learning game platform called
“Sophie’s Kitchen” that was developed for investigating how human interaction changes the learning
process for baking a cake. One feature of “Sophie’s Kitchen” is called the “Interactive Rewards
Interface,” in which humans can give rewards using a standard mouse. For teaching the agent, this
reward can be given in two ways: (i) rewarding a whole state of the world and (i1) rewarding a state
of a particular object. This distinction was made to determine whether people prefer to communicate
feedback about particular aspects of a state rather than an entire world state. Results achieved
indicate that, in general, people assumed that specific rewards are future directed or guidance for the
agent, i.e., what people want the agent to do next.

Although Q -learning and Q(4) were used in many robotic applications [e.g., Touzet, 2003;
Menegatti et al., 2004; Broadbent and Peterson, 2005; Dahmani and Benyettou, 2005; Zhu and
Levinson, 2005; Asadpour et al., 2006], the issue of accelerating learning is still significant. It

includes accelerating of learning toward finding an optimal or close to optimal solution.

2.7 Summary

Machine learning methods applied on robotics involve the development of statistic-based
algorithms and techniques that allow them to perform tasks optimally. Significant machine learning
methods have been reviewed in this section. Several of the methods mentioned were applied in real
robot applications that will be described later in this work. Major types of learning techniques are
summarized in Table 2.1 [Zimmerman and Kambhampati, 2001; Nordlander, 2001], including the
possible models to which each method is applicable and the corresponding advantages and

disadvantages.

Chapter 2. Scientific Background - Summary

16

Table 2.1 Learning algorithms comparison

Learl.nng Models Advantages Disadvantages
Algorithm
Robust to noisy, complex data and errors in
data.
Very flexible in types of hypotheses they Long training times are
can represent.
common, learned target
function inscrutable.
Bears some resemblance to a very small
Neural Discrete, real and human brain, Many training examples
Networks vector-valued functions Can adapt to new data with labels, required.
Do not have to fulfill any statistical Very difficult t.o .
. understand their internal
assumptions, and are generally better at .
. . reasoning process.
handling large amounts of data with many
variables.
Fast.
Extension to multi-class
Support Vector Discrete, real and Maximization of generalization ability. prot?lems is not
. . straightforward.
Machines vector-valued functions -
No local minima.
Long Training Time.
Depends on a real valued
reward signal for each
Actions modeled with non-deterministic | transition.
O-Learning Control policy to outcomes, optimal policy learned from

maximize rewards

non-optimal training sets, facilitates life-
long learning.

Convergence can be slow.

Space requirements can
be huge.

Chapter 2. Scientific Background - Summary

Significant works related to reinforcement learning applied in robot learning are summarized in

Table 2.2:

Table 2.2 Summary of “state of the art” robot learning related works

Method

Application

Reference

Statistical learning procedures

Interactive office robot (Jijo-2)

Asoh et al., 2001

Virtual reality and
behavior simulation

Cooperative assistance in teleoperation
(EVIPRO)

Heguy et al., 2001

RL-based approach
involving human interaction

Human teacher to guide exploration
during learning

Clouse and Utgoff, 1992, Clouse 1996

Animated dog

Blumberg et al., 2002

Learning reactive behaviors from
demonstrations

Khepera robot for obstacle avoidance

Hellstréom, 2005

Neural Q -learning

Learning of reactive robot behaviors

Carreras et al., 2002

0O and Q(4) learning

Mobile robot navigation

Bhanu et al., 2001

O learning

Humanoid robot navigation

Kui-Hong et al., 2004

Vision-guided mobile robot

Martinez-Marin and Duckett, 2005

“Relocation” of mobile robots

Mihalkova and Mooney, 2006

Flight control

Motamed and Yan, 2006

O learning and human instructions

Robot button pushing task

Lockerd and Breazeal, 2004

Gradient-based policy learning

Multi-robot learning algorithm

Bowling and Veloso, 2003

Motor primitive learning for baseball

Peters and Schaal, 2006

Leader-following Q -learning

Stackelberg game

Gu and Hu, 2005

algorithm
Mobile robots learning a foraging task Matari¢, 1997
) Multiple agent RL Bagnell, 1998
Multiple RL agents n -armed bandit task

Kretchmar, 2002

Inverse RL with evaluation

Freire da Silva et al., 2006

Multi-agent learning

Cobot: a social RL agent

Isbell et al., 2001

Cooperative learning via combining
decision trees

Asadpour et al., 2006

Distributed object pushing task

Aminaiee and Ahmadabadi, 2006

HRI and adjustable autonomy

Robot guiding

Rosenstein et al., 2005

HRI and sliding scale autonomy

Robot speed control and obstacle
avoidance

Yanco et al., 2005

HRI and Q -learning

Button pushing task

Lockerd and Breazeal, 2004

Mobile robot navigation

Papudesi et al., 2003; Papudesi and
Huber, 2003;

HRI and variable autonomy

Modifying mobile robot reward
function

Wang et al., 2003

Human-computer interaction and
future directed rewards

Sophie’s Kitchen

Thomaz and Breazeal, 2006

Hierarchical RL

Quadruped robot obstacle negotiation

Honglak et al., 2006

Quasi on-line RL

Mobile robot navigation

Bakker et al., 2006

Two-stages RL algorithm

Multi-fingered robotic hand

Wang et al., 2006

RL for control

Trajectory control for a mobile robot

Kollar and Roy, 2006

Chapter 3. Methodology - Introduction 18

3. Methodology

Chapter Overview
This chapter describes the methods used in this research. Definitions and notations for the systems

developed are described first. The following sections present the CQ(1) learning algorithm applied

on the systems, after which the performance measures and experiments performed for each system

are described.

3.1 Introduction

The CQ(4) algorithm was developed to overcome the expensive computation, and the long
learning times entailed in both the Q and its variation Q(1) -learning algorithms. The new algorithm
enables collaboration of learning of several agents (e.g., robots) in the environment. Through

collaboration the number of learning episodes required to perform a task can be decreased by taking
advantage of human intelligence and expertise.

The CQO(A)-learning algorithm was developed, tested and applied for two frameworks: (i) learning

by multiple agents and (ii) learning by human-robot systems. In the first framework, collaboration

involves taking the maximum of state-action values, i.e., the Q -value, across all learning agents at

each update step. In the second framework, two levels of collaboration are defined for a human-robot
learning system: (i) autonomous - the robot decides which actions to take, acting autonomously

according to its Q(1) learning function, and (ii) semi-autonomous - a human operator (HO) guides

the robot and the robot replaces its own exploration process. The key idea here is to give the robot
enough self awareness to adaptively switch its collaboration level from autonomous (self
performing) to semi-autonomous (human intervention and guidance).

Three systems, specially developed for this thesis, were used to evaluate the CQ(A)-learning

algorithm presented in this thesis: (i) navigation of multiple robots (simulation), (ii) human-robot
collaboration for a bag shaking task, and (iii) human-robot collaboration for a mobile robot
navigating a two dimensional world. For each learning system described below, different definitions

and notations are presented. Two frameworks of the CQ(A1)-learning algorithm are then described,

including descriptions of the performance measures used and the experiments performed.

3.2 Problem Definitions and Notations

3.2.1 Multiple Mobile Robot Navigation
The system consists of several mobile robots represented in a simulation model. The robots learn

to navigate a two dimensional world that contains undesirable areas choosing the optimum path to

Chapter 3. Methodology - Problem Definitions and Notations 19

reach a target. A learning system consists of one collaborative robot denoted Q, and one or more
independent Q(A)-based learners. The CQ(1) algorithm is applied to autonomous mobile robot
navigation where several robot agents' serve as learning processes with the objective of choosing the
optimum path to reach a target. The robot’s state is represented by its location in a W x W grid

world. The state of the robot at time step ¢, s, €S, is defined by: s, =(x;,y,) where ke(l,2,....,W)
and /e(1,2,...,W). An action, a, € A, taken at each state is traveling north, west, south, or east.
Rewards are defined as r(s,,a,). If the robot reaches the target, the reward is positive. If it passes

through an undesirable area, the reward is negative. Otherwise, the reward is zero. The system was
implemented in simulation to avoid interference of hardware limitations such as robot obstacle

avoidance and localization.

3.2.2 Bag Shaking Experiment with a Fixed-Arm Robot
The system comprises of a fixed-arm six degrees of freedom Motoman UP-6 robot, a bag that

contains objects, and a platform on which the inspected bag is manipulated. The learning task is to
observe the position of the bag located on an inspection surface, grasp it, and learn how to shake out
its contents in minimum time by interacting with the environment and by using suggestions acquired
from a HO. It is assumed that the number of items in the bag is known in advance. Robot states are

denoted s, €S defined as its gripper location in a three-dimensional grid. The performance of the
task is a function of a set of actions, a, € 4, for each physical state of the system. An action, 4,

consists of a robot movement over its X, ¥ or Z axes from a state s, to state s,,,. Three reward

t+1
functions were used to evaluate the learning system as follows: (i) linear reward function, (ii)

cumulative-based reward function, and (iii) events-based reward function.

3.2.3 Navigation of a Mobile Robot
The system consists of an Evolution Robotics ER-1 mobile robot equipped with a laptop and a

camera. The robot task is to learn to navigate toward a target location in a two-dimensional world.
The robot is remotely located relative to the HO, and it uses environmental sensing capabilities for
recognizing undesirable areas® on its way to the target. Under pre-defined system conditions, the
robot decides to ask for human advice and guidance or to navigate autonomously. Learning is
achieved by interaction with the environment and by acquiring suggestions from the HO. The
purpose of the learning system is to let the robot begin navigating from any starting location in the

world and reach the target using the shortest path while avoiding undesirable areas. An optimal route

' The terms agent and robot will be used interchangeably.
? Undesirable area - an area where a robot can physically pass through but it is not recommended.

Chapter 3. Methodology - Robot Learning Algorithms 20

is defined as the shortest route that the robot navigates most efficiently, i.e., move toward the target
and not away, while avoiding undesirable areas.' If the robot travels inefficiently (but still reaches
the target), the route is defined as feasible. State-space, state, action, and reward definitions are

identical to those described in Section 3.2.1.

3.3 Robot Learning Algorithms
Two robotic frameworks were developed for testing the CQ(A)-learning algorithm: (i) learning
with multiple agents, and (ii) learning in human-robot collaborative systems. In the first framework

(3.3.1), collaboration involves taking the best state-action values, i.e., the Q -value across all learners

at each update step. In the second framework (3.3.2), two levels of collaboration are defined for a
human-robot learning system: (i) autonomous - the robot decides which actions to take, acting

autonomously according to its Q(1) learning function, and (ii) semi-autonomous - a human operator

(HO) guides the robot to take an action or a policy and the robot uses the suggestion to replace its
own exploration process. The robot adaptively switches its collaboration level from autonomous (self
performing) to semi-autonomous (human intervention and guidance) based on its learning

performance.

3.3.1 CQ(4) -Learning for Multiple Agents
The CQ(A) learning algorithm for multiple agents is based on a state-action value of an agent or

learning process is updated according to the best performing agent; collaboration is in taking the

maximum of state-action values, i.e., the QO -value, across all learners at each update step [Kartoun

et al., 2005]. By applying this method, the Q value for a collaborative learner will be the best value.

3.3.2 CQ(4)-Learning for Human-Robot Systems
For human-robot systems, it is assumed that the learning system consists of one robot and one

HO. The robot learns to perform a task by using a standard Q(A1) -learning function. While learning,
it continuously measures its learning performance by defining A* a minimum acceptable
performance threshold above which the robot requests human intervention. The measure A is

compared with Z,,., a moving average learning performance measure over the last N most recent

learning episodes’ considered (3.1).

! The shortest route that the robot navigates most efficiently is in terms of path length remaining. It is calculated
manually after accomplishing the experiments and is used for results evaluation and analysis.

* The minimum acceptable performance threshold. Above this value, the human is called to intervene. This threshold
value is determined based on empirical tests.

3 The term “learning episode” is similar to the term “learning trial”.

Chapter 3. Methodology - Performance Measures 21

i=n—N

L. =(i(si)j/zv G.1)

where »n is the current learning episode, i=n—N,n—N+1,n—N+2,..n—1, and S, €{0, 1}l indicates
whether a policy was successful for the i episode. Based on this learning performance threshold, the
robot switches between fully autonomous operation and the request for human intervention. The

threshold for a successful episode is defined as R (3.2).

(3.2)

0 else

1 if R >R
Si:{lf e

where R; is the reward achieved for the i learning episode. A° is defined as a minimum acceptable
performance threshold, which is compared to the average performance, L,,. If the robot
performance fails below the threshold (3.3), the robot switches between fully autonomous operation

and semi-autonomous operation and requests human intervention. The procedure is repeated M

times where M (set a-priori) is the maximal number of learning episodes.

L. =[4HZ_I(S,A)J/N<A (3.3)

3.4 Performance Measures

3.4.1 Multiple Mobile Robot Navigation
System performance was evaluated using the following measures:

1) N, - convergence to near optimality* - mean of the last N path lengths. This measure

determines how close to optimality the current solution is.

2) N, - convergence to optimality - number of learning episodes required to perform a policy

optimally and repeat it an infinite number of times.

3.4.2 Bag Shaking with a Fixed-Arm Robot

System performance was evaluated using the following performance measures: (i) average time to

complete emptying the contents of a bag, (ii) average cumulative reward, i.e., it measures the

' A policy is considered as successful if the reward achieved is higher than a predefined value.

? The threshold value for a successful episode is determined based on empirical tests.

? The minimum acceptable performance threshold. This threshold value is determined based on empirical tests.

* Convergence to near optimality requires definition of how near to optimality is sufficient [Kaelbling er al., 1996].

That’s the measure for a predefined level of performance after a given time.

Chapter 3. Methodology - Performance Measures 22

improvement in learning, and (iii)) human intervention rate, i.e., a measure that represents the
percentage of human interventions out of the total number of learning episodes; the lower it is, the
more autonomous the robot is.

Robot learning experience is achieved through direct experience with the environment according
to rewards, and it is based, after performing a shaking policy, on the number of items that fell from
the bag and when they fell. Three reward functions were used to evaluate the learning system as

follows (see also Appendix VI):

1) Linear reward function:

R,=c-0 (3.4)

where R, is the reward at learning episode n, O is the number of items that fell from a bag during a

shaking operation and ¢ is a positive constant to adjust the reward values achieved.

2) Cumulative-based reward function:

T | w.
Ry=c| T |~ (3.5)
i=0\ j

where w; is the current weight measured by a digital scale at time ¢; (increments of 0.25 second),

T=min{Fixed Horizon Time', Amount of Time when all Objects Fell’} is the time of shaking, ¢ is a

positive constant to adjust the reward values achieved and R, is the reward for learning episode 7.

3) Events-based reward function:

(3.6)

AG)= 0, if noitems fell
LT I, if anitem(s) fell

! Fixed Horizon Time is the time it takes the robot to perform a pre-defined number of state-action transitions (it was set
to 100 state-action pairs).
? The amount of time when all objects fell.

Chapter 3. Methodology - Experiments 23

where R, is the reward at learning episode n, ; is the current weight measured by a digital scale
located under the inspection surface at time ¢; (increments of 0.25 second) when the ; event

occurred (an event is defined as the falling of one or more objects). Dividing the weight differences

by ; effectively increases the reward for items that fall early. w is the weight of one object (a
constant value). w,_; is the weight measured by the scale when the pervious (for the first event,

Wi1=0). T=min{Fixed Horizon Time, Amount of Time when all Objects Fell} is the shaking time.

- and is rounded toward the

Wi—W,; : :
The value —/——/"! represents the number of objects that fell at time ¢ ;
" .

closest integer value to eliminate scale inaccuracy. The positive constant ¢ is used to adjust the

reward values achieved.

3.4.3 Navigation of a Mobile Robot
System performance was evaluated using the following measures:

1) Mean number of steps to optimally reach target - in each learning episode the robot starts
from a random state and tries navigating toward the target. If the robot navigates without

passing through an undesirable area and does not travel inefficiently (e.g., moves away from

the target), the route is defined as optimal.'

2) Mean number of steps to feasibly reach the target - if the robot navigates without passing
through an undesirable area but travels inefficiently (but still reaches the target), the route is
defined as feasible.

3) Percent of human interventions - measures frequency of human collaboration with the robot.

3.5 Experiments

3.5.1 Multiple Mobile Robot Navigation
The simulated system was evaluated using two experimental setups. To evaluate CQ(1)

performance, several hypotheses entailing a total of fifty simulation runs® were conducted for each

setup. The two setups were designed as follows:

! The shortest route that the robot navigates most efficiently is in terms of path length remaining. It is calculated
manually after accomplishing the experiments and is used for results evaluation and analysis.

* One simulation run contains 100 learning episodes. Each learning episode consists of placing the robot at a starting
location in the environment. The robot explores the environment. A learning episode ends when the robot reaches the
target.

Chapter 3. Methodology - Experiments 24

1) Experimental setup I:
This setup contains two robot agents, a collaborative robotic agent denoted as (. learns according
to the CQ(A) algorithm, i.e., learns both from interaction with the environment and from gathering

knowledge from an independent learning robot. The independent agent learns according to the

traditional Q(Z1) algorithm and does not gain knowledge from the collaborative learner. The

following parameters were set: oy =, =0.95 (initial values), 7=y, =0.99, and 4 =1, =0.5."

2) Experimental setup II:

This setup contains three agents where Q. is a collaborative robot agent that learns according to
the CQ(A) algorithm, i.e., gathers knowledge from other independent Q(4) learners and from
interaction with the environment. The other two agents learn independently according to the Q(4)

algorithm by interacting with the environment. The setup was set with the following parameters:

aAL=0)=03= 0.95 (1n1t1a1 Values), N=y2=y3= 0.99, and ﬂl = 12 = 13 =0.5.

3.5.2 Bag Shaking Experiment with a Fixed-Arm Robot
A system consisting of three experimental setups using different reward functions was developed

for testing the CQ(A)-learning algorithm. In all experiments performed, the first trial consisted of a

random shaking policy over the robot’s X , Y and Z axes. The systems acquired rewards achieved

based on interaction with the environment while y=0.9, 1=0.5, and «=0.05 were set. To balance
between exploration and exploitation (e.g., [Guo et al., 2004; Meng et al., 2006]), ¢ -greedy action

selection with £=0.1 was used. The experimental setups are described:

1) Experimental setup I:

In this experimental setup rewards were measured manually with a standard timer using (3.4).
When system learning performance was low, HO was asked to intervene and suggest various speeds
and adjacent state distances over the X , ¥ and Z axes of the robot gripper. For this experimental
set up, 75 learning episodes were separated into three stages: (i) training - during the first ten runs
the robot performs shaking policies autonomously, (ii) collaboration - this stage consists of forty
shaking policies with human intervention allowed, but whether the human is activated to intervene is
based on the system learning performance, and (iii) testing - for measuring the efficiency of the
human collaboration, the robot performed 25 policies using the original shaking parameters defined

in the training stage with no human intervention. To compare CQ(4) with the Q(1)-learning

' The RL parameters, o (learning rate), » (discount factor), and A (eligibility trace), are described in Section 4.1.

Chapter 3. Methodology - Experiments 25

algorithm, a second experiment was designed. The experiment consisted of 25 learning episodes in

which the system learned according to the standard Q(A)-learning algorithm with no human

intervention.'

2) Experimental setup II:

In this setup, a digital scale was used to automatically measure the rewards using a cumulative
reward function (3.5). Similar to the first experimental setup, when system learning performance is
low, the human is asked to intervene and suggest various speeds and adjacent state distances over the

X , Y and Z axes of the robot gripper. O(4)-learning is compared with CQ(1), running each of

them for fifty learning episodes.

3) Experimental setup III:

Similar to the second experimental setup, a digital scale was used to automatically measure the
rewards. The reward function used here is based on events, i.e., the occurrence of falling objects
(3.6). When system learning performance is low, the human is asked to intervene directly in the
system Q table. This is done by using an interface designed to take control of the different swing

weights over the robot X , ¥ and Z axes. Q(4) -learning is compared with CQ(A1), running each of

them for fifty learning episodes.

3.5.3 Navigation of a Mobile Robot
Four experiments using several robot autonomy modes were performed. Each experiment

included sensitivity analysis of adjusting various values of the y and 4 RL parameters. In the first
experiment, to compare the Q(1)and the CQ(A) algorithms, the robot autonomously learned the
environmental surroundings with no human intervention (according to the standard Q(1) algorithm).
In the remaining three experiments, the robot learned the environmental surroundings semi-
autonomously using guidance gained from human intervention (using the CQ(A1) algorithm).
Different levels of human intervention corresponding to three robot learning threshold values, A,
were defined and the robot switched its activity from semi-autonomous navigation to full autonomy.
The performance sensitivity of different 4 values (0.25, 0.5, 0.75) was tested for each combination

of values of y (0.9, 0.95, 0.99). Each combination of an autonomy level, » and 4, consisted of fifty

"' To compare between the algorithms, 25 learning episodes were taken into account for each one of them. For the CO(1)
algorithm, the learning episodes consist of the ten training learning episodes and the first 15 learning episodes of the
collaboration stage. This results a total of 25 learning episodes. For the Q(7) algorithm an additional 25 learning episodes
with no human intervention where considered.

Chapter 3. Methodology - Experiments 26

learning episodes, i.e., in each experiment, the robot was placed randomly in one of the world states

and tried to navigate toward a target state.

Chapter 4. Robot Learning Algorithms - Introduction 27

4. Robot Learning Algorithms

Chapter Overview
The objective of the new CQ(1) algorithm is to accelerate learning. Two CQ(1)-based learning
frameworks are presented: (i) learning with multiple agents, and (ii) learning with human-robot

systems. This chapter describes the algorithm including convergence and performance analysis.

4.1 Introduction

It is stated in [Ribeiro, 2002] “nearly all RL methods currently in use are based on the Temporal
Differences (TD) technique [Sutton, 1988]. The fundamental idea behind it is prediction learning:
when the agent receives a reinforcement, it must somehow propagate it backwards in time so that
states leading to that condition may be associated with a prediction of future consequences. This is
based on an important assumption on the process’ dynamics, called the Markov condition: the
present observation must be a conditional probability on the immediate past observation and input
action. In practical terms, this means that the agent’s sensors must be “good” enough to produce
correct and unambiguous observations of the process states.”

The basic assumption in Markov Decision Processes is that any state s,,, occupied by an agent is
a function only of its last state and action: s,,, = f(s,,a,) where s, €S and a, € A are the state and
action, respectively, at time step ¢ [Ribeiro, 2002]. In Q -learning, an algorithm specific to Markov
systems, the system estimates the optimal action-value function directly and then uses it to derive a
control policy using the local greedy strategy [Watkins, 1989]. It is stated in [Broadbent and
Peterson, 2005] “Q -learning can learn a policy without any prior knowledge of the reward structure
or a transition model.” Q -learning is thus referred to as a “model-free approach” where Q values
can be calculated directly from the elementary rewards observed. Q is the system’s estimate of the

optimal action-value function [Smart and Kaelbling, 2000]. It is based on the action value

measurement (s,,q,), defined in (4.1).

O(s1-a0) = ELr(sp,a) + 1V (s141)] =
=r(spa)+y Z Plsga1 5@V (5141) (4.1)

St es

where V' (s,,,) is the optimal expected cost and the y parameter is the discount rate that describes

t+1

how foreseeing the agent is; small values of y (e.g., close to zero) make the agent giving immediate

events higher significance. Equation (4.1) represents the expected discounted cost for taking action

Chapter 4. Robot Learning Algorithms - Introduction 28

a, when visiting state s,, and following an optimal policy thereafter. From this definition and as a

consequence of Bellman’s optimality principle [Bellman and Kalaba, 1965], (4.2) is derived.

O(sg.ar) =r(sp,a)+y ZSP(SHI |St>at)m2XQ(St+laat) 4.2)
S €

t+1

The essence of Q -learning is that these characteristics (maximum operator inside the expectation

term and policy independence) allow an iterative process for calculating an optimal action. The first

step of the algorithm is to initialize the system’s action-value function, Q. Since no prior knowledge
is available, the initial values can be arbitrary (e.g., uniformly zero). Next, at each time step ¢, the
agent visits state s, €S and selects an action a,€A4. Then it receives from the process the
reinforcement r(s,,a,) € R and observes the next state s,,,. The procedure continues by updating the

action value 0O(s,,a,) according to (4.3) which describes a Q -learning one step.

Oy 11(51.a7) = (1= @)Q; (sy,a) + alr(sy,a0) + 7V (5141)] (4.3)

where I},(sm) =max, .,[0,(s,,1,4,)] is the current estimate of the optimal expected cost V'(s,,) and
a 1s the learning rate which controls how much weight is given to the immediate reward, as opposed
to the old QO estimate. The greater «, the more the state-action value tends toward new information.
High values of a make learning faster, but ending up receiving slightly lower rewards. The process
repeats until a stopping criterion is met. The greedy action argmax, [0, (s..1,4,)] is the best the agent
performs when at state s,,,. For the initial stages of the learning process, however, actions are chosen
randomly to encourage exploration of the environment. Under some reasonable conditions (the
rewards are bounded and the learning rate is in the range of zero to one) [Watkins and Dayan, 1992],
by iteratively applying (4.3), convergence to the optimal value function is guaranteed [Smart and
Kaelbling, 2000].

A generalization of Q -learning, represented by O(4) [Peng and Williams, 1996] uses eligibility
traces, e(s,,a,): the one step Q -learning is a particular case with 4 =0 [Glorennec, 2000]. The O -
learning algorithm learns quite slowly because only one time step is traced for each action [Wang
et al., 2003]. To boost learning, a multi-step tracing mechanism, the eligibility trace, is used in
which the Q values of a sequence of actions are updated simultaneously according to the respective
lengths of the eligibility traces [Zhu and Levinson, 2005]. A4 represents the eligibility decay rate. The

greater A is, the longer the sequence of values of state-action pairs updated.

Chapter 4. Robot Learning Algorithms - CQ(A)-Learning for Multiple Agents 29

Although the convergence of Q(4) is not assured for 4>0, experience shows that learning is

faster [Glorennec, 2000]. Several action selection policies are described in the literature for RL

where the greedy policy (e.g., [Nason and Laird, 2004; Natarajan and Tadepalli, 2005]) is always to
choose the best action. Other policies (e.g., “softmax” [Bakker et al., 2006] or “¢ -greedy” [Sutton

and Barto, 1998]) are stochastic and based on choosing a suboptimal policy to explore the state-

action space.

4.2 CQ())-Learning for Multiple Agents
The proposed CQ(1) learning algorithm aimed to accelerate learning in a system composed of
multiple learning agents. The following assumptions are considered:
e The agents have an identical state representation of the environment.
e The agents have full communication to transfer value functions.
e The agents perform the same task, sequentially.
e Initial value functions for all learners are underestimated.
e Areward is given to an agent individually when it accomplishes the task.
In contrast with [Matari¢, 1997], where the learning algorithms of multiple robots consist of reward

functions that combine individual conditions of a robot, the CQO(1) learning algorithm for multiple

agents is based on a state-action value of an agent or learning process is updated according to the

best performing agent; collaboration is in taking the maximum of state-action values, i.e., the Q-
value, across all learners at each update step [Kartoun et al., 2005]. By applying this method, the O

value for a collaborative learner will be the best value. As opposed to parallel RL [e.g., Kretchmar,
2002; Grounds and Kudenko, 2006; Grounds and Kudenko, 2007] a sequential learning is performed
here. In parallel RL, several agents learn the value function of a particular task in parallel, i.e., each
agent gains a different learning experience while the agents learn the task simultaneously. The agents
share accumulated experience by keeping separate parameters for their own independent learning
episodes and the combined experience of all other agents. In sequential learning each agent performs
the learning task on its turn while the other agents are idle or assigned for a different task. Only when
an agent completed a learning episode (a stopping condition was met), the next agent is allowed to
perform the learning task. When all agents complete a learning episode, the first agent is allowed to
perform the task again. A sequential learning implementation for real robots is more practical than
the parallel one. Parallel implementation for a system in which there are more agents (real robots)
than the number of states is not feasible to be designed. This is due to the physical dimension of the
robots. If parallel implementation is desired for only small number of robots, then aspects such as

collision avoidance should be taken in account. This also involves designing a different reward

Chapter 4. Robot Learning Algorithms - CQ(A)-Learning for Multiple Agents 30

mechanism (additional rewards should be supplied for each robot for cases of encountering another
robot agent rather than a fixed obstacle). Further, the complexity of such a dynamic environment

should be taken into account since the state-space will not be deterministic anymore.

Initialize Q;(s,a) =0 where O is a matrix of size [S[x|A| and set eligibility trace e;(s,a) =0 for all (s,a)
iefl,2,.K}
where K is the number of learning processes (e.g. , robots).
Repeat (for each learning episode):
Set initial state s; and pick initial action ; .

Repeat (for each step ¢ of an episode):
Repeat (for each learning process i):
Take action ¢; , observe reward r; and the next state s; .

Choose a; A for s; —usinga certain policy (e.g., softmax).

*
aiz+1 < argmax Qi (Siz+| ? aim)
u'/+l

*

6 «r +7i0i(s; »a i)-0i(s;.a;)

eil (Sl'[,al-[) < el-[(Si, , a,-{) +1
For (s;.4;):

Q,.(sl.’ , a,.l) <« r{l:}(X[Qi (Sl-, N)]+ a, 51./ e (Sl-’ , a,./)

*
If aim =4aj4] Then €it (sir ,(ll") <~ ;/ﬂei’ (Sl" ,al‘!)
Else 6‘,’[(Sit ,ai[) «~0

Siz <_Siz+l; ait < aiHl
Until i = v where M is the maximal number of learning episodes.

where |X| = cardinality of X.

Fig. 4.1 CQ(4)-learning pseudo code for multiple agents

Qi(si, 4,) < makX[Qi(Si, 4,)+ a; 51', g, (Si, a;) (4.4)

In equation (4.4), o, is the temporal difference error that specifies how different the new value is
from the old prediction, and ¢, (s,,q,) is the eligibility trace that specifies how much a state-action
pair should be updated at each time step. When a state-action pair is first visited, its eligibility is set
to one. Then at each subsequent time step it is reduced by a factor y4. When it is subsequently
visited, its eligibility trace is increased by one [MackWorth et al., 1998].

Fig. 4.2 demonstrates a flowchart describing a system that consists of one collaborative agent and
multiple independent agents. The collaborative agent learns both from interaction with the
environment and from knowledge it gathers from all the independent agents. Each one of the

independent agents learns the environment according to the standard Q(A)-learning algorithm.

CQ(A) -learning is not limited for only one collaborative agent, and if desired, it is possible to

Chapter 4. Robot Learning Algorithms - CQ(A)-Learning for Multiple Agents 31

develop a system that consists of a combination of many CQ(4) learners and many independent
Q(A) learners. Another option is to develop a system that consists of only CQ(4) learners. If the

assumptions described above are addressed in such systems (in particular to underestimate value

functions for all agents during initialization), then there is no risk of overestimation of the agents’

value functions.

Perform Action
Collaborative |_ Get a Reward
Learning |
Agtg Arrive to a New Siate
Update learning function
CO(A) |«
y Perform Action
~ Get a Reward
Arrive to a New State
Learning
Agent (i)
A
o) Update learning function No
. ¥ Perform Action
P Get a Reward
Arrive to a New State
Learning
Agent (K)
Q(4)
Update learning function

Fig. 4.2 Flowchart for multiple agents CQ(4)-learning with one collaborative learning agent

Chapter 4. Robot Learning Algorithms - CQ(A)-Learning for Human-Robot Systems 32

4.3 CQ(M)-Learning for Human-Robot Systems
In human-robot systems, when applying CQO(1)-learning, the robot learning function acquires

state-action values achieved from policies suggested by a human operator (HO) (Fig. 4.3). In this

case, a moving average learning performance measure, L, is defined over the last N most recent

ave

learning episodes (4.5).

Leve =[S(Si)]/]\’ (4.5)

i=n—N

where n is the current learning episode, i=n—N,n—N+Ln—-N+2,..n—1. S;, a scaler in the range

[0, 1] calculated over the last N most recent learning episodes, indicates whether a policy was
successful for the i” episode or not. The threshold for a successful episode is defined as R (4.6)."

i

S:{l if R >R (4.6)

0 else
where R, is the reward achieved for the i”" learning episode. A ? is defined as a minimum acceptable

performance threshold, which is compared to the average performance, L,,. If the robot

performance fails below the threshold (4.7), the robot switches between fully autonomous operation
and semi-autonomous operation and requests human intervention. The procedure is repeated M

times where M (set a-priori) is the maximal number of learning episodes.

n—1
Lave :[Z(S’)]/N <A (47)

i=n—N
Two levels of collaboration are defined: (i) autonomous - the robot decides which actions to take,
acting autonomously, i.e., the robot updates its state-action values according to the standard Q(1)
learning algorithm, and (ii) semi-autonomous - the robot requests collaboration with the HO. The HO
then suggests an action or a policy and the robot uses the suggestion to replace its own exploration
process, i.e., a collaborative Q(1) (CQ(A)-learning) is performed. Human-robot collaboration is

unnecessary as long as the robot learns policies autonomously and adapts to new states. The HO is

required to intervene and suggest alternative policies if the robot reports that its learning performance

! The threshold value for a successful episode is determined based on empirical tests.
? The minimum acceptable performance threshold. Above this value, the human is called to intervene. This threshold
value is determined based on empirical tests.

Chapter 4. Robot Learning Algorithms - CQ(A)-Learning for Human-Robot Systems 33

is low (4.7), i.e., the robot switches its learning level from autonomous (self performing) to semi-
autonomous (acquiring human guidance) based on its learning performance. Fig. 4.4 shows the

CQ(A) -learning algorithm pseudo code for a robot and human.

Perform action

Robot Get a reward
learning

agent

ZON

@ i
-~ i
g i
E ' Autonomous
- . Operation
N RV
: i
H I
i Semi- i
i autonomous i
i Operation |
H i
:- |

Fig. 4.3 Flowchart for robot and a human operator CQ(4)-learning

Chapter 4. Robot Learning Algorithms - CQ(A)-Learning for Human-Robot Systems 34

Initialize O(s,a)=0 and eligibility trace e(s,a)=0 for matrices of size |S|x| 4| for the robot learning
process.
Set » =1 for the first learning episode.
Repeat (for each learning episode):
If ., <A use Action Selection I,

Else, use Action Selection I1.
Set learning agent to initial state s, and pick initial action q, .

Repeat (for each step of episode):
Take action q, , observe reward r, and the next state s, .

Action Selection I: human operator selects an action q,,; using a subjective maximal

function.
Action Selection II: choose a,,, from s,,; using any action selection rule (e.g.,

greedy, ¢ -greedy, softmax, etc.).

*
ay4) < argmax O(S41,dy41)

4

*
O 1+ yQ(spr1,a 1+1) - Q(sp,44)
er(sp,a;) = er(sp,ap) +1
For all (s;,a,):
O(sy,ar) < O(syap) + agder (s, a1)
If a; 1 = a;:_] , Then e¢;(s;,a;) < yie;(ss,a;)
Else ¢,(s;,a,) < 0
Sp <= Sp45 A < Art]
Until i = » where M is the maximal number of learning episodes.

where |X| = cardinality of X.

Fig. 4.4 CQ(4)-learning pseudo code for a human and a robot

An example of changing system autonomy is shown in Fig. 4.5. The example presents variable
autonomy that consists of two system levels: (i) autonomy, and (ii) semi-autonomy - acquiring
human guidance and suggestions. The robot switches its learning level based on its learning
performance. Here, the robot switches its learning level from semi-autonomous (acquiring human
guidance) to autonomous (self learning) based on its learning performance. In the example, the
acceptable learning performance threshold was set to A=0.6." The robot keeps measuring its
learning performance by averaging its last N > most recent learning episodes and comparing this

value, L,,., to A. In Fig. 4.5, an L,, greater than A indicates that the robot’s learning

performance is high, and the robot learns autonomously. Otherwise, human intervention is

allowed, i.e., semi-autonomous learning is performed.

' The minimum acceptable performance threshold. Above this value, the human is called to intervene. This threshold
value is determined based on empirical tests.
2 N was set to five.

Chapter 4. Robot Learning Algorithms - CQ(A)-Learning for Human-Robot Systems 35

1.0 i e e T R e S = == SIE
SA
0.8 = *4o——¢ + +4-00¢ =
06 THE
g / | |
= = 1 I
) A=0.6 5 N
0.4 I" ": + Lave
: : * Success / Failure
0.2 o+
| |
I |
1 1
0.0 cooeoesovel = e *
0 10 20 30 40 50

Learning episode (n)

SA - Semi-autonomous mode
Fig. 4.5 Example of moving learning performance average

donated as T,

ave >

A variation of L

ave >

may be used. 7, is defined as the learning performance of a

system in terms of the average number of steps to reach a goal and get a reward. This is different

from L, , where it is desired to maximize the value of L, . Instead, minimal values of T, indicate

a good learning performance. In this case, the measure ' is compared with the average number of

steps to reach the goal, 7., over the last N most recent learning episodes (4.8).

i1

Tm=[> (L,-)J/N (4.8)
i=t—N

where ¢ is the current learning episode, i=¢t—N,t—N+1,t—N+2,..t—1, and L is the number of steps

a learning agent performs at the i" episode. The HO is required to intervene and suggest alternative

policies if the robot reports a large average number of steps to reach the goal (4.9).

t-1
Tave_[z (Li)J/N>w (4.9)

i=t—-N

' The maximum acceptable performance threshold in terms of mean number of steps to reach a goal. Above this value,
the human is called to intervene. This threshold value is determined based on empirical tests.

Chapter 4. Robot Learning Algorithms - Convergence and Superiority Discussion 36

4.4 Convergence and Superiority Discussion

Since there is no convergence proof for the O(1)-learning algorithm [Sutton, 1999; Glorennec,
2000], it is claimed here that a convergence proof for CQO(4) where A>0 is also unobtainable.
[Watkins and Dayan, 1992; Jaakkola et al., 1994] proved that Q -learning will converge to an

optimal policy under certain conditions and showed that if every state-action pair is visited an

infinite number of times, Q -learning converges to a unique set of values that define an optimal
policy. Since a proof of convergence exists for the Q -learning algorithm, the main scope of this
section is to prove the existence of convergence for the CQ(A) -learning algorithm for the case where

A=0,ie., CO0).

For CQ(0) two cases are considered:

1) A system that consists of one learning agent (a robot) and one human [Kartoun et al., 2006 (a);
Kartoun et al., 2006 (b)]:

The robot learns to achieve a goal using Q -learning and measures its learning performance. Q -

learning [Watkins, 1989] works by successively improving its evaluations of the quality of particular
actions at particular states [Watkins and Dayan, 1992]. [Watkins and Dayan, 1992] prove a

convergence theorem for Q -learning and show that it converges to the optimum action-values with

probability one as long as all actions are repeatedly sampled in all states and the action-values are

represented discretely. [Jaakkola et al., 1994] provide a rigorous proof of convergence for a single
Q -learner using techniques of stochastic approximation theory via a new convergence theorem. The
Q-leaning algorithm given by 0,(5,.4,) = (1~ t,(5,,a,)0, (5,5 ,) + &, (5,01, (5,40, + 7V, (5,.1)]

converges to the optimal Q" (s,,a,) values if the following conditions apply:

1) The state and action spaces are finite.

2) ztat(st,at):oo and Ztatz(st,at)«so uniformly over s, and 4, with probability one.

3) Var{r(s;.a,)} 1s finite.

4) If y=1 all policies lead to a cost free terminal state with probability one.

The proof is based on the observation that the O -learning algorithm can be viewed as a stochastic

process to which techniques of stochastic approximation are applicable. The proof from [Jaakkola

et al., 1994] for essential lemmas and theorems is presented in Appendix II. For the CQ(0) human-

robot case, the only difference to standard Q-learning is that the exploration policy is changed, it is

Chapter 4. Robot Learning Algorithms - Convergence and Superiority Discussion 37

sometimes determined by the human. The basic Q-learning convergence proof applies as long as the
human does not systematically prevent the use of certain actions in particular states. In other words,
as long as the autonomous operation still guarantees that every action is executed infinitely often in
every state (a condition of the standard convergence proof is met), the convergence proof directly
extends to the human-robot interaction case.

In CQ(0), after each learning episode the learning performance is compared with A, the
minimum acceptable performance threshold above which the human intervention is requested. Since
CQ(0) -learning is a case of Q -learning where a human is required to intervene in a learning agent
activity, if a learning system performance is indicated to be higher than A then the system learns a

task using pure Q -learning, the convergence of which was already been proved [Watkins and
Dayan, 1992; Jaakkola ef al., 1994]. For the CQ(0) case where the human is asked to intervene

(when system learning performance is low) and his suggestions/selections of actions are not

necessarily optimal, CQ(0) will also converge to an optimal solution. Convergence is achieved since

the human activities, whether optimal or not, can be considered explorative (actions that have not
been tested enough and potentially can produce better solutions). The learning agent then uses these
activities to exploit its environment. Of course if the human intentionally and consistently chooses
the worst possible actions, the algorithm will converge as well, but slower. The human is assumed to
be an expert, and therefore will select beneficial actions. It is reasonable to consider the human for

this CQ(0) case as a greedy decision maker at times of human intervention, as opposed to “softmax”
[Bakker et al., 2006] or “¢ -greedy” [Sutton and Barto, 1998]. Since Q -learning was proved to
converge regardless of the action-selection method, CQ(0) will converge to an optimal solution if
every state-action pair is visited infinitely often as well. Furthermore, CQ(0) is a special case of Q -

learning and therefore, will also converge with probability one.

2) A multiple-agent learning system [Kartoun et al., 2005]:
For this case, the CQ(0) algorithm objective is to accelerate learning in a system composed of

multiple learning agents. Learning is based on the state-action value of a collaborative learner being
updated according to the maximal value within all other independent learning processes state-action

values exist in the learning system (including itself). CQ(0) superiority is based on the proof of
convergence for a single agent Q learner [Watkins and Dayan, 1992; Jaakkola et al., 1994]. On the

one hand, the problem of multiple agents simultaneously adapting is in general non Markov because
each agent provides an effectively non stationary environment for the other agents. Hence, the

existing convergence guarantees do not hold, and in general, it is not known whether any global

Chapter 4. Robot Learning Algorithms - Convergence and Superiority Discussion 38

convergence will be obtained, and if so, whether such solutions are optimal [Tesauro and Kephart,

1999]. On the other hand, the superiority for multiple Q -learners (CQ(0)) over the standard Q can

be demonstrated as described below.

Given a system that consists of i e{l,2,...K} learning agents where Q. is a collaborative learner
(i=1) and K -1 (K >1) Q-learners, based on one Q -learner convergence proof [Jaakkola et al.,
1994], for each Q-learner ie{l,2,..K} (assuming a learning rate of & such a=¢,=a, =,...=
and a discount factor y such y=y, =y, =,...=7¢):

o, (S[, 4,)=(- a)Q[, (S[, 4,)+ a[’/}, (S[, »a;)+ 71/;', (

1+l

s;)] (4.10)

Q1r+l
%,

(s,.4,)=0,(s,,q,)+0{r (s,,a l)+7(maXQl,(S,H, ,M)j—Qi,(Si,,ai,)} (4.11)

For the collaborative CQ(0) learner (Q.), the update rule is as follows:

ch+] (Scz ° acz) = QC, (SC, s ac,)

{ (4.12)
alr, (Sc[,ac[)+7[max [maxQ, (s, .a;)])—Qc, (Sc[»ac[)}

,,,,, z,

or:

0, (s,.a,)=0.(0,.a.,)
([D (4.13)
+alr, (s,.a,)+ 7| max maxQ, (5, »a,). max O,(s, ,a,) ||-0,(s,.a,)]
(4.13) can be written:
Qc,+l (Sc,’ac[):Qc[(Sc,aac,)
(4.14)
[(s,.a,)+7[maX[Q¢ 0]]j Q. (s,a,)}

where Q: is an estimator for an optimal Q.. To maintain superiority of Q, over standard Q learning

agents, i € {2,..K}, (4.15) must hold for all states.

Chapter 4. Robot Learning Algorithms - Convergence and Superiority Discussion 39

r,(s,.a,)+ y(max[@j,, 0]j -0, (s,.a,) <

it+1

(4.15)

r(s,,a,)+ 7[@:} -0,(s,,a,)

air+l

Since it is assumed that the agents have an identical state representation of the environment (4.16)

holds for any state.
rc, (Sc,’ac,) = I/;', (Si,’ai,) (416)

Thereby (4.15) can be written as (4.17):

a

v (I{,{aX[Q:, : QAZJJ =0, (s,.a,) < 7[@?] ~0,(s,,4,) (4.17)

i1

To assure that (4.17) holds, two constants C, and C, are defined such as

iy

C = 7(max[Q: , Q,]j -0, (s,,a,) and C, = y[QJ -0, (s,,a,) suchthat C, 20 and C, 20.

Qs

Two cases are possible:

Case I:

During an iteration:

0. <0 (4.18)
where (4.17) is written as (4.19):
10, =0, (s,.a,) <70, =0, (s,.4,) (4.19)

or:

Q,(s,.a,)20,(s,,a,) (4.20)

Chapter 4. Robot Learning Algorithms - Convergence and Superiority Discussion 40

Fix some positive constant A, :

0. (s.»a,)=0, (s;,a,) =4 (4.21)

If during the iteration, Q, (s,,a,) >0, (s.,a,), then O, (s, ,a,) is reduced in the amount of at least

A, . This is a sufficient condition to to assure that (4.17) holds, i.e., CO(0) is superior.

Case II:

During an iteration:

0. >0, (4.22)
where (4.17) 1s written as (4.23):
10, =0, (5,,a,) <10, =0, (5,.4,) (4.23)
or:
79, -0)<0,(5,.a,)-0,(s,.4,) (4.24)
Using A, from Case I, results (4.25):
70, -0 <A, (4.25)
Fix some constant A, :
A, =y(0, -0)) (4.26)

During any iteration, keeping A, <A, is a sufficient condition to assure that (4.17) holds, i.e.,

CQ(0) is superior.

Chapter 5. Multiple Mobile Robot Navigation - Introduction 41

5. Multiple Mobile Robot Navigation

Chapter Overview
CO(4)-learning algorithm is implemented in a simulation consisting of several robots.' Such a
version of collaborative learning involving the navigation of robots is based on maximizing the state-
action values of a collaborative agent by using interaction with the environment and by gathering

information from other agents that exist in the system.

5.1 Introduction

This section presents the implementation of the CQ(A1)-learning algorithm enabling learning
agents to acquire knowledge from each other. Acquiring knowledge learned by an agent via
collaboration with other agents is expected to accelerate learning performance. In implementing the

CQ(A) algorithm, the approach described in [Smart, 2002] is applied: the learning rate (a parameter

that controls how much weight is given to the current reward, as opposed to the old Q estimate) of

A

each agent ie{l,2,..N} for each state-action pair, a. is reduced adaptively over time. This is

done independently for each state-action pair using the number of times it has been updated

previously, ¢; . The effective learning rate at time step ¢, «;, , is then determined (5.1).

ai(r ar)
= (5.1)

lspar) — C:
Uspar)

Smart’s idea is based on the principle that the more a certain state-action pair is selected, the less it is
modified in response to any particular experience.

In [Sutton and Barto, 1998] it is stated “although ¢ -greedy action selection is an effective and
popular means of balancing exploration and exploitation [e.g., Guo ef al., 2004; Meng et al., 2006],
one drawback is that when it explores it chooses equally among all actions. Hence, it is as likely to
choose the worst action as it is the next-to-best action. The obvious solution is to vary the action

probabilities as a graded function of estimated value.” One way to do that is to choose action g, with
a probability that depends on the value of O(s,,qa,). This is known as “softmax” action selection. A

common method is to use a Gibbs or Boltzmann distribution (example is shown in Appendix VIII),

where the probability of choosing action g, at state s, is proportional to Q. This probability is

denoted P(a,,s,) (5.2).

! The terms agent and robot will be used interchangeably.

Chapter 5. Multiple Mobile Robot Navigation - Task Definition 42

£005.:0)/T
S LG (5.2)

Ay €4

Plag|s¢)=

where 7 is a positive parameter that specifies how randomly values should be chosen. When 7 is
high, all actions have the same likelihood of being chosen. As 7 decreases, the highest valued
actions are more likely to be chosen, and at the limit 7—0 the best action is always chosen

[MackWorth et al., 1998].

5.2 Task Definition
Several robots learned to navigate a two dimensional world that contains undesirable areas' with
the objective of choosing the optimum path to reach a target. The agents learned the environment

sequentially (Fig. 4.1 and Fig. 4.2), i.e., a collaborative agent, Q. , performs a learning episode, then
another independent Q(A) agent performs a learning episode etc. After all agents perform one

learning episode the collaborative agent uses both the experience it gained from the environment and
from the other agent(s), and then a new sequence of learning episodes begins. The task’s goal for the

collaborative robot agent is to decrease its learning time relative to that of independent QO(A)-

learning agents [Kartoun et al., 2005].

5.3 Experimental Setup

Robot states include robot locations in an 11 x 11 two dimensional world (Fig. 5.1). Robot
learning agents ie{l,2,...K} can navigate the world where Q. is a collaborative learner (i=1) and
K -1 (K >1)are Q(1) agents. Q. learns via both: (i) acquiring experience and interaction with the
environment and (ii) acquiring experience from the other Q(4) learners that learn the environment
independently according to the standard Q(1) learning algorithm; this is done by taking the maximal
O value of all agents that exist in the system. An agent’s interaction with the environment is

performed by getting rewards and punishments, i.e., if an agent reaches the target, the reward is +1,
and if it passes through an undesirable area, the reward is -1. A learning episode describes the

placing of an agent at a starting state in the environment and letting it reach the target.

! Undesirable area - an area where a robot can physically pass through but it is not recommended.

Chapter 5. Multiple Mobile Robot Navigation - Experimental Setup 43

Target (8, 11)

\

Undesirable Areas

(3, 2) Starting Point
Fig. 5.1 An 11 x 11 two dimensional world

The world consists of three layers: (i) environmental cells - areas through which the robot should
navigate on its way to the target, (i1) undesirable areas - reduced cells, and (iii) target - an elevated
cell (Fig. 5.1). A robot can move from a cell to any one of its four adjacent neighbors with the
restriction that it cannot move out of the world. The task of the learning agents is to learn to navigate
the world by choosing optimal routes to a known target using what they learn from the environment
and exploiting knowledge sharing.

The simulated system was evaluated using two experimental setups. In both setups one
collaborative agent learns both from interaction with the environment and from one or more agents.

The other agents learn only by interacting with the environment according to the standard Q(1) -

learning algorithm. Further, in both setups the number of learning episodes was set to 100, i.e., the
algorithm stops after an agent navigates from a starting point to the target 100 times. System
performance was evaluated by choosing a starting point for each of the agents (coordinates (3, 2)).
For this state, the optimal route length for traveling to the target at coordinates (8, 11) was found to
be 14 steps (Fig. 5.1). An optimal solution consists of finding the shortest path to the target from the
coordinates (3,2) while a convergence to a near optimal solution is measured by averaging a history

of ten most recent trials and was set arbitrarily at twenty. The setups are described as follows:

Chapter 5. Multiple Mobile Robot Navigation - Results and Discussion 44

1) Experimental setup I:

This experiment contains two robot agents where the first learns according to CQO(1) and the
second learns according to the Q(1) algorithms. The following parameters were set: o =a, =0.95

(initial values), y;=7,=0.99,and 4 =4,=0.5.

2) Experimental setup II:

This experiment contains three agents, the first of which learns according to CQ(1) while the
other two learn according to the Q(4) algorithm. The setup was set with the following parameters:
o =, =3 =0.95 (initial values), =7, =y3=0.99, and 4 =4, =4=0.5 (Fig. 4.1 and Fig. 4.2).

In the above experimental setups, as in [Kaelbling ef al., 1996; Abramson and Wechsler, 2003],

the learning rate for all agents was set to be considerately high (0.95) and was slowly decreased. In
early stages of learning, a greater « is desired, this enables the agents to explore the environment.
As the learning procedure proceeds, « is decreased to let the agents exploit the environment more
often. As in [Clause, 1996], the discount rate () was set to 0.99 for all agents. This makes the
agents to give a higher significance to future rewards. As in [Abramson and Wechsler, 2003], the
eligibility trace (4) was set to 0.5. The 0.5 value was chosen to let a long sequence of values of
state-action pairs to be updated while keeping the computational time to perform the algorithm

reasonable.

5.4 Results and Discussion

Experiments based on fifty simulation runs were conducted for both setups. An example for state
values of one of the runs is given in (Fig. 5.2). Additional examples are presented in Appendix XIII.

Fig. 5.3 illustrates fifty simulation runs' performed for the convergence of one CQO(1)
collaborative agent and one Q(1) independent agent. The figure clearly shows that the learning curve
of the collaborative agent is below the learning curve of the independent agent, i.e., the collaborative
agent’s performance was superior to that of the independent agent. Additionally, learning curves are
shown for the collaborative and independent agents, and learning rates® were calculated as 0.6 and

0.58 respectively.

" One simulation run contains 100 learning episodes. Each learning episode consists of placing the robot at a starting
location in the environment. The robot explores the environment. A learning episode ends when the robot reaches the
target. The number of steps a learning episode consists of is denoted “the path length.”

* The learning rate parameter determines how significantly an agent improves. The reader should make a distinction
between the learning rate evaluation performance measure which indicates the improvement of learning and a, the RL
learning rate parameter.

Chapter 5. Multiple Mobile Robot Navigation - Results and Discussion 45

State
Value

Fig. 5.2 An 11 x 11 world state-value map after 100 learning episodes

900 -5

800

700

600

500

+Robotl - CQ(%)

ERobot2 - Q1)
400

Pathlength

300

200

100

0 10 20 30 40 50 60 70 80 90 100

Learning episodes

Fig. 5.3 Fifty simulation runs for convergence of two robots

To strengthen the statement that the collaborative agent is superior, Fig. 5.4 is presented. Fig. 5.4

compares the performance of the collaborative agent to the independent agent. It presents the percent

Chapter 5. Multiple Mobile Robot Navigation - Results and Discussion 46

of better or equal collaborative learning performance for each learning episode (one to 100). This is
achieved by comparing individual learning episode performances of the fifty simulation runs. It is
clearly seen here that only in a very few cases (at early stages of learning), the independent agent

performed better.

—Robotl - CQ() vs. Robot2 - Q(X)
100 vV

go . MJ\/\W -
) /\/V AL

. S\

60 V

Ry

LV

30

CQ(h) performed better or equally to Qi) [%0]

Learning episodes

Fig. 5.4 [%] of simulations that CQ(4) learner performed better or equally to Q(4) learner

Similarly, fifty simulation runs for convergence of one CQ(4) collaborative agent and two
QO(4) independent agents are shown in Fig. 5.5. The collaborative agent’s superiority over the

independent agents is again clearly shown. Learning curves are also shown for the collaborative and
independent agents and learning rates were calculated as 0.6, 0.58, and 0.58 respectively. More
detailed graphs are shown in Appendix XIV.

To strengthen the statement that the collaborative agent is superior to the two independent agents,
Fig. 5.6 is presented. Fig. 5.6 compares the performance of the collaborative agent to the two
independent agents. It presents the percent of better or equal collaborative learning performance for
each learning episode (one to 100). This is achieved by comparing individual learning episode
performances of the fifty simulation runs. It is clearly seen here that only in a very few cases (at early

stages of learning), the independent agents performed better.

Chapter 5. Multiple Mobile Robot Navigation - Results and Discussion

47

Path length

1000

200

800

700

600

500

400

300

200

100

100

90

80

70

60

50

40

30

20

CQ(x) performed better or equally to Q(3) [%o]

+ Robotl - CQ(})
B Robot2 - Q)

Robot3- Q%)
Learning episodes
Fig. 5.5 Fifty simulation runs for convergence of three robots
—Robotl - CQ(.) vs. Robot2 -Q(%) —Robot1 - CQ() vs. Robot3 -Q(%)
VNSV
vV
¥
VAR
1 12 23 34 45 56 67 78 89 100

Learning episodes

Fig. 5.6 [%] of simulations that CQ(4) learner performed better or equally to O(4) learners

Chapter 5. Multiple Mobile Robot Navigation - Results and Discussion 48

Based on the results shown in Table 5.1, a 7T-test was conducted. Ten hypotheses were evaluated

to test the difference between the setups based on the mean number of steps required to converge to

optimality and to near optimality (Section 3.4.1). The hypotheses are shown in Table 5.2.

Table 5.1 Summary of results for the multiple agents navigation task

Experimental setup I Experimental setup II
R/* R,* Ry* R,* Ry*

Learning strategy C0@) o) C0@) 0@i) 0@)
Mean / standard deviation of 56.8/13.6 | 68.4/140 | 552/14.1 | 68.9/13.9 | 69.4/14.4
steps to converge to optimality
Mean / standard deviation of
steps to converge to near 37.7/7.2 56.2/10.1 36.8/6.5 56.2/15.6 | 56.6/11.2
optimality

* Ry - Collaborative agent, R, and R; are independent O(7) agents.

Table 5.2 CQ(4) for multiple agents - performance evaluation hypotheses

Evaluation

Performance Measure*

Hypothesis**

Evaluation within

Cco

H,y: There is no difference between R, and R,.
H,,;: There is a difference between R; and R,.

experimental setup I
learning agents

CNO

H>y: There is no difference between R, and R,.
H;: There is a difference between R; and R,.

Cco

Hjy: There is no difference between R, and Rj.
Hj;: There is a difference between R, and Rs.

CcoO

H,y: There is no difference between R; and R,.
H,;: There is a difference between R; and R,.

Evaluation within

Cco

Hsy: There is no difference between R; and Rs.
Hs;: There is a difference between R, and Rs.

experimental setup I1
learning agents

CNO

Hyg,: There is no difference between R, and Rs.
Hy;: There is a difference between R, and Rs.

CNO

Hy: There is no difference between R; and R,.
H;,;: There is a difference between R; and R,.

CNO

Hgy: There is no difference between R; and Rs.
Hg;: There is a difference between R; and Rj.

Evaluation between

Cco

Hyy: There is no difference between the performance
of one collaborative learner while learning from one
or two robot agents.

Hy,;: There is a difference between the performance
of one collaborative learner while learning from one
or two robot agents.

experimental setups I and
11

CNO

H,p: There is no difference between the
performance of one collaborative learner while
learning from one or two robot agents.

H;y;: There is a difference between the performance
of one collaborative learner while learning from one
or two robot agents.

* CO - Convergence to optimality, CNO - Convergence to near optimality.
** R1 - Collaborative agent, R2 and R3 are independent O(4) agents.

Null hypotheses H;pand H,y were rejected with P-values of 2.86-107 and 1.18-10™"7, respectively,

which indicates that the mean number of steps to converge to optimality/near optimality of the

learning agents are not equal. Null hypothesis H3, was not rejected (P-value of 0.43), which signifies

Chapter 5. Multiple Mobile Robot Navigation - Results and Discussion 49

that it can not be ruled out with sufficient confidence that the performance of the two learning agents
is different. Null hypotheses H,) and Hs) were rejected with P-values of 2.16:10° and 1.41-10'6,
respectively, showing that there is a difference between the mean number of steps to converge to
optimality/near optimality of the learning agents. The null hypothesis Hsy was not rejected (P-value
of 0.44), and is again indicative that it can not be ruled out with sufficient confidence that the
performance of the two learning agents is different. Null hypotheses H7y and Hgy were rejected with
P-values of 9.9-10" and 1.65-10""7, respectively, showing that there is a difference between the
means of number of steps to converge to optimality/near optimality of the learning agents. The mean
number of learning episodes over fifty simulation runs for convergence of two and three robots is
presented in Fig. 5.3 and Fig. 5.5 respectively. Based both on an evaluation of the hypotheses H;g
through Hgy and on Table 5.1, the robot using the CQ(1) algorithm has faster learning performance

while converging either to near optimality or to optimality relative to robots that use the Q(4)

algorithm. Also, looking at Fig. 5.3 and Fig. 5.5, note that initially, at the beginning of the
experiment, the robots require a large number of steps to succeed at learning because at that time the
agents lack sufficient knowledge about the world. As learning proceeds and the agents gain more
knowledge, the number of steps drops dramatically. For evaluating whether adding a third learning
agent improves learning, hypotheses nine and ten were tested (Table 5.2). Null hypotheses Hgy and
H ;g9 were not rejected with P-values of 0.29 and 0.27, respectively. For both cases, it can not be
ruled out with sufficient confidence that the performance of the two learning agents is different.

To test whether there is a significant difference between the learning rates' of each learning agent

for both experimental setups, the following hypotheses were analyzed using a 7-test (Table 5.3).

Table 5.3 CQ(4) for multiple agents - learning rates evaluation hypotheses

Evaluation Hypothesis*
Evaluation within Hj;o: There is no difference between Lp and Lg, .
experimental setup I
learning agents

Hjpp: Ly is larger than Ly .

H >y There is no difference between LRl and LR2 .

Hppp: Ly is larger than Ly .

Evaluation within H)3p: There is no difference between Lp and Lg .
experimental setup 1I ’

learning agents Hjsp: L is larger than Lg .

H 49 There is no difference between Lg, and Lp, .

H 4. There is a difference between Lg, and Lg, .

* Lp - Learning rate of the collaborative agent, Lg and Lg_ are learning rates of the independent O(2) agents

' The learning rate parameter determines how significantly an agent improves. The reader should make a distinction
between the learning rate evaluation performance measure which indicates the improvement of learning and a, the RL
learning rate parameter.

Chapter 5. Multiple Mobile Robot Navigation - Summary 50

For experimental setup I, null hypothesis H;;9 was rejected with a P-value of 0.023, which
indicates that the learning rates are not equal. For experimental setup II, null hypotheses H;,) and
H 39 were rejected with P-values of 0.03 and 1.73~10'3, respectively, which indicates that the two

independent learning agents (Lz, and Lg) has different learning rate values compared with that of
the collaborative agent (L). An additional hypothesis (H;49) was tested to check whether the
learning rates of the independent agents (L, and Lp) are equal. With a P-value of 0.174, H,49 was

not rejected, indicating that it can not be ruled out with sufficient confidence that there is a difference

between the independent agents’ learning rates.

5.5 Summary
The simulation demonstrated the positive effect collaboration between several learning agents had
on learning speed. The different experiments each comprised fifty simulation runs and a variety of

robot combinations. Two robots compared according to their performance using the Q(4) algorithm

showed an average improvement of 17.02% for the number of learning steps required to reach
definite optimality and an average improvement of 32.98% for convergence to near optimality.
Significant statistical differences were observed for both convergence to optimality and convergence

to near optimality while comparing two robots, the first using CO(4) and the second using Q(4).
However, while using three robots, the first using the CQ(1) and the second and third using Q(1),

no statistically significant differences were noted in either convergence to optimality or convergence

to near optimality while comparing the Q(1)-based robots’ learning performance. But statistically

significant differences were found in both convergence to optimality and convergence to near

optimality while comparing the CQ(1)-based robot to the other two. Additionally, no statistically

significant differences were observed for either convergence to optimality or convergence to near

optimality using a CQ(A4)-based robot learning in either two robot or three robot environments. In
conclusion, the CQ(A) algorithm proved superior to the Q(1) algorithm for both setups.

Furthermore, the performance of the collaborative agent did not improve when the number of
independent learning agents was increased from one to two.

In terms of agent learning rate (the lower the learning rate, the greater the improvement in
learning), the independent agents showed better improvements in learning than did the collaborative
agent for both of the experimental sets described. Although the collaborative agent learns faster than
the independent agents and reaches an optimal solution faster, the independent agents’ improvement
of learning is faster. This is, of course, reasonable since the independent agents learn less efficiently

than the collaborative agent during the early stages of learning and because all agents (collaborative

Chapter 5. Multiple Mobile Robot Navigation - Summary 51

and independent) eventually converge to the same optimal solution (after many episodes); therefore,
the independent agents must “catch up” with the collaborative agent.

In the multiple-agents systems described in this work, only instances of one CQ(4) learner per
system were described while the others were independent Q(4) learners. Since it was shown that

there is no advantage in using a system that contains more than two agents, the development of a
system that contains two collaborative agents should be considered as an interesting future research
topic. If such a system would follow the conditions described in Section 4.2, it would be expected to
achieve a better solution than for the scenarios described in this work, resulting also an identical

optimal policy for both CQ(A1) learners.

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Introduction 52

6. Bag Shaking Experiment with a Fixed-Arm Robot

Chapter Overview
A robot can acquire a policy suggestion from human about how to empty the contents of a bag. In
this chapter, the learning task described is to observe the position of a suspicious plastic bag located

on a platform, grasp it with a robot manipulator, and shake out its contents. The CQ(4) algorithm is

applied to this learning task.'

6.1 Introduction

The usual method for bomb squad personnel that encounter a suspicious bag is to blow up the bag
and its contents, which may be explosives. However, if the bag contains chemical, biological, or
radiological material, this method can have disastrous results. Furthermore, the “blow-up” method
also destroys important clues such as fingerprints, type of explosive, detonators, and other useful
evidence for subsequent forensic analysis. This section addresses an alternative to the conventional
method, entailing extraction of the bag’s contents using a robot, thus avoiding the problems outlined

above [Kartoun, 2003; Edan et al., 2004; Kartoun et al., 2004].

For a robot to empty the contents of a bag, one side of its gripper must slide under the bag, but
because of slippage, the robot’s grasp may fail. Thus, it is important to know the type of bag and the
location of the opening before the grasp point assessment is made. Moreover, the robot’s grasp may
also fail because of the soft, unknown surface texture of the object considered here. Once the bag
type is known, a rule set specific to that type of bag is evoked to determine the best robot arm shake
trajectories to discharge the contents of the bag for subsequent inspection. In a robotic bag inspection
system, it is advantageous to automate bag classification, which is coupled to robotic tactics such as
shaking out the bag’s contents. Therefore, a multi-category bag classification for four bag classes
was designed using support vector machines (SVMs). By finding a set of optimal features
representing a bag, a classification rate of 96.25% was obtained for a polynomial kernel of degree

nine (Appendix IV.) [Kartoun et al., 2006 (c)]. A Motoman UP-6 fixed-arm-based robot learning
system was developed for comparing the traditional Q(1) learning algorithm with the CQ(A4)

learning algorithm using the suspicious plastic bag type.

! Although other alternatives are available for solving the proposed security problem, such as cutting open the bag or
sliding the objects to be inspected out of the bag, the application was selected to serve as a test-bed for the CQO(4)-
learning algorithm.

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Task Definition 53
6.2 Task Definition

The learning task is to observe the position of a plastic bag located on an inspection surface, grasp

it with a fixed-arm robot, learn how to shake out its contents in minimum time. This is done via both

interaction with the environment and policies suggested by a human operator (HO).

6.3 Experimental Setup
6.3.1 Introduction

Three experimental setups were designed to compare the Q(4) and CQ(A)-learning algorithms:
(1) the rewards are calculated based on a linear function and measured manually, and the human is
allowed to intervene and change the learning state-space by adjusting speeds and adjacent state
distances of the robot’s X, ¥ and Z axes; (ii) the rewards are calculated automatically using a
digital scale and are based on a cumulative reward function, and similar to the first experimental
setup, the human is allowed to intervene and change the learning state-space by adjusting speeds and
adjacent state distances of the robot’s X, ¥ and z axes; and (iii) the rewards are calculated
automatically using a digital scale, are based on an events-based reward function, and the human is
allowed to intervene directly in the system Q table done by using an interface designed assume
control of the different swing weights over the robot’s X, ¥ and Z axes.

The system has no a-priori knowledge regarding the most efficient shaking policy for any given
plastic bag, but it learns this information from interaction with the environment and from human
guidance. For the three experimental setups, robot states denoted as s, € S (Table 6.1) and pertain to
its gripper location in a three-dimensional grid (Fig. 6.1). The performance of the task is a function

of a set of actions, a, € 4, for each physical state of the system.

Table 6.1 States description of the three-dimensional grid - the bag shaking task

Number of
State(s) Description Number of states possible actions
from a state
S(Center), State center 1 18
S(X), S(X,)), S(X), States where the robot
’ ’ ’ can move over its 6 2
S, S, S, Y axis
S, S, S, States where the robot
’ ’ ' can move over its 6 2
S, SO, S0, ¥ axis
S(Zy), S(Z,), S(Z.), States where the robot
| ’ ’ can move over its 6 2
), 2, 52, 7 axis

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Experimental Setup 54

“Adjacent State
Distance”

s
A R
F

7 “Forward-

Backward”
Shaking
Y axis
-
+ By
""""""" T i
1 Horizontal
Pig : Shaking
L] 22_ :
: Vertical
1 Shaking

Fig. 6.1 Bag shaking task state-space

An action, q,, consists of a robot movement from a point (X ,Y ,Z) along a single coordinate
direction. The v axis is defined as the horizontal shaking axis, i.e., actions are performed in parallel
to the horizon (left to right). The X axis is defined as the “In and Out” axis. Similarly to the v axis,
actions are performed in parallel to the horizon, but differently, the X axis is perpendicular to the Y
axis. Over the Z axis, actions are performed vertically to the horizon (up to down). The robot starts a

shaking policy from the s, state located above the inspection surface. From s, it can move

in the direction of any of the three coordinates reaching any of the other 18 states. The distance
(denoted ““adjacent state distance”) between any two close states is set a-priori to performing a

shaking policy (e.g., distances between s, , and s, , or between s, and s , are 30 mm).
From any robot state other than s, , the robot is limited to either symmetrical actions or returning
to the center position (e.g., from state s, , the robot can move only to s, Orto sy ,).!

Human-robot collaboration is unnecessary as long as the robot learns policies and adapts to new
states without a serious deterioration in its performance. When the robot exhibits low learning
performance (6.1), the HO is required to intervene and suggest alternative shaking speeds and

adjacent state distances, which are then acquired by the robot’s learning function:

' This limitation was set to keep the state-space size of the task in a reasonable size. Enabling actions such as moving
diagonally from one axis to another would prevent the accomplishment of performing experiments within a reasonable
time if convergence to optimal solutions is desired.

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Experimental Setup 55

n—1
Ly, =(Z(S,-)]/Nm (6.1)

i=n—N

where n is the current learning episode, i=n—N,n—N+1,n—N+2,..n—1. S;, a scaler in the range

[0, 1] calculated over the last N most recent learning episodes, indicates whether a policy was

successful for the i episode or not. Based on empirical tests, the threshold for a successful episode

was setto R =25 (6.2).

(6.2)

i

1 if R>R
S={lfl>

0 else

where R; is the reward achieved for the i”" learning episode. A is defined as a minimum acceptable
performance threshold, which is compared to the average performance, L,,. If the robot

performance fails below the threshold (4.7), the robot switches between fully autonomous operation
and semi-autonomous operation and requests human intervention. The procedure is repeated M
times where M (set a-priori) is the maximal number of learning episodes.

Two levels of collaboration are defined: (i) autonomous - the robot decides which actions to take,

acting autonomously according to a Q(1) learning function, and (ii) semi-autonomous - the robot

requests the HO to suggest a policy, thus using the suggestion to replace its own exploration process.

The three experimental setups described below utilize a Motoman UP-6 fixed-arm robot
positioned over an inspection surface. A dedicated gripper was specifically designed for grasping a
plastic bag. In all of the experiments, the first learning episode consists of a random shaking policy
over the robot’s X, v or Z axes. The system earned rewards via its interaction with the

environment, and initial system values were set at y=0.9,4=0.5, and «=0.05. To balance between
exploration and exploitation (e.g., [Guo efal., 2004; Meng et al., 2006]), ane -greedy action

selection with £=0.1 was used.

6.3.2 Experimental Setup I: Manually-Measured Reward Inspection System
In this experimental setup, rewards were measured manually with a standard timer using a linear-

based reward function (6.3). When system learning performance was low, the human was asked to
intervene and suggest various speeds and adjacent state distances over the X, ¥ and Z axes of the
robot gripper. Robot learning experience was gained through direct experience with the environment
according to rewards based on the number of items that fell from the bag after performing a shaking

policy. Its value is linearly dependent on the number of falling items, i.e., the robot gets a numerical

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Experimental Setup 56

value of 20 (¢=20") for every item that dropped. The reward is given to the robot when it completes
the learning episode and is equal to the number of items fell during performing the shaking,

multiplied by ¢ . If no items fall out of the bag, the robot is “punished” by getting no reward.

Ry=c-0 (6.3)

where O is the number of items that fell from a bag during a shaking operation. At the beginning of
each learning episode performed, the robot grasps and lifts a bag containing five wooden cubes (Fig.

6.2a and Fig. 6.2b) Then it performs a shaking policy.

(a) Robot and inspection surface (b) Plastic bag and cubes
Fig. 6.2 Experimental setup - Motoman UP-6 fixed-arm robot system

The UP-6 robot has no a-priori knowledge in its initial learning stages; thus, in addition to
interacting with the environment and getting rewards/punishments, policy adjustments are provided

by the HO through an interface (Fig. 6.3).

' ¢ is a positive constant to adjust the reward values achieved. Its value is determined based on empirical tests.

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Experimental Setup

57

Visual Feedback (ﬂ) Human-Robot Collaboration Control

Collaboration Level according to Robot Learming Perfformance

o e Semi-Autonomous Mode - Robot Learning
k- i . (C Performance is Low - Human Suggests an
! Ahlternative Policy to the Rebot.

Human Decision Making - Suggest a Shaking Policy

Arm Spead 1:
100 1500 (mis)
» (d) | =
B Arm Speed Z |
1 |||'|_
: t 100 1500 {mis)
e - —
< » Lpm Step Size | 040.000 =l mm)
System Performance
Actusl Performance |— (%)
Threshokt | T T (%)

Fig. 6.3 Human interface - bag shaking task with a Motoman UP-6 fixed-arm robot system'

The interface views and controls consist of the following:

a) Real-time visual feedback captured from a web-camera located over the robotic scene.

b) System learning performance reporting - this includes the performance (in percents) of the

last five episodes.

c) System mode reporting - autonomous or semi-autonomous.

d) Human decision making control - when asked to intervene, the HO can determine robot

shaking adjacent state distances (10 - 50 mm) and speeds (100 - 1500 mm/s). The robot

learning function acquires the suggested parameters and performs a new shaking policy.

Experiments

Two experiments were conducted, the first of which employed CQ(A4)-learning and comprised 75

learning episodes separated into three stages: (i) training - during the first ten runs the robot performs

shaking policies autonomously. The initial shaking parameters were set at an adjacent state distance

of 30 mm, and to speeds of 1000 and 1500 mm/s; (ii) collaboration - this stage consists of forty

shaking policies, and human intervention is allowed based on the system learning performance. The

human can adjust shaking policy parameters in the ranges of 10 to 50 mm for the adjacent state

distance and 100 to 1500 mm/s for the speed, and (iii) testing - for measuring the efficiency of the

" In this preliminary experiment two speed settings are shown. This allowed to double the state-space size by defining
two identical sets of states and action while for each one of them a different speed could be determined by the human

operator. During further experiments described in this work this ability was eliminated because it is not intuitive.

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Experimental Setup 58

human collaboration, the robot performed 25 policies using the original shaking parameters defined
in the training stage. No human intervention was allowed in stages (i) and (iii).

To compare CQ(1) with the Q(4)-learning algorithm, a second experiment was designed. The

experiment consisted of 25 learning episodes in which the system learned according to the standard

0O(A) -learning algorithm with no human intervention.

6.3.3 Experimental Setup I1: Automatically-Measured Cumulative-based Reward
Inspection System

A digital scale was used for automatically measuring the rewards. This experiment (Fig. 6.4) was

setup similar to that described in Section 6.3.2.

Fig. 6.5 Digital scale located under an inspection surface

In this experiment, five identical screws are inserted into the plastic bag while resting on the

inspection surface (Fig. 6.6).

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Experimental Setup 59

(a) Plastic bag and five screws (b) Closed plastic bag with screws

Fig. 6.6 Suspicious plastic bag

For evaluating the system performance, a cumulative-based reward function was used (6.4).

T (w.
R,=c:| X | —L (6.4)
i=o\ 1j

where w; is the current weight measured by a digital scale at time ¢; (increments of 0.25 second),

T=min{Fixed Horizon Time', Amount of Time when all Objects Fell’} is the time of shaking, and ¢
is a positive constant to adjust the reward values achieved and R, is the reward for learning episode
n.

Similar to the first experimental setup, when system learning performance was low, the human
was asked to intervene and suggest various speeds and adjacent state distances over the X, ¥ and Z
axes of the robot gripper. Policy adjustments were provided by the HO through an interface (Fig.
6.7).

! Fixed Horizon Time is the time it takes the robot to perform a pre-defined number of state-action transitions (it was set
to 100 state-action pairs).
% The amount of time when all objects fell is measured.

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Experimental Setup 60

Visual Feedback

Collaboration Level

(©)

Human-Robot Collaboration Control d)

Semi-Auwenomous Mode - Human Suggests a Policy.

Human Decision Making - Suggest a Shaking Policy

Axis Amplitude (Step Size of X, ¥, and 7) -0 1o 50 cm

Fotwear o Bachward Slep Size: | & Lot ore :J 5 em
Lef-Right Step Size: | & Lithe Less = o
Successiil Policy Time
12 Axis Speed Control (of X, ¥, and Z) - 100 to 1500 mm / sec
' I | | l Forseard Backward Speed: | 1P Current e | aee
[sec]

. l Lef.Fight Speed: = [
' :

" L b “ s Up-Down Speed: y mim [sec

Successful
Policy Nurmlier
(b) Cummulative Success Rale Eliminate Axis
[ex10% [Forward-Backward | LeftRight = Up-Down
100
L] Message
(1]
l."I-]. Policy was successful!
n
L 1w M 30 an L1
Leasning
Episode

Fig. 6.7 Human interface - bag shaking task with a Motoman UP-6 fixed-arm robot system

The interface views and controls consist of the following:
a) Real-time visual feedback captured from a web-camera located over the robotic scene.
b) System learning performance reporting - this view includes two graphs:

1. Successful performance time - a red arrow shows the time the robot needed to
perform the last successful shaking compared with the average of all successful
policies (the yellow surface).

ii. Cumulative success rate - measures the percent of all learning episodes performed.

c) Collaboration level - autonomous or semi-autonomous.

d) Human-robot collaboration control - when asked to intervene, the HO can determine robot
shaking adjacent state distance (0 - 50 mm) and speeds (100 - 1500 mm/s) for each axis
separately. He can also eliminate robot actions over a specific axis. The interface allows the

HO to guide the robot using linguistic terms (e.g.,“a lot more”, “a little faster”, etc.). The

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Experimental Setup 61

robot learning function acquires the suggested parameters and performs a new shaking

policy.

Experiments
Robot learning is achieved through direct experience with the environment according to weight

measurements achieved from the digital scale placed under the inspection surface. The weight on the
scale depends on the number and occurrence of screws falling from the bag during a shaking learning

episode. In this experimental setup, Q(4) is compared with CQO(1), running each of them for fifty

learning episodes.

6.3.4 Experimental Setup I11: Automatically-Measured Events-based Reward
Inspection System

The experimental setup described here is identical to the setup described in Section 6.3.3.
Similarly, a digital scale was used to automatically measure the rewards. The reward function used

here, however, is based on events, i.e., the occurrence of falling objects (6.5).

W i—W i_
A(zj)[le)

T w
R,=c- > 5

(6.5)

AG)= 0, if noitems fell
- I, if anitem(s) fell

where R, is the reward at learning episode n, W, is the current weight measured by a digital scale
located under the inspection surface at time ¢; (increments of 0.25 second) when the ; event

occurred (an event is defined as the falling of one or more objects). Dividing the weight differences

by ¢, effectively increases the reward for items that fall early. w is the weight of one object (a
constant value). W, , is the weight measured by the scale when the pervious (for the first event,
W, =0). T=min{Fixed Horizon Time, Amount of Time when all Objects Fell} is the time of shaking.

W.—W,:_
The value —/ /7L

represents the number of objects that fell at time ¢, and is rounded toward the
” .
closest integer value to eliminate scale inaccuracy. The positive constant ¢ is used to adjust the
reward values achieved.

Another difference from the experimental setups described in Sections 6.3.2 and 6.3.3 is the use

of a different human interface. When system learning performance is low, the human is asked to

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Experimental Setup 62

intervene directly in the system Q table by enabling HO control over the Q state-action values of the

robot’s X , ¥ and 7z axes. The HO uses the interface shown in Fig. 6.8 to guide the robot to prefer

some actions over others without a demand to completely understand what Q value levels are.
The interface allows the HO to control the state-action Q table by controlling:

1) “Center Control” - by using the “Center Control” options, the HO allows the robot to prefer
moving from the center position to a particular axis’s set of states (all six possible states) for a
specific axis. This means that the robot prefers to move to a specific axis rather than moving to the
remaining two. If during shaking the robot passes through the center position while performing a
shaking operation over a specific axis, the robot might switch its shaking actions to a different axis.
This results a robot preference from which axis to start a new learning episode and from which axis
to prefer if it passes through the center position while performing a learning episode.

2) “Swing Control” - by using the “Swing Control” options, the HO can let the robot prefer
moving to a state’s mirror position' than moving back to the center. Using this option allows the HO
to let the robot perform longer sequence of actions over a specific axis by decreasing the likelihood
of moving to the center position and switch to a different axis.

The HO does not know exactly at what state the robot is while performing a learning episode. The
HO knows that the robot is about to grasp a bag and shake it for up to 100 movements (actions). He
has to make a decision based on previous rewards the robot gained and from his

intelligence/experience.

“Center Control” (for each axis - X, Y, or Z) options include:

1) “A Lot Higher” - increases all O values of state-action pairs from the center position to any of

the possible six states located over the chosen axis by 50%.

2) “A Little Higher” - increases all Q values of state-action pairs from the center position to any

of the possible six states located over the chosen axis by 10%.

3) “Keep Current” - no change in the Q value table.
4) “A Little Lower” - decreases all Q values of state-action pairs from the center position to any

of the possible six states located over the chosen axis by 10%.

5) “A Lot Lower” - decreases all Q values of state-action pairs from the center position to any of

the possible six states located over the chosen axis by 50%.

! A mirror position of a state is the physical symmetrical state over the same axis. This state and its mirror are at the same
distance from the center state.

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Experimental Setup 63

“Swing Control” (for each axis - X, Y, or Z) options include:

1) “Much Higher Swings” - increases all six Q state-action value pairs of moving back to the
center for the chosen axis by 50% while keeping current the state-action values of moving back to
the center.

2) “Higher Swings” - increases all six Q state-action value pairs of moving back to the center for
the chosen axis by 10% while keeping current the state-action values of moving back to the center.

3) “No Change”- no change in the Q value table.

4) “Lower Swings” - decreases all six Q state-action value pairs of moving back to the center for
the chosen axis by 10% while keeping current the state-action values of moving back to the center.

5) “Much Lower Swings” - decreases all six Q state-action value pairs of moving back to the

center for the chosen axis by 50% while keeping current the state-action values of moving back to

the center.

Experiments
Robot learning experience is gained through direct experience with the environment according to

events-based measurements achieved from the digital scale placed under the inspection surface. The
reward depends on the number and occurrence of screws falling from the bag during a shaking

learning episode. In this experimental setup, Q(1) is compared with CQ(4) running each of them for

fifty learning episodes.

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Experimental Setup

64

—Visual Feedback

| ~ Collaboration Level

Autonomous Mode - No Human Intervention is Required.

—Human-Robot Collaboration Control

—Human Decision Making - Suggest a Shaking Policy

—Axis Amplitude (Step Size of X, Y, and Z) -0 to 50 cm

¥: Left-Right

Z: Up-Down

Forward-Backward Step Size: I"—' Lurrent _'] I.'H'r mm
Left-Right Step Size: I B ey _"l I'” mm
2 Is-. Current _v] IN
-~ System Performance LR -oWRiEtep:Size] i
—Axis Speed Control (of X, Y, and &) - 100 to 1500 mm ./ sec
Successful Policy Time
Forward-Backward Speed: I"‘"' Currert _"l I"":‘" mm / sec
12
4 ‘ ‘ ‘ ‘ Left-Right Speed: |<~. Curfert _vl IIIMFI(A aae
[sec] - = =
1 Up-Down Speed: Im‘-::—.;'- Current _v] Illml(A
: !
10 20 30 40 50 —0 Table Weight Control (of X, ¥, and Z)
Successful Center Control Swing Control
POIIw "umher 1 i Ay = | P IR
Chmialilste Shereee Rate Forward.Backward: | A Lot Lower | Much Loveer Swings
|55 (%) B Mush-Higher Swings
e Left-Right: |
80 | | Up Down: |
60
%
!]40 —Eliminate Axis
20 Fc [} I™ up-Down
]
i 20 2 M L“ = —Policy Success Notification
earning
Episode
Policy was successful!
(a) The entire interface
— 0 Table Weight Control [of X, Y, and £}
Center Control Swing Control
i i - -
¥ Farward-Backward & Little Higher B Mo Change o

A Little Loweer

| 4

A Lat Higher

| 4

duch Lowwer Swwings

Much Higher Swings -

Much Loweer

Much Higher Swings
Higher Swings

Mo Change

Lowwer Swings

SningE

(b) Human-collaboration

Fig. 6.8 O-value weight control human interface

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Results and Discussion 65

6.4 Results and Discussion

For the “Manually-Measured Rewards Inspection System” described in Section 6.3.2, from a
reward perspective, ranging at the scale of 0 to 100, in the training stage (first ten learning episodes),
in which only four out of the ten policies revealed positive rewards, the average cumulative reward
achieved was 32. In the collaboration stage (11-50 learning episodes), the average cumulative reward
was 82. During the testing stage (51-75 learning episodes), when the shaking parameters were
identical to those in the training stage, i.e., adjacent state distance of 30 mm and speeds of 1000 and
1500 mm/s, the average cumulative reward achieved was 85.87. Fig. 6.9 shows the accumulated

reward improvement during the three stages.

120

| Training| e [
100 — i i
|

L ——p=

80

60

%

—
————————-‘

40

Accumulated Reward

20

'] L] L] L] L] L] L] L] L] L] L] L] L] L]

0 5 10 15 20 25 30 35 40 45 50 35 60 65 70 75
Learning episode ()
Fig. 6.9 Performance for linear-based rewards - CO(}) evaluation in three stages; training, collaboration and
testing

While comparing the performance of the first experiment (CQ(A)-learning) with the second
experiment (Q(A) -learning) (Section 6.3.2) over 25 learning trials', an improvement of 27% was
observed in the average cumulative reward (64 vs. 50.4) while a human was asked to intervene
though 11-23 learning episodes (Fig. 6.10). It is seen from Fig. 6.10 that CQ(A) superiority is
achieved from the 12 learning episodes. This superiority lasts till the end of the experiment (25"

learning episode).

"' To compare between the algorithms, 25 learning episodes were taken into account for each one of them. For the CO(4)
algorithm, the learning episodes consist of the ten training learning episodes and the first 15 learning episodes of the
collaboration stage. This results a total of 25 learning episodes. For the Q(7) algorithm an additional 25 learning episodes
with no human intervention where considered.

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Results and Discussion 66

o
s I & e
50 / \ Av/\/
L A
T NN

i I! r~’
v 7 3

0 S 10 15 20 23

Learning episode (n)

Accumulated Reward

Fig. 6.10 Performance for linear-based rewards - a comparison between Q(4) and CQ(4)

For the “Automatically-Measured Cumulative-based Reward Inspection System” described in
Section 6.3.3, in which Q(1) -learning was compared with CQ(4), the average time to complete
emptying the contents of a bag for the last forty' learning episodes was 12.43 s and 10.37 s
respectively, i.e., an improvement of 16.6%. In terms of rewards, the average cumulative reward

achieved was 48.16 for Q(4) and 66.6 for CQO(1), i.e., an improvement of 38.3%. The human
intervention rate measured for the CQ(A)-learning experiment was 30%, while system requests

for collaboration occurred continuously during the first runs when human intervention was
allowed (from the 117 learning episode). A summary of the results is shown in Table 6.2.

Additionally, learning curves for Q(4) and CQ(A1) are shown in

" The first ten episodes were excluded from analysis of the results since during these episodes no human collaboration is
allowed.

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Results and Discussion 67

=Q() +CQ()

30

2
Ln

2
=

T- Time (seconds)
n

10
S5
'] | L] T T
0 10 20 30 40 50

Learning episode (r2)

Fig. 6.11, and learning rates' were calculated as 0.87, and 0.82, respectively.

" The learning rate parameter determines how significantly an agent improves. The reader should make a distinction

between the learning rate evaluation performance measure which indicates the improvement of learning and a, the RL
learning rate parameter.

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Results and Discussion

Table 6.2 Comparison between Q(4) and CQ(4) - cumulative-based rewards

o) o)
Average time to complete emptying Time (s) 10.37 12.43
the contents of a bag Standard deviation 5.37 5.94
Human intervention rate [%] 30 -
* Results are for the last forty learning episodes.
HQ() +CQ()
30
+ .]
o 25 . *
c ; L m
S 20 oo
& 5]
3 |\ R —_ |
— \, .
s A - /
] +
- & a
=~ 10 +—w %55 = = ¢
1 [] * * &
by + + - . 0000 0.... .. .0.
5 ¥ @ 7 * . ol
'] L] L] L] L]
0 10 20 30 40 50

Learning episode (#)

Fig. 6.11 Times for cumulative-based reward

Accumulated reward performance superiority of CO(1) over Q(4) starting from the 4 learning

episode to the end of the experiment (50" learning episode) is shown in Fig. 6.12.

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Results and Discussion 69

—Q®» —CQ®

"1 7
T\ /‘**\A/\’}fj—f

30

20 O /\/J
10 [
0

0 10 20 30 40 50

Learning episode (n)

Accumulated Reward

Fig. 6.12 Performance for cumulative-based rewards

Based on the results achieved, the following hypothesis was evaluated using a 7-test (Table 6.3).

Table 6.3 O(7) and CQ(7) using a cumulative-based reward function evaluation

Performance measure Hypothesis

H,y: There is no difference between average times to
complete emptying the contents of a bag while comparing
o) with cQ@)-learning.

Hj;: There is a significant difference between the two
learning methods.

Time to complete emptying the contents
of a bag

The null hypothesis H;9 was rejected with a P-value of 0.0375; in other words, the two learning
methods exhibited unequal mean coefficients. Similar to the experiments described in Section 6.3.2,
policies that concentrated with most shaking over the ¥ axis and with very few actions over the X
axis were the most effective.

The robot starts experiencing the environment by performing a random shaking policy over the
X, Y,and z axes. The default speeds and adjacent state distance were set to 1000 mm/s and 30
mm, respectively for all axes. After the first ten episodes in which the robot is forced to learn the
environment autonomously and thus no human collaboration is allowed, it reports low learning
performance (6.1) and asks for human guidance. It was reasonable for him to increase the speeds on
all axes to their maximum possible values (1500 mm/s). This decision was made because high speeds
are more effective at causing the contents of the bag to drop out faster. For the same reason, he also
decides to slightly increase the adjacent state distances to 40 mm on all axes. Human reasoning says

that it is not necessarily worth increasing the adjacent state distance to the maximal possible value

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Results and Discussion 70

the system allows because extremely high adjacent state distances may create longer lasting shaking
policies. On the one hand, the human objective is to make the system obtain the highest possible
rewards, but on the other hand the human wants to help the robot find the shortest possible policies.
The suggested policy (1500 mm/s and 40 mm) was tested on the system for several learning episodes
but it was not successful, i.e., resulted in low rewards, and therefore, the robot asked for human
intervention consistently for each policy performed with these parameters. At this stage, the human
suggested policies for the axes with lower speed combinations and higher adjacent state distance
combinations. These policies occasionally produced positive rewards, but the results were not
consistent and the robot tended to switch between autonomous and semi-autonomous modes. At
approximately the 30” learning episode, the human suggests a shaking policy with the maximal
speeds over the three axes, a very high adjacent state distance over the Y axis (45 mm) and lower
adjacent state distances in comparison with the high values defined at the beginning of the
experiment (25 mm and 15 mm for the X and Z axes, respectively). This policy is preserved until
the end of the experiment (the 50" learning episode), i.e., the policy is preferable.

For the “Automatically-Measured Events-based Reward Inspection System” described in Section

6.3.4 comparing CQ(4) with Q(A1) -learning, results of the average time to complete emptying the

contents of a bag for the last forty' learning episodes was 7.5 s and 11.42 s, respectively, i.e., an
improvement of 34.3%. From a reward perspective, the cumulative average reward achieved was

measured as 92.19 for CQ(1) and 70.68 for Q(1), i.e., an improvement of 30.4%. The human
intervention rate measured for the CQ(4)-learning experiment was 20% while collaboration requests

occurred continuously when collaboration was allowed (from the 11” learning episode). A summary

of these results is shown in Table 6.4. Additionally, learning curves for Q(4) and CQ(1) are shown

in Fig. 6.13, and learning rates were calculated as 0.78 and 0.84, respectively.

" The first ten episodes were excluded from analysis of the results since during these episodes no human collaboration is
allowed.

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Results and Discussion 71
#Q() +CQQ)
30 -
\ .
s B
%\' 23 = = -
= E = - a —
8 20 1 * +epetrts i
o -
%5 1D + = L +
g &] - **
= 10 —— TR TR
& & . l\"\‘- z L
- o
5 5 o o S ann PO mgut "oV 'n
'] L] L] L] L]
0 10 20 30 40 50

Learning episode (77)
Fig. 6.13 Times for events-based rewards

Accumulated reward performance superiority of CO(4) over Q(1) starting from the 24" learning

episode to the end of the experiment (50”’ learning episode) is shown in Fig. 6.14.

—Q@) —CQM)

100
20
80
70
60
50
40
30
20
10

0 T T T T

20 30 40

Learning episode (1)

.r""':::’

Accumulated Reward

50

Fig. 6.14 Performance for events-based rewards

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Results and Discussion 72

Table 6.4 Comparison between Q(7) and CQ(7) - events-based rewards

o) o)

Average time to complete emptying Time (s) 1.5 11.42

the contents of a bag Standard deviation 4.53 8.07
Human intervention rate [%] 20 -

* Results are for the last forty learning episodes.

Based on the results achieved, the following hypothesis was evaluated using a 7-test (Table 6.5).

Table 6.5 O(7) and CQ(7) using a events-based reward function evaluation

Performance measure Hypothesis

H,y: There is no difference between average times to
complete emptying the contents of a bag while comparing
o) with cQ@)-learning.

H,;: There is a significant difference between the two
learning methods.

Time to complete emptying the contents
of a bag

The null hypotheses Hy was rejected with a P-value of 5-107; indicating that the learning agents’
mean coefficients are not equal.

For the “Automatically-Measured Events-based Reward Inspection System”, additional fifty
learning episodes were performed to compare between the algorithms. Here, differently than the
interface that was used in the experiments described above, the O-value weight control human

interface was used (Fig. 6.8). The average time to empty the contents of the bag using CQ(1) and
O(A) -learning for the last forty' learning episodes was 8.28 and 9.82 seconds, respectively, i.e., an

improvement of 18.6%. From a reward perspective, the cumulative average reward achieved was

measured as 28.81 for CQ(1) and 20.11 for Q(1), i.e., an improvement of 43.3%. The human

intervention rate measured for the CQ(1)-learning experiment was 12%.

