
Abstract

This research deals with a set of robotic �ow-shop scheduling problems with iden-

tical jobs, where robots are responsible for transferring jobs between machines. More

particularly, we study the following three scheduling problems:

Problem 1 : A problem where there is a single robot and job processing times are

job-independent (but machine-dependent). The objective is to provide a machine and

robot schedule that minimizes the makespan.

Problem 2 : A combined robot selection and scheduling problem (RSSP), where
there are several robots moving on a single (shared) track. The robots are responsible

for transporting identical jobs between identical machines. In the RSSP, the objective
of the scheduler is to (i) select robots from a given set of robot types; (ii) assign each

selected robot to a subset of machines; and (iii) provide a schedule for each robot, in

order to minimize two con�icting criteria: the makespan and the total robot selection

cost. For a scheduling system with no-wait and no-idle restrictions, we analyze four

di¤erent variations of the problem. The �rst is to �nd a schedule that minimizes

the sum of the two con�icting criteria; the second and the third are to minimize one

criterion, given an upper bound on the value of the other criterion; while the last

variation consists of �nding the entire set of Pareto-optimal points with respect to the

two criteria.

Problem 3 : A problem where there are two robots moving on parallel tracks and

job processing times are job-independent (but machine-dependent). The objective is

to provide a machine and robot schedule that minimizes the makespan.

Our main results for the three problems include:

� The construction of tight lower bounds for the makespan value of each of the
three problems.

� For Problem 1 we construct a polynomial time procedure to minimize the makespan
value, when there are three non-identical machines. The procedure is based on

decomposing the problem to a set of sub-problems, and providing an optimal

schedule for each sub-problem separately. Moreover, for the more general case,

where the number of machines can be arbitrary, we construct a procedure which

is based on collaborative reinforcement learning (RL) to obtain a near-optimal

solution.

� For Problem 2 we prove that the �rst variation of the problem is solvable in

polynomial time, while the other three variations are NP-hard. For the NP-
hard variations, we show that a pseudo-polynomial time algorithm and a fully

polynomial approximation scheme (FPTAS ) exist, and derive three important

special cases that are solvable in polynomial time.
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� For Problem 3 we construct a heuristic procedure that is based on collaborative

RL to obtain a near-optimal solution.

Our main contributions lies in the following two aspects.

� The de�nition and the theoretical analysis of the RSSP, which has never been
analyzed before. In this problem we include some new features that have either

rarely or have not been discussed at all in the literature. Among those features

are several robot types, an arbitrary number of machines, a possibility to control

the number of robots assigned to the production line and their assignment to

machine sets, and a bicriteria approach for analysis. In fact, this is the �rst

model that provides schedulers with a tool to optimally combine robot selection

and scheduling decisions.

� The implementation of a new collaborative RL technique to solve robotic �ow-
shop scheduling problems, where robots are used as transportation resources in

the shop. As far as we know, this technique has never been applied before to solve

this set of problems. For the �rst problem with an arbitrary number of machines,

we use a Robot-Adviser (RA) collaborative RL algorithm. In this case the robot

can either operate autonomously (AO) or semi-autonomously (SAO), asking for

advice from an adviser. The adviser is an agent that operates external to the

system, and is simulated with di¤erent expertise levels. For the second problem

we use a Robot-Robot (RR) collaborative RL algorithm, where the two robots are

working together in one of the following collaboration modes: (i) Full , (ii) Pull,

(iii) Push, or (iv) None. For both problems, the RL collaboration scheduling

algorithms were programmed, and an extensive experimental study was done

indicating that our collaborative RL algorithms can be used to determine near-

optimal solutions with a small average gap from the lower bound value.

Key words: Scheduling, Flow-shop, Robotic �ow-shop, Job transfer robots, Makespan,

Reinforcement learning, Collaboration.
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Nomenclature
A - The set of all possible actions.
�A - A �nite set of n elements f�a1; �a2; :::; �ahg.
�Ai - A subset of elements within �A.

ai - A single action that belongs to set A.

�au - The maximal cover of a single robot that is assigned to serve a set of machines that

begins in machine Mu.

ai - Sequences of robot moves in the order M1; :::;Mibai - Sequences of robot moves in the order Mi;Mi+1; :::;Mm�1.

�aq - A single element that belongs to set �A.

bq - The bene�t from selecting element �aq.

C - A given upper bound on the total cost.

c(u;v) - The minimum cost among all arcs that are directed from node u to v.

c(u;v)g - The cost of arc (u; v)g.

Cj- The completion time of job Jj.

Cave - The learning performance measure.

Cmax- The makespan (the completion time of the last job at the last machine).

Ĉmax - The minimum average completion time achieved from the beginning of the learning

trial until current learning episode.

Cmij - The completion time of the processing operation of Jj on Mi.

Crij - The completion time of the transferring operation of Jj from Mi to Mi+1.

Cmax(adviser) - The makespan value of a solution provided by the adviser.

Cmax(S) - The makespan value of a feasible solution S.

Cmax( �Ei) - The makespan in learning episode i.

C(IBi) - The capacity of the input bu¤er to machine Mi.

C(OBi) - The capacity of the output bu¤er beside of machine Mi.

C(P ) - The total cost of a path P .

D - A given upper bound on the total duration.

Di - An indicator for the success/failure of adviser�s i0th advice.

dj- The due date of job Jj.

d(u;v) - The minimum duration among all arcs that are directed from node u to v.

d(u;v)g - The duration of arc (u; v)g.

d(u;v) - The maximum duration among all arcs that are directed from node u to v.

D(P ) - The total duration of a path P .

DUB - An upper bound on the duration of any path in the graph G(V;E).

ei - An empty move of the robot from machine Mi+1 to machine Mi.
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E - The set of arcs within G(V;E).

E - The set of arcs within G(V ;E).

E(u; v) - A set of arcs between two nodes u and v with v > u.
�E - Learning session, which is a set of learning episodes.
�Ei - Learning episode i from the current learning session.
�Ej- The earliness of job Jj.

fmax- The maximal performance measure among all jobs.

F - The objective function.

Fj- The �ow time of job Jj.

fj(Cj) - Job�s Jj performance measure (which is a function of its completion time).

Fm- Flow-shop machine environment.

Fm;R1- Flow-shop machine environment with a single robot.

Fm;Rk - Flow-shop machine environment with k robots.

f(st; at) - Function of state (st) and action (at) at time step t.

f(v;D) - The minimum cost path with a duration not greater than D.

Gv - The length of the shortest path in a subgraph that includes the vertices 0; :::; v.

Gv(k) - The shortest duration path among all paths with exactly k arc in a subgraph

that includes vertices 0; :::; v.

G(V;E) - A graph where V is the set of vertices and E is the set of arcs.

Ha - The scaled threshold of adviser, between [0; 1].

Hai - The weighted total advice over all advice instances up to the i0th instance.

IBi - The input bu¤er of machine Mi.

J - A set of jobs.

Jj - A single job in set J .
Jm - Job shop machine environment.

(Jj,Mi) - An operation where job Jj is transferred from Mi to Mi+1.

k - The number of robots.

l(u;v) - The minimum arc weight among all arcs from u to v.

Lj - The lateness of job Jj.

Lmax - The maximal lateness.

LBf - A lower bound that is based on the processing on Mf .

LBr - A lower bound that is based on the robot movements.

Lr - Location of the robot.

M - A set of machines.

Mr - A set of machines designated to robot Rr (Mr �M).

Mi - A single machine that belongs to setM.
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Mlr+1 - The last machine in setMr that is also the �rst machine inMr+1.

n - The number of jobs to schedule.

Oj - The set of operations that belongs to job Jj.

Oij - The operation of job Jj to be processed on machine Mi.

OBi - The output bu¤er of machine Mi.

O() - A notation of the approximated number of computational steps of an algorithm.

P - A path from vertex 1 to vertex N in G(V;E).

P 0 - The control policy.

pij - The processing time of job Jj in machine Mi.

Pm - Identical parallel machines system.

Probt(ai) - The probability of selecting a feasible action ai at time step t.

Q - The number of robot types.

Qm - Uniform parallel machines system.

Qt(ai) - The reward estimation of selecting action ai at time t.

Q(st; at) - The reward estimation of a state-action pair.

r0j - The ready time of job Jj.

frg - The type of robot Rr.
r(st; at) - The reward when visiting state st and selecting an action at.

rt - The numerical reward signal achieved at time t.

rti - The numerical reward signal achieved at time t when the robot serves machine Mi.

rtki - The numerical reward signal achieved at time t when robot Rk serves machine Mi.

R - A set of robots.
Rk - A single robot that belongs to set R.
RCm - Robotic cells environment with m machines.

Rm - Unrelated parallel machines system.

S - The set of all possible situations (states).

si - A single state that belongs to set S.

S0 - The initial state of the system.

S �T - The �nal state of the system.

Smij - The start time of the processing operation of job Jj on machine Mi.

Srij - The start time of transferring operation of job Jj from machineMi to machineMi+1.

Ssx- The x subsequence of moves.

tt - The system�s transition time at time t.

tifrg- The transportation time required for robot Rr (designated onMr) of type frg to
transfer a job from Mi to Mi+1.
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teifrg- The time required for robot Rr (designated on Mr) of type frg to move empty
from Mi+1 to Mi.

ti - The transportation time (for a single robot type) required to transfer a job from Mi

to Mi+1

tei - The time required (for a single robot type) to move empty from Mi+1 to Mi.

tiq - The transportation time required for a robot of type q to transfer a job from Mi to

Mi+1.

teiq - The time required for a robot of type q to move empty from Mi+1 to Mi.

tijr - The transportation time required for robot Rr to transfer job Jj from OBi to IBi+1
teir - The time required for robot Rr to move empty from machine Mi+1 to machine Mi.

T - A set of all tardy jobs in a given schedule.

Tj - The tardiness of job Jj.

Tmax- The maximal tardiness.

Temp - The temperature factor from Gibbs or Boltzmann distribution.

TRC - The total robot cost.

TRC(S) - The total robots cost a of feasible solution S.

T (n) - The running time of algorithm.

T (S) - The variable part of the makespan value in a feasible solution S.

(u; v)g - A single arc from node u to v.

V - The set of vertices within G(V;E).

ŵj- The weight of job Jj, indicating the job�s priority.

wq - The weight of element �aq.

Z - A sequence of robot moves.

Z� - The optimal sequence of robot moves.

z�- The �
0th transportation of the robot.

� - The eligibility trace.

�q - The cost of a single robot of type q.

�frg - The cost of robot Rr of type frg, designated to machine setMr.

�(x) - An addition to the lower bound value.

�(x�) - The minimum addition to the lower bound value.

� - The time at which transfer is performed.

�j�j - Three-�eld problem notation.

� - The machine environment.

� - The processing characteristics and constraints.

 - The optimizing criteria (objective function).

�0 - The smoothing constant.
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�� - The learning rate.
�� - A positive number.

� - The discount rate for future Q-values.

� - A random number sampled from a normal distribution.

:

List of Abbreviations
ACO - Ant colony.

AO - Autonomously.

DV - Decision version

DP - Dynamic programming.

FIFO - First in �rst out.

FPTAS - Fully polynomial-time approximation scheme.

GA - Genetic algorithm.

IR - Identical robots.

IRT - Identical robots type.

IM - Identical machines.

LB - Lower bound.

MAS - Multi-agent system.

MARL - Multi-agent reinforcement learning.

MC - Monte Carlo.

ML - Machine learning.

MRS - Multi-robot system.

NIM - Non-identical machines.

NIR - Non-identical robots.

NIRT - Non-identical robots types.

PTAS - Polynomial-time approximation scheme.

RA - Robot-adviser.

RL - Reinforcement learning.

RR - Robot-robot.

RSSP - Robot selection and scheduling problem.

SA - Simulated annealing.

SAO - Semi- autonomously.

SPT - Shortest processing time.

SPP - Shortest path problem.

TD - Temporal-di¤erence.

UB - Upper bound.
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1 Introduction

"Scheduling is the allocation of resources over time to perform a collection of tasks" [48] .

Scheduling is a decision-making function, it is the process of determining a schedule. In this

sense, much of what was learned about scheduling can apply to other kinds of decision-making

and therefore has general practical value. Scheduling becomes relevant in a situation where

the characteristics of the tasks to be scheduled have been described and the con�guration of

the resources available has been determined. Scheduling theory is concerned primarily with

mathematical models that relate to the scheduling function and the development of useful

models and techniques, which has been the continuing interface between theory and practice.

The theoretical perspective is particularly a quantitative approach, one that attempts to

capture problem structure in concise mathematical form. In particular, this quantitative

approach begins with a translation of decision-making goals into an explicit objective function

and decision-making restrictions into explicit constraints [48].

Our research is devoted to study several robotic �ow-shop scheduling problems. We

aim to construct exact polynomial time algorithms, when it is possible. Otherwise, we

use non-exact methods to obtain near-optimal solutions, by either applying methods that

enable us to control the gap from the optimal solution (such as approximation schemes),

or by applying collaborative reinforcement learning (RL) techniques. The introduction is

thus divided into the following four subsections: (i) general introduction to the �eld of

deterministic scheduling; (ii) an introduction to the �eld of computational complexity, which

provides tools to estimate the di¢ culty of our problems and the e¢ ciency of the suggested

algorithms; (iii) an introduction to the �eld of RL; and (iv) an introduction to the �eld of

multi-agent collaboration.

1.1 Deterministic scheduling problem

A deterministic scheduling problem is concerned with scheduling a set of n jobs

J 2 fJ1;J2; :::; Jng on m machines M 2 fM1;M2; :::;Mmg, where Oij refers to the operation
of job Jj on machine Mi for j = 1; :::; n and i = 1; :::;m. It is usually assumed that each

machine can process at most one job at a time and that each job can be processed on at

most one machine at a time. The following data provides a typical input for various robotic

�ow-shop scheduling problems:

� Release date (r0j) �The point in time at which job Jj becomes available for process-
ing.

� Processing time (pij) �The time required for processing job Jj on machine Mi.
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� Due date (dj) �The point in time at which job Jj is due to be completed.

� Weight (ŵj) �Predetermined factor that indicates the relative importance of job Jj:

� Job Transport time (tijr) �The transportation time required for robotRr to transfer
job Jj from OBi to IBi+1.

� Robot empty return time (teir) �The time required for robot Rr to move empty
from machine Mi+1 to machine Mi.

Throughout this research we will use the standard three �eld notation �j�j; introduced
by [33] for scheduling problems. The � �eld describes the machine environment and contains

a single entry. The � �eld exhibits the processing characteristics and constraints and may

contain no entry, a single entry, or multiple entries. The  �eld contains the scheduler�s

objective.

1.1.1 Various scheduling systems (environments)

The � �eld describes the machine environment. Several possible machine environments are

presented below:

� Single machine (� = 1) �Only one machine processes all the jobs. This is the sim-
plest machine environment, which is a special case of all other machine environments.

� Parallel machines - (� = Pm;Qm;Rm) There are three types of parallel machine
systems: identical (� = Pm), uniform (� = Qm), and unrelated (� = Rm), which

di¤er by the de�nition of the processing time.

� Flow-shop (� = Fm) �There are m machines in a series. Each job has to be

processed on each of the m machines in identical sequence. After completion on one

machine, a job joins the queue of the next machine.

� Flow-shop system with a single robot (� = Fm;R1) - A �ow-shop scheduling
environment where loading, unloading, and the transportation of a job from one ma-

chine to the next is done by a single robot. In such a system all parts are available in

front of machine M1 and there is no need to transfer them to a storage station after

unloading them from machine Mm.

� Robotic cell (� = RCm) - The de�nition of a robotic cell is identical to the de�nition
of a �ow-shop system with a robot with the exception that there exists an input station

(M0 = IN) in front of the �rst machine where the raw material for the parts is available
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in unlimited quantity and an output station (Mm+1 = OUT ) after the last machine

where the �nished parts can be stored in unlimited quantity.

� Job-shop (� = Jm) - job-shop environment includes m machines in which each job

has its own route to follow. It is usually assumed that each job visits each machine at

most one time.

� Flow-shop system with multi-robots (� = Fm;Rk) - A �ow-shop scheduling

environment consists of several robots, where each robot can load, unload, and trans-

port a job from one machine to the next. Multi-robot systems are characterized by

the (i) type of the robot (identical or non-identical); (ii) speed of movement; and (iii)

type of movement (parallel/same track, etc.) In such a system all parts are available

in front of machine M1 and there is no need to transfer them to a storage station after

unloading them from machine Mm.

1.1.2 Jobs characteristics and constraints

Each scheduling problem may have unique processing characteristics and constraints (in-

cluded in the � �eld of the three �eld notation). Next, we present several such possible

processing characteristics and constraints and their notation (in brackets).

� Release dates (r0j) - Each job may be speci�ed with a di¤erent release date.

� Permutation (prmu) - Constraint related to a �ow-shop environment, which indi-
cates that queues in front of machineMi operate according to �rst in �rst out (FIFO)

rule.

� Job independent processing times (pij = pi) �The job processing time is job-
independent and machine-dependent.

� Uniform processing time (pij = p). This characteristic indicates that all jobs have
identical processing time on all the machines.

Any other entry that appears in the � �eld is self-explanatory.

1.1.3 Performance measures and objectives functions (criteria)

Performance measures enable the scheduler to compare the quality of various possible sched-

ules. The performance measure fj(Cj) of any job Jj is a function of the job�s completion

time, Cj, which is equal to the time at which the processing of job Jj is �nished on the last
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machine. Examples of commonly used performance measures for any job Jj include: the

job�s completion time for which fj(Cj) = Cj; the job�s �ow time for which fj(Cj) = Fj =

Cj � r0j; the job�s lateness for which fj(Cj) = Lj = Cj � dj, the job�s tardiness for which
fj(Cj) = Tj = maxf0; Ljg, and the job�s earliness for which fj(Cj) = �Ej = maxf0;�Ljg.
Performance measures, like the ones described above, refer to a single job within a sched-

ule. In order to evaluate the entire schedule, one must account for all the scheduled jobs.

There are several ways to evaluate the quality of an entire schedule. Each way serves a

di¤erent objective of the scheduling process, as re�ected by a di¤erent objective function

(criterion). In general, since each measure is a function of the job�s completion time, the

objective function can be referred to as F = f(C1; C2; :::; Cn). There are two main families

of objective functions. The �rst, F = f� =
Pn

j=1 fj(Cj), is a summation over a speci�c mea-

sure value of all the jobs, while the second, F = fmax = max
j=1;:::;n

ffj(Cj)g, takes the maximal
measure value among all jobs, where fj(Cj) can take the form of any performance measure.

When using the three �eld notation we include the objective function F in the  �elds.

An important class of criteria is called the class of regular criteria and is de�ned below.

De�nition 1 An objective function F is regular if F is a non-decreasing function of Cj for
j = 1; :::; n (Pinedo [78]).

Below are two examples of a regular scheduling criterion.

� The Makespan (Cmax = max
j=1;:::;n

fCjg). The makespan is equivalent to the completion
time of the last job on the last machine. A minimization of the makespan usually

implies a high utilization of machines.

� Total weighted �ow time (
Pn

j=1 ŵjFj) - The total weighted �ow time represents
the total holding cost when each job has a di¤erent holding (�ow) cost per unit of time,

denoted by ŵj.

Below is an example of a non-regular criterion.

� Total weighted earliness (
Pn

j=1 ŵj
�Ej). This objective function is characteristic of

a scheduling problem in which each job has a penalty cost per unit of earliness time.

1.2 Computational complexity theory

Complexity theory is a discipline that deals with calculating and classifying the di¢ culty

of a problem. It enables us to approximate the number of computational steps required to
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solve a speci�c problem, using a speci�c solution algorithm. The problems that are usually

addressed are combinatorial optimization problems, for which scheduling problems is an

important subclass.

In complexity theory, and in this text accordingly, the term problem refers to a generic

description of a problem. An instance of a problem is a problem with explicit numerical

data. The term algorithm refers to a proposed solution method to a given problem. The

performance of any algorithm is commonly measured by two major aspects. The �rst is

the quality of the solution it provides, and the second is how fast it is (as a function of the

instance size).

Computational complexity theory deals with calculating the running time of a proposed

algorithm. By calculating the running time of an algorithm, one could establish whether

an algorithm is e¢ cient in comparison to other known algorithms, or to a computer�s ca-

pabilities. In this section, the theory of computational complexity is brie�y introduced.

First, we introduce the O() notation, which is used in complexity theory to approximate

the running time of an algorithm. Then, we discuss the common method to determine

the complexity of a problem, present the de�nitions of complexity classes P and NP, and
present the formal de�nition of polynomial reduction. This is followed by presenting the

de�nition of NP-completeness, NP-hardness, strong NP-hardness, and their connection to
pseudo-polynomial time algorithms.

1.2.1 Running time computation

As stated, a fundamental application of complexity theory is calculating the running time

of an algorithm, as de�ned below:

De�nition 2 The running time of an algorithm is measured by the number of computational
steps needed for obtaining a solution in the worst-case scenario.

A computational step is an action performed by a computer that does not depend on the

input size. Possible actions are simple mathematical operations, comparing two numbers,

and so on. The term worst-case means that the algorithm could presumably run for much less

on certain inputs, perhaps on most inputs. The computational complexity of an algorithm

is usually approximated using the O() notation as de�ned below:

De�nition 3 A function f(n) is considered to be O(g(n)) if there are constants c and en
such that f(n) � cg(n) for all n � en.
The O() notation is used to classify algorithms by how they respond in their running

time to changes in the input size. When analyzing an algorithm using the O() notation, the
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growth rate of the algorithm is the most important information. The growth rate determines

how fast the number of needed computational steps will grow with respect to the size of the

input. In order to determine the complexity of an algorithm, only the fastest growing element

in the initial complexity calculation (denoted by T (n)) is considered. For example, for an

algorithm with a running time of T (n) = c1n+c2n5 it is clear that the dominant term is c2n5.

Even if the constant c1 is much greater than c2, when the size of n increases, the element c1n

remains negligible and the factor c2 can be omitted as well, regardless of its value. Hence,

the algorithm�s complexity is approximated by O(n5). Below, we provide an example of an

order of computational time:

O(log(n)) � O(n) � O(na) � O(nb) � O(an) � O(bn) � O(n!) � O(nn); where 0 < a < b:

When computing the complexity of a sum or a product of functions using the O() notation,

the following rules apply:

O(g(n)) +O(f(n)) = O(g(n) + f(n)) = O(max fg(n); f(n)g);

O(g(n))�O(f(n)) = O(g(n)� f(n)):

Next, we describe the most accepted way for classifying the complexity of an algorithm.

De�nition 4 An algorithm with the running time of T (n) = O(g(n)) is considered to be a

polynomial-time algorithm if g(n) is bounded by a polynomial function of n (at any power).

Otherwise, it is considered to be an exponential time algorithm.

A polynomial-time algorithm is preferable and considered e¢ cient since a computer may

not be able to perform an exponential-time algorithm in a reasonable length of time, espe-

cially when dealing with larger instances. Table 1 (taken from Garey, Johnson, and Sethi

[27]) emphasizes the di¤erence between polynomial and exponential time algorithms for dif-

ferent instance sizes (the table is based on a computer that can perform 106 computational

steps per second).

1.2.2 Complexity classi�cation

After the complexity of an algorithm has been de�ned, the complexity of a problem can be

de�ned as follows:

De�nition 5 The complexity of a problem is equal to the complexity of the most e¢ cient

(in terms of complexity order) algorithm that solves the problem.
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Time
complexity
functions

n = 10 n = 20 n = 30 n = 40 n = 50

n 0:00001sec 0:00002sec 0:00003sec 0:00004sec 0:00005sec
n2 0:0001sec 0:0004sec 0:0009 sec 0:0016 sec 0:0025 sec
n3 0:001sec 0:008sec 0:027 sec 0:064 sec 0:125 sec
n5 0:1 sec 3:2 sec 24:3 sec 1:7 min 5:2 min
2n 0:001 sec 1 sec 17:9 min 12:7 days 35:7 years
3n 0:059sec 58sec 6:5 years 3855 centuries 2 � 108 centuries

Table 1: A comparison between the computational requirements of several polynomial and
exponential time algorithms.

Next, another distinction between di¤erent problems is provided, which is the di¤erence

between a decision problem and an optimization problem.

De�nition 6 A problem is called a decision problem if the solution to the problem is either

Yes or No.

De�nition 7 An optimization problem has a goal of either minimization or maximization

of a certain objective function. Its objective is to �nd the best solution out of all feasible

solutions with respect to the objective function.

There is a strong connection between the two types of problems de�ned above, as every

optimization problem can be converted into a decision problem. The conversion is usually

done by adding a parameterK to the problem, and asking whether there is a feasible solution

for which the evaluated objective function is not greater (or smaller) than K. For example,

the optimization problem can be to �nd a schedule that minimizes
Pn

j=1 ŵjFj, while the

converted decision problem would ask if there exists a schedule in which
Pn

j=1 ŵjFj � K.
Complexity theory divides decision problems into classes according to their complexity

as follows:

De�nition 8 The class P contains all the decision problems for which there exists an algo-
rithm that leads to a correct yes-no answer in a polynomial time with respect to the size of

the instance (n).

De�nition 9 The class NP contains all the decision problems for which, given an appro-
priate "clue", the correct answer can be veri�ed in a polynomial time with respect to the size

of the instance (n).
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Clearly, P � NP, since for any problem in P we can simply ignore the clue and just
solve the problem in polynomial time. Another important part of the NP-hardness theory
is the polynomial reducibility:

De�nition 10 Problem P reduces to problem Q if problem P can be solved by using an

algorithm for the solution of problem Q as a subroutine. A polynomial-time reduction is a

reduction that uses polynomial time excluding the time within the subroutine.

A reduction from P to Q is denoted by P _ Q and may be used to show that Q is at least
as di¢ cult as P since whenever an e¢ cient algorithm exists for Q, one exists for the P as

well. Polynomial-time reductions are frequently used for de�ning and classifying problems

as described in De�nition 11 below.

De�nition 11 A decision problem P is said to be NP-complete if P is in the NP-class
and all the problems in the NP-class are reducible to P .

It implies from De�nition 19 that proving the NP-completeness of a problem P can be

done by showing that P belongs to the NP class and then reducing one of the known NP-
complete problems to problem P . It also implies that if two decision problems, P and Q,

are both NP-complete, then, P _ Q and Q _ P: Hence, we can conclude from De�nition 19
that either all NP-complete problems are solvable in polynomial time (meaning P = NP),
or none of them. The question whether P = NP or not is still open, but today it is widely
assumed that NP-complete problems cannot be solved in polynomial time (i.e., P 6= NP).
There is an important connection between the complexity class of an optimization prob-

lem and the corresponding decision version of the problem, as shown by the following lemma.

Lemma 1 The complexity of an optimization problem is determined according to the com-

plexity of the corresponding decision problem. Hence, if we can reduce the decision version

of an optimization problem Q to P and Q is NP-complete, we say that P is NP-hard.

We can conclude from De�nition 11 and Lemma 1 that the class of NP-complete prob-
lems forms a subclass of the class of NP-hard problems. Unlike NP-complete, NP-hard
problems may be of any type including optimization problems. If an optimization problem

can be solved in polynomial time, its related decision problem can be solved in polynomial

time as well. We simply compare the value obtained from the solution of the optimization

problem with the bound provided as input to the decision problem, meaning, if we can

provide evidence that a decision problem is hard, we also provide evidence that its related

optimization problem is hard.
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The input of a problem varies between di¤erent types of problems. It comprises data and

parameters needed to describe a speci�c instance of a problem. The complexity of a problem

is de�ned with respect to the problem�s input. Two possible ways to encode an input of

a problem are binary and unary codes. In binary code each number of the input data is

represented using the digits 0 and 1. In unary code the numbers are represented using only

"1" digits. For example, the number 7 is represented by 3 digits in binary code and by 7 digits

in unary code. A problem�s complexity may vary according to its input encoding. Thus,

it is possible that a problem is NP-hard under the binary encoding scheme, but solvable
in polynomial time under the unary encoding scheme. This di¤erence leads to a distinction

between NP-hard problems according to the "strength" of their NP-hardness, as explained
below.

De�nition 12 A problem that is NP-hard with respect to the binary encoding scheme but
not the unary encoding scheme is said to be NP-hard in the ordinary sense.

De�nition 13 A problem is said to be NP-hard in the strong sense if it is NP-hard with
respect to both the binary and the unary encoding schemes.

That leads to the de�nition of pseudo-polynomial time algorithms as described below.

De�nition 14 A pseudo-polynomial time algorithm is an algorithm that runs in polynomial
time with respect to the range of the possible input values and the number of elements in the

input.

It implies from De�nition 14 that a pseudo-polynomial time algorithm runs in polynomial

time when the input is encoded unary. The connection between the existence of a pseudo-

polynomial time algorithm for solving a problem and the classi�cation of the problem as

NP-hard in the strong sense is given in De�nition 15 below:

De�nition 15 If an optimization problem Q is NP-hard in the strong sense, then there
cannot be any pseudo-polynomial time algorithms for Q (unless P = NP).

It implies from De�nitions 12 and 15 that if there is a pseudo-polynomial time algorithm

for solving an NP-hard problem P , then P is NP-hard in the ordinary sense.
In real-life problems, even when a problem was proved to be an NP-hard problem, in

the ordinary or strong sense, a solution is needed. When the actual input size is small, an

algorithm with exponential running time may be perfectly satisfactory. Even if searching all

feasible solutions, scope should be considered. However, when the optimal solution cannot

be achieved in a reasonable length of time, an algorithm that generates a relatively good

solution is needed. The next subsection describes these types of algorithms, also known as

heuristic algorithms, for which approximation algorithms are an important subclass.
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1.2.3 Heuristic algorithms

An acceptable approach to provide a solution to NP-hard optimization problems is by using
heuristic algorithms.

De�nition 16 A heuristic algorithm is an algorithm that runs in a polynomial time. It

provides a feasible solution but it does not necessarily provide the optimal solution.

De�nition 17 An acceptable (feasible) solution to a problem, greater than or equal to the
optimal solution, is de�ned as upper bound (UB) solution to the optimal solution.

The quality of a heuristic algorithm is derived from the algorithm�s running time and

the quality of the suggested solution. The quality of a suggested solution is measured by its

di¤erence from the optimal solution. Thus, an important subclass of heuristic algorithms is

approximation algorithms.

De�nition 18 Let A be a heuristic algorithm for a minimization problem P with a solution
value of FA(I) for instance I, and let F �(I) be the optimal (best) solution value for problem
P with instance I. Then, Algorithm A is a ��approximation if for any instance I of the
problem we have that

FA(I)
F �(I) � �: (1)

De�nition 18 indicates that the uniqueness of an approximation algorithm is that it guar-

antees that the solution value it generates is at most � times the value of the optimal solution.

There are approximation algorithms that can achieve increasingly smaller ratio bounds by

using more and more computation time. In those algorithms, there is a trade-o¤ between

computation time and the quality of the approximation. Two common and important types

of such approximation algorithms are polynomial-time approximation scheme (PTAS), and
fully polynomial-time approximation scheme (FPTAS), as de�ned below.

De�nition 19 Given " > 0, a heuristic algorithm A for a minimization problem P is said
to be a polynomial-time approximation scheme (or PTAS in short) if (i) the running time of
the approximation is polynomial for n but not necessarily for 1=", and (ii) for any instance

I of P, the condition in eq. (1) holds with � = 1 + ".

PTAS algorithms may not be practical for every " value. Although the running time of

the PTAS algorithm is polynomial for each �xed n, the exponent of the polynomial might

depend strongly on ". For "! 0, it is possible that the running time of the algorithm would

become exponential. A more e¢ cient approximation scheme is the FPTAS.
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De�nition 20 Given " > 0, a heuristic algorithm A for a minimization problem P is said
to be a fully polynomial-time approximation scheme (or FPTAS in short) if (i) the running
time of the approximation is polynomial for both n and 1=", and (ii) for any instance I of
P, the condition in eq. (1) holds with � = 1 + ".

1.3 Reinforcement learning

In some parts of our research, when we could not provide an e¢ cient procedure to solve

the corresponding scheduling problem, we construct a procedure that is based on RL to

obtain a near optimal solution. This section is devoted to introducing the method of RL,

its importance, and to presenting some related applications for which this method has been

successfully applied before.

Several machine learning (ML) methods, ranging from inductive logic programming to

RL, have been applied to many subproblems in robot perception and control [25]. RL is

about learning how to map situations (si 2 S) to actions (ai 2 A) so as to maximize

a numerical reward (r) signal ([87]). Here S represents the set of all possible situations

(states), and A represents the set of all possible actions. In the process of learning, the agent

(an agent is something, like a robot, that perceives and acts) interacts with an environment

or a system. The agent is not told which action to take, but by trying several actions the

agent must discover (learn) the actions that will yield the largest reward. This implies that

the agent must have the abilities to sense the state of the environment and to take actions

that a¤ect the state. Furthermore, the agent must also have goals relating to the state of

the environment. The two most important distinguishing features of RL are ([87]): (i) trial

and error search - selecting action ai 2 A has an e¤ect on the immediate reward; and (ii)
delayed reward - selecting action ai 2 A may a¤ect not only the immediate reward, but also
the next situation and, through that, all subsequent rewards. The basic assumption in RL

is that the system state, st+1, at step (time) t+ 1, must be a function of only its last state,

st, and the selected action, at; that is, st+1 = f(st; at) where st 2 S and at 2 A are the state
and chosen action at time step t, respectively [79].

AnRL system includes four main sub-elements ([83]): (i) policy - agent�s way of behaving,

a way of mapping situations to actions. The policy is the core of an RL agent since that

alone is su¢ cient to determine behavior. (ii) Reward function - de�nes the goal in an RL

problem and indicates what is good in an immediate sense. It maps each perceived state (or

state-action pair) of the environment to a single number, a reward, indicating the intrinsic

desirability of that state. (iii) Value function - value of a state is the total amount of reward

an agent can expect to accumulate over the future, starting from that state, indicating what
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is good in the long run. (iv) Model of the environment - the model mimics the behavior of

the environment. The model predicts, given a state and action, the resultant next state and

next reward. Models are used for planning, deciding on a course of action by considering

possible future situations before they are actually experienced.

A challenging issue that exists in RL is the trade-o¤between exploration and exploitation

[87]. In order to maximize the reward, an RL agent must choose between actions in set A,

which were tried in previous activities, so as to produce the highest reward. Those actions

in A may now be known to the agent (exploitation), but before that they would have to be

discovered, meaning they were new actions (exploration). In other words, the agent must

exploit what he already knows but he also has to explore the environment in order to make

better action selections in the future, which may yield a greater reward. One way to achieve

both exploration and exploitation is by using a stochastic method called "-greedy action

selection ([87]), which will be de�ned later.

1.3.1 Action selection

Part of the learning process is to decide whether to explore for new actions or make use of

the experience already gained. Choosing exploring or exploiting in an unequivocal way will

result in losing the optimal solution or probably converge to sub-optimal solutions. In order

to provide an action selection rule, an RL process creates a probability distribution over the

set of possible actions. This is done by assigning a numerical value (an estimation), Qt(ai),

to each possible action ai 2 A at time t. Given a set of estimations at time t, Qt(ai) for

any ai 2 A, we can select one of many methods presented in the literature to select the next
action, at. Below, we survey some of the most commonly used methods for action selection.

Greedy action selection This method always exploits the gained experience, i.e., it

always selects the action with the highest estimated payo¤. Thus, at time step t it chooses

the action ai for which Qt(ai) = maxaj2A fQt(aj)g. A signi�cant disadvantage of this method
is that it spends no time for exploring actions that seem inferior, and because of that the

agent might get stuck at a sub-optimal results.

"-greedy action selection (or near greedy) In this method, the agent, at any given

time step t, selects action ai for which Qt(ai) = maxaj2A fQt(aj)g with a probability of
1 � ". Otherwise, with a probability of ", the agent selects a random action from the set

of all possible actions, where each action in this set has the same probability to be chosen.

The disadvantage is that once a random action is selected, no exploitation is made, i.e., all

actions have the same probability to be selected.
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Softmax action selection In this method the greedy action is still given the highest

probability of getting selected, but the other actions are ranked and weighted according to

their estimates. The most common way to implement the softmax action selection method

is by using the Gibbs or Boltzmann distribution, for which the probability, Probt(ai), of

selecting a feasible action ai at time step t is given by

Probt(ai) =
eQt(ai)=TempP

aj2A0 e
Qt(aj)=Temp

(2)

where Temp is a temperature factor (in fact in every iteration Temp will be multiplied with a

decay factor) that determines the amount of exploration, and A0 includes all possible actions

at time step t. High Temp values will result in a lot of exploration, and low values will result

in the exploitation of experience. In the limit, when Temp! 0, softmax selection becomes

the same as the greedy action selection.

1.3.2 RL algorithms

There are several di¤erent RL algorithms, each of which updates the set of estimators by

applying a di¤erent approach. After updating the estimators each method may use any

action selection method or prede�ned policy to move from one state to another. Next we

brie�y present some of the most commonly used algorithms.

The temporal-di¤erence (TD) algorithm "If one had to identify one idea as central

and novel to RL, it would undoubtedly be temporal-di¤erence (TD) learning ([87])." TD

learning [87] is a combination ofMonte Carlo (MC ) and Dynamic Programming (DP) ideas.

MC methods require only experience-sample sequences of states, actions, and rewards from

on-line or simulated interaction with an environment. In DP, the key idea is the use of value

functions to organize and structure the search for good policies. TD methods, like MC,

can learn directly from raw experience without a model of the environment�s dynamics, and

like DP, TD methods update estimates (V -values of estimates that follow prede�ned policy)

based in part on other learned estimates, without waiting for a �nal outcome. The advantage

of TD, compared to DP, methods is that they do not require a model of the environment,

of its reward, and next-state probability distributions. When compared to MC methods

their advantage is that they are naturally implemented on-line (one time step), in a fully

incremental fashion. The relationship between TD, DP, and MC methods is a recurring

theme in the theory of reinforcement learning; their ideas and methods blend into each other

and can be combined in many ways.
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The TD(�) algorithm TD(�) was developed by Richard Sutton [86]. In TD(�), � refers

to the use of an eligibility trace, which is one of the basic mechanism of RL. According to [87]

there are two ways to view �: theoretically (forward view) and mechanistically (backward

view). The approach of the theoretical view was presented as "For each state visited, we

look forward in time to all the future rewards and decide how best to combine them." The

mechanistic view "provides a causal, incremental mechanism for approximating the forward

view and, in the o¤-line case, for achieving it exactly."

"TD(�) is an elegant algorithm for approximating the expected long-term future cost

(estimator) of a dynamic stochastic system as a function of the current state" ([9]). They

develop a variation of TD(�) to train an agent playing a two-player game, such as chess or

backgammon, when TD(�) "provides a way of using the scalar rewards such that existing

supervised training techniques can be used to tune the function approximator" ([9]).

The SARSA & SARSA(�) algorithm The name SARSA re�ects the fact that the main

function for updating the estimator (Q-value) at time t depends on: the current state, st;

the action the agent chooses, at; the reward the agent gets for choosing this action, rt+1; the

state, st+1, that the agent will be in after taking action at; and the next action, at+1, that

the agent will choose in its new state, st+1. Taking every letter for each parameter in the

process (st; at; rt+1; st+1; at+1) yields the word SARSA. SARSA, TD method, and SARSA(�)

are on-policy algorithms, meaning that they approximate the Q-value, the action values for

the current policy, then improve the policy gradually based on the approximate values for the

current policy. The policy improvement can be done in many di¤erent ways. The simplest

approach is to use the "-greedy policy with respect to the current action value estimates.

Following the description above, the two algorithms will now be described separately and

generally. SARSA algorithm [87] considers transitions from state-action pair to state-action

pair, and learns the value of state-action pairs. SARSA(�) algorithm is the eligibility trace

version of SARSA ([87]). The idea in this method is to apply the TD(�) prediction method

to state-action pairs rather than to states, with use of a trace for each state-action pair.

The Q-learning algorithm "Q-learning, one of the most important RL algorithms, was

presented by Watkins in 1989 ([89]). Some researchers classify the Q-learning algorithm as

a special case of the TD learning algorithm" ([34]). The Q-learning algorithm works by

estimating the values of state-action pairs, Q(st; at), i.e., in this method the system directly

estimates the Q-values and then uses them to derive a control policy using the local greedy

strategy [87].

The algorithm: the �rst step is to initialize the system�s action-value function, Q. Since
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no prior knowledge is available, the initial values can be arbitrary (e.g., uniformly zero).

The second step is to initialize the control policy, P�; this is achieved by assigning to P� the

action that locally maximizes the action-value. After performing the initialization, steps one

and two, with every action (until stopping criterion is met) the agent is updating the action

values Q(st; at). For example: at time step t the agent visits state st 2 S and selects an
action at 2 A, receives from the process the reward r(st; at) and observes the next state st+1
and then updates the action value Q(st; at).

The advantage is that the update rule is model free as it is a rule that just relates Q

values to other Q values. It does not require a prior mapping from actions to states and it

can calculate the Q values directly from the elementary rewards observed. The disadvantage

is that the agent learns quite slowly because only one time-step is traced for each action.

Q(�)-learning Q-learning only considers the immediate reward. It propagates the reward

backward only one step. Unlike Q-learning, Q(�)-learning not only considers the immediate

reward, it also takes the discounted future rewards into consideration ([10]). Actually, a

generalization of Q-learning, represented by Q(�) [74], uses eligibility traces, e(st; at): the

one-step Q-learning is a particular case with � = 0 [31], where � represents the eligibility

decay rate. The greater � is, the longer the sequence of values of state-action pairs updated.

To boost learning, a multi-step tracing mechanism, the eligibility trace, is used in which the

values of a sequence of actions can be updated simultaneously according to the respective

lengths of the eligibility traces [96]. The advantage of the Q(�) algorithm is that the learn-

ing process is faster. The disadvantage is that the convergence of Q(�) is not assured for

� > 0 [31]. Furthermore, Sutton and Barto [87] indicate that unlike TD(�) or SARSA(�),

Watkins�s [89] Q(�) does not look ahead all the way to the end of the episode in its backup.

It only looks ahead as far as the next exploratory action. Aside from this di¤erence, however,

Watkins�s [89] Q(�) is much like TD(�) and SARSA(�). Their look ahead stops at episode�s

end, whereas Q(�)�s look ahead stops at the �rst exploratory action, or at episode�s end if

there are no exploratory actions before.

1.3.3 Applications of RL algorithms

Table 2 below presents a few applications for which RL is applied to robot learning and

scheduling problems.
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Algorithm Application Reference
Q and Q(�)-learning Robot Navigation [10], [96]

TD(�) Manufacturing scheduling [94], [95]
Q-learning Flow-shop Scheduling [76]
Q-learning Job-shop Scheduling [8]
Q-learning Multi-Robot Systems [23], [6]
Q-learning Collaboration and Scheduling [29], [30]
Q(�)-learning Human-Robot Collaboration [41]
Q-learning Multi-Robot Collaborative Task [75]

Table 2: Examples of applications of RL algorithms in robot learning and scheduling.

1.4 Multi-agent collaboration

In this thesis we use RL algorithms to solve various robotic scheduling problems. Our RL

algorithms are unique in the sense that they exploit collaboration between di¤erent agents

in the system (which might either be the robots themselves and/or an external adviser). In

this subsection we provide a brief introduction to collaboration within multi-agent systems

(MAS).

"CooperativeMAS are ones in which several agents attempt, through their interaction, to

jointly solve tasks or to maximize utility. Due to the interactions among the agents, multi-

agent problem complexity can rise rapidly with the number of agents or their behavioral

sophistication. The challenge this presents to the task of programming solutions to MAS

problems has spawned increasing interest in machine learning techniques to automate the

search and optimization process ([65]). "The multi-agent learning is a �eld that refers to

many areas, including RL, evolutionary computation, game theory, complex systems, agent

modeling, and robotics" ([65]). Further, it has two features that di¤erentiate them from

ordinary ML: (i) due to interaction between agents small changes in learned behaviors can

often result in unpredictable changes in the resulting multi-agent group as a whole; and

(ii) there could be multiple learners, each learning and adapting in the context of others.

Multi-agent learning can be divided into two categories ([65]): (i) team learning - applying a

single learner to discover joint solutions to multi-agent problems; or (ii) concurrent learning

- using multiple simultaneous learners, often one per agent, that attempt to improve parts

of the team. In addition, there are two types of communication that are connected to

learning: (i) direct communication - an external communication method that agents may

share information with one another, such as: shared blackboards, signaling, and message-

passing and; (ii) indirect communication - implicit transfer of information from agent to

agent through modi�cation of the world environment, such as leaving footsteps in snow.

Claus and Boutilier [12] distinguish between two cases of agent�s actions: (i) joint action
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learners - agents that get information about their own choice of action as well as their

partners�choices; and (ii) independent learners - agents that only know their own actions.

