
CLASSIFICATION USING NORMALIZED

COMPRESSION DISTANCE

Uri Shaham

M.Sc. thesis

Department of Industrial Engineering and Management

Ben-Gurion University of the Negev

Beer-Sheva, ISRAEL

Advisors:

Prof. Yael Edan

Dr. Joel Ratsaby

20/2/2009

Abstract

Classi�cation algorithms that use the NCD (Normalized Compression Distance) as a similarity

metric are proposed. This way of measuring similarity allows either skipping the feature

selection and feature extraction phases or creating feature vectors without focusing on speci�c

attributes of the data. Such an approach might be more objective than common feature

extraction methods, is suitable to a wide range of classi�cation problems and data types, and

might be less biased than methods that are based on explicit extraction of features.

The thesis includes classi�cation experiments of images of several types, embedding dif-

ferent challenges to the classi�er, OCR (Optical Character Recognition), voice samples and

time series of ECG signals. Two di¤erent NCD-based classi�cation methods- support vector

machines and k nearest neighbor were employed. In several cases, the performance of the

NCD-based algorithms was compared to the performance of popular state-of-the-art classi�-

cation techniques. Results are comparative to those achieved by more complicated, domain-

specialized learning algorithms that are based on an integration between data processing,

feature extraction and classi�cation. A special emphasis was given to domains on which it is

hard to extract explicit features that can be related to the labeling of the instances, such as

in the tasks of emotion recognition through voice samples and pain detection through ECG

signals. On such domains, the NCD-based algorithms, that de�ne and extract features im-

plicitly, have a great potential to succeed where other common feature extraction methods

and classi�cation algorithms fail.

Contents

1 Introduction 6
1.1 Classi�cation and feature free algorithms . 6

1.2 Objectives . 7

1.3 Thesis structure . 8

2 Literature overview 9
2.1 Classical information theory: entropy and coding 9

2.2 Kolmogorov complexity . 10

2.3 Normalized Information Distance (NID)[30] 14

2.4 Normalized Compression Distance (NCD) . 16

2.5 Data compressors used in this work . 18

2.6 Previous works in Kolmogorov complexity-based learning 19

2.7 Classi�ers . 20

2.8 The anchor method . 26

2.9 Input dimensionality reduction . 28

3 Methodology 31
3.1 Databases and main phases . 31

3.2 Preliminary manipulation of the data . 32

3.3 Compressor selection . 33

3.4 Kernel function selection . 34

3.5 Weighted k Nearest Neighbor algorithm (kNN) 35

3.6 Anchor selection . 35

3.7 Cross validation . 37

3.8 Experiments structure and statistics . 37

4 Analysis 40
4.1 Image classi�cation . 40

4.2 Voices classi�cation . 48

4.3 Pain detection through ECG signals . 58

5 Summary 61
5.1 Discussion . 61

5.2 Conclusions and further research . 63

6 Papers by U. Shaham 70

1

7 Appendices 71
7.1 Universality of the NID [30] . 71

7.2 Detailed results . 72

7.3 Software, raw data and code written in this work 78

List of Tables

1 Information theory vs. Kolmogorov complexity theory 14

2 Average performance on the ORL dataset and e¤ect of di¤erent training set sizes 40

3 Performance on ORL dataset . 41

4 Performance on Yale dataset. 42

5 Performance on coil100 dataset . 43

6 [9]�s results on coil100 dataset . 44

7 Texture classi�cation performance . 45

8 Olives quality identi�cation performance . 47

9 Olives type identi�cation performance . 48

10 Speaker identi�cation performance . 49

11 Emotion recognition performance . 50

12 Cumulative variance explaind by principal components 52

13 SVM emotion recognition results after applying dimensionality reduction tech-

niques . 54

14 Confusion matrix of a typical run using PCA 55

15 Emotion recognition generalization performance 56

16 Emotion recognition performance on 10 speakers and several emotions 57

17 Pain detection data and performance . 60

18 E¤ect of number of colors and image size . 72

19 E¤ect di¤erent values of k and training set percentage 73

20 Performance of the modi�ed kNN on the ORL dataset 73

21 Performance of the kNN algorithm on the Yale dataset 73

22 Performance of the kNN algorithm on the coil100 dataset 74

23 Performance of the kNN and SVM-anc on the texture dataset 74

24 Performance on the USPS dataset dataset . 74

25 Performance of the kNN and SVM-anc classi�ers on the olives dataset 75

26 The kNN�s performance in the olives type identi�cation experiment 75

27 Speaker identi�cation experiments . 76

28 Emotion recognition results with 53 anchors 76

2

29 Emotion recognition results using dimensionality reduction 76

30 Detailes and performance of the 10 speakers emotion recognition experiment . 77

31 Chi square test for independency . 78

32 Con�dence intervals for probabilities di¤erences 78

33 Pain detection performance . 78

List of Figures

1 Linear separation by transformation to higher dimensional space 23

2 Example of the anchor method . 27

3 PCA versus FDA . 30

4 Example to separation by RBF kernel function 34

5 Example of the k Nearest Neighbor algorithm 36

6 Contour map of a cross validation process . 38

7 AT&T ORL faces dataset . 41

8 The division modi�cation of the kNN . 41

9 Yale faces dataset . 42

10 Coil100 home objects dataset . 43

11 Ponce texture dataset . 44

12 USPS handwritten digits dataset . 45

13 The olives image dataset . 47

14 PCA scree plot . 51

15 Cumulative variance explained by the principal components 52

16 Class distributions under the LDA discriminant function 53

17 LDA and FDA of the voice samples . 53

18 Vizualization of feature distribution . 54

19 The VAS pain ruller . 58

20 ECG signal and its �ducial features . 59

3

Acknowledgement

The experiments with voice samples were performed in collaboration with Dr. Tal Sobol-

Shikler and Ms. Einat Sukenik, Department of Industrial Engineering and Management, Ben

Gurion University of the Negev. In particular, the emotion recognition experiments were

inspired by Tal�s work [42]. The ECG experiments were done in collaboration with Dr. Shai

Tejman-Yarden (Soroka hospital), Mr. Alex Beyzarov from the Department of Biomedical

Engineering and Mr. Eran Tomer from the Department of Computer Science, both at Ben

Gurion University. The ECG recordings were taken in Soroka hospital�s pain clinic. The olives

classi�cation experiments were done in collaboration with Dr. Shahar Laykin, Ben Gurion

University, based on data from Shahar�s work [26].

I would like to thank my advisors, Dr. Joel Ratsaby, for exposing me to the fascinating

worlds of machine learning and Kolmogorov complexity and Prof. Yael Edan, for her kind

and professional assistance and supervision. I am most pleased to thank more people who

contributed to this work: Dr. Rudi Cilibrasi, University of Amsterdam, Holland, for his kind

assistance in NCD-related issues, Prof. Eamonn Keogh, University of California, Riverside,

for his assistance with compression based classi�cation issues, Dr. Uri Kartoun, Ben Gurion

University, for his help in designing the kNN division modi�cation, Dr. Ofer Levi, Dr. Boaz

Lerner, Dr. Liron Yedidsion, Dr. Dvir Shabtay, Mr. Amit Assa, Mr. Nir Naor and Mr. Amit

Gil from the Department of Industrial Engineering and Management, and Mr. Dudi Cohen

and Mr. Oded Judelman from the Department of Computer Science, all from Ben Gurion

University.

4

Notations

1. f0; 1g� refers to the set of all �nite binary strings.

2. " refers to the empty binary string.

3. d�e refers to the ceiling operation that returns the smallest integer that is equal to or
greater than its argument.

4. For x; y 2 Rn, hx; yi refers to the inner (dot) product
Pn

i=1 xi � yi

5. Consider a sample of n observations, each of k measurements. The term instance refers

to an observation. The term feature refers to a measurement. A dataset in a classic

form is a n � k matrix in which each row refers to an instance and each column to a
feature. Each instance might get a label (target value), which is a discrete numerical

value from a �nite set L. In a given dataset, the set of all instances with same label is

called a class.

5

1 Introduction

This thesis focuses on incorporation of a relatively new similarity measure, the Normalized

Compression Distance (NCD) de�ned by Cilibrasi et al. [12] in the classical task of classi�-

cation. NCD-based learning algorithms are robust to very large scale of data types, and are

feature-free (i.e., no prior knowledge of the input is required). To be more precise, NCD-

based learning algorithms are based on similarity between objects, as many other learning

algorithms. However, the similarities considered by the NCD are far from being trivial, where

trivial similarities usually implies similar values of certain pre-de�ned features. Rather, the

similarities considered by the NCD are those found by data compressors, using the fact that

combining two �les to a single conglomerate archive �le prior to compression often achieves

better compression than the compression of the two �les separately [10]. One very impor-

tant application area of NCD-based classi�cation algorithms is where the de�nitions and roles

of the features determining the target values of the instances are vague. This issue will be

demonstrated in depth as a part of this thesis.

This thesis provides a thorough investigation of applying NCD-based classi�cation algo-

rithms to 7 di¤erent datasets and multiple types of data and classi�cation tasks: face recog-

nition, texture and fruit classi�cation, optical character recognition, speaker identi�cation,

capturing emotion and pain detection. As far as the author knows, there is no such extensive

NCD-based classi�cation experimentation previously documented. This thesis aims to show

the robustness of the NCD-based algorithms to many types of data inputs and its success in

areas where it is hard to de�ne potential relevant features of the data that e¤ect the target

values, such as in capturing emotion and pain detection. The experiments in this thesis are

inspired by the interesting experimentations of [12], [24] and [16].

1.1 Classi�cation and feature free algorithms

The �eld of pattern recognition consists of three main consecutive processes: data processing,

in which manipulations are performed on the raw data in order to identify and remove unnec-

essary information and emphasize important details, dimensionality reduction, in which the

data is converted to a more convenient representation, and learning, where new knowledge

of the data is obtained. Classi�cation is one of the typical learning tasks. Other such tasks

include clustering, anomaly detection and more. Classi�cation is the task of assigning labels

to unknown test objects given a set of labeled training objects from a human expert. The goal

is to try to learn the underlying patterns that the human expert is displaying in the choice

of labeling shown in the training objects, and then to apply this understanding to the task

of making predictions for unknown objects that are in some sense consistent with the given

6

examples. Usually the problem is reduced to a combination of binary classi�cation problems,

where all target labels along a given dimension are either 0 or 1 [19], [7], [34], [22], [33], [2].

Most machine learning algorithms, and classi�cation algorithms in particular, require input

of feature vectors representing the instances to be studied. The basic features are usually

�rst de�ned by a human expert. On that basis, more complex features can be later on

created by feature extraction and selection techniques. The very �rst de�nition of the features

usually requires prior knowledge about the domain from which the instances come from [34].

There are some major problems embedded in de�ning, selecting and extracting input features

[24]. Ignoring important features may cause an algorithm to fail in �nding the true patterns.

Another problem is that the algorithm may report spurious patterns that do not really exist,

or greatly overestimate the signi�cance of the reported patterns. This is sometimes likely when

the user fails to understand the role of de�ning features and of tuning parameters. A feature

free algorithm would limit the ability to impose prejudices, expectations, and presumptions

on the problem at hand, and would let the data itself speak to us. This is exactly the

sense in which NCD-based algorithms are feature free: NCD-based algorithms require no

prior knowledge of the instances or the domain they come from and do not analyze the data

looking for particular features. More precisely, feature extraction does take place in NCD-

based algorithms, however not by analyzing the data looking for particular features, but by

data compressors. In addition, the NCD of each pair of instances might be determined by a

di¤erent dominating feature in which they are most similar, as will be discussed further on.

1.2 Objectives

This research aims to demonstrate the robustness of NCD-based methods, as well as their

capability to be applied to a large scale of classi�cation problems, by performing NCD-based

classi�cation experiments of various types of data. In several cases the performance of NCD-

based methods will be compared to other state-of-the-art domain specialized classi�cation

methods. In addition, a sensitivity analysis of the performance will be presented, in which the

e¤ects of changes in several experimental parameters will be demonstrated, and integration

with several classi�ers and dimensionality reduction methods will be conducted. An important

goal of this work is to demonstrate the potential in applying NCD-based classi�cation methods

to domains where it is hard to identify and extract speci�c features of the instances that might

determine their labeling. On one such domain, recognition of speaker�s emotion through voice

samples, a thorough analysis of the performance of the NCD-based algorithm will be provided.

7

1.3 Thesis structure

Chapter 2 contains the technical details and terminology needed for the classi�cation meth-

ods, in particular the basic notions from the theory of Kolmogorov complexity, the Normalized

Information Distance (NID) and the normalized compression distance, Support Vector Ma-

chines (SVM), and other works regarding compression-based learning. Chapter 3 describes

the research phases and methods. Experimental results are summarized in Chapter 4. The

thesis concludes with a discussion and recommendations for future research.

8

2 Literature overview

2.1 Classical information theory: entropy and coding

This subsection is based on [41], [4].

2.1.1 Pre�x codes

De�nition 1 A code is de�ned by a decoding function D which is a mapping from a set

Y � f0; 1g� to some arbitrary set X. The elements of Y are called code words. The elements
of X are called source words. if D�1 exists, it is called the encoding function.

De�nition 2 A binary string y is a proper pre�x of a binary string x if we can write x = yz
for z 6= ". A set fx; y; :::g � f0; 1g� is pre�x-free if no element is a proper pre�x of any other.

De�nition 3 A pre�x code is a code where the set of code words is pre�x free.

Example 1 A set X � f0; 1g� can be encoded to a pre�x free set by encoding the string x of
length n by x = 1n0x. This requires 2n + 1 bits to encode x. To get a more economic pre�x

encoding, one can encode x by �rst dlog ne ones, then a 0, then the binary number n (which
will require dlog ne bits), then x literally. This will require only n + 2 dlog ne + 1. One can
repeat this to get n+ dlog ne+ 2 dlog log ne+ 1, or as many logarithms as necessary.

There is a precise constraint on the number of code words of given length in pre�x codes.

It is called the Kraft Inequality and is due to L.G Kraft [25]:

Lemma 1 Let l1; l2; ::: be a �nite or in�nite sequence of natural numbers. There is a pre�x
code with this sequence as lengths of its binary code words i¤X

n

2�ln � 1

2.1.2 Entropy and coding

A basic assumption of classical information theory is that each message belongs to a set of

messages that is known both to the sender and receiver [41]. According to classical information

theory, information is de�ned as the ability to choose a certain message from the set of possible

messages. Intuitively, the information in an object is to what extent it �surprises you�: the

more probable messages the set contains, the more information it holds. The term entropy

(in its information context), invented by Claude Shannon in his famous paper [41], refers to

the amount of information in a given random variable:

9

De�nition 4 Let X be a discrete random variable over fx1; :::; xng that gets the value xi with
probability pi. The entropy of X is:

H(X) = �
nX
i=1

pi log2(pi) (1)

It can be seen that the entropy of a random variable is maximal when all its possible values

are equiprobable. The entropy of a discrete random variable X equals to the minimal number

of bits required for e¢ cient description of each possible value of X.

Redundancy of a discrete random variable is de�ned as:

R(X) = �
nX
i=1

1

n
log(

1

n
)� (�

nX
i=1

pi log pi)

That is, redundancy is the di¤erence between current state and maximal entropy state. If the

probabilities are not equal then there exist more probable messages, for whom we can supply

shorter descriptions.

Example 2 Let us consider a 4-letter alphabet with equal probabilities. The entropy will

therefore be: H = �4(0:25 log 0:25) = 2. It means that we�ll need at least 2 bits for describing
each symbol (it will be possible with the set of codewords f00; 01; 10; 11g for instance). The
redundancy will be 0 and no compression can be made. Now let us assume that the occurrence

probabilities are not equal, but 0:49; 0:25; 0:25; 0:01. We will get H = 1:57. If we use the above

coding we�ll get redundancy of R = 2� 1:57 = 0:43, hence we�ll look for a code with di¤erent
codeword lengths. The code 1,01,000,001, for instance, has an average codeword length of 1:77

(while taking into account the probabilities) hence is more economic than the previous one for

the given probabilities. Note that the above code is a pre�x code. The Shannon-Fano code is

a pre�x code for a given set of occurrence probabilities [4]. It encodes a source word x by a

code word of length
l
log 1

p(x)

m
therefore for an information source X, the expected transmitted

codeword length is
P

x p(x) log
1
p(x)

= H(X). It is optimal, (that is, has minimal average

codeword length) by Shannon�s noiseless coding theorem [41].

2.2 Kolmogorov complexity

Many binary strings have shorter descriptions than their trivial ones. For example, one can

describe the binary string 11...1 (10,000 1�s) by the computer program de�ned in Algorithm

1:

10

Algorithm 1
step 1: for i:=1 to 10; 000

step 1:1: print 1

The size of the binary encoding of this program is dlog 10; 000e + O(1) bits (the log term
is needed for the binary representation of 10,000). Similarly, there are very short computer

programs for the computation of the �rst n digits of in�nitely long sequences like � or e. The

theory of Kolmogorov complexity uses this fact to quantify the amount of information in a

binary string. The following section brings the important notions and most relevant material

from the theory of Kolmogorov complexity. Subsection 2.2.1 is based on [3]. Subsections 2.2.2,

2.2.3 are based on the very detailed description in [29].

2.2.1 Turing machines

A Turing machine is an abstract mathematical model of a computer, that was invented by

Alan Turing in 1936. Turing machines are the common model used in computer science for

analyzing time and space complexities of algorithms. It receives as its input a string of symbols,

which may be thought of as a "program", and it outputs the result of running that program,

which amounts to transforming the input using the given set of rules. A deterministic Turing

machine consists of:

� A tape, which is divided into cells, one next to the other. Each cell contains a symbol
from some �nite alphabet. The alphabet contains a special blank symbol and one or

more other symbols. The tape has a left end, marked with a special symbol and is

assumed to be arbitrarily extendable to the right, i.e., the Turing machine is always

supplied with as much tape as it needs for its computation. Cells that have not been

written to before are assumed to be �lled with the blank symbol. Initially, the cells are

all �lled with blanks, except for a binary string (the "program") written on the left end

side of the tape.