Table 6.6 Comparison between O(Z) and CQ(7) - events-based rewards (Q-value weight control interface)

Co@) (L))

Average time to complete Time (s) 8.28 9.82

emptying the contents of a bag [Standard deviation 3.48 1.76
Human intervention rate [%] 12 -

* Results are for the last forty learning episodes.

Based on the results presented in Table 6.7, the following hypothesis was evaluated using a 7-test.

" The first ten episodes were excluded from analysis of the results since during these episodes no human collaboration is
allowed.

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Results and Discussion 73

Table 6.7 O(7) and CQ(7) using a events-based reward function (last forty learning episodes)

Performance measure Hypothesis

Hjy: There is no difference between average times to
complete emptying the contents of a bag while comparing
o) with cQ@)-learning for the last forty learning episodes.
H;;: There is a significant difference between the two
learning methods.

Average time to complete emptying the
contents of a bag

The null hypothesis H3y was rejected with a P-value of 0.0045. This means that the average times to

complete emptying the contents of the bag are not equal while comparing CQ(1) with Q(4).

Performance times for each learning episode are shown in the scatter plot of Fig. 6.15 for both the

CQ(4) and Q(4) runs. Exponential smoothing, using a damping factor of 0.8 for the measurements,
are shown as green and red lines for CO(1) and Q(4), respectively. It is clearly seen from smoothed
data in Fig. 6.15 that CQ(A) is superior from the 16" learning episode, having approached
convergence at about episode 45. Cumulative reward performance superiority of CQ(1) over Q(1) is
shown in Fig. 6.16. For CQ(4), Fig. 6.17 shows that the robot continued to request assistance from

the HO immediately for six episodes after human intervention was first allowed right after episode
10. One sees that at the 11" 12" and 13" learning episodes the shaking performance times are
significantly high. This can be explained due to the explorative strategies the HO tried over these
episodes when first asked to intervene at this stage. The HO quickly recovered providing a good
policy over the next three episodes. This was enough guidance so that the robot continued to operate

autonomously and never request advice again.

=Q() +CQM)

2
#/]

2
=
L

=
7]

=Y
=
I

T-Time (seconds)

th

0 10 20 30 40 50
Learning episode (72)

SA - Semi-autonomous mode

Fig. 6.15 Performance times for events-based rewards

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Results and Discussion 74

Q@) =—CQ®)

30

25 /
20 = /

10 / /f\,

W

0 L) L] L] L]
0 10 20 30 40 50
Learning episode (n)

Accumulated Reward

Fig. 6.16 Performance for events-based rewards using Q-value weight control human interface

1.0 : ; e e e e 2 L a e s 8 o 040
SA
08 I o *o o —¢ * *9 000 *
0.6 : Lt
§ /‘ I I
3 A=0.6 ! !
0.4 r ¢¢: ¢ Lave
: : ¥ Success / Failure
02 o4
I I
I I
I I
0.0 Toooo0e00609l b A
0 10 20 30 40 50

Learning episode (n)

SA - Semi-autonomous mode

Fig. 6.17 The moving average learning performance measure, L,,, during CQ(4)-learning

The robot started experiencing the environment by performing a random shaking policy over the
X, Y, and 7z axes where the default speeds and adjacent state distances were 1000 mm/s and
30 mm respectively for all axes. After the first ten episodes in which the robot was forced to learn the
environment autonomously and no human collaboration was allowed, it reported a low learning
performance (6.1) and asked for human guidance. The human’s superior intelligence and the

experience he gathered while conducting the experiments described in the previous experimental sets

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Summary 75

taught the human that the robot should be guided to choose actions that will shake the bag mostly
over the Y axis and with a small number of actions over the x axis. Therefore, when the HO was
asked to intervene, he decided to prefer a strategy that will cause the robot to continuously perform
actions that will mostly occur at locations as far as possible over the v axis (Left-Right) and small
amount of actions over the X (Forward-Backward) axis, while eliminating any action over the
vertical axis (Up-Down). This knowledge was achieved due to previous experiments performed.
Specifically, the chosen strategy is described as follows:

1) “Left-Right” - for “Center Control” keep choosing “A Little Lower” and for “Swing Control”,
keep choosing “Much Higher Swings”. This strategy will make the robot almost to avoid stopping
through the center position but still if sometimes the robot passes through the center position it will
allow it to move to the forward-backward axis.

2) “Up-Down” - for “Center Control”, keep choosing “A Lot Higher”. That’s because we want to
prevent the robot from being shaked over the vertical axis. Moving back to the center rather than
moving to one of the mirror vertical states will allow the robot to “escape” from the set of possible
vertical states, go back to the center position and possibly to move to a horizontal or to a forward-
backward shaking. That’s why it is better also to keep choosing "much lower swings” which will
contribute for moving back to the center.

3) “Forward-Backward” - for “Center Control” keep choosing “A Little Higher” and for “Swing
Control”, keep choosing “No Change”. This strategy allows the robot to perform some shakings over

the forward-backward axis, but causes it to “prefer” moving back to the center position.

6.5 Summary
Intuitively, vertical shaking should work best, but the experimental results showed that for both

CQO(A4) and Q(4) the best policies showed shaking most of the time over the Y axis and with very

little activity over the X . One possible explanation for favoring the Y axis may be the type of knot
holding the plastic bag closed; pulling it sideways loosens the knot faster. Furthermore, in the
hypothetical situation of a human shaking the bag, he could have visually seen the servo feedback to
determine the optimal time to pull it up in a horizontal strategy, an ability that the robot system used
here does not have.

To interpret the results and to show that there were no subjective influences, a physical model of
the opening of a plastic bag knot by a robot was developed (Appendix III). The model explains the
results achieved for all three experimental setups. It showed that because acceleration developed over
time, it was worthwhile to open the bag using a continuous shaking/motion from locations as far as
possible over the v axis. Ideally, the robot arm should be accelerated to match or closely match the

gravitational acceleration downwards and should be oscillated over the ¥ axis to overcome most of

Chapter 6. Bag Shaking Experiment with a Fixed-Arm Robot - Summary 76

the friction forces. To summarize, the results showed that learning was faster when the human

operator was asked to intervene in the robot’s activity.

Chapter 7. Navigation of a Mobile Robot - Introduction 77

7. Navigation of a Mobile Robot

Chapter Overview
This section describes an experimental setup using an Evolution Robotics ER-1 mobile robot.' In

this system, the CQ(4) learning algorithm enables collaboration between the robot and a human.

7.1 Introduction
The test-bed selected is a robot task in which the robot must navigate toward a target location in a
two-dimensional world. Based on its learning performance, an ER-1 mobile robot switches between

fully autonomous operation and requesting human intervention. The CQ(1) algorithm was tested on

a robot required to navigate toward a target location in a rectangular environment containing
undesirable navigation areas.” During its initial learning stages, the robot has no knowledge as it has
not yet acquired any from either its environment or collaboration; thus, in addition to interacting with
the environment, human instructions are an effective acquisition technique toward autonomous
behavior. The human is responsible for remotely monitoring the robot and suggests solutions when
intervention is required. However, at a certain level of the human-robot system performance, it
becomes unnecessary for the robot to follow human instructions. At that point, when the robot no

longer needs instructions, it navigates autonomously.

7.2 Task Definition

The robot is remotely located relative to the human operator (HO), and uses environmental
sensing capabilities. Learning is accomplished both by interaction with the environment and by
acquiring suggestions from the HO. The environment contains undesirable areas that the robot learns
to avoid. An optimal route is defined as the shortest route that the robot navigates most efficiently,
i.e., it moves toward the target and not away, while avoiding undesirable areas. The shortest route
that the robot navigates most efficiently is in terms of path length remaining. It is calculated
manually after accomplishing the experiments and is used for results evaluation and analysis.

Two levels of collaboration are defined: (i) autonomous - the robot decides which actions to take,
acting autonomously according to a Q(1) learning function, and (ii) semi-autonomous - the robot
requests the HO to suggest actions, thereby replacing its own exploration process. Human-robot
collaboration is unnecessary as long as the robot learns policies and adapts to new states without a

serious deterioration in its performance. When the two conditions below apply, therefore, the HO is

! The application and experiments were accomplished at the Institute for Medical Informatics at the Washington Hospital
Center, Washington D.C. (currently, Microsoft).
? Undesirable navigation area - an area where a robot can physically pass through but it is not recommended.

Chapter 7. Navigation of a Mobile Robot - Task Definition 78

required to intervene and suggest actions to the robot. The robots’ learning function then
incorporates the HO suggestions.

1) The robot’s acceptable learning performance threshold, o', is compared with 7,, , the

average number of steps to reach a goal and get a positive reward over the last N most recent
learning policies performed. The HO is required to intervene and suggest alternative actions
if the robot’s learning performance is low, i.e., it reports a large average number of steps to

reach the goal (7.1).

t—1
Tave ={ > (L»J/Nm (7.1)

i=t—N

where ¢ is the current learning episode, i=t—N,t—N+1,¢t—N+2,..t—1, and L is the number

of steps a learning agent performs at the i episode.
2) The remote robot is within a view of the human collaboration area described in Section 7.3.

The human sees only a small part of the environment (Fig. 7.2¢) via visual feedback (Fig. 7.2d),
and can suggest actions to the remotely located robot only in this viewable area (Section 7.3). The
task was defined in such a way that human collaboration with the learning robot is not always
enabled for all of the world states but only for a portion of them. For the experiments described in
this section this portion of the world states was defined arbitrarily to be only a quarter of the world,
the region around the target (nine states - see Fig. 7.2¢). The reason why only a portion of the world
was defined as a “human collaboration area” was to duplicate the experimental environment of the
laboratory in a real environment where, due to technical circumstances, human intervention is not
possible.”

Fig. 7.1 demonstrates an example for several learning episodes performed in which the robot
switched its learning level from autonomous (self navigation) to semi-autonomous (acquiring human
knowledge) based on its learning performance. The acceptable learning performance threshold for
the robot was set to @ =6. The robot continuously measured its learning performance by averaging

its last N most recent learning episodes and comparing this value, 7, ,, to @. In Fig. 7.1, if T,, was

ve o ave

' The maximum acceptable performance threshold in terms of mean number of steps to reach a goal. Above this value,
the human is called to intervene. This threshold value is determined based on empirical tests.

* An example for such a system might be a simulation of a mobile robot sent to explore a remote planet such as Mars for
locating water resources. Since the planet is remote from earth and viewing abilities using a telescope are limited due to
weather conditions or atmosphere masking, human assistance might not be possible constantly and the robot will have to
explore and learn the environment autonomously even if its learning performance is low.

Chapter 7. Navigation of a Mobile Robot - Experimental Setup 79

higher than @ then the robot learning performance was ascertained to be low and human
intervention was allowed, i.e., learning was performed semi-autonomously. Otherwise, no human

intervention was required and the robot navigated autonomously.

Semi-
Path autonomous
Pat Ievel__.____,___...-,,
length “~._ | Autonomous
| level
[""" Tm-‘e
|
|
| >
t—N t—1

Learning trial

Fig. 7.1 Example of learning performances for an ER-1 mobile robot

7.3 Experimental Setup

The robot is a three-wheeled ER-1 mobile platform equipped with an IBM ThinkPad laptop and
an IREZ Kiritter USB camera (Fig. 7.2a). Robot states include robot locations in a 6 x 6 two-
dimensional world (Fig. 7.2b) where each cell is a 40 cm square floor structure. The world consists
of three types of areas: (i) environmental cells (carpet) - areas through which the robot should
navigate on its way to target; (ii) undesirable areas - pink surfaces, and (iii) the white-surfaced target
cell. The robot senses the environment using a camera equipped with image processing and color
thresholding capabilities to distinguish between the surfaces. The robot can move from one surface
to any one of its four adjacent neighbors with the restriction that it cannot move out of its particular
world.

The robot’s state s, €S 1is defined by: s, =(x;,»,) where ke(l,2,..,6) and /e(l,2,..,6). An
action, a, € 4, taken at each state is traveling north, west, south, or east. Rewards are defined as 7,
where 7, €{-1,0,+1}. If the robot reaches the target (i.e., when the camera recognizes a white

surface), the reward is +1. If it passes through an undesirable area (the camera recognizes a pink
surface) the reward is -1. Otherwise, the reward is zero. A learning episode comprises one session of

reaching the target.

Chapter 7. Navigation of a Mobile Robot - Experimental Setup

ER-1 robot”_

= Whiteisurfh.ced
o/ target
Pmnk
surfaces
Camera

(a) Camera mounted on the ER-1 robot (b) Robotic scene and the ER-1 robot

o

S

White-surfaced
target

Pink surfaces

(¢) Human control area (d) Human view from a web-browser
over part of the robotic scene

Fig. 7.2 Experimental setup - ER-1 mobile robot

Experiments using several robot autonomy modes were performed. The experiments covered
more than 150 hours of robot motion in which different human interaction thresholds (@) and RL
parameters (y and 1) were set to cover a wide range of acceptable values. The starting navigational
states of the robot for each learning episode were distributed equally in the two-dimensional world.
One learning episode consists of placing the robot at a random starting location in the environment.
Then the robot explores the environment; a learning episode ends when the robot reaches the target.
The experiments are as follows:

1) In the first experiment denoted as EX/ in Table 7.1 and Table 7.2, the robot navigated
autonomously without any human collaboration. In this experiment, to compare the Q(4) and
the CQ(A) algorithms, the robot autonomously learned the environment with no human
intervention (according to the standard Q(4) algorithm). The following parameters were set:

a=0.95 (initial value), various » (0.99, 0.95, and 0.9) and 4 (0.75, 0.5, and 0.25)

corresponding to each value of y .

Chapter 7. Navigation of a Mobile Robot - Experimental Setup

2) The second experiment consists of three sub experiments denoted as EX2, EX3 and EX4

Performance sensitivity of combinations of » and A values was conducted as shown in Table 7.1
and Table 7.2. Each combination of an autonomy level, A,

episodes; i.e., in each experiment, the robot was placed randomly in one of 35 world states and then

(Table 7.1 and Table 7.2) - each sub experiment consists of a different acceptable learning
performance threshold (@) equal to 6, 8, and 10, respectively, i.e., the robot switched its
activity through semi-autonomous navigation to full autonomy based on the two conditions
defined in Section 7.2. After every learning episode, the robot compared its learning
performance with @. High o values indicate low learning performance. If the robot’s
learning performance was insufficient and it was within human view (Fig. 7.2c¢ and Fig.
7.2d), it would decide to ask for human assistance. The following parameters were set:

a=0.95 (initial value), various y (0.99, 0.95, and 0.9) and 4 (0.75, 0.5, and 0.25)

corresponding to each value of .

tried to navigate toward the target (the 36" state).

System performance was evaluated using the following parameters:

Mean number of steps to optimally reach the target - in each learning episode the
robot starts at a random state and attempts to navigate toward the target. If the robot
navigates without passing through an undesirable area or does not travel inefficiently

(e.g., movement away from the target), the route is defined as optimal (Fig. 7.3a).

The shortest route that the robot navigates most efficiently is in terms of path length
remaining. It is calculated manually after accomplishing the experiments and is used
for results evaluation and analysis.

Mean number steps to feasibly reach target - if the robot navigates without passing
through an undesirable area but travels inefficiently (but still reaches the target), the
route is defined as feasible (Fig. 7.3b).

Percent of human interventions - measures how frequently a human collaborated with
the robot. This value is calculated by measuring how many times out of all learning

episodes perfomed the human was asked to intervene.

v, and A consisted of fifty learning

Chapter 7. Navigation of a Mobile Robot - Results and Discussion

(a) Example for an optimal route

Fig. 7.3 Examples for optimal and feasible routes for ER-1 navigation

7.4 Results and Discussion

(b) Example for a feasible route

Results of measuring the average number of steps; both feasibly and optimally, to reach the target

(Table 7.1) and (Table 7.2) indicate that when setting y=0.99 with 1=0.75 or 4=0.5, using the

CQ(A) algorithm while integrating human commands speeds up robot learning for all learning

performance thresholds when compared with autonomic robot navigation using the standard Q(A4)

algorithm.

Table 7.1 Results for average number of steps to reach the taget feasibly

Degree of v=0.99 v=0.95 v=0.9
Experiment | = human 2=0.75 | 2=05 | 2=025 | 2=0.75 | 2=0.5 | 3=0.25 | 3=0.75 | 3=0.5 | 1=0.25
Notation intervention
Q(/l)o;llryobot EX1 Autonomous | 585 | 586 | 72 507 | 572 | 607 695 | 77 | 605
co0) - EX2 w=6 550 | 578 | 698 507 | 5.6l 5.41 622 | 644 | 741
human-robot EX3 ®=38 45 508 | 7.98 511 | 543 6.14 639 | 709 | 7.62
collaboration EX4 =10 576 | 581 | 6.10 547 | 504 | 580 563 | 648 | 598
Table 7.2 Results for average number of steps to reach the taget optimally
Degree of v=0.99 v=0.95 v=0.9
Experiment | human 1=0.75 | 1=0.5 | 3=0.25 | 3=0.75 | 3=0.5 | 3=0.25 | 2=0.75 | 3=0.5 | 2=0.25
Notation intervention
Q('Uo;llryob"t EX1 Autonomous | 485 | 474 | 452 46 439 | 358 484 | 506 | 423
cog,) - EX2 =6 421 | 439 | 481 489 | 451 | 414 483 | 506 | 401
human-robot EX3 ®=8 395 | 456 | 450 430 | 442 | 405 530 | 492 | 401
collaboration EX4 =10 472 | 449 | a47 453 | 48 | 348 485 | 528 | 3.95

Significant improvements in comparison with the Q(1) algorithm (learning with no human

intervention) were achieved using the CQ(A) algorithm. In particular, for feasible and optimal

Chapter 7. Navigation of a Mobile Robot - Results and Discussion 83

solutions, improvements of 23.07% and 18.56% respectively were achieved for a collaboration

threshold of w=8 using y=0.99 and 1=0.75 while the HO was asked to intervene in 30% of the

robot navigational trials. To test whether there is a significant difference between the two

collaborative modes for this case, the following hypotheses were analyzed using a 7-test (Table 7.3).

Table 7.3 Hypotheses evaluation for mean number of steps to reach the target

Evaluation Hypothesis

H y: There is no difference between the mean
number of steps to reach the target feasibly between
Mean number of steps to the autonomous and the collaborative modes.

reach the target feasibly H;;: The mean number of steps to reach the target
feasibly is higher for the autonomous mode than the
collaborative mode.

H>y: There is no difference between the mean
number of steps to reach the target optimally
between the autonomous and the collaborative
modes.

H,;: The mean number of steps to reach the target
optimally is higher for the autonomous mode than
the collaborative mode.

Mean number of steps to
reach the target optimally

Null hypotheses H;p and H,) were rejected with P-values of 0.018 and 0.019, respectively, which
indicates that the mean number of steps to reach the target both feasibly and optimally are not equal.
Results of percent of human interventions for various y and A4 combinations with different human-
robot collaboration levels are described in Table 7.4. In all three of the autonomy experiments, when
the robot learned the environment, human collaboration rate decreased, as expected, with an increase

n .

Table 7.4 Percent of trials where human interventions occurred for various RL parameters

v=0.99 v=0.95 v=0.9
2=0.75 | A=0.5 | 2=0.25 | A=0.75 | A=0.5 | 2=0.25 | A=0.75 | A=0.5 | A=0.25

Collaboration | Experiment
level threshold Notation

w=6 EX2 36 62 58 24 80 64 50 68 70
=28 EX3 30 20 44 26 6 42 10 22 60
=10 EX4 18 12 4 6 4 4 8 10 44

For the best most significant improvement (EX3) using »=0.99 and A=0.75, the combination of
high » with high 4 values that achieved the highest learning performance can be explained due to
choosing values of A large enough to allow longer sequences of values of state-action pairs to
updated while restricting the computational solution to a reasonable time. In other experiments for

various values of discount factors and eligibility traces no consistency was found in achieving a

solution that fits all of human-robot threshold collaboration levels. This may be attributed to cases

Chapter 7. Navigation of a Mobile Robot - Summary 84

when human intervention may impaired the ability of the robot to explore the environment
autonomously. Therefore, the robot’s exploitation was enhanced on the account of less exploration

by the human.

7.5 Summary

Evaluating robot performance in the navigational tasks revealed the superiority of the CQO(1) over
the standard Q(1) algorithm for high values of discount factors and eligibility traces. In the

application described, the mobile robot may fail to form the correct associations between the
observed states and those actions that lead to higher rewards. Moreover, even for a well-defined and
considerably small state-space, finding optimal policies is memory intensive. To surmount the
robot’s long interaction times with the environment and to speed up convergence toward satisfactory
solutions, first, robot actions over the path were discretized, i.e., state-action space size was limited
to a certain number of state-action pairs to reach the target. Second, human intervention and the
guidance capabilities that entails were applied in the system, thus decreasing the number of learning
episodes and speeding up convergence to realize satisfactory solutions for a task. Human
involvement brought superior intelligence to the robot’s learning process, and thus affected the
learning agent’s behavior. Results show that on the one hand, human collaboration accelerated robot
learning performance for different collaboration threshold values. On the other hand, the human

intervention rate was not consistent with the extent of learning improvement exhibited by the robot.

Chapter 8. Conclusions and Future Research - Conclusions 85

8. Conclusions and Future Research

Chapter Overview

In this concluding section a comparison between the CQ(A) framework with the current best

practice in the area in robot learning is presented. The section ends with a discussion of future work.

8.1 Conclusions

The main contribution of this work is in developing a new learning method. In this thesis, a new
learning algorithm which is based on the Q(A)-learning algorithm is presented. The proposed
algorithm, denoted as the CQ(1) algorithm, enables the collaboration of learning of multiple agents
in the environment. Collaboration can expedite the learning by exploiting human intelligence and
expertise.

The CQ(A)-learning algorithm was developed, tested and applied for two frameworks: (i) learning
by multiple agents, and (ii) learning by human-robot systems. In the first framework, collaboration
involves taking the maximum of state-action values, i.e., the Q -value, across all learning agents at
each update step. In the second framework, two levels of collaboration are defined for a human-
robot learning system: (i) autonomous - the robot decides which actions to take, acting autonomously
according to its Q(4) learning function, and (ii) semi-autonomous - a human operator (HO) guides
the robot to take an action or a policy and the robot uses the suggestion to replace its own exploration
process. The key idea here is to give the robot enough self awareness to adaptively switch its
collaboration level from autonomous (self performing) to semi-autonomous (human intervention and
guidance). This awareness was represented by a self test of its learning performance.

Theoretically, since a proof of convergence exists for the Q -learning algorithm [Watkins and
Dayan, 1992; Jaakkola et al., 1994], the convergence for the CQ(A1)-learning algorithm for the case
where 1=0, i.e., collaborative Q (CQ(0)) can be explained. For the CQ(0) human-robot case, the
only difference to standard Q-learning is that the exploration policy is changed to sometimes be
determined by the human. The basic Q-learning convergence proof applies as long as the human
does not systematically prevent the use of certain actions in particular states. In other words, as long
as the autonomous operation still guarantees that every action is executed infinitely often in every
state (a condition of the standard convergence proof is met), the convergence proof directly extends
to the human-robot interaction case.

For the CQ(0) case where human is asked to intervene (when system learning performance is
low) and his suggestions/selections of actions are not necessarily optimal, CQO(0) will converge also

to an optimal solution. Convergence is achieved since the human activities whether or not optimal

Chapter 8. Conclusions and Future Research - Conclusions 86

can be considered to be explorative (actions that have not been tried enough times and can bring to a
better solution). The learning agent then uses these activities to exploit its environment. Of course if
the human will choose intentionally and consistently the worst possible actions, the algorithm will
converge as well, but slower. It is assumed that the human is an expert, and therefore will select

beneficial actions. It is reasonable to consider the human for this CQ(0) case as a greedy decision
maker at times of human intervention, but differently from well described action-selection methods
(e.g., “softmax” or “& -greedy”) here intelligence of a human is considered. Since Q -learning has
proven to converge regardless of the action-selection method, CQ(0) will converge to an optimal
solution if every state-action pair is visited infinitely often as well. Furthermore, CQ(0) is a special
case of Q -learning and therefore will also converge with probability one. For the multiple agents
case where a system consists of one collaborative agent, Q. and several independent Q -learners, it
was shown mathematically that the learning function of the collaborative agent converges faster than
those of the independent agents.

Extensive experimentation with different robotic systems in a variety of applications
demonstrated the strengths and weaknesses of the CQ(1)-learning algorithm. Specific applications
developed to serve as a test-bed for the CQ(A)-learning algorithm were demonstrated in the context
of an intelligent environment using a mobile robot for navigation and a fixed-arm robot for the
inspection of suspicious objects. Based on the accelerated learning performance of the robotic
systems, the results revealed the superiority of the CQ(1) over the standard Q(1) algorithm.

Considering the first framework, but in contrast to [Matari¢, 1997], where the learning algorithms
of multiple robots consist of reward functions that combine individual conditions of a robot, the
CQ(A) learning algorithm is based on a state-action value of an agent or learning process updated
according to the best performing agent; collaboration is in taking the best state-action values, i.e., the
O value, across all learners at each update step. Similar to the “leader-following Q -learning
algorithm” in the joint policy approach described in [Gu and Hu, 2005], which allows cooperation
between two agents, a leader and a follower, the CQ(1) learning algorithm enables collaboration of
knowledge between many agents. In a multi-agent learning algorithm described in [Bowling and
Veloso, 2003], the reward of an agent depends on the joint action of the agents whereas in CQ(1),
the Q-value of a collaborative agent depends on the joint Q -value achieved through both by
interaction with the environment as well as from the other independent agents existing in the learning
system.

In the second framework, the proposed RL-based decision-making method is targeted for human-

robot collaborative learning systems. The robot makes a decision whether to learn the task

Chapter 8. Conclusions and Future Research - Conclusions 87

autonomously or to ask for human intervention. The goal is to integrate user instructions into an
adaptive and flexible control framework and to adjust control policies on-line. To achieve this, user
commands at different levels of abstraction are integrated into an autonomous learning system.
Based on its learning performance, the robot switches between fully autonomous operation and the
request for human intervention. Human suggestions are carried out by the robot, and it performs its
learning functions accordingly. The CQ(1) learning algorithm accelerates robot learning using
human interaction, thus overcoming the main criticism of RL, i.e., long training periods. Unlike

[Papudesi and Huber, 2003; Papudesi et al., 2003], where the rewards are controlled by a human, or
as described in [Wang ef al., 2003], where user commands are employed for modifying the robot’s
reward function, in CQ(4) the rewards are achieved by both interaction of a learning agent with the

environment and by allowing the human to advise the robot to perform a specific action or to
perform a policy. Another method for improving learning performance described in this dissertation

was to directly control the Q table of a robot learning problem using a linguistic-based human

interface. This method is similar to the approach described in [Papudesi and Huber, 2003; Papudesi
et al., 2003]. The difference is that [Papudesi and Huber, 2003; Papudesi et al., 2003] describe a

method where the human intervention illustrates the changes in rewards, and under CQ(4) the QO

value table was controlled directly by the human. In the former work, the human intervention
(besides guiding exploration) actually modifies the task by altering the reward function while in
C'O(/ -learning the human input is only used to determine which actions to take at this moment and
thus to guide the exploration. The task (as defined by the reward function) stays the same.

In [Clause, 1996], a trainer was asked to intervene and suggest help when two extreme Q-values
were sufficiently close. This was done by examining the minimum and maximum values and

comparing the result to a pre-defined width parameter. In CQ(4), an intervention is based on

examining the performance history of the agent over a pre-defined number of learning episodes and
comparing it to a performance threshold, rather than examining specific QO-values as in [Clause,
1996].

[Blumberg ef al., 2002] describe an autonomous animated dog trained through RL involving

human interaction. An example is described in the paper of a reward given to a dog by a human is

supervisory signals (e.g., getting a treat). In the case of dog training, a trivial job that technically

anyone can do, such a reward can be given not only by an expert but also by any human since dog
training can be considered a trivial operation that anyone can do. This is opposed to finding the
appropriate reward given to a robot by a human since empting the contents of a bag is not considered
as an everyday task. Similar to the approach described in [Thomaz and Breazeal, 2006], human RL

signals applied in this approach depend not only on past actions but also on future rewards. When a

Chapter 8. Conclusions and Future Research - Conclusions 88

human is triggered to intervene and to practically control the Q -table of a problem, it takes control

over the rewards expected to be achieved in future learning episodes. This type of advising guides

the robot and reflects the human desire to control what the robot will do next.

To summarize, a comparison of the CQ(1) framework with the current best practice in robot learning

follows:

Robot learning
To become economically attractive, the robots of tomorrow will have to be constructed for a wide
variety of tasks. As such, the robot must be able to learn new tasks under new working conditions
from its new user in its new environment. Robot learning, therefore, is a very active research area. A
major bottleneck, however, has yet to be addressed: traditionally, robot behaviors are often tailored
to a specific task. This is not acceptable for a general-purpose robot learning system.

It is well established [e.g., Ehrenmann ef al., 2001] that robot learning should make use of

human intelligence in the learning process. Human interaction increases the learning capabilities of a
robot in realistically complex situations involving many sensors. Human interaction and
collaboration in the post-processing and editing of learned behaviors will further elevate robot

intelligence. Human-robot collaboration tests using the CQ(4) -learning algorithm were performed to

accelerate learning [Kartoun et al., 2005; Kartoun et al., 2006 (a); Kartoun et al., 2006 (b)].

Human-robot interaction
Remotely controlled robots are used when a task has to be performed in a hostile, unsafe,

inaccessible, or remote environment [Bukchin et al., 2002]. [Crandall et al., 2005] suggest that a

human-robot system has when the robot is remotely located: (i) autonomy mode - based on either
artificial intelligence or computer control, it allows the robot to act, for a time, without human
intervention, and (ii) human-robotic interfaces (HRI) - software installed at the human’s location
allow him to perceive the world and the robot states as well as to send instructions to the robot. One
of the main issues in task-oriented HRI is achieving the right mixture of human and robot autonomy

[Adams, 2002; Steinfeld ef al., 2006]. [Hirzinger et al., 1993] indicate the importance of HRI in

meeting operators’ requirements: “an understanding of the human decision process should be
incorporated into the design of human-robotic interfaces to support the process humans employ.”
In this work several human-robotic interfaces were developed allowing for control over remote

robots. The interfaces consist of: (i) real-time visual feedback, (ii) system learning performance

Chapter 8. Conclusions and Future Research - Future Research 89

reporting, (iii) system mode reporting - autonomous or semi-autonomous, and (iv) human decision

making control - when asked to intervene, a human can suggest alternative strategies to the robot.

Analysis of changes between collaboration levels
Relatively few studies have dealt with the subject of dynamic changes in the levels of automation
or of human-robot collaboration. Most of these studies were conducted in the context of adaptive
automation. They indicated some of the possible advantages in changing collaboration levels (e.g.,
maintaining acceptable levels of operator workload in a wide range of usage situations), but they also

revealed some of the possible problems (e.g., loss of situation and mode awareness). In this work,

two levels of collaboration were defined: (i) autonomous - the robot decides which actions to take,
acting autonomously according to its Q(4) learning function, and (ii) semi-autonomous - the HO
suggests actions or policies and the robot replaces its own exploration process, i.e., collaborative
O(1) (CQO(A)-learning) is executed. Human-robot collaboration is unnecessary as long as the robot
learns policies and adapts to new states without a serious deterioration in its performance. The HO is
required to intervene and suggest alternative policies if the robot reports that its learning performance

1s low.

8.2 Future Research

Many research areas remain open for future expansion of this work:

Improving the learning algorithm
Preliminary results for CO(4) learning look promising, but there are some issues that still require
attention:
o Are there more efficient methods for improving learning performance?
o Optimization techniques should be used to find the learning algorithm parameters that lead to
optimal learning performance.

 In the multiple-agents systems described in this work, only instances of one CQ(A1) learner per
system were described while the others were independent Q(4) learners. Since it was shown

that there is no advantage in using a system that contains more than two agents, the
development of a system that contains two collaborative agents should be considered as an
interesting future research topic. If such a system would follow the conditions described in
Section 4.2, it would be expected to achieve a better solution than for the scenarios described

in this work, resulting also an identical optimal policy for both CQO(1) learners.

Chapter 8. Conclusions and Future Research - Future Research 90

e In the suggested human-robot applications the robot learns according to the proposed CQ(1)

learning algorithm, i.e., a HO is triggered to intervene and collaborate with a robot when the
robot’s learning performance is below a predefined threshold. How can the robot be sure that
all HO suggestions are beneficial? It may be the case that some human advise does not
contribute to the robot learning process. One way to overcome this issue is to have the robot
assess the quality of the human’s advice and in the case of ineffective (unhelpful) learning
episodes, the robot will reject the human suggestion and revert to an autonomous mode. Under
such circumstances, the robot will perform a “backing up procedure,” erase the inadequate
human suggestions, and continue from there. Then it will compare its performance to that of
the human and will choose the best actions, i.e., the robot decides whether to use its

information or the human’s information.

Enhancing the learning algorithm

The learning algorithm can be enhanced by developing a framework based on the CQO(1) learning
algorithm in which the HO learns how to be a good advisor to the robot, i.e., how to be an effective
collaborative advisor. This involves teaching the human to be a better advisor and enhancing the
human’s advisory role in assisting the robot, i.e., the robot teaches the human to be a better
advisor/expert in dispensing advice to the robot in a collaborative robot system. The human is given
the state of the system, which are the current robot policy and performance. The human decides an
action based on the state, and this advice is given to the robot. If the human performance is “bad,”
then the robot steps in and decides which suggestions to accept and which to reject. It notifies the
human as to the worth of his suggestions (e.g., “very bad”, “bad”, “average”, “good”, and
“excellent”) and the robot can either take control or allow the HO to improve himself by providing

better suggestions (e.g., during the next ten trials). Rules for human performance should be defined,

such as, “when to ask for help from the human” and “how to evaluate human help and decide
whether to accept or reject this help.” In this framework the robot is given intelligence rules to not

only ask for help, but also to evaluate the quality of the help and decide whether to accept it.

Larger state-space

The tested tasks described in this work consist of relatively small state-action spaces. In problems
where Q tables are extremely large and it is infeasible for problems to be calculated in reasonable
times, RL methods can be combined with function approximators to give good practical performance

despite the lack of a theoretical guarantee of convergence to optimal policies. In applications where

! Human performance (e.g. , “good” or “bad”) are predefined thresholds for a specific learning system.

Chapter 8. Conclusions and Future Research - Future Research 91

the state-space of the problem is very large, CQ(A1) table representation may not be feasible because
of the huge amount of memory used and time required to complete the tables. The use of function

approximators such as neural networks enables generalization, which, in turn, allows the use of only

a representative sub-set of the entire state-space.

Convergence

Since there is no convergence proof for the Q(1)-learning algorithm [Sutton, 1999; Glorennec,
2000], it is claimed here that a convergence proof for CQ(1) where A4>0 is also unobtainable.

Proving the convergence of both the O(1) and CQ(4) algorithms is still an open issue in RL.

Additional experimental systems

Developing robot technologies that will be able to mesh further with an external environment
using advanced physical interaction equipment (such as hand-gloves, head mounted displays, etc.).
Possible virtual reality technologies applied as part of the user interface will extend human control
capabilities over the robot, allow him to plan and suggest policies interactively and will increase his
understanding of complex robot systems. Additional directions might include the design and
implementation of an extended collaboration that includes human intervention using refined or rough
intervention policies, robot autonomy, and pure human control. Additionally, robot autonomy will be
expanded. One approach may include providing an external support resource such as an additional

assisting robot.

Chapter 9. References 92

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

9. References

Abe S., Pattern classification: neuro-fuzzy methods and their comparison, Springer-Verlag,
London, U.K., 2001.

Abramson M. and Wechsler H., Tabu search exploration for on-policy reinforcement learning,
Proceedings of the International Joint Conference on Neural Networks, vol. 4, no. 20-24, pp.
2910-2915, 2003.

Adams J. A., Critical considerations for human-robot interface development, 44AI Fall
Symposium.: Human Robot Interaction, Technical Report FS-02-03, pp. 1-8, 2002.
Ambrym-Maillard O., Coulom R., and Preux P., Parallelization of the 7D(A1) learning

algorithm, 7" European Workshop on Reinforcement Learning, Naples, 2005.

Aminaiee H. and Ahmadabadi M. N., Learning individual skills and team behaviors for
distributed object pushing, Proceedings of the 2006 IEEE International Conference on
Mechatronics and Automation, pp. 1202-1209, 2006.

Asadpour M., Ahmadabadi M. N., and Siegwart R., Heterogeneous and hierarchical
cooperative learning via combining decision trees, 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp.2684-2690, 2006.

Asoh H., Vlassis N. A., Motomura Y., Asano F., Hara 1., Hayamizu S., Ito K., Kurita T.,
Matsui T., Bunschoten R. and Krdse Ben J. A., Jijo-2: an office robot that communicates and
learns, IEEE Intelligent Systems, vol. 16. Num 5. pp. 46-55, 2001.

Bagnell J. A., A robust architecture for multiple-agent reinforcement learning, M.Sc. Thesis,
University of Florida, 1998.

Bakker B., Zhumatiy V., Gruener G., and Schmidhuber, J., Quasi-online reinforcement
learning for robots, Proceedings 2006 IEEE International Conference on Robotics and
Automation, pp. 2997-3002, 2006.

Baltus G., Fox D., Gemperle F., Goetz J., Hirsch T., Magaritis D., Montemerlo M., Pineau J.,
Roy N. Schulte J. and Thrun S., Towards personal service robots for the elderly, Proceedings
of the Workshop on Interactive Robotics and Entertainment (WIRE), Pittsburgh, 2000.

Bellman R. and Kalaba R., Dynamic programming and modern control theory, NY: Academic
Press Inc., 1965.

Bennett K. P. and Bredensteiner E. J., Multicategory classification by support vector machines,
Computational Optimizations and Applications, vol. 12, pp. 53-79, 1999.

Bertsekas D. P. and Tsitsiklis J. N., Parallel and distributed computation numerical methods,

Englewood Cliffs, N.J., Prentice Hall, 1989.

Chapter 9. References 93

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

Bhanu B., Leang P., Cowden C., Lin Y., and Patterson M., Real-time robot learning,
Proceedings of the 2001 IEEE International Conference on Robotics and Automation, Seoul,
Korea, pp. 491-498, 2001.

Blumberg B., Downie M., Ivanov Y. A., Berlin M., Johnson M. P., and Tomlinson B.,
Integrated learning for interactive synthetic characters. SIGGRAPH 2002, pp. 417-426, 2002.
Bowling M. and Veloso M., Simultaneous adversarial multi-robot learning, Proceedings of the
18™ International Joint Conference on Artificial Intelligence (IJCAI), pp. 699-704, 2003.
Breazeal C., Hoffman G., and Lockerd A., Teaching and working with robots as a
collaboration, AAMAS 2004, pp. 1030-1037, 2004.

Broadbent R. and Peterson T., Robot learning in partially observable, noisy, continuous
worlds, Proceedings of the 2005 IEEE International Conference on Robotics and Automation,
pp. 4386- 4393, Barcelona, Spain, 2005.

Bukchin J., Luquer R., and Shtub A., Learning in tele-operations, I/E Transactions, vol. 34, no.
3, pp- 245-252, 2002.

Carreras M., Ridao P. Batlle J. and Nicosevici T., Efficient learning of reactive robot behaviors

with a neural-Q learning approach, [EEE International Conference on Automation, Quality

and Testing, Romania, 2002.

Clouse J. A., An introspection approach to querying a trainer, Technical Report: UM-CS-1996-
013, University of Massachusetts, Amherst, MA, 1996.

Clouse J. A. and Utgoff P. E., A teaching method for reinforcement learning, Machine
Learning: Proceedings of the Ninth International Conference, pp. 92-101, San Mateo, CA:
Morgan Kaufmann, 1992.

Coelho J. A., Piater J. H., and Grupen R. A., Developing haptic and visual perceptual
categories for reaching and grasping with a humanoid robot , Robotics and Autonomous
Systems, vol. 37, no. 2, pp. 195-218, 2001.

Cortes C. and Vapnik V., Support vector networks, Machine Learning, vol. 20, pp. 1-25, 1995.

Crandall J. W., Goodrich M. A., Olsen D. R., and Nielsen C. W., Validating human-robot
interaction schemes in multi-tasking environments, /[EEE Transactions on Systems, Man, and
Cybernetics Part A: Systems and Humans, Special Issue on Human-Robot Interaction, vol. 35,
no. 4, pp. 438-449, 2005.

Cristianini N. and Shawe-Taylor J., Support vector machines and other kernel-based learning
methods, Cambridge University Press, Cambridge, U.K., 2003.

Dahmani Y. and A. Benyettou, Seek of an optimal way by Q -learning, Journal of Computer

Science, vol. 1, no. 1, pp. 28-30, 2005.

Chapter 9. References 94

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Djordjevic D. and Izquierdo E., 2007, An object and user driven system for semantic-based
image annotation and retrieval, IEEE Transactions on Circuits and Systems for Video
Technology (Accepted for future publication), 2007.

Driessens K. and DZeroski S., Integrating guidance into relational reinforcement learning,
Machine Learning, vol. 57, pp. 271-304, 2004.

Dube S., El-Saden S., Cloughesy T. F., and Sinha U., Content based image retrieval for MR
image studies of brain tumors, 28™ Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, pp. 3337-3340, 2006.

Dvoretzky A., On stochastic approximation, Proceedings of the Third Berkeley Symposium on
Mathematical Statistics and Probability, University of California Press, 1956.

Edan Y., Kartoun U. and Stern H., Cooperative human-robot learning system using a virtual
reality telerobotic interface, Conference on Advances in Internet Technologies and
Applications, Purdue University, West Lafayette, Indiana, U.S.A., 2004.

Ehrenmann, M., Rogalla, O., Zollner, R. and Dillmann, R., Teaching service robots complex
tasks: programming by demonstration for workshop and household environments, Proceedings
of the 2001 International Conference on Field and Service Robots (FSR), vol. 1, pp. 397-402,
Helsinki, Finland, 2001.

Fong T., Thorpe C., Baur C., Collaboration, dialogue, and human-robot interaction, / 0"
International Symposium of Robotics Research, Lorne , Victoria , Australia , November 2001.
Freire da Silva V., Reali Costa A.H., and Lima, P., Inverse reinforcement learning with
evaluation, Proceedings 2006 IEEE International Conference on Robotics and Automation, pp.
4246-4251, 2006.

Heguy O., Rodriguez N., Luga H., Jessel J. P. and Duthen Y., Virtual environment for
cooperative assistance in teleoperation, The 9" International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision, 2001.

Tesauro G. and Kephart J. O., Pricing in agent economies using multi-agent Q -learning,

Autonomous Agents and Multi-Agent Systems Journal, Springer, vol. 5, no. 3, pp. 289-304,
2002.

Glorennec P. Y., Reinforcement learning: an overview, European Symposium on Intelligent
Techniques, Aachen, Germany, 2000.

Goertzel B. and Venuto J., Accurate SVM text classification for highly skewed data using
threshold tuning and query-expansion-based feature selection, International Joint Conference

on Neural Networks, pp. 1220-1225, 2006.

Chapter 9. References 95

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Grounds M. and Kudenko D., Parallel reinforcement learning by merging function
approximations, Sixth European Workshop on Adaptive and Learning Agents and Multi-Agent
Systems (ALAMAS 06), 2006.

Grounds M. and Kudenko D., Parallel reinforcement learning with linear function
approximation, International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), 2007.

Gu D. and Hu H., Fuzzy multi-agent cooperative Q -learning, Proceedings of IEEE

International Conference on Information Acquisition, Hong Kong, China, pp. 193-197, 2005.

Guo M., Liu Y., and Malec J., A new Q -learning algorithm based on the metropolis criterion,

IEEFE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, vol. 34, no. 5, pp.
2140-2143, 2004.

Harvey N. R., Perkins S., Pope P. A., Theiler J., David N. A. and Porter R. B., Investigation of
automated feature extraction using multiple data sources, Proceedings of the AEROSENSE.
Orlando, 2003.

Heisele B., Ho P., Wu J., and Poggio T., Face recognition: component-based versus global
approaches, Elsevier Science Inc., New York, U.S.A., vol. 91, pp. 6-21, 2003.

Hellstrom T., Teaching a robot to behave like a cockroach, Proceedings of the Third
International Symposium on Imitation in Animals and Artifacts in Hatfield U.K., 2005.
Hirzinger G., Brunner B., Dietrich J., and Heindl J., Sensor-based space robotics-ROTEX and
its telerobotic features, IEEE Transactions on Robotics and Automation, vol. 9, no. 5, pp. 649-
663, 1993.

Honglak L., Yirong S., Chih-Han Y., Singh G., and Ng, A.Y. Quadruped robot obstacle
negotiation via reinforcement learning, Proceedings 2006 IEEE International Conference on
Robotics and Automation, pp. 3003-3010, 2006.

Howard A., Probabilistic navigation: coping with uncertainty in robot navigation tasks, Ph.D.
Dissertation, Department of Computer Science and Software Engineering, University of
Melbourne, Australia, 1999.

Isbell C. L., Shelton C. R., Kearns M., Singh S., and Stone P, A social reinforcement learning
agent, Proceedings of the 5" International Conference on Autonomous Agents, pp. 377-384,
Montreal, Canada, 2001.

Jaakkola T., Jordan M. 1., and Singh S. P., On the convergence of stochastic iterative dynamic
programming algorithms, Neural Computation, vol. 6, no. 6, pp. 1185-1201, 1994.

Jiuxian L., Siyu X., and Liangzheng X., Face detection based on self-skin segmentation and
wavelet support vector machine, International Conference on Computational Intelligence and

Security, vol. 1, pp. 755-758, 2006.

Chapter 9. References 96

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Kaelbling L. P., Littman M. L., and Moore A. W., Reinforcement learning: a survey, Journal
of Artificial Intelligence Research, vol. 4, pp. 237-285, 1996.

Kartoun, U., A human-robot collaborative learning system using a virtual reality telerobotic
interface, Ph.D. Thesis Proposal, Department of Industrial Engineering and Management at
the Ben-Gurion University of the Negev, Israel, 2003.

Kartoun U., Stern H., and Edan Y., 2004, Virtual reality telerobotic system, e-ENGDET 2004
4™ International Conference on e-Engineering and Digital Enterprise Technology, Leeds
Metropolitan University Yorkshire, U.K., 2004.

Kartoun U., Stern H., Edan Y., Feied C., Handler J., Smith M. and Gillam M., Collaborative

O(A) reinforcement learning algorithm - a promising robot learning framework, IASTED

International Conference on Robotics and Applications (RA 2005), October 31 - November 2,
Cambridge, U.S.A., 2005.

Kartoun U.(a), Stern H., Edan Y., Human-robot collaborative learning of a bag shaking
trajectory, The Israel Conference on Robotics (ICR 2006), Tel Aviv University, Faculty of
Engineering, June 29, 2006.

Kartoun U.(b), Stern H., Edan Y., Human-robot collaborative learning system for inspection,
IEEFE International Conference on Systems, Man, and Cybernetics, Taipei, Taiwan. Finalist (5
papers) for the Best Student Paper Competition, Oct. § - Oct. 11, 2006.

Kartoun U.(c), Stern H. and Edan Y., Bag classification using support vector machines,
Applied Soft Computing Technologies: The Challenge of Complexity Series: Advances in Soft
Computing, Springer Berlin / Heidelberg, ISBN: 978-3-540-31649-7, pp. 665-674, 2006.

Kerr J. and Compton P., Toward generic model-based object recognition by knowledge
acquisition and machine learning, Workshop on Mixed-Initiative Intelligent Systems,
International Joint Conference on Artificial Intelligence, Mexico, pp. 80-86, 2003.

Kollar T. and Roy N., Using reinforcement learning to improve exploration trajectories for
error minimization, Proceedings of the 2006 IEEE International Conference on Robotics and
Automation, pp. 3338-3343, 2006.

Kretchmar R. M., Parallel reinforcement learning, The 6" World Conference on Systemics,
Cybernetics, and Informatics, 2002.

Kreuziger J., Application of machine learning to robotics - an analysis, Proceedings of the
Second International Conference on Automation, Robotics and Computer Vision, Singapore,
1992.

Kui-Hong P., Jun J., and Jong-Hwan K., Stabilization of biped robot based on two mode Q -

learning, Proceedings of the 2" International Conference on Autonomous Robots and Agents,

pp. 446-451, New Zealand, 2004.

Chapter 9. References 97

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

Léangle T., Liith T. C., Stopp E. and Herzog G., Natural language access to intelligent robots:
explaining automatic error recovery, A. M. Ramsay (ed.), Artificial Intelligence: Methodology,
Systems, Applications. Amsterdam. pp. 259-267, 1996.

Lee C. H,, Yang H. C., Chen T. C., and Ma S. M., A comparative study on supervised and
unsupervised learning approaches for multilingual text categorization, First International
Conference on Innovative Computing, Information and Control, vol. 2, pp. 511-514, 2006.

Lin X. D., Peng H., and Liu B., Support vector machines for text categorization in chinese
question classification, /IEEE/WIC/ACM International Conference on Web Intelligence, pp.
334-337, 2006.

Lockerd A. and Breazeal C., Tutelage and socially guided robot learning, Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 2004.
MaJ. and Ahalt S., OSU SVM Classifier Matlab Toolbox (ver. 3.00), 2003.

MackWorth A. K., Poole D. and Goebel R. G., Computational intelligence: a logical approach,
Oxford University Press, 1998.

Martinez-Marin T. and Duckett T., Fast reinforcement learning for vision-guided mobile
robots, Proceedings of the 2005 IEEE International Conference on Robotics and Automation,
Barcelona, Spain, 2005.

Matari¢ M. J., Reinforcement learning in the multi-robot domain, Autonomous Robots, Kluwer
Academic Publishers, vol. 4, pp. 73-83, 1997.

The MathWorks Inc., 1998, Matlab Software, Image Processing User’s Guide.

Menegatti E., Cicirelli G., Simionato C., Distante A., and Pagello E, Reinforcement learning
based omnidirectional vision agent for mobile robot navigation, Workshop Robotica del IX
Convegno della Associazione Italiana Intelligenza Artificiale, 2004.

Meng X., Chen Y., Pi Y., and Yuan Q., A novel multiagent reinforcement learning algorithm
combination with quantum computation, The Sixth World Congress on Intelligent Control and
Automation, vol. 1, pp. 2613-2617, 2006.

Mihalkova L. and Mooney R., Using active relocation to aid reinforcement, Proceedings of the
19" International FLAIRS Conference (FLAIRS-2006), pp. 580-585, Melbourne Beach,
Florida, 2006.

Nakajima C., Pontil M., Heisele B., and Poggio T., Person recognition in image sequences: the
MIT espresso machine system, /EEE Transactions on Neural Networks, 2000.

Nason S. and Laird J. E., Soar-RL: integrating reinforcement learning with soar, Proceedings

of the International Conference on Cognitive Modeling, pp. 51-59, 2004.

Chapter 9. References 98

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

Natarajan S. and Tadepalli P., Dynamic preferences in multi-criteria reinforcement learning,
Proceedings of the 22" International Conference on Machine Learning (ICML 2005), Bonn,
Germany, 2005.

Nehmzow U. and Walker K., Quantitative description of robot-environment interaction using
chaos theory, Robotics and Automation Systems, vol. 53, pp. 177-193, 2005.

Motamed M. and Yan J., A reinforcement learning approach to lift generation in flapping
MAVs: simulation results, Proceedings 2006 IEEE International Conference on Robotics and
Automation, pp. 2150-2155, 2006.

Nourbakhsh I. R., Bobenage J., Grange S., Lutz R., Meyer R., and Soto A., An affective
mobile robot educator with a full-time job, Artificial Intelligence, vol. 114, num. 1-2, pp. 95-
124, 1999.

Otsu N., 1979, A threshold selection method from gray level histograms, /EEE Transactions
on Systems, Man, and Cybernetics, vol. 9, pp. 62-66.

Papudesi V. N. and Huber M., Learning from reinforcement and advice using composite
reward functions, Proceedings of the 16th International FLAIRS Conference, pp. 361-365, St.
Augustine, FL, 2003.

Papudesi V. N., Wang Y., Huber M., and Cook D. J., Integrating user commands and
autonomous task performance in a reinforcement learning framework, AAAI Spring Symposium
on Human Interaction with Autonomous Systems in Complex Environments, Stanford
University, CA., 2003.

Peng J. and Williams R., Incremental multi-step Q -learning, Machine Learning, vol. 22, no. 1-

3, pp- 283-290, 1996.

Peters J. and Schaal S., Reinforcement learning for parameterized motor primitives,
International Joint Conference on Neural Networks, pp. 73-80, 2006.

Ribeiro C., Reinforcement learning agents, Artificial Intelligence Review, vol. 17, no. 3, pp.
223-250, 2002.

Rosenstein M. T., Fagg A. H., Ou S., and Grupen R. A., User intentions funneled through a
human-robot interface, Proceedings of the 1 0™ International Conference on Intelligent User
Interfaces, 257-259, 2005.

Scholkopf B., Burges C., and Vapnik V., Extracting support data for a given task, In U. Fayyad
and R. Uthurusamy, editors, Proceedings of the First International Conference on Knowledge
Discovery and Data Mining, AAAI Press, pp. 252-257, 1995.

Scheffer T. and Joachims T., Expected error analysis for model selection, Proceedings of the

International Conference on Machine Learning, 1999.

Chapter 9. References 99

[92] Sheridan T. B., Supervisory control, In: Handbook of Human Factors/Ergonomics, G.
Salvevely (Ed.), Wiley, ISBN 0471116, N.Y., 1987.

[93] Sheridan T. B., Telerobotics, automation, and human supervisory control, M.I.T. Press, 1992.

[94] Shigeo A., Support vector machines for pattern classification, Springer, 2001.

[95] Smart W. D., Making reinforcement learning work on real robots, Ph.D. Dissertation, Brown
University, 2002.

[96] Smart W. D. and Kaelbling L., Practical reinforcement learning in continuous spaces,
Proceedings of the 17" International Conference on Machine Learning, pp. 903-910, 2000.

[97] Sorid D. and Moore S. K., The virtual surgeon, IEEE SPECTRUM. pp. 26-39, 2000.

[98] Park M. S. and Choi J. Y., New reinforcement learning method using Multiple QO -tables,

School of Electrical Engineering & Computer Science, Seoul National University, 2002.

[99] Steinfeld A. M., Fong T. W., Kaber D., Lewis M., Scholtz J., Schultz A., and Goodrich M.,
Common metrics for human-robot interaction, Human-Robot Interaction Conference, ACM,
March, 2006.

[100]Sutton R. S., Learning to predict by the method of temporal differences, Machine Learning,
vol. 3, pp. 9-44, 1988.

[101]Sutton R. S. and Barto A. G., Reinforcement learning: an introduction, Cambridge, MA: M.I.T.
Press, 1998.

[102]Sutton R. S., Open theoretical questions in reinforcement learning, Lecture Notes In Computer
Science, Proceedings of the 4" European Conference on Computational Learning Theory, vol.
1572, pp. 11-17, 1999.

[103]Theocharous G. and Mahadevan S., Approximate planning with hierarchical partially
observable markov decision processes for robot navigation, /[EEE Conference on Robotics and
Automation. Washington D.C., 2002.

[104] Thomaz A. and Breazeal C. 2006 “Reinforcement Learning with Human Teachers: Evidence
of Feedback and Guidance with Implications for Learning Performance, Proceedings of the
21 National Conference on Artificial Intelligence (AAAI), 2006.

[105]Touzet C. F., Q-learning for robots, the handbook of brain theory and neural networks,

Cambridge, MA: M. Arbib editor, M.I.T. Press, 934-937, 2003.

[106] Touzet C. F., Distributed lazy Q -learning for cooperative mobile robots, International Journal

of Advanced Robotic Systems, vol. 1, num. 1, pp. 5-13, 2004.

[107] Vapnik V., Statistical learning theory, JohnWiley and Sons, N.Y ., 1998.

[108]Wang B., Li J. W., and Liu H., A heuristic reinforcement learning for robot approaching
objects, 2006 IEEE Conference on Robotics, Automation and Mechatronics, pp. 1-5, December
2006.

Chapter 9. References 100
[109]Wang Y., Huber M., Papudesi V. N., and Cook D. J., User-guided reinforcement learning of

robot assistive tasks for an intelligent environment, Proceedings of the IEEE/RJS International
Conference on Intelligent Robots and Systems, vol. 1, pp. 424-429, 2003.

[110]Watkins C. J. C. H., Learning from Delayed Rewards, Ph.D. Dissertation, Cambridge
University, 1989.

[111]Watkins C. J. C. H. and Dayan P., O -learning, Machine Learning, vol. 8, pp. 279-292, 1992.

[112]Weber C., Wermter S., and Zochios A., Robot docking with neural vision and reinforcement,
Knowledge-based Systems, vol. 17, num. 2-4, pp. 165-72, 2004.

[113]Yanco H. A., Baker M., Casey R., Chanler A., Desai M., Hestand D., Keyes B., and Thoren P.,
Improving human-robot interaction for remote robot operation, Robot Competition and
Exhibition Abstract, National Conference on Artificial Intelligence (AAAI-05), July 2005.

[114]Young S. and Downs T., CARVE - a constructive algorithm for real-valued examples, /[EEE
Transactions on Neural Networks, vol. 9., num. 6., pp. 1180-1190, 1998.

[115]Ziemke T., Adaptive behavior in autonomous agents presence - teleoperators and virtual
environments, Special issue on Autonomous Agents, vol. 7, num. 6., pp. 564-587, 1998.

[116]Zimmerman T. and Kambhampati S., What next for learning in Al planning?, International
Conference on Artificial Intelligence, Las Vegas. U.S.A., 2001.

[117]Zhu W. and Levinson S., Vision-based reinforcement learning for robot navigation,
Proceedings of the International Joint Conference on Neural Networks, vol. 2, pp. 1025-1030,
Washington D.C., 2001.

Appendix I. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot 101

Appendix L. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot

The system consists of two separated applications exchanging parameters through the Windows

registry: (1) digital scale, and (ii) learning system.

Pre-request Softwares

Install the following softwares:

1) XP Operating System + Internet Information Server (IIS) + FrontPage 2000 Server
Extensions

2) Visual Studio .Net 2003

3) Matlab 7.1

4) Motocom32.DLL and plug

Communication Link between the Digital Scale and the Learning System

Efficient data exchange between the robot learning system and the digital scale is done by defining

variables in the Windows registry (Fig. I.1).

. . Robot
Digital Wind Learnin
Scale | indows > g

Registry System
Software
Software

Fig. I.1 Data exchange through the Windows registry

Initial variables configuration in the Windows registry (Fig. 1.2 and Fig. 1.3).

._ Programs 3 Ru n EJ EJ

| .'- Documents 4
E;l» Settings » = Tvpe the name of a program, Folder, document, ar
_ Internet resource, and Windows will open it Faor you,
/J Search 4
I . ol -, — I
) Help and Support open: | W
[K, l [Cancel] [Browse, .,

Fig. 1.2 Registry editor operation

Appendix I. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot 102

£:" Registry Editor

File Edit “ew Fawvorites Help

= My Compuker Mame
&[] HKEY_CLASSES_ROOT [ab](pefault)
= D EE?_CURRENT—USER .ﬁ.ctivate_Sn:aIe_FIag
2 .ﬁ.ppEventls (ab] Cummulative_Yalue
-2 Cameratizard Events Value
[console ; =
-2 Control Panel SFDD_RDth_FIag
|:| Environrment : T|r.ne_'-.-'alue
& Hoops Trlal_r'-.luml:uer

-7 Identities
-2 Keyboard Layout
[Metwork
-2 Printers
([sessionInformation
-2 Software
|:| UNICODE Program Groups
=27 Ui
C] Makornan
21 Sound
([volatile Environment
-2 Windows 3.1 Migration Status
&[] HKEY_LOCAL_MACHINE
7] HEEY_USERS
-0 HKEY_CLURRENT_CONFIG

Fig. .3 Registry variables
The variables:
1) Activate Scale Flag - whether to enable or disable the scale (0 or 1).
2) Cummulative Value - The actual measured weight (grams).
3) Events Value - Whether an object was dropped on the scale (0 or a positive value in grams).
4) Stop Robot Flag - Disable/enable robot (0 or 1).
5) Time Value - raw time value measured (ms) - starts when a new learning episode is
performed.

6) Trial Number - what is the current number of the learning episode.

The Digital Scale

Specifications
The “Mettler Toledo” SB12001 digital scale (Fig. I.4) has an accuracy of £0.1 grams and is equipped

with RS232C allowing its measurements to be read by a PC program.

Appendix I. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot 103

Fig. 1.4 “Mettler Toledo” SB12001 digital scale

The following switch (Fig. 1.5) allows restarting the scale remotely from the human operator

computer. Restarting the scale recalibrates it.

Fig. 1.5 Digital scale remote switch

An inspection surface should be placed on top of the scale under the robot gripper (Fig. 1.6).

Appendix I. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot 104

Fig. 1.6 Digital scale and inspection surface located under the robot gripper

The digital scale is connected to a computer through RS-232 communication cable. In case the
computer has only one serial port (two are required - for the controller and for the scale), a “USB to

RS-232” converter should be used (Fig. 1.7).

Fig. 1.7 USB to serial converter connected to a PC

Appendix I. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot 105

The Software
The software is written in VB .Net and running under Windows XP. The main VB project file name
is: “Digital Scale.vbproj”. The software reads values from a digital scale through serial

communication and presents them as text fields and graphs (Fig. 1.8).

= Digital Scale

| ™ EnableScie ¥ FomceScdke

l]
I
| ;,||||||||||||'||||||| ;:,||||||| |

Fig. 1.8 Digital scale software

Essential port settings (pre-programmed) are as follows (Fig. 1.9).

COM3 Properties
Port Settings
Bitz per second: | vl
Diata bits: |T-" vl
Parity: |Nnne v|
Stop hits: |2 vl
Flaw cantral: |None vl
L 1] J [Cancel l Apply

Fig. 1.9 Digital scale serial communication configuration parameters

Appendix I. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot 106

Parameters:

1)

2)
3)
4)
5)

6)
7)

8)

Communication (COM Setup): definition of serial communication parameters: baud rate:
9600, port number: 3, timeout (ms): 1500 (See also Fig. 1.9).

Temporary Directory: a path for writing log files.

Force Scale Checkbox - enables scale operation regardless of the registry.

Cumulative Graph - the current weight (in grams) on the scale.

Events Graph - compares between two measurements (“First Reading” and ‘“Second
Reading” textboxes) to identify changing weight events. “Time Difference” is a configurable
parameter for determining the time (ms) between the two measurements.

“Weight Difference” - sensitivity to events.

“Robot Termination Threshold” - if the weight on the scale is above this value the registry is
updated and triggers the robot to halt.

Other textboxes - required for string manipulation of raw information arriving from the scale.

Remark: to close the program, use the “Exit” in the top left corner to avoid communication

conflicts.

The Learning System

UP-6 Motoman Robot and XRC controller

The Motoman UP-6 robot located over an inspection surface (Fig. 1.10) is controlled by a XRC

controller (Fig. I.11).

Fig. 1.10 Motoman UP-6 robot

Appendix I. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot 107

Fig. I.11 XRC controller

Creating programs that can be interrelated by the XRC controller and performed by the robot is made
by using the teach pendant (Fig. 1.12).

Fig. 1.12 Teach pendant

Using the XRC remote control box (Fig. 1.13) located near the human operator computer enables

easier operation since the human does not have to approach the controller:

Appendix I. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot

108

Fig. I.13 XRC controller remote control box

Communication between a PC computer and the XRC controller

The “Motocom32.dll” libraries and the additional security plug are required for setting a

communication link between a PC and the Motoman UP-6 robot. A PC computer is connected to the

XRC controller by RS-232 cable configured as follows:

Serial Cable Setting:

XRC Controller (9 pins connector) PC (9 pins connector)
2 3
3 2
5 5
7 8
8 6.4

The following parameters should be configured in the XRC controller by using the teach pendant:

Under “Management” security mode, choose “Parameter — RS” menu, make sure that the following
parameters are set: RS000: 2, RS001: 0, RS002: 0, RS003: 5,RS004: 0, RS005: 0, RS030: 8 -
Number of data bits, RS031: 0 - Number of stop bits, RS032: 0 - Parity check, RS033: 7 - 9600 baud,
RS034: 30 - TimerA, RS035: 200 - TimerB, RS036: 10 - Retry 1, RS037: 3 - Retry 2, RS038: 0 -

Block check method.

Appendix I. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot 109

Under “Management” security mode, choose “In / Out — PSEUDO INPUT SIG” menu and make
sure that the following parameters are set: #8214 INHIBIT 10: OFF, #8215 CMD REMOTE SEL.:
ON, #8216 INHIBIT PP/PANEL: OFF.

Under “Yaskawa” security mode, choose “Parameter” menu and make sure that the following

parameter is set: FD003: 1 - Data transmission.

Physical connection of the serial cable to a PC and to the XRC controller is presented in Fig. 1.14 and
Fig. I.15.

Fig. 1.14 Serial cable connected to a PC

Appendix I. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot 110

Fig. 1.15 Serial cable connected to the XRC controller

Remark: make sure that the plug supplied with the Motocom32.DLL software is connected to the
PC.
Visual Feedback

1) Connect a USB web-camera to a PC computer under Windows XP.

2) Install the “WebCam32” software and configure parameters as follows (Fig. 1.16):

~TCRAP Features——————————— “TCPAF Access
[
| Single frame Enabled [v {g& Remoale access pol [BR88
T Aprict Etsblad m Behind Frewal [TER/IP Setver Push
Allow hostrame lookup [M aximim push interval |'|5_ Seconds
Server Push Enabled [V T =
ng Ea I : :
Remate RCM Contral [v M animem peszh size |15‘:' EBjytes
Log fike ||::\WEer-132.L|:||3
Palm Access Enabled [v Frame delay |I.'.I mSecs
Cument IP &ddress 0o -
Palm Part |EDDE 'l e |

Fig. 1.16 Communication configuration

Appendix I. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot 111

By opening a web browser and typing the correct camera script' “htm” file a real-time visual

feedback is shown (Fig. 1.17):

() Camera Feedback - Maxthon Browser JETES)

Fle Edit Wiew Favortes Groups Options Tools Window Help
Q.0 .[H. B .0
Back Forvward Stop Refresh Home
Address @] Rttpsffwaw.ie bgu.ac ifkartaunfvisual_feedbackfamit_camera,htm -~ B -
&) Customize Links
Camera Feedback
E
| |
@Disu\aying live video .. T304 8D KD 132.72.98.228 Obptes 134M 1
st ||) B 3 BE »|| Edroteic, | [@ comer... [adsbe .| @wlingn..| (stprters | 8] ..oocun] sdwebes... | Gjcanesomera2him - Hoteoad | gy 5 1 v] O E1 @D A] 1919

Fig. I.17 Visual feedback at a web browser

The Software - “Human-robot collaboration learning system”

The software is written in VB .Net and running under Windows XP. The main VB project file name

is: “Learning_System.vbproj”.

The control tabs

The software consists of several tab views. Several of the tab views are not necessary for operating

the learning system and are used for system additional development. The essential tabs are described

as follows:

! The “htm” file should be placed on the department server, for example:
http://www.ie.bgu.ac.il/kartoun/visual_feedback/camera_1.htm

Additionally, update all IP numbers (e.g., 132.72.98.228) at the “htm” file according to the IP of PC where the camera is
connected to. If more than one camera is required, each camera should be connected to a different PC with a different IP

address.

Appendix I. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot 112

1) The “Human-Robot Collaboration” tab (Fig. 1.18):

{2 Human-Robot Collaboration Learning System
Exit

:Human-Robot Collaboration | Development} Userlnterface} CQ(Iamda)] State-Action Space | Shaking Editor | Job Editor

Initialize D B
s m rop Bag

Visual Feedback

Collaboration Level

Falicy: Autonomous Mede - No Human Intervention is Required!
Control
c,.mm.| - Human-Robot Collaboration Control
Reset
Robot
Human Decision Making - Suggest a Shaking Policy
Execute
D] Shaking)) ;
Axis Amplitude (Step Size of X, Y, and Z) -0 to 50 cm
Beward Type Calculate Forward-Backward Step Size: mm
Peak - Reward
Rewards System Performance Laitilizjist Sizp Seat | i
Total Reward Total Time Up-Down Step Size: mm
,0— 000 Successful Policy Time
RL Calcutations: 12 Axis Speed Control (of X, Y, and Z) - 100 to 1500 mm / sec
3 Forward-Backward Speed: mm / sec
[sec]
Human System ,—
Creates Creates 4 Left-Right Speed: mm | sec
Policy Palicy 0
Policy Creation: 0 20 30 0 50 Up-Down Speed: mm / sec
Successful
Policy Humber
Ti A0 iR A et e s Eliminate Axis
LI o e r r r

Reset 100
Timer P
80 Message
%] 60
o 20
20

'

10 20 k) 40 50
Learning
Episode

Fig. 1.18 Human-robot collaboration tab

Visual feedback - displays a real-time feedback from the remote robotic environment.

System performance graphs - give an indication of how well the system learns: (i) comparison
between the last successful policy and the mean of all successful policies, and (ii) cumulative success
rate - the parentage of successful policies.

“Initialize System” button - builds a random starting policy and a preliminary Q table.

“Drop Bag” button - open the robot gripper.

“Connect to Robot” button - starts the robot controller and allows robot motion.

“Reset” button - disables robot operation.

“Grasp Bag” button - runs predefined programs denoted “GRASP1.JBI” for grasping a bag and
“GRASPH.JBI” for lifting to a starting shaking location over an inspection surface.

“Execute Shaking” button - performs a shaking policy operation.

“Reward Type” - choosing whether the reward will be based on cumulative weight measured from a

digital scale of whether it is based on events.

Appendix I. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot 113

“Calculate Reward” button - after shaking was executed, a reward is being calculated based on the
chosen reward type and updates the current policy (the progress is shown by the “RL calculations”
track bar).

“Human Creates Policy” button - when human is asked to intervene he can adjust parameters in the
“Human-Robot Collaboration Control” then by pressing the button a new policy is created. The data
is written into a “csv” file which includes states, action, rewards, speeds and adjacent state distances

for the policy and the current Q table. The “Policy creation” progress bar gives an indication for the

new policy creation.

“System Creates Policy” button - writes the current policy and Q table to a “csv” file.

Timer - contains a textbox representing the shaking time in seconds. The “Reset Timer” and “Stop”
buttons should be used only if there is a communication problem with the robot.

“Collaboration Level” - a message for the human operator to notify about the collaboration level,
autonomous or semi-autonomous.

“Policy Success Notification” - notifies if the last policy was successful or failed.

“Human-Robot Collaboration Control” - when human is asked to intervene this panel is enabled. The
controls at this panel allows the human to adjust the X, Y, and Z axis speeds and adjacent state

distances. Additionally, it allows to eliminate movement for a specific axis.

Appendix I. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot 114

2) The “Development” tab (Fig. 1.19):

™ Human-Robot Collaboration Learning System

Exit
Human-Robot Collaboration Development]User Interface] CQ(Iamda)] St

System Papameter Configuration

Robot Status: . Robot i autonomous forthe qp learning trisls.
Scale Wiiting to File Interval: g 25 (2ec) Reward Value Threshold: [gp

Max Actions per Learning Episode: 100 One Ohject Weight: |48 Grams

[~ Enable Sound Notifications Tempoarary Directory: o temp

—System Performance

Actual Performance: Dat (%)
Threshold: 60 (%)
Last Successful Shaking 0

(Biag Emptied]: e
Average Successiul 0 e

Shaking Policies:

Communication
Messeges

niCicl
Open
Communication | BarcOpen (ot 1)

rc
BacConnec (11

Communication Status: Dizconnected
B=cD Load
=cDovenLios o)
Mode: v Teach
Serva | OFFf leen |

Download / Upload

POLICY B |EI.&GS1 JJBI

Davvnload Job Upload Jokb |

Delete Jak

Fun Jokb

F = [2] Total... F #% Learning. ..

Fig. 1.19 Development tab

“System Parameter Configuration” panel:

“Robot Status” - notifies whether the robot is operating or idle.
“Robot is autonomous for the ... learning episodes” - determines for how many learning episodes the

robot is enforced to learn autonomously.

Appendix I. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot 115

“Scale Writing to File Interval” - sets the interval between reading values from the digital scale and
writing the information to a log file.

“Max Actions per Learning Episode” - the maximal number of actions per learning episodes.
“Enable Sound Notifications” - enables/disables voice announcements.

“Reward Value Threshold” - threshold whether a policy was successful.

“One Object Weight” - the weight for one object.

“Temporary Directory” - a directory for writing log files.

“System Performance” panel:

“Actual Performance” - success rate of the system for the last five episodes.

“Threshold” - threshold for human intervention.

“Last Successful Shaking” - time to perform the last successful policy(s).

“Average Successful Shaking Policies” - average time of all successful policies(s).

“Communication” panel - controls XRC controller parameters and connects to robot. Presents the

communication status.

“Download/Upload” panel - enables uploading, downloading, deleting and running robotic programs

(JBI files).

“Messages” panel - parameter arrives from the XRC controller for notifying whether a

communication operation was successful.

Appendix I. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot 116
3) The “User Interface” tab (Fig. 1.20):

™ Human-Robot Collaboration Learning System

Exit

Human-Robot Collaboration\ Development User Interface ICQ(Ia

Robot Setup

Operational Mod,
e el Home Positions

Inctetmerntal Continious
Hatne Haome Home:
v [Lett Center Right |
Arm Step Size:
25 2, Speed
Wirist Step Size: Arm |og cmizec
cH
g Wirist: |5 cmizec
Robot Joint Commands
Arm Wrist Gripper
H+ Bree I+ Rall+ Fitch+ a+ Qpen
H- - Z- Rall- Pitch- Ey - Close

Fig. 1.20 User interface tab

The “User Interface” tab allows supervisory control over the world coordinates robot and replaces

some the teach pendant capabilities.

“Operational Mode” panel - enable to choose an incremental or continuous movement of the robot. If

the incremental option is chosen then two parameters can be set: (i) the arm step movement size

(cm), and the wrist step movement size (cm).

“Speed” panel - controlling the speeds of the arm and wrist (cm/s).

“Home Positions” panel - contains three predefined locations above the robotic environment, center

(HL.JBI) , left (HL.JBI) and right (HR.JBI) positions.

“Robot Joint Commands” panel - enables the direct control of the robot using the parameters defined

in the “Operational Mode” panel for the arm (X, Y, and Z axes), for the wrist (Roll, Pitch, and Yaw)

Appendix I. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot 117

and for opening/closing the gripper. Pressing on one of the buttons creates a new “JBI” file which is

downloaded to the XRC controller for execution. The “Stop” button disables any robot movements.

Additional tabs:

The tabs: “CQ(lambda)” and “State-Action Space” are not part of the user interface. The options
presented at the tabs are used to view and analyze shaking policies the learning system creates or to
create random shaking policies independently. The information presented at the tabs includes also

the state-action space Q values and reward results. The “Shaking Editor” and “Job Editor” tabs

might be used by other M.Sc./Ph.D. students if further system development is required.

Performing learning episodes

The learning system is preprogrammed to run fifty learning episodes (fifty trials of grasping, lifting

and shaking a bag).'

For running a learning episode, the following procedure should be followed:

1) XRC controller should be turned on (Fig. .21):

Fig. 1.21 XRC controller on/off switch

2) Since the robot and its environment are surrounded by a security cage the doors should be
closed (Fig. 1.22). On both doors relay switches are installed (Fig. 1.23). Opening one of the
cage doors triggers a command sent to the controller to immediately disconnect the robot and

stop any motion.”

' Note that the number of learning episodes required to determine the robot history learning performance was set to five.
This value was determined programmatically and can not be changed through the interface.

? Before entering the robot’s cage it is recommended to do as following: (i) press the “Reset” button”, (ii) press the reset
red button at the TP, (iii) turn the “Remote” switch left at the XRC controller remote control box, and (iv) disable the

Appendix I. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot 118

Fig. 1.22 Robot surrounded by a security cage and doors

Fig. 1.23 A relay installed on one of the cage doors

digital scale. When running a learning episode, release the resent button and press “Select” at the TP. Then turn the
“Remote” button right and enable the digital scale.

Appendix I. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot 119

3) Run the “Digital Scale.vbproj” project and make sure that the screen in Fig. .8 is shown.
4) Run the “Learning System.vbproj” project and make sure that the screen in Fig. 1.18 is
shown.

5) Take a plastic bag and place in identical objects (for the experiments described in the work

five screws each weights 45 grams were used) (Fig. 1.24).

(a) Plastic bag and objects (b) Plastic bag contains objects

Fig. 1.24 Suspicious plastic bag

6) Place the plastic bag with objects on the inspection surface (Fig. 1.25).

Fig. 1.25 Plastic bag placed on the inspection surface

7) Close the cage’s doors.
8) Press the “SELECT” button on the teach pendant (Fig. 1.26):

Appendix I. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot 120

Fig. 1.26 Teach pendant “SELECT” button

9) Turn the “REMOTE” switch left and then right (Fig. 1.13).

10) In the “Development” tab (Fig. 1.19) choose the parameters you desire.
11) In the “Human-Robot Collaboration” (Fig. 1.18) tab:

a.

Press “Connect to Robot”. Currently you should hear the sound of a relay triggered
from the XRC controller. You will also be able to see that the “PLAY” and the
“REMOTE” LEDs are turned on at the XRC controller. If the robot is not connected
immediately then press the “Reset” and the “Connect to Robot” again.

Make sure that at the temporary directory you chose (e.g., d:/temp), the only file

exists is “peakdetect.m”. Please note that the “peakdetect.m” file is only required if
events-based rewards are used. “peakdetect.m” subtracts the supplied signal vector
from a one sample positively lagged version of the same signal and checks the
resulting differenced signal for the sign changes where peaks occur.

Press the “Initialize System” button. This will open a Matlab window and will build
an initial and random shaking policy. The output will be written as a “0_Trial.csv” file
to the temporary directory.

Press the “Grasp a Bag” button. The robot will slide under the plastic bag, grasp it
with it gripper and lift it to a starting shaking position above the inspection surface.

Make sure that the inspection surface is free of bags/objects (Fig. 1.27):

Appendix I. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot 121

Fig. 1.27 Robot center shaking position

12) Calibrate the digital scale:
a. Make sure that the inspection surface (Fig. 1.27) is empty, then turn the digital scale
remote switch to “Disable” and to “Enable” (Fig. 1.28). Make sure that the scale

measurement is around zero.

Fig. 1.28 Digital scale remote switch

b. Press the “Execute Shaking” button. This will perform one robot shaking episode and
in parallel will start the digital scale software for measuring the current weight on the
scale and to notify on dropping events. The scale software will write the file

“l_Trial Scale Output.csv” to the temporary directory (1 is for the first trial, 2 is for

Appendix I. Installation and Configuration - Motoman UP-6 Fixed-Arm Robot 122

the second, and so on till the 50" learning episode). The “1_Trial Scale Output.csv”
contains three columns: (i) time (s); (ii) cumulative weight, and (iii) events data.

c. Press the “Calculate Reward” button. This will calculate the reward based on the
chosen reward function (cumulative-based or events-based), calculate and update a

new Q table.

d. From here, there are two possible options: (i) if the system is in an autonomous mode
then press the “System Created Policy” button, and (ii) if the system in a semi-
autonomous mode then the human operator can configure parameters at the “Human-
Robot Collaboration Control” panel. Any of these two options create a new policy for
the robot. Additionally, the file “l Trial.csv” will be written to the temporary
directory (1 is for the first trial, 2 is for the second, and so on till 50" learning
episode). The “1 Trial.csv” contains 10 columns (state, action, reward, time of
shaking, three speeds and three adjacent state distances for the three axes). Note that
initial speeds and adjacent state distances for the three axes were set to 1000 mm/s
and 30 mm, respectively. Please also note that if a human has intervened then output
files will be at the form of “n_Trial Intervention.csv” while n is the current learning

episode.

To perform more learning episodes make sure that the robot is connected (use the “Connect to

Robot” button) and press the “Drop Bag” button. Then repeat all steps described above.

Remarks:

If from some reason the timer starts counting but the robot does not start a learning episode (that’s
probably a communication issue) then press the “Stop” and “Reset Timer” buttons one after the
other (Fig. 1.29). Then press the “Execute Shaking” button again. If this does not solve the

problem then press “Reset” and “Connect to Robot”.

Timer

Rezet

Timer =UEE

o

Fig. 1.29 Learning episode timer

Appendix II. Convergence Proof for a Single O-Learner 123

Appendix I1. Convergence Proof for a Single Q-Learner

The proof is based on the observation that the Q -learning algorithm can be viewed as a stochastic
process to which techniques of stochastic approximation are applicable. [Jaakkola et al., 1994]’s

proof for essential lemmas and theorems is presented below.
Lemma 1 A random process

Wy 1(x) = (1= ap (X)) @y (x) + By (x)r, (x)

converges to zero with probability one if the following conditions are satisfied:

1) Z (x”(x):oo,z a,%(x)<oo,z B,(x) =, and z B2(x) <o uniformly over x with probability
one.

2) E{r,(x)|P,.B,} =0 and E{2(x)| B,.B,} < C with probability one, where,

By =40y, Oy 15ees Ty 15 Tn2 e Q102 50 P15 By}

All the random variables are allowed to depend on the past P,. «,(x) and g,(x) are assumed to be

non-negative and mutually independent given p, .

Proof. Except for the appearance of g,(x) this is a standard result. It is stated in [Jaakkola ef al.,

1994] “with the above definitions convergence follows directly from [Dvoretzky, 1956]’s extended

theorem.”
Lemma 2 Consider a stochastic iteration
Xyp41(X) = Gy (X, Yy, X)

where G, is a sequence of functions and v, is a random process. Let (Q,F,P) be a probability space

and assume that the process is scale invariant, that is, with probability one for all we Q.

G(BXy, Yy(@), x) = fG(Xy, Yy (@), X)

Appendix II. Convergence Proof for a Single O-Learner 124

Assume further that if we kept || x,, || bounded by scaling, then x, would converge to zero with

probability one. These assumptions are sufficient to guarantee that the original process converges to

zero with probability one.

Proof. Note that multiplying x, by g corresponds to having initialized the process with gx,. Now
fix some constant ¢. If during the iteration, | x,| increases above ¢, then x, is scaled so
that| x, |= c . By the second assumption then this process must converge with probability one. To
show that the net effect of the corrections must stay finite with probability one we note that if || x,, |
converges then for any ¢>0 there exists m, such that || x, |<s<c for all »>m, with probability at
least 1-¢. But this implies that the iteration stays below ¢ after m, and converges to zero without

any further corrections.

Lemma 3. A stochastic process X, (x)=(1-a,())X,(x)+18,(x)|| X,| converges to zero with

probability one provided

1) xes,where s is a finite set.
2) D an=o, D @<, D Pl =o0, D Biw <o, and E{f,(x)| B} < Ela,(x)| B} uniformly

over x with probability one. Where

By = X0 Xptees @15 Q25 P—1: P20}

a,(x) and g,(x) are assumed to be non-negative and mutually independent given p, .

Proof. Essentially the proof is an application of Lemma 2. To this end, assume that we keep | x,, |< ¢

by scaling which allows the iterative process to be bounded by
| Xpr1(x) [€ A=, () | X (X) [+78,(0)C

This is a linear in | x,(x)| and can be easily shown to converge with probability one to some x"(x),

where || X" |<y,. Hence, for small enough ¢, there exits M (¢) such that || x,|<c/1+e) for all
n>M(¢) with probability at least pj(¢). With probability pj(e) the procedure can be repeated for

C, = /(1 +¢) . Continuing in the manner and choosing p; () so that Hk pr(e) goes to one as & >0 we

obtain with probability one convergence of the bounded iteration and Lemma 2 can be applied.

Appendix II. Convergence Proof for a Single O-Learner 125

Theorem 1 A random iterative process A, (x)=(-a,(x)A,x)+B,(x)F,(x) converges to zero with

probability one under the following assumptions:

1) xes,where s is a finite set.
2) Y a@=o, Y agm<o, Y B =0, > Bl <o, and Eif,(x)| B} < Ela,(x)| B} uniformly

over x with probability one.

3) N EF| P Bud lwsy 1A, Il , Where y e (01)

4) Var{F,(x)| P,.B,} < C(+| A, ly)?> , where C is some constant.

Here P, ={X,. X, 1s Fytsr Op_ioos fui-} Stands for the past at step n. F,(x),a,(x) and g,(x) are
allowed to depend on the past. «,(x) and g,(x) are assumed to be non-negative and mutually

independent given p,. The notation |- | refers to some weighted maximum norm.

Proof. By defining r,(x) = F,(x) - E{F,(x)| B,. 8, We can decompose the iterative process into two

parallel processes given by

Op1(x) = (1 =y ()0, (x) + By () E{F, (x) | By, B}

Tp41(x) = (1= @y (X))@ (x) + By ()7, (x)

where A, (x) = 5,(x) + @,(x) . Dividing the equations by w(x) for each x and denoting 5, (x) = 5,(x)/W(x),
@ (x) =@, (x)/W(x) and r,(x) = r,(x)/W(x) we can bound the s,(x) process by assumption 3 and rewrite

the equation pair as

Sy (0| < (-a,(x)

8,(0)|+ 78,2 |8+ =,

@ 41(%) = (1= @ ()@ (X) + 7B, (X (%)

Assume for a moment that the A, process stays bounded. Then the variance of #,(x) is bounded
by some constant ¢ and thereby =, converges to zero with probability one according to Lemma 1.
<¢ with probability at least 1-¢. This implies that

Hence, there exists & such that for all » > mljw,

the s, process can be further bounded by

S (%) S (%) Sy (x) + &

<l-a,(x))

+ 7By (%)

Appendix II. Convergence Proof for a Single O-Learner 126

with probability > 1-& . If we choose ¢ such that y(C+1)/C <1 then for (5, > Ce

6, + &l <y +1)/Cls,

and the process defined by this upper bound converges to zero with probability one by Lemma 3.

Thus |5,| converges with probability one to some value bounded by cs which guarantees the with

probability one convergence of the original process under the roundedness assumption.

By assumption (4) r,(x) can be written as (1+[6, +@,|)s,(x), where E{s3(x)|B}<C. Let us now
decompose @, as u, +v, with
5,'1 +u, +v,

Up41 () = (1= @ ())uy (X) + 78, (x) sy (%)

and v, converges to zero with probability one by Lemma 1. Again by choosing ¢ such that

#(C+1)/C <1 we can bound the &, and u, processes for|s, +u,| > Ce .

The pair (35,,u,) is then a scale invariant process whose bounded version was proven earlier to
converge to zero with probability one and therefore by Lemma 2 it too converges to zero with
probability one. This proves with probability one convergence of the triple s,.u,, and v, bounding

the original process y(C+1)/C<1.
Theorem 2 The ¢ -learning algorithm given by

Or1(spsy) ==y (s, 1))y (5 14) + o (st,u,)[csr (u) + 7V (sp41)]

converges to the optimal 0*(s,u) values if

1) The state and action spaces are finite.
2) Ztat(s,u):oo and ztatz(s,u)< o uniformly over s and » with probability one.
3) varieg(w)} is finite.

4) If y =1 all policies lead to a cost free terminal state with probability one.

Appendix II. Convergence Proof for a Single O-Learner 127

Proof. By subtracting 0°(s,u) from both sides of the learning rule and by defining

As,u)=0y(s,u)- 0" (s,u) together with

Fy(s.u) = e5(u)+ 7y (5141)~ 0" (s.10)

the ©-learning algorithm can be seen to have the form of the process in Theorem 1 with
Bi(s,u) = ay(s,u).

To verify that F£(s,u) has the required properties we begin by showing that it is a contraction
mapping with respect to some maximum norm. This is done by relating 7, to the dynamic

programming (DP) value iteration operator for the same Markov chain. More specifically,

max| E{F,(iau)}|=7mgx A ANE AT
< ymax } p, (u)max | Qt(j,t)— 0 (j,v)l

= ym;pry(u)VA(j) = T(VAXi)

J

where we have used the notation 72(j)= max,

0,(j.v)-0"(j,vj and T is the DP value iteration operator

for the case where the costs associated with each state are zero:

PEE)= min te0+7) py v o)
()= min e ;p,u J

If y<1 the contraction property of E{f(i.«)} can be seen from the fourth formula by bounding

Z iy ?(j) by max;”*(j) and then including the » factor. When the future costs are not discounted
J

(» =1) but the chain is absorbing and all policies lead to the terminal state with probability one there
still exits a weighted maximum norm with respect to which T is contraction mapping [e.g.,
Bertsekas and Tsitsikilis, 1989] thereby forcing the contraction of E{f(i,«);. The variance of F(s,u)
given the past is within the bounds of Theorem 1 as it depends on ¢,(s,u) as most linearly and the

variance of ¢,(u) 1s bounded.

Appendix III. Physical Modeling of a Plastic Bag Knot 128

Appendix I11. Physical Modeling of a Plastic Bag Knot
Objective

To find the directions of forces and moments required to open a plastic bag - which forces will

contribute toward opening the knot and which forces will lock it further.

2D Analysis

Analysis includes the best movements for opening the knot while the bag contains only one rigid

body (Fig. IIL.1).

F - Plastic bag tension

Fig. I1I.1 Two dimensional one object forces (applies for both for static and dynamic cases)

Static Case

For the static equilibrium case (Fig. III.1), it is assumed that the mass of the bag is negligible with
respect to the weight of the object and to the friction forces in the knot. For opening the bag knot, the
friction coefficient should be less that 0.5, as described below. The sum of the forces in the Z

direction is:

2F cosa =mg (ITL.1)

F=_"8

= 1.2
2cosa ()

Appendix III. Physical Modeling of a Plastic Bag Knot 129

where F' is the plastic bag tension. At the contact between the two bag handles F serves as the
tangential friction force. Therefore for opening the bag knot through sliding the two handles on each

other (I11.3) shall hold.

F > umg (IT1.3)
or:
"S5 ume (IIL4)
2cosa
which yields to:
1
J7RS <0.5 (IT1.5)
2cosa

for the limit on the friction coefficient. This means that when the bag is hanged down, a friction
coefficient of at least 0.5 is required to keep it closed and a higher friction coefficient to keep it

closed as the ends are pulled apart further.

Dynamic Case

For the dynamic case, when the robot shakes a bag with a knot aligned with the Y axis (Fig. IIL.1),

(IT1.6) expresses Newton’s law of the object along the Y direction:

ZFy = F), =Fsina+ma, (111.6)

where F, y is a force activated on the bag by the object and a, is the object acceleration. Now we

write Newton’s law in the Z direction:

ZFZ = max [mg - maZ,O] (I11.7)
where 0 means detachment of the object from the bag.

A condition that the knot will be open is (I11.8):

Appendix III. Physical Modeling of a Plastic Bag Knot 130

SF > uYE, (IIL8)

Based on (I11.6) (II1.7) and (I11.8), (II1.9) is organized:

Fsina + ma, > ,umax[mg - maZ,O] (IT1.9)
where both a, and a_ are controllable by commanding different bag accelerations.

Y

For opening the bag knot, it is desired that the expression F sina+may will be as large as

possible and the expression g max [maz —mg,O] will be as small as possible. Thereby, it is desired

to increase both a, and a_. a_ is desired to be increased to a, =—g, then the right hand side in

(IT1.9) will be equal to zero. The reason for doing that is due to the vertical force that contributes
toward increasing the normal load and thus increasing the friction against opening the bag. On the
other hand, accelerating along the Y axis will increase the left hand side of (II1.9) and therefore will
act to open the bag. However, a conflict arises in case where a force is activated over the Y axis for a
certain amount of time since the value sina is decreased over time. This explains why it is desired
to change the side of activating forces over the YV axis of the bag, i.e., to shake it. Another reason for
shaking might be that maintaining acceleration in a constant direction results in ever increasing
speeds which are not maintainable. In conclusion, it is desirable to shake the bag a little up and down
over the Z axis to compensate over the gravitational forces that lock the bag (this decreases the
friction between the bag and object) and shake it a lot over the Y axis to slide the bag handles and

open the knot.

3D Analysis

Now we move to the case where the knot is no longer aligned with the Y axis, and it is not flat
anymore, i.e., each handle a wide, triangular shaped, stripe stretched away from the knot center. The
two dotted areas shown in Fig. III.2 are three dimensional sectors. Each sector is spanned by two

forces, F, and F,, derived from the robot shaking activity. F; and [, are the left and right tension

vectors over the bag knot, respectively.

Appendix III. Physical Modeling of a Plastic Bag Knot 131

v X

Fig. I11.2 Top view of a 3D one object and part of the plastic bag bottom forces

Fig. I11.3 Three dimensional plastic bag axes

Based on Fig. II1.2 and Fig. I11.3, equations II1.10 and III.11 are expressed:

F, ={F,=7,F, +6,F, : 7,.06,20| (IIL.10)
Fy ={Fy =yuFy, +0uF,, © 746, 20} (IIL11)

where [, and [F, are groups of all forces activated over to the left and to the right of the bag knot,

respectively. F; €F; and Fj €F, respectively, are the left and right possible force values

activating in the spanning dotted area (Fig. I11.2).

From (II1.10) and (III.11), equation (I11.12) is organized:

F,=F,%+F,)+F, 2 and F, €F, (IIL.12)

Appendix III. Physical Modeling of a Plastic Bag Knot 132

where X, y,and Z are unit vectors in the x, y, and z directions, respectively.

Similarly, for F = » €quation (III.13) is expressed:

FR:FR£+FR,)A/+FR2 and F, €T, (II1.13)
Based on Newton’s second law, (I11.14) is written:

F,+F, +mg=ma (I11.14)

which yields to (III.15):

X

x:F, +F, =ma
yib, +F, =ma, (111.15)
z:F, +F, —mg=ma,

where a_, a,, and a_ are the accelerations at the X', Y, and Z axes, g is the gravitational

acceleration and mg is the force that the object activates on the bag.'

Under the constraint for opening the bag:

max[\/Fsz +FR2}, ’\/FLi +FL2,V } > p(mg+ma_) (111.16)

where \[F; +F, and ,[F +F; are tangential forces, i.e., components parallel to the bag surface

and p(mg+ma_) is the normal force, i.e., a component perpendicular to the surface of the bag.

Rearranging (II1.16), yields:

max[Fsz +FR2y,FL2x +FL2y]> ,uzmz(ngaZ)z (IL.17)

"It should be noted that Newton’s second law as expressed in (II.14) and (II.15) applies on the object inside the bag,
however based on Newton’s third law, equal forces (but with opposite reaction) apply on the bag itself.

Appendix III. Physical Modeling of a Plastic Bag Knot 133

Using (II1.15) and (I11.17), yields:

maX[Fsz +FRzy ,(ma, _FRX)Z +(ma, —FRV)2] > ,uzmz(g+az)2 (1IL.18)

It is required to accelerate the bag at a direction that is opposite to the direction of the force in order
to maximize the left hand side of (III.18). Further, the right hand side of (III.18) is required to be
minimal as possible and this can be achieved by accelerating the bag downwards. However,
accelerating the bag downwards at a high value might cause the object in the bag to collide with the
robot’s gripper, thereby the value of this acceleration should be bounded by g—& where ¢—0.
Further, due to the unique structure of the plastic bag, / is not a negligible length and & is small
(Fig. II1.2). If the length of / was close to 0 then there was no preference to activate any force exists

in the sector that is bounded by F;, and F,,. Since [is significantly larger than 0 then at the section

(+1, -1) around the bag knot center, it is preferable to activate forces over the Y axis.