The joint action learners su¤er from combinatorial explosion of the size of the state-action

space with the number of agents, while independent learners have three major di¢ culties

([51]): (i) other learning agents are unpredictable elements of the environment; (ii) the

environment is no longer stationary; and (iii) it is hard to make sure that all independent

learners coherently choose their individual actions such that the resulting joint action is

optimal (i.e., how to coordinate between the agents).

Multi-robot systems (MRS) can also be de�ned as anMAS, where a group of autonomous,

interacting entities (as robots) share a common environment, which they perceive with sen-

sors and upon which they act with actuators (see, e.g., Weiss [35], and Thomas and Martin

[26]). MRS have many advantages ([23]), such as: (i) they can often be used to ful�ll the

tasks that are di¢ cult to be accomplished by an individual robot; and (ii) their performance

with cooperation contributes to task solutions with a more reliable, faster, or cheaper way.

Still, MRS cannot predict the entire potential situation they may encounter, and specify

robots�optimal behaviors in advance. Therefore, robots inMRS must learn from, and adapt

to their operating environment and their counterparts. RL is one of the ML methods that

enable learning in MRS.

"MAS are rapidly �nding applications in a variety of domains, including robotics, dis-

tributed control, telecommunications, and economics. The complexity of many tasks arising

in these domains makes them di¢ cult to solve with preprogrammed agent behaviors. The

agents must, instead, discover a solution on their own, using learning. A signi�cant part of

the research on multi-agent learning concerns RL techniques" ([67]). InMAS RL, agents can

compete or cooperate to accomplish the goal [20]. "In resource management, the robots in

a collaborative team were one of the following: (i) each agent manages one resource - learns

how to best service requests; and (ii) agents learn how to best select resources, when both

is through optimization of a given performance measure. The performance measures can be

minimum waiting time for resources, resource usage and etc." ([67]).
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2 Literature Review

This section includes a literature review of the three main thesis topics: (i) �ow-shop schedul-

ing problems with transportation times (which is sometimes referred to as robotic �ow-shop

scheduling problems); (ii) implementation of RL algorithms to solve scheduling problems;

and (iii) the uses of collaboration in RL. Based on gaps we identi�ed in the review, we

conclude with a subsection that presents our research directions.

2.1 Flow-Shop scheduling problems with transportation times

In most studies related to �ow-shop scheduling, the common assumption is that job transfer

times between any two consecutive stations (machines) is either not relevant or negligible. In

such systems, once a job has �nished its processing on machineMi it is immediately available

for processing on machineMi+1 for i = 1; :::;m�1. However, in many cases a robot is required
for transfer operations. If the number of robots in the system is limited, the scheduler has to

schedule the robot moves in addition to making the regular job scheduling decisions. As far

as we know, the literature related to robot scheduling in �ow-shop systems started in 1976

(see Phillips and Unger [77]) and since this seminal work many other works have been done

on this subject.

In this section we give a general de�nition of �ow-shop scheduling problems with trans-

portation times and present di¤erent variants of this problem that have been studied in

the literature. A �ow-shop scheduling problem with transportation times can be de�ned

as follows: A set of n independent jobs, J = fJ1; :::; Jng, is available for processing at
time zero. The jobs are to be processed on a set of m machines, M = fM1; :::;Mmg, in
a �ow-shop scheduling system. In such a system, each job Jj consists of m operations

Oj = fO1j; :::; Omjg, which must be processed in the order O1j ! O2j ! : : : ! Omj on the

m machines. The operation Oij must be processed on machineMi for pij � 0 time units and
each machine can only process one job at a time. In front of each machine Mi (i = 1; :::;m),

there is an input bu¤er IBi with a capacity of C(IBi), which implies that no more than

C(IBi) jobs can be in this bu¤er at any given time. In order to process a job on Mi, the

job has to be taken from the input bu¤er, and be uploaded on Mi. After the completion

of the job on Mi, it has to be downloaded from the machine, into the output bu¤er OBi
besideMi. The capacity of OBi is denoted by C(OBi). It is usually assumed that there is an

automatic mechanism beside each machine Mi (i = 1; :::;m) that allows to performing both

download and upload operations in negligible time. A set of k robots, R = fR1; :::; Rkg,
provides transportation service between the machine bu¤ers. Let tijr represent the trans-

portation time required for robot Rr to transfer job Jj from OBi to IBi+1, and let teir be

29

gzilberman
Highlight



the time required for robot Rr to move empty without carrying a job from machine Mi+1 to

machineMi. The empty return times are assumed to be additive, i.e., the time for the robot

to travel between two distinct machines is the sum of the empty traveling times between

all intermediate machines. The typical objective in this set of problems is to �nd a job and

robot schedule to minimize (or maximize) a given scheduling criterion.

Robotic �ow-shop systems are very complicated to analyze and thus in order to provide

an exact (mathematical-based) analysis researchers used various simpli�ed assumptions. The

most common assumption is that there is a single robot that serves the entire production

line (see, e.g., Stern and Vinter [84], Panwalkar [73], Levner et al. [60], Kise et al. [50],

Agnetis [4], Hurink and Knust [38], and Ling and Guang [64]). Among the other commonly

used assumptions is the case where the number of machines is limited to two (see, e.g., Yu

[92], Dell�Amico [22], Karuno and Nagamochi [42], and Agnetis [4], Hurink and Knust [38]),

that empty return times equal zero (see, e.g., Kise [49], Hurink and Knust [38], and Ling and

Guang [64]), that loading and unloading times are zero (see, e.g., Kise [49], Agnetis [4], and

Agnetis and Pacciarelli [5]), that job processing times are job-independent (see, e.g., Levner

et al. [61], Kats et al. [45], Che et al. [13] and [14], and Chu [21]), that the production is

cyclic (see, e.g., Levner et al. [61], Kats et al. [45], Agnetis [4], Che et al. [13] and [14], and

Chu [21]), and that there is a su¢ cient number of robots with no technological constraints

(see, e.g., Yu [92], Dell�Amico [22], and Karuno and Nagamochi [42]).

A good example for the wide range of assumptions used is the paper by Hurink and

Knust [38], where it is assumed that only a single robot serves the entire set of machines

and that there is an unlimited bu¤er between any two consecutive machines. Moreover, in

several cases they even consider more restricted models of two machines, equal transportation

times, zero empty return times, and equal and even unit processing times. We note that the

robotic �ow-shop scheduling problem is so complicated that even under these very restrictive

assumptions, Hurink and Knust [38] showed that the problem remains strongly NP-hard
in most cases and exact (polynomial time) algorithms have been presented only for some

special cases where all processing times are equal.

Next we review the related literature starting with works that consider the case of a

single robot and moving to those that consider multiple robots.

2.1.1 Problems with a single transferring robot

There are several di¤erent variants of �ow-shop scheduling problems where transportations

are performed by a single robot. A literature review of the main variants appears below.

� Variant 1 : The variant where there is an unlimited bu¤er between the machines, a
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single robot serves the entire set of m machines, and the objective is to minimize the

makespan. Kise [49] proved that the problem with two-machines, a single robot, and

equal transportation times is ordinary NP-hard. Hurink and Knust [38] showed that
the problem with two machines, a single robot, and zero empty return times is equiv-

alent to the well-known F3 jjCmax problem, and is thus strongly NP-hard. They also
showed that the problem remains strongly NP-hard even if either the transportation
or the processing times are all equal. Ling and Guang [64] showed that the problem

is also strongly NP-hard if there are only two possible transportation times and the
processing times are job-dependent and machine-independent. In contrast to these

hardness results, Hurink and Knust [38] showed that other special cases of the problem

can be solved in polynomial time. This includes the case where either all processing

times are restricted to unity and the case of equal processing times with only two possi-

ble transportation times. Hurink and Knust further showed that if all processing times

are equal and the transportation times are job-independent (but machine dependent),

then the problem of minimizing the makespan can be solved in polynomial time for

any arbitrary number of machines. Among other research papers that belong to this

stream one can �nd the papers by Lee and Chen [54], Lee and Strusevich [55], and

Tang and Liu [88].

� Variant 2 : The variant where there is a limited bu¤er between the machines, a single
robot that serves the entire set of m machines, and the objective is to minimize the

makespan. Polynomial time procedures for several special cases of this variant appear

in Panwalkar [73], Levner et al. [60], Kise et al. [49], and Stern and Vinter [84].

� Variant 3 : The variant where there is a su¢ cient number of robots with no techno-
logical constraints such that any job that is �nished on any one of the m machines

is immediately transferred to the bu¤er beside the consecutive machine with no addi-

tional delays. In this case, the transportation times can be viewed as simple time-lags

(delays) between any two consecutive operations of the same job. If the time-lags

are all equal, then the two-machine case can be solved in polynomial time by using

the well-known Johnson�s algorithm for solving the F2 jjCmax problem. However, if
time-lags are job-dependent, the two-machine case becomes strongly NP-hard even
for cases where either all processing times are equal to unity or time-lags have only

two possible values (see Yu [92]). Another paper dealing with �ow-shop scheduling and

time-lags is that of Dell�Amico [22], who o¤ers a 2-approximation algorithm for solv-

ing the two-machine case. Karuno and Nagamochi [42] improved the approximation

result by Dell�Amico by constructing an (11/6)-approximation algorithm for the same
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problem.

� Variant 4 : The variant of cyclic �ow-shop scheduling problem in a robotic cell with a

no-wait restriction. According to Che et al. [18], cyclic schedules can be distinguished

by the number of parts entering and leaving the system in every cycle. In an �r-cyclic

schedule, exactly �r parts enter and leave the cell during each cycle. The mean cycle

time of an �r-cyclic is de�ned by the cycle time divided by �r. The throughput rate is

then the inverse of the cycle time. The objective in this variant is to maximize the

throughput. Agnetis [4] provided an O(n log n) time procedure to �nd the optimal

1-cyclic schedule for the case where there are two-machines and a single robot. Also,

Levner et al. [61] provided an O(m3 logm) procedure to �nd the optimal 1-cyclic

schedule where there are identical jobs on m machines. For identical jobs, Che et al.

[14] and Chu [21] provided a polynomial time algorithm to solve the 2-cyclic problem,

where exact algorithms to �nd the optimal �r-cyclic schedule have been proposed by

Kats et al. [45] and Che et al. [13]. For a recent survey on cyclic scheduling we refer

the reader to Levner et al. [62].

2.1.2 Problems with multiple job transferring robots

As far as we know, problems with multiple robots have only been considered for the case

of cyclic scheduling in a robotic cell with no-wait restrictions. Karaznov and Livshits [43],

Kats and Levner [44] and [46], and Che and Chu [15] and [17] consider the case where the

robots move on parallel tracks, thus avoiding collisions between the robots. Karaznov and

Livshits [43] treated the number of robots running on parallel tracks as a decision variable.

They analyze the problem of minimizing the number of robots for a given periodic (cyclic)

schedule. They reduced the problem to a special assignment problem that is solvable in

polynomial time. Orlin [72] considered a similar periodic scheduling problem and derived

another polynomial time algorithm based on minimum-cost network �ows. Kats and Levner

[44] presented an O(n5) time optimization algorithm to �nd the minimum number of robots

required for all possible cycle lengths. In [46], they also developed anO(n3 log n) optimization

algorithm to �nd the minimum cycle time for multi-robot schedules, where the assignment

of machines to robots was �xed a priori.

Che and Chu [16] and Leung and Levner [59] consider a system where all robots share

the same track. Che and Chu [16] studied the problem of minimizing the cycle time, or

equivalently of maximizing the production throughput, for a given number of robots, while

Leung and Levner [59] provide a complete bicriteria analysis of the problem with a single

robot type. In this thesis, we study a problem that is similar to the one studied in [59].
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However, in contrast to the study by Leung and Levner [59], we assume that there are

several types of robots distinguished by di¤erent travel times and costs. Moreover, our aim

is to minimize the makespan while Leung and Levner [59] consider cyclic scheduling; thus

their objective is to minimize cycle time.

Flow shop robotic scheduling problem with two transfer robots with the objective to

minimize makespan, was studied recently by Lamoudan et al. [52]. The robots were posi-

tioned on the two sides of the machines to move �nished jobs between machines by parallel

movements. Each machine has a limited input/output bu¤er and C(IBi) = C(OBi) = 1, so

when bu¤er is full the job has to wait on its current machine and this machine is blocked

for other jobs (at least until a bu¤er unit becomes available). They proposed an algorithm

based on meth-heuristic procedure ant colony (ACO) and showed that for problems without

transportation times, it was able to obtain results better than other meth-heuristic proce-

dures, such as genetic algorithm (GA). For problems with transportation times, results of

the algorithm were compared to best results achieved for the same problems but without

transportation time. In contrast to the study of Lamoudan et al. [52], we assume that robots

are non-identical, distinguished by di¤erent transfer times and empty return times (which

are non-negligible) and the input/output bu¤er of each machine is unlimited.

2.2 Implementations of RL within scheduling

In this section we provide a literature review of implementations of RL for solving �ow-shop

and job-shop scheduling problems.

Yusuke and Taketoshi [94] studied the feasibility of applying RL to solve the Fm jjCmax
problem form = 2 andm = 3. Although the F2 jjCmax problem is solvable in O(n log n) time
[39], Yusuke and Taketoshi applied the RL method to construct an algorithm that can solve

this problem in order to compare the RL results to the optimal solution. This was used later

to justify the use of this technique to solve the strongly NP-hard F3 jjCmax problem ([27])

by using a similar method. In their research, Yusuke and Taketoshi formulate the F2 jjCmax
and the F3 jjCmax problems as RL problems by applying the TD(�) algorithm. In their
formulation the agent is simply the job dispatcher (i.e., the scheduler) of the manufacturing

line, and an action simply decides which job to schedule next from a prede�ned set of

candidates. They consider three ways to de�ne the set of candidates and seven di¤erent

ways to de�ne the states. Moreover, they de�ne the reward as the negative of the makespan

value. By performing an experimental study, they show that for the F2 jjCmax problem the

best combination of action-state is the one that (i) uses a set of candidates that include only

two jobs; and (ii) de�nes the state as the ratio of jobs in the queue with the processing time
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on the �rst machine longer than on the second machine. We note that the two jobs in the set

of candidates are de�ned as the ones with the minimum processing time on the �rst machine

and the one with the maximum processing time on the second machine among all jobs in

the queue (i.e., among all jobs that haven�t been scheduled yet). Yusuke and Taketoshi

[94] obtain similar results also for the F3 jjCmax problem, and provide the following two
insights with respect to the feasibility of applying RL to solve the Fm jjCmax problem: (i)
a good formulation can sometimes lead an agent to acquire the optimal rule that minimizes

an objective function; (ii) an agent can learn and obtain the improved schedules even when

the formulation is not perfect.

Stefn [76] used an RL procedure based on a Q-learning algorithm to provide a solution

for the �ow-shop problem on m machines with the objective to minimize the sum of machine

idle times. In their formulation of the scheduling problem as an RL problem, they de�ne

states as job sequences, or more precisely job precedence relations. State-changes (or actions)

have been de�ned as changes in relations. An action step is performed by a permutation

operator, which sets up a job sequence according to precedence preferences. At the beginning

no preferences are given, so states are traversed randomly. As learning proceeds, preferences

are updated, which, in turn, in�uences action selection policy converging to the found quasi-

optimal job sequence. Stefn [76] proposed two algorithms. The �rst is based on RL while

the other combines RL with a simulated annealing (SA) procedure. He [76] reported the

following important points that were revealed during the study: (i) RL can be combined with

another heuristic procedure (such as SA); (ii) an RL procedure that is based on a Q-learning

algorithm is adaptable and can include more elements; and (iii) RL can deal with large scale

scheduling problems and provide a near-optimal solution. Further research by Zhang et al.

[95] used an RL procedure based on a TD(�) algorithm to solve the Fm jjCmax problem.
To do that they �rst convert the �ow-shop scheduling problem into a semi-Markov decision

process (SMDP) problem by constructing elaborate state features, actions, and a reward

function. The conversion was done in such a way that minimizing the accumulated reward

in the converted problem is equivalent to minimizing the schedule objective function. To

examine the performance of their proposedRL algorithm in comparison with other scheduling

methods, they conducted a set of computational experiments on benchmarking problems.

Their results supported the e¢ ciency of the proposed algorithm and illustrated that the RL

approach is a promising computational approach for solving �ow-shop scheduling problems.

The RL method was employed by Aydin and Oztemel [8] and Wei and Zhao [90] to

also solve scheduling problems in a dynamic job-shop scheduling environment, where jobs

may arrive at the shop at any time. They developed an adaptive method of rules selection

for dynamic job-shop scheduling using RL where the scheduler does not possess detailed
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information about the jobs, which may arrive at the shop at any time. The problem presented

in Aydin and Oztemel [8] is to schedule a set of jobs (each job consists of a set of operations),

under a set of constraints, in terms of a certain criteria. For this, they developed an improved

version of RL algorithm based on Q-learning, which they refer to as Q-III. The agent was

trained by the Q-III through the learning stage, and then it had to make decisions in order to

schedule operations. In other words, the agent selects in real-time the most appropriate rule

for schedule operations according to the shop conditions, and then the simulated environment

performs the scheduling by the rule that was selected. They found out, at the end of training,

that the agent provides better results than the traditional alternatives, such as using the SPT

rule. In Wei and Zhao [90] the agent was trained by a Q-learning algorithm, which enables it

to select the appropriate rule in real-time. The rule is used for selecting a job from the bu¤er,

when the decision on which rule to use is based on the status of the system bu¤er. The goal

of their research was to minimize mean tardiness and through various sets of examples they

were able to show that theQ-learning algorithm has superiority over most of the conventional

rules compared. Wei and Zhao [91] extend their work in [90] to consider both machine and

job selections.

Martinez et al. [68] study a static �exible job-shop scheduling problem with the objective

of minimizing the makespan. They presented an improved RL approach that combines both

learning and optimization to solve the problem. By conducting an experimental study they

compare the quality of their algorithm to other commonly used meth-heuristic procedures

such as ones that are based on GA, ACO, and Tabu search (TS), and showed that their

proposed algorithm provides the smallest average gap from the best known lower bound

value.

2.3 Collaboration in RL

Two important surveys by [23] and [67] on the �eld of MARL were conducted in the last

period, pointing out di¢ culties and challenges. "With the ever increasing interests in theo-

retical researches and practical applications, currently there have been a lot of e¤orts towards

providing some solutions to this challenge. However, there are still many di¢ culties in scal-

ing up the MARL to MRS" [23]. The main di¤erence between single robot and MAS is the

environment, where in MAS other adapting agents make the environment non-stationary.

As a result, the Markov property that a traditional learning agent relies upon is violated.

However, this fact is usually neglected and the basic assumption of Q-learning is violated and

some researchers apply Q-learning inMRS [23]. In addition, for the single robot, the reward

that the learning robot receives depends on its own actions, while rewards that learning

35



robots receive depend not only on their own actions but also on the actions of other robots.

"The distributed autonomous robotic system has superiority of robustness and adapt-

ability to dynamical environment, however, the system requires the cooperative behavior

mutually for optimality of the system. The acquisition of action by RL is known as one

of the approaches when the multi-robot works with cooperation mutually for a complex

task" ([71]). Their research deals with transporting problem in MAS using Q-learning al-

gorithm, and aims to establish e¤ective cooperation. Tomofumi et al. [71] de�ne di¤erent

rewards that can be characterized as one of the following: positive for making transfer or

positive/negative for being cooperative/non-cooperative, respectively. The Q-learning al-

gorithm performed the least number of cooperations and in the process small (compared

to other methods) total number of unnecessary encounters. In conclusion, Tomofumi et al.

remark that it is di¢ cult to deal with cooperation but e¤ective. Research by Laetitia et al.

[51] focuses on decentralized RL in cooperative MAS, where a team of independent learning

robots try to coordinate their individual behavior to reach a coherent joint behavior. In other

words, the agents share the same goal and the common payo¤ can be jointly maximized.

Despite di¢ culties mentioned above, Laetitia et al. [51] have presented a decentralized RL

algorithm, based on Q-learning, for independent learners that computes a better policy in

a cooperative MAS without additional information or communication between agents than

existing algorithms. Later research of Dahl et al. [19] dealt with modeling the e¤ects of

robot interaction in multi-robot systems, i.e., group dynamic. They have presented a coop-

erative RL algorithm, based on Q-learning, in order to solve a multi-robot task allocation

problem, where each individual robot handles traditional RL algorithm with actions, state

and Q-values. The robots can can get in each other way, and hence to optimize performance,

robots must �nd the correct balance between levels of interference. They show that when

greedy individuals continually update local Q-values, achieved solutions are optimal. So, or-

dinary decentralized Q-learning could be applied to some cooperative multi-agent systems.

In addition to Q-learning, Erfu and Dongbing [23] present and describe di¤erent RL

algorithms from the literature that were implemented by using the Q-learning, SARSA,

and SARSA(�) techniques. Yet, they point out that "Although there have been a variety

of RL techniques that are developed for multi-agent learning systems, very few of these

techniques scale well to MRS. On the one hand, the theory itself on MARL systems in the

�nite discrete domains are still underway and have not been well established." Later study

by Lucian et al. [67] on MARL notes that several new challenges arise for RL in MAS,

including the di¢ culty of specifying a learning goal; the non-stationarity of the learning

problem; increasing number of learning agents (i.e., the exponential growth of state-action

spaces); and the need for coordination as each learning agent must follow the other learning
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agents and so must be able to coordinate its behavior with theirs (see also [20] and [47]).

Collaborative RL was �rst introduced on a human-robot collaboration system by Kartun

et al. [41]. They propose CQ(�) algorithm which is based on Q(�). The "CQ(�) included

two collaboration levels: (i) Autonomous (AO) - the robot decides which actions to take

according to its learning function, and (ii) Semi-autonomous (SAO) - a human operator

guides the robot and the robot combines this knowledge into its learning function" ([41]).

The robot was aware of its learning performance and was able to switch from autonomous

to semi-autonomous and ask for human assistance. The CQ(�) integrates the experience of

a robot and a human, and so accelerates learning, i.e., reduces the long learning times of

the Q(�). Future research of this work followed from the question of "How can the robot

be sure that all human operator suggestions are bene�cial? It may be the case that some

human advice does not contribute to the robot learning process" [41]. Thus, research by Gil

et al. ([30]) improved the CQ(�) algorithm and studied the system when the robot was able

to decide whether to accept or reject the advice, i.e., they provide the robot with a tool to

estimate the quality of each advice. However, one challenge remains open: how the robot

can assess human expertise, based on its past advises, which will enable it to decide whether

to continue to collaborate with the expert or not.

2.4 Research gaps and directions

In this research we analyze a set of single and multi-robot �ow-shop scheduling problems

with the scheduling objective of minimizing the makespan. Our research aims to provide a

theoretical analysis of various scheduling problems, which were not analyzed in the literature

yet, and to introduce a new RL techniques for solving hard robotic scheduling problems. The

following lists the gaps we identi�ed in the literature review and the corresponding research

directions.

1. Scheduling models with job-independent processing time addresses one of the most

important and widely studied special cases in the scheduling literature. These models

deal with the real life applications of repetitive manufacture of the same product.

When reviewing the literature related to �ow-shop problems with a single robot, we

found out that no one studied the Variant 1 (see Section 2.1.1) of the problem with

job-independent (but machine-dependent) processing times. Thus, one of our research

directions is to construct algorithms to solve this problem.

2. The literature review reveals the di¢ culty of analyzing �ow-shop scheduling problems

with multiple job transferring robots. In fact, as far as we know, all studies related
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to this �eld that provide theoretical analysis assume cyclic production of identical

jobs (see, e.g., Karaznov and Livshits [43], Kats and Levner [44], and [46], Che and

Chu [15], and [17], and Leung and Levner [59]). However, the more di¢ cult non-cyclic

production is overlooked. Thus, another direction is to analyze the non-cyclic version of

the problem involving multiple transferring robots. Accordingly, we de�ne an objective

function to minimize the makespan rather than to minimize the cycle time.

3. Che and Chu [16] have pointed out that an important aspect that must be taken under

consideration when dealing with MRS is the number of robots and their type, which

signi�cantly e¤ects production costs. However, as far as we know, all multi-robot �ow-

shop scheduling problems analyzed in the literature, used a single robot type, and in

most cases the number of robots from the same type is given in advance. Thus, one

of our main directions is to study a robotic �ow-shop scheduling problem, where there

are several robot types and both the robot selection and their assignment to machines

are decision variables.

4. RL is one of the most important methods of machine learning. It is widely used to

solve many problems in a large number of �elds. Yet, it is not widely used in the

�eld of robotic scheduling. In fact, as far as we know, collaborative RL (introduced

by [41]) has not been applied yet for the solution of hard robotic �ow-shop problems.

Thus, one of our main research directions is to apply collaborative RL on various

robotic scheduling problems in order to enable faster results (accelerate learning) and

to examine the quality of the obtained results.

5. When applying the RL method in the �eld of scheduling, researchers have used single

agent models (see, e.g., Yusuke and Taketoshi [94], Stefn [76], and Zhang et al. [95]).

However, in many cases faster and better results can be achieved when using a collab-

orative multi-agent system. Thus, we aim to construct RL models that can e¢ ciently

coordinate between the agents. Moreover, we aim to implement the collaborative RL

models with di¤erent levels of collaboration between the agents. This will enable us

to examine the e¤ect of the collaboration level on the quality of the obtained solution.
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3 Problems De�nitions, Research Objectives, Signi�-

cance and Thesis Organization

3.1 Problems de�nitions

In section 2.4 we provide our motivation, which is derived from existing gaps in the literature.

We aim to close some of the gaps provided, by analyzing a set of three robotic scheduling

problems that haven�t been studied before. In each of these problems we have to schedule

a set of n jobs, J = fJ1; :::; Jng, which is available for processing at time zero and has to
be scheduled on a set of m machines,M = fM1; :::;Mmg, in a �ow-shop scheduling system.
Moreover, there are Q types of robots, where the cost of a single robot of type q is �q for

q = 1; :::; Q. Moreover, in all problems tiq represents the transportation time required for a

robot of type q to transfer a job from machine Mi to machine Mi+1 (we assume that this

time is job-independent), and teiq represents the time required for a robot of type q to move

empty (without carrying a job) from machineMi+1 to machineMi. In any special case where

there is a single robot type, we omit the q index, such that, for example ti represents the

transportation time required for the robot to transfer a job from machine Mi to machine

Mi+1. Next, we provide the additional information required to provide a formal de�nition

for each of the three problems we study.

3.1.1 Problem 1 - Scheduling identical jobs with a single robot

In Problem 1 we focus on the special case of the robotic scheduling problem that consists

of a single robot, and where job processing times are job-independent (and may either be

machine-independent or machine-dependent). We focus on Variant 1 of the problem (see

Section 2.1.1), where there is an unlimited bu¤er between the machines and the objective

is to minimize the makespan. However, since for the three machine case, we prove that

the optimal schedule does not exploit the capacity of the bu¤er, our results (for the three

machine case) holds also for the more restrictive cases where the bu¤er size is limited.

Figure 1 below illustrates our robotic �ow-shop problem with a single transferring robot and

identical processing times.
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Figure 1: An illustration of single robot job-machine scheduling system.

3.1.2 Problem 2 - The Robot Selection and Scheduling Problem (RSSP)

In Problem 2, which we refer to as the Robot Selection and Scheduling Problem (RSSP), we
take the challenge of combining the two important decisions of robot selection and scheduling

into the same uni�ed decision-making model. The aim is to provide the scheduler with tools

to optimally coordinate these two important decisions in a non-cyclic scheduling environ-

ment, where the objectives are to minimize the makespan and the total robot selection cost.

Thus, in contrast to most models where the number of robots and their type is prede�ned

to the scheduler, we study a problem where the scheduler can select both the number of

robots to be used and their type. More particularly, we assume that there are Q types of

robots, where the cost of a single robot of type q is �q for q = 1; :::; Q, and each robot type

has its own transportation abilities, i.e., both transportation times and empty return times

are robot-type dependent.

In ourRSSP, we consider the case where the robots move on an identical track positioned
alongside a machine transfer line. Due to the limited working space envelopes of the robots

and to avoid collisions, each robot is assigned to a portion of the track and performs job

transfers between all reachable machines from its assigned portion of the track. Let k be

the number of robots serving the system and let Mr = fMlr ; :::;Mlr+1g be a subset of
consecutive machines designated to robot Rr for r = 1; :::; k with l1

def
= 1 and lk+1

def
= m.

Robot Rr is responsible for transferring jobs between successive machines in setMr. Note

thatMr \Mr+1 = Mlr+1 and robot Rr is responsible for transfers to machine Mlr+1, while

robot Rr+1 is responsible for transfers from machine Mlr+1for r = 1; :::; k � 1. Figure 2
below illustrates the �ow-shop system and its partition into k working space envelopes of

the robots.
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Figure 2: An illustration of the robot job-machine scheduling system.

We assume that processing times are both job and machine independent (that is, pij = p

for j = 1; :::; n and i = 1; :::;m). Thus, the job scheduling problem is redundant (i.e., any

permutation schedule is optimal) and a solution to the problemRSSP includes the following
two parts: (a) robot selection and (b) robot scheduling. The robot selection part comprises of

a selection of an ordered list of k robots fR1; R2; :::; Rkg (where k itself is a decision variable)
from the set of Q robot types (we may select more than a single robot of the same type)

and from the assignment of a subset of machines,Mr = fMlr ; :::;Mlr+1g, to each robot Rr
for r = 1; :::; k such thatM1 [M2 [ ::: [Mk = fM1; :::;Mmg. The robot scheduling part
de�nes a set of moves for each robot that indicates the sequence in which the robot serves

the machines. Similar to Che and Chu [17], a solution to the scheduling part is feasible if it

obeys the following two restrictions:

Restriction 1 : (no-wait restriction): Jobs are not allowed to wait between two consecutive

machines; that is, once a job has �nished its processing on machineMi it must be immediately

transferred to machine Mi+1 for i = 1; :::;m� 1.
Restriction 2 : (no machine idle time): Once a machine has started work, it must process

the entire set of n jobs consecutively.

We evaluate the quality of a feasible solution to RSSP by two di¤erent criteria (perfor-
mance measures). The �rst is the makespan criterion denoted by Cmax = Cn, and de�ned by

the completion time of the last job (job Jn) on the last machine (machine Mm). The second

is the total cost of the assigned robots de�ned by

TRC =

kX
r=1

�frg

where frg is the type of robot Rr.
In any multi-criteria problem it is very important to point out the nature of the opti-

mization being performed as di¤erent criteria are often con�icting. Here we are interested
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in solving the following four variations of the RSSP:

1. RSSP1: Find a feasible solution which minimizes the total integrated cost, i.e., Cmax+
TRC.

2. RSSP2: Find a feasible solution which minimizes Cmax subject to TRC � TRC,

where TRC is a given upper bound on the total robot assignment cost.

3. RSSP3: Find a feasible solution which minimizes TRC subject to Cmax � Cmax, where
Cmax is a given upper bound on the makespan value.

4. RSSP4: Identify a Pareto-optimal solution for each Pareto-optimal point, where a
feasible solution S is called Pareto-optimal (non-dominated or e¢ cient) with respect

to criteria Cmax and TRC; if there does not exist another feasible solution S 0 such that

Cmax(S
0) � Cmax(S) and TRC(S 0) � TRC(S), with at least one of these inequalities

being strict.

Note that solving problem RSSP4 also solves problems RSSP1-RSSP3 as a by-product.
Note also that the decision version (DV ) of problem RSSP2 is identical to that of problem
RSSP3, and is de�ned below:

De�nition 21 DV: Given parameters Cmax and TRC, determine whether there is a solution
for the RSSP with Cmax(S) � Cmax and TRC(S) � TRC.

The fact that both the RSSP2 and the RSSP3 problems share the same decision version
implies that either both or neither of them is NP-hard.

3.1.3 Problem 3 - Scheduling identical jobs with two robots on parallel tracks

Problem 3 is a variant of the robotic �ow-shop scheduling problem, where two robots (which

may be of a di¤erent type) moving on parallel tracks are serving the production line. How-

ever, in contrast to Problem 2, we assume that the robots and their type are prede�ned to

the scheduler. Since the robots are working on parallel tracks there is no risk of collisions,

meaning that the robots are independent and each can work on any machine in set M.

Furthermore, since robots�tracks are located on opposite sides, the two robots can transfer

di¤erent jobs from and to the same bu¤er at the same time. Figure 3 below illustrates our

robotic �ow-shop problem with two robots on parallel tracks.
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Figure 3: An illustration of our scheduling system with two robots on parallel tracks.

The objective in Problem 3 is to �nd a schedule for both robots and a job schedule on

the machines that all together minimizes the makespan. We assume that the capacity of all

bu¤ers is unbounded, and that job processing times are job-independent (and may either be

machine-independent or machine-dependent).

3.2 Research objectives

Our research objective is to analyze each of the three problems presented above, and to

provide tools for optimization. More particularly, our objectives are to:

1. Provide tight lower bounds for the corresponding scheduling problems. These bounds

will be used either for proving that a speci�c algorithm provides the optimal solution,

or for comparing the performance of a suggested heuristic algorithm.

2. Provide polynomial time procedures, when possible, to various variants of the three

problems presented above. When we couldn�t provide such algorithms we will attempt

to prove that the corresponding problem is NP-hard.

3. Try to provide both exact algorithms (such as pseudo polynomial time algorithms)

and approximation algorithms (such as an FPTAS) for problems in which polynomial

time procedure is not available. Moreover, we will focus on applying collaborative RL

methods in order to �nd a near optimal solution.

4. Show that collaborative RL methods can be used to obtain good solutions for schedul-

ing problems in general and for robotic �ow-shop scheduling problems in particular.

5. Develop collaborative RL models that are based on collaboration between a robot and

an adviser. The tools will provide the robot with the ability to assess the adviser�s
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level of expertise, which in turn enables it to make wise decisions on whether to use

the adviser or not. Note that current models have either assumed that the adviser is

indeed expert, and thus the robot has to take his advises (see [41]) or use a learning

process that is based on the quality of each advice rather the quality of the adviser

(see Gil et al. ([30]).

6. Apply collaborative RL with di¤erent levels of collaboration on various multi-robotic

scheduling problems, and to examine the bene�t result in from increasing collaboration

levels (in terms of the solution value).

3.3 Research signi�cance and main results obtained

According to Lebacque and Brauner [53], "Global competition has increased the need of au-

tomation in production cells and computer-controlled material handling devices have �our-

ished over the recent years." Furthermore, since MRS can often be used to ful�ll tasks that

are very di¢ cult and complex to be accomplished by an individual robot ([23]), and since

generalizations of scheduling problems within MRS is a problem that hasn�t been dealt with

seriously ([38]), it is very important to deal with and analyze �ow-shop scheduling problems

within MRS. Thus, we focus on analyzing three di¤erent robotic �ow-shop scheduling prob-

lems. The research signi�cance and main results for each of the problems we analyzed is

summarized below:

1. Analysis and solution procedures for the robotic �ow�shop scheduling prob-
lem with identical jobs and a single robot - Various scheduling problems with a
single material handling device (robot) were studied in the literature (see Lebacque and

Brauner [53] for a survey on this �eld up to 2008), with some problems remaining open

([38]). One of them, to the best of our knowledge, is the �ow-shop scheduling problem

with a single robot and job-independent processing times (see Problem 1 in Section

3). This problem has a lot of real life applications in production systems that produce

identical products in a �ow-shop scheduling system. Thus, in this thesis we analyze

Problem 1, and provide a closed form solution for the three-machine case. Moreover,

for the more general case, where m is arbitrary, we use a collaborative RL formulation

for providing a near-optimal solution. In our collaborative RL formulation, the robot,

while learning, collaborates with another entity, the adviser, and together they aim to

provide the best possible solution for the scheduling problem. The robot in our model

uses the "-greedy method for action selection, while the adviser uses the softmax action
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selection method. The robot, when deciding that the learning process is ine¤ective,

asks for assistance (advice) from the adviser. When receiving the advice, the robot

examines the quality of the advice and acts accordingly. If the robot learns that the

adviser is ine¤ective it decides to stop the collaboration; if the adviser is found to be

e¤ective, the robot decides to continue the collaboration with the adviser. The adviser,

when called, assists the robot and so provides it an advice, i.e., an entire scheduling

for a given problem. Such a collaborative RL formulation is unique and has not been

applied yet for solving a scheduling problem. Note that current collaborative RL mod-

els, which include collaboration between an agent and an adviser, have either assumed

that the adviser is expert, and thus the robot has to take his advice (see [41]) or used

a learning process that is based on the quality of each advice (see Gil et al. ([30]). We,

on the other hand, use a learning process that assesses the quality of the adviser.

2. Analysis and a solution procedure for the RSSP (Problem 2 ) - In systems where
tasks are too di¢ cult and too complicated to be accomplished by a single robot, the

need for more robots arises. An important aspect that must be taken under consid-

eration when dealing with MRS is the number of robots ([16]) and their type, which

signi�cantly a¤ects production costs.

Our model of the RSSP includes some new features that have been discussed rarely or
not at all in the literature. Among those features are several robot types, an arbitrary

number of machines, a possibility to control the number of robots assigned to the

production line and their assignment to machine sets, and a bicriteria approach for

analysis. We believe this is the �rst time that this type of problem has been treated

in the literature, and addresses a very important problem in multiple robotic systems

operation. On the other hand, to be able to provide a mathematical based analysis

we used the following assumptions; (i) There are no-wait and no-idle restrictions (see

Restrictions 1-2 in the de�nition of the RSSP); (ii) Transportation times are job-
independent; and (iii) Job processing times are all equal. The no-wait and no-idle

restrictions are well justi�ed by many real-life applications (see, e.g., Che and Chu

[17], Hall and Sriskandarajah [36], Saadani et al. [81], and Goncharov and Sevastyanov

[32]) and are widely used in the �ow-shop scheduling literature (see Adiri and Pohoryles

[1], Kalczynski and Kamburowski [40], Ruiz et al. [80], Lei and Wang [56], Levner et

al. [61], Agnetis [4], Agnetis and Pacciarelli [5], Che et al. [13], and [14], Leung and

Zhang [57], Leung et al. [58], and Levner et al. [62] among many others). Even the

assumption of job-independent (but machine-dependent) transportation times can be

easily justi�ed and thus are commonly used in robotic �ow-shop scheduling problems
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(see, e.g., Kise et al. [50], Levner et al. [61], Agnetis [4], Agnetis and Pacciarelli [5],

Che et al. [13], Che et al. [14], Leung and Zhang [57], Leung et al. [58], Leung and

Levner [59] and Levner et al. [62]). However, the third assumption of equal processing

times seems to be the most restrictive one. Nevertheless, this assumption is crucial for

providing a mathematical based analysis of the RSSP problem. This is well justi�ed
by the fact that no one yet was able to solve the very restricted model where there are

m machines, a single robot, and job-independent (but machine-dependent) processing

times without including additional simplifying assumptions (such as cyclic production).

Note also that the third assumption, although very restrictive, was used by Hurink and

Knust [38] in a large portion of their paper and was the most crucial assumption that

enabled exact solution procedures. Moreover, this assumption was used by many other

researchers who dealt with special cases of �ow-shop scheduling problems (see, e.g.,

Adiri and Amit [2], Yu et al. [93], Mosheiov et al. [69], Mosheiov and Oron [70], Lim

et al. [63], Ageev and Baburin [3], and Brucker and Shakhlevich [11]).

The main results obtained in this thesis for the RSSP problem includes:

� A polynomial reduction of the RSSP to a bicriteria shortest path problem in an

acyclic graph.

� A polynomial time procedure to solve the RSSP1.

� A proof that RSSP2 �RSSP4 are NP-hard.

� A proof that problems RSSP2�RSSP4 are solvable in pseudo-polynomial time,
and that there exists an FPTAS for the solution of RSSP2 and RSSP3.

� The construction of polynomial time procedures to solve some important special
cases of the NP-hard problems, including: (i) the case of robot-independent
transportation times; and (ii) the case of identical robot costs.

3. Scheduling identical jobs with two robots on parallel tracks (Problem 3 ) -

Since a polynomial time procedure to solve this problem does not exist, we use a novel

collaborative RL formulation for the problem that is used to obtain a near-optimal

solution. We study the following new four di¤erent levels of collaboration between

robots: (a) Full - robots are working together, performing both self- and joint-learning

and sharing full information; (b) Pull - only one robot can decide when and if to learn

from the other robot; (c) Push - one robot may force the other robot when and how to

learn from it; and (d) None - each robot is autonomous, i.e., robots do not share infor-

mation and each learns independently. For each level of collaboration we were able to
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formulate the scheduling problem as a collaborative RL problem overcoming two known

di¢ culties within RL (the non-stationary environment and coordination between the

agents [23], [51], and [67]), and to determine the bene�t of using each level of collabo-

ration in terms of the quality of our solution.

In addition to providing methods for solving our problems, we want to emphasize that,

as far as we know, our study is the �rst to implement a collaborative RL method (using

Q-learning) for solving robotic scheduling problems, and the �rst to study the bene�t of

using increasing levels of collaboration between agents (either two robots or a robot with an

adviser) in such an environment.

3.4 Thesis organization

The rest of the thesis is organized as follows. In the following sections, we analyze each of

Problems 1-3, �rst presenting theoretical analysis for Problem 1 (see Section 4) and Problem

2 (see Section 5), followed by collaborative RL Robot-Adviser (RA) algorithm for Problem

1 (see Section 6), and collaborative RL Robot-Robot (RR) algorithm for Problem 3 (see

Section 7). Finally, in Section 8, a summary and future research concludes the thesis.
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4 Polynomial Time Procedure to Solve Problem 1 with

Three Machines

This section deals with Problem 1 and presents a polynomial time procedure to solve the

problem with three machines, i.e., to solve the F3; R1jpij = pi; tij = tijCmax problem.1 This
is done by decomposing the problem to a set of sub-problems, and providing an optimal

schedule for each sub-problem separately. The optimality of each schedule (for each sub-

problem) is proven by showing that the makespan value obtained by the suggested schedule

matches the lower bound value. Next, we present our lower bound value, the decomposing

of the problem into four sub-problems, and necessary and su¢ cient conditions for feasibility

of a schedule.

4.1 Schedule de�nition in terms of robot moves

Since the jobs in our F3; R1jpij = pi; tij = tijCmax problem are identical, we can assume,

without loss of generality, that the jobs are scheduled in the sequence of their indices on each

of the three machines. Thus, our objective is to determine the optimal robot schedule that

minimizes the makespan. A robot schedule can be easily de�ned by a sequence of 4n � 2
robot moves. These 4n � 2 moves includes (i) n moves, each of a di¤erent job from M1 to

M2; (ii) n moves, each of a di¤erent job from M2 to M3; (iii) n� 1 empty moves from M3

to M2; and (iv) n � 1 empty moves from M2 to M1. Let Z = (z1; ::::; z4n�2) be a sequence

of 4n� 2 robot moves, where z� = i implies that the �0th move of the robot is a non-empty
move from machineMi to machineMi+1, and z� = ei implies that the �

0th move of the robot

is an empty move from machine Mi+1 to machine Mi. Given a sequence of robot moves, we

construct a feasible schedule according to Algorithm 1 below.

Algorithm 1 Constructing a feasible schedule for a given sequence of robot moves.

� Schedule the jobs onM1 one after the other with no delays, such that job Jj is scheduled

during time interval ((j � 1)p1; jp1] for j = 1; :::; n.

� Once a robot �nishes a move, if the next move is an empty move (ei for i = 1; 2) it

is immediately done. Otherwise, if the move is a non-empty move (i for i = 1; 2), the

1The analysis presented in this chapter was recently submitted to the International Journal of Production
Research.
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robot moves a job as early as possible (once a job is available at the output bu¤er of

Mi).

� We schedule each job Jj (j = 1; :::; n) on Mi (i = 2; 3) as early as possible, which is the

latest time between (i) the time that Jj is downloaded at the input bu¤er of Mi; and

(ii) the time that the Mi �nishes the processing of Jj (with the completion time of J0
on Mi being zero, by de�nition).

Let us de�ne the following subsequences of moves: Ss1 = (1; 2; e2; e1); Ss2 = (1; 2);

Ss3 = (1; e1); Ss4 = (e2; 2); and Ss5 = (e2; e1). We will prove that for any instance of the

problem there exists an optimal sequence of robot moves that is taken out of the following

two sequences of moves.

� Sequence 1 : Z1 = (Ss1; Ss1; ::::; Ss1; Ss2), where the robot does not perform two non-

empty consecutive moves between the same two consecutive machines. This sequence

of moves is constructed from n � 1 subsequences of type Ss1 followed by a single
subsequence of type Ss2. In this sequence of moves, for j = 1; :::; n, the robot (i)

moves Jj from M1 to M2; (ii) waits besides M2 for the completion of Jj; (iii) moves

Jj from M2 to M3; and (iv) if j < n returns empty to M1.