� A reading/writing head that can read and write symbols on the tape and can move a
single step to the left or right at a single time step.

� A rule table (transition function) of instructions (each rule is a 5-tuple) that, given

the state the machine is currently in and the symbol it is reading on the tape tells the

machine to do the following in sequence: (i) either erase or write a symbol, and then

(ii) move the head one step in one of the possible two directions, and then (iii) assume

the same or a new state as prescribed. This function de�nes the behavior of the Turing

machine at each step, allowing it to perform simple actions and run a program on a tape

just like a real computer but in a very mathematically simple way.

11

� A �nite state register that stores the state of the Turing table. The number of di¤erent
states is always �nite and there is one special start state with which the state register is

initialized. There are two terminating states (with which the machine halts): accepting

state and rejecting state.

Some problems require a slight enhancement of the Turing machine structure, to a model

with an input (read only) tape, an output (write only) tape, and a �nite number of work

tapes. It is a well known fact in computational complexity that such machines have an

identical computation power as single tape machines, means that for a concrete program,

the order of magnitude of the time and space needed for execution is identical on single and

multiple tape machines. One can represent a Turing machine T by a function �, which is the

mapping of all programs on which T halts to their outputs. We say that a Turing machine is

universal if it can simulate any other Turing machine. When such universal Turing machine

receives as input a pair < x; y >, where x is a formal speci�cation of another Turing machine

Tx, it outputs the same result as one would get if one would input the string y to the Turing

machine Tx. It turns out that we can choose a particular set of state-transition rules such

that the Turing machine becomes universal in this sense.

A pre�x Turing machine is a Turing machine whose set of halting programs is a pre�x

set, that is, no halting program is a pre�x of another halting program. Just as there are

universal �ordinary� Turing Machines, there are also universal pre�x machines that have

identical computational power [29].

2.2.2 The Kolmogorov complexity function K

The Kolmogorov complexity of the binary string x, with reference to the concrete Turing

machine T , represented by the function � is written K�(x) and represents the size in bits of

the shortest binary program for T with which T prints x and halts. In other words, K�(x)

represents the minimum program size jzj over all programs z such that �(z) = x. In practice,
we would like to use a Turing machine that is as general as possible, therefore it is convenient

to use a universal pre�x Turing machine. Since all universal Turing machines can simulate

each other, it does not matter which one we take. This implies that all variations of K are in

some sense equivalent, because any two di¤erent variants of K given two di¤erent reference

universal Turing machines will never di¤er by more than a �xed-size constant that depends

only on the particular Turing machines chosen and not on the sequence. Therefore, one can

simply use the short term K(x). Intuitively, K(x) is the minimal amount of information

needed to create x by any reliable e¢ cient computerized process.

Another form of the Kolmogorov complexity function K is the conditional form: K(x j y)
is de�ned as the size of the shortest binary program required to create x given a pre�x free

12

encoding y for y as an external input to the program. This model is supported by a model

of a multiple tape Turing machine, with regular input, work and output tapes, and another

limited functionality input tape, that supports only the operation "read next symbol". The

idea is that if y gives a lot of information on x then K(x j y) � K(x). On the other hand,

if y gives almost no information on x then K(x j y) � K(x). Using the conditional notation,
we can consider K(x) as K(x j ").
One more sophisticated form of K is K(x; y), stands for the minimal length of program

needed to output the binary string x followed by y, plus a way to distinguish between them.

A convenient way is outputting xy, where x is a pre�x encoding of x.

Remark 1 Following the example in section 2.1, one can immediately obtain the following
upper bound:

K(x) � n+ log n+O(log log n): (2)

2.2.3 Incomputability of K

The major drawback in K is that it is incomputable. Assuming the computation of K(x) for

every binary string x is possible leads to solving the famous Halting Problem for every binary

input, which is, of course, an undecidable problem. "The good news" though, are that K is

upper semi-computable, namely can be approximated from above by a computable function

f(x; t), decreasing in t, such that

lim
t!1

f(x; t) = K(x)

(one can consider t as number of computation steps).

2.2.4 H vs. K

The major di¤erence between the two terms is that entropy is de�ned for random variables

(or information sources), that is, the information in a message depends on the set of messages

it belongs to. In Kolmogorov complexity theory, information in a binary string depends on

the string itself. This property also helps when trying to approximate how random a string

is. Nevertheless, there are some basic (in)equalities in the classical information theory that

have their equivalent form in the Kolmogorov complexity theory, as shown in Table 1:

13

Table 1: Information theory vs. Kolmogorov complexity theory
Information theory Kolmogorov complexity theory

H(x; y) = H(x) +H(y j x) K(x; y) = K(x) +K(y j x) +O(logmaxfjxj ; jyjg)
H(x; y) � H(x) +H(y) K(x; y) � K(x) +K(y)

H(y j x) � H(y) K(y j x) � K(y)

2.3 Normalized Information Distance (NID)[30]

2.3.1 Information Distance

Let x; y 2 f0; 1g� and denote K(x; y)�minfK(x); K(y)g by E(x; y). As shown above, K(x; y)
represents the information needed to create the pair (x; y) by an e¢ cient computation process.

Without loss of generality assume K(x) � K(y), hence E(x; y) stands for the amount of in-
formation needed for printing the pair (x; y) and does not exist in x, that is, the amount

information in y that does not exist in x. In this manner, E(x; y) represents the information

distance between x and y. In other words, K(x; y) � minfK(x); K(y)g is, up to a negligi-
ble logarithmic term, the length of the shortest binary program in the reference universal

computing system, that computes output y from input x and output x from input y [14].

De�nition 5 A distance function D : f0; 1g� � f0; 1g� ! N is called an admissible distance
if it is positive, symmetric, and computable, namely there is a pre�x program that, given two

strings x and y, has binary length that equals to the distance D(x; y) between x and y [14] (in

simple words, E is admissible distance if it can be easily computed for every two strings).

An important property of E(x; y) is its universality upon the class of admissible distances.

It states that given any x; y 2 f0; 1g� and an admissible distance D,

E(x; y) � D(x; y) + cD

where cD is a constant depending on D but not on x; y ([6], theorem 4.2). In that case one

can say that E(x; y) minorizes D(x; y) up to an additive constant. Then E is universal for

the family of admissible distances because it minorizes every member of that family up to an

additive constant [30]. In other words, E(x; y) captures all computable similarities between

x; y because if x; y are close according to a computable distance function D (which satis�es

a reasonable density constraint, see Remark 2), they are at least that close according to E.

Since every feature in which one can compare the two strings can be quanti�ed in terms of

distance, and every distance can be viewed as a di¤erence in the value of a particular feature

between the two strings, E(x; y) minorizing the most dominant feature in which x and y are

similar. Note that when considering more than two strings, the distance E may be based on

a di¤erent dominating feature for each pair of strings.

14

Remark 2 If D is an admissible distance, then for every x 2 f0; 1g� the set fD(x; y) :
y 2 f0; 1g�g is the length set of a pre�x code, hence according to Lemma 1 satis�es density
condition derived by the Kraft inequalityX

y

2�D(x;y) � 1.

2.3.2 Normalization

E(�; �) is an absolute distance. However, large strings that di¤er by some �xed amount of
information are intuitively much closer than short strings that di¤er by same amount of

information, therefore one would like to normalize E(�; �) into a relative information distance.
Based on [6], Li et al. [30] de�ne the Normalized Information Distance (NID) for every

two binary strings x; y by

NID(x; y) =
K(x; y)�minfK(x); K(y)g

maxfK(x); K(y)g : (3)

Recall from Table 1 that K(x; y) �K(x) � K(y), hence the denominator is a normalization
of E(�; �) to the range [0; 1]. In order to comprehend the behavior of the NID, let us take a
closer look at the two edge cases:

� Assume x = y: then up to O(1
K(x)

) termK(x; y) = K(x) = K(y) because no information

is needed to create a copy of x when x is given, and K(x; y) � minfK(x); K(y)g = 0,
hence we get NID(x; y) = 0.

� Assume the information needed to create x has no overlap with the information for y:
then K(x; y) = K(x) +K(y). Without loss of generality K(x) � K(y), and we get

NID(x; y) =
K(y)

K(y)
= 1

From its de�nition, the NID is symmetric, and positive. In addition, up to an additive

precision O
�
1
K

�
where K is the maximal Kolmogorov complexity of the strings involved, the

NID satis�es also the triangle inequality, namely NID(x; z) � NID(x; y) + NID(y; z) for

every binary strings x; y; z. Therefore, together with the �rst case above, the NID satis�es

the metric (in)equalities up to the above precision.

2.3.3 Universality

Similarly to the distance E, also the NID has the important universality property, that justi�es

calling it the similarity metric. This time, the universality refers to the class of computable

15

normalized distances:

De�nition 6 A function d : f0; 1g� � f0; 1g� ! [0; 1] is a normalized distance if it is sym-

metric and for every x 2 f0; 1g� and constant e 2 [0; 1],

jfy : d(x; y) � e � 1gj < 2eK(x)+1:

This density constraint is implied by distances d : f0; 1g� � f0; 1g� ! [0; 1] that obey a nor-

malized version of the Kraft inequalityX
y

2�d(x;y)K(x) � 1:

The universality property of the NID states that for a normalized computable distance d

and every x; y 2 f0; 1g�

NID(x; y) � d(x; y) +O
�

1

minfK(x); K(y)g

�
In Appendix 7.1 we bring the proof of the universality property of the NID.

2.4 Normalized Compression Distance (NCD)

The NCD, the main focus of this work, was introduced and analyzed by Cilibrasi et al. [12],

[10].

2.4.1 Approximating K by compressors

The basic idea in data compression is to encode a string from a biased information source

(that is, one which is not uniform distribution) to a minimum number of bits, in a way that

for some strings the output is shorter than the original string. If one can also decompress the

compressed version and obtain the full original string, then the compression is called lossless.

As the Kolmogorov complexity of a binary string is not computable, a fruitful approach has

been to apply Kolmogorov complexity by approximating it with data compressors. Like the

shortest program that creates object x, also the ideal compression of x is such that will take

advantage of every redundancy in x. Hence, it is natural to approximate the incomputable

Kolmogorov complexity using compressors. It can be said that an ideal compressor will

compress every string x to K(x). In the real word, ideal compression does not exist [38].

However, as every compression algorithm de�nes a computable function from binary strings

to the lengths of the compressed versions of those strings, we can use it to approximate the

16

incomputable Kolmogorov complexity: let C be a lossless compressor, x 2 f0; 1g�, and denote
by C(x) the length in bits of the C-compressed version of x. Then C(x) is the length of pre�x

program that computes x, therefore is an upper bound on K(x), up to an additive constant

term, depending on C but not on x [14].

2.4.2 Normalized Compression Distance

As Kolmogorov complexity is incomputable, so is the NID. However, when approximating

Kolmogorov complexity by lossless compressors, we arrive to the Normalized Compression

Distance (NCD), a computable approximation of the NID (3) as follows [12]: given a lossless

compressor C, the denominator can be trivially approximated by maxfC(x); C(y)g. The

numerator is more tricky: K(x; y) can be approximated by minfC(xy); C(yx)g, where xy
is a simple concatenation of x and y. However, most popular compressors show only small

deviations from symmetry, therefore C(xy) will do for this purpose. This leads us to de�ning

the NCD by

NCD(x; y) =
C(xy)�minfC(x); C(y)g

maxfC(x); C(y)g : (4)

The signi�cant innovation in the NCD is that it enables one to get for every two computer �les

a number in range [0; 1 + "] expressing how similar these �les are, without indicating speci�c

feature(s) with which the similarity will be measured. Allegedly, this might make NCD based

classi�cation methods �feature free�methods. We will analyze this �feature free-ness�concept

in the discussion.

Remark 3 As every computer �le is basically a �nite binary string, one can compute the
NCD for every two computer �les, or binary strings.

Remark 4 While better compression of a binary string (that is, with shorter length of the
compressed version) will always approximate its Kolmogorov complexity better, this is not

necessarily the case for the NCD: due to the subtraction and division, it is theoretically possible

that while all the elements get compressed better (but not equally), the NCD moves away from

the NID. However, in our experiments, as in those of [10] and [12], this behavior was not

observed in a noticeable way.

Remark 5 As the Kolmogorov complexity is not computable, it is in principal impossible to
know how far the NCD is from the NID.

Remark 6 In practice, most of NCD values got in our experiments are in range [0:85�1] for
di¤erent objects and [0:2� 0:3] for identical objects. In a few cases we got NCD > 1, usually
by a very small term.

17

2.5 Data compressors used in this work

2.5.1 PPM [5]

PPM stands for Prediction by Partial Matching. It belongs to the family of statistical

compressors- compressors that use the occurrence probabilities of the symbols, to achieve

good compression. The main idea in statistical encoding (like Hu¤man codes, for example)

is to encode each character in relation to its context and frequency in the text [38]. As a

character is more probable to occur, it gets a shorter encoding. PPM usually achieves the

best performance of any real compressor yet is also usually the slowest and most memory

intensive [10].

The coding scheme of PPM uses a Markov model which conditions the probability that

a particular symbol will occur on the sequence of characters which immediately precede

the symbol. The order of the Markov models is the number of characters in the context

used for prediction. For example [5]: suppose the current symbol sequence is: "...sup-

pose#the#current#symbol#sequence#i" (here # stands for a space). If the order is 2, the

next character ' is predicted on the basis of occurrences of trigrams "# i '" earlier in the

message. '="e", "j", "h", "i", for instance, are unlikely, and therefore will have small prob-

abilities, hence will be encoded here by relatively large number of bits. '="s", will have

reasonable high probability in this context, therefore will be encoded shortly.

PPM uses adaptive encoding, namely the coding scheme use a dynamic order: both encoder

and decoder recognize predictions on the basis of the longest string match between the present

context and previously seen ones. For example, if '="s" occurs in the context "# i '" for

the �rst time, the prediction will be based on the 1-order "i '", thus if the string "is" has

occurred previously in the text (even without a preceding space- as in "history" for example)

the coding of the character "s" will be based on this foreshortened context. If the string

had not occurred previously (that might occur frequently especially in the beginning of the

text), the context will be further shortened to the empty string. In this case, the character

will be predicted on the basis of its frequency so far in the text. The encoder uses "escape

mechanisms" to inform the decoder when the order is changed.

2.5.2 bzip2 [9]

bzip2 is a relatively new compressor using the blocksort algorithm. It provides good com-

pression and an expanded window of 900 kilobytes allowing for longer-range patterns to be

detected, yet the size of the input block must be large (a few kilobytes) to achieve good

compression. It is also reasonably fast. The algorithm works by applying a reversible trans-

formation to a block of input text. The transformation does not itself compress the data,

18

but reorders the data in a way that the probability of �nding a character close to another

instance of the same character is increased substantially. Text of this kind can be compressed

very e¢ ciently using fast compression algorithms. The algorithm transforms a string S of n

characters by forming the n rotations (cyclic shifts) of S, sorting them lexicographically and

extracting the last character of each of the rotations. A string L is formed from these charac-

ters, where the ith character of L is the last character of the ithsorted rotation. In addition to

L, the algorithm computes the index I of the original string S in the sorted list of rotations.

There is an e¢ cient algorithm to compute the original string S given only L and I. The string

L is easy for compression by locally adaptive compression algorithms.

Example 3 [9]: let the original string S be "abraca". Then the sorted list of rotations is:

aabrac

abraca

acaabr

bracaa

caabra

racaab

therefore the string L is "caraab".

The sorting leads to good compression of L because any localized region in L is likely

to contain a large number of few distinct characters. For example, consider the letter �t� in

the word "the" and assume the original string contains many occurrences of "the". After the

sorting, all rotations starting with "he" will be adjacent in the sorted list. Many of them are

likely to end in �t�, therefore one region of L will contain a disproportionately large number

of �t�s. The overall e¤ect is that the probability to �nd character c in a given point in L is

relatively high if c occurs near that point in L. Move-to-front coder, a statistical compressor,

needs exactly this property for e¢ cient coding.

Remark 7 It should be mentioned that although PPM and bzip2 are basically text compres-

sors, they achieve very good compression rates and are commonly used to compress other data

types as well. In this work we use them to calculate NCD between images, voice samples and

signals.

2.6 Previous works in Kolmogorov complexity-based learning

Cilibrasi & Vitanyi developed a new method for hierarchical clustering using ternary trees

[13]. The method is powerful because it can handle data from many di¤erent domains and

19

does not require the number of clusters, nor any other prior knowledge about the particular

subject area. The only input for the clustering algorithm is the NCD matrix, namely pairwise

distances, of the objects being clustered. It is based on a randomized algorithm aims to �nd a

tree that re�ects the pairwise distance matrix well (that is, pairs of objects with relatively small

NCD are expected to be closer on the tree, than pairs with higher NCD values). However,

the performance of the method deteriorates signi�cantly when dealing with more than 40-50

objects [12]. Using this method they cluster DNA sequences to build phylogeny trees and test

some hypotheses in biology, languages, viruses, music pieces (also in [11]), Russian texts, OCR

(Optical Character Recognition) images and astronomical X-ray observations [12]. Two more

applications of this method include clustering of fetal heart rate tracings [16] and analysis

of network tra¢ c and clustering of computer worms and viruses [45]. In [24] Keogh et al.

approximate the NID by a compression based computable function, the CDM (Compression-

based Dissimilarity Measure), similar to the NCD (however not a metric) to perform clustering

experiments of time series and text, anomaly detection in signals and classi�cation of time

series. They compare the compression based method to leading methods in data mining and

show that the compression based approach is competitive or superior to the state-of-the-art

methods in anomaly detection and clustering heterogenous data.

In addition, there are several successful experiments using other approximations of the

incomputable NID: along with their NCD experiments, Li et al. [30] perform hierarchical

clustering of genomes, when for a string x, they replace K(x) by N(x), number of distinct

k-length strings in x (they use k = O(log x)). In [14] Cilibrasi & Vitanyi de�ne the NGD

(Normalized Google Distance) in which they use the functions G(x), number of web pages

found by Google to contain the word x and G(x; y), the number of web pages that contain

both the words x and y, to approximate the NID. The new distance is then used to acquire

knowledge from the world wide web by a very interesting series of clustering and classi�cation

experiments.