Conclusion

Ideally, it is desirable to accelerate the robot arm at a_ = g—& downwards and to oscillate it over
the Y axis; this to overcome of most friction forces. Since acceleration is developed over time, it is
worthwhile to open the bag by activating forces continuously while holding locations as far as
possible from the center of the horizontal axis. By applying CQO(A)-learning the robot converged to
the same policy that was derived from the model. This result suggests that both the model and the

learning process are valid since they independently converged to the same optimal solution.

Appendix V. Bag Classification using Support Vector Machines 134

Appendix IV. Bag Classification using Support Vector Machines

This section describes the design of multi-category support vector machines (SVMs) for
classification of bags. Although the focus of this thesis assumes one bag class, i.e. a plastic bag has
been detected, a multi-category support vector classification of bags will be needed in a pre-selection
phase for future research. The classification approach, image processing operations, kernel

optimization and optimal feature selection experiments are described.

Introduction
SVMs belong to the class of maximum margin classifiers [Heisele et al., 2003]. The goal of
maximum margin classification in binary SVM classification [Vapnik, 1998] is to separate the two
classes by a hyperplane such that the distance to the support vectors is maximized. SVMs perform
pattern recognition between two classes by finding a decision surface that has maximum distance to
the closest points in the training set which are termed support vectors. The procedure starts with a

training set of points x; e R, , 1,2,..,N where each point x, belongs to one of two classes identified
by the label y;e{-11}. This hyperplane is called the optimal separating hyperplane (OSH). The
OSH has the form:

F@=3"" b, (IV.1)

The coefficients ¢; and » in (IV.1) are the solutions of a quadratic programming problem [Vapnik,

1998]. A data point x is classified by the sign of the right side of (IV.1). For the dual category SVM

classification, (IV.2) is used.

N
Z ._laiy,-x,- -x+b

d(x) === . (IV.2)

1Y v
i=1

The sign of ¢ is the classification result for x, and |4 | is the distance from x to the hyperplane.
Intuitively, the farther away a point is from the decision surface, i.e., the larger |4 |, the more reliable
the classification result. The entire construction can be extended to the case of nonlinear separating
surfaces. Each point x in the input space is mapped to a point z =®(x) of a higher dimensional space,
called the feature space, where the data are separated by a hyperplane. The key property in this
construction is that the mapping () is subject to the condition that the dot product of two points in

the feature space @(x)-®(y) can be rewritten as a kernel function k(x, y). The decision surface (IV.3)

is presented.

Appendix V. Bag Classification using Support Vector Machines 135

N
1= 2K (xx) +b, (IV.3)

i=1

where, the coefficients «; and b are solutions of a quadratic programming problem. Note, that /(x)

does not depend on the dimensionality of the feature space. Kernel functions commonly used for

pattern recognition problems are polynomial of degree ¢ (IV.4) and gaussian radial basis (IV.5).
K(x,y)=(1+x- y)d R (IV4)

B

K(xy)=e 20" (Iv.5)

The dual category SVM classification was extended to multi-category classification by [Bennett

and Bredensteiner, 1999]. There are two basic strategies for solving ¢ -class problems with SVMs. In
the one-vs-all approach, ¢ SVMs are trained. Each of the SVMs separates a single class from all
remaining classes [Scholkopf et al., 1995; Cortes and Vapnik, 1995]. In the pairwise approach (used

) q(q-1)

in this work machines are trained. Each SVM separates a pair of classes. The pairwise

classifiers are arranged in trees, where each tree node represents a SVM. The run-time complexity of

the two strategies is similar: the one-vs-all and the pairwise approaches require the evaluation of ¢
and g-1 SVMs, respectively. Results on person recognition indicate similar classification
performance for the two strategies [Nakajima et al., 2000]. The input to the SVMs is a set of

features obtained from the bag image.

Task Definition
To perform the task of bag classification the SVMs method was used. To train and test the SVMs

a collection of 120 images of different types of bags were used (backpacks, small shoulder bags,
plastic flexible bags, and small briefcases). Tests were conducted to establish the best polynomial
and Gaussian RBF (radial basis function) kernels. The task was to design a multi-category support
vector machines (SVMs) for classification of bags. The heart of the support vector machine design is
the kernel selection. Kernels project the data into a high dimensional feature space and thereby
increase the computational power of the linear learning machines [Vapnik, 1998]. The kernels
chosen for the bag classification problem are the most common ones used in support sector
machines, i.e., the polynomial and the Gaussian RBF kernels [Cristianini and Shawe-Taylor, 2003].

Since it is a multi-class classification problem the SVM model used is the pairwise approach. The

Appendix V. Bag Classification using Support Vector Machines 136

kernels were tested using the K-fold cross validation procedure to assure reliability. The procedure
was performed using three subsets on a training set that contained 80 bag images (20 for each of the
four classes). For testing, forty bag images (ten for each class) were used. The SVMs procedure was
implemented in the “OSU SVM MATLAB Toolbox” [Ma and Ahalt, 2003]. As it is well known that
SVMs are sensitive to the number of features in pattern classification applications, the performance
of the SVMs as a function of the number and type of features was also studied. The goal here, in

feature selection is to obtain a smaller set of features that accurately represent the original set.

Image Processing and Object Features

Image processing starts with a 24-bit color image of the robotic scene that contains a bag located
on a platform. Four different bag types are considered: backpacks, small shoulder bags, plastic
flexible bags, and small briefcases. Image processing operations used are [Kartoun, 2003]:
conversion to gray-scale, thresholding using Otsu’s method [Otsu, 1979], removal of noise from the
image due to optical lens distortion, adaptation to ambient and external lighting conditions,
segmentation of the bag from the background, spatial erosion and dilation for closing holes at the bag
binary images, etc. (Fig. IV.1). Using the MATLAB’s Image Processing Toolbox [The MathWorks
Inc., 1998], nine popular object shape features were extracted from each segmented bag image. The
features were: A - Area, B - Bounding Box Ratio, C - Major Axis Length, D - Minor Axis Length, E

- Eccentricity, F - Equivalent Diameter, G - Extent, H - Roundness, and I - Convex Perimeter.

(a) Backpack (b) Small shoulder bag (c) Plastic flexable bag (d) Small briefcase

Fig. IV.1 Image processing operations for four bag classes

Experiments

Two experiments were performed. In the first one, a kernel optimization procedure was
conducted, using nine bag features, for finding the optimal polynomial degrees and RBF sigmas. In
the second experiment, an optimal feature selection was conducted for finding the subset of features
and kernel optimization parameters (polynomial and RBF sigma) that results in the highest

classification rate.

Appendix V. Bag Classification using Support Vector Machines 137

Kernel Optimization Experiment for Bag Classification

Bag classification was performed for both kernels by finding the optimal polynomial degrees (1-

100) and RBF sigmas (1-100) using all nine features.

——Polynomial kernel —=—RBF kernel

W -
o1 \

\

|

4

I

Classification rate

0 10 20 30 40 50 60 70 80 90 100
Degree/Sigma

Fig. IV.2 Classification rate vs. degree and sigma

As can be seen in Fig. IV.2 for the nine bag features case, the highest average classification rate
between the three subsets achieved was 95% using a polynomial kernel with six degree and 90%
using a RBF kernel with 27 sigma. The confusion matrices that summarize the results are shown in
Table IV.1, where the upper and lower diagonal values in each cell correspond to percent of correct

classifications for the polynomial and RBF kernels, respectively.

Appendix V. Bag Classification using Support Vector Machines 138

Table IV.1 Confusion matrices for polynomial/RBF kernels

true class classification rates [%]
predicted class small plastic small
backpack shoulder bag flexible bag briefcase
backpack 96.7% /93.3% 0% /0% 0% /0% 3.3%/6.7%
small shoulder bag 3.3% /0% 93.4%/ 93.3% 0% /0% 33%/6.7%
plastic flexible bag 0% /3.3% 0% /3.3% 96.7% /93.4% 3.3% /0%
small briefcase 3.3%/20% 3.3% /0% 0% /0% 93.4% / 80%

Optimal Feature Selection

A full enumeration feature selection procedure was performed to choose a set of optimal features

to improve the results. Since there are up to nine features to be used in the classification procedure,

there are 2° - 1 = 511 combinations for selection. The classification process was performed for the
range of 1-100 degrees/sigmas applying both kernels to find the optimal set of bag image features
corresponding to the optimal polynomial degrees and RBF sigmas giving the highest classification
results. As can be seen from Fig. IV.3, the largest average classification rate can be obtained by
using only four features for both the polynomial and RBF kernels.

Details of the feature selections and the average classification rates appear in Table IV.2. The
polynomial kernel’s average classification rate of 96.25% was superior to that of the RBF (91.6%). It
is noted that for the polynomial kernel, the minimum set of features (among the ties) consists of four
features: bounding box ratio, major axis length, extent and roundness. Also, from Table IV.2 these

features correspond to the optimal polynomial kernel of degree nine.

Appendix V. Bag Classification using Support Vector Machines

139

Classification rate

Table IV.2 Feature selection results for the highest classification rates achieved

—+—Polynomial kernel

—#-RBF kernel

>

0.8 /
0.7

ol

0:5

0.4

0.3

Fig. IV.3 Classification rate vs. number of features using the optimal degrees/sigmas

5 6

Number of features

number
kernel of 2 3 4 5 6 7 8 9
features
b, AB O
features G. 1 D, F, B,C, B,EF, D, E’ B,C, C,D, E’ F’
oo : G GH GH 7 DE EF U
mial ’ G,H,I H, 1 ,I 5
degree 6 8 9 6 6 6 6 6
classification
" 825 916 9625 9625 95 95 9375 95
A,B
A’ C’ 9 2
pD.G, B,D, BD >& BG g CD
features A G D, E, D, E, E, F,
H E,G E,GH F,G,
RBF G, H G H,I G, H,
H 1 ;
sigma 9 33 48 39 60 56 63 27
classification
) 8 908 916 916 916 916 916 90

* A Area, B Bounding Box Ratio, C Major Axis Length, D Minor Axis Length, E Eccentricity, F Equivalent
Diameter, G Extent, H Roundness, I Convex Perimeter.

Another view of the results is shown in Fig. IV .4 using the optimal set of features (bounding box

ratio, major axis length, extent and roundness). The curve shows the average classification rate peaks

for an optimal polynomial kernel degree equals to nine.

Appendix V. Bag Classification using Support Vector Machines 140

1

0.9 - =

0.8

0.7

______.
=m

0.6

0.5

| "

Classification rate

0.4

0.3

0.2

0.1

0 10 20 30 40 50 60 70 80 0 100
Degree

Fig. I'V.4 Classification rate vs. degree for four-bag classification using optimal features

Results and Discussion

The polynomial kernel’s classification rate of 96.25% was superior to that of the RBF (91.6%)
using only four out of the nine original features. The small number of features deemed to be optimal
was hypothesized to be due to correlation between the features. This is verified by examining the

correlation matrix (Table IV.3), which exhibited correlation coefficients as high as 0.99.

Table IV.3 Correlation matrix

features | area bounding major axis minor axis eccentricit equivalent extent roundness C°MVeX
box ratio length length Y diameter perimeter
area 1 0.08 0.96 0.92 0.28 0.99 027 -0.26 0.85
bounding box | 0.08 1 0.28 -0.18 0.69 0.1 0.01 -0.74 0.48
"neth | 096 0.28 1 0.81 0.49 0.96 03 -0.49 0.96
Viength | 092 018 0.81 1 -0.08 0.93 031 0.1 0.61
eccentricity | 028 0.69 0.49 -0.08 1 0.26 0 -09 0.69
ivalent
oo 10.99 0.1 0.96 0.93 0.26 1 024 -0.25 0.86
extent |-0.27 0.01 -0.3 -0.31 0 -0.24 1 0.02 -0.2
roundness |-0.26 -0.74 -0.49 0.11 -0.99 -0.25 0.02 1 -0.7
porimeter | 085 0.48 0.96 0.61 0.69 0.86 02 -07 1

Appendix V. Bag Classification using Support Vector Machines 141

To further confirm the collinearity between the features a principle component analysis (PCA)
was performed, where a reduction to four components accounted for 99.3% of the variation for each
of the bag types. Eigenvalues of the covariance matrix and the cumulative percentage of the total

variance in the observations explained by the eigenvectors are shown in Table IV .4.

Table IV.4 Eigenvalues and variance explained matrix

Variance

explained 62.65 93.46 96.9 99.31 99.79 99.93 99.97 100 100
[%]

Eigenvalue | (0.0948 0.056 0.009 0.003 0.0007 | 0.0003 | 0.0001 0 0

It is noted, that the reduction from nine to four features was done by a complete enumeration
feature selection method. It is a coincidence that a PCA allowed a reduction to four “components”,
but the PCA was not used to represent the feature reduction through a linear combination of the

original features, as in the usual case.

Summary
Multi-category bag classification for four-bag classes was performed using SVMs. The SVMs

procedure was tested using polynomial and RBF kernels. A K-fold cross validation procedure with
three subsets was used. In a kernel optimization experiment using nine popular object shape features,
classification rates of 95% and 90% were achieved using a polynomial kernel of degree six and a
RBF kernel with 27 sigma, respectively. The confusion matrices indicate that decreased
classification rates may be due to the inability to discriminate between the backpacks and the small
briefcases bag images. To improve these results, a full enumeration feature selection procedure for
choosing a set of optimal features for describing a bag image was performed. The set of optimal
features found was: bounding box ratio, major axis length, extent and roundness. Using these
features a classification rate of 96.25% was obtained for a polynomial kernel of degree nine. It was
also found that using more than four features resulted in no improvement. The resulting optimal
reduction of features from nine to four was hypothesized to be due to correlation between the

features.

Appendix V. Bag Shaking Experiment: State-Action Space

142

Appendix V. Bag Shaking Experiment: State-Action Space

ID State Action

Id State O(1|2]|3|4(5(6[7 8|9 |10(11(12|13|14|15(16|17
0 Center 112(3|4|5(6]7|8|9(10{1112]|13|14(15[16[17|18
1| XPlus1l |11 |41 |1f0of1 |1 |1 1|1 |{1|{1|1]1]1|1]]1
2| X Plus 2 212 (2(5|2(0|12(2(2(2]|2|2|2|2|2]|2|2]|2
3| X Plus 3 3(313(13(6(0{3 (33333333333
4| XMinus 1 |1 4|4 |4[4|0{4|4|4|4|4|4|4(4|4|4|4]|4
5| XMinus 2 |52 |5|5[5]0|5|5|5|5|5|5|5[5|5|5|5]5
6| XMinus3 [6|6|3|6|6(0/6|6|6|6|6|6|6|6|6|6|6]|6
7 Y Plus 1 T1711007 (707777777777 |7|7
8 Y Plus 2 8(8|8|11|{8(0{8|8|8|8|8|8|8|8|8|8|8|8
9 Y Plus 3 9191919112(0{9(919191919(1919{9]9|9|9
10| Y Minus 1 [10|10| 7 [10]10|0|10(10(10({10(10({10|10|10|{10|10|10/|10
11| Y Minus 2 (1111|118 |1L|Of11 |11 |1l {11 {1L 11|11 |1L{11{11|11]|11
12| Y Minus 3 [12(12|12[12]| 9 (0 |12|12]|12|12|12|12|12]12|12|12]|12]|12
13| Z Plus 1 13(13|116(13 13 (0|13 |13 |13 13|13 |13 |13|13|13|13|13|13
14| Z Plus 2 14(14114(17(14(0|14 |14 |14]|14|14|14|14|14|14|14 (14|14
15| Z Plus 3 IS{I5|15{15[18 |0 [15|15|15]|15]15|15|15]|15|15]15|15]15
16| Z Minus 1 [16[16|13[16|16|0|16|16|16|16|16|16|16|16(16|16|16]|16
17| Z Minus 2 17|17 |17 (14|17 (0|17 |17 |17 (17|17 |17 |17|17|17|17|17|17
18| Z Minus 3 |[18|18|18|18[15|0(18|18|18|18|18|18|18|18(18|18|18|18

Fig. V.1 Bag shaking experiment - state-action space

Appendix VI. Rewards Calculating Examples 143

Appendix VI. Rewards Calculating Examples

Examples for reward calculations are shown below. Table VI.1 presents one learning episode that

lasted 7.75 s where all five objects were extracted.

Table V1.1 A rewards numerical example I

Cumulative
Time (s) Weight Weight Change
(grams)
0.25 0 0
0.5 0 0
0.75 0 0
1 0 0
1.25 2.1 0
1.5 2.1 4.3
1.75 15.4 35.2
An event**: 2 114 49.6
2.25 115 18
2.5 114.5 9.2
2.75 114 4.2
3 113 0
3.25 115 0
3.5 114 0
3.75 112 0
4 115 0
4.25 112 2
45 110 11
An event*: 4.75 165 20
5 165 10
5.25 164
5.5 160
5.75 159
6 162
6.25 165 12
An event™*: 6.5 250 50.2
6.75 250 16
7 250 6
7.25 250 0
7.5 250 0
7.75 250 0

* One object fell
** Two objects fell

Fig. VI.1 and Fig. V1.2 present the cumulative weight and weight change, respectively.

Appendix VI. Rewards Calculating Examples

144

300
250 T
E 200
&
5
=
= 150
2
g
E
g 100
50
0 ————o—2=
0 1 2 3 4 5 7
Time (8)
Fig. VI.1 Reward cumulative weight change example
60
50 A
= %
&
-
1]
= 30
=
U
5
z
g 20 .
10
0 -
0 1 2 3 4 5 7
Time (s)

Fig. V1.2 Reward events weight change example

Appendix VI. Rewards Calculating Examples 145

Analyzing raw scale data (Table VI.1), events-based and cumulative-based rewards are calculated as

shown in (VIL.1) and (VI1.2), respectively (Section 3.4.2):'

114 165114 250-165

48.5 48.5 48.5
R= + + =152
2 4.75 6.5 (VL 1)

0 0 0 0) (21 (2.1) (154 250 (250 (250
=025 05) oms)70) Has) s s) s) L as) laas) =B :
K (25}(05}(075}(1]{125}[15}(175j+ +(725j+(75j+(775j 427 (V1.2)

While the events-based reward function represents well the bag handling task, the cumulative
function might pose a problem with the intended learning task. The data presented in Table VI.2
contains one learning episode that lasted 10 s where the first 7.75 s are identical to Table VI.1. Here,
only three out of the five objects were extracted and the robot performed all 100 actions (the

maximal number of actions for one learning episode).

V=1, w=485

Appendix VI. Rewards Calculating Examples

146

Table V1.2 A rewards numerical example II

Cumulative
Time (s) Weight Weight Change
(grams)
0.25 0 0
0.5 0 0
0.75 0 0
1 0 0
1.25 2.1 0
1.5 2.1 4.3
1.75 15.4 35.2
An event**: 2 114 49.6
225 115 18
2.5 114.5 9.2
2.75 114 4.2
3 113 0
3.25 115 0
3.5 114 0
3.75 112 0
4 115 0
4.25 112 2
45 110 11
An event*: 4.75 165 20
5 165 10
5.25 164 4
5.5 160 0
5.75 159 0
6 162 0
6.25 165 0
6.5 165 0
6.75 165 0
7 165 0
7.25 165 0
7.5 165 0
7.75 165 0
8 165 0
8.25 165 0
8.5 165 0
8.75 165 0
9 165 0
9.25 165 0
9.5 165 0
9.75 165 0
10 165 0

* One object fell
** Two objects fell

Here (V1.3), although the system did not succeed to extract all five objects, the reward is higher than

as in (VIL.2).

Appendix VI. Rewards Calculating Examples 147

P (o oo

This limitation however, did not affect the performance of the bag handling task; in most of the
learning episodes performed, all five objects were extracted at the same time, approximately. Only in

rare incedences objects were extracted seperatly.

Appendix VII. Motoman UP-6 Manual Programming 148

Appendix VII. Motoman UP-6 Manual Programming

1)
2)

3)

4)

5)

6)

7)
8)

9

Turn on the controller and close the cage.

There are two modes of operation: (i) teach - using the teach pendant (TP) of defining spatial
locations and writing programs (jobs), (ii) play - running a job.

“Servo On Ready” led blinking - means that the operator will choose the play or the teach
modes for controlling the robot’s engines, otherwise it is disabled.

For writing a job, choose “TEACH LOCK” at the TP (the green led at this button is
constant).

By pressing the control hand button (CHB) (on the rear left of the TP) constantly power is
supplied to the robot and the “Servo On Ready” led will be constant.

“COORD” button - the way of moving the robot (joint-based or world coordinates).

“TOP MENU” button - shows the main menu.

Button with three connected circles (to the right of the teach lock) - additional menus such as
“CYCLE” and “SECURITY” that determines robot programming permissions (“Operation” -
enables only to run jobs but not to write new ones, “Editing” - allows writing and running
jobs, “Management” (password: 99999999) and “Yaskawa” (password: 32.12.02) - enable
configuring parameters for the controller.

Controlling the robot manually - press constantly the CHB. Choose the coordinates method

(“COORD”). Adjust the speed by using “FST” and “SLW”.

10) Writing a job - choose the “JOB” menu (use “SELECT”). Choose “CREATE NEW JOB”.

Select “NEW JOB CREATE”. Choose a job name and press “ENTER”. Choose “EXEC”.
Use the TP for moving the robot to desired spatial locations. Choose “INSERT” and press
“ENTER” for each location. Adjust speeds (VJ) for each location. For opening/closing the
gripper it is required to call either the “OPEN” or the “CLOSE” jobs. For calling a job,
choose “INFORM LIST”, choose “CONTROL”, choose “CALL”, press “SELECT”, press
“ENTER”.

11)For running a job, choose “MASTER JOB” from the “JOB” menu choose “SETTING

MASTER JOB”. From the “Controller Remote Control Box” choose “PLAY” (Make sure
that you are in a “Remote” mode - the led is on. Press “SERVO ON” (activates the robot’s
engines). Press “START”. To stop - choose “TEACH”.

Appendix VIII. “Softmax” Action Selection Example

149

Appendix VIII. “Softmax” Action Selection Example

Given a state and four possible actions (Fig. VIIL.1), actions are chosen with probabilities R,p,,R, P,

which are calculated according to (VIIL.1).

Q14

Current
State

Q1:5

Fig. VIIL.1 “Softmax” action selection example

Plag|s) =

0s,.a)/T

S LG

a, €A

Probability calculations are presented in Table VIII.1.

Table VIIIL.1 “Softmax”-based probability calculations

Q P T=10 T=5 T=0.1
5 P1 0.19 0.12 0
14 P2 0.47 0.70 1
5 P3 0.19 0.12 0
P4 0.14 0.06 0
Sum: 1 1 1

(VIIL1)

It can be seen from Table VIII.1 that lower values of 7 gives higher probabilities to high O values.

Appendix IX. Multiple Mobile Robot Navigation - Source Code

150

Appendix IX. Multiple Mobile Robot Navigation - Source Code

gwi.m

function out = gwi(arg, arg2)

% gwi: a grid world interface

close all

home

% World #1

global alpha beta gamma delta lambda
global gt ge gs bt be bs at ae as stop
global fx fy fm ff

if(nargin < 1)
gwi('new’);
return;

end

% call backs
switch(arg)
case ‘new’

gw(‘new’);

% World #1

ff = figure(3); % focus

3 = get(3, Position”);

set(ff,”Position’,[600, 300,400,200],’"Name’,”Command’);
clf;

% buttons

uicontrol(ff,’Style’, pushbutton’,”Position’,[120,140,90,40],...
’Callback’,’gw try’,’String’,”Try’,’FontSize’,18);
uicontrol(ff,’Style’,” pushbutton’,”Position’,[220,140,90,40]....
’Callback’,’gw 10 try’,’String’,’Repeat’,’FontSize’,18);

end

gwf.m

function gwf(arg, arg2)

% World #1

global Rew 1 Val 1 Elig 1

global state 1 action_1 reward 1 value 1 delta 1
globalnx 1ny 1na 1

global fx 1fy 1fm I ff 1

global ax lay 1az 1 asurf 1

% World #2

global Rew 2 Val 2 Elig 2

global state 2 action 2 reward 2 value 2 delta 2
globalnx 2ny 2na 2

global fx 2 fy 2 fm 2 ff 2

global ax 2 ay 2 az 2 asurf 2

% World #3

global Rew 3 Val 3 Elig 3

global state 3 action 3 reward 3 value 3 delta 3
globalnx 3ny 3na 3

global fx 3 fy 3 fm 3 ff 3

global ax_3 ay 3 az 3 asurf 3

switch(arg)

case ’init’

ss = get(0,’ScreenSize’);

fm 1=110, 20,42, 3]; % figure margins
if nargin <2

Appendix IX. Multiple Mobile Robot Navigation - Source Code 151

fx_1=min(ss(3)-4, 1024)/2 - (fm_1(1)+fm_1(2));
fy 1=(ss(4)-24)/2 - (fm_1(3)+fm_1(4));

else

fx_1=arg2(1);

fy 1 =arg2(2);

end

ff 1 =1; % figure to be focused: 4 for gwi
figure(1); set(1,”Position’,[fm_1(1),ss(4)-fm_1(3)-fy_1,fx 1,fy 1],’Name’,’Reward’); clf;
figure(2); set(2,’Position’,[fm_1(1),ss(4)-fm_1(3)*2-fm_1(4)-fy_1*2,fx_1,fy 1],’Name’,’Value’); clf;

% Robot

[ax_1l,ay l,az 1] = sphere(20);
ax_1=0.5*ax_1(11:end,);
ay 1=0.5%ay 1(11:end,:);
az 1 =az 1(11:end,:)+0.01;

case 'reward’
figure(1); clf;
step(Rew_1"); caxis([-2,2]);
axis([0.5 nx_140.5 0.5 ny 1+0.5 -2 2]);
axis(’off”);
case ’value’
figure(2); clf;
step(Val_1"); caxis([-50,50]);
axis([0.5 nx_1+0.5 0.5 ny 1+0.5-10 10]);
% title(sprintf(’Value’));
case ’elig’
figure(2); clf;
step(Elig_17); caxis([-50,50]);
axis([0.5 nx_1+0.5 0.5 ny_1+0.5 -10 10]);
% title(sprintf(’Eligibility”));
case ’agent’
figure(1);
if ishandle(asurf 1)
set(asurf 1, ’xdata’,arg2(1)+ax_1, ’ydata’,arg2(2)+ay 1, ’zdata’,arg2(3)+az_1);

else
hold(’on’);
asurf 1 =surf(arg2(1)+ax_ 1, arg2(2)+ay 1, arg(3)+az 1, az 1*2);
end
case ’traj’
figure(1);

line(arg2(:,1), arg2(:,2), *Color’, "w”);
end

function s = step(X, y, z)
% step: 3D plot of a step function

if nargin <3

Z =X,
[nx_1,ny 1] =size(z);
x=1l:nx_I;
y=1my 1;

else
[nx_1,ny 1] = size(z);

end

% double the data

x =[x(:)-0.5, x(:)+0.5]"; x = x(2);
y=[y()-0.5, y()+0.5]; y = y(2);
z =reshape([z(%), z(:)]’, 2*nx_1, ny_1);

Appendix IX. Multiple Mobile Robot Navigation - Source Code 152

z = reshape([z;z], 2*nx_1, 2*ny 1);
s = surf(X, y, z);

gw.m
function out = gw(arg, arg2)

% World #1

globalnx 1ny 1ns 1na 1 move 1loss 1 addaptive alpha 1 visiting counter 1
global start 1 goal 1 Rew 1 Val 1 Elig 1

global alpha 1 beta 1 gamma 1 delta 1 lambda 1

global state 1 action_1 value 1 reward 1t 1 tmax 1 stop 1

global ff 1 Mov 1

global last_steps 1 trial counter 1

global counterl 1;

global mean Val 1templ 1temp2 1

% World #2

global nx 2ny 2ns 2na 2 move 2 loss 2 addaptive alpha 2 visiting_counter 2
global start 2 goal 2 Rew 2 Val 2 Elig 2

global alpha 2 beta 2 gamma 2 delta 2 lambda 2

global state 2 action_2 value 2 reward 2t 2 tmax 2 stop 2

global ff 2 Mov 2

global last_steps 2 trial counter 2

global counterl 2;

global mean Val 2 templ 2 temp2 2

% World #3

globalnx 3ny 3ns 3na 3move 3 loss 3 addaptive alpha 3 visiting counter 3
global start 3 goal 3 Rew 3 Val 3 Elig 3

global alpha 3 beta_3 gamma 3 delta 3 lambda 3

global state 3 action_3 value 3 reward 3t 3 tmax 3 stop 3

global ff 3 Mov 3

global last_steps 3 trial counter 3

global counterl 3;

global mean_Val 3 templ 3 temp2 3

global enable graphics
enable graphics=0;

set(0,”’RecursionLimit’,20000);

global st_1 st 2 st 3 choosing Val
global iterations stop_condition_threshold
iterations = 500;
stop_condition_threshold=70);
stop_condition 1=100;

stop_condition 2=100;

stop_condition 3=100;

st 3=[1, 1];

switch(arg)

case ‘new’ % Setup

gw(’world’); gw(’agent’); gw(’init’);
case world’ % A new world

% World #1
trial counter 1=0;

nx 1=1L;ny 1=11;ns 1 =nx 1*ny 1;

Appendix IX. Multiple Mobile Robot Navigation - Source Code 153

% actions

na 1=4;%R,ULD

move 1=11,0;0,1; -1,0; 0,-1];
loss 1=-0.1*[1; 1; 1; 1;

% reward field
Rew 1 =zeros(nx_1,ny_1);

Rew 1(5,1)=-1; Rew 1(5,2) =-1; Rew 1(5,3) =-1; Rew_1(5,4) =-1; Rew _1(5,11) =-1; Rew 1(5,10) =-1;

Rew 1(5,9)=-1; Rew 1(5,8)=-1; Rew 1(1,1) =-1; Rew_1(1,2) =-1; Rew 1(1,3) =-1; Rew 1(1,4)=-1; Rew_1(1,5) =
-1; Rew _1(1,6) =-1; Rew 1(1,7)=-1; Rew 1(1,8) =-1; Rew_1(1,9) =-1; Rew 1(1,10) =-1; Rew 1(1,11)=-1;

Rew 1(11,1)=-1;Rew 1(11,2)=-1; Rew 1(11,3)=-1; Rew_1(11,4)=-1; Rew_1(11,5)=-1; Rew_1(11,6) =-1;

Rew 1(11,7)=-1;Rew 1(11,8)=-1; Rew 1(11,9) =-1; Rew_1(11,10) =-1; Rew_1(11,11)=-1; Rew_1(1,1) =-1;

Rew 1(2,1)=-1; Rew 1(3,1)=-1; Rew _1(4,1) =-1; Rew_1(5,1)=-1; Rew 1(6,1) =-1; Rew 1(7,1)=-1; Rew_1(8,1) =
-1; Rew _1(9,1)=-1; Rew 1(10,1)=-1; Rew_1(11,1)=-1; Rew 1(1,11)=-1; Rew_1(2,11)=-1; Rew_1(3,11) =-1;
Rew 1(4,11)=-1;Rew 1(5,11)=-1; Rew 1(6,11)=-1; Rew _1(7,11)=-1; Rew 1(8,11) =-1; Rew_1(9,11) =-1;

Rew 1(10,11)=-1; Rew_1(11,11)=-1; Rew 1(8,11)=1; Rew 1(3,6) =-1; Rew_1(6,7) =-1; Rew 1(9,7) =-1;

Rew 1(9,8) =-1;

counterl 1=0;
last _steps_1=[1000 1000 1000 1000 1000 1000 1000 1000 1000 1000];

templ 1=round(rand*nx 1); temp2 l=round(rand*ny 1);
if templ 1==0templ 1=1; end
if temp2 1==0 temp2 1=1; end

start 1 =[templ 1,temp2 1]; goal 1=[8,11];
start 1=1[3,2];

% World #2
trial counter 2=0;

nx 2=11;ny 2=11;ns 2=nx 2*ny 2;

% actions

na 2=4;%R,U,L,D

move 2=11,0;0,1; -1,0; 0,-1];
loss 2=-0.1*[1; 1; 1; 1;

% reward field

Rew 2 =zeros(nx_2,ny_2);

Rew 2(5,1)=-1; Rew_2(5,2) =-1; Rew_2(5,3) =-1; Rew_2(5,4) =-1; Rew_2(5,11) =-1; Rew_2(5,10) =-1;

Rew 2(5,9)=-1; Rew 2(5,8)=-1; Rew 2(1,1) =-1; Rew_2(1,2) =-1; Rew 2(1,3) =-1; Rew 2(1,4)=-1; Rew_2(1,5) =
-1; Rew 2(1,6) =-1; Rew 2(1,7)=-1; Rew 2(1,8) =-1; Rew_2(1,9) =-1; Rew 2(1,10) =-1; Rew 2(1,11)=-1;

Rew 2(11,1)=-1; Rew 2(11,2) =-1; Rew 2(11,3)=-1; Rew 2(11,4)=-1; Rew 2(11,5)=-1; Rew 2(11,6) =-1;

Rew 2(11,7)=-1; Rew 2(11,8) =-1; Rew 2(11,9) =-1; Rew 2(11,10) =-1; Rew 2(11,11)=-1; Rew_2(1,1) =-1;

Rew 2(2,1)=-1; Rew 2(3,1)=-1; Rew 2(4,1) =-1; Rew_2(5,1) =-1; Rew 2(6,1) =-1; Rew 2(7,1) =-1; Rew _2(8,1) =
-1; Rew 2(9,1) =-1; Rew 2(10,1)=-1; Rew_2(11,1) =-1; Rew 2(1,11) =-1; Rew 2(2,11)=-1; Rew 2(3,11) =-1;
Rew 2(4,11)=-1; Rew 2(5,11)=-1; Rew 2(6,11)=-1; Rew 2(7,11)=-1; Rew 2(8,11) =-1; Rew_2(9,11) =-1;

Rew 2(10,11)=-1; Rew 2(11,11)=-1; Rew_2(8,11) =1; Rew _2(3,6) =-1; Rew 2(6,7) =-1; Rew 2(9,7) =-1;

Rew 2(9,8)=-1;

counterl 2=0;
last_steps_2=[1000 1000 1000 1000 1000 1000 1000 1000 1000 1000];

templ 2=round(rand*nx_2); temp2 2=round(rand*ny 2);
if templ 2==0templ 2=1; end
if temp2 2==0 temp2 2=1; end

start 2 =[templ 2,temp2 2]; goal 2 =[8,11];
start 2 =1[3,2];

% World #3

Appendix IX. Multiple Mobile Robot Navigation - Source Code 154

trial counter 3=0;
nx 3=11;ny 3=11;ns 3 =nx 3*ny 3;

% actions

na 3=4;% R,UL,D

move 3 =1,0;0,1; -1,0; 0,-1];
loss 3=-0.1*[1;1; 1; 1];

% reward field
Rew 3 =zeros(nx_3,ny 3);

Rew 3(5,1)=-1; Rew_3(5,2) =-1; Rew_3(5,3) =-1; Rew_3(5,4) =-1; Rew_3(5,11) =-1; Rew_3(5,10)=-1;

Rew 3(5,9)=-1; Rew _3(5,8) =-1; Rew _3(1,1)=-1; Rew_3(1,2) =-1; Rew_3(1,3) =-1; Rew _3(1,4) =-1; Rew_3(1,5) =
-1; Rew 3(1,6) =-1; Rew 3(1,7) =-1; Rew_3(1,8) =-1; Rew 3(1,9) =-1; Rew 3(1,10) =-1; Rew 3(1,11)=-1;

Rew 3(11,1)=-1; Rew 3(11,2) =-1; Rew 3(11,3)=-1; Rew 3(11,4)=-1; Rew 3(11,5)=-1; Rew 3(11,6) =-1;

Rew 3(11,7)=-1; Rew 3(11,8)=-1; Rew 3(11,9)=-1; Rew 3(11,10)=-1; Rew 3(11,11)=-1; Rew_3(1,1) =-1;

Rew 3(2,1)=-1; Rew 3(3,1)=-1; Rew 3(4,1) =-1; Rew_3(5,1) =-1; Rew 3(6,1) =-1; Rew 3(7,1)=-1; Rew 3(8,1) =
-1; Rew 3(9,1)=-1; Rew 3(10,1)=-1; Rew 3(11,1)=-1; Rew 3(1,11)=-1; Rew _3(2,11) =-1; Rew _3(3,11) =-1;
Rew 3(4,11) =-1; Rew 3(5,11)=-1; Rew 3(6,11)=-1; Rew 3(7,11) =-1; Rew 3(8,11)=-1; Rew 3(9,11) =-1;

Rew 3(10,11)=-1; Rew 3(11,11)=-1; Rew_3(8,11) =1; Rew 3(3,6) =-1; Rew _3(6,7) =-1; Rew_3(9,7) =-1;

Rew 3(9,8) =-1;

counterl 3=0;

last_steps_3=[1000 1000 1000 1000 1000 1000 1000 1000 1000 10001];
templ 3=round(rand*nx_3); temp2 3=round(rand*ny 3);

if templ 3==0templ 3=1; end

if temp2 3==0 temp2 3=1; end

start 3 =[templ 3,temp2 3]; goal 3 =[8,11];
start 3 =[3,2];

if enable graphics==1 gwf(’init’); end

if enable graphics==1 gwf('reward’); end
case ’agent’ % A new agent

% World #1
Val 1=zeros(nx_1,ny 1);alpha 1=0.95; gamma 1 =10.99; lambda 1= 0.5; beta 1 =2;

visiting_counter 1=zeros(11,11);
fori=1:11
for j=1:11
addaptive_alpha 1(i,j)=alpha_1;
end
end

% World #2
Val 2 =zeros(nx 2,ny 2);alpha 2 =0.95; gamma 2 =0.99; lambda 2 =0.5; beta 2 =2;
visiting_counter 2=zeros(11,11);
fori=1:11
for j=1:11
addaptive alpha 2(i,j)=alpha 2;
end
end

% World #3
Val 3 =zeros(nx_3,ny 3); alpha 3 =0.95; gamma 3 = 0.99; lambda 3 =0.5; beta 3 =2;
visiting_counter 3=zeros(11,11);
fori=1:11
for j=1:11
addaptive alpha 3(i,j)=alpha 3;
end
end

case ’init’ % A new trial

Appendix IX. Multiple Mobile Robot Navigation - Source Code

155

% World #1

tmax_1 =10000; state 1 = zeros(tmax_1,2); action 1 = zeros(tmax_1,1); reward 1 = zeros(tmax_1,1);
value 1 =zeros(tmax_1,1); delta 1 = zeros(tmax_1,1);

Elig 1 =zeros(nx_1,ny 1);

% World #2

tmax_2 = 10000; state_2 = zeros(tmax_2,2); action_2 = zeros(tmax_2,1); reward 2 = zeros(tmax_2,1);
value 2 = zeros(tmax_2,1); delta 2 = zeros(tmax_2,1);

Elig 2 = zeros(nx_2,ny 2);

% World #3

tmax_3 = 10000; state 3 = zeros(tmax_3,2); action_3 = zeros(tmax_3,1); reward 3 = zeros(tmax_3,1);
zeros(tmax_3,1); delta 3 = zeros(tmax_3,1);

Elig 3 = zeros(nx_3,ny_3);

case ‘run’
stop_1=0;

% World #1
templ_1=round(rand*nx_1); temp2 1=round(rand*ny 1);if templ 1==0 templ 1=1; end
if temp2 1==0 temp2 1=1; end
start 1 =[templ 1,temp2 1];
st 1 =start_1;
st 1=[3,2];
fort 1=1:tmax 1
if stop_1==1, break; end
% new state
state 1(t_1,:)=st 1;

if enable graphics== gwif(’agent’, [st_1,Rew 1(st_I(1),st 1(2))]); figure(ff 1); drawnow; end

% value
value 1(t 1)=Val 1(st_1(1),st 1(2));

ift 1>1
visiting_counter 1(st 1(1),st 1(2)) = visiting_counter 1(st 1(1),st 1(2))+1;
addaptive alpha I(st 1(1),st 1(2)) =alpha 1/(visiting counter 1(st 1(1),st 1(2))+1);

% TD error
delta_I(t 1-1)=reward 1(t 1-1)+ gamma 1*value 1(t 1) - value 1(t 1-1);

% update value
for i=1:11
for j=1:11
cell(i,j) = Val_1(i,j)-Val 2(i,));
if (cell(i,j)<=0)
max_Val 1 Val 2(i,j) = Val 1(i,);
else
max_Val 1 Val 2(i,j) = Val 2(i,j);
end
end
end

for i=1:11
for j=1:11
cell(i,j) =max_Val 1 Val 2(i,j)-Val 3(i,);
if (cell(i,j)<=0)
max_Val 1 Val 2 Val 3(i,j)=max Val 1 Val 2(i,j);
else
max_Val 1 Val 2 Val 3(i,j) = Val 3(i,j);
end
end

value 3 =

Appendix IX. Multiple Mobile Robot Navigation - Source Code 156

end
Val 1=max Val 1 Val 2 Val 3;
Val 1=Val 1+ addaptive alpha 1(st 1(1),st 1(2))*delta 1(t 1-1)*Elig 1;

end

% update eligibility trace
Elig 1 =gamma 1*lambda 1*Elig_1;
Elig_1(st_1(1),st_1(2))=1;

% final step

if state 1(t 1,:)==goal 1

reward 1(t 1)=Rew 1(st_1(1),st 1(2));
delta 1(t 1) =reward 1(t 1)-value 1(t 1);

Val 1 =Val 1+ addaptive alpha I(st 1(1),st 1(2))*delta 1(t 1)*Elig I;

trial counter 1 = trial counter 1+1;
break;
end

% predict next states: each row for an action

pstate 1 =repmat(st 1,na 1, 1)+ move 1;

pstate 1 = min(max(pstate 1,1), repmat([nx_1,ny 1],na 1,1));
% linear index

istate 1 =sub2ind([nx_1,ny 1], pstate 1(:,1), pstate 1(:,2));

% take an action by softmax

pq 1 =loss 1+ gamma 1*Val l1(istate 1); % each row for an action
prob_1 =exp(beta 1*pq_1);

prob_1=prob_1./(sum(prob_1)); % selection probablity

act_1 = find(cumsum(prob_1) > rand(1));

action_1(t_1)=act 1(1); % index of selected action

% reward: from state and action

reward 1(t 1)=Rew 1(st_1(1),st 1(2)) + loss_I(action 1(t 1));

next action 1 =action_1(t 1,1);

% next state

st 1 =st 1 +move l(action I(t 1),:); st 1 =min(max(st 1, 1), [nx l,ny 1]);

end

beta 1 f=fopen(’beta 1.txt’,’a’); fprintf(beta 1 f,’%g\r\n’, beta 1); fclose(beta 1 f);

rewards 1 = fopen(’rewards 1.txt’,’a’); fprintf(rewards 1,’%g\r\n’,mean(reward 1(1:t 1))); fclose(rewards 1);
steps 1 = fopen(’steps_1.txt’,’a’); fprintf(steps 1,’%g\r\n’,t 1); fclose(steps_1);

counterl l=counterl 1+1;

last steps 1(counterl 1)=t 1(max(size(t 1)));

stop_condition 1=mean(last steps 1);

%stop_condition f 1 = fopen(’stop condition 1.txt’,’a’); fprintf(stop condition f 1,’%g\r\n’,stop condition 1);
fclose(stop _condition f 1);

if counterl 1>=10 counterl 1=0; end

if (stop_condition_1>=max(stop_condition 2,stop condition_3))

beta 1=2;
else

beta 1=beta 1+ 1;
end

if (beta_1<=2)
beta 1=2;
end

Appendix IX. Multiple Mobile Robot Navigation - Source Code 157

% World #2

templ 2=round(rand*nx 2); temp2 2=round(rand*ny 2); iftempl 2==0templ 2=1; end
if temp2 2==0temp2 2=1; end

start 2 =[templ 2temp2 2];

st 2 =start 2;

st 2=[3.2];

temp_d=0;

fort 2=1:tmax 2
% new state
state 2(t 2,:)=st 2;

% value

value 2(t 2) = Val 2(st 2(1),st 2(2));

ift 2>1

visiting_counter 2(st 2(1),st_2(2)) = visiting_counter 2(st_2(1),st 2(2))+1;

addaptive alpha 2(st_2(1),st_2(2)) = alpha_2/(visiting_counter 2(st 2(1),st 2(2))+1);

% TD error
delta 2(t 2-1) =reward 2(t 2-1) + gamma 2*value 2(t 2) - value 2(t 2-1);

temp _d=temp d +delta 2(t 2-1);

% update value
Val 2 =Val 2+ addaptive alpha 2(st 2(1),st 2(2))*delta 2(t 2-1)*Elig 2;
end

% update eligibility trace
Elig 2 =gamma 2*lambda 2*Elig 2;
Elig 2(st 2(1),st 2(2))=1;

% final step

if state 2(t 2,:)==goal 2

reward 2(t 2) =Rew 2(st 2(1),st 2(2));

delta 2(t 2)=reward 2(t 2) - value 2(t 2);

Val 2=Val 2+ addaptive alpha 2(st 2(1),st 2(2))*delta 2(t 2)*Elig 2;
trial counter 2 = trial counter 2+1;

temp d=temp_d/t 2

break;

end

% predict next states: each row for an action

pstate 2 =repmat(st 2,na 2, 1) + move 2;

pstate 2 = min(max(pstate 2,1), repmat([nx_2,ny 2],na 2.1));
% linear index

istate 2 = sub2ind([nx_2,ny 2], pstate 2(:,1), pstate_2(:,2));

% take an action by softmax

pq 2 =loss 2+ gamma 2*Val 2(istate 2); % each row for an action
prob 2 =exp(beta 2*pq 2);

prob_2 =prob_2./(sum(prob_2)); % selection probablity

act 2 = find(cumsum(prob_2) > rand(1));

action 2(t_2) =act 2(1); % index of selected action

% reward: from state and action

reward 2(t 2) =Rew 2(st_2(1),st 2(2)) + loss_2(action_2(t 2));

next action 2 = action_2(t 2,1);
% next state
st 2=st 2+ move 2(action 2(t 2),:); st 2 =min(max(st 2, 1), [nx 2,ny 2]);

end

beta 2 f=fopen(’beta 2.txt’,’a’); fprintf(beta 2 f,’%g\r\n’, beta 2); fclose(beta 2 f);

Appendix IX. Multiple Mobile Robot Navigation - Source Code 158

rewards 2 = fopen(’rewards_2.txt’,’a’); fprintf(rewards_2,’%g\r\n’,mean(reward 2(1:t_2))); fclose(rewards 2);
steps_2 = fopen(’steps_2.txt’,’a’); fprintf(steps_2,’%g\r\n’,t 2); fclose(steps_2);

counterl 2=counterl 2+1;
last steps 2(counterl 2)=t 2(max(size(t 2)));
stop_condition 2=mean(last_steps 2);

fclose(stop_condition_f 2);
if counterl 2>=10 counterl 2=0; end

if (stop_condition 2>=stop condition_threshold)
beta 2 =2;

else
beta 2 =beta 2+ 1;

end

if (beta 2<=2)
beta 2=2;
end

% World #3

templ 3=round(rand*nx_3); temp2 3=round(rand*ny 3); if templ 3==0templ 3=1; end
if temp2 3==0 temp2 3=1; end

start 3 =[templ 3,temp2 3];

st 3 =start 3;

st 3=[3,2];

fort 3=1:tmax 3

% new state

state 3(t_3,:) =st 3;

% value

value 3(t 3)=Val 3(st_3(1),st 3(2));

ift 3>1
visiting_counter 3(st_3(1),st 3(2)) = visiting_counter_3(st_3(1),st 3(2))+1;
addaptive alpha 3(st 3(1),st 3(2)) = alpha 3/(visiting counter 3(st 3(1),st 3(2))+1);

% TD error

delta_3(t 3-1) =reward 3(t 3-1)+ gamma 3*value 3(t 3) - value 3(t 3-1);
% update value

Val 3 =Val 3 + addaptive alpha 3(st 3(1),st 3(2))*delta 3(t 3-1)*Elig_3;

end

% update eligibility trace

Elig 3 = gamma 3*lambda 3*Elig 3;
Elig_3(st_3(1),st 3(2))=1;

% final step

if state 3(t 3,:)==goal 3

reward 3(t 3)=Rew 3(st_3(1),st 3(2));

delta_3(t 3) =reward 3(t 3) - value 3(t_3);

Val 3 =Val 3+ addaptive alpha 3(st_3(1),st 3(2))*delta 3(t 3)*Elig 3;
trial_counter 3 = trial counter 3+1;

break;

end

% predict next states: each row for an action

pstate_3 =repmat(st 3,na 3, 1) + move 3;

pstate 3 = min(max(pstate 3,1), repmat([nx 3,ny 3],na 3,1));
% linear index

istate 3 = sub2ind([nx_3,ny 3], pstate 3(:,1), pstate 3(:,2));

% take an action by softmax

Appendix IX. Multiple Mobile Robot Navigation - Source Code 159

pq 3 =loss 3 + gamma 3*Val 3(istate 3); % each row for an action
prob_3 =exp(beta 3*pq 3);

prob_3 = prob_3./(sum(prob_3)); % selection probability

act 3 = find(cumsum(prob_3) >rand(1));

action_3(t 3)=act 3(1); % index of selected action

% reward: from state and action

reward 3(t 3) =Rew_3(st_3(1),st 3(2)) + loss_3(action 3(t_3));

next_action 3 = action_3(t_3,1);

% next state
st 3=st 3+ move 3(action 3(t 3),:); st 3 =min(max(st 3, 1), [nx 3,ny 3]);

end

beta 3 f=fopen("beta 3.txt’,’a’); fprintf(beta 3 f,’%g\r\n’, beta_3); fclose(beta 3 f);

rewards 3 = fopen(’rewards 3.txt’,’a’); fprintf(rewards 3,’%g\r\n’,mean(reward 3(1:t 3))); fclose(rewards 3);
steps_3 = fopen(’steps_3.txt’,’a’); fprintf(steps_3,’%g\r\n’,t 3); fclose(steps_3);

counterl 3=counterl 3+1;

last_steps_3(counterl 3)=t 3(max(size(t 3)));

stop_condition_3=mean(last_steps 3);

fclose(stop_condition_f 3);

if counter! 3>=10 counterl 3=0; end

if (stop_condition 3>=stop condition_threshold)

beta 3 =2;
else

beta 3 =beta 3 +1;
end

if (beta_3<=2)
beta 3=2;
end

case ’try’

gw(’init’);

gw('run’);

if enable graphics== gwi("value’); end

if (trial _counter 1==iterations)
index=[1:5];
size(index)
[step 1 y axis] = textread(’steps_1.txt’,’%d");
size(step 1 y_axis)
[step 2 vy axis] = textread(’steps_2.txt’,’%d’);
[step 3 vy axis] = textread(’steps_3.txt’,’%d’);
figure(11)
plot(index, step 1 y axis, 'r’, index, step 2 y axis, ’g’, index, step 3 y axis, ’b’, ’LineWidth’,1);
[rewards 1 y axis] = textread("rewards_1.txt’,’%f);
[rewards 2 y axis] = textread("rewards 2.txt’,’%f);
[rewards 3 y axis] = textread(’rewards 3.txt’,’%f’);
figure(12)
plot(index, rewards 1 _y axis, ’r’, index, rewards 2 y axis, ’g’, index, rewards 3 y axis, ’b’, ’LineWidth’,1);
[beta 1 y axis] = textread(’beta_1.txt’,”%d’);
[beta 2 y axis] = textread(’beta 2.txt’,”%d’);
[beta 3 y axis] = textread(’beta_3.txt’,’%d’);
figure(13)
plot(index, beta 1 y axis, ’r’, index, beta 2 y axis, ’g’, index, beta 3 y axis, ’b’, ’LineWidth’,1);
end
while (trial _counter 1<=iterations-1)

Appendix IX. Multiple Mobile Robot Navigation - Source Code 160

gw(’try’);
end
end

Appendix X. Navigation of a Mobile Robot - Source Code 161

Appendix X. Navigation of a Mobile Robot - Source Code

vim.m

function varargout = vfm(varargin)

% VFM Perform frame grabbing from any Video for Windows source

% The function wraps a number of sub-functions. These are parameterised

% 1in the first paramter. Invocation of a sub-function, say 'grab’,

% is of the form:

% vfw('grab', ...parameters...)

%

% VFM('grab'?, framecount?)

% Grabs framecount frames. framecount defaults to 1

% Returns M x N x 3 x framecount array of uint8, where M and N are the

% height and width respectively. Images are in RGB format.

%

% VFM('preview'?, bPreview?)

% Switches preview mode on or off, according to the boolean value bPreview.
% bPreview defaults to 1.

%

% VFM('show'?, bShow?)

% Shows or hides the capture window according to the value of the boolean, bShow.
% The window is displayed if and only if bShow is 1. bShow defaults to 1.

%

% VFM('configsource')

% Displays the source configuration dialog, if available for the current driver.
%

% VFM('configformat’)

% Displays the format configuration dialog, if available for the current driver.
%

% VFM('configdisplay’)

% Displays the display configuration dialog, if available for the current driver.
%

% VFM('drivername', index)

% Returns the name of a system driver for the given index. index must be in the
% the range 1-10. If a driver exists for that index, a string, representing the

% mname of the driver is returned.

%

% VFM('setdriver', index)

% Sets the driver according to the index. index must be in the range 1-10. If
% a driver does not exist for the given index, a warning is issued.

%

% Farzad Pezeshkpour,

% School of Information Systems,

% University of East Anglia

% Revision: 0.1 Date: 1998/12/16

error('Missing MEX-file VFM.DLL');

capture.m

Y%close all

Y%clear all

home

VFM('show',0);

captured image = VFM('grab');

threshold1 = 0.35;
threshold2 = 0.1;

%ecaptured _image = imread('yellow.jpg");

captured_image red = (captured_image(:,:,1));

Appendix X. Navigation of a Mobile Robot - Source Code 162

captured_image green = (captured image(:,:,2));
captured_image blue = (captured image(:,:,3));

average captured image red = sum((captured image red),2);
average captured image red = sum((average captured image red),1)/240/320/256

average captured image green = sum((captured image green),2);
average captured image green = sum((average captured image green),1)/240/320/256

average captured image blue = sum((captured image blue),2);
average captured image blue = sum((average captured image blue),1)/240/320/256

if
(average captured image red<=threshold2)&&(average captured image green<=threshold2)&&(average captured
_image blue<=thresholdl)
'‘Black’
elseif
(average captured image red>=thresholdl)&&(average captured image green>=thresholdl)&&(average captured
_image blue<=threshold2)
"Yellow'
elseif
(average captured image red>=thresholdl)&&(average captured image green>=threshold1)&&(average captured
_image blue>=threshold1)
"White'
else
%'Ask human...'
'‘Black’
end

imshow(captured_image);

wi.m
function out = gwi(arg, arg?2)
% gwi: a grid world interface

delete beta_1.csv

delete beta 2.csv

delete steps_1.csv

delete steps_2.csv

delete rewards _1.csv

delete rewards_2.csv

delete summary.csv

Y%summary_f = fopen('summary.csv','w'); fclose(summary _f);
delete stop _condition_1.csv

delete average val.csv

close all
%clear all

home

% World #1

global alpha beta gamma delta lambda
global gt ge gs bt be bs at ae as stop
global fx fy fm ff

if(nargin < 1)
gwi('new");
return;

end

% call backs
switch(arg)
case 'new'

Appendix X. Navigation of a Mobile Robot - Source Code 163

gw('new");
% World #1

gw('try");
end

wi.m
function gwf(arg, arg2)

% World #1

global Rew 1 Val 1 Elig 1

global state 1 action_1 reward 1 value 1 delta 1
globalnx 1ny lna 1

global fx 1fy 1fm 1ff 1

global ax 1ay 1az 1 asurf 1

% World #2

global Rew 2 Val 2 Elig 2

global state 2 action 2 reward 2 value 2 delta 2
globalnx 2ny 2na 2

global fx 2 fy 2fm 2 ff 2

global ax 2 ay 2 az 2 asurf 2

switch(arg)
case "init'
ss = get(0,'ScreenSize');
fm 1=[10,20,42,3]; % figure margins
if nargin <2
fx 1 =min(ss(3)-4, 1024)/2 - (fm_1(1)+fm_1(2));
fy 1 =(ss(4)-24)/2 - (fm_1(3)+fm_1(4));

else
fx 1 =arg2(1);
fy 1 =arg2(2);
end
ff 1=1; % figure to be focused: 4 for gwi

figure(1); set(1,'Position',[fm_1(1),ss(4)-fm_1(3)-fy_1,fx 1,fy_1],Name','Reward"); %%%clf;
figure(2); set(2,'Position’,[fm_1(1),ss(4)-fm_1(3)*2-fm_1(4)-fy_1*2,fx_1,fy_1],'Name','Value'); %%%clf;
% Robot
[ax_1l,ay l,az 1] = sphere(20);
ax_1=0.5*ax_1(11:end,:);
ay 1=0.5*%ay 1(11:end,:);
az 1 =az 1(11:end,:)+0.01;
case 'reward'
figure(1); clf;
step(Rew_1"); caxis([-2,2]);
axis([0.5 nx_1+0.5 0.5 ny_1+0.5 -2 2]);
axis('off");
case 'value'
figure(2); clf;
step(Val_1"); caxis([-50,50]);
axis([0.5 nx_1+0.5 0.5 ny 1+0.5-10 10]);
% title(sprintf('Value'));
case 'elig'
figure(2); clf;
step(Elig_1"); caxis([-50,50]);
axis([0.5 nx_1+0.5 0.5 ny 1+0.5 -10 10]);
% title(sprintf('Eligibility"));
case 'agent'
figure(1);
%hold('on");
if ishandle(asurf 1)
set(asurf 1, 'xdata',arg2(1)+ax 1, 'ydata',arg2(2)+ay 1, 'zdata',arg2(3)+az_1);

Appendix X. Navigation of a Mobile Robot - Source Code 164

else
hold('on");
asurf 1 =surf(arg2(1)+ax 1, arg2(2)+ay 1, arg(3)+az 1, az 1*2);
end
%hold('off");
Y%line(arg2(1), arg2(2), 'LineStyle', 'none', 'Marker', '0',...
% 'MarkerSize', 10, 'MarkerEdgeColor', 'k');
case 'traj'
figure(1);
line(arg2(:,1), arg2(:,2), 'Color', 'W');
end
%drawnow;

%%%%
function s = step(X, y, z)

% step: 3D plot of a step function

if nargin <3

Z=X;
[nx_1,ny 1] = size(z);
x=1mx_I;
y=1my 1;

else
[nx_1,ny 1] = size(z);

end

% double the data

x =[x()-0.5, x(:)+0.5]; x =x(2);
y=[y(:)-0.5,y(:)+0.5]5 y =y();

z =reshape([z(3), z(:)]', 2*nx_1, ny 1);
z =reshape([z;z], 2*nx_1, 2*ny _1);

s =surf(x, y, 2);

gw.m
function out = gw(arg, arg2)

%diary on

global enable_graphics

global enable_robot movement
global enable_human_collaboration
global time_between movements
global robot_orientation

global steps_counter

global dont_move robot_flag

steps_counter=0;

robot_orientation=2;

time between movements=3;

enable graphics=1;

enable human collaboration=0;

enable robot movement=0;

enable greedy=1; % O - adaptive softmax, 1 - greedy
dont_move robot_flag=1

% World #1

globalnx 1ny 1ns 1na 1move 1loss 1 addaptive alpha 1 visiting counter 1
global start 1 goal 1 Rew 1 Val 1 Elig 1

global alpha 1 beta 1 gamma 1 delta 1 lambda 1

global state 1 action 1 value 1 reward 1t I tmax 1 stop 1

global ff 1 Mov 1

global last steps 1 trial counter 1

Appendix X. Navigation of a Mobile Robot - Source Code 165

global counterl 1;
global mean Val 1templ 1temp2 1

% World #2

globalnx 2ny 2ns 2na 2move 2 loss 2 addaptive alpha 2 visiting counter 2
global start 2 goal 2 Rew 2 Val 2 Elig 2

global alpha 2 gamma 2 delta 2 lambda 2

global state 2 action_2 value 2 reward 2t 2 tmax 2 stop 2

global ff 2 Mov 2

global last_steps 2 trial counter 2

global counter] 2;

global mean Val 2 templ 2 temp2 2

set(0,RecursionLimit',20000);
global st_1 st 2 choosing Val
global iterations stop_condition_threshold

%iterations = 100;

if (enable_human_collaboration==1)
iterations = 10;

else

iterations = 10;

end

stop_condition_threshold=500;
stop_condition 1=100;
stop_condition 2=100;

switch(arg)

case 'new' % Setup

gw('world"); gw('agent'); gw('init");
case 'world' % A new world
% World #1

trial counter 1=0;
nx 1=6;ny 1=6;ns 1 =nx 1*ny 1;

% actions

na 1 =4;%RU,LD

move 1=11,0;0,1; -1,0; 0,-1];
loss 1=-0.1*[1;1; 1; 1];

% reward field

Rew 1 =zeros(nx 1,ny 1);

counterl 1=0;

templ 1=round(rand*nx 1); temp2 l=round(rand*ny 1);
if templ 1==0templ 1=1; end

if temp2 1==0 temp2 1=1; end

if ((templ_1==5)&&(temp2_1==6))
templ 1=1;

temp2 1=1;

end

start 1 =[templ 1,temp2 1]; goal 1=1[4,6];
start 1 =[templ 1, temp2 1];

% World #2
trial _counter 2=0;

Appendix X. Navigation of a Mobile Robot - Source Code

166

nx 2=6;ny 2=06;ns 2=nx 2*ny 2;
% actions

na 2=4;% R,UL,D

move 2=11,0;0,1; -1,0; 0,-1];

loss 2=-0.1*[1;1; 1; 1];

% reward field

Rew 2 =zeros(nx_2,ny_2);

counterl 2=0;

goal 2 =[5,6];
start 2 =[templ 1, temp2 1];

if enable graphics==1 gwf{('init'); end
if enable graphics==1 gwf('reward'); end

case 'agent' % A new agent

% World #1

Val 1=zeros(nx_1,ny 1); alpha 1=0.95; gamma 1=0.99; lambda 1=10.5; %beta 1 =10;

visiting_counter 1=zeros(6,6);
fori=1:6
for j=1:6
addaptive alpha 1(i,j)=alpha 1;
end
end

if (enable greedy==1) beta_1=10; else beta 1=10; end

% World #2

Val 2 =zeros(nx_2,ny 2); alpha 2 =0.95; gamma 2 =0.99; lambda 2 =0.5;

visiting_counter 2=zeros(6,6);
fori=1:6
for j=1:6
addaptive alpha 2(i,j)=alpha 2;
end
end

case 'Init' % A new trial
% World #1

tmax_1 =500; state_1 = zeros(tmax_1,2); action_1 = zeros(tmax_1,1); reward 1 = zeros(tmax_1,1); value 1=

zeros(tmax_1,1);
delta 1 = zeros(tmax_1,1);
Elig 1 =zeros(nx_1,ny 1);

% World #2

tmax_2 = 500; state 2 = zeros(tmax_2,2); action_2 = zeros(tmax_2,1); reward 2 = zeros(tmax_2,1); value 2 =

zeros(tmax_2,1);
delta 2 = zeros(tmax_2,1);
Elig 2 = zeros(nx_2,ny 2);

case 'run’'
stop_ 1=0;

% World #1
if (enable_greedy==0)

if (t_1-1>=15) %stop_condition 1 % stop_condition_threshold

beta 1 =beta 1+1;

beta 1=10;
else
beta 1=2;

beta 1 =10;

Appendix X. Navigation of a Mobile Robot - Source Code 167

end

if (beta_1<=2)
beta 1=2;

end

end

beta 1 f=fopen('beta 1.csv','a’); fprintf(beta 1 f,'%g\r\n’', beta 1); fclose(beta 1 f);

templ I=round(rand*nx _1); temp2 l1=round(rand*ny 1);
if templ 1==0templ 1=1; end
if temp2 1==0 temp2 1=1; end

if ((templ_1==5)&&(temp2_1==0))
templ 1=1;
temp2 1=1;

end

start 1 =[templ 1,temp2 1];
st 1 =start 1;

st 1=[templ 1,temp2 1];
st 1=1[4,2];

fort 1=1:tmax 1

state 1(t_1,:)=st 1;

if enable graphics==1 gwf('agent', [st 1,Rew 1(st 1(1),st 1(2))]); figure(ff 1); drawnow; end

if ((t_1-1)>6000)
enable_human_collaboration=1;
else

enable human_collaboration=0;
end

if((enable_human_collaboration==1)&(((st_1(1)==4)&&(st_1(2)==4))||((st_1(1)==5)&&(st_1(2)==4))||((st_1(1)==6)&&
(st_1(2)==4))[|((st_1(1)==H&&(st_1(2)==5))|((st_1(1)==5)&&(st_1(2)==5))[|((st_1(1)==6)&&(st_1(2)==5))||((st_1(1)=
=5)&&(st_1(2)==06))[|((st_1(1)==6)&&(st_1(2)==0))))

%if ((st_1(1)==4)&&(st_1(2)==6))break; end

reply = input('Human Collaboration Area: Where to go? [L, R, U, D]?','s");
if (reply=="")
'Left';
next_action_1 = 3;
end
if (reply=="")
'Right';
next action 1=1;
end
if (reply=="u'
'Up';
next action 1 =2;
end
if (reply=="d")
'Down';
next_action_1=4;
end

% value
value 1(t 1)=Val I(st I1(1),st 1(2));

ift 1>1
visiting_counter 1(st_1(1),st_1(2)) = visiting_counter 1(st_1(1),st 1(2))+1;

Appendix X. Navigation of a Mobile Robot - Source Code 168

addaptive alpha 1(st_1(1),st_1(2)) = alpha_1/(visiting_counter 1(st_1(1),st_1(2))+1);
% TD error
% delta 1(t 1-1) = min(reward 1(t 1-1), reward 2(t 1-1)) + gamma [*value I(t 1)-value 1(t 1-1);

delta 1(t 1-1) =reward 1(t 1-1) + gamma [*value I(t 1)-value 1(t 1-1);

% update value
Val _1=Val 1+ addaptive alpha 1(st_1(1),st_1(2))*delta 1(t_1-1)*Elig_1;

end

% update eligibility trace
Elig 1 =gamma 1*lambda 1*Elig 1;
Elig 1(st 1(1),st 1(2)) =Elig_1(st 1(1),st 1(2))+ 1;

% final step
state 1(t_1,:)

if state_1(t_1,:)==goal 1
reward 1(t 1)=Rew I(st_1(1),st 1(2));
delta 1(t 1) =reward 1(t 1) - value 1(t 1);

Val 1=Val 1+ addaptive alpha 1(st_1(1),st 1(2))*delta _1(t 1)*Elig 1;
trial counter 1 =trial counter 1+1;

Rew 1(st 1(1),st 1(2)); %current reward
break;
end

if (((st_1(1)==6)&&(st_1(2)==2)&&(next_action 1==1))|| ((st_1(1)==6)&&(st 1(2)==3)&&(next action 1==1))||
((st_1(1)==6)&&(st_1(2)==4)&&(next _action 1==1))|| ((st_1(1)==6)&&(st_1(2)==5)&&(next action 1==1))||
((st_1(1)=D)&&(st_1(2)==2)&&(next _action 1==3))|| ((st_1(1)==1)&&(st_1(2)==3)&&(next action 1==3))||
((st_1(1)y==1)&&(st_1(2)==4)&&(next_action_1==3))|| ((st_1(1)==1)&&(st_1(2)==5)&&(next_action 1==3))||
((st_1(1)y==2)&&(st_1(2)==6)&&(next_action_1==2))|| ((st_1(1)==3)&&(st_1(2)==6)&&(next_action 1==2))||
((st_1(1)y==4)&&(st_1(2)==6)&&(next_action_1==2))|| ((st_1(1)==5)&&(st_1(2)==6)&&(next_action 1==2))||
((st_1(1)==2)&&(st_1(2)==1)&&(next_action 1==4))|| ((st_1(1)==3)&&(st 1(2)==1)&&(next action 1==4))||
((st_1(1)==4)&&(st_1(2)==1)&&(next_action 1==4))|| ((st_1(1)==5)&&(st_1(2)==1)&&(next action 1==4))||
((st_1(1)==6)&&(st_1(2)==1)&&(next_action 1==1))|| ((st_1(1)==6)&&(st_1(2)==1)&&(next action 1==4))||
((st_1(1)==1)&&(st_1(2)==06)&&(next _action 1==3))|| ((st_1(1)==1)&&(st_1(2)==06)&&(next action 1==2))||
((st_1(1)==D)&&(st_1(2)==1)&&(next _action 1==4))|| ((st_1(1)==1)&&(st_1(2)==1)&&(next _action 1==3))||
((st_1(1)==6)&&(st_1(2)==0)&&(next _action 1==2))|| ((st_1(1)==6)&&(st_1(2)==0)&&(next action 1==1)))
dont move robot flag=1;
else
dont move robot flag=1;
end

dont_move robot flag

% next state
st 1 =st 1+move I(next action 1,:);st 1 =min(max(st 1, 1), [nx IL,ny 1]);

if (dont_move robot flag==0)

if ((robot_orientation==2)&&(next_action_1==2))
winopen('c:\tmp\rl\move robot_forward 15 inches.exe')
pause(time_between movements);
robot_orientation=2;

elseif ((robot_orientation==2)&&(next_action 1==4))
winopen('c:\tmp\rl\move robot_backward 15 inches.exe')
pause(time between movements);
robot orientation=2;

elseif ((robot_orientation==2)&&(next_action 1==1))

Appendix X. Navigation of a Mobile Robot - Source Code 169

winopen('c:\tmp\rl\turn_robot 90 right and move forward 15 inches.exe'")
pause(time_between movements);
robot orientation=1;

elseif ((robot_orientation==2)&&(next action 1==3))
winopen('c:\tmp\rl\turn_robot 90 left and move forward 15 inches.exe')
pause(time_between movements);
robot_orientation=3;

elseif ((robot_orientation==4)&&(next _action_1==2))
winopen('c:\tmp\rl\move robot_backward 15 inches.exe'")
pause(time_between movements);
robot_orientation=4;

elseif ((robot_orientation==4)&&(next_action 1==4))
winopen('c:\tmp\rl\move robot forward 15 inches.exe")
pause(time between movements);
robot orientation=4;

elseif ((robot_orientation==4)&&(next_action 1==1))
winopen('c:\tmp\rl\turn_robot 90 left and move forward 15 inches.exe')
pause(time_between movements);
robot_orientation=1;

elseif ((robot_orientation==4)&&(next _action_1==3))
winopen('c:\tmp\rl\turn_robot 90 right and move forward 15 inches.exe')
pause(time_between movements);
robot_orientation=3;

elseif ((robot_orientation==1)&&(next action 1==2))
winopen('c:\tmp\rl\turn_robot 90 left and move forward 15 inches.exe')
pause(time between movements);
robot_orientation=2;

elseif ((robot_orientation==1)&&(next_action 1==4))
winopen('c:\tmp\rl\turn_robot 90 right and move forward 15 inches.exe')
pause(time_between movements);
robot_orientation=4;

elseif ((robot_orientation==1)&&(next_action 1==1))
winopen('c:\tmp\rl\move robot forward 15 inches.exe')
pause(time_between movements);
robot orientation=1;

elseif ((robot_orientation==1)&&(next action 1==3))
winopen('c:\tmp\rl\move robot backward 15 inches.exe')
pause(time_between movements);
robot_orientation=1;

elseif ((robot_orientation==3)&&(next action 1==2))
winopen('c:\tmp\rl\turn_robot 90 right and move forward 15 inches.exe")
pause(time_between movements);
robot_orientation=2;

elseif ((robot_orientation==3)&&(next_action 1==4))
winopen('c:\tmp\rl\turn_robot 90 left and move forward 15 inches.exe")
pause(time between movements);
robot orientation=4;

elseif ((robot_orientation==3)&&(next action 1==1))
winopen('c:\tmp\rl\move robot_backward 15 inches.exe')
pause(time_between movements);
robot_orientation=3;

elseif ((robot_orientation==3)&&(next action_1==3))
winopen('c:\tmp\rl\move robot_forward 15 inches.exe")
pause(time_between movements);
robot_orientation=3;

end

%%%%%
pause(8);

Appendix X. Navigation of a Mobile Robot - Source Code 170

%%% start capturing
figure(20)

VFM('show',0);
captured_image = VFM('grab');

threshold1 = 0.4;
threshold2 = 0.1;

%captured _image = imread('yellow.jpg");

captured_image red = (captured image(:,:,1));
captured_image green = (captured image(:,:,2));
captured_image blue = (captured_image(:,:,3));

average captured image red = sum((captured image red),2);
average captured image red = sum((average captured image red),1)/240/320/256

average captured image green = sum((captured image green),2);
average captured image green = sum((average captured image green),1)/240/320/256

average captured image blue = sum((captured image blue),2);
average captured image blue = sum((average captured image blue),1)/240/320/256

if(average captured image red<=thresholdl)&&(average captured image green<=thresholdl)&&(average captured i
mage blue<=thresholdl)
'Black’
Rew 1(st_1(1),st 1(2))=0
elseif (average captured image red>=0.4)&&(average captured image red<=0.65)
'Pink’
Rew 1(st_1(1),st 1(2))=-1
elseif
(average captured image red>=threshold1)&&(average captured image green>=thresholdl)&&(average captured im
age blue>=threshold1)
"White'
Rew I(st 1(1),st 1(2))=1.5
'Put robot at starting point'
pause
%quit
end

imshow(captured image);
if ((st_1(1)==4)&&(st_1(2)==6)) Rew_1(st_1(1),st_1(2))=1.5; end

%%% end capture

end

st 1

Y%pause

else

% value

value 1(t_1)=Val 1(st_1(1),st_1(2));

ift 1>1
visiting_counter 1(st_1(1),st_1(2)) = visiting_counter 1(st_1(1),st_1(2))+1;
addaptive alpha 1(st_1(1),st 1(2)) = alpha 1/(visiting_counter 1(st_1(1),st_1(2))+1);

% TD error
% delta 1(t_1-1) = min(reward 1(t 1-1), reward 2(t 1-1)) + gamma [*value I(t 1)-value 1(t 1-1);

delta 1(t 1-1) =reward 1(t 1-1) + gamma [*value I(t 1)-value 1(t 1-1);

Appendix X. Navigation of a Mobile Robot - Source Code

171

% update value
Val 1=Val 1+ addaptive alpha 1(st_1(1),st 1(2))*delta 1(t 1-1)*Elig_1;

% update eligibility trace
Elig 1 =gamma 1*lambda 1*Elig 1;
Elig_1(st_1(1),st_1(2)) =Elig 1(st 1(1),st 1(2)) + 1;

% final step

if state 1(t_1,:)==goal 1
reward 1(t 1)=Rew_ I(st_1(1),st 1(2));
delta 1(t 1) =reward 1(t 1) - value 1(t 1);

Val 1=Val 1+ addaptive alpha 1(st_1(1),st 1(2))*delta 1(t 1)*Elig 1;

trial counter 1 = trial counter 1+1;
Yost 1
Rew 1(st_1(1),st_1(2)); %current reward

break;
end

% predict next states: each row for an action

pstate 1 =repmat(st 1,na 1, 1)+ move 1;

pstate 1 = min(max(pstate 1,1), repmat([nx_1,ny 1],na_1,1)); % set of possible states to move to
% linear index

istate 1 =sub2ind([nx_1,ny 1], pstate 1(:,1), pstate 1(:,2));

% take an action by softmax

pq 1 =loss 1+ gamma 1*Val l1(istate 1); % each row for an action
prob_1 =exp(beta 1*pq_1);

prob_1=prob 1./(sum(prob_1)); % selection probablity

act_1 = find(cumsum(prob_1) >rand(1));

action_1(t_1)=act 1(1); % index of selected action

% reward: from state and action

reward 1(t 1)=Rew 1(st_1(1),st 1(2)) + loss_I(action 1(t 1));

Rew I(st 1(1),st 1(2)) Y%current reward
% st_1 % current robot state

next action 1 =action_1(t_1,1)

if (((st_1(1)==6)&&(st_1(2)==2)&&(next_action 1==1))|| ((st_1(1)==6)&&(st_1(2)==3)&&(next_action_1==1))||
((st_1(1)==6)&&(st_1(2)==4)&&(next_action_1==1))|| ((st_1(1)==6)&&(st_1(2)==5)&&(next_action 1==1))||
((st_1(1)==1)&&(st_1(2)==2)&&(next_action 1==3))|| ((st_1(1)==1)&&(st_1(2)==3)&&(next action 1==3))||
((st_1(1)y==1)&&(st_1(2)==4)&&(next_action_1==3))|| ((st_1(1)==1)&&(st_1(2)==5)&&(next_action 1==3))||
((st_1(1)y==2)&&(st_1(2)==6)&&(next_action_1==2))|| ((st_1(1)==3)&&(st_1(2)==6)&&(next_action 1==2))||
((st_1(1)y==4)&&(st_1(2)==6)&&(next_action_1==2))|| ((st_1(1)==5)&&(st_1(2)==6)&&(next_action 1==2))||
((st_1(1)==2)&&(st_1(2)==1)&&(next_action 1==4))|| ((st_1(1)==3)&&(st 1(2)==1)&&(next action 1==4))||
((st_1(1)==4)&&(st_1(2)==1)&&(next_action 1==4))|| ((st_1(1)==5)&&(st_1(2)==1)&&(next action 1==4))||
((st_1(1)==6)&&(st_1(2)==1)&&(next_action 1==1))|| ((st_1(1)==6)&&(st_1(2)==1)&&(next action 1==4))||
((st_1(1)==1)&&(st_1(2)==6)&&(next_action 1==3))|| ((st_1(1)==1)&&(st_1(2)==6)&&(next_action 1==2))||
((st_1(1)==1)&&(st_1(2)==1)&&(next_action_1==4))|| ((st_1(1)==1)&&(st_1(2)==1)&&(next_action 1==3))]|
((st_1(1)==6)&&(st_1(2)==6)&&(next_action 1==2))|| ((st_1(1)==6)&&(st_1(2)==6)&&(next _action_1==1)))

dont move robot flag=1;
else

dont_move robot_flag=0;
end

st 1 =st 1 +move I(action 1(t 1),:); st 1 =min(max(st 1, 1), [nx_1,ny 1]);

if (dont_move robot flag==0)

Appendix X. Navigation of a Mobile Robot - Source Code 172

if ((robot_orientation==2)&&(next_action 1==2))
winopen('c:\tmp\rl\move robot forward 15 inches.exe')
pause(time between movements);
robot orientation=2;

elseif ((robot_orientation==2)&&(next action 1==4))
winopen('c:\tmp\rl\move robot_backward 15 inches.exe')
pause(time_between movements);
robot_orientation=2;

elseif ((robot_orientation==2)&&(next action_1==1))
winopen('c:\tmp\rl\turn_robot 90 right and move forward 15 inches.exe')
pause(time_between movements);
robot_orientation=1;

elseif ((robot_orientation==2)&&(next_action 1==3))
winopen('c:\tmp\rl\turn_robot 90 left and move forward 15 inches.exe')
pause(time between movements);
robot orientation=3;

elseif ((robot_orientation==4)&&(next_action 1==2))
winopen('c:\tmp\rl\move robot_backward 15 inches.exe')
pause(time_between movements);
robot_orientation=4;

elseif ((robot_orientation==4)&&(next action 1==4))
winopen('c:\tmp\rl\move robot forward 15 inches.exe')
pause(time_between movements);
robot_orientation=4;

elseif ((robot_orientation==4)&&(next_action 1==1))
winopen('c:\tmp\rl\turn_robot 90 left and move forward 15 inches.exe')
pause(time between movements);
robot orientation=1;

elseif ((robot_orientation==4)&&(next_action 1==3))
winopen('c:\tmp\rl\turn_robot 90 right and move forward 15 inches.exe')
pause(time_between movements);
robot_orientation=3;

elseif ((robot_orientation==1)&&(next action 1==2))
winopen('c:\tmp\rl\turn_robot 90 left and move forward 15 inches.exe")
pause(time_between movements);
robot_orientation=2;

elseif ((robot_orientation==1)&&(next action 1==4))
winopen('c:\tmp\rl\turn_robot 90 right and move forward 15 inches.exe')
pause(time between movements);
robot_orientation=4;

elseif ((robot_orientation==1)&&(next_action 1==1))
winopen('c:\tmp\rl\move _robot_forward 15 inches.exe")
pause(time between movements);
robot_orientation=1;

elseif ((robot_orientation==1)&&(next _action 1==3))
winopen('c:\tmp\rl\move robot backward 15 inches.exe')
pause(time_between movements);
robot_orientation=1;

elseif ((robot_orientation==3)&&(next action 1==2))
winopen('c:\tmp\rl\turn_robot 90 right and move forward 15 inches.exe')
pause(time between movements);
robot_orientation=2;

elseif ((robot_orientation==3)&&(next_action 1==4))
winopen('c:\tmp\rl\turn_robot 90 left and move forward 15 inches.exe'")
pause(time_between movements);
robot_orientation=4;

elseif ((robot_orientation==3)&&(next_action 1==1))
winopen('c:\tmp\rl\move robot backward 15 inches.exe')
pause(time_between movements);
robot orientation=3;

elseif ((robot_orientation==3)&&(next action 1==3))
winopen('c:\tmp\rl\move robot forward 15 inches.exe')
pause(time_between movements);

Appendix X. Navigation of a Mobile Robot - Source Code

173

robot_orientation=3;
end

%%%%%

pause(8);

%%% start capturing
figure(20)
VFM('show',0);

captured image = VFM('grab');

threshold1 = 0.4;
threshold2 = 0.1;

%captured _image = imread('yellow.jpg");
captured_image red = (captured_image(:,:,1));

captured_image green = (captured image(:,:,2));
captured_image blue = (captured_image(:,:,3));

average captured image red = sum((captured image red),2);
average captured image red = sum((average captured image red),1)/240/320/256

average captured image green = sum((captured image green),2);
average captured image green = sum((average captured image green),1)/240/320/256

average captured image blue = sum((captured image blue),2);
average captured image blue = sum((average captured image blue),1)/240/320/256

if

(average captured image red<=thresholdl)&&(average captured image green<=thresholdl)&&(average captured im

age blue<=threshold1)
'Black’
Rew 1(st_1(1),st _1(2))=0

elseif (average captured image red>=0.4)&&(average captured image red<=0.65)

'"Pink’
Rew_1(st_1(1),st_1(2))=-1
elseif

(average captured image red>=thresholdl)&&(average captured image green>=thresholdl)&&(average captured im

age blue>=threshold1)
"White'
Rew 1(st 1(1),st 1(2))=1.5
'Put robot at starting point'
pause
%quit

end

imshow(captured image);

%%% end capturing

end

end

end

end

if (trial_counter 1<=10)
stop_condition 1=t 1-1;

else

counterl l=counterl 1+1;

last steps 1(counterl 1)=t 1(max(size(t 1-1)));

stop_condition 1=mean(last steps 1)-1;

if counter! 1>=10 counterl 1=0; end

end

Appendix X. Navigation of a Mobile Robot - Source Code

174

rewards_1 = fopen('rewards 1.csv','a"); fprintf(rewards 1,'%g\r\n',mean(reward 1(1:t_1-1))); fclose(rewards 1);
steps_1 = fopen('steps_1.csv',a"); fprintf(steps 1,'%g\r\n",t 1-1); fclose(steps 1);

stop_condition 1 f= fopen('stop_condition 1.csv',a"); fprintf(stop _condition 1 f,'%g\r\n', stop condition_1);
fclose(stop _condition 1 f);

average val f=fopen(‘average val.csv''a'); fprintf(average val f,'%g\r\n', Val 1(4,6)); fclose(average val f);

[step 1 y axis] = textread('steps _1.csv','%d");
stop_condition_threshold = mean(step_1_y_axis)

summary f = fopen('summary.csv','a"); fprintf(summary f, '%g, %g, %g, %g, %g\n', t 1-1, beta 1, mean(
reward 1(1:t 1-1)), stop_condition_1, Val 1(4,6)); fclose(summary_f);

case 'try'

gw('init');

gw('run’);

if enable graphics==1 gwf('value'); end

trial_counter 1;

if (trial counter 1==iterations)

index=[1:iterations];

[step_1 vy axis] = textread('steps_1.csv','%d");
figure(11)

plot(index, step 1 y axis, 'r', 'LineWidth',1);
steps_counter = sum(steps_counter + step 1 y axis)
[rewards 1 y axis] = textread('rewards_1.csv','%f");
figure(12)

plot(index, rewards 1 y axis, 'r', 'LineWidth',1);
[beta 1 y axis] = textread('beta 1.csv','%d");

figure(13)

plot(index, beta 1 y axis, 'r', 'LineWidth',1);

[stop condition 1 y axis] = textread('stop_condition 1.csv','%f");
figure(14)

plot(index, stop_condition 1 y axis, 'r', 'LineWidth',1);
[average val 1 y axis] = textread('average val.csv','%f");
figure(15)

plot(index, average val 1 y axis, 'r', 'LineWidth',1);
stop_condition_threshold = mean(step 1 y_axis)

end

Y%winopen('c:\tmp\rl\Simple Grid World\summary.csv');
while (trial_counter 1<=iterations-1)
gw('try");

end
end

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 175

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code
Digital Scale

CRs232.vb

Imports System.Runtime.InteropServices
Imports System.Text

Imports System.Threading

Imports System.ComponentModel
Imports System.1O

#Region "RS232"
Public Class Rs232 : Implements IDisposable
'// Class Members
Private mhRS As IntPtr = New IntPtr(0) '// Handle to Com Port
Private miPort As Integer =3 '// Default is COM1
Private miTimeout As Int32 =70 '// Timeout in ms
Private miBaudRate As Int32 = 9600
Private meParity As DataParity = 0
Private meStopBit As DataStopBit =0
Private miDataBit As Int32 = 8
Private miBufferSize As Int32 = 512 '/ Buffers size default to 512 bytes
Private mabtRxBuf As Byte() '/ Receive buffer
Private meMode As Mode '/ Class working mode
Private moThreadTx As Thread
Private moThreadRx As Thread
Private moEvents As Thread
Private miTmpBytes2Read As Int32
Private meMask As EventMasks
Private mbDisposed As Boolean
Private mbUseXonXoff As Boolean
Private mbEnableEvents As Boolean
Private miBufThreshold As Int32 =1
Private muOvVIE As OVERLAPPED
Private muOvIW As OVERLAPPED
Private muOvIR As OVERLAPPED
Private mHE As GCHandle
Private mHR As GCHandle
Private mHW As GCHandle

#Region "Enums"
'// Parity Data
Public Enum DataParity
Parity None =0
Parity Odd
Parity Even
Parity Mark

End Enum

'// StopBit Data

Public Enum DataStopBit
StopBit 1=1
StopBit 2

End Enum

<Flags()> Public Enum PurgeBuffers
RXAbort = &H2
RXClear = &HS8
TxAbort = &H1
TxClear = &H4

End Enum

Private Enum Lines
SetRts =3

ClearRts =4

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

176

SetDtr =5
ClearDtr=6
ResetDev =7 !
SetBreak = 8 !
ClearBreak =9 !
End Enum
'// Modem Status

<Flags()> Public Enum ModemStatusBits

ClearToSendOn = &H10
DataSetReadyOn = &H20
RinglIndicatorOn = &H40
CarrierDetect = &HS80

End Enum

'// Working mode

Public Enum Mode
NonOverlapped
Overlapped

End Enum

'// Comm Masks

<Flags()> Public Enum EventMasks
RxChar = &H1
RXFlag = &H2
TxBufferEmpty = &H4
ClearToSend = &HS
DataSetReady = &H10
CarrierDetect = &H20
Break = &H40
StatusError = &H80
Ring = &H100

End Enum

#End Region
#Region "Structures"

// Reset device if possible
// Set the device break line.

// Clear the device break line.