� Sequence 2 : Z2 = (Ss1; ::::; Ss1; Ss3; Ss1; :::; Ss1; Ss2; Ss4) if y = n and

Z2 = (Ss1; ::::; Ss1; Ss3; Ss1; :::; Ss1; Ss2; Ss4; Ss5; Ss1; ::::; Ss1; Ss2) if y < n. Here, the

robot makes two consecutive moves from M1 to M2 exactly once (which implies that

the robot makes two consecutive moves from M2 to M3 exactly once as well). Let

the two consecutive moves from M1 to M2 be done on jobs Jx and Jx+1, and the two

consecutive moves from M2 to M3 be done on jobs Jy�1 and Jy with x 2 f1; :::; n� 1g
and y 2 fx+ 1; :::; ng. Then, this sequence of moves starts with x� 1 subsequences of
type Ss1, followed by a single subsequence of type Ss3; a set of y�x� 1 subsequences
of type Ss1; a single subsequence of type Ss2; and a single subsequence of type Ss4.

If y = n the sequence of moves ends. Otherwise, the sequence continues with a single

subsequence of type Ss5; a set of n � y � 1 subsequences of type Ss1; and a single
subsequence of type Ss2. Here, the robot starts with a sequence of moves where for

j = 1; :::; x� 1 the robot moves Jj fromM1 to M2; waits beside M2 for the completion

of Jj on M2; moves Jj from M2 to M3; and returns empty to M1. Then, the robot

moves Jx from M1 to M2 and returns empty to M1. After completing this move, for

j = x+1; :::; y�1 the robot moves Jj fromM1 toM2; Jj�1 fromM2 toM3; and returns

empty to M1. This set of moves is followed by a move of Jy from M1 to M2; a move of
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Jy�1 from M2 to M3; an empty return move from M3 to M2; and a move of Jy from

M2 toM3. If y = n, the sequence of moves ends as Jn has been moved fromM2 toM3.

Otherwise, the robot returns empty from M3 to M1. Then, for j = y+1; :::; n� 1, the
robot moves Jj from M1 to M2; waits besides M2 for the completion of job Jj on M2;

moves Jj from M2 to M3 and returns empty to M1. Finally, the robot moves Jn from

M1 to M2; waits besides M2 for the completion of Jn on M2; and moves Jn from M2

to M3.

4.2 Simple lower bounds and problem decomposition

Let us �rst calculate a lower bound, LBf , which is based on the processing of all jobs on

machine Mf for f 2 f1; 2; 3g. The earliest time machine Mf can start processing J1 is atPf�1
i=1 pi+

Pf�1
i=1 ti (where

P0
i=1 pi =

P0
i=1 ti = 0 by de�nition). Thus, processing on machine

Mf cannot be completed before
Pf�1

i=1 pi +
Pf�1

i=1 ti + npf . After Jn is completed on Mf it

has to be processed on machines Mf+1; :::;M3. Thus, the earliest time to complete Jn on

M3, which is in fact a lower bound on the makespan value, is

LBf =
Pf�1

i=1 pi+
Pf�1

i=1 ti+npf +
P3

i=f+1 pi+
P2

i=f ti = (n� 1)pf +
P3

i=1 pi+
P2

i=1 ti; (3)

for f = 1; 2; 3. Let us next calculate another lower bound which is based on the robot moves.

The robot cannot start its moves before J1 is completed on M1 at p1. From this time point

the robot has to move the n jobs from M1 to M2 and from M2 to M3, and has to return

empty n � 1 times from each machine to its predecessor machine. Thus, a lower bound for

the time that the robot �nish to transfer Jn to M3 is at p1 + n
P2

i=1 ti + (n � 1)
P2

i=1 tei.

Lastly, job Jn has to be processed on M3, and thus the makespan value is lower bounded by

LBr = p1 + n
P2

i=1 ti + (n� 1)
P2

i=1 tei + p3: (4)

Obviously, when several lower bound values are given, the ultimate lower bound is the

maximum between them. Thus,

LB = max

�
max
f=1;2;3

fLBfg; LBr
�
=P2

i=1 ti +
P3

i=1 pi +max
�
(n� 1)pmax; (n� 1)

�P2
i=1 ti +

P2
i=1 tei

�
� p2

	
(5)

provides a lower bound on the makespan value, where pmax = maxf=1;2:3fpfg.
Hereafter, we refer toMf as a bottleneck machine if pf = maxi=1;2;3fpig. Moreover, we say

that machineMf is the system�s bottleneck if pf = maxi=1;2;3fpig and pf �
P2

i=1 ti+
P2

i=1 tei,
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and that the robot is the system�s bottleneck if
P2

i=1 ti +
P2

i=1 tei � maxi=1;2;3fpig. Note
that if machine Mf is the system�s bottleneck, then LB = LBf . However, if the robot is the

system�s bottleneck then it is not necessarily true that LB = LBr.

In order to solve our problem, we decompose it into four di¤erent sub-problems (cases)

each of which is related to a di¤erent bottleneck of the system. Case f (f = 1; 2; 3) is where

machine Mf is the systems�bottleneck, and thus

pf = max
�
p1; p2; p3;

P2
i=1 ti +

P2
i=1 tei

	
; (6)

and Case 4 is where the robot is the systems�bottleneck, and thus

P2
i=1 ti +

P2
i=1 tei = max

�
p1; p2; p3;

P2
i=1 ti +

P2
i=1 tei

	
: (7)

Note that for some instances there might be an overlap between the di¤erent cases. In such

a case, one has to arbitrary decide to which case the corresponding instance belongs. Below,

we provide revised (tighter) lower bounds for various subcases of Cases 1, 3 and 4.

4.3 Tighter lower bounds

4.3.1 Tighter lower bounds for various subcases of Case 1

According to (5), for Case 1 where

p1 = max
�
p1; p2; p3;

P2
i=1 ti +

P2
i=1 tei

	
; (8)

we have that

LB = LB1 = (n� 1)p1 +
P2

i=1 ti +
P3

i=1 pi: (9)

However, when p1 < p2 +
P2

i=1 ti +
P2

i=1 tei and either t2 + te2 = maxfp2; p3; t2 + te2g or
p3 = maxfp2; p3; t2 + te2g, we next provide a revised (tighter) lower bound denoted by LB01.
To do so, we consider two possible scenarios:

� Scenario (a): the robot does not perform two consecutive moves from M1 to M2; and

� Scenario (b): the robot makes at least once two consecutive moves fromM1 toM2 (and

thus also at least once two consecutive moves from M2 to M3).

Let us �rst consider Scenario (a). In this scenario the robot moves each job from M1 to

M2 and then toM3 before moving to the next job, i.e., after moving Jj (j = 1; :::; n) fromM1

toM2, the robot waits besideM2 for the completion of Jj on this machine and then moves it
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toM3. Thus, the robot starts the move of J1 fromM1 toM2 not earlier than at p1, and thus

starts to move Jj from M1 to M2 not earlier than at p1 + (j � 1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
for j = 2; :::; n. Accordingly, Jn will not �nish its processing on M3 earlier than at

LB01(a) = p1 + (n� 1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+ t1 + p2 + t2 + p3 =

LB1 + (n� 1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei � p1

�
� LB1: (10)

Consider next Scenario (b), and let the last two consecutive moves from M2 to M3 be done

on Jy�1 and Jy where 2 � y � n. Then, the earliest time in which Jy�1 and Jy are both
either in the input bu¤er of or processed on M2 is at yp1 + t1, and thus the move of Jy�1
from M2 to M3 will not start before this time. This implies that (i) the move of Jy from

M2 to M3 will not start before yp1 + t1 +maxfp2; t2 + te2g; (ii) the move of Jy+1 from M1

to M2 will not start before yp1 + maxfp2; t2 + te2g +
P2

i=1 ti +
P2

i=1 tei; and that (iii) job

Jy will not start its processing on M3 before yp1 +
P2

i=1 ti +maxfp2; t2 + te2; p3g. The fact
that after completing the move of Jy+1 from M1 to M2, the robot waits beside M2 for the

completion of each job Jj for j = y + 1; : : : ; n implies that the earliest time that the robot

will be available to move Jn from M1 to M2 is

yp1 +
2X
i=1

ti +maxfp2; t2 + te2g+
2X
i=1

tei + (n� y � 1)(
2X
i=1

ti +
2X
i=1

tei + p2);

and thus we cannot start to process Jn on M3 before

yp1 +
2X
i=1

ti +maxfp2; t2 + te2g+ (n� y)(
2X
i=1

ti +
2X
i=1

tei + p2):

To start the processing of Jn onM3 it is also required that Jn�1 will complete its processing on

M3. Since Jy starts its processing onM3 not earlier than at yp1+
P2

i=1 ti+maxfp2; t2+te2; p3g,
Jn�1 will complete its processing on M3 not earlier than at yp1 +

P2
i=1 ti + maxfp2; t2 +

te2; p3g+ (n� y)p3. Thus, we have that, for any given y value, the makespan value is lower
bounded by LB01(b(y)) � LB1:

LB01(b(y)) = yp1 +
P2

i=1 ti + p3+

max
�
maxfp2; t2 + te2g+ (n� y)

�P2
i=1 ti +

P2
i=1 tei + p2

�
;maxfp2; t2 + te2; p3g+ (n� y)p3

	
:

(11)

Let y� be the integer y value (y 2 f2; :::; ng) that minimizes LB01(b(y)) in (11). Then if
Scenario (b) is selected we have that Cmax � LB01(b(y�)), and if Scenario (a) is selected, then
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Cmax � LB01(a). Thus, a lower bound for the makespan value is given by

min fLB01(a); LB01(b(y�))g : (12)

Consider now subcase 1.1 where in addition to the condition in (8), we also have that

p1 < p2 +

2X
i=1

ti +

2X
i=1

tei: (13)

Moreover, further divide this subcase into the following three subcases.

� Subcase 1.1.1, where maxfp2; t2+ te2; p3g = p2. For this subcase, LB01(b(y)) in (11) can
be represented by

LB01(b(y)) = yp1 +
P2

i=1 ti + p3 + p2 + (n� y)
�P2

i=1 ti +
P2

i=1 tei + p2
�
: (14)

The fact that the condition in (13) holds implies that (14) gets its minimum when

y = n (i.e., y� = n). Thus, if Scenario (b) is selected then Cmax � LB01(b(y� = n)) =
np1+

P2
i=1 ti+p2+p3 = LB1, which according to (10) and (12) is also the lower bound

for the makespan value in this case.

� Subcase 1.1.2, where maxfp2; t2 + te2; p3g = t2 + te2. For this subcase eq. (11) can be
rewritten as follows:

LB01(b(y)) = yp1 +
P2

i=1 ti + p3 + t2 + te2 + (n� y)
�P2

i=1 ti +
P2

i=1 tei + p2
�
:

The fact that the condition in (13) holds implies that (14) gets its minimum when

y = n (i.e., y� = n). Thus, if Scenario (b) is selected then

Cmax � LB01(b(y� = n)) = np1 +
P2

i=1 ti + t2 + te2 + p3 = LB1 + t2 + te2 � p2: (15)

According to (10), (12) and (15) a lower bound for the makespan value in this case is

then given by

LB01 = LB1 +min
�
(n� 1)

�P2
i=1 ti +

P2
i=1 tei + p2 � p1

�
; t2 + te2 � p2

	
: (16)

� Subcase 1.1.3, where maxfp2; t2+ te2; p3g = p3. For this subcase, according to eq. (11),
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we have that:

LB01(b(y)) = yp1 +
P2

i=1 ti + p3+

max
�
maxfp2; t2 + te2g+ (n� y)

�P2
i=1 ti +

P2
i=1 tei + p2

�
; (n� y + 1)p3

	
:

(17)

Thus, according to (10), (12) and (17) a lower bound for the makespan value in this

case is given by

LB001 = LB1 +min
�
(n� 1)

�P2
i=1 ti +

P2
i=1 tei + p2 � p1

�
;�(y�)

	
; (18)

where y� is the y value (y 2 f2; :::; ng) that minimizes LB01(b(y)) in (17) and �(y�) =
LB01(b(y

�)) � LB1. Note that LB01(b(y)) is a piecewise linear function of y. Thus, y�

can be easily computed in a constant time.

4.3.2 Tighter lower bounds for various subcases of Case 3

According to (5), for Case 3 where

p3 = max
�
p1; p2; p3;

P2
i=1 ti +

P2
i=1 tei

	
; (19)

we have that

LB = LB3 = (n� 1)p3 +
P2

i=1 ti +
P3

i=1 pi: (20)

However, in a similar fashion to the analysis done in subsection 4.3.1, we can provide

tighter lower bounds for the case where p3 < p2 +
P2

i=1 ti +
P2

i=1 tei and either t1 + te1 =

max fp1; t1 + te1; p2g or p1 = max fp1; t1 + te1; p2g. For the sake of brevity, and due to sim-
ilarities to what was done in subsection 4.3.1, we provide the bounds without including

the formal analysis. For the �rst case, where p3 < p2 +
P2

i=1 ti +
P2

i=1 tei and t1 + te1 =

max fp1; t1 + te1; p2g, the tighter bound is given by

LB03 = LB3 +min
�
(n� 1)

�P2
i=1 ti +

P2
i=1 tei + p2 � p3

�
; (t1 + te1)� p2

	
: (21)

In addition, for the second case, where p3 < p2 +
P2

i=1 ti +
P2

i=1 tei and

p1 = max fp1; t1 + te1; p2g, the tighter bound is given by

LB003 = LB3 +min
�
(n� 1)

�P2
i=1 ti +

P2
i=1 tei + p2 � p3

�
;�(x�)

	
: (22)
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Here x� is the integer x value (x 2 f1; 2; :::; n� 1g) that minimizes LB03(x) which is given by

LB03(x) = max
�
(x� 1)

�P2
i=1 ti +

P2
i=1 tei + p2

�
+maxft1 + te1; p2g; xp1

	
+ p1 +

P2
i=1 ti + (n� x+ 1)p3; (23)

and �(x�) = LB003 (x
�) � LB3. Note that LB03(x) is a piecewise linear function of x. Thus,

x� can be easily computed in a constant time.

4.3.3 Tighter lower bounds for various subcases of Case 4

For Case 4 we have that

P2
i=1 ti +

P2
i=1 tei = max

�
p1; p2; p3;

P2
i=1 ti +

P2
i=1 tei

	
: (24)

For various subcases of this case, we revise the lower bound in eq. (4) by tighten it. The

revised lower bound is given by

LB0r = p1 + n
P2

i=1 ti + (n� 1)
P2

i=1 tei + p3 + LB(I) = LBr + LB(I); (25)

where LB(I) is a lower bound on the robot idle time in any feasible schedule (excluding the

idle times of p1 and p3 units of time at the beginning and at the end of the schedule).

Consider the same two possible scenarios, we consider in subsection 4.3.1 (Scenarios (a)

and (b)). Similar to what is done in subsection 4.3.1, if we schedule the robot according to

Scenario (a) then the makespan value is lower bounded by

LB0r(a) = (n� 1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+
P2

i=1 ti +
P3

i=1 pi = LBr + np2:

Consider next case (b) where the robot makes two consecutive moves fromM1 toM2 at least

once. Let the �rst two consecutive moves from M1 to M2 be done on Jx and Jx+1 with

1 � x � n � 1, and the last two consecutive moves from M2 to M3 be done on Jy�1 and

Jy with x + 1 � y � n. Accordingly, the move of Jx from M1 to M2 will not start before

p1 + (x� 1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
, which further implies that the move of Jx+1 from M1

to M2 will not start before

max

(
p1 + (x� 1)

 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
+ t1 + te1; (x+ 1)p1

)
:
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Thus, the move of Jx from M2 to M3 cannot start before (i)

max

(
p1 + (x� 1)

 
p2 +

2X
i=1

ti +

2X
i=1

tei

!
+ t1 + te1; (x+ 1)p1

)
+ t1;

which is the earliest time that the move of Jx+1 from M1 to M2 is completed; and (ii)

p1+(x� 1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+ t1+ p2, which is the earliest time Jx is completed on

M2. Thus, the move of Jx from M2 to M3 cannot start before

T = max
�
p1 + (x� 1)

�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+maxft1 + te1; p2g; (x+ 1)p1

	
+ t1:

From this time point the robot has to perform an additional y � x � 1 non-empty moves
from Mi to Mi+1, and y � x � 1 empty moves from Mi+1 to Mi for i = 1; 2 before he

can start to move Jy�1 from M2 to M3. Therefore, the move of Jy�1 from M2 to M3 will

not start before T + (y � x � 1)
�P2

i=1 ti +
P2

i=1 tei
�
, and the earliest time in which Jy�1

�nishes its processing on M3 is at T + (y � x� 1)
�P2

i=1 ti +
P2

i=1 tei
�
+ t2 + p3. Moreover,

the robot will be available to move Jy from M2 to M3 not earlier then at T + (y � x �
1)
�P2

i=1 ti +
P2

i=1 tei
�
+maxft2 + te2; p2g. The fact that the robot waits beside M2 for the

completion of each job Jj for j = y + 1; : : : ; n further implies that the earliest time that the

robot will be available for moving Jn from M2 to M3 is

T + (y � x� 1)
 

2X
i=1

ti +
2X
i=1

tei

!
+maxft2 + te2; p2g+ (n� y)

 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
:

Furthermore, the fact that Jy�1 �nishes its processing onM3 not earlier than at T +(y�x�
1)
�P2

i=1 ti +
P2

i=1 tei
�
+ t2 + p3 implies that Jn�1 �nishes its processing on M3 not earlier

then at T + (y � x � 1)
�P2

i=1 ti +
P2

i=1 tei
�
+ t2 + (n � y + 1)p3: Thus, a lower bound for

makespan value in case (b) for a given x and y values is

LB0r(b(x; y)) = max
�
p1 + (x� 1)

�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+maxft1 + te1; p2g; (x+ 1)p1

	
+t1 + (y � x� 1)

�P2
i=1 ti +

P2
i=1 tei

�
+ t2+

max
�
maxft2 + te2; p2g+ (n� y)

�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
; (n� y + 1)p3

	
+ p3: (26)

Let x� and y� be the integer x and y value (x 2 f1; :::; n � 1g and y 2 fx + 1; :::; n � 1g)
that minimizes LB0r(b(x; y)) in (26). Then, if Scenario (b) is selected we have that Cmax �
LB0r(b(x

�; y�)), and if Scenario (a) is selected we have that Cmax � LB01(a). Thus, a lower
bound for the makespan value is given by
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min fLB0r(a); LB0r(b(x�; y�))g . (27)

We below further divide Case 4 into subcases and provide a tighter lower bound for each of

those subcases.

� Subcase 4.1, where maxft1+te1; p2g � p1 and maxft2+te2; p2g � p3. For this subcase,
we can rewrite eq. (26) as follows:

LB0r(b(x; y)) = p1 + (x� 1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+maxft1 + te1; p2g+ t1+

(y � x� 1)
�P2

i=1 ti +
P2

i=1 tei
�
+ t2 +maxft2 + te2; p2g+

(n� y)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+ p3: (28)

One can easily observe from (28) that x� = 1and y� = n. The fact that

LB0r(b(x
� = 1; y� = n)) = p1 +maxft1 + te1; p2g+ t1+
(n� 2)

�P2
i=1 ti +

P2
i=1 tei

�
+ t2 +maxft2 + te2; p2g+ p3 =

LBr +maxft1 + te1; p2g+maxft2 + te2; p2g �
�P2

i=1 ti +
P2

i=1 tei
�
;

and that

maxft1 + te1; p2g+maxft2 + te2; p2g �
�P2

i=1 ti +
P2

i=1 tei
�
� np2;

implies that LB0r(b(x
�; y�)) � LB0r(a). Thus, according to (27) a lower bound for the

makespan value is given by

LB0r = LBr +maxft1 + te1; p2g+maxft2 + te2; p2g �
�P2

i=1 ti +
P2

i=1 tei
�
. (29)

� Subcase 4.2, where maxft1+te1; p2g � p1 and maxft2+te2; p2g < p3. For this subcase,
the value of LB0r(b(x; y)) in eq. (26) becomes:

LB0r(b(x; y)) = p1 + (x� 1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+maxft1 + te1; p2g+ t1+

(y � x� 1)
�P2

i=1 ti +
P2

i=1 tei
�
+ t2+

max
�
maxft2 + te2; p2g+ (n� y)

�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
; (n� y + 1)p3

	
+ p3:

(30)
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One can easily observe from (30) that x� = 1. Thus, if Scenario (b) is selected then

Cmax � LB0r(b(x� = 1; y)) = p1 +maxft1 + te1; p2g+ t1 + (y � 2)
�P2

i=1 ti +
P2

i=1 tei
�
+

t2+max
�
maxft2 + te2; p2g+ (n� y)

�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
; (n� y + 1)p3

	
+ p3.

(31)

It follows from (27) that a lower bound for the makespan value is given by

LB00r = LBr +minfnp2;�(y�)g; (32)

where y� is the y value (y 2 f2; :::; ng) that minimizes LB0r(b(x� = 1; y)) in (31) and
�(y�) = LB0r(b(x

� = 1; y�))� LBr. Note that LB0r(b(x� = 1; y)) in (31) is a piecewise
linear function of y. Thus, y� can be easily computed in a constant time.

� Subcase 4.3, where maxft1+te1; p2g < p1 and maxft2+te2; p2g � p3. For this subcase,
eq. (26) reduces to

LB0r(b(x; y)) = max
�
p1 + (x� 1)

�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+maxft1 + te1; p2g; (x+ 1)p1

	
+t1 + (y � x� 1)

�P2
i=1 ti +

P2
i=1 tei

�
+ t2+

maxft2 + te2; p2g+ (n� y)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+ p3: (33)

One can easily observe from (33) that y� = n. Thus, if Scenario (b) is selected then

Cmax � LB0r(b(x; y� = n)) =
max

�
p1 + (x� 1)

�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+maxft1 + te1; p2g; (x+ 1)p1

	
+ t1 + (n� x� 1)

�P2
i=1 ti +

P2
i=1 tei

�
+maxft2 + te2; p2g+ t2 + p3: (34)

It follows from (27) that a lower bound for the makespan value is given by

LB000r = LBr +minfnp2;�(x�)g; (35)

where x� is the x value (x 2 f1; :::; n � 2g) that minimizes LB0r(b(x; y� = n)) in (34)
and �(x�) = LB0r(b(x

�; y� = n)) � LBr. Note that LB0r(b(x; y� = n)) in (34) is a

piecewise linear function of x. Thus, x� can be easily computed in a constant time.

� Subcase 4.3, where maxft1 + te1; p2g < p1 and maxft2 + te2; p2g < p3. According to
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(27), a lower bound for the makespan value is given by

LB0000r = min fLB0r(a); LB0r(b(x�; y�))g = LBr +minfnp2;�(x�; y�)g;

where x� and y� are the integer x and y value (x 2 f1; :::; n� 1g and y 2 fx+1; :::; ng)
that minimizes LB0r(b(x; y)) in (26) and �(x

�; y�) = LB0r(b(x
�; y�) � LBr. Note that

LB0r(b(x; y)) is a piecewise linear function of x and y. Thus, here as well, x
� and y�

can be easily computed in a constant time.

4.4 Optimal schedules

Below, we provide an optimization algorithm for solving the F3; R1jpij = pi; tij = tijCmax
problem. This is done by decomposing the problem into a set of sub-problems (cases), and by

providing an optimal schedule for each sub-problem, separately. This is followed by a formal

proof that the provided schedules are indeed optimal for all subcases of subcase 1.1.3. Due

to similarity and for the sake of brevity, we include the analysis of complementary subcases

of Case 1 (subcases 1.1.1, 1.1.2 and 1.2) and Cases 2, 3, and 4 in appendices (Sections 9.1,

9.2, 9.3, and 9.4, respectively).

Algorithm 2 Optimal schedules for the F3; R1jpij = pi; tij = tijCmax problem
Input: m;n; pi for i = 1; 2; 3; ti and tei for i = 1; 2.

If (Case 1) p1 = max
�
p1; p2; p3;

P2
i=1 ti +

P2
i=1 tei

	
then goto Procedure Case 1

If (Case 2) p2 = max
�
p1; p2; p3;

P2
i=1 ti +

P2
i=1 tei

	
then Sequence 2 is optimal and

Cmax = LB2.

If (Case 3) p3 = max
�
p1; p2; p3;

P2
i=1 ti +

P2
i=1 tei

	
then goto Procedure Case 3

If (Case 4)
P2

i=1 ti +
P2

i=1 tei = max
�
p1; p2; p3;

P2
i=1 ti +

P2
i=1 tei

	
then goto Procedure

Case 4

Procedure Case 1

If (subcase 1.1) p1 < p2 +
P2

i=1 ti +
P2

i=1 tei then

If (subcase 1.1.1) p2 = maxfp2; p3; t2 + te2g
Sequence 2 with x = 1 and y = n is optimal and Cmax = LB1.

If (subcase 1.1.2) t2 + te2 = maxfp2; p3; t2 + te2g
If (subcase 1.1.2.1) t2 + te2 � p2 � (n� 1)

�
p2 +

P2
i=1 ti +

P2
i=1 tei � p1

�
Sequence 2 with x = 1 and y = n is optimal and Cmax = LB01.

If (subcase 1.1.2.2) t2 + te2 � p2 > (n� 1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei � p1

�
Sequence 1 is optimal and Cmax = LB01.
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If (subcase 1.1.3) p3 = maxfp2; p3; t2 + te2g
Let y� be the y value (y 2 f2; :::; ng) that minimizes LB01(b(y)) given by (17)

and let �(y�) = LB01(b(y
�))� LB1.

If (subcase 1.1.3.1) (n� 1)
�P2

i=1 ti +
P2

i=1 tei + p2 � p1
�
� �(y�)

Sequence 1 is optimal and Cmax = LB001 .

If (subcase 1.1.3.2) (n� 1)
�P2

i=1 ti +
P2

i=1 tei + p2 � p1
�
> �(y�)

Sequence 2 with x� = 1 and y = y� is optimal and Cmax = LB001 .

If (subcase 1.2) p1 � p2 +
P2

i=1 ti +
P2

i=1 tei then

Sequence 1 is optimal and Cmax = LB1.

Procedure Case 3

If (subcase 3.1) p3 < p2 +
P2

i=1 ti +
P2

i=1 tei

If (subcase 3.1.1) p2 = max fp1; t1 + te1; p2g
Sequence 2 with x = 1 and y = n is optimal and Cmax = LB3.

If (subcase 3.1.2) p1 = max fp1; t1 + te1; p2g
Let x� be the x value (x 2 f1; :::; n� 1g) that minimizes LB03(x) given by (23)

and let �(x�) = LB03(x
�)� LB3.

If (subcase 3.1.2.1) (n� 1)(
P2

i=1 ti +
P2

i=1 tei + p2 � p3) � �(x�)
Sequence 1 is optimal and Cmax = LB003 .

If (subcase 3.1.2.2) (n� 1)(
P2

i=1 ti +
P2

i=1 tei + p2 � p3) > �(x�)
Sequence 2 with x = x� and y = n is optimal and Cmax = LB003 .

If (subcase 3.1.3) t1 + te1 = max fp1; t1 + te1; p2g
If (subcase 3.1.3.1) t1 + te1 � p2 � (n� 1)(

P2
i=1 ti +

P2
i=1 tei + p2 � p3)

Sequence 2 with x = 1 and y = n is optimal and Cmax = LB03.

If (subcase 3.1.3.2) t1 + te1 � p2 > (n� 1)(
P2

i=1 ti +
P2

i=1 tei + p2 � p3)
Sequence 1 is optimal and Cmax = LB03.

If (subcase 3.2) p3 � p2 +
P2

i=1 ti +
P2

i=1 tei

Sequence 1 is optimal and Cmax = LB3.

Procedure Case 4

If (subcase 4.1) maxft1 + te1; p2g � p1 and maxft2 + te2; p2g � p3
Sequence 2 with x = 1 and y = n is optimal and Cmax = LB0r:

If (subcase 4.2) maxft1 + te1; p2g � p1 and maxft2 + te2; p2g < p3
Let y� be the y value (y 2 f2; :::; ng) that minimizes LB0r(b(x� = 1; y)) given by (31),

and let �(y�) = LB0r(b(x
� = 1; y�))� LBr.

If (subcase 4.2.1) np2 � �(y�)
Sequence 1 is optimal and Cmax = LB00r .
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If (subcase 4.2.2) np2 > �(y�)

Sequence 2 with x = 1 and y = y� is optimal and Cmax = LB00r .

If (subcase 4.3) maxft1 + te1; p2g < p1 and maxft2 + te2; p2g � p3
Let x� be the x value (x 2 f1; :::; n� 1g) that minimizes LB0r(b(x; y� = n)) given by
(34), and let �(x�) = LB0r(b(x

�; y� = n))� LBr.
If (subcase 4.3.1) np2 � �(x�)

Sequence 1 is optimal and Cmax = LB000r .

If (subcase 4.3.2) np2 > �(x�)

Sequence 2 with x = x� and y = n is optimal and Cmax = LB000r .

If (subcase 4.4) maxft1 + te1; p2g < p1 and maxft2 + te2; p2g < p3
Let x� and y� be the x and y values (x 2 f1; :::; n� 1g and y 2 fx+ 1; :::; ng) that
minimize LB0r(b(x; y)) given by (26), and let �(x

�; y�) = LB0r(b(x
�; y�))� LBr.

If (subcase 4.4.1) np2 � �(x�; y�)
Sequence 1 is optimal and Cmax = LB0000r .

If (subcase 4.4.2) np2 > �(x�; y�)

Sequence 2 with x = x� and y = y� is optimal and Cmax = LB0000r .

Remark 1 The fact that Sequences 1 and 2 provide schedules which store no more than a
single job in all input and output bu¤ers implies that our optimization algorithm can be used

to solve the F3; R1jpij = pi; tij = ti; C(IBi) = C(OBi) = 1jCmax problem as well.

In the following, for various cases of subcase 1.1.3, Algorithm 1 is used to de�ne the

schedule for the suggested sequence of robot moves. We then prove the optimality of the

schedule by showing that (i) the schedule is indeed feasible; and that (ii) the schedule

provides a makespan value which is equal to the lower bound value. We note that a schedule

is feasible if it satis�es the following three conditions:

Condition 1 There is no overlap between processing time intervals of di¤erent jobs on the
same machine;

Condition 2 There is no overlap between di¤erent operations of the same job; and

Condition 3 There is no overlap between robot operations.

4.4.1 The analysis of subcase 1.1.3

In subcase 1.1.3 p1 = max
�
p1; p2; p3;

P2
i=1 ti +

P2
i=1 tei

	
; p1 < p2 +

P2
i=1 ti +

P2
i=1 tei; and

p3 = maxfp2; t2 + te2; p3g. We now prove that Algorithm 2 provides the optimal robot

sequence of moves for two subcases that can arise. The �rst (subcase 1.1.3.1) is when

(n� 1)(
P2

i=1 ti+
P2

i=1 tei+ p2� p1) � �(y�), while the second (subcase 1.1.3.2) is opposite.
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Optimal schedule for subcase 1.1.3.1 For subcase 1.1.3.1 we have that (n�1)(
P2

i=1 ti+P2
i=1 tei+p2�p1) � �(y�), and according to Algorithm 5, Sequence 1 is optimal. By applying

Algorithm 1, we construct the following schedule (Schedule 1.1.3.1) that corresponds to this

sequence of moves (Schedule 1.1.3.1 is depicted in Figure 4 below for n = 4 jobs when empty

return moves are shown in bold):

Machine Schedule:

� Schedule job Jj on M1 during time interval (Sm1j ; C
m
1j ] = ((j � 1)p1; jp1] for j = 1; :::; n.

� Schedule job Jj on M2 during time interval (Sm2j ; C
m
2j ] = (p1 + t1 + (j � 1) (

P2
i=1 ti +P2

i=1 tei + p2); S
m
2j + p2] for j = 1; :::; n.

� Schedule job Jj on M3 during time interval (Sm3j ; C
m
3j ] = (

P2
i=1 pi +

P2
i=1 ti + (j �

1)(
P2

i=1 ti +
P2

i=1 tei + p2); S
m
3j + p3] for j = 1; :::; n.

Robot Schedule:

� Move job Jj from M1 to M2 during time interval (Sr1j; C
r
1j] = (p1 + (j � 1)(

P2
i=1 ti +P2

i=1 tei + p2); S
r
1j + t1] for j = 1; :::; n.

� Move job Jj fromM2 toM3 during time interval (Sr2j; C
r
2j] = (p1+t1+p2+(j � 1) (

P2
i=1 ti+P2

i=1 tei + p2); S
r
2j + t2] for j = 1; :::; n.

� Move the robot empty from M3 to M1 during time interval (Sm3j ; S
m
3j +

P2
i=1 tei] for

j = 1; :::; n� 1:

Figure 4: Schedule 1.1.3.1.

Lemma 2 Schedule 1.1.3.1 is an optimal schedule for subcase 1.1.3.1.
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Proof. We start by showing that Schedule 1.1.3.1 is a feasible schedule. The fact that
Sm1;j+1 = C

m
1j = jp1; that

Sm2;j+1 = p1+ t1+ j(
2X
i=1

ti+

2X
i=1

tei+ p2) > C
m
2j = p1+ t1+ (j � 1) (

2X
i=1

ti+

2X
i=1

tei+ p2) + p2;

and that

Sm3;j+1 =

2X
i=1

pi +

2X
i=1

ti + j(

2X
i=1

ti +

2X
i=1

tei + p2) >

Cm3j =

2X
i=1

pi +

2X
i=1

ti + (j � 1)(
2X
i=1

ti +

2X
i=1

tei + p2) + p3

for j = 1; :::; n � 1, where the last inequality follows from the fact that p2 +
P2

i=1 ti +P2
i=1 tei > p1 � p3 implies that there is no overlap between the job processing in any

machine. Thus, Condition 1 holds. Moreover, the fact that Cm1j = jp1 < Sr1j = p1 + (j �
1)(
P2

i=1 ti +
P2

i=1 tei + p2); that C
r
1j = Sm2j = p1 + (j � 1)(

P2
i=1 ti +

P2
i=1 tei + p2) + t1;

that Cm2j = Sr2j = p1 + t1 + (j � 1) (
P2

i=1 ti +
P2

i=1 tei + p2) + p2; and that C
r
2j = Sm3j =

p1 + t1 + (j � 1) (
P2

i=1 ti +
P2

i=1 tei + p2) + p2 + t2, implies that there is no overlap between

the processing and transferring operations of job Jj for j = 1; : : : n. Thus, Condition 2 holds.

Since

Cr1j = p1+(j�1)(
2X
i=1

ti+
2X
i=1

tei+p2)+ t1 < S
r
2j = p1+ t1+(j � 1) (

2X
i=1

ti+
2X
i=1

tei+p2)+p2

there is no overlap between the move of Jj from M1 to M2 and the move of Jj from M2 to

M3. Moreover, after completing the move of Jj from M2 to M3, the robot returns to M1 atP2
i=1 ti +

P2
i=1 pi + (j � 1)(

P2
i=1 ti +

P2
i=1 tei + p2) +

P2
i=1 tei = S

r
1;j+1 for j = 1; :::; n� 1,

which implies that there is no overlap between the moves of Jj from M2 to M3 and of Jj+1
from M1 to M2. Therefore, there is no overlap between the robot operations and Condition

3 holds.

The feasibility of Schedule 1.1.3.1 implies that the completion time of Jn on machine M3

is at

Cm3n =
2X
i=1

pi +
2X
i=1

ti + (n� 1)(p2 +
2X
i=1

ti +
2X
i=1

tei) + p3 =

LB1 + (n� 1)
�P2

i=1 ti +
P2

i=1 tei + p2 � p1
�
:
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Furthermore, the fact that this time matches the lower bound in eq. (18) when (n �
1)(
P2

i=1 ti +
P2

i=1 tei + p2 � p1) � �(y�) implies that this schedule is optimal for subcase
1.1.3.1.

Optimal schedules for subcase 1.1.3.2 For subcase 1.1.3.2 we have that

(n � 1)
�P2

i=1 ti +
P2

i=1 tei + p2 � p1
�
> �(y�). Consider �rst the case where y� = n. Ac-

cording to Algorithm 2, Sequence 2 with x = 1 and y = n is optimal. By applying Algorithm

1, we construct the following schedule (Schedule 1.1.3.2(a)) that corresponds to this sequence

of moves (Schedule 1.1.3.2(a) is depicted in Figure 5 below for n = 4 jobs with empty return

moves shown in bold):

Machine Schedule:

� Schedule job Jj on M1 during time interval (Sm1j ; C
m
1j ] = ((j � 1)p1; jp1] for j = 1; :::; n.

� Schedule job Jj onM2 during time interval (Sm2j ; C
m
2j ] = (jp1+t1; S

m
2j+p2] for j = 1; :::; n.

� Schedule job Jj on M3 during time interval (Sm3j ; C
m
3j ] = ((j + 1)p1 +

P2
i=1 ti; S

m
3j + p3]

for j = 1; :::; n� 1.

� Schedule job Jn on M3 during time interval (Sm3n; C
m
3n] = (np1 +

P2
i=1 ti + p3; S

m
3n + p3].

Robot Schedule:

� Move job Jj from M1 to M2 during time interval (Sr1j; C
r
1j] = (jp1; S

r
1j + t1] for j =

1; :::; n.

� Move job Jj from M2 to M3 during time interval (Sr2j; C
r
2j] = ((j + 1)p1 + t1; S

r
2j + t2]

for j = 1; :::; n� 1.

� Move job Jn from M2 to M3 during time interval (Sr2n; C
r
2n] = (np1+ t1+maxfp2; t2+

te2g; Sr2n + t2].

� Move the robot empty from M2 to M1 during time interval (p1 + t1; p1 + t1 + te1].

� Move the robot empty from M3 to M1 during time interval ((j + 1)p1 +
P2

i=1 ti; (j +

1)p1 +
P2

i=1 ti +
P2

i=1 tei] for j = 1; :::; n� 2:

� Move the robot empty fromM3 toM2 during time interval (np1+
P2

i=1 ti; np1+
P2

i=1 ti+

te2].
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Figure 5: Schedule 1.1.3.2(a)

Lemma 3 Schedule 1.1.3.2(a) is an optimal schedule for subcase 1.1.3.2 when y� = n.

Proof. We start by showing that Schedule 1.1.3.2(a) is a feasible schedule. The fact that
Sm1;j+1 = C

m
1j = jp1 for j = 1; :::; n� 1; that Sm2;j+1 = (j + 1)p1 + t1 � Cm2j = jp1 + t1 + p2 for

j = 1; :::; n�1 (since p2 � p1); that Sm3;j+1 = (j+2)p1+
P2

i=1 ti � Cm3j = (j+1)p1+
P2

i=1 ti+p3

for j = 1; :::; n� 2 (since p3 � p1); and that Sm3n = np1 +
P2

i=1 ti + p3 = C
m
3;n�1, implies that

there are no overlap between processing of jobs in any machine. Thus, Condition 1 holds.

Moreover, the fact that Cm1j = S
r
1j = jp1; that C

r
1j = jp1+t1 = S

m
2j ; that C

m
2j = jp1+t1+p2 �

Sr2j = (j + 1)p1 + t1 for j = 1; :::; n � 1 (since p2 � p1); that Cm2n = np1 + t1 + p2 � Sr2n =
np1 + t1 + maxfp2; t2 + te2g; that Cr2j = (j + 1)p1 + t1 + t2 = Sm3j for j = 1; :::; n � 1;
and that Cr2n = np1 +

P2
i=1 ti + maxfp2; t2 + te2g � Sm3n = np1 +

P2
i=1 ti + p3 (since p3 =

maxfp2; t2 + te2; p3g) implies that there is no overlap between transferring operations of job
Jj for j = 1; : : : n. Thus, Condition 2 holds.

The robot starts its moves by moving J1 fromM1 toM2 during time interval (p1; p1+ t1].

Then the robot returns empty toM1 during time interval (p1+ t1; p1+ t1+ te1], and moves J2
fromM1 toM2 during time interval (2p1; 2p1+t1]. Since 2p1 � p1+t1+te1, there is no overlap
between these two last operations. Then, for j = 1; :::; n� 2, the robot moves Jj fromM2 to

M3 during time interval ((j+1)p1+ t1; (j+1)p1+
P2

i=1 ti]; returns empty toM1 during time

interval ((j + 1)p1 +
P2

i=1 ti; (j + 1)p1 +
P2

i=1 ti +
P2

i=1 tei]; and moves Jj+2 from M1 to M2

during time interval ((j+2)p1; (j+2)p1+ t1]. The fact that (j+2)p1 � (j+1)p1+
P2

i=1 ti+P2
i=1 tei implies that there is no overlap between these operations as well. Lastly, after

moving Jn from M1 to M2 during time interval (Sr1n; C
r
1n] = (np1; np1 + t1], the robot moves

Jn�1 fromM2 toM3 during time interval (np1+ t1; np1+ t1+ t2]; returns empty toM2 during

time interval (np1+
P2

i=1 ti; np1+
P2

i=1 ti+te2]; and �nishes its operations by moving Jn from
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M2 toM3 during time interval (np1+t1+maxfp2; t2+te2g; np1+
P2

i=1 ti+maxfp2; t2+te2g].
Therefore, there is no overlap between the robot operations and Condition 3 holds.

The feasibility of Schedule 1.1.3.2(a) implies that the completion time of job Jn on ma-

chine M3 is at Cm3n = np1 +
P2

i=1 ti + 2p3. The fact that this time matches the lower bound

in eq. (18) when (n�1)
�P2

i=1 ti +
P2

i=1 tei + p2 � p1
�
> �(y�) and y� = n implies that this

schedule is optimal for subcase 1.2.3.2.

Consider next the case where y� < n. According to Algorithm 2, Sequence 2 with

x = 1 and y = y� is optimal. By applying Algorithm 1, we construct the following schedule

(Schedule 1.1.3.2(b)) that corresponds to this sequence of moves (Schedule 1.1.3.2(b) is

depicted in Figure 6 below for n = 5 jobs and y = 2 with empty return moves shown in

bold):

Machine Schedule:

� Schedule job Jj on M1 during time interval (Sm1j ; C
m
1j ] = ((j � 1)p1; jp1] for j = 1; :::; n.

� Schedule job Jj onM2 during time interval (Sm2j ; C
m
2j ] = (jp1+t1; S

m
2j+p2] for j = 1; :::; y.

� Schedule job Jj onM2 during time interval (Sm2j ; C
m
2j ] = (yp1+ t1+max fp2; te2 + t2g+P2

i=1 ti +
P2

i=1 tei + (j � y � 1)(
P2

i=1 ti +
P2

i=1 tei + p2); S
m
2j + p2] for j = y + 1; :::; n.

� Schedule job Jj on M3 during time interval (Sm3j ; C
m
3j ] = ((j + 1)p1 + t1 + t2; S

m
3j + p3]

for j = 1; :::; y � 1.

� Schedule job Jy on M3 during time interval (Sm3y; C
m
3y] = (yp1 + t1 + t2 + p3; S

m
3y + p3].

� Schedule job Jj on M3 during time interval (Sm3j ; C
m
3j ] = (maxfyp1 + t1 + t2 + (j � y +

1)p3; C
m
2j + t2g; Sm3j + p3] for j = y + 1; :::; n.

Robot Schedule:

� Move job Jj from M1 to M2 during time interval (Sr1j; C
r
1j] = (jp1; S

r
1j + t1] for j =

1; :::; y.

� Move job Jy+1 from M1 to M2 during time interval (Sr1;y+1; C
r
1;y+1] = (yp1 +

P2
i=1 ti +

maxfp2; te2 + t2g+
P2

i=1 tei; S
r
1;y+1 + t1].

� Move job Jj from M1 to M2 during time interval (Sr1j; C
r
1j] = (Sr1;y+1 + (j � y �

1)(
P2

i=1 ti +
P2

i=1 tei + p2); S
r
1j + t1] for j = y + 2; :::; n.
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� Move job Jj from M2 to M3 during time interval (Sr2j; C
r
2j] = ((j + 1)p1 + t1; S

r
2j + t2]

for j = 1; :::; y � 1.

� Move job Jy fromM2 toM3 during time interval (Sr2y; C
r
2y] = (yp1+ t1+maxfp2; te2 +

t2g; Sr2y + t2].

� Move job Jj from M2 to M3 during time interval (Sr2j; C
r
2j] = (Cm2j ; S

r
2j + t2] for j =

y + 1; :::; n.

� Move the empty robot from M2 to M1 during time interval (p1 + t1; p1 + t1 + te1].