2.7 Classi�ers

This section presents the basics of linear classi�cation and lazy learning methods, and the two

main classi�ers used in this thesis: the weighted k Nearest Neighbor (kNN) and Support Vector

Machines (SVM). In addition, other classi�ers used in the emotion recognition experiments

are shortly presented as well.

2.7.1 Linear trainable classi�ers

A classi�er is a computation process aim to pick up relationships between input and output

[34]. The input for most classi�ers in machine learning is feature vectors representing instances

20

from a certain domain and the output is a set of target values, also called classes. The set of

initial features according to whom the classi�cation is being performed is de�ned by human

expert. Later on, a new set of features can replace the initial one, either by selecting a subset

of features, a process called feature selection, or by extracting new features out of the initial

ones (feature extraction).

In two-class classi�cation, we seek to estimate a separating function f : X ! f�1g based
on input-output training data. We assume that the data were generated independently from

some unknown (but �xed) probability distribution P (x; y) [2]. Our goal is to learn a function

that will correctly classify unseen examples (x; y), i.e. we want f(x) = y for examples (x; y)

that were also generated from P (x; y). Given a training set f(x1; y1); ::; (xn; yn)g, it is easy
to see that for any function f and any test set f(x01; y01); ::; (x0m; y0m)g that doesn�t intersect
with the training set, there exists a function f � such that f(xi) = f �(xi) for all i = 1; ::; n yet

f(x0i) 6= f �(x0i) for all i = 1; ::;m, therefore a good separating function cannot be found only
by minimizing the empirical training error

Remp[f] =
1

n

nX
i=1

jf(xi)� yij .

We will also have to seek for relatively "simple" separating functions. Simple, in this case,

is usually interpreted as linear: given a training set f(x1; y1); :::; (xn; yn)g, a classi�er aims
to learn/output a continuous function M mapping d-dimensional input vectors to the one

dimensional reals. Such a function can be transformed into learning algorithms for binary

classi�cation, as the function f above, which for a test vector x can be de�ned by

f(x) =

(
1, if M(x) � 0
�1 if M(x) < 0

)
= sign(M(x))

The sign of M(x) represents x�s location in the d-dimensional space in relation to some hy-

perplane of the form hw; xi+ b, de�ned by M .
While trainable classi�er systems output functions with a discrete range (the set of classes),

as the function f above, some of the most successful ones are built on top of continuous

learning algorithms [19] (like the function M above). The continuous learners are a broad

and important class of algorithms in machine learning. There are at least two good choices

for linear trainable learner components for use with NCD: these are Arti�cial Neural Network

(ANN) and the Support Vector Machine (SVM) [10] that will both be described below. Both

of these techniques take as input the set of labeled training data as well as some specialized

model parameters that must be set through some means [2], [39]. Usually the specialized

parameters are set by a human expert or set through an automatic procedure using cross-

21

validation based parameter scanning. Both learner systems produce a single label out of the

set L as a result given any input d-dimensional test vector. Each have many strengths and

weaknesses and they each give unique performance pro�les. They should both be considered

when deciding to do classi�cation using NCD, although all experiments in this thesis are based

on support vector machines, due to the fact that in the basic structure of ANN, there are more

parameters to be set, as will be explained in subsection 2.7.4, and there is no simple rule to

guide how to choose these parameters because there are all sorts of bad behavior possible

from wrong choices. Since as far as the author knows, no prior knowledge is documented

regarding parameter setting for NCD based experiments, and acquiring such knowledge is not

included in the scope of this work, SVMs are much more convenient for our purpose due to

fewer parameters to be set, as will be explained right below.

2.7.2 Support Vector Machines

This subsection provides a summary of relevant mathematical theory surrounding Support

Vector Machines, based on details in [35], [39].

Suppose we have a training set f(xi; yi)gni=1 where xi 2 Rd and yi 2 f�1;+1g for i = 1; ::; n.
Consider the set of hyperplanes

hw; xi+ b = 0, w 2 Rd, b 2 R

corresponding for the decision functions

f(x) = sign(hw; xi+ b).

An optimal hyperplane will be such with the largest margin of separation between the two

classes:

max
w;b

minfkx� xik : w 2 Rd; hw; xi+ b = 0; i = 1; ::; ng

this leads to solving the optimization problem

min
w;b

1

2
kwk2

subject to: yi � (hw; xii+ b) � 1, i = 1; ::; n

which can be solved by the Lagrangian dual

L(w; b; �) =
1

2
kwk2 �

nX
i=1

�i(yi � (hw; xii+ b)� 1):

22

Figure 1: Two dimensional classi�cation example: (right) Using mapping to 3 dimensional
feature space, the problem is separable in the feature space by linear hyperplane. (left) In the
input space, this hyperplane corresponds to a nonlinear elipsoidal decision boundary (�gure
from [40])

where �i are the Lagrange multipliers. After some simpli�cation, we are left with the convex

optimization problem

max
�2Rn

nX
i=1

�i �
1

2

nX
i;j=1

�i�jyiyi hxi; xii (5)

subject to : �i � 0 for all i,
nX
i=1

�iyi = 0

that can be solved with several techniques [35]. It happens to be that �i > 0 only for the

instances from each class that are closest to the decision boundary. These instances are called

the support vectors. The solution to (5) de�nes a separating hyperplane

f(x) = sign

nX
i=1

�iyi hx; xii+ b
!

which is linear in the input space. Since in the real world, linear separation rarely exists, one

needs to be able to solve also non linear separable problems, such as the famous exclusive

or problem [20]. To solve problems of this type one needs to transform the instances by

some mapping � : Rd ! F to a space of a higher dimension, in which the problem can

be solved linearly, as in Figure 1. As F might be very high dimensional, it is impossible to

perform computations directly in F . This is where kernel functions are used. A kernel function

k(x; x0) = h�(x);�(x0)i is the result of the dot product of the instances x; x0 in F . Due to the
fact that all instances in (5) occur only within dot products, one can use the kernel function

23

to get the result of the calculations in the feature space F , without actually transforming the

instances to F . Using kernel function the decision function gets the more general form

f(x) = sign

nX
i=1

�iyik(x; xi) + b

!

that can bend the decision surface around training points in the least stressful way and actually

approximate any continuous function up to an arbitrary degree of accuracy given enough

training data. In addition, to be capable of dealing with noisy data, SVM uses also slack

variables in the optimization problem, allowing instances of a certain class be in the wrong

side of the decision boundary, with the cost of a �ne for each such instance. There are several

common kernel functions used with SVM. According to Mercer�s theorem [35], any positive

de�nite symmetric function can be used as a kernel function, where a function K(x; z) is

positive de�nite if
R
K(x; z)f(x)f(z)dxdz � 0 for every f 2 L2. A kernel function K(x; z)

is a measure of the similarity between the instances x; z (for example, the polynomial kernel

function is (hx; zi + r)d , with ; r 2 R, d 2 N, and dot product of vectors is actually a
measure of correlation). Among the widely used kernel functions are polynomial kernel, linear

kernel (same formula as polynomial, with d � 1), and RBF (Radial Basis Function) kernel,

which has the form k(x; z) = exp
�
� kx� zk2

�
.

2.7.3 Lazy learning methods and the k-nearest neighbor algorithm

SVMs belong to a group of classi�cation methods that involve parameter tuning and provide a

general explicit description of the target function (that determines the labels of the instances)

once training examples are provided. Among other members in this group are Arti�cial Neural

Networks and Decision Trees, that will be described below. A di¤erent group of classi�cation

methods contains instance based methods ("lazy" methods), in which the training examples

are simply stored in the computer, and the generalization (the learning) is postponed until

a new instance must be classi�ed. A key advantage of lazy classi�cation is that instead of

estimating the target function once for the entire instance space, these methods can estimate

it locally and di¤erently for each new instance to be classi�ed [34]. The k-Nearest Neighbor

algorithm (kNN), which is used in this work, is a lazy learning method. This 40 year old algo-

rithm has many versions and is widely used and analyzed (for example, [47]). This relatively

naive algorithm appears to work well on several datasets, as will be shown in the analysis

chapter. The classi�cation rule of the kNN algorithm is rather simple: whenever a new test

instance x arrives (which its label needs to be determined), its distance from all instances

with known labels is calculated. Then, considering only the set of k nearest neighbors of x,

each potential labeling gets a grade according to how close the test instance is to instances

24

from same class. Then x is classi�ed according to the labeling with highest grade. The kNN

algorithm can use any distance function for the distance calculation. In this work, we use the

NCD for that purpose. In subsection 3.5 we provide the pseudo code of the NCD-based kNN

used in this thesis.

2.7.4 Other classi�ers used in this work

The following material is a short glimpse at arti�cial neural networks, based on [2], decision

trees, based on [34] and the simple naive nearest centroid classi�er.

Arti�cial Neural Networks (ANN) A neural network is inspired by the human brain.

The network consists of single neurons, which are computation units called perceptrons. Each

perceptron gets several numerical inputs and calculates a weighted sum of which. The result of

the summing function is inputted to an activation function, that computes the neuron�s output.

The network itself is based on the connections between the neurons, where the neurons are

divided to several layers and all the neurons in the i�th layer are connected to all the neurons

in the i + 1�s layer. Each such connection has a weight, which is updated in every case of

misclassi�cation during the training phase. The update of the weights is commonly done by

the backpropagation algorithm. The �rst layer is the input layer, hence always consists of as

many neurons as the number of features. The next layers are called hidden layers. It is known

that two such layers su¢ ce for good approximation of any smooth function (and for many

classi�cation problems one hidden layer will be enough). The last layer is an output layer,

and approximates the posterior probabilities, i.e., the probabilities that the instance belongs

to each of the classes. This layer classi�es the instance to the class with the highest posterior

probability. When working with ANN, one has to choose the activation function (common

choices are transcendental sigmoid functions like arctangent, there are also several others in

use). Another issue that should be considered in all types of ANNs is the architecture of

the network, namely the number of hidden layers, and the number of neurons in each hidden

layer. In addition, one should de�ne the criterion for stopping the training epochs (commonly

used options are �xed number of epochs, or �xed accuracy), where one should avoid the case

of over training of the network, and learning rate and momentum parameters, that can also

a¤ect the network�s gross behavior and overall success or failure. Altogether this implies at

least four hard choices before one can train a neural network.

Decision Trees (DT) A decision tree has on each node a feature and a decision rule.

The tree is built iteratively, where in each iteration a feature is chosen, as well as a decision

rule that divides the scale of the feature to two or more segments. Each segment is then

25

represented by a subtree. A common method to choose appropriate feature in each iteration

is by minimization of the entropy of the dataset [34]. As one might understand, it is easy

to create for a given training set, a tree with 100% accuracy. Such a tree will probably

demonstrate poor generalization ability. Hence, when creating a DT, one will probably not

want a tree with maximal accuracy on the training set, but a tree that has similar accuracy

on the training and test sets (that implies for the tree�s generalization ability). This is usually

done by de�ning the pruning severity and minimal number of instances per branch.

The inductive bias (a basic notion in [34]) of a decision tree is our preference for trees of

shorter depths, deriving from our belief that such trees will enable us to generalize better than

deeper trees.

Nearest centroid classi�er This is another version of the classic kNN classi�er: for each

class we create an average feature vector (centroid) in which each feature value is the average

of the values of the same feature among all training instances from the given class. When a

new test instance arrives, its Euclidian distance to each centroid is calculated and the instance

is classi�ed according to the nearest centroid. To neutralize the bias caused by di¤erences in

the scales of di¤erent features, it is always recommended to normalize the values of each

feature prior to the calculations. Note if one normalizes the features so each of them has zero

mean and unit standard deviation, and the features are not correlated, then the algorithm

computes the Mahalanobis distance [18].

2.8 The anchor method

Most trainable classi�ers require the input of feature vectors of the instances to be classi�ed

in order to build the classi�cation model and classify new instances. This was also the case in

all SVM experiments in this work. The anchor method, presented in [10] and [14], is a feature

extraction method, meaning it gets as an input the instances in their raw representation

(image/text/voice �les etc...) and for each such instance outputs a feature vector, which

will be used by the classi�er. The method works as follows: for x1; ::; xn the instances to

be classi�ed, we de�ne anchors a1; :::; ak which are objects from the same world. We then

create for instance xi the feature vector ui, in which the jth entry is NCD(xi; aj). As one can

understand, the feature vectors represent the location of instance xi relatively to the anchors

(this idea might be dangerous, because as previously mentioned in Section 2.3.3, every pair

of objects might have a di¤erent dominant shared feature with which they are most similar,

however our results, as well as those of [14] show that it does work quite well). An example

for feature vectors created by the anchor method can be seen in Figure 2. As was explained

in Section 2.7, the original set of features of the instances to be classi�ed is usually de�ned

26

0.9186 0.9099 0.9078

0.9192 0.9110 0.9050

0.9258 0.9469 0.9281

0.9265 0.9522 0.9269

instance 1a

instance 1b

instance 2a

instance 2b

anchor 1 anchor 2 anchor 3

Figure 2: An example of the anchor method on AT&T faces dataset: feature vectors built for
2 instances from each of 2 classes by 3 anchors. Value in the ith row and jth column is the
NCD between the ith instance and the jth anchor. Note that for each feature, instances from
same class have similar values, and instances from di¤erent classes have greater di¤erence in
values.

by a human expert. Based on this set, a new set of features can be created using feature

selection and feature extraction methods. One of the basic problems in de�ning, selecting and

extracting features occurs when the features ignore true patterns in the instances, or report

spurious patterns that do not really exist. This may cause a severe bias in the classi�cation

model built by the classi�er. The anchor method is also a feature extraction method, however

as described here, the features are extracted implicitly, by the compressor used for computing

the NCD values. The features created by the anchor method have only a slight physical

meaning- as the location of the anchors in the space is not known, and the dominating feature

determining each NCD value is not known either, the feature vector of each instance cannot

enable us conclude anything about absolute properties of the instances. However, by leaving

these terms in vague, one can reduce the bias caused by a well established feature de�nition.

For the rest of the paper, let the short term SVM-anc refer to SVM using the anchor

method. In [14] the authors use the anchor method for 2 class problems only, here we apply

it also to multiclass problems, with up to 78 anchors.

Remark 8 The issue of how many anchors to use, and how to choose the anchors will be
addressed in Subsection 3.6.

27

Remark 9 The anchor method can use any distance function, that can be used to quantify
distance between computer �les, or binary strings. In one of our experiments we will compare

the results using the NCD to those when using Hamming distance instead.

Remark 10 Feature selection and extraction techniques can be applied to the original feature
set created by the anchor method. We will use some of these techniques in our experiments in

voice samples and analyze their performance.

2.9 Input dimensionality reduction

The term "the curse of dimensionality" refers to the problem caused by the exponential

increase in volume associated with adding extra dimensions to a (mathematical) space [36].

For example, one will need only 100 evenly-spaced sample points to sample a unit interval

with no more than 0:01 distance between points, however, an equivalent sampling of a 10-

dimensional unit hypercube with a lattice with a spacing of 0:01 between adjacent points would

require 1020 sample points. In machine learning, one aims to learn a state-of-nature (maybe

in�nite distribution) from a �nite (low) number of instances, hence a severe problem occurs if

the instances belong to high dimensional space [34]. In other words, roughly speaking, when

performing a classi�cation experiment, the minimal number of instances needed is exponential

in the dimension of the input, (except for cases of sparsity, i.e., where only few features do

vary over the instances). As one might understand, the dimension of the input doesn�t have to

be too high to make it impossible to collect as many instances as needed to train the learning

system, hence one will always be interested in reducing the dimension of the input. This can

not explain a greater percentage of the variance of the data, however, reducing the dimension of

the input can actually increase the classi�cation accuracy [34]. In addition, from a statistical

point of view, it adds degrees of freedom, and in case that new uncorrelated features are

extracted, it can improve model�s accuracy (such as in linear regression, for example). There

is a lot of literature about methods to reduce the input dimension. In our experiments in

emotion recognition, the dimensionality of the instances was reduced using several state-of-

the-art feature selection and extraction methods which we will be brie�y described now (for

more information, please see [21]).

2.9.1 Principal Component Analysis (PCA)

PCA is mathematically de�ned as an orthogonal linear transformation that transforms the

data to a new orthogonal coordinate system such that the greatest variance by any projection

of the data comes to lie on the �rst coordinate (called the �rst principal component), the second

greatest variance on the second coordinate, and so on. The input for the PCA is the original set

28

of features and the output is an orthogonal set of new features (principal components), which

are linear combinations of the original features. Formally, given n k-dimensional instances (the

jth instance is xj1; :::; xjk) in X =

0B@ x11 ::: x1k

: : :

xn1 ::: xnk

1CA, the output is Y = XA, where A is the
matrix of the eigenvectors of the correlation (or covariance) matrix of X, with the eigenvector

corresponding to the largest eigenvalue in the �rst column, to second large eigenvalue in the

second column and so fourth. PCA is basically an algebraic method that due to the fact that

each component explains as much as possible of the remaining variance of the data, enables us

to use less variables than in the original set, yet explain most of the variance. In addition, the

new set of variables is orthogonal, hence they are uncorrelated in pairs. To neutralize the e¤ect

of di¤erent scales and units in di¤erent variables, it is often recommended to use correlation

matrices, rather than covariance matrices (or simply standardize the variables prior to the

components extraction). Theoretically, PCA is the optimum transform of the data, in least

squares terms. It is a widely used tool in exploratory data analysis.