<StructLayout(LayoutKind.Sequential, Pack:=1)> Private Structure DCB

Public DCBlength As Int32
Public BaudRate As Int32
Public Bits1 As Int32
Public wReserved As Int16
Public XonLim As Int16
Public XoffLim As Int16
Public ByteSize As Byte
Public Parity As Byte
Public StopBits As Byte
Public XonChar As Char
Public XoffChar As Char
Public ErrorChar As Char
Public EofChar As Char
Public EvtChar As Char
Public wReserved2 As Int16
End Structure

<StructLayout(LayoutKind.Sequential, Pack:=1)> Private Structure COMMTIMEOUTS

Public ReadIntervalTimeout As Int32

Public ReadTotalTimeoutMultiplier As Int32
Public ReadTotalTimeoutConstant As Int32
Public WriteTotalTimeoutMultiplier As Int32
Public WriteTotalTimeoutConstant As Int32

End Structure

<StructLayout(LayoutKind.Sequential, Pack:=8)> Private Structure COMMCONFIG

Public dwSize As Int32

Public wVersion As Int16

Public wReserved As Int16

Public dcbx As DCB

Public dwProviderSubType As Int32

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 177

Public dwProviderOffset As Int32
Public dwProviderSize As Int32
Public wcProviderData As Int16
End Structure
<StructLayout(LayoutKind.Sequential, Pack:=1)> Public Structure OVERLAPPED
Public Internal As Int32
Public InternalHigh As Int32
Public Offset As Int32
Public OffsetHigh As Int32
Public hEvent As IntPtr
End Structure
<StructLayout(LayoutKind.Sequential, Pack:=1)> Private Structure COMSTAT
Dim fBitFields As Int32
Dim cbInQue As Int32
Dim cbOutQue As Int32
End Structure

#End Region

#Region "Constants"
Private Const PURGE RXABORT As Integer = &H2
Private Const PURGE RXCLEAR As Integer = &H8
Private Const PURGE TXABORT As Integer = &H]1
Private Const PURGE TXCLEAR As Integer = &H4
Private Const GENERIC READ As Integer = &H80000000
Private Const GENERIC_WRITE As Integer = &H40000000
Private Const OPEN_EXISTING As Integer = 3
Private Const INVALID HANDLE VALUE As Integer = -1
Private Const IO BUFFER SIZE As Integer = 1024
Private Const FILE FLAG_OVERLAPPED As Int32 = &H40000000
Private Const ERROR 10 PENDING As Int32 =997
Private Const WAIT OBJECT 0 As Int32 =0
Private Const ERROR 10 _INCOMPLETE As Int32 =996
Private Const WAIT TIMEOUT As Int32 = &H102&
Private Const INFINITE As Int32 = &HFFFFFFFF

#End Region
#Region "Win32API"

'// Win32 API

<DllImport("kernel32.d1l", SetlastError:=True)> Private Shared Function SetCommState(ByVal hCommDev As
IntPtr, ByRef IpDCB As DCB) As Int32

End Function

<DllImport("kernel32.d1l", SetlastError:=True)> Private Shared Function GetCommState(ByVal hCommDev As
IntPtr, ByRef IpDCB As DCB) As Int32

End Function

<DllImport("kernel32.d11", SetlastError:=True, CharSet:=CharSet.Auto)> Private Shared Function
BuildCommDCB(ByVal IpDef As String, ByRef [pDCB As DCB) As Int32

End Function

<DllImport("kernel32.d1l", SetlastError:=True)> Private Shared Function SetupComm(ByVal hFile As IntPtr, ByVal
dwInQueue As Int32, ByVal dwOutQueue As Int32) As Int32

End Function

<DllImport("kernel32.d1l", SetlastError:=True)> Private Shared Function SetCommTimeouts(ByVal hFile As IntPtr,
ByRef IpCommTimeouts As COMMTIMEOUTS) As Int32

End Function

<DllImport("kernel32.d11", SetlastError:=True)> Private Shared Function GetCommTimeouts(ByVal hFile As IntPtr,
ByRef IpCommTimeouts As COMMTIMEOUTS) As Int32

End Function

<DllImport("kernel32.d11", SetlastError:=True)> Private Shared Function ClearCommError(ByVal hFile As IntPtr,
ByRef IpErrors As Int32, ByRef IpComStat As COMSTAT) As Int32

End Function

<DllImport("kernel32.d1l", SetlastError:=True)> Private Shared Function PurgeComm(ByVal hFile As IntPtr, ByVal
dwFlags As Int32) As Int32

End Function

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 178

<DllImport("kernel32.d1l", SetlastError:=True)> Private Shared Function EscapeCommFunction(ByVal hFile As
IntPtr, ByVal ifunc As Int32) As Boolean

End Function

<DllImport("kernel32.d1l", SetlastError:=True)> Private Shared Function WaitCommEvent(ByVal hFile As IntPtr,
ByRef Mask As EventMasks, ByRef IpOverlap As OVERLAPPED) As Int32

End Function

<DllImport("kernel32.dll", SetlastError:=True)> Private Shared Function WriteFile(ByVal hFile As IntPtr, ByVal
Buffer As Byte(), ByVal nNumberOfBytesToWrite As Integer, ByRef I[pNumberOfBytesWritten As Integer, ByRef
IpOverlapped As OVERLAPPED) As Integer

End Function

<DllImport("kernel32.d11", SetlastError:=True)> Private Shared Function ReadFile(ByVal hFile As IntPtr, <Out()>
ByVal Buffer As Byte(), ByVal nNumberOfBytesToRead As Integer, ByRef [pNumberOfBytesRead As Integer, ByRef
IpOverlapped As OVERLAPPED) As Integer

End Function

<DllImport("kernel32.d1l", SetlastError:=True, CharSet:=CharSet.Auto)> Private Shared Function CreateFile(ByVal
IpFileName As String, ByVal dwDesiredAccess As Integer, ByVal dwShareMode As Integer, ByVal
IpSecurityAttributes As Integer, ByVal dwCreationDisposition As Integer, ByVal dwFlagsAndAttributes As Integer,
ByVal hTemplateFile As Integer) As IntPtr

End Function

<DllImport("kernel32.d11", SetlastError:=True)> Private Shared Function CloseHandle(ByVal hObject As IntPtr) As
Boolean

End Function

<DllImport("kernel32.d1l", SetlastError:=True)> Public Shared Function GetCommModemStatus(ByVal hFile As
IntPtr, ByRef IpModemStatus As Int32) As Boolean

End Function

<DllImport("kernel32.d1l", SetlastError:=True)> Private Shared Function SetEvent(ByVal hEvent As IntPtr) As
Boolean

End Function

<DllImport("kernel32.d1l", SetlastError:=True, CharSet:=CharSet.Auto)> Private Shared Function CreateEvent(ByVal
IpEventAttributes As IntPtr, ByVal bManualReset As Int32, ByVal blnitialState As Int32, ByVal IpName As String) As
IntPtr

End Function

<DllImport("kernel32.d11", SetlastError:=True)> Private Shared Function WaitForSingleObject(ByVal hHandle As
IntPtr, ByVal dwMilliseconds As Int32) As Int32

End Function

<DllImport("kernel32.d1l", SetlastError:=True)> Private Shared Function GetOverlappedResult(ByVal hFile As IntPtr,
ByRef IpOverlapped As OVERLAPPED, ByRef IpNumberOfBytesTransferred As Int32, ByVal bWait As Int32) As
Int32

End Function

<DllImport("kernel32.d1l", SetlastError:=True)> Private Shared Function SetCommMask(ByVal hFile As IntPtr,
ByVal IpEvtMask As Int32) As Int32

End Function

<DllImport("kernel32.d11", SetlastError:=True, CharSet:=CharSet.Auto)> Private Shared Function
GetDefaultCommConfig(ByVal IpszName As String, ByRef IpCC As COMMCONFIG, ByRef IpdwSize As Integer) As
Boolean

End Function

<DllImport("kernel32.d1l", SetlastError:=True)> Private Shared Function SetCommBreak(ByVal hFile As IntPtr) As
Boolean

End Function

<DllImport("kernel32.d1l", SetlastError:=True)> Private Shared Function ClearCommBreak(ByVal hFile As IntPtr) As
Boolean

End Function

#End Region
#Region "Events"
Public Event CommEvent As CommEventHandler
#End Region
#Region "Delegates"
Public Delegate Sub CommEventHandler(ByVal source As Rs232, ByVal Mask As EventMasks)
#End Region

Public Property Port() As Integer

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

179

Get
Return miPort
End Get
Set(ByVal Value As Integer)
miPort = Value
End Set
End Property
Public Sub PurgeBuffer(ByVal Mode As PurgeBuffers)
If (mhRS.ToInt32 > 0) Then PurgeComm(mhRS, Mode)
End Sub
Public Overridable Property Timeout() As Integer
Get
Return miTimeout
End Get
Set(ByVal Value As Integer)
miTimeout = CInt(IIf(Value = 0, 500, Value))
'// If Port is open updates it on the fly
pSetTimeout()
End Set
End Property
Public Property Parity() As DataParity
Get
Return meParity
End Get
Set(ByVal Value As DataParity)
meParity = Value
End Set
End Property
Public Property StopBit() As DataStopBit
Get
Return meStopBit
End Get
Set(ByVal Value As DataStopBit)
meStopBit = Value
End Set
End Property
Public Property BaudRate() As Integer
Get
Return miBaudRate
End Get
Set(ByVal Value As Integer)
miBaudRate = Value
End Set
End Property
Public Property DataBit() As Integer
Get
Return miDataBit
End Get
Set(ByVal Value As Integer)
miDataBit = Value
End Set
End Property
Public Property BufferSize() As Integer
Get
Return miBufferSize
End Get
Set(ByVal Value As Integer)
miBufferSize = Value
End Set
End Property
Public Overloads Sub Open()
'// Get Dcb block,Update with current data
Dim uDcb As DCB, iRc As Int32

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 180

'// Set working mode
meMode = Mode.Overlapped
Dim iMode As Int32 = Convert. ToInt32(IIf(meMode = Mode.Overlapped, FILE FLAG_OVERLAPPED, 0))
'// Initializes Com Port
If miPort > 0 Then
Try
'// Creates a COM Port stream handle
mhRS = CreateFile("\.\COM" & miPort.ToString, GENERIC READ Or GENERIC WRITE, 0, 0,
OPEN_EXISTING, iMode, 0)
If (mhRS.Tolnt32 > 0) Then
'// Clear all comunication errors
Dim IpErrCode As Int32
iRc = ClearCommError(mhRS, IpErrCode, New COMSTAT)
'// Clears 1/O buffers
iRc = PurgeComm(mhRS, PurgeBuffers.RXClear Or PurgeBuffers.TxClear)
'// Gets COM Settings
iRc = GetCommState(mhRS, uDcb)
'// Updates COM Settings
Dim sParity As String = "NOEM"
sParity = sParity.Substring(meParity, 1)
'// Set DCB State
Dim sDCBState As String = String.Format("baud={0} parity={1} data={2} stop={3}", miBaudRate, sParity,
miDataBit, CInt(meStopBit))
iRc = BuildCommDCB(sDCBState, uDcb)
uDcb.Parity = CByte(meParity)

'// Set Xon/Xoff State
If mbUseXonXoff Then
uDcb.Bits1 = 768
Else
uDcb.Bits1 =0
End If

iRc = SetCommState(mhRS, uDcb)
If iRc = 0 Then
Dim sErrTxt As String = New Win32Exception().Message
'"Throw New CIOChannelException("Unable to set COM state " & sErrTxt)
End If
'// Setup Buffers (Rx,Tx)
iRc = SetupComm(mhRS, miBufferSize, miBufferSize)
'// Set Timeouts
pSetTimeout()
'//Enables events if required
If mbEnableEvents ThenMe.EnableEvents()
Else
'// Raise Initialization problems
Dim sErrTxt As String = New Win32Exception().Message
'"Throw New CIOChannelException("Unable to open COM" + miPort. ToString + ControlChars.CrLf +
sErrTxt)
End If
Catch Ex As Exception
'// Generica error
Throw New CIOChannelException(Ex.Message, Ex)
End Try
Else
'// Port not defined, cannot open
Throw New ApplicationException("COM Port not defined,use Port property to set it before invoking InitPort")
End If
End Sub
Public Overloads Sub Open(ByVal Port As Integer, ByVal BaudRate As Integer, ByVal DataBit As Integer, ByVal
Parity As DataParity, ByVal StopBit As DataStopBit, ByVal BufferSize As Integer)
Me.Port = Port
Me.BaudRate = BaudRate
Me.DataBit = DataBit
Me.Parity = Parity

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 181

Me.StopBit = StopBit
Me.BufferSize = BufferSize
Open()
End Sub
Public Sub Close()
If mhRS.TolInt32 > 0 Then
If mbEnableEvents = True Then
Me.DisableEvents()
End If
Dim ret As Boolean = CloseHandle(mhRS)
If Not ret Then Throw New Win32Exception
mhRS = New IntPtr(0)
End If
End Sub
ReadOnly Property IsOpen() As Boolean
Get
Return CBool(mhRS.Tolnt32 > 0)
End Get
End Property
Public Overloads Sub Write(ByVal Buffer As Byte())
Dim iRc, iBytesWritten As Integer, hOvl As GCHandle

muOvIW = New Overlapped
If mhRS.TolInt32 <= 0 Then
Throw New ApplicationException("Please initialize and open port before using this method")
Else
'// Creates Event
Try
hOvl = GCHandle.Alloc(muOvlW, GCHandleType.Pinned)
muOvIW.hEvent = CreateEvent(Nothing, 1, 0, Nothing)
If muOvIW.hEvent.TolInt32 = 0 Then Throw New ApplicationException("Error creating event for overlapped
writing")
'// Clears 10 buffers and sends data
iRc = WriteFile(mhRS, Buffer, Buffer.Length, 0, muOvIW)
IfiRc =0 Then
If Marshal.GetLastWin32Error <> ERROR 10 PENDING Then
Throw New ApplicationException("Write command error")
Else
'// Check Tx results
If GetOverlappedResult(mhRS, muOvIW, iBytesWritten, 1) = 0 Then
Throw New ApplicationException("Write pending error")
Else
'// All bytes sent?
If iBytesWritten <> Buffer.Length Then Throw New ApplicationException("Write Error - Bytes
Written " & iBytesWritten. ToString & " of " & Buffer.Length.ToString)
End If
End If
End If
Finally
'//Closes handle
CloseHandle(muOvIW .hEvent)
If (hOvl.IsAllocated = True) Then hOvl.Free()
End Try
End If
End Sub
Public Overloads Sub Write(ByVal Buffer As String)
Dim oEncoder As New System.Text. ASCIIEncoding
Dim oEnc As Encoding = oEncoder.GetEncoding(1252)

Dim aByte() As Byte = oEnc.GetBytes(Bufter)
Me.Write(aByte)

End Sub

Public Function Read(ByVal Bytes2Read As Integer) As Integer

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 182
Dim iReadChars, iRc As Integer, bReading As Boolean, hOvl As GCHandle

'// 1If Bytes2Read not specified uses Buffersize
If Bytes2Read = 0 Then Bytes2Read = miBufferSize
muOVIR = New Overlapped
If mhRS.TolInt32 <=0 Then
Throw New ApplicationException("Please initialize and open port before using this method")
Else
'// Get bytes from port
Try
hOvl = GCHandle.Alloc(muOvIR, GCHandleType.Pinned)
muOvIR.hEvent = CreateEvent(Nothing, 1, 0, Nothing)
If muOvVIR.hEvent.ToInt32 = 0 Then Throw New ApplicationException("Error creating event for overlapped
reading")
'// Clears 10 buffers and reads data
ReDim mabtRxBuf(Bytes2Read - 1)
iRc = ReadFile(mhRS, mabtRxBuf, Bytes2Read, iReadChars, muOvIR)
IfiRc =0 Then
If Marshal.GetLastWin32Error() < ERROR 10 _PENDING Then
Throw New ApplicationException("Read pending error")
Else
'// Wait for characters
iRc = WaitForSingleObject(muOvIR.hEvent, miTimeout)
Select Case iRc
Case WAIT OBJECT 0
'// Some data received...
If GetOverlappedResult(mhRS, muOvIR, iReadChars, 0) = 0 Then
Throw New ApplicationException("Read pending error.")
Else
Return iReadChars
End If
Case WAIT TIMEOUT
Throw New [OTimeoutException("Read Timeout.")
Case Else
Throw New ApplicationException("General read error.")
End Select
End If
Else
Return (iReadChars)
End If
Finally
'//Closes handle
CloseHandle(muOvIR.hEvent)
If (hOvl.IsAllocated) Then hOvl.Free()
End Try
End If
End Function
Overridable ReadOnly Property InputStream() As Byte()
Get
Return mabtRxBuf
End Get
End Property
Overridable ReadOnly Property InputStreamString() As String
Get
Dim oEncoder As New System.Text.ASCIIEncoding
Dim oEnc As Encoding = oEncoder.GetEncoding(1252)

If NotMe.InputStream Is Nothing Then Return oEnc.GetString(Me.InputStream)
End Get
End Property
Public Sub ClearInputBuffer()
If mhRS.TolInt32 > 0 Then
PurgeComm(mhRS, PURGE RXCLEAR)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 183

End If
End Sub
Public WriteOnly Property Rts() As Boolean
Set(ByVal Value As Boolean)
If mhRS.ToInt32 > 0 Then
If Value Then
EscapeCommFunction(mhRS, Lines.SetRts)
Else
EscapeCommFunction(mhRS, Lines.ClearRts)
End If
End If
End Set
End Property
Public WriteOnly Property Dtr() As Boolean
Set(ByVal Value As Boolean)
If mhRS.ToInt32 > 0 Then
If Value Then
EscapeCommFunction(mhRS, Lines.SetDtr)
Else
EscapeCommFunction(mhRS, Lines.ClearDtr)
End If
End If
End Set
End Property
Public ReadOnly Property ModemStatus() As ModemStatusBits
Get
If mhRS.ToInt32 <= 0 Then
Throw New ApplicationException("Please initialize and open port before using this method")
Else
'// Retrieve modem status
Dim IpModemStatus As Int32
If Not GetCommModemStatus(mhRS, IpModemStatus) Then
Throw New ApplicationException("Unable to get modem status")
Else
Return CType(IlpModemStatus, ModemStatusBits)
End If
End If
End Get
End Property
Public Function CheckLineStatus(ByVal Line As ModemStatusBits) As Boolean
Return Convert. ToBoolean(ModemStatus And Line)
End Function
Public Property UseXonXoff() As Boolean
Get
Return mbUseXonXoff
End Get
Set(ByVal Value As Boolean)
mbUseXonXoff = Value
End Set
End Property
Public Sub EnableEvents()
If mhRS.Tolnt32 <=0 Then
Throw New ApplicationException("Please initialize and open port before using this method")
Else
If moEvents Is Nothing Then
mbEnableEvents = True
moEvents = New Thread(AddressOf pEventsWatcher)
moEvents.IsBackground = True
moEvents.Start()
End If
End If
End Sub
Public Sub DisableEvents()

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

184

If mbEnableEvents = True Then
SyncLock Me
mbEnableEvents = False '/ This should kill the thread
End SyncLock
'// Let WaitCommEvent exit...
If muOvVIE.hEvent.ToInt32 <> 0 Then SetEvent(muOvIE.hEvent)
moEvents = Nothing
End If
End Sub
Public Property RxBufferThreshold() As Int32
Get
Return miBufThreshold
End Get
Set(ByVal Value As Int32)
miBufThreshold = Value
End Set
End Property
Public Shared Function IsPortAvailable(ByVal portNumber As Int32) As Boolean
If portNumber <= 0 Then
Return False
Else
Dim cfg As COMMCONFIG
Dim cfgsize As Int32 = Marshal.SizeOf(cfg)
cfg.dwSize = cfgsize
Dim ret As Boolean = GetDefaultCommConfig("COM" + portNumber.ToString, cfg, cfgsize)
Return ret
End If
End Function
Public Sub SetBreak()
If mhRS.TolInt32 > 0 Then
If SetCommBreak(mhRS) = False Then Throw New Win32Exception
End If
End Sub
Public Sub ClearBreak()
If mhRS.ToInt32 > 0 Then
If ClearCommBreak(mhRS) = False Then Throw New Win32Exception
End If

End Sub
Public ReadOnly Property InBufferCount() As Int32
Get
Dim comStat As COMSTAT
Dim IpErrCode As Int32
Dim iRc As Int32
comStat.cbInQue = 0
If mhRS.ToInt32 > 0 Then
iRc = ClearCommError(mhRS, IpErrCode, comStat)
Return comStat.cbInQue
End If
Return 0
End Get
End Property

#Region "Finalize"
Protected Overrides Sub Finalize()
Try
If Not mbDisposed Then
If mbEnableEvents ThenMe.DisableEvents()
Close()
End If
Finally
MyBase.Finalize()

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

185

End Try
End Sub
#End Region

#Region "Private Routines"
Private Sub pSetTimeout()
Dim uCtm As COMMTIMEOUTS
'// Set ComTimeout
If mhRS.Tolnt32 <=0 Then
Exit Sub
Else
'// Changes setup on the fly
With uCtm
.ReadIntervalTimeout = 0
.ReadTotalTimeoutMultiplier = 0
.ReadTotalTimeoutConstant = miTimeout
.WriteTotal TimeoutMultiplier = 10
.WriteTotalTimeoutConstant = 100
End With
SetCommTimeouts(mhRS, uCtm)
End If
End Sub
Private Sub pDispose() Implements IDisposable.Dispose
If (Not mbDisposed AndAlso (mhRS.ToInt32 > 0)) Then
'// Closes Com Port releasing resources
Try
Me.Close()
Finally
mbDisposed = True
'// Suppress unnecessary Finalize overhead
GC.SuppressFinalize(Me)
End Try
End If

End Sub
Private Sub pEventsWatcher()
'// Events to watch

Dim IMask As EventMasks = EventMasks.Break Or EventMasks.CarrierDetect Or EventMasks.ClearToSend Or _
EventMasks.DataSetReady Or EventMasks.Ring Or EventMasks.RxChar Or EventMasks.RXFlag Or _

EventMasks.StatusError

Dim IRetMask As EventMasks, iBytesRead, iTotBytes, iErrMask As Int32, iRc As Int32, aBuf As New ArrayList

Dim uComStat As COMSTAT

'// Creates Event
muOVIE = New Overlapped

Dim hOvIlE As GCHandle = GCHandle.Alloc(muOvIE, GCHandleType.Pinned)

muOvIE.hEvent = CreateEvent(Nothing, 1, 0, Nothing)

If muOvVIE.hEvent.ToInt32 = 0 Then Throw New ApplicationException("Error creating event for overlapped

reading")
'// Set mask
SetCommMask(mhRS, IMask)
'// Looks for RxChar
While mbEnableEvents = True
WaitCommEvent(mhRS, IMask, muOvVIE)
Select Case WaitForSingleObject(muOvIE.hEvent, INFINITE)
Case WAIT OBIJECT 0
'// Event (or abort) detected
If mbEnableEvents = False Then Exit While
If (IMask And EventMasks.RxChar) > 0 Then
'// Read incoming data
ClearCommError(mhRS, iErrMask, uComStat)
If iErrMask = 0 Then

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

186

Dim ovl As New Overlapped
Dim hOvl As GCHandle = GCHandle.Alloc(ovl, GCHandleType.Pinned)
ReDim mabtRxBuf(uComStat.cbInQue - 1)
If ReadFile(mhRS, mabtRxBuf, uComStat.cbInQue, iBytesRead, ovl) > 0 Then
If iBytesRead > 0 Then
'// Some bytes read, fills temporary buffer
If iTotBytes < miBufThreshold Then
aBuf.AddRange(mabtRxBuf)
iTotBytes += iBytesRead
End If
'// Threshold reached?, raises event
If iTotBytes >= miBufThreshold Then
'//Copies temp buffer into Rx buffer
ReDim mabtRxBuf(iTotBytes - 1)
aBuf.CopyTo(mabtRxBuf)
'// Raises event
Try
Me.OnCommEventReceived(Me, IMask)
Finally
iTotBytes =0
aBuf.Clear()
End Try
End If
End If
End If
If (hOvl.IsAllocated) Then hOvl.Free()
End If
Else
'// Simply raises OnCommEventHandler event
Me.OnCommEventReceived(Me, IMask)
End If
Case Else
Dim sErr As String = New Win32Exception().Message
Throw New ApplicationException(sErr)
End Select
End While
'// Release Event Handle
CloseHandle(muOvVIE.hEvent)
muOvVIE.hEvent = IntPtr.Zero
If (hOvlE.IsAllocated) Then hOVIE.Free()
muOVIE = Nothing
End Sub

#End Region

#Region "Protected Routines"

Protected Sub OnCommEventReceived(ByVal source As Rs232, ByVal mask As EventMasks)

Dim del As CommEventHandler =Me.CommEventEvent
If (Not del Is Nothing) Then
Dim Safelnvoker As ISynchronizelnvoke
Try
Safelnvoker = DirectCast(del. Target, ISynchronizeInvoke)
Catch
End Try
If (Not Safelnvoker Is Nothing) Then
Safelnvoker.Invoke(del, New Object() {source, mask})
Else
del.Invoke(source, mask)
End If
End If
End Sub
#End Region

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

187

End Class
#End Region

#Region "Exceptions”
Public Class CIOChannelException : Inherits ApplicationException
Sub New(ByVal Message As String)
MyBase.New(Message)
End Sub
Sub New(ByVal Message As String, ByVal InnerException As Exception)
MyBase.New(Message, InnerException)
End Sub
End Class
Public Class IOTimeoutException : Inherits CIOChannelException

Sub New(ByVal Message As String)
MyBase.New(Message)
End Sub
Sub New(ByVal Message As String, ByVal InnerException As Exception)
MyBase.New(Message, InnerException)
End Sub
End Class

#End Region

Forml.vb

Imports Microsoft. Win32

Imports System.1O

Imports System.Security.Permissions
Imports System.Math

Public Class Forml
Inherits System.Windows.Forms.Form
' Global Declarations
Dim column%, Row%
Dim Cummulative_Value As Double
Dim Events_Value As Double
Dim Exit Flag 1 As Integer

#Region " Windows Form Designer generated code "

Public Sub New()
MyBase.New()

'This call is required by the Windows Form Designer.
InitializeComponent()

'Add any initialization after the InitializeComponent() call
End Sub

'Form overrides dispose to clean up the component list.
Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
If disposing Then
If Not (components Is Nothing) Then
components.Dispose()
End If
End If
MyBase.Dispose(disposing)
End Sub

'Required by the Windows Form Designer
Private components As System.ComponentModel.IContainer

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 188

'NOTE: The following procedure is required by the Windows Form Designer
'It can be modified using the Windows Form Designer.

'Do not modify it using the code editor.

Friend WithEvents GroupBox32 As System.Windows.Forms.GroupBox
Friend WithEvents Label102 As System.Windows.Forms.Label
Friend WithEvents btnTest As System. Windows.Forms.Button

Friend WithEvents txtPortNum As System.Windows.Forms.TextBox
Friend WithEvents txtTimeout As System. Windows.Forms.TextBox
Friend WithEvents txtBaudrate As System.Windows.Forms.TextBox
Friend WithEvents Label104 As System.Windows.Forms.Label
Friend WithEvents Label105 As System.Windows.Forms.Label
Friend WithEvents txtBytes2Read As System.Windows.Forms.TextBox
Friend WithEvents txtRx As System.Windows.Forms.TextBox

Friend WithEvents CheckBox7 As System.Windows.Forms.CheckBox
Friend WithEvents Button58 As System.Windows.Forms.Button
Friend WithEvents ListBox11 As System.Windows.Forms.ListBox
Friend WithEvents Labell11 As System.Windows.Forms.Label

Friend WithEvents Labell12 As System.Windows.Forms.Label
Friend WithEvents TextBox150 As System. Windows.Forms.TextBox
Friend WithEvents Label109 As System.Windows.Forms.Label
Friend WithEvents Label108 As System.Windows.Forms.Label
Friend WithEvents Label107 As System.Windows.Forms.Label
Friend WithEvents Label106 As System.Windows.Forms.Label
Friend WithEvents TextBox148 As System.Windows.Forms.TextBox
Friend WithEvents TextBox144 As System.Windows.Forms.TextBox
Friend WithEvents TextBox143 As System.Windows.Forms.TextBox
Friend WithEvents Labell110 As System.Windows.Forms.Label

Friend WithEvents TextBox149 As System.Windows.Forms.TextBox
Friend WithEvents Labell13 As System.Windows.Forms.Label

Friend WithEvents Labell 14 As System.Windows.Forms.Label

Friend WithEvents TextBox153 As System. Windows.Forms.TextBox
Friend WithEvents AxMSChartl As AxMSChart20Lib. AxMSChart
Friend WithEvents AxMSChart2 As AxMSChart20Lib. AxMSChart
Friend WithEvents Scale Timer 1 As System.Windows.Forms.Timer

Private miComPort As Integer

Private WithEvents moRS232 As Rs232

Private mlTicks As Long

Private Delegate Sub CommEventUpdate(ByVal source As Rs232, ByVal mask As Rs232.EventMasks)
Friend WithEvents ToolTipl As System.Windows.Forms.ToolTip
Friend WithEvents ToolTip3 As System.Windows.Forms.ToolTip
Friend WithEvents Scale Timer 2 As System.Windows.Forms.Timer
Friend WithEvents MainMenul As System.Windows.Forms.MainMenu
Friend WithEvents Menultem1 As System.Windows.Forms.Menultem
Friend WithEvents CheckBox1 As System.Windows.Forms.CheckBox
Public WithEvents Labell As System.Windows.Forms.Label

Friend WithEvents TextBox1 As System.Windows.Forms.TextBox
Public WithEvents Label103 As System.Windows.Forms.Label

Friend WithEvents TextBox2 As System.Windows.Forms.TextBox
Friend WithEvents Label3 As System.Windows.Forms.Label

Friend WithEvents Label2 As System.Windows.Forms.Label

Friend WithEvents TextBox3 As System.Windows.Forms.TextBox
Friend WithEvents Label4 As System.Windows.Forms.Label

Friend WithEvents TextBox4 As System.Windows.Forms.TextBox
Friend WithEvents Label5 As System.Windows.Forms.Label

Friend WithEvents CheckBox2 As System.Windows.Forms.CheckBox

<System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()
Me.components = New System.ComponentModel.Container
Dim resources As System.Resources.ResourceManager = New
System.Resources.ResourceManager(GetType(Form1))
Me.GroupBox32 = New System.Windows.Forms.GroupBox
Me.Label102 = New System.Windows.Forms.Label

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 189

Me.btnTest = New System.Windows.Forms.Button

Me.txtPortNum = New System.Windows.Forms.TextBox
Me.txtTimeout = New System.Windows.Forms.TextBox

Me.Label103 = New System.Windows.Forms.Label

Me.txtBaudrate = New System.Windows.Forms.TextBox

Me.Label104 = New System.Windows.Forms.Label

Me.Label105 = New System.Windows.Forms.Label

Me.txtBytes2Read = New System. Windows.Forms.TextBox

Me.txtRx = New System.Windows.Forms.TextBox

Me.CheckBox7 = New System.Windows.Forms.CheckBox
Me.Button58 = New System.Windows.Forms.Button

Me.ListBox11 = New System.Windows.Forms.ListBox

Me.Labell 11 = New System.Windows.Forms.Label

Me.Label112 = New System.Windows.Forms.Label

Me.TextBox150 = New System.Windows.Forms.TextBox

Me.Label109 = New System.Windows.Forms.Label

Me.Label108 = New System.Windows.Forms.Label

Me.Label107 = New System.Windows.Forms.Label

Me.Label106 = New System.Windows.Forms.Label

Me.TextBox148 = New System.Windows.Forms.TextBox
Me.TextBox144 = New System.Windows.Forms.TextBox
Me.TextBox143 = New System.Windows.Forms.TextBox
Me.Labell10 = New System.Windows.Forms.Label

Me.TextBox149 = New System.Windows.Forms.TextBox

Me.Labell 13 = New System.Windows.Forms.Label

Me.Labell14 = New System.Windows.Forms.Label

Me.TextBox153 = New System.Windows.Forms.TextBox
Me.AxMSChartl = New AxMSChart20Lib.AxMSChart
Me.AxMSChart2 = New AxMSChart20Lib.AxMSChart

Me.Scale Timer 1 =New System.Windows.Forms.Timer(Me.components)
Me.ToolTipl = New System.Windows.Forms.ToolTip(Me.components)
Me.ToolTip3 = New System.Windows.Forms.ToolTip(Me.components)
Me.Scale Timer 2 = New System.Windows.Forms.Timer(Me.components)
Me.MainMenul = New System. Windows.Forms.MainMenu
Me.Menultem1 = New System.Windows.Forms.Menultem
Me.CheckBox1 = New System.Windows.Forms.CheckBox

Me.Labell = New System.Windows.Forms.Label

Me.TextBox1 = New System.Windows.Forms.TextBox

Me.TextBox2 = New System.Windows.Forms.TextBox

Me.Label3 = New System.Windows.Forms.Label

Me.Label2 = New System. Windows.Forms.Label

Me.TextBox3 = New System.Windows.Forms.TextBox

Me.Label4 = New System.Windows.Forms.Label

Me.TextBox4 = New System.Windows.Forms.TextBox

Me.Label5 = New System.Windows.Forms.Label

Me.CheckBox2 = New System.Windows.Forms.CheckBox
Me.GroupBox32.SuspendLayout()

CType(Me.AxMSChartl, System.ComponentModel.ISupportlnitialize).BeginInit()
CType(Me.AxMSChart2, System.ComponentModel.ISupportInitialize). BeginInit()
Me.SuspendLayout()

'GroupBox32

Me.GroupBox32.Controls. Add(Me.Label102)
Me.GroupBox32.Controls.Add(Me.btnTest)
Me.GroupBox32.Controls. Add(Me.txtPortNum)
Me.GroupBox32.Controls. Add(Me.txtTimeout)
Me.GroupBox32.Controls.Add(Me.Label103)
Me.GroupBox32.Controls. Add(Me.txtBaudrate)
Me.GroupBox32.Controls.Add(Me.Label104)
Me.GroupBox32.Controls.Add(Me.Label105)
Me.GroupBox32.Controls.Add(Me.txtBytes2Read)
Me.GroupBox32.Location = New System.Drawing.Point(16, 16)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

190

Me.GroupBox32.Name = "GroupBox32"
Me.GroupBox32.Size = New System.Drawing.Size(198, 123)
Me.GroupBox32.Tablndex = 34

Me.GroupBox32.TabStop = False

Me.GroupBox32.Text = "COM Setup"

'Label102

Me.Label102.Location = New System.Drawing.Point(132, 20)
Me.Label102.Name = "Label102"

Me.Label102.Size = New System.Drawing.Size(58, 14)
Me.Label102.TabIndex = 8

Me.Label102.Text = "Port check"

'btnTest

Me.btnTest.Location = New System.Drawing.Point(132, 64)
Me.btnTest.Name = "btnTest"

Me.btnTest.Size = New System.Drawing.Size(49, 17)
Me.btnTest. Tablndex =7

Me.btnTest. Text = "Test"
Me.ToolTipl.SetToolTip(Me.btnTest, "Test port availability")

'txtPortNum

Me.txtPortNum.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle
Me.txtPortNum.Location = New System.Drawing.Point(132, 36)
Me.txtPortNum.Name = "txtPortNum"

Me.txtPortNum.Size = New System.Drawing.Size(49, 20)
Me.txtPortNum.TabIndex = 6

Me.txtPortNum.Text = "3"

Me.ToolTip1.SetToolTip(Me.txtPortNum, "Enter port number")

'txtTimeout

Me.txtTimeout.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle
Me.txtTimeout.Location = New System.Drawing.Point(69, 24)
Me.txtTimeout.Name = "txtTimeout"

Me.txtTimeout.Size = New System.Drawing.Size(49, 20)

Me.txtTimeout. TabIndex = 3

Me.txtTimeout. Text = "1500"

Me.ToolTip3.SetToolTip(Me.txtTimeout, "COM Port timeout in ms")

'Label103

Me.Label103.Location = New System.Drawing.Point(69, 46)
Me.Label103.Name = "Label 103"

Me.Label103.Size = New System.Drawing.Size(82, 14)
Me.Label103.TabIndex = 4

Me.Label103.Text = "BaudRate"

'txtBaudrate

Me.txtBaudrate.BorderStyle = System. Windows.Forms.BorderStyle.FixedSingle
Me.txtBaudrate.Location = New System.Drawing.Point(69, 60)
Me.txtBaudrate.Name = "txtBaudrate"

Me.txtBaudrate.Size = New System.Drawing.Size(49, 20)

Me.txtBaudrate. TabIndex = 5

Me.txtBaudrate. Text = "9600"

Me.ToolTipl.SetToolTip(Me.txtBaudrate, "COM Port Baudrate")

'Labell04

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 191

Me.Label104.Location = New System.Drawing.Point(69, 10)
Me.Label104.Name = "Label104"

Me.Label104.Size = New System.Drawing.Size(82, 14)
Me.Label104.TabIndex = 2

Me.Label104.Text = "Timeout (ms)"

'Label105

Me.Label105.Location = New System.Drawing.Point(16, 93)
Me.Label105.Name = "Label105"

Me.Label105.Size = New System.Drawing.Size(82, 14)
Me.Label105.TabIndex = 11

Me.Label105.Text = "Bytes to read"

'txtBytes2Read

Me.txtBytes2Read.BorderStyle = System. Windows.Forms.BorderStyle.FixedSingle

Me.txtBytes2Read.Enabled = False

Me.txtBytes2Read.Location = New System.Drawing.Point(100, 90)

Me.txtBytes2Read.Name = "txtBytes2Read"

Me.txtBytes2Read.Size = New System.Drawing.Size(65, 20)

Me.txtBytes2Read. TabIndex = 12

Me.txtBytes2Read. Text = "18"

Me.ToolTipl.SetToolTip(Me.txtBytes2Read, "Bytes to read from COM buffer (this number effects also
CommEvent)")

'txtRx

Me.txtRx.BorderStyle = System. Windows.Forms.BorderStyle.FixedSingle

Me.txtRx.Font = New System.Drawing.Font("Tahoma", 14.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.txtRx.Location = New System.Drawing.Point(224, 24)

Me.txtRx.Multiline = True

Me.txtRx.Name = "txtRx"

Me.txtRx.Size = New System.Drawing.Size(305, 38)

Me.txtRx.TabIndex = 35

Me.txtRx.Text =""

'CheckBox7

Me.CheckBox7.Location = New System.Drawing.Point(544, 32)
Me.CheckBox7.Name = "CheckBox7"

Me.CheckBox7.Size = New System.Drawing.Size(104, 16)
Me.CheckBox7.TabIndex = 52

Me.CheckBox7.Text = "Enable Scale"

'‘Button58

Me.Button58.Location = New System.Drawing.Point(944, 24)
Me.Button58.Name = "Button58"

Me.Button58.Size = New System.Drawing.Size(72, 32)
Me.Button58.TabIndex = 51

Me.Button58.Text = "Clear Events List"
Me.ToolTip1.SetToolTip(Me.Button58, "Test port availability™)

'ListBox11

Me.ListBox11.Location = New System.Drawing.Point(904, 72)
Me.ListBox11.Name = "ListBox11"

Me.ListBox11.Size = New System.Drawing.Size(120, 134)
Me.ListBox11.TabIndex = 50

'Labell11

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

192

Me.Labell 11.Location = New System.Drawing.Point(664, 104)
Me.Labell 11.Name = "Labell11"

Me.Labell11.Size = New System.Drawing.Size(48, 14)
Me.Labell11.TabIndex = 62

Me.Labell11.Text = "(grams)"

'Labell112

Me.Labell12.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Labell12.Location = New System.Drawing.Point(592, 80)

Me.Labell12.Name = "Label112"

Me.Labell12.Size = New System.Drawing.Size(104, 14)

Me.Labell12.TabIndex = 61

Me.Labell12.Text = "Weight Difference"

'TextBox150

Me.TextBox150.BorderStyle = System. Windows.Forms.BorderStyle.FixedSingle

Me.TextBox150.Font = New System.Drawing.Font("Tahoma", 14.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox150.Location = New System.Drawing.Point(600, 96)

Me.TextBox150.Multiline = True

Me.TextBox150.Name = "TextBox150"

Me.TextBox150.Size = New System.Drawing.Size(56, 24)

Me.TextBox150.TabIndex = 60

Me.TextBox150.Text ="1"

'Label109

Me.Label109.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label109.Location = New System.Drawing.Point(360, 80)

Me.Label109.Name = "Label109"

Me.Label109.Size = New System.Drawing.Size(104, 14)

Me.Label109.TabIndex = 59

Me.Label109.Text = "Second Reading"

'Label108

Me.Label108.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label108.Location = New System.Drawing.Point(224, 80)

Me.Label108.Name = "Label108"

Me.Label108.Size = New System.Drawing.Size(104, 14)

Me.Label108.TabIndex = 58

Me.Label108.Text = "First Reading"

'Labell07

Me.Label107.Location = New System.Drawing.Point(560, 104)
Me.Label107.Name = "Label 107"

Me.Label107.Size = New System.Drawing.Size(33, 14)
Me.Label107.TabIndex = 57

Me.Label107.Text = "(ms)"

'Labell06

Me.Label106.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label106.Location = New System.Drawing.Point(488, 80)

Me.Label106.Name = "Label106"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 193

Me.Label106.Size = New System.Drawing.Size(104, 14)
Me.Label106.Tablndex = 56
Me.Label106.Text = "Time Difference"

'TextBox148

Me.TextBox148.BorderStyle = System. Windows.Forms.BorderStyle.FixedSingle

Me.TextBox148.Font = New System.Drawing.Font("Tahoma", 14.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox148.Location = New System.Drawing.Point(496, 96)

Me.TextBox148.Multiline = True

Me.TextBox148.Name = "TextBox148"

Me.TextBox148.Size = New System.Drawing.Size(56, 24)

Me.TextBox148.TabIndex = 55

Me.TextBox148.Text = "30"

'TextBox144

Me.TextBox144.BorderStyle = System. Windows.Forms.BorderStyle.FixedSingle

Me.TextBox144.Font = New System.Drawing.Font("Tahoma", 14.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox144.Location = New System.Drawing.Point(360, 96)

Me.TextBox144.Multiline = True

Me.TextBox144.Name = "TextBox144"

Me.TextBox144.Size = New System.Drawing.Size(115, 24)

Me.TextBox144.TabIndex = 54

Me.TextBox144.Text ="0"

'TextBox143

Me.TextBox143.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle

Me.TextBox143.Font = New System.Drawing.Font("Tahoma", 14.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox143.Location = New System.Drawing.Point(224, 96)

Me.TextBox143.Multiline = True

Me.TextBox143.Name = "TextBox143"

Me.TextBox143.Size = New System.Drawing.Size(115, 24)

Me.TextBox143.TabIndex = 53

Me.TextBox143.Text ="0"

'Label110

Me.Label110.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label110.Location = New System.Drawing.Point(312, 128)

Me.Labell10.Name = "Label110"

Me.Label110.Size = New System.Drawing.Size(104, 14)

Me.Label110.TabIndex = 67

Me.Label110.Text = "Difference"

'TextBox149

Me.TextBox149.BorderStyle = System. Windows.Forms.BorderStyle.FixedSingle

Me.TextBox149.Font = New System.Drawing.Font("Tahoma", 14.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox149.Location = New System.Drawing.Point(288, 144)

Me.TextBox149.Multiline = True

Me.TextBox149.Name = "TextBox149"

Me.TextBox149.Size = New System.Drawing.Size(115, 24)

Me.TextBox149.TabIndex = 66

Me.TextBox149.Text ="0"

'Label113

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 194

Me.Labell13.Location = New System.Drawing.Point(488, 152)
Me.Labell13.Name = "Label113"

Me.Labell13.Size = New System.Drawing.Size(48, 14)
Me.Labell13.TabIndex = 70

Me.Labell13.Text = "(grams)"

'Labell14

Me.Labell14.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Labell 14.Location = New System.Drawing.Point(424, 128)

Me.Labell14.Name = "Label114"

Me.Labell14.Size = New System.Drawing.Size(104, 14)

Me.Labell14.TabIndex = 69

Me.Labell 14.Text = "Manual Calibration"

'TextBox153

Me.TextBox153.BorderStyle = System. Windows.Forms.BorderStyle.FixedSingle

Me.TextBox153.Font = New System.Drawing.Font("Tahoma", 14.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox153.Location = New System.Drawing.Point(424, 144)

Me.TextBox153.Multiline = True

Me.TextBox153.Name = "TextBox153"

Me.TextBox153.Size = New System.Drawing.Size(56, 24)

Me.TextBox153.TabIndex = 68

Me.TextBox153.Text ="0"

'AxMSChartl

Me.AxMSChartl.DataSource = Nothing

Me.AxMSChartl.Location = New System.Drawing.Point(24, 248)

Me.AxMSChartl.Name = "AxMSChart1"

Me.AxMSChart1.OcxState = CType(resources.GetObject("AxMSChart1.OcxState"),
System.Windows.Forms.AxHost.State)

Me.AxMSChartl.Size = New System.Drawing.Size(648, 264)

Me.AxMSChartl.TabIndex = 71

'AxMSChart2

Me.AxMSChart2.DataSource = Nothing

Me.AxMSChart2.Location = New System.Drawing.Point(24, 528)

Me.AxMSChart2.Name = "AxMSChart2"

Me.AxMSChart2.0cxState = CType(resources.GetObject(" AxMSChart2.OcxState"),
System.Windows.Forms.AxHost.State)

Me.AxMSChart2.Size = New System.Drawing.Size(648, 264)

Me.AxMSChart2.TabIndex = 72

'Scale Timer 1

Me.Scale Timer 1.Interval =1

'Scale Timer 2

Me.Scale Timer 2.Enabled = True
Me.Scale Timer 2.Interval =1

'MainMenul
Me.MainMenul.Menultems.AddRange(New System.Windows.Forms.Menultem() {Me.Menultem1})

'Menultem1

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

195

Me.Menultem1.Index = 0
Me.Menultem1.Text = "Exit"

'CheckBox1

Me.CheckBox1.Location = New System.Drawing.Point(48, 264)
Me.CheckBox1.Name = "CheckBox1"

Me.CheckBox1.Size = New System.Drawing.Size(104, 16)
Me.CheckBox1.Tablndex = 73

Me.CheckBox1.Text = "Show Graphs"

'Labell

Me.Labell.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Labell.Location = New System.Drawing.Point(32, 152)

Me.Labell.Name = "Label1"

Me.Labell.Size = New System.Drawing.Size(120, 16)

Me.Labell.TabIndex = 75

Me.Labell.Text = "Temporary Directory:"

'"TextBox1

Me.TextBox1.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox1.Location = New System.Drawing.Point(160, 152)

Me.TextBox1.Name = "TextBox1"

Me.TextBox1.Size = New System.Drawing.Size(64, 20)

Me.TextBox1.TabIndex = 74

Me.TextBox1.Text = "d:/temp/"

'TextBox2

Me.TextBox2.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle

Me.TextBox2.Font = New System.Drawing.Font("Tahoma", 14.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox2.Location = New System.Drawing.Point(552, 144)

Me.TextBox2.Multiline = True

Me.TextBox2.Name = "TextBox2"

Me.TextBox2.Size = New System.Drawing.Size(40, 24)

Me.TextBox2.Tablndex = 76

Me.TextBox2.Text ="0"

'Label3

Me.Label3.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label3.Location = New System.Drawing.Point(544, 128)

Me.Label3.Name = "Label3"

Me.Label3.Size = New System.Drawing.Size(80, 14)

Me.Label3.TabIndex = 78

Me.Label3.Text = "Reading Num."

'Label2

Me.Label2.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label2.Location = New System.Drawing.Point(624, 128)

Me.Label2.Name = "Label2"

Me.Label2.Size = New System.Drawing.Size(152, 14)

Me.Label2.TablIndex = 80

Me.Label2.Text = "Robot Termination Threshold"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 196

'TextBox3

Me.TextBox3.BorderStyle = System. Windows.Forms.BorderStyle.FixedSingle

Me.TextBox3.Font = New System.Drawing.Font("Tahoma", 14.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox3.Location = New System.Drawing.Point(648, 144)

Me.TextBox3.Multiline = True

Me.TextBox3.Name = "TextBox3"

Me.TextBox3.Size = New System.Drawing.Size(56, 24)

Me.TextBox3.Tablndex = 79

Me.TextBox3.Text ="160"

'Label4

Me.Label4.Location = New System.Drawing.Point(712, 152)
Me.Label4.Name = "Label4"

Me.Label4.Size = New System.Drawing.Size(48, 14)
Me.Label4.TabIndex = 81

Me.Label4.Text = "(grams)"

'TextBox4

Me.TextBox4.BorderStyle = System. Windows.Forms.BorderStyle.FixedSingle

Me.TextBox4.Font = New System.Drawing.Font("Tahoma", 14.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox4.Location = New System.Drawing.Point(304, 192)

Me.TextBox4.Multiline = True

Me.TextBox4.Name = "TextBox4"

Me.TextBox4.Size = New System.Drawing.Size(64, 24)

Me.TextBox4.Tablndex = 82

Me.TextBox4.Text ="0"

'Label5

Me.Label5.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label5.Location = New System.Drawing.Point(304, 176)

Me.Label5.Name = "Label5"

Me.Label5.Size = New System.Drawing.Size(72, 14)

Me.Label5.TabIndex = 83

Me.Label5.Text = "Timer (sec.)"

'CheckBox2

Me.CheckBox2.Location = New System.Drawing.Point(648, 32)
Me.CheckBox2.Name = "CheckBox2"

Me.CheckBox2.Size = New System.Drawing.Size(104, 16)
Me.CheckBox2.TabIndex = 84

Me.CheckBox2.Text = "Force Scale"

'Form1

Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)
Me.ClientSize = New System.Drawing.Size(800, 793)
Me.Controls.Add(Me.CheckBox2)
Me.Controls.Add(Me.TextBox4)
Me.Controls.Add(Me.TextBox3)
Me.Controls.Add(Me.TextBox2)
Me.Controls.Add(Me.TextBox1)
Me.Controls.Add(Me.TextBox153)
Me.Controls.Add(Me.TextBox149)
Me.Controls.Add(Me.TextBox150)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 197

Me.Controls.Add(Me.TextBox148)
Me.Controls.Add(Me.TextBox144)
Me.Controls.Add(Me.TextBox143)
Me.Controls.Add(Me.txtRx)
Me.Controls.Add(Me.Label5)
Me.Controls.Add(Me.Label4)
Me.Controls.Add(Me.Label2)
Me.Controls.Add(Me.Label3)
Me.Controls.Add(Me.Labell)
Me.Controls.Add(Me.CheckBox1)
Me.Controls.Add(Me.AxMSChart2)
Me.Controls.Add(Me.AxMSChart1)
Me.Controls.Add(Me.Label113)
Me.Controls.Add(Me.Label114)
Me.Controls.Add(Me.Label110)
Me.Controls.Add(Me.Label111)
Me.Controls.Add(Me.Label112)
Me.Controls.Add(Me.Label109)
Me.Controls.Add(Me.Label108)
Me.Controls.Add(Me.Label107)
Me.Controls.Add(Me.Label106)
Me.Controls.Add(Me.CheckBox7)
Me.Controls.Add(Me.Button58)
Me.Controls.Add(Me.ListBox11)
Me.Controls.Add(Me.GroupBox32)
Me.Menu =Me.MainMenul
Me.Name = "Form1"

Me.Text = "Digital Scale"
Me.GroupBox32.ResumeLayout(False)
CType(Me.AxMSChartl, System.ComponentModel.ISupportlnitialize). EndInit()
CType(Me.AxMSChart2, System.ComponentModel.ISupportlnitialize). EndInit()
Me.ResumeLayout(False)

End Sub
#End Region

Private Sub btnTest Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnTest.Click
Try
If Rs232.IsPortAvailable(Int32.Parse(txtPortNum.Text)) Then
MessageBox.Show(""Port available", "Port test", MessageBoxButtons.OK, MessageBoxIcon.Information)
Else
MessageBox.Show("Port NOT available", "Port test", MessageBoxButtons.OK, MessageBoxIcon.Error)
End If
Catch ex As Exception
MessageBox.Show("Port test failed", "Port test", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try
End Sub

Private Sub Button58 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button58.Click
ListBox11.Items.Clear()
End Sub

Private Sub Form1_Closing(ByVal sender As Object, ByVal e As System.ComponentModel.CancelEventArgs)
Handles MyBase.Closing
If Not moRS232 Is Nothing Then
'// Disables Events if active
moRS232.DisableEvents()
If moRS232.IsOpen Then moRS232.Close()
End If
End Sub

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 198

Private Sub Scale Timer 1 Tick(ByVal sender As System.Object, ByVal ¢ As System.EventArgs) Handles
Scale Timer 1.Tick

Dim String 1 As String
Dim Measure 1 As Double

Try
moRS232.Read(Int32.Parse(txtBytes2Read. Text))
txtRx.Text = moRS232.InputStreamString

Dim aBytes As Byte() = moRS232.InputStream
Dim iPnt As Int32

Catch Ex As Exception

txtRx.Text = "Error occurred " & Ex.Message & " data fetched: " & moRS232.InputStreamString
End Try
String_1 = Mid(txtRx.Text, 8, 18)

TextBox143.Text = Val(String_1).ToString
System.Threading. Thread.Sleep(Val(TextBox148.Text))

Try
moRS232.Read(Int32.Parse(txtBytes2Read. Text))
txtRx.Text = moRS232.InputStreamString

Dim aBytes As Byte() = moRS232.InputStream
Dim iPnt As Int32

Catch Ex As Exception

txtRx.Text = "Error occurred " & Ex.Message & " data fetched: " & moRS232.InputStreamString
End Try
String_1 = Mid(txtRx.Text, 8, 18)

TextBox144.Text = Val(String_1).ToString
TextBox149.Text = (Val(TextBox144.Text) - Val(TextBox143.Text)).ToString
TextBox143.Text = (Val(TextBox143.Text) + Val(TextBox153.Text)).ToString

If Val(TextBox149.Text) < Val(TextBox150.Text) Then
TextBox149.Text ="0"
End If

If Val(TextBox143.Text) < Val(TextBox150.Text) Then
TextBox143.Text="0"
End If

If Val(TextBox144.Text) < Val(TextBox150.Text) Then
TextBox144.Text ="0"
End If

If CheckBox1.Checked = True Then
Plot_Graph_Events()
Plot_Graph Cummulative()

End If

If Val(TextBox149.Text) > Val(TextBox150.Text) Then
ListBox11.Items.Add("Event!")
End If

If Val(TextBox143.Text) > Val(TextBox3.Text) Then
Dim pRegKey Events As RegistryKey = Registry.CurrentUser

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 199

pRegKey Events = pRegKey Events.OpenSubKey("Uri\Digital Scale", True)
pRegKey Events.SetValue("Stop Robot Flag", "1")
End If

End Sub
Function Plot Graph Events()
With AxMSChart2
.Data = Val(TextBox149.Text)

.chartType = AxMSChart2.chartType.VtChChartType2dLine
.ColumnCount = 1
.RowCount = 100

If Row > 99 Then
Row=1
End If

If .Row <> 1 And Row <> 100 Then
.Row = .Row + 1
.Data = Val(TextBox149.Text)

Else
Initial Plot Graph Events()
Row=1
.Data = Val(TextBox149.Text)
.Row =_.Row + 1

End If

End With

Dim pRegKey Events As RegistryKey = Registry.CurrentUser
pRegKey Events = pRegKey Events.OpenSubKey("Uri\Digital Scale", True)
pRegKey Events.SetValue("Events Value", (Round(Val(TextBox149.Text), 2)).ToString)

End Function

Function Plot Graph Cummulative()
With AxMSChartl
.Data = Val(TextBox143.Text) ' - Val(TextBox153.Text)
.chartType = AxMSChartl.chartType.VtChChartType2dLine
.ColumnCount = 1
.RowCount = 100
If .Row > 99 Then
Row=1
End If
If . Row <> 1 And Row <> 100 Then
.Row = .Row + 1
If Val(TextBox143.Text) >= 0 Then
.Data = Val(TextBox143.Text) - Val(TextBox153.Text)
Else
.Data=0
End If
Else
Initial Plot Graph Cummulative()
Row=1
If Val(TextBox143.Text) >= 0 Then
.Data = Val(TextBox143.Text) - Val(TextBox153.Text)
.Row =_.Row + 1
Else
.Data=0

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 200

End If
End If
TextBox2.Text = (.Row).ToString
End With

Dim pRegKey Cummulative As RegistryKey = Registry.CurrentUser
pRegKey Cummulative = pRegKey Cummulative.OpenSubKey("Uri\Digital Scale", True)

If Val(TextBox143.Text) >= 5 Then

pRegKey Cummulative.SetValue("Cummulative Value", (Round(Val(TextBox143.Text), 2)).ToString)
Else

pRegKey Cummulative.SetValue("Cummulative Value", ("0").ToString)
End If

End Function

Function Initial Plot Graph_ Events()
Dim i As Integer
With AxMSChart2
.chartType = AxMSChart2.chartType.VtChChartType2dLine
.ColumnCount = 1
.RowCount = 100

Fori=1To 100
Row =1
Data=0

Next

.Repaint = True

End With
End Function

Function Initial Plot Graph Cummulative()
Dim i As Integer
With AxMSChartl
.chartType = AxMSChartl.chartType.VtChChartType2dLine
.ColumnCount = 1
.RowCount = 100
Fori=1To 100
Row =1
.Data=0
Next
.Repaint = True
End With
End Function

Private Sub Write2File(ByVal msg As String, ByVal filePath As String)
Dim fs As FileStream = New FileStream(filePath, FileMode.Append, FileAccess. Write)
Dim sw As StreamWriter = New StreamWriter(fs)

sw.WriteLine(msg)
sw.Flush()
sw.Close()
fs.Close()
End Sub
Function Open_Scale RS232 Communication()
miComPort =3
moRS232 = New Rs232
Try
With moRS232

.Port = miComPort
.BaudRate = Int32.Parse(txtBaudrate. Text)
.DataBit =7

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 201

.StopBit = Rs232.DataStopBit.StopBit 1

.Parity = Rs232.DataParity.Parity Odd
.Timeout = Int32.Parse(txtTimeout. Text)
End With
moRS232.0pen()
Catch Ex As Exception
MessageBox.Show(Ex.Message, "Connection Error", MessageBoxButtons.OK)
Finally
End Try
End Function

Function Close Scale RS232 Communication()
If Not moRS232 Is Nothing Then
'// Disables Events if active
moRS232.DisableEvents()
If moRS232.1sOpen Then moRS232.Close()
End If
End Function

Private Sub CheckBox7 CheckedChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
CheckBox7.CheckedChanged
If CheckBox7.Checked = True Then
Open_Scale RS232 Communication()
Scale Timer 1.Enabled = True
Else
Scale Timer 1.Enabled = False
moRS232.DisableEvents()
Close_Scale RS232 Communication()
Initial Plot Graph Cummulative()
Initial Plot Graph Events()
End If
End Sub

Private Sub Form1 Load(ByVal sender As System.Object, ByVal ¢ As System.EventArgs) Handles MyBase.Load

TextBox4.Text ="0"

txtRx. Text=""

CheckBox1.Checked = True

Exit Flag 1 =0
Close_Scale RS232 Communication()
Initial Plot Graph Events()

Initial Plot Graph Cummulative()

Dim pRegKey Events As RegistryKey = Registry.CurrentUser
pRegKey Events = pRegKey Events.OpenSubKey("Uri\Digital Scale", True)
pRegKey Events.SetValue("Activate Scale Flag", "0")
pRegKey Events.SetValue("Events Value", "0")
pRegKey Events.SetValue("Cummulative Value", "0")
pRegKey Events.SetValue("Stop_Robot Flag", "0")

End Sub

Private Sub Scale Timer 2 Tick(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Scale Timer 2.Tick

Dim pRegKey As RegistryKey = Registry.CurrentUser

pRegKey = pRegKey.OpenSubKey("Uri\Digital Scale")
Dim vall As Object = pRegKey.GetValue("Activate_Scale Flag")
Dim Time Value As Object = pRegKey.GetValue("Time Value™)
Dim Trial Number As Object = pRegKey.GetValue("Trial Number")

If Val(vall) =0 Then

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

202

'System.Threading. Thread.Sleep(2000)
TextBox143.Text ="0"
TextBox144.Text="0"
TextBox153.Text ="0"
TextBox149.Text="0"
TextBox2.Text ="0"
txtRx. Text=""
'System.Threading. Thread.Sleep(50)
CheckBox7.Checked = False

Else

'Write2File((Val(Time_ Value)).ToString + ", " + TextBox143.Text + ", " + TextBox149.Text, TextBox1.Text +

(Val(Trial Number) - 1).ToString +" Trial " + "Scale Output.csv")
CheckBox7.Checked = True
End If

If Exit Flag 1 =1 Then
Scale Timer 1.Enabled = False
Close_Scale RS232 Communication()
Initial Plot Graph Cummulative()
Initial Plot Graph_ Events()
Scale Timer 2.Enabled = False
CheckBox7.Checked = False

Dim pRegKey Events As RegistryKey = Registry.CurrentUser
pRegKey Events = pRegKey Events.OpenSubKey("Uri\Digital Scale", True)
pRegKey Events.SetValue("Events_Value", "0")
pRegKey Events.SetValue("Cummulative Value", "0")
pRegKey Events.SetValue("Time Value", "0")
pRegKey Events.SetValue("Activate Scale Flag", "0")
Close()

End If

End Sub

Private Sub Menultem1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Menultem]1.Click
Exit Flag 1=1
End Sub

Private Sub CheckBox2 CheckedChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

CheckBox2.CheckedChanged
Dim pRegKey Events As RegistryKey = Registry.CurrentUser
pRegKey Events = pRegKey Events.OpenSubKey("Uri\Digital Scale", True)
If CheckBox2.Checked = True Then
Open_Scale RS232 Communication()
Scale Timer 1.Enabled = True
Else
Scale Timer 1.Enabled = False
moRS232.DisableEvents()
Close _Scale RS232 Communication()
Initial Plot Graph Cummulative()
Initial Plot Graph Events()
End If
End Sub
End Class

peakdetect.m

function [pospeakind,negpeakind]=peakdetect(signal)

% PEAKDETECT peak detection

%

% [pospeakind,negpeakind]=peakdetect(signal)

%

% The positive and negative polarity (concave down and up) peak index vectors are
% generated from the signal vector and graphically displayed. Positive and negative

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

203

% polarity peaks occur at points of positive to negative and negative to positive
% slope adjacency, respectively. The typically rare contingencies of peaks
% occurring at the lagging edges of constant intervals are supported. Complex
% signals are modified to the modulus of the elements. If unspecified, the signal
% vector is entered after the prompt from the keyboard.

% Implemented using MATLAB 6.0.0

%

% Examples:

%

% » [p,n]=peakdetect([-1-101010-1-1])

%

% p=

%

% 4 6

%

% n=

%

% 1 5 8

%

% » [p,n]=peakdetect(cos(2*pi*(0:999999)/500000))

%

% p=

%

% 1 500001 1000000

%

% n=

%

% 250001 750001

%

% Copyright (c) 2001

% Tom McMurray

% mcmurray@teamemi.com

% if signal is not input, enter signal or return for empty outputs

if ~nargin
signal=input(‘enter signal vector or return for empty outputs\n');
if isempty(signal)
pospeakind=[];
negpeakind=[];
return
end
end
sizsig=size(signal);

% while signal is unsupported, enter supported signal or return for empty outputs

while isempty(signal)|~isnumeric(signal)|~all(all(isfinite(signal)))...
[length(sizsig)>2|min(sizsig)~=1
signal=input(['signal is empty, nonnumeric, nonfinite, or nonvector:\nenter '...
'finite vector or return for empty outputs\n']);
if isempty(signal)
pospeakind=[];
negpeakind=[];
return
end
sizsig=size(signal);
end

% if signal is complex, modify to modulus of the elements
if ~isreal(signal)

signal=abs(signal);
end

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

204

% if signal is constant, return empty outputs

if ~any(signal-signal(1))
pospeakind=[];
negpeakind=[];
disp('constant signal graph suppressed')
return
end
sizsigl=sizsig(1);
lensig=sizsigl;

% if signal is a row vector, modify to a column vector

if lensig==
signal=signal(:);
lensig=sizsig(2);
end
lensigl=lensig-1;
lensig2=lensigl-1;
% if signal length is 2, return max/min as positive/negative polarity peaks

if ~lensig2
[sig,pospeakind[=max(signal);
[sig,negpeakind]=min(signal);
disp('2 element signal graph suppressed')
return

end

% generate difference signal

difsig=diff(signal);

% generate vectors corresponding to positive slope indices
dsgtO=difsig>0;

dsgt00=dsgt0(1:lensig2);

dsgt01=dsgt0(2:lensigl);

% generate vectors corresponding to negative slope indices
dslt0=difsig<0;

dslt00=dslt0(1:lensig2);

dslt01=dslt0(2:lensigl);

% generate vectors corresponding to constant intervals
dseq0=difsig==0;

dseq01=dseq0(2:lensigl);

clear difsig

% positive to negative slope adjacencies define positive polarity peaks
pospeakind=find(dsgt00&dslt01)+1;

% negative to positive slope adjacencies define negative polarity peaks
negpeakind=find(dsgt01&dslt00)+1;

% positive slope to constant interval adjacencies initiate positive polarity peaks

peakind=find(dsgt00&dseq01)+1;

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

205

lenpeakind=length(peakind);

% determine positive polarity peak terminations
for k=1:1lenpeakind

peakindk=peakind(k);

l=peakindk+1;

% if end constant interval occurs, positive polarity peak exists

if [==lensig
pospeakind=[pospeakind;peakindk];

% else I<lensig, determine next nonzero slope index

else
dseqO01=dseq0(l);
while dseqOl&I<lensigl
I=1+1;
dseqO0l=dseq0(l);
end

% if negative slope or end constant interval occurs, positive polarity peaks exist

if dsltO(1)|dseqO1;
pospeakind=[pospeakind;peakindk];
end
end
end

% negative slope to constant interval adjacencies initiate negative polarity peaks

peakind=find(dslt00&dseq01)+1;
lenpeakind=length(peakind);
clear dseq01

% determine negative polarity peak terminations

for k=1:lenpeakind
peakindk=peakind(k);
l=peakindk+1;

% if end constant interval occurs, negative polarity peak exists

if [==lensig
negpeakind=[negpeakind;peakindk];

% else I<lensig, determine next nonzero slope index

else
dseqO01=dseq0(l);
while dseqOl&l<lensigl
I=1+1;
dseqO0l=dseq0(l);
end

% if positive slope or end constant interval occurs, negative polarity peaks exist

if dsgt0(1)|dseqOl;
negpeakind=[negpeakind;peakindk];
end
end
end
clear dsgt0 peakind

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

206

% if initial negative slope occurs, initial positive polarity peak exists

if dslt00(1)
pospeakind=[1;pospeakind];

% elseif initial positive slope occurs, initial negative polarity peak exists

elseif dsgt00(1)
negpeakind=[1;negpeakind];

% else initial constant interval occurs, determine next nonzero slope index

else
k=2;
dseqOk=dseq0(2);
while dseqOk
k=k+1;
dseqOk=dseq0(k);
end

% if negative slope occurs, initial positive polarity peak exists

if dsltO(k)
pospeakind=[1;pospeakind];

% else positive slope occurs, initial negative polarity peak exists

else
negpeakind=[1;negpeakind];
end
end
clear dsgt00 dslt0 dslt00 dseq0

% if final positive slope occurs, final positive polarity peak exists

if dsgtO1(lensig2)
pospeakind=[pospeakind;lensig];

% elseif final negative slope occurs, final negative polarity peak exists

elseif dslt01(lensig2)
negpeakind=[negpeakind;lensig];

end

clear dsgt01 dslt01

% if peak indices are not ascending, order peak indices

if any(diff(pospeakind)<0)
pospeakind=sort(pospeakind);

end

if any(diff(negpeakind)<0)
negpeakind=sort(negpeakind);

end

% if signal is a row vector, modify peak indices to row vectors
if sizsigl==1

pospeakind=pospeakind.';

negpeakind=negpeakind.';

end

% plot signal peaks

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

207

plot(0:lensig1,signal,pospeakind-1,signal(pospeakind), b ,negpeakind-1,...
signal(negpeakind),’bv')

xlabel('Sample")

ylabel('Signal')

grid

Learning System

cMatLib.vb

Option Strict Off
Option Explicit On

Imports System.Math

Public Class MatLib
Private Shared Sub Find R_C(ByVal Mat(,) As Double, ByRef Row As Integer, ByRef Col As Integer)
Row = Mat.GetUpperBound(0) 'D:\Ph.D\Source_Codes\MotoCom\Communicate with XRC.vb
Col = Mat.GetUpperBound(1)
End Sub

#Region "Add Matrices"
Public Shared Function Add(ByVal Matl(,) As Double, ByVal Mat2(,) As Double) As Double(,)
Dim sol(,) As Double
Dim i, j As Integer
Dim Rowsl, Colsl As Integer
Dim Rows2, Cols2 As Integer

On Error GoTo Error Handler

Find R C(Matl, Rowsl, Cols1)
Find R C(Mat2, Rows2, Cols2)

If Rows1 <> Rows2 Or Colsl <> Cols2 Then
GoTo Error Dimension
End If

ReDim sol(Rows1, Colsl)
Fori=0 To Rowsl
Forj=0 To Colsl
sol(i, j) = Matl(i, j) + Mat2(i, j)
Next j
Next i

Return sol

Error Dimension:
Err.Raise("5005", , "Dimensions of the two matrices do not match !")

Error Handler:
If Err. Number = 5005 Then
Err.Raise("5005", , "Dimensions of the two matrices do not match !")
Else
Err.Raise("5022", , "One or both of the matrices are null, this operation cannot be done !!")
End If

End Function
#End Region

#Region "Subtract Matrices"
Public Shared Function Subtract(ByVal Matl(,) As Double, ByVal Mat2(,) As Double) As Double(,)
Dim i, j As Integer

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 208

Dim sol(,) As Double
Dim Rowsl, Colsl As Integer
Dim Rows2, Cols2 As Integer

On Error GoTo Error Handler

Find R _C(Matl, Rowsl, Colsl)
Find R _C(Mat2, Rows2, Cols2)

If Rows1 <> Rows2 Or Colsl <> Cols2 Then
GoTo Error_Dimension
End If

ReDim sol(Rowsl, Colsl)

Fori1=0 To Rowsl
For j =0 To Colsl
sol(i, j) = Matl(i, j) - Mat2(i, j)
Next j
Next i

Return sol

Error Dimension:
Err.Raise("5007", , "Dimensions of the two matrices do not match !")

Error Handler:
If Err. Number = 5007 Then
Err.Raise("5007", , "Dimensions of the two matrices do not match !")
Else
Err.Raise("5022", , "One or both of the matrices are null, this operation cannot be done !!")
End If

End Function
#End Region

#Region "Multiply Matrices"

' Multiply two matrices, their dimensions should be compatible!
' Function returns the solution or errors due to

' dimensions incompatibility

' Example:

" Check Main Form !!

Public Shared Function Multiply(ByVal Matl(,) As Double, ByVal Mat2(,) As Double) As Double(,)
Dim 1, i, j As Integer

Dim OptiString As String

Dim sol(,) As Double, MulAdd As Double

Dim Rowsl, Colsl As Integer

Dim Rows2, Cols2 As Integer

On Error GoTo Error Handler
MulAdd =0

Find R _C(Matl, Rowsl, Colsl)
Find R _C(Mat2, Rows2, Cols2)

If Cols1 <> Rows2 Then
GoTo Error Dimension
End If

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

209

ReDim sol(Rows1, Cols2)

Fori=0 To Rowsl
For j =0 To Cols2
For1=0 To Colsl
MulAdd = MulAdd + Matl(i, 1) * Mat2(l, j)
Next 1
sol(i, j) = MulAdd
MulAdd =0
Next j
Next i

Return sol

Error Dimension:
Err.Raise("5009", , "Dimensions of the two matrices not suitable for multiplication !")

Error Handler:
If Err Number = 5009 Then
Err.Raise("5009", , "Dimensions of the two matrices not suitable for multiplication !")
Else
Err.Raise("5022", , "One or both of the matrices are null, this operation cannot be done !!")
End If

End Function
#End Region

#Region "Determinant of a Matrix"
' Determinant of a matrix should be (nxn)
' Function returns the solution or errors due to
' dimensions incompatibility
' Example:
' Check Main Form !!
Public Shared Function Det(ByVal Mat(,) As Double) As Double
Dim DArray(,) As Double, S As Integer
Dimk, k1, 1, j As Integer
Dim save, ArrayK As Double
Dim M1 As String
Dim Rows, Cols As Integer

On Error GoTo Error Handler
Find R_C(Mat, Rows, Cols)
If Rows <> Cols Then GoTo Error Dimension

S =Rows
Det=1
DArray = Mat.Clone()

Fork=0To S
If DArray(k, k) = 0 Then

j=k

Do While ((j < S) And (DArray(k, j) = 0))
j=j+1

Loop

If DArray(k, j) = 0 Then
Det=0
Exit Function

Else

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

210

Fori=kTo S
save = DArray(i, j)
DArray(i, j) = DArray(i, k)
DArray(i, k) = save
Next i
End If

Det = -Det
End If
ArrayK = DArray(k, k)
Det = Det * ArrayK
Ifk <S Then
kl=k+1
Fori=kl To S
Forj=kl To S
DArray(i, j) = DArray(i, j) - DArray(i, k) * (DArray(k, j) / ArrayK)
Next j
Next i
End If
Next

Exit Function

Error Dimension:
Err.Raise("5011", , "Matrix should be a square matrix !")

Error Handler:
If Err. Number = 5011 Then
Err.Raise("5011", , "Matrix should be a square matrix !")
Else
Err.Raise("5022", , "In order to do this operation values must be assigned to the matrix !!")
End If
End Function

#End Region

#Region "Inverse of a Matrix"

' Inverse of a matrix, should be (nxn) and det(Mat)<>0

' Function returns the solution or errors due to

' dimensions incompatibility

' Example:

" Check Main Form !!

Public Shared Function Inv(ByVal Mat(,) As Double) As Double(,)

Dim AI(,) As Double, AIN As Double, AF As Double,
Matl(,) As Double

Dim LL As Integer, LLM As Integer, L1 As Integer,
L2 As Integer, LC As Integer, LCA As Integer,
LCB As Integer, i As Integer, j As Integer

Dim Rows, Cols As Integer

On Error GoTo Error Handler

Find R C(Mat, Rows, Cols)
If Rows <> Cols Then GoTo Error Dimension

If Det(Mat) = 0 Then GoTo Error Zero

LL =Rows

LLM = Cols

Matl = Mat.Clone()
ReDim AI(LL, LL)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

211

ForL2=0To LL
ForL1=0ToLL
AI(L1,L2)=0
Next
AI(L2,L2)=1
Next

For LC=0ToLL
If Abs(Mat1(LC, LC)) < 0.0000000001 Then
ForLCA=LC+1ToLL
If LCA = LC Then GoTo 1090
If Abs(Mat1(LC, LCA)) > 0.0000000001 Then
For LCB=0ToLL
Mat1(LCB, LC) = Mat1(LCB, LC) + Matl1(LCB, LCA)
AI(LCB, LC) = AI(LCB, LC) + AI(LCB, LCA)
Next
GoTo 1100
End If
1090: Next
End If

1100:
AIN =1 /Matl(LC, LC)
For LCA=0ToLL
Matl(LCA, LC) = AIN * Matl(LCA, LC)
AI(LCA, LC) = AIN * AI(LCA, LC)
Next

For LCA=0ToLL

If LCA = LC Then GoTo 1150

AF =Matl(LC, LCA)

For LCB=0To LL
Matl1(LCB, LCA) = Mat1(LCB, LCA) - AF * Mat1(LCB, LC)
AI(LCB, LCA) = AI(LCB, LCA) - AF * AI(LCB, LC)

Next

1150: Next

Next
Return Al

Error Zero:
Err.Raise("5012", , "Determinent equals zero, inverse can't be found !")

Error Dimension:
Err.Raise("5014", , "Matrix should be a square matrix !")

Error Handler:
If Err. Number = 5012 Then
Err.Raise("5012", , "Determinent equals zero, inverse can't be found !")
Elself Err. Number = 5014 Then
Err.Raise("5014", , "Matrix should be a square matrix !")
End If

End Function
#End Region

#Region "Multiply Vectors"

' Multiply two vectors, dimensions should be (3x1)
' Function returns the solution or errors due to

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

212

' dimensions incompatibility
' Example:
" Check Main Form !!

Public Shared Function Multiply Vectors(ByVal Matl(,) As Double, ByVal Mat2(,) As Double) As Double(,)
Dim 1, j, k As Double

Dim sol(2, 0) As Double

Dim Rowsl, Colsl As Integer

Dim Rows2, Cols2 As Integer

On Error GoTo Error Handler

Find R _C(Matl, Rowsl, Colsl)
Find R C(Mat2, Rows2, Cols2)

If Rows1 <> 2 Or Colsl <> 0 Then
GoTo Error Dimension
End If

If Rows2 <> 2 Or Cols2 <> 0 Then

GoTo Error Dimension
End If
i=Matl(1, 0) * Mat2(2, 0) - Mat1(2, 0) * Mat2(1, 0)
j=Matl(2, 0) * Mat2(0, 0) - Mat1(0, 0) * Mat2(2, 0)
k = Matl(0, 0) * Mat2(1, 0) - Mat1(1, 0) * Mat2(0, 0)
s0l(0, 0) =1:sol(1, 0)=j : sol(2,0) =k

Return sol

Error Dimension:
Err.Raise("5016", , "Dimension should be (2 x 0) for both matrices in order to do cross multiplication !")

Error Handler:
If Err. Number = 5016 Then
Err.Raise("5016", , "Dimension should be (2 x 0) for both matrices in order to do cross multiplication !")
Else
Err.Raise("5022", , "One or both of the matrices are null, this operation cannot be done !!")
End If
End Function

#End Region

#Region "Magnitude of a Vector"

' Magnitude of a Vector, vector should be (3x1)
' Function returns the solution or errors due to

' dimensions incompatibility

' Example:

' Check Main Form !!

Public Shared Function VectorMagnitude(ByVal Mat(,) As Double) As Double
Dim Rows, Cols As Integer
On Error GoTo Error Handler

Find R C(Mat, Rows, Cols)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 213

If Rows <> 2 Or Cols <> 0 Then
GoTo Error Dimension
End If

Return Sqrt(Mat(0, 0) * Mat(0, 0) + Mat(1, 0) * Mat(1, 0) + Mat(2, 0) * Mat(2, 0))

Error Dimension:
Err.Raise("5018", , "Dimension of the matrix should be (2 x 0) in order to find the vector's norm !")

Error_Handler:
If Err.Number = 5018 Then
Err.Raise("5018", , "Dimension of the matrix should be (2 x 0) in order to find the vector's magnitude !")
Else
Err.Raise("5022", , "In order to do this operation values must be assigned to the matrix !!")
End If

End Function
#End Region

#Region "Transpose of a Matrix"
LALARAA AR AR AR AR AR AR AR AR AARA RN AN
' Transpose of a matrix
' Function returns the solution or errors
' Example:
" Check Main Form !!

Public Shared Function Transpose(ByVal Mat(,) As Double) As Double(,)
Dim Tr_Mat(,) As Double
Dim i, j, Rows, Cols As Integer

On Error GoTo Error Handler
Find R C(Mat, Rows, Cols)
ReDim Tr_Mat(Cols, Rows)

Fori=0 To Cols
For j=0 To Rows
Tr_Mat(j, 1) = Mat(i, j)
Next j
Next i

Return Tr Mat

Error_Handler:
Err.Raise("5028", , "In order to do this operation values must be assigned to the matrix !!")

End Function
#End Region

#Region "Multiply a matrix or a vector with a scalar quantity"

LALLM AR AR AR AR AR AR AR A AR AR LA A AR AR LA A LA A

' Multiply a matrix or a vector with a scalar quantity

' Function returns the solution or errors

' Example:

" Check Main Form !!

Public Shared Function ScalarMultiply(ByVal Value As Double, ByVal Mat(,) As Double) As Double(,)
Dim i, j, Rows, Cols As Integer

Dim sol(,) As Double

On Error GoTo Error Handler

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 214

Find R C(Mat, Rows, Cols)
ReDim sol(Rows, Cols)

Fori=0 To Rows
For j =0 To Cols
sol(i, j) = Mat(i, j) * Value
Next j
Next i

Return (sol)

Error Handler:
Err.Raise("5022", , "Matrix was not assigned")
End Function

#End Region

"

#Region "Divide a matrix or a vector with a scalar quantity
' Divide matrix elements or a vector by a scalar quantity
' Function returns the solution or errors
' Example:
' Check Main Form !!
Public Shared Function ScalarDivide(ByVal Value As Double, ByVal Mat(,) As Double) As Double(,)
Dim i, j, Rows, Cols As Integer
Dim sol(,) As Double

On Error GoTo Error Handler

Find R C(Mat, Rows, Cols)
ReDim sol(Rows, Cols)

Fori=0 To Rows
For j=0 To Cols
sol(i, j) = Mat(i, j) / Value
Next j
Next 1

Return sol
Exit Function

Error_Handler:
Err.Raise("5022", , "Matrix was not assigned")
End Function

#End Region

#Region "Print Matrix"

LALLM AR AR AR AR AR LA AR AR LA A AR L A AR A

' Print a matrix to multitext text box
' Function returns the solution or errors
' Example:
' Check Main Form !!
Public Shared Function PrintMat(ByVal Mat(,) As Double) As String
Dim N_Rows As Integer, N_Columns, k As Integer,
i As Integer, j As Integer, m As Integer
Dim StrElem As String, StrLen As Long,

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

215

Greatest() As Integer, LarString As String
Dim OptiString As String, sol As String

Find R C(Mat, N Rows, N_Columns)
SOl —m
OptiString =""

ReDim Greatest(N_Columns)

Fori=0To N_Rows
Forj=0 To N_Columns
Ifi=0 Then
Greatest(j) =0
Form=0 To N_Rows
StrElem = Format$(Mat(m, j), "0.00")
StrLen = Len(StrElem)
If Greatest(j) < StrLen Then
Greatest(j) = StrLen
LarString = StrElem
End If
Next m
If Mid$(LarString, 1, 1) ="-" Then Greatest(j) = Greatest(j) + 1
End If
StrElem = Format$(Mat(i, j), "0.00")
If Mid$(StrElem, 1, 1) ="-" Then
StrLen = Len(StrElem)
If Greatest(j) >= StrLen Then
For k =1 To (Greatest(j) - StrLen)
OptiString = OptiString & " "
Next k
OptiString = OptiString & " "
End If
Else
StrLen = Len(StrElem)
If Greatest(j) > StrLen Then
For k =1 To (Greatest(j) - StrLen)
OptiString = OptiString & " "
Next k
End If
End If
OptiString = OptiString & " " & Format$(Mat(i, j), "0.00")
Next j
Ifi<>N_Rows Then
sol = sol & OptiString & vbCrLf
OptiString =""
End If
sol = sol & OptiString
OptiString =""
Next i

PrintMat = sol

Exit Function
End Function
#End Region
End Class

sqlConn.vb

Public Class sqlConn
#Region "Class Members"
Friend WithEvents OLEConn As New System.Data.OleDb.OleDbConnection

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 216
Friend WithEvents OLEComm As New System.Data.OleDb.OleDbCommand

Private sqlString As String
Private err As System.Exception

Public Shared dataReturned As New ArrayList
#End Region

#Region "class properties"

Public Property db() As String
Get
db = "Shaking_Policies 1.mdb"
End Get
Set(ByVal Value As String)
Value = db
End Set
End Property

Public Property xOLE() As String
Get
xXOLE = "Provider=Microsoft.Jet. OLEDB.4.0;Data source="
End Get
Set(ByVal Value As String)
Value = xOLE
End Set
End Property

#End Region
#Region "class methods"

Sub New()
End Sub

Function connectMe(ByVal sqlString) As Boolean
Try
OLEConn.ConnectionString = xOLE & db
OLEConn.Open()
OLEComm.CommandText = sqlString
Return True
Catch err As System.Exception
MsgBox(err.Message)
Return False
End Try
End Function

Function getData(ByVal columnl As String) As ArrayList
Try

OLEComm.Connection = OLEConn
getData = New ArrayList

Dim d As OleDb.OleDbDataReader = OLEComm.ExecuteReader()
Do While d.Read
getData. Add(d(column].ToString))
Loop

'Returns array collection
dataReturned = getData

Try

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

217

OLEConn.Close()
Catch err As System.Exception
MsgBox(err.Message)
End Try
Catch err As System.Exception
MsgBox(err.Message)
End Try
End Function
#End Region
End Class

Learning System.vb

Option Strict Off

Option Explicit On

Imports Microsoft.Win32

Imports System.1O

Imports System.Security.Permissions
Imports System.Math

Imports System.Data.SqlClient
Imports System.Data.OleDb

Public Class Forml
Inherits System.Windows.Forms.Form
Dim nCid As Integer

#Region "Windows Form Designer generated code "
Public Sub New()
MyBase.New()
If m_vb6FormDefInstance Is Nothing Then
If m_InitializingDefInstance Then
m_vb6FormDefInstance = Me
Else
Try
'For the start-up form, the first instance created is the default instance.
If System.Reflection. Assembly.GetExecutingAssembly.EntryPoint.DeclaringType IsMe.GetType Then
m_vb6FormDeflInstance = Me
End If
Catch
End Try
End If
End If
'This call is required by the Windows Form Designer.
InitializeComponent()
End Sub
'Form overrides dispose to clean up the component list.
Protected Overloads Overrides Sub Dispose(ByVal Disposing As Boolean)
If Disposing Then
If Not components Is Nothing Then
components.Dispose()
End If
End If
MyBase.Dispose(Disposing)
End Sub

'Required by the Windows Form Designer

Private components As System.ComponentModel.IContainer

Public WithEvents CmdDownLoad As System.Windows.Forms.Button
'NOTE: The following procedure is required by the Windows Form Designer
'It can be modified using the Windows Form Designer.

'Do not modify it using the code editor.

Friend WithEvents TextBox1 As System.Windows.Forms.TextBox

Friend WithEvents TextBox2 As System.Windows.Forms.TextBox

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

218

Friend WithEvents TextBox3 As System.Windows.Forms.TextBox
Public WithEvents Button5 As System.Windows.Forms.Button

Public WithEvents Button6 As System.Windows.Forms.Button

Friend WithEvents CheckBox1 As System.Windows.Forms.CheckBox
Friend WithEvents CheckBox2 As System.Windows.Forms.CheckBox
Public WithEvents Button7 As System.Windows.Forms.Button

Friend WithEvents TextBox4 As System.Windows.Forms.TextBox
Public WithEvents Button9 As System.Windows.Forms.Button

Friend WithEvents Labell3 As System.Windows.Forms.Label

Friend WithEvents Label14 As System.Windows.Forms.Label

Friend WithEvents Labell5 As System.Windows.Forms.Label

Public WithEvents Button10 As System.Windows.Forms.Button

Public WithEvents Buttonl1 As System.Windows.Forms.Button

Public WithEvents Button12 As System.Windows.Forms.Button

Public WithEvents Button13 As System.Windows.Forms.Button

Public WithEvents Button14 As System.Windows.Forms.Button

Public WithEvents Button15 As System.Windows.Forms.Button

Public WithEvents Button16 As System.Windows.Forms.Button

Public WithEvents Button17 As System.Windows.Forms.Button

Public WithEvents Button18 As System.Windows.Forms.Button

Public WithEvents Button19 As System.Windows.Forms.Button

Public WithEvents Button20 As System.Windows.Forms.Button

Public WithEvents Button8 As System.Windows.Forms.Button

Public WithEvents Button21 As System.Windows.Forms.Button

Public WithEvents Button22 As System.Windows.Forms.Button

Public WithEvents Button23 As System.Windows.Forms.Button

Public WithEvents Button24 As System.Windows.Forms.Button

Public WithEvents Button25 As System.Windows.Forms.Button

Friend WithEvents TextBox6 As System.Windows.Forms.TextBox
Friend WithEvents GroupBox1 As System.Windows.Forms.GroupBox
Friend WithEvents GroupBox2 As System.Windows.Forms.GroupBox
Friend WithEvents GroupBox3 As System.Windows.Forms.GroupBox
Friend WithEvents GroupBox6 As System.Windows.Forms.GroupBox
Friend WithEvents Label19 As System.Windows.Forms.Label

Friend WithEvents TextBox8 As System.Windows.Forms.TextBox
Friend WithEvents GroupBox7 As System. Windows.Forms.GroupBox
Friend WithEvents GroupBox8 As System.Windows.Forms.GroupBox
Friend WithEvents GroupBox9 As System.Windows.Forms.GroupBox
Friend WithEvents GroupBox10 As System.Windows.Forms.GroupBox
Friend WithEvents GroupBox11 As System.Windows.Forms.GroupBox
Friend WithEvents GroupBox12 As System.Windows.Forms.GroupBox
Friend WithEvents Label21 As System.Windows.Forms.Label

Friend WithEvents Label20 As System.Windows.Forms.Label

Friend WithEvents Label22 As System.Windows.Forms.Label

Friend WithEvents TextBox9 As System.Windows.Forms.TextBox
Friend WithEvents GroupBox13 As System.Windows.Forms.GroupBox
Friend WithEvents CheckBox4 As System.Windows.Forms.CheckBox
Friend WithEvents Labell7 As System.Windows.Forms.Label

Friend WithEvents CheckBox5 As System.Windows.Forms.CheckBox
Friend WithEvents Label23 As System.Windows.Forms.Label

Friend WithEvents Label24 As System.Windows.Forms.Label

Friend WithEvents TextBox10 As System.Windows.Forms.TextBox
Friend WithEvents TabControll As System.Windows.Forms.TabControl
Friend WithEvents TabPage2 As System.Windows.Forms.TabPage
Friend WithEvents TabPagel As System.Windows.Forms.TabPage
Friend WithEvents GroupBox5 As System.Windows.Forms.GroupBox
Friend WithEvents AxWebBrowserl As AxXSHDocVw.AxWebBrowser
Friend WithEvents AxWebBrowser2 As AxXSHDocVw.AxWebBrowser
Friend WithEvents TabPage3 As System.Windows.Forms.TabPage
Friend WithEvents Buttonl As System.Windows.Forms.Button

Friend WithEvents MainMenul As System.Windows.Forms.MainMenu
Friend WithEvents Menultem1 As System. Windows.Forms.Menultem
Friend WithEvents TextBox12 As System.Windows.Forms.TextBox

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

219

Friend WithEvents TextBox13 As System.Windows.Forms.TextBox
Friend WithEvents TextBox14 As System.Windows.Forms.TextBox
Friend WithEvents TextBox15 As System.Windows.Forms.TextBox
Friend WithEvents TextBox16 As System.Windows.Forms.TextBox
Friend WithEvents TextBox17 As System.Windows.Forms.TextBox
Friend WithEvents TextBox18 As System.Windows.Forms.TextBox
Friend WithEvents TextBox19 As System.Windows.Forms.TextBox
Friend WithEvents TextBox20 As System.Windows.Forms.TextBox
Friend WithEvents TextBox21 As System.Windows.Forms.TextBox
Friend WithEvents TextBox22 As System.Windows.Forms.TextBox
Friend WithEvents TextBox23 As System.Windows.Forms.TextBox
Friend WithEvents TextBox24 As System.Windows.Forms.TextBox
Friend WithEvents TextBox25 As System.Windows.Forms.TextBox
Friend WithEvents TextBox26 As System.Windows.Forms.TextBox
Friend WithEvents TextBox27 As System.Windows.Forms.TextBox
Friend WithEvents TextBox28 As System.Windows.Forms.TextBox
Friend WithEvents TextBox29 As System.Windows.Forms.TextBox
Friend WithEvents TextBox30 As System.Windows.Forms.TextBox
Friend WithEvents TextBox31 As System.Windows.Forms.TextBox
Friend WithEvents TextBox32 As System.Windows.Forms.TextBox
Friend WithEvents TextBox33 As System.Windows.Forms.TextBox
Friend WithEvents TextBox34 As System.Windows.Forms.TextBox
Friend WithEvents TextBox35 As System.Windows.Forms.TextBox
Friend WithEvents TextBox7 As System.Windows.Forms.TextBox
Friend WithEvents TextBox11 As System.Windows.Forms.TextBox
Friend WithEvents Labell8 As System.Windows.Forms.Label
Friend WithEvents Label25 As System.Windows.Forms.Label

Friend WithEvents CheckBox3 As System.Windows.Forms.CheckBox

Friend WithEvents Label26 As System.Windows.Forms.Label
Friend WithEvents Label27 As System.Windows.Forms.Label

Friend WithEvents CheckBox6 As System.Windows.Forms.CheckBox

Friend WithEvents TextBox36 As System.Windows.Forms.TextBox

Friend WithEvents GroupBox14 As System.Windows.Forms.GroupBox

Friend WithEvents TextBox37 As System.Windows.Forms.TextBox
Friend WithEvents Label30 As System.Windows.Forms.Label
Friend WithEvents Label31 As System.Windows.Forms.Label
Friend WithEvents TextBox38 As System.Windows.Forms.TextBox
Friend WithEvents Label32 As System.Windows.Forms.Label
Friend WithEvents Label33 As System.Windows.Forms.Label
Friend WithEvents TextBox39 As System.Windows.Forms.TextBox
Friend WithEvents Label34 As System.Windows.Forms.Label
Friend WithEvents TabPage4 As System.Windows.Forms.TabPage
Friend WithEvents TextBox40 As System.Windows.Forms.TextBox
Friend WithEvents TextBox41 As System.Windows.Forms.TextBox
Friend WithEvents TextBox42 As System.Windows.Forms.TextBox
Friend WithEvents TextBox43 As System.Windows.Forms.TextBox
Friend WithEvents TextBox44 As System.Windows.Forms.TextBox
Friend WithEvents TextBox45 As System.Windows.Forms.TextBox
Friend WithEvents TextBox46 As System.Windows.Forms.TextBox
Friend WithEvents TextBox47 As System.Windows.Forms.TextBox
Friend WithEvents TextBox48 As System.Windows.Forms.TextBox

Friend WithEvents ComboBox1 As System.Windows.Forms.ComboBox

Public WithEvents Button26 As System.Windows.Forms.Button

Friend WithEvents TextBox50 As System.Windows.Forms.TextBox
Friend WithEvents TextBox51 As System.Windows.Forms.TextBox
Friend WithEvents TextBox52 As System.Windows.Forms.TextBox
Friend WithEvents TextBox53 As System.Windows.Forms.TextBox
Friend WithEvents TextBox54 As System.Windows.Forms.TextBox
Friend WithEvents TextBox55 As System.Windows.Forms.TextBox
Friend WithEvents TextBox56 As System.Windows.Forms.TextBox
Friend WithEvents TextBox57 As System.Windows.Forms.TextBox
Friend WithEvents TextBox58 As System.Windows.Forms.TextBox
Friend WithEvents TextBox59 As System.Windows.Forms.TextBox

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

220

Friend WithEvents TextBox60 As System.Windows.Forms.TextBox
Friend WithEvents TextBox61 As System.Windows.Forms.TextBox
Friend WithEvents TextBox62 As System.Windows.Forms.TextBox
Friend WithEvents TextBox63 As System.Windows.Forms.TextBox
Friend WithEvents TextBox64 As System.Windows.Forms.TextBox
Friend WithEvents TextBox65 As System.Windows.Forms.TextBox
Friend WithEvents TextBox66 As System.Windows.Forms.TextBox
Friend WithEvents TextBox67 As System.Windows.Forms.TextBox
Friend WithEvents TextBox68 As System.Windows.Forms.TextBox
Friend WithEvents TextBox69 As System.Windows.Forms.TextBox
Friend WithEvents TextBox70 As System.Windows.Forms.TextBox
Friend WithEvents TextBox71 As System.Windows.Forms.TextBox
Friend WithEvents TextBox72 As System.Windows.Forms.TextBox
Friend WithEvents TextBox73 As System.Windows.Forms.TextBox
Friend WithEvents TextBox74 As System.Windows.Forms.TextBox
Friend WithEvents Label28 As System.Windows.Forms.Label

Friend WithEvents TabPage5 As System.Windows.Forms.TabPage
Friend WithEvents ListBox1 As System.Windows.Forms.ListBox
Friend WithEvents Label40 As System.Windows.Forms.Label

Friend WithEvents Label41 As System.Windows.Forms.Label

Friend WithEvents ListBox2 As System.Windows.Forms.ListBox
Friend WithEvents TextBox78 As System.Windows.Forms.TextBox
Friend WithEvents TextBox79 As System.Windows.Forms.TextBox
Friend WithEvents TextBox82 As System.Windows.Forms.TextBox
Friend WithEvents TextBox83 As System.Windows.Forms.TextBox
Friend WithEvents TextBox84 As System.Windows.Forms.TextBox
Friend WithEvents TextBox85 As System.Windows.Forms.TextBox
Friend WithEvents TextBox86 As System.Windows.Forms.TextBox
Friend WithEvents TextBox87 As System.Windows.Forms.TextBox
Friend WithEvents TextBox88 As System.Windows.Forms.TextBox
Friend WithEvents TextBox96 As System.Windows.Forms.TextBox
Friend WithEvents TextBox97 As System.Windows.Forms.TextBox
Friend WithEvents TextBox98 As System.Windows.Forms.TextBox
Friend WithEvents TextBox99 As System.Windows.Forms.TextBox
Friend WithEvents TextBox100 As System.Windows.Forms.TextBox
Friend WithEvents TextBox101 As System.Windows.Forms.TextBox
Friend WithEvents TextBox102 As System.Windows.Forms.TextBox
Friend WithEvents TextBox103 As System.Windows.Forms.TextBox
Friend WithEvents TextBox104 As System.Windows.Forms.TextBox
Friend WithEvents TextBox105 As System.Windows.Forms.TextBox
Friend WithEvents TextBox106 As System.Windows.Forms.TextBox
Friend WithEvents TextBox107 As System.Windows.Forms.TextBox
Friend WithEvents TextBox108 As System.Windows.Forms.TextBox
Friend WithEvents TextBox109 As System.Windows.Forms.TextBox
Friend WithEvents TextBox110 As System.Windows.Forms.TextBox
Friend WithEvents TextBox111 As System.Windows.Forms.TextBox
Public WithEvents Labell1l As System.Windows.Forms.Label

Friend WithEvents TextBox91 As System.Windows.Forms.TextBox
Friend WithEvents Label57 As System.Windows.Forms.Label

Friend WithEvents TextBox92 As System.Windows.Forms.TextBox
Friend WithEvents TextBox93 As System.Windows.Forms.TextBox
Friend WithEvents TextBox94 As System.Windows.Forms.TextBox
Friend WithEvents Button28 As System. Windows.Forms.Button
Public WithEvents Button29 As System.Windows.Forms.Button
Friend WithEvents Button31 As System. Windows.Forms.Button
Friend WithEvents Button32 As System.Windows.Forms.Button
Friend WithEvents TextBox95 As System.Windows.Forms.TextBox
Friend WithEvents TextBox115 As System.Windows.Forms.TextBox
Friend WithEvents TrackBarl As System.Windows.Forms.TrackBar
Friend WithEvents Label58 As System.Windows.Forms.Label

Friend WithEvents Label59 As System.Windows.Forms.Label

Friend WithEvents GroupBox15 As System.Windows.Forms.GroupBox
Friend WithEvents GroupBox16 As System.Windows.Forms.GroupBox

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

221

Friend WithEvents Label60 As System.Windows.Forms.Label

Friend WithEvents TextBox116 As System.Windows.Forms.TextBox
Friend WithEvents Button30 As System.Windows.Forms.Button

Friend WithEvents TabPage7 As System.Windows.Forms.TabPage
Friend WithEvents TextBox117 As System.Windows.Forms.TextBox
Friend WithEvents TextBox118 As System.Windows.Forms.TextBox
Friend WithEvents TextBox119 As System.Windows.Forms.TextBox
Friend WithEvents Label63 As System.Windows.Forms.Label

Friend WithEvents Label64 As System.Windows.Forms.Label

Friend WithEvents TextBox120 As System.Windows.Forms.TextBox
Friend WithEvents Label65 As System.Windows.Forms.Label

Friend WithEvents TextBox121 As System.Windows.Forms.TextBox
Friend WithEvents Label66 As System.Windows.Forms.Label

Friend WithEvents TextBox122 As System.Windows.Forms.TextBox
Friend WithEvents Label67 As System.Windows.Forms.Label

Friend WithEvents TextBox123 As System.Windows.Forms.TextBox
Friend WithEvents Button33 As System.Windows.Forms.Button

Friend WithEvents ListBox3 As System.Windows.Forms.ListBox
Friend WithEvents Label62 As System.Windows.Forms.Label

Friend WithEvents Label61 As System.Windows.Forms.Label

Friend WithEvents Label68 As System.Windows.Forms.Label

Friend WithEvents Button34 As System.Windows.Forms.Button

Friend WithEvents Label69 As System.Windows.Forms.Label

Friend WithEvents TextBox124 As System.Windows.Forms.TextBox
Friend WithEvents ListBox4 As System.Windows.Forms.ListBox
Friend WithEvents Label70 As System.Windows.Forms.Label

Friend WithEvents ListBox5 As System.Windows.Forms.ListBox
Friend WithEvents Label71 As System.Windows.Forms.Label

Friend WithEvents Button35 As System. Windows.Forms.Button

Friend WithEvents TabPage8 As System.Windows.Forms.TabPage
Friend WithEvents Label72 As System.Windows.Forms.Label

Friend WithEvents Label73 As System.Windows.Forms.Label

Friend WithEvents Label74 As System.Windows.Forms.Label

Friend WithEvents ListBox6 As System.Windows.Forms.ListBox
Friend WithEvents Action Timer 1 As System.Windows.Forms.Timer
Friend WithEvents TextBox146 As System.Windows.Forms.TextBox
Friend WithEvents GroupBox19 As System.Windows.Forms.GroupBox
Friend WithEvents GroupBox17 As System.Windows.Forms.GroupBox
Friend WithEvents GroupBox21 As System.Windows.Forms.GroupBox
Friend WithEvents Button38 As System. Windows.Forms.Button

Friend WithEvents Button39 As System. Windows.Forms.Button

Friend WithEvents State_Action_Real Timerl As System.Windows.Forms.Timer
Friend WithEvents State Action Rand Timerl As System.Windows.Forms.Timer
Friend WithEvents GroupBox22 As System.Windows.Forms.GroupBox
Friend WithEvents GroupBox23 As System.Windows.Forms.GroupBox
Friend WithEvents GroupBox25 As System.Windows.Forms.GroupBox
Friend WithEvents ListBox7 As System.Windows.Forms.ListBox
Friend WithEvents Label75 As System.Windows.Forms.Label