� Move the robot empty from M3 to M1 during time interval ((j + 1)p1 +
P2

i=1 ti; (j +

1)p1 +
P2

i=1 ti +
P2

i=1 tei] for j = 1; :::; y � 2:

� Move the robot empty fromM3 toM2 during time interval (yp1+
P2

i=1 ti; yp1+
P2

i=1 ti+

te2].

� Move the robot empty from M3 to M1 during time interval (Cr2j; C
r
2j +

P2
i=1 tei] for

j = y; :::; n� 1.

We below prove that for any given y 2 f2; :::; n�1g value, Schedule 1.1.3.2(b) is a feasible
schedule with a makespan value of LB001 = LB1 +�(y). The fact that this makespan value

matches the lower bound value in (18) when y = y�, implies that Schedule 1.1.3.2(b) is an

optimal schedule when y = y�.

Figure 6: Schedule 1.1.3.2(b).

Lemma 4 Schedule 1.1.3.2(b) is an optimal schedule for subcase 1.1.3.2 when y� < n.
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Proof. We start by showing that Schedule 1.1.3.2(b) is a feasible schedule. The fact
that Sm1;j+1 = Cm1j = jp1 for j = 1; :::; n � 1 implies that there is no overlap between the
processing of any two consecutive jobs on M1. Moreover, the fact Sm2;j+1 = (j + 1)p1 + t1 �
Cm2j = jp1 + t1 + p2 for j = 1; :::; y � 1 (since p1 � p2); that

Sm2;y+1 = yp1 + t1 +maxfp2; te2 + t2g+
2X
i=1

ti +

2X
i=1

tei > C
m
2y = yp1 + t1 + p2;

that Sm2;y+2 = S
m
2;y+1 + (

P2
i=1 ti +

P2
i=1 tei + p2) > C

m
2;y+1 = S

m
2;y+1 + p2; and that

Sm2;j+1 = S
m
2;y+1+(j�y)(

2X
i=1

ti+

2X
i=1

tei+p2) > C
m
2j = S

m
2;y+1+(j�y�1)(

2X
i=1

ti+

2X
i=1

tei+p2)+p2

for j = y + 2; :::; n � 1 implies that there is no overlap between the processing of any
two consecutive jobs on M2. In addition, the fact that Sm3;j+1 = (j + 2)p1 + t1 + t2 � Cm3j =
(j+1)p1+t1+t2+p3 for j = 1; :::; y�2 (since p1 � p3); that Sm3y = yp1+t1+t2+p3 = Cm3;y�1;
and that

Sm3;y+1 = maxfyp1 + t1 + t2 + 2p3; Cm2;y+1 + t2g � Cm3y = yp1 + t1 + t2 + 2p3

implies that in order to prove that there is no overlap between the processing of any two

consecutive jobs on M3, it only remains to prove that

Sm3;j+1 = maxfyp1 + t1 + t2 + (j � y + 2)p3; Cm2;j+1 + t2g �
Cm3j = maxfyp1 + t1 + t2 + (j � y + 1)p3; Cm2j + t2g+ p3 (36)

for j = y + 1; :::; n� 1. It is easy to observe that the inequality in (36) holds if

Cm2;j+1 � Cm2j + p3 (37)

for j = y + 1; :::; n� 1. For j = y + 1, the inequality in (37) reduces to

Cm2;y+2 = S
m
2;y+1 +

�P2
i=1 ti +

P2
i=1 tei + p2

�
+ p2 � Cm2;y+1 + p3: (38)

The fact that the inequality in (38) holds follows from the fact that Cm2;y+1 = S
m
2;y+1+ p2 and

that
P2

i=1 ti +
P2

i=1 tei + p2 > p1 � p3, which implies that the condition in (37) holds when
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j = y + 1. For j = y + 2; :::; n� 1, the condition in (37) reduces to

Sm2;y+1 + (j � y)
�P2

i=1 ti +
P2

i=1 tei + p2
�
+ p2 �

Sm2;y+1 + (j � y � 1)
�P2

i=1 ti +
P2

i=1 tei + p2
�
+ p2 + p3: (39)

The fact that the inequality in (39) holds follows from the fact that
P2

i=1 ti+
P2

i=1 tei+p2 >

p1 � p3, and thus the condition in (37) holds also when j = y + 2; :::; n� 1. This completes
our proof that there is no overlap between the processing of any two consecutive jobs on any

machine, and thus Condition 1 holds.

The fact that Cm1j = jp1 = S
r
1j for j = 1; :::; y; that

Cm1;y+1 = (y + 1)p1 < S
r
1;y+1 = yp1 +

2X
i=1

ti +maxfp2; te2 + t2g+
2X
i=1

tei;

and that

Cm1j = jp1 < S
r
1j = S

r
1;y+1 + (j � y � 1)(

2X
i=1

ti +
2X
i=1

tei + p2) =

yp1 +
2X
i=1

ti +maxfp2; te2 + t2g+
2X
i=1

tei + (j � y � 1)(
2X
i=1

ti +
2X
i=1

tei + p2)

for j = y + 2; :::; n, where the two last inequalities follow from the fact that p1 < p2 +P2
i=1 ti +

P2
i=1 tei implies that there is no overlap between the processing of Jj on M1 and

the move of Jj from M1 to M2 for j = 1; :::; n. Moreover, the fact that Cr1j = jp1 + t1 = S
m
2j

for j = 1; :::; y; that

Cr1;y+1 = yp1 +

2X
i=1

ti +maxfp2; te2 + t2g+
2X
i=1

tei + t1 = S
m
2;y+1;

and that

Cr1j = S
r
1;y+1+t1+(j�y�1)(

2X
i=1

ti+
2X
i=1

tei+p2) = S
m
2j = S

m
2;y+1+(j�y�1)(

2X
i=1

ti+
2X
i=1

tei+p2)

for j = y+2; :::; n implies that there is no overlap between the move of Jj fromM1 toM2 and

the processing of Jj on M2 for j = 1; :::; n. In addition, the fact that Cm2j = jp1 + t1 + p2 �
Sr2j = (j + 1)p1 + t1 for j = 1; :::; y � 1 (since p1 � p2); that Cm2y = yp1 + t1 + p2 � Sr2y =
yp1 + t1 + maxfp2; te2 + t2g; and that Cm2j = Sr2j for j = y + 1; :::; n, implies that there is
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no overlap between the processing of job Jj on M2 and the move of Jj from M2 to M3 for

j = 1; :::; n. Lastly, the fact that Cr2j = (j + 1)p1 + t1 + t2 = S
m
3j for j = 1; :::; y � 1; that

Cr2y = yp1 + t1 +maxfp2; te2 + t2g+ t2 � Sm3y = yp1 + t1 + t2 + p3

(since p3 = maxfp2; t2 + te2; p3g); and that Cr2j = Cm2j + t2 � Sm3j = maxfyp1 + t1 + t2 + (j �
y + 1)p3; C

m
2j + t2g for j = y + 1; :::; n implies that there is no overlap between the move of

Jj from M2 to M3 and the processing of Jj on M3 for j = 1; :::; n. Thus, Condition 2 holds.

The robot starts its moves by moving J1 fromM1 toM2 during time interval (p1; p1+ t1].

Then, the robot returns empty to M1 during time interval (p1 + t1; p1 + t1 + te1], and moves

J2 fromM1 toM2 during time interval (2p1; 2p1+ t1]. The fact that p1 > t1+ te1 implies that

there is no overlap between these last two operations. Then, for j = 1; :::; y � 2, the robot
moves Jj from M2 to M3 during time interval ((j + 1)p1 + t1; (j + 1)p1 +

P2
i=1 ti]; returns

empty to M1 during time interval ((j + 1)p1 +
P2

i=1 ti; (j + 1)p1 +
P2

i=1 ti +
P2

i=1 tei]; and

moves Jj+2 from M1 to M2 during time interval ((j + 2)p1; (j + 2)p1 + t1]. The fact that

(j + 2)p1 � (j + 1)p1 +
P2

i=1 ti +
P2

i=1 tei implies that there is no overlap between these

operations as well. After completing the move of Jy from M1 to M2 at yp1 + t1; the robot

moves Jy�1 from M2 to M3 during time interval (yp1 + t1; yp1 + t1 + t2]. Then the robot

returns empty toM2 during time interval (yp1+ t1+ t2; yp1+ t1+ t2+ te2]; moves Jy fromM2

to M3 during time interval (yp1 + t1 +maxfp2; te2 + t2g; yp1 + t1 +maxfp2; te2 + t2g+ t2];
and returns empty to M1 during time interval

(yp1 + t1 +maxfp2; te2 + t2g+ t2; yp1 + t1 +maxfp2; te2 + t2g+ t2 +
2X
i=1

tei]:

This follows by moving Jy+1 from M1 to M2 during time interval

(yp1 +
2X
i=1

ti +maxfp2; te2 + t2g+
2X
i=1

tei; yp1 +
2X
i=1

ti +maxfp2; te2 + t2g+
2X
i=1

tei + t1]:

Then, for j = y + 1; :::; n� 1, the robot moves Jj from M2 to M3 during time interval

(Sr2j; C
r
2j] = (yp1+t1+max fp2; te2 + t2g+

2X
i=1

ti+

2X
i=1

tei+(j�y�1)(
2X
i=1

ti+

2X
i=1

tei+p2); S
r
2j+t2];

returns empty to M1 during time interval (Cr2j; C
r
2j +

P2
i=1 tei]; and moves Jj+1 from M1 to

70

gzilberman
Highlight

gzilberman
Highlight

gzilberman
Highlight



M2 during time interval

(Sr1;j+1; C
r
1;j+1] = (S

r
1;y+1 + (j � y)(

2X
i=1

ti +

2X
i=1

tei + p2); S
r
1;j+1 + t1]:

The fact that

Cr2j +
P2

i=1 tei = yp1 +max fp2; te2 + t2g+ 2
P2

i=1 ti + 2
P2

i=1 tei+

(j � y � 1)
�P2

i=1 ti +
P2

i=1 tei + p2
�
+ p2 = S

r
1;j+1;

implies that there is no overlap between these two last operations. Lastly, after completing

the move of Jn from M1 to M2 at

Sr1;y+1 + (n� y � 1)(
2X
i=1

ti +
2X
i=1

tei + p2) + t1 =

yp1 +
2X
i=1

ti +maxfp2; te2 + t2g+
2X
i=1

tei + (n� y � 1)(
2X
i=1

ti +
2X
i=1

tei + p2) + t1;

the robot performs its last move of Jn from M2 to M3 during time interval

(Sr2n; C
r
2n] = (S

m
2;y+1 + (n� y � 1)(

2X
i=1

ti +
2X
i=1

tei + p2) + p2; S
r
2n + t2]:

The fact that

yp1 +
P2

i=1 ti +maxfp2; te2 + t2g+
P2

i=1 tei + (n� y � 1)
�P2

i=1 ti +
P2

i=1 tei + p2
�
+ t1

� Sm2;y+1 + (n� y � 1)
�P2

i=1 ti +
P2

i=1 tei + p2
�
+ p2

= yp1+t1+max fp2; te2 + t2g+
P2

i=1 ti+
P2

i=1 tei+(n�y�1)
�P2

i=1 ti +
P2

i=1 tei + p2
�
+p2

implies that there is no overlap between these two last operations as well and Condition 3

holds.

The feasibility of Schedule 1.1.3.2(b) implies that the completion time of Jn on machine

M3 is at

Cm3n = maxfyp1 + t1 + t2 + (n� y + 1)p3; Cm2n + t2g+ p3 = yp1 +
2X
i=1

ti + p3+
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maxf(n�y+1)p3; t1+maxfp2; te2 + t2g+
2X
i=1

tei+(n�y�1)(
2X
i=1

ti+

2X
i=1

tei+p2)+p2+ t2g:

The fact that this time matches the lower bound in eq. (18) when

(n�1)
�P2

i=1 ti +
P2

i=1 tei + p2 � p1
�
> �(y�) implies that this schedule 1.1.3.2(b) is optimal

for subcase 1.1.3.2 when y� < n.

4.5 Summary

This chapter presents a robotic three-machine �ow-shop scheduling problem where jobs are

identical and a single robot is responsible for the transportation of jobs between consecutive

machines. The objective is to �nd a robot schedule which minimizes the makespan. As far as

we know, only Hurink and Knust [38] consider a robotic �ow-shop problem with more than

two machines and with the objective of minimizing the makespan. They proved that the

problem onm � 2machines (m is arbitrary) is solvable in polynomial time if processing times
are both machine- and job-independent and empty return times are negligible. Our analysis,

although restricted to three-machines, relaxes their two assumptions by considering the more

general case where (i) processing times are machine-dependent and job-independent, and (ii)

empty return times are not necessarily negligible. We provide an e¢ cient procedure to solve

the problem by decomposing it into a set of sub-problems and provide a schedule for each

sub-problem that matches the lower bound value.
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5 A Combined Robot Selection and Scheduling Prob-

lem

In this section, we provide an analysis of the RSSP, including its four variations RSSP1�
RSSP4 (see problem de�nition in Section 3.1.2 for an exact de�nition of the problem and

its variations).2 This section is divided into seven sections as follows. In the �rst section

we provide necessary and su¢ cient conditions for a feasible schedule. In the second section

we show that RSSP2 � RSSP4 are NP-hard. Then, in the third section, we show that
the RSSP reduces to a bicriteria shortest path problem within a directed acyclic graph.

Based on this reduction, we were able to provide a polynomial time procedure to solve

RSSP1 (in the fourth section), and exact and approximate algorithms for the solution of
RSSP2 � RSSP4 (in the �fth section). In the sixth section, we provide some important
special cases for which RSSP2 � RSSP4 are solvable in polynomial time. Lastly, in the
seventh section, we summarize our results.

5.1 Necessary and su¢ cient conditions for a feasible schedule

Consider a single robot that serves the entire set of m machines. Due to the Restrictions

1-2 (see Section 3.1.2), job Jj has to start its processing on machine Mm at time (j � 1)p+
p(m � 1) +

Pm�1
i=1 ti. Thus, for any feasible schedule, the makespan value which is equal to

the completion time of job Jn on machine Mm is:

Cmax = p(m� 1) +
m�1X
i=1

ti + np =
m�1X
i=1

ti + p(n+m� 1). (40)

Hurink and Knust [38] consider a similar problem with a single robot designated to

serve the entire set of m machines. In contrast to RSSP, they assume zero empty return
times without a no-wait restriction. Hurink and Knust [38] provided a polynomial time

algorithm that minimizes the makespan. Their algorithm can be described as follows: Let

Z = (z1; ::::; zn(m�1)) be a sequence of robot moves, where z� = i implies that the �0th

transportation of the robot transfers a job from machine Mi to machine Mi+1. Note that

since Hurink and Knust assume zero empty return times, a schedule can be de�ned only by

robot transfer moves. For i = 1; :::;m � 1, Hurink and Knust de�ne special sequences of
robot moves, ai = (1; :::; i) and bai = (i; :::;m� 1), in which the robot serves the machines in
the orderM1; :::;Mi andMi;Mi+1; :::;Mm�1, respectively. They show that the optimal robot

2The analysis in this section has been included in a research paper that was recently published in Omega
[82].
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schedule (i.e., the sequence of moves) includes only these two special sequences of robot

moves. More particularly, the optimal robot schedule which minimizes the makespan is:

Z� = (a1; a2; :::; am�2; am�1; am�1; :::; am�1; am�1 = ba1;ba2;ba3; :::;bam�1). (41)

Let (Jj;Mi) represent an operation where a robot moves Jj from Mi to Mi+1. Also,

substitute "Jj completes on Mi" for the operation "the robot returns empty to Mi and

waits for the completion of job Jj (beside Mi) to start the next sequence of moves." The

�rst part, (a1; a2; :::; am�2; am�1), which includes m� 1 sequences of robot moves, is denoted
as the building-up phase where in each step one more machine is served. At this phase,

during sequence ai the robot perform operations (Ji;M1); (Ji�1;M2); :::; (J1;Mi), then Ji+1
completes on M1. The second part, (am�1; am�1; :::; am�1), is denoted as the identity phase

where all machines are served regularly. This phase includes n � m sequences of moves

each of which begins and ends with the robot beside machine M1. During each sequence of

moves, the robot moves a single job between any two consecutive machines until it places

a job beside machine Mm and return empty to machine M1 to begin the next move se-

quence. The last part, (am�1 = ba1;ba2;ba3; :::;bam�1), which includes m � 1 sequences of
robot moves, is denoted as the building-down phase where in each step one less machine is

served. In this phase, during sequence bai (i = 1; :::;m � 1), the robot perform operations

(Jn;Mi); (Jn�1;Mi+1); :::; (Jn�m+i+1;Mm�1), then (as long as i � m � 2) Jn completes on
Mi+1 to begin the next sequence of moves (bai+1).
Hurink and Knust show that if

Pm�1
i=1 ti � p then the algorithm yields a schedule in which

machineMs (s > 1) starts to process the �rst job at time (s�1)p+
Ps�1

i=1 ti and processes the

entire set of n jobs sequentially with no idle times. Thus, the n0th jobs completion time on

machineMs is (s�1)p+
Ps�1

i=1 ti+np, and the makespan which equals to the completion time

of the last job on machine Mm is equal to (m� 1)p+
Pm�1

i=1 ti + np (equal to the makespan

value in (40)).

5.1.1 Single robot scheduling with no-wait restrictions and non-zero empty re-
turn times

Let us consider the case of a single robot with Restrictions 1-2 (see Section 3.1.2) and non-

zero empty return times. Similar to Hurink and Knust we de�ne a schedule by a set of

n(m � 1) robot non-empty moves, Z = (z1; ::::; zn(m�1)). Note that if z� = i2 and z�+1 = i1
with i2 � i1, then between these two non-empty moves there is an empty return of the robot
from machine Mi2+1 to machine Mi1 which requires

Pi2
i=i1

tei time.
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Lemma 5 For the case of a single robot, a schedule with a makespan equal to (m+n�1)p+Pm�1
i=1 ti can be constructed i¤

Pm�1
i=1 (ti + tei) � p.

Proof. Let us �rst show that if
Pm�1

i=1 (ti + tei) � p, then a schedule with a makespan
equal to (m+ n� 1)p+

Pm�1
i=1 ti can be constructed. Given an instance with n jobs and m

machines, if
Pm�1

i=1 (ti + tei) � p a set of moves (see eq. (41)) de�ned by Hurink and Knust
[38] can be made as follows: the robot applies each sequence of moves, with no delays until it

reaches back machine M1. Then the robot waits for the completion time of a job beside M1

and starts the next move in a similar fashion (an illustration of this type of move appears in

subsection (Appendix) 9.5.1). Since the time to complete sequence ai within the building-up

phase is
Pi�1

r=1(tr+ ter), the robot waits to the end of this sequence for p�
Pi�1

r=1(tr+ ter) � 0
times units beside machine M1 for the completion of job Ji on this machine. Since the time

to complete sequence am�1 within the identity phase is
Pm�1

r=1 (tr + ter), the robot waits at

the end of this sequence for p �
Pm�1

r=1 (tr + ter) � 0 times units beside machine M1 before

starting the next sequence of moves. Moreover, since the time to complete sequence bai within
the building-down phase is

Pm�1
r=i tr+

Pm�1
r=i+1 ter, the robot waits at the end of this sequence

for p �
Pm�1

r=i tr �
Pm�1

r=i+1 ter > 0 times units beside machine Mi+1. This implies that the

robot return to each machine in cycles of p units of time. Thus, the production is done

without delays and the completion time of Jn on Mm is at time (m+ n� 1)p+
Pm�1

i=1 ti.

It is now shown that if
Pm�1

s=1 (ts + tes) > p, then a schedule with a makespan equal to

(m+n�1)p+
Pm�1

i=1 ti cannot be constructed. By contradiction, assume that
Pm�1

s=1 (ts+tes) >

p and a schedule with a makespan equals to (m + n � 1)p +
Pm�1

i=1 ti can be constructed.

Consider the following two possible events. Event 1 where J1 was transferred from machine

Mm�1 to machine Mm before Jm was transferred from machine M1 to M2. Event 2 is the

opposite of the above.

Event 1: Here, if J1 arrives at Mm later than time p(m � 1) +
Pm�1

i=1 ti then Cmax >

(m + n � 1)p +
Pm�1

i=1 ti. Therefore, J1 arrives at Mm at time p(m � 1) +
Pm�1

i=1 ti. Thus,

the robot will be available to transfer Jm from M1 to M2 no earlier than time p(m � 1) +Pm�1
i=1 ti +

Pm�1
i=1 tei, and Jm will be completed on Mm no earlier than time p(m � 1) +Pm�1

i=1 ti +
Pm�1

i=1 tei +
Pm�1

i=1 ti + p(m � 1). As a result, Jn will be completed at Mm no

earlier than time p(m � 1) +
Pm�1

i=1 ti +
Pm�1

i=1 tei +
Pm�1

i=1 ti + p(m � 1) + (n � m)p =
p(m+m� 2) +

Pm�1
i=1 ti +

Pm�1
i=1 tei +

Pm�1
i=1 ti > p(n+m� 1) +

Pm�1
i=1 ti. This contradicts

our assumption that a schedule with a makespan value equal to (m+ n� 1)p+
Pm�1

i=1 ti can

be constructed.

Event 2: Here, Jm has been transferred from M1 to M2 before J1 was transferred from

Mm�1 to Mm. Thus, J1 is transfer from Mm�1 to Mm no earlier than time pm +
Pm�1

i=1 ti

and thus Jn will be completed on Mm no earlier pm +
Pm�1

i=1 ti + np, which contradicts the
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assumption that a schedule with a makespan value equal to (m+ n� 1)p+
Pm�1

i=1 ti can be

constructed.

The next corollary is straightforward from the fact that if we apply the set of moves in

(41) then job Jj starts its processing on M1 exactly at time (j � 1)p for j = 1; :::; n.

Corollary 1 By applying the set of moves in (41) one can obtain a feasible schedule where
Jj starts its processing on Mm at time (m� 1)p+

Pm�1
i=1 ti+(j� 1)p even if the arrival time

of job Jj is a positive number not greater than (j � 1)p.

5.1.2 Multi-robot scheduling with no-wait restrictions and non-zero empty re-
turn times

Consider a multi-robot system comprised of k robots, R1; R2; :::; Rk. Let the machines be

partitioned into k subsetsMr = fMlr ; :::;Mlr+1g (r = 1; :::; k), and let Rr be responsible for
transferring jobs between any pair of successive machines in set Mr be of type frg. This
implies that the total robot assignment cost is TRC =

Pk
r=1 �frg. Due to Restrictions 1-2,

Jj has to start its processing on machine Ms 2Mr at time (j � 1)p+
Pr�1

f=1

Plf+1�1
i=lf

tiffg +Ps�1
i=lr

tifrg+ p(s� 1). Thus, the makespan value which is equal to the completion time of Jn
on Mm is

Cmax = np+ T (S) + p(m� 1) = T (S) + p(m+ n� 1) (42)

for any feasible schedule, where

T (S) =
kX
r=1

lr+1�1X
i=lr

tifrg. (43)

Note that the value of p(m + n� 1) is identical for all feasible solutions, while the value of
T (S) depends on the (feasible) assignment of robot to machines. Let T (S) be the variable

part of the makespan value in any feasible solution, S.

Below it is shown that the algorithm by Hurink and Knust [38] can be extended to

provide a schedule with a makespan value shown in eq. (42) for our multi-robot system, if

the following condition is satis�ed for r = 1; :::; k:

lr+1�1X
i=lr

(tifrg + teifrg) � p (44)

Moreover, we show that if the condition in (44) is not satis�ed then a schedule with a

makespan value shown in (42) cannot be constructed.
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Lemma 6 For a multi-robot system, a feasible schedule with a makespan value shown in
(42) can be constructed i¤ the condition in (44) holds.

Proof. First it is shown that if the condition in (44) holds, then a feasible schedule with
a makespan value shown in (42) can be constructed. Consider the sub-system that is served

by robot R1. According to Lemma 5, since
Pl2�1

i=l1
(tif1g + teif1g) � p, if applying the set of

moves in (41) on set M1 = fMl1 ; :::;Ml2g then Jj will start its processing on Ml2 at time

A1 + (j � 1)p, where A1 = (l2 � 1)p+
Pl2�1

i=1 tif1g is the arrival time of Jj to the consecutive

sub-system that is served by robot R2. Thus, from Lemma 5 and Corollary 1, by applying

the set of moves in (41) on the set of machines M2 = fMl2 ; :::;Ml3g, job Jj will start its
processing on machine Ml3 at time A2+ (j � 1)p where A2 = (l3� 1)p+

P2
f=1

Plf+1�1
i=lf

tiffg,

which is the arrival time of Jj to the consecutive sub-system that is served by robot R3.

Accordingly, it is easy to show that by applying the set of moves in (eq. 41) on the set

of machines Mr = fMlr ; :::;Mlr+1g for r = 3; :::; k, Jj will start its processing on machine

Mlr+1 at time Ar + (j � 1)p, where Ar = (lr+1 � 1)p +
Pr

f=1

Plf+1�1
i=lf

tiffg. This implies

that for r = k the processing of job Jn on Mk+1 = Mm starts at time Ak + (n � 1)p =
(lk+1 � 1)p +

Pk
f=1

Plf+1�1
i=lf

tiffg + (n � 1)p = (m � 1)p +
Pk

f=1

Plf+1�1
i=lf

tiffg + (n � 1)p
and the makespan value which is the time that Jn is completed on Mk+1 = Mm is equal to

Ak+(n� 1)p+ p = (m� 1)p+
Pk

f=1

Plf+1�1
i=lf

tiffg+np = (m+n� 1)p+
Pk

f=1

Plf+1�1
i=lf

tiffg.

The fact that for a single robot problem if
Pm�1

s=1 (ts + tes) > p, then a schedule with a

makespan equal to (m�1)p+
Pm�1

i=1 ti+np cannot be constructed (see Lemma 5) completes

our proof.

5.2 NP-hardness of problems RSSP2 �RSSP4
The NP-completeness of the DV (See De�nition 21 in Section 3.1.2) will be proven by

showing that decision version of the NP-complete 0-1 knapsack problem (de�ned below)

can be polynomial reduced to DV.

De�nition 22 Decision version of the 0-1 knapsack problem: Given two positive integersW
and B and a �nite set of n elements �A = f�a1; �a2; :::; �ahg, where each element �aq has a weight
of wq and a bene�t of bq (wq and bq are positive integers) for q = 1; :::; h, determine whether

there exists a subset �A1 � �A of elements such that
P

�aq2 �A1 wq � W and
P

�aq2 �A1 bi � B.

Theorem 1 DV is NP-complete.
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Proof. Construct the following instance of the DV from an instance of the 0-1 knapsack

problem: There are h+ 1 machines, and Q = 2h robot types. The job processing time is

p = max
q=1;:::;h

fbqg+ 1. (45)

Moreover, for q = 1; :::; h we have that

�2q�1 = wq + 1, (46)

�2q = 1, (47)

ti;2q�1 =

(
1 if i = q,

p+ 1 otherwise.
(48)

and

ti;2q =

(
bq + 1 if i = q,

p+ 1 otherwise.
(49)

The empty return times are all equal to zero, that is

teiq = 0 for i = 1; :::; h and q = 1; :::; 2h, (50)

and limitations are

Cmax = h+
hX
q=1

bq �B + (n+m� 1)p and TRC = W + h. (51)

It is clear that the above transformation can be done in polynomial time. Note that according

to Eqs. (48)-(50) the feasibility conditions that
Plr+1�1

i=lr
(ti;2q�1 + tei;2q�1) � p and thatPlr+1�1

i=lr
(ti;2q+ tei;2q) � p holds only for lr = q and lr+1 = q+1. Thus, robot types 2q�1 and

2q can only be assigned to machine set fMq;Mq+1g for q = 1; :::; h, and only one of them

has to be chosen to this set of machines.

It is �rst shown that if there is an instance for the 0-1 knapsack problem which yields a

YES answer, then there exists a solution for the DV problem with Cmax(S) � h+
Ph

q=1 bq�
B + (n + m � 1)p and TRC(S) � W + h. Given an instance which yields a YES answer

for the 0-1 knapsack problem, construct the following solution for the DV problem. For

q = 1; :::; n, if �aq 2 �A1 assign robot of type 2q � 1 to machine set fMq;Mq+1g. Otherwise,
assign robot of type 2q to this machine set. This solution is feasible since tq;2q�1+ teq;2q�1 =

1 < max
q=1;:::;n

fbqg + 1 = p and tq;2q + teq;2q = bq + 1 � max
q=1;:::;n

fbqg + 1 = p for q = 1; :::; n.
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Moreover,

TRC(S) =
X
�aq2 �A1

(wq + 1) +
X

�aq2 �A� �A1

1 =
X
�aq2 �A1

wq +
X
�aq2 �A

1 � W + h,

and

Cmax(S) =
X
�aq2 �A1

1 +
X

�aq2 �A� �A1

(bq + 1) + (n+m� 1)p = h+
X

�aq2 �A� �A1

(bq) + (n+m� 1)p =

h+
hX
q=1

bq �
X
�aq2 �A1

bq + (n+m� 1)p � h+
hX
q=1

bq �B + (n+m� 1)p:

Next it is shown that if there is a solution S for the DV problem with Cmax(S) � h +Ph
q=1 bq�B+(n+m�1)p and TRC(S) � W +h, then a solution that yields a YES answer

for the decision version of the 0-1 knapsack problem problem can be found. Since solution S

is feasible, machine set fMq;Mq+1g is assigned by either a robot of type 2q� 1 or a robot of
type 2q for q = 1; :::; h. Given solution S for the given instance of the DV problem, let S1 be

the set of all indices q 2 f1; :::; ng such that robot of type 2q � 1 is assigned to machine set
fMq;Mq+1g. Let S2 be the complementary set. Moreover, de�ne the following solution for
the decision version of the 0-1 knapsack problem problem. For q = 1; :::; h, if q 2 S1, then
set �aq 2 �A1. The fact that TRC(S) � W + h implies that

TRC(S) =
X
q2S1

(wq + 1) +
X
q2S2

1 =
X
q2S1

wq +
hX
q=1

1 =
X
�aq2 �A1

wq + h � W + h,

and thus X
�aq2 �A1

wq � W . (52)

Moreover, the fact that Cmax(S) � h+
Ph

q=1 bq �B + (n+m� 1)p implies that

Cmax(S) =
X
q2S1

1 +
X
q2S2

(bq + 1) + (n+m� 1)p =
hX
q=1

1 +
X
q2S2

bq + (n+m� 1)p =

h+

hX
q=1

bq�
X
q2S1

bq+(n+m�1)p = h+
hX
q=1

bq�
X
aq2A1

bq+(n+m�1)p � h+
hX
q=1

bq�B+(n+m�1)p,
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results in X
�aq2 �A1

bq � B. (53)

The fact that Eq. (52) and eq. (53) hold implies a YES answer for the decision version of

the 0-1 knapsack problem.

The following corollary is now straightforward from Theorem 1 and the fact that RSSP4
is at least as hard as RSSP2 �RSSP3.

Corollary 2 Problems RSSP2 �RSSP4 are NP-hard.

5.3 A polynomial reduction of RSSP to a bicriteria SPP

In this section it is shown that the bicriteria RSSP can be reduced to a bicriteria SPP
within a directed acyclic multigraph. This reduction will enable the construction of various

algorithms to solve the di¤erent variations of RSSP. First a formal de�nition of a directed
acyclic multigraph is given, and then the SPP within a directed acyclic multigraph and its
four di¤erent variations are presented.

De�nition 23 A directed acyclic multigraph G(V;E), where V = f1; :::; Ng is the set of
nodes and E is the set of arcs, is a graph in which between any two nodes u to v with v > u

there is a set of arcs E(u; v) = f(u; v)1; :::; (u; v)n(u;v)g 2 E (which might be an empty set)

each of which is directed from u to v.

In the bicriteria SPP, each arc (u; v)g 2 E(u; v) in the multigraph is associated with two
non-negative integer parameters. The �rst d(u;v)g is the duration and the second c(u;v)g is the

cost of arc (u; v)g (g = 1; :::; n(u;v)). Let D(P ) =
Pk

q=1 d(lq ;lq+1)[q] be the total duration and

C(P ) =
Pk

q=1 c(lq ;lq+1)[q] be the total cost of a path P = f(l1 = 1; l2)[1]; (l2; l3)[2]; :::; (lk; lk+1 =
N)[k]g from vertex 1 to vertex N in G(V;E) where lj is the jth node in path P and [j] is the

index of the arc in set E(lj; lj+1) that belongs to path P . Similar to RSSP, four di¤erent
variations of the bicriteria SPP on a directed acyclic multigraph are de�ned:

� SPP1: �nd a path P in G = (V;E) which minimizes D(P ) + C(P ).

� SPP2: �nd a path P in G = (V;E) which minimizes D(P ) subject to: C(P ) � C
where C is a given upper bound on the total cost.

� SPP3: �nd a path P in G = (V;E) which minimizes C(P ) subject to: D(P ) � D
where D is a given upper bound on the total duration.
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� SPP4: Identify a Pareto-optimal solution for each Pareto-optimal point.

Theorem 2 RSSP is polynomial reducible to SPP.

Proof. Construct the following instance to SPP from an instance of RSSP: set N = m

(a single node in the multigraph is included for each machine in the RSSP) and for any
combination of a robot type q (q = 1; :::; Q) and machines Mu and Mv (1 � u � m� 1 and
u+1 � v � m). If

Pv�1
i=u(tiq+ teiq) � p, then include an arc (u; v)q in set E which is directed

from u to v and corresponds to the feasible assignment of a robot of type q to serve machines

Mu; :::;Mv. Two values are associated with each arc (u; v)q 2 E. The �rst

d(u;v)q =
v�1X
i=u

tiq; (54)

is the duration of arc (u; v)q and the second

c(u;v)q = �q; (55)

is the cost of arc (u; v)q (the above polynomial reduction is illustrated in subsection (Ap-

pendix) 9.5.2). Note that each path P = f(l1 = 1; l2)f1g; (l2; l3)f2g; :::; (lk; lk+1 = N)fkgg in
G(V;E) corresponds to a feasible assignment of robot to machines, where a robot of type

frg is assigned to serve machine set fMlr ; :::;Mlr+1g(r = 1; :::; k). Moreover, the duration

and cost of each arc, d(lr;lr+1)frg and c(lr;lr+1)frg, corresponds to the addition to the makespan

value and the total robot cost resulting from the (feasible) assignment of a robot of type

frg to serve machine set fMlr ; :::;Mlr+1g (r = 1; :::; k). Below, it is shown that there is a

path P in G(V;E); with D(P ) � D and C(P ) � C i¤ there is a solution for RSSP with
Cmax(S) � D + (n+m� 1)p and TRC(S) � C.
First assume that there exists a feasible solution S for RSSP with Cmax(S) � D+ (n+

m � 1)p and TRC(S) � C, where Mr = fMlr ; :::;Mlr+1g is the subset of machines that
are served by robot of type frg (r = 1; :::; k). The fact that S is a feasible solution implies
that

Plr+1�1
i=lr

(tifrg+ tei(rg) � p for r = 1; :::; k. Thus, according to the above transformation,
path P = f(l1 = 1; l2)f1g; (l2; l3)f2g; :::; (lk; lk+1 = N)fkgg exists in G(V;E). Since Cmax(S) �
D+(n+m�1)p, then Cmax(S) =

Pk
r=1

Plr+1�1
i=lr

ti;frg+(n+m�1)p � D+(n+m�1)p, and
therefore also that

Pk
r=1

Plr+1�1
i=lr

ti;frg =
Pk

r=1 d(lr;lr+1)frg � D. Moreover, since TRC(S) �
C, we have TRC(S) =

Pk
r=1 �frg =

Pk
r=1 c(lr;lr+1)frg � C, which implies that for path

P = f(l1 = 1; l2)f1g; (l2; l3)f2g; :::; (lk; lk+1 = m)fkgg it is true that
Pk

r=1 d(lr;lr+1)frg � D andPk
r=1 c(lr;lr+1)frg � C.
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Second, it is shown that if there is no solution forRSSP, with Cmax(S) � D+(n+m�1)p
and TRC(S) � C; then there is no path P in G(V;E) with D(P ) � D and C(P ) � C.

By contradiction, assume that there is a path P = f(l1 = 1; l2)f1g; (l2; l3)f2g; :::; (lk; lk+1 =

N)fkgg in G(V;E), with D(P ) � D and C(P ) � C. Given path P , construct a solution

S for RSSP by assigning a type frg robot to serve machines in setMr = fMlr ; :::;Mlr+1g
(r = 1; :::; k). Solution S is feasible since, according to our polynomial transformation, we

have that
Plr+1�1

i=lr
(tifrg + tei(rg) � p (r = 1; :::; k). Moreover, according to (54) D(P ) �

D implies D(P ) =
Pk

r=1 d(lr;lr+1)frg =
Pk

r=1

Plr+1�1
i=lr

ti;frg � D. Also, according to (55)

C(P ) � C implies that C(P ) =
Pk

r=1 c(lr;lr+1)frg =
Pk

r=1 �frg � C. Therefore, Cmax(S) =Pk
r=1

Plr+1�1
i=lr

ti;frg+(n+m�1)p � D+(n+m�1)p, and TRC(S) =
Pk

r=1 �frg � C, which
results in a contradiction.

5.4 Polynomial time procedure for RSSP1
For solvingRSPP1, construct the following simple directed acyclic graph, G(V ;E), from the
multi-graph G(V;E). Set V = V . Calculate the weight, w(u;v)q , of each arc (u; v)q 2 E(u; v)
by

w(u;v)q = d(u;v)q + c(u;v)q . (56)

If E(u; v) 6= ;, include a single arc (u; v) in E which is directed from u to v. The length of

this arc is de�ned by the minimum arc weight among all arcs that are directed from u to v.

That is,

l(u;v) = min
q2E(u;v)

�
w(u;v)q

	
. (57)

The resulting graph G(V ;E) is a directed acyclic graph and the length of the shortest path

in G(V ;E) corresponds to the minimum objective value of RSPP1. The shortest path in
G(V ;E) can be determined in O(m2) time by applying the following simple recursion:

Gv = min
(u;v)2E

�
Gu + l(u;v)

�
; (58)

where G1 = 0 is the initial condition, and Gv is the length of the shortest path that ends in

v in the subgraph that includes the vertices 0; :::; v. Thus, Gm corresponds to the length of

the shortest path in G(V ;E).

Based on the above analysis and the polynomial transformation that appears in the

proof of Theorem 2, the following optimization algorithm to solve RSSP1 is presented (the
implementation of the algorithm on a numerical example is illustrated by in subsection
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(Appendix) 9.5.3).

Algorithm 3 The optimization algorithm for solving RSSP1.
Input: m, p, � = (�1; :::; �Q); t = (tiq) and te = (teiq) for i = 1; :::;m and q = 1; :::; Q.

Step 1. For any combination of a robot type q (q = 1; :::; Q) and machines Mu and Mv

(1 � u < v � m), if
Pv�1

i=u(tiq + teiq) � p, then include robot type q in set
E(u; v).

Step 2. Construct the digraph G(V ;E) as follows: Set V = f1; :::;mg. For any
1 � u < v � m, if E(u; v) 6= ; then include a single directed arc (u; v) in set E.

Step 3. Calculate the length of each arc (u; v) 2 E by (57) where w(u;v)q is

calculated by Eqs. (54)-(56). Set q(u;v) = arg min
q2A(u;v)

�
w(u;v)q

	
where q(u;v)

is the robot type which corresponds to the shortest arc�s length.

Step 4. Find the shortest path in G(V ;E) by applying the recursion (58) for

v = 1; :::;m with the initial condition G1 = 0.

Step 5. Trace back the shortest path in graph G(V ;E) to identify its internal vertices

l1 = 1; l2; l3; :::; lk; lk+1 = m. Assign robot of type q(lr;lr+1) to serve machine set

Mr = fMlr ; :::;Mlr+1g (r = 1; :::; k) and schedule the robots according to the
set of moves in (41).

Theorem 3 Algorithm 3 solves RSSP1 in O(m2Q) time.

Proof. Since there are O(m2Q) combinations of a robot type q (q = 1; :::; Q) and

machines Mu and Mv (1 � u < v � m), Step 1 requires O(m2Q) time and Step 2 requires

O(m2) time. Calculating the length of each arc by (57) in Step 3 requires O(Q) time. Since

there are O(m2) arcs in G(V ;E), Step 3 can be done in O(m2Q) time. Step 4 requires

the implementation of the recursion in (58) for v = 1; :::;m which requires O(m2) time.

Since Step 5 can be implemented in O(m) time, the overall computational complexity of the

algorithm is O(m2Q).

5.5 Exact and approximate algorithms for RSSP2 �RSSP4
Hassin [37] provides exact algorithms to solve SPP2 and SPP3, on a simple directed acyclic
graph, in a pseudo-polynomial time algorithm of O(jEjC) and O(jEjD), respectively. More-
over, he presented a fully polynomial time approximation scheme (FPTAS) that runs in

O(jEj (N2=") log(N=")) time. The fact that SPP2 and SPP3 on a directed acyclic multi-
graph can be reduced to a similar problem on a simple directed acyclic graph which includes

O
�PN

u=2

Pu�1
v=1 n(u;v)

�
nodes, implies that the algorithms provided by Hassin [37] can be
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used to provide a pseudo-polynomial time algorithms and a FPTAS for SPP2 and SPP3
on a multigraph as well.

Below, the pseudo-polynomial time algorithm provided by Hassin [37] is extended to

directly solve SPP3 on a multigraph (instead of reducing it to an equivalent problem on

a simple graph). Let G(V;E) be a directed acyclic multigraph with V = f1; :::; Ng and
E = fE(u; v) ju < vg where E(u; v) = f(u; v)1; :::; (u; v)n(u;v)g is a set of n(u;v) directed
arcs from node u to node v with 1 � u < v � N . Let d(u;v)q and c(u;v)q be positive

integers representing the duration and the cost of any arc (u; v)q for 1 � u < v � N and

q = 1; :::; n(u;v).

Let f(v;D) be the minimum cost path from vertex 1 to vertex v, whose duration is not

greater than D. The value of f(v;D) for v = 2; :::; N and D = 1; :::; D can be computed by

applying the following recursion:

f(v;D) = min

8<: f(v;D � 1)
min

1�u<v; d(u;v)q�D; q=1;:::;n(u;v)

�
f
�
u;D � d(u;v)q

�
+ c(u;v)q

	 (59)

with the initial conditions

f(1; D) = 0 for D = 0; :::; D and f(v; 0) =1 for v = 2; :::;m. (60)

The optimal solution value is then given by f(N;D), and the optimal path is determined

by tracking the path back from the end. It is easy to verify that by applying the above

recursion the SPP3 problem can be solved in O
�
D
PN

u=2

Pu�1
v=1 n(u;v)

�
= O(jEjD) time.

Moreover, a similar recursion can be applied to solve the SPP2 problem in O(jEjC) time.
Let DUB be an upper bound on the duration of any path in the graph. The value of DUB

can be determined in O(m2) time by applying the following recursion for v = 2; :::; N :

fv = max
0�u<v

�
fu + d(u;v)

	
(61)

with the initial condition that f1 = 0, where d(u;v)
def
= max

q=1;:::;n(u;v)

�
d(u;v)q

	
. After applying

the recursion, the actual value of DUB is given by fN . Then, by setting D = DUB, the

recursion is used for solving SPP3, can be used to solve SPP4 in a pseudo-polynomial time
of O(jEjDUB).

Based on the above analysis and the polynomial transformation that appears in the proof

of Theorem 2, the following optimization algorithm to solve RSSP3 is provided.

Algorithm 4 An optimization algorithm for solving RSSP3.
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Input: m; p, � = (�1; :::; �Q); t = (tiq) and te = (teiq) for i = 1; :::;m and q = 1; :::; Q.

Step 1. Construct the multigraph G(V;E) as follows: Set V = f1; :::;mg. For any
combination of a robot type q (q = 1; :::; Q) and Mu and Mv (1 � u < v � m)
if
Pv�1

i=u(tiq + teiq) � p, then include an arc (u; v)q in set E in set E (which is

directed from u to v). Calculate the duration and weight of arc (u; v)q by (54)

and (55).

Step 2. Apply the recursion in (eq. 59) for v = 2; :::; N and D = 1; :::; D with the initial

conditions in (eq. 60). The optimal solution value is given by f(N;D).

Step 3. Trace back the optimal path in graph G(V;E) to identify its internal vertices

(l1 = 1; l2)f1g; (l2; l3)f2g; :::; (lk; lk+1 = m)fkg. Assign robot of type frg to serve
machine setMr = fMlr ; :::;Mlr+1g (r = 1; :::; k) and schedule the robots
according to the set of moves in (eq. 41).

Theorem 4 Algorithm 4 solves RSSP3 in O(m2QD) time.