2.9.2 Discriminant Analysis (DA)

While PCA focuses on the global variance of the data, with no relation to the di¤erent

classes in the dataset, discriminant analysis methods aim to separate between the di¤erent

classes involved. Similar to PCA, the Fisher Discriminant Analysis (FDA) outputs a new

set of features by a linear transformation of the original set, using eigenvectors of the matrix

SB � S�1W , where SB is the covariance matrix of the class centroids (average vectors), therefore
corresponds to between class variance and SW is a weighted average of the covariance matrices

of each class in the dataset. This corresponds to Fisher criterion which states that a good

separation is such that has a high between class variance and low within class variances. The

number of new features obtained by FDA is at most the number of classes minus 1. Linear

Discriminant Analysis (LDA) assumes normal distributions of the classes density functions and

equality of covariance matrices of each class and for a c-class classi�cation problem outputs c

discrimination functions g1; :::; gc, according to which a classi�cation can be made by classifying

instance x to class i if gi(x) � gj(x) for all j 6= i; i; j 2 f1; :::; cg. In the special case of 2-
class problem, a single discrimination function g can be obtained by g(x) = g1(x) � g2(x).
An example of the di¤erences between the features extracted by PCA and FDA is shown in

Figure 3.

29

Figure 3: Illustration of the projection of the primary principal component of PCA and this
of Fisher�s discriminant for a toy 2-class data set. It is clearly seen that PCA is purely
descriptive, whereas the Fisher projection is discriminative (�gure from [35]).

2.9.3 Factor Analysis (FA)

Factor analysis is a statistical method used to explain variability among observed variables

in terms of fewer unobserved variables called factors. The observed variables are modeled

as linear combinations of the factors, plus "error" terms. The information gained about

the interdependencies can be used later to reduce the set of variables in a dataset. FA has

three main phases: determining the number of factors, extraction (PCA is often used for this

purpose) and rotation. FA is especially used when it is of interest to understand the underlying

factors generating the variables in the experiment. It might enable one to group together

di¤erent variables that might correspond to same factor, and reorganize one�s understanding

of one�s variables. Though this is not our goal in this work, we use it as a feature extraction

method.

30

3 Methodology

3.1 Databases and main phases

The NCD-based kNN and SVM-anc were applied to 7 di¤erent datasets and several types of

classi�cation problems:

1. Face recognition: the input here is images of faces of several people, each image has a

label corresponding to the person in it. Based on a labeled training set, the classi�er

is supposed to label images in the unlabeled test set correctly. The face recognition

experiments involve two separate datasets: the popular AT&T ORL faces dataset and

Yale faces dataset, in which images also vary by illumination (links for both datasets are

given in the analysis section). The experiments on both datasets are performed using

a NCD-based weighted k-nearest neighbor algorithm. Performance analysis includes

accuracy using di¤erent training set sizes, comparison of results on the AT&T ORL

dataset to those of several state-of-the-art techniques taken from [23] and [31], and a

slight modi�cation of the kNN algorithm to improve classi�cation accuracy.

2. Object and texture classi�cation: Classi�cation experiments of images of home objects

and textures were performed. On the home objects dataset, the capability of the NCD-

based algorithms to deal with rotation of the objects was tested. On the texture dataset,

the results were compared to results when using polynomial kernel function for the SVM,

rather than RBF kernel. Results on both datasets were compared to those of other state-

of-the-art methods from the literature.

3. Optical character recognition: The robustness of NCD-based methods to deal with OCR

tasks was tested and compared to popular technique in OCR. In addition, results when

replacing the NCD with Hamming distance, for quantifying dissimilarity between the

images, were analyzed.

4. Olive image classi�cation: Rather than the above experiments, this one concerns �real

world�data. The dataset contains images of olives from several species and di¤erent

quality degrees. The images were classi�ed according to the species and to the quality

degree. The results were then compared to results using explicit feature extraction and

decision trees, taken from [26].

5. Experiments with voice samples: The dataset for this series of experiments contains

2� 3 second voice samples of several speakers. A speaker identi�cation experiment was
�rst performed, with an analysis of classi�cation accuracy when increasing the number

of speakers. In a second experiment, emotion of the speaker was captured, regardless of

31

its identity, through voice samples. In this experiment, the performance of the SVM was

compared to 4 other classi�ers. In addition, several methods for reducing the dimension

of the input were applied to improve classi�cation accuracy. The emotion recognition

experiment is an example for a domain on which NCD-based learning algorithms can

outperform other classi�cation techniques, due to implicit feature extraction.

6. Detection of pain using time series of ECG signals: This is another example for a

domain on which regular feature extraction techniques fail to create the correct features

that a¤ect the target value. Time series of ECG signals of two patients were classi�ed

according to one of 3 pain levels reported by the patients when recording the signals.

In general, there are two main types of classi�cation experiments in this work. The �rst

consists of our image classi�cation and speaker identi�cation experiments, both are widely

researched areas. In these experiments we measure the performance of the NCD-based classi-

�cation methods, test their robustness to some challenges in images classi�cation (di¤erences

in illumination, rotation, real world data, etc.) and compare their performance to the perfor-

mance of several state-of-the-art methods, specializing in the speci�c domains on which the

classi�cation is conducted. The second type of experiments regards domains in which tradi-

tional methods face great challenges due to di¢ culties in de�nition, extraction and selection

of features that might e¤ect the labeling of the instances being classi�ed. This part contains

our experiments in emotion recognition and pain detection. On these domains we think that

NCD-based methods might have an advantage over traditional methods, due to the fact that

they use global similarities and not speci�c attributes of the instances. The goal of this part

is to test the capability of NCD-based methods to face these classi�cation challenges. In the

emotion recognition experimental section, we provide a thorough analysis, including analysis

of error types, integration of the anchor method with dimensionality reduction techniques,

testing the model�s generalization capability and expansion of number of speakers and emo-

tions. The ECG experiment was conducted on a very small number of patients, therefore can

not be statistically valid, however on this domain we aim to check feasibility of NCD based

methods to detect pain in patients by automatic means, something which does not exist, up

today, in the medical community, as shall be explained in subsection 4.3.

3.2 Preliminary manipulation of the data

An important element in preparing the raw data for NCD-based experiments is de-noising

[12], [16], [24]. The main idea is that in order for the compressor to capture similarities better

(by better compression) it should ignore delicate di¤erences between the two �les compressed

each time. For example, when playing a perfect sinus wave from a computer speaker into

32

a microphone and digitizing the result to a computer �le. Assume the �le contains 5000

samples of 8 bit each. When inputting the �le into a lossless compressor, it will probably

compress well. However, if the �le contains only 50 samples instead of 5000, it is unlikely to

�nd a signi�cant compression, because of small amount of noise due to imperfections in the

microphone pickup, for instance. This can be repaired if we reduce the size of each sample to,

say, 4 bit. By doing it, one might have a good chance to see signi�cant compression again,

due to better substring matching. From same reasons, for two strings x; y that are relatively

similar, namely such that K(x; y) � K(x) + K(y) if we don�t use denoising, we might get

C(x; y) � C(x) + C(y). However, after denoising, the similarity might be captured by the

compressor C better, and we will get C(x; y) < C(x)+C(y), as we would expect. Though this

is a heuristic, we found that denoising does improve the classi�cation accuracy signi�cantly.

In our image experiments, the denoising was performed by resizing the images to a smaller

size than their original one (exact sizes in each experiment will be detailed in the analysis

chapter), and by reducing the pixel size to one byte, therefore limiting the number of colors

to 256. In the ECG experiment, all header data was �rst removed from the �les, to be left

only with the signal itself, then the data was rescaled to one byte per sample (therefore each

sample has one of 256 possible values). In our experiments with voice samples, the samples

are relatively clean due to a very good recording, and we did not perform any preliminary

denoising.

In addition, because ideal compressors (that is, compressors that take advantage of all

existing redundancies in the input strings, therefore compress a string x to K(x)) do not

exist, we should �nd a representation of the input �les for which it will be easier for the

compressor to �nd similarities between every two �les. We use this idea in our experiments

in image classi�cation, where we �rst turn the images to bmp (bitmap) �les, that might have

larger size than other representations, however give the most natural description of the images.

One could fairly argue that this choice of image representation essentially equals to choosing

the better features, which goes against the claimed advantage of the NCD being a �feature-

free�method, however such choice is still a weaker kind of feature selection compared to what

one would have to do when using standard parametric methods such as ANN or SVM where

one has to explicitly choose every dimension and specify what the attribute is.

3.3 Compressor selection

When working with general purpose compressors, such as the PPM family, Lempel-Ziv com-

pressors like gzip and bzip2, the choice of compressor is mostly an outcome of the size of the

�les to be compressed. In all experiments with images and ECG, all �les involved had sizes

up to 40kb, and the compressor used was the PPM. The relatively large window of the bzip2

33

Figure 4: Example of a decision boundary found by RBF kernel. Both coordinate axes range
from -1 to +1. Circles and disks are two classes of training examples; the middle line is
the decision surface; note that the support vectors found by the algorithm (marked by extra
circles) are not centers of clusters, but examples which are critical for the given classi�cation
task (�gure from [39])

makes it suitable to larger �les, as in our experiments in voice samples, in which most of the

�les had sizes above 100kb, where we indeed used bzip2.

3.4 Kernel function selection

Recall from subsection 2.7.2 that kernel functions express similarity. AsNCD(�; �) is a measure
of dissimilarity, 1 � NCD(�; �) and 1

NCD(�;�) both express similarity. Further, As NCD(�; �) is
positive and bounded, 1�NCD(�; �) and 1

NCD(�;�) are also positive and bounded hence positive

de�nite. In addition, they are also very close to be symmetric, hence might be used as kernel

functions for SVM. This is theoretically true, however in our early experiments (see example in

subsection 4.1.4), classi�cation results using the 1�NCD(�; �) as a kernel function are mostly
far behind results using other kernel functions (especially polynomial and RBF kernels), and

so is the case using 1
NCD(�;�) . Based on [10], as well as on our empirical data, the best one to

be used with NCD is the RBF kernel, de�ned by

k(x; y) = exp
�
� kx� yk2

�
:

An example to a decision boundary found using RBF kernel is shown in Figure 4. The pa-

rameter represents the kernel width and determines the rate of exponential decay around

34

each of the training points. The second parameter that the SVM uses is c, the cost of mis-

classi�cation, namely training points that fall on the wrong side of the decision boundary.

Adjusting c can compensate for noisy or mislabeled training data. Both c and needs to be

�xed before the classi�cation starts. As there are only two parameters to be set, and they are

both continuous, a common way to do it, is to tune them using a cross validation process [40],

either by using simple two dimensional grid search or more sophisticated search methods like

gradient descent.

3.5 Weighted k Nearest Neighbor algorithm (kNN)

We use The weighted k-nearest neighbor algorithm as follows:

Algorithm 2 weighted k-nearest neighbor
input: training set R, test set S, # of distinct classes m, kNN parameter k

Step 1: for each x 2 S:
Step 1.1: compute NCD(x; y) for all y 2 R.
Step 1.2: �nd y1; ::; yk the nearest k neighbors of x

Step 1.3: initialize: ai = 0, i = 1; ::m

Step 1.4: for j = 1 to k

Step 1.4.1: al = al + 1
NCD(x;yj)2

for l =label(yj)

Step 1.5: return: the class of x is c = argmaxfaig:

An example of applying the kNN algorithm to a face recognition task is shown in Figure 5.

Note that as explained in section 2.4, the NCD is only an approximation of the incomputable

NID, and it is impossible to conclude how far is the NCD from the NID. Absolute NCD values

are in general high in range [0; 1+"] (in this example all values are greater than 0:84), however

this algorithm relies on relation between di¤erent NCD values, rather than on single absolute

values, making it a more than reasonable NCD-based classi�cation algorithm.

Remark 11 Very roughly speaking, based on our image classi�cation empirical results, we
can note that the weighted kNN has a reasonable accuracy as long as the di¤erences between

di¤erent classes are simple enough to be easily captured by human eye, as in Figure 5.

3.6 Anchor selection

The anchors may be chosen by a human expert or be chosen randomly from a large pool

of training objects [10], belonging to the same dataset as the instances to be classi�ed. In-

tuitively, it may seem very important which objects are chosen as anchors. While this is

35

Figure 5: Illustration of the kNN algorithm on the AT&T ORL dataset: 5 nearest neighbors
for each of 3 test instances, and NCD values between each test instance and its neighbors

sometimes the case, it seems like more often it is not. Our empirical results correspond to

those of [10], showing that random anchors usually work well, as long as one picks at least

one anchor from each signi�cant category under consideration. Doing so is advisable to avoid

falling into low-accuracy performance due to insu¢ cient variation in the anchor set. Non

formally, this way to choose anchors makes the set of anchors a spanning set of the input

space, in a sense. Still, the number of anchors to use seem to depend on the speci�c dataset

studied. Addition of anchors always provides more information about the instances, however,

it also increases their dimension. Although It is hard to evaluate exact numbers of anchors

needed for each classi�cation task, one could generally argue that the more di¢ cult the clas-

si�cation task is, the more anchors will be needed. Since a too high dimension might cause

an over�tting problem (due to the curse of dimensionality), it seems natural to assume that

there is an optimal number of anchors for every dataset. This number can be found using a

cross validation process, where one simply looks for the number with which he achieves best

accuracy on the training set. In this work, however, we do not look for an optimal number of

anchors and use a �xed number of anchors, determined arbitrarily for each experiment with

SVM-anc.

Remark 12 One can use a relatively large number of anchors, and apply a dimensionality
reduction such as PCA or DA, in order to control the dimension of the instances. In this

work, we use this approach in our experiment in emotion recognition, where 78 anchors are

used.

Remark 13 Though the anchors can be chosen randomly, it is important to exclude them

36

from the training and test sets, to avoid misleading of the classi�er (NCD(x; x) will always

be much smaller than NCD(x; y) for every x,y in a real world (that is, not synthetic) data.

Hence, a feature vector of an instance x that is also used as the jth anchor will probably be

signi�cantly di¤erent from feature vectors of instances y belonging to the same class, in the

jth entry.

3.7 Cross validation

The SVM parameters (c and) do not usually need to be exact; instead one can simply do

a stepwise search along a grid of points in log space; thus it is �ne to try, for instance, just

64 points for c ranging from 2�31 to 232 doubling each time. A similar procedure works also

to choose . This way we can de�ne a search space S for each of the above parameters, and

get the search space S � Sc. One may use m-fold cross-validation to estimate the accuracy
of the given parameter setting and then just choose the maximum at the end. m-fold cross

validation is a popular procedure that tries to estimate how well a model (of any type) that is

trained on a set of training data will perform on unknown testing data. The basic assumption

is simply that the training data and the testing data are similar. In order to estimate the

testing accuracy using only the training data, we �rst need to divide the training set to m

distinct folds, numbered 1 through m. Next, for each combination of (; c) 2 S � Sc we
perform m iterations, in each iteration we train the classi�er on m � 1 folds and test it on
the remaining one. We then calculate the average accuracy of these m iterations and assign

it to (; c). After evaluating all optional pairs of values in S �Sc we choose the pair with the
highest average accuracy. This way we can �nd a good setting of (; c) using just the training

data. In this work we use contour maps to get graphical illustration of the search space, along

with exact accuracy calculations, as shown in Figure 6.

Finding the optimal value of k for the kNN classi�er is an easier task, as the search space

is much smaller and usually contains up to 10-15 options.

3.8 Experiments structure and statistics

Each of the SVM classi�cation experiments was conducted in the following way:

1. Random division of the dataset into training and test sets, according to a given split

percentage.

2. A 5-fold cross validation process was performed on the training set, outputting a chosen

pair (; c) for the SVM.

37

Figure 6: Contour map of the cross validation process for the SVM. Di¤erent colors corre-
spond to di¤erent accuracy levels. The horizontal and vertical axes correspond to c and ,
respectively, in log scale.

3. SVM model creation (training) using the training set and the pair (; c) chosen in the

cross validation process.

4. Label prediction for each of the instances in the test set, based on the SVM model

created in phase 3. Then, accuracy on the entire test set was calculated by

of correct classi�cations
of test instances

� 100

When applying dimensionality reduction methods (PCA and discriminant analysis) to

create new features out of those created by the anchor method, the principal components (or

linear discriminants) where computed using only the training instances, and based on them

the new features were computed both for the training and test instances, between phases 1

and 2. In case of the kNN algorithm, we used the following simpler procedure:

1. As for the SVM

2. Label prediction for each test instance based on Algorithm 2. The labels were predicted

for several values of k. Accuracy was calculated as for the SVM.

38

The above phases (1� 4 for the SVM, 1� 2 for the kNN) were repeated 5 times in order
to compute average accuracy, standard deviation and worst performance. In addition, in the

emotion recognition experiment, the confusion matrix, that counts the number of misclassi-

�cation errors of each type (for example, for the 2 problem experiments the error types are

false positive and true negative) is presented and analyzed.

39

4 Analysis

This section comprises the experimental part of the thesis: technical details of the datasets,

as well as description and results of all experiments.

4.1 Image classi�cation

4.1.1 Face recognition

Face recognition is a popular classi�cation task in the �eld of machine learning (see [44], [49]

for example). The input for face recognition experiments is a set of faces images, belonging

to several people, and the task is to classify each image according to the person it belongs to.

In this thesis, the face recognition experiments were conducted on two separate datasets, as

will be explained below.

AT&T ORL faces dataset This popular dataset (http://www.uk.research.att.com/ face-

database.html) contains 10 face image �les of each of 40 di¤erent people (men and women).

Each subject is upright in front of a dark homogeneous background. The images for some

subjects vary by pose, illumination, facial expression, and whether they are wearing glasses.

This dataset is relatively noiseless and intuitively has low variance within each class and high

variance between the di¤erent classes, as can be seen in Figure 7. Each image is a 92 � 112
pgm �le. Based on preliminary analysis, detailed in Appendix 7.2.1, a minor preliminary

manipulation on the dataset here was to turn the image to a bmp �le, of same size and 256

colors. The algorithm used for the classi�cation is the NCD-based kNN. Table 2 summarizes

the performance of the kNN on the ORL dataset, as well as a sensitivity analysis, in which

the e¤ect of di¤erent number of training images of each of the 40 persons in the dataset was

analyzed. (detailed results are in Appendix 7.2.2). We can see that k=1 appears to be the

Table 2: Average performance on the ORL dataset and e¤ect of di¤erent training set sizes
Training images Best k kNN average performance (%) Worst performance

1 1 57:77 56:3
3 1 82:5 80
5 1 92:5 90
7 1 95:8 93:3
9 1 98:75 97:5

best among all values of k in all experiments. In addition, as one might expect, the average

accuracy grows with the number of training images. Five training images per person su¢ ce

to obtain accuracy above 90% on this dataset. As a reference, Table 3 shows the NCD-based

40

Figure 7: AT&T ORL dataset: images in each column are instances of same class, di¤erent
columns correspond to separate classes.