Friend WithEvents ListBox8 As System.Windows.Forms.ListBox
Friend WithEvents Label76 As System.Windows.Forms.Label

Friend WithEvents ListBox9 As System.Windows.Forms.ListBox
Friend WithEvents Label77 As System.Windows.Forms.Label

Friend WithEvents ListBox10 As System. Windows.Forms.ListBox
Friend WithEvents Label78 As System.Windows.Forms.Label

Friend WithEvents TextBox125 As System.Windows.Forms.TextBox
Friend WithEvents Label79 As System.Windows.Forms.Label

Friend WithEvents TextBox126 As System.Windows.Forms.TextBox
Friend WithEvents Label80 As System.Windows.Forms.Label

Friend WithEvents TextBox127 As System.Windows.Forms.TextBox
Friend WithEvents Label89 As System.Windows.Forms.Label

Friend WithEvents Button27 As System.Windows.Forms.Button

Friend WithEvents Button37 As System.Windows.Forms.Button

Friend WithEvents Button36 As System. Windows.Forms.Button

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

222

Friend WithEvents GroupBox27 As System.Windows.Forms.GroupBox
Friend WithEvents Label51 As System.Windows.Forms.Label

Friend WithEvents TextBox112 As System.Windows.Forms.TextBox
Friend WithEvents Label52 As System.Windows.Forms.Label

Friend WithEvents TextBox113 As System.Windows.Forms.TextBox
Public WithEvents Button40 As System.Windows.Forms.Button

Friend WithEvents Button45 As System. Windows.Forms.Button

Friend WithEvents GroupBox29 As System.Windows.Forms.GroupBox
Friend WithEvents Button47 As System.Windows.Forms.Button

Friend WithEvents Button49 As System.Windows.Forms.Button

Friend WithEvents Label54 As System.Windows.Forms.Label

Friend WithEvents TextBox132 As System.Windows.Forms.TextBox
Friend WithEvents ProgressBarl As System.Windows.Forms.ProgressBar
Friend WithEvents Label55 As System.Windows.Forms.Label

Friend WithEvents Label91 As System.Windows.Forms.Label

Friend WithEvents ProgressBar2 As System. Windows.Forms.ProgressBar
Friend WithEvents Button50 As System. Windows.Forms.Button

Friend WithEvents Button51 As System. Windows.Forms.Button

Friend WithEvents Button53 As System.Windows.Forms.Button

Friend WithEvents Button54 As System.Windows.Forms.Button

'Sound play constants

Public Const SND_ASYNC = &H1 ' play asynchronously

Public Const SND_LOOP = &HS ' loop the sound until next sndPlaySound
Public Const SND NOSTOP = &H10 ' don't stop any currently playing sound
Public Const SND NOWAIT = &H2000 ' don't wait if the driver is busy
'Declare function for playing sounds

Declare Function PlaySound Lib "winmm.dll" Alias "PlaySoundA" (ByVal ByVallpszName As String, ByVal hModule

As Long, ByVal dwFlags As Long) As Long

Friend WithEvents Button55 As System. Windows.Forms.Button

Friend WithEvents Button56 As System. Windows.Forms.Button

Friend WithEvents GroupBox30 As System.Windows.Forms.GroupBox
Friend WithEvents Shaking Timer 1 As System.Windows.Forms.Timer
Friend WithEvents Label101 As System.Windows.Forms.Label

Friend WithEvents TextBox142 As System.Windows.Forms.TextBox
Friend WithEvents Label4 As System.Windows.Forms.Label

Friend WithEvents Label5 As System.Windows.Forms.Label

Friend WithEvents Label8 As System.Windows.Forms.Label

Friend WithEvents Labell As System.Windows.Forms.Label

Friend WithEvents Timer2 As System. Windows.Forms.Timer

Friend WithEvents ToolTipl As System.Windows.Forms.ToolTip
Friend WithEvents ToolTip2 As System.Windows.Forms.ToolTip

'Private miComPort As Integer

'Private WithEvents moRS232 As Rs232

'Private mlTicks As Long

'Private Delegate Sub CommEventUpdate(ByVal source As Rs232, ByVal mask As Rs232 EventMasks)
Friend WithEvents Robot Operating As System. Windows.Forms. Timer
Friend WithEvents TextBox148 As System.Windows.Forms.TextBox
Public WithEvents Label103 As System.Windows.Forms.Label

Friend WithEvents TextBox153 As System.Windows.Forms.TextBox
Friend WithEvents TextBox154 As System.Windows.Forms.TextBox
Friend WithEvents TextBox155 As System.Windows.Forms.TextBox
Friend WithEvents Label104 As System.Windows.Forms.Label

Friend WithEvents Label106 As System.Windows.Forms.Label

Friend WithEvents TextBox81 As System.Windows.Forms.TextBox
Friend WithEvents TextBox156 As System.Windows.Forms.TextBox
Friend WithEvents TextBox157 As System.Windows.Forms.TextBox
Friend WithEvents Label109 As System.Windows.Forms.Label

Friend WithEvents ComboBox6 As System.Windows.Forms.ComboBox
Friend WithEvents TextBox159 As System.Windows.Forms.TextBox
Friend WithEvents TextBox160 As System.Windows.Forms.TextBox
Friend WithEvents Labell10 As System.Windows.Forms.Label

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

223

Friend WithEvents TextBox161 As System.Windows.Forms.TextBox
Friend WithEvents Button59 As System.Windows.Forms.Button

Friend WithEvents State Action Best Timerl As System.Windows.Forms.Timer

Friend WithEvents GroupBox32 As System.Windows.Forms.GroupBox
Friend WithEvents ComboBox7 As System.Windows.Forms.ComboBox
Friend WithEvents AxWebBrowser3 As AxSHDocVw.AxWebBrowser
Friend WithEvents Button4 As System.Windows.Forms.Button

Friend WithEvents Button2 As System.Windows.Forms.Button

Public WithEvents Button3 As System.Windows.Forms.Button

Friend WithEvents Label2 As System. Windows.Forms.Label

Friend WithEvents Label3 As System. Windows.Forms.Label

Friend WithEvents Label6 As System.Windows.Forms.Label

Friend WithEvents Label7 As System.Windows.Forms.Label

Friend WithEvents Label9 As System.Windows.Forms.Label

Friend WithEvents Labell0 As System.Windows.Forms.Label

Friend WithEvents Labell2 As System.Windows.Forms.Label

Friend WithEvents GroupBox34 As System.Windows.Forms.GroupBox
Friend WithEvents GroupBox35 As System.Windows.Forms.GroupBox
Friend WithEvents ComboBox8 As System.Windows.Forms.ComboBox
Friend WithEvents TextBox90 As System.Windows.Forms.TextBox
Friend WithEvents Label113 As System.Windows.Forms.Label

Friend WithEvents Labell14 As System.Windows.Forms.Label

Friend WithEvents TextBox136 As System.Windows.Forms.TextBox
Friend WithEvents Labell15 As System.Windows.Forms.Label

Friend WithEvents ComboBox9 As System.Windows.Forms.ComboBox
Friend WithEvents Labell16 As System. Windows.Forms.Label

Friend WithEvents Labell17 As System. Windows.Forms.Label

Friend WithEvents ComboBox10 As System.Windows.Forms.ComboBox
Friend WithEvents TextBox137 As System.Windows.Forms.TextBox
Friend WithEvents Labell18 As System.Windows.Forms.Label

Friend WithEvents GroupBox36 As System.Windows.Forms.GroupBox
Friend WithEvents Button60 As System.Windows.Forms.Button

Friend WithEvents Button61 As System. Windows.Forms.Button

Public WithEvents Button62 As System.Windows.Forms.Button

Friend WithEvents Button63 As System.Windows.Forms.Button

Friend WithEvents GroupBox37 As System.Windows.Forms.GroupBox
Friend WithEvents ComboBox11 As System.Windows.Forms.ComboBox
Friend WithEvents Labell19 As System. Windows.Forms.Label

Friend WithEvents Label120 As System.Windows.Forms.Label

Friend WithEvents Label121 As System.Windows.Forms.Label

Friend WithEvents Label122 As System.Windows.Forms.Label

Friend WithEvents TextBox138 As System.Windows.Forms.TextBox
Friend WithEvents TextBox139 As System.Windows.Forms.TextBox
Friend WithEvents TextBox140 As System.Windows.Forms.TextBox
Friend WithEvents ComboBox12 As System.Windows.Forms.ComboBox
Friend WithEvents ComboBox13 As System.Windows.Forms.ComboBox
Friend WithEvents Label123 As System.Windows.Forms.Label

Friend WithEvents Label124 As System.Windows.Forms.Label

Friend WithEvents GroupBox18 As System.Windows.Forms.GroupBox
Friend WithEvents GroupBox28 As System.Windows.Forms.GroupBox
Friend WithEvents GroupBox33 As System.Windows.Forms.GroupBox
Friend WithEvents CheckBox10 As System.Windows.Forms.CheckBox
Friend WithEvents CheckBox7 As System.Windows.Forms.CheckBox
Friend WithEvents CheckBox11 As System.Windows.Forms.CheckBox
Friend WithEvents TextBox151 As System.Windows.Forms.TextBox
Friend WithEvents TextBox150 As System.Windows.Forms.TextBox
Friend WithEvents TextBox143 As System.Windows.Forms.TextBox
Friend WithEvents Button58 As System.Windows.Forms.Button

Friend WithEvents Button48 As System.Windows.Forms.Button

Friend WithEvents GroupBox31 As System.Windows.Forms.GroupBox
Friend WithEvents Button52 As System.Windows.Forms.Button

Friend WithEvents TextBox141 As System.Windows.Forms.TextBox
Friend WithEvents TextBox114 As System.Windows.Forms.TextBox

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

224

Friend WithEvents Button46 As System.Windows.Forms.Button
Friend WithEvents Button57 As System.Windows.Forms.Button
Friend WithEvents GroupBox26 As System.Windows.Forms.GroupBox
Friend WithEvents Labell11 As System.Windows.Forms.Label
Friend WithEvents Labell112 As System.Windows.Forms.Label
Friend WithEvents TextBox89 As System.Windows.Forms.TextBox
Friend WithEvents Label43 As System.Windows.Forms.Label

Friend WithEvents Label56 As System.Windows.Forms.Label

Friend WithEvents TextBox80 As System.Windows.Forms.TextBox
Friend WithEvents Label49 As System.Windows.Forms.Label

Friend WithEvents Label50 As System.Windows.Forms.Label

Friend WithEvents TextBox131 As System.Windows.Forms.TextBox
Friend WithEvents Label48 As System.Windows.Forms.Label

Friend WithEvents Label47 As System.Windows.Forms.Label

Friend WithEvents TextBox130 As System.Windows.Forms.TextBox
Friend WithEvents GroupBox20 As System.Windows.Forms.GroupBox
Friend WithEvents GroupBox24 As System.Windows.Forms.GroupBox
Friend WithEvents Label93 As System.Windows.Forms.Label

Friend WithEvents TextBox134 As System.Windows.Forms.TextBox
Friend WithEvents Label102 As System.Windows.Forms.Label
Friend WithEvents TextBox144 As System.Windows.Forms.TextBox
Public WithEvents Label107 As System.Windows.Forms.Label
Friend WithEvents TextBox158 As System.Windows.Forms.TextBox
Public WithEvents Label108 As System.Windows.Forms.Label
Public WithEvents Label105 As System.Windows.Forms.Label
Friend WithEvents TextBox149 As System.Windows.Forms.TextBox
Public WithEvents Label53 As System. Windows.Forms.Label

Friend WithEvents TextBox129 As System.Windows.Forms.TextBox
Public WithEvents Label44 As System.Windows.Forms.Label

Friend WithEvents CheckBox9 As System.Windows.Forms.CheckBox
Friend WithEvents TextBox135 As System.Windows.Forms.TextBox
Friend WithEvents GroupBox38 As System.Windows.Forms.GroupBox
Friend WithEvents Label82 As System.Windows.Forms.Label

Friend WithEvents Label45 As System.Windows.Forms.Label

Friend WithEvents AxMSChartl As AxMSChart20Lib. AxMSChart
Friend WithEvents AxMSChart3 As AxMSChart20Lib. AxMSChart
Friend WithEvents Button42 As System.Windows.Forms.Button
Friend WithEvents Label83 As System.Windows.Forms.Label

Friend WithEvents Label84 As System.Windows.Forms.Label

Friend WithEvents Label85 As System.Windows.Forms.Label

Friend WithEvents Label86 As System.Windows.Forms.Label

Friend WithEvents Label87 As System.Windows.Forms.Label

Friend WithEvents Label88 As System.Windows.Forms.Label

Friend WithEvents Label94 As System.Windows.Forms.Label

Friend WithEvents Label100 As System.Windows.Forms.Label
Friend WithEvents Label125 As System.Windows.Forms.Label
Friend WithEvents Label126 As System.Windows.Forms.Label
Friend WithEvents Label127 As System.Windows.Forms.Label
Friend WithEvents Label46 As System.Windows.Forms.Label

Friend WithEvents Label81 As System.Windows.Forms.Label

Friend WithEvents TextBox145 As System.Windows.Forms.TextBox
Friend WithEvents Label128 As System.Windows.Forms.Label
Friend WithEvents Label95 As System.Windows.Forms.Label

Friend WithEvents Label96 As System.Windows.Forms.Label

Friend WithEvents Label97 As System.Windows.Forms.Label

Friend WithEvents Label98 As System.Windows.Forms.Label

Friend WithEvents Label99 As System.Windows.Forms.Label

Friend WithEvents Label129 As System.Windows.Forms.Label
Friend WithEvents Label130 As System.Windows.Forms.Label
Friend WithEvents Label131 As System.Windows.Forms.Label
Friend WithEvents Label132 As System.Windows.Forms.Label
Friend WithEvents Label92 As System.Windows.Forms.Label

Friend WithEvents TextBox133 As System.Windows.Forms.TextBox

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

225

Friend WithEvents Timerl As System.Windows.Forms.Timer

Friend WithEvents Label133 As System.Windows.Forms.Label

Friend WithEvents TextBox147 As System.Windows.Forms.TextBox
Friend WithEvents Label134 As System.Windows.Forms.Label

Friend WithEvents CheckBox8 As System.Windows.Forms.CheckBox
Friend WithEvents CheckBox12 As System.Windows.Forms.CheckBox
Friend WithEvents CheckBox13 As System.Windows.Forms.CheckBox
Friend WithEvents CheckBox14 As System.Windows.Forms.CheckBox
Friend WithEvents TextBox128 As System.Windows.Forms.TextBox
Friend WithEvents Label90 As System.Windows.Forms.Label

Friend WithEvents ComboBox2 As System.Windows.Forms.ComboBox
Friend WithEvents TextBox5 As System.Windows.Forms.TextBox
Public WithEvents Labell6 As System.Windows.Forms.Label

Friend WithEvents TextBox49 As System.Windows.Forms.TextBox
Friend WithEvents GroupBox4 As System.Windows.Forms.GroupBox
Friend WithEvents Label29 As System.Windows.Forms.Label

Friend WithEvents Label36 As System.Windows.Forms.Label

Friend WithEvents ComboBox4 As System.Windows.Forms.ComboBox
Friend WithEvents Label38 As System.Windows.Forms.Label

Friend WithEvents ComboBox3 As System.Windows.Forms.ComboBox
Friend WithEvents ComboBox5 As System.Windows.Forms.ComboBox
Friend WithEvents Label35 As System.Windows.Forms.Label

Friend WithEvents Label37 As System.Windows.Forms.Label

Friend WithEvents ComboBox14 As System.Windows.Forms.ComboBox
Friend WithEvents ComboBox15 As System.Windows.Forms.ComboBox
Friend WithEvents ComboBox16 As System.Windows.Forms.ComboBox

<System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

Me.components = New System.ComponentModel.Container

Dim resources As System.Resources.ResourceManager = New System.Resources.ResourceManager(GetType(Forml))

Me.CmdDownLoad = New System. Windows.Forms.Button
Me.Buttonl = New System.Windows.Forms.Button
Me.TextBox1 = New System.Windows.Forms.TextBox
Me.TextBox2 = New System.Windows.Forms.TextBox
Me.Label2 = New System.Windows.Forms.Label
Me.Label3 = New System.Windows.Forms.Label
Me.Label4 = New System.Windows.Forms.Label
Me.Label5 = New System. Windows.Forms.Label
Me.Label6 = New System.Windows.Forms.Label
Me.TextBox3 = New System.Windows.Forms.TextBox
Me.Label7 = New System. Windows.Forms.Label
Me.Label8 = New System. Windows.Forms.Label
Me.Label9 = New System.Windows.Forms.Label
Me.Button4 = New System.Windows.Forms.Button
Me.Button5 = New System.Windows.Forms.Button
Me.Button6 = New System.Windows.Forms.Button
Me.CheckBox1 = New System.Windows.Forms.CheckBox
Me.CheckBox2 = New System.Windows.Forms.CheckBox
Me.Button7 = New System.Windows.Forms.Button
Me.TextBox4 = New System.Windows.Forms.TextBox
Me.Button9 = New System.Windows.Forms.Button
Me.Labell10 = New System.Windows.Forms.Label
Me.Labell 1 = New System.Windows.Forms.Label
Me.Label12 = New System.Windows.Forms.Label
Me.Label13 = New System.Windows.Forms.Label
Me.Labell14 = New System.Windows.Forms.Label
Me.Labell5 = New System.Windows.Forms.Label
Me.Button10 = New System.Windows.Forms.Button
Me.Button2 = New System.Windows.Forms.Button
Me.Buttonl1 = New System.Windows.Forms.Button
Me.Button12 = New System.Windows.Forms.Button
Me.Button13 = New System.Windows.Forms.Button
Me.Button14 = New System.Windows.Forms.Button

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

226

Me.Button15 = New System.Windows.Forms.Button
Me.Button16 = New System.Windows.Forms.Button
Me.Button17 = New System.Windows.Forms.Button
Me.Button18 = New System.Windows.Forms.Button
Me.Button19 = New System.Windows.Forms.Button
Me.Button20 = New System.Windows.Forms.Button
Me.Button8 = New System. Windows.Forms.Button
Me.Button21 = New System.Windows.Forms.Button
Me.Button22 = New System.Windows.Forms.Button
Me.Button23 = New System.Windows.Forms.Button
Me.Button24 = New System.Windows.Forms.Button
Me.Button25 = New System.Windows.Forms.Button
Me.TextBox6 = New System.Windows.Forms.TextBox
Me.GroupBox1 = New System.Windows.Forms.GroupBox
Me.GroupBox2 = New System.Windows.Forms.GroupBox
Me.GroupBox3 = New System.Windows.Forms.GroupBox
Me.GroupBox13 = New System.Windows.Forms.GroupBox
Me.GroupBox11 = New System.Windows.Forms.GroupBox
Me.TextBox11 = New System.Windows.Forms.TextBox
Me.Label18 = New System.Windows.Forms.Label
Me.Label25 = New System.Windows.Forms.Label
Me.CheckBox5 = New System.Windows.Forms.CheckBox
Me.Labell7 = New System.Windows.Forms.Label
Me.Labell = New System.Windows.Forms.Label
Me.CheckBox4 = New System.Windows.Forms.CheckBox
Me.TextBox10 = New System. Windows.Forms.TextBox
Me.Label23 = New System. Windows.Forms.Label
Me.Label24 = New System. Windows.Forms.Label
Me.GroupBox10 = New System. Windows.Forms.GroupBox
Me.GroupBox9 = New System.Windows.Forms.GroupBox
Me.GroupBox8 = New System.Windows.Forms.GroupBox
Me.GroupBox7 = New System.Windows.Forms.GroupBox
Me.GroupBox12 = New System.Windows.Forms.GroupBox
Me.Label20 = New System.Windows.Forms.Label
Me.Label22 = New System.Windows.Forms.Label
Me.TextBox9 = New System.Windows.Forms.TextBox
Me.Label21 = New System. Windows.Forms.Label
Me.Label19 = New System. Windows.Forms.Label
Me.TextBox8 = New System.Windows.Forms.TextBox
Me.GroupBox14 = New System.Windows.Forms.GroupBox
Me.Label28 = New System.Windows.Forms.Label
Me.ComboBox1 = New System.Windows.Forms.ComboBox
Me.Label33 = New System.Windows.Forms.Label
Me.TextBox39 = New System.Windows.Forms.TextBox
Me.Label34 = New System.Windows.Forms.Label
Me.Label32 = New System.Windows.Forms.Label
Me.TextBox38 = New System.Windows.Forms. TextBox
Me.Label31 = New System.Windows.Forms.Label
Me.Label30 = New System.Windows.Forms.Label
Me.TextBox37 = New System.Windows.Forms. TextBox
Me.Button26 = New System.Windows.Forms.Button
Me.CheckBox3 = New System.Windows.Forms.CheckBox
Me.Label26 = New System.Windows.Forms.Label
Me.Label27 = New System.Windows.Forms.Label
Me.CheckBox6 = New System.Windows.Forms.CheckBox
Me.GroupBox6 = New System.Windows.Forms.GroupBox
Me.TabControll = New System.Windows.Forms.TabControl
Me.TabPage8 = New System.Windows.Forms.TabPage
Me.CheckBox13 = New System.Windows.Forms.CheckBox
Me.Label92 = New System. Windows.Forms.Label
Me.TextBox133 = New System.Windows.Forms.TextBox
Me.Button42 = New System.Windows.Forms.Button
Me.GroupBox38 = New System.Windows.Forms.GroupBox

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

227

Me.Label94 = New System.Windows.Forms.Label
Me.Label129 = New System.Windows.Forms.Label
Me.Label130 = New System.Windows.Forms.Label
Me.Labell131 = New System.Windows.Forms.Label
Me.Label132 = New System.Windows.Forms.Label
Me.Label95 = New System.Windows.Forms.Label
Me.Label96 = New System.Windows.Forms.Label
Me.Label97 = New System.Windows.Forms.Label
Me.Label98 = New System.Windows.Forms.Label
Me.Label99 = New System.Windows.Forms.Label
Me.Label128 = New System.Windows.Forms.Label
Me.TextBox145 = New System.Windows.Forms.TextBox
Me.Label81 = New System.Windows.Forms.Label
Me.Label46 = New System. Windows.Forms.Label
Me.Label127 = New System.Windows.Forms.Label
Me.Label126 = New System.Windows.Forms.Label
Me.Label125 = New System.Windows.Forms.Label
Me.Label100 = New System.Windows.Forms.Label
Me.Label83 = New System.Windows.Forms.Label
Me.Label88 = New System.Windows.Forms.Label
Me.Label87 = New System.Windows.Forms.Label
Me.Label86 = New System.Windows.Forms.Label
Me.Label85 = New System.Windows.Forms.Label
Me.Label84 = New System.Windows.Forms.Label
Me.Label45 = New System.Windows.Forms.Label
Me.Label82 = New System. Windows.Forms.Label
Me.AxMSChart3 = New AxMSChart20Lib.AxMSChart
Me.AxMSChartl = New AxMSChart20Lib.AxMSChart
Me.GroupBox31 = New System.Windows.Forms.GroupBox
Me.Button52 = New System.Windows.Forms.Button
Me.TextBox141 = New System.Windows.Forms.TextBox
Me.TextBox114 = New System.Windows.Forms.TextBox
Me.Button57 = New System.Windows.Forms.Button
Me.GroupBox18 = New System.Windows.Forms.GroupBox
Me.TextBox146 = New System.Windows.Forms.TextBox
Me.GroupBox29 = New System.Windows.Forms.GroupBox
Me.ComboBox2 = New System.Windows.Forms.ComboBox
Me.Label109 = New System.Windows.Forms.Label
Me.ComboBox6 = New System.Windows.Forms.ComboBox
Me.Button50 = New System.Windows.Forms.Button
Me.Button51 = New System.Windows.Forms.Button
Me.ProgressBar2 = New System.Windows.Forms.ProgressBar
Me.Label91 = New System.Windows.Forms.Label
Me.Label55 = New System.Windows.Forms.Label
Me.ProgressBarl = New System.Windows.Forms.ProgressBar
Me.Button45 = New System.Windows.Forms.Button
Me.Button40 = New System.Windows.Forms.Button
Me.Button47 = New System.Windows.Forms.Button
Me.Button54 = New System.Windows.Forms.Button
Me.Button53 = New System.Windows.Forms.Button
Me.Button56 = New System.Windows.Forms.Button
Me.GroupBox30 = New System.Windows.Forms.GroupBox
Me.Label101 = New System.Windows.Forms.Label
Me.TextBox142 = New System.Windows.Forms.TextBox
Me.Label54 = New System.Windows.Forms.Label
Me.TextBox132 = New System.Windows.Forms.TextBox
Me.GroupBox19 = New System.Windows.Forms.GroupBox
Me.GroupBox20 = New System.Windows.Forms.GroupBox
Me.TextBox135 = New System.Windows.Forms.TextBox
Me.GroupBox34 = New System. Windows.Forms.GroupBox
Me.GroupBox4 = New System.Windows.Forms.GroupBox
Me.Label37 = New System.Windows.Forms.Label
Me.ComboBox14 = New System. Windows.Forms.ComboBox

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

228

Me.ComboBox15 = New System. Windows.Forms.ComboBox
Me.ComboBox 16 = New System. Windows.Forms.ComboBox
Me.Label35 = New System.Windows.Forms.Label
Me.ComboBox5 = New System.Windows.Forms.ComboBox
Me.ComboBox3 = New System.Windows.Forms.ComboBox
Me.Label29 = New System.Windows.Forms.Label
Me.Label36 = New System.Windows.Forms.Label
Me.ComboBox4 = New System.Windows.Forms.ComboBox
Me.Label38 = New System.Windows.Forms.Label
Me.GroupBox33 = New System.Windows.Forms.GroupBox
Me.CheckBox10 = New System.Windows.Forms.CheckBox
Me.CheckBox7 = New System.Windows.Forms.CheckBox
Me.CheckBox11 = New System.Windows.Forms.CheckBox
Me.GroupBox35 = New System. Windows.Forms.GroupBox
Me.ComboBox8 = New System.Windows.Forms.ComboBox
Me.TextBox90 = New System.Windows.Forms. TextBox
Me.Labell13 = New System.Windows.Forms.Label
Me.Labell 14 = New System.Windows.Forms.Label
Me.TextBox136 = New System.Windows.Forms.TextBox
Me.Label115 = New System.Windows.Forms.Label
Me.ComboBox9 = New System.Windows.Forms.ComboBox
Me.Label116 = New System.Windows.Forms.Label
Me.Labell17 = New System.Windows.Forms.Label
Me.ComboBox 10 = New System. Windows.Forms.ComboBox
Me.TextBox137 = New System.Windows.Forms.TextBox
Me.Labell 18 = New System.Windows.Forms.Label
Me.GroupBox36 = New System. Windows.Forms.GroupBox
Me.Button60 = New System.Windows.Forms.Button
Me.Button61 = New System.Windows.Forms.Button
Me.Button62 = New System.Windows.Forms.Button
Me.Button63 = New System.Windows.Forms.Button
Me.GroupBox37 = New System.Windows.Forms.GroupBox
Me.ComboBox11 = New System.Windows.Forms.ComboBox
Me.Labell19 = New System.Windows.Forms.Label
Me.Label120 = New System.Windows.Forms.Label
Me.Label121 = New System.Windows.Forms.Label
Me.Label122 = New System.Windows.Forms.Label
Me.TextBox138 = New System.Windows.Forms.TextBox
Me.TextBox139 = New System.Windows.Forms.TextBox
Me.TextBox140 = New System.Windows.Forms.TextBox
Me.ComboBox12 = New System. Windows.Forms.ComboBox
Me.ComboBox13 = New System. Windows.Forms.ComboBox
Me.Label123 = New System.Windows.Forms.Label
Me.Label124 = New System.Windows.Forms.Label
Me.GroupBox17 = New System.Windows.Forms.GroupBox
Me.AxWebBrowser3 = New AxSHDocVw.AxWebBrowser
Me.Button55 = New System.Windows.Forms.Button
Me.Button49 = New System.Windows.Forms.Button
Me.Button46 = New System.Windows.Forms.Button
Me.TabPagel = New System.Windows.Forms.TabPage
Me.TextBox49 = New System.Windows.Forms. TextBox
Me.CheckBox12 = New System.Windows.Forms.CheckBox
Me.GroupBox24 = New System. Windows.Forms.GroupBox
Me.TextBox5 = New System.Windows.Forms.TextBox
Me.Labell6 = New System.Windows.Forms.Label
Me.CheckBox14 = New System.Windows.Forms.CheckBox
Me.Label134 = New System.Windows.Forms.Label
Me.Label133 = New System.Windows.Forms.Label
Me.TextBox147 = New System.Windows.Forms.TextBox
Me.Label93 = New System.Windows.Forms.Label
Me.TextBox134 = New System.Windows.Forms.TextBox
Me.Label102 = New System.Windows.Forms.Label
Me.TextBox144 = New System.Windows.Forms.TextBox

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

229

Me.Label107 = New System.Windows.Forms.Label
Me.TextBox158 = New System.Windows.Forms.TextBox
Me.Label108 = New System.Windows.Forms.Label
Me.Label105 = New System.Windows.Forms.Label
Me.TextBox149 = New System.Windows.Forms.TextBox
Me.Label53 = New System.Windows.Forms.Label
Me.TextBox129 = New System.Windows.Forms.TextBox
Me.Label44 = New System.Windows.Forms.Label
Me.CheckBox9 = New System.Windows.Forms.CheckBox
Me.Label103 = New System.Windows.Forms.Label
Me.TextBox148 = New System.Windows.Forms.TextBox
Me.TextBox128 = New System.Windows.Forms.TextBox
Me.Label90 = New System.Windows.Forms.Label
Me.GroupBox26 = New System. Windows.Forms.GroupBox
Me.Labell11 = New System.Windows.Forms.Label
Me.Label112 = New System.Windows.Forms.Label
Me.TextBox89 = New System.Windows.Forms.TextBox
Me.Label43 = New System.Windows.Forms.Label
Me.Label56 = New System.Windows.Forms.Label
Me.TextBox80 = New System.Windows.Forms.TextBox
Me.Label49 = New System.Windows.Forms.Label
Me.Label50 = New System.Windows.Forms.Label
Me.TextBox131 = New System.Windows.Forms.TextBox
Me.Label48 = New System.Windows.Forms.Label
Me.Label47 = New System.Windows.Forms.Label
Me.TextBox130 = New System.Windows.Forms.TextBox
Me.GroupBox28 = New System. Windows.Forms.GroupBox
Me.Button58 = New System.Windows.Forms.Button
Me.Button48 = New System.Windows.Forms.Button
Me.TextBox151 = New System.Windows.Forms.TextBox
Me.TextBox150 = New System.Windows.Forms.TextBox
Me.TextBox143 = New System.Windows.Forms.TextBox
Me.CheckBox8 = New System.Windows.Forms.CheckBox
Me.TabPage7 = New System.Windows.Forms.TabPage
Me.Label51 = New System.Windows.Forms.Label
Me.TextBox112 = New System.Windows.Forms.TextBox
Me.Button37 = New System.Windows.Forms.Button
Me.Button27 = New System.Windows.Forms.Button
Me.Label89 = New System.Windows.Forms.Label
Me.TextBox127 = New System.Windows.Forms.TextBox
Me.GroupBox25 = New System. Windows.Forms.GroupBox
Me.ListBox7 = New System.Windows.Forms.ListBox
Me.Label75 = New System.Windows.Forms.Label
Me.ListBox8 = New System.Windows.Forms.ListBox
Me.Label76 = New System.Windows.Forms.Label
Me.ListBox9 = New System.Windows.Forms.ListBox
Me.Label77 = New System.Windows.Forms.Label
Me.ListBox10 = New System.Windows.Forms.ListBox
Me.Label78 = New System. Windows.Forms.Label
Me.TextBox125 = New System.Windows.Forms.TextBox
Me.Label79 = New System. Windows.Forms.Label
Me.TextBox126 = New System.Windows.Forms.TextBox
Me.Label80 = New System.Windows.Forms.Label
Me.GroupBox23 = New System.Windows.Forms.GroupBox
Me.ListBox6 = New System.Windows.Forms.ListBox
Me.Label74 = New System.Windows.Forms.Label
Me.ListBox5 = New System.Windows.Forms.ListBox
Me.Label71 = New System.Windows.Forms.Label
Me.ListBox4 = New System.Windows.Forms.ListBox
Me.Label70 = New System. Windows.Forms.Label
Me.ListBox3 = New System.Windows.Forms.ListBox
Me.Label62 = New System. Windows.Forms.Label
Me.TextBox117 = New System.Windows.Forms.TextBox

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

230

Me.Label61 = New System.Windows.Forms.Label
Me.TextBox118 = New System.Windows.Forms.TextBox
Me.Label68 = New System.Windows.Forms.Label
Me.GroupBox22 = New System. Windows.Forms.GroupBox
Me.Label52 = New System. Windows.Forms.Label
Me.TextBox113 = New System.Windows.Forms.TextBox
Me.TextBox122 = New System.Windows.Forms.TextBox
Me.Label65 = New System.Windows.Forms.Label
Me.TextBox121 = New System.Windows.Forms.TextBox
Me.Label64 = New System.Windows.Forms.Label
Me.TextBox120 = New System.Windows.Forms.TextBox
Me.Label63 = New System.Windows.Forms.Label
Me.TextBox119 = New System.Windows.Forms.TextBox
Me.Label69 = New System.Windows.Forms.Label
Me.TextBox124 = New System. Windows.Forms.TextBox
Me.Label67 = New System.Windows.Forms.Label
Me.TextBox123 = New System.Windows.Forms.TextBox
Me.Label66 = New System.Windows.Forms.Label
Me.Button35 = New System.Windows.Forms.Button
Me.Button33 = New System.Windows.Forms.Button
Me.TabPage2 = New System.Windows.Forms.TabPage
Me.GroupBox5 = New System.Windows.Forms.GroupBox
Me.Label73 = New System.Windows.Forms.Label
Me.AxWebBrowserl = New AxSHDocVw.AxWebBrowser
Me.AxWebBrowser2 = New AxSHDocVw.AxWebBrowser
Me.Label72 = New System. Windows.Forms.Label
Me.TabPage5 = New System.Windows.Forms.TabPage
Me.GroupBox32 = New System. Windows.Forms.GroupBox
Me.ComboBox7 = New System.Windows.Forms.ComboBox
Me.Button59 = New System.Windows.Forms.Button
Me.GroupBox27 = New System. Windows.Forms.GroupBox
Me.Label110 = New System.Windows.Forms.Label
Me.TextBox161 = New System.Windows.Forms.TextBox
Me.TextBox157 = New System.Windows.Forms.TextBox
Me.TextBox156 = New System.Windows.Forms.TextBox
Me.Label106 = New System.Windows.Forms.Label
Me.Label104 = New System.Windows.Forms.Label
Me.TextBox155 = New System.Windows.Forms.TextBox
Me.TextBox154 = New System. Windows.Forms.TextBox
Me.TextBox81 = New System. Windows.Forms.TextBox
Me.TextBox153 = New System.Windows.Forms.TextBox
Me.TextBox159 = New System.Windows.Forms.TextBox
Me.TextBox160 = New System.Windows.Forms.TextBox
Me.GroupBox21 = New System.Windows.Forms.GroupBox
Me.Button36 = New System.Windows.Forms.Button
Me.Button38 = New System.Windows.Forms.Button
Me.Button39 = New System.Windows.Forms.Button
Me.GroupBox16 = New System.Windows.Forms.GroupBox
Me.Button34 = New System.Windows.Forms.Button
Me.Button31 = New System.Windows.Forms.Button
Me.Button29 = New System.Windows.Forms.Button
Me.Button28 = New System.Windows.Forms.Button
Me.GroupBox15 = New System. Windows.Forms.GroupBox
Me.Button30 = New System.Windows.Forms.Button
Me.Label60 = New System.Windows.Forms.Label
Me.Label59 = New System.Windows.Forms.Label
Me.Label58 = New System.Windows.Forms.Label
Me.TrackBarl = New System.Windows.Forms.TrackBar
Me.TextBox116 = New System.Windows.Forms.TextBox
Me.Button32 = New System.Windows.Forms.Button
Me.TextBox115 = New System.Windows.Forms.TextBox
Me.TextBox95 = New System.Windows.Forms. TextBox
Me.TextBox94 = New System.Windows.Forms.TextBox

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 231

Me.TextBox93 = New System.Windows.Forms. TextBox
Me.TextBox92 = New System.Windows.Forms. TextBox
Me.Label57 = New System.Windows.Forms.Label
Me.TextBox91 = New System. Windows.Forms.TextBox
Me.TextBox78 = New System.Windows.Forms. TextBox
Me.TextBox79 = New System.Windows.Forms.TextBox
Me.TextBox82 = New System.Windows.Forms.TextBox
Me.TextBox83 = New System.Windows.Forms.TextBox
Me.TextBox84 = New System.Windows.Forms.TextBox
Me.TextBox85 = New System.Windows.Forms.TextBox
Me.TextBox86 = New System.Windows.Forms.TextBox
Me.TextBox87 = New System.Windows.Forms. TextBox
Me.TextBox88 = New System.Windows.Forms. TextBox
Me.TextBox96 = New System.Windows.Forms. TextBox
Me.TextBox97 = New System.Windows.Forms. TextBox
Me.TextBox98 = New System.Windows.Forms. TextBox
Me.TextBox99 = New System.Windows.Forms.TextBox
Me.TextBox100 = New System.Windows.Forms.TextBox
Me.TextBox101 = New System.Windows.Forms.TextBox
Me.TextBox102 = New System.Windows.Forms.TextBox
Me.TextBox103 = New System.Windows.Forms.TextBox
Me.TextBox104 = New System.Windows.Forms.TextBox
Me.TextBox105 = New System.Windows.Forms.TextBox
Me.TextBox106 = New System.Windows.Forms.TextBox
Me.TextBox107 = New System.Windows.Forms.TextBox
Me.TextBox108 = New System.Windows.Forms.TextBox
Me.TextBox109 = New System.Windows.Forms.TextBox
Me.TextBox110 = New System.Windows.Forms.TextBox
Me.TextBox111 = New System.Windows.Forms.TextBox
Me.ListBox2 = New System.Windows.Forms.ListBox
Me.Label41 = New System.Windows.Forms.Label
Me.Label40 = New System.Windows.Forms.Label
Me.ListBox1 = New System.Windows.Forms.ListBox
Me.TabPage4 = New System.Windows.Forms.TabPage
Me.TextBox74 = New System.Windows.Forms. TextBox
Me.TextBox73 = New System.Windows.Forms. TextBox
Me.TextBox72 = New System.Windows.Forms. TextBox
Me.TextBox71 = New System.Windows.Forms. TextBox
Me.TextBox70 = New System.Windows.Forms. TextBox
Me.TextBox69 = New System. Windows.Forms.TextBox
Me.TextBox68 = New System. Windows.Forms.TextBox
Me.TextBox67 = New System. Windows.Forms. TextBox
Me.TextBox66 = New System.Windows.Forms.TextBox
Me.TextBox65 = New System. Windows.Forms.TextBox
Me.TextBox64 = New System.Windows.Forms.TextBox
Me.TextBox57 = New System.Windows.Forms. TextBox
Me.TextBox58 = New System.Windows.Forms. TextBox
Me.TextBox59 = New System.Windows.Forms. TextBox
Me.TextBox60 = New System.Windows.Forms. TextBox
Me.TextBox61 = New System. Windows.Forms.TextBox
Me.TextBox62 = New System. Windows.Forms.TextBox
Me.TextBox63 = New System. Windows.Forms. TextBox
Me.TextBox56 = New System.Windows.Forms. TextBox
Me.TextBox55 = New System. Windows.Forms.TextBox
Me.TextBox54 = New System.Windows.Forms.TextBox
Me.TextBox53 = New System.Windows.Forms.TextBox
Me.TextBox52 = New System.Windows.Forms. TextBox
Me.TextBox51 = New System.Windows.Forms. TextBox
Me.TextBox50 = New System.Windows.Forms. TextBox
Me.TextBox48 = New System.Windows.Forms. TextBox
Me.TextBox47 = New System.Windows.Forms. TextBox
Me.TextBox46 = New System.Windows.Forms. TextBox
Me.TextBox45 = New System.Windows.Forms. TextBox

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 232

Me.TextBox44 = New System.Windows.Forms. TextBox

Me.TextBox43 = New System.Windows.Forms. TextBox

Me.TextBox42 = New System.Windows.Forms. TextBox

Me.TextBox41 = New System.Windows.Forms. TextBox

Me.TextBox40 = New System.Windows.Forms. TextBox

Me.TabPage3 = New System.Windows.Forms.TabPage

Me.TextBox36 = New System.Windows.Forms.TextBox

Me.TextBox7 = New System.Windows.Forms.TextBox

Me.Button3 = New System.Windows.Forms.Button

Me.TextBox35 = New System.Windows.Forms.TextBox

Me.TextBox34 = New System.Windows.Forms.TextBox

Me.TextBox33 = New System.Windows.Forms. TextBox

Me.TextBox32 = New System.Windows.Forms.TextBox

Me.TextBox31 = New System. Windows.Forms.TextBox

Me.TextBox30 = New System.Windows.Forms. TextBox

Me.TextBox29 = New System. Windows.Forms.TextBox

Me.TextBox28 = New System.Windows.Forms.TextBox

Me.TextBox27 = New System.Windows.Forms.TextBox

Me.TextBox26 = New System.Windows.Forms.TextBox

Me.TextBox25 = New System. Windows.Forms.TextBox

Me.TextBox24 = New System.Windows.Forms.TextBox

Me.TextBox23 = New System.Windows.Forms.TextBox

Me.TextBox22 = New System.Windows.Forms. TextBox

Me.TextBox21 = New System.Windows.Forms. TextBox

Me.TextBox20 = New System.Windows.Forms. TextBox

Me.TextBox19 = New System. Windows.Forms.TextBox

Me.TextBox18 = New System. Windows.Forms.TextBox

Me.TextBox17 = New System.Windows.Forms. TextBox

Me.TextBox16 = New System.Windows.Forms.TextBox

Me.TextBox15 = New System.Windows.Forms.TextBox

Me.TextBox14 = New System.Windows.Forms.TextBox

Me.TextBox13 = New System.Windows.Forms.TextBox

Me.TextBox12 = New System.Windows.Forms.TextBox

Me.MainMenul = New System.Windows.Forms.MainMenu

Me.Menultem1 = New System.Windows.Forms.Menultem
Me.State_Action_Real Timerl = New System.Windows.Forms.Timer(Me.components)
Me.Action_Timer 1 = New System.Windows.Forms.Timer(Me.components)
Me.State Action Rand Timerl = New System.Windows.Forms.Timer(Me.components)
Me.Shaking Timer 1 = New System.Windows.Forms.Timer(Me.components)
Me.Timer2 = New System. Windows.Forms. Timer(Me.components)
Me.ToolTipl = New System.Windows.Forms.ToolTip(Me.components)
Me.ToolTip2 = New System.Windows.Forms.ToolTip(Me.components)
Me.Robot_Operating = New System.Windows.Forms.Timer(Me.components)
Me.State Action Best Timerl = New System.Windows.Forms.Timer(Me.components)
Me.Timerl = New System.Windows.Forms.Timer(Me.components)
Me.GroupBox1.SuspendLayout()

Me.GroupBox2.SuspendLayout()

Me.GroupBox3.SuspendLayout()

Me.GroupBox13.SuspendLayout()

Me.GroupBox11.SuspendLayout()

Me.GroupBox10.SuspendLayout()

Me.GroupBox9.SuspendLayout()

Me.GroupBox8.SuspendLayout()

Me.GroupBox7.SuspendLayout()

Me.GroupBox12.SuspendLayout()

Me.GroupBox14.SuspendLayout()

Me.GroupBox6.SuspendLayout()

Me.TabControl1.SuspendLayout()

Me.TabPage8.SuspendLayout()

Me.GroupBox38.SuspendLayout()

CType(Me.AxMSChart3, System.ComponentModel.ISupportInitialize). BeginInit()
CType(Me.AxMSChartl, System.ComponentModel.ISupportInitialize). BeginInit()
Me.GroupBox31.SuspendLayout()

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 233

Me.GroupBox18.SuspendLayout()

Me.GroupBox29.SuspendLayout()

Me.GroupBox30.SuspendLayout()

Me.GroupBox19.SuspendLayout()

Me.GroupBox20.SuspendLayout()

Me.GroupBox34.SuspendLayout()

Me.GroupBox4.SuspendLayout()

Me.GroupBox33.SuspendLayout()

Me.GroupBox35.SuspendLayout()

Me.GroupBox36.SuspendLayout()

Me.GroupBox37.SuspendLayout()

Me.GroupBox17.SuspendLayout()

CType(Me.AxWebBrowser3, System.ComponentModel. ISupportlnitialize). Beginlnit()
Me.TabPagel.SuspendLayout()

Me.GroupBox24.SuspendLayout()

Me.GroupBox26.SuspendLayout()

Me.GroupBox28.SuspendLayout()

Me.TabPage7.SuspendLayout()

Me.GroupBox25.SuspendLayout()

Me.GroupBox23.SuspendLayout()

Me.GroupBox22.SuspendLayout()

Me.TabPage2.SuspendLayout()

Me.GroupBox5.SuspendLayout()

CType(Me.AxWebBrowserl, System.ComponentModel. ISupportlnitialize). BeginInit()
CType(Me.AxWebBrowser2, System.ComponentModel. ISupportlnitialize). BeginInit()
Me.TabPage5.SuspendLayout()

Me.GroupBox32.SuspendLayout()

Me.GroupBox27.SuspendLayout()

Me.GroupBox21.SuspendLayout()

Me.GroupBox16.SuspendLayout()

Me.GroupBox15.SuspendLayout()

CType(Me.TrackBarl, System.ComponentModel.ISupportInitialize). BeginInit()
Me.TabPage4.SuspendLayout()

Me.TabPage3.SuspendLayout()

Me.SuspendLayout()

'CmdDownLoad

Me.CmdDownLoad.BackColor = System.Drawing.Color.FromArgb(CType(255, Byte), CType(255, Byte), CType(192,
Byte))

Me.CmdDownLoad.Cursor = System. Windows.Forms.Cursors.Default

Me.CmdDownLoad.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.CmdDownLoad.ForeColor = System.Drawing.SystemColors.Control Text
Me.CmdDownLoad.Location = New System.Drawing.Point(8, 48)

Me.CmdDownLoad.Name = "CmdDownLoad"

Me.CmdDownLoad.RightToLeft = System. Windows.Forms.RightToLeft.No

Me.CmdDownLoad.Size = New System.Drawing.Size(104, 40)

Me.CmdDownLoad.TabIndex = 1

Me.CmdDownLoad.Text = "Download Job"

'‘Buttonl

Me.Button1.BackColor = System.Drawing.Color.FromArgb(CType(255, Byte), CType(255, Byte), CType(192, Byte))
Me.Button1.Cursor = System.Windows.Forms.Cursors.Default

Me.Button1.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Buttonl.ForeColor = System.Drawing.SystemColors.Control Text

Me.Buttonl.Location = New System.Drawing.Point(8, 24)

Me.Buttonl.Name = "Button1"

Me.Buttonl.RightToLeft = System. Windows.Forms.RightToLeft.No

Me.Buttonl.Size = New System.Drawing.Size(104, 40)

Me.Buttonl.TabIndex = 4

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 234

Me.Buttonl.Text = "Open Communication"

'TextBox1

Me.TextBox1.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox1.Location = New System.Drawing.Point(88, 32)

Me.TextBox1.Name = "TextBox1"

Me.TextBox1.Size = New System.Drawing.Size(64, 20)

Me.TextBox1.Tablndex = 8

Me.TextBox1.Text =""

'TextBox2

Me.TextBox2.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox2.Location = New System.Drawing.Point(88, 72)

Me.TextBox2.Name = "TextBox2"

Me.TextBox2.Size = New System.Drawing.Size(64, 20)

Me.TextBox2.Tablndex =9

Me.TextBox2.Text =""

'Label2

Me.Label2.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label2.Location = New System.Drawing.Point(96, 16)

Me.Label2.Name = "Label2"

Me.Label2.Size = New System.Drawing.Size(32, 16)

Me.Label2.TabIndex = 11

Me.Label2.Text = "nCid"

'Label3

Me.Label3.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label3.Location = New System.Drawing.Point(96, 56)

Me.Label3.Name = "Label3"

Me.Label3.Size = New System.Drawing.Size(32, 16)

Me.Label3.Tablndex = 12

Me.Label3.Text = "rc"

'Label4

Me.Label4.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label4.Location = New System.Drawing.Point(8, 32)

Me.Label4.Name = "Label4"

Me.Label4.Size = New System.Drawing.Size(64, 16)

Me.Label4.TabIndex = 13

Me.Label4.Text = "BscOpen"

'Label5

Me.Label5.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label5.Location = New System.Drawing.Point(8, 72)

Me.Label5.Name = "Label5"

Me.Label5.Size = New System.Drawing.Size(64, 16)

Me.Label5.Tablndex = 14

Me.Label5.Text = "BscConnect"

'Label6

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 235

Me.Label6.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label6.Location = New System.Drawing.Point(8, 104)

Me.Label6.Name = "Label6"

Me.Label6.Size = New System.Drawing.Size(80, 16)

Me.Label6.TabIndex = 16

Me.Label6.Text = "BscDownLoad"

'"TextBox3

Me.TextBox3.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox3.Location = New System.Drawing.Point(88, 104)

Me.TextBox3.Name = "TextBox3"

Me.TextBox3.Size = New System.Drawing.Size(64, 20)

Me.TextBox3.Tablndex = 15

Me.TextBox3.Text =""

'Label7

Me.Label7.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label7.Location = New System.Drawing.Point(152, 72)

Me.Label7.Name = "Label 7"

Me.Label7.Size = New System.Drawing.Size(32, 16)

Me.Label7.TabIndex = 18

Me.Label7.Text ="(1)"

'Label8

Me.Label8.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label8.Location = New System.Drawing.Point(152, 40)

Me.Label8.Name = "Label8"

Me.Label8.Size = New System.Drawing.Size(48, 16)

Me.Label8.TabIndex = 19

Me.Label8.Text = "(not -1)"

'Label9

Me.Label9.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label9.Location = New System.Drawing.Point(152, 112)

Me.Label9.Name = "Label9"

Me.Label9.Size = New System.Drawing.Size(32, 16)

Me.Label9.Tablndex = 20

Me.Label9.Text = "(0)"

'Button4

Me.Button4.BackColor = System.Drawing.Color.FromArgb(CType(255, Byte), CType(255, Byte), CType(192, Byte))
Me.Button4.Cursor = System. Windows.Forms.Cursors.Default

Me.Button4.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button4.ForeColor = System.Drawing.SystemColors.Control Text

Me.Button4.Location = New System.Drawing.Point(72, 136)

Me.Button4.Name = "Button4"

Me.Button4.RightToLeft = System. Windows.Forms.RightToLeft.No

Me.Button4.Size = New System.Drawing.Size(56, 32)

Me.Button4.TabIndex = 21

Me.Button4.Text = "Clear"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 236

'Button5

Me.Button5.BackColor = System.Drawing.Color.FromArgb(CType(255, Byte), CType(255, Byte), CType(192, Byte))
Me.Button5.Cursor = System. Windows.Forms.Cursors.Default

Me.Button5.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button5.ForeColor = System.Drawing.SystemColors.Control Text

Me.Button5.Location = New System.Drawing.Point(8, 96)

Me.Button5.Name = "Button5"

Me.Button5.RightToLeft = System.Windows.Forms.RightToLeft.No

Me.Button5.Size = New System.Drawing.Size(104, 40)

Me.Button5.TabIndex = 23

Me.Button5.Text = "Delete Job"

'Button6

Me.Button6.BackColor = System.Drawing.Color.FromArgb(CType(255, Byte), CType(255, Byte), CType(192, Byte))
Me.Button6.Cursor = System. Windows.Forms.Cursors.Default

Me.Button6.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button6.ForeColor = System.Drawing.SystemColors.Control Text

Me.Button6.Location = New System.Drawing.Point(8, 144)

Me.Button6.Name = "Button6"

Me.Button6.RightToLeft = System. Windows.Forms.RightToLeft.No

Me.Button6.Size = New System.Drawing.Size(104, 40)

Me.Button6.Tablndex = 24

Me.Button6.Text = "Run Job"

'CheckBox1

Me.CheckBox1.Checked = True

Me.CheckBox1.CheckState = System. Windows.Forms.CheckState.Checked
Me.CheckBox1.Location = New System.Drawing.Point(80, 136)
Me.CheckBox1.Name = "CheckBox1"

Me.CheckBox1.Size = New System.Drawing.Size(16, 16)
Me.CheckBox1.TabIndex = 25

Me.CheckBox1.Text = "Teach / Play"

'CheckBox2

Me.CheckBox2.Location = New System.Drawing.Point(80, 160)
Me.CheckBox2.Name = "CheckBox2"

Me.CheckBox2.Size = New System.Drawing.Size(16, 16)
Me.CheckBox2.TabIndex = 26

Me.CheckBox2.Text = "Servo"

'Button7

Me.Button7.BackColor = System.Drawing.Color.FromArgb(CType(255, Byte), CType(255, Byte), CType(192, Byte))
Me.Button7.Cursor = System. Windows.Forms.Cursors.Default

Me.Button7.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button7.ForeColor = System.Drawing.SystemColors.Control Text

Me.Button7.Location = New System.Drawing.Point(128, 48)

Me.Button7.Name = "Button7"

Me.Button7.RightToLeft = System.Windows.Forms.RightToLeft.No

Me.Button7.Size = New System.Drawing.Size(104, 40)

Me.Button7.Tablndex = 27

Me.Button7.Text = "Upload Job"

'TextBox4

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 237

Me.TextBox4.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox4.Location = New System.Drawing.Point(128, 24)

Me.TextBox4.Name = "TextBox4"

Me.TextBox4.Size = New System.Drawing.Size(104, 20)

Me.TextBox4.Tablndex = 28

Me.TextBox4.Text = "BAGS1.JBI"

'Button9

Me.Button9.BackColor = System.Drawing.Color.Red
Me.Button9.Cursor = System. Windows.Forms.Cursors.Default
Me.Button9.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.Button9.ForeColor = System.Drawing.Color.Yellow
Me.Button9.Location = New System.Drawing.Point(128, 96)
Me.Button9.Name = "Button9"

Me.Button9.RightToLeft = System. Windows.Forms.RightToLeft.No
Me.Button9.Size = New System.Drawing.Size(104, 40)
Me.Button9.TabIndex = 30

Me.Button9.Text = "Emergency Stop"

'Labell0

Me.Label10.Location = New System.Drawing.Point(104, 136)
Me.Label10.Name = "Label10"

Me.Label10.Size = New System.Drawing.Size(80, 16)
Me.Label10.Tablndex = 31

'Labelll

Me.Labell1.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Labell 1.Location = New System.Drawing.Point(40, 136)

Me.Labell1.Name = "Labell1"

Me.Labell1.Size = New System.Drawing.Size(36, 16)

Me.Labell 1.Tablndex = 32

Me.Labell1.Text = "Mode:"

'Labell2

Me.Label12.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label12.Location = New System.Drawing.Point(40, 160)

Me.Label12.Name = "Label12"

Me.Label12.Size = New System.Drawing.Size(36, 16)

Me.Label12.Tablndex =33

Me.Label12.Text = "Servo:"

'Labell3

Me.Labell3.Location = New System.Drawing.Point(104, 160)
Me.Label13.Name = "Label13"

Me.Label13.Size = New System.Drawing.Size(80, 16)
Me.Label13.Tablndex = 34

'Labell4

Me.Label14.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Labell4.Location = New System.Drawing.Point(8, 104)

Me.Label14.Name = "Label14"

Me.Label14.Size = New System.Drawing.Size(128, 16)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 238

Me.Label14.Tablndex = 35
Me.Label14.Text = "Communication Status:"

'Labell5

Me.Labell5.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Labell5.Location = New System.Drawing.Point(136, 104)

Me.Labell5.Name = "Label15"

Me.Label15.Size = New System.Drawing.Size(96, 16)

Me.Label15.Tablndex =36

Me.Labell5.Text = "Disconnected"

'Button10

Me.Button10.BackColor = System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, Byte), CType(192, Byte))
Me.Button10.Cursor = System.Windows.Forms.Cursors.Default

Me.Button10.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button10.ForeColor = System.Drawing.SystemColors.Control Text

Me.Button10.Location = New System.Drawing.Point(8, 56)

Me.Button10.Name = "Button10"

Me.Button10.RightToLeft = System.Windows.Forms.RightToLeft.No

Me.Button10.Size = New System.Drawing.Size(50, 30)

Me.Button10.TabIndex = 38

Me.Button10.Text = "X-"

'Button2

Me.Button2.BackColor = System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, Byte), CType(192, Byte))
Me.Button2.Cursor = System. Windows.Forms.Cursors.Default

Me.Button2.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button2.ForeColor = System.Drawing.SystemColors.Control Text

Me.Button2.Location = New System.Drawing.Point(8, 24)

Me.Button2.Name = "Button2"

Me.Button2.RightToLeft = System. Windows.Forms.RightToLeft.No

Me.Button2.Size = New System.Drawing.Size(50, 30)

Me.Button2.TabIndex = 37

Me.Button2.Text = "X+"

'‘Buttonl1

Me.Button11.BackColor = System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, Byte), CType(192, Byte))
Me.Button11.Cursor = System.Windows.Forms.Cursors.Default

Me.Buttonl1.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Buttonl 1.ForeColor = System.Drawing.SystemColors.Control Text

Me.Buttonl 1.Location = New System.Drawing.Point(64, 56)

Me.Buttonl1.Name = "Button11"

Me.Button1 1.RightToLeft = System.Windows.Forms.RightToLeft.No

Me.Button11.Size = New System.Drawing.Size(50, 30)

Me.Buttonl1.TabIndex = 40

Me.Button11.Text ="Y-"

'Button12

Me.Button12.BackColor = System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, Byte), CType(192, Byte))
Me.Button12.Cursor = System.Windows.Forms.Cursors.Default

Me.Button12.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button12.ForeColor = System.Drawing.SystemColors.Control Text

Me.Button12.Location = New System.Drawing.Point(64, 24)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 239

Me.Button12.Name = "Button12"

Me.Button12.RightToLeft = System.Windows.Forms.RightToLeft.No
Me.Button12.Size = New System.Drawing.Size(50, 30)
Me.Button12.TabIndex = 39

Me.Button12.Text ="Y+"

'‘Button13

Me.Button13.BackColor = System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, Byte), CType(192, Byte))
Me.Button13.Cursor = System.Windows.Forms.Cursors.Default

Me.Button13.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button13.ForeColor = System.Drawing.SystemColors.Control Text

Me.Button13.Location = New System.Drawing.Point(120, 56)

Me.Button13.Name = "Button13"

Me.Button13.RightToLeft = System. Windows.Forms.RightToLeft.No

Me.Button13.Size = New System.Drawing.Size(50, 30)

Me.Button13.TabIndex = 42

Me.Button13.Text = "Z-"

'Button14

Me.Button14.BackColor = System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, Byte), CType(192, Byte))
Me.Button14.Cursor = System.Windows.Forms.Cursors.Default

Me.Button14.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button14.ForeColor = System.Drawing.SystemColors.Control Text

Me.Button14.Location = New System.Drawing.Point(120, 24)

Me.Button14.Name = "Button14"

Me.Button14.RightToLeft = System. Windows.Forms.RightToLeft.No

Me.Button14.Size = New System.Drawing.Size(50, 30)

Me.Button14.Tablndex = 41

Me.Button14.Text = "Z+"

'Buttonl5

Me.Button15.BackColor = System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, Byte), CType(192, Byte))
Me.Button15.Cursor = System.Windows.Forms.Cursors.Default

Me.Button15.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button15.ForeColor = System.Drawing.SystemColors.Control Text

Me.Button15.Location = New System.Drawing.Point(8, 24)

Me.Button15.Name = "Button15"

Me.Button15.RightToLeft = System.Windows.Forms.RightToLeft.No

Me.Button15.Size = New System.Drawing.Size(50, 30)

Me.Button15.TabIndex = 43

Me.Button15.Text = "Roll+"

'Button16

Me.Button16.BackColor = System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, Byte), CType(192, Byte))
Me.Button16.Cursor = System.Windows.Forms.Cursors.Default

Me.Button16.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button16.ForeColor = System.Drawing.SystemColors.Control Text

Me.Button16.Location = New System.Drawing.Point(8, 56)

Me.Button16.Name = "Button16"

Me.Button16.RightToLeft = System.Windows.Forms.RightToLeft.No

Me.Button16.Size = New System.Drawing.Size(50, 30)

Me.Button16.TabIndex = 44

Me.Button16.Text = "Roll-"

'Button17

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 240

Me.Button17.BackColor = System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, Byte), CType(192, Byte))
Me.Button17.Cursor = System.Windows.Forms.Cursors.Default

Me.Button17.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button17.ForeColor = System.Drawing.SystemColors.Control Text

Me.Button17.Location = New System.Drawing.Point(64, 56)

Me.Button17.Name = "Button17"

Me.Button17.RightToLeft = System.Windows.Forms.RightToLeft.No

Me.Button17.Size = New System.Drawing.Size(50, 30)

Me.Button17.Tablndex = 46

Me.Button17.Text = "Pitch-"

'Button18

Me.Button18.BackColor = System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, Byte), CType(192, Byte))
Me.Button18.Cursor = System.Windows.Forms.Cursors.Default

Me.Button18.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button18.ForeColor = System.Drawing.SystemColors.Control Text

Me.Button18.Location = New System.Drawing.Point(64, 24)

Me.Button18.Name = "Button18"

Me.Button18.RightToLeft = System.Windows.Forms.RightToLeft.No

Me.Button18.Size = New System.Drawing.Size(50, 30)

Me.Button18.TabIndex = 45

Me.Button18.Text = "Pitch+"

'Button19

Me.Button19.BackColor = System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, Byte), CType(192, Byte))
Me.Button19.Cursor = System.Windows.Forms.Cursors.Default

Me.Button19.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button19.ForeColor = System.Drawing.SystemColors.Control Text

Me.Button19.Location = New System.Drawing.Point(120, 56)

Me.Button19.Name = "Button19"

Me.Button19.RightToLeft = System.Windows.Forms.RightToLeft.No

Me.Button19.Size = New System.Drawing.Size(50, 30)

Me.Button19.TabIndex = 48

Me.Button19.Text = "Yaw-"

'‘Button20

Me.Button20.BackColor = System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, Byte), CType(192, Byte))
Me.Button20.Cursor = System. Windows.Forms.Cursors.Default

Me.Button20.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button20.ForeColor = System.Drawing.SystemColors.Control Text

Me.Button20.Location = New System.Drawing.Point(120, 24)

Me.Button20.Name = "Button20"

Me.Button20.RightToLeft = System. Windows.Forms.RightToLeft.No

Me.Button20.Size = New System.Drawing.Size(50, 30)

Me.Button20.TabIndex = 47

Me.Button20.Text = "Yaw+"

'Button8

Me.Button8.BackColor = System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, Byte), CType(255, Byte))
Me.Button8.Cursor = System. Windows.Forms.Cursors.Default

Me.Button8.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button8.ForeColor = System.Drawing.SystemColors.Control Text

Me.Button8.Location = New System.Drawing.Point(72, 24)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 241

Me.Button8.Name = "Button8"

Me.Button8.RightToLeft = System. Windows.Forms.RightToLeft.No
Me.Button8.Size = New System.Drawing.Size(56, 40)
Me.Button8.TabIndex = 49

Me.Button8.Text = "Home Center"

'Button21

Me.Button21.BackColor = System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, Byte), CType(255, Byte))
Me.Button21.Cursor = System.Windows.Forms.Cursors.Default

Me.Button21.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button21.ForeColor = System.Drawing.SystemColors.Control Text

Me.Button21.Location = New System.Drawing.Point(136, 24)

Me.Button21.Name = "Button21"

Me.Button21.RightToLeft = System.Windows.Forms.RightToLeft.No

Me.Button21.Size = New System.Drawing.Size(56, 40)

Me.Button21.TabIndex = 50

Me.Button21.Text = "Home Right"

'Button22

Me.Button22.BackColor = System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, Byte), CType(255, Byte))
Me.Button22.Cursor = System.Windows.Forms.Cursors.Default

Me.Button22.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button22.ForeColor = System.Drawing.SystemColors.Control Text

Me.Button22.Location = New System.Drawing.Point(8, 24)

Me.Button22.Name = "Button22"

Me.Button22.RightToLeft = System. Windows.Forms.RightToLeft.No

Me.Button22.Size = New System.Drawing.Size(56, 40)

Me.Button22.Tablndex = 51

Me.Button22.Text = "Home Left"

'Button23

Me.Button23.BackColor = System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, Byte), CType(192, Byte))
Me.Button23.Cursor = System. Windows.Forms.Cursors.Default

Me.Button23.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button23.ForeColor = System.Drawing.SystemColors.Control Text

Me.Button23.Location = New System.Drawing.Point(8, 24)

Me.Button23.Name = "Button23"

Me.Button23.RightToLeft = System.Windows.Forms.RightToLeft.No

Me.Button23.Size = New System.Drawing.Size(50, 30)

Me.Button23.TabIndex = 52

Me.Button23.Text = "Open"

'Button24

Me.Button24.BackColor = System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, Byte), CType(192, Byte))
Me.Button24.Cursor = System. Windows.Forms.Cursors.Default

Me.Button24.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button24.ForeColor = System.Drawing.SystemColors.Control Text

Me.Button24.Location = New System.Drawing.Point(8, 56)

Me.Button24.Name = "Button24"

Me.Button24.RightToLeft = System. Windows.Forms.RightToLeft.No

Me.Button24.Size = New System.Drawing.Size(50, 30)

Me.Button24.TabIndex = 53

Me.Button24.Text = "Close"

'Button25

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 242

Me.Button25.BackColor = System.Drawing.Color.Red
Me.Button25.Cursor = System. Windows.Forms.Cursors.Default
Me.Button25.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.Button25.ForeColor = System.Drawing.Color.Yellow
Me.Button25.Location = New System.Drawing.Point(168, 136)
Me.Button25.Name = "Button25"

Me.Button25.RightToLeft = System.Windows.Forms.RightToLeft.No
Me.Button25.Size = New System.Drawing.Size(96, 48)
Me.Button25.Tablndex = 62

Me.Button25.Text = "Stop"

'TextBox6

Me.TextBox6.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox6.Location = New System.Drawing.Point(8, 24)

Me.TextBox6.Name = "TextBox6"

Me.TextBox6.Size = New System.Drawing.Size(104, 20)

Me.TextBox6.Tablndex = 63

Me.TextBox6.Text = "POLICY1.JBI"

'GroupBox1

Me.GroupBox1.Controls.Add(Me.CheckBox2)
Me.GroupBox1.Controls.Add(Me.Button1)
Me.GroupBox1.Controls.Add(Me.Label10)
Me.GroupBox1.Controls.Add(Me.Labell1)
Me.GroupBox1.Controls.Add(Me.Label12)
Me.GroupBox1.Controls.Add(Me.Label13)
Me.GroupBox1.Controls.Add(Me.Label14)
Me.GroupBox1.Controls.Add(Me.Labell5)
Me.GroupBox1.Controls.Add(Me.CheckBox1)
Me.GroupBox1.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.GroupBox1.Location = New System.Drawing.Point(16, 344)
Me.GroupBox1.Name = "GroupBox1"

Me.GroupBox1.Size = New System.Drawing.Size(240, 184)
Me.GroupBox1.TabIndex = 64

Me.GroupBox1.TabStop = False

Me.GroupBox1.Text = "Communication"

'GroupBox2

Me.GroupBox2.Controls.Add(Me.Button7)
Me.GroupBox2.Controls.Add(Me.TextBox4)
Me.GroupBox2.Controls.Add(Me.Button5)
Me.GroupBox2.Controls.Add(Me.Button6)
Me.GroupBox2.Controls.Add(Me.TextBox6)
Me.GroupBox2.Controls.Add(Me.CmdDownLoad)
Me.GroupBox2.Controls.Add(Me.Button9)
Me.GroupBox2.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.GroupBox2.Location = New System.Drawing.Point(16, 536)
Me.GroupBox2.Name = "GroupBox2"

Me.GroupBox2.Size = New System.Drawing.Size(240, 192)
Me.GroupBox2.TabIndex = 65

Me.GroupBox2.TabStop = False

Me.GroupBox2.Text = "Download / Upload"

'GroupBox3

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

243

Me.GroupBox3.Controls.Add(Me.GroupBox13)
Me.GroupBox3.Controls.Add(Me.GroupBox11)
Me.GroupBox3.Controls.Add(Me.GroupBox10)
Me.GroupBox3.Controls.Add(Me.GroupBox12)
Me.GroupBox3.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.GroupBox3.Location = New System.Drawing.Point(8, 16)
Me.GroupBox3.Name = "GroupBox3"

Me.GroupBox3.Size = New System.Drawing.Size(488, 456)
Me.GroupBox3.TabIndex = 66

Me.GroupBox3.TabStop = False

Me.GroupBox3.Text = "Robot Setup"

'GroupBox13

Me.GroupBox13.Controls.Add(Me.Button21)
Me.GroupBox13.Controls.Add(Me.Button22)
Me.GroupBox13.Controls. Add(Me.Button§8)
Me.GroupBox13.Location = New System.Drawing.Point(248, 40)
Me.GroupBox13.Name = "GroupBox13"

Me.GroupBox13.Size = New System.Drawing.Size(200, 72)
Me.GroupBox13.TablIndex = 83

Me.GroupBox13.TabStop = False

Me.GroupBox13.Text = "Home Positions"

'GroupBox11

Me.GroupBox11.Controls.Add(Me.TextBox11)
Me.GroupBox11.Controls.Add(Me.Label18)
Me.GroupBox11.Controls.Add(Me.Label25)
Me.GroupBox11.Controls.Add(Me.CheckBox5)
Me.GroupBox11.Controls.Add(Me.Label17)
Me.GroupBox11.Controls.Add(Me.Label1)
Me.GroupBox11.Controls.Add(Me.CheckBox4)
Me.GroupBox11.Controls.Add(Me.TextBox10)
Me.GroupBox11.Controls.Add(Me.Label23)
Me.GroupBox11.Controls.Add(Me.Label24)
Me.GroupBox11.Location = New System.Drawing.Point(56, 32)
Me.GroupBox11.Name = "GroupBox11"
Me.GroupBox11.Size = New System.Drawing.Size(168, 192)
Me.GroupBox11.TabIndex = 82

Me.GroupBox11.TabStop = False

Me.GroupBox11.Text = "Operational Mode"

'TextBox11

Me.TextBox11.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,

System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.TextBox11.Location = New System.Drawing.Point(16, 152)
Me.TextBox11.Name = "TextBox11"

Me.TextBox11.Size = New System.Drawing.Size(72, 20)
Me.TextBox11.TabIndex = 88

Me.TextBox11.Text ="5"

'Labell8

Me.Label18.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label18.Location = New System.Drawing.Point(96, 152)

Me.Labell18.Name = "Label18"

Me.Labell8.Size = New System.Drawing.Size(24, 16)

Me.Labell8.TabIndex = 90

Me.Label18.Text = "cm"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

244

'Label25

Me.Label25.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label25.Location = New System.Drawing.Point(16, 128)

Me.Label25.Name = "Label25"

Me.Label25.Size = New System.Drawing.Size(88, 16)

Me.Label25.TabIndex = 89

Me.Label25.Text = "Wrist Step Size:"

'CheckBox5

Me.CheckBox5.Checked = True

Me.CheckBox5.CheckState = System. Windows.Forms.CheckState.Checked
Me.CheckBox5.Location = New System.Drawing.Point(32, 48)
Me.CheckBox5.Name = "CheckBox5"

Me.CheckBox5.Size = New System.Drawing.Size(16, 16)
Me.CheckBox5.TabIndex = 87

'Labell7

Me.Label17.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Labell7.Location = New System.Drawing.Point(16, 24)

Me.Labell7.Name = "Label17"

Me.Labell7.Size = New System.Drawing.Size(80, 16)

Me.Labell7.TabIndex = 86

Me.Labell7.Text = "Incremental"

'Labell

Me.Labell.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Labell.Location = New System.Drawing.Point(96, 24)

Me.Labell.Name = "Labell"

Me.Labell.Size = New System.Drawing.Size(64, 16)

Me.Labell.TabIndex = 85

Me.Labell.Text = "Continious"

'CheckBox4

Me.CheckBox4.Location = New System.Drawing.Point(112, 48)
Me.CheckBox4.Name = "CheckBox4"

Me.CheckBox4.Size = New System.Drawing.Size(16, 16)
Me.CheckBox4.TabIndex = 84

'TextBox10

Me.TextBox10.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,

System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.TextBox10.Location = New System.Drawing.Point(16, 96)
Me.TextBox10.Name = "TextBox10"

Me.TextBox10.Size = New System.Drawing.Size(72, 20)
Me.TextBox10.Tablndex = 84

Me.TextBox10.Text="10"

'Label23

Me.Label23.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label23.Location = New System.Drawing.Point(96, 96)

Me.Label23.Name = "Label23"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

245

Me.Label23.Size = New System.Drawing.Size(24, 16)
Me.Label23.TabIndex = 86
Me.Label23.Text = "cm"

'Label24

Me.Label24.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label24.Location = New System.Drawing.Point(16, 72)

Me.Label24.Name = "Label24"

Me.Label24.Size = New System.Drawing.Size(88, 16)

Me.Label24.TabIndex = 85

Me.Label24.Text = "Arm Step Size:"

'GroupBox10

Me.GroupBox10.Controls.Add(Me.GroupBox9)
Me.GroupBox10.Controls.Add(Me.GroupBox8)
Me.GroupBox10.Controls.Add(Me.GroupBox7)
Me.GroupBox10.Controls.Add(Me.Button25)
Me.GroupBox10.Location = New System.Drawing.Point(16, 240)
Me.GroupBox10.Name = "GroupBox10"

Me.GroupBox10.Size = New System.Drawing.Size(456, 200)
Me.GroupBox10.TabIndex = 81

Me.GroupBox10.TabStop = False

Me.GroupBox10.Text = "Robot Joint Commands"

'GroupBox9

Me.GroupBox9.Controls.Add(Me.Button23)
Me.GroupBox9.Controls.Add(Me.Button24)
Me.GroupBox9.Location = New System.Drawing.Point(376, 24)
Me.GroupBox9.Name = "GroupBox9"

Me.GroupBox9.Size = New System.Drawing.Size(68, 96)
Me.GroupBox9.TabIndex = 80

Me.GroupBox9.TabStop = False

Me.GroupBox9.Text = "Gripper"

'GroupBox8

Me.GroupBox8.Controls.Add(Me.Button20)
Me.GroupBox8.Controls.Add(Me.Button19)
Me.GroupBox8.Controls.Add(Me.Button18)
Me.GroupBox8.Controls.Add(Me.Button17)
Me.GroupBox8.Controls.Add(Me.Button16)
Me.GroupBox8.Controls.Add(Me.Button15)
Me.GroupBox8.Location = New System.Drawing.Point(192, 24)
Me.GroupBox8.Name = "GroupBox8"
Me.GroupBox8.Size = New System.Drawing.Size(176, 96)
Me.GroupBox8.TabIndex = 79

Me.GroupBox8.TabStop = False

Me.GroupBox8.Text = "Wrist"

'GroupBox7

Me.GroupBox7.Controls.Add(Me.Button12)
Me.GroupBox7.Controls.Add(Me.Button10)
Me.GroupBox7.Controls.Add(Me.Button2)
Me.GroupBox7.Controls.Add(Me.Button11)
Me.GroupBox7.Controls.Add(Me.Button13)
Me.GroupBox7.Controls.Add(Me.Button14)
Me.GroupBox7.Location = New System.Drawing.Point(8, 24)
Me.GroupBox7.Name = "GroupBox7"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 246

Me.GroupBox7.Size = New System.Drawing.Size(176, 96)
Me.GroupBox7.TabIndex = 78

Me.GroupBox7.TabStop = False

Me.GroupBox7.Text = "Arm"

'GroupBox 12

Me.GroupBox12.Controls.Add(Me.Label20)
Me.GroupBox12.Controls.Add(Me.Label22)
Me.GroupBox12.Controls.Add(Me.TextBox9)
Me.GroupBox12.Controls.Add(Me.Label21)
Me.GroupBox12.Controls.Add(Me.Label19)
Me.GroupBox12.Controls.Add(Me.TextBox8)
Me.GroupBox12.Location = New System.Drawing.Point(256, 136)
Me.GroupBox12.Name = "GroupBox12"
Me.GroupBox12.Size = New System.Drawing.Size(176, 88)
Me.GroupBox12.TabIndex = 83

Me.GroupBox12.TabStop = False

Me.GroupBox12.Text = "Speed"

'Label20

Me.Label20.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label20.Location = New System.Drawing.Point(128, 56)

Me.Label20.Name = "Label20"

Me.Label20.Size = New System.Drawing.Size(40, 16)

Me.Label20.Tablndex = 74

Me.Label20.Text = "cm/sec"

'Label22

Me.Label22.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label22.Location = New System.Drawing.Point(8, 56)

Me.Label22.Name = "Label22"

Me.Label22.Size = New System.Drawing.Size(40, 16)

Me.Label22.TabIndex = 73

Me.Label22.Text = "Wrist:"

'"TextBox9

Me.TextBox9.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox9.Location = New System.Drawing.Point(48, 56)

Me.TextBox9.Name = "TextBox9"

Me.TextBox9.Size = New System.Drawing.Size(72, 20)

Me.TextBox9.TabIndex = 72

Me.TextBox9.Text ="5"

'Label21

Me.Label21.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label21.Location = New System.Drawing.Point(128, 24)

Me.Label21.Name = "Label21"

Me.Label21.Size = New System.Drawing.Size(40, 16)

Me.Label21.Tablndex = 71

Me.Label21.Text = "cm/sec"

'Labell9

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 247

Me.Label19.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label19.Location = New System.Drawing.Point(8, 24)

Me.Label19.Name = "Label19"

Me.Label19.Size = New System.Drawing.Size(32, 16)

Me.Label19.Tablndex = 70

Me.Label19.Text = "Arm:"

'"TextBox8

Me.TextBox8.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox8.Location = New System.Drawing.Point(48, 24)

Me.TextBox8.Name = "TextBox8"

Me.TextBox8.Size = New System.Drawing.Size(72, 20)

Me.TextBox8.TabIndex = 69

Me.TextBox8.Text ="10"

'GroupBox 14

Me.GroupBox14.Controls.Add(Me.Label28)
Me.GroupBox14.Controls.Add(Me.ComboBox1)
Me.GroupBox14.Controls.Add(Me.Label33)
Me.GroupBox14.Controls. Add(Me.TextBox39)
Me.GroupBox14.Controls.Add(Me.Label34)
Me.GroupBox14.Controls.Add(Me.Label32)
Me.GroupBox14.Controls.Add(Me.TextBox38)
Me.GroupBox14.Controls.Add(Me.Label31)
Me.GroupBox14.Controls.Add(Me.Label30)
Me.GroupBox14.Controls.Add(Me.TextBox37)
Me.GroupBox14.Controls.Add(Me.Button26)
Me.GroupBox14.Location = New System.Drawing.Point(368, 560)
Me.GroupBox14.Name = "GroupBox14"
Me.GroupBox14.Size = New System.Drawing.Size(216, 208)
Me.GroupBox14.TabIndex = 84

Me.GroupBox14.TabStop = False

Me.GroupBox14.Text = "Robot Shaking Commands"
Me.GroupBox14.Visible = False

'Label28

Me.Label28.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label28.Location = New System.Drawing.Point(16, 40)

Me.Label28.Name = "Label28"

Me.Label28.Size = New System.Drawing.Size(32, 16)

Me.Label28.TabIndex = 102

Me.Label28.Text = "Axis:"

'ComboBox1

Me.ComboBox1.Items.AddRange(New Object() {"X", "Y", "Z"})
Me.ComboBox1.Location = New System.Drawing.Point(80, 32)
Me.ComboBox1.Name = "ComboBox1"

Me.ComboBox1.Size = New System.Drawing.Size(80, 22)
Me.ComboBox1.TabIndex = 101

Me.ComboBox1.Text = "Axis"

'Label33
Me.Label33.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,

System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.Label33.Location = New System.Drawing.Point(160, 136)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 248

Me.Label33.Name = "Label33"

Me.Label33.Size = New System.Drawing.Size(48, 16)
Me.Label33.TabIndex = 99

Me.Label33.Text = "cm / sec"

'"TextBox39

Me.TextBox39.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox39.Location = New System.Drawing.Point(80, 128)

Me.TextBox39.Name = "TextBox39"

Me.TextBox39.Size = New System.Drawing.Size(72, 20)

Me.TextBox39.TabIlndex = 98

Me.TextBox39.Text = "1500"

'Label34

Me.Label34.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label34.Location = New System.Drawing.Point(16, 136)

Me.Label34.Name = "Label34"

Me.Label34.Size = New System.Drawing.Size(48, 16)

Me.Label34.Tablndex = 97

Me.Label34.Text = "Speed:"

'Label32

Me.Label32.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label32.Location = New System.Drawing.Point(160, 104)

Me.Label32.Name = "Label32"

Me.Label32.Size = New System.Drawing.Size(24, 16)

Me.Label32.Tablndex = 96

Me.Label32.Text = "cm"

'TextBox38

Me.TextBox38.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox38.Location = New System.Drawing.Point(80, 96)

Me.TextBox38.Name = "TextBox38"

Me.TextBox38.Size = New System.Drawing.Size(72, 20)

Me.TextBox38.TabIndex = 95

Me.TextBox38.Text ="5"

'Label31

Me.Label31.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label31.Location = New System.Drawing.Point(16, 104)

Me.Label31.Name = "Label31"

Me.Label31.Size = New System.Drawing.Size(64, 16)

Me.Label31.TabIndex = 94

Me.Label31.Text = "Amplitude:"

'Label30

Me.Label30.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label30.Location = New System.Drawing.Point(16, 72)

Me.Label30.Name = "Label30"

Me.Label30.Size = New System.Drawing.Size(48, 16)

Me.Label30.TabIndex = 93

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 249

Me.Label30.Text = "Times:"
'TextBox37

Me.TextBox37.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox37.Location = New System.Drawing.Point(80, 64)

Me.TextBox37.Name = "TextBox37"

Me.TextBox37.Size = New System.Drawing.Size(72, 20)

Me.TextBox37.Tablndex = 92

Me.TextBox37.Text="5"

'Button26

Me.Button26.BackColor = System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, Byte), CType(192, Byte))
Me.Button26.Cursor = System. Windows.Forms.Cursors.Default

Me.Button26.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button26.ForeColor = System.Drawing.SystemColors.Control Text

Me.Button26.Location = New System.Drawing.Point(88, 168)

Me.Button26.Name = "Button26"

Me.Button26.RightToLeft = System.Windows.Forms.RightToLeft.No

Me.Button26.Size = New System.Drawing.Size(50, 30)

Me.Button26.TabIndex = 54

Me.Button26.Text = "Run"

'CheckBox3

Me.CheckBox3.Checked = True

Me.CheckBox3.CheckState = System. Windows.Forms.CheckState.Checked
Me.CheckBox3.Location = New System.Drawing.Point(544, 448)
Me.CheckBox3.Name = "CheckBox3"

Me.CheckBox3.Size = New System.Drawing.Size(16, 16)
Me.CheckBox3.TabIndex = 91

Me.CheckBox3.Visible = False

'Label26

Me.Label26.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label26.Location = New System.Drawing.Point(512, 424)

Me.Label26.Name = "Label26"

Me.Label26.Size = New System.Drawing.Size(104, 16)

Me.Label26.Tablndex = 90

Me.Label26.Text = "World Coordinates"

Me.Label26.Visible = False

'Label27

Me.Label27.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label27.Location = New System.Drawing.Point(624, 424)

Me.Label27.Name = "Label27"

Me.Label27.Size = New System.Drawing.Size(96, 16)

Me.Label27.Tablndex = 89

Me.Label27.Text = "Base Coordinates"

Me.Label27.Visible = False

'CheckBox6
Me.CheckBox6.Location = New System.Drawing.Point(656, 448)

Me.CheckBox6.Name = "CheckBox6"
Me.CheckBox6.Size = New System.Drawing.Size(16, 16)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

250

Me.CheckBox6.Tablndex = 88
Me.CheckBox6.Visible = False

'GroupBox6

Me.GroupBox6.Controls.Add(Me.Label7)
Me.GroupBox6.Controls.Add(Me.Label8)
Me.GroupBox6.Controls.Add(Me.TextBox1)
Me.GroupBox6.Controls.Add(Me.TextBox2)
Me.GroupBox6.Controls.Add(Me.Label2)
Me.GroupBox6.Controls.Add(Me.Label3)
Me.GroupBox6.Controls.Add(Me.Label4)
Me.GroupBox6.Controls.Add(Me.Label5)
Me.GroupBox6.Controls.Add(Me.Label6)
Me.GroupBox6.Controls.Add(Me.TextBox3)
Me.GroupBox6.Controls.Add(Me.Label9)
Me.GroupBox6.Controls.Add(Me.Button4)

Me.GroupBox6.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,

System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.GroupBox6.Location = New System.Drawing.Point(264, 352)
Me.GroupBox6.Name = "GroupBox6"

Me.GroupBox6.Size = New System.Drawing.Size(208, 176)
Me.GroupBox6.TabIndex = 69

Me.GroupBox6.TabStop = False

Me.GroupBox6.Text = "Messeges"

'TabControll

Me.TabControl1.Controls.Add(Me.TabPage8)
Me.TabControl1.Controls.Add(Me.TabPagel)
Me.TabControl1.Controls.Add(Me.TabPage7)
Me.TabControl1.Controls.Add(Me.TabPage?2)
Me.TabControl1.Controls.Add(Me.TabPage5)
Me.TabControl1.Controls.Add(Me.TabPage4)
Me.TabControl1.Controls.Add(Me.TabPage3)

Me.TabControl1.Font = New System.Drawing.Font("Arial", 12.0!, System.Drawing.FontStyle.Bold)

Me.TabControll.Location = New System.Drawing.Point(16, 8)
Me.TabControll.Name = "TabControl1"
Me.TabControl1.SelectedIndex = 0

Me.TabControl1.Size = New System.Drawing.Size(1272, 824)
Me.TabControl1.TabIndex = 84

'"TabPage8

Me.TabPage8.Controls.Add(Me.CheckBox13)
Me.TabPage8.Controls.Add(Me.Label92)
Me.TabPage8.Controls.Add(Me.TextBox133)
Me.TabPage8.Controls. Add(Me.Button42)
Me.TabPage8.Controls.Add(Me.GroupBox38)
Me.TabPage8.Controls.Add(Me.GroupBox31)
Me.TabPage8.Controls.Add(Me.GroupBox18)
Me.TabPage8.Controls.Add(Me.GroupBox29)
Me.TabPage8.Controls.Add(Me.GroupBox19)
Me.TabPage8.Controls.Add(Me.GroupBox17)
Me.TabPage8.Controls.Add(Me.Button55)
Me.TabPage8.Controls.Add(Me.Button49)
Me.TabPage8.Controls.Add(Me.Button46)
Me.TabPage8.Location = New System.Drawing.Point(4, 28)
Me.TabPage8.Name = "TabPage8"

Me.TabPage8.Size = New System.Drawing.Size(1264, 792)
Me.TabPage8.TabIndex = 7

Me.TabPage8.Text = "Human-Robot Collaboration"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 251

'CheckBox13

Me.CheckBox13.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.CheckBox13.Location = New System.Drawing.Point(34, 84)

Me.CheckBox13.Name = "CheckBox13"

Me.CheckBox13.Size = New System.Drawing.Size(136, 16)

Me.CheckBox13.TabIndex = 281

Me.CheckBox13.Text = "Enable Matlab"

'Label92

Me.Label92.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label92.Location = New System.Drawing.Point(88, 106)

Me.Label92.Name = "Label92"

Me.Label92.Size = New System.Drawing.Size(40, 16)

Me.Label92.TabIndex = 280

Me.Label92.Text = "Policy:"

'TextBox133

Me.TextBox133.Enabled = False

Me.TextBox133.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox133.Location = New System.Drawing.Point(128, 104)

Me.TextBox133.Name = "TextBox133"

Me.TextBox133.Size = New System.Drawing.Size(32, 20)

Me.TextBox133.TabIndex =279

Me.TextBox133.Text ="0"

'Button42

Me.Button42.BackColor = System.Drawing.Color.Red

Me.Button42.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button42.Location = New System.Drawing.Point(80, 708)

Me.Button42.Name = "Button42"

Me.Button42.Size = New System.Drawing.Size(64, 32)

Me.Button42.TabIndex = 278

Me.Button42.Text = "temp1"

Me.Button42.Visible = False

'GroupBox38

Me.GroupBox38.Controls.Add(Me.Label94)
Me.GroupBox38.Controls.Add(Me.Label129)
Me.GroupBox38.Controls.Add(Me.Label130)
Me.GroupBox38.Controls.Add(Me.Label131)
Me.GroupBox38.Controls.Add(Me.Label132)
Me.GroupBox38.Controls.Add(Me.Label95)
Me.GroupBox38.Controls.Add(Me.Label96)
Me.GroupBox38.Controls.Add(Me.Label97)
Me.GroupBox38.Controls.Add(Me.Label98)
Me.GroupBox38.Controls.Add(Me.Label99)
Me.GroupBox38.Controls.Add(Me.Label128)
Me.GroupBox38.Controls.Add(Me.TextBox145)
Me.GroupBox38.Controls.Add(Me.Label81)
Me.GroupBox38.Controls.Add(Me.Label46)
Me.GroupBox38.Controls.Add(Me.Label127)
Me.GroupBox38.Controls.Add(Me.Label126)
Me.GroupBox38.Controls.Add(Me.Label125)
Me.GroupBox38.Controls.Add(Me.Label100)
Me.GroupBox38.Controls.Add(Me.Label83)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 252

Me.GroupBox38.Controls.Add(Me.Label88)
Me.GroupBox38.Controls.Add(Me.Label87)
Me.GroupBox38.Controls.Add(Me.Label86)
Me.GroupBox38.Controls.Add(Me.Label85)
Me.GroupBox38.Controls.Add(Me.Label84)
Me.GroupBox38.Controls.Add(Me.Label45)
Me.GroupBox38.Controls.Add(Me.Label82)
Me.GroupBox38.Controls.Add(Me.AxMSChart3)
Me.GroupBox38.Controls.Add(Me.AxMSChart1)
Me.GroupBox38.Font = New System.Drawing.Font("Arial", 12.0!, System.Drawing.FontStyle.Bold)
Me.GroupBox38.Location = New System.Drawing.Point(248, 304)
Me.GroupBox38.Name = "GroupBox38"

Me.GroupBox38.Size = New System.Drawing.Size(344, 432)
Me.GroupBox38.TabIndex = 273

Me.GroupBox38.TabStop = False

Me.GroupBox38.Text = "System Performance"

'Label94

Me.Label94.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.Label94.Location = New System.Drawing.Point(258, 212)

Me.Label94.Name = "Label94"

Me.Label94.Size = New System.Drawing.Size(84, 32)

Me.Label94.TabIndex = 284

Me.Label94.Text = "Successful Policy Number"

'Labell29

Me.Label129.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.Label129.Location = New System.Drawing.Point(24, 178)

Me.Label129.Name = "Label 129"

Me.Label129.Size = New System.Drawing.Size(24, 16)

Me.Label129.TabIndex = 303

Me.Label129.Text ="0"

'Labell30

Me.Label130.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.Label130.Location = New System.Drawing.Point(24, 152)

Me.Label130.Name = "Label 130"

Me.Label130.Size = New System.Drawing.Size(24, 16)

Me.Label130.TabIndex = 302

Me.Label130.Text = "4"

'Labell31

Me.Label131.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.Label131.Location = New System.Drawing.Point(24, 120)

Me.Label131.Name = "Label131"

Me.Label131.Size = New System.Drawing.Size(24, 16)

Me.Label131.TabIndex = 301

Me.Label131.Text="8"

'Label132

Me.Label132.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.Label132.Location = New System.Drawing.Point(22, 92)

Me.Label132.Name = "Label132"

Me.Label132.Size = New System.Drawing.Size(24, 16)

Me.Label132.TabIndex = 300

Me.Label132.Text ="12"

'Label95

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

253

Me.Label95.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Bold)
Me.Label95.Location = New System.Drawing.Point(278, 194)

Me.Label95.Name = "Label95"

Me.Label95.Size = New System.Drawing.Size(24, 16)

Me.Label95.Tablndex = 298

Me.Label95.Text = "50"

'Label96

Me.Label96.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Bold)
Me.Label96.Location = New System.Drawing.Point(230, 194)

Me.Label96.Name = "Label96"

Me.Label96.Size = New System.Drawing.Size(24, 16)

Me.Label96.TabIndex = 299

Me.Label96.Text = "40"

'Label97

Me.Label97.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.Label97.Location = New System.Drawing.Point(182, 194)

Me.Label97.Name = "Label97"

Me.Label97.Size = New System.Drawing.Size(24, 16)

Me.Label97.Tablndex =297

Me.Label97.Text = "30"

'Label98

Me.Label98.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.Label98.Location = New System.Drawing.Point(134, 194)

Me.Label98.Name = "Label98"

Me.Label98.Size = New System.Drawing.Size(24, 16)

Me.Label98.Tablndex =296

Me.Label98.Text = "20"

'Label99

Me.Label99.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.Label99.Location = New System.Drawing.Point(86, 194)

Me.Label99.Name = "Label99"

Me.Label99.Size = New System.Drawing.Size(24, 16)

Me.Label99.Tablndex = 295

Me.Label99.Text ="10"

'Label128

Me.Label128.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.Label128.Location = New System.Drawing.Point(182, 264)

Me.Label128.Name = "Label 128"

Me.Label128.Size = New System.Drawing.Size(24, 16)

Me.Label128.TabIndex = 279

Me.Label128.Text = "(%)"

'TextBox145

Me.TextBox145.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,

System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.TextBox145.Location = New System.Drawing.Point(150, 262)
Me.TextBox145.Name = "TextBox 145"

Me.TextBox145.Size = New System.Drawing.Size(32, 20)
Me.TextBox145.TabIndex =279

Me.TextBox145.Text ="0"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

254

'Label81

Me.Label81.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.Label81.Location = New System.Drawing.Point(24, 378)

Me.Label81.Name = "Label81"

Me.Label81.Size = New System.Drawing.Size(24, 16)

Me.Label81.TabIndex = 294

Me.Label81.Text ="0"

'Label46

Me.Label46.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.Label46.Location = New System.Drawing.Point(22, 360)

Me.Label46.Name = "Label46"

Me.Label46.Size = New System.Drawing.Size(24, 16)

Me.Label46.Tablndex = 293

Me.Label46.Text = "20"

'Label127

Me.Label127.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.Label127.Location = New System.Drawing.Point(22, 340)

Me.Label127.Name = "Label127"

Me.Label127.Size = New System.Drawing.Size(24, 16)

Me.Label127.TabIndex = 292

Me.Label127.Text = "40"

'Labell26

Me.Label126.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.Label126.Location = New System.Drawing.Point(22, 322)