Proof. Constructing the multigraph G(V;E) in Step 1 requires O(m2Q) time. Since

there are O(m2Q) arcs in the multigraph, Step 2 can be applied in a O(jEjD) = O(m2QD)

time. The fact that Step 3 can be implemented in O(m) time completes our proof.

It is easy to observe that Algorithm 4 can be modi�ed to solve problems RSSP2 and
RSSP4 in pseudo-polynomial time as well. To conclude this section, it is emphasized that
any algorithm that solves any variant of SPP on a simple (non-multi) graph can be converted
to solve the same variant on a multigraph. Thus, one can easily use any method to solve any

variant of SPP to solve the corresponding variant ofRSSP. Among the possible algorithms,
one can �nd a set of fully polynomial time approximation schemes (FPTAS�s) as the ones

presented by Hassin [37], Lorenz and Raz [66] and Ergun et al. [24]. For further information

about various methods to solve SPP, see a recent survey paper by Garroppo et al. [28].

5.6 Special cases of RSSP2 �RSSP4
In this section we present three special cases where RSSP2 �RSSP4 are solvable in poly-
nomial time.

5.6.1 The case of robot independent transportation times

Consider the case where transportation times are robot-independent, that is, tiq = ti for

i = 1; :::;m � 1. This implies that robots di¤er only by their cost and empty return times.
For this case, according to eq. (54), the duration of each arc (u; v)q for the equivalent

SPP problem is given by d(u;v)q =
Pv�1

i=u tiq =
Pv�1

i=u ti. Thus, for any path P = f(l1 =
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1; l2)f1g; (l2; l3)f2g; :::; (lk; lk+1 = N)fkgg from vertex 1 to vertex N in G(V;E), the total

duration is given by D(P ) =
Pk

r=1 d(lr;lr+1)frg =
Pk

r=1

Plr+1�1
i=lr

tifrg =
Pk

r=1

Plr+1�1
i=lr

ti =PN�1
i=1 ti which is path independent. Thus, there is a single Pareto-optimal point for the

equivalent instance of the SPP which corresponds to the minimum cost path. Since the

equivalent instance of the SPP may have more than a single directed arc connecting any
two nodes (u; v) with 1 � u < v � N , each of which has the same duration of

Pv�1
i=u ti,

among all those arcs keep a single arc (u; v) which has the minimum cost among all arcs in

set E(u; v). The cost of any arc (u; v) with 1 � u < v � N is given by

c(u;v) = min
q2E(u;v)

�
c(u;v)q

	
. (62)

The resulting graph G(V ;E) is a simple (non-multi) directed acyclic graph. The shortest

cost path in G(V ;E) can be determined in O(m2) time by applying the following simple

recursion:

Gv = min
(u;v)2E

�
Gu + c(u;v)

�
; (63)

where G1 = 0 is the initial condition, and Gv is the length of the shortest cost path that

ends in v in the subgraph that includes the vertices 0; :::; v. Thus, Gm corresponds to the

value of the shortest cost path in the graph.

Based on the above analysis and the polynomial transformation that appears in the proof

of Theorem 2, the following optimization algorithm for solving RSSP4, for the special case
where the transportation times are robot-independent can be constructed.

Algorithm 5 The optimization algorithm for solving RSSP4 with robot-independent trans-
portation times.

Input: m, p, � = (�1; :::; �Q); t = (ti) for i = 1; :::;m and te = (teiq) for i = 1; :::;m

and q = 1; :::; Q.

Step 1-2. Apply Steps 1-2 of Algorithm 3.

Step 3. Calculate the cost of each arc (u; v) 2 E by (62) where c(u;v)q is

calculated by (55). Set q(u;v) = arg min
q2E(u;v)

�
c(u;v)q

	
which is the robot type that

corresponds to the minimum arc cost.

Step 4. Find the minimum cost path in G(V ;E) by applying the recursion in (63) for

v = 1; :::;m with the initial condition G1 = 0.

Step 5. Apply Step 5 of Algorithm 3.

Theorem 5 Algorithm 5 solves the RSSP4 problem with robot-independent transportation

times in O(m2Q) time.
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Proof. According to the proof of Theorem 3, Steps 1, 2 and 5 require O(m2Q), O(m2)

and O(m) time, respectively. Moreover, since the cost calculating of each arc by (62) in Step

3 requires O(Q) time, and there are O(m2) arcs, Step 3 can be done in O(m2Q) time. The

proof is completed by fact that Step 4 requires the implementation of the recursion in (63)

for v = 1; :::;m which requires O(m2) time.

5.6.2 The case of identical robot costs

Consider a case where all robots have the same cost, that is, �q = � for q = 1; :::; Q. For this

case, according to (55), the cost of each arc in the equivalent instance of the SPP equals
to �, i.e., it is robot-independent. Since the equivalent instance of the SPP may have more
than a single directed arc connecting any two nodes (u; v) with 1 � u < v � N , each of
which has the same cost, among all those arcs keep a single arc (u; v) (directed from u to v)

that has the minimum duration among all arcs in set E(u; v). That is, the duration of each

arc (u; v) with 1 � u < v � N is given by

d(u;v) = min
q2E(u;v)

�
d(u;v)q

	
. (64)

The resulting SPP is now de�ned on a simple graph G(V ;E) rather than on the multi-

graph G(V;E), as each set of arcs E(u; v) is replaced by a single arc. Note, however, that

unlike the previous special case, although each arc has the same cost, the total cost of

each path is still path-dependent. More particularly, the cost of each path S = f(l1 =
1; l2)f1g; (l2; l3)f2g; :::; (lk; lk+1 = N)fkgg from vertex 1 to vertex N in G(V ;E) is equal to k�

where k is the number of arcs (selected robots) in the path. Since k 2 f1; 2; :::N � 1g, there
are at most N � 1 possible Pareto-optimal points for the equivalent instance of the SSP4.
Let Gv(k) be the shortest duration path that ends in v in the subgraph that includes

vertices 0; :::; v with exactly k arcs. The value of Gv(k) can be determined by applying the

following recursion for 1 � k < v � N :

Gv(k) = min
(u;v)2E;u�k

�
Gu(k � 1) + d(u;v)

�
; (65)

where G1(0) = 0 is the initial condition. After computing all Gv(k) values, for every k 2
f1; 2; :::N � 1g, a Pareto-optimal point is given by the pair (GN(k); k), with the minimum
GN(k) value among all GN(k) values with k = 1; :::; k.

Based on the above analysis and the polynomial transformation that appears in the proof

of Theorem 2, the following optimization algorithm is constructed to solve RSSP4 for the
special case of equal cost robots.
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Algorithm 6 The optimization algorithm for solving RSSP4 with identical robot costs.
Input: m; p,�; t = (tiq) and te = (teiq) for i = 1; :::;m and q = 1; :::; Q.

Step 1-2. Apply Steps 1-2 of Algorithm 3.

Step 3. Calculate the duration of each arc (u; v) 2 E by (64), where d(u;v)q is

calculated by (54). Set q(u;v) = arg min
q2E(u;v)

�
d(u;v)q

	
which is the robot

type that corresponds to the minimum arc�s duration.

Step 4. Apply the recursion in (65) for 1 � k < v � N with the initial condition

G1(0) = 0.

Step 5. For every k 2 f1; 2; :::N�1g a Pareto-optimal point is given by the pair (GN(k); k)
with the minimum GN(k) value among all GN(k) values with k = 1; :::; k.

Step 6. For each Pareto-optimal point, (GN(k); k), trace back the shortest duration path

in graph G(V ;E) to identify its internal vertices l1 = 1; l2; l3; :::; lk; lk+1 = m.

Assign robot of type q(lr;lr+1) to serve machine setMr = fMlr ; :::;Mlr+1g
(r = 1; :::; k) and schedule the robots according to the set of moves in (41).

Theorem 6 Algorithm 6 solves the RSSP4 with identical robot costs in O(m2maxfm;Qg)
time.

Proof. According to the proof of Theorem 3, Steps 1 and 2 require O(m2Q) and O(m2)

time, respectively. Calculating the duration of each arc by (64) in Step 3 requires O(Q)

time. Since there are O(m2) arcs, Step 3 can be done in O(m2Q) time. Step 4 requires

the implementation of the recursion in (65) (1 � k < v � N = m) which requires O(m3)

time. Step 5 can be implemented in O(m) time, which is also the time complexity of

implementing Step 6 for each Pareto-point. Since there are O(m) Pareto-optimal solutions,

the time complexity of Step 6 is O(m2) and, thus, the overall computational complexity of

the algorithm is O(maxfm2Q;m3) = O(m2maxfQ;mg).

5.6.3 The case of a single robot type

For simplicity, in this subsection we omit the robot index q, such that, for example, ti
is the transportation time from Mi to Mi+1 made by the single robot and � is the robot

cost. Since there is a single robot type (Q = 1), the multigraph reduces to a simple graph

G(V;E). Moreover, according to eqs. (42) and (54), the total duration of any feasible path

S = f(l1 = 1; l2)f1g; (l2; l3)f2g; :::; (lk; lk+1 = N)fkgg in the equivalent instance of the SPP
problem is given by D(S) =

PN�1
i=1 ti. This directly implies that the duration of each path is

path-independent, which further implies that the makespan value of any feasible solution for

the RSSP is equal to D(S) + (n+m� 1)p =
PN�1

i=1 ti + (n+m� 1)p (the makespan value
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is independent of the decision of how to assign robots to machines). Moreover, according to

(55) the cost of each arc in the graph is identical to the robot cost, �. Thus, our objective is

to �nd a path in G(V;E) with the minimum number of arcs. Following the result in Lemma

6, a single robot can cover machines fMu; :::;Mvg if
Pv�1

i=u(tiq + teiq) � p. Moreover, the
maximal cover, �au, of a single robot that is assigned to serve a set of machines that begins in

machine Mu can be calculated by �nding the maximal v value for which the condition thatPv�1
i=u(ti + tei) � p holds. That is

�au = arg max
v=u+1;:::;m+1

(
v�1X
i=u

(ti + tei)

�����
v�1X
i=u

(ti + tei) � p
)
. (66)

The following lemma will be used subsequently to construct an O(m logm) time algorithm

to solve the RSSP4 with a single robot type.

Lemma 7 For each Pareto-optimal point, there exists a Pareto-optimal solution such that
if a robot is assigned to serve machine set fMlr ; :::;Mlr+1g then �alr = lr+1.

Proof. Consider a Pareto-optimal solution S, where k robots are assigned to serve the
m machines and robot Rr is assigned to serve machine set fMlr ; :::;Mlr+1g (r = 1; :::; k).

Moreover, assume that r is the maximal robot index r such that �alr 6= lr+1. Since solution
S is feasible �alr > lr+1 and thus

Plr+1�1
i=lr

(ti + tei) �
P�alr�1

i=lr
(ti + tei) � p. Moreover, the

fact that m � �alr implies that there is a consecutive set of machines fMlr+1 ; :::;Mlr+2g which
is served by robot Rr+1. Since S is a feasible solution we have that

Plr+2�1
i=lr+1

(ti + tei) � p.
De�ne an alternative solution eS where robot Rr is assigned to machine set fMlr ; :::;M�alr

g and
robot Rr+1 is assigned to machine set fM�alr

; :::;Mlr+2g while all other robots are assigned
to the same machine set as in S. Solution eS is feasible since P�alr�1

i=lr
(ti + tei) � p andPlr+2�1

i=�alr
(ti+ tei) �

Plr+2�1
i=lr+1

(ti+ tei) � p. Moreover, since the makespan value is independent
of the solution and the robot cost of both solutions S and eS is equal to k�, solution eS is
Pareto-optimal as well. The lemma now follows from the fact that the proof can be applied

repeatedly to obtain a Pareto-optimal solution, where �alr = lr+1 for each robot Rr that is

assigned to serve machine set fMlr ; :::;Mlr+1g.
Since any path begins in the �rst node representing the �rst machine (i.e., the �rst robot

has to be assigned to a subset of machines that begins in machine M1), then according to

Lemma 7, if �a1 = �al1 = l2, then there exist a Pareto-optimal solution for which the �rst

robot is assigned to machine set fMl1 ; :::;Ml2g. Then, the second robot has to be assigned
to a machine set that begins with machine Ml2. According to Lemma 7, if �al2 = l3, then

there exist a Pareto-optimal solution for which the second robot is assigned to machine set
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fMl2 ; :::;Ml3g. In a similar way, based on Lemma 7, if �alr = lr+1 � m, then there exist a
Pareto-optimal solution for which the r�th robot is assigned to machine set fMlr ; :::;Mlr+1g.
Thus, based on the above analysis and the polynomial transformation that appears in the

proof of Theorem 2, the following optimization algorithm is constructed to solve RSSP4 for
the special case of a single robot type (the algorithm is illustrated by a numerical example

in subsection (Appendix) 9.5.4).

Algorithm 7 The optimization algorithm for solving RSSP4 with a single robot type.
Input: m; p, �; t = (ti) and te = (tei) for i = 1; :::;m.

Initialization: Set l1 = 1 and j = 1.

Step 1. Calculate �alj by Eq. (66). Set lj+1 = �alj and assign a robot

to set fMlj ; :::;Mlj+1g.
Step 2. If lj+1 = m then stop. Otherwise, set j = j + 1 and go back to Step 1.

Theorem 7 Algorithm 7 solves the RSSP4 with a single robot type in O(m logm) time.

Proof. The calculation of any �alj value in Step 1 requires O(logm) time. Since �alj �
lj +1, Step 1 is repeated O(m) times, and thus the algorithm indeed takes O(m logm) time.

5.7 Summary

A �ow-shop scheduling problem with a no-wait restriction, for which robots are responsible

for the transfer of jobs between any pair of consecutive machines was described. The robot

move on a single track positioned alongside a machine transfer line. The objective was to

(a) select a set of robots, (b) assign each robot to a portion of the track, and (c) de�ne a

set of moves for each robot, in order to minimize the makespan and robot selection costs.

Four di¤erent variations of the problem were studied. The �rst is to �nd a solution that

minimizes the sum of makespan and total robot selection cost. The second was to minimize

the makespan subject to an upper bound on the value of the total robot selection cost.

The third was to minimize the total robot selection cost subject to an upper bound on the

makespan value. The last was to identify a Pareto optimal solution for each Pareto-optimal

point with regard to the dual criteria. The last three variations were proven to be NP-
hard. Moreover, it was shown that the problem can be reformulated as a bicriteria shortest

path problem within a directed multigraph. Based on this reformulation, a polynomial time

procedure to solve the �rst variant was provided. It was shown that the three other variants

can be solved in pseudo-polynomial time. In addition, three important special cases are

derived for each of the three NP-hard variants, were shown to be solved in polynomial time.
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6 Single Robot Scheduling UsingRARLCollaboration

This section presents a collaborative RL method (Q-learning) for solving Problem 1 (see

subsection 3.1.1), where the robot can operate either autonomously (no adviser) or semi-

autonomously (with adviser).3

6.1 RL formulation �states, actions, and rewards

This section presents the formulation of the robotic scheduling problem as an RL problem

(states, actions, and rewards). System transition epochs are de�ned whenever the robot has

just deposited a job at a machine and is free to carry out the next job transfer. At this time,

an action is selected to de�ne which machine the robot should next serve.

6.1.1 System state space

At transition epoch t, the state of the system is denoted as st, where st is de�ned by m

possible bu¤er-machine states and the robot�s location. At any time t there are four possible

states for machine Mi and its output bu¤er OBi (i = 1; 2; : : : ;m): (1) OBi is empty and

machine Mi is idle, (2) OBi is empty and machine Mi is busy, (3) OBi is not empty and

machine Mi is idle, (4) OBi is not empty and machine Mi is busy. The IBi is not part

of the system state de�nition, since the machine and output bu¤er status provide enough

information on whether the robot should consider serving a machine or not. Thus, the

system state space S is de�ned by the states of the bu¤er-machine pairs and the location of

the robot (Lr). Each system state is an m+ 1 vector S = [s1; s2; : : : ; sj; : : : ; sm; Lr] with sj
2 f1; 2; 3; 4g and Lr 2 f1; 2; : : : ;mg. The initial state is S0 = [2; 1; : : : ; 1; 1] as all output

bu¤ers are empty and all machines are idle except for the �rst machine, which has started to

process the �rst job (loaded automatically from IB1). The �nal state is S �T = [1; 1 : : : 3;m]

which occurs when all jobs have completed processing and are placed in the �nal output

bu¤er OBm. At each transition epoch t, a state is de�ned as st 2 S.

6.1.2 Action space

The action space A is a set of m � 1 actions A = [a1; a2 : : : ai : : : am�1] where action ai is

de�ned as a robot job transfer fromMi�s OBi to input bu¤er IBi+1 of the next machineMi+1

in the processing sequence. An action ai is determined to be allowable (or not allowable)

according to the state of machine Mi, i.e., if the state of the machine is st 2 f2; 3; 4g then
3The analysis in this chapter has been presented at the 21st International Conference on Production

Research [85].
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an action to serve machine Mi is allowable. Otherwise, st 2 f1g and an action to serve
machine Mi is not allowable. In general, each job must be transferred by the robot through

m� 1 machines (unloading from machine Mm is automatic) and so the minimum number of

transitions (and so actions) from the initial state to the �nal state is n(m � 1). More than
n(m� 1) transitions (actions) are possible if the state-action policy is non-optimal.
System state transition times occur at the time the robot deposits a job at one of the

machine input bu¤ers. A job transition involves two successive robot movements. Assume

the robot is at Mk and job Jj is to be moved from Mi to Mi+1. The �rst move, if k > i,

takes
Pg=k�1

g=i teg time (if k < i takes
Pg=i�1

g=k teg time, and if k = i takes no time) from the

robot�s last drop o¤ position at IBk to pick up Jj. The second move takes time ti from

OBi to IBi+1. However, it is possible that the second move will be delayed if there are

no �nished jobs residing in Mi�s output bu¤er. In this case, the robot must wait until Jj
will �nish processing in Mi, i.e., until Cmij . Thus, in this case, the robot will wait for time

Cmij � (t+
Pg=k�1

g=i tei). Assume the system state has just changed and the time is t. At this

time the robot has deposited a job at Mk, and the action is taken to transfer a job Jj from

Mi to Mi+1. If Mi is idle, the transfer will be completed at time t+
Pg=k�1

g=i tei+ ti. If Mi is

busy and Jj is being processed on Mi, the transfer will be completed ti time units after Jj
will �nish processing in Mi, i.e., at time Cmij + ti. For each case, the transfer will be at time

� :

� = maxft+
g=k�1X
g=i

tei; C
m
ij g: (67)

This implies that the system transition time will be t+
Pg=k�1

g=i tei+ ti if the robot arrives

after Jj is �nished, and Cmij + ti if the robot arrives before Jj is �nished processing on Mi.

So, assuming the system starts at time 0, the system transition times can be de�ned as

t1; t2; :::; tv; tv+1 with the system dynamics de�ned by tv+1 = � for all v = 0; 1; 2; :::. At each

of these times the system enters a new state S.

6.1.3 Rewards

The rewards, denoted by rti; are calculated at each transition time t andMi i = 1; 2; :::;m�1
where si 6= 1, by

rti = t+

g=k�1X
g=i

tei �minfJCig; (68)
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where minfJCig is the minimum completion time of Jj on machine Mi that is next to be

transferred to Mi+1, i.e., completion time of Jj on machine Mi that is the "�rst" to be

transferred toMi+1. The "�rst" job to be transferred fromMi toMi+1is: (i) if OBi is empty

then minfJCig is the completion time of Jj which is being processed on machineMi, and (ii)

if OBi is not empty thenminfJCig is the completion time of Jj that has not been transferred
Mi+1 and been waiting for the robot maximum time.

Q value and action selection method - A "-greedy method of action selection is used,

where " is decreased over time according to (69) to encourage exploration at the beginning

and exploitation as the robot improves by

" = 1=( �Ei)
��: (69)

Here " is the probability of selecting random action (0 � " � 1), �� is a positive number
(�� � 0) that indicates how fast " will decrease towards 0 and �Ei is the episode i from

the current learning session. At each time step t; a number is sampled from a uniform

distribution between [0; 1] and then compared to the value of ". If this number is greater

than ", the robot will behave greedily (see subsection 1.3.1). However, if the number is

smaller than " the robot will perform an action with an equal probability. For any �� � 0,
as j �Eij increases " will decrease and the chance to perform a random action will be smaller,

until " ! 0 and then all remaining actions are chosen greedily. The value of the system at

state st when selecting action at, is Q(st; at) and is updated as follows:

Q(st; at) = Q(st; at) + ��[rt+1 + �maxQ(st+1; at)�Q(st; at)]; (70)

where �� is the learning rate that controls how much weight is given to the reward just

experienced, and � is the discount rate for future Q-values. The Q-value equation is updated

for each transition t = t1; t2; :::; tv; tv+1. The transitions are terminated for the current episode

when the system reaches its �nal state S �T = [1; 1; : : : ; 3;m], which occurs when all jobs have

completed processing and the robot has �nished its work. If this event (i.e., S �T ) does not

occur after �E learning episodes the process is terminated. The performance of the robot is

the resulting makespan value, denoted as Cmax( �Ei).

6.2 RL formulation �RA collaboration

The collaborative learning process between the robot and the adviser uses a modi�ed version

of Q-learning. The adviser is an agent that operates external to the system, and is simulated

with di¤erent expertise levels. Two di¤erent situations were analyzed: (a) an adviser with
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�xed expertise, and (b) an adviser with increasing fatigue (deterioration of expertise as a

function of time). The robot can operate either autonomously (AO) or semi- autonomously

(SAO). In the SAO mode the robot collaborates with an adviser. Switching between modes

is under the control of the robot that senses the degree of improvement or deterioration in

performance. When the improvement level falls below a threshold the robot requests advice

from the adviser. In addition, the robot is endowed with the ability to evaluate the assistance

provided by the adviser and retains the option to accept it or not. The process, in general

(Fig. 7), begins with independent learning by the robot. During the learning process the

robot tests its performance and acts accordingly. When performance is high, the system

stays in AO. When performance is low, the system switches to SAO and collaborates with

the adviser. When operating SAO the collaborating adviser provides advice. If the advice is

good it is accepted, otherwise it is rejected. If the robot considers the adviser "un�t" (i.e.,

as one that provides bad advice) the system switches permanently to the AO mode.

6.2.1 Robot - "-greedy action selection

This subsection presents an algorithm that uses the basic concepts of RL based on "-greedy

action selection. In this method the robot behaves greedily (see subsection 1.3.1) most of

the time, and from time to time (with probability ") selects a random action [87]. At the

beginning of the learning process, when the robot does not have much information, " is

relatively high in order to encourage exploration by the robot by allowing it to perform

random actions. As the learning process progresses and the robot obtains more information,

the value of " decreases. The robot, in this state, will reduce the number of random actions

and begin to exploit the information already gathered. Eq. (69) shows how " decreases over

time.

The robot is equipped with an ability to evaluate its learning performance. Learning

performance is measured by the average learning performance measure, Cave, calculated

over the X most recent learning episodes, by (71):

Cave =

i=jX
i=j�X+1

Cmax( �Ei)= X; (71)

where X is a prede�ned constant, and Cmax( �Ei) is the completion time of Jn on Mn (i.e.,

Cmmn) that was achieved at the end of �Ei, i.e., learning episode i. The measure Cave is

calculated at the end of the j0th episode (i.e., �Ej), and enables the robot to decide when

to operate AO or SAO by comparing Cave to an adaptive threshold Ĉmax, which represents

the minimum average completion time achieved so far from the beginning of the learning
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trial. The decision, if and when the robot should collaborate with an adviser, is determined

according to the following rules. At �rst, set the initial threshold Ĉmax = Cmax( �E1) (at the

end of the �rst learning episode). Then, after X iterations compute the average learning

performance measure Cave by using Eq. (71). If Cave > Ĉmax the robot changes to SAO

mode and collaborates with the adviser. Otherwise, if Cave � Ĉmax the robot continues in
AO mode and sets Ĉmax = Cave.

The robot is also equipped with an ability to evaluate the adviser�s advice. There are

two types of adviser assessment. In a short-term advice assessment, the current advice is

assessed by the robot to accept it or reject it. In long-term assessment, a cumulative record

of the short-term acceptance rate is used to estimate the skill level of the adviser. When it is

deemed that the adviser is "un�t" to give advice, then no additional advice is requested and

the robot remains in autonomous mode and discontinues future collaboration. The robot,

in the process of collaboration, should recognize the adviser�s expertise and act accordingly.

Levels of adviser expertise are represented by the parameter Temp (Boltzmann distribution

with values of Temp = 0:01� 1) where Temp = 0:01 is considered an expert and Temp = 1
is considered a novice ([30]).

Short-term advice assessment - At �rst, the robot should decide whether to accept or

reject adviser advice. This decision depends on the advice quality compared to the perfor-

mance of the robot�s learning process. When the advice (entire robot schedule) results in a

better solution than the one achieved from the learning process, i.e., Ĉmax > Cmax(adviser),

the advice is considered as good advice and so will be received. Otherwise, the advice is

considered as bad advice if Ĉmax � Cmax(adviser), and so will be rejected.
Long-term advice assessment - Determined by using a scaled threshold (Ha). The scale,

Ha, between [0; 1] is divided into novice [0; 1=3), medium [1=3; 2=3), or expert [2=3; 1]. Ex-

ponential smoothing as de�ned in Eq. (72) was used to weight present advice relative to

total accumulated advice.

Hai = �
0Di + (1� �0)Ha;i�1; Ha0 = 1; (72)

where Ha0 is the initial condition, �0(0 � �0 � 1) is the smoothing constant, which represents
the importance of the present i0th advice, and (1� �0) is the importance of all past advice.
Di = 0 or 1 is the success of adviser�s i0th advice instance, and Hai (0 � Hai � 1) is the
weighted total advice over all advice instances up to the i0th instance - adviser performance

threshold.

An important question is how the robot decides when to discard a bad adviser and switch

permanently to autonomous mode. Let � be a random number sampled from a normal
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distribution N~(0:5; (1=6)2), which is compared to an advice performance threshold (Hai).

When the ratio of adviser success (Hai) is low, the probability to continue collaborating in

SAO mode is low, and vice versa. For � = 0:5 and � = 1=6, for a novice, the probability to

sample a number (�) that is larger than the value of a novice ratio is high (0:84 � 1), and
thus the robot will be in AO mode most of the time. For a medium expert, the probability

the sampled number � is larger than the value of a medium ratio is medium (0:16 � 0:84)
and so the robot at times will switch to SAO mode. For an expert, the probability that

sampled number � is larger than the value of the expert�s ratio is very low (0� 0:16) and so
the robot will mostly switch to SAO mode.

The collaboration process, in general, is illustrated in Fig 7.

Figure 7: Flow diagram of RA collaboration.

6.2.2 Adviser �softmax action selection

The adviser�s action selection behavior is modeled through a Boltzmann distribution in a

softmax action selection operation, in which an action a is selected with probability Probt(ai)

as shown in eq. (2). The skill level of the adviser is represented by the value of Temp, based

on an optimal (or near optimal) Q-table (achieved by performing an enormous number of
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learning episodes) for the adviser simulation. Qt is calculated according to (st 2 S) and (at 2
A), and Temp is a factor that determines the amount of exploration. High Temp values will

result in a lot of exploration (equal probability for all actions) and low values will result

in exploitation corresponding to the experience level. At the limit as Temp ! 0, softmax

action selection becomes the same as the greedy action selection, but as Temp grows softmax

selection gives all actions equal probability. The adviser skill level is adjusted through the

parameter Temp. An adviser with perfect skills is represented by low Temp values while an

adviser with poor skills is represented by a high Temp value.

This research analyzes two di¤erent situations. The �rst is an adviser with �xed expertise,

i.e., �xed value of Temp, and the second is an adviser with increasing fatigue. To evaluate

adviser�s skill level deterioration over time due to fatigue, the Temp value is dynamically

changed. At the beginning of the episode, the adviser with low Temp is considered to provide

good advice (expert), while during simulation the value of Temp is increased so that the

quality of advice deteriorates until reaching that of a novice. Temp is dynamically changed

as follows:

Temp = tsys ln(NAR); (73)

where NAR is the number of times advice was requested from the adviser (if NAR = 1 we

assign NAR = 1:001), and tsys is the time (additive) of the system (i.e., learning session).

Jointly, tsys and NAR de�ne how fast Temp will increase.

6.3 RA collaboration experiments

The RA RL collaboration algorithms were programmed inMatlab (pseudo-code can be found

in subsection (Appendix) 9.6). We evaluate the quality of the RA RL collaboration algorithm

by two criteria: the makespan value and the ability of the robot to evaluate adviser expertise.

Performance of the robotic schedule (i.e., makespan Cmax) was conducted by computing an

upper bound (UB) error. Similar to Stern and Vinter ([84]), a UB error was calculated, as

described in equation (74):

UB error = (minfUBg � fLBg)=maxfLBg; (74)

where maxfLBg = LB (see eq. 5) for a given problem, and minfUBg is the best result
achieved by the RA RL collaboration algorithm. In order to evaluate the robot�s cognitive

abilities we have de�ned di¤erent levels of adviser expertise. This allows us to get an in-

dication of how successful the robot was in recognizing adviser expertise, which a¤ects the
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robot�s behavior through a collaboration process.

Similar to [94], which �rst used RL for F2 jjCmax (a problem that is solvable in O(n log n)
time [39]), and then for F3 jjCmax (a problem that is strongly NP-hard ([27]), RA RL

collaborative algorithm was tested �rst for a problem where machines are identical (IM, i.e.,

pij = p), and then for the more di¢ cult problem, where machines are non-identical (NIM,

i.e., pij = pi).

The following subsection describes the simulation setup (subsection 6.3.1) and the results

(subsection 6.3.2) for a single robot scheduling problem formulated as a collaborative RA

RL problem.

6.3.1 Simulation setup

Tests were conducted for m = 4 machines and n = 6 jobs. In each simulation 10 trials

were conducted, each consisting of �E = 50 learning episodes (this was empirically set based

on a-priori analysis which indicated convergence after approximately 40 learning episodes).

Job processing times are sampled from a uniform distribution between [150; 200], and adja-

cent machine transfer times ti (and empty return times tei) are sampled uniformly between

[10; 20]. For the IM case the process time must be sampled only once, while for the NIM

case m samples are required, one for each machine Mi. The adjacent machine transfer time

is sampled once for each trial and used additively to determine empty transfer times between

non-adjacent machines. The following values were used for the reinforcement learning trials:
�� = 0:5 (to encourage exploration), �� = 0:05 (the learning rate), � = 0:9 (discount rate)

as de�ne by Kartun et al. [41], and �0 = 0:2 in order to give more weight to the value of

accumulated advice and less weight to current advice. The cases of IM and NIM were tested

with di¤erent levels of expertise represented by �xed values of Temp varying over the range

(0:01 � 1). Additionally, a third case was tested for an adviser with a dynamic decreasing
level of expertise (an adviser with fatigue) where Temp changes according to eq. (73).

6.3.2 Results and discussion

Simulations were conducted with the level of adviser expertise as a parameter. The �xed

levels of Temp were 0:01; 0:25:0:50; 0:75 and 1:0, where 1:0 represents a novice and 0:01

represents an expert. Tables 3 and 4 present the solutions for the �ow-shop robotic problem

for IM and NIM, respectively. The "Robot" and "Adviser" columns present solutions as

[X1-X2],X3. The [X1-X2] is the range of errors where X1 is the smallest error and X2 is the
biggest error. X3 presents the average error. Errors where calculated by maxfLBg = LB
(eq. (5)) and according to eq. (74).
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Table 3 indicates that the robot found an optimal solution for each value of Temp within

an average error of 1:8%. The biggest error (UB error) of the robot was 5:5% (simulation

4). The adviser, on the other hand, found an optimal solution only for expert values corre-

sponding to Temp = 0:01 and Temp = 0:25. The biggest error (UB error) of the adviser

was 23:3% when Temp = 1 (the adviser is novice). The errors of the adviser were much

bigger than the robot with maximum average error of 15:5%.

Simulations Temp Robot Adviser Number of times
advice was requested

1 0.01 [0 - 0], 0 [0 - 0], 0 [4 -9], 6.21
2 0.25 [0 - 0.041], 0.007 [0 �0.108], 0.07 [3 - 7], 4.8
3 0.5 [0 - 0.033], 0.008 [0.038-0.165], 0.103 [3 - 7], 4.3
4 0.75 [0 - 0.055], 0.018 [0.062- 0.199], 0.126 [2 -5], 3.6
5 1 [0 - 0.039], 0.012 [0.092- 0.233], 0.155 [1 - 4], 2.6

Table 3: IM : Intervals and average errors for �xed T

Table 4 shows that the robot was capable of achieving an optimal solution for each

expertise value of Temp when the machines were non-identical. The maximum average error

is 9:4%. The biggest error (UB error) of the robot was 23:1% (simulation 2), indicating that

the robot once in a while can be misled when implementing advice that was considered to

be "good" at the beginning of learning (i.e., in the exploration phase). The adviser, on the

other hand, found an optimal solution only for Temp = 0:01. The greatest error (UB error)

of the adviser was 27:9% when Temp = 1 (the adviser is novice). The errors of the adviser

were much larger than that of the robot where the maximum average error of adviser was

12:7% (simulation 5) and robot with the adviser was 9:4% (simulation 4).

Simulations Temp Robot Adviser Number of times
advice was requested

1 0.01 [0 - 0.094], 0.028 [0 - 0.094], 0.028 [5 -9], 6.8
2 0.25 [0 - 0.231],0.062 [0.011-0.263], 0.08 [4 -7], 5.1
3 0.5 [0 - 0.118],0.041 [0.024 -0.264], 0.096 [3 - 7], 4.3
4 0.75 [0 - 0.202],0.094 [0.08 -0.269], 0.112 [3 -6], 4
5 1 [0 - 0.161], 0.05 [0.088- 0.279], 0.127 [1 - 4], 2.8

Table 4: NIM : Intervals and average errors for �xed T

Tables 3 and 4 indicate that the average error and its range for the adviser increases as

the value of Temp increases for both the IM (Table 3) and NIM (Table 4) cases. The robot

found the optimal solution for at least one trial for each simulation. The adviser, on the

other hand, obtained worse results as the value of Temp increased. Furthermore, it can be
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seen that the value of Temp �ts the number of times advice was requested, requesting more

collaborations with an expert and much less with a novice.

It can be seen from the table that the robot found better solutions than the adviser

(except for Temp = 0:01). In general, solutions achieved by the robot and adviser, for

the IM case, were better than for the NIM case. It can be seen that as the value of T

increases the average UB error and intervals also increase. An interesting point is that when

Temp = 0:75 (for both IM and NIM ) the robot had the maximum average UB error, and

when Temp = 1 the average UB error is slightly smaller. Tables 3 and 4 also indicate

that the average number of times advice was requested increases as Temp decreases, which

implies that the robot collaborates more with an expert adviser than with a novice adviser.

The results show that the robot was able to operate correctly and switch control between

AO and SAO. It is important to note that upon convergence of the RL algorithm of the best

solution obtained through the collaboration process, the collaborative robot-adviser system�s

maximum average error was 9:4% (see Table 3, simulation 1).

More simulations were conducted for dynamic levels of expertise due to "fatigue". Ta-

bles 5 and 6 indicate that in the case of a fatiguing adviser the robot was able to distin-

guish between the adviser�s expertise and acted accordingly. When the adviser is an expert

(Temp = 0:01) there is more collaboration, and when the adviser�s skill level deteriorates

(i.e., a novice, Temp = 1) collaboration is minimal.

Table 5 presents the intervals of errors and average error.

Simulations Machines Robot Adviser
1 IM [0 - 0], 0 [0 - 0], 0
2 NIM [0 - 0.236], 0.074 [0 - 0.236],0.08

Table 5: Dynamic level of expertise - Results

Table 6 presents important variables that refer to the collaboration process.

Simulations Machines Ha Number of times
advice was requested

1 IM [0.327 - 0.64] [3 -6], 4.7
2 NIM [0.328 - 0.64] [3 - 7], 4.1

Table 6: Dynamic level of expertise - Collaboration

Both robot and adviser perform better for the IM case than the NIM case. The intervals

of Ha indicate the values of Ha at the time that the adviser last collaborated, i.e., Ha is
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the time point when the adviser was discarded. For IM and NIM, the minimum value of

Ha was 0.327 and 0.328 and the maximum was 0.64 and 0.64, respectively. Thus, the robot

collaborated for the last time with a medium or a novice adviser according to the scale of

Ha.

6.4 Summary

In conclusion, the robot overcomes two signi�cant problems: misjudging an expert and

learning from a novice. Optimal robot schedules were obtained for IM and NIM problems,

and for both �xed and dynamic levels of expertise. The adviser, on the other hand, provided

optimal solutions only for small values of Temp (IM : Temp = 0:01, 0:25 and NIM : Temp =

0:01), which represented expertise. Furthermore, as the value of Temp increases (representing

lower levels of expertise) the average number of times advice was requested decreases. This

indicates that the cognitive abilities of the robot in detecting the credibility of adviser advice

functioned properly.

The algorithm based on "-greedy action selection was shown to be capable of providing an

optimal solution for at least one trial on each simulation for both the IM and NIM, and for

both �xed and dynamic levels of expertise. Implementation of collaboration in the scheduling

problem provides, in some cases, optimal solutions and also accelerates the learning process

of the robot. On the other hand, it can also mislead the robot and divert it from achieving

the optimal solution.

The formulation and solution methodology presented here is not limited to robots con-

�ned to a �xed linear track, but is also appropriate for problems where the machines are

located anywhere in free space and job transfers are carried out by a mobile robot.

101

gzilberman
Highlight



7 Two Robots Scheduling Using RR RL Collaboration

This section presents a collaborative RL method (Q-learning) for a two-robot scheduling

problem (Problem 3, see subsection 3.1.3), where robots of the same or di¤erent type can

operate in one of four levels of collaboration: Full, Pull, Push, and None.4

7.1 RL formulation �states, actions, and rewards

This section presents the formulation of Problem 3 as a collaborative RL problem (states,

actions, and rewards). System transition epochs are de�ned whenever one of the robots has

just deposited a job at a machine and is free to carry out the next job transfer. At this time,

an action is selected to de�ne which machine this robot should next serve.

7.1.1 System state space

At transition epoch t, the state of the system is denoted by the states of each of the m

machines. Let si 2 f1; 2; 3; 4g be the state of machineMi (i = 1; :::;m), where the states are:

(1) OBi is empty and machineMi is idle, (2) OBi is empty and machineMi is busy, (3) OBi
is occupied and machine Mi is idle, and (4) OBi is occupied and machine Mi is busy. The

state of the system at time epoch t is denoted as St = [s1; s2; : : : ; si; : : : ; sm] and represents

the state of all machines. The initial state is S0 = [3; 1; : : : ; 1], as all output bu¤ers are

empty and all machines are idle except for the �rst machine, which has started to process

the �rst job (loaded automatically from IB1). The �nal state is S �T = [1; 1 : : : 3], where �T

is the last transition epoch, which occurs when all jobs have completed processing and are

placed in the �nal output bu¤er OBm. We de�ne S as the overall state space, such that St
2 S. To overcome the problem where the state of system size grows exponentially in the

number of robots as described in [67], the system state de�nition does not include: IBi -

since machine and output bu¤er status provide enough information on whether the robot

should consider serving the machine, as well as the robot�s location.

7.1.2 Action space

The action space A is a set of m � 1 actions A = [a1; a2 : : : ai : : : am�1] where action ai is

de�ned as a robot job transfer from Mi�s OBi to the input bu¤er IBi+1 of the next machine

Mi+1 in the processing sequence. The action space A is identical for both R1 and R2.

4The analysis in this chapter has been accepted to IEEE SMC 2013 Conference [7], and was recently
submitted to the International Journal of Production Research. The �rst RL implementation for two robots
was presented at the 20th International Conference on Production Research [6].

102



System transition times occur whenever one of the robots has just deposited a job at one of

the machine�s input bu¤ers. Thus, � (eq. 67) is used for R1and R2, and denoted as � 1 and

� 2, respectively. Assuming the system starts at time 0, the system transition times can be

de�ned as t1; t2; :::; tv; tv+1 with the system dynamics de�ned by tv+1 = minf� 1; � 2g for all
v = 0; 1; 2::. At each of these times the system enters a new state S.

Each job must be transferred through m � 1 machines (unloading from machine Mm is

automatic) and so the minimum number of transitions (and actions) from the initial state

to the �nal state will be n(m� 1). More than n(m� 1) transitions (actions) are possible if
the state-action policy is non-optimal.

7.1.3 Rewards

The rewards, denoted as rt1i for R1 and rt2i for R2, are calculated at each transition time t

for the robot that has just deposited a job and are de�ned as follows:

rt1i = RATti � JCTti; and (75)

rt2i = JCTti �RATti; (76)

where rt1i ( rt2i) is the reward achieved at time t by robot R1 (R2), if it serves Mi. RATti
is robot�s arrival time from current location to machine Mi and JCTti is minimum job

completion time in machine Mi (a job that has not yet been transferred to Mi+1). At each

transition time t for the robot that has just deposited a job, reward is calculated for each

machineMi that the robot can serve, i.e., calculate rt1i = rt2i for i = 1; 2 : : : m�1 and when
state of Mi is si 6= 1.
A penalty is de�ned for R1, if the robot will have idle time when waiting near Mi for

completion of Jj; and for R2 when jobs have to wait on a machine until the robot arrives.

For R1, rt1i is de�ned as follows: for each i = 1 : : :m�1 and si 6= 1, calculate RATti�JCTti.
If all values of RATti� JCTti are negative then R1 chooses the maximum of RATti� JCTti,
i.e., R1 serves Mi, which results in minimum robot idle time. Otherwise, at least one value

of RATti � JCTti is positive and then the robot chooses the maximum of RATti � JCTti
among positive values, i.e., R1 serves Mi, which results in no robot idle time. For R2, rt2i
is de�ned as follows: for each i = 1 : : :m � 1 and si 6= 1, calculate JCTti � RATti. If all
values of JCTti�RATti are negative, then R2 chooses the maximum of JCTti�RATti, i.e.,
R2 serves Mi, which results in the minimum waiting time of job Jj in OBi. Otherwise, at

least one value of JCTti � RATti is positive and then the robot chooses the maximum of

JCTti�RATti among positive values, i.e., R2 serves Mi, which results in no waiting time of
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job Jj in OBi. Rewards and penalties contribute to reduction of the makespan value, i.e.,

Cmax.

A scheduling policy is obtained using Q-learning. The value of the system at state st,

when selecting action at, is Q(st; at) and is updated according to the Q-learning eq. (70).

Since the non-stationarity of the multi-agent learning problem arises because all the agents

in the system are learning simultaneously [67], our research uses a high value for �� and a low

value for � in order to give more weight to rt+1 and less weight for Q(st+1; at). The Q(st; at)

value equation is updated for each transition t = t1; t2; :::; tv; tv+1.

As pointed out in Gil et al. [29], it is very hard within an episode to estimate the

�nal performance of the schedule, i.e., the value of Cmax. Thus, in order to reinforce good

schedules, Q-values must be updated at the end of a good schedule, i.e., at the end of one

learning episode. In this research, a schedule is considered to be a good schedule if it results

in Cmax < Cave (for calculation of Cave see eq. (77)). Gil et al. [29], at the end of a good

schedule, reinforce it by multiplying the Q-values by another variable. In RR RL, good

schedules are reinforced by adding a prede�ned constant B, so Q(st; at) = Q(st; at) + B,

since rewards can be negative and that may result in negative Q-values (see eqs. (75), (76),

and (70)). Note that if there is a good schedule with negative Q-values then multiplying

it by another value will not reinforce a good schedule, while adding B will reinforce it.

Furthermore, RR RL use a constant B and not a variable, since a good schedule should

be reinforced equally in the exploration (reinforcement of good schedules at the beginning

of learning session may accelerate the learning process and so convergence to solution) and

exploitation phases. The value of B was determined by prior simulations on small-size

problems where optimal Q-values can be easily derived.

The transitions are terminated for the current episode when the system reaches its �nal

state S �T = [1; 1 : : : 3], which occurs when all jobs have completed processing and the robots

have �nished their work. If this event does not occur after a total of �E learning episodes the

process is terminated. Performance of robots, denoted as Cmax( �Ei), is de�ned as the time it

takes both robots to complete all job transfers.

At each transition epoch t, when robot R1 orR2 deposits a job at one of the machine input

bu¤ers it has to decide which action at to carry out next. The action at, is determined by a

modi�ed " method, where " is decreased over time (see eq. (69)) to encourage exploration at

the beginning and exploitation as the robots improve. Here " is the probability of selecting

a machine at random (0 � " � 1), that is a machine Mi i = 1 : : :m� 1 is selected uniformly
to be serviced by the �ready�robot. Otherwise, with probability 1 � ", the robot behaves
greedily and selects an action according to the Q-values.
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7.2 RL formulation �RR collaboration

The collaborative robot learning process uses a modi�ed version of Q-learning. The robots

operate simultaneously on parallel tracks and serve m machines. Four levels of collaboration

(Full, Pull, Push, None) are de�ned based on information sharing, learning, and assessment.