Figure 8: Dividing each picture to 4 independent parts and classifying each part separately

kNN results, comparing to results of several methods from [31] and [23] on the same dataset,

all using 5 training images per person. Though not best, it can be seen that the NCD-based

Table 3: Performance on ORL dataset
Method Average performance Worst performance
PCA [31] 94:5 89:0
LDA [23] 91� 95 �

orthogonal centroid [23] 89:5� 93:5 �
NCD-based kNN 92:5 90

kNN�s results on the ORL dataset are comparative to those of [31] and [23].

Improving the results To improve the results, the weighted kNN algorithm was mod-

i�ed as follows: 4 new datasets were created, where each dataset contains only one part of

each image (upper left, upper right, lower left, lower right), as can be seen in Figure 8, The

experiment was conducted using k = 1 on each dataset separately, using same random division

for training and test sets in all datasets (with 7 training images per person). We then gave

each answer the weight of (1
NCD to nearest neighbor)

2 and for each testing image, we combined

the 4 answers according to these weights to get a single answer (answer with highest grade).

This modi�cation of the kNN algorithm improved the results to average accuracy of 99%,

41

Figure 9: Yale dataset: images in each column are instances of same class, di¤erent columns
correspond to separate classes. Note that in each class, in one of the images the person is
illuminated from left and in the other one from right.

standard deviation of 0:93 and worst performance of 98:3, comparing to average accuracy of

95:8%, without the modi�cation (as in Table 2). The results of each of 5 runs are detailed in

Appendix 7.2.3.

Yale faces dataset: di¤erent forms of illumination This dataset (http://cvc.yale.edu)

contains 585 30� 40 pixel images of each of 10 people, with di¤erent forms (levels and direc-
tions) of illumination and di¤erent facial expression, as shown in Figure 9.

Classi�cation experiments were conducted on a subset of the large dataset, consisting of

the �rst 30 images of each person. The forms of illumination varied within each class but

were identical among all classes, making the within class variance greater and the between

class variance smaller, hence the classi�cation task more di¢ cult. The images were �rst

transformed to size of 150� 112 and 8 bit per pixel. 75% of the images (meaning 23 images

of each person) were used for training. Table 4 summarizes the results of the kNN algorithm

on the Yale dataset (detailed results can be found in Appendix 7.2.4). As can be seen, the

Table 4: Performance on Yale dataset.
k 1 3 4 5 6 7 8

Average 98:54 98:54 98:84 99:12 99:1 98:82 98:82
SD 1:75 1:75 1:87 1:30 0:82 1:21 1:21
Worst 95:7 95:7 95:7 97:1 98:5 97:1 97:1

9 10 11 12
98:82 99:12 99:42 99:42
1:21 1:30 1:29 1:29
97:1 97:1 97:1 97:1

13 14 15 16
99:12 99:12 98:82 98:82
1:30 1:30 1:21 1:21
97:1 97:1 97:1 97:1

best results were obtained with k = 6; 11; and 12. The results indicate that the NCD-based

42

Figure 10: Coil100 dataset: images in each column are instances of same class, di¤erent
columns correspond to separate classes.

kNN algorithm can be robust to di¤erences in illumination, despite the noisy data. Both the

average classi�cation accuracy and the standard deviation on the Yale dataset are better than

on the simpler, in terms of within class and between class variances, ORL dataset, however

in cost of smaller number of classes (10 classes in the Yale dataset comparing to 40 in the

ORL) and more training images (23 here and less than 10 in the ORL experiment). The main

result though, is the NCD�s capability of performing highly accurate classi�cation in noisy

conditions as demonstrated here.

4.1.2 Home objects classi�cation: rotated images

The next dataset is a subset of the very large coil100 (Columbia Object Image Library,

http://www.cs.columbia.edu/CAVE) dataset, of 50 classes, where each class consists of 10

3-D images of a certain object. The goal here is to test the NCD-based kNN�s robustness

to rotation: in each class, each image di¤ers in pose of 10 degrees from the next image. An

example of the images in the dataset is shown in Figure 10. A preliminary manipulation of the

images included turning the images to 90� 90 bmp �les. The kNN algorithm was used, with

5 random images of each object used for training and 5 more for testing. Table 5 summarizes

the performance of the kNN on the coil100 dataset, for 8 and 24 bit per pixel images (detailed

results are in Appendix 7.2.5).

Table 5: Performance on coil100 dataset
Bit per pixel nk Best k Average Sd Worst

8 1 97:2 0:7 96
24 1 99:2 0:4 98:8

As one might notice, the results with 24 bit per pixel images are better than with 8 bit per

pixel images. In both cases, however, the kNN achieves relatively high accuracy, and small

standard deviation. Table 6 contains a reference of some classi�cation results from [31] on the

43

Figure 11: Texture dataset: images in each column are instances of same class, di¤erent
columns correspond to separate classes.

same dataset. As can be seen, the number of training instances that we used is less than the

Table 6: [9]�s results on coil100 dataset
Method 8 training images 18 training images 10 degrees rotation
PCA 87:2 96:7 83:2
ICA 87:9 95:5 82:6

SHFDA 94:4 98:9 95:9

number used in [31] although our results are better than those of [31].

To summarize the coil100 experiment, our method turns out to be robust to little rotations

in the point of view (that is, images taken from di¤erent angles), a result that is sometimes

challenging for more complicated learning methods.

4.1.3 Texture Classi�cation

The Ponce research group texture dataset (http://www-cvr.ai.uiuc.edu/ponce) consists of 40

images of each of 25 classes, in jpeg format. This dataset is considered to be quite di¢ cult for

classi�cation experiments, due to its relatively high within class variance, as one can visualy

note in Figure 11. The experiment was conducted on a subset of 15 classes, chosen randomly,

with 75% of the images used for training. The images were �rst transformed to 128� 96 bmp
�les with 8 bit per pixel. Both NCD-based classi�ers were applied to this dataset. In addition,

to analyze the sensitivity of the SVM-anc to its kernel function, the SVM was ran also with

polynomial kernel function instead of RBF kernel. The two kernel functions seem to achieve

similar accuracy, however as the RBF kernel uses a single parameter, and the polynomial

kernel uses 3 parameters, we �nd RBF kernel more convenient for use. As a reference to our

results, we attach results from [27] on the same dataset, using state-of-the-art sparse texture

representation method. Results are summarized in Table 7 (detailed results, as well as SVM

44

Table 7: Texture classi�cation performance
kNN SVM-anc, RBF kernel SVM-anc, poly. kernel [27]�s results

Avg performance 73:2 84:13 83:99 79:2� 92:6
Sd 4:66 4:69 4:98 �
Worst 68:1 78 77:33 �

Figure 12: The USPS dataset (�gure from [48])

parameters can be found in Appendix 7.2.6). Among the two classi�ers, the SVM-anc performs

signi�cantly better than the kNN on this dataset, with higher accuracy and similar standard

deviation. The two kernel functions achieve very similar results, with no more than a slim

di¤erence, in favour of the RBF kernel. [27]�s methods outperform ours, with p-value of 0:073,

however one should keep in mind that the methods in [27] specialize in texture representation

(and will probably not suit other types of data), however the NCD-based methods turn out

to perform reasonably well also in texture classi�cation, with no change of the classi�cation

algorithms.

4.1.4 Failure: Optical Character Recognition (OCR)

The applicability of the NCD-based methods to OCR was evaluated using the USPS dataset.

This dataset (http://cervisia.org/machine_learning_data.php) contains 9298 handwritten dig-

its (7291 for training, 2007 for testing), collected from mail envelopes in Bu¤alo [28]. Each

digit is a 16�16 image. It is known that the USPS test set is rather di¢ cult: the human error
rate is 2:5% [8]. A collection of random test samples is shown in Figure 12. As the original

size of the images is too small for compression, we had to enlarge the images, to allow good

compression, thus we resized each image to 50�50 pixels. The experiment was conducted on a
subset of this large dataset, containing 200 training and 200 testing instances. Both methods

fail to give reasonable accuracy on this dataset, with average performance of 40:0% for the

kNN , 56:4% for the kNN after the division modi�cation (see subsection 4.1.1) and 62:4% for

the SVM-anc (with 20 randomly chosen anchors). As a reference, we used a common feature

extraction method for small images, in which each feature corresponds to a pixel in the image

and the feature�s value is simply the value of the pixel. When creating such feature vectors,

the SVM (with polynomial kernel function) achieved average accuracy of 84:3% on the subset

45

used for our experiment (and 94:41% on the entire USPS dataset). To summarize the OCR

experience, in spite of the successful clustering experiments of [12] with OCR, the methods

employed did not reach a good performance in all our OCR experiments.

Two additional experiments were conducted as follows:

� Using NCD-based kernel: recall that 1
NCD(�;�) is a positive de�nite function (see subsec-

tion 3.4), hence can use as a kernel function. In addition, it�s a function that express

similarity between its two arguments, therefore might naturally be a good kernel. How-

ever, when using it as a SVM kernel on a random subset (of 200 training samples and

200 test samples) we only reached classi�cation accuracy of 41%, worse than when using

the SVM-anc (that is, with RBF kernel).

� Using the anchor method, however when replacing the NCD by another distance func-
tion: as the anchor method can use any distance function (not just NCD), let us see

what accuracy will we get if we replace NCD in the Hamming distance, for example.

De�nition 7 The normalized Hamming distance between two equal sized binary strings

x1; :::; xn, y1; :::; yn is 1
n

nX
i=1

jxi � yij.

Both the hamming distance and NCD of two identical strings will be small (to the

matter of fact, the Hamming distance will be zero, and the NCD will probably be a

small positive number, in range 0:2� 0:4, as we noticed in our experiments). However,
when considering some simple cases, such as two images where one is a shift of the other,

the NCD is supposed to capture the similarity relatively easily rather than the Hamming

distance, that might be quite high. Therefore, we would expect the results with the NCD

to be better than those using the Hamming distance. Surprisingly, while the results of

using the NCD were all below 63%, replacing the NCD by the naive Hamming distance

improved the average accuracy to 80:7%. This surprising result encourages our early

impression that NCD does not perform well in OCR tasks. One optional explanation to

the fair OCR results might be that the representation we chose for the digits (converting

to bmp �les of size 50 � 50) distorted the similarities found by the compressor. Recall
from Section 3 that this representation can be considered as a weak form of feature

extraction. These results might be an example to a case where unsuccessful feature

extraction can insert large amount of bias into the data make the classi�er fail in �nding

true patterns.

All detailed results on the USPS dataset are given in Appendix 7.2.7.

46

Figure 13: Olives from left to right columns: type 1 quality deg. 1, type 1 quality deg. 3,
type 2 quality deg. 3, type 2 quality deg. 4

4.1.5 Real world botanical data: olive classi�cation

The next dataset contained images of olives of various species, taken from [26]. In each species

the olives are manually labeled according to their degree of quality, 2 � 3 degrees for each
species. Though impossible to quantify, it seems that the task of classi�cation in this dataset is

much more di¢ cult than in the previous datasets, as the variance within each class is greater,

while the variance between the di¤erent classes of each type is smaller, as can be seen in

Figure 13. As earlier, a preliminary manipulation of the images was conducted, in which the

dimensions of the images were reduced from 450� 230 pixels to 200� 100 pixels, and to 256
colors (each pixel gets a 8 bit value).

Each of the �rst 5 experiments on this dataset deals with olives of a single species, where

each class refers to a certain degree of quality, and the task was to label the olives correctly

according to the quality class. Results of the �rst 5 experiments for both the kNN algorithm

and the SVM using the anchor method, as well as reference from classi�cation using decision

trees (70%-80% training set in our methods, 50% at most in DT) can be shown in Table 8

(detailed results in Appendix 7.2.8).

Table 8: Olives quality identi�cation performance
SpeciesnClassi�er kNN avg kNN sd SVM-anc avg SVM-anc sd DT avg

1 93:3 4:24 80:45 1:32 97:8
2 88:8 1:42 92:17 2:13 99:5
3 78:6 11:63 82:60 5:54 95:5
4 93:3 5:16 92:85 4:34 97:5
5 81:0 1:31 80:60 3:60 95:3

It can be seen that in our methods the performance of classi�cation has a high amplitude,

from 93:3 in the easiest species (1,4) to 78:6 in the hardest (species 3). In addition, it would be

interesting to note that the results of each of the NCD-based classi�ers have higher correlation

47

with those of the DT classi�er (0:73 for the SVM, 0:66 for the kNN) and lower correlation

with the other NCD-based classi�er (0:46). The two NCD-based classi�ers seem to have

similar overall average performance and standard deviations, with the kNN being better on

3 species and the SVM-anc on the other two. In all 5 cases, the DT classi�er signi�cantly

outperforms both our methods, however, one should be aware of the fact that the input to the

DT algorithm is feature vectors of length 30, created by a human expert after close examination

of each image [26]. In this case, the feature extraction seems to work quite well, though the

extraction requires quite a lot of e¤ort and is time consuming, comparing to the NCD-based

�natural�methods. Here again, this is an example to feature extraction that specializes in this

speci�c input (olives) and classi�cation task (identi�cation of quality degree), in contrast to

the NCD-based methods, that almost do not depend on the speci�c input.

We then built 3 new datasets. In each dataset, each class represents olives of a single

species. The �rst two datasets deal with olives of one degree of quality (1 and 3) with the

task of identifying the species of each olive. In the last dataset each class represented, as in

the former two datasets, a certain species of olives, but contained olives from all degrees of

quality. Results of the kNN algorithm are shown in Table 9 (detailed results in Appendix

7.2.8).

Table 9: Olives type identi�cation performance
Dataset k Average SD

mixed types degree 3 1 91:1 3:11
mixed types degree 1 all 100 0
mixed types all degrees 3 82:8 3:12

As can be seen, the results for the �rst two datasets are relatively good, with no errors on

the second dataset, probably due to the high variance between the classes (di¤erences between

each species, that can be easily captured where the olives are of a good quality). The results

deteriorate for the third dataset, because of two main reasons: �rst, the within class variance

is now greater, as each class contains olives of several degrees of quality rather than a single

one, as in the former two datasets, and second, because of adding degree 4 to the dataset.

Olives of degree 4 are of the worse quality. These olives look quite similar, regardless of their

type, and this fact inserts a large amount of noise to the dataset, by reducing the between

class variance.

4.2 Voices classi�cation

The next series of experiments deals with voice samples. We shall analyze the performance

of the NCD-based classi�cation methods in two di¤erent tasks: speaker identi�cation and

48

recognition of speaker�s emotion. The latter case is an example to a task where feature based

methods face great problems, due to di¢ culties in de�ning and extracting features that might

a¤ect the target values. This part of the work contains a deeper analysis, including comparison

between di¤erent classi�ers and several state-of-the-art methods for dimension reduction. An

analysis of the classi�cation errors is also provided.

The parent dataset used for these experiments is taken from [42]. Each instance in the

dataset is a relatively clean 2� 3 second voice sample, in which one speaker says one sentence
in English. Each instance corresponds to a speci�c emotion, such as: thinking, enthusiastic,

angry, etc. It is important to mention that the samples di¤er both in text and intonation,

however not in volume.

4.2.1 Speaker identi�cation

The �rst experiment with voice samples deals with the task of speaker identi�cation, that is,

to associate each unlabeled test instance with the appropriate speaker. Commonly, speaker

identi�cation experiments are done using versions of GMMs (Gaussian Mixture Models) [37].

The kNN and SVM-anc methods were used, without any preliminary manipulation of the voice

samples. The speaker identi�cation experiment results (for 4-class and 10-class experiments)

are shown in Table 10 (technical details and detailed results are in Appendix 7.2.9). One

Table 10: Speaker identi�cation performance
Di¢ culty 4 speakers 10 speakers
Method SVM-anc kNN SVM-anc kNN
Avg 92:47 80:0 85:2 65:4
Sd 2:67 3:01 2:87 3:51

can notice that the SVM-anc signi�cantly outperforms the kNN in both experiments, with

the kNN�s performance deteriorating severely in the 10-class experiments. The author is well

aware of the fact that GMM classi�ers perform well on almost noiseless speaker identi�cation

experiments, even for much larger number of speakers, however one should notice that no

pre-processing of the input is required here, as well as no modi�cations of the algorithms,

to �t this type of data. Generally speaking, working with NCD has some potential in voice

samples as well.

4.2.2 Emotion recognition

Recognition of human emotions through voice samples is considered to be a relatively com-

plicated task and requires a complex analysis of the voice samples [42]. The main reason is

49

that it seems hard to identify features in the voice sample (that consists from several con-

tinuous signals) such that might be related to the di¤erent emotions. On the other hand, to

human ear the task is quite trivial, and generally one can claim that humans manage with

it successfully. As one of the machine learning goals is to develop systems that are able to

imitate or even outperform human decisions (such as in face recognition, OCR etc.) [34], it

seems natural to deal with this task using machine learning algorithms. Approaching it using

NCD-based methods might have a great potential, due to the fact that the NCD considers

each object as global, rather than as a set of features and extracts features implicitly, (recall

subsection 2.4), hence many of the feature identi�cation, de�nition and extraction di¢ culties

can be �bypassed�.

The dataset for the emotion recognition experiments consisted of 395 voice samples, belong-

ing to two classes, of positive (i.e. happy, content, festive, delighted, grateful, rewarded, ...)

and negative (humiliating, blaming, scolding, correcting, punishing, contradictory,...) emo-

tions. Altogether, the dataset consisted of 187 positive instances and 208 negative instances,

of 3 adult female speakers. As no other results are available on the subset we used, and the

labeling of the samples ("positive" or "negative") can not be absolute, we �rst measured the

human classi�cation performance, as a reference to our results to come. The human perfor-

mance was measured in a 7 participant experiment. As we wouldn�t like the results to be

biased due to the di¤erences in text, rather than in the intonation, 4 of the participants were

children below the age of 10, that do not speak English. The human accuracy measured was

81:3% for all participants and 76:6% for the non English speakers.