Me.Label126.Name = "Label126"

Me.Label126.Size = New System.Drawing.Size(24, 16)

Me.Label126.TabIndex = 291

Me.Label126.Text = "60"

'Labell25

Me.Label125.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.Label125.Location = New System.Drawing.Point(22, 302)

Me.Label125.Name = "Label 125"

Me.Label125.Size = New System.Drawing.Size(24, 16)

Me.Label125.TabIndex = 290

Me.Label125.Text = "80"

'Label100

Me.Label100.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.Label100.Location = New System.Drawing.Point(20, 280)

Me.Label100.Name = "Label100"

Me.Label100.Size = New System.Drawing.Size(24, 16)

Me.Label100.TabIndex =289

Me.Label100.Text = "100"

'Label83

Me.Label83.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.Label83.Location = New System.Drawing.Point(274, 400)

Me.Label83.Name = "Label83"

Me.Label83.Size = New System.Drawing.Size(54, 28)

Me.Label83.TabIlndex =279

Me.Label83.Text = "Learning Episode"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

255

'Label88

Me.Label88.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Bold)
Me.Label88.Location = New System.Drawing.Point(280, 384)

Me.Label88.Name = "Label88"

Me.Label88.Size = New System.Drawing.Size(24, 16)

Me.Label88.Tablndex = 281

Me.Label88.Text = "50"

'Label87

Me.Label87.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Bold)
Me.Label87.Location = New System.Drawing.Point(232, 384)

Me.Label87.Name = "Label87"

Me.Label87.Size = New System.Drawing.Size(24, 16)

Me.Label87.TabIlndex = 282

Me.Label87.Text = "40"

'Label86

Me.Label86.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.Label86.Location = New System.Drawing.Point(184, 384)

Me.Label86.Name = "Label86"

Me.Label86.Size = New System.Drawing.Size(24, 16)

Me.Label86.Tablndex = 281

Me.Label86.Text = "30"

'Label85

Me.Label85.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.Label85.Location = New System.Drawing.Point(136, 384)

Me.Label85.Name = "Label85"

Me.Label85.Size = New System.Drawing.Size(24, 16)

Me.Label85.Tablndex =280

Me.Label85.Text = "20"

'Label84

Me.Label84.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.Label84.Location = New System.Drawing.Point(88, 384)

Me.Label84.Name = "Label84"

Me.Label84.Size = New System.Drawing.Size(24, 16)

Me.Label84.TabIndex =279

Me.Label84.Text ="10"

'Label45

Me.Label45.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.Label45.Location = New System.Drawing.Point(2, 136)

Me.Label45.Name = "Label45"

Me.Label45.Size = New System.Drawing.Size(40, 16)

Me.Label45.TabIndex = 274

Me.Label45.Text = "[sec]"

'Label82

Me.Label82.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.Label82.Location = New System.Drawing.Point(2, 328)

Me.Label82.Name = "Label82"

Me.Label82.Size = New System.Drawing.Size(24, 16)

Me.Label82.Tablndex =278

Me.Label82.Text = "[%]"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 256

'AxMSChart3

Me.AxMSChart3.ContainingControl = Me

Me.AxMSChart3.DataSource = Nothing

Me.AxMSChart3.Location = New System.Drawing.Point(24, 224)
Me.AxMSChart3.Name = "AxMSChart3"

Me.AxMSChart3.0cxState = CType(resources.GetObject("AxMSChart3.OcxState"),
System.Windows.Forms.AxHost.State)

Me.AxMSChart3.Size = New System.Drawing.Size(296, 184)
Me.AxMSChart3.TabIndex =278

'AxMSChartl

Me.AxMSChartl.ContainingControl = Me

Me.AxMSChartl.DataSource = Nothing

Me.AxMSChartl.Location = New System.Drawing.Point(24, 32)

Me.AxMSChartl .Name = "AxMSChart1"

Me.AxMSChartl.OcxState = CType(resources.GetObject("AxMSChartl.OcxState"),
System.Windows.Forms.AxHost.State)

Me.AxMSChartl.Size = New System.Drawing.Size(296, 184)
Me.AxMSChartl.TabIndex = 273

'GroupBox31

Me.GroupBox31.Controls.Add(Me.Button52)
Me.GroupBox31.Controls. Add(Me.TextBox141)
Me.GroupBox31.Controls.Add(Me.TextBox114)
Me.GroupBox31.Controls.Add(Me.Button57)
Me.GroupBox31.Font = New System.Drawing.Font("Arial", 12.0!, System.Drawing.FontStyle.Bold)
Me.GroupBox31.Location = New System.Drawing.Point(16, 580)
Me.GroupBox31.Name = "GroupBox31"

Me.GroupBox31.Size = New System.Drawing.Size(216, 126)
Me.GroupBox31.Tablndex = 265

Me.GroupBox31.TabStop = False

Me.GroupBox31.Text = "Timer"

'Button52

Me.Button52.BackColor = System.Drawing.Color.FromArgb(CType(255, Byte), CType(192, Byte), CType(128, Byte))
Me.Button52.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button52.Location = New System.Drawing.Point(120, 24)

Me.Button52.Name = "Button52"

Me.Button52.Size = New System.Drawing.Size(64, 32)

Me.Button52.Tablndex = 242

Me.Button52.Text = "Stop"

'TextBox141

Me.TextBox141.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox141.Location = New System.Drawing.Point(16, 72)

Me.TextBox141.Multiline = True

Me.TextBox141.Name = "TextBox141"

Me.TextBox141.ScrollBars = System. Windows.Forms.ScrollBars.Both

Me.TextBox141.Size = New System.Drawing.Size(112, 40)

Me.TextBox141.Tablndex = 197

Me.TextBox141.Text=""

'TextBox114

Me.TextBox114.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 257

Me.TextBox114.Location = New System.Drawing.Point(152, 80)
Me.TextBox114.Name = "TextBox114"

Me.TextBox114.Size = New System.Drawing.Size(40, 20)
Me.TextBox114.TabIndex = 193

Me.TextBox114.Text ="0"

'Button57

Me.Button57.BackColor = System.Drawing.Color.FromArgb(CType(255, Byte), CType(192, Byte), CType(128, Byte))
Me.Button57.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button57.Location = New System.Drawing.Point(40, 24)

Me.Button57.Name = "Button57"

Me.Button57.Size = New System.Drawing.Size(64, 32)

Me.Button57.TabIndex = 243

Me.Button57.Text = "Reset Timer"

'GroupBox18

Me.GroupBox18.Controls.Add(Me.TextBox146)

Me.GroupBox18.Font = New System.Drawing.Font("Arial", 12.0!, System.Drawing.FontStyle.Bold)
Me.GroupBox18.Location = New System.Drawing.Point(616, 14)

Me.GroupBox18.Name = "GroupBox18"

Me.GroupBox18.Size = New System.Drawing.Size(512, 94)

Me.GroupBox18.TabIndex =259

Me.GroupBox18.TabStop = False

Me.GroupBox18.Text = "Collaboration Level"

'TextBox146

Me.TextBox146.AllowDrop = True

Me.TextBox146.AutoSize = False

Me.TextBox146.BackColor = System.Drawing.SystemColors.Control
Me.TextBox146.BorderStyle = System.Windows.Forms.BorderStyle.None
Me.TextBox146.Font = New System.Drawing.Font("Arial", 9.75!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox146.ForeColor = System.Drawing.Color.Red

Me.TextBox146.Location = New System.Drawing.Point(40, 32)
Me.TextBox146.Multiline = True

Me.TextBox146.Name = "TextBox146"

Me.TextBox146.Size = New System.Drawing.Size(424, 40)
Me.TextBox146.TabIndex = 181

Me.TextBox146.Text = "Autonomous Mode - No Human Intervention is Required!"
Me.TextBox146.TextAlign = System.Windows.Forms.Horizontal Alignment.Center

'GroupBox29

Me.GroupBox29.Controls.Add(Me.ComboBox2)
Me.GroupBox29.Controls.Add(Me.Label109)
Me.GroupBox29.Controls.Add(Me.ComboBox6)
Me.GroupBox29.Controls.Add(Me.Button50)
Me.GroupBox29.Controls.Add(Me.Button51)
Me.GroupBox29.Controls.Add(Me.ProgressBar2)
Me.GroupBox29.Controls.Add(Me.Label91)
Me.GroupBox29.Controls.Add(Me.Label55)
Me.GroupBox29.Controls.Add(Me.ProgressBar1)
Me.GroupBox29.Controls. Add(Me.Button45)
Me.GroupBox29.Controls. Add(Me.Button40)
Me.GroupBox29.Controls. Add(Me.Button47)
Me.GroupBox29.Controls.Add(Me.Button54)
Me.GroupBox29.Controls.Add(Me.Button53)
Me.GroupBox29.Controls.Add(Me.Button56)
Me.GroupBox29.Controls.Add(Me.GroupBox30)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 258

Me.GroupBox29.Font = New System.Drawing.Font("Arial", 12.0!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.GroupBox29.Location = New System.Drawing.Point(16, 136)

Me.GroupBox29.Name = "GroupBox29"

Me.GroupBox29.Size = New System.Drawing.Size(216, 434)

Me.GroupBox29.TabIndex = 190

Me.GroupBox29.TabStop = False

Me.GroupBox29.Text = "Control"

'ComboBox2

Me.ComboBox2.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ComboBox2.Items.AddRange(New Object() {"Regular", "Rotated"})

Me.ComboBox2.Location = New System.Drawing.Point(16, 112)

Me.ComboBox2.Name = "ComboBox2"

Me.ComboBox2.Size = New System.Drawing.Size(80, 22)

Me.ComboBox2.TabIndex = 243

'Label109

Me.Label109.Font = New System.Drawing.Font("Arial", 8.25!, CType((System.Drawing.FontStyle.Bold Or
System.Drawing.FontStyle.Underline), System.Drawing.FontStyle), System.Drawing.GraphicsUnit.Point, CType(0,
Byte))

Me.Label109.Location = New System.Drawing.Point(8, 136)

Me.Label109.Name = "Label 109"

Me.Label109.Size = New System.Drawing.Size(80, 16)

Me.Label109.TabIndex = 242

Me.Label109.Text = "Reward Type"

'ComboBox6

Me.ComboBox6.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ComboBox6.Items.AddRange(New Object() {"Peak", "Cummulative"})

Me.ComboBox6.Location = New System.Drawing.Point(8, 160)

Me.ComboBox6.Name = "ComboBox6"

Me.ComboBox6.Size = New System.Drawing.Size(96, 22)

Me.ComboBox6.TabIndex = 241

'Button50

Me.Button50.BackColor = System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, Byte), CType(192, Byte))
Me.Button50.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button50.Location = New System.Drawing.Point(112, 328)

Me.Button50.Name = "Button50"

Me.Button50.Size = New System.Drawing.Size(88, 48)

Me.Button50.TabIndex = 235

Me.Button50.Text = "System Creates Policy"

'‘Button51

Me.Button51.BackColor = System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, Byte), CType(192, Byte))
Me.Button51.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button51.Location = New System.Drawing.Point(16, 328)

Me.Button51.Name = "Button51"

Me.Button51.Size = New System.Drawing.Size(88, 48)

Me.Button51.TabIndex = 234

Me.Button51.Text = "Human Creates Policy"

'ProgressBar2

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 259

Me.ProgressBar2.Location = New System.Drawing.Point(16, 408)
Me.ProgressBar2.Name = "ProgressBar2"

Me.ProgressBar2.Size = New System.Drawing.Size(184, 16)
Me.ProgressBar2.TabIndex = 229

'Label91

Me.Label91.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label91.Location = New System.Drawing.Point(8, 384)

Me.Label91.Name = "Label91"

Me.Label91.Size = New System.Drawing.Size(112, 16)

Me.Label91.Tablndex =228

Me.Label91.Text = "Policy Creation:"

'Label55

Me.Label55.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label55.Location = New System.Drawing.Point(8, 280)

Me.Label55.Name = "Label55"

Me.Label55.Size = New System.Drawing.Size(112, 16)

Me.Label55.Tablndex = 227

Me.Label55.Text = "RL Calculations:"

'ProgressBarl

Me.ProgressBarl.Location = New System.Drawing.Point(16, 304)
Me.ProgressBarl.Name = "ProgressBar1"

Me.ProgressBarl.Size = New System.Drawing.Size(184, 16)
Me.ProgressBarl.TabIndex = 226

'Button45

Me.Button45.BackColor = System.Drawing.Color.FromArgb(CType(255, Byte), CType(255, Byte), CType(192, Byte))
Me.Button45.Cursor = System. Windows.Forms.Cursors.Default

Me.Button45.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button45.ForeColor = System.Drawing.SystemColors.Control Text

Me.Button45.Location = New System.Drawing.Point(24, 24)

Me.Button45.Name = "Button45"

Me.Button45.RightToLeft = System.Windows.Forms.RightToLeft.No

Me.Button45.Size = New System.Drawing.Size(72, 40)

Me.Button45.TabIndex = 189

Me.Button45.Text = "Connect to Robot"

'Button40

Me.Button40.BackColor = System.Drawing.Color.Red
Me.Button40.Cursor = System. Windows.Forms.Cursors.Default
Me.Button40.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.Button40.ForeColor = System.Drawing.Color.Yellow
Me.Button40.Location = New System.Drawing.Point(120, 24)
Me.Button40.Name = "Button40"

Me.Button40.RightToLeft = System. Windows.Forms.RightToLeft.No
Me.Button40.Size = New System.Drawing.Size(72, 40)
Me.Button40.TabIndex = 188

Me.Button40.Text = "Reset"

'Button47

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 260

Me.Button47.BackColor = System.Drawing.SystemColors.InactiveCaptionText
Me.Button47.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button47.Location = New System.Drawing.Point(104, 728)

Me.Button47.Name = "Button47"

Me.Button47.Size = New System.Drawing.Size(88, 48)

Me.Button47.TabIndex = 220

Me.Button47.Text = "Use the Rewarded Policy"

'Button54

Me.Button54.BackColor = System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, Byte), CType(192, Byte))
Me.Button54.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button54.Location = New System.Drawing.Point(120, 72)

Me.Button54.Name = "Button54"

Me.Button54.Size = New System.Drawing.Size(72, 40)

Me.Button54.TabIndex = 238

Me.Button54.Text = "Execute Shaking"

'‘Button53

Me.Button53.BackColor = System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, Byte), CType(192, Byte))
Me.Button53.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button53.Location = New System.Drawing.Point(24, 72)

Me.Button53.Name = "Button53"

Me.Button53.Size = New System.Drawing.Size(72, 40)

Me.Button53.TabIndex =236

Me.Button53.Text = "Grasp Bag"

'‘Button56

Me.Button56.BackColor = System.Drawing.Color.FromArgb(CType(255, Byte), CType(192, Byte), CType(128, Byte))
Me.Button56.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button56.Location = New System.Drawing.Point(120, 144)

Me.Button56.Name = "Button56"

Me.Button56.Size = New System.Drawing.Size(72, 40)

Me.Button56.TabIndex = 240

Me.Button56.Text = "Calculate Reward"

'GroupBox30

Me.GroupBox30.Controls.Add(Me.Label101)
Me.GroupBox30.Controls.Add(Me.TextBox142)
Me.GroupBox30.Controls.Add(Me.Label54)
Me.GroupBox30.Controls.Add(Me.TextBox132)
Me.GroupBox30.Font = New System.Drawing.Font("Arial", 9.0!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.GroupBox30.Location = New System.Drawing.Point(16, 192)
Me.GroupBox30.Name = "GroupBox30"

Me.GroupBox30.Size = New System.Drawing.Size(184, 80)
Me.GroupBox30.TabIndex = 191

Me.GroupBox30.TabStop = False

Me.GroupBox30.Text = "Rewards"

'Labell01

Me.Label101.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label101.Location = New System.Drawing.Point(96, 24)

Me.Label101.Name = "Label101"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

261

Me.Label101.Size = New System.Drawing.Size(80, 16)
Me.Label101.TabIndex = 225
Me.Label101.Text = "Total Time"

'TextBox142

Me.TextBox142.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox142.Location = New System.Drawing.Point(96, 48)

Me.TextBox142.Name = "TextBox 142"

Me.TextBox142.Size = New System.Drawing.Size(72, 20)

Me.TextBox142.TabIndex = 224

Me.TextBox142.Text = "000"

'Label54

Me.Label54.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label54.Location = New System.Drawing.Point(8, 24)

Me.Label54.Name = "Label54"

Me.Label54.Size = New System.Drawing.Size(80, 16)

Me.Label54.Tablndex = 223

Me.Label54.Text = "Total Reward"

'TextBox132

Me.TextBox132.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox132.Location = New System.Drawing.Point(8, 48)

Me.TextBox132.Name = "TextBox132"

Me.TextBox132.Size = New System.Drawing.Size(72, 20)

Me.TextBox132.Tablndex = 222

Me.TextBox132.Text="0"

'GroupBox19

Me.GroupBox19.Controls. Add(Me.GroupBox20)

Me.GroupBox19.Controls.Add(Me.GroupBox34)

Me.GroupBox19.Font = New System.Drawing.Font("Arial", 12.0!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.GroupBox19.Location = New System.Drawing.Point(622, 120)

Me.GroupBox19.Name = "GroupBox19"

Me.GroupBox19.Size = New System.Drawing.Size(496, 656)

Me.GroupBox19.TabIndex = 182

Me.GroupBox19.TabStop = False

Me.GroupBox19.Text = "Human-Robot Collaboration Control"

'GroupBox20

Me.GroupBox20.Controls.Add(Me.TextBox135)

Me.GroupBox20.Font = New System.Drawing.Font("Arial", 9.0!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.GroupBox20.Location = New System.Drawing.Point(16, 576)

Me.GroupBox20.Name = "GroupBox20"

Me.GroupBox20.Size = New System.Drawing.Size(464, 72)

Me.GroupBox20.TabIndex = 203

Me.GroupBox20.TabStop = False

Me.GroupBox20.Text = "Policy Success Notification"

'TextBox135

Me.TextBox135.AllowDrop = True
Me.TextBox135.AutoSize = False

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

262

Me.TextBox135.BackColor = System.Drawing.SystemColors.Control
Me.TextBox135.BorderStyle = System. Windows.Forms.BorderStyle.None
Me.TextBox135.Font = New System.Drawing.Font("Arial", 9.75!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox135.ForeColor = System.Drawing.Color.Red
Me.TextBox135.Location = New System.Drawing.Point(20, 32)
Me.TextBox135.Multiline = True

Me.TextBox135.Name = "TextBox135"

Me.TextBox135.Size = New System.Drawing.Size(424, 24)
Me.TextBox135.TabIndex = 182

Me.TextBox135.Text=""

Me.TextBox135.TextAlign = System.Windows.Forms.Horizontal Alignment.Center

'GroupBox34

Me.GroupBox34.Controls.Add(Me.GroupBox4)
Me.GroupBox34.Controls.Add(Me.GroupBox33)
Me.GroupBox34.Controls.Add(Me.GroupBox35)
Me.GroupBox34.Controls.Add(Me.GroupBox36)

Me.GroupBox34.Controls. Add(Me.GroupBox37)

Me.GroupBox34.Font = New System.Drawing.Font("Arial", 9.75!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.GroupBox34.Location = New System.Drawing.Point(8, 40)
Me.GroupBox34.Name = "GroupBox34"

Me.GroupBox34.Size = New System.Drawing.Size(472, 528)
Me.GroupBox34.TabIndex = 202

Me.GroupBox34.TabStop = False

Me.GroupBox34.Text = "Human Decision Making - Suggest a Shaking Policy"

'GroupBox4

Me.GroupBox4.Controls.Add(Me.Label37)
Me.GroupBox4.Controls.Add(Me.ComboBox14)
Me.GroupBox4.Controls.Add(Me.ComboBox15)
Me.GroupBox4.Controls.Add(Me.ComboBox16)
Me.GroupBox4.Controls.Add(Me.Label35)
Me.GroupBox4.Controls.Add(Me.ComboBox5)
Me.GroupBox4.Controls.Add(Me.ComboBox3)
Me.GroupBox4.Controls.Add(Me.Label29)
Me.GroupBox4.Controls.Add(Me.Label36)
Me.GroupBox4.Controls.Add(Me.ComboBox4)
Me.GroupBox4.Controls.Add(Me.Label38)
Me.GroupBox4.Location = New System.Drawing.Point(16, 336)
Me.GroupBox4.Name = "GroupBox4"

Me.GroupBox4.Size = New System.Drawing.Size(440, 136)
Me.GroupBox4.TabIndex = 236

Me.GroupBox4.TabStop = False

Me.GroupBox4.Text = "Q Table Weight Control (of X, Y, and Z) "

'Label37

Me.Label37.Font = New System.Drawing.Font("Arial", 8.25!, CType((System.Drawing.FontStyle.Bold Or
System.Drawing.FontStyle.Underline), System.Drawing.FontStyle), System.Drawing.GraphicsUnit.Point, CType(0,

Byte))
Me.Label37.Location = New System.Drawing.Point(304, 24)
Me.Label37.Name = "Label37"

Me.Label37.Size = New System.Drawing.Size(88, 16)
Me.Label37.Tablndex = 232

Me.Label37.Text = "Swing Control"

'ComboBox14

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 263

Me.ComboBox14.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ComboBox 14.ItemHeight = 14

Me.ComboBox 14.Items.AddRange(New Object() {"Much Higher Swings", "Higher Swings", "No Change", "Lower
Swings", "Much Lower Swings"})

Me.ComboBox14.Location = New System.Drawing.Point(288, 40)

Me.ComboBox14.Name = "ComboBox14"

Me.ComboBox14.Size = New System.Drawing.Size(128, 22)

Me.ComboBox14.Tablndex = 231

'ComboBox15

Me.ComboBox15.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ComboBox15.1temHeight = 14

Me.ComboBox 15.1tems.AddRange(New Object() {"Much Higher Swings", "Higher Swings", "No Change", "Lower
Swings", "Much Lower Swings"})

Me.ComboBox15.Location = New System.Drawing.Point(288, 72)

Me.ComboBox15.Name = "ComboBox15"

Me.ComboBox15.Size = New System.Drawing.Size(128, 22)

Me.ComboBox15.Tablndex =230

'ComboBox16

Me.ComboBox16.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ComboBox16.ItemHeight = 14

Me.ComboBox 16.Items.AddRange(New Object() {"Much Higher Swings", "Higher Swings", "No Change", "Lower
Swings", "Much Lower Swings"})

Me.ComboBox16.Location = New System.Drawing.Point(288, 104)

Me.ComboBox16.Name = "ComboBox16"

Me.ComboBox16.Size = New System.Drawing.Size(128, 22)

Me.ComboBox16.Tablndex = 229

'Label35

Me.Label35.Font = New System.Drawing.Font("Arial", 8.25!, CType((System.Drawing.FontStyle.Bold Or
System.Drawing.FontStyle.Underline), System.Drawing.FontStyle), System.Drawing.GraphicsUnit.Point, CType(0,
Byte))

Me.Label35.Location = New System.Drawing.Point(152, 24)

Me.Label35.Name = "Label35"

Me.Label35.Size = New System.Drawing.Size(88, 16)

Me.Label35.Tablndex = 228

Me.Label35.Text = "Center Control"

'ComboBox5

Me.ComboBox5.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ComboBox5.ItemHeight = 14

Me.ComboBox5.Items.AddRange(New Object() {"A Lot Higher", "A Little Higher", "Keep Current", "A Little Lower",
"A Lot Lower"})

Me.ComboBox5.Location = New System.Drawing.Point(136, 104)

Me.ComboBox5.Name = "ComboBox5"

Me.ComboBox5.Size = New System.Drawing.Size(128, 22)

Me.ComboBox5.TabIndex =227

'ComboBox3
Me.ComboBox3.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,

System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.ComboBox3.ItemHeight = 14

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 264

Me.ComboBox3.Items.AddRange(New Object() {"A Lot Higher", "A Little Higher", "Keep Current", "A Little Lower",
"A Lot Lower"})

Me.ComboBox3.Location = New System.Drawing.Point(136, 40)

Me.ComboBox3.Name = "ComboBox3"

Me.ComboBox3.Size = New System.Drawing.Size(128, 22)

Me.ComboBox3.TabIndex = 226

'Label29

Me.Label29.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label29.Location = New System.Drawing.Point(40, 80)

Me.Label29.Name = "Label29"

Me.Label29.Size = New System.Drawing.Size(64, 16)

Me.Label29.TabIndex = 188

Me.Label29.Text = "Left-Right:"

'Label36

Me.Label36.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label36.Location = New System.Drawing.Point(16, 48)

Me.Label36.Name = "Label36"

Me.Label36.Size = New System.Drawing.Size(120, 16)

Me.Label36.TabIlndex = 178

Me.Label36.Text = "Forward-Backward:"

'ComboBox4

Me.ComboBox4.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ComboBox4.ItemHeight = 14

Me.ComboBox4.Items.AddRange(New Object() {"A Lot Higher", "A Little Higher", "Keep Current", "A Little Lower",
"A Lot Lower"})

Me.ComboBox4.Location = New System.Drawing.Point(136, 72)

Me.ComboBox4.Name = "ComboBox4"

Me.ComboBox4.Size = New System.Drawing.Size(128, 22)

Me.ComboBox4.TabIndex = 225

'Label38

Me.Label38.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label38.Location = New System.Drawing.Point(40, 112)

Me.Label38.Name = "Label38"

Me.Label38.Size = New System.Drawing.Size(64, 16)

Me.Label38.TabIlndex = 192

Me.Label38.Text = "Up-Down:"

'GroupBox33

Me.GroupBox33.Controls. Add(Me.CheckBox10)

Me.GroupBox33.Controls.Add(Me.CheckBox7)

Me.GroupBox33.Controls.Add(Me.CheckBox11)

Me.GroupBox33.Font = New System.Drawing.Font("Arial", 9.75!, System.Drawing.FontStyle.Bold)
Me.GroupBox33.Location = New System.Drawing.Point(16, 480)

Me.GroupBox33.Name = "GroupBox33"

Me.GroupBox33.Size = New System.Drawing.Size(440, 40)

Me.GroupBox33.TabIndex = 235

Me.GroupBox33.TabStop = False

Me.GroupBox33.Text = "Eliminate Axis"

'CheckBox10

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 265

Me.CheckBox10.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.CheckBox10.Location = New System.Drawing.Point(344, 16)

Me.CheckBox10.Name = "CheckBox10"

Me.CheckBox10.Size = New System.Drawing.Size(80, 16)

Me.CheckBox10.TabIndex =259

Me.CheckBox10.Text = "Up-Down"

'CheckBox7

Me.CheckBox7.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.CheckBox7.Location = New System.Drawing.Point(256, 16)

Me.CheckBox7.Name = "CheckBox7"

Me.CheckBox7.Size = New System.Drawing.Size(80, 16)

Me.CheckBox7.TabIndex = 258

Me.CheckBox7.Text = "Left-Right"

'CheckBox11

Me.CheckBox11.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.CheckBox11.Location = New System.Drawing.Point(120, 16)

Me.CheckBox11.Name = "CheckBox11"

Me.CheckBox11.Size = New System.Drawing.Size(136, 16)

Me.CheckBox11.TabIndex =257

Me.CheckBox11.Text = "Forward-Backward"

'GroupBox35

Me.GroupBox35.Controls.Add(Me.ComboBox8)
Me.GroupBox35.Controls.Add(Me.TextBox90)
Me.GroupBox35.Controls.Add(Me.Label113)
Me.GroupBox35.Controls.Add(Me.Label114)
Me.GroupBox35.Controls.Add(Me.TextBox136)
Me.GroupBox35.Controls.Add(Me.Label115)
Me.GroupBox35.Controls.Add(Me.ComboBox9)
Me.GroupBox35.Controls.Add(Me.Label116)
Me.GroupBox35.Controls.Add(Me.Label117)
Me.GroupBox35.Controls.Add(Me.ComboBox10)
Me.GroupBox35.Controls.Add(Me.TextBox137)
Me.GroupBox35.Controls.Add(Me.Label118)
Me.GroupBox35.Location = New System.Drawing.Point(16, 184)
Me.GroupBox35.Name = "GroupBox35"

Me.GroupBox35.Size = New System.Drawing.Size(440, 144)
Me.GroupBox35.TabIndex = 231

Me.GroupBox35.TabStop = False

Me.GroupBox35.Text = "Axis Speed Control (of X, Y, and Z) - 100 to 1500 mm / sec"

'ComboBox8

Me.ComboBox8.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ComboBox8.ItemHeight = 14

Me.ComboBox8.Items.AddRange(New Object() {"A Lot Faster", "A Little Faster", "Keep Current", "A Little Slower",
"A Lot Slower"})

Me.ComboBox8.Location = New System.Drawing.Point(168, 64)

Me.ComboBox8.Name = "ComboBox8"

Me.ComboBox8.Size = New System.Drawing.Size(128, 22)

Me.ComboBox8.TabIndex = 226

'TextBox90

Me.TextBox90.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 266

Me.TextBox90.Location = New System.Drawing.Point(312, 104)
Me.TextBox90.Name = "TextBox90"

Me.TextBox90.Size = New System.Drawing.Size(40, 20)
Me.TextBox90.TabIndex = 193

Me.TextBox90.Text =""

'Label113

Me.Labell13.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Labell13.Location = New System.Drawing.Point(32, 72)

Me.Labell13.Name = "Label113"

Me.Label113.Size = New System.Drawing.Size(136, 16)

Me.Labell13.TabIndex = 188

Me.Labell13.Text = "Left-Right Speed:"

'Labell14

Me.Labell 14.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Labell14.Location = New System.Drawing.Point(360, 32)

Me.Labell14.Name = "Label114"

Me.Labell14.Size = New System.Drawing.Size(64, 24)

Me.Labell14.TabIndex = 228

Me.Labell14.Text = "mm / sec"

'TextBox136

Me.TextBox136.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox136.Location = New System.Drawing.Point(312, 24)

Me.TextBox136.Name = "TextBox136"

Me.TextBox136.Size = New System.Drawing.Size(40, 20)

Me.TextBox136.TabIndex = 180

Me.TextBox136.Text=""

'Labelll5

Me.Labell15.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Labell15.Location = New System.Drawing.Point(8, 32)

Me.Labell15.Name = "Label115"

Me.Label115.Size = New System.Drawing.Size(152, 16)

Me.Label115.Tablndex = 178

Me.Labell15.Text = "Forward-Backward Speed:"

'ComboBox9

Me.ComboBox9.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ComboBox9.ItemHeight = 14

Me.ComboBox9.Items.AddRange(New Object() {"A Lot Faster", "A Little Faster", "Keep Current", "A Little Slower",
"A Lot Slower"})

Me.ComboBox9.Location = New System.Drawing.Point(168, 24)

Me.ComboBox9.Name = "ComboBox9"

Me.ComboBox9.Size = New System.Drawing.Size(128, 22)

Me.ComboBox9.TabIndex = 225

'Labelll6
Me.Labell16.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,

System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.Labell16.Location = New System.Drawing.Point(360, 72)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 267

Me.Labell16.Name = "Labell116"

Me.Label116.Size = New System.Drawing.Size(64, 24)
Me.Labell116.Tablndex = 229

Me.Labell16.Text = "mm / sec"

'Labell17

Me.Labell17.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Labell17.Location = New System.Drawing.Point(32, 112)

Me.Labell117.Name = "Label117"

Me.Label117.Size = New System.Drawing.Size(128, 16)

Me.Labell17.TabIndex = 192

Me.Labell17.Text = "Up-Down Speed:"

'ComboBox10

Me.ComboBox10.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ComboBox10.ItemHeight = 14

Me.ComboBox10.Items.AddRange(New Object() {"A Lot Faster", "A Little Faster", "Keep Current", "A Little Slower",
"A Lot Slower"})

Me.ComboBox10.Location = New System.Drawing.Point(168, 104)

Me.ComboBox10.Name = "ComboBox10"

Me.ComboBox10.Size = New System.Drawing.Size(128, 22)

Me.ComboBox10.TabIndex =227

'TextBox137

Me.TextBox137.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox137.Location = New System.Drawing.Point(312, 64)

Me.TextBox137.Name = "TextBox137"

Me.TextBox137.Size = New System.Drawing.Size(40, 20)

Me.TextBox137.TabIndex = 189

Me.TextBox137.Text=""

'Labell18

Me.Labell18.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Labell 18.Location = New System.Drawing.Point(360, 112)

Me.Labell118.Name = "Label118"

Me.Label118.Size = New System.Drawing.Size(64, 24)

Me.Label118.Tablndex =230

Me.Label118.Text ="mm / sec"

'GroupBox36

Me.GroupBox36.Controls.Add(Me.Button60)
Me.GroupBox36.Controls.Add(Me.Button61)
Me.GroupBox36.Controls.Add(Me.Button62)
Me.GroupBox36.Controls.Add(Me.Button63)
Me.GroupBox36.Font = New System.Drawing.Font("Arial", 9.0!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.GroupBox36.Location = New System.Drawing.Point(56, 552)
Me.GroupBox36.Name = "GroupBox36"

Me.GroupBox36.Size = New System.Drawing.Size(256, 200)
Me.GroupBox36.TabIndex = 187

Me.GroupBox36.TabStop = False

Me.GroupBox36.Text = "Run Policy"

'Button60

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

268

Me.Button60.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button60.Location = New System.Drawing.Point(88, 80)

Me.Button60.Name = "Button60"

Me.Button60.Size = New System.Drawing.Size(80, 48)

Me.Button60.TabIndex = 169

Me.Button60.Text = "Grasping Point"

'‘Button61

Me.Button61.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button61.Location = New System.Drawing.Point(8, 24)

Me.Button61.Name = "Button61"

Me.Button61.Size = New System.Drawing.Size(112, 48)

Me.Button61.Tablndex = 168

Me.Button61.Text = "Grasp Bag"

'Button62

Me.Button62.BackColor = System.Drawing.Color.Red
Me.Button62.Cursor = System. Windows.Forms.Cursors.Default
Me.Button62.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.Button62.ForeColor = System.Drawing.Color.Yellow
Me.Button62.Location = New System.Drawing.Point(40, 136)
Me.Button62.Name = "Button62"

Me.Button62.RightToLeft = System. Windows.Forms.RightToLeft.No
Me.Button62.Size = New System.Drawing.Size(168, 48)
Me.Button62.TabIndex = 166

Me.Button62.Text = "Emergency Stop"

'Button63

Me.Button63.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button63.Location = New System.Drawing.Point(136, 24)

Me.Button63.Name = "Button63"

Me.Button63.Size = New System.Drawing.Size(112, 48)

Me.Button63.TabIndex = 165

Me.Button63.Text = "Create Policy"

'GroupBox37

Me.GroupBox37.Controls.Add(Me.ComboBox11)
Me.GroupBox37.Controls.Add(Me.Label119)
Me.GroupBox37.Controls.Add(Me.Label120)
Me.GroupBox37.Controls.Add(Me.Label121)
Me.GroupBox37.Controls.Add(Me.Label122)
Me.GroupBox37.Controls. Add(Me.TextBox138)
Me.GroupBox37.Controls.Add(Me.TextBox139)
Me.GroupBox37.Controls. Add(Me.TextBox140)
Me.GroupBox37.Controls.Add(Me.ComboBox12)
Me.GroupBox37.Controls.Add(Me.ComboBox13)
Me.GroupBox37.Controls.Add(Me.Label123)
Me.GroupBox37.Controls.Add(Me.Label124)

Me.GroupBox37.Font = New System.Drawing.Font("Arial", 9.75!, System.Drawing.FontStyle.Bold)

Me.GroupBox37.Location = New System.Drawing.Point(16, 32)
Me.GroupBox37.Name = "GroupBox37"

Me.GroupBox37.Size = New System.Drawing.Size(440, 144)
Me.GroupBox37.TabIndex = 232

Me.GroupBox37.TabStop = False

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 269

Me.GroupBox37.Text = "Axis Amplitude (Step Size of X, Y, and Z) - 0 to 50 cm"
'ComboBox11

Me.ComboBox11.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ComboBox11.ItemHeight = 14

Me.ComboBox11.Items.AddRange(New Object() {"A Lot More", "A Little More", "Keep Current", "A Little Less", "A
Lot Less"})

Me.ComboBox11.Location = New System.Drawing.Point(184, 24)

Me.ComboBox11.Name = "ComboBox11"

Me.ComboBox11.Size = New System.Drawing.Size(128, 22)

Me.ComboBox11.TabIndex = 183

'Labell19

Me.Labell19.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Labell19.Location = New System.Drawing.Point(8, 32)

Me.Label119.Name = "Label119"

Me.Label119.Size = New System.Drawing.Size(176, 16)

Me.Label119.Tablndex = 182

Me.Labell19.Text = "Forward-Backward Step Size:"

'Label120

Me.Label120.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label120.Location = New System.Drawing.Point(376, 112)

Me.Label120.Name = "Label 120"

Me.Label120.Size = New System.Drawing.Size(40, 24)

Me.Label120.TabIndex = 224

Me.Label120.Text = "mm"

'Label121

Me.Label121.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label121.Location = New System.Drawing.Point(376, 72)

Me.Label121.Name = "Label121"

Me.Label121.Size = New System.Drawing.Size(40, 24)

Me.Label121.TabIndex = 223

Me.Label121.Text = "mm"

'Label122

Me.Label122.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label122.Location = New System.Drawing.Point(376, 32)

Me.Label122.Name = "Label 122"

Me.Label122.Size = New System.Drawing.Size(40, 24)

Me.Label122.Tablndex = 222

Me.Label122.Text = "mm"

'TextBox138

Me.TextBox138.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox138.Location = New System.Drawing.Point(328, 104)

Me.TextBox138.Name = "TextBox138"

Me.TextBox138.Size = New System.Drawing.Size(40, 20)

Me.TextBox138.TabIndex =221

Me.TextBox138.Text=""

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 270

'TextBox139

Me.TextBox139.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox139.Location = New System.Drawing.Point(328, 64)

Me.TextBox139.Name = "TextBox139"

Me.TextBox139.Size = New System.Drawing.Size(40, 20)

Me.TextBox139.Tablndex = 220

Me.TextBox139.Text=""

'"TextBox140

Me.TextBox140.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox140.Location = New System.Drawing.Point(328, 24)

Me.TextBox140.Name = "TextBox 140"

Me.TextBox140.Size = New System.Drawing.Size(40, 20)

Me.TextBox140.TabIndex =219

Me.TextBox140.Text=""

'ComboBox12

Me.ComboBox12.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ComboBox12.ItemHeight = 14

Me.ComboBox12.Items.AddRange(New Object() {"A Lot More", "A Little More", "Keep Current", "A Little Less", "A
Lot Less"})

Me.ComboBox12.Location = New System.Drawing.Point(184, 104)

Me.ComboBox12.Name = "ComboBox12"

Me.ComboBox12.Size = New System.Drawing.Size(128, 22)

Me.ComboBox12.Tablndex = 218

'ComboBox13

Me.ComboBox13.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ComboBox13.ItemHeight = 14

Me.ComboBox13.Items.AddRange(New Object() {"A Lot More", "A Little More", "Keep Current", "A Little Less", "A
Lot Less"})

Me.ComboBox13.Location = New System.Drawing.Point(184, 64)

Me.ComboBox13.Name = "ComboBox13"

Me.ComboBox13.Size = New System.Drawing.Size(128, 22)

Me.ComboBox13.Tablndex = 217

'Labell23

Me.Label123.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label123.Location = New System.Drawing.Point(32, 112)

Me.Label123.Name = "Label 123"

Me.Label123.Size = New System.Drawing.Size(144, 16)

Me.Label123.TabIndex = 198

Me.Label123.Text = "Up-Down Step Size:"

'Label124

Me.Label124.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label124.Location = New System.Drawing.Point(32, 72)

Me.Labell124.Name = "Label 124"

Me.Label124.Size = New System.Drawing.Size(144, 16)

Me.Label124.Tablndex = 195

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 271

Me.Label124.Text = "Left-Right Step Size:"
'GroupBox17

Me.GroupBox17.Controls.Add(Me.AxWebBrowser3)

Me.GroupBox17.Font = New System.Drawing.Font("Arial", 12.0!, System.Drawing.FontStyle.Bold)
Me.GroupBox17.Location = New System.Drawing.Point(248, 16)

Me.GroupBox17.Name = "GroupBox17"

Me.GroupBox17.Size = New System.Drawing.Size(336, 280)

Me.GroupBox17.TabIndex = 182

Me.GroupBox17.TabStop = False

Me.GroupBox17.Text = "Visual Feedback"

'AxWebBrowser3

Me.AxWebBrowser3.ContainingControl = Me

Me.AxWebBrowser3.Enabled = True

Me.AxWebBrowser3.Font = New System.Drawing.Font("Arial", 9.75!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.AxWebBrowser3.Location = New System.Drawing.Point(0, 16)

Me.AxWebBrowser3.0cxState = CType(resources.GetObject(" AxWebBrowser3.OcxState"),
System.Windows.Forms.AxHost.State)

Me.AxWebBrowser3.Size = New System.Drawing.Size(360, 288)

Me.AxWebBrowser3.TabIndex = 59

'Button55

Me.Button55.BackColor = System.Drawing.Color.FromArgb(CType(192, Byte), CType(255, Byte), CType(192, Byte))
Me.Button55.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button55.Location = New System.Drawing.Point(128, 40)

Me.Button55.Name = "Button55"

Me.Button55.Size = New System.Drawing.Size(72, 40)

Me.Button55.TabIndex = 239

Me.Button55.Text = "Drop Bag"

'Button49

Me.Button49.BackColor = System.Drawing.SystemColors.InactiveCaptionText
Me.Button49.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button49.Location = New System.Drawing.Point(48, 40)

Me.Button49.Name = "Button49"

Me.Button49.Size = New System.Drawing.Size(72, 40)

Me.Button49.Tablndex = 218

Me.Button49.Text = "Initialize System"

'Button46

Me.Button46.BackColor = System.Drawing.Color.Yellow

Me.Button46.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button46.Location = New System.Drawing.Point(14, 706)

Me.Button46.Name = "Button46"

Me.Button46.Size = New System.Drawing.Size(56, 32)

Me.Button46.Tablndex = 241

Me.Button46.Text = "Record"

Me.Button46.Visible = False

'"TabPagel

Me.TabPagel.Controls.Add(Me.TextBox49)
Me.TabPagel.Controls.Add(Me.CheckBox12)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

272

Me.TabPagel.Controls.Add(Me.GroupBox24)
Me.TabPagel.Controls.Add(Me.GroupBox26)
Me.TabPagel.Controls.Add(Me.GroupBox28)
Me.TabPagel.Controls.Add(Me.GroupBox1)
Me.TabPagel.Controls.Add(Me.GroupBox2)
Me.TabPagel.Controls.Add(Me.GroupBox6)
Me.TabPagel.Controls.Add(Me.CheckBox8)
Me.TabPagel.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.TabPagel.Location = New System.Drawing.Point(4, 28)
Me.TabPagel.Name = "TabPagel"

Me.TabPagel.Size = New System.Drawing.Size(1264, 792)
Me.TabPagel.Tablndex =0

Me.TabPagel.Text = "Development"

'TextBox49

Me.TextBox49.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox49.Location = New System.Drawing.Point(848, 616)

Me.TextBox49.Name = "TextBox49"

Me.TextBox49.Size = New System.Drawing.Size(60, 20)

Me.TextBox49.Tablndex =272

Me.TextBox49.Text ="100"

'CheckBox12

Me.CheckBox12.Location = New System.Drawing.Point(824, 616)
Me.CheckBox12.Name = "CheckBox12"

Me.CheckBox12.Size = New System.Drawing.Size(16, 24)
Me.CheckBox12.TabIndex = 271

Me.CheckBox12.Text = "CheckBox12"

'GroupBox24

Me.GroupBox24.Controls.Add(Me.TextBox5)
Me.GroupBox24.Controls.Add(Me.Label16)
Me.GroupBox24.Controls.Add(Me.CheckBox14)
Me.GroupBox24.Controls.Add(Me.Label134)
Me.GroupBox24.Controls.Add(Me.Label133)
Me.GroupBox24.Controls.Add(Me.TextBox147)
Me.GroupBox24.Controls.Add(Me.Label93)
Me.GroupBox24.Controls.Add(Me.TextBox134)
Me.GroupBox24.Controls.Add(Me.Label102)
Me.GroupBox24.Controls.Add(Me.TextBox144)
Me.GroupBox24.Controls.Add(Me.Label107)
Me.GroupBox24.Controls. Add(Me.TextBox158)
Me.GroupBox24.Controls.Add(Me.Label108)
Me.GroupBox24.Controls.Add(Me.Label105)
Me.GroupBox24.Controls.Add(Me.TextBox149)
Me.GroupBox24.Controls.Add(Me.Label53)
Me.GroupBox24.Controls.Add(Me.TextBox129)
Me.GroupBox24.Controls.Add(Me.Label44)
Me.GroupBox24.Controls.Add(Me.CheckBox9)
Me.GroupBox24.Controls.Add(Me.Label103)
Me.GroupBox24.Controls.Add(Me.TextBox148)
Me.GroupBox24.Controls.Add(Me.TextBox128)
Me.GroupBox24.Controls.Add(Me.Label90)
Me.GroupBox24.Font = New System.Drawing.Font("Arial", 12.0!, System.Drawing.FontStyle.Bold)
Me.GroupBox24.Location = New System.Drawing.Point(16, 16)
Me.GroupBox24.Name = "GroupBox24"
Me.GroupBox24.Size = New System.Drawing.Size(664, 144)
Me.GroupBox24.TabIndex = 269

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

273

Me.GroupBox24.TabStop = False
Me.GroupBox24.Text = "System Papameter Configuration"

'TextBox5

Me.TextBox5.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox5.Location = New System.Drawing.Point(522, 56)

Me.TextBox5.Name = "TextBox5"

Me.TextBox5.Size = New System.Drawing.Size(50, 20)

Me.TextBox5.Tablndex =273

Me.TextBox5.Text = "238.586"

'Labell6

Me.Label16.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Labell6.Location = New System.Drawing.Point(404, 58)

Me.Labell16.Name = "Label16"

Me.Label16.Size = New System.Drawing.Size(112, 16)

Me.Label16.Tablndex =274

Me.Label16.Text = "Reward Constant (c):"

'CheckBox14

Me.CheckBox14.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.CheckBox14.Location = New System.Drawing.Point(392, 114)

Me.CheckBox14.Name = "CheckBox14"

Me.CheckBox14.Size = New System.Drawing.Size(248, 16)

Me.CheckBox14.TabIndex = 268

Me.CheckBox14.Text = "Enable Disabling Robot When Bag is Empty"

'Labell34

Me.Label134.Font = New System.Drawing.Font("Arial", 8.25!)
Me.Labell34.Location = New System.Drawing.Point(386, 82)
Me.Labell34.Name = "Label 134"

Me.Label134.Size = New System.Drawing.Size(38, 16)
Me.Label134.Tablndex =267

Me.Label134.Text = "grams"

'Labell33

Me.Label133.Font = New System.Drawing.Font("Arial", 8.25!)
Me.Label133.Location = New System.Drawing.Point(234, 80)
Me.Label133.Name = "Label133"

Me.Label133.Size = New System.Drawing.Size(106, 16)
Me.Label133.TabIndex = 266

Me.Label133.Text = "One Object Weight:"

'TextBox147

Me.TextBox147.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox147.Location = New System.Drawing.Point(342, 78)

Me.TextBox147.Name = "TextBox147"

Me.TextBox147.Size = New System.Drawing.Size(36, 20)

Me.TextBox147.Tablndex = 265

Me.TextBox147.Text = "45"

'Label93

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

274

Me.Label93.Font = New System.Drawing.Font("Arial", 8.25!)
Me.Label93.Location = New System.Drawing.Point(8, 80)
Me.Label93.Name = "Label93"

Me.Label93.Size = New System.Drawing.Size(182, 16)
Me.Label93.TabIndex = 264

Me.Label93.Text = "Max Actions per Learning Episode:"

'"TextBox134

Me.TextBox134.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox134.Location = New System.Drawing.Point(194, 78)

Me.TextBox134.Name = "TextBox134"

Me.TextBox134.Size = New System.Drawing.Size(32, 20)

Me.TextBox134.TabIndex = 263

Me.TextBox134.Text = "100"

'Label102

Me.Label102.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label102.Location = New System.Drawing.Point(8, 32)

Me.Label102.Name = "Label102"

Me.Label102.Size = New System.Drawing.Size(80, 16)

Me.Label102.TabIndex = 245

Me.Label102.Text = "Robot Status:"

'TextBox144

Me.TextBox144.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox144.Location = New System.Drawing.Point(108, 28)

Me.TextBox144.Name = "TextBox 144"

Me.TextBox144.Size = New System.Drawing.Size(60, 20)

Me.TextBox144.TabIndex = 244

Me.TextBox144.Text = "Idle"

'Labell07

Me.Label107.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label107.Location = New System.Drawing.Point(368, 32)

Me.Label107.Name = "Label107"

Me.Label107.Size = New System.Drawing.Size(88, 16)

Me.Label107.Tablndex = 254

Me.Label107.Text = "learning trials."

'TextBox158

Me.TextBox158.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox158.Location = New System.Drawing.Point(336, 32)

Me.TextBox158.Name = "TextBox 158"

Me.TextBox158.Size = New System.Drawing.Size(24, 20)

Me.TextBox158.Tablndex = 253

Me.TextBox158.Text="0"

'Label108

Me.Label108.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label108.Location = New System.Drawing.Point(184, 32)

Me.Label108.Name = "Label 108"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

275

Me.Label108.Size = New System.Drawing.Size(152, 16)
Me.Label108.Tablndex =252
Me.Label108.Text = "Robot is autonomous for the"

'Labell05

Me.Label105.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label105.Location = New System.Drawing.Point(192, 56)

Me.Label105.Name = "Label105"

Me.Label105.Size = New System.Drawing.Size(36, 16)

Me.Label105.TabIndex = 251

Me.Label105.Text = "(sec)"

'TextBox149

Me.TextBox149.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox149.Location = New System.Drawing.Point(160, 54)

Me.TextBox149.Name = "TextBox 149"

Me.TextBox149.Size = New System.Drawing.Size(32, 20)

Me.TextBox149.Tablndex = 250

Me.TextBox149.Text ="0.25"

'Label53

Me.Label53.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label53.Location = New System.Drawing.Point(8, 56)

Me.Label53.Name = "Label53"

Me.Label53.Size = New System.Drawing.Size(152, 16)

Me.Label53.Tablndex = 249

Me.Label53.Text = "Scale Writing to File Interval:"

'TextBox129

Me.TextBox129.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox129.Location = New System.Drawing.Point(360, 54)

Me.TextBox129.Name = "TextBox129"

Me.TextBox129.Size = New System.Drawing.Size(32, 20)

Me.TextBox129.TabIndex = 257

Me.TextBox129.Text ="0"

'Label44

Me.Label44.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label44.Location = New System.Drawing.Point(232, 56)

Me.Label44 . Name = "Label44"

Me.Label44.Size = New System.Drawing.Size(136, 16)

Me.Label44.TabIndex = 258

Me.Label44.Text = "Reward Value Threshold:"

'CheckBox9

Me.CheckBox9.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,

System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.CheckBox9.Location = New System.Drawing.Point(8, 112)
Me.CheckBox9.Name = "CheckBox9"

Me.CheckBox9.Size = New System.Drawing.Size(160, 16)
Me.CheckBox9.TabIndex = 256

Me.CheckBox9.Text = "Enable Sound Notifications"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

276

'Labell03

Me.Label103.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label103.Location = New System.Drawing.Point(196, 112)

Me.Label103.Name = "Label103"

Me.Label103.Size = New System.Drawing.Size(120, 16)

Me.Label103.Tablndex = 71

Me.Label103.Text = "Temporary Directory:"

'"TextBox 148

Me.TextBox148.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox148.Location = New System.Drawing.Point(322, 110)

Me.TextBox148.Name = "TextBox 148"

Me.TextBox148.Size = New System.Drawing.Size(64, 20)

Me.TextBox148.Tablndex = 70

Me.TextBox148.Text = "d:/temp/"

'TextBox128

Me.TextBox128.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold)
Me.TextBox128.Location = New System.Drawing.Point(484, 78)

Me.TextBox128.Name = "TextBox128"

Me.TextBox128.Size = New System.Drawing.Size(32, 20)

Me.TextBox128.TabIndex =272

Me.TextBox128.Text ="0.9"

'Label90

Me.Label90.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.Label90.Location = New System.Drawing.Point(432, 82)

Me.Label90.Name = "Label90"

Me.Label90.Size = New System.Drawing.Size(48, 16)

Me.Label90.TabIndex =272

Me.Label90.Text = "Epsilon:"

'GroupBox26

Me.GroupBox26.Controls.Add(Me.Label111)
Me.GroupBox26.Controls.Add(Me.Label112)
Me.GroupBox26.Controls. Add(Me.TextBox89)
Me.GroupBox26.Controls.Add(Me.Label43)
Me.GroupBox26.Controls. Add(Me.Label56)
Me.GroupBox26.Controls. Add(Me.TextBox80)
Me.GroupBox26.Controls.Add(Me.Label49)
Me.GroupBox26.Controls.Add(Me.Label50)
Me.GroupBox26.Controls.Add(Me.TextBox131)
Me.GroupBox26.Controls.Add(Me.Label48)
Me.GroupBox26.Controls.Add(Me.Label47)
Me.GroupBox26.Controls.Add(Me.TextBox130)
Me.GroupBox26.Font = New System.Drawing.Font("Arial", 9.0!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.GroupBox26.Location = New System.Drawing.Point(16, 168)
Me.GroupBox26.Name = "GroupBox26"

Me.GroupBox26.Size = New System.Drawing.Size(296, 168)
Me.GroupBox26.TabIndex = 189

Me.GroupBox26.TabStop = False

Me.GroupBox26.Text = "System Performance"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

277

'Labellll

Me.Labell 11.Font = New System.Drawing.Font("Arial", 8.25!)
Me.Labell11.Location = New System.Drawing.Point(248, 128)
Me.Labell 11.Name = "Label111"

Me.Labell 11.Size = New System.Drawing.Size(32, 16)
Me.Labell11.TabIndex =201

Me.Labell11.Text = "sec"

'Labell12

Me.Labell12.Font = New System.Drawing.Font("Arial", 8.25!)
Me.Label112.Location = New System.Drawing.Point(16, 120)
Me.Labell 12.Name = "Label 112"

Me.Labell12.Size = New System.Drawing.Size(136, 40)
Me.Labell12.TabIndex = 200

Me.Labell12.Text = "Average Successful Shaking Policies:"

'TextBox&9

Me.TextBox89.Font = New System.Drawing.Font("Arial", 9.75!, System.Drawing.FontStyle.Bold,

System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.TextBox89.Location = New System.Drawing.Point(152, 120)
Me.TextBox89.Name = "TextBox§9"

Me.TextBox89.Size = New System.Drawing.Size(88, 22)
Me.TextBox89.Tablndex = 199

Me.TextBox89.Text = "0"

'Label43

Me.Label43.Font = New System.Drawing.Font("Arial", 8.25!)
Me.Label43.Location = New System.Drawing.Point(248, 88)
Me.Label43.Name = "Label43"

Me.Label43.Size = New System.Drawing.Size(32, 16)
Me.Label43.Tablndex = 198

Me.Label43.Text = "sec"

'Label56

Me.Label56.Font = New System.Drawing.Font("Arial", 8.25!)
Me.Label56.Location = New System.Drawing.Point(16, 80)
Me.Label56.Name = "Label56"

Me.Label56.Size = New System.Drawing.Size(136, 32)
Me.Label56.Tablndex = 197

Me.Label56.Text = "Last Successful Shaking (Bag Emptied):"

'TextBox80

Me.TextBox80.Font = New System.Drawing.Font("Arial", 9.75!, System.Drawing.FontStyle.Bold,

System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.TextBox80.Location = New System.Drawing.Point(152, 80)
Me.TextBox80.Name = "TextBox80"

Me.TextBox80.Size = New System.Drawing.Size(88, 22)
Me.TextBox80.TabIndex = 196

Me.TextBox80.Text = "0"

'Label49

Me.Label49.Font = New System.Drawing.Font("Arial", 8.25!)
Me.Label49.Location = New System.Drawing.Point(248, 24)
Me.Label49.Name = "Label49"

Me.Label49.Size = New System.Drawing.Size(32, 16)
Me.Label49.TabIndex = 195

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 278

Me.Label49.Text = "(%)"
'Label50

Me.Label50.Font = New System.Drawing.Font("Arial", 8.25!)
Me.Label50.Location = New System.Drawing.Point(16, 24)
Me.Label50.Name = "Label50"

Me.Label50.Size = New System.Drawing.Size(128, 16)
Me.Label50.TabIndex = 194

Me.Label50.Text = "Actual Performance:"

'"TextBox131

Me.TextBox131.Enabled = False

Me.TextBox131.Font = New System.Drawing.Font("Arial", 9.75!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox131.Location = New System.Drawing.Point(152, 16)

Me.TextBox131.Name = "TextBox131"

Me.TextBox131.Size = New System.Drawing.Size(88, 22)

Me.TextBox131.Tablndex = 193

Me.TextBox131.Text="0"

'Label48

Me.Label48.Font = New System.Drawing.Font("Arial", 8.25!)
Me.Label48.Location = New System.Drawing.Point(248, 56)
Me.Label48.Name = "Label48"

Me.Label48.Size = New System.Drawing.Size(32, 16)
Me.Label48.TabIndex = 192

Me.Label48.Text = "(%)"

'Label47

Me.Label47.Font = New System.Drawing.Font("Arial", 8.25!)
Me.Label47.Location = New System.Drawing.Point(16, 48)
Me.Label47.Name = "Label47"

Me.Label47.Size = New System.Drawing.Size(80, 16)
Me.Label47.Tablndex = 191

Me.Label47.Text = "Threshold:"

'"TextBox130

Me.TextBox130.Font = New System.Drawing.Font("Arial", 9.75!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox130.Location = New System.Drawing.Point(152, 48)

Me.TextBox130.Name = "TextBox130"

Me.TextBox130.Size = New System.Drawing.Size(88, 22)

Me.TextBox130.TabIndex = 190

Me.TextBox130.Text = "60"

'GroupBox28

Me.GroupBox28.Controls.Add(Me.Button58)
Me.GroupBox28.Controls.Add(Me.Button48)
Me.GroupBox28.Controls.Add(Me.TextBox151)
Me.GroupBox28.Controls.Add(Me.TextBox150)
Me.GroupBox28.Controls. Add(Me.TextBox143)
Me.GroupBox28.Location = New System.Drawing.Point(520, 592)
Me.GroupBox28.Name = "GroupBox28"
Me.GroupBox28.Size = New System.Drawing.Size(248, 144)
Me.GroupBox28.TabIndex = 188

Me.GroupBox28.TabStop = False

Me.GroupBox28.Text = "Temp"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

279

Me.GroupBox28.Visible = False
'‘Button58

Me.Button58.Location = New System.Drawing.Point(140, 80)
Me.Button58. Name = "Button58"

Me.Button58.Size = New System.Drawing.Size(64, 40)
Me.Button58.TabIndex = 257

Me.Button58.Text = "Button58"

Me.Button58.Visible = False

'Button48

Me.Button48.BackColor = System.Drawing.SystemColors.InactiveCaptionText
Me.Button48.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button48.Location = New System.Drawing.Point(44, 72)

Me.Button48.Name = "Button48"

Me.Button48.Size = New System.Drawing.Size(88, 48)

Me.Button48.Tablndex = 256

Me.Button48.Text = "Continue Algorithm"

Me.Button48.Visible = False

'TextBox151

Me.TextBox151.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox151.Location = New System.Drawing.Point(88, 32)

Me.TextBox151.Name = "TextBox151"

Me.TextBox151.Size = New System.Drawing.Size(60, 20)

Me.TextBox151.TabIndex = 250

Me.TextBox151.Text=""

Me.TextBox151.Visible = False

'TextBox150

Me.TextBox150.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox150.Location = New System.Drawing.Point(16, 32)

Me.TextBox150.Name = "TextBox 150"

Me.TextBox150.Size = New System.Drawing.Size(60, 20)

Me.TextBox150.TabIndex = 249

Me.TextBox150.Text ="0"

Me.TextBox150.Visible = False

'TextBox143

Me.TextBox143.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox143.Location = New System.Drawing.Point(168, 32)

Me.TextBox143.Name = "TextBox143"

Me.TextBox143.Size = New System.Drawing.Size(60, 20)

Me.TextBox143.TabIndex = 248

Me.TextBox143.Text=""

Me.TextBox143.Visible = False

'CheckBox8

Me.CheckBox8.Checked = True

Me.CheckBox8.CheckState = System. Windows.Forms.CheckState.Checked
Me.CheckBox8.Location = New System.Drawing.Point(776, 616)
Me.CheckBox8.Name = "CheckBox8"

Me.CheckBox8.Size = New System.Drawing.Size(16, 16)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

280

Me.CheckBox8.Tablndex = 37
Me.CheckBox8.Text = "Servo"

'TabPage7

Me.TabPage7.Controls.Add(Me.Label51)
Me.TabPage7.Controls.Add(Me.TextBox112)
Me.TabPage7.Controls.Add(Me.Button37)
Me.TabPage7.Controls.Add(Me.Button27)
Me.TabPage7.Controls.Add(Me.Label89)
Me.TabPage7.Controls.Add(Me.TextBox127)
Me.TabPage7.Controls.Add(Me.GroupBox25)
Me.TabPage7.Controls.Add(Me.GroupBox23)
Me.TabPage7.Controls.Add(Me.GroupBox22)
Me.TabPage7.Controls.Add(Me.Button35)
Me.TabPage7.Controls.Add(Me.Button33)
Me.TabPage7.Location = New System.Drawing.Point(4, 28)
Me.TabPage7.Name = "TabPage7"

Me.TabPage7.Size = New System.Drawing.Size(1264, 792)
Me.TabPage7.Tablndex = 6

Me.TabPage7.Text = "CQ(lamda)"

'Label51

Me.Label51.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,

System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.Label51.Location = New System.Drawing.Point(432, 96)
Me.Label51.Name = "Label51"

Me.Label51.Size = New System.Drawing.Size(160, 16)
Me.Label51.TabIndex =219

Me.Label51.Text = "Number of Policies Performed:"

'TextBox112

Me.TextBox112.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,

System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.TextBox112.Location = New System.Drawing.Point(600, 96)
Me.TextBox112.Name = "TextBox112"

Me.TextBox112.Size = New System.Drawing.Size(32, 20)
Me.TextBox112.TabIndex =218

Me.TextBox112.Text ="0"

'‘Button37

Me.Button37.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button37.Location = New System.Drawing.Point(632, 24)

Me.Button37.Name = "Button37"

Me.Button37.Size = New System.Drawing.Size(88, 48)

Me.Button37.TabIndex =217

Me.Button37.Text = "Use the Policy with No Reward"

'Button27

Me.Button27.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button27.Location = New System.Drawing.Point(736, 24)

Me.Button27.Name = "Button27"

Me.Button27.Size = New System.Drawing.Size(88, 48)

Me.Button27.TabIndex =216

Me.Button27.Text = "Use the Rewarded Policy"

'Label89

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

281

Me.Label89.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label89.Location = New System.Drawing.Point(528, 560)

Me.Label89.Name = "Label89"

Me.Label89.Size = New System.Drawing.Size(88, 16)

Me.Label89.TabIndex =215

Me.Label89.Text = "Final Q Values"

'"TextBox127

Me.TextBox127.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox127.Location = New System.Drawing.Point(16, 584)

Me.TextBox127.Multiline = True

Me.TextBox127.Name = "TextBox127"

Me.TextBox127.ScrollBars = System. Windows.Forms.ScrollBars.Both

Me.TextBox127.Size = New System.Drawing.Size(1104, 176)

Me.TextBox127.TabIndex =214

Me.TextBox127.Text=""

'GroupBox25

Me.GroupBox25.Controls.Add(Me.ListBox7)
Me.GroupBox25.Controls.Add(Me.Label75)
Me.GroupBox25.Controls.Add(Me.ListBox8)
Me.GroupBox25.Controls.Add(Me.Label 76)
Me.GroupBox25.Controls.Add(Me.ListBox9)
Me.GroupBox25.Controls.Add(Me.Label77)
Me.GroupBox25.Controls.Add(Me.ListBox10)
Me.GroupBox25.Controls.Add(Me.Label78)
Me.GroupBox25.Controls.Add(Me.TextBox125)
Me.GroupBox25.Controls.Add(Me.Label79)
Me.GroupBox25.Controls.Add(Me.TextBox126)
Me.GroupBox25.Controls.Add(Me.Label80)
Me.GroupBox25.Location = New System.Drawing.Point(424, 136)
Me.GroupBox25.Name = "GroupBox25"
Me.GroupBox25.Size = New System.Drawing.Size(376, 416)
Me.GroupBox25.TabIndex = 213

Me.GroupBox25.TabStop = False

Me.GroupBox25.Text = "Policy - With Reward"

'ListBox7

Me.ListBox7.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ListBox7.ItemHeight = 14

Me.ListBox7.Location = New System.Drawing.Point(184, 56)

Me.ListBox7.Name = "ListBox7"

Me.ListBox7.Size = New System.Drawing.Size(56, 130)

Me.ListBox7.TabIndex = 181

'Label75

Me.Label75.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label75.Location = New System.Drawing.Point(184, 24)

Me.Label75.Name = "Label75"

Me.Label75.Size = New System.Drawing.Size(56, 16)

Me.Label75.TabIlndex = 180

Me.Label75.Text = "Time (ms)"

'ListBox8&

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

282

Me.ListBox8.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ListBox8.ItemHeight = 14

Me.ListBox8.Location = New System.Drawing.Point(120, 56)

Me.ListBox8.Name = "ListBox8"

Me.ListBox8.Size = New System.Drawing.Size(48, 130)

Me.ListBox8.Tablndex = 178

'Label76

Me.Label76.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label76.Location = New System.Drawing.Point(120, 24)

Me.Label76.Name = "Label76"

Me.Label76.Size = New System.Drawing.Size(48, 16)

Me.Label76.TabIndex = 177

Me.Label76.Text = "Reward"

'ListBox9

Me.ListBox9.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ListBox9.ItemHeight = 14

Me.ListBox9.Location = New System.Drawing.Point(64, 56)

Me.ListBox9.Name = "ListBox9"

Me.ListBox9.Size = New System.Drawing.Size(48, 130)

Me.ListBox9.TabIndex = 176

'Label77

Me.Label77.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label77.Location = New System.Drawing.Point(64, 24)

Me.Label77.Name = "Label77"

Me.Label77.Size = New System.Drawing.Size(40, 16)

Me.Label77.Tablndex = 175

Me.Label77.Text = "Action"

'ListBox 10

Me.ListBox10.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ListBox10.ItemHeight = 14

Me.ListBox10.Items.AddRange(New Object() {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"})
Me.ListBox10.Location = New System.Drawing.Point(8, 56)

Me.ListBox10.Name = "ListBox10"

Me.ListBox10.Size = New System.Drawing.Size(48, 130)

Me.ListBox10.Tablndex = 170

'Label78

Me.Label78.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label78.Location = New System.Drawing.Point(16, 24)

Me.Label78.Name = "Label 78"

Me.Label78.Size = New System.Drawing.Size(32, 16)

Me.Label78.TabIlndex = 168

Me.Label78.Text = "State"

'TextBox125

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

283

Me.TextBox125.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox125.Location = New System.Drawing.Point(256, 56)

Me.TextBox125.Multiline = True

Me.TextBox125.Name = "TextBox125"

Me.TextBox125.ScrollBars = System. Windows.Forms.ScrollBars.Both

Me.TextBox125.Size = New System.Drawing.Size(96, 144)

Me.TextBox125.TabIndex = 149

Me.TextBox125.Text=""

'Label79

Me.Label79.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label79.Location = New System.Drawing.Point(280, 24)

Me.Label79.Name = "Label79"

Me.Label79.Size = New System.Drawing.Size(44, 16)

Me.Label79.Tablndex = 171

Me.Label79.Text = "Delta"

'TextBox126

Me.TextBox126.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox126.Location = New System.Drawing.Point(8, 224)

Me.TextBox126.Multiline = True

Me.TextBox126.Name = "TextBox126"

Me.TextBox126.ScrollBars = System. Windows.Forms.ScrollBars.Both

Me.TextBox126.Size = New System.Drawing.Size(352, 176)

Me.TextBox126.TabIndex = 152

Me.TextBox126.Text=""

'Label80

Me.Label80.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label80.Location = New System.Drawing.Point(152, 208)

Me.Label80.Name = "Label80"

Me.Label80.Size = New System.Drawing.Size(56, 16)

Me.Label80.TabIndex = 172

Me.Label80.Text = "Q Values"

'GroupBox23

Me.GroupBox23.Controls.Add(Me.ListBox6)
Me.GroupBox23.Controls.Add(Me.Label74)
Me.GroupBox23.Controls.Add(Me.ListBox5)
Me.GroupBox23.Controls.Add(Me.Label71)
Me.GroupBox23.Controls.Add(Me.ListBox4)
Me.GroupBox23.Controls.Add(Me.Label70)
Me.GroupBox23.Controls.Add(Me.ListBox3)
Me.GroupBox23.Controls.Add(Me.Label62)
Me.GroupBox23.Controls.Add(Me.TextBox117)
Me.GroupBox23.Controls.Add(Me.Label61)
Me.GroupBox23.Controls.Add(Me.TextBox118)
Me.GroupBox23.Controls.Add(Me.Label68)
Me.GroupBox23.Location = New System.Drawing.Point(16, 136)
Me.GroupBox23.Name = "GroupBox23"
Me.GroupBox23.Size = New System.Drawing.Size(376, 416)
Me.GroupBox23.Tablndex = 211

Me.GroupBox23.TabStop = False

Me.GroupBox23.Text = "Policy - No Reward"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

284

'ListBox6

Me.ListBox6.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ListBox6.IltemHeight = 14

Me.ListBox6.Location = New System.Drawing.Point(184, 56)

Me.ListBox6.Name = "ListBox6"

Me.ListBox6.Size = New System.Drawing.Size(56, 130)

Me.ListBox6.Tablndex = 181

'Label74

Me.Label74.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label74.Location = New System.Drawing.Point(184, 24)

Me.Label74.Name = "Label74"

Me.Label74.Size = New System.Drawing.Size(56, 16)

Me.Label74.TabIlndex = 180

Me.Label74.Text = "Time (ms)"

'ListBox5

Me.ListBox5.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ListBox5.ItemHeight = 14

Me.ListBox5.Location = New System.Drawing.Point(120, 56)

Me.ListBox5.Name = "ListBox5"

Me.ListBox5.Size = New System.Drawing.Size(48, 130)

Me.ListBox5.Tablndex = 178

'Label71

Me.Label71.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label71.Location = New System.Drawing.Point(120, 24)

Me.Label71.Name = "Label71"

Me.Label71.Size = New System.Drawing.Size(48, 16)

Me.Label71.Tablndex = 177

Me.Label71.Text = "Reward"

'ListBox4

Me.ListBox4.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ListBox4.IltemHeight = 14

Me.ListBox4.Location = New System.Drawing.Point(64, 56)

Me.ListBox4.Name = "ListBox4"

Me.ListBox4.Size = New System.Drawing.Size(48, 130)

Me.ListBox4.TabIndex = 176

'Label70

Me.Label70.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label70.Location = New System.Drawing.Point(64, 24)

Me.Label70.Name = "Label70"

Me.Label70.Size = New System.Drawing.Size(40, 16)

Me.Label70.Tablndex = 175

Me.Label70.Text = "Action"

'ListBox3

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

285

Me.ListBox3.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ListBox3.ItemHeight = 14

Me.ListBox3.Items.AddRange(New Object() {"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"})
Me.ListBox3.Location = New System.Drawing.Point(8, 56)

Me.ListBox3.Name = "ListBox3"

Me.ListBox3.Size = New System.Drawing.Size(48, 130)

Me.ListBox3.TabIndex = 170

'Label62

Me.Label62.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label62.Location = New System.Drawing.Point(16, 24)

Me.Label62.Name = "Label62"

Me.Label62.Size = New System.Drawing.Size(32, 16)

Me.Label62.TabIndex = 168

Me.Label62.Text = "State"

'TextBox117

Me.TextBox117.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox117.Location = New System.Drawing.Point(256, 56)

Me.TextBox117.Multiline = True

Me.TextBox117.Name = "TextBox117"

Me.TextBox117.ScrollBars = System. Windows.Forms.ScrollBars.Both

Me.TextBox117.Size = New System.Drawing.Size(96, 144)

Me.TextBox117.TabIndex = 149

Me.TextBox117.Text=""

'Label61

Me.Label61.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label61.Location = New System.Drawing.Point(280, 24)

Me.Label61.Name = "Label61"

Me.Label61.Size = New System.Drawing.Size(44, 16)

Me.Label61.Tablndex = 171

Me.Label61.Text = "Delta"

'"TextBox118

Me.TextBox118.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox118.Location = New System.Drawing.Point(8, 224)

Me.TextBox118.Multiline = True

Me.TextBox118.Name = "TextBox118"

Me.TextBox118.ScrollBars = System. Windows.Forms.ScrollBars.Both

Me.TextBox118.Size = New System.Drawing.Size(352, 176)

Me.TextBox118.TabIndex = 152

Me.TextBox118.Text=""

'Label68

Me.Label68.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label68.Location = New System.Drawing.Point(152, 208)

Me.Label68.Name = "Label68"

Me.Label68.Size = New System.Drawing.Size(56, 16)

Me.Label68.TabIndex = 172

Me.Label68.Text = "Q Values"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 286

'GroupBox22

Me.GroupBox22.Controls.Add(Me.Label52)
Me.GroupBox22.Controls.Add(Me.TextBox113)
Me.GroupBox22.Controls.Add(Me.TextBox122)
Me.GroupBox22.Controls.Add(Me.Label65)
Me.GroupBox22.Controls.Add(Me.TextBox121)
Me.GroupBox22.Controls.Add(Me.Label64)
Me.GroupBox22.Controls.Add(Me.TextBox120)
Me.GroupBox22.Controls.Add(Me.Label63)
Me.GroupBox22.Controls.Add(Me.TextBox119)
Me.GroupBox22.Controls.Add(Me.Label69)
Me.GroupBox22.Controls.Add(Me.TextBox124)
Me.GroupBox22.Controls.Add(Me.Label67)
Me.GroupBox22.Controls.Add(Me.TextBox123)
Me.GroupBox22.Controls.Add(Me.Label66)
Me.GroupBox22.Location = New System.Drawing.Point(16, 16)
Me.GroupBox22.Name = "GroupBox22"
Me.GroupBox22.Size = New System.Drawing.Size(384, 104)
Me.GroupBox22.TabIndex =210

Me.GroupBox22.TabStop = False

Me.GroupBox22.Text = "RL Parameters"

'Label52

Me.Label52.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.Label52.Location = New System.Drawing.Point(256, 48)

Me.Label52.Name = "Label52"

Me.Label52.Size = New System.Drawing.Size(68, 16)

Me.Label52.TabIndex = 178

Me.Label52.Text = "Punishment:"

'TextBox113

Me.TextBox113.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.TextBox113.Location = New System.Drawing.Point(336, 48)

Me.TextBox113.Name = "TextBox113"

Me.TextBox113.Size = New System.Drawing.Size(32, 20)

Me.TextBox113.TabIndex = 177

Me.TextBox113.Text="-"

'"TextBox122

Me.TextBox122.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.TextBox122.Location = New System.Drawing.Point(208, 24)

Me.TextBox122.Name = "TextBox122"

Me.TextBox122.Size = New System.Drawing.Size(32, 20)

Me.TextBox122.TabIndex = 161

Me.TextBox122.Text ="10"

'Label65

Me.Label65.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.Label65.Location = New System.Drawing.Point(8, 72)

Me.Label65.Name = "Label65"

Me.Label65.Size = New System.Drawing.Size(68, 16)

Me.Label65.TabIndex = 160

Me.Label65.Text = "Lambda:"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 287

'TextBox121

Me.TextBox121.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.TextBox121.Location = New System.Drawing.Point(80, 72)

Me.TextBox121.Name = "TextBox121"

Me.TextBox121.Size = New System.Drawing.Size(32, 20)

Me.TextBox121.TabIndex = 159

Me.TextBox121.Text="0.5"

'Label64

Me.Label64.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.Label64.Location = New System.Drawing.Point(8, 48)

Me.Label64.Name = "Label64"

Me.Label64.Size = New System.Drawing.Size(68, 16)

Me.Label64.TabIndex = 158

Me.Label64.Text = "Gamma:"

'TextBox120

Me.TextBox120.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.TextBox120.Location = New System.Drawing.Point(80, 48)

Me.TextBox120.Name = "TextBox120"

Me.TextBox120.Size = New System.Drawing.Size(32, 20)

Me.TextBox120.TabIndex = 157

Me.TextBox120.Text = "0.99"

'Label63

Me.Label63.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.Label63.Location = New System.Drawing.Point(8, 24)

Me.Label63.Name = "Label63"

Me.Label63.Size = New System.Drawing.Size(68, 16)

Me.Label63.TabIlndex = 156

Me.Label63.Text = "Initial Alpha:"

'"TextBox119

Me.TextBox119.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.TextBox119.Location = New System.Drawing.Point(80, 24)

Me.TextBox119.Name = "TextBox119"

Me.TextBox119.Size = New System.Drawing.Size(32, 20)

Me.TextBox119.TabIndex = 155

Me.TextBox119.Text = "0.05"

'Label69

Me.Label69.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.Label69.Location = New System.Drawing.Point(120, 72)

Me.Label69.Name = "Label69"

Me.Label69.Size = New System.Drawing.Size(88, 16)

Me.Label69.Tablndex = 174

Me.Label69.Text = "Learning Trials:"

'TextBox124

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 288

Me.TextBox124.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.TextBox124.Location = New System.Drawing.Point(208, 72)

Me.TextBox124.Name = "TextBox124"

Me.TextBox124.Size = New System.Drawing.Size(32, 20)

Me.TextBox124.TabIndex = 173

Me.TextBox124.Text ="10"

'Label67

Me.Label67.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.Label67.Location = New System.Drawing.Point(120, 48)

Me.Label67.Name = "Label67"

Me.Label67.Size = New System.Drawing.Size(68, 16)

Me.Label67.TabIndex = 164

Me.Label67.Text = "Reward:"

'TextBox123

Me.TextBox123.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.TextBox123.Location = New System.Drawing.Point(208, 48)

Me.TextBox123.Name = "TextBox123"

Me.TextBox123.Size = New System.Drawing.Size(32, 20)

Me.TextBox123.TabIndex = 163

Me.TextBox123.Text ="-"

'Label66

Me.Label66.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.Label66.Location = New System.Drawing.Point(120, 24)

Me.Label66.Name = "Label66"

Me.Label66.Size = New System.Drawing.Size(68, 16)

Me.Label66.Tablndex = 162

Me.Label66.Text = "Beta:"

'‘Button35

Me.Button35.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button35.Location = New System.Drawing.Point(528, 24)

Me.Button35.Name = "Button35"

Me.Button35.Size = New System.Drawing.Size(88, 48)

Me.Button35.TabIndex = 179

Me.Button35.Text = "Continue Algorithm"

'Button33

Me.Button33.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button33.Location = New System.Drawing.Point(424, 24)

Me.Button33.Name = "Button33"

Me.Button33.Size = New System.Drawing.Size(88, 48)

Me.Button33.TabIndex = 165

Me.Button33.Text = "Run Q(lambda)"

'TabPage2
Me.TabPage2.Controls. Add(Me.GroupBox5)

Me.TabPage2.Controls.Add(Me.GroupBox3)
Me.TabPage2.Controls.Add(Me.GroupBox14)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 289

Me.TabPage2.Controls.Add(Me.Label26)
Me.TabPage2.Controls.Add(Me.Label27)
Me.TabPage2.Controls.Add(Me.CheckBox6)
Me.TabPage2.Controls.Add(Me.CheckBox3)
Me.TabPage2.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.TabPage2.Location = New System.Drawing.Point(4, 28)
Me.TabPage2.Name = "TabPage2"

Me.TabPage?2.Size = New System.Drawing.Size(1264, 792)
Me.TabPage2.Tablndex = 1

Me.TabPage2.Text = "User Interface"

'GroupBox5

Me.GroupBox5.Controls.Add(Me.Label73)
Me.GroupBox5.Controls.Add(Me.AxWebBrowserl1)
Me.GroupBox5.Controls.Add(Me.AxWebBrowser2)
Me.GroupBox5.Controls.Add(Me.Label72)
Me.GroupBox5.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.GroupBox5.Location = New System.Drawing.Point(752, 0)
Me.GroupBox5.Name = "GroupBox5"

Me.GroupBox5.Size = New System.Drawing.Size(384, 656)
Me.GroupBox5.TabIndex = 69

Me.GroupBox5.TabStop = False

Me.GroupBox5.Text = "Visual Feeback"
Me.GroupBox5.Visible = False

'Label73

Me.Label73.Font = New System.Drawing.Font("Arial", 8.25!, CType((System.Drawing.FontStyle.Bold Or
System.Drawing.FontStyle.Underline), System.Drawing.FontStyle), System.Drawing.GraphicsUnit.Point, CType(0,
Byte))

Me.Label73.Location = New System.Drawing.Point(144, 336)

Me.Label73.Name = "Label73"

Me.Label73.Size = New System.Drawing.Size(80, 16)

Me.Label73.TabIndex = 76

Me.Label73.Text = "Overall View"

'AxWebBrowserl

Me.AxWebBrowserl.ContainingControl = Me

Me.AxWebBrowserl.Enabled = True

Me.AxWebBrowserl.Location = New System.Drawing.Point(8, 40)
Me.AxWebBrowserl.OcxState = CType(resources.GetObject("AxWebBrowser1.OcxState"),
System.Windows.Forms.AxHost.State)

Me.AxWebBrowserl.Size = New System.Drawing.Size(360, 288)
Me.AxWebBrowserl.TabIndex = 59

'AxWebBrowser2

Me.AxWebBrowser2.ContainingControl = Me

Me.AxWebBrowser2.Enabled = True

Me.AxWebBrowser2.Location = New System.Drawing.Point(8, 360)
Me.AxWebBrowser2.0cxState = CType(resources.GetObject(" AxWebBrowser2.OcxState"),
System.Windows.Forms.AxHost.State)

Me.AxWebBrowser2.Size = New System.Drawing.Size(360, 288)
Me.AxWebBrowser2.TabIndex = 60

'Label72

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 290

Me.Label72.Font = New System.Drawing.Font("Arial", 8.25!, CType((System.Drawing.FontStyle.Bold Or
System.Drawing.FontStyle.Underline), System.Drawing.FontStyle), System.Drawing.GraphicsUnit.Point, CType(0,
Byte))

Me.Label72.Location = New System.Drawing.Point(144, 16)

Me.Label72.Name = "Label72"

Me.Label72.Size = New System.Drawing.Size(80, 16)

Me.Label72.Tablndex = 75

Me.Label72.Text = "Close View"

'"TabPage5

Me.TabPage5.Controls.Add(Me.GroupBox32)
Me.TabPage5.Controls.Add(Me.GroupBox27)
Me.TabPage5.Controls.Add(Me.GroupBox21)
Me.TabPage5.Controls.Add(Me.GroupBox16)
Me.TabPage5.Controls.Add(Me.GroupBox15)
Me.TabPage5.Controls.Add(Me.TextBox115)
Me.TabPage5.Controls.Add(Me.TextBox95)
Me.TabPage5.Controls.Add(Me.TextBox94)
Me.TabPage5.Controls.Add(Me.TextBox93)
Me.TabPage5.Controls.Add(Me.TextBox92)
Me.TabPage5.Controls.Add(Me.Label57)
Me.TabPage5.Controls. Add(Me.TextBox91)
Me.TabPage5.Controls. Add(Me.TextBox78)
Me.TabPage5.Controls. Add(Me.TextBox79)
Me.TabPage5.Controls.Add(Me.TextBox82)
Me.TabPage5.Controls. Add(Me.TextBox83)
Me.TabPage5.Controls. Add(Me.TextBox84)
Me.TabPage5.Controls.Add(Me.TextBox85)
Me.TabPage5.Controls. Add(Me.TextBox86)
Me.TabPage5.Controls.Add(Me.TextBox87)
Me.TabPage5.Controls.Add(Me.TextBox88)
Me.TabPage5.Controls.Add(Me.TextBox96)
Me.TabPage5.Controls. Add(Me.TextBox97)
Me.TabPage5.Controls. Add(Me.TextBox98)
Me.TabPage5.Controls. Add(Me.TextBox99)
Me.TabPage5.Controls.Add(Me.TextBox100)
Me.TabPage5.Controls.Add(Me.TextBox101)
Me.TabPage5.Controls.Add(Me.TextBox102)
Me.TabPage5.Controls.Add(Me.TextBox103)
Me.TabPage5.Controls.Add(Me.TextBox104)
Me.TabPage5.Controls.Add(Me.TextBox105)
Me.TabPage5.Controls.Add(Me.TextBox106)
Me.TabPage5.Controls.Add(Me.TextBox107)
Me.TabPage5.Controls.Add(Me.TextBox108)
Me.TabPage5.Controls.Add(Me.TextBox109)
Me.TabPage5.Controls.Add(Me.TextBox110)
Me.TabPage5.Controls.Add(Me.TextBox111)
Me.TabPage5.Controls.Add(Me.ListBox2)
Me.TabPage5.Controls.Add(Me.Label41)
Me.TabPage5.Controls.Add(Me.Label40)
Me.TabPage5.Controls.Add(Me.ListBox1)
Me.TabPage5.Location = New System.Drawing.Point(4, 28)
Me.TabPageS.Name = "TabPage5"
Me.TabPage5.Size = New System.Drawing.Size(1264, 792)
Me.TabPage5.Tablndex = 4
Me.TabPage5.Text = "State-Action Space"

'GroupBox32
Me.GroupBox32.Controls.Add(Me.ComboBox7)

Me.GroupBox32.Controls.Add(Me.Button59)
Me.GroupBox32.Location = New System.Drawing.Point(16, 216)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 291

Me.GroupBox32.Name = "GroupBox32"
Me.GroupBox32.Size = New System.Drawing.Size(304, 80)
Me.GroupBox32.TabIndex = 183

Me.GroupBox32.TabStop = False

Me.GroupBox32.Text = "Load Optimal Policy"

'ComboBox7

Me.ComboBox7.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ComboBox7.Items.AddRange(New Object() {"Optimal Policyl", "Optimal Policy2", "Optimal Policy3", "Policy
After System Crash"})

Me.ComboBox7.Location = New System.Drawing.Point(112, 32)

Me.ComboBox7.Name = "ComboBox7"

Me.ComboBox7.Size = New System.Drawing.Size(176, 22)

Me.ComboBox7.TabIndex = 183

Me.ComboBox7.Text = "ComboBox7"

'Button59

Me.Button59.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button59.Location = New System.Drawing.Point(16, 24)

Me.Button59.Name = "Button59"

Me.Button59.Size = New System.Drawing.Size(80, 48)

Me.Button59.TabIndex = 182

Me.Button59.Text = "Load Policy"

'GroupBox27

Me.GroupBox27.Controls.Add(Me.Label110)
Me.GroupBox27.Controls.Add(Me.TextBox161)
Me.GroupBox27.Controls.Add(Me.TextBox157)
Me.GroupBox27.Controls.Add(Me.TextBox156)
Me.GroupBox27.Controls.Add(Me.Label106)
Me.GroupBox27.Controls.Add(Me.Label104)
Me.GroupBox27.Controls.Add(Me.TextBox155)
Me.GroupBox27.Controls.Add(Me.TextBox154)
Me.GroupBox27.Controls.Add(Me.TextBox81)
Me.GroupBox27.Controls.Add(Me.TextBox153)
Me.GroupBox27.Controls.Add(Me.TextBox159)
Me.GroupBox27.Controls.Add(Me.TextBox160)
Me.GroupBox27.Location = New System.Drawing.Point(712, 24)
Me.GroupBox27.Name = "GroupBox27"
Me.GroupBox27.Size = New System.Drawing.Size(352, 128)
Me.GroupBox27.TabIndex = 181

Me.GroupBox27.TabStop = False

Me.GroupBox27.Text = "Current Shaking Parametes"

'Labell10

Me.Labell10.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.Label110.Location = New System.Drawing.Point(8, 64)

Me.Label110.Name = "Label110"

Me.Label110.Size = New System.Drawing.Size(112, 16)

Me.Label110.TabIndex = 190

Me.Label110.Text = "Arm Amplitudes (-):"

'TextBox161

Me.TextBox161.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 292

Me.TextBox161.Location = New System.Drawing.Point(272, 64)
Me.TextBox161.Name = "TextBox161"

Me.TextBox161.Size = New System.Drawing.Size(64, 20)
Me.TextBox161.TabIndex = 189

Me.TextBox161.Text ="-030.000"

'"TextBox157

Me.TextBox157.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.TextBox157.Location = New System.Drawing.Point(272, 32)

Me.TextBox157.Name = "TextBox157"

Me.TextBox157.Size = New System.Drawing.Size(64, 20)

Me.TextBox157.TabIndex = 188

Me.TextBox157.Text = "030.000"

'TextBox156

Me.TextBox156.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.TextBox156.Location = New System.Drawing.Point(200, 32)

Me.TextBox156.Name = "TextBox156"

Me.TextBox156.Size = New System.Drawing.Size(64, 20)

Me.TextBox156.TabIndex = 187

Me.TextBox156.Text ="030.000"

'Labell06

Me.Label106.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.Label106.Location = New System.Drawing.Point(8, 32)

Me.Label106.Name = "Label106"

Me.Label106.Size = New System.Drawing.Size(112, 16)

Me.Label106.TabIndex = 186

Me.Label106.Text = "Arm Amplitudes (+):"

'Label104

Me.Label104.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.Label104.Location = New System.Drawing.Point(32, 96)

Me.Label104.Name = "Label104"

Me.Label104.Size = New System.Drawing.Size(80, 16)

Me.Label104.TabIndex = 185

Me.Label104.Text = "Arm Speeds:"

'"TextBox155

Me.TextBox155.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.TextBox155.Location = New System.Drawing.Point(272, 96)

Me.TextBox155.Name = "TextBox155"

Me.TextBox155.Size = New System.Drawing.Size(64, 20)

Me.TextBox155.Tablndex = 184

Me.TextBox155.Text ="1000"

'TextBox154

Me.TextBox154.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.TextBox154.Location = New System.Drawing.Point(200, 96)

Me.TextBox154.Name = "TextBox154"

Me.TextBox154.Size = New System.Drawing.Size(64, 20)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 293

Me.TextBox154.TabIndex = 183
Me.TextBox154.Text = "1000"

'TextBox81

Me.TextBox81.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.TextBox81.Location = New System.Drawing.Point(128, 32)

Me.TextBox81.Name = "TextBox81"

Me.TextBox81.Size = New System.Drawing.Size(64, 20)

Me.TextBox81.Tablndex = 159

Me.TextBox81.Text = "030.000"

'TextBox153

Me.TextBox153.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.TextBox153.Location = New System.Drawing.Point(128, 96)

Me.TextBox153.Name = "TextBox153"

Me.TextBox153.Size = New System.Drawing.Size(64, 20)

Me.TextBox153.Tablndex = 182

Me.TextBox153.Text ="1000"

'TextBox159

Me.TextBox159.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.TextBox159.Location = New System.Drawing.Point(128, 64)

Me.TextBox159.Name = "TextBox 159"

Me.TextBox159.Size = New System.Drawing.Size(64, 20)

Me.TextBox159.TabIndex = 192

Me.TextBox159.Text = "-030.000"

'TextBox160

Me.TextBox160.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(177, Byte))

Me.TextBox160.Location = New System.Drawing.Point(200, 64)

Me.TextBox160.Name = "TextBox160"

Me.TextBox160.Size = New System.Drawing.Size(64, 20)

Me.TextBox160.TabIndex = 191

Me.TextBox160.Text = "-030.000"

'GroupBox21

Me.GroupBox21.Controls.Add(Me.Button36)
Me.GroupBox21.Controls.Add(Me.Button38)
Me.GroupBox21.Controls.Add(Me.Button39)
Me.GroupBox21.Location = New System.Drawing.Point(16, 16)
Me.GroupBox21.Name = "GroupBox21"

Me.GroupBox21.Size = New System.Drawing.Size(224, 160)
Me.GroupBox21.TabIndex = 180

Me.GroupBox21.TabStop = False

Me.GroupBox21.Text = "Create Real Policy"

'Button36

Me.Button36.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button36.Location = New System.Drawing.Point(128, 32)

Me.Button36.Name = "Button36"

Me.Button36.Size = New System.Drawing.Size(80, 48)

Me.Button36.Tablndex = 182

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

294

Me.Button36.Text = "System Creates Policy"

'Button38

Me.Button38.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button38.Location = New System.Drawing.Point(24, 32)

Me.Button38.Name = "Button38"

Me.Button38.Size = New System.Drawing.Size(80, 48)

Me.Button38.Tablndex = 181

Me.Button38.Text = "Human Creates Policy"

'Button39

Me.Button39.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button39.Location = New System.Drawing.Point(72, 96)

Me.Button39.Name = "Button39"

Me.Button39.Size = New System.Drawing.Size(80, 48)

Me.Button39.Tablndex = 169

Me.Button39.Text = "Reset Policy"

'GroupBox16

Me.GroupBox16.Controls.Add(Me.Button34)
Me.GroupBox16.Controls.Add(Me.Button31)
Me.GroupBox16.Controls.Add(Me.Button29)
Me.GroupBox16.Controls.Add(Me.Button28)
Me.GroupBox16.Location = New System.Drawing.Point(256, 16)
Me.GroupBox16.Name = "GroupBox16"

Me.GroupBox16.Size = New System.Drawing.Size(200, 200)
Me.GroupBox16.TabIndex = 179

Me.GroupBox16.TabStop = False

Me.GroupBox16.Text = "Run Policy"

'Button34

Me.Button34.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button34.Location = New System.Drawing.Point(60, 80)

Me.Button34.Name = "Button34"

Me.Button34.Size = New System.Drawing.Size(80, 48)

Me.Button34.Tablndex = 169

Me.Button34.Text = "Shaking Point"

'Button31

Me.Button31.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button31.Location = New System.Drawing.Point(16, 24)

Me.Button31.Name = "Button31"

Me.Button31.Size = New System.Drawing.Size(80, 48)

Me.Button31.TabIndex = 168

Me.Button31.Text = "Grasp Bag"

'Button29

Me.Button29.BackColor = System.Drawing.Color.Red
Me.Button29.Cursor = System.Windows.Forms.Cursors.Default

Me.Button29.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,

System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.Button29.ForeColor = System.Drawing.Color.Yellow
Me.Button29.Location = New System.Drawing.Point(16, 136)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

295

Me.Button29.Name = "Button29"

Me.Button29.RightToLeft = System. Windows.Forms.RightToLeft.No
Me.Button29.Size = New System.Drawing.Size(168, 48)
Me.Button29.TabIndex = 166

Me.Button29.Text = "Emergency Stop"

'Button28

Me.Button28.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button28.Location = New System.Drawing.Point(104, 24)

Me.Button28.Name = "Button28"

Me.Button28.Size = New System.Drawing.Size(80, 48)

Me.Button28.TabIndex = 165

Me.Button28.Text = "Execute Shaking"