Information sharing - Complete or None. Complete allows each robot to have complete

knowledge about the current location of the other robot and the other robot�s next location.

None implies that the robots have no information.

Learning - Self or Joint. Self-learning indicates that each robot has direct in�uence on

its Q-values with its own reward function with no interference by the other robot, while

Joint learning implies that each robot has direct interference on the other robot�s Q-values

by using the other robot�s reward function.

Assessment - The robots are equipped with the ability to evaluate their common per-

formance. Performance Cave is measured at the end of episode �Ei, calculating the average

makespan over a span of X learning episodes starting from episode ~I (eq. 77).

Cave =
i=XX
i=1

Cmax( �Ei)= X; for X = ~I; :::; �E, (77)

where Cmax( �Ei) is the makespan value of a problem that was achieved at the end of learning

episode i. The measure, Cave, enables the robots to decide when to collaborate by comparing

Cave to an adaptive threshold Ĉmax, which represents the minimum average completion time

achieved so far from the beginning of the learning trial. Note that starting from episode ~I,

at each episode EX X = ~I; : : : ; �E, Cave is determined over the most recent X episodes.

The decision, if and when the robots should collaborate with one another, is determined

on-line according to the following rules: (1) set an initial threshold Ĉmax = Cmax( �E1) at the

end of the �rst learning episode; (2) after X iterations compute the average learning perfor-

mance measure Cave (by eq. (77)); and (3) if Cave > Ĉmax collaborate with the other robot

(as de�ned in current collaboration level); otherwise, if Cave � Ĉmax continue in autonomous
mode and set Ĉmax = Cave.

Four levels of collaboration were de�ned and in each level both robots are trying to

achieve the same goal, i.e., to minimize the makespan value Cmax.

Full - Robots work together with no "competition" where each robot, at each action

selection, may advise the other robot about the next action. This depends on Cave and

Ĉmax. Each robot has the ability to accept or reject the advice of which machine to serve

next. The robots perform both self and joint learning and share full information by informing

each other of their current and next location.
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Pull - Only one robot can decide when and if to learn from the other robot and ask for

advice (i.e., action). This depends on the previous performance of both robots, i.e., on Cave
and Ĉmax. The second robot works and learns independently with no interference from the

other robot. The robots share full information.

Push - One robot, say R1, may force the other robot R2 when and how to learn from it,

by giving advice on which action to take. R1 learns by itself, while R2 is forced to accept the

advice (i.e., action) of R1, depending on previous performance of both robots, i.e., on Cave
and Ĉmax. R1 has full control on actions being performed. Robots share full information.

None - There is a "competition" between the autonomous robots; the robots do not share

information and learn independently. There is no collaboration between the robots, i.e., they

are two separate entities trying to achieve the same goal.

7.3 RR collaboration experiments

Collaboration algorithms for the four levels of our RR RL were programmed in Matlab

(pseudo-code can be found in subsection (Appendix) 9.6). In order to evaluate the perfor-

mance of each of the four levels of the RR RL collaboration algorithm (Full, Pull, Push, and

None) we used an UB error as described in eq. (74). Furthermore, in order to determine

the performance of two robots (same or of di¤erent type) and for each level of collaboration

on given set of problems, we de�ne the following performance measure:

LB Fit = 1�UB error. (78)

High LB Fit indicates that by implementing a speci�c level of collaboration, using robots of

same or of di¤erent type, will result in high performance on a given set of problems.

Similar to the experiments conducted in section 6.3, our RR RL collaborative algorithm

was also tested �rst for an IM problem (i.e., pij = p), and then for the more di¢ cult problem

with NIM (i.e., pij = pi).

The following subsection presents and describes the simulation setup (subsection 7.3.1)

and results (subsection 7.3.2) for the multi-robot scheduling problem formulated as a collab-

orative RR RL problem.

7.3.1 Simulation Setup

Evaluation tests for each level of collaboration and for identical robot types (IRT s) and

non-identical robots types (NIRT s) for each variation, IM and NIM of the problem, were

conducted. The number of robots, machines, and jobs were �xed at k = 2, m = 7, and

n = 10, respectively. Processing times and robot job transfer times were sampled from
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uniform distributions. Job processing times were sampled uniformly between [150; 250] or

[200; 300] or [250; 350], where each de�nes a di¤erent set of problems. For IM s the processing

time is sampled once, while for NIM s m samples are used, one for each machine Mi. A

simulation is de�ned by a number of trials, where each trial consists of �E learning episodes.

Each simulation consists of 10 trials, and for each trial the total number of learning episodes

is �E = 100 (this was empirically set based on a-priori analysis which indicated convergence

after approximately 90 learning episodes), where after each sliding window of ~I = 25 learning

episodes Cave is calculated by eq. (77), and B = 10. Three types of robots (i.e., Q = 3,

q = 1; 2; 3) were de�ned according to transfer times: (1) q = 1 fast robot - ti1 are sampled

uniformly between [5; 15], (2) q = 2 medium robot - ti2 are sampled uniformly between

[15; 25], and (3) q = 3 slow robot - ti3 are sampled uniformly between [35; 45]. These times

are relative to robot empty travel times, which, without loss of generality, were de�ned as

teiq = 1 for q = 1; 2; 3. The robot empty times are taken as the same for each robot and

associated with movements (without a job) between any two machines. Furthermore, three

combinations of two robots were de�ned: two fast robots - R1 and R2 are type q = 1 noted

as (1; 1), fast and medium robots - R1 type q = 1 and R2 type q = 2 noted as (1; 2), fast

and slow robots - R1 type q = 1 and R2 type q = 3 noted as (1; 3). For IRT s (i.e., (1; 1)),

m� 1 samples for transferring times were sampled uniformly twice between [5; 15] once for
each robot, while for NIRT s (i.e., (1; 2) and (1; 3)), m � 1 samples for transferring times
were sampled uniformly twice, once for fast robot between [5; 15] and once for medium robot

between [15; 25] or for slow robot between [35; 45].

The following values were used for the reinforcement learning trials: �� = 0:5 in order

to encourage exploration, and due to the non-stationary environment ([67]) a learning rate

�� = 0:9 and discount rate � = 0:1 were used.

For each learning episode, i.e., a single problem, the maxfLBg = LB (see eq. 5) was

calculated using ti = minftiqg for i = 1; :::;m � 1, and with minfUBg, UB error (74) and
so LB Fit (78) were computed. The results are presented in terms of the average UB error.

7.3.2 Results and Discussion

This section presents average UB error results for IM (Table 7) and NIM (Table 8) for

the robotic �ow-shop scheduling problem. The best results for both, IM and NIM, were

obtained by the Full collaboration mode while the worst results were obtained by the None

collaboration mode. Furthermore, it can be seen that in some cases Push was better than

Pull collaboration and in other cases the opposite. The average of the UB error decreases

as processing times increase in all collaboration modes and in all robot type combinations

and for both IM and NIM. Furthermore, as expected, the average UB error also decreases
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as robots become faster, i.e., (1; 1) achieved best solutions, followed by (1; 2), and the worst

by (1; 3).

Table 7 indicates the average UB errors for each of the cases, with IM.

Processing Times Level of Collaboration
Full Pull Push None

(1, 1) p ~U [150, 250] 0.0048 0.0057 0.0077 0.046
Fast, Fast p ~U [200, 300] 0.004 0.0041 0.0043 0.04

p ~U [250, 350] 0.0029 0.0029 0.0031 0.025
(1, 2) p ~U [150, 250] 0.02 0.038 0.0213 0.057

Fast, Medium p ~U [200, 300] 0.0165 0.033 0.017 0.052
p ~U [250, 350] 0.0145 0.022 0.015 0.047

(1, 3) p ~U [150, 250] 0.032 0.043 0.045 0.083
Fast, Slow p ~U [200, 300] 0.03 0.038 0.038 0.065

p ~U [250, 350] 0.028 0.034 0.036 0.059

Table 7: k=2 robot and IM .

Comparisons between average UB error of Full, Pull, Push, and None were conducted

by performing Paired t-test at con�dence level of 99%. It was found that between Full

and None there was a statistically signi�cant di¤erence, while between Pull and Push there

was no statistically signi�cant di¤erence. Between Full and Pull, Full and Push there was a

statistically signi�cant di¤erence at a con�dence level of 93%. Furthermore, when comparing

average UB error by processing times (i.e., p~U [150; 250], p~U [200; 300], and p~U [250; 350])

it was found that there was a statistically signi�cant di¤erence.

In conclusion, Full resulted in LB Fit of (1; 1) in the range of 99:52%� 99:71%, (1; 2) is
98% � 98:55%, and (1; 3) is 96:8% � 97:2%. On the other hand, None resulting LB Fit of
(1; 1) is in the range of 95:4%�97:5%, of (1; 2) is 94:3%�95:3%, and (1; 3) is 91:7%�94:1%.
Table 8 indicates the average UB errors for each of the cases, with NIM.

Also, for the results in Table 8, comparisons between average UB error of Full, Pull, Push,

and None were conducted by performing Paired t-test at a con�dence level of 99%. As in IM,

here for the NIM case, there was a statistically signi�cant di¤erence between average UB

error of Full and None and between processing times (i.e., p~U [150; 250], p~U [200; 300], and

p~U [250; 350]), while between the Pull and Push the results were not statistically di¤erent.

Also, here (for NIM ) there was a statistically signi�cant di¤erence between Full and Pull,

Full and Push at a con�dence level of 96%.
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Robots Processing Times Level of Collaboration
Full Pull Push None

(1, 1) p ~U [150, 250] 0.0019 0.0022 0.0019 0.0162
Fast, Fast p ~U [200, 300] 0.0017 0.0017 0.0017 0.0129

p ~U [250, 350] 0.0008 0.0016 0.00088 0.0088
(1, 2) p ~U [150, 250] 0.0076 0.019 0.008 0.0219

Fast, Medium p ~U [200, 300] 0.0043 0.013 0.0044 0.0149
p ~U [250, 350] 0.0036 0.006 0.0037 0.0103

(1, 3) p ~U [150, 250] 0.0196 0.0204 0.02 0.024
Fast, Slow p ~U [200, 300] 0.014 0.0146 0.0142 0.021

p ~U [250, 350] 0.0072 0.009 0.0084 0.017

Table 8: k=2 robot and NIM .

7.4 Summary

In conclusion, Full resulted LB Fit of (1; 1) is in the range of 99:81% � 99:92%, of (1; 2)
is 98:64% � 99:24%, and (1; 3) is 98:04% � 99:28%. On the other hand, None resulted LB
Fit of (1; 1) is in the range of 98:38% � 99:12%, of (1; 2) is 97:81% � 98:97%, and (1; 3) is
97:6% � 98:3%. In most cases, NIM results in better performance than IM, i.e., most of

the average UB errors in NIM are smaller. To evaluate di¤erences between IM and NIM,

a Paired t-test at a con�dence level of 99% revealed that there is a signi�cant di¤erence

between results for IM and NIM.

Section 7 presents a four-level collaborative RR RL algorithm that provides a schedule

for two IRT s and NIRT s for both IM and NIM. The algorithms are considered to be generic,

and can be used for various robot job transfer times (fast, medium, and slow) and processing

times of machines than those presented in this section.

Through UB error, one will be able to select robots (fast, medium, or slow) and schedule

them according to system characteristics and factory constraints. For example, assume that

following criteria exist: (a) cost of each robot - determined according to transfer and empty

return times, i.e., fast robot is expensive, medium robot is medium, and slow robot is cheap.

(b) For each time that the factory is late in completing an order of n completed parts, i.e.,

Cmax is bigger than optimal Cmax, there is a �ne of (Cmax�(optimal Cmax)), and (c) each level
of collaboration consumes di¤erent time and requires di¤erent hardware, i.e., implementation

of Full in the most expensive while None is the cheapest. It can be seen that according to

each weight given to each criterion one will be able to decide which robots to select and which

level of collaboration to use in order to schedule them. Thus, if the �ne (Cmax � (optimal
Cmax)) is enormous compared to the costs of robots and to costs of the level of collaboration,

then it is best to select two fast robots that implement Full level of collaboration.
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8 Summary and Future Research

We studied three di¤erent robotic �ow-shop scheduling problems, where in each of the prob-

lems a set of n identical jobs has to be scheduled on a set of m machines, and the scheduling

objective is to minimize the makespan. Moreover, in all problems robots are responsible for

transporting jobs between successive machines. In the �rst problem (Problem 1 ) we study

the case where there is a single robot, and unlimited bu¤er between the machines. In the

second problem (Problem 2 ), we consider the case where the processing times are both ma-

chine and job independent, the robots move on the same track, and there are no-idle and

no-wait restrictions. We consider the case where the scheduler has to select a set of robots

(from a prede�ned set of robot types) and assign each robot to a portion of the track. Once

the robots are selected and assigned, the scheduler has to schedule the robots as well. In

this problem, in addition to minimizing the makespan, the scheduler aims to minimize the

total robot selection cost. In the third problem (Problem 3 ), there are two robots that are

moving on parallel tracks.

Our main results for each of the above three problems are listed below:

� For Problem 1, we provide a polynomial time procedure for solving the special case

that includes three machines. The procedure is based on decomposing the problem into

a set of subproblems and providing an optimal schedule for each of the subproblems.

Moreover, for more than three machines, we design a unique collaborative RL-based

procedure to solve the problem. In our collaborative RL procedure the robot collabo-

rates with an adviser (agent), and has the following three robot cognitive abilities: (i)

the ability to assess the quality of its own decisions; (ii) a short-term assessment ability

for evaluating the quality of an advice; and (iii) a long-term assessment for evaluating

the adviser�s skill levels. Thus, the robot in the short term was able to accept or reject

advice, and in the long run was able to decide whether to collaborate or discard the

adviser. For two types of agents (i.e., agent with �xed level of expertise and agent with

fatigue), we show that the robot was able to achieve better results and collaborated

more (asking for more advise) with an expert rather than with a novice.

� For Problem 2, as there are two criteria (minimizing the makespan and minimizing the
total robot selection cost), we de�ne four variations of the problem. The �rst is to �nd a

schedule that minimizes the sum of the two con�icting criteria; the second and the third

are to minimize one criterion, given an upper bound on the value of the other criterion;

while the last variation consists of �nding the entire set of Pareto-optimal points with

respect to the two criteria. We show that the �rst problem variation is solvable in
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polynomial time while the other three variations are NP-hard. For these NP-hard
problems, we show that a pseudo-polynomial time algorithm and a fully polynomial

approximation scheme (FPTAS) exists. Moreover, we derive three important special

cases that are solvable in polynomial time.

� For solving Problem 3, we design another unique collaborative RL-based procedure,

where robots are able to communicate in one of the following levels of collaboration:

(i) Full, (ii) Push, (iii) Pull, and (iv) None. Each level was de�ned according to

three characteristics: information sharing (complete or none), learning (self and joint),

and assessment (joint). By applying an extensive experimental study, we were able to

obtain the following results: (i) using the Full level of collaboration provides the best

results for di¤erent types of robots, while None leads to the worst quality solutions.

(ii) There is no di¤erence in the quality of the results between Pull and Push (with

level of con�dence of 99%). It is important to note that despite the fact that the

environment becomes non-stationary, our RL-based procedure was able to produce a

makespan value that is at most 1:03 times bigger than the value of a tight lower bound,

when using a full collaboration between the robots.

In future research, the complexity of Problem 1 for any arbitrary number of machines

should be classi�ed. Future research may also include the analysis of Problem 2, for the

more general case where job processing times may be machine-dependent, or for the case

where the working space of each robot is not partitioned, so the limitation on the movements

of each robot is based on the position of the robot from its left and right side, in order to

avoid collisions. The most important challenge for future research is to identify the exact

complexity status of Problem 3. With regard to RL, the RL collaborative algorithms should

be expanded for problems where jobs are non-identical and thus job schedule decisions have

to be provided as well. Furthermore, it is important to analyze di¤erences between two

performance measures of the robot(s) that were used in RA and RR, i.e., the performance

measure used in RA (eq. (71)) calculated Cave according to X last episodes, while the

performance measure used in RR (eq. (77)) calculated Cave according to X learning episodes

starting from the �rst episode until episode X. In addition, for both performance measures,

more challenges arise: determine the best value of X for a given number of learning episodes

E, and through that �nd the dependency between X and E.

For the single robot system, experiments should be expanded to test the quality of RA RL

in a real human-robot system where a robot is required to control the system behavior on-

line. For the multi-robot system, algorithms in which all robots can autonomously determine

how and when to switch collaboration levels should be developed.
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9 Appendices

9.1 The analysis of Case 1

This subsection analyzes the case where M1 is the bottleneck in the system. Thus, the

condition in (6) for f = 1 holds and eq. (3) for f = 1 provides the lower bound on the

makespan value. We further divide Case 1 into two subcases. The �rst is where p1 <

p2 +
P2

i=1 ti +
P2

i=1 tei, and the second is the opposite case. Below, we provide optimal

schedules for each of the two subcases.

9.1.1 The analysis of subcase 1.1

We further divide subcase 1.1, where p1 < p2 +
P2

i=1 ti +
P2

i=1 tei, into three subcases. The

�rst, subcase 1.1.1, is where p2 = maxfp2; p3; t2 + te2g, the second subcase 1.1.2 is where
t2+te2 = maxfp2; p3; t2+te2g, and the third subcase 1.1.3 is where p3 = maxfp2; p3; t2+te2g.

The analysis of subcase 1.1.1 For subcase 1.1.1, where p1 < p2+
P2

i=1 ti+
P2

i=1 tei and

p2 = maxfp2; p3; t2 + te2g, we de�ne the following schedule (Schedule 1.1.1):
Machine Schedule:

� Schedule job Jj on M1 during time interval [Sm1j ; C
m
1j ] = [(j � 1)p1; jp1] for j = 1; :::; n.

� Schedule job Jj on M2 during time interval [Sm2j ; C
m
2j ] = [jp1 + t1; jp1 + t1 + p2] for

j = 1; :::; n.

� Schedule job Jj on M3 during time interval [Sm3j ; C
m
3j ] = [(j + 1)p1 + t1 + t2; (j + 1)p1 +

t1 + t2 + p3] for j = 1; :::; n� 1:

� Schedule job Jn on M3 during time interval [Sm3n; C
m
3n] = [np1 + t1 + p2 + t2; np1 + t1 +

p2 + t2 + p3]:

Robot Schedule:

� Move job Jj from M1 to M2 during time interval [Sr1j; C
r
1j] = [jp1; jp1 + t1] for j =

1; :::; n.

� Move job Jj fromM2 toM3 during time interval [Sr2j; C
r
2j] = [(j+1)p1+ t1; (j+1)p1+

t1 + t2] for j = 1; :::; n� 1.

� Move job Jn from M2 to M3 during time interval [Sr2n; C
r
2n] = [np1+ t1+ p2; np1+ t1+

p2 + t2].
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� Move the robot empty from M2 to M1 during time interval [p1 + t1; p1 + t1 + te1].

� Move the robot empty from M3 to M1 during time interval [jp1 + t1 + t2; jp1 + t1 +

t2 +
P2

i=1 tei] for j = 2; :::; n� 1.

� Move the robot empty fromM3 toM2 during time interval [np1+t1+t2; np1+t1+t2+te2].

Schedule 1.1.1 is illustrated in Figure 8 below for n = 4 jobs with empty return moves

shown in bold.

Figure 8: Schedule 1.1.1.

Lemma 8 Schedule 1.1.1 is an optimal schedule for subcase 1.1.1.

Proof. We start by showing that schedule 1.1.1 is a feasible schedule. The fact that
Sm1;j+1 = Cm1j = jp1; that Sm2;j+1 = (j + 1)p1 + t1 � Cm2j = jp1 + t1 + p2; that Sm3;j+1 =

(j + 2)p1 + t1 + t2 � Cm3j = (j + 1)p1 + t1 + t2 + p3 for j = 1; :::; n � 2; and that Sm3n =
np1 + t1 + p2 + t2 > Cm3;n�1 = np1 + t1 + t2 + p3, where the three last inequalities follows

from the fact that for subcase 1.1.1 we have that p1 � p2 � p3, implies that there is

no overlap between processing operations on the same machine. Moreover, the fact that

Cm1j = S
r
1j = jp1; that C

r
1j = S

m
2j = jp1 + t1; that C

m
2j = jp1 + t1 + p2 � Sr2j = (j + 1)p1 + t1;

that Cr2j = (j+1)p1+ t1+ t2 = S
m
3j for j = 1; :::; n�1; and that Cr2n = np1+ t1+p2+ t2 = Sm3n

implies that there is no overlap between processing and transferring operations of job Jj for

j = 1; : : : ; n. Thus, Condition 1 holds.

Once job J1 is completed on machine M1, the robot moves this job to M2 during time

interval [p1; p1+ t1] and then return empty to M1 during time interval [p1+ t1; p1+ t1+ te1].

Then for j = 2; :::; n � 1 the robot moves job Jj from M1 to M2 during time interval

[jp1; jp1+ t1]; job Jj�1 fromM2 toM3 during time interval [jp1+ t1; jp1+ t1+ t2], and return

empty to M1 during time interval [jp1 + t1 + t2; jp1 + t1 + t2 +
P2

i=1 tei]. Then the robot

moves job Jn from M1 to M2 during time interval [np1; np1 + t1] and job Jn�1 from M2 to
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M3 during time interval [np1 + t1; np1 + t1 + t2]. Lastly, the robot return empty from M3 to

M2 during time interval [np1 + t1 + t2; np1 + t1 + t2 + te2] and moves job Jn from M2 to M3

during time interval [np1+ t1+ p2; np1+ t1+ p2+ t2]: The fact that p2 � t2+ te2 implies that
there is no overlap between the two last operations. Thus, Condition 2 holds.

The fact that Cm1j = S
r
1j = jp1 implies that job Jj is ready to move from M1 to M2 at

time Sr1j. Moreover, the fact that C
m
2j = jp1 + t1 + p2 � Sr2j = (j + 1)p1 + t1 follows from

the fact that p1 � p2 and implies that job Jj is ready to move from M2 to M3 at time Sr2j.

Thus, Condition 3 holds.

It is implied from the feasibility of schedule 1.1.1 that the completion time of job n on

M3 is at time Cm3n = np1 +
P2

i=1 ti + p2 + p3. The fact that this time matches lower bound

value in eq. (9) implies that this schedule is optimal for Case 1.1.1.

The analysis of subcase 1.1.2 In subcase 1.1.2, where p1 < p2 +
P2

i=1 ti +
P2

i=1 tei

and t2 + te2 = maxfp2; p3; t2 + te2g, we �rst update LB1 and provide a revised (tighter)
bound denoted by LB01. To do so, we consider two possible scenarios: (a) the robot does

not perform two consecutive moves from M1 to M2, and (b) the robot makes at least once

two consecutive moves from M1 to M2. Let us �rst consider case (a). In this case the robot

moves each job from M1 to M2 and then to M3 before moving to the next job, i.e., after

transferring job Jj (j = 1; :::; n) formM1 toM2, the robot waits besideM2 for the completion

of Jj on this machine and then move it to M3. It thus implies that the robot will start move

J1 from M1 to M2 not earlier than p1, and will start move Jj from M1 to M2 not earlier

than p1 + (j � 1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
for j = 2; :::; n. Thus, job Jn will not �nish its

processing on M3 earlier than at time

LB01(a) = p1+(n�1)
 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
+t1+p2+t2+p3 � np1+t1+p2+t2+p3 = LB1:

Consider next case (b) where the robot makes at least once two consecutive moves from M1

toM2 (and thus also at least once two consecutive moves fromM2 toM3). We further divide

case (b) into two subcases. The �rst (b1) where the last two consecutive moves from M2 to

M3 are done on jobs Jn�1 and Jn, and the second (b2) when the last two consecutive moves

from M2 to M3 are done on jobs Jx�1 and Jx where 2 � x � n � 1. In subcase (b1), jobs
Jn�1 and Jn are both in M2 not earlier than at time np1 + t1. Thus, the move of Jn�1 from

M2 to M3 cannot start before np1 + t1, which further implies that move Jn from M2 to M3
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cannot start before time np1 + t1+ t2 + te2. Thus, the makespan value is lower bounded by

LB01(b1) = np1 +

2X
i=1

ti + te2 + t2 + p3 � LB1 = np1 +
2X
i=1

ti + p2 + p3:

In subcase (b2), the fact that the last two consecutive moves from M2 to M3 are done on

jobs Jx�1 and Jx, implies that job Jj for j = x+ 1; : : : ; n is transferred from M1 to M2 and

then from M2 to M3 (i.e., the robot waits beside M2 for the completion of each job Jj for

j = x+ 1; : : : ; n). The earliest time in which jobs Jx�1 and Jx are both in M2 is at xp1 + t1,

and thus the move of Jx�1 from M2 to M3 will not start before this time. This further

implies that the move of Jx from M2 to M3 will not start before xp1 + t1 + t2 + te2, which

also implies that the move of Jx+1 fromM1 toM2 will not start before xp1+ t1+ t2+ te2+ t2
+
P2

i=1 tei. The fact that the robot waits beside M2 for the completion of each job Jj for

j = x + 1; : : : ; n further implies that the earliest time that the robot will be available for

moving job Jn from M1 to M2 is

Sr1n = xp1 +
2X
i=1

ti + te2 + t2 +
2X
i=1

tei + (n� x� 1)(
2X
i=1

ti +
2X
i=1

tei + p2):

Thus, a lower bound for makespan value in this case is

LB01(b2) = Sr1n +
2X
i=1

ti + p2 + p3 = xp1 + 2
2X
i=1

ti + te2 + t2 +

2X
i=1

tei + (n� x� 1)(
2X
i=1

ti +
2X
i=1

tei + p2) + p2 + p3:

Since p2 +
P2

i=1 ti +
P2

i=1 tei � p1 and x � 2, this value is lower bounded by

LB0001 (b2) = (n�1)p1+2
2X
i=1

ti+te2+t2+

2X
i=1

tei+p2+p3 � np1+
2X
i=1

ti+te2+t2+p3 = LB
000
1 (b1):

To conclude our analysis, we have that if scenario (a) is selected, then

Cmax � p1 + (n� 1)
 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
+ t1 + p2 + t2 + p3;

and if scenario (b) is selected, then Cmax � np1 +
P2

i=1 ti + te2 + t2 + p3 = LB
000
1 (b1). Thus,
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the makespan value will not be less then

min

(
3X
i=1

pi + (n� 1)
 
p2 +

2X
i=1

ti +

2X
i=1

tei

!
+

2X
i=1

ti; np1 +

2X
i=1

ti + te2 + t2 + p3

)
=

np1 +

2X
i=1

ti + p2 + p3 +min

(
(t2 + te2)� p2; (n� 1)(

2X
i=1

ti +

2X
i=1

tei + p2)� p1(n� 1)
)
;

and

LB01 = LB1 +min

(
(t2 + te2)� p2; (n� 1)

 
p2 � p1 +

2X
i=1

ti +

2X
i=1

tei

!)
. (79)

Below, we provide an optimal schedule which matches the lower bound value in (79) for

each of the following two di¤erent scenarios that can arise. The �rst (1.1.2(a)) is where

(t2 + te2) � p2 � (n � 1)(
P2

i=1 ti +
P2

i=1 tei + p2 � p1) and the second (1.1.2 (b)) is the
opposite.

For scenario 1.1.2(a), where (t2 + te2) � p2 � (n � 1)(
P2

i=1 ti +
P2

i=1 tei + p2 � p1), we
de�ne the following schedule (Schedule 1.1.2(a)):

Machine Schedule:

� Schedule job Jj on M1 during time interval [Sm1j ; C
m
1j ] = [(j � 1)p1; jp1] for j = 1; :::; n.

� Schedule job Jj onM2 during time interval [Sm2j ; C
m
2j ] = [jp1+t1; S

m
2j+p2] for j = 1; :::; n.

� Schedule job Jj on M3 during time interval [Sm3j ; C
m
3j ] = [(j + 1)p1 + t1 + t2; S

m
3j + p3]

for j = 1; :::; n� 1:

� Schedule job Jn on M3 during time interval [Sm3n; C
m
3n] = [np1+ t1+ te2+2t2; S

m
3n+ p3]:

Robot Schedule:

� Move job Jj from M1 to M2 during time interval [Sr1j; C
r
1j] = [jp1; jp1 + t1] for j =

1; :::; n.

� Move job Jj from M2 to M3 during time interval [Sr2j; C
r
2j] = [(j + 1)p1 + t1; S

r
2j + t2]

for j = 1; :::; n� 1.

� Move job Jn fromM2 toM3 during time interval [Sr2n; C
r
2n] = [np1+t1+t2+te2; S

r
2n+t2].

� Move the robot empty from M2 to M1 during time interval [p1 + t1; p1 + t1 + te1].
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� Move the robot empty from M3 to M1 during time interval [(j + 1)p1 + t1 + t2; (j +

1)p1 + t1 + t2 +
P2

i=1 tei] for j = 1; :::; n� 2.

� Move the robot empty fromM3 toM2 during time interval [np1+t1+t2; np1+t1+t2+te2]

Schedule 1.1.2(a) is illustrated in Figure 9 below for n = 4 jobs.

Figure 9: Schedule 1.1.2(a).

Lemma 9 Schedule 1.1.2(a) is an optimal schedule for Scenario 1.1.2(a).

Proof. We start by showing that schedule 1.1.2(a) is a feasible schedule. The fact

that Sm1;j+1 = Cm1j = jp1; that Sm2;j+1 = (j + 1)p1 + t1 � Cm2j = jp1 + t1 + p2; that Sm3j =

(j +1)p1+ t1+ t2 � Cm3;j�1 = jp1+ t1+ t2+ p3 for j = 1; :::; n� 1, and that Sm3n = np1+ t1+
te2 + 2t2 � Cm3;n�1 = np1 + t1 + t2 + p3 follows from Case 1 condition that p1 � maxfp2; p3g
and from the fact that te2 + t2 � p3. Thus, there is no overlap between two consecutive

processing operations on the same machine. Moreover, the fact that Cm1j = S
r
1j = jp1; that

Cr1j = S
m
2j = jp1 + t1; that C

m
2j = jp1 + t1 + p2 � Sr2j = (j + 1)p1 + t1 for j = 1; :::; n � 1;

that Cm2n = np1 + t1 + p2 < S
r
2n = np1 + t1 + t2 + te2; that C

r
2j = S

m
3j = (j + 1)p1 + t1 + t2 for

j = 1; :::; n� 1; and that Cr2n = Sm3n = np1 + t1 + 2t2 + te2, where the �rst inequality follows
from the fact that p1 � p2 and the second inequality follows from the fact that t2+ te2 > p2,
implies that there is no overlap transferring operations of job Jj for j = 1; : : : ; n. Thus,

Condition 1 holds.

Once job J1 is completed on machine M1, the robot moves this job to M2 during time

interval [p1; p1 + t1]. Then, the robot moves empty from M2 to M1 during time interval

[p1+t1; p1+t1+te1]. Then, the robot performs the following set of moves one after the other.

First, the robot moves job Jj+1 fromM1 toM2 during time interval [(j+1)p1; (j+1)p1+ t1],
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followed by the move jobs Jj fromM2 toM3 for j = 1; : : : ; n�1 is done during times interval
[(j+1)p1+ t1; (j+1)p1+

P2
i=1 ti], which then follows by a robot empty move fromM3 toM1

during times interval [(j+1)p1+
P2

i=1 ti; (j+1)p1+
P2

i=1 ti+
P2

i=1 tei] for j = 1; : : : ; n� 2.
Finally, the robot moves Jn from M1 to M2 during time interval [np1; np1 + t1], followed by

move Jn�1 from M2 to M3 during time interval [np1 + t1; np1 + t1 + t2]. This operations are

followed by an empty move from M3 to M2 during time interval [np1 + t1 + t2; np1 + t1 +

t2 + te2], which is followed by the last move of job Jn from M2 to M3 during time interval�
np1 +

P2
i=1 ti + te2; np1 +

P2
i=1 ti + te2 + t2

�
. Therefore, there is no overlap between robot

operations and they are all feasible. Thus, Condition 2 holds.

The fact that Cm1j = S
r
1j = jp1 for j = 1; :::; n implies that job Jj is ready to move from

M1 to M2 at time Sr1j. Moreover, the fact that C
m
2j = jp1 + t1 + p2 � Sr2j = (j + 1)p1 + t1

for j = 1; :::; n� 1, and that Cm2n = np1 + t1 + p2 � Sr2n = np1 + t1 + t2 + te2, where the �rst
inequality follows from the fact that p1 � p2 and the second inequality follows from the fact

that t2 + te2 > p2, implies that job Jj is ready to move from M2 to M3 at time Sr2j. Thus,

Condition 3 holds.

It is implied from the feasibility of schedule 1.1.2(a) that the completion time of job n

on M3 is at time Cm3n = np1 +
P2

i=1 ti + t2 + te2 + p3. The fact that this time matches the

lower bound in (eq. 79) when (t2 + te2)� p2 � (n� 1)(
P2

i=1 ti +
P2

i=1 tei + p2 � p1) implies
that this schedule is optimal for Scenario 1.1.2(a).

For scenario 1.1.2(b),where (t2 + te2) � p2 > (n � 1)(
P2

i=1 ti +
P2

i=1 tei + p2 � p1), we
de�ne the following schedule (Schedule 1.1.2(b)):

Machine Schedule:

� Schedule job Jj on M1 during time interval [Sm1j ; C
m
1j ] = [(j � 1)p1; jp1] for j = 1; :::; n.

� Schedule job Jj on M2 during time interval [Sm2j ; C
m
2j ] =

[p1 + t1 + (j � 1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
; Sm2j + p2] for j = 1; :::; n.

� Schedule job Jj on M3 during time interval [Sm3j ; C
m
3j ] =

[p1 + t1 + (j � 1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+ p2 + t2; S

m
3j + p3] for j = 1; :::; n.

Robot Schedule:

� Move job Jj from M1 to M2 during time interval [Sr1j; C
r
1j] =

[p1 + (j � 1)
�P2

i=1 ti +
P2

i=1 tei + p2
�
; Sr1j + t1] for j = 1; :::; n.

� Move job Jj from M2 to M3 during time interval [Sr2j; C
r
2j] =

[p1 + t1 + (j � 1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+p2; S

r
2j + t2] for j = 1; :::; n.
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� Move the robot empty from M3 to M1 during time interval

[p1+t1+(j�1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+p2+t2; p1+t1+(j�1)

�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+

p2 + t2 +
P2

i=1 tei] for j = 1; :::; n� 1:

Schedule 1.1.2(b) is illustrated in Figure 10 below for n = 3 jobs with empty return moves

shown in bold.

Figure 10: Schedule 1.1.2(b).

Lemma 10 Schedule 1.1.2(b) is an optimal schedule for Scenario 1.1.2(b).

Proof. We start by showing that schedule 1.1.2(b) is a feasible schedule. The fact that
Sm1;j+1 = C

m
1j = jp1; that

Sm2;j+1 = p1+t1+j

 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
> Cm2j = p1+t1+(j�1)

 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
+p2;

and that

Sm3;j+1 = p1 + t1 + j

 
p2 +

2X
i=1

ti +

2X
i=1

tei

!
+ p2 + t2 >

Cm3j = p1 + t1 + (j � 1)
 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
+ p2 + t2 + p3;

where the last inequality follows from the fact that p2+
P2

i=1 ti+
P2

i=1 tei > p1 � p3, implies
that there are no overlap between processing of jobs in any machine. Moreover, the fact

that Cm1j = jp1 � Sr1j = p1 + (j � 1)
�P2

i=1 ti +
P2

i=1 tei + p2
�
; that Cr1j = S

m
2j = p1 + (j �

1)
�P2

i=1 ti +
P2

i=1 tei + p2
�
+t1; that Cm2j = S

r
2j = p1+t1+(j�1)

�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+

p2; and that Cr2j = S
m
3j = p1 + t1 + (j � 1)

�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+ p2 + t2, implies that
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there is no overlap between transferring operations of job Jj for j = 1; : : : n. Thus, Condition

1 holds.

Once job Jj (j = 1; :::; n) is completed on machine M1, the robot perform move Jj from

M1 to M2 during time interval

[p1 + (j � 1)
 

2X
i=1

ti +

2X
i=1

tei + p2

!
; p1 + (j � 1)

 
2X
i=1

ti +

2X
i=1

tei + p2

!
+ t1]

followed by a move Jj from M2 to M3 during time interval

[p1+ t1+(j�1)
 
p2 +

2X
i=1

ti +

2X
i=1

tei

!
+p2; p1+ t1+(j�1)

 
p2 +

2X
i=1

ti +

2X
i=1

tei

!
+p2+ t2]

and for j = 1; :::; n� 1 this move is followed by an empty move of the robot from M3 to M1

during time interval

[p1 + t1 + (j � 1)
 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
+ p2 + t2;

p1 + t1 + (j � 1)
 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
+ p2 + t2 +

2X
i=1

tei]:

Therefore, there is no overlap between robot operations and Condition 2 holds.

The fact that Cm1j = jp1 � Sr1j = p1 + (j � 1)
�P2

i=1 ti +
P2

i=1 tei + p2
�
implies that job

Jj is ready to move from M1 to M2 at time Sr1j. Moreover, the fact that C
m
2j = Sr2j =

p1+ t1+ (j � 1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+ p2 implies that job Jj is ready to move from M2

to M3 at time Sr2j. Thus, Condition 3 holds.

It is implied from the feasibility of schedule 1.1.2(b) that the completion time of job n

on machine M3 is at time

Cm3n = p1 + t1 + (n� 1)
 
p2 +

2X
i=1

ti +

2X
i=1

tei

!
+ p2 + t2 + p3:

The fact that this time matches the lower bound in (eq. 79) when (n�1)(
P2

i=1 ti+
P2

i=1 tei+

p2� p1) < (t2+ te2)� p2 implies that this schedule 1.1.2(b) is optimal for Scenario 1.1.2(b).

The analysis of subcase 1.1.3 Analyses of subcase 1.1.3, where p1 < p2 +
P2

i=1 ti +P2
i=1 tei and p3 = maxfp2; p3; t2 + te2g is presented in subsection 4.4.1.
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9.1.2 The analysis of subcase 1.2

For subcase 1.2, where p1 � p2+
P2

i=1 ti+
P2

i=1 tei, we de�ne the following schedule (Schedule

1.2):

Machine Schedule:

� Schedule job Jj on M1 during time interval [Sm1j ; C
m
1j ] = [(j � 1)p1; jp1] for j = 1; :::; n.

� Schedule job Jj on M2 during time interval [Sm2j ; C
m
2j ] = [jp1 + t1; jp1 + t1 + p2] for

j = 1; :::; n.

� Schedule job Jj on M3 during time interval [Sm3j ; C
m
3j ] = [jp1 + p2 +

P2
i=1 ti; jp1 + p2 +

p3 +
P2

i=1 ti] for j = 1; :::; n.

Robot Schedule:

� Move job Jj from M1 to M2 during time interval [Sr1j; C
r
1j] = [jp1; jp1 + t1] for j =

1; :::; n.

� Move job Jj from M2 to M3 during time interval [Sr2j; C
r
2j] = [jp1 + t1 + p2; jp1 + p2 +P2

i=1 ti] for j = 1; :::; n.

� Move the robot empty from M3 to M1 during time interval [jp1 + p2 +
P2

i=1 ti; jp1 +

p2 +
P2

i=1 ti +
P2

i=1 tei] for j = 1; :::; n� 1:

Schedule 1.2 is illustrated in Figure 11 below for n = 4 jobs with empty return moves

shown in bold.

Figure 11: Schedule 1.2.

Lemma 11 Schedule 1.2 is an optimal schedule for subcase 1.2.
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Proof. We start by showing that Schedule 1.2 is a feasible schedule. The fact that
Sm1;j+1 = C

m
1j = jp1; that S

m
2;j+1 = (j + 1)p1 + t1 > C

m
2j = jp1 + t1 + p2; and that

Sm3;j+1 = (j + 1)p1 + p2 +
2X
i=1

ti > C
m
3j = jp1 +

2X
i=1

ti + p2 + p3;

where the two last inequalities follow from the fact that for Case 1 we have that both

p1 > p2 and p1 > p3, implying that there is no overlap between processing operations on the

same machine. Moreover, the fact that Cm1j = Sr1j = jp1; that Cr1j = Sm2j = jp1 + t1; that

Cm2j = Sr2j = jp1 + t1 + p2; and that Cr2j = Sm3j = jp1 + p2 +
P2

i=1 ti, implies that there is

no overlap between processing and transferring operations of job Jj for j = 1; : : : n. Thus,

Condition 1 holds.

Once job Jj is completed on machine M1, the robot moves this job to M2 during time

interval [jp1; jp1 + t1] and then waits beside M1 for p2 units of time. After that the robot

transfers job Jj from machineM2 to machineM3 during time interval [jp1+t1+p2; jp1+p2+P2
i=1 ti]. At the end of this operation the robot moves empty from M3 to M1, so it arrives

to machineM1 at time point jp1+p2+
P2

i=1 ti+
P2

i=1 tei. The fact that jp1+p2+
P2

i=1 ti+P2
i=1 tei � Sr1;j+1 = (j+1)p1 follows from the case condition that p1 � p2+

P2
i=1 ti+

P2
i=1 tei,

and implies that there is no overlap between robot operations. Thus, Condition 2 holds.

The fact that Cm1j = S
r
1j = jp1 implies that job Jj is ready to move from M1 to M2 at

time Sr1j. Moreover, the fact that C
m
2j = S

r
2j = jp1 + t1 + p2 implies that job Jj is ready to

move from M2 to M3 at time Sr2j. Thus, Condition 3 holds.

It is implied from the feasibility of Schedule 1.1 that the completion time of job n on

machine M3 is at time Cm3n = np1 + p2 + p3 +
P2

i=1 ti. The fact that this time matches the

lower bound value in eq. (9) implies that this Schedule 1.2 is optimal for subcase 1.2.
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9.2 Optimal schedules for Case 2

For this case, where p2 = maxfp1; p2; p3;
P2

i=1 ti +
P2

i=1 teig (i.e., condition in (6) for f = 2
holds), we suggest the following schedule (Schedule 2):

Machine Schedule:

� Schedule job Jj on M1 during time interval [Sm1j ; C
m
1j ] = [(j � 1)p1; jp1] for j = 1; :::; n.

� Schedule job Jj onM2 during time interval [Sm2j ; C
m
2j ] = [p1+ t1+(j�1)p2; p1+ t1+jp2]

for j = 1; :::; n.

� Schedule job Jj on M3 during time interval [Sm3j ; C
m
3j ] = [p1 + t1 + jp2 + t2; p1 + t1 +

jp2 + t2 + p3] for j = 1; :::; n.

Robot Schedule:

� Move job Jj from M1 to M2 during time interval [Sr1j; C
r
1j] = [p1 + (j � 1)p2; p1 + (j �

1)p2 + t1] for j = 1; :::; n.

� Move job Jj fromM2 toM3 during time interval [Sr2j; C
r
2j] = [p1+jp2+t1; p1+jp2+t1+t2]

for j = 1; :::; n.

� Move the robot empty from M2 to M1 during time interval [p1 + t1; p1 + t1 + te1]:

� Move the robot empty fromM3 toM1 during time interval [p1+ t1+ t2+(j�1)p2; p1+
t1 + t2 + (j � 1)p2 + te2 + te1] for j = 2; :::; n� 1:

� Move the robot empty fromM3 toM2 during time interval [p1+ t1+(n�1)p2+ t2; p1+
t1 + (n� 1)p2 + t2 + te2]:

Schedule 2 is illustrated in Figure 12 below for n = 4 with empty return moves shown in

bold.
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Figure 12: Schedule 2.

Lemma 12 Schedule 2 is an optimal schedule for Case 2.

Proof. We start by showing that Schedule 2 is a feasible schedule. The fact that

Sm1;j+1 = C
m
1j = jp1; that S

m
2;j+1 = C

m
2j = p1+t1+jp2; and that S

m
3;j+1 = p1+(j+1)p2+t1+t2 �

Cm3j = p1 + jp2 + t1 + t2 + p3, where the last inequality follows from the fact that p2 � p3,
implies that there is no overlap between the processing of di¤erent jobs on each machine.

Moreover, the fact that Cm1j = jp1 � Sr1j = p1+(j�1)p2; that Cr1j = Sm2j = p1+(j�1)p2+ t1;
that Cm2j = Sr2j = p1 + jp2 + t1 + t2; and that Cr2j = Sm3j = p1 + t1 + jp2 + t2, where the

�rst inequality follows from the fact that p2 � p1, implies that there is no overlap between
processing and transferring operations of job Jj for j = 1; :::; n. Thus, Condition 1 holds.