Fifty three randomly chosen anchors (from the entire parent dataset, including samples

of male and children speakers) were used by the anchor method to create the feature vector

for each voice sample to be classi�ed. 75% of the instances used for training. We then

made a comparison between 4 di¤erent classi�ers, SVM, ANN, DT and Nearest Centroid (see

subsection 2.7.4 for details), of which the results are summarized in Table 11 (detailed results

and technical details in Appendix 7.2.9). As can be seen, every two classi�ers do not di¤er

Table 11: Emotion recognition performance
classi�er Avg Sd Worst
SVM-anc 73:10 1:67 70:58
ANN-anc 73:69 3:00 70:0
DT-anc 72:31 2:77 68:46
NC-anc 73:10 2:38 69:74

signi�cantly (statistically) in performance. In addition, the NCD-based classi�cation results

are surprisingly close to the non-English speakers human performance. In view of the above

results, we will continue our experiments using the SVM.

50

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3
x 103

component number

ei
ge

nv
al

ue

Figure 14: PCA scree plot: eigenvalues of the covariance matrix. A sharp decrease appears
after the 34Th component.

Reducing the dimensionality of the voice samples Let us see if we can improve the clas-

si�cation results using dimensionality reduction. The original dimension of the instances here

is 53 (as the number of anchors used in the anchor method). We conducted the dimensionality

reduction using 5 state-of-art-techniques (separately): Principal Component Analysis (PCA),

Linear Discriminant Analysis (LDA), Fisher Discriminant Analysis (FDA), Factor Analysis

(FA) and t tests. The �rst four techniques are feature extraction methods, and are brie�y

described in subsection 2.9. The latter is a feature selection method, in which for each feature

we simply perform a t-test to compare its means on the 2 classes, and we withdraw all features

for which the mean di¤erences is not signi�cant in 5% level.

� PCA: After extracting the principal components, one has to determine how many prin-
cipal components should be used for the classi�cation. Figure 14 shows the scree plot

of the eigenvalues correspond to the principal components. Table 12 and Figure 15

show the cumulative variance in the data that is explained by the principal components.

Based on these results, we decided to use the �rst 34 principal components, which explain

altogether 98:4% of the variance of the data.

� DA: Figure 16 shows the distributions of the 2 classes under the discrimination function
found by the LDA. Figure 17 shows scatter plots of the projections of the entire data

51

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

component number

cu
m

ul
at

iv
e

va
ria

nc
e

ex
pl

ai
ne

d

Figure 15: Cumulative variance explained by the principal components

Table 12: Cumulative variance explaind by principal components
Principal components 1 5 10 15 20 25 30

Cumulative variance explained 0:18 0:22 0:36 0:50 0:63 0:76 0:88

35 40 45 50 53
0:991 0:998 9:9997 9:9999 1

(all 395 samples) found by the LDA and FDA. The function computed by the LDA

separates correctly 79:2% of the instances. The one computed by the FDA separates

74% of the instances.

� FA: We used PCA for the extraction of the initial factors and varimax rotation with

Kaiser normalization. The KMO statistic of sampling adequacy was 0:836, meaning

the dataset is factorable, which also was concluded from the relatively high on-diagonal

values and low o¤-diagonal values in the anti image matrix (which was too large to

appear in the appendix). Nine factors were extracted and rotated, explaining 48% of

the total variance. The factors were then reconstructed using regression.

� t tests: 32 features were found to have a signi�cant mean di¤erence over the 2 classes
in 5% level. The remaining 23 features were not selected for classi�cation. Figure 18

presents a visualization of the distributions of example of one feature of each kind over

52

Figure 16: Class distributions under the LDA discriminant function. Label -1 refers to positive
emotion samples.

Figure 17: The projection found by the FDA (left) and LDA (right). The horizontal axis
refers to the (random) number of the instance. The vertical axis refers to the value of each
instance under the discrimination function (projection). Both the class means are closer and
the within class variances is smaller under the FDA discriminant function than under that of
the LDA.

53

Figure 18: Visualization of the distributions of two features over the 2 classes: the vertical
axis refer to the feature values (NCD values). Feature F1 has di¤erent distributions on the
2 classes and was found to have a signi�cant mean di¤erence in the t tests. Feature F2 has
similar distribution over the 2 classes, had no signi�cant mean di¤erenc and was omitted.

the 2 classes.

Classi�cation results of the SVM for all above methods are given in Table 13 (detailed

results in Appendix 7.2.9). The PCA, LDA and the t tests selection method achieved better

Table 13: SVM emotion recognition results after applying dimensionality reduction techniques
Method Avg Sd Worst
PCA 78:15 1:57 76:47
LDA 75:84 4:16 70
FDA 71:08 2:10 68:06
FA 70:58 4:52 64:7
t tests 74:95 4:30 69:74

reference: original 53 features 73:10 1:67 70:58

performance than using the original features. PCA yielded the best results, even above the

non English speaker human performance. FDA and FA achieved worse accuracy than with

the original dimensionality, however not signi�cantly. It might be of interest to mention that

in both the PCA, LDA and FDA we got signi�cantly better results without standardizing the

original features.

54

Confusion and types of errors Table 14 shows a confusion analysis of a typical run, using

PCA extraction (119 test instances, overall accuracy of 76:4%). This implies the following

Table 14: Confusion matrix of a typical run using PCA
true emotionnclassi�ed as positive negative

positive 42 15
negative 13 49

probabilities:

1. p1 = p(classifying positive emotion sample as positive emotion sample)= 42=57 = 0:736

2. p2 = p(classifying positive emotion sample as negative emotion sample)= 15=57 = 0:263

3. p3 = p(classifying negative emotion sample as positive emotion sample)= 13=62 = 0:209

4. p4 = p(classifying negative emotion sample as negative emotion sample)= 49=62 = 0:79

5. p5 = p(a sample that was classi�ed as positive emotion is truly positive)= 42=55 = 0:763

6. p6 = p(a sample that was classi�ed as positive emotion is truly negative)= 13=55 = 0:236

7. p7 = p(a sample that was classi�ed as negative emotion is truly positive)= 15=64 = 0:234

8. p8 = p(a sample that was classi�ed as negative emotion is truly negative)= 49=64 = 0:765

As can be seen, the accuracy for negative emotion samples is slightly better than on

good emotion samples, however the di¤erences are not signi�cant at 95% con�dence level (the

con�dence interval for the di¤erences of correct classi�cation probabilities between positive and

negative samples, (p4�p1) is [�0:098; 0:206], containing zero, calculations in Appendix 7.2.9).
The probability that a classi�cation is correct (p5, p8) is almost identical for both classes.

Overall, as we might want, the probabilities are su¢ ciently symmetric, hence the di¤erences

are acceptable.

Generalization In order to test the model�s capability to generalize, the dataset was ran-

domly divided to training and test sets and 4 separate runs were performed: in the �rst run

the training set consisted of samples of all 3 speakers (denoted as p6, r6, z6). In each of the

other runs, a di¤erent speaker was omitted from the training set. The test set was unchanged

in all 4 runs and consisted of samples of all 3 speakers: 35 p6 samples, 27 r6 samples and 24

z6 samples. In each run we analyzed the accuracy rate for each speaker. Table 15 shows the

accuracy (%) achieved for each speaker in each of the 4 runs. Note that in all runs the accu-

55

Table 15: Emotion recognition generalization performance
training speakers p6 (1) r6 (2) z6 (3) total
all speakers (a) 77:1 96:2 66:6 80:1
p6 omitted (b) 77:1 92:5 58:3 76:68
r6 omitted (c) 71:4 92:5 58:3 74:36
z6 omitted (d) 82:8 92:5 54:1 77:83

racy has some major di¤erences on di¤erent speakers, from performance of over 90% for r6 to

much worse accuracy for z6. One can also see that the overall accuracy slightly deteriorates

whenever a speaker is omitted from the training set. It is interesting to note that the omission

of z6 improves the accuracy on p6 samples. In addition, the omission of p6 deteriorated the

classi�cation results of r6 and z6, but not those of p6. However, our interest now is to check

whether there are dependencies between the omission from the dataset and the errors for each

speaker. Formally, we would like to perform the hypothesis test:

Ho : 8ij; pij = pipj
H1 : 9ij; pij 6= pipj

for i 2 fa; b; c; dg; j 2 f1; 2; 3g. The chi square statistic is 0:459 < 19:67 = �211;0:95, meaning
we will not reject H0 and say that there are no interactions between the speaker omission and

the errors for each speaker. Similar result was obtained when comparing every proportion

from one of the bottom 3 rows in Table 14 to the equivalent proportion in the �rst row (all

95% con�dence intervals of the absolute proportion di¤erences contained zero). Calculations

for all statistical tests can be found in Appendix 7.2.9).

4.2.3 Expansion to more speakers and more emotions

With the above results, let us now expand our emotion recognition experimentation in the

following manner: �rstly, we enlarge the number of speakers from 3 to 10, among which are 3

adult men, 3 adult women, 2 teenagers and 2 children (one of each sex). Secondly, we perform

a series of 5 2-class experiments, where instead of positive and negative classes, we will now

try to separate between classes, di¤ering in a more gentle way. The class de�nitions, as all

samples, are taken from [42]. The classes and particular speci�cation of each class in our new

series of experiment are as follows:

� absorbed: absorbed, engaged, committed, concentrating, focused, thorough, involved,
altogether 34 instances

� thinking: fantasizing, thinking, thoughtful, brooding, choosing, deciding, wool-gathering,

56

calculating, comprehending, altogether 80 instances

� disagree: argumentative, confrontational, contradictory, contrary, disagreeing, disap-
proving, disinclined, altogether 40 instances

� excited: alert, dynamic, lively, exhilarated, excited, inspired, invigorated, adventurous,
altogether 47 instances

� interested: asking, curious, fascinated, probing, questioning, quizzical, scrutinizing,
interested, altogether 47 instances

� sure: adamant, assertive, con�dent, sure, convinced, decided, knowing, determined,
resolved, altogether 59 instances

� unsure: confused, clueless, faltering, hesitant, indecisive, unsure, undecided, insecure,
ambivalent, puzzled, ba ed, considering, debating, altogether 76 instances

We used 78 anchors, chosen randomly, and FDA to reduce the dimension of the input. The

results of the 5 experiments are given in Table 16. In all experiments, the average accuracy

Table 16: Emotion recognition performance on 10 speakers and several emotions
Experiment average sd worst

absorbed - disagree 79:09 9:42 68:18
absorbed - thinking 73:71 4:23 68:57
sure - unsure 75:234 3:98 69:04

interested - excited 71:72 5:66 65:51
absorbed - excited 77:694 6:32 69:23

was in between 70% and 80%. It is interesting to note that where the 2 classes re�ect emotions

that di¤er signi�cantly, such as: absorbed - disagree, sure - unsure, absorbed - excited, the

accuracy is higher than where the di¤erence between the emotions is much more gentle, such as

for absorbed - thinking and interested - excited. In terms of variance, the accuracy di¤erences

may derive from di¤erences in the between class variance: it would be trivial to assume that

the between class variance in the absorbed - excited experiment, for example, is much higher

than in the interested - excited experiment, Thus, the results make some sense.

Summary of the emotion recognition experiments Emotion recognition experiments

are a classic example to a domain in which it is di¢ cult to de�ne features that might a¤ect

the labeling of the samples. We showed that using the NCD and the anchor method one can

classify voice samples according to emotions with similar accuracy to human performance.

We got similar classi�cation accuracy using 4 di¤erent classi�ers. Accuracy was improved

57

Figure 19: The VAS pain ruller, uses for a patient to de�ne the level of pain he feels.

when applying dimensionality reduction methods. In case of the PCA, we got better results

than those of the non English speakers in our human experiment. An analysis of the errors

showed that both types of errors occur evenly. In the generalization experiments, we showed

that testing the model on speakers for which the SVM was not trained, does not a¤ect the

accuracy for each speaker. A minor deterioration in the performance was noticed whenever

a speaker is omitted however the statistical results encourage us to assume that this may

not be the case if the dataset would contain more than 3 speakers, as in the above emotion

recognition experiments. The experiment was then expanded to include more speakers, and

more emotions. The results remain in [70% � 80%] range, with higher accuracy when the
emotions di¤er more keenly.

4.3 Pain detection through ECG signals

Pain is an individual subjective experience that is ascribed to chemical or structural change

in tissue, that is translated to a feeling of discomfort by the central neuro-system, with the

intention to warn the body from the damage caused to that tissue. The formation mechanism

of pain is assumed to be very complex. Pain gains importance in the medical community,

however in contrast to other measures that can be objectively measured such as blood pressure,

heartbeat, fever and breathing, pain, by its de�nition, is a subjective feeling that can not be

quanti�ed in objective means [17]. There are some tools aiming to create uniform evaluation

of pain by patients and medical sta¤ [15]. The most commonly used is the Virtual Analog

Score (VAS), that is based on the patient�s self evaluation of the pain it su¤ers from, by the

time of his examination, as shown in Figure 19. This is a simple tool, that gives no more

than a super�cial evaluation of the patient�s state. More complex tools, such as the Pain

Management Index (PMI)and Brief Pain Inventory (BPI), are considered to be too awkward

and are not in vast use by medical sta¤ [15].

It is known that pain causes an increase in heart rate, and also in the heart rate variability

[43]. In the past years, several spectral analysis methods and other mathematical methods

for signal processing have been applied to ECG (Electrocardiogram) signals, which describes

the electrical activity in ones heart, in order to investigate the possibility of detection of pain

58

a b

Figure 20: An example of ECG signal (a) and its �ducial measurements that use for extracting
features (b). No subset of the commonly extracted features can capture existence of pain well

in patients. A common approach is to analyze the R-R interval, which re�ects the heart rate

variability (HRV). Some of the �ducial commonly extracted features of the ECG signal are

shown in Figure 20. Although traditional methods such as Fourier and wavelets transforms

can be e¢ cient tools for denoising and identifying principal components and patterns in the

signal, the common understanding is that the above methods can give only limited results, due

to the fact that the ECG signal might embed sharp changes in very short time intervals [1].

As far as the author knows, in the �eld of biomedics there is no automatic way in clinical use

that is capable of detecting the existence and type of pain that patients feel. This di¢ culty

to that specialized methods for ECG analysis face in detecting pain, due to the fact that it is

hard to identify ECG features that may explain the existence of pain, might be an advantage

to NCD-based methods, just to spite their generality: considering the ECG signals globally

and performing implicit or even no feature extraction.

To test our hypothesis we recorded a dataset that consisted of ECG signals of two patients.

The signals were recorded in the pain clinic of Soroka hospital. We recorded signals both when

a patient was in rest, and with one of his hands inside a container of ice-cold water, a popular

method for generating pain [32], [46]. The recorded signals were then smoothed by rescaling

each data point to an integer value in range to [0; 255]. The instances for the experiment

were 10 seconds pieces of the recorded signals (with no intersection between every two pieces).

The instances were labeled according to the level of pain the patient was feeling by the time

of recording the signals: no_pain, increasing_pain and stable_pain. We conducted 2 and

3-class experiments, each experiment is conducted on samples from a single patient. 75% of

59

the samples used for training. Technical data and results of both our methods on two patients

are shown in Table 17 (detailed results in Appendix 7.2.10). Due to technical di¢ culties in

Table 17: Pain detection data and performance
patient p1 p2

total # of instances 34 30
of classes 2 3
classi�er kNN SVM-anc kNN SVM-anc
average 93:75 95:2 93:33 97:5
sd 5:59 6:5 9:12 5:5

collecting the data, only a relatively small number of instances could be recorded. However,

despite the small number of training instances, in all cases results seem to be surprisingly high,

though also the standard deviations seem to be quite high. This experiment was conducted on

two patients only- an extremely small extent, hence can not be statistically valid, of course,

and much more intensive experimentation is needed to validate these preliminary �ndings.

However, we �nd these results most important, because samples in which the patients felt

pain were practically separated from samples in which the patients did not feel pain, and the

feasibility of NCD-based methods to detect pain through ECG signals in automatic means

has been proved. A lot of work still needs to be done to validate the results, however, as for

now, results are quite promising and the ECG experiments might therefore be considered as

this thesis�"killer application".

60

5 Summary

5.1 Discussion

The NCD enables one to classify objects without extracting features. This unique method

has received only limited attention in the literature, although featureless representation of

objects is a promising area of research in pattern recognition and data mining. However,

are the NCD-based classi�cation methods really feature-free? Allegedly, no choice of speci�c

features of the objects with which the comparison will be done was made, and this fact might

introduce smaller bias to the classi�cation algorithm in comparison to cases where a speci�c

set of features is de�ned and chosen. In other words, no explicit features of the objects were

used in our classi�cation methods: the kNN algorithm did not make any use of feature vectors

and the features extracted by the anchor method express compression distance to some �xed

anchors and have no physical sense about the object itself. In addition, the NID and NCD

of a pair of objects re�ect their distance under the computable feature under which the two

objects are most (in case of NID) or very (in case of NCD) similar, however, the uniqueness of

these metrics is that this feature remains unknown and might be di¤erent for di¤erent pairs of

objects. Let us give a closer examination at the so-called featurelessness and unbiasness of the

NCD-based methods: recall from subsection 2.2.2 that the Kolmogorov complexity of a binary

string x is de�ned in relation to a speci�c computation model, i.e., universal Turing machine,

K�(x). Similarly, the NCD of a pair of objects depends on the speci�c compressor that is used

for the computation (normalized compression distances of a given pair of objects computed

by di¤erent compressors will probably not be the same), thus the choice of compressor itself

introduces some bias: every practically usable compressor will be blind to some possibly

relevant features of the data. If that feature occurs in the data, it makes the data highly

regular and compressible (low Kolmogorov complexity) but the compressor that is used will

not compress it (large C-complexity). Di¤erent compressors will thus miss out on di¤erent

features. Thus, implicitly, the choice of compressor amounts to the choice of a certain set of

features. Still, this set of features is very large, so it is true that no features must be manually

selected. However, the method is still not totally "feature free". A similar argument is valid

regarding the choice of �le representation, for example, our choice of using image �les in bmp

format. This choice is equivalent to a kind of feature extraction. This indeed occurs in a weak

way, comparing to methods that require explicit speci�cation of every attribute, however, it

also turns the feature free-ness of the NCD under some reservations.