'GroupBox15

Me.GroupBox15.Controls.Add(Me.Button30)
Me.GroupBox15.Controls.Add(Me.Label60)
Me.GroupBox15.Controls.Add(Me.Label59)
Me.GroupBox15.Controls.Add(Me.Label58)
Me.GroupBox15.Controls.Add(Me.TrackBar1)
Me.GroupBox15.Controls.Add(Me.TextBox116)
Me.GroupBox15.Controls.Add(Me.Button32)
Me.GroupBox15.Location = New System.Drawing.Point(472, 16)
Me.GroupBox15.Name = "GroupBox15"
Me.GroupBox15.Size = New System.Drawing.Size(224, 200)
Me.GroupBox15.TabIndex = 178

Me.GroupBox15.TabStop = False

Me.GroupBox15.Text = "Create Random Policy"

'‘Button30

Me.Button30.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button30.Location = New System.Drawing.Point(24, 136)

Me.Button30.Name = "Button30"

Me.Button30.Size = New System.Drawing.Size(80, 48)

Me.Button30.TabIndex = 181

Me.Button30.Text = "Create Policy"

'Label60

Me.Label60.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,

System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.Label60.Location = New System.Drawing.Point(16, 96)
Me.Label60.Name = "Label60"

Me.Label60.Size = New System.Drawing.Size(104, 16)
Me.Label60.Tablndex = 178

Me.Label60.Text = "Number of actions:"

'Label59

Me.Label59.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,

System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.Label59.Location = New System.Drawing.Point(184, 72)
Me.Label59.Name = "Label59"

Me.Label59.Size = New System.Drawing.Size(24, 16)
Me.Label59.Tablndex = 177

Me.Label59.Text = "500"

'Label58

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

296

Me.Label58.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label58.Location = New System.Drawing.Point(24, 72)

Me.Label58.Name = "Label58"

Me.Label58.Size = New System.Drawing.Size(8, 16)

Me.Label58.TabIndex = 176

Me.Label58.Text ="0"

'"TrackBarl

Me.TrackBarl.LargeChange = 1

Me.TrackBarl.Location = New System.Drawing.Point(16, 24)
Me.TrackBarl.Maximum = 500

Me.TrackBarl.Name = "TrackBarl"

Me.TrackBarl.Size = New System.Drawing.Size(192, 45)
Me.TrackBarl.TabIndex = 175

Me.TrackBarl.Value = 25

'TextBox116

Me.TextBox116.Location = New System.Drawing.Point(128, 88)
Me.TextBox116.Name = "TextBox116"

Me.TextBox116.Size = New System.Drawing.Size(32, 26)
Me.TextBox116.TabIndex = 180

Me.TextBox116.Text=""

'Button32

Me.Button32.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Button32.Location = New System.Drawing.Point(120, 136)

Me.Button32.Name = "Button32"

Me.Button32.Size = New System.Drawing.Size(80, 48)

Me.Button32.TabIndex = 169

Me.Button32.Text = "Reset Policy"

'TextBox115

Me.TextBox115.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox115.Location = New System.Drawing.Point(224, 392)

Me.TextBox115.Name = "TextBox115"

Me.TextBox115.Size = New System.Drawing.Size(32, 20)

Me.TextBox115.Tablndex = 172

Me.TextBox115.Text=""

'TextBox95

Me.TextBox95.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox95.Location = New System.Drawing.Point(224, 360)

Me.TextBox95.Name = "TextBox95"

Me.TextBox95.Size = New System.Drawing.Size(32, 20)

Me.TextBox95.Tablndex = 171

Me.TextBox95.Text =""

'TextBox94

Me.TextBox94.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,

System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.TextBox94.Location = New System.Drawing.Point(816, 552)
Me.TextBox94.Multiline = True

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 297

Me.TextBox94.Name = "TextBox94"

Me.TextBox94.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox94.Size = New System.Drawing.Size(304, 64)
Me.TextBox94.TabIndex = 164

Me.TextBox94.Text =""

'"TextBox93

Me.TextBox93.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox93.Location = New System.Drawing.Point(816, 624)

Me.TextBox93.Multiline = True

Me.TextBox93.Name = "TextBox93"

Me.TextBox93.ScrollBars = System. Windows.Forms.ScrollBars.Both

Me.TextBox93.Size = New System.Drawing.Size(304, 72)

Me.TextBox93.Tablndex = 163

Me.TextBox93.Text =""

'TextBox92

Me.TextBox92.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox92.Location = New System.Drawing.Point(816, 320)

Me.TextBox92.Multiline = True

Me.TextBox92.Name = "TextBox92"

Me.TextBox92.ScrollBars = System. Windows.Forms.ScrollBars.Both

Me.TextBox92.Size = New System.Drawing.Size(304, 64)

Me.TextBox92.TabIndex = 162

Me.TextBox92.Text =""

'Label57

Me.Label57.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label57.Location = New System.Drawing.Point(280, 640)

Me.Label57.Name = "Label57"

Me.Label57.Size = New System.Drawing.Size(88, 16)

Me.Label57.Tablndex = 161

Me.Label57.Text = "Action Counter:"

'"TextBox91

Me.TextBox91.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox91.Location = New System.Drawing.Point(376, 640)

Me.TextBox91.Name = "TextBox91"

Me.TextBox91.Size = New System.Drawing.Size(32, 20)

Me.TextBox91.Tablndex = 160

Me.TextBox91.Text =""

'TextBox78

Me.TextBox78.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox78.Location = New System.Drawing.Point(816, 400)

Me.TextBox78.Multiline = True

Me.TextBox78.Name = "TextBox78"

Me.TextBox78.ScrollBars = System. Windows.Forms.ScrollBars.Both

Me.TextBox78.Size = New System.Drawing.Size(304, 64)

Me.TextBox78.Tablndex = 147

Me.TextBox78.Text =""

'TextBox79

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 298

Me.TextBox79.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox79.Location = New System.Drawing.Point(488, 680)

Me.TextBox79.Multiline = True

Me.TextBox79.Name = "TextBox79"

Me.TextBox79.ScrollBars = System.Windows.Forms.ScrollBars.Both

Me.TextBox79.Size = New System.Drawing.Size(56, 24)

Me.TextBox79.TabIlndex = 146

Me.TextBox79.Text ="END"

'TextBox82

Me.TextBox82.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox82.Location = New System.Drawing.Point(632, 656)

Me.TextBox82.Multiline = True

Me.TextBox82.Name = "TextBox82"

Me.TextBox82.ScrollBars = System.Windows.Forms.ScrollBars.Both

Me.TextBox82.Size = New System.Drawing.Size(64, 24)

Me.TextBox82.TabIndex = 143

Me.TextBox82.Text = "500"

'TextBox83

Me.TextBox83.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox83.Location = New System.Drawing.Point(488, 656)

Me.TextBox83.Multiline = True

Me.TextBox83.Name = "TextBox83"

Me.TextBox83.ScrollBars = System.Windows.Forms.ScrollBars.Both

Me.TextBox83.Size = New System.Drawing.Size(144, 24)

Me.TextBox83.Tablndex = 142

Me.TextBox83.Text = "IMOV P000 V="

'TextBox84

Me.TextBox84.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox84.Location = New System.Drawing.Point(488, 632)

Me.TextBox84.Multiline = True

Me.TextBox84.Name = "TextBox84"

Me.TextBox84.ScrollBars = System.Windows.Forms.ScrollBars.Both

Me.TextBox84.Size = New System.Drawing.Size(144, 24)

Me.TextBox84.Tablndex = 141

Me.TextBox84.Text = "NOP"

'TextBox85

Me.TextBox85.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox85.Location = New System.Drawing.Point(488, 608)

Me.TextBox85.Multiline = True

Me.TextBox85.Name = "TextBox85"

Me.TextBox85.ScrollBars = System.Windows.Forms.ScrollBars.Both

Me.TextBox85.Size = New System.Drawing.Size(144, 24)

Me.TextBox85.Tablndex = 140

Me.TextBox85.Text = "///GROUP1 RB1"

'TextBox86

Me.TextBox86.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 299

Me.TextBox86.Location = New System.Drawing.Point(488, 584)
Me.TextBox86.Multiline = True

Me.TextBox86.Name = "TextBox86"

Me.TextBox86.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox86.Size = New System.Drawing.Size(144, 24)
Me.TextBox86.TabIndex = 139

Me.TextBox86.Text ="///ATTR SC,RW"

'"TextBox87

Me.TextBox87.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox87.Location = New System.Drawing.Point(488, 560)

Me.TextBox87.Multiline = True

Me.TextBox87.Name = "TextBox87"

Me.TextBox87.ScrollBars = System.Windows.Forms.ScrollBars.Both

Me.TextBox87.Size = New System.Drawing.Size(184, 24)

Me.TextBox87.Tablndex = 138

Me.TextBox87.Text ="///DATE 2053/11/21 21:42"

'TextBox88

Me.TextBox88.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox88.Location = New System.Drawing.Point(488, 536)

Me.TextBox88.Multiline = True

Me.TextBox88.Name = "TextBox88"

Me.TextBox88.ScrollBars = System.Windows.Forms.ScrollBars.Both

Me.TextBox88.Size = New System.Drawing.Size(144, 24)

Me.TextBox88.TabIndex = 137

Me.TextBox88.Text ="//INST"

'TextBox96

Me.TextBox96.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox96.Location = New System.Drawing.Point(992, 512)

Me.TextBox96.Multiline = True

Me.TextBox96.Name = "TextBox96"

Me.TextBox96.ScrollBars = System.Windows.Forms.ScrollBars.Both

Me.TextBox96.Size = New System.Drawing.Size(68, 24)

Me.TextBox96.TabIndex = 129

Me.TextBox96.Text = "0.00"

'"TextBox97

Me.TextBox97.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox97.Location = New System.Drawing.Point(920, 512)

Me.TextBox97.Multiline = True

Me.TextBox97.Name = "TextBox97"

Me.TextBox97.ScrollBars = System.Windows.Forms.ScrollBars.Both

Me.TextBox97.Size = New System.Drawing.Size(68, 24)

Me.TextBox97.TabIlndex = 128

Me.TextBox97.Text = "0.00"

'TextBox98

Me.TextBox98.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox98.Location = New System.Drawing.Point(848, 512)

Me.TextBox98.Multiline = True

Me.TextBox98.Name = "TextBox98"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

300

Me.TextBox98.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox98.Size = New System.Drawing.Size(68, 24)
Me.TextBox98.Tablndex = 127

Me.TextBox98.Text = "0.00"

'"TextBox99

Me.TextBox99.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox99.Location = New System.Drawing.Point(776, 512)

Me.TextBox99.Multiline = True

Me.TextBox99.Name = "TextBox99"

Me.TextBox99.ScrollBars = System. Windows.Forms.ScrollBars.Both

Me.TextBox99.Size = New System.Drawing.Size(72, 24)

Me.TextBox99.Tablndex = 126

Me.TextBox99.Text = "000.000"

'TextBox100

Me.TextBox100.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox100.Location = New System.Drawing.Point(704, 512)

Me.TextBox100.Multiline = True

Me.TextBox100.Name = "TextBox100"

Me.TextBox100.ScrollBars = System. Windows.Forms.ScrollBars.Both

Me.TextBox100.Size = New System.Drawing.Size(72, 24)

Me.TextBox100.TabIndex = 125

Me.TextBox100.Text = "000.000"

'TextBox101

Me.TextBox101.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox101.Location = New System.Drawing.Point(632, 512)

Me.TextBox101.Multiline = True

Me.TextBox101.Name = "TextBox101"

Me.TextBox101.ScrollBars = System. Windows.Forms.ScrollBars.Both

Me.TextBox101.Size = New System.Drawing.Size(72, 24)

Me.TextBox101.TabIndex = 124

Me.TextBox101.Text = "000.000"

'"TextBox102

Me.TextBox102.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox102.Location = New System.Drawing.Point(488, 512)

Me.TextBox102.Multiline = True

Me.TextBox102.Name = "TextBox102"

Me.TextBox102.ScrollBars = System. Windows.Forms.ScrollBars.Both

Me.TextBox102.Size = New System.Drawing.Size(144, 24)

Me.TextBox102.TabIndex = 123

Me.TextBox102.Text = "P0000="

'TextBox103

Me.TextBox103.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox103.Location = New System.Drawing.Point(488, 488)

Me.TextBox103.Multiline = True

Me.TextBox103.Name = "TextBox103"

Me.TextBox103.ScrollBars = System. Windows.Forms.ScrollBars.Both

Me.TextBox103.Size = New System.Drawing.Size(216, 24)

Me.TextBox103.TabIndex = 122

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

301

Me.TextBox103.Text ="///RCONF 0,0,0,0,0,0,0,0"
'TextBox104

Me.TextBox104.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox104.Location = New System.Drawing.Point(488, 464)

Me.TextBox104.Multiline = True

Me.TextBox104.Name = "TextBox104"

Me.TextBox104.ScrollBars = System. Windows.Forms.ScrollBars.Both

Me.TextBox104.Size = New System.Drawing.Size(144, 24)

Me.TextBox104.TabIndex = 121

Me.TextBox104.Text ="///RECTAN"

'TextBox105

Me.TextBox105.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox105.Location = New System.Drawing.Point(488, 440)

Me.TextBox105.Multiline = True

Me.TextBox105.Name = "TextBox105"

Me.TextBox105.ScrollBars = System. Windows.Forms.ScrollBars.Both

Me.TextBox105.Size = New System.Drawing.Size(144, 24)

Me.TextBox105.TabIndex = 120

Me.TextBox105.Text ="///POSTYPE ROBOT"

'TextBox106

Me.TextBox106.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox106.Location = New System.Drawing.Point(488, 416)

Me.TextBox106.Multiline = True

Me.TextBox106.Name = "TextBox106"

Me.TextBox106.ScrollBars = System. Windows.Forms.ScrollBars.Both

Me.TextBox106.Size = New System.Drawing.Size(144, 24)

Me.TextBox106.TabIndex = 119

Me.TextBox106.Text ="///TOOL 0"

'TextBox107

Me.TextBox107.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox107.Location = New System.Drawing.Point(488, 392)

Me.TextBox107.Multiline = True

Me.TextBox107.Name = "TextBox107"

Me.TextBox107.ScrollBars = System. Windows.Forms.ScrollBars.Both

Me.TextBox107.Size = New System.Drawing.Size(144, 24)

Me.TextBox107.TabIndex = 118

Me.TextBox107.Text ="///NPOS 0,0,0,0,0,0"

'TextBox108

Me.TextBox108.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox108.Location = New System.Drawing.Point(488, 368)

Me.TextBox108.Multiline = True

Me.TextBox108.Name = "TextBox108"

Me.TextBox108.ScrollBars = System. Windows.Forms.ScrollBars.Both

Me.TextBox108.Size = New System.Drawing.Size(144, 24)

Me.TextBox108.TabIndex = 117

Me.TextBox108.Text ="//POS"

'TextBox109

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

302

Me.TextBox109.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox109.Location = New System.Drawing.Point(640, 344)

Me.TextBox109.Multiline = True

Me.TextBox109.Name = "TextBox109"

Me.TextBox109.ScrollBars = System. Windows.Forms.ScrollBars.Both

Me.TextBox109.Size = New System.Drawing.Size(144, 24)

Me.TextBox109.Tablndex = 116

Me.TextBox109.Text = "POLICY 1"

'"TextBox110

Me.TextBox110.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox110.Location = New System.Drawing.Point(488, 344)

Me.TextBox110.Multiline = True

Me.TextBox110.Name = "TextBox110"

Me.TextBox110.ScrollBars = System. Windows.Forms.ScrollBars.Both

Me.TextBox110.Size = New System.Drawing.Size(144, 24)

Me.TextBox110.Tablndex =115

Me.TextBox110.Text ="//NAME "

'TextBox111

Me.TextBox111.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.TextBox111.Location = New System.Drawing.Point(488, 320)

Me.TextBox111.Multiline = True

Me.TextBox111.Name = "TextBox111"

Me.TextBox111.ScrollBars = System. Windows.Forms.ScrollBars.Both

Me.TextBox111.Size = New System.Drawing.Size(144, 24)

Me.TextBox111.Tablndex = 114

Me.TextBox111.Text ="/JOB"

'ListBox2

Me.ListBox2.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ListBox2.ItemHeight = 14

Me.ListBox2.Location = New System.Drawing.Point(264, 336)

Me.ListBox2.Name = "ListBox2"

Me.ListBox2.Size = New System.Drawing.Size(200, 284)

Me.ListBox2.Tablndex = 91

'Label41

Me.Label41.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label41.Location = New System.Drawing.Point(304, 312)

Me.Label41.Name = "Label41"

Me.Label41.Size = New System.Drawing.Size(112, 16)

Me.Label41.TabIndex = 90

Me.Label41.Text = "Possible Action"

'Label40

Me.Label40.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Underline,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Label40.Location = New System.Drawing.Point(88, 312)

Me.Label40.Name = "Label40"

Me.Label40.Size = New System.Drawing.Size(80, 16)

Me.Label40.Tablndex = 87

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 303

Me.Label40.Text = "States"
'ListBox1

Me.ListBox1.Font = New System.Drawing.Font("Arial", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.ListBox1.ItemHeight = 14

Me.ListBox1.Location = New System.Drawing.Point(16, 336)

Me.ListBox1.Name = "ListBox1"

Me.ListBox1.Size = New System.Drawing.Size(200, 284)

Me.ListBox1.TabIndex =9

'TabPage4

Me.TabPage4.Controls. Add(Me.TextBox74)
Me.TabPage4.Controls.Add(Me.TextBox73)
Me.TabPage4.Controls.Add(Me.TextBox72)
Me.TabPage4.Controls.Add(Me.TextBox71)
Me.TabPage4.Controls.Add(Me.TextBox70)
Me.TabPage4.Controls.Add(Me.TextBox69)
Me.TabPage4.Controls.Add(Me.TextBox68)
Me.TabPage4.Controls.Add(Me.TextBox67)
Me.TabPage4.Controls. Add(Me.TextBox66)
Me.TabPage4.Controls. Add(Me.TextBox65)
Me.TabPage4.Controls. Add(Me.TextBox64)
Me.TabPage4.Controls.Add(Me.TextBox57)
Me.TabPage4.Controls.Add(Me.TextBox58)
Me.TabPage4.Controls.Add(Me.TextBox59)
Me.TabPage4.Controls.Add(Me.TextBox60)
Me.TabPage4.Controls.Add(Me.TextBox61)
Me.TabPage4.Controls.Add(Me.TextBox62)
Me.TabPage4.Controls.Add(Me.TextBox63)
Me.TabPage4.Controls.Add(Me.TextBox56)
Me.TabPage4.Controls. Add(Me.TextBox55)
Me.TabPage4.Controls. Add(Me.TextBox54)
Me.TabPage4.Controls. Add(Me.TextBox53)
Me.TabPage4.Controls.Add(Me.TextBox52)
Me.TabPage4.Controls.Add(Me.TextBox51)
Me.TabPage4.Controls. Add(Me.TextBox50)
Me.TabPage4.Controls.Add(Me.TextBox48)
Me.TabPage4.Controls.Add(Me.TextBox47)
Me.TabPage4.Controls.Add(Me.TextBox46)
Me.TabPage4.Controls.Add(Me.TextBox45)
Me.TabPage4.Controls.Add(Me.TextBox44)
Me.TabPage4.Controls.Add(Me.TextBox43)
Me.TabPage4.Controls.Add(Me.TextBox42)
Me.TabPage4.Controls.Add(Me.TextBox41)
Me.TabPage4.Controls. Add(Me.TextBox40)
Me.TabPage4.Location = New System.Drawing.Point(4, 28)
Me.TabPage4.Name = "TabPage4"
Me.TabPage4.Size = New System.Drawing.Size(1264, 792)
Me.TabPage4.TabIndex = 3
Me.TabPage4.Text = "Shaking Editor"

'TextBox74

Me.TextBox74.Location = New System.Drawing.Point(456, 24)
Me.TextBox74.Multiline = True

Me.TextBox74.Name = "TextBox74"

Me.TextBox74.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox74.Size = New System.Drawing.Size(280, 256)
Me.TextBox74.Tablndex = 113

Me.TextBox74.Text =""

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

304

'TextBox73

Me.TextBox73.Location = New System.Drawing.Point(16, 600)
Me.TextBox73.Multiline = True

Me.TextBox73.Name = "TextBox73"

Me.TextBox73.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox73.Size = New System.Drawing.Size(144, 24)
Me.TextBox73.Tablndex = 112

Me.TextBox73.Text ="END"

'TextBox72

Me.TextBox72.Location = New System.Drawing.Point(168, 568)
Me.TextBox72.Multiline = True

Me.TextBox72.Name = "TextBox72"

Me.TextBox72.ScrollBars = System.Windows.Forms.ScrollBars.Both
Me.TextBox72.Size = New System.Drawing.Size(64, 24)
Me.TextBox72.Tablndex = 111

Me.TextBox72.Text ="500"

'TextBox71

Me.TextBox71.Location = New System.Drawing.Point(16, 568)
Me.TextBox71.Multiline = True

Me.TextBox71.Name = "TextBox71"

Me.TextBox71.ScrollBars = System.Windows.Forms.ScrollBars.Both
Me.TextBox71.Size = New System.Drawing.Size(144, 24)
Me.TextBox71.Tablndex = 110

Me.TextBox71.Text = "IMOV P001 V="

'"TextBox70

Me.TextBox70.Location = New System.Drawing.Point(168, 536)
Me.TextBox70.Multiline = True

Me.TextBox70.Name = "TextBox70"

Me.TextBox70.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox70.Size = New System.Drawing.Size(64, 24)
Me.TextBox70.TabIndex = 109

Me.TextBox70.Text ="500"

'TextBox69

Me.TextBox69.Location = New System.Drawing.Point(16, 536)
Me.TextBox69.Multiline = True

Me.TextBox69.Name = "TextBox69"

Me.TextBox69.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox69.Size = New System.Drawing.Size(144, 24)
Me.TextBox69.Tablndex = 108

Me.TextBox69.Text = "IMOV P000 V="

'TextBox68

Me.TextBox68.Location = New System.Drawing.Point(16, 504)
Me.TextBox68.Multiline = True

Me.TextBox68.Name = "TextBox68"

Me.TextBox68.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox68.Size = New System.Drawing.Size(144, 24)
Me.TextBox68.Tablndex = 107

Me.TextBox68.Text = "NOP"

'TextBox67

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

305

Me.TextBox67.Location = New System.Drawing.Point(16, 472)
Me.TextBox67.Multiline = True

Me.TextBox67.Name = "TextBox67"

Me.TextBox67.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox67.Size = New System.Drawing.Size(144, 24)
Me.TextBox67.TabIndex = 106

Me.TextBox67.Text ="///GROUP1 RB1"

'TextBox66

Me.TextBox66.Location = New System.Drawing.Point(16, 440)
Me.TextBox66.Multiline = True

Me.TextBox66.Name = "TextBox66"

Me.TextBox66.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox66.Size = New System.Drawing.Size(144, 24)
Me.TextBox66.Tablndex = 105

Me.TextBox66.Text ="///ATTR SC,RW"

'TextBox65

Me.TextBox65.Location = New System.Drawing.Point(16, 408)
Me.TextBox65.Multiline = True

Me.TextBox65.Name = "TextBox65"

Me.TextBox65.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox65.Size = New System.Drawing.Size(184, 24)
Me.TextBox65.Tablndex = 104

Me.TextBox65.Text ="//DATE 2053/11/21 21:42"

'TextBox64

Me.TextBox64.Location = New System.Drawing.Point(16, 376)
Me.TextBox64.Multiline = True

Me.TextBox64.Name = "TextBox64"

Me.TextBox64.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox64.Size = New System.Drawing.Size(144, 24)
Me.TextBox64.Tablndex = 103

Me.TextBox64.Text ="//INST"

'TextBox57

Me.TextBox57.Location = New System.Drawing.Point(600, 344)
Me.TextBox57.Multiline = True

Me.TextBox57.Name = "TextBox57"

Me.TextBox57.ScrollBars = System.Windows.Forms.ScrollBars.Both
Me.TextBox57.Size = New System.Drawing.Size(68, 24)
Me.TextBox57.Tablndex = 102

Me.TextBox57.Text = "0.00"

'TextBox58

Me.TextBox58.Location = New System.Drawing.Point(520, 344)
Me.TextBox58.Multiline = True

Me.TextBox58.Name = "TextBox58"

Me.TextBox58.ScrollBars = System.Windows.Forms.ScrollBars.Both
Me.TextBox58.Size = New System.Drawing.Size(68, 24)
Me.TextBox58.Tablndex = 101

Me.TextBox58.Text = "0.00"

'"TextBox59
Me.TextBox59.Location = New System.Drawing.Point(440, 344)

Me.TextBox59.Multiline = True
Me.TextBox59.Name = "TextBox59"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

306

Me.TextBox59.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox59.Size = New System.Drawing.Size(68, 24)
Me.TextBox59.TabIndex = 100

Me.TextBox59.Text = "0.00"

'"TextBox60

Me.TextBox60.Location = New System.Drawing.Point(352, 344)
Me.TextBox60.Multiline = True

Me.TextBox60.Name = "TextBox60"

Me.TextBox60.ScrollBars = System.Windows.Forms.ScrollBars.Both
Me.TextBox60.Size = New System.Drawing.Size(72, 24)
Me.TextBox60.Tablndex = 99

Me.TextBox60.Text = "000.000"

'TextBox61

Me.TextBox61.Location = New System.Drawing.Point(264, 344)
Me.TextBox61.Multiline = True

Me.TextBox61.Name = "TextBox61"

Me.TextBox61.ScrollBars = System.Windows.Forms.ScrollBars.Both
Me.TextBox61.Size = New System.Drawing.Size(72, 24)
Me.TextBox61.Tablndex = 98

Me.TextBox61.Text = "000.000"

'TextBox62

Me.TextBox62.Location = New System.Drawing.Point(176, 344)
Me.TextBox62.Multiline = True

Me.TextBox62.Name = "TextBox62"

Me.TextBox62.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox62.Size = New System.Drawing.Size(72, 24)
Me.TextBox62.Tablndex = 97

Me.TextBox62.Text = "-100.000"

'TextBox63

Me.TextBox63.Location = New System.Drawing.Point(16, 344)
Me.TextBox63.Multiline = True

Me.TextBox63.Name = "TextBox63"

Me.TextBox63.ScrollBars = System.Windows.Forms.ScrollBars.Both
Me.TextBox63.Size = New System.Drawing.Size(144, 24)
Me.TextBox63.Tablndex = 96

Me.TextBox63.Text = "P0001="

'"TextBox56

Me.TextBox56.Location = New System.Drawing.Point(600, 312)
Me.TextBox56.Multiline = True

Me.TextBox56.Name = "TextBox56"

Me.TextBox56.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox56.Size = New System.Drawing.Size(68, 24)
Me.TextBox56.TabIndex = 95

Me.TextBox56.Text = "0.00"

'TextBox55

Me.TextBox55.Location = New System.Drawing.Point(520, 312)
Me.TextBox55.Multiline = True

Me.TextBox55.Name = "TextBox55"

Me.TextBox55.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox55.Size = New System.Drawing.Size(68, 24)
Me.TextBox55.Tablndex = 94

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

307

Me.TextBox55.Text ="0.00"
'TextBox54

Me.TextBox54.Location = New System.Drawing.Point(440, 312)
Me.TextBox54.Multiline = True

Me.TextBox54.Name = "TextBox54"

Me.TextBox54.ScrollBars = System.Windows.Forms.ScrollBars.Both
Me.TextBox54.Size = New System.Drawing.Size(68, 24)
Me.TextBox54.Tablndex = 93

Me.TextBox54.Text ="0.00"

'TextBox53

Me.TextBox53.Location = New System.Drawing.Point(352, 312)
Me.TextBox53.Multiline = True

Me.TextBox53.Name = "TextBox53"

Me.TextBox53.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox53.Size = New System.Drawing.Size(72, 24)
Me.TextBox53.Tablndex = 92

Me.TextBox53.Text = "000.000"

'TextBox52

Me.TextBox52.Location = New System.Drawing.Point(264, 312)
Me.TextBox52.Multiline = True

Me.TextBox52.Name = "TextBox52"

Me.TextBox52.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox52.Size = New System.Drawing.Size(72, 24)
Me.TextBox52.Tablndex = 91

Me.TextBox52.Text = "000.000"

'TextBox51

Me.TextBox51.Location = New System.Drawing.Point(176, 312)
Me.TextBox51.Multiline = True

Me.TextBox51.Name = "TextBox51"

Me.TextBox51.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox51.Size = New System.Drawing.Size(72, 24)
Me.TextBox51.Tablndex = 90

Me.TextBox51.Text = "100.000"

'TextBox50

Me.TextBox50.Location = New System.Drawing.Point(16, 312)
Me.TextBox50.Multiline = True

Me.TextBox50.Name = "TextBox50"

Me.TextBox50.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox50.Size = New System.Drawing.Size(144, 24)
Me.TextBox50.TabIndex = 89

Me.TextBox50.Text = "PO000="

'TextBox48

Me.TextBox48.Location = New System.Drawing.Point(16, 256)
Me.TextBox48.Multiline = True

Me.TextBox48.Name = "TextBox48"

Me.TextBox48.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox48.Size = New System.Drawing.Size(216, 24)
Me.TextBox48.Tablndex = 87

Me.TextBox48.Text ="///RCONF 0,0,0,0,0,0,0,0"

'TextBox47

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

308

Me.TextBox47.Location = New System.Drawing.Point(16, 224)
Me.TextBox47.Multiline = True

Me.TextBox47.Name = "TextBox47"

Me.TextBox47.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox47.Size = New System.Drawing.Size(144, 24)
Me.TextBox47.Tablndex = 86

Me.TextBox47.Text ="///RECTAN"

'TextBox46

Me.TextBox46.Location = New System.Drawing.Point(16, 192)
Me.TextBox46.Multiline = True

Me.TextBox46.Name = "TextBox46"

Me.TextBox46.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox46.Size = New System.Drawing.Size(144, 24)
Me.TextBox46.TabIndex = 85

Me.TextBox46.Text ="//POSTYPE ROBOT"

'TextBox45

Me.TextBox45.Location = New System.Drawing.Point(16, 160)
Me.TextBox45.Multiline = True

Me.TextBox45.Name = "TextBox45"

Me.TextBox45.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox45.Size = New System.Drawing.Size(144, 24)
Me.TextBox45.Tablndex = 84

Me.TextBox45.Text ="///TOOL 0"

'TextBox44

Me.TextBox44.Location = New System.Drawing.Point(16, 128)
Me.TextBox44.Multiline = True

Me.TextBox44.Name = "TextBox44"

Me.TextBox44.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox44.Size = New System.Drawing.Size(144, 24)
Me.TextBox44.TabIndex = 83

Me.TextBox44.Text ="///NPOS 0,0,0,2,0,0"

'TextBox43

Me.TextBox43.Location = New System.Drawing.Point(16, 96)
Me.TextBox43.Multiline = True

Me.TextBox43.Name = "TextBox43"

Me.TextBox43.ScrollBars = System.Windows.Forms.ScrollBars.Both
Me.TextBox43.Size = New System.Drawing.Size(144, 24)
Me.TextBox43.Tablndex = 82

Me.TextBox43.Text = "//POS"

'TextBox42

Me.TextBox42.Location = New System.Drawing.Point(176, 64)
Me.TextBox42.Multiline = True

Me.TextBox42.Name = "TextBox42"

Me.TextBox42.ScrollBars = System.Windows.Forms.ScrollBars.Both
Me.TextBox42.Size = New System.Drawing.Size(144, 24)
Me.TextBox42.Tablndex = 81

Me.TextBox42.Text = "SHAKE1"

'TextBox41

Me.TextBox41.Location = New System.Drawing.Point(16, 64)
Me.TextBox41.Multiline = True

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 309

Me.TextBox41.Name = "TextBox41"

Me.TextBox41.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox41.Size = New System.Drawing.Size(144, 24)
Me.TextBox41.Tablndex = 80

Me.TextBox41.Text ="//NAME "

'"TextBox40

Me.TextBox40.Location = New System.Drawing.Point(16, 32)
Me.TextBox40.Multiline = True

Me.TextBox40.Name = "TextBox40"

Me.TextBox40.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox40.Size = New System.Drawing.Size(144, 24)
Me.TextBox40.TabIndex = 79

Me.TextBox40.Text = "/JOB"

'TabPage3

Me.TabPage3.Controls.Add(Me.TextBox36)
Me.TabPage3.Controls.Add(Me.TextBox7)
Me.TabPage3.Controls.Add(Me.Button3)
Me.TabPage3.Controls.Add(Me.TextBox35)
Me.TabPage3.Controls. Add(Me.TextBox34)
Me.TabPage3.Controls. Add(Me.TextBox33)
Me.TabPage3.Controls.Add(Me.TextBox32)
Me.TabPage3.Controls.Add(Me.TextBox31)
Me.TabPage3.Controls.Add(Me.TextBox30)
Me.TabPage3.Controls.Add(Me.TextBox29)
Me.TabPage3.Controls.Add(Me.TextBox28)
Me.TabPage3.Controls.Add(Me.TextBox27)
Me.TabPage3.Controls.Add(Me.TextBox26)
Me.TabPage3.Controls.Add(Me.TextBox25)
Me.TabPage3.Controls.Add(Me.TextBox24)
Me.TabPage3.Controls. Add(Me.TextBox23)
Me.TabPage3.Controls.Add(Me.TextBox22)
Me.TabPage3.Controls.Add(Me.TextBox21)
Me.TabPage3.Controls.Add(Me.TextBox20)
Me.TabPage3.Controls.Add(Me.TextBox19)
Me.TabPage3.Controls.Add(Me.TextBox18)
Me.TabPage3.Controls.Add(Me.TextBox17)
Me.TabPage3.Controls.Add(Me.TextBox16)
Me.TabPage3.Controls.Add(Me.TextBox15)
Me.TabPage3.Controls.Add(Me.TextBox14)
Me.TabPage3.Controls.Add(Me.TextBox13)
Me.TabPage3.Controls.Add(Me.TextBox12)
Me.TabPage3.Location = New System.Drawing.Point(4, 28)
Me.TabPage3.Name = "TabPage3"
Me.TabPage3.Size = New System.Drawing.Size(1264, 792)
Me.TabPage3.Tablndex = 2
Me.TabPage3.Text = "Job Editor"

'TextBox36

Me.TextBox36.Location = New System.Drawing.Point(176, 224)
Me.TextBox36.Multiline = True

Me.TextBox36.Name = "TextBox36"

Me.TextBox36.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox36.Size = New System.Drawing.Size(80, 24)
Me.TextBox36.Tablndex = 103

Me.TextBox36.Text = "ROBOT"

'TextBox7

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

310

Me.TextBox7.Location = New System.Drawing.Point(160, 96)
Me.TextBox7.Multiline = True

Me.TextBox7.Name = "TextBox7"

Me.TextBox7.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox7.Size = New System.Drawing.Size(48, 24)
Me.TextBox7.TabIndex = 102

Me.TextBox7.Text = "X1"

'Button3

Me.Button3.Location = New System.Drawing.Point(440, 496)
Me.Button3.Name = "Button3"

Me.Button3.Size = New System.Drawing.Size(120, 32)
Me.Button3.TabIndex = 101

Me.Button3.Text = "Button3"

'TextBox35

Me.TextBox35.Location = New System.Drawing.Point(8, 544)
Me.TextBox35.Multiline = True

Me.TextBox35.Name = "TextBox35"

Me.TextBox35.ScrollBars = System.Windows.Forms.ScrollBars.Both
Me.TextBox35.Size = New System.Drawing.Size(184, 24)
Me.TextBox35.Tablndex = 100

Me.TextBox35.Text ="END"

'TextBox34

Me.TextBox34.Location = New System.Drawing.Point(200, 512)
Me.TextBox34.Multiline = True

Me.TextBox34.Name = "TextBox34"

Me.TextBox34.ScrollBars = System.Windows.Forms.ScrollBars.Both
Me.TextBox34.Size = New System.Drawing.Size(56, 24)
Me.TextBox34.Tablndex = 99

Me.TextBox34.Text ="100"

'TextBox33

Me.TextBox33.Location = New System.Drawing.Point(8, 512)
Me.TextBox33.Multiline = True

Me.TextBox33.Name = "TextBox33"

Me.TextBox33.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox33.Size = New System.Drawing.Size(184, 24)
Me.TextBox33.TabIndex = 98

Me.TextBox33.Text = "IMOV P000 V="

'TextBox32

Me.TextBox32.Location = New System.Drawing.Point(8, 480)
Me.TextBox32.Multiline = True

Me.TextBox32.Name = "TextBox32"

Me.TextBox32.ScrollBars = System.Windows.Forms.ScrollBars.Both
Me.TextBox32.Size = New System.Drawing.Size(184, 24)
Me.TextBox32.Tablndex = 97

Me.TextBox32.Text = "NOP"

'TextBox31

Me.TextBox31.Location = New System.Drawing.Point(8, 448)
Me.TextBox31.Multiline = True

Me.TextBox31.Name = "TextBox31"

Me.TextBox31.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox31.Size = New System.Drawing.Size(184, 24)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

311

Me.TextBox31.TabIndex = 96
Me.TextBox31.Text ="///GROUP1 RB1"

'TextBox30

Me.TextBox30.Location = New System.Drawing.Point(8, 416)
Me.TextBox30.Multiline = True

Me.TextBox30.Name = "TextBox30"

Me.TextBox30.ScrollBars = System.Windows.Forms.ScrollBars.Both
Me.TextBox30.Size = New System.Drawing.Size(184, 24)
Me.TextBox30.TabIndex = 95

Me.TextBox30.Text ="//ATTR SC_RW"

'TextBox29

Me.TextBox29.Location = New System.Drawing.Point(8, 384)
Me.TextBox29.Multiline = True

Me.TextBox29.Name = "TextBox29"

Me.TextBox29.ScrollBars = System.Windows.Forms.ScrollBars.Both
Me.TextBox29.Size = New System.Drawing.Size(184, 24)
Me.TextBox29.Tablndex = 94

Me.TextBox29.Text ="///DATE 2053/11/21 21:42"

'TextBox28

Me.TextBox28.Location = New System.Drawing.Point(8, 352)
Me.TextBox28.Multiline = True

Me.TextBox28.Name = "TextBox28"

Me.TextBox28.ScrollBars = System.Windows.Forms.ScrollBars.Both
Me.TextBox28.Size = New System.Drawing.Size(184, 24)
Me.TextBox28.TabIndex = 93

Me.TextBox28.Text = "//INST"

'TextBox27

Me.TextBox27.Location = New System.Drawing.Point(528, 320)
Me.TextBox27.Multiline = True

Me.TextBox27.Name = "TextBox27"

Me.TextBox27.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox27.Size = New System.Drawing.Size(80, 24)
Me.TextBox27.Tablndex = 92

Me.TextBox27.Text ="0.00"

'"TextBox26

Me.TextBox26.Location = New System.Drawing.Point(440, 320)
Me.TextBox26.Multiline = True

Me.TextBox26.Name = "TextBox26"

Me.TextBox26.ScrollBars = System.Windows.Forms.ScrollBars.Both
Me.TextBox26.Size = New System.Drawing.Size(80, 24)
Me.TextBox26.Tablndex = 91

Me.TextBox26.Text = "0.00"

'TextBox25

Me.TextBox25.Location = New System.Drawing.Point(352, 320)
Me.TextBox25.Multiline = True

Me.TextBox25.Name = "TextBox25"

Me.TextBox25.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox25.Size = New System.Drawing.Size(80, 24)
Me.TextBox25.Tablndex = 90

Me.TextBox25.Text ="0.00"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

312

'TextBox24

Me.TextBox24.Location = New System.Drawing.Point(264, 320)
Me.TextBox24.Multiline = True

Me.TextBox24.Name = "TextBox24"

Me.TextBox24.ScrollBars = System.Windows.Forms.ScrollBars.Both
Me.TextBox24.Size = New System.Drawing.Size(80, 24)
Me.TextBox24.TabIndex = 89

Me.TextBox24.Text = "100.000"

'TextBox23

Me.TextBox23.Location = New System.Drawing.Point(176, 320)
Me.TextBox23.Multiline = True

Me.TextBox23.Name = "TextBox23"

Me.TextBox23.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox23.Size = New System.Drawing.Size(80, 24)
Me.TextBox23.TabIndex = 88

Me.TextBox23.Text = "100.000"

'TextBox22

Me.TextBox22.Location = New System.Drawing.Point(88, 320)
Me.TextBox22.Multiline = True

Me.TextBox22.Name = "TextBox22"

Me.TextBox22.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox22.Size = New System.Drawing.Size(80, 24)
Me.TextBox22.Tablndex = 87

Me.TextBox22.Text = "100.000"

'TextBox21

Me.TextBox21.Location = New System.Drawing.Point(8, 320)
Me.TextBox21.Multiline = True

Me.TextBox21.Name = "TextBox21"

Me.TextBox21.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox21.Size = New System.Drawing.Size(72, 24)
Me.TextBox21.TabIndex = 86

Me.TextBox21.Text = "P0000="

'TextBox20

Me.TextBox20.Location = New System.Drawing.Point(8, 288)
Me.TextBox20.Multiline = True

Me.TextBox20.Name = "TextBox20"

Me.TextBox20.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox20.Size = New System.Drawing.Size(376, 24)
Me.TextBox20.TabIlndex = 85

Me.TextBox20.Text = "///RCONF 0,0,0,0,0,0,0,0"

'TextBox19

Me.TextBox19.Location = New System.Drawing.Point(8, 256)
Me.TextBox19.Multiline = True

Me.TextBox19.Name = "TextBox19"

Me.TextBox19.ScrollBars = System.Windows.Forms.ScrollBars.Both
Me.TextBox19.Size = New System.Drawing.Size(248, 24)
Me.TextBox19.Tablndex = 84

Me.TextBox19.Text ="///RECTAN"

'TextBox18

Me.TextBox18.Location = New System.Drawing.Point(8, 224)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

313

Me.TextBox18.Multiline = True

Me.TextBox18.Name = "TextBox18"

Me.TextBox18.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox18.Size = New System.Drawing.Size(144, 24)
Me.TextBox18.TabIndex = 83

Me.TextBox18.Text ="///POSTYPE "

'TextBox17

Me.TextBox17.Location = New System.Drawing.Point(8, 184)
Me.TextBox17.Multiline = True

Me.TextBox17.Name = "TextBox17"

Me.TextBox17.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox17.Size = New System.Drawing.Size(144, 24)
Me.TextBox17.Tablndex = 82

Me.TextBox17.Text ="///TOOL 0"

'TextBox16

Me.TextBox16.Location = New System.Drawing.Point(8, 152)
Me.TextBox16.Multiline = True

Me.TextBox16.Name = "TextBox16"

Me.TextBox16.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox16.Size = New System.Drawing.Size(144, 24)
Me.TextBox16.Tablndex = 81

Me.TextBox16.Text ="///NPOS 0,0,0,1,0,0"

'TextBox15

Me.TextBox15.Location = New System.Drawing.Point(8, 128)
Me.TextBox15.Multiline = True

Me.TextBox15.Name = "TextBox15"

Me.TextBox15.ScrollBars = System.Windows.Forms.ScrollBars.Both
Me.TextBox15.Size = New System.Drawing.Size(144, 24)
Me.TextBox15.Tablndex = 80

Me.TextBox15.Text = "//POS"

'TextBox14

Me.TextBox14.Location = New System.Drawing.Point(8, 96)
Me.TextBox14.Multiline = True

Me.TextBox14.Name = "TextBox14"

Me.TextBox14.ScrollBars = System.Windows.Forms.ScrollBars.Both
Me.TextBox14.Size = New System.Drawing.Size(144, 24)
Me.TextBox14.Tablndex = 79

Me.TextBox14.Text ="//NAME "

'TextBox13

Me.TextBox13.Location = New System.Drawing.Point(8, 64)
Me.TextBox13.Multiline = True

Me.TextBox13.Name = "TextBox13"

Me.TextBox13.ScrollBars = System. Windows.Forms.ScrollBars.Both
Me.TextBox13.Size = New System.Drawing.Size(144, 24)
Me.TextBox13.TabIndex = 78

Me.TextBox13.Text ="/JOB"

'TextBox12

Me.TextBox12.Location = New System.Drawing.Point(664, 24)
Me.TextBox12.Multiline = True

Me.TextBox12.Name = "TextBox12"

Me.TextBox12.ScrollBars = System.Windows.Forms.ScrollBars.Both

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 314

Me.TextBox12.Size = New System.Drawing.Size(424, 344)
Me.TextBox12.Tablndex = 76
Me.TextBox12.Text=""

'MainMenul
Me.MainMenul.Menultems. AddRange(New System.Windows.Forms.Menultem() {Me.Menultem1})

'Menultem1
Me.Menultem1.Index = 0
Me.Menultem1.Text = "Exit"

'State Action Real Timerl

Me.State Action Real Timerl.Interval =250

'Action_Timer 1

Me.Action_Timer 1.Interval =1

'State_Action Rand Timerl

Me.State_Action_Rand Timerl.Interval = 250
'Shaking Timer 1
Me.Shaking Timer 1.Interval =1

'Timer2
Me.Timer2.Enabled = True
Me.Timer2.Interval = 1

'Robot_Operating
Me.Robot Operating.Interval = 500

'State Action Best Timerl

Me.State_Action_Best Timerl.Interval =250

'Timerl

Me.Timerl.Interval = 10

'Forml

Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)

Me.BackColor = System.Drawing.SystemColors.Control

Me.ClientSize = New System.Drawing.Size(1168, 825)
Me.Controls.Add(Me.TabControl1)

Me.Cursor = System. Windows.Forms.Cursors.Default

Me.Font = New System.Drawing.Font("Arial", 8.0!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Location = New System.Drawing.Point(4, 30)

Me.Menu =Me.MainMenul

Me.Name = "Form1"

Me.RightToLeft = System.Windows.Forms.RightToLeft.No

Me.Text = "Human-Robot Collaboration Learning System"
Me.WindowState = System. Windows.Forms.FormWindowState. Maximized
Me.GroupBox1.ResumeLayout(False)
Me.GroupBox2.ResumeLayout(False)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 315

Me.GroupBox3.ResumeLayout(False)

Me.GroupBox13.ResumeLayout(False)
Me.GroupBox11.ResumeLayout(False)
Me.GroupBox10.ResumeLayout(False)

Me.GroupBox9.ResumeLayout(False)

Me.GroupBox8.ResumeLayout(False)

Me.GroupBox7.ResumeLayout(False)

Me.GroupBox12.ResumeLayout(False)
Me.GroupBox14.ResumeLayout(False)

Me.GroupBox6.ResumeLayout(False)

Me.TabControl1.ResumeLayout(False)

Me.TabPage8.ResumeLayout(False)

Me.GroupBox38.ResumeLayout(False)

CType(Me.AxMSChart3, System.ComponentModel.ISupportlnitialize). EndInit()
CType(Me.AxMSChartl, System.ComponentModel.ISupportlnitialize). EndInit()
Me.GroupBox31.ResumeLayout(False)
Me.GroupBox18.ResumeLayout(False)
Me.GroupBox29.ResumeLayout(False)
Me.GroupBox30.ResumeLayout(False)
Me.GroupBox19.ResumeLayout(False)
Me.GroupBox20.ResumeLayout(False)
Me.GroupBox34.ResumeLayout(False)

Me.GroupBox4.ResumeLayout(False)

Me.GroupBox33.ResumeLayout(False)
Me.GroupBox35.ResumeLayout(False)
Me.GroupBox36.ResumeLayout(False)
Me.GroupBox37.ResumeLayout(False)
Me.GroupBox17.ResumeLayout(False)

CType(Me.AxWebBrowser3, System.ComponentModel. ISupportlnitialize). EndInit()
Me.TabPagel.ResumeLayout(False)

Me.GroupBox24.ResumeLayout(False)
Me.GroupBox26.ResumeLayout(False)
Me.GroupBox28.ResumeLayout(False)

Me.TabPage7.ResumeLayout(False)

Me.GroupBox25.ResumeLayout(False)
Me.GroupBox23.ResumeLayout(False)
Me.GroupBox22.ResumeLayout(False)

Me.TabPage2.ResumeLayout(False)

Me.GroupBox5.ResumeLayout(False)

CType(Me.AxWebBrowserl, System.ComponentModel. ISupportlnitialize). EndInit()
CType(Me.AxWebBrowser2, System.ComponentModel. ISupportlnitialize). EndInit()
Me.TabPage5.ResumeLayout(False)

Me.GroupBox32.ResumeLayout(False)
Me.GroupBox27.ResumeLayout(False)
Me.GroupBox21.ResumeLayout(False)
Me.GroupBox16.ResumeLayout(False)
Me.GroupBox15.ResumeLayout(False)

CType(Me.TrackBarl, System.ComponentModel.ISupportlnitialize). EndInit()
Me.TabPage4.ResumeLayout(False)

Me.TabPage3.ResumeLayout(False)

Me.ResumeLayout(False)

End Sub
#End Region

Dim Current_State As String
'Dim Action As String
Dim Next_State As String
Dim Action_Counter 1 As Integer
Dim Action As String
Dim State Action_Timerl Rand Counter 1 As Integer
Dim State Action Timerl Real Counter 1 As Integer
Dim State_Action_Timerl Best Counter 1 As Integer

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

316

Dim iEnd As Integer
Dim g As Graphics

#Region "Decs"

Dim xConn As sqlConn
Public Shared item1 As New ListViewltem

Dim r As System.Object

Dim j As System.EventArgs
Dim err As System.Exception
Dim iCounter As Integer

#End Region
#Region "Form Functions"

#End Region
#Region "Upgrade Support "
Private Shared m_vb6FormDeflInstance As Form1
Private Shared m_InitializingDefInstance As Boolean
Public Shared Property Deflnstance() As Forml
Get

If m_vb6FormDefInstance Is Nothing OrElse m_vb6FormDefInstance.IsDisposed Then

m_InitializingDefInstance = True
m_vb6FormDefInstance = New Forml
m_InitializingDefInstance = False
End If
Deflnstance = m_vb6FormDefInstance
End Get
Set(ByVal Value As Form1)
m_vb6FormDeflInstance = Value
End Set
End Property
#End Region

'mode: 0...RS-232C 1...Ethernet
Function Ms_BscOpenComm(ByVal mode%) As Integer
' Dim nCid As Integer
Dim rc As Integer
Dim [PAddrress As String
Ms_BscOpenComm = -1
If mode = 0 Then
'Open the port.
nCid = BscOpen(CurDir$, 1)

If nCid < 0 Then GoTo Ms_BscOpenComm_Exit

'Set serial communications parameters. ' Port, Rate, Parity, Bits, Stop

rc = BscSetCom(nCid, 1, 9600, 0, 8, 0)

Else
'Open the Ethernet line.
nCid = BscOpen(CurDir$, PACKETETHERNET)
If nCid < 0 Then GoTo Ms_BscOpenComm_Exit

End If
If rc <> 1 Then

rc = BscClose(nCid)

nCid = -1

GoTo Ms_BscOpenComm_Exit
End If

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

317

'Connect communications line.
rc = BscConnect(nCid)
If rc <> 1 Then

rc = BscClose(nCid)

nCid =-1
GoTo Ms_BscOpenComm_Exit
End If

Ms_BscOpenComm_Exit:
Ms_BscOpenComm = nCid

TextBox1.Text = nCid
TextBox2.Text =rc

End Function

Function Ms_BscCloseComm(ByRef nCid As Short) As Short
Dim rc As Short
'Cut the communications line.
rc = BscDisConnect(nCid)
'Close the port.
rc = BscClose(nCid)
rc = BscEnforcedClose(nCid) ' New
Ms_BscCloseComm = rc
TextBox1.Text = nCid
TextBox2.Text =rc
End Function

' Global Declarations

Dim aaa As Double
Dim bbb As Double

Dim temp _row 1 As Integer

Dim Average Successful Shaking Policies Sum As Double
Dim Average Successful Shaking Policies Final As Double

Dim Percent of Successful Policies As Double
Dim Number of Successful Policies As Integer

Dim MatLab As Object
Dim Axis_Allowed Counter As Integer

Dim Initial Relative Axis Speed X As Integer
Dim Initial Relative Axis Speed Y As Integer
Dim Initial Relative Axis Speed Z As Integer

Dim Initial Relative Axis Amplitude X As Integer
Dim Initial Relative Axis Amplitude Y As Integer
Dim Initial Relative Axis_Amplitude Z As Integer

Dim Relative Axis_Speed X As Integer
Dim Relative Axis_Speed Y As Integer
Dim Relative Axis_Speed Z As Integer

Dim Relative Axis Amplitude X As Integer
Dim Relative Axis Amplitude Y As Integer
Dim Relative Axis_ Amplitude Z As Integer

Dim Last Relative Axis Amplitude X As Integer
Dim Last Relative Axis_Amplitude Y As Integer

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

318

Dim Last Relative Axis Amplitude Z As Integer
Dim Average Successful Shaking Policies Index As Integer
Dim allow_sound flag As Integer
Dim Chosen_Best_Policy As String
Dim Length of Best Policy As Integer
Dim eliminate_x axis_flag As Integer
Dim eliminate y axis_flag As Integer
Dim eliminate z axis flag As Integer
Dim Cummulative Weight Reward As Double
Dim Events Weight Reward As Double
Dim Events_Value vector String As String
Dim Cummulative_Value vector String As String
Dim Times_Value vector String As String
Dim counter 1 As Integer
' Times_vector
Dim Times_vector(0, 50) As Double
' Cummulative Value vector
Dim Cummulative_Value vector(0, 50) As Double
'Events_Value vector
Dim Events_Value vector(0, 50) As Double
Dim Average Successful Shaking Policies(0, 150) As Double
Dim Time Now_1 As DateTime

Dim Finish_Flag As Integer
Dim column%, Row%

Dim temp! As Integer
Dim temp data As Double
Dim rc As Long

Dim Shaking Time 1 As Integer
Dim Learning Performance 1 As Integer

Dim system_performance measure 1 As Double
Dim number of policies that were not rewarded As Integer
Dim number of policies that were rewarded As Integer

Dim temp output file name 1 As String
Dim output reward 1 As Integer

Dim Reward(18, 35 - 18) As Double

Dim maxQ_V1(0, 35 - 18) As Double

Dim Q_Table(18, 35 - 18) As Double ' 19 states, 36 actions

Dim Q Table Rewarded(18, 35 - 18) As Double ' 19 states, 36 actions
Dim Q_Table Final(18, 35 - 18) As Double ' 19 states, 36 actions

Dim Eligibility(18, 35 - 18) As Double ' 19 states, 36 actions
Dim Eligibility Rewarded(18, 35 - 18) As Double ' 19 states, 36 actions

Dim delta(500, 0) As Double

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

319

Dim delta_Rewarded(500, 0) As Double

Dim alpha As Double

Dim gamma As Double

Dim lambda As Double

Dim learning_trial As Integer

Dim state_Q As Integer

Dim next _state Q As Integer

Dim action_Q As Integer

Dim Action_Time As Integer

Dim startTime, endTime As DateTime

Dim Number of Policies Performed As Integer
Dim Performance Measure 1(0, 4) As Integer

Dim temp111(3, 3) As Integer

Private Sub Forml Load(ByVal eventSender As System.Object, ByVal eventArgs As System.EventArgs) Handles

MyBase.Load
temp row 1 =1
Average Successful Shaking Policies Sum =0
Initial Plot Graph 1()
Initial Plot Graph 2()
TextBox135.Text =""

Percent of Successful Policies =0
Number of Successful Policies =0

Axis_Allowed Counter =0

Initial Relative Axis Speed X = 1000
Initial Relative Axis Speed Y = 1000
Initial Relative Axis Speed Z = 1000

Initial Relative Axis Amplitude X =30
Initial Relative Axis Amplitude Y =30
Initial Relative Axis_Amplitude Z =30

RelativeAxis_Amplitude X = Initial Relative Axis_Amplitude X

Relative_ Axis Speed X = Initial Relative Axis Speed X

Relative Axis Amplitude Y = Initial Relative Axis Amplitude Y

Relative Axis Speed Y = Initial Relative Axis Speed Y

Relative Axis Amplitude Z = Initial Relative Axis Amplitude Z

Relative Axis_Speed Z = Initial Relative Axis_Speed Z
allow_sound flag =0

Length of Best Policy =0

eliminate x_axis flag=10

eliminate y axis flag=0

eliminate z axis flag=0

ComboBox6.SelectedIndex = 0
ComboBox2.SelectedIndex = 0

counter 1 =0
Cummulative Weight Reward =0

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 320

Events Weight Reward =0
Events_Value_vector_String =""

Finish Flag=0
templ =0

GroupBox19.Enabled = False
TabControll.SelectedTab = TabPage8
Learning_Performance 1=0

Shaking Time 1=0

TabPage3.Enabled = False
TabPage4.Enabled = False

Button48.Enabled = False
Button51.Enabled = False
Button50.Enabled = False
Button47.Enabled = False

TextBox131.Text = "No Data"
Show_States()

Dim nullObject As System.Object = 0
Dim str As String =""
Dim nullObjStr As System.Object = str
Cursor.Current = Cursors. WaitCursor
AxWebBrowser3.Navigate("http://www.ie.bgu.ac.il/kartoun/visual feedback/camera 1.htm", nullObject,
nullObjStr, nullObjStr, nullObjStr)

Action_Counter 1 =0

TextBox91.Text = Action_Counter 1.ToString
State Action_Timerl Rand Counter 1 =0
State Action Timerl Real Counter 1=10
State Action Timerl Best Counter 1 =0
TextBox116.Text = TrackBarl.Value.ToString

alpha = Val(TextBox119.Text)
gamma = Val(TextBox120.Text)
lambda = Val(TextBox121.Text)

learning_trial =0

state Q = 0 'Starting from Center
initQFunction()

ComboBox7.SelectedIndex = 0

ComboBox8.SelectedIndex = 2
ComboBo0x9.SelectedIndex = 2
ComboBox10.SelectedIndex = 2

ComboBox11.SelectedIndex = 2
ComboBox12.SelectedIndex = 2
ComboBox13.SelectedIndex = 2

ComboBox3.SelectedIndex = 2
ComboBox4.SelectedIndex = 2
ComboBox5.SelectedIndex = 2

ComboBox14.SelectedIndex = 2

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

321

ComboBox15.SelectedIndex = 2
ComboBox16.SelectedIndex = 2

TextBox136.Text = Initial Relative Axis Speed X.ToString
TextBox137.Text = Initial Relative Axis Speed Y.ToString
TextBox90.Text = Initial Relative Axis_Speed Z.ToString

TextBox140.Text = Initial Relative Axis Amplitude X.ToString
TextBox139.Text = Initial Relative Axis_Amplitude Y.ToString
TextBox138.Text = Initial Relative Axis Amplitude Z.ToString

system_performance _measure 1 =0
number_of policies that were not rewarded = 0
number of policies that were rewarded =0
Number of Policies Performed = -1
Dim pRegKey Events As RegistryKey = Registry.CurrentUser
pRegKey Events = pRegKey Events.OpenSubKey("Uri\Digital Scale", True)
pRegKey Events.SetValue("Trial Number", "1")
pRegKey Events.SetValue("Stop Robot Flag", "0")
Average Successful Shaking Policies Index =0

End Sub

Private Sub Buttonl Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click

TextBox1.Text = Ms_BscOpenComm(0)

If TextBox1.Text <> "-1" And TextBox2.Text="1" Then
Labell5.Text = "Connected"

Else
Labell5.Text = "Disconnected"

End If

CheckBox1.Checked = False

CheckBox2.Checked = True

End Sub

Private Sub Button2 Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

BscSelectMode(nCid, 1)
BscServoOff(nCid)
TextBox2.Text = Ms_BscCloseComm(0)
TextBox2.Text = BscEnforcedClose(0)
Labell0.Text = "Teach"
Labell3.Text = "Off"
CheckBox2.Checked = False
If TextBox1.Text <> "-1" And TextBox2.Text="1" Then
Labell5.Text = "Connected"
Else
Label15.Text = "Disconnected"
End If
End Sub

Private Sub Button3 Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

CheckBox1.Checked = True

BscSelectMode(nCid, 1)

BscServoOff(nCid)

TextBox2.Text = Ms_BscCloseComm(0)

TextBox2.Text = BscEnforcedClose(0)

Labell0.Text = "Teach"

Labell3.Text = "Off"

CheckBox2.Checked = False

If TextBox1.Text <> "-1" And TextBox2.Text="1" Then
Labell5.Text = "Connected"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 322

Else
Labell5.Text = "Disconnected"
End If
Close()
End Sub

Private Sub Button4 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button4.Click
TextBox1.Text=""
TextBox2.Text=""
TextBox3.Text=""

End Sub

Private Sub CmdDownLoad_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
CmdDownLoad.Click
TextBox3.Text = BscSelectJob(nCid, TextBox6.Text)
TextBox3.Text = BscDeleteJob(nCid)
TextBox3.Text=""
TextBox3.Text = BscDownLoad(nCid, TextBox6.Text)
End Sub

Private Sub Button5_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button5.Click
TextBox3.Text = BscSelectJob(nCid, TextBox6.Text)
TextBox3.Text = BscDeleteJob(nCid)

End Sub

Private Sub Button6 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button6.Click
TextBox3.Text = BscSelectJob(nCid, TextBox6.Text)
TextBox3.Text = BscDeleteJob(nCid)
TextBox3.Text=""

TextBox3.Text = BscDownLoad(nCid, TextBox6.Text)
TextBox3.Text = BscSelOneCycle(nCid)
BscHoldOff(nCid)
BscSetMasterJob(nCid)
BscSelectMode(nCid, 2)
BscServoOn(nCid)
BscStartJob(nCid)
End Sub

Private Sub CheckBox1 CheckedChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
CheckBox1.CheckedChanged
If CheckBox1.Checked = True Then
BscSelectMode(nCid, 1)
Label10.Text = "Teach"
Label13.Text = "Off"
End If
If CheckBox1.Checked = False Then
BscSelectMode(nCid, 2)
Label10.Text = "Play"
BscHoldOff(nCid)
End If
End Sub

Private Sub CheckBox2 CheckedChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
CheckBox2.CheckedChanged
If CheckBox1.Checked = False Then

If CheckBox2.Checked = False Then
BscServoOff(nCid)
Label13.Text = "Off"

End If

If CheckBox2.Checked = True Then
BscServoOn(nCid)
Label13.Text ="On"

End If

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 323

End If
End Sub

Private Sub Button7 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button7.Click
TextBox3.Text = BscSelectJob(nCid, TextBox4.Text)
TextBox3.Text = BscUpLoad(nCid, TextBox4.Text)

End Sub

Private Sub Button9 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button9.Click
Disconnect Robot()
End Sub

Public Function Disconnect Robot()
CheckBox1.Checked = True
BscSelectMode(nCid, 1)
BscServoOff(nCid)

TextBox2.Text = Ms_BscCloseComm(0)
' TextBox2.Text = BscEnforcedClose(0)
Labell0.Text = "Teach"
Labell3.Text = "Off"
CheckBox2.Checked = False
If TextBox1.Text <> "-1" And TextBox2.Text ="1" Then
Labell5.Text = "Connected"
Else
Label15.Text = "Disconnected"
End If
End Function

Public Function Run_Program(ByVal e As String) As Integer
TextBox143.Text=""
TextBox3.Text = BscSelectlob(nCid, ¢)
TextBox3.Text = BscDeleteJob(nCid)
TextBox3.Text=""
TextBox3.Text = BscDownlLoad(nCid, e)
If ((e = "CLOSE.JBI") Or (e = "OPEN.JBI")) Then

BscHoldOff(nCid)
TextBox3.Text = BscSelLoopCycle(nCid)

BscSetMasterJob(nCid)
BscSelectMode(nCid, 2)
BscServoOn(nCid)
'If Finish_Flag = 0 Then
BscStartJob(nCid)
' TextBox143.Text=""
'Else
' TextBox143.Text = BscStartJob(nCid)
'End If
BscHoldOn(nCid)
Else
If CheckBox4.Checked = False Then
TextBox3.Text = BscSelOneCycle(nCid)
BscSetMasterJob(nCid)
BscSelectMode(nCid, 2)
BscServoOn(nCid)
'If Finish_Flag = 0 Then
BscStartJob(nCid)
" TextBox143.Text=""
'Else
' TextBox143.Text = BscStartJob(nCid)
'"End If
BscHoldOff(nCid)
Else

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 324

TextBox3.Text = BscSelLoopCycle(nCid)
BscSetMasterJob(nCid)
BscSelectMode(nCid, 2)
BscServoOn(nCid)
'If Finish_Flag = 0 Then
BscStartJob(nCid)
" TextBox143.Text=""
'Else
' TextBox143.Text = BscStartJob(nCid)
'End If
BscHoldOff(nCid)

End If

End If
End Function

Private Sub Button2 Click 1(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button2.Click
' BscHoldOff(nCid)
If CheckBox6.Checked = True Then
Run_Program("BASER.JBI")
Else
TextBox7.Text ="X1"
Dim strFormatedNumber As String = CLng((Val(TextBox10.Text) * 10).ToString).ToString("00.000")
TextBox22.Text = strFormatedNumber
TextBox23.Text ="000.000"
TextBox24.Text ="000.000"
TextBox25.Text ="0.00"
TextBox26.Text ="0.00"
TextBox27.Text ="0.00"
TextBox34.Text = 10 * Val(TextBox8.Text).ToString()
Run_Program_with Parameters("X1")
End If
End Sub

Private Sub Button10 Click(ByVal sender As System.Object, ByVal ¢ As System.EventArgs) Handles Button10.Click
' BscHoldOff(nCid)
If CheckBox6.Checked = True Then
Run Program("BASEL.JBI")
Else
TextBox7.Text = "X2"
Dim strFormatedNumber As String = CLng((Val(TextBox10.Text) * 10).ToString).ToString(""-00.000")
TextBox22.Text = strFormatedNumber
TextBox23.Text = "000.000"
TextBox24.Text = "000.000"
TextBox25.Text ="0.00"
TextBox26.Text ="0.00"
TextBox27.Text ="0.00"
TextBox34.Text = 10 * Val(TextBox8.Text).ToString()
Run Program with Parameters("X2")
End If
End Sub

Private Sub Button12_ Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button12.Click
' BscHoldOff(nCid)
If CheckBox6.Checked = True Then
Run_Program("STATIONU.JBI")
Else
TextBox7.Text="Y1"
Dim strFormatedNumber As String = CLng((Val(TextBox10.Text) * 10).ToString).ToString("00.000™)
TextBox22.Text ="000.000"
TextBox23.Text = strFormatedNumber
TextBox24.Text = "000.000"
TextBox25.Text ="0.00"
TextBox26.Text ="0.00"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 325

TextBox27.Text ="0.00"
TextBox34.Text = 10 * Val(TextBox8.Text).ToString()
Run Program with Parameters("Y1")
End If
End Sub

Private Sub Buttonl1_ Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button11.Click
' BscHoldOff(nCid)
If CheckBox6.Checked = True Then
Run_Program("STATIOND.JBI")
Else
TextBox7.Text ="Y2"
Dim strFormatedNumber As String = CLng((Val(TextBox10.Text) * 10).ToString).ToString("-00.000")
TextBox22.Text = "000.000"
TextBox23.Text = strFormatedNumber
TextBox24.Text = "000.000"
TextBox25.Text ="0.00"
TextBox26.Text ="0.00"
TextBox27.Text ="0.00"
TextBox34.Text = 10 * Val(TextBox8.Text).ToString()
Run_Program with Parameters("Y2")
End If
End Sub

Private Sub Button14 Click(ByVal sender As System.Object, ByVal ¢ As System.EventArgs) Handles Button14.Click
' BscHoldOff(nCid)
TextBox7.Text="7Z1"
Dim strFormatedNumber As String = CLng((Val(TextBox10.Text) * 10).ToString).ToString("00.000")
TextBox22.Text = "000.000"
TextBox23.Text = "000.000"
TextBox24.Text = strFormatedNumber
TextBox25.Text ="0.00"
TextBox26.Text ="0.00"
TextBox27.Text ="0.00"
TextBox34.Text = 10 * Val(TextBox8.Text).ToString()
Run Program with Parameters("Z1")
End Sub

Private Sub Button13 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button13.Click
' BscHoldOff(nCid)
TextBox7.Text ="Z2"
Dim strFormatedNumber As String = CLng((Val(TextBox10.Text) * 10).ToString).ToString("-00.000")
TextBox22.Text = "000.000"
TextBox23.Text = "000.000"
TextBox24.Text = strFormatedNumber
TextBox25.Text ="0.00"
TextBox26.Text ="0.00"
TextBox27.Text ="0.00"
TextBox34.Text = 10 * Val(TextBox8.Text).ToString()
Run_ Program with Parameters("Z2")
End Sub

Private Sub Button15_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button15.Click
' BscHoldOff(nCid)
TextBox7.Text ="R1"
Dim strFormatedNumber As String = CLng((Val(TextBox11.Text) * 1).ToString).ToString("0.00")
TextBox22.Text = "000.000"
TextBox23.Text = "000.000"
TextBox24.Text = "000.000"
TextBox25.Text = strFormatedNumber
TextBox26.Text ="0.00"
TextBox27.Text ="0.00"
TextBox34.Text = (10) * Val(TextBox9.Text).ToString()

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 326

Run Program with Parameters("R1")
End Sub

Private Sub Button16 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button16.Click
'BscHoldOff(nCid)
TextBox7.Text = "R2"
Dim strFormatedNumber As String = CLng((Val(TextBox11.Text) * 1).ToString).ToString("-0.00")
TextBox22.Text = "000.000"
TextBox23.Text = "000.000"
TextBox24.Text = "000.000"
TextBox25.Text = strFormatedNumber
TextBox26.Text ="0.00"
TextBox27.Text ="0.00"
TextBox34.Text = (10) * Val(TextBox9.Text).ToString()
Run_Program with Parameters("R2")
End Sub

Private Sub Button18 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button18.Click
' BscHoldOff(nCid)
TextBox7.Text ="P1"
Dim strFormatedNumber As String = CLng((Val(TextBox11.Text) * 1).ToString).ToString("0.00")
TextBox22.Text = "000.000"
TextBox23.Text = "000.000"
TextBox24.Text = "000.000"
TextBox25.Text ="0.00"
TextBox26.Text = strFormatedNumber
TextBox27.Text = "0.00"
TextBox34.Text = (10) * Val(TextBox9.Text).ToString()
Run_Program_ with Parameters("P1")
End Sub

Private Sub Button17_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button17.Click
' BscHoldOff(nCid)
TextBox7.Text = "P2"
Dim strFormatedNumber As String = CLng((Val(TextBox11.Text) * 1).ToString).ToString("-0.00")
TextBox22.Text = "000.000"
TextBox23.Text = "000.000"
TextBox24.Text = "000.000"
TextBox25.Text ="0.00"
TextBox26.Text = strFormatedNumber
TextBox27.Text ="0.00"
TextBox34.Text = (10) * Val(TextBox9.Text).ToString()
Run Program with Parameters("P2")
End Sub

Private Sub Button20 Click(ByVal sender As System.Object, ByVal ¢ As System.EventArgs) Handles Button20.Click
" BscHoldOff(nCid)
TextBox7.Text="YA1"
Dim strFormatedNumber As String = CLng((Val(TextBox11.Text) * 1).ToString).ToString("0.00")
TextBox22.Text = "000.000"
TextBox23.Text = "000.000"
TextBox24.Text = "000.000"
TextBox25.Text ="0.00"
TextBox26.Text ="0.00"
TextBox27.Text = strFormatedNumber
TextBox34.Text = (10) * Val(TextBox9.Text).ToString()
Run Program with Parameters("YA1")
End Sub

Private Sub Button19 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button19.Click
' BscHoldOff(nCid)
TextBox7.Text ="YA2"

Dim strFormatedNumber As String = CLng((Val(TextBox11.Text) * 1).ToString).ToString("-0.00")

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 327

TextBox22.Text = "000.000"
TextBox23.Text = "000.000"
TextBox24.Text = "000.000"
TextBox25.Text ="0.00"
TextBox26.Text ="0.00"
TextBox27.Text = strFormatedNumber
TextBox34.Text = (10) * Val(TextBox9.Text).ToString()
Run_Program_ with Parameters("YA2")
End Sub

Private Sub Button8 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button8.Click
Button21.Enabled = True
Button22.Enabled = True
Run_Program("HC.JBI")

End Sub

Private Sub Button21_ Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button21.Click
Button22.Enabled = False
Run_Program("HR.JBI")

End Sub

Private Sub Button22 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button22.Click
Button21.Enabled = False
Run Program("HL.JBI")

End Sub

Private Sub Button25_ Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button25.Click
BscHoldOn(nCid)
BscHoldOn(nCid)
BscHoldOn(nCid)
BscHoldOn(nCid)
BscHoldOn(nCid)
End Sub

Private Sub Button26 Click(ByVal sender As System.Object, ByVal ¢ As System.EventArgs)
Dim m

m = CreateObject("Matlab.Application")

m.Execute("typel")
End Sub

Private Sub CheckBox4 CheckedChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
CheckBox4.CheckedChanged
If CheckBox4.Checked = True Then CheckBox5.Checked = False
If CheckBox4.Checked = False Then CheckBox5.Checked = True
End Sub

Private Sub CheckBox5 CheckedChanged(ByVal sender As System.Object, ByVal ¢ As System.EventArgs) Handles
CheckBox5.CheckedChanged

If CheckBox5.Checked = True Then CheckBox4.Checked = False
If CheckBox5.Checked = False Then CheckBox4.Checked = True

End Sub

Public Function Run_Program with Parameters(ByVal e As String) As Integer
BscHoldOff(nCid)

Dim Arm_Increment As Integer

Dim Wrist_Increment As Integer

Dim Arm_Speed As Integer

Dim Wrist_Speed As Integer

Arm_Increment = Val(TextBox10.Text)
Arm_Speed = Val(TextBox8.Text)
Wrist Speed = Val(TextBox9.Text)
Wrist Increment = Val(TextBox11.Text)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 328

If CheckBox3.Checked = True Then TextBox36.Text = "ROBOT"
If CheckBox6.Checked = True Then TextBox36.Text = "PULSE"

If ((Arm_Increment <= 0) Or (Arm_Increment) > 50) Then
MsgBox("Arm increment should be more than 0 and less than 50 cm.")
End If
If ((Arm_Speed <= 0) Or (Arm_Speed) > 25) Then
MsgBox("Arm speed should be more than 0 and less than 25 cm / sec.")
End If
If (Wrist_Speed <= 0) Or (Wrist_Speed) > 20) Then
MsgBox("Wrist speed should be more than 0 and less than 20 cm / sec.")
End If
If ((Wrist_Increment <= 0) Or (Wrist_Increment) > 5) Then
MsgBox("Wrist increment should be more than 0 and less than 5 cm.")
End If

If (((Arm_Increment > 0) And (Arm_Increment) <= 50) And ((Arm_Speed > 0) And (Arm_Speed) <= 25) And
((Wrist_Speed > 0) And (Wrist_Speed) <= 20) And ((Wrist_Increment > 0) And (Wrist_Increment) <= 5)) Then
TextBox12.Text = TextBox13.Text & Chr(13) & Chr(10) & TextBox14.Text & TextBox7.Text & Chr(13) &
Chr(10) & TextBox15.Text & Chr(13) & Chr(10) & TextBox16.Text & Chr(13) & Chr(10) & TextBox17.Text &
Chr(13) & Chr(10) & TextBox18.Text & TextBox36.Text & Chr(13) & Chr(10) & TextBox19.Text & Chr(13) &
Chr(10) & TextBox20.Text & Chr(13) & Chr(10) & TextBox21.Text & TextBox22.Text & "," & TextBox23.Text & ","
& TextBox24.Text & "," & TextBox25.Text & "," & TextBox26.Text & "," & TextBox27.Text & Chr(13) & Chr(10) &
TextBox28.Text & Chr(13) & Chr(10) & TextBox29.Text & Chr(13) & Chr(10) & TextBox30.Text & Chr(13) &
Chr(10) & TextBox31.Text & Chr(13) & Chr(10) & TextBox32.Text & Chr(13) & Chr(10) & TextBox33.Text &
TextBox34.Text & Chr(13) & Chr(10) & TextBox35.Text
File.Delete(e + ".JBI")
Dim fs As New FileStream(e + ".JBI", FileMode.OpenOrCreate, FileAccess. Write)
Dim s As New StreamWriter(fs)

s.WriteLine(TextBox12.Text)
s.Close()

If CheckBox4.Checked = False Then
TextBox3.Text = BscSelOneCycle(nCid)
Else
TextBox3.Text = BscSelLoopCycle(nCid)
End If

TextBox3.Text = BscSelectJob(nCid, e + ".JBI")
TextBox3.Text = BscDeleteJob(nCid)
TextBox3.Text=""

TextBox3.Text = BscDownLoad(nCid, e + ".JBI")

' BscHoldOff(nCid)
BscSetMasterJob(nCid)
BscSelectMode(nCid, 2)
BscServoOn(nCid)
BscStartJob(nCid)
End If
End Function

Private Sub Menultem1 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Menultem]1.Click
CheckBox1.Checked = True
BscSelectMode(nCid, 1)
BscServoOff(nCid)
TextBox2.Text = Ms_BscCloseComm(0)
TextBox2.Text = BscEnforcedClose(0)
Label10.Text = "Teach"
Label13.Text = "Off"
CheckBox2.Checked = False

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 329

If TextBox1.Text <> "-1" And TextBox2.Text ="1" Then
Label15.Text = "Connected"
Else
Label15.Text = "Disconnected"
End If
Dim pRegKey Events As RegistryKey = Registry.CurrentUser
pRegKey Events = pRegKey Events.OpenSubKey("Uri\Digital Scale", True)
pRegKey Events.SetValue("Activate Scale Flag", "0")
pRegKey Events.SetValue("Events Value", "0")
pRegKey Events.SetValue("Cummulative Value", "0")
Close()
End Sub

Private Sub Button23 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button23.Click
'BscHoldOff(nCid)
Run_Program("OPEN.JBI")
'BscHoldOff(nCid)

End Sub

Private Sub Button24 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button24.Click
'BscHoldOff(nCid)
Run Program("CLOSE.JBI")
'BscHoldOff(nCid)

End Sub

Private Sub CheckBox3 CheckedChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
CheckBox3.CheckedChanged
If CheckBox3.Checked = True Then CheckBox6.Checked = False
If CheckBox3.Checked = False Then CheckBox6.Checked = True
If CheckBox3.Checked = True Then TextBox36.Text = "ROBOT"
If CheckBox6.Checked = True Then TextBox36.Text = "PULSE"
End Sub

Private Sub CheckBox6 CheckedChanged(ByVal sender As System.Object, ByVal ¢ As System.EventArgs) Handles
CheckBox6.CheckedChanged
If CheckBox6.Checked = True Then CheckBox3.Checked = False
If CheckBox6.Checked = False Then CheckBox3.Checked = True
If CheckBox3.Checked = True Then TextBox36.Text = "ROBOT"
If CheckBox6.Checked = True Then TextBox36.Text = "PULSE"
End Sub

Public Function Shake 1()
Dim Amplitude As Integer
Dim Speed As Integer
Dim Times As Integer

Amplitude = Val(TextBox38.Text)
Speed = Val(TextBox39.Text)
Times = Val(TextBox37.Text)

If (((Amplitude > 0) And (Amplitude) <=20) And ((Speed > 0) And (Speed) <= 1000) And ((Times > 0) And
(Times) <= 10)) Then

If ComboBox1.SelectedItem = "X" Then
Dim strFormatedNumber As String = CLng((Val(TextBox38.Text) * 10).ToString). ToString("00.000")

TextBox51.Text = strFormatedNumber
TextBox52.Text = "000.000"
TextBox53.Text = "000.000"
TextBox54.Text = "0.00"
TextBox55.Text = "0.00"
TextBox56.Text ="0.00"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 330

TextBox62.Text = "-" & strFormatedNumber
TextBox60.Text = "000.000"
TextBox61.Text = "000.000"
TextBox57.Text = "0.00"

TextBox58.Text ="0.00"

TextBox59.Text ="0.00"

TextBox70.Text = (1 * Val(TextBox39.Text)).ToString()
TextBox72.Text = (1 * Val(TextBox39.Text)).ToString()

Elself ComboBox1.SelectedItem = "Y" Then
Dim strFormatedNumber 1 As String = CLng((Val(TextBox38.Text) * 10).ToString).ToString("00.000")

TextBox51.Text = "000.000"
TextBox52.Text = strFormatedNumber 1
TextBox53.Text = "000.000"
TextBox54.Text ="0.00"
TextBox55.Text ="0.00"
TextBox56.Text ="0.00"

TextBox62.Text = "000.000"

TextBox60.Text = "000.000"

TextBox61.Text = "-" & strFormatedNumber 1
TextBox57.Text ="0.00"

TextBox58.Text = "0.00"

TextBox59.Text = "0.00"

TextBox70.Text = (1 * Val(TextBox39.Text)).ToString()
TextBox72.Text = (1 * Val(TextBox39.Text)).ToString()

Elself ComboBox1.SelectedItem = "Z" Then
Dim strFormatedNumber 2 As String = CLng((Val(TextBox38.Text) * 10).ToString).ToString("00.000")

TextBox51.Text ="000.000"
TextBox52.Text = "000.000"
TextBox53.Text = strFormatedNumber 2
TextBox54.Text = "0.00"
TextBox55.Text = "0.00"
TextBox56.Text ="0.00"

TextBox62.Text = "000.000"

TextBox60.Text = "-" & strFormatedNumber 2
TextBox61.Text = "000.000"

TextBox57.Text ="0.00"

TextBox58.Text ="0.00"

TextBox59.Text ="0.00"

TextBox70.Text = (1 * Val(TextBox39.Text)).ToString()
TextBox72.Text = (1 * Val(TextBox39.Text)).ToString()
Else
MsgBox("Please choose an axis.")
End If

TextBox74.Text = TextBox40.Text & Chr(13) & Chr(10) & TextBox41.Text & TextBox42.Text & Chr(13) &
Chr(10) & TextBox43.Text & Chr(13) & Chr(10) & TextBox44.Text & Chr(13) & Chr(10) & TextBox45.Text &
Chr(13) & Chr(10) & TextBox46.Text & Chr(13) & Chr(10) & TextBox47.Text & Chr(13) & Chr(10) &
TextBox48.Text & Chr(13) & Chr(10) & TextBox50.Text & TextBox51.Text & "," & TextBox52.Text & "," &
TextBox53.Text & "," & TextBox54.Text & "," & TextBox55.Text & "," & TextBox56.Text & Chr(13) & Chr(10) &
TextBox63.Text & TextBox62.Text & "," & TextBox61.Text & "," & TextBox60.Text & "," & TextBox59.Text & "," &
TextBox58.Text & "," & TextBox57.Text & Chr(13) & Chr(10) & TextBox64.Text & Chr(13) & Chr(10) &
TextBox65.Text & Chr(13) & Chr(10) & TextBox66.Text & Chr(13) & Chr(10) & TextBox67.Text & Chr(13) &

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

331

Chr(10) & TextBox68.Text & Chr(13) & Chr(10) & TextBox69.Text & TextBox70.Text & Chr(13) & Chr(10) &
TextBox71.Text & TextBox72.Text & Chr(13) & Chr(10) & TextBox73.Text
File.Delete(TextBox42.Text + ".JBI")
Dim fs As New FileStream(TextBox42.Text + ".JBI", FileMode.OpenOrCreate, FileAccess. Write)
Dim s As New StreamWriter(fs)
s.WriteLine(TextBox74.Text)
s.Close()
End If
End Function

Public Function Shake 2()
TextBox3.Text = BscSelectJob(nCid, TextBox42.Text + ".JBI")
TextBox3.Text = BscDeleteJob(nCid)
TextBox3.Text=""
TextBox3.Text = BscDownLoad(nCid, TextBox42.Text + ".JBI")
End Function

Public Function Shake 3()
TextBox3.Text = BscSelOneCycle(nCid)
BscHoldOff(nCid)
BscSetMasterJob(nCid)
BscSelectMode(nCid, 2)
BscServoOn(nCid)
BscStartJob(nCid)

End Function

Private Sub Button26 Click 1(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Button26.Click
Dim counter 1 As Integer
counter 1 =1
Dim Amplitude As Integer
Dim Speed As Integer
Dim Times As Integer

Amplitude = Val(TextBox38.Text)
Speed = Val(TextBox39.Text)
Times = Val(TextBox37.Text)

If ((Amplitude <= 0) Or (Amplitude) > 20) Then
MsgBox("Amplitude should be more than 0 and less than 20 cm.")
End If

If ((Speed <= 0) Or (Speed) > 1000) Then
MsgBox("Speed should be more than 0 and less than 1000 cm / sec.")
End If

If ((Times <= 0) Or (Times) > 10) Then
MsgBox("Number of times should be more than 0 and less than 10.")
End If

If (((Amplitude > 0) And (Amplitude) <= 20) And ((Speed > 0) And (Speed) <= 1000) And ((Times > 0) And
(Times) <= 10)) And ((ComboBox1.SelectedItem = "X" Or ComboBox1.Selectedltem ="Y" Or
ComboBox1.SelectedItem = "Z")) Then

Shake 1()
Shake 2()
For counter 1 =1 To Val(TextBox37.Text)
Shake 3()
Next
End If

End Sub

Public Function Show_States()

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

332

xConn = New sqlConn
xConn.connectMe("SELECT State FROM States Where State="" & "Center" & ")
ListBox1.Items.Clear()
For iCounter = 0 To xConn.getData("State").Count - 1
ListBox1.Items.Add(xConn.dataReturned.Item(iCounter))
Next
xConn.OLEConn.Close()
End Function

Public Function Show_States 1()

xConn = New sqlConn

xConn.connectMe("SELECT State FROM States 1 Where State="" & "Home" & ")

ListBox3.Items.Clear()

ListBox10.Items.Clear()

For iCounter = 0 To xConn.getData("State").Count - 1
ListBox3.Items.Add(xConn.dataReturned.Item(iCounter))
ListBox10.Items. Add(xConn.dataReturned.Item(iCounter))

Next

xConn.OLEConn.Close()

End Function

Private Sub ListBox1 DoubleClick(ByVal sender As Object, ByVal e As System.EventArgs) Handles
ListBox1.DoubleClick

Current_State = ListBox1.SelectedItem()

Try
xConn = New sqlConn
xConn.connectMe("SELECT * FROM States WHERE State =" & ListBox1.Selectedltem & "';")
ListBox2.Items.Clear()

Try

xConn.OLEComm.Connection = xConn.OLEConn

Dim d As OleDb.OleDbDataReader = xConn.OLEComm.ExecuteReader()
d.Read()
For i As Integer =1 To (36 - 18)

If d.IsDBNull(i + 1) = False Then

ListBox2.Items.Add(d(("Action" + i.ToString()).ToString))
End If
Next
Try
xConn.OLEConn.Close()
Catch err As System.Exception
MsgBox(err.Message)
End Try
Catch err As System.Exception
MsgBox(err.Message)
End Try
Catch err As System.Exception
MsgBox(err.Message)
End Try
End Sub

Private Sub ListBox2 DoubleClick(ByVal sender As Object, ByVal e As System.EventArgs) Handles
ListBox2.DoubleClick

TextBox107.Text = "///NPOS 0,0,0," + (Action_Counter 1 + 1).ToString() +",0,0"
Action = ListBox2.SelectedItem()

Try

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

333

xConn = New sqlConn
xConn.connectMe("SELECT * FROM Action_State WHERE Action ="' & ListBox2.SelectedItem & "';")

If (ListBox2.SelectedItem() <> "Nothing") Then
ListBox1.Items.Clear()
Try
xConn.OLEComm.Connection = xConn.OLEConn
Dim d As OleDb.OleDbDataReader = xConn.OLEComm.ExecuteReader()
d.Read()
ListBox1.Items.Add(d(("State").ToString))
Try
xConn.OLEConn.Close()
Catch err As System.Exception
MsgBox(err.Message)
End Try
Catch err As System.Exception
MsgBox(err.Message)
End Try
End If
Catch err As System.Exception
MsgBox(err.Message)

End Try
xConn.OLEConn.Close()

'Center

'Center - Vell

If Current_State = "Center" And Action ="Move X Plus 1 Vell" Then
Reset_Step()
TextBox101.Text = (1 * Val(TextBox81.Text)).ToString("000.000")
TextBox82.Text = TextBox153.Text

End If

If Current_State = "Center" And Action ="Move X Plus 2 Vell" Then
Reset_Step()
TextBox101.Text = (2 * Val(TextBox81.Text)).ToString("000.000")
TextBox82.Text = TextBox153.Text

End If

If Current_State = "Center" And Action ="Move X Plus 3 Vell" Then
Reset_Step()
TextBox101.Text = (3 * Val(TextBox81.Text)).ToString("000.000")
TextBox82.Text = TextBox153.Text

End If

If Current_State = "Center" And Action ="Move X Minus 1 Vell" Then
Reset_Step()
TextBox101.Text = (1 * Val(TextBox159.Text)).ToString("000.000™)
TextBox82.Text = TextBox153.Text

End If

If Current_State = "Center" And Action ="Move X Minus 2 Vell" Then
Reset_Step()
TextBox101.Text = (2 * Val(TextBox159.Text)).ToString("000.000")
TextBox82.Text = TextBox153.Text

End If

If Current_State = "Center" And Action ="Move X Minus 3 Vell" Then
Reset_Step()
TextBox101.Text = (3 * Val(TextBox159.Text)).ToString("000.000")
TextBox82.Text = TextBox153.Text

End If

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 334

X
"X Plus - Vell

If Current_State ="X Plus 1" And Action ="Move X Minus 1 Vell" Then
Reset_Step()
TextBox101.Text = (2 * Val(TextBox159.Text)).ToString("000.000")
TextBox82.Text = TextBox153.Text

End If

If Current_State = "X Plus 2" And Action ="Move X Minus 2 Vell" Then
Reset_Step()
TextBox101.Text = (4 * Val(TextBox159.Text)).ToString("000.000™)
TextBox82.Text = TextBox153.Text

End If

If Current_State ="X Plus 3" And Action ="Move X Minus 3 Vell" Then
Reset_Step()
TextBox101.Text = (6 * Val(TextBox159.Text)).ToString("000.000")
TextBox82.Text = TextBox153.Text

End If

If Current_State = "X Plus 1" And Action ="Move Center Vell" Then
Reset_Step()
TextBox101.Text = (1 * Val(TextBox159.Text)).ToString("000.000™)
TextBox82.Text = TextBox153.Text

End If

If Current_State = "X _Plus_2" And Action = "Move Center Vell" Then
Reset_Step()
TextBox101.Text = (2 * Val(TextBox159.Text)).ToString("000.000")
TextBox82.Text = TextBox153.Text

End If

If Current_State ="X Plus 3" And Action ="Move Center Vell" Then
Reset_Step()
TextBox101.Text = (3 * Val(TextBox159.Text)).ToString("000.000™)
TextBox82.Text = TextBox153.Text

End If

" X Minus - Vell

If Current_State ="X Minus_1" And Action ="Move X Plus 1 Vell" Then
Reset_Step()
TextBox101.Text = (2 * Val(TextBox81.Text)).ToString("000.000")
TextBox82.Text = TextBox153.Text

End If

If Current_State = "X Minus 2" And Action ="Move X Plus 2 Vell" Then
Reset_Step()
TextBox101.Text = (4 * Val(TextBox81.Text)).ToString("000.000")
TextBox82.Text = TextBox153.Text

End If

If Current_State = "X Minus 3" And Action ="Move X Plus 3 Vell" Then
Reset_Step()
TextBox101.Text = (6 * Val(TextBox81.Text)).ToString("000.000")
TextBox82.Text = TextBox153.Text

End If

If Current_State ="X Minus 1" And Action ="Move Center Vell" Then
Reset_Step()
TextBox101.Text = (1 * Val(TextBox81.Text)).ToString("000.000")
TextBox82.Text = TextBox153.Text

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 335

End If

If Current_State ="X Minus 2" And Action ="Move Center Vell" Then
Reset_Step()
TextBox101.Text = (2 * Val(TextBox81.Text)).ToString("000.000")
TextBox82.Text = TextBox153.Text

End If

If Current_State = "X Minus 3" And Action = "Move Center Vell" Then
Reset_Step()
TextBox101.Text = (3 * Val(TextBox81.Text)).ToString("000.000")
TextBox82.Text = TextBox153.Text

End If

" End If

If Current_State = "Center" And Action ="Move Y Plus 1 Vell" Then
Reset_Step()
TextBox100.Text = (1 * Val(TextBox156.Text)).ToString("000.000")
TextBox82.Text = TextBox154.Text

End If

If Current_State = "Center" And Action ="Move Y Plus 2 Vell" Then
Reset_Step()
TextBox100.Text = (2 * Val(TextBox156.Text)). ToString("000.000™)
TextBox82.Text = TextBox154.Text

End If

If Current_State = "Center" And Action ="Move Y Plus 3 Vell" Then
Reset_Step()
TextBox100.Text = (3 * Val(TextBox156.Text)).ToString("000.000")
TextBox82.Text = TextBox154.Text

End If

If Current_State = "Center" And Action ="Move Y Minus 1 Vell" Then
Reset_Step()
TextBox100.Text = (1 * Val(TextBox160.Text)).ToString("000.000™)
TextBox82.Text = TextBox154.Text

End If

If Current_State = "Center" And Action ="Move Y Minus 2 Vell" Then
Reset_Step()
TextBox100.Text = (2 * Val(TextBox160.Text)).ToString("000.000")
TextBox82.Text = TextBox154.Text

End If

If Current_State = "Center" And Action ="Move Y Minus 3 Vell" Then
Reset_Step()
TextBox100.Text = (3 * Val(TextBox160.Text)).ToString("000.000™)
TextBox82.Text = TextBox154.Text

End If

Y
"Y Plus - Vell

If Current_State ="Y Plus 1" And Action ="Move Y Minus_1 Vell" Then
Reset_Step()
TextBox100.Text = (2 * Val(TextBox160.Text)). ToString("000.000™)
TextBox82.Text = TextBox154.Text

End If

If Current_State ="Y Plus 2" And Action ="Move Y Minus 2 Vell" Then
Reset_Step()
TextBox100.Text = (4 * Val(TextBox160.Text)).ToString("000.000")

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 336

TextBox82.Text = TextBox154.Text
End If

If Current_State ="Y Plus 3" And Action ="Move Y Minus 3 Vell" Then
Reset_Step()
TextBox100.Text = (6 * Val(TextBox160.Text)).ToString("000.000")
TextBox82.Text = TextBox154.Text

End If

If Current_State ="Y _Plus 1" And Action ="Move Center Vell" Then
Reset_Step()
TextBox100.Text = (1 * Val(TextBox160.Text)). ToString("000.000™)
TextBox82.Text = TextBox154.Text

End If

If Current_State ="Y_Plus 2" And Action = "Move Center Vell" Then
Reset_Step()
TextBox100.Text = (2 * Val(TextBox160.Text)).ToString("000.000")
TextBox82.Text = TextBox154.Text

End If

If Current_State ="Y_Plus 3" And Action ="Move Center Vell" Then
Reset_Step()
TextBox100.Text = (3 * Val(TextBox160.Text)). ToString("000.000™)
TextBox82.Text = TextBox154.Text