Once job J1 is completed on M1, the robot moves this job to M2 during time interval

[p1; p1+ t1] and returns empty toM1 during time interval [p1+ t1; p1+ t1+ te1]. Then, for j =

2; :::; n, the robot moves job Jj fromM1 toM2 during time period [p1+(j�1)p2; p1+(j�1)p2+
t1]; job Jj�1 fromM2 toM3 during time interval [p1+(j�1)p2+t1; p1+(j�1)p2+t1+t2] and
returns empty toM1 during time interval [p1+t1+t2+(j�1)p2; p1+t1+t2+(j�1)p2+te2+te1].
The fact that p1+ t1+ te1 � p1+p2, and that Cr1j = Sr2;j�1 = p1+(j� 1)p2+ t1, implies that
there is no overlap between those operations. Moreover, the fact that p1 + (j � 1)p2 + t1 +
t2+ te2+ te1 � p1+ jp2 implies that the robot will be ready to move job Jj+1 fromM1 toM2

at time p1+ jp2. Lastly, after downloading job Jn�1 at M3 at time p1+(n� 1)p2+ t1+ t2, it
returns empty toM2 during time interval [p1+(n�1)p2+ t1+ t2; p1+(n�1)p2+ t1+ t2+ te2]
and transfers job Jn from M2 to M3 during time interval [p1 + np2 + t1; p1 + np2 + t1 + t2].

The fact that p1 + (n� 1)p2 + t1 + t2 + te2 � p1 + np2 + t1 completes our proof that there is
no overlap between robot operations and they are all feasible. Thus, Condition 2 holds.

The fact that Cm1j = jp1 � Sr1j = p1 + (j � 1)p2 follows from the fact that p2 � p1, and
implies that job Jj is ready to move from M1 to M2 at time Sr1j = p1 + (j � 1)p2. Moreover,
the fact that Cm2j = p1 + jp2 + t1 = S

r
2j implies that job Jj is ready to move from M2 to M3

at time Sr2j and thus Condition 3 holds as well and Schedule 2 is feasible.

It is implied from the feasibility of Schedule 2 that the completion time of job n on M3

is at time Cm3n = p1 + np2 + t1 + t2 + p3. The fact that this time matches the lower bound in

(3) for f = 2 implies that this Schedule 2 is optimal for Case 2.

9.3 The analysis of Case 3

We further divide this case, where p3 = maxfp1; p2; p3;
P2

i=1 ti +
P2

i=1 teig, to two subcases.
Subcase 3.1 is where p3 < p2+

P2
i=1 ti+

P2
i=1 tei, and subcase 3.2 is the opposite case. The
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analysis of these two subcases appears below. Note that Case 3 presents more subcases than

presented in section 4.4, in order to provide simpler proofs of the optimally of the schedule.

9.3.1 The analysis of subcase 3.1

We further divide this subcase, where p3 < p2 +
P2

i=1 ti +
P2

i=1 tei, to three subcases. The

�rst subcase 3.1.1 is where p2 = max fp1; t1 + te1; p2g, the second subcase 3.1.2 is where
p1 = max fp1; t1 + te1; p2g, and the last subcase is where t1 + te1 = max fp1; t1 + te1; p2g.

The analysis of subcase 3.1.1 For this subcase, where p3 < p2+
P2

i=1 ti+
P2

i=1 tei and

p2 =

max fp1; t1 + te1; p2g, we further partition this subcase to two subcases. The �rst subcase
3.1.1.1 is where p2 �

P2
i=1 ti +

P2
i=1 tei and the second subcase 3.1.1.2 is the opposite case.

Optimal schedule for subcase 3.1.1.1 For subcase 3.1.1.1, where p3 < p2+
P2

i=1 ti+P2
i=1 tei and p2 = max fp1; t1 + te1; p2g and p2 �

P2
i=1 ti +

P2
i=1 tei, we de�ne the following

schedule (Schedule 3.1.1.1):

Machine Schedule:

� Schedule job Jj on M1 during time interval [Sm1j ; C
m
1j ] = [(j � 1)p1; jp1] for j = 1; :::; n.

� Schedule job Jj onM2 during time interval [Sm2j ; C
m
2j ] = [p1+ t1+(j�1)p2; p1+ t1+jp2]

for j = 1; 2; :::; n.

� Schedule job Jj onM3 during time interval [Sm3j ; C
m
3j ] = [p1+ t1+p2+ t2+(j�1)p3; p1+

t1 + p2 + t2 + jp3] for j = 1; :::; n.

Robot Schedule:

� Move job Jj from M1 to M2 during time interval [Sr1j; C
r
1j] = [p1 + (j � 1)p2; p1 + (j �

1)p2 + t1] for j = 1; :::; n.

� Move job Jj fromM2 toM3 during time interval [Sr2j; C
r
2j] = [p1+jp2+t1; p1+jp2+t1+t2]

for j = 1; :::; n.

� Move the robot empty from M2 to M1 during time interval [p1 + t1; p1 + t1 + te1].

� Move the robot empty fromM3 toM1 during time interval [p1+(j�1)p2+ t1+ t2; p1+
(j � 1)p2 + t1 + t2 +

P2
i=1 tei] for j = 2; :::; n� 1.
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� Move the robot empty fromM3 toM2 during time interval [p1+(n�1)p2+ t1+ t2; p1+
(n� 1)p2 + t1 + t2 + te2].

Schedule 3.1.1.1 is illustrated in Figure 13 below for n = 3 with empty return moves

shown in bold.

Figure 13: Schedule 3.1.1.1.

Lemma 13 Schedule 3.1.1.1 is an optimal schedule for subcase 3.1.1.1.

Proof. We start by showing that Schedule 3.1.1.1 is a feasible schedule. The fact

that Sm1;j+1 = Cm1j = jp1; that Sm2;j+1 = Cm2j = p1 + t1 + jp2; and that Sm3;j+1 = Cm3j =

p1 + t1 + p2 + t2 + jp3, implies that there is no overlap between the processing of di¤erent

jobs on each of the machines. Moreover, the fact that Cm1j = jp1 � Sr1j = p1 + (j � 1)p2;
that Cr1j = Sm2j = p1 + (j � 1)p2 + t1; that Cm2j = Sr2j = p1 + jp2 + t1; and that Cr2j =

p1+ jp2+ t1+ t2 � Sm3j = p1+ t1+p2+ t2+(j�1)p3, implies that there is no overlap between
processing and transferring operations of job Jj for j = 1; :::; n. Thus, Condition 1 holds.

Once job J1 is completed on M1, the robot moves this job to M2 during time interval

[p1; p1+ t1] and returns empty toM1 during time interval [p1+ t1; p1+ t1+ te1]. Then, for j =

2; :::; n, the robot moves job Jj fromM1 toM2 during time period [p1+(j�1)p2; p1+(j�1)p2+
t1]; job Jj�1 fromM2 toM3 during time interval [p1+(j�1)p2+t1; p1+(j�1)p2+t1+t2], and
returns empty toM1 during time interval [p1+t1+t2+(j�1)p2; p1+t1+t2+(j�1)p2+te2+te1].
The fact that p1+ t1+ te1 � p1+ p2, and that Cr1j = Sr2j�1 = p1+ (j � 1)p2+ t1 implies that
there is no overlap between those operations. Moreover, the fact that p1 + (j � 1)p2 + t1 +
t2+ te2+ te1 � p1+jp2, implies that the robot will be ready to move job Jj+1 fromM1 toM2

at time p1+ jp2. Lastly, after downloading job Jn�1 at M3 at time p1+(n� 1)p2+ t1+ t2, it
returns empty toM2 during time interval [p1+(n�1)p2+ t1+ t2; p1+(n�1)p2+ t1+ t2+ te2]
and transfers job Jn from M2 to M3 during time interval [p1 + np2 + t1; p1 + np2 + t1 + t2].
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The fact that p1 + (n� 1)p2 + t1 + t2 + te2 � p1 + np2 + t1 completes our proof that there is
no overlap between robot operations and they are all feasible. Thus, Condition 2 holds.

The fact that Cm1j = jp1 � Sr1j = p1 + (j � 1)p2 follows from the fact that p2 � p1 and
implies that job Jj is ready to move from M1 to M2 at time Sr1j. Moreover, the fact that

Cm2j = p1 + jp2 + t1 = S
r
2j implies that job Jj is ready to move from M2 to M3 at time Sr2j.

Thus, Condition 3 holds as well and Schedule 3.1.1.1 is feasible.

It is implied from the feasibility of schedule 3.1.1.1 that the completion time of job n on

M3 is at time Cm3n = p1+ t1+ p2+ t2+np3. The fact that this time matches the lower bound

in (20) implies that this schedule 3.1.1.1 is optimal for subcase 3.1.1.1.

Optimal schedule for subcase 3.1.1.2 For subcase 3.1.1.2, where p3 < p2+
P2

i=1 ti+P2
i=1 tei and p2 = max fp1; t1 + te1; p2g and p2 <

P2
i=1 ti +

P2
i=1 tei, we de�ne the following

schedule (Schedule 3.1.1.2):

Machine Schedule:

� Schedule job Jj on M1 during time interval [Sm1j ; C
m
1j ] = [(j � 1)p1; jp1] for j = 1; :::; n.

� Schedule job J1 on M2 during time interval [Sm21; C
m
21] = [p1 + t1; p1 + t1 + p2]:

� Schedule job Jj on M2 during time interval [Sm2j ; C
m
2j ] = [p1 + t1 + p2 + (j � 2)�P2

i=1 ti +
P2

i=1 tei
�
; p1 + t1 + 2p2 + (j � 2)

�P2
i=1 ti +

P2
i=1 tei

�
] for j = 2; :::; n.

� Schedule job Jj onM3 during time interval [Sm3j ; C
m
3j ] = [p1+ t1+p2+ t2+(j�1)p3; p1+

t1 + p2 + t2 + jp3] for j = 1; :::; n.

Robot Schedule:

� Move job J1 from M1 to M2 during time interval [Sr11; C
r
11] = [p1; p1 + t1].

� Move job Jj from M1 to M2 during time interval [Sr1j; C
r
1j] = [p1 + p2 + (j � 2)�P2

i=1 ti +
P2

i=1 tei
�
;p1 + p2 + (j � 2)

�P2
i=1 ti +

P2
i=1 tei

�
+ t1] for j = 2; :::; n.

� Move job Jj from M2 to M3 during time interval [Sr2j; C
r
2j] = [p1 + t1 + p2+

(j�1)
�P2

i=1 ti +
P2

i=1 tei
�
; p1+t1+p2+(j�1)

�P2
i=1 ti +

P2
i=1 tei

�
+t2] for j = 1; :::; n.

� Move the robot empty from M2 to M1 during time interval [p1 + t1; p1 + t1 + te1].

� Move the robot empty from M3 to M1 during time interval [p1 + p2+

(j � 2)
�P2

i=1 ti +
P2

i=1 tei
�
+ t1 + t2; p1 + p2 + (j � 1)

�P2
i=1 ti +

P2
i=1 tei

�
] for j =

2; :::; n� 1.
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� Move the robot empty from M3 to M2 during time interval [p1 + p2+

(n�2)
�P2

i=1 ti +
P2

i=1 tei
�
+t1+t2; p1+p2+(n�2)

�P2
i=1 ti +

P2
i=1 tei

�
+t1+t2+te2].

Schedule 3.1.1.2 is illustrated in Figure 14 below for n = 3 with empty return moves

shown in bold.

Figure 14: Schedule 3.1.1.2.

Lemma 14 Schedule 3.1.1.2 is an optimal schedule for subcase 3.1.1.2.

Proof. We start by showing that Schedule 3.1.1.2 is a feasible schedule. The fact that
Sm1;j+1 = C

m
1j = jp1; that S

m
22 = C

m
21 = p1 + t1 + p2; that

Sm2;j+1 = p1+t1+p2+(j�1)
 

2X
i=1

ti +
2X
i=1

tei

!
> Cm2j = p1+t1+2p2+(j�2)

 
2X
i=1

ti +
2X
i=1

tei

!

for j = 2; ::::; n � 1; and that Sm3;j+1 = Cm3j = p1 + t1 + p2 + t2 + jp3, implies that there is

no overlap between the processing of di¤erent jobs on each of the machines (the inequality

follows from the fact that p2 <
P2

i=1 ti +
P2

i=1 tei). Moreover, the fact that C
m
11 = S

r
11 = p1;

that Cm1j = jp1 < S
r
1j = p1+p2+(j�2)

�P2
i=1 ti +

P2
i=1 tei

�
(the inequality follows from the

fact p1 � p2 <
P2

i=1 ti+
P2

i=1 tei); that C
r
1j = S

m
2j = p1+p2+(j�2)

�P2
i=1 ti +

P2
i=1 tei

�
+t1;

that Cm21 = S
r
21 = p1 + t1 + p2; that

Cm2j = p1+t1+2p2+(j�2)
 

2X
i=1

ti +
2X
i=1

tei

!
< Sr2j = p1+t1+p2+(j�1)

 
2X
i=1

ti +
2X
i=1

tei

!

(the inequality follows from the fact p2 <
P2

i=1 ti +
P2

i=1 tei); and that

Cr2j = p1 + t1 + p2 + (j � 1)
 

2X
i=1

ti +
2X
i=1

tei

!
+ t2 � Sm3j = p1 + t1 + p2 + t2 + (j � 1)p3
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(the inequality follows from the fact p3 �
P2

i=1 ti+
P2

i=1 tei) implies that there is no overlap

between processing and transferring operations of job Jj for j = 1; :::; n. Thus, Condition 1

holds.

Once job J1 is completed on M1, the robot moves this job to M2 during time interval

[p1; p1 + t1] and returns empty to M1 during time interval [p1 + t1; p1 + t1 + te1]. Then, for

j = 2; :::; n, the robot moves job Jj from M1 to M2 during time period

[p1 + p2 + (j � 2)
 

2X
i=1

ti +

2X
i=1

tei

!
; p1 + p2 + (j � 2)

 
2X
i=1

ti +

2X
i=1

tei

!
+ t1];

job Jj�1 from M2 to M3 during time interval

[p1 + t1 + p2 + (j � 2)
 

2X
i=1

ti +
2X
i=1

tei

!
; p1 + t1 + p2 + (j � 2)

 
2X
i=1

ti +
2X
i=1

tei

!
+ t2];

and returns empty to M1 during time interval

[p1+p2+(j�2)
 

2X
i=1

ti +
2X
i=1

tei

!
+t1+t2; p1+p2+(j�2)

 
2X
i=1

ti +
2X
i=1

tei

!
+t1+t2+

2X
i=1

tei]:

The fact that p1+t1+te1 � p1+p2, and thatCr1j = Sr2;j�1 = p1+p2+(j�2)
�P2

i=1 ti +
P2

i=1 tei
�

+t1 implies that there is no overlap between those operations. Moreover, the fact that the

robot returns to machine M1 at time p1 + p2 + (j � 1)
�P2

i=1 ti +
P2

i=1 tei
�
implies that the

robot will be ready to move job Jj from M1 to M2 at that time. Lastly, after downloading

job Jn�1 at M3 at time p1 + t1 + p2 + (n� 2)
�P2

i=1 ti +
P2

i=1 tei
�
+ t2, it returns empty to

M2 during time interval

[p1+p2+(n�2)
 

2X
i=1

ti +

2X
i=1

tei

!
+ t1+ t2; p1+p2+(n�2)

 
2X
i=1

ti +

2X
i=1

tei

!
+ t1+ t2+ te2]

and transfer job Jn from M2 to M3 during time interval

[p1 + t1 + p2 + (n� 1)
 

2X
i=1

ti +

2X
i=1

tei

!
; p1 + t1 + p2 + (n� 1)

 
2X
i=1

ti +

2X
i=1

tei

!
+ t2]:

The fact that

p1+ p2+ (n� 2)
 

2X
i=1

ti +

2X
i=1

tei

!
+ t1+ t2+ te2 < p1+ t1+ p2+ (n� 1)

 
2X
i=1

ti +

2X
i=1

tei

!
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completes our proof that there is no overlap between robot operations and they are all

feasible. Thus, Condition 2 holds.

The fact that Cm11 = S
r
11 = p1 and that C

m
1j = jp1 � Sr1j =

p1+ p2+(j� 2)
�P2

i=1 ti +
P2

i=1 tei
�
follows from the fact that p1 � p2 <

P2
i=1 ti+

P2
i=1 tei

and implies that job Jj is ready to move fromM1 toM2 at time Sr1j for j = 1; :::; n. Moreover,

the fact that

Cm2j = p1+t1+2p2+(j�2)
 

2X
i=1

ti +

2X
i=1

tei

!
< Sr2j = p1+t1+p2+(j�1)

 
2X
i=1

ti +

2X
i=1

tei

!

follows from the fact that p2 <
P2

i=1 ti +
P2

i=1 tei and implies that job Jj is ready to from

M2 to M3 at time Sr2j and thus Condition 3 holds as well and Schedule 3.1.1.2 is feasible.

It is implied from the feasibility of schedule 3.1.1.2 that the completion time of job n on

M3 is at time Cm3n = p1+ t1+ p2+ t2+np3. The fact that this time matches the lower bound

in (20) implies that this schedule 3.1.1.2 is optimal for subcase 3.1.1.2.

The analysis of subcase 3.1.2 In subcase 3.1.2, where p3 < p2 +
P2

i=1 ti +
P2

i=1 tei and

p1 = max fp1; t1 + te1; p2g, we �rst update LB3 and provide a revised (tighter) bound denoted
by LB00003 . We consider two possible scenarios: (a) the robot does not perform two consecutive

moves from M1 to M2, and (b) at least once the robot makes two consecutive moves from

M1 to M2. Let us �rst consider case (a). In this case the robot moves each job from

M1 to M2 and then to M3 before moving to the next job, i.e., after transferring job Jj
(j = 1; :::; n) from M1 to M2, the robot waits beside M2 for the completion of Jj on this

machine and then moves it toM3. This thus implies that the robot will start to move J1 from

M1 to M2 not earlier than p1, and will start to move Jj from M1 to M2 not earlier than

p1 + (j � 1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
for j = 2; :::; n. Thus, job Jn will �nish its processing

on M3 not earlier than at time

LB0003 (a) = p1 + (n� 1)
 
p2 +

2X
i=1

ti +

2X
i=1

tei

!
+ t1 + p2 + t2 + p3 =

LB3 + (n� 1)
 
p2 +

2X
i=1

ti +
2X
i=1

tei � p3

!
� LB3:

Consider the next case (b), where at least once the robot makes two consecutive moves from

M1 to M2. We further divide case (b) to two subcases. The �rst (b1), where the �rst two

consecutive moves fromM1 toM2 are done on jobs J1 and J2, and the second (b2), where the

�rst two consecutive moves fromM1 toM2 are done on jobs Jx and Jx+1 with 2 � x � n�1.
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In subcase (b1), the robot will start moving J2 from M1 to M2 not earlier than at time 2p1,

which further implies that the move of J1 fromM2 toM3 will not start before 2p1+t1. Thus,

job J1 will not start its processing on M3 before 2p1 + t1 + t2, and the makespan value will

be not less than

LB00003 (b1) = 2p1 + t1 + t2 + np3 = LB3 + (p1 � p2) � LB3:

In subcase (b2), the move of Jx�1 from M2 to M3 will not �nish before time p1 + (x �
2)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+ t1 + p2 + t2. Thus, the move of Jx from M1 to M2 will not

start before p1 + (x � 1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
, which further implies that the move of

Jx+1 from M1 to M2 will not start before

max

(
p1 + (x� 1)

 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
+ t1 + te1; (x+ 1)p1

)
:

This further implies that the move of Jx from M2 to M3 cannot start before

max

(
p1 + (x� 1)

 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
+ t1 + te1; (x+ 1)p1

)
+ t1;

which is the earliest time that the move of Jx+1 from M1 to M2 is completed and before

p1+(x� 1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+ t1+ p2 which is the earliest time job Jx is completed

on M2: Thus, the move of Jx from M2 to M3 cannot start before

p1 +maxfmaxf(x� 1)
 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
+ t1 + te1; xp1g+ t1;

(x� 1)
 
p2 +

2X
i=1

ti +

2X
i=1

tei

!
+ t1 + p2g

= p1 +maxf(x� 1)
 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
+ t1 +maxft1 + te1; p2g; xp1 + t1g

and the makespan value in this case is lower bounded by
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LB00003 (b2) = p1 +maxf(x� 1)
 
p2 +

2X
i=1

ti +

2X
i=1

tei

!
+ t1 +maxft1 + te1; p2g; xp1 + t1g

+ t2 + (n� x+ 1)p3 � LB3:

Let x� be the x value that minimizes LB00003 (b2) (note that x
� can be easily determined in

O(n) time) and let LB00003 (b2(x
�)) = LB3 +�(x

�). If scenario (a) is selected, then

Cmax � p1 + (n� 1)
 
p2 +

2X
i=1

ti +

2X
i=1

tei

!
+ t1 + p2 + t2 + p3;

and if scenario (b) is selected, then Cmax � minfLB00003 (b1); LB00003 (b2)g. Thus, the makespan
value will not be less than

LB00003 = LB3 +min
�
(n� 1)

�P2
i=1 ti +

P2
i=1 tei + p2 � p3

�
; p1 � p2;�(x�)

	
. (80)

Below, we provide an optimal schedule that matches the lower bound value in (80) for

each of the following three scenarios that can arise. The �rst subcase 3.1.2.1 is where

(n� 1)(
P2

i=1 ti+
P2

i=1 tei+ p2� p3) is minimum, the second subcase 3.1.2.2 is where p1� p2
is minimum, and third subcase 3.1.2.3 is where �(x�) is minimum out, of the three terms in

(80).

Optimal schedule for subcase 3.1.2.1 For subcase 3.1.2.1, where p3 < p2+
P2

i=1 ti+P2
i=1 tei and p1 = max fp1; t1 + te1; p2g and

min
�
(n� 1)

�P2
i=1 ti +

P2
i=1 tei + p2 � p3

�
; p1 � p2;�(x�)

	
= (n�1)(

2X
i=1

ti+
2X
i=1

tei+p2�p3);

we de�ne the following schedule (Schedule 3.1.2.1):

Machine Schedule:

� Schedule job Jj on M1 during time interval [Sm1j ; C
m
1j ] = [(j � 1)p1; jp1] for j = 1; :::; n.

� Schedule job Jj onM2 during time interval [Sm2j ; C
m
2j ] = [p1+ t1+(j� 1)(p2+

P2
i=1 ti+P2

i=1 tei); S
m
2j + p2] for j = 1; :::; n.

� Schedule job Jj onM3 during time interval [Sm3j ; C
m
3j ] = [

P2
i=1 pi+

P2
i=1 ti+(j�1)(p2+P2

i=1 ti +
P2

i=1 tei); S
m
3j + p3] for j = 1; :::; n.

140

gzilberman
Highlight



Robot Schedule:

� Move job Jj fromM1 toM2 during time interval [Sr1j; C
r
1j] = [p1+(j�1)(p2+

P2
i=1 ti+P2

i=1 tei); S
r
1j + t1] for j = 1; :::; n.

� Move job Jj fromM2 toM3 during time interval [Sr2j; C
r
2j] = [

P2
i=1 pi+ t1+(j�1)(p2+P2

i=1 ti +
P2

i=1 tei); S
r
2j + t2] for j = 1; :::; n.

� Move the robot empty from M3 to M1 during time interval [
P2

i=1 pi +
P2

i=1 ti + (j �
1)(p2+

P2
i=1 ti+

P2
i=1 tei);

P2
i=1 pi+

P2
i=1 ti+(j�1)(p2+

P2
i=1 ti+

P2
i=1 tei)+

P2
i=1 tei]

for j = 1; :::; n� 1:

Schedule 3.1.2.1 is illustrated in Figure 15 below for n = 4 with empty return moves

shown in bold.

Figure 15: Schedule 3.1.2.1.

Lemma 15 Schedule 3.1.2.1 is an optimal schedule for subcase 3.1.2.1.

Proof. We start by showing that schedule 3.1.2.1 is a feasible schedule. The fact that
Sm1;j+1 = C

m
1j = jp1; that

Sm2;j+1 = p1 + t1 + j(p2 +

2X
i=1

ti +

2X
i=1

tei) > C
m
2j = p1 + t1 + (j � 1)(p2 +

2X
i=1

ti +

2X
i=1

tei) + p2;

and that

Sm3;j+1 =

2X
i=1

pi +

2X
i=1

ti + j(p2 +

2X
i=1

ti +

2X
i=1

tei) > C
m
3j =

2X
i=1

pi +

2X
i=1

ti + (j � 1)(p2 +
2X
i=1

ti +

2X
i=1

tei) + p3;
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implies that there are no overlaps between processing of jobs in any machine. Moreover, the

fact that Cm1j = jp1 � Sr1j = p1+(j� 1)(p2+
P2

i=1 ti+
P2

i=1 tei); that C
r
1j = S

m
2j = p1+(j�

1)(p2+
P2

i=1 ti+
P2

i=1 tei)+t1; that C
m
2j = S

r
2j =

P2
i=1 pi+t1+(j�1)(p2+

P2
i=1 ti+

P2
i=1 tei);

and that Cr2j = S
m
3j =

P2
i=1 pi+

P2
i=1 ti+(j� 1)(p2+

P2
i=1 ti+

P2
i=1 tei), implies that there

is no overlap between processing and transferring operations of job Jj for j = 1; : : : n. Thus,

Condition 1 holds.

Since

Cr1j = p1+(j� 1)(p2+
2X
i=1

ti+

2X
i=1

tei)+ t1 < S
r
2j =

2X
i=1

pi+ t1+(j� 1)(p2+
2X
i=1

ti+

2X
i=1

tei);

there is no overlap between moves Jj fromM1 toM2 and Jj fromM2 toM3. Moreover, after

completing the move of Jj from M2 to M3, the robot returns to M1 at time

2X
i=1

pi +
2X
i=1

ti + (j � 1)(p2 +
2X
i=1

ti +
2X
i=1

tei) +
2X
i=1

tei = S
r
1;j+1;

which implies that there is no overlap between moves of Jj from M2 to M3 and Jj+1 from

M1 to M2. Therefore, there is no overlap between robot operations and Condition 2 holds.

The fact that Cm1j = jp1 � Sr1j = p1 + (j � 1)(p2 +
P2

i=1 ti +
P2

i=1 tei) implies that job

Jj is ready to move from M1 to M2 at time Sr1j. Moreover, the fact that C
m
2j = Sr2j =P2

i=1 pi+ t1+ (j� 1)(p2+
P2

i=1 ti+
P2

i=1 tei), implies that job Jj is ready to move from M2

to M3 at time Sr2j. Thus, Condition 3 holds.

It is implied from the feasibility of schedule 3.1.2.1 that the completion time of job Jn
on machine M3 is at time

Cm3n =
2X
i=1

ti +
2X
i=1

pi + (n� 1)(p2 +
2X
i=1

ti +
2X
i=1

tei) + p3:

The fact that this time matches the lower bound in (eq. 80) when

(n� 1)
�P2

i=1 ti +
P2

i=1 tei + p2 � p3
�
� minfp1 � p2;�(x�)g;

implies that this schedule 3.1.2.1 is optimal for subcase 3.1.2.1.

Optimal schedule for subcase 3.1.2.2 For subcase 3.1.2.2, where p3 < p2+
P2

i=1 ti+P2
i=1 tei and p1 = max fp1; t1 + te1; p2g and
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min
�
(n� 1)

�P2
i=1 ti +

P2
i=1 tei + p2 � p3

�
; p1 � p2;�(x�)

	
= p1 � p2;

we de�ne the following schedule (Schedule 3.1.2.2):

Machine Schedule:

� Schedule job Jj on M1 during time interval [Sm1j ; C
m
1j ] = [(j � 1)p1; jp1] for j = 1; :::; n.

� Schedule job Jj on M2 during time interval [Sm2j ; C
m
2j ] = [jp1 + t1; S

m
2j + p2] for j = 1; 2.

� Schedule job Jj on M2 during time interval [Sm2j ; C
m
2j ] =�

max
�
2p1 + (j � 2)

�P2
i=1 ti +

P2
i=1 tei

�
; jp1

	
+ t1; S

m
2j + p2

�
for j = 3; :::; n.

� Schedule job Jj onM3 during time interval [Sm3j ; C
m
3j ] = [2p1+t1+t2+(j�1)p3; Sm3j+p3]

for j = 1; :::; n.

Robot Schedule:

� Move job Jj fromM1 to M2 during time interval [Sr1j; C
r
1j] = [jp1; jp1+ t1] for j = 1; 2.

� Move job Jj from M1 to M2 during time interval [Sr1j; C
r
1j] = [maxfSm2;j�1 + t2 +P2

i=1 tei; jp1g; Sr1j + t1] for j = 3; :::; n.

� Move job Jj from M2 to M3 during time interval [Sr2j; C
r
2j] = [Sm2;j+1; S

r
2j + t2] for

j = 1; :::; n� 1.

� Move job Jn from M2 to M3 during time interval [Sr2n; C
r
2n] = [Sm2n + maxfp2; t2 +

te2g; Sr2n + t2].

� Move the robot empty from M2 to M1 during time interval [p1 + t1; p1 + t1 + te1].

� Move the robot empty from M3 to M1 during time interval [Cr2j; C
r
2j +

P2
i=1 tei] for

j = 1; :::; n� 2.

� Move the robot empty from M3 to M2 during time interval [Cr2;n�1; C
r
2;n�1 + te2].

Schedule 3.1.2.2 is illustrated in Figure 16 below for n = 4 with empty return moves

shown in bold.
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Figure 16: Schedule 3.1.2.2.

Lemma 16 Schedule 3.1.2.2 is an optimal schedule for subcase 3.1.2.2.

Proof. We start by showing that schedule 3.1.2.2 is a feasible schedule. The fact that
Sm1;j+1 = Cm1j = jp1 implies that there is no overlap between processing operations on M1.

Moreover, the fact that Sm22 = 2p1 + t1 � Cm21 = p1 + t1 + p2, where the inequality follows

from the case condition that p1 = maxfp1; t1+ te1; p2g � p2, implies that there is no overlap
between the processing of J1 and J2 on M2. In order to prove that such an overlap also does

not exist between the processing of any other consecutive jobs on M2, we further need to

prove that

Sm2;j+1 = max

(
2p1 + (j � 1)

 
2X
i=1

ti +
2X
i=1

tei

!
; (j + 1)p1

)
+ t1 �

Cm2j = max

(
2p1 + (j � 2)

 
2X
i=1

ti +
2X
i=1

tei

!
; jp1

)
+ t1 + p2

for j = 2; :::; n� 1. We prove this by showing that the inequality holds for both cases when
either

P2
i=1 ti +

P2
i=1 tei � p1 or

P2
i=1 ti +

P2
i=1 tei < p1. If

P2
i=1 ti +

P2
i=1 tei � p1, then

we need to prove that

2p1 + (j � 1)
 

2X
i=1

ti +

2X
i=1

tei

!
+ t1 � 2p1 + (j � 2)

 
2X
i=1

ti +

2X
i=1

tei

!
+ t1 + p2;

which follows from the fact that
P2

i=1 ti +
P2

i=1 tei � p1 � p2. If, on the other hand,P2
i=1 ti +

P2
i=1 tei < p1, then we need to prove that (j + 1)p1 + t1 � jp1 + t1 + p2, which

holds as well due to the fact that p1 � p2. The fact that Sm3;j+1 = 2p1 + t1 + t2 + jp3 = Cm3j
for j = 1; :::; n implies that there is no overlap between processing operations on M3 as well.
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The fact that Cm1j = jp1 = Sr1j for j = 1; 2 and that Cm1j = jp1 � Sr1j = maxfSm2;j�1 +
t2 +

P2
i=1 tei; jp1g for j = 3; :::; n, implies that there is no overlap between the processing

operation of job Jj on M1 and the move of Jj from M1 to M2 for j = 1; :::; n. Moreover, the

fact that Cr1j = jp1 + t1 = S
m
2j for j = 1; 2, implies that there is no overlap between move

Jj from M1 to M2 and processing operations of job Jj on M2 for j = 1; 2. In order to verify

that such an overlap also does not exist for jobs J3; :::; Jn we have to prove that

Cr1j = maxfmax
(
2p1 + (j � 3)

 
2X
i=1

ti +

2X
i=1

tei

!
; (j � 1)p1

)
+ t1 + t2 +

2X
i=1

tei; jp1g+ t1

� Sm2j = max
(
2p1 + (j � 2)

 
2X
i=1

ti +

2X
i=1

tei

!
; jp1

)
+ t1:

It is easy to show that if
P2

i=1 ti +
P2

i=1 tei � p1 then Cr1j = Sm2j = 2p1+
(j � 2)

�P2
i=1 ti +

P2
i=1 tei

�
+ t1 and if

P2
i=1 ti +

P2
i=1 tei < p1 then C

r
1j = S

m
2j = jp1 + t1.

Thus, there is no overlap between the move of Jj from M1 to M2 and processing operations

of job Jj on M2 for j = 1; :::; n. For j = 1; :::; n� 1, the fact that Sr2j = Sm2;j+1 � Cm2j follows
from the fact that Sr2j = S

m
2;j+1 and that we have already proved above that S

m
2;j+1 � Cm2j .

Moreover, we also have that Sr2n = S
m
2n + max fp2; t2 + te2g � Cm2n = Sm2n + p2. Thus, there

is no overlap between processing operation of job Jj on M2 and the move of Jj from M2 to

M3 for j = 1; :::; n. For j = 1; :::; n� 1 we have that

Cr2j = S
m
2;j+1 + t2 = max

(
2p1 + t1 + (j � 1)

 
2X
i=1

ti +
2X
i=1

tei

!
; (j + 1)p1 + t1

)
+ t2 �

Sm3j = 2p1 + t1 + t2 + (j � 1)p3,

due to the fact that p3 � p1 and p3 �
�P2

i=1 ti +
P2

i=1 tei
�
. This implies that there is no

overlap between move Jj from M2 to M3 and the processing operation of job Jj on M3 for

j = 1; :::; n� 1. In order to prove that such an overlap also does not exist for job Jn we need
to prove that

Cr2n = S
m
2n +maxfp2; t2 + te2g+ t2 =

max

(
2p1 + (n� 2)

 
2X
i=1

ti +

2X
i=1

tei

!
; np1

)
+ t1 +maxfp2; t2 + te2g+ t2

� Sm3n = 2p1 + t1 + t2 + (n� 1)p3:

Consider �rst the case where p1 �
P2

i=1 ti +
P2

i=1 tei. For this case we need to prove that
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np1+t1+maxfp2; t2+te2g+t2 � 2p1+t1+t2+(n�1)p3, i.e., that (n�2)p1+maxfp2; t2+te2g �
(n� 1)p3. The last inequality holds due the fact that maxfp2; t2 + te2g � p1 � p3. Consider
now the case where p1 <

P2
i=1 ti +

P2
i=1 tei. For this case we need to prove that

2p1 + (n� 2)
 

2X
i=1

ti +

2X
i=1

tei

!
+ t1 +maxfp2; t2 + te2g+ t2 � 2p1 + t1 + t2 + (n� 1)p3;

i.e., that (n� 2)
�P2

i=1 ti +
P2

i=1 tei
�
+maxfp2; t2 + te2g � (n� 1)p3, which directly follows

from the fact that p3 �
P2

i=1 ti +
P2

i=1 tei and that p3 � p2. This completes our proof that
there is no overlap between processing operations and processing and transferring operations

and thus Condition 1 holds.

The robot starts its moves by transferring J1 fromM1 toM2 during time interval [p1; p1+

t1]. Then the robot returns empty to M1 during time interval [p1 + t1; p1 + t1 + te1], and

performs move J2 fromM1 toM2 during time interval [2p1; 2p1+t1]. Since 2p1 � p1+t1+te1,
there is no overlap between these two last operations. Then, for j = 1; :::; n � 1, the robot
performs move Jj from M2 to M3 during time interval [Sm2;j+1; S

m
2;j+1 + t2], returns empty to

M1 during time interval [Sm2;j+1 + t2; S
m
2;j+1 + t2 +

P2
i=1 tei], and moves Jj+2 from M1 to M2

during time interval

[maxfSm2;j+1 + t2 +
2X
i=1

tei; (j + 2)p1g;maxfSm2;j+1 + t2 +
2X
i=1

tei; (j + 2)p1g+ t1]:

The fact that maxfSm2;j+1 + t2 +
P2

i=1 tei; (j + 2)p1g � Sm2;j+1 + t2 +
P2

i=1 tei implies that

there is no overlap between these operations as well. Lastly, after performing move Jn from

M1 to M2 during time interval

[Sr1n; C
r
1n] = [maxfSm2;n�1 + t2 +

2X
i=1

tei; np1g;maxfSm2;n�1 + t2 +
2X
i=1

tei; np1g+ t1];

the robot moves Jn�1 from M2 to M3 during time interval [Sr2;n�1; C
r
2;n�1] = [S

m
2n; S

m
2n + t2],

returns empty to M2 during time interval [Cr2;n�1; C
r
2;n�1 + te2] = [S

m
2n + t2; S

m
2n + t2 + te2],

and �nishes its operations by performing move Jn from M2 to M3 during time interval

[Sm2n+maxfp2; t2+te2g; Sm2n+maxfp2; t2+te2g+t2] (note that sincemaxfp2; t2+te2g � t2+te2
there is no overlap between these last two operations). In order to complete the proof that

there is no overlap between robot operations, we still need to show that there is no overlap
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between operations Jn from M1 to M2 and Jn�1 from M2 to M3, i.e., we need to prove that

Sr2;n�1 = S
m
2n = max

(
2p1 + (n� 2)

 
2X
i=1

ti +

2X
i=1

tei

!
; np1

)
+ t1 � Cr1n =

maxfmax
(
2p1 + (n� 3)

 
2X
i=1

ti +

2X
i=1

tei

!
; (n� 1)p1

)
+ t1 + t2 +

2X
i=1

tei; np1g+ t1:

The fact that Sr2;n�1 = C
r
1n = 2p1+(n�2)

�P2
i=1 ti +

P2
i=1 tei

�
+t1 when

P2
i=1 ti+

P2
i=1 tei �

p1 and Sr2;n�1 = C
r
1n = np1 + t1 when

P2
i=1 ti +

P2
i=1 tei < p1 completes this proof, and thus

Condition 2 holds.

The fact that Cm1j = jp1 = S
r
1j for j = 1; 2 and that C

m
1j = jp1 � Sr1j = maxfSm2;j�1+ t2+P2

i=1 tei; jp1g for j = 3; :::; n implies that job Jj is ready to move from M1 to M2 at time

Sr1j. Moreover, the fact that C
m
2j � Sr2j = Sm2;j+1 for j = 1; :::; n � 1 and Cm2n = Sm2n + p2 �

Sr2n = S
m
2n + maxfp2; t2 + te2g implies that job Jj is ready to move from M2 to M3 at time

Sr2j. Thus, Condition 3 holds.

It is implied from the feasibility of schedule 3.2.2.2 that the completion time of job Jn on

machine M3 is at time Cm3n = 2p1 + t1 + t2 + np3. The fact that this time matches the lower

bound in (eq. 80) when

p1 � p2 � minf(n� 1)
�P2

i=1 ti +
P2

i=1 tei + p2 � p3
�
;�(x�)g

implies that this schedule 3.1.2.2 is optimal for subcase 3.1.2.2.

Optimal schedule for subcase 3.1.2.3 For subcase 3.1.2.3, where p3 < p2+
P2

i=1 ti+P2
i=1 tei and p1 = max fp1; t1 + te1; p2g and

min
�
(n� 1)

�P2
i=1 ti +

P2
i=1 tei + p2 � p3

�
; p1 � p2;�(x�)

	
= �(x�)

, we de�ne the following schedule (Schedule 3.1.2.3). In general, given x 2 f2; :::; n� 1g, we
show below that we can construct a feasible schedule (Schedule 3.1.2.3) with a makespan

value of LB00003 = LB3 + �(x). This implies that for x� the schedule is feasible and thus

optimal as well.

Machine Schedule:

� Schedule job Jj on M1 during time interval [Sm1j ; C
m
1j ] = [(j � 1)p1; jp1] for j = 1; :::; n.
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� Schedule job Jj on M2 during time interval [Sm2j ; C
m
2j ] = [p1 + t1 + (j � 1)�

p2 +
P2

i=1 ti +
P2

i=1 tei
�
;Sm2j + p2] for j = 1; :::; x.

� Schedule job Jx+1 on M2 during time interval [Sm2;x+1; C
m
2;x+1] = [maxfmaxfSm2x +

te1; (x+ 1)p1g+ t1; Sm2x + p2g; Sm2;x+1 + p2].

� Schedule job Jj on M2 during time interval [Sm2j ; C
m
2j ] = [maxfmaxfSm2;j�1 + t2 +P2

i=1 tei; jp1g+ t1; Cm2;j�1g; Sm2j + p2] for j = x+ 2; :::; n.

� Schedule job Jj on M3 during time interval [Sm3j ; C
m
3j ] = [p1+ t1+ p2+ t2+(j� 1)(p2+P2

i=1 ti +
P2

i=1 tei); S
m
3j + p3] for j = 1; :::; x� 1.

� Schedule job Jx on M3 during time interval [Sm3x; C
m
3x] = [S

m
2;x+1 + t2; S

m
3x + p3].

� Schedule job Jj onM3 during time interval [Sm3j ; C
m
3j ] = [S

m
3x+(j�x)p3; Sm3x+(j�x+1)p3]

for j = x+ 1; :::; n.

Robot Schedule:

� Move job Jj from M1 to M2 during time interval [Sr1j; C
r
1j] = [p1 + (j � 1)�

p2 +
P2

i=1 ti +
P2

i=1 tei
�
;Sr1j + t1] for j = 1; :::; x.

� Move job Jx+1 from M1 to M2 during time interval [Sr1;x+1; C
r
1;x+1] = [maxfSm2x +

te1; (x+ 1)p1g; Sr1;x+1 + t1].

� Move job Jj from M1 to M2 during time interval [Sr1j; C
r
1j] = [maxfSm2;j�1 + t2 +P2

i=1 tei; jp1g; Sr1j + t1] for j = x+ 2; :::; n.

� Move job Jj from M2 to M3 during time interval [Sr2j; C
r
2j] = [Cm2j ; S

r
2j + t2] for j =

1; :::; x� 1.

� Move job Jj from M2 to M3 during time interval [Sr2j; C
r
2j] = [Sm2;j+1; S

r
2j + t2] for

j = x; :::; n� 1.

� Move job Jn from M2 to M3 during time interval [Sr2n; C
r
2n] = [Sm2n + maxft2 +

te2; p2g; Sr2n + t2].

� Move the robot empty from M3 to M1 during time interval [Cr2j; C
r
2j +

P2
i=1 tei] for

j = 1; :::; n� 1.

� Move the robot empty from M2 to M1 during time interval [Sm2x; S
m
2x + te1].

� Move the robot empty from M3 to M2 during time interval [Cr2;n�1; C
r
2;n�1 + te2]:
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Schedule 3.1.2.3 is illustrated in Figure 17 below for n = 4 and x = 2 with empty return

moves shown in bold.

Figure 17: Schedule 3.2.2.3.

Lemma 17 Schedule 3.1.2.3 is an optimal schedule for subcase 3.1.2.3.

Proof. We start by showing that schedule 3.1.2.3 is a feasible schedule. The fact that
Sm1;j+1 = Cm1j = jp1 implies that there is no overlap between processing operations on M1.

Moreover, the fact that

Sm2;j+1 = p1+t1+j

 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
� Cm2j = p1+t1+(j�1)

 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
+p2

for j = 1; :::; x� 1; that

Sm2;x+1 = maxfmaxfSm2x + te1; (x+ 1)p1g+ t1; Sm2x + p2g � Cm2x = Sm2x + p2;

and that

Sm2;j+1 = max

(
max

(
Sm2j +

2X
i=1

ti +

2X
i=1

tei; (j + 1)p1 + t1

)
; Cm2j

)
� Cm2j

for j = x + 1; :::; n � 1, implies that there is no overlap between the processing of jobs on
M2. Moreover, the fact that

Sm3;j+1 =
2X
i=1

pi +
2X
i=1

ti + j(p2 +
2X
i=1

ti +
2X
i=1

tei) >

Cm3j =

2X
i=1

pi +

2X
i=1

ti + (j � 1)(p2 +
2X
i=1

ti +

2X
i=1

tei) + p3
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for j = 1; :::; x� 2 (since p2 +
P2

i=1 ti +
P2

i=1 tei > p3); that

Sm3x = S
m
2;x+1 + t2 � Sm2x + p2 + t2 =

2X
i=1

pi +

2X
i=1

ti + (x� 1)
 
p2 +

2X
i=1

ti +

2X
i=1

tei

!