Feature free methods might be less biased in the sense that they would limit our ability to

impose our prejudices, expectations, and presumptions on the problems and hand, and would

let the raw data manifest itself. In addition, feature free methods might prevent the problem of

61

reporting spurious patterns that do not really occur in the data, that can happen, for example,

when generating new features out of original inputs by feature extraction methods. Indeed,

this sounds promising. However, this concept represents a "data mining" view that is quite

controversial in the machine learning community. In fact, many machine learning researchers

might acknowledge that nothing can be learned without introducing some bias; this quite

opposite view, is made most explicit in the subjective Bayesian school, but it is presented also

in other paradigms. That said, you might do better job by making more explicit what sort of

bias is acceptable and what is not. Putting it di¤erently, the lack of parameters, while avoiding

prejudices, also avoids the possibility to use domain knowledge in a bene�cial way. NCD-based

methods are truly general, which is a positive thing, however they might tend to fail to achieve

the state-of-the-art in any given domain, much less to improve it, so one can see only limited

consolation in the fact the NCD is feature free and relatively easy to apply. It was indeed the

case in our olives, OCR and speaker identi�cation experiments, where the general NCD-based

methods achieved reasonable accuracy though were not comparative to the domain-specialized

methods. However, we haven�t noticed it in the Yale and Coil100 experiments, for instance,

where the NCD-based methods achieved high accuracy and outperformed several specialized

techniques. Nevertheless, a major exception for this approach is the case where it is rather

di¢ cult to de�ne and extract features that might explain the target values (labeling), such as

in the domains of emotion recognition and pain detection, where NCD-based methods might

have an advantage over specialized methods, just to spite their being such general methods.

At the technical level, some issues should be taken under consideration. First, when using

the anchor method, it is not obvious how many anchors should be used, and which speci�c

choices of anchors can be made to increase the classi�cation accuracy. We did not obtain

a deep insight about which anchors should be used, however our results, as those of [10]

show that random anchors work well most of the time. Determining the number of anchors

can be ignored, if one uses dimensionality reduction methods such as PCA, where one can

initially choose a large number of anchors and then choose as few principal components as

is needed to explain the desired percentage of overall variance, or DA. Second, in image

classi�cation experiment, the question of how to select 256 colors in the denoising process has

several answers. In the image experimentation, we used an automatic choice made by the

Fotobatch software, however, one should be aware of the fact that there are many ways for

color selection, and depending on the speci�c dataset one is working with, some of them might

probably be better for classi�cation. Third, the division modi�cation of the kNN algorithm

for images improved the classi�cation accuracy in both the ORL and OCR experiments. A

possible explanation might be that by dividing each image to 4 parts and working with 4

independent datasets, one reduces the within class variance, and increases the between-class

62

variance, hence eases the classi�cation. However, as more NCD calculations are made, this

modi�cation increases the running time signi�cantly, making it not practical for large datasets,

or large sized images. In addition, this modi�cation was found to improve classi�cation results,

however, there are domains, such as our olive dataset, on which this modi�cation might not

work properly. Running time should generally be an important issue when running NCD-

based algorithms, as compression is a time consuming computation process. Fourth, in our

pain detection experiment, despite our success to separate ECG samples in which the patient

felt di¤erent types of pain from each other, one can not yet guarantee that such method

could identify pain in ECG samples, and separate it from other factors, like excitement of

the patient, for example. However, one can use it to detect changes relatively to patients rest

state.

The main criticism of the NCD approach is that in spite of the impressive experimental

results, such as those in [12], [30], [16] and [24], beyond the basic theory (about universality

of the incomputable NID distance), there is basically only experimental work. The research

lacks analysis of why the method works or fails, and when one may expect whichever outcome.

This di¢ culty appears also in this work: the present study contributes to the knowledge base

by providing positive and negative examples, but despite our results, it seems hard to provide

a more analytic discussion about the �ndings, as in the case of choosing the anchors, for

example, and investigate to what extent the current general purpose compression tools can

be of use in machine learning tasks of a much narrower scope.

5.2 Conclusions and further research

This thesis applies the normalized compression distance similarity metric, implemented using

general-purpose compression tools, to classi�cation problems in a variety of domains. We

attempt to demonstrate how powerful the concept is, and its ability to succeed where explicit

feature extraction methods fail. As far as the author knows, no such extensive NCD-based clas-

si�cation experimentation is documented in the current literature. The experimental results

are reasonably satisfying and show a great potential on a wide range of problems, especially

if one takes into account the small amount of preprocessing compared to other methods i.e.,

no explicit feature selection and extraction. The performance of the NCD based methods was

often found to be competitive to the performance of highly specialized, tailored methods that

often rely on feature extraction subroutines. In the face recognition experiments the kNN

algorithm performed competitively to several state-of-the-art face recognition methods, and

achieved high accuracy also where the illumination di¤ers among the images. In addition, a

sensitivity analysis of di¤erent training set sizes was given and a modi�cation of the kNN al-

gorithm that improved the accuracy in the ORL experiment was presented. In the experiment

63

on the coil100 dataset, kNN algorithm outperformed several image classi�cation methods and

showed robustness to slight rotation of the objects in the image. The capability of the NCD-

based methods to classify textures was examined and the SVM-anc was found to perform

comparatively to a specialized texture classi�cation method. The texture dataset was also

used to compare the performance of polynomial kernel function and RBF kernel when using

features extracted by the anchor method, and found that they both achieved similar results,

however as RBF kernel uses less parameters, we �nd it more convenient for use. In the OCR

experiment, the NCD-based methods failed to achieve reasonable performance. Additional

results on the OCR dataset showed that the performance of a NCD-based kernel function for

SVM achieves worse performance than using RBF kernel and the anchor method, and that the

naive Hamming distance surprisingly achieves better classi�cation accuracy than the NCD,

as a measure of dissimilarity in OCR. An optional explanation to the fair results in our OCR

experiments was the prior manipulation in which the images size was signi�cantly enlarged.

This manipulation may had a destructive e¤ect on the capability of the NCD to track true

similarities between the images. The performance of the NCD-based methods on real world

biological data was examined, where they achieved reasonable performance, however worse

than using pre-de�ned and manually extracted features. In the voice samples experimental

section, results of the speaker identi�cation experiments showed that NCD based methods can

be successfully applied for this task. In addition, the potential of using NCD-based classi�-

cation methods on domains in which it is di¢ cult to de�ne and extract features that might

be related to the labeling of the instances was demonstrated. In such cases, the NCD can be

used in discovering unknown features in which the data can be similar. Two such domains

are emotion recognition through voice samples and pain detection through ECG signals. In

the emotion recognition experiments, the SVM-anc method achieved similar performance to

human performance, and even outperformed human accuracy of non English speakers. A com-

parison between several classi�ers to be used with the anchor method was performed and all

achieved similar performance, however the SVM was found to be the most convenient one to

use. Further, we integrated the NCD-methods with several dimensionality reduction methods

and found that PCA turns to be the most e¤ective in the emotion recognition experiment.

In addition, error percentages on the classes were examined and found to be similar and the

model built in the experiment showed a good generalization ability, i.e., it can classify samples

of a speaker it wasn�t trained on with similar accuracy to samples of speakers on which it was

trained. The experiment was then expanded to comprise more speakers and more emotions.

The results revealed that NCD-based classi�cation can be applied also to greater number of

speakers, and more emotions, with accuracy similar to the positive-negative experiment, how-

ever depending on how sharply do the two emotions di¤er. In the ECG experiment we showed

64

that NCD-based methods can be used to classify ECG samples according to the type of pain

the patient was feeling during recording the signal. This result is important due to the fact

that there is no automatic tool in biomedicine that can tell whether a patient feels pain.

Except for their being feature free, in a sense, another major advantage of NCD-based

methods is the very little, if any at all, manipulation of the input that is necessary. Among

the 2 classi�cation algorithms applied in this work, the SVM, incorporated with the anchor

method, appears to be more robust and achieves better performance than the simpler kNN. It

might be interesting to note that several results imply that NCD-based classi�ers have some

sort of "human capabilities": this was the case in the emotion recognition experiment, where

the results of the SVM-anc classi�er were very close to the human performance, and where the

classi�cation accuracy in the expanded experiment deteriorated as the two compared emotions

were intuitively closer. Another example is taken from the image classi�cation experiments,

where the kNN�s performance was reasonable, as long as the class di¤erences could also be

captured by human eye, see Remark 11, excluding the OCR results.

Though the ideas here are few years old, the documented experimentation is not abundant.

We believe that there is great potential embedded in NCD-based learning methods, due to

the robustness of the methods, as well as they being general and less biased than methods

that require explicit feature selection and extraction.

We believe that this empirical work can be a step toward a more global understanding of

when NCD-based methods work or fail. An ongoing research is being conducted in the emotion

recognition area, in which we expand the classi�cation experiment to 9 distinct emotions.

Another ongoing research is being done in the pain detection area, in which we aim to found

our results by collecting more samples, from more patients. Among optional areas for future

research in NCD-based learning methods are developing a predictive ability to the success of

NCD-based classi�cation and clustering, together with ways to optimize the performance of

NCD-based methods, for example by an analysis of an intelligent choice of anchors (apart

from dimensionality reduction methods), or �nding the best (known) compressors to be used

for NCD calculations, depending on the type of data. Running time considerations, that were

not taken in this work, have also a major signi�cance in NCD experiments and minimizing

running time is also an important practical goal.

65

References

[1] M. Aharon, M. Elad, and A.M. Bruckstein, "On the Uniqueness of Overcomplete Dictio-

naries, and a Practical Way to Retrieve Them", Journal of Linear Algebra and Applica-

tions, vol. 416, 2006, pp. 48-67.

[2] M. Anthony, and P. L. Bartlett, Neural Network Learning: Theoretical Foundations,

Cambridge University Press, 1999.

[3] S. Arora, and B. Barak, Complexity Theory: A Modern Approach, To be published by

Cambridge University Press, around March 2009.

[4] R. Ash, Information Theory, Dover Publications, New York, 1990.

[5] T. Bell, J. Cleary, and I. Witten, "Data Compression Using Adaptive Coding and Partial

String Matching", IEEE Transactions on Communications, vol. 32, no. 4, 1984, pp. 396�

402.

[6] C.H. Bennet, P. Gacs, M. Li, P.M.B. Vitanyi, and W. Zurek, "Information Distance",

IEEE Transactions on Information Theory, vol. 44, no. 4, 1998, pp. 1407-1423.

[7] C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995.

[8] J. Bromley, and E. Sackinger, Neural Network and k-Nearest Neighbor Classi�ers., Tech-

nical Report 11359-910819-16TM, AT&T, 1991.

[9] M. Burrows, and D.J. Wheeler, "A Block-Sorting Lossless Data Compression Algorithm",

Technical Report 124, Digital Systems Research Center, May 1994.

[10] R. Cilibrasi, Statistical Inference Through Data Compression, Ph.D. thesis, Institute for

Logic, Language and Computation, Universiteit van Amsterdam, Holland, 2007.

[11] R. Cilibrasi, R. de Wolf, and P.M.B. Vitanyi, "Algorithmic Clustering of Music Based on

String Compression", Computer Music Journal, vol. 28, no. 4, 2004, pp. 49-67.

[12] R. Cilibrasi, and P.M.B. Vitanyi, "Clustering by Compression", corrected version of IEEE

Transactions on Information Theory, vol. 51, no. 4, 2005, pp. 1523-1545.

[13] R. Cilibrasi, and P. Vitanyi, "A New Quartet Tree Heuristic for Hierarchical Clustering",

http://arxiv.org/abs/cs/0606048.

[14] R.L. Cilibrasi, and P.M.B Vitanyi, "The Google Similarity Distance", IEEE Transactions

on Knowledge and Data Engineering, vol. 19, no. 3, 2007, pp. 370-383.

66

[15] C.S. Cleeland, "Assessment of Pain in Cancer Measurement Issues", Advances in Pain

Research Therapy. vol. 16, 1990, pp. 47-55.

[16] C. Costa Santos, J. Bernardes, P.M.B. Vitanyi, and L. Antunes, "Clustering Fetal Heart

Rate Tacings by Compression", Proc. 19th IEEE Symp. Computer-Based Medical Sys-

tems, 2006, pp. 685-690.

[17] M.P. Davis, and D. Walsh, "Cancer Pain: How to Measure the Fifth Vital Sign", Cleve-

land Clinic Journal of Medicine 2004, vol 71, no.8, pp. 625-632.

[18] R. De Maesschalck, D. Jouan-Rimbaud and D. L. Massart, "The Mahalanobis Distance"

,Chemometrics and Intelligent Laboratory Systems, vol. 50, no. 1, 2000, pp. 1-18.

[19] R. O. Duda, P.E. Hart, and D.G Stork, Pattern Classi�cation, John Wiley and sons, New

York, 2001.

[20] C. L. Giles, and T. Maxwell, "Learning, Invariance, and Generalization in High-Order

Neural Networks", Applied Optics, vol. 26, 1987, pp. 4972-4978.

[21] J.F. Hair, W.C. Black, B.J. Babin, R.E. Anderson, and R.L. Tatham, Multivariate Data

Analysis, Pearson Prentice Hall, New Jersey, 6th edition 2006.

[22] J. Han, and M. Kamber, Data Mining: Concepts and Techniques. Morgan Kaufmann,

2006.

[23] P. Howland, J. Wang, and H .Park, "Solving the Small Sample Size Problem in Face

Recognition using Generalized Discriminant Analysis", Pattern Recognition, vol. 39, 2006,

pp. 277 �287.

[24] E. Keogh, S. Lonardi, and C.A. Rtanamahatana, "Towards Parameter-Free Data Min-

ing", In: Proc. 10th ACM SIGKDD Int�l Conf. Knowledge discovery and data mining,

Seattle, Washington, USA, August 22-25, 2004, pp. 206-215.

[25] L.G. Kraft, A device for quantizing, grouping and coding amplitude modulated pulses,

Master�s thesis, Dept. of Electrical Engineering, M.I.T., Cambridge, Mass., 1949.

[26] S. Laykin, On-Line Multi-Stage Classi�er for Agricultural Sorting Systems, Ph.D. Thesis,

Dept. of Industrial Engineering & Management, Ben Gurion University of the Negev,

Israel, 2006.

[27] S. Lazebnik, C. Schmid, and J. Ponce. "A Sparse Texture Representation using Local

A¢ ne Regions", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

27, no. 8, 2005, pp. 1265-1278.

67

[28] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L.

D. Jackel, "Backpropagation Applied to Handwritten Zip Code Recognition", Neural

Computation, vol. 1, no. 4, 1989, pp. 541�551.

[29] M. Li, and P.M.B. Vitanyi, An introduction to Kolmogorov Complexity and its Applica-

tions, Springer-Verlag, New York, 2nd Edition 1997.

[30] M. Li, X. Chen, X. Li, B. Ma, and P.M.B. Vitanyi, "The Similarity Metric", IEEE

Transactions on Information Theory, vol. 50, no.12, 2004, pp. 3250-3264.

[31] X. Liua, A. Srivastavab, and D. Wang, "Intrinsic Generalization Analysis of Low Dimen-

sional Representations", Neural Networks, vol. 16, no. 5-6, 2003, pp. 537�545.

[32] M.S. Menkes, K.A. Matthews, D.S. Krantz, U. Lundberg, L.A. Mead, B .Qaqish, K.Y.

Liang, C.B. Thomas, and T.A. Pearson, "Cardiovascular Reactivity to the Cold Pressor

Test as a Predictor of Hypertension", Hypertension, vol. 14, 1989, pp. 524-530.

[33] D. Michie, D.J. Spiegelhalter, C.C. Taylor, and J. Campbell , Machine Learning, Neural

and Statistical Classi�cation, Ellis Horwood Upper Saddle River, New Jersey, 1995.

[34] T. M. Mitchell, Machine Learning. McGraw-Hill, New York, 1997.

[35] K-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf, "An Introduction to

Kernel-Based Learning Algorithms", IEEE Transactions on Neural Networks, vol. 12,

no. 2, 2001 pp.181-201.

[36] W. B. Powell, Approximate Dynamic Programming: Solving the Curses of Dimensional-

ity, Wiley-Interscience, 2007.

[37] D. A. Reynolds, "Speaker Identi�cation and Veri�cation using Gaussian Mixture Speaker

Models", Speech Communication, vol. 17, no. 1-2, 1995, pp. 91-98.

[38] D. Salomon, Data Compression: the Complete Reference, Springer, New York, 2000.

[39] B. Schölkopf, Support Vector Learning, Oldenbourg-Verlag, Munich, 1997.

[40] B. Schölkopf, and A. J. Smola, Learning with Kernels, MIT Press, 2002.

[41] C. E. Shannon, "A mathematical Theory of Communication", Bell Systems Technical

Journal, vol. 27, 1948, pp. 379�423 and 623�656.

[42] T. S. Shikler, Le Ton Fait la Musique: Analysis of Expressions in Speech, Ph.D. disser-

tation, Computer Laboratory, University of Cambridge, United Kingdom, 2007.

68

[43] R. J. Storella, Y. Shi, D. M. O�Connor, G. H. Pharo, J. T. Abrams, and J. Levitt,

"Relief of Chronic Pain May Be Accompanied by an Increase in a Measure of Heart Rate

Variability", Anesthesia Analgesia, vol. 89, 1999, pp. 448�450.

[44] M. Turk, and A. Pentland, "Eigenfaces for Recognition", Journal Of Cognitive Neuro-

sciences, vol. 3, no. 1, pp. 1991, 71-86.

[45] S. Wehner, "Analyzing Network Tra¢ c and Worms using Compression", Journal of Com-

puter Security, IOS Press, vol. 15, no. 3, pp. 303-320.