End If

"Y Minus - Vell

If Current_State ="Y_Minus_1" And Action ="Move Y Plus 1 Vell" Then
Reset_Step()
TextBox100.Text = (2 * Val(TextBox156.Text)).ToString("000.000")
TextBox82.Text = TextBox154.Text

End If

If Current_State ="Y Minus 2" And Action ="Move Y Plus 2 Vell" Then
Reset_Step()
TextBox100.Text = (4 * Val(TextBox156.Text)).ToString("000.000")
TextBox82.Text = TextBox154.Text

End If

If Current_State ="Y_Minus_3" And Action ="Move Y Plus 3 Vell" Then
Reset_Step()
TextBox100.Text = (6 * Val(TextBox156.Text)).ToString("000.000")
TextBox82.Text = TextBox154.Text

End If

If Current_State ="Y Minus 1" And Action = "Move Center Vell" Then
Reset_Step()
TextBox100.Text = (1 * Val(TextBox156.Text)).ToString("000.000")
TextBox82.Text = TextBox154.Text

End If

If Current_State ="Y_Minus 2" And Action = "Move Center Vell" Then
Reset_Step()
TextBox100.Text = (2 * Val(TextBox156.Text)).ToString("000.000")
TextBox82.Text = TextBox154.Text

End If

If Current_State ="Y_Minus_3" And Action = "Move Center Vell" Then
Reset_Step()
TextBox100.Text = (3 * Val(TextBox156.Text)).ToString("000.000")
TextBox82.Text = TextBox154.Text

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

337

End If

If Current_State = "Center" And Action ="Move Z Plus 1 Vell" Then
Reset_Step()
TextBox99.Text = (1 * Val(TextBox157.Text)).ToString("000.000")
TextBox82.Text = TextBox155.Text

End If

If Current_State = "Center" And Action ="Move Z Plus 2 Vell" Then "
Reset_Step()
TextBox99.Text = (2 * Val(TextBox157.Text)).ToString("000.000")
TextBox82.Text = TextBox155.Text

End If

If Current_State = "Center" And Action ="Move Z Plus 3 Vell" Then
Reset_Step()
TextBox99.Text = (3 * Val(TextBox157.Text)).ToString("000.000")
TextBox82.Text = TextBox155.Text

End If

If Current_State = "Center" And Action ="Move Z Minus 1 Vell" Then
Reset_Step()
TextBox99.Text = (1 * Val(TextBox161.Text)).ToString("000.000")
TextBox82.Text = TextBox155.Text

End If

If Current_State = "Center" And Action ="Move Z Minus 2 Vell" Then
Reset_Step()
TextBox99.Text = (2 * Val(TextBox161.Text)).ToString("000.000")
TextBox82.Text = TextBox155.Text

End If

If Current_State = "Center" And Action ="Move Z Minus 3 Vell" Then
Reset_Step()
TextBox99.Text = (3 * Val(TextBox161.Text)).ToString("000.000")
TextBox82.Text = TextBox155.Text

End If

"Z Plus - Vell

If Current_State ="Z Plus_1" And Action ="Move Z Minus_ 1 Vell" Then
Reset_Step()
TextBox99.Text = (2 * Val(TextBox161.Text)).ToString("000.000")
TextBox82.Text = TextBox155.Text

End If

If Current_State ="Z Plus 2" And Action ="Move Z Minus 2 Vell" Then
Reset_Step()
TextBox99.Text = (4 * Val(TextBox161.Text)).ToString("000.000")
TextBox82.Text = TextBox155.Text

End If

If Current_State ="Z Plus_3" And Action = "Move Z Minus 3 Vell" Then
Reset_Step()
TextBox99.Text = (6 * Val(TextBox161.Text)).ToString("000.000")
TextBox82.Text = TextBox155.Text

End If

If Current_State ="Z Plus 1" And Action = "Move Center Vell" Then
Reset_Step()
TextBox99.Text = (1 * Val(TextBox161.Text)).ToString("000.000")
TextBox82.Text = TextBox155.Text

End If

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

338

If Current_State ="Z Plus 2" And Action = "Move Center Vell" Then
Reset_Step()
TextBox99.Text = (2 * Val(TextBox161.Text)).ToString("000.000")
TextBox82.Text = TextBox155.Text

End If

If Current_State ="Z Plus_3" And Action = "Move Center Vell" Then
Reset_Step()
TextBox99.Text = (3 * Val(TextBox161.Text)).ToString("000.000")
TextBox82.Text = TextBox155.Text

End If

"Z Minus - Vell

If Current_State ="Z Minus 1" And Action ="Move Z Plus 1 Vell" Then
Reset_Step()
TextBox99.Text = (2 * Val(TextBox157.Text)).ToString("000.000")
TextBox82.Text = TextBox155.Text

End If

If Current_State ="Z Minus_ 2" And Action ="Move Z Plus 2 Vell" Then
Reset_Step()
TextBox99.Text = (4 * Val(TextBox157.Text)).ToString("000.000")
TextBox82.Text = TextBox155.Text

End If

If Current_State ="Z Minus 3" And Action ="Move Z Plus 3 Vell" Then
Reset_Step()
TextBox99.Text = (6 * Val(TextBox157.Text)).ToString("000.000")
TextBox82.Text = TextBox155.Text

End If

If Current_State ="Z Minus_1" And Action = "Move Center Vell" Then
Reset_Step()
TextBox99.Text = (1 * Val(TextBox157.Text)).ToString("000.000")
TextBox82.Text = TextBox155.Text

End If

If Current_State ="Z Minus_2" And Action = "Move Center Vell" Then
Reset_Step()
TextBox99.Text = (2 * Val(TextBox157.Text)).ToString("000.000")
TextBox82.Text = TextBox155.Text

End If

If Current_State ="Z Minus_3" And Action = "Move Center Vell" Then
Reset_Step()
TextBox99.Text = (3 * Val(TextBox157.Text)).ToString("000.000")
TextBox82.Text = TextBox155.Text

End If

If (ListBox2.SelectedItem() = "Nothing") Then
TextBox101.Text = "000.000"
TextBox100.Text = "000.000"
TextBox99.Text = "000.000"
TextBox98.Text = "00.00"

TextBox97.Text = "00.00"
TextBox96.Text = "00.00"
Else

Action_Counter 1 = Action Counter 1 + 1
TextBox91.Text = Action Counter 1.ToString

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 339

If Action_Counter 1 <10 Then
TextBox102.Text = "P000" + Action_Counter 1.ToString() + "="
TextBox93.Text = TextBox93.Text + "IMOV P00" + Action_Counter 1.ToString() + " V=" + TextBox82.Text
& Chr(13) & Chr(10)
End If

If ((Action_Counter 1 >= 10) And (Action_Counter 1 < 100)) Then
TextBox102.Text ="P00" + Action_Counter 1.ToString() + "="
TextBox93.Text = TextBox93.Text + "IMOV P0" + Action_Counter 1.ToString() +" V=" + TextBox82.Text
& Chr(13) & Chr(10)
End If

If ((Action_Counter 1 >=100) And (Action_Counter 1 < 1000)) Then
TextBox102.Text = "P0" + Action_Counter 1.ToString() + "="
TextBox93.Text = TextBox93.Text + "IMOV P" + Action_Counter 1.ToString() +" V=" + TextBox82.Text &
Chr(13) & Chr(10)
End If

TextBox92.Text = TextBox111.Text & Chr(13) & Chr(10) & TextBox110.Text & TextBox109.Text & Chr(13)
& Chr(10) & TextBox108.Text & Chr(13) & Chr(10) & TextBox107.Text & Chr(13) & Chr(10) & TextBox106.Text &
Chr(13) & Chr(10) & TextBox105.Text & Chr(13) & Chr(10) & TextBox104.Text & Chr(13) & Chr(10) &
TextBox103.Text & Chr(13) & Chr(10)

TextBox78.Text = TextBox78.Text & TextBox102.Text & TextBox101.Text & "," & TextBox100.Text & "," &
TextBox99.Text & "," & TextBox98.Text & "," & TextBox97.Text & "," & TextBox97.Text & Chr(13) & Chr(10)

TextBox94.Text = TextBox88.Text & Chr(13) & Chr(10) & TextBox87.Text & Chr(13) & Chr(10) &
TextBox86.Text & Chr(13) & Chr(10) & TextBox85.Text & Chr(13) & Chr(10) & TextBox84.Text & Chr(13) &
Chr(10)

Next_State = ListBox1.Items.Item(0)
Current_State = Next_State
End If
End Sub
Function Reset_Step()
TextBox101.Text = "000.000"
TextBox100.Text = "000.000"
TextBox99.Text = "000.000"
TextBox98.Text = "00.00"
TextBox97.Text = "00.00"
TextBox96.Text = "00.00"
End Function

Private Sub Button28 Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
BscHoldOn(nCid)
End Sub

Private Sub Button28 Click 1(ByVal sender As System.Object, ByVal e As System.EventArgs)
BscHoldOff(nCid)
End Sub

Private Sub Button28 Click 2(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Button28.Click

File.Delete(TextBox109.Text + ".JBI")
Dim fs As New FileStream(TextBox109.Text + ".JBI", FileMode.OpenOrCreate, FileAccess. Write)
Dim s As New StreamWriter(fs)

s.WriteLine(TextBox92.Text + TextBox78.Text + TextBox94.Text + TextBox93.Text + TextBox79.Text)

s.Close()

Finish Flag=0

""" Run Program("GRASPH1" + ".JBI") ' Home
' System.Threading. Thread.Sleep(2000)
Finish Flag=1

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 340

Run Program(TextBox109.Text + ".JBI")
Finish Flag=10
End Sub

Private Sub Button29 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button29.Click
Disconnect_Robot()
End Sub

Private Sub Button30 Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
If ComboBox2.SelectedIndex = 0 Then
Run_Program("GRASPHI" + ".JBI")
Else
Run_Program("GRASPH2" + ".JBI")
End If
End Sub

Private Sub Button31_ Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button31.Click
If ComboBox2.SelectedIndex = 0 Then
Run_Program("GRASP1" + ".JBI")
Else
Run_Program("GRASP2" + ".JBI")
End If
End Sub

Private Sub Button32 Click(ByVal sender As System.Object, ByVal ¢ As System.EventArgs) Handles Button32.Click
Reset Policy 1()
End Sub

Function Reset Policy 1()
State Action Rand Timerl.Enabled = False
ListBox2.Items.Clear()
Show_States()

Dim nullObject As System.Object =0

Dim str As String =""

Dim nullObjStr As System.Object = str

Action_Counter 1 =0
TextBox91.Text = Action Counter 1.ToString
State Action Timerl Rand Counter 1=1

TextBox92.Text=""

TextBox78.Text=""

TextBox94.Text=""

TextBox93.Text=""
End Function

Private Sub State Action Timerl Rand Tick(ByVal sender As System.Object, ByVal ¢ As System.EventArgs)
Handles State Action Rand Timerl.Tick
On Error GoTo ErrorHandler
Dim ListBox2 Lengh As Integer

ListBox1.SetSelected(0, True)
ListBox1_DoubleClick(sender, e)

ListBox2 Lengh = ListBox2.Items.Count - 1

Dim R1 As Integer
' R1 = Randomizer(0, 1)

Dim R2 As Double
Randomize(DateTime.Now.Second())
R2 = Rnd(DateTime.Now.Millisecond())

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

341

'MsgBox(R2)

' R2 = Randomizer(0, 1)

If CheckBox8.Checked = False Then
IfR2>0.95ThenR2 =1
End If

R1 = Abs(CInt(ListBox2_Lengh * R2))

TextBox95.Text = R1.ToString
TextBox115.Text = ListBox2 Lengh
ListBox2.SetSelected(Abs(R1), True)
ListBox2 DoubleClick(sender,)

State Action_Timerl Rand Counter 1 = Val(TextBox91.Text)

If State_ Action_Timerl Rand Counter 1 >= TrackBarl.Value Then
eliminate x_axis flag=0
eliminate y axis flag=0
eliminate_z axis_flag=0
State Action Rand Timerl.Enabled = False
Else

State Action_Timerl Rand Counter 1= State Action Timerl Rand Counter 1+ 1
End If
ErrorHandler:
End Sub

Private Sub State Action Timerl Real Tick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles State Action_Real Timerl.Tick

" Create the last best policy with human intervention
ListBox1.SetSelected(0, True)
ListBox1 DoubleClick(sender, ¢)

ListBox2.SetSelected(ListBox4.Items.Item(State_Action_Timerl Real Counter 1), True)
ListBox2 DoubleClick(sender,)

If Val(TextBox133.Text) > 0 Then

Dim string_of results As String

Dim fs1 As New FileStream(TextBox148.Text & temp output file name 1 & ".csv", FileMode.Append,
FileAccess.Write)

Dim s1 As New StreamWriter(fs1)

string_of results = ListBox3.Items.Iltem(State Action Timerl Real Counter 1) & Chr(44) &
ListBox4.Items.Item(State_Action_Timerl Real Counter 1) & Chr(44) & TextBox132.Text & Chr(44) &
TextBox142.Text & Chr(44) & TextBox153.Text & Chr(44) & TextBox154.Text & Chr(44) & TextBox155.Text &
Chr(44) & TextBox81.Text & Chr(44) & TextBox156.Text & Chr(44) & TextBox157.Text & Chr(44)

s1.WriteLine(string_of results)
s1.Close()
End If

State Action Timerl Real Counter 1= State Action Timerl Real Counter 1+ 1
ProgressBar2.Value = State Action Timerl Real Counter 1

If State Action Timerl Real Counter 1 >= Val(TextBox134.Text) Then
If Val(TextBox133.Text) > 0 Then
Dim fs2 As New FileStream(TextBox148.Text & temp_output_file name 1 & ".csv", FileMode.Append,
FileAccess.Write)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 342
Dim s2 As New StreamWriter(fs2)

's2.WriteLine(TextBox127.Text)

" s2.Write(Round(Q Table Final(0, 0), 2))
Dim Comma_Deliminated Final Q Table As String

Comma_Deliminated Final Q Table = TextBox127.Text.Replace(" ",",")
Comma_Deliminated Final Q Table = TextBox127.Text.Replace(",,",",")

"Write2File(TextBox114.Text + ", " + Cummulative Value +", " + Events_Value, TextBox148.Text +
(Val(Trial Number)).ToString + " Trial " + "Scale Output.csv")
s2.WriteLine(Comma Deliminated Final Q Table)

'For i As Integer =0 To 18

's2.WriteLine(Q_Table(i, 0) +"," + Q_Table(i, 1) +"," + Q Table(i, 2) +", " + Q_Table(i, 3) +"," +
Q Table(i,4) +"," + Q_Table(i, 5) +", " + Q_Table(i, 6) +"," + Q_Table(i, 7) +", " + Q_Table(i, 8) +"," +
Q Table(i, 9) +"," + Q_Table(i, 10) +"," + Q_Table(i, 11) +"," + Q_Table(i, 12) + ", " + Q_Table(i, 13) +"," +
Q _Table(i, 14) +", "+ Q Table(i, 15) +"," + Q Table(i, 16) + ", " + Q Table(i, 17))

Next

" ForiAsInteger=0 To 18
' s2.WriteLine(Q Table Final(i, 0) + Q Table Final(i, 1))
" Next

'Q_Table(0, 0) =10.37 : Q_Table(0, 1) =31.11 : Q Table(0, 2) = 18.22 : Q_Table(0, 3) = 16.6 : Q Table(0, 4)
=37.78 : Q_Table(0, 5) =354.48 : Q Table(0, 6) = 11.1 : Q Table(0, 7) =4.23 : Q_Table(0, 8) = 12.71 : Q_Table(0, 9)
=14.94 : Q Table(0, 10)=7.6 : Q_Table(0, 11) =8.01 : Q_Table(0, 12) = 15.31 : Q_Table(0, 13) =8.38 : Q_Table(0,
14)=10.82 : Q_Table(0, 15) =5.62 : Q_Table(0, 16) =0.07 : Q_Table(0, 17) =0.23

'Q_Table(1,0)=0.24 : Q Table(l, 1)=0.13 : Q_Table(1,2)=1.24 : Q Table(1, 3)=0.28 : Q Table(1, 4) =
0.02 : Q Table(1, 5)=25.79 : Q_Table(1, 6) =0.14 : Q Table(1, 7)=0.2 : Q Table(1, 8) =0.2 : Q_Table(1,9)=0.19:
Q Table(1, 10)=0.22 : Q_Table(1, 11) =0.05 : Q_Table(1, 12) =0.09 : Q_ Table(1, 13)=0.13 : Q_Table(1, 14) =0.01 :
Q Table(1, 15)=0.08 : Q_Table(1, 16) =0.08 : Q Table(1, 17) =0.17

'Q_Table(2,0)=0.19 : Q Table(2, 1)=0.21 : Q Table(2,2)=0.16: Q Table(2, 3) = 14.71 : Q Table(2, 4) =
0.09 : Q Table(2, 5)=71.12: Q Table(2, 6) = 0.26 : Q Table(2,7)=0.15: Q _Table(2, 8) =0.17 : Q_Table(2, 9) =0.29
: Q_Table(2, 10)=10.15: Q Table(2, 11)=0.18 : Q_Table(2, 12) =0.26 : Q Table(2, 13) =0.24 : Q_Table(2, 14) =0.14
: Q _Table(2, 15)=0.22 : Q Table(2, 16) =0.06 : Q Table(2, 17) =0.06

'Q _Table(3, 0)=0.22 : Q_Table(3, 1) =0.27 : Q _Table(3,2) =0.04 : Q_Table(3, 3) =0.2 : Q _Table(3, 4) =
45.58 : Q_Table(3, 5) =26.32 : Q _Table(3, 6) =0.04 : Q_Table(3, 7) =0.14 : Q_Table(3, 8) =0.29 : Q_Table(3,9) =
0.14 : Q Table(3, 10)=0.21 : Q Table(3, 11)=0.17 : Q_Table(3, 12) =0.28 : Q_Table(3, 13) =0.18 : Q_Table(3, 14) =
0.01 : Q _Table(3, 15)=0.22 : Q_Table(3, 16) =0.28 : Q_Table(3, 17) = 0.01

'Q_Table(4, 0)=7.73 : Q _Table(4, 1)=0.06 : Q_Table(4,2)=0.16 : Q Table(4, 3)=0.24 : Q Table(4, 4) =
0.28 : Q _Table(4, 5)=22.92 : Q Table(4, 6) = 0.05 : Q Table(4,7)=0.18 : Q_Table(4, 8) =0.15: Q_Table(4, 9) =0.02
: Q_Table(4, 10)=0.03 : Q_Table(4, 11) =0.22 : Q_Table(4, 12) =0.26 : Q_Table(4, 13) =0.07 : Q_Table(4, 14) =0.12
: Q_Table(4, 15)=0.06 : Q_Table(4, 16) =0.24 : Q Table(4, 17)=0.21

'Q_Table(5,0)=0.21: Q Table(5, 1) =24 : Q _Table(5,2) =0.23 : Q Table(5, 3) =0.15: Q Table(5, 4) =
0.19 : Q Table(5, 5) =62.43 : Q Table(5, 6) = 0.02 : Q Table(5,7)=0.18 : Q Table(5, 8) =0.17 : Q_Table(5, 9) =0.27
: Q_Table(5, 10)=0.21 : Q Table(5, 11) =0.22 : Q Table(5, 12) =0.18 : Q_Table(5, 13) =0.02 : Q_Table(5, 14) =0.19
: Q _Table(5, 15)=0.06 : Q_Table(5, 16) = 0.05 : Q Table(5, 17) =0.25

'Q_Table(6, 0) =0.18 : Q_Table(6, 1) =0 : Q_Table(6, 2) =35.45 : Q_Table(6, 3) =0.19 : Q Table(6, 4) =
0.27 : Q_Table(6, 5) =353.35 : Q_Table(6, 6) =0.23 : Q_Table(6, 7) = 0.23 : Q_Table(6, 8) =0.16 : Q_Table(6, 9) =
0.16 : Q_Table(6, 10)=0.01 : Q_Table(6, 11) =0.06 : Q_Table(6, 12) =0.14 : Q_Table(6, 13) =0.3 : Q_Table(6, 14) =
0.11: Q _Table(6, 15)=10.29 : Q_Table(6, 16) =0.13 : Q_Table(6, 17) = 0.23

'Q_Table(7,0)=0:Q Table(7,1)=0.24 : Q Table(7,2) =34.17 : Q _Table(7,3)=0.19 : Q_Table(7, 4) =
0.29 : Q Table(7,5)=17.98 : Q_Table(7, 6) =0.11 : Q _Table(7, 7) =0.01 : Q_Table(7, 8) = 0.07 : Q_Table(7,9)=0.11
: Q_Table(7, 10)=0.08 : Q Table(7, 11) =0.15: Q_Table(7, 12) =0.25 : Q_Table(7, 13) = 0.26 : Q_Table(7, 14) =0.08
: Q_Table(7, 15)=0.09 : Q Table(7, 16) =0.14 : Q Table(7, 17) = 0.28

'Q_Table(8,0)=0.17 : Q Table(8, 1)=0.04 : Q Table(8,2)=0.13 : Q Table(8, 3)=7.96 : Q Table(8, 4) =
0.05: Q Table(8, 5)=17.34 : Q Table(8, 6) =0.21 : Q Table(8, 7)=0.15: Q Table(8, 8) =0.03 : Q Table(8, 9) =0.01
: Q_Table(8, 10) =0.01 : Q Table(8, 11)=0.3 : Q _Table(8, 12) =0.03 : Q_Table(8, 13) =0.24 : Q_Table(8, 14)=0.2:
Q Table(8, 15)=0.24 : Q_Table(8, 16) =0.12 : Q Table(8, 17) =0.27

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 343

'Q _Table(9, 0)=0.19 : Q Table(9, 1) =0.28 : Q Table(9,2)=0:Q Table(9,3)=0.02:Q Table(9, 4) =
23.86 : Q _Table(9, 5)=17.7 : Q Table(9, 6) =0.28 : Q Table(9, 7) =0.16 : Q Table(9, 8) = 0.07 : Q_Table(9, 9) = 0.04
: Q _Table(9, 10)=0.28 : Q Table(9, 11)=0.1 : Q _Table(9, 12) =0.04 : Q _Table(9, 13) =0.29 : Q_Table(9, 14) =0.07 :
Q Table(9, 15)=0.13 : Q_Table(9, 16) =0.03 : Q_Table(9, 17) = 0.03

'Q_Table(10, 0) = 0.25 : Q Table(10, 1) =0.17 : Q Table(10, 2) =34.17 : Q_Table(10, 3) =0.16:
Q Table(10, 4)=0.23 : Q_Table(10, 5) =23.98 : Q_Table(10, 6) =0.21 : Q_Table(10, 7)=0.01 : Q_Table(10, 8) = 0.23
: Q_Table(10,9)=0.25: Q_Table(10, 10) = 0.1 : Q_Table(10, 11)=0.03 : Q_Table(10, 12) =0.02 : Q_Table(10, 13) =
0.28 : Q_Table(10, 14) =0.09 : Q_Table(10, 15) =0.07 : Q_Table(10, 16)=0.2 : Q_Table(10, 17) = 0.03

'Q_Table(11,0)=10.17 : Q_Table(11, 1)=0.2: Q_Table(11,2)=0.18 : Q_Table(11, 3)=11.71 : Q_Table(11,
4)=0.27 : Q Table(11,5)=12.38 : Q Table(11,6)=0.17: Q_Table(11,7)=0.18 : Q Table(11, 8)=10.24:
Q Table(11,9)=0.29 : Q_Table(11, 10)=0.26 : Q Table(11, 11)=0.13 : Q _Table(11, 12) =0.22 : Q_Table(11, 13) =
0.03 : Q Table(11, 14)=0.15: Q Table(11, 15)=0.26 : Q Table(11, 16)=0.23 : Q_Table(11, 17)=0.17

'Q_Table(12, 0) =0.05 : Q _Table(12, 1)=0.1:Q_Table(12,2)=0.1: Q Table(12,3)=0.09 : Q Table(12, 4)
=20.66 : Q Table(12,5)=26.91:Q Table(12,6)=0.3:Q Table(12,7) =0.04 : Q Table(12, 8)=0.21: Q_Table(12,
9)=10.29 : Q Table(12, 10) = 0.28 : Q Table(12, 11) =0.08 : Q Table(12, 12)=0.1 : Q Table(12, 13)=0.11:
Q Table(12, 14)=0.07 : Q_Table(12, 15)=0.21 : Q _Table(12, 16) =0.3 : Q_Table(12, 17) = 0.25

'Q_Table(13, 0)=0.16 : Q_Table(13, 1)=0.06 : Q_Table(13,2)=12.58 : Q_Table(13,3)=10.19:
Q Table(13,4)=0.06 : Q Table(13, 5) =20.17 : Q_Table(13, 6) =0.16 : Q_Table(13, 7) =0.22 : Q_Table(13, 8) = 0.04
: Q_Table(13,9)=0.12: Q_Table(13, 10) = 0.05 : Q Table(13, 11)=0.27 : Q_Table(13, 12) =0.12 : Q_Table(13, 13) =
0.25: Q Table(13, 14) =0.25 : Q_Table(13, 15)=0.11 : Q_Table(13, 16)=0: Q_Table(13, 17) = 0.1

'Q_Table(14, 0) =0.02 : Q_Table(14, 1)=0.04 : Q Table(14,2)=0.19 : Q_Table(14, 3) = 6.02 : Q Table(14,
4)=0.11: Q Table(14,5)=14.18 : Q Table(14, 6)=0.18 : Q_Table(14,7)=0.16 : Q_Table(14, 8)=0.3 : Q_Table(14,
9)=0.12: Q Table(14, 10)=0.26 : Q Table(14, 11) =0.22 : Q_Table(14, 12) =0.2 : Q Table(14, 13) =0.26:
Q Table(14, 14)=0.06 : Q Table(14, 15)=0.15: Q Table(14, 16)=0.27 : Q Table(14, 17)=0.2

'Q_Table(15, 0) =0.25 : Q_Table(15, 1)=0.09 : Q Table(15,2)=0.06 : Q_Table(15, 3) =0.23 : Q Table(15,
4)=4.9:Q Table(15,5)=21.27:Q Table(15, 6) = 0.24 : Q Table(15,7) =0.28 : Q_Table(15, 8) =0.02 : Q_Table(15,
9)=0.26: Q Table(15, 10)=0.14 : Q Table(15, 11)=0.2 : Q Table(15, 12) =0.2 : Q_Table(15, 13)=0.19:
Q Table(15, 14)=0.22 : Q Table(15, 15)=0.05: Q Table(15, 16) =0.09 : Q_Table(15, 17) =0.13

'Q_Table(16, 0) =0.01 : Q_Table(16, 1)=0.08 : Q_Table(16,2)=9.17 : Q_Table(16,3)=0.17 : Q_Table(16,
4)=0.19 : Q Table(16, 5)=15.23 : Q Table(16, 6)=0.16 : Q_Table(16,7) =0 : Q_Table(16, 8)=0.09 : Q_Table(16,
9)=0.05: Q Table(16, 10)=0.26 : Q_Table(16, 11)=0.15 : Q_Table(16, 12) =0.17 : Q_Table(16, 13)=0.29 :
Q Table(16, 14)=0.15: Q Table(16, 15)=0.18 : Q_Table(16, 16) =0.26 : Q Table(16, 17) = 0.24

'Q_Table(17,0)=10.14 : Q_Table(17, 1)=0.22 : Q Table(17,2)=0.06 : Q_Table(17, 3) =3.09 : Q Table(17,
4)=0.22: Q Table(17,5)=28.41:Q Table(17,6)=0.04 : Q Table(17,7)=0.2: Q Table(17, 8)=0.02 : Q Table(17,
9)=0.2:Q Table(17, 10)=0.04 : Q Table(17, 11)=0.14 : Q Table(17, 12) =0.29 : Q Table(17, 13)=10.14:
Q Table(17,14)=0.21 : Q Table(17, 15)=0.17 : Q Table(17, 16) =0.28 : Q Table(17, 17) =0.18

'Q _Table(18,0)=0.01 : Q _Table(18, 1) =0.22 : Q _Table(18, 2) =0.28 : Q_Table(18, 3) =0.01 : Q_Table(18,
4)=2.89:Q Table(18, 5)=6.55:Q Table(18,6)=0.16 : Q Table(18, 7) =0.24 : Q Table(18, 8) =0.28 : Q_Table(18,
9)=0.29 : Q Table(18, 10)=0.05: Q Table(18, 11)=0.18 : Q_Table(18, 12) =0.15 : Q Table(18, 13) =0.02 :
Q Table(18, 14)=0.03 : Q_Table(18, 15)=0.22 : Q_Table(18, 16) =0.26 : Q Table(18, 17) =0.07

s2.Close()
End If
State Action_Real Timerl.Enabled = False
If allow_sound flag =1 Then
rc = PlaySound(System.AppDomain.CurrentDomain.BaseDirectory & "policy completed.wav", 0,
SND_NOSTOP)
End If
End If
End Sub

Private Function Randomizer(ByVal iStart As Double, ByVal iEnd As Double) As Double
Dim iRandomValue As Double

Randomize()

iRandomValue = iStart + (Rnd() * (iEnd - iStart))

Return iRandomValue
End Function

Private Sub TrackBarl Scroll(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
TrackBarl.Scroll
TextBox116.Text = TrackBarl.Value.ToString
End Sub

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 344

Private Sub Button30 Click 1(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Button30.Click
If TrackBarl.Value = 0 Then
MsgBox("A policy length can not be zero!")
Else
Reset_Policy 1()
State Action Rand Timerl.Enabled = True
End If
End Sub

Function Q Lamda_Algorithm()
Dim maxQ As Double

Dim epsilon As Double

Dim best_action_index As Integer
Dim temp_state As Integer

Dim temp_action As Integer

Dim temp _maxQ V1 As Double
Dim R2 As Double

Dim temp_state Q

Dim string_of results As String

epsilon = Val(TextBox128.Text)
TextBox123.Text = TextBox132.Text

If Val(TextBox133.Text) = "0" Then
epsilon =1
End If

Randomize(DateTime.Now.Second())
R2 = Rnd(DateTime.Now.Millisecond())
'MsgBox(R2)

'R2 = Randomizer(0, 1)

'MsgBox(R2)

If CheckBox8.Checked = False Then
IfR2>0.95ThenR2 =1
End If

Action_Timer 1.Enabled = True
ProgressBarl.Value = learning_trial

TextBox124.Text = TextBox134.Text
While (learning_trial <= Val(TextBox124.Text) - 1)

ListBox3.Items.Add(state_Q)
"Find A Different Action:

For reward counter 1 As Integer =0 To 18
For reward_counter 2 As Integer =0 To (35 - 18)
Reward(reward counter 1, reward counter 2) = Val(TextBox113.Text)'/5
Next
Next

For i As Integer =0 To (35 - 18)
maxQ V1(0,i)=0

Next

temp maxQ V1 =0

' Choose an action:

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 345

Randomize(DateTime.Now.Second())
R2 = Rnd(DateTime.Now.Millisecond())

'R2 = Randomizer(0, 1)

If CheckBox8.Checked = False Then
IfR2>0.95ThenR2 =1
End If

For i As Integer = 0 To (35 - 18)

maxQ VI1(0, 1) = Q Table(state Q, 1)

temp maxQ V1 =Max(temp maxQ VI, maxQ V1(0, 1))
Next

For i As Integer =0 To (35 - 18)
If Q _Table(state Q, i) =temp maxQ V1 Then
best_action_index =1
End If
Next

If (R2 > epsilon) Then

action_Q = Dbest_action_index
Else

action_Q = CInt(R2 * (35 - 18))
End If

' Next state:

Find A Different Action:
Try
xConn = New sqlConn
xConn.connectMe("SELECT Action" & action_Q.ToString() & " FROM States Numbers_Nothing Where
Id=" & state Q.ToString)
Try
xConn.OLEComm.Connection = xConn.OLEConn
Dim d As OleDb.OleDbDataReader = xConn.OLEComm.ExecuteReader()
d.Read()
temp_state Q = d("Action" & action_Q.ToString())

If temp_state Q = "Nothing" Then
xConn.OLEConn.Close()

Randomize(DateTime.Now.Second())
R2 = Rnd(DateTime.Now.Millisecond())

' R2 = Randomizer(0, 1)

If CheckBox8.Checked = False Then
IfR2>0.95ThenR2 =1
End If

action_Q = CInt(R2 * (35 - 18))
GoTo Find_ A Different Action
Else
next state Q = Val(d("Action" & action_Q.ToString()))
End If
Try
xConn.OLEConn.Close()
Catch err As System.Exception
MsgBox(err.Message)
End Try
Catch err As System.Exception

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 346

MsgBox(err.Message)
End Try
Catch err As System.Exception
MsgBox(err.Message)
End Try

ListBox4.Items.Add(action_Q)
! ListBox5.Items.Add(Reward(state_Q, action_Q))
ListBox5.Items.Add(TextBox132.Text)

endTime = Now
ListBox6.Items.Add(Round(endTime.Subtract(start Time). TotalMilliseconds))

ListBox3.Refresh()
ListBox4.Refresh()
ListBox5.Refresh()
ListBox6.Refresh()

delta(learning_trial, 0) = Reward(state_Q, action_Q) + gamma * Q_Table(next_state Q, action_Q) -
Q _Table(state Q, action_Q)
Eligibility(state_Q, action_Q) = Eligibility(state Q, action_Q) + 1

For state i As Integer =0 To 18
For action_i As Integer =0 To (35 - 18)
If (state i =state Q) And (action i=action Q) Then
Eligibility = MatLib.ScalarMultiply(lambda * gamma, Eligibility)
Else
Eligibility(state i, action_i) =0
End If
Q _Table(state i, action_i) = Q_ Table(state i, action_i) + alpha * delta(learning_trial, 0) * Eligibility(state i,
action_1)
Next
Next

state_Q =next_state Q
learning_trial = learning_trial + 1
Q Lamda Algorithm()

End While

TextBox117.Text = MatLib.PrintMat(delta) & vbCrLf & vbCrLf
TextBox118.Text = MatLib.PrintMat(Q_Table) & vbCrLf & vbCrLf

Button35.Enabled = True
End Function

Public Sub initQFunction()
ListBox3.Items.Clear()
ListBox4.Items.Clear()
ListBox5.Items.Clear()
ListBox6.Items.Clear()

ListBox10.Items.Clear()
ListBox9.Items.Clear()
ListBox8.Items.Clear()
ListBox7.Items.Clear()

TextBox117.Text=""
TextBox118.Text=""

TextBox125.Text=""

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 347

TextBox126.Text =""

Dim j As Object
Dim i As Object
Dim k As Object
Dim | As Object
Dim m As Object
Dim n As Object

Dim R3 As Double

Fori=0To 18'19x 36
Forj=0 To (35-18)
Randomize(DateTime.Now.Millisecond())
R3 =0.3 * Rnd(DateTime.Now.Second())
Q Table(i, j) =R3
Q _Table Rewarded(i, j)=R3

Q Table Final(i,j)=R3'0
Eligibility(i, j) =0
Eligibility Rewarded(i, j) =0

Next j
Next 1

' If ComboBox7.SelectedItem = "Policy After System Crash" Then
'Q_Table(0, 0) =0.27 : Q_Table(0, 1) =0.25 : Q_Table(0, 2) =0.18 : Q_Table(0, 3) =0.29 : Q_Table(0,4)=0.2 :
Q _Table(0, 5) =0.18 : Q_Table(0, 6) =0.27 : Q_Table(0, 7) = 0.48 : Q_Table(0, 8) = 0.47 : Q_Table(0, 9) =0.49 :
Q _Table(0, 10) =0.22 : Q_Table(0, 11) =0.49 : Q_Table(0, 12) =0.06 : Q_Table(0, 13) =0.08 : Q_Table(0, 14) = 0.08 :
Q _Table(0, 15)=0.07 : Q_Table(0, 16) = 0.01 : Q_Table(0, 17) =0.02
'Q_Table(1, 0)=0.28 : Q_Table(1, 1)=0.17 : Q_Table(1, 2) =0.16 : Q_Table(1, 3)=0.01 : Q_Table(1, 4) =0.06 :
Q Table(1,5)=0.2 : Q Table(1, 6)=0.18 : Q_Table(1, 7) =0.23 : Q Table(1, 8) =0.24 : Q_Table(1, 9)=0.23 :
Q Table(1, 10)=0.26 : Q_Table(1, 11)=0.09 : Q_Table(1, 12) =0.13 : Q_Table(1, 13)=0.17 : Q_Table(1, 14) =0.05 :
Q Table(1, 15)=0.12: Q_Table(1, 16) =0.12 : Q Table(1, 17) =0.21
'Q_Table(2, 0) =0.23 : Q _Table(2, 1)=0.25: Q_Table(2,2)=0.2 : Q Table(2,3)=10.12: Q Table(2,4)=0.13:
Q Table(2,5)=0.15:Q Table(2, 6)=0.3 : Q Table(2,7)=0.19 : Q Table(2, 8)=0.2 : Q Table(2,9)=0.02:
Q Table(2, 10) =0.19 : Q Table(2, 11)=0.21 : Q_Table(2, 12) =0.29 : Q_Table(2, 13) =0.27 : Q_Table(2, 14)=0.17 :
Q Table(2, 15)=0.25: Q_Table(2, 16)=0.1 : Q Table(2, 17)=0.1
'Q _Table(3, 0) =0.26 : Q_Table(3, 1) =0.01 : Q_Table(3,2) =0.08 : Q_Table(3, 3) =0.24 : Q_Table(3, 4) =0.06 :
Q Table(3,5)=0.17 : Q_Table(3, 6) =0.07 : Q_Table(3,7)=0.18 : Q_Table(3, 8) =0.03 : Q_Table(3,9)=0.18:
Q Table(3, 10)=0.24 : Q_Table(3, 11)=0.21 : Q_Table(3, 12) =0.01 : Q_Table(3, 13) =0.22 : Q_Table(3, 14) =0.05 :
Q Table(3, 15)=0.25: Q_Table(3, 16) = 0.02 : Q_Table(3, 17) =0.05
'Q_Table(4, 0) =0.16 : Q_Table(4, 1) =0.09 : Q_Table(4, 2) =0.19 : Q_Table(4, 3)=0.28 : Q_Table(4,4)=0.02 :
Q Table(4, 5)=0.14 : Q_Table(4, 6) =0.09 : Q Table(4, 7)=0.22 : Q_Table(4, 8) =0.19 : Q_Table(4, 9) = 0.06 :
Q Table(4, 10)=0.07 : Q_Table(4, 11) =0.26 : Q_Table(4, 12) =0.3 : Q_Table(4, 13)=0.11 : Q_Table(4, 14)=0.15:
Q Table(4, 15)=0.09 : Q_Table(4, 16) = 0.28 : Q Table(4, 17) =0.25
'Q_Table(5, 0) =0.25 : Q Table(5, 1) =0.14 : Q_Table(5, 2) =0.27 : Q_Table(5, 3)=0.18 : Q_Table(5,4)=0.22 :
Q Table(5,5)=0.18 : Q_Table(5, 6) =0.06 : Q_Table(5, 7) =0.22 : Q Table(5, 8) =0.21 : Q_Table(5,9)=0:
Q Table(5, 10) =0.25 : Q_Table(5, 11) =0.26 : Q_Table(5, 12) =0.21 : Q Table(5, 13) =0.06 : Q_Table(5, 14) =0.22 :
Q Table(5, 15)=0.1: Q _Table(5, 16) =0.09 : Q Table(5, 17) =0.29
'Q_Table(6, 0) =0.22 : Q_Table(6, 1) =0.04 : Q_Table(6,2) =0.15: Q_Table(6, 3) =0.15: Q_Table(6, 4) =0.01 :
Q Table(6, 5)=0.14 : Q_Table(6, 6) =0.27 : Q_Table(6, 7) = 0.27 : Q_Table(6, 8) =0.19 : Q_Table(6, 9) =0.19 :
Q _Table(6, 10) =0.05 : Q_Table(6, 11) =0.1 : Q_Table(6, 12) =0.17 : Q_Table(6, 13) = 0.04 : Q_Table(6, 14)=0.15 :
Q Table(6, 15)=0.03 : Q_Table(6, 16) =0.17 : Q_Table(6, 17) =0.27
'Q_Table(7, 0) =0.04 : Q Table(7, 1) =0.27 : Q_Table(7,2)=0.6 : Q Table(7,3)=0.22 : Q Table(7,4)=0.03:
Q Table(7,5)=0.12 : Q_Table(7, 6) =0.14 : Q _Table(7, 7) =0.05 : Q_Table(7, 8) =0.11 : Q_Table(7,9)=0.14:
Q Table(7,10)=0.12 : Q_Table(7, 11)=0.19 : Q_Table(7, 12) =0.29 : Q Table(7, 13) =0.29 : Q_Table(7, 14)=0.12 :
Q Table(7,15)=0.13 : Q_Table(7, 16) =0.18 : Q Table(7, 17) =0.02
'Q_Table(8, 0) =0.21 : Q Table(8, 1) =0.08 : Q_Table(8, 2) =0.17 : Q_Table(8, 3) =0.58 : Q_Table(8, 4) =0.09 :
Q Table(8, 5)=0.17 : Q _Table(8, 6) =0.25 : Q_Table(8, 7) =0.19 : Q_Table(8, 8) = 0.07 : Q_Table(8, 9) =0.04 :
Q Table(8, 10) =0.05 : Q_Table(8, 11) =0.04 : Q Table(8, 12) =0.07 : Q Table(8, 13) =0.28 : Q_Table(8, 14) =0.24 :
Q Table(8, 15)=0.28 : Q_Table(8, 16) =0.16 : Q Table(8, 17) = 0.01

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 348

'Q_Table(9, 0) =0.23 : Q Table(9, 1) =0.02 : Q_Table(9, 2) =0.04 : Q_Table(9, 3) =0.06 : Q_Table(9, 4) =0.35:

Q Table(9, 5)=0.16 : Q _Table(9, 6)=0.02 : Q_Table(9, 7)=0.2 : Q _Table(9, 8) =0.11: Q_Table(9, 9)=0.08 :

Q Table(9, 10)=0.01: Q_Table(9, 11) =0.13 : Q Table(9, 12) =0.08 : Q Table(9, 13) =0.02 : Q Table(9, 14)=0.1:
Q Table(9, 15)=0.16 : Q_Table(9, 16) = 0.06 : Q Table(9, 17) = 0.06

'Q_Table(10, 0) = 0.29 : Q Table(10, 1) =0.21 : Q Table(10, 2) = 0.55 : Q Table(10, 3) =0.2 : Q Table(10, 4) =0.27 :
Q _Table(10, 5)=0.16 : Q_Table(10, 6) = 0.24 : Q_Table(10, 7) = 0.04 : Q_Table(10, 8) =0.26 : Q_Table(10,9)=0.29 :
Q _Table(10, 10)=0.14 : Q Table(10, 11)=0.07 : Q_Table(10, 12) = 0.05 : Q_Table(10, 13) =0.02 : Q_Table(10, 14) =
0.12 : Q _Table(10, 15)=0.11 : Q_Table(10, 16) =0.24 : Q_Table(10, 17) = 0.06

'Q_Table(11,0)=0.21 : Q _Table(11, 1)=0.24 : Q Table(11,2)=0.22: Q_Table(11, 3)=0.65: Q Table(11,4)=0:

Q Table(11,5)=0.16: Q_Table(11, 6)=0.21 : Q_Table(11,7)=0.22 : Q Table(11, 8)=0.27 : Q_Table(11, 9)=10.03 :
Q Table(11,10)=0:Q Table(11,11)=0.17: Q_Table(11, 12) =0.26 : Q Table(11, 13) =0.07 : Q_Table(11, 14) =
0.19: Q Table(11, 15)=10.3 : Q Table(11, 16)=0.26 : Q Table(11, 17)=0.2

'Q_Table(12, 0) =0.09 : Q_Table(12, 1)=0.14 : Q Table(12,2)=0.14: Q_Table(12,3)=0.13 : Q Table(12,4)=0.38 :
Q Table(12,5)=0.15:Q_Table(12, 6) = 0.03 : Q Table(12,7) =0.08 : Q Table(12, 8) =0.25 : Q_Table(12, 9) =0.03 :
Q Table(12, 10)=0.02 : Q _Table(12, 11)=0.11 : Q _Table(12, 12) =0.14 : Q Table(12, 13)=0.15: Q_Table(12, 14) =
0.1:Q Table(12, 15)=0.25: Q Table(12, 16) =0.04 : Q_Table(12, 17) =0.29

'Q_Table(13,0)=10.2 : Q _Table(13,1)=0.1: Q _Table(13, 2) =0.05 : Q _Table(13, 3)=0.23 : Q_Table(13, 4)=0.09 :

Q Table(13,5)=0.16 : Q_Table(13, 6) =0.2 : Q_Table(13,7)=0.26 : Q_Table(13, 8) =0.08 : Q_Table(13,9)=10.16:
Q Table(13, 10)=0.08 : Q Table(13, 11)=0.01: Q_Table(13, 12) =0.16 : Q_Table(13, 13) =0.29 : Q _Table(13, 14) =
0.28 : Q _Table(13, 15)=0.15: Q_Table(13, 16) =0.04 : Q_Table(13,17)=0.14

'Q_Table(14, 0) = 0.06 : Q_Table(14, 1) =0.08 : Q Table(14,2)=0.23 : Q_Table(14, 3) =0.03 : Q_Table(14,4)=0.15:
Q Table(14, 5)=0.15: Q_Table(14, 6) =0.22 : Q Table(14,7) =0.2 : Q_Table(14, 8) =0.03 : Q_Table(14,9)=10.16:
Q Table(14,10)=0:Q Table(14, 11)=0.25: Q_Table(14, 12) =0.23 : Q_Table(14, 13)=0.3 : Q_Table(14, 14) =0.1

: Q_Table(14, 15)=0.18 : Q_Table(14, 16) = 0.01 : Q Table(14, 17) = 0.24

'Q_Table(15, 0)=0.29 : Q_Table(15, 1)=0.13 : Q Table(15,2)=0.1: Q Table(15, 3) =0.27 : Q_Table(15,4)=0.03 :
Q Table(15,5)=0.16 : Q_Table(15, 6) = 0.28 : Q Table(15, 7) =0.01 : Q Table(15, 8) =0.06 : Q Table(15,9)=0.3:
Q Table(15, 10)=0.18 : Q_Table(15, 11)=0.23 : Q Table(15, 12) =0.24 : Q Table(15, 13) =0.23 : Q_Table(15, 14) =
0.26 : Q _Table(15, 15) =0.09 : Q Table(15, 16) =0.13 : Q_Table(15, 17)=0.17

'Q_Table(16, 0) = 0.05 : Q_Table(16, 1)=0.12 : Q_Table(16,2) =0.06 : Q_Table(16,3) =0.21 : Q_Table(16,4)=0.23 :
Q Table(16, 5)=0.18 : Q_Table(16, 6) = 0.2 : Q_Table(16,7) =0.04 : Q_Table(16, 8) =0.13 : Q_Table(16, 9) = 0.09 :
Q _Table(16, 10)=0.3 : Q_Table(16, 11)=0.19 : Q_Table(16, 12) =0.2 : Q_Table(16, 13) =0.02 : Q_Table(16, 14) =
0.19 : Q_Table(16, 15)=0.21 : Q_Table(16, 16) =0.29 : Q_Table(16, 17) =0.27

'Q_Table(17,0)=0.17 : Q_Table(17, 1) =0.25 : Q Table(17,2)=0.1: Q Table(17,3) =0.01 : Q_Table(17,4)=0.26:
Q Table(17,5)=0.08 : Q_Table(17, 6) = 0.08 : Q_Table(17,7) =0.24 : Q Table(17, 8) =0.05: Q_Table(17,9)=0.23 :
Q Table(17,10)=0.07 : Q Table(17, 11)=0.18 : Q_Table(17, 12) =0.03 : Q Table(17, 13) =0.18 : Q Table(17, 14) =
0.24 : Q Table(17, 15)=0.21 : Q_Table(17, 16) =0.01 : Q _Table(17, 17) =0.22

'Q_Table(18, 0) =0.05 : Q Table(18, 1) =0.25: Q Table(18,2)=0.02 : Q_Table(18, 3) = 0.05 : Q Table(18,4)=0.02 :
Q Table(18,5)=0.13: Q_Table(18, 6) =0.19 : Q Table(18, 7) =0.28 : Q Table(18, 8) =0.02 : Q_Table(18, 9) =0.03 :
Q Table(18, 10)=0.09 : Q Table(18, 11)=0.22 : Q Table(18, 12) =0.19 : Q Table(18, 13) = 0.06 : Q Table(18, 14) =
0.07 : Q_Table(18, 15) =0.26 : Q_Table(18, 16) =0.3 : Q_Table(18, 17)=0.11

Q _Table Rewarded = Q_Table
Q Table Final=Q Table

" End If

Form=0To 4
Performance Measure 1(0, m) =0
Next

startTime = Now

TextBox127.Text = MatLib.PrintMat(Q_Table Final) & vbCrLf & vbCrLf
TextBox118.Text = MatLib.PrintMat(Q_Table Final) & vbCrLf & vbCrLf
TextBox126.Text = MatLib.PrintMat(Q_Table Final) & vbCrLf & vbCrLf

Forn=0 To 50
Times_vector(0, n) =0
Cummulative Value vector(0, n) =0
Events_Value vector(0, n) =0

Next

End Sub

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 349

Private Sub Button33 Click 1(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Button33.Click

TextBox81.Text = TextBox140.Text
TextBox156.Text = TextBox139.Text
TextBox157.Text = TextBox138.Text

TextBox153.Text = TextBox136.Text
TextBox154.Text = TextBox137.Text
TextBox155.Text = TextBox90.Text

TextBox124.Text = TextBox134.Text
ProgressBarl.Maximum = Val(TextBox124.Text)
ProgressBar2.Maximum = Val(TextBox124.Text)
Button33.Enabled = False

initQFunction()

learning_trial = 0
Q Lamda_ Algorithm()

learning_trial =0
state Q=0
Q Values After A Reward Was Given _To A Policy()

Write Some Policy To Database()

Number of Policies Performed = Number of Policies Performed + 1
TextBox112.Text = (Number of Policies_Performed).ToString
TextBox133.Text = TextBox112.Text

Dim pRegKey Events As RegistryKey = Registry.CurrentUser
pRegKey Events = pRegKey Events.OpenSubKey("Uri\Digital Scale", True)
pRegKey Events.SetValue("Trial Number", TextBox133.Text)

If (ProgressBarl.Value = Val(TextBox124.Text)) Then
If allow_sound flag =1 Then
rc = PlaySound(System.AppDomain.CurrentDomain.BaseDirectory & "rl_completed.wav", 0, SND NOSTOP)
End If
End If
End Sub

Private Sub Button34 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button34.Click
If ComboBox2.SelectedIndex = 0 Then
Run_Program("GRASPHI1" + ".JBI")
Else
Run_Program("GRASPH2" + ".JBI")
End If
End Sub

Private Sub Button35_ Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button35.Click

ProgressBarl.Maximum = Val(TextBox124.Text)
ProgressBar2.Maximum = Val(TextBox124.Text)

ProgressBarl.Value = 0
ProgressBar2.Value = 0
TextBox124.Text = TextBox134.Text

ListBox3.Items.Clear()
ListBox4.Items.Clear()
ListBox5.Items.Clear()
ListBox6.Items.Clear()

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 350

ListBox10.Items.Clear()
ListBox9.Items.Clear()
ListBox8.Items.Clear()
ListBox7.Items.Clear()

state Q=0
learning_trial =0
Q Lamda_ Algorithm()

If (ProgressBar1.Value = Val(TextBox124.Text)) Then
If allow_sound flag =1 Then
rc = PlaySound(System.AppDomain.CurrentDomain.BaseDirectory & "rl_completed.wav", 0, SND NOSTOP)
End If
End If

state Q=0
learning_trial = 0
Q Values After A Reward Was_Given_To A Policy()

End Sub

Private Sub Action Timer 1 Tick(ByVal sender As System.Object, ByVal ¢ As System.EventArgs) Handles
Action_Timer 1.Tick
Action_Time = Action_Time + Action_Timer 1.Interval
End Sub

Public Sub Q Values After A Reward Was_Given_To A Policy()

Dim maxQ As Double

Dim epsilon As Double

Dim best_action_index As Integer

Dim temp_state As Integer

Dim temp_action As Integer

Dim temp _maxQ V1 As Double

Dim R2 As Double

Dim temp_state Q

Dim string_of results As String
epsilon = Val(TextBox128.Text)

TextBox123.Text = TextBox132.Text

Action_Timer 1.Enabled = True
TextBox124.Text = TextBox134.Text
While (learning_trial <= Val(TextBox124.Text) - 1)

state Q = ListBox3.Items.Item(learning_trial)
ListBox10.Items.Add(state_Q)

For reward counter 1 As Integer =0 To 18
For reward counter 2 As Integer =0 To (35 - 18)
Reward(reward counter 1, reward counter 2) = Val(TextBox123.Text)
Next
Next

action_Q = ListBox4.Items.Item(learning_trial)

ListBox9.Items.Add(action_Q)

" ListBox8.Items.Add(Reward(state_Q, action_Q)) 'Here the actual positive reward is given.
ListBox8.Items.Add(Val(TextBox132.Text))

endTime = Now

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 351

ListBox7.Items.Add(Round(endTime.Subtract(start Time). TotalMilliseconds))

ListBox10.Refresh()
ListBox9.Refresh()
ListBox8.Refresh()
ListBox7.Refresh()

delta_Rewarded(learning_trial, 0) = Reward(state_Q, action Q) + gamma * Q_Table Rewarded(next state Q,
action_Q) - Q Table Rewarded(state Q, action Q)
Eligibility Rewarded(state Q, action_Q) = Eligibility Rewarded(state Q, action Q) + 1

For state i1 As Integer =0 To 18
For action_i As Integer =0 To (35 - 18)
If (state i=state Q) And (action i=action Q) Then
Eligibility Rewarded = MatLib.ScalarMultiply(lambda * gamma, Eligibility Rewarded)
Else
Eligibility Rewarded(state i, action i) =0
End If
Q Table Rewarded(state i, action i) = Q_Table Rewarded(state i, action i) + alpha *
delta Rewarded(learning_trial, 0) * Eligibility Rewarded(state i, action_i)
Next
Next

state_Q =next_state Q
learning_trial = learning_trial + 1
Q Values After A Reward Was Given To A Policy()

End While

TextBox125.Text = MatLib.PrintMat(delta Rewarded) & vbCrLf & vbCrLf
TextBox126.Text = MatLib.PrintMat(Q_Table Rewarded) & vbCrLf & vbCrLf

End Sub

Private Sub Button39 Click(ByVal sender As System.Object, ByVal ¢ As System.EventArgs) Handles Button39.Click
Reset Policy 1()
End Sub

Private Sub Button38 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button38.Click
Reset_Policy 1()

' Update listbox3 and listbox4 according to the best policy stored in the database

ListBox3.Items.Clear()
ListBox4.Items.Clear()

ListBox10.Items.Clear()

ListBox9.Items.Clear()

TextBox124.Text = TextBox134.Text

For i As Integer = 0 To Val(TextBox124.Text) - 1

' ProgressBar2.Value =1+ 1

xConn = New sqlConn

'xConn.connectMe("SELECT State_ Q FROM Best_Policy Where Id="" & i & ")

'xConn.connectMe("INSERT INTO Best Policy(Id, State Q, Action Q, Reward) VALUES(" &1 & "," &

string_listbox3 & "," & string_listbox4 & "," & string_listbox5 & ")")

xConn.connectMe("SELECT State Q FROM Best Policy Where Id=" & 1)

For iCounter = 0 To xConn.getData("State Q").Count - 1
ListBox3.Items.Add(xConn.dataReturned.Item(iCounter))
ListBox10.Items.Add(xConn.dataReturned.Item(iCounter))

Next

xConn.OLEConn.Close()

xConn = New sqlConn

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 352

'xConn.connectMe("SELECT Action_ Q FROM Best Policy Where [d="" & i & ")

xConn.connectMe("SELECT Action Q FROM Best_Policy Where 1d=" & 1)

For iCounter = 0 To xConn.getData("Action_Q").Count - 1
ListBox4.Items.Add(xConn.dataReturned.Item(iCounter))
ListBox9.Items.Add(xConn.dataReturned.Item(iCounter))

Next

xConn.OLEConn.Close()

Next

State Action_Timerl Real Counter 1=0

State Action_Real Timerl.Enabled = True

temp output file name 1= TextBox133.Text & " Trial " & "Intervention"
End Sub

Private Sub Button37_ Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button37.Click
number of policies that were not rewarded = number of policies that were not rewarded + 1
system_performance measure 1 = number_of policies_that were rewarded /

(number_of policies_that were rewarded + number of policies_that were not rewarded)
TextBox131.Text = (Learning_Performance 1 * 20).ToString

output reward 1 = Val(TextBox113.Text) '0 -Val(TextBox123.Text) / 5
Q _Table Final =Q_Table
'Q _Table Rewarded =Q Table

TextBox127.Text = MatLib.PrintMat(Q_ Table Final) & vbCrLf & vbCrLf

If ((number_of policies that were rewarded + number of policies that were not rewarded) >
Val(TextBox158.Text)) And (Val(TextBox131.Text) <= Val(TextBox130.Text)) Then '9

TextBox146.Text = "Semi-Autonomous Mode - Human Suggests a Policy."
TabControll.SelectedTab = TabPage8
Button51.Enabled = True
Button50.Enabled = False
GroupBox19.Enabled = True

Else
TextBox146.Text = "Autonomous Mode - No Human Intervention is Required."
Button51.Enabled = False
Button50.Enabled = True
GroupBox19.Enabled = False

End If

End Sub

Private Sub Button27_ Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button27.Click

number_of policies_that were rewarded = number of policies that were rewarded + 1
system_performance measure 1 =number of policies that were rewarded /

(number_of policies_that were rewarded + number of policies that were not rewarded)
TextBox131.Text = (Learning_Performance 1 * 20).ToString
TextBox123.Text = TextBox132.Text
output reward 1= Val(TextBox123.Text)
Q Table Final =Q Table Rewarded
'"Q Table =Q Table Rewarded

TextBox127.Text = MatLib.PrintMat(Q_Table Final) & vbCrLf & vbCrLf

" Write last best successfuly policy to database
Dim string_listbox3 As String
Dim string_listbox4 As String
Dim string_listbox5 As String
Dim string_i As String
Dim i As Integer

" delete records
xConn.connectMe("Delete * FROM Best_Policy")

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 353

xConn.OLEComm.ExecuteNonQuery()
xConn.OLEConn.Close()
xConn.OLEConn.Dispose()

" write best policy

TextBox124.Text = TextBox134.Text

Fori=0 To Val(TextBox124.Text) - 1
string_listbox3 = ListBox3.Items.Item(i)
string_listbox4 = ListBox4.Items.Item(i)
string_listbox5 = ListBox5.Items.Item(i)
xConn.connectMe("INSERT INTO Best Policy(Id, State Q, Action_Q, Reward) VALUES(" & i & "," &

string_listbox3 & "," & string_listbox4 & "," & string_listbox5 & ")")

xConn.OLEComm.ExecuteNonQuery()
xConn.OLEConn.Close()
xConn.OLEConn.Dispose()

Next

If ((number_of policies_that were rewarded + number of policies that were not rewarded) >
Val(TextBox158.Text)) And (Val(TextBox131.Text) <= Val(TextBox130.Text)) Then '9

" MsgBox("Semi-Autonomous Mode - Human Suggests a Policy!")'
TextBox146.Text = "Semi-Autonomous Mode - Human Suggests a Policy."
TabControl1.SelectedTab = TabPage8
Button51.Enabled = True
Button50.Enabled = False
GroupBox19.Enabled = True

Else
TextBox146.Text = "Autonomous Mode - No Human Intervention is Required."
Button51.Enabled = False
Button50.Enabled = True
GroupBox19.Enabled = False

End If

End Sub

Private Sub Button43 Click(ByVal sender As System.Object, ByVal ¢ As System.EventArgs)
Disconnect Robot()
End Sub

Private Sub Button42 Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Button31_Click(sender,)
End Sub

Private Sub Button44 Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Button38_Click(sender, e)
End Sub

Private Sub Button41 Click(ByVal sender As System.Object, ByVal ¢ As System.EventArgs)
Button34 Click(sender, ¢)
End Sub

Private Sub Button36 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button36.Click
Reset Policy 1()
State Action Timerl Real Counter 1 =0
State Action Real Timerl.Enabled = True
temp_output file name 1= TextBox133.Text & " Trial"
End Sub

Public Sub Write Some Policy To Database()

" Write last best successfuly policy to database
Dim string_listbox3 As String
Dim string_listbox4 As String
Dim string_listbox5 As String
Dim string_i As String

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

354

Dim i As Integer

" delete records

xConn.connectMe("Delete * FROM Best Policy")
xConn.OLEComm.ExecuteNonQuery()
xConn.OLEConn.Close()
xConn.OLEConn.Dispose()

" write best policy

TextBox124.Text = TextBox134.Text

For 1= 0 To Val(TextBox124.Text) - 1
string_listbox3 = ListBox3.Items.Item(i)
string_listbox4 = ListBox4.Items.Item(i)
string_listbox5 = ListBoxS5.Items.Item(i)
xConn.connectMe("INSERT INTO Best Policy(Id, State Q, Action_Q, Reward) VALUES(" &1 & "," &

string_listbox3 & "," & string_listbox4 & "," & string_listbox5 & ")")

xConn.OLEComm.ExecuteNonQuery()
xConn.OLEConn.Close()
xConn.OLEConn.Dispose()

Next

End Sub

Private Sub Button45 Click(ByVal sender As System.Object, ByVal ¢ As System.EventArgs) Handles Button45.Click

' Buttonl Click(sender,)

TextBox1.Text = Ms_BscOpenComm(0)

If TextBox1.Text <> "-1" And TextBox2.Text="1" Then
Label15.Text = "Connected"

Else
Labell5.Text = "Disconnected"

End If

CheckBox1.Checked = False

CheckBox2.Checked = True

End Sub

Private Sub Button40 Click(ByVal sender As System.Object, ByVal ¢ As System.EventArgs) Handles Button40.Click

'‘Button9_Click(sender, ¢)
Disconnect_Robot()
End Sub

Private Sub Button49 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button49.Click

TextBox135.Text = "Initializing!"
If CheckBox13.Checked = True Then

MatLab = CreateObject("Matlab.Application")
End If

Button49.Enabled = False

TextBox134.Enabled = False

Button33 Click 1(sender, e)

Button50_Click(sender,)
End Sub

Private Sub Button48 Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Dim n As Integer

Button48.Enabled = False
Button35_ Click(sender, ¢)

If (number_of policies that were rewarded + number of policies_that were not rewarded) <=
Val(TextBox158.Text)) Then
Button50.Enabled = True
End If

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 355

If (number of policies that were rewarded + number of policies that were not rewarded) >
Val(TextBox158.Text)) And (Val(TextBox131.Text) <= Val(TextBox130.Text)) Then '9
Button51.Enabled = True
Button50.Enabled = False
Else
Button51.Enabled = False
Button50.Enabled = True
End If

Forn=0 To 50
Times_vector(0, n) =0
Cummulative Value vector(0, n) =0
Events Value vector(0,n) =0

Next

End Sub
Private Sub Button46 Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Dim m As Integer

Button48.Enabled = True
Button50.Enabled = True
Button51.Enabled = True
Button53.Enabled = True
Button54.Enabled = True

Performance Measure 1(0, 4) = Performance Measure 1(0, 3)
Performance Measure 1(0, 3) = Performance Measure 1(0, 2)
Performance Measure 1(0, 2) = Performance Measure 1(0, 1)
Performance Measure 1(0, 1) = Performance Measure 1(0, 0)
Performance Measure 1(0,0)=0

Learning_Performance 1 = Performance Measure 1(0, 0) + Performance Measure 1(0, 1) +
Performance Measure 1(0, 2) + Performance Measure 1(0, 3) + Performance Measure 1(0, 4)

Number of Policies Performed = Number of Policies Performed + 1
TextBox112.Text = (Number of Policies Performed).ToString
TextBox133.Text = TextBox112.Text

Dim pRegKey Events As RegistryKey = Registry.CurrentUser
pRegKey Events = pRegKey Events.OpenSubKey("Uri\Digital Scale", True)
pRegKey Events.SetValue("Trial Number", TextBox133.Text)

Button37 Click(sender, ¢)

Button51.Enabled = False

Button50.Enabled = False

Button53.Enabled = False

Button47.Enabled = False
End Sub

Private Sub Button47 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button47.Click
Dim m As Integer

Performance Measure 1(0, 4) = Performance Measure 1(0, 3)

Performance Measure 1(0, 3) = Performance Measure 1(0, 2)

Performance Measure 1(0, 2) = Performance Measure 1(0, 1)

Performance Measure 1(0, 1) = Performance Measure 1(0, 0)

If Val(TextBox132.Text) >= Val(TextBox129.Text) Then
Performance Measure 1(0,0)=1

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

356

Else
Performance Measure 1(0,0)=0
End If

Learning Performance 1 = Performance Measure 1(0, 0) + Performance Measure 1(0, 1) +
Performance Measure 1(0, 2) + Performance Measure 1(0, 3) + Performance Measure 1(0, 4)

Number of Policies Performed = Number of Policies Performed + 1
TextBox112.Text = (Number of Policies Performed).ToString
TextBox133.Text = TextBox112.Text

Dim pRegKey Events As RegistryKey = Registry.CurrentUser
pRegKey Events = pRegKey Events.OpenSubKey("Uri\Digital Scale", True)
pRegKey Events.SetValue("Trial Number", TextBox133.Text)

If Val(TextBox133.Text) > 0 Then
Button27 Click(sender, €)
End If

Button53.Enabled = True
Button48.Enabled = False
Button51.Enabled = False
Button50.Enabled = False
Button47.Enabled = False

End Sub

Private Sub Button51 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button51.Click

Button51.Enabled = False
Button50.Enabled = False
Button38 Click(sender,)
Button53.Enabled = True
Button47.Enabled = True
Button55.Enabled = True
Button47 Click(sender, ¢)
End Sub

Private Sub Button50 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button50.Click

Button51.Enabled = False
Button50.Enabled = False
Button36_Click(sender,)
Button53.Enabled = True
Button47.Enabled = True
Button55.Enabled = True
Button47_Click(sender, e)
End Sub

Private Sub Button53 Click(ByVal sender As System.Object, ByVal ¢ As System.EventArgs) Handles Button53.Click

TextBox144.Text = "Grasping"
Robot_Operating.Enabled = False
TextBox114.Text ="0"
TextBox141.Text=""

If allow_sound flag =1 Then
rc = PlaySound(System.AppDomain.CurrentDomain.BaseDirectory & "grasping_a bag.wav", 0,
SND NOSTOP)
End If

Button31_Click(sender, ¢)
Button54.Enabled = True
End Sub

Private Sub Button54 Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button54.Click

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 357

Button56.Enabled = True
Cummulative Weight Reward =0
Events Weight Reward =0

Events_Value_vector_String =""
counter 1 =0

TextBox150.Text ="0"
Dim pRegKey Events As RegistryKey = Registry.CurrentUser
pRegKey Events = pRegKey Events.OpenSubKey("Uri\Digital Scale", True)
pRegKey Events.SetValue("Cummulative Value", "0")
pRegKey Events.SetValue("Events Value", "0")
pRegKey Events.SetValue("Time Value", "0")
pRegKey Events.SetValue("Stop_Robot Flag", "0")

Robot Operating.Enabled = True
' System.Threading.Thread.Sleep(250)
Button57_Click(sender, e)

If allow_sound flag =1 Then
rc = PlaySound(System.AppDomain.CurrentDomain.BaseDirectory & "shaking a bag.wav", 0, SND NOSTOP)
End If

Button28 Click 2(sender, e)
Button56.Enabled = True

TextBox114.Text ="0"
Time Now 1 = DateTime.Now

Shaking Timer 1.Enabled = True
End Sub

Private Sub Button55 Click 1(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Button55.Click
Run_Program("OPEN.JBI")
End Sub

Private Sub Button56_ Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button56.Click
Button56.Enabled = False

Dim Wj As Double
Wj=0

TextBox132.Text =""
TextBox135.Text =""

Events Weight Reward =0
Robot_Operating.Enabled = False

Dim Result As String

Dim Events_Value vector String_Splitted As Array

Dim Cummulative Value vector String_Splitted As Array
Dim Times Value vector String Splitted As Array

'Scale_Output_3 Screws
'"Times_Value vector String ="0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5"

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

'Cummulative_Value vector String ="0 0 0 88 0 0 0 0 0
0 0 0 0 0 7.4 39.9 80.6 112.1 1046 126.2"

'Events Value vector String ="0 0 0 6 0 0 0 0 0 0
0 0 0 0 7.9 28.3 224 222 22.2 o"

If ComboBox6.SelectedIndex = 0 Then
TextBox132.Text =""

'Calling m-file from VB

' Dim MatLab As Object

' MatLab = CreateObject("Matlab.Application")
Result = MatLab.Execute("cd " + TextBox 148.Text)

"""Tasks to perform:

Result = MatLab.Execute("peakdetect([" + Events_Value vector_String + "])")
Result = Result.Replace(Chr(9), " ") ' Chr(9) = Tab http://www.lookuptables.com/

Result = Result.Replace(" ","")
Result = Result.Replace(" ","")
Result = Result.Replace(" ","")
Result = Result.Replace(" ","™)
Result = Result.Replace(" "," ")
Result = Result.Replace(" "," ")

Result = Mid(Result, 10)
Events Value vector String Splitted = QuoteSplit(Result, " ")

'Here I check if there are no events at the "Events_Value vector String" string
'MsgBox(Mid(Result, 1, 6)) ' The result is "signal"

If Mid(Result, 1, 6) = "signal" Then
Events Weight Reward =0
TextBox132.Text="0"

GoTo no_events

End If

Write2File(Result, TextBox148.Text + "Result.txt")

Cummulative_Value vector String = Cummulative Value vector String.Replace(Chr(9), " ") ' Chr(9) = Tab
http://www.lookuptables.com/

Cummulative Value vector String = Cummulative Value vector String.Replace(" ","")
Cummulative Value vector String = Cummulative Value vector String.Replace(" ","")
Cummulative Value vector String = Cummulative Value vector String.Replace(" ","")
Cummulative Value vector String = Cummulative Value vector String.Replace(" ","")
Cummulative Value vector String = Cummulative Value vector String.Replace(" "," ")
Cummulative Value vector String Splitted = QuoteSplit(Cummulative Value vector String, " ")

' Write2File(Cummulative_Value vector String, TextBox148.Text +
"Cummulative_Value vector String.txt")

Times Value vector String = Times Value vector String.Replace(Chr(9), " ") ' Chr(9) = Tab
http://www.lookuptables.com/
Times_Value vector String = Times Value vector String.Replace(" ",""

nnnn

Times_Value vector String = Times Value vector String.Replace(" ",
Times_Value vector String = Times Value vector String.Replace(" ",""
Times Value vector String = Times Value vector String.Replace(" ","")

Times Value vector String =Times Value vector String.Replace(" "," ")

Times Value vector String Splitted = QuoteSplit(Times Value vector String," ")

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 359

For i As Integer = 0 To (Events Value vector String Splitted.Length - 1)
Ifi> 0 Then
Wj = Cummulative Value vector String Splitted(Events_Value vector String Splitted(i- 1) - 1)

Else
Wj=0

End If

'Events Weight Reward = Events Weight Reward +
Round(((Cummulative Value vector String Splitted(Events Value vector String Splitted(i) - 1) - Wj) /
Val(TextBox147.Text)), 0) / Times_Value vector String_Splitted(Events_Value vector String_Splitted(i) - 1)

Events Weight Reward = Events Weight Reward +
(((Cummulative Value vector String Splitted(Events_Value vector String Splitted(i) - 1) - Wj)/
Val(TextBox147.Text))) / Times Value vector String Splitted(Events Value vector String Splitted(i) - 1)

Next
' MsgBox(Events Weight Reward)

Events Weight Reward = Events Weight Reward * Val(TextBox5.Text) '238.585446

TextBox132.Text = Round(Events Weight Reward, 2).ToString
MsgBox(Events Weight Reward)

If (Val(TextBox132.Text)) <5 And (Val(TextBox132.Text)) > -5) Then
TextBox132.Text =0
Events Weight Reward =0

Else
TextBox132.Text = Round(Events Weight Reward, 2).ToString

End If

End If
no_events:
If ComboBox6.SelectedIndex = 1 Then

'MsgBox(Cummulative Value vector String Splitted.Length)

For i As Integer = 0 To (Cummulative Value vector String_Splitted.Length - 1)
'Cummulative Weight Reward = Cummulative Weight Reward +
Cummulative_Value vector String Splitted(i) / Times_Value vector String Splitted(i)
Next

If ((Cummulative Weight Reward) <5 And (Cummulative Weight Reward) > -5) Then
Cummulative Weight Reward =0

Else
TextBox132.Text = Round(Cummulative Weight Reward, 2)

End If

End If
If TextBox132.Text ="" Then TextBox132.Text =0

TextBox142.Text = TextBox114.Text
Button48.Enabled = True

ListBox5.Items.Clear()

ListBox8.Items.Clear()

For i As Integer = 0 To (Val(TextBox134.Text) - 1)
ListBox5.Items.Add(Val(TextBox132.Text))
ListBox8.Items.Add(Val(TextBox132.Text))

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

360

Next
If Val(TextBox132.Text) > Val(TextBox129.Text) Then
TextBox80.Text = TextBox114.Text

Average Successful Shaking Policies Index = Average Successful Shaking Policies Index + 1

Average Successful Shaking Policies Sum = Average Successful Shaking Policies Sum +
Val(TextBox114.Text) 'Average Successful Shaking Policies(0, 1))

Average Successful Shaking Policies Final = Average Successful Shaking Policies Sum /
Average Successful Shaking Policies Index

TextBox89.Text = Round(Average Successful Shaking Policies Final, 2).ToString

Else
' Average Successful Shaking Policies Final = Average Successful Shaking Policies Final
End If

If Val(TextBox132.Text) > Val(TextBox129.Text) Then
Number of Successful Policies = Number of Successful Policies + 1
TextBox135.Text = "Policy was successful!"

Else
TextBox135.Text = "Policy failed!"

End If

Percent_of Successful Policies = Number of Successful Policies / (Val(TextBox133.Text))
Plot_Graph 2()

If Average Successful Shaking Policies Index > 0 Then
Initial Plot Graph 1()
Plot_Graph_1()

End If

Button48 Click(sender, ¢)
End Sub

Private Sub Shaking Timer 1 Tick(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Shaking Timer 1.Tick

Dim Difference As TimeSpan
Dim counter 1 As Integer
Difference = Today.Now.Subtract(Time Now 1)
TextBox114.Text = Round(Val(Difference.Duration. TotalSeconds), 2).ToString

TextBox151.Text = Difference.ToString

Dim pRegKey Events As RegistryKey = Registry.CurrentUser
pRegKey Events = pRegKey Events.OpenSubKey("Uri\Digital Scale", True)
pRegKey Events.SetValue("Time Value", TextBox114.Text)

Dim pRegKeyl As RegistryKey = Registry.CurrentUser
pRegKeyl = pRegKeyl.OpenSubKey("Uri\Digital Scale", True)
Dim vall As Object = pRegKeyl.GetValue("Stop_ Robot Flag")

Dim Time Value As Object = pRegKeyl.GetValue("Time Value")

Dim Trial Number As Object = pRegKey1.GetValue("Trial Number")

Dim Cummulative_Value As Object = pRegKeyl.GetValue("Cummulative Value")
Dim Events_Value As Object = pRegKeyl.GetValue("Events Value")

If (Val(TextBox114.Text) Mod Val(TextBox149.Text)) = 0) Then
TextBox150.Text = (Val(TextBox150.Text) + 1).ToString

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 361

If Val(TextBox133.Text) > 0 Then
Write2File(TextBox114.Text + ", " + Cummulative_Value + ", " + Events_Value, TextBox148.Text +
(Val(Trial Number)).ToString + " Trial " + "Scale Output.csv")
End If

' Create vectors for rewards

' Times_vector

Times_vector(0, counter 1) = Val(TextBox114.Text)

'Times_Value vector String()

Times Value vector String = Times Value vector String +" " + Times_vector(0, counter 1).ToString

' Cummulative Value vector

Cummulative Value vector(0, counter 1) = Cummulative Value

Cummulative Value vector String = Cummulative Value vector String +" " + Cummulative Value vector(0,
counter 1).ToString

'Events Value vector
Events Value vector(0, counter 1) = Events_Value
Events Value vector String = Events Value vector String +" " + Events Value vector(0, counter 1).ToString

'Cummulative Weight Reward

Cummulative Weight Reward = Cummulative Weight Reward + (Cummulative Value vector(0, counter 1))/
Times_vector(0, counter 1)

counter 1 =counter 1+ 1

Else
' TextBox150.Text="0"
End If

If (Val(vall) = 1) Or ((Difference.Duration.TotalSeconds > 2.0) And (TextBox144.Text = "Idle")) Then
System.Threading. Thread.Sleep(1000)

'pPRegKey Events = pRegKey Events.OpenSubKey("Uri\Digital Scale", True)
'PRegKey Events.SetValue("Activate Scale Flag", "0")

'Run_Program("OPEN.JBI")
Button52 Click(sender,)
If CheckBox14.Checked = True Then
Disconnect_Robot()
End If
End If

End Sub

Public Function isInteger(ByVal v As Object) As Boolean
isInteger = IIf(VarType(v) = vbinteger, True, False)
End Function

Private Sub Button46 Click 1(ByVal sender As System.Object, ByVal e As System.EventArgs)
TextBox141.Text = TextBox141.Text + (TextBox114.Text).ToString & Chr(13) & Chr(10)
End Sub

Private Sub Button52 Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
TextBox141.Text = Chr(10) & TextBox141.Text + (TextBox114.Text).ToString & Chr(13) & Chr(10)
Shaking Time 1=0
Shaking Timer 1.Enabled = False

End Sub

Private Sub Button57 Click(ByVal sender As System.Object, ByVal ¢ As System.EventArgs)
Shaking Timer 1.Enabled = False
TextBox114.Text ="0"
TextBox141.Text =""

Dim pRegKey Events As RegistryKey = Registry.CurrentUser

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 362

pRegKey Events = pRegKey Events.OpenSubKey("Uri\Digital Scale", True)
pRegKey Events.SetValue("Time Value", TextBox114.Text)
End Sub

Private Sub Robot Operating Tick(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
Robot Operating.Tick
If Val(TextBox133.Text) > 0 Then
TextBox143.Text = BsclsPlayMode(nCid)
If TextBox143.Text = "1" Then
TextBox144.Text = "Operating"
Dim pRegKey Events As RegistryKey = Registry.CurrentUser
pRegKey Events = pRegKey Events.OpenSubKey("Uri\Digital Scale", True)
pRegKey Events.SetValue("Activate Scale Flag", "1")
Else
TextBox144.Text = "Idle"
Dim pRegKey Events As RegistryKey = Registry.CurrentUser
pRegKey Events = pRegKey Events.OpenSubKey("Uri\Digital Scale", True)
'System.Threading. Thread.Sleep(500)
pRegKey Events.SetValue("Activate Scale Flag", "0")
End If
End If
End Sub

Private Sub Write2File(ByVal msg As String, ByVal filePath As String)
Dim fs As FileStream = New FileStream(filePath, FileMode.Append, FileAccess. Write)
Dim sw As StreamWriter = New StreamWriter(fs)
sw.WriteLine(msg)
sw.Flush()
sw.Close()
fs.Close()
End Sub

Public Function QuoteSplit(ByVal str As String, Optional ByVal splitChar As Char =","c, Optional ByVal QuoteChar
As Char =""""c) As String()
'Use double-quotes to escape the quote character. Example: Hello ""John"" will produce Hello "John"
Dim quoteOpened As Boolean = False
Dim al As New ArrayList
Dim curStr As New System.Text.StringBuilder
For i As Integer = 0 To str.Length - 1
Dim ¢ As Char = CChar(str.Substring(i, 1))

Dim nextChar As String ="" ' Cannot use Char because it is a value type and cannot contain Nothing or empty
string
If str.Length > (i + 1) Then nextChar = str.Substring(i + 1, 1)
If quoteOpened Then

'Look for ending quote character
If (Not ¢ = QuoteChar) Then
curStr.Append(c)
Elself ¢ = QuoteChar AndAlso Not nextChar ="" AndAlso nextChar = QuoteChar Then
curStr.Append(QuoteChar)
i+=1
Elself ¢ = QuoteChar Then
quoteOpened = False 'Clear
End If
Else 'If Not quoteOpened
If ¢ = splitChar Then
al.Add(curStr.ToString) 'Add to arraylist
curStr.Length = 0 'Clear current string
Elself ¢ = QuoteChar Then
quoteOpened = True
curStr.Length = 0 'Clear the current string, so if we have something like: , "Hello World" the result is "Hello
World" instead of " Hello World"
Else
curStr.Append(c)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 363

End If
End If
Next
al.Add(curStr.ToString) 'Add to arraylist
curStr.Length = 0 'Clear current string

Return CType(al. ToArray(GetType(String)), String())
End Function

Private Sub Button58 Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Dim arrayl As Array
Dim stringl As String

stringl ="10 12 14 145656 4 6 5 2"

"nonn

stringl = string1.Replace(" ,
stringl = stringl.Replace(" ",""
stringl = stringl.Replace(" ",""
stringl = stringl.Replace(" ",""

string] = stringl.Replace(" "," ")
MsgBox(string1)
arrayl = QuoteSplit(stringl, " ")

MsgBox(array1(0))
MsgBox(array1(1))
MsgBox(array1(2))
MsgBox(arrayl(3))
MsgBox(arrayl(4))
MsgBox(array1(5))
MsgBox(array1(6))
MsgBox(array1(7))

End Sub

Private Sub ComboBox7 OnChange(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
ComboBox7.SelectedIndexChanged
If ComboBox7.SelectedItem = "Optimal Policyl" Then
Chosen_Best Policy = "Best Policy 1"
End If

If ComboBox7.SelectedItem = "Optimal Policy2" Then
Chosen_Best Policy = "Best Policy 2"
End If

If ComboBox7.SelectedItem = "Optimal Policy3" Then
Chosen_Best Policy = "Best Policy 3"
End If

If ComboBox7.SelectedItem = "Policy After System Crash" Then
Chosen_Best Policy = "Policy After System Crash"
Button49.Enabled = False
MatLab = CreateObject("Matlab.Application")

End If

End Sub

Private Sub Button59 Click(ByVal sender As System.Object, ByVal ¢ As System.EventArgs) Handles Button59.Click
Length of Best Policy =0
State Action Timerl Best Counter 1 =0
ListBox3.Items.Clear()
ListBox4.Items.Clear()

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 364

xConn = New sqlConn
xConn.connectMe("SELECT * FROM " & Chosen_Best Policy)

For iCounter = 1 To xConn.getData("State Q").Count - 1
ListBox1.Items.Add(xConn.dataReturned.Item(iCounter))
Next

Length of Best Policy = ListBox1.Items.Count

ListBox1.Items.Clear()
xConn.OLEConn.Close()

For i As Integer = 0 To Length of Best Policy - 1
xConn = New sqlConn
xConn.connectMe("SELECT State Q FROM " & Chosen_Best Policy & " Where Id=" & 1)

For iCounter = 0 To xConn.getData("State_Q").Count - 1
ListBox3.Items.Add(xConn.dataReturned.Item(iCounter))

Next

xConn.OLEConn.Close()

xConn = New sqlConn

xConn.connectMe("SELECT Action Q FROM Best Policy 1 Where Id=" & 1)

For iCounter = 0 To xConn.getData("Action_Q").Count - 1
ListBox4.Items.Add(xConn.dataReturned.Item(iCounter))

Next

xConn.OLEConn.Close()
Next
Reset Policy 1()
State Action Best Timerl.Enabled = True

End Sub

Private Sub State Action Best Timerl Tick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles State_Action_Best Timerl.Tick

ListBox1.SetSelected(0, True)
ListBox1_DoubleClick(sender, e)

ListBox2.SetSelected(ListBox4.Items.Item(State_ Action Timerl Best Counter 1), True)
ListBox2 DoubleClick(sender, ¢)

State Action Timerl Best Counter 1 = State Action Timerl Best Counter 1+ 1
If State Action_Timerl Best Counter 1 >=Length of Best Policy Then 'Val(TextBox134.Text)
State Action Best Timerl.Enabled = False
End If
End Sub
Private Sub CheckBox9 CheckedChanged(ByVal sender As System.Object, ByVal ¢ As System.EventArgs) Handles
CheckBox9.CheckedChanged
If CheckBox9.Checked = True Then
allow sound flag=1

Else
allow_sound flag =0

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 365

End If
End Sub

Private Sub ComboBox9 OnChange(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
ComboBox9.SelectedIndexChanged
If ComboBox9.SelectedIndex = 0 Then Relative Axis_Speed X = Relative Axis_Speed X + 500
If ComboBox9.SelectedIndex = 1 Then Relative Axis_Speed X = Relative Axis_Speed X + 100
If ComboBox9.SelectedIndex = 2 Then Relative Axis_Speed X = Relative Axis_Speed X
If ComboBox9.SelectedIndex = 3 Then Relative Axis_Speed X = Relative Axis_Speed X - 100
If ComboBox9.SelectedIndex = 4 Then Relative_ Axis_Speed X = Relative Axis_Speed X - 500

If Relative_ Axis Speed X >= 1500 Then Relative Axis Speed X = 1500
If Relative_ Axis_Speed X <= 100 Then Relative Axis Speed X =100

TextBox136.Text = Relative Axis_Speed X.ToString
TextBox153.Text = TextBox136.Text
End Sub

Private Sub ComboBox8 OnChange(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
ComboBox8.SelectedIndexChanged
If ComboBox8.SelectedIndex = 0 Then Relative_ Axis_Speed Y = Relative Axis_Speed Y + 500
If ComboBox8.SelectedIndex = 1 Then Relative_ Axis_Speed Y = Relative Axis_Speed Y + 100
If ComboBox8.SelectedIndex = 2 Then Relative Axis Speed Y = Relative Axis Speed Y
If ComboBox8.SelectedIndex = 3 Then Relative Axis_Speed Y = Relative Axis_Speed Y - 100
If ComboBox8.SelectedIndex = 4 Then Relative Axis_Speed Y = Relative Axis_Speed Y - 500

If Relative_ Axis Speed Y >= 1500 Then Relative Axis Speed Y = 1500
If Relative_ Axis Speed Y <= 100 Then Relative Axis Speed Y =100

TextBox137.Text = Relative_Axis_Speed Y.ToString
TextBox154.Text = TextBox137.Text
End Sub

Private Sub ComboBox10 OnChange(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
ComboBox10.SelectedIndexChanged
If ComboBox10.SelectedIndex = 0 Then Relative Axis Speed Z = Relative Axis Speed Z + 500
If ComboBox10.SelectedIndex = 1 Then Relative Axis_Speed Z = Relative Axis Speed Z + 100
If ComboBox10.SelectedIndex = 2 Then Relative Axis_Speed Z = Relative Axis Speed Z
If ComboBox10.SelectedIndex = 3 Then Relative Axis Speed Z = Relative Axis Speed Z - 100
If ComboBox10.SelectedIndex = 4 Then Relative Axis Speed Z = Relative Axis Speed Z - 500

If Relative_Axis_Speed Z >= 1500 Then Relative Axis_Speed Z = 1500
If Relative_ Axis_Speed Z <= 100 Then Relative Axis Speed Z = 100

TextBox90.Text = Relative Axis_Speed Z.ToString
TextBox155.Text = TextBox90.Text
End Sub

Private Sub ComboBox11 OnChange(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
ComboBox11.SelectedIndexChanged
If ComboBox11.SelectedIndex = 0 Then Relative Axis Amplitude X = Relative Axis Amplitude X + 15
If ComboBox11.SelectedIndex = 1 Then Relative Axis Amplitude X = Relative Axis Amplitude X + 5
If ComboBox11.SelectedIndex = 2 Then Relative_Axis_Amplitude X = Relative_Axis_Amplitude X
If ComboBox11.SelectedIndex = 3 Then Relative Axis Amplitude X = Relative Axis Amplitude X -5
If ComboBox11.SelectedIndex = 4 Then Relative Axis Amplitude X = Relative Axis Amplitude X - 15

If Relative_ Axis Amplitude X >= 50 Then Relative Axis_ Amplitude X =50
If Relative_ Axis Amplitude X <= 10 Then Relative Axis_ Amplitude X =10

TextBox140.Text = Relative Axis_Amplitude X.ToString

TextBox81.Text = TextBox140.Text
TextBox159.Text ="-" + TextBox140.Text

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 366

End Sub

Private Sub ComboBox13 OnChange(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
ComboBox13.SelectedIndexChanged
If ComboBox13.SelectedIndex = 0 Then Relative Axis Amplitude Y = Relative Axis Amplitude Y + 15
If ComboBox13.SelectedIndex = 1 Then Relative Axis Amplitude Y = Relative Axis Amplitude Y + 5
If ComboBox13.SelectedIndex = 2 Then Relative_Axis_Amplitude Y = Relative_Axis_Amplitude Y
If ComboBox13.SelectedIndex = 3 Then Relative Axis Amplitude Y = Relative Axis Amplitude Y -5
If ComboBox13.SelectedIndex = 4 Then Relative Axis Amplitude Y = Relative Axis Amplitude Y - 15

If Relative_ Axis Amplitude Y >= 50 Then Relative Axis_ Amplitude Y =50
If Relative_ Axis Amplitude Y <= 10 Then Relative Axis_ Amplitude Y =10

TextBox139.Text = Relative Axis_ Amplitude Y.ToString

TextBox156.Text = TextBox139.Text
TextBox160.Text ="-" + TextBox139.Text

End Sub

Private Sub ComboBox12 OnChange(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
ComboBox12.SelectedIndexChanged
If ComboBox12.SelectedIndex = 0 Then Relative_ Axis Amplitude Z = Relative Axis Amplitude Z + 15
If ComboBox12.SelectedIndex = 1 Then Relative Axis Amplitude Z = Relative Axis Amplitude Z +5
If ComboBox12.SelectedIndex = 2 Then Relative Axis Amplitude Z = Relative Axis Amplitude Z
If ComboBox12.SelectedIndex = 3 Then Relative Axis Amplitude Z = Relative Axis Amplitude Z -5
If ComboBox12.SelectedIndex = 4 Then Relative Axis Amplitude Z = Relative Axis Amplitude Z - 15

If Relative_Axis_Amplitude Z >= 50 Then Relative Axis_Amplitude Z =50
If Relative_Axis_Amplitude Z <= 10 Then Relative Axis_Amplitude Z =10

TextBox138.Text = Relative_Axis_Amplitude Z.ToString

TextBox157.Text = TextBox138.Text
TextBox161.Text ="-" + TextBox138.Text

End Sub

Private Sub CheckBox11 CheckedChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
CheckBox11.CheckedChanged
If CheckBox11.Checked = True Then
TextBox81.Text ="0"
TextBox159.Text = "0"
ComboBox11.Enabled = False
TextBox140.Enabled = False
ComboBox9.Enabled = False
TextBox136.Enabled = False
Axis_Allowed Counter = Axis_Allowed Counter + 1
Else
TextBox81.Text = TextBox140.Text
TextBox159.Text ="-" + TextBox140.Text
ComboBox11.Enabled = True
TextBox140.Enabled = True
ComboBox9.Enabled = True
TextBox136.Enabled = True
Axis_Allowed Counter = Axis Allowed Counter - 1
End If

If Axis Allowed Counter > 2 Then CheckBox11.Checked = False

End Sub

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 367

Private Sub CheckBox7 CheckedChanged(ByVal sender As System.Object, ByVal ¢ As System.EventArgs) Handles
CheckBox7.CheckedChanged
If CheckBox7.Checked = True Then
TextBox156.Text="0"
TextBox160.Text="0"
ComboBox13.Enabled = False
TextBox139.Enabled = False
ComboBox8.Enabled = False
TextBox137.Enabled = False
Axis_Allowed Counter = Axis_Allowed Counter + 1
Else
TextBox156.Text = TextBox139.Text
TextBox160.Text = "-" + TextBox139.Text
ComboBox13.Enabled = True
TextBox137.Enabled = True
ComboBox8.Enabled = True
TextBox137.Enabled = True
Axis_Allowed Counter = Axis_Allowed Counter - 1
End If

If Axis_Allowed Counter > 2 Then CheckBox7.Checked = False
End Sub

Private Sub CheckBox10 CheckedChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
CheckBox10.CheckedChanged
If CheckBox10.Checked = True Then
TextBox157.Text="0"
TextBox161.Text ="0"
ComboBox12.Enabled = False
TextBox138.Enabled = False
ComboBox10.Enabled = False
TextBox90.Enabled = False
Axis_Allowed Counter = Axis_Allowed Counter + 1
Else
TextBox157.Text = TextBox138.Text
TextBox161.Text ="-" + TextBox138.Text
ComboBox12.Enabled = True
TextBox138.Enabled = True
ComboBox10.Enabled = True
TextBox90.Enabled = True
Axis_Allowed Counter = Axis_Allowed Counter - 1
End If

If Axis_Allowed Counter > 2 Then CheckBox10.Checked = False
End Sub
Function Plot Graph 2()
Dim oSeries As MSChart20Lib.Series

With AxXMSChart3
.ColumnLabel = "C2"
.Column =2
.RowCount = 50

If .Row <=49 Then
.Repaint = True
.Data = Percent_of Successful Policies * 100
If .Data = 0 Then .Data =3
With .Plot.SeriesCollection(2).DataPoints(-1)
.Brush.FillColor.Set(0, 0, 255)

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code 368

End With
.Row = .Row + 1

Else
.Repaint = True
.Data = Percent_of Successful Policies * 100
If .Data = 0 Then .Data =3
With .Plot.SeriesCollection(2).DataPoints(-1)
.Brush.FillColor.Set(0, 0, 255)
End With

GoTo exitl
End If

exitl:
TextBox145.Text = (Round(Percent_of Successful Policies * 100, 2)).ToString

End With
End Function

Function Initial Plot Graph 2()
With AxMSChart3
Dim oSeries As MSChart20Lib.Series
.RowCount = 50

.chartType = AxMSChart3.chartType.VtChChartType2dStep
.ColumnCount = 2

.ColumnLabel ="C1"

.Column =1

With .Plot.SeriesCollection(1).DataPoints(-1)
.Brush.FillColor.Set(0, 0, 0)
End With

For i As Integer = 1 To 50
Row =1
.Data=0

Next

For Each oSeries In AxMSChart3.Plot.SeriesCollection
oSeries.Pen.Width =0
Next oSeries

.Row =1
.Repaint = True
End With

End Function

Function Initial Plot Graph 1()

With AxMSChartl

Dim oSeries As MSChart20Lib.Series
.RowCount = 50
.chartType = AxMSChartl.chartType.VtChChartType2dArea
.ColumnCount =2
.ColumnLabel ="C1"
.Column =1

With .Plot.SeriesCollection(1).DataPoints(-1)
.Brush.FillColor.Set(0, 0, 0)
End With

Appendix XI. Bag Shaking Experiment with a Fixed-Arm Robot - Source Code

369

For Each oSeries In AxMSChart1.Plot.SeriesCollection
oSeries.Pen.Width = 0 '50
Next