[46] D.L. Wood, S.G. Sheps, L.R. Elveback, and A. Schirger, "Cold Pressor Test as a Predictor

of Hypertension", Hypertension, vol. 6, 1984, pp. 301-306.

[47] B. Zhang, and S. N. Srihari, "Fast k-Nearest Neighbor Classi�cation Using Cluster-Based

Trees", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 4,

2004, pp 525-528.

[48] H. Zhang, A. C. Berg, M. Maire and J. Malik, "SVM-kNN: Discriminative Nearest Neigh-

bor Classi�cation for Visual Category Recognition", IEEE Computer Society Conf. Com-

puter Vision and Pattern Recognition, vol. 2, 2006, pp. 2126-2136.

[49] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, "Face Recognition: A Literature

Survey", ACM Computing Surveys (CSUR), vol. 35 , issue 4, 2003, pp. 399-458.

69

6 Papers by U. Shaham

1. U. Shaham and Y. Edan, "Classi�cation using Normalized Compression Distance", Proc.

Int�l Conf. Arti�cial Intelligence and Pattern Recognition, Orlando, Florida, USA, July

7-10, 2008, pp.63-69.

70

7 Appendices

7.1 Universality of the NID [30]

The NID is universal in the sense that if objects are similar according to a particular com-

putable feature, then they are at least that similar under the NID. The proof shows that the

NCD is at least as small as any distance in the wide class of computable normalized distances

(recall the normalization condition from 2.3.3). This class is so wide that it will capture

everything that can be remotely of interest.

Theorem 1 : The NID minorizes every computable normalized distance f(x; y) by

NID(x; y) � f(x; v) +O
�
1

K

�
where K = minfK(x); K(y)g.

Proof. : Let x; y be a pair of objects and let f be a computable normalized distance.
Let f(x; y) = e. Without loss of generality assume that K(x) � K(y). Then, given x we

can recursively enumerate the pairs (x; v) such that f(x; v) � e. Note that the enumeration
contains (x; y). By the normalization condition, the number of pairs enumerated is less than

2eK(x)+1. Every such pair, in particular (x; y), can be described by its index of length eK(x)+1

in this enumeration. Since the Kolmogorov complexity is the length of the shortest e¤ective

description, given x, the binary length of the index plus an O(1) bit program to perform the

recovery of y must at least be as large as the Kolmogorov complexity, which yields

K(y j x) � eK(x) +O(1)

K(x) � K(y), hence
NID(x; y) =

K(y j x)
K(y)

and substitution gives

NID(x; y) =
K(y j x)
K(y)

� eK(x) +O(1)

K(x)
� f(x; y) +O

�
1

K(x)

�

71

7.2 Detailed results

7.2.1 ORL dataset: E¤ect of changing image size and number of colors

Table 18 shows the average performance of the kNN algorithm on the AT&T ORL dataset,

using 70% of the images for training set, for di¤erent values of k. The original image size is

92 � 112. One can notice here that k = 1 had the best results among all values of k on this

Table 18: E¤ect of number of colors and image size
Image size Bit per pixel 1NN 3NN 4NN 5NN 6NN 7NN
41� 50 8 93:3 91:6 90:8 90 90:8 90
41� 50 32 92:5 89:1 91:6 88:3 85 82:5
57� 70 8 95 91:6 91:6 90:8 90:8 90
57� 70 32 95 95 95:8 92:5 91:6 90
74� 90 8 95:8 91:6 90 90 87:5 87:5
74� 90 32 96:6 96:6 93:3 89:1 89:1 84:1
98� 120 8 98:3 91:6 90 88:3 86:6 82:5
98� 120 32 98:3 95:8 95:8 90:8 90:8 86:6

dataset. When analyzing only the results for k = 1, we can further see that the results are

generally better as the size of the image size is closer to the original size, meaning that some

meaningful information is lost when reducing the size of the image. For a given image size,

the accuracy using true color (32 bit per pixel) is slightly better than using 256 colors (8 bit

per pixel), however, as it is only a slight di¤erence, and using true color images increases the

size of the image �le signi�cantly, making its compression very time consuming, we decided

to continue our experiments on this dataset using images of the original sizes, and 256 colors.

7.2.2 ORL dataset: E¤ect of di¤erent numbers of training images

Table 19 shows the performance of the kNN algorithm on the ORL dataset, for di¤erent sizes

of training set. One can see that here again, k = 1 gives the best accuracy. In addition, the

algorithm reaches its best accuracy only for above 50% training set (meaning 5 images of each

person).

7.2.3 ORL dataset: kNN division modi�cation

Table 20 shows the results of 5 runs using the modi�ed kNN on the ORL dataset, with 7

training images per person.

72

Table 19: E¤ect di¤erent values of k and training set percentage
Training images 1NN 3NN 4NN 5NN 6NN 7NN 8NN 9NN

1 56:3 � � � � � � �
1 57:77 � � � � � � �
3 85 80 � � � � � �
3 80 76:07 � � � � � �
5 94 88 86:5 83 � � � �
5 90 87 85:5 82:5 � � � �
5 92:5 89:5 87 83:5 � � � �
5 93:5 91:5 91 86 � � � �
7 98:3 91:6 90 88:3 86:6 82:5 � �
7 93:3 89:1 86:6 86:6 85 80:8 � �
9 1 97:5 95 92:5 90 90 90 80
9 97:5 95 95 95 97:5 97:5 95 85

Table 20: Performance of the modi�ed kNN on the ORL dataset
Run 1 Run 2 Run 3 Run 4 Run 5 Average Sd Worst
98:3 98:3 100 98:3 100 99:0 0:93 98:3

7.2.4 Yale dataset classi�cation results

Table 21 shows the results of 5 runs using the kNN algorithm on the Yale dataset, with 23

training images per person.

Table 21: Performance of the kNN algorithm on the Yale dataset
Run nk 1 3 4 5 6 7 8
run 1 100 100 100 100 98:5 98:5 98:5
run 2 95:7 95:7 95:7 97:1 98:5 97:1 97:1
run 3 98:5 98:5 98:5 98:5 98:5 98:5 98:5
run 4 100 100 100 100 100 100 100
run 5 98:5 98:5 100 100 100 100 100

9 10 11 12 13 14 15 16
98:5 100 100 100 100 100 98:5 98:5
97:1 97:1 97:1 97:1 97:1 97:1 97:1 97:1
98:5 98:5 100 100 100 100 100 100
100 100 100 100 98:5 98:5 98:5 98:5
100 100 100 100 100 100 100 100

7.2.5 Coil100 dataset classi�cation results

Table 22 shows the results of 5 runs using the kNN algorithm on the coil100 dataset, with 5

training images per each of the 50 objects, with 8 and 24 bit per pixel images.

73

Table 22: Performance of the kNN algorithm on the coil100 dataset
8 bit per pixel 24 bit per pixel

Run nk 1 3 4 5 1 3 4 5
Run 1 96:8 96:8 96:4 94:8 98:8 98:4 98:8 96
Run 2 98 95:6 96:8 96 98:8 98:4 98:4 96:8
Run 3 96 96:4 96:8 96:8 99:6 97:2 97:2 96:8
Run 4 97:2 97:2 96:8 94:4 99:2 98 98:4 97:2
Run 5 97:6 98 98 97:6 99:6 98:4 99:2 97:2

7.2.6 Texture classi�cation results

Table 23 shows the results of 5 runs using the kNN (for its best value, k = 1, 11 class

experiment) and the SVM using the anchor method (15 class experiment) on the texture

dataset, with 30 training images per each class. The SVM-anc used feature vectors created

by 20 randomly chosen anchors. The parameters for the RBF kernel function (found by cross

validation) were = 2:82; c = 1024, and for the polynomial kernel function ((u � v + r)d)
were = d = 4, r = 1024, c = 2048.

Table 23: Performance of the kNN and SVM-anc on the texture dataset
Classi�ernAccuracy Run 1 Run 2 Run 3 Run 4 Run 5

1NN 76:3 68:1 73:6 79 69
SVM-anc, RBF kernel 86 82 84 78 90:66

SVM-anc, polynomial Kernel 84:66 80:66 88:66 82 88:66

7.2.7 OCR classi�cation results

Table 24 shows the results of 5 runs using the kNN (for its best value, k = 1) and the SVM

using the anchor method on the USPS dataset, with 200 training images per each class. The

SVM-anc used feature vectors created by 20 randomly chosen anchors. The parameters for

the RBF kernel function (found by cross validation) were = 1:41; c = 1024. The parameters

for the SVM-anc with the Hamming distance were = 1; c = 45:25.

Table 24: Performance on the USPS dataset dataset
experiment Run 1 Run 2 Run 3 Run 4 Run 5 Avg
kNN 35:6 42:3 47:2 36:1 38:8 40:0

kNN, division modi�cation 50:3 52:4 60:8 61:3 57:2 56:4
SVM-anc 60:1 65:2 59:3 63:4 64 62:4

SVM, 1
NCD(�;�) kernel 35:1 45:2 43:6 44:4 37:7 41:2

SVM-anc, Hamming distance 79:5 84:5 83:5 77:66 78:5 80:7

74

7.2.8 Olives classi�cation results

Table 25 shows the technical details of the experiments of the quality degree identi�cation

and results of 5 runs using the kNN (for its best value, k = 1) and the SVM using the anchor

method.

Table 25: Performance of the kNN and SVM-anc classi�ers on the olives dataset
Technical details 1NN

Species # of classes Images per class Run 1 Run 2 Run 3 Run 4 Run 5 Avg Sd
1 3 23 85:7 95:2 95:2 95:2 95:2 93:3 4:2
2 2 185 88:3 90:6 87:2 87:9 89:9 88:8 1:4
3 3 20 75:0 66:6 83:3 100 75:5 80:1 11:6
4 2 71 95:2 85:7 97:6 90:4 97:6 93:3 5:2
5 3 106 82:8 81:2 79:1 80:7 81:1 81:0 1:3

SVM-anc
Species # of anchors Run 1 Run 2 Run 3 Run 4 Avg Sd
1 12 81:6 79:31 79:31 81:6 80:45 1:32
2 9 93:04 94:78 90:43 90:43 92:17 2:13
3 13 84:78 73:91 82:6 89:13 82:6 5:54
4 12 90:47 88:09 95:23 97:61 92:85 4:34
5 13 80:11 78:5 83:17 76:63 80:60 3:60

There seems to be no clear e¤ect of the number of anchors on the accuracy, neither a

dependence of the accuracy in the size of the classes. The di¤erences in the accuracy over

di¤erent species seem to result from the within and between class variance embedded in each

species.

Table 26 shows the technical details and results of the experiments of the species identi-

�cation. The latter experiment has the worst results, however note that its conditions (# of

Table 26: The kNN�s performance in the olives type identi�cation experiment
Dataset # of classes Images per class k

mixed species deg. 3 5 42 1
mixed species deg. 1 3 22 all
mixed species all degs 7 30 3

dataset run 1 run 2 run 3 run 4 run 5 avg sd
mixed species deg. 3 86:2 93:8 90:8 93:8 90:8 91:1 3:1
mixed species deg. 1 100 100 100 100 100 100 0
mixed species all degs 80:9 80:9 80:9 83:3 88:1 82:8 3:12

classes) are more di¢ cult than these of the �rst two experiments.

75

7.2.9 Voice samples classi�cation results

Speaker identi�cation results Table 27 contains the details of the speaker identi�cation

experiments. Altogether there were 179 voice samples in the 4-class experiment and 250 in

the 10 class experiment. All experiments were done using 75% of the instances for training.

The SVM-anc used 15 anchors.

Table 27: Speaker identi�cation experiments
Classi�er Parameters Run 1 Run 2 Run 3 Run 4 Run 5 Avg Sd

4 speakers kNN k = 1 90:2 93:5 89:1 95:2 94:35 92:47 2:67
4 speakers SVM-anc c = 1024, = 2:82 78:5 82:3 77:8 84:1 77:3 80 3:01
10 speakers kNN k = 1 87:4 81:2 84:5 81:3 88:6 85:2 2:87
10 speakers SVM-anc c = 2048, = 2:82 61:3 66:4 68:3 62:1 68:9 65:4 3:51

Emotion recognition results Table 28 contains the results of the 53 feature experiment.

After comparison between di¤erent possible architectures for the ANN, we conducted the

experiment with the best one found, of single hidden layer with 15 neurons. In addition, we

used 200 training epochs and learning rate of 0:1. The decision tree used was of type C5. We

used boosting and limited the number of trials to 10. In addition we used pruning severity

of 75 and minimal number of 10 instances per branch. The SVM parameters were = 1:41;

; c = 477. Table 29 shows the performance of the feature selection and extraction methods

Table 28: Emotion recognition results with 53 anchors
Classi�er Run 1 Run 2 Run 3 Run 4 Run 5 Avg Sd
SVM-anc 74:78 70:58 73:94 73:94 72:26 73:10 1:67
ANN-anc 70 77:69 74:62 74:62 71:54 73:69 2:99
DT-anc 68:46 73:08 76:15 72:31 71:54 72:30 2:77

Centroids-anc 73:1 73:1 76:47 73:1 69:74 73:10 2:37

used in the emotion recognition experiment.

Table 29: Emotion recognition results using dimensionality reduction
Method Run 1 Run 2 Run 3 Run 4 Run 5 Avg Sd
PCA 74:47 79:83 76:47 78:99 78:99 78:15 1:57
LDA 80:77 73:85 78:46 76:15 70 75:846 4:16
FDA 73:1 72:26 69:74 68:06 72:26 71:08 2:10
FA 73:1 70:58 68:06 76:47 64:7 70:58 4:52
t tests 69:74 73:1 79:83 78:99 73:1 74:95 4:30

PCA with standardization 59:66 59:66 62:18 57:98 60:5 59:99 1:52
FDA with standardization 66:38 65:54 68:9 69:74 66:38 67:33 2:45

76

Table 30: Detailes and performance of the 10 speakers emotion recognition experiment
Experiment ; c Run 1 Run 2 Run 3 Run 4 Run 5 Average Sd Worst

absorbed - disagree 1; 1024 77:27 68:18 86:36 72:73 90:91 79:09 9:42 68:18
absorbed - thinking 2:82; 256 80 71:42 74:28 68:57 74:28 73:71 4:23 68:57
sure - unsure 11:31; 16 76:19 69:04 73:80 78:57 78:57 75:234 3:98 69:04

interested - excited 1:41; 128 68:96 75:86 68:96 65:51 79:31 71:72 5:66 65:51
absorbed - excited 1:41; 256 80:77 80:77 73:08 84:62 69:23 77:694 6:32 69:23

Statistical tests

� Con�dence interval for (p4 � p1): we use a formula for 1 � � con�dence interval for
di¤erence between proportions:

bp1 � bp2 � z1��
2

s bp1(1� bp1)
n1

+
bp2(1� bp2)
n2

(6)

and get:

0:79� 0:736� 1:96
r
0:79(1� 0:79)

62
+
0:736(1� 0:736)

57

giving

(p4 � p1) 2 [�0:098; 0:206]

hence we conclude that the proportions di¤erence is not signi�cant in 95% level.

� Chi square test for independency: Table 31 shows the observed and expected numbers
of correct classi�cations for each speaker in each of the 4 runs performed. The �2

statistic is
X
i

(observedi-expectedi)
2

expectedi
= 0:459 < �211;0:95 = 19:67, meaning the probabilities

are independent indeed.

� probabilities di¤erences con�dence intervals: we use the formula in (6) to obtain the
following 95% intervals for the di¤erence between each proportion in one of the bottom

3 rows in Table 14 to the equivalent probability in the top row. The con�dence intervals

are given in Table 32.

77

Table 31: Chi square test for independency
Training speakers Errors on p6 Errors on r6 Errors on z6 Total
all speakers (a) observed 27 26 16 69

expected 28:02 26:20 14:79
p6 omitted (b) observed 27 25 14 66

expected 26:80 25:06 14:14
r6 omitted (c) observed 25 25 14 64

expected 25:98 24:30 13:71
z6 omitted (d) observed 29 25 13 67

expected 27:20 25:44 14:36
total 108 101 57 266

Table 32: Con�dence intervals for probabilities di¤erences
Training speakers Errors on p6 Errors on r6 Errors on z6 Total
p6 omitted (b) (�0:16; 0:16) (�0:06; 0:13) (�0:10; 0:27) (�0:13; 0:19)
r6 omitted (c) (�0:16; 0:27) (�0:08; 0:15) (�0:16; 0:32) (�0:18; 0:23)
z6 omitted (d) (�0:27; 0:16) (�0:09; 0:16) (�0:14; 0:39) (�0:18; 0:17)

7.2.10 Pain detection results

Table 33 shows the performance of the kNN and SVM in the pain detection experiment. For

patient p1 we used 17 anchors for the SVM-anc and 15 anchors were used for patient p2. All

anchors were chosen randomly.

Table 33: Pain detection performance
Patient p1
Run 1 2 3 4 5 Avg Sd Parameters
kNN 100 100 100 100 87:5 97:5 5:5 k = 3

SVM-anc 88 100 100 88 100 95:2 6:5 c = 128, = 2:82
p2

1 2 3 4 5 Avg Sd Parameters
83:3 100 83:3 100 100 93:3 9:1 k = 3
100 100 100 100 87:5 97:5 5:5 c = 256, = 2:82

7.3 Software, raw data and code written in this work

The SVM classi�cation experiments were performed using the libsvm 2.85 software (http://

www.csie.ntu.edu.tw/~cjlin/libsvm). bzip2 compression was done using Rudi Cilibrasi�s com-

plearn software (http://www.complearn.org/). Image denoising and manipulations were done

using Fotobach software (http:// www.keksoft.com/index2.htm). The LDA was performed us-

ing SPSS. Code for PCA and FDA was written in Matlab, as well as a code for converting

78

a csv �le for a convenient format for the libsvm format and a code for Hamming distance

computation of squared images. The ppm compression, kNN, the kNN�s division modi�cation

and nearest centroid classi�er codes were written in Java. All datasets used in this work, as

well as the code written as part of the thesis can be found in the attached CD, as well as a

readme �le with explanations of the code �les.

79