> Cm3;x�1 =
2X
i=1

pi +

2X
i=1

ti + (x� 2)(p2 +
2X
i=1

ti +

2X
i=1

tei) + p3

(since p2 +
P2

i=1 ti +
P2

i=1 tei > p3 > p1); and that Sm3j = Cm3;j�1 = Sm3x + (j � x)p3 for
j = x+1; :::; n, implies that there is no overlap between processing operations onM3 as well.

The fact that Cm1j = jp1 < Sr1j = p1 + (j � 1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
for j = 1; :::; x

(since p2 +
P2

i=1 ti +
P2

i=1 tei > p3 � p1); that Cm1;x+1 = (x + 1)p1 � Sr1;x+1 = maxfSm2x +
te1; (x+1)p1g; and that Cm1j = jp1 � Sr1j = maxfSm2;j�1+t2+

P2
i=1 tei; jp1g for j = x+2; :::; n,

implies that there is no overlap between the processing operation of job Jj on M1 and the

move of Jj from M1 to M2 for j = 1; :::; n. Moreover, the fact that Cr1j = p1 + (j �
1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+ t1 = S

m
2j for j = 1; :::; x; that

Cr1;x+1 = maxfSm2x+te1; (x+1)p1g+t1 � Sm2;x+1 = maxfmaxfSm2x+te1; (x+1)p1g+t1; Sm2x+p2g;

and that

Cr1j = maxfSm2;j�1+t2+
2X
i=1

tei; jp1g+t1 � Sm2j = maxfmaxfSm2;j�1+t2+
2X
i=1

tei; jp1g+t1; Cm2;j�1g

for j = x+2; :::; n, implies that the is no overlap between the move of Jj fromM1 toM2 and

processing operations of job Jj on M2 for j = 1; :::; n. Furthermore, the fact that Sr2j = C
m
2j

for j = 1; :::; x� 1; that

Sr2x = S
m
2;x+1 = maxfmaxf Sm2x + te1; (x+ 1)p1g+ t1g; Sm2x + p2g � Cm2x = Sm2x + p2;

that Sr2j = S
m
2;j+1 � Cm2j for j = x + 1; :::; n � 1 (as already proven above); and that Sr2n =

Sm2n + maxft2 + te2; p2g � Cm2n = Sm2n + p2, implies that there is no overlap between the

processing operation of job Jj on M2 and the move of Jj from M2 to M3 for j = 1; :::; n.

Finally, the fact that

Cr2j = C
m
2j + t2 = p1 + t1 + (j � 1)

 
p2 +

2X
i=1

ti +

2X
i=1

tei

!
+ p2 + t2 = S

m
3j

for j = 1; :::; x � 1 and that Cr2x = Sm2;x+1 + t2 = Sm3x, implies that in order to prove that
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there is no overlap between the move of Jj fromM2 toM3 for j = 1; :::; n and the processing

operation of job Jj on M3, it only remains to prove that

Cr2j = S
m
2;j+1 + t2 = max

(
max

(
Sm2j + t2 +

2X
i=1

tei; (j + 1)p1

)
+ t1; S

m
2j + p2

)
+ t2

= max

(
Sm2j +max

(
2X
i=1

ti +

2X
i=1

tei; p2

)
; (j + 1)p1 + t1

)
+ t2

� Sm3j = Sm3x + (j � x)p3 = Sm3x + (j � x)p3 = Sm2;x+1 + t2 + (j � x)p3;

i.e., that

Cr2j = S
m
2;j+1 + t2 � Sm3x + (j � x)p3 = Sm2;x+1 + t2 + (j � x)p3 (81)

for j = x+ 1; :::; n� 1.
We prove that the condition in (81) holds by induction. To do so, we �rst prove that the

condition in (81) holds for j = x+ 1. For j = x+ 1 the inequality in (81) reduces to

max

(
Sm2;x+1 +max

(
2X
i=1

ti +
2X
i=1

tei; p2

)
; (x+ 2)p1 + t1

)
+ t2 � Sm2;x+1 + t2 + p3: (82)

Since p3 � max
�P2

i=1 ti +
P2

i=1 tei; p2
	
, in order to prove that the condition in (82) holds,

we only need to prove that

Sm2;x+1 + p3 � (x+ 2)p1 + t1. (83)

The correctness of the inequality in (83) directly follows from the fact that

Sm2;x+1 + p3 = maxfmaxfSm2x + te1; (x+ 1)p1g+ t1; Sm2x + p2g+ p3 � (x+ 1)p1 + t1 + p3;

and from the fact that p3 � p1.
Now, assume that the condition in (81) holds for j 2 fx + 2; :::; n � 2g (the induction

assumption); we need to prove that the condition in (81) holds also for j + 1, i.e., that

max
�
Sm2;j+1 + Y; (j + 2)p1 + t1

	
+ t2 � Sm2;x+1 + t2 + (j � x+ 1)p3; (84)
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where Y = max
�P2

i=1 ti +
P2

i=1 tei; p2
	
. Since

max
�
Sm2;j+1 + Y; (j + 2)p1 + t1 + t2

	
=

max

(
max

(
max

(
Sm2j +

2X
i=1

ti +

2X
i=1

tei; (j + 1)p1 + t1

)
; Cm2;j

)
+ Y; (j + 2)p1 + t1

)
+ t2 =

max

(
max

(
max

(
Sm2j +

2X
i=1

ti +

2X
i=1

tei; (j + 1)p1 + t1

)
; Sm2j + p2

)
+ Y; (j + 2)p1 + t1

)
+t2

= max

(
max

�
Sm2j + Y; (j + 1)p1 + t1

	
+ t2 + Y; (j + 2)p1 +

2X
i=1

ti

)
�

max

(
S2;x+1 + t2 + (j � x)p3 + Y; (j + 2)p1 +

2X
i=1

ti

)
;

where the last inequality follows from the induction assumption, implies that in order to

prove that the condition in (84) holds, we only need to prove that

max

(
S2;x+1 + t2 + (j � x)p3 + Y; (j + 2)p1 +

2X
i=1

ti

)
� Sm2;x+1 + t2 + (j � x+ 1)p3: (85)

If

max

(
S2;x+1 + t2 + (j � x)p3 + Y; (j + 2)p1 +

2X
i=1

ti

)
= S2;x+1 + t2 + (j � x)p3 + Y

then the correctness of (85) follows from the fact that p3 � Y = max
�P2

i=1 ti +
P2

i=1 tei; p2
	
.

If, however,

max

(
S2;x+1 + t2 + (j � x)p3 + Y; (j + 2)p1 +

2X
i=1

ti

)
= (j + 2)p1 +

2X
i=1

ti

, then we need to prove that for

Sm2;x+1+ t2+(j�x+1)p3 = maxfmaxfSm2x+ te1; (x+1)p1g+ t1; Sm2x+p2g+ t2+(j�x+1)p3

(j + 2)p1 +
2X
i=1

ti � Sm2;x+1 + t2 + (j � x+ 1)p3: (86)
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The fact that

maxfmaxfSm2x+te1; (x+1)p1g+t1; Sm2x+p2g+t2+(j�x+1)p3 � (x+1)p1+
2X
i=1

ti+(j�x+1)p3

implies that in order to prove that the condition in (86) holds, we only need to prove that

(x + 1)p1 +
P2

i=1 ti + (j � x + 1)p3 � (j + 2)p1 +
P2

i=1 ti. The fact that the last inequality

holds directly follows from the fact that p3 � p1 and completes the proof that there is no
overlap between the move of Jj from M2 to M3 for j = 1; :::; n and the processing operation

of job Jj on M3. Thus Condition 1 holds.

The robot starts its moves by moving Jj from M1 to M2 for j = 1; :::; x� 1, during time
interval

[p1 + (j � 1)
 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
; p1 + (j � 1)

 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
+ t1]:

Then, after waiting p2 units of time beside M2 it performs move Jj from M2 to M3 during

time interval

[p1+t1+(j�1)
 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
+p2; p1+t1+(j�1)

 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
+p2+t2]:

Then, the robot returns empty to M1 during time interval

[p1 + t1 + (j � 1)
 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
+ p2 + t2;

p1 + t1 + (j � 1)
 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
+ p2 + t2 +

2X
i=1

tei]

in order to perform Jj+1 from M1 to M2 during time interval

[p1 + j

 
p2 +

2X
i=1

ti +

2X
i=1

tei

!
; p1 + j

 
p2 +

2X
i=1

ti +

2X
i=1

tei

!
+ t1]:

The fact that

p1 + j

 
p2 +

2X
i=1

ti +

2X
i=1

tei

!
= p1 + t1 + (j � 1)

 
p2 +

2X
i=1

ti +

2X
i=1

tei

!
+ p2 + t2 +

2X
i=1

tei

implies that there is no overlap between these two last operations.
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After completing the move of Jx from M1 to M2 at time p1 + (x� 1)�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+ t1, the robot returns empty to M1 during time interval

[Sm2x; S
m
2x + te1] =

[p1 + t1 + (x� 1)
 
p2 +

2X
i=1

ti +

2X
i=1

tei

!
; p1 + t1 + (x� 1)

 
p2 +

2X
i=1

ti +

2X
i=1

tei

!
+ te1];

and then performs move Jx+1 from M1 to M2 during time interval [maxfSm2x + te1; (x +
1)p1g;maxfSm2x + te1; (x+ 1)p1g+ t1]. This set of moves is followed by move Jx from M2 to

M3, which is done during time interval [Sm2;x+1; S
r
2x + t2]. Since

Sm2;x+1 = maxfmaxfSm2x + te1; (x+ 1)p1g+ t1g; Sm2x + p2g � maxfSm2x + te1; (x+ 1)p1g+ t1;

there is no overlap between moves Jx+1 from M1 to M2 and Jx from M2 to M3. After

completing the move of Jx from M2 to M3 at time Cr2x = maxfmaxfSm2x + te1; (x+ 1)p1g+
t1g; Sm2x+p2g+ t2, the robot returns empty toM1 during time interval [Cr2x; C

r
2x+

P2
i=1 tei] =

[Sr2x + t2; S
r
2x + t2 +

P2
i=1 tei]. Then, for j = x + 2; :::; n � 1, the robot move Jj from M1

to M2, during time interval [Cr1j; C
r
1j + t1] = [maxfSm2;j�1 + t2 +

P2
i=1 tei; jp1g;maxfSm2;j�1 +

t2 +
P2

i=1 tei; jp1g + t1], followed by the move of Jj�1 from M2 to M3 during time interval

[Sm2j ; S
m
2j+ t2]. The fact that S

r
2x = S

m
2;x+1 implies that the robot returns empty toM1 at time

Sm2;x+1 + t2 +
P2

i=1 tei � maxfSm2;x+1 + t2 +
P2

i=1 tei; (x+ 2)p1g = Cr1;x+2, which implies that
there is no overlap between the operation of returning to M1 and the move of Jx+2 from M1

to M2. Moreover, the fact that

maxfSm2;j�1+t2+
2X
i=1

tei; jp1g+t1 � Sm2j = max
(
maxfSm2;j�1 + t2 +

2X
i=1

tei; jp1g+ t1; Cm2;j�1

)

implies that there is no overlap between the moves of Jj from M1 to M2 and Jj�1 from M2

toM3. After completing move Jj�1 fromM2 toM3 at time Sm2j+ t2, the robot returns empty

to M1 during time interval [Sm2j + t2; S
m
2j + t2 +

P2
i=1 tei] in order to move Jj+1 from M1 to

M2 during time interval

[maxfSm2;j + t2 +
2X
i=1

tei; (j + 1)p1g;maxfSm2;j + t2 +
2X
i=1

tei; (j + 1)p1g+ t1]:

Lastly, after completing the move of Jn from M1 to M2 at time maxfSm2;n�1 + t2 +P2
i=1 tei; np1g + t1, the robot performs move Jn�1 from M2 to M3 during time interval

[Sm2n; S
m
2n + t2], where S

m
2n = maxfmaxfSm2;n�1 + t2 +

P2
i=1 tei; np1g+ t1; Cm2;n�1g, and returns
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empty to M2 during time interval [Cr2;n�1; C
r
2;n�1+ te2] = [S

m
2n+ t2; S

m
2n+ t2+ te2] to move Jn

from M2 to M3 during time interval [Sm2n + maxft2 + te2; p2g; Sm2n + maxft2 + te2; p2g + t2]:
The fact that maxfSm2;n�1 + t2 +

P2
i=1 tei; np1g + t1 = Sm2n and that Sm2;n + t2 + te2 � Sm2n +

maxft2 + te2; p2g implies that there is no overlap between these last operations as well and
thus Condition 2 holds.

The fact thatCm1j = jp1 < S
r
1j = p1+(j�1)

�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
for j = 1; :::; x (since

p2+
P2

i=1 ti+
P2

i=1 tei > p3 > p1); that C
m
1;x+1 = (x+1)p1 � Sr1;x+1 = maxfSm2x+te1; (x+1)p1g;

and that Cm1j = jp1 � Sr1j = maxfSm2;j�1 + t2 +
P2

i=1 tei; jp1g for j = x+ 2; :::; n implies that
job Jj j = 1; :::; n is ready to move from M1 to M2 at time Sr1j. Moreover, the fact that

Cm2j = S
r
2j for j = 1; :::; x� 1; that

Cm2x = S
m
2x + p2 � Sr2x = Sm2;x+1 = maxfmaxf Sm2x + te1; (x+ 1)p1g+ t1g; Sm2x + p2g;

that

Cm2;x+1 � Sr2;x+1 = Sm2;x+2 = maxfmaxfSm2;x+1 + t2 +
2X
i=1

tei; (x+ 2)p1g+ t1; Cm2;x+1g;

that Cm2j � Sr2j = Sm2;j+1 for j = x+2; :::; n� 1 (as proven above); and that Cm2n = Sm2n+ p2 �
Sr2n = S

m
2n +maxfp2; t2 + te2g, implies that job Jj for j = 1; :::; n is ready to move from M2

to M3 at time Sr2j. Thus, Condition 3 holds.

It is implied from the feasibility of schedule 3.1.2.3 that the completion time of job Jn
on machine M3 is at time (Ŷ = (n� x+ 1)p3)

Cm3n = S
m
3x + Ŷ = maxfmaxfSm2x + te1; (x+ 1)p1g+ t1; Sm2x + p2g+ t2 + Ŷ =

maxfSm2x +maxfte1 + t1; p2g; (x+ 1)p1 + t1g+ t2 + Ŷ =

max

(
p1 + t1 + (x� 1)

 
p2 +

2X
i=1

ti +

2X
i=1

tei

!
+maxfte1 + t1; p2g; (x+ 1)p1 + t1

)
+t2+Ŷ :

The fact that this time matches the lower bound in (eq. 80) for x� when

�(x�) � minf(n� 1)
�P2

i=1 ti +
P2

i=1 tei + p2 � p3
�
; p1 � p2g

implies that this schedule 3.1.2.3 is optimal for subcase 3.1.2.3.

The analysis of subcase 3.1.3
In subcase 3.1.3, where p3 < p2 +

P2
i=1 ti +

P2
i=1 tei and t1 + te1 = max fp1; t1 + te1; p2g,
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we �rst update LB3 and provide a revised (tighter) bound denoted by LB0003 . We consider

two possible scenarios: (a) the robot does not perform two consecutive moves from M1 to

M2, and (b) at least once the robot makes two consecutive moves from M1 to M2. Let us

�rst consider case (a). In this case the robot moves each job fromM1 to M2 and then to M3

before moving to the next job, i.e., after transferring job Jj (j = 1; :::; n) fromM1 toM2, the

robot waits beside M2 for the completion of Jj on this machine and then moves it to M3. It

thus implies that the robot will start the move of J1 fromM1 to M2 not earlier than p1, and

will start the move of Jj fromM1 toM2 not earlier than p1+(j�1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
for j = 2; :::; n. Thus, job Jn will not �nish its processing on M3 earlier than time

LB0003 (a) = p1+(n�1)
 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
+t1+p2+t2+p3 � p1+t1+p2+t2+np3 = LB3:

Consider the next case (b) where the robot at least once makes two consecutive moves from

M1 to M2. We further divide case (b) to two subcases. The �rst (b1), where the �rst two

consecutive moves from M1 to M2 are done on jobs J1 and J2, and the second (b2), when it

is done on jobs Jx and Jx+1 with 2 � x � n � 1. In subcase (b1), the robot will start the
move of J2 from M1 to M2 not earlier than at time p1 + t1 + te1, which further implies that

the move of J1 from M2 to M3 will not start before p1 + t1 + te1 + t1 = p1 +2t1 + te1. Thus,

job J1 will not start its processing on M3 before p1 + 2t1 + te1 + t2, and the makespan value

will be not less than

LB0003 (b1) = p1 + 2t1 + te1 + t2 + np3 � p1 + t1 + p2 + t2 + np3 = LB3:

In subcase (b2), the move of Jx�1 from M2 to M3 will not �nish before time p1 + (x �
2)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+ t1+p2+ t2. Thus, the move of Jx fromM1 toM2 will not start

before p1 + (x � 1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
, which further implies that the move of Jx+1

from M1 to M2 will not start before p1 + (x� 1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+ t1 + te1. Thus,

the move of Jx from M2 to M3 will not �nish before p1+ (x� 1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+

t1 + te1 + t1 + t2, and the makespan value in this case is lower bounded by

p1 + (x� 1)
 
p2 +

2X
i=1

ti +

2X
i=1

tei

!
+ t1 + te1 + t1 + t2 + (n� x+ 1)p3:
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Since p2 +
P2

i=1 ti +
P2

i=1 tei > p3 and x � 2, this value is lower bounded by

LB0003 (b1) = p1 +

 
p2 +

2X
i=1

ti +

2X
i=1

tei

!
+ t1 + te1 + t1 + t2 + (n� 1)p3 �

p1 + t1 + te1 + t1 + t2 + np3 = LB
000
3 (b1):

To conclude our analysis, we have that if scenario (a) is selected, then

Cmax � p1 + (n� 1)
 
p2 +

2X
i=1

ti +

2X
i=1

tei

!
+ t1 + p2 + t2 + p3;

and if scenario (b) is selected, then Cmax � p1 + 2t1 + te1 + t2 + np3 = LB0003 (b1). Thus, the
makespan value will not be less than

min

(
3X
i=1

pi + (n� 1)
 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
+

2X
i=1

ti; p1 + 2t1 + te1 + t2 + np3

)
=

2X
i=1

pi +
2X
i=1

ti + np3 +min

(
t1 + te1 � p2; (n� 1)(

2X
i=1

ti +
2X
i=1

tei + p2 � p3)
)
;

and we have that

LB0003 = LB3 +min

(
(t1 + te1)� p2; (n� 1)(

2X
i=1

ti +
2X
i=1

tei + p2 � p3)
)

(87)

Below, we provide an optimal schedule that matches the lower bound value in (87) for each of

the following two scenarios that can arise. The �rst subcase 3.1.3.1 is where (t1+ te1)�p2 �
(n� 1)(

P2
i=1 ti +

P2
i=1 tei + p2 � p3), the second subcase 3.1.3.2 is the opposite case.

Optimal schedule for subcase 3.1.3.1 For subcase 3.1.3.1, where p3 < p2+
P2

i=1 ti+P2
i=1 tei, t1 + te1 = max fp1; t1 + te1; p2g and

(t1 + te1)� p2 = min
(
(t1 + te1)� p2; (n� 1)(

2X
i=1

ti +

2X
i=1

tei + p2 � p3)
)
;

we de�ne the following schedule (Schedule 3.1.3.1):

Machine Schedule:

� Schedule job Jj on M1 during time interval [Sm1j ; C
m
1j ] = [(j � 1)p1; jp1] for j = 1; :::; n.
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� Schedule job J1 on M2 during time interval [Sm21; C
m
21] = [p1 + t1; p1 + t1 + p2].

� Schedule job Jj onM2 during time interval [Sm2j ; C
m
2j ] = [p1+2t1+te1+(j�2)(

P2
i=1 ti+P2

i=1 tei); S
m
2j + p2] for j = 2; :::; n.

� Schedule job J1 on M3 during time interval [Sm31; C
m
31] = [p1 + 2t1 + t2 + te1; S

m
3j + p3].

� Schedule job Jj onM3 during time interval [Sm3j ; C
m
3j ] = [C

m
3;j�1; S

m
3j+p3] for j = 2; :::; n.

Robot Schedule:

� Move job J1 from M1 to M2 during time interval [Sr11; C
r
11] = [p1; p1 + t1].

� Move job Jj from M1 to M2 during time interval [Sr1j; C
r
1j] = [p1 + t1 + te1 + (j �

2)(
P2

i=1 ti +
P2

i=1 tei); S
r
1j + t1] for j = 2; :::; n.

� Move job Jj from M2 to M3 during time interval [Sr2j; C
r
2j] = [p1 + 2t1 + te1 + (j �

1)(
P2

i=1 ti +
P2

i=1 tei); S
r
2j + t2] for j = 1; :::; n� 1.

� Move job Jn from M2 to M3 during time interval [Sr2n; C
r
2n] = [maxfCr2;n�1 + te2; Cm2ng

; Sr2n + t2].

� Move the robot empty from M2 to M1 during time interval [p1 + t1; p1 + t1 + te1].

� Move the robot empty from M3 to M1 during time interval [p1 + 2t1 + te1+

(j�1)(
P2

i=1 ti+
P2

i=1 tei)+t2; p1+2t1+te1+(j�1)(
P2

i=1 ti+
P2

i=1 tei)+t2+
P2

i=1 tei]

for j = 1; :::; n� 2.

� Move the robot empty from M3 to M2 during time interval [p1 + 2t1 + te1+

(n� 2)(
P2

i=1 ti +
P2

i=1 tei) + t2; p1 +2t1 + te1 + (n� 2)(
P2

i=1 ti +
P2

i=1 tei) + t2 + te2].

Schedule 3.1.3.1 is illustrated in Figure 18 below for n = 4 with empty return moves

shown in bold.
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Figure 18: Schedule 3.1.3.1.

Lemma 18 Schedule 3.1.3.1 is an optimal schedule for subcase 3.1.3.1.

Proof. We start by showing that Schedule 3.1.3.1 is a feasible schedule. The fact that
Sm1;j+1 = C

m
1j = jp1; that S

m
22 = p1 + 2t1 + te1 � Cm21 = p1 + t1 + p2; that

Sm2;j+1 = p1+2t1+te1+(j�1)(
2X
i=1

ti+

2X
i=1

tei) � Cm2j = p1+2t1+te1+(j�2)(
2X
i=1

ti+

2X
i=1

tei)+p2

for j = 2; :::; n � 1; and that Sm3j = Cm3;j�1 for j = 2; :::; n, where the �rst inequality follows
from the fact that t1 + te1 � p2, and the second inequality follows from the fact thatP2

i=1 ti +
P2

i=1 tei � t1 + te1 � p2; implies that there is no overlap between the processing
of di¤erent jobs on each of the machines. Moreover, the fact that Cm11 = Sr11 = p1, that

Cm1j = jp1 � Sr1j = p1+t1+te1+(j�2)(
P2

i=1 ti+
P2

i=1 tei) for j = 2; :::; n (since t1+te1 � p1);
that Cr11 = S

m
21 = p1 + t1, that C

r
1j = S

m
2j = p1 + t1 + te1 + (j � 2)(

P2
i=1 ti +

P2
i=1 tei) for

j = 2; :::; n; that Cm21 = p1 + t1 + p2 � Sr21 = p1 + 2t1 + te1 (since t1 + te1 � p2); that

Cm2j = p1+2t1+te1+(j�2)(
2X
i=1

ti+
2X
i=1

tei)+p2 < S
r
2j = p1+2t1+te1+(j�1)(

2X
i=1

ti+
2X
i=1

tei)

for j = 2; :::; n� 1 (since
P2

i=1 ti +
P2

i=1 tei > t1 + te1 � p2); that

Cm2n = p1 + 2t1 + te1 + (n� 2)(
2X
i=1

ti +
2X
i=1

tei) + p2 � Sr2n

= maxfp1 + 2t1 + te1 + (n� 2)(
2X
i=1

ti +
2X
i=1

tei) + t2 + te2; C
m
2ng;

that

Cr2j = p1+2t1+te1+(j�1)(
2X
i=1

ti+
2X
i=1

tei)+t2 � Sm3j = Cm3;j�1 = p1+2t1+te1+t2+(j�1)p3
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for j = 1; :::; n� 1; and that

Cr2n = maxfCr2;n�1 + te2; Cm2ng+ t2 =

maxfCr2;n�1 + te2; p1 + 2t1 + te1 + (n� 2)(
2X
i=1

ti +

2X
i=1

tei) + p2g

� Sm3n = p1 + 2t1 + te1 + t2 + (n� 1)p3

(since p3 � p2 and p3 �
P2

i=1 ti +
P2

i=1 tei), implies that there is no overlap between

processing and transferring operations of job Jj for j = 1; :::; n. Thus, Condition 1 holds.

Once job J1 is completed on M1, the robot moves this job to M1 during time interval

[p1; p1 + t1] and returns empty to M1 during time interval [p1 + t1; p1 + t1 + te1]. Then, for

j = 2; :::; n, the robot performs move Jj from M1 to M2 followed by move job Jj�1 from

M2 to M3 and returns back to machine M1 if j < n � 1 and M2 otherwise. The fact that

Cr1j = S
r
2;j�1 = p1 + t1 + te1 + (j � 2)(

P2
i=1 ti +

P2
i=1 tei) + t1 for j = 2; :::; n, and that for

j < n � 1 the robot returns to machine M1 after completing move Jj�1 from M2 to M3 at

time

p1+2t1+te1+(j�2)(
2X
i=1

ti+
2X
i=1

tei)+t2+
2X
i=1

tei = S
r
1;j+1 = p1+2t1+te1+(j�1)(

2X
i=1

ti+
2X
i=1

tei);

implies that there is no overlap between robot operations. Thus, Condition 2 holds.

The fact that Cm11 = Sr11 = p1, and that Cm1j = jp1 � Sr1j = p1 + t1 + te1 + (j �
2)(
P2

i=1 ti +
P2

i=1 tei) for j = 2; :::; n (since
P2

i=1 ti +
P2

i=1 tei � t1 + te1 � p1) implies that
job Jj is ready to move from M1 to M2 at time Sr1j for j = 1; :::; n. Moreover, the fact that

Cm21 = p1 + t1 + p2 � Sr21 = p1 + 2t1 + te1 (since t1 + te1 � p2); that

Cm2j = p1+2t1+te1+(j�2)(
2X
i=1

ti+

2X
i=1

tei)+p2 � Sr2j = p1+2t1+te1+(j�1)(
2X
i=1

ti+

2X
i=1

tei)

for j = 2; :::; n � 1 (since
P2

i=1 ti +
P2

i=1 tei � t1 + te1 � p2); and that Cm2n � Sr2n =

maxfCr2;n�1 + te2; Cm2ng, implies that job Jj is ready to move from M2 to M3 at time Sr2j for

j = 1; :::; n. Thus, Condition 3 holds as well.

The fact that the completion time of Jn onM3 in schedule 3.1.3.1 is at time p1+2t1+t2+

te1+np3; which matches the lower bound in (eq. 87) for this subcase when (t1+ te1)� p2 �
(n � 1)(

P2
i=1 ti +

P2
i=1 tei + p2 � p3), implies that schedule 3.1.3.1 is optimal for subcase

3.1.3.1.
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Optimal schedule for subcase 3.1.3.2 For subcase 3.1.3.2, where p3 < p2+
P2

i=1 ti+P2
i=1 tei, t1 + te1 = max fp1; t1 + te1; p2g and

(n�1)(
2X
i=1

ti+

2X
i=1

tei+p2�p3) = min
(
(t1 + te1)� p2; (n� 1)(

2X
i=1

ti +

2X
i=1

tei + p2 � p3)
)
;

we de�ne the following schedule (Schedule 3.1.3.2):

Machine Schedule:

� Schedule job Jj on M1 during time interval [Sm1j ; C
m
1j ] = [(j � 1)p1; jp1] for j = 1; :::; n.

� Schedule job Jj onM2 during time interval [Sm2j ; C
m
2j ] = [p1+ t1+(j� 1)(p2+

P2
i=1 ti+P2

i=1 tei); S
m
2j + p2] for j = 1; :::; n.

� Schedule job Jj onM3 during time interval [Sm3j ; C
m
3j ] = [

P2
i=1 pi+

P2
i=1 ti+(j�1)(p2+P2

i=1 ti +
P2

i=1 tei); S
m
3j + p3] for j = 1; :::; n.

Robot Schedule:

� Move job Jj fromM1 toM2 during time interval [Sr1j; C
r
1j] = [p1+(j�1)(p2+

P2
i=1 ti+P2

i=1 tei); S
r
1j + t1] for j = 1; :::; n.

� Move job Jj fromM2 toM3 during time interval [Sr2j; C
r
2j] = [

P2
i=1 pi+ t1+(j�1)(p2+P2

i=1 ti +
P2

i=1 tei); S
r
2j + t2] for j = 1; :::; n.

� Move the robot empty from M3 to M1 during time interval [
P2

i=1 pi +
P2

i=1 ti + (j �
1)(p2+

P2
i=1 ti+

P2
i=1 tei);

P2
i=1 pi+

P2
i=1 ti+(j�1)(p2+

P2
i=1 ti+

P2
i=1 tei)+

P2
i=1 tei]

for j = 1; :::; n� 1:

Schedule 3.1.3.2 is illustrated in Figure 19 below for n = 3 with empty return moves

shown in bold.
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Figure 19: Schedule 3.1.3.2.

Lemma 19 Schedule 3.1.3.2 is an optimal schedule for subcase 3.1.3.2.

Proof. We start by showing that schedule 3.1.3.2 is a feasible schedule. The fact that
Sm1;j+1 = C

m
1j = jp1; that

Sm2;j+1 = p1 + t1 + j(p2 +
2X
i=1

ti +

2X
i=1

tei) > C
m
2j = p1 + t1 + (j � 1)(p2 +

2X
i=1

ti +

2X
i=1

tei) + p2;

and that

Sm3;j+1 =
2X
i=1

pi +
2X
i=1

ti + j(p2 +
2X
i=1

ti +
2X
i=1

tei) >

Cm3j =
2X
i=1

pi +
2X
i=1

ti + (j � 1)(p2 +
2X
i=1

ti +
2X
i=1

tei) + p3;

where the last inequality follows from the case condition that p2 +
P2

i=1 ti +
P2

i=1 tei > p3,

implies that there are no overlaps between processing of jobs in any machine. Moreover, the

fact that Cm1j = jp1 � Sr1j = p1+(j� 1)(p2+
P2

i=1 ti+
P2

i=1 tei); that C
r
1j = S

m
2;j = p1+(j�

1)(p2+
P2

i=1 ti+
P2

i=1 tei)+t1; that C
m
2j = S

r
2j = p1+t1+(j�1)(p2+

P2
i=1 ti+

P2
i=1 tei)+p2;

and that

Cr2j = S
m
3j =

P2
i=1 pi+

P2
i=1 ti+(j�1)(p2+

P2
i=1 ti+

P2
i=1 tei), where the inequality follows

from the fact that p2+
P2

i=1 ti+
P2

i=1 tei > p3 � p1, implies that there is no overlap between
processing and transferring operations of job Jj for j = 1; : : : n. Thus, Condition 1 holds.

Since

Cr1j = p1+(j� 1)(p2+
2X
i=1

ti+
2X
i=1

tei)+ t1 � Sr2j =
2X
i=1

pi+ t1+(j� 1)(p2+
2X
i=1

ti+
2X
i=1

tei)

there is no overlap between the moves of Jj fromM1 toM2 and Jj fromM2 toM3. Moreover,

after completing the move of Jj from M2 to M3, the robot returns to M1 at time

2X
i=1

pi +
2X
i=1

ti + (j � 1)(p2 +
2X
i=1

ti +
2X
i=1

tei) +
2X
i=1

tei = S
r
1;j+1;

which implies that there is no overlap between the moves of Jj fromM2 toM3 and Jj+1 from

M1 to M2. Therefore, there is no overlap between robot operations and Condition 2 holds.
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The fact that Cm1j = jp1 < S
r
1j = p1+(j�1)(p2+

P2
i=1 ti+

P2
i=1 tei) follows from the fact

that p2+
P2

i=1 ti+
P2

i=1 tei > p3 � p1, and implies that job Jj is ready to move fromM1 toM2

at time Sr1j. Moreover, the fact that C
m
2j = S

r
2j = p1+ t1+(j�1)(p2+

P2
i=1 ti+

P2
i=1 tei)+p2

implies that job Jj is ready to move fromM2 to M3 at time Sr2j. Thus, Condition 3 holds as

well.

It is implied from the feasibility of schedule 3.1.3.2 that the completion time of job Jn on

machine M3 is at time Cm3n =
P2

i=1 ti +
P2

i=1 pi + (n� 1)(p2 +
P2

i=1 ti +
P2

i=1 tei) + p3. The

fact that this time matches the lower bound in (eq. 87) when t1+te1�p2 > (n�1)(
P2

i=1 ti+P2
i=1 tei + p2 � p3) implies that this schedule 3.1.3.2 is optimal for subcase 3.1.3.2.

9.3.2 The analysis of subcase 3.2

We further divide subcase 3.2, where p3 � p2 +
P2

i=1 ti +
P2

i=1 tei, into two subcases. The

�rst is subcase 3.2.1, is where p2 +
P2

i=1 ti +
P2

i=1 tei � p1 and the second is subcase 3.2.2,
the opposite case.

Optimal schedule for subcase 3.2.1 For subcase 3.2.1, where p3 � p2+
P2

i=1 ti+
P2

i=1 tei

and p2 +
P2

i=1 ti +
P2

i=1 tei � p1, we de�ne the following schedule (Schedule 3.2.1):
Machine Schedule:

� Schedule job Jj on M1 during time interval [Sm1j ; C
m
1j ] = [(j � 1)p1; jp1] for j = 1; :::; n.

� Schedule job Jj on M2 during time interval [Sm2j ; C
m
2j ] = [p1 + t1 + (j � 1)�

p2 +
P2

i=1 ti +
P2

i=1 tei
�
; p1+t1+(j�1)

�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+p2] for j = 1; :::; n.

� Schedule job Jj onM3 during time interval [Sm3j ; C
m
3j ] = [p1+ t1+p2+ t2+(j�1)p3; p1+

t1 + p2 + t2 + jp3] for j = 1; :::; n.

Robot Schedule:

� Move job Jj from M1 to M2 during time interval [Sr1j; C
r
1j] = [p1 + (j � 1)�

p2 +
P2

i=1 ti +
P2

i=1 tei
�
; p1 + (j � 1)

�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+ t1] for j = 1; :::; n.

� Move job Jj from M2 to M3 during time interval [Sr2j; C
r
2j] = [p1 + (j � 1)�

p2 +
P2

i=1 ti +
P2

i=1 tei
�
+ t1+ p2; p1+(j� 1)

�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+ t1+ p2+ t2]

for j = 1; :::; n.

� Move the robot empty from M3 to M1 during time interval [p1 + (j � 1)�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+ t1 + p2 + t2; p1 + (j � 1)

�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+ t1 +

p2 + t2 +
P2

i=1 tei] for j = 2; :::; n� 1:
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Schedule 3.2.1 is illustrated in Figure 20 below for n = 3 with empty return moves shown

in bold.

Figure 20: Schedule 3.2.1.

Lemma 20 Schedule 3.2.1 is an optimal schedule for subcase 3.2.1.

Proof. We start by showing that Schedule 3.2.1 is a feasible schedule. The fact that
Sm1;j+1 = C

m
1j = jp1; that

Sm2;j+1 = p1+t1+j

 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
� Cm2j = p1+t1+(j�1)

 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
+p2;

and that Sm3;j+1 = C
m
3j = p1 + t1 + p2 + t2 + jp3 implies that there is no overlap between the

processing of di¤erent jobs on each machine. Moreover, the fact that Cm1j = jp1 � Sr1j = p1+
(j�1)

�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
; that Cr1j = S

m
2j = p1+(j�1)

�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+ t1;

that Cm2j = S
r
2j = p1 + (j � 1)

�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
+ t1 + p2; and that

Cr2j = p1+ (j � 1)
 
p2 +

2X
i=1

ti +
2X
i=1

tei

!
+ t1+ p2+ t2 � Sm3j = p1+ t1+ p2+ t2+ (j � 1)p3;

where the �rst inequality follows from the fact that p2 +
P2

i=1 ti +
P2

i=1 tei � p1, and the
second inequality follows from the fact that p3 � p2 +

P2
i=1 ti +

P2
i=1 tei, implies that there

is no overlap between processing and transferring operations of job Jj for j = 1; :::; n. Thus,

Condition 1 holds.

The fact that Sr2j �Cr1j = p2 > 0 implies that there is no overlap between the non-empty
moves of the robot. Moreover, the fact that after downloading job Jj onM3 the robot returns

empty to M1 at time

p1+(j�1)
 
p2 +

2X
i=1

ti +

2X
i=1

tei

!
+t1+p2+t2+

2X
i=1

tei = p1+j

 
p2 +

2X
i=1

ti +

2X
i=1

tei

!
= Sr1;j+1;
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implies that there is no overlap between empty and non-empty moves. Thus, Condition 2

holds.

The fact that Cm1j = jp1 � Sr1j = p1 + (j � 1)
�
p2 +

P2
i=1 ti +

P2
i=1 tei

�
implies that job

Jj is ready to move from M1 to M2 at time Sr1j. Moreover, the fact that C
m
2j = S

r
2j implies

that job Jj is ready to move from M2 to M3 at time Sr2j, and thus Condition 3 holds as well

and Schedule 3.1.1 is feasible.

It is implied from the feasibility of Schedule 3.2.1 that the completion time of job n on

M3 is at time Cm3n = p1+ t1+ p2+ t2+np3. The fact that this time matches the lower bound

in (20) implies that this Schedule 3.2.1 is optimal for subcase 3.2.1.

Optimal schedule for subcase 3.2.2 For subcase 3.2.2, where p3 � p2+
P2

i=1 ti+
P2

i=1 tei

and p2 +
P2

i=1 ti +
P2

i=1 tei < p1, we de�ne the following schedule (Schedule 3.2.2):

Machine Schedule:

� Schedule job Jj on M1 during time interval [Sm1j ; C
m
1j ] = [(j � 1)p1; jp1] for j = 1; :::; n.

� Schedule job Jj on M2 during time interval [Sm2j ; C
m
2j ] = [jp1 + t1; jp1 + t1 + p2] for

j = 1; :::; n.

� Schedule job Jj onM3 during time interval [Sm3j ; C
m
3j ] = [p1+ t1+p2+ t2+(j�1)p3; p1+

t1 + p2 + t2 + jp3] for j = 1; :::; n.

Robot Schedule:

� Move job Jj from M1 to M2 during time interval [Sr1j; C
r
1j] = [jp1; jp1 + t1] for j =

1; :::; n.

� Move job Jj fromM2 toM3 during time interval [Sr2j; C
r
2j] = [jp1+t1+p2; jp1+t1+p2+t2]

for j = 1; :::; n.

� Move the robot empty from M3 to M1 during time interval [jp1 + t1 + p2 + t2; jp1 +

t1 + p2 + t2 +
P2

i=1 tei] for j = 2; :::; n� 1.

Schedule 3.2.2 is illustrated in Figure 21 below for n = 3 with empty return moves shown

in bold.
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Figure 21: Schedule 3.2.2.

Lemma 21 Schedule 3.2.2 is an optimal schedule for subcase 3.2.2.

Proof. We start by showing that Schedule 3.2.2 is a feasible schedule. The fact that
Sm1;j+1 = C

m
1j = jp1; that S

m
2;j+1 = (j+1)p1+t1 > C

m
2j = jp1+t1+p2; and that S

m
3;j+1 = C

m
3j =

p1 + t1 + p2 + t2 + jp3, where the inequality follows from that fact that p1 > p2, implies that

there is no overlap between the processing of di¤erent jobs on each of the machines. Moreover,

the fact that Cm1j = S
r
1j = jp1; that C

r
1j = S

m
2j = jp1 + t1; that C

m
2j = S

r
2j = jp1 + t1 + p2;

and that Cr2j = jp1 + t1 + p2 + t2 � Sm3j = p1 + t1 + p2 + t2 + (j � 1)p3, where the inequality
follows from that fact that p3 � p1, implies that there is no overlap between processing and
transferring operations of job Jj for j = 1; :::; n. Thus, Condition 1 holds.

The fact that Sr2j �Cr1j = p2 > 0 implies that there is no overlap between the non-empty
moves of the robot. Moreover, the fact that after downloading job Jj on M3, the robot

returns empty to M1 at time jp1 + t1 + p2 + t2 +
P2

i=1 tei < S
r
1;j+1 = (j + 1)p1 implies that

there is no overlap between empty and non-empty moves. Thus, Condition 2 holds.

The fact that Cm1j = S
r
1j = jp1 implies that job Jj is ready to move from M1 to M2 at

time Sr1j. Moreover, the fact that C
m
2j = S

r
2j = jp1 + t1 + p2, implies that job Jj is ready to

move from M2 to M3 at time Sr2j, and thus Condition 3 holds as well and Schedule 3.1.1 is

feasible.

It is implied from the feasibility of schedule 3.2.2 that the completion time of job n on

M3 is at time Cm3n = p1+ t1+ p2+ t2+np3. The fact that this time matches the lower bound

in (20) implies that this schedule 3.2.2 is optimal for subcase 3.2.2.

9.4 The analysis of Case 4

We divide this case into two subcases. The �rst subcase 4.1 (9.4.1) is where t1 + te1 �
maxfp1; p2g and t2 + te2 � maxfp2; p3g, and the second subcase 4.2 (9.4.2) is the opposite
case.
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9.4.1 The analysis of subcase 4.1

For subcase 4.1, where t1 + te1 � max fp1; p2g and t2 + te2 � max fp2; p3g, we de�ne the
following schedule (Schedule 4.1):

Machine Schedule:

� Schedule job Jj on M1 during time interval [Sm1j ; C
m
1j ] = [(j � 1)p1; jp1] for j = 1; :::; n.

� Schedule job J1 on M2 during time interval [Sm21; C
m
21] = [p1 + t1; S

m
21 + p2]:

� Schedule job Jj onM2 during time interval [Sm2j ; C
m
2j ] = [p1+2t1+te1+(j�2)(

P2
i=1 ti+P2

i=1 tei); S
m
2j + p2] for j = 2; :::; n.

� Schedule job Jj on M3 during time interval [Sm3j ; C
m
3j ] = [S

m
2;j+1 + t2; S

m
3j + p3] for j =

1; :::; n� 1.

� Schedule job Jn on M3 during time interval [Sm3n; C
m
3n] = [S

m
3;n�1 + te2 + t2; S

m
3n + p3].

Robot Schedule:

� Move job J1 from M1 to M2 during time interval [Sr11; C
r
11] = [p1; S

r
11 + t1].

� Move job Jj from M1 to M2 during time interval [Sr1j; C
r
1j] = [p1 + t1 + te1 + (j �

2)(
P2

i=1 ti +
P2

i=1 tei); S
r
1j + t1] for j = 2; :::; n.

� Move job Jj from M2 to M3 during time interval [Sr2j; C
r
2j] = [Sm2;j+1; S

r
2j + t2] for

j = 1; :::; n� 1.

� Move job Jn from M2 to M3 during time interval [Sr2n; C
r
2n] = [S

m
3;n�1 + te2; S

r
2n + t2].

� Move the robot empty from M2 to M1 during time interval [p1 + t1; p1 + t1 + te1].

� Move the robot empty from M3 to M1 during time interval [Sm3j ; S
m
3j +

P2
i=1 tei] for

j = 1; :::; n� 2.

� Move the robot empty from M3 to M2 during time interval [Sm3;n�1; S
m
3;n�1 + te2].

Schedule 4.1 is illustrated in Figure 22 below for n = 3 with empty return moves shown

in bold.
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Figure 22: Schedule 4.1.

Lemma 22 Schedule 4.1 is an optimal schedule for Case 4.1.

Proof. We start by showing that schedule 4.1 is a feasible schedule. The fact that
Sm1;j+1 = C

m
1j = jp1; that S

m
22 = p1 + 2t1 + te1 � Cm21 = p1 + t1 + p2 (since t1 + te1 � p2); that

Sm2;j+1 = p1+2t1+te1+(j�1)(
2X
i=1

ti+
2X
i=1

tei) � Cm2j = p1+2t1+te1+(j�2)(
2X
i=1

ti+
2X
i=1

tei)+p2

for j = 3; :::; n� 1 (due to Case 4 condition that
P2

i=1 ti +
P2

i=1 tei � p2); that

Sm3;j+1 = S
m
2;j+2 + t2 = p1 + 2t1 + te1 + j(

2X
i=1

ti +
2X
i=1

tei) + t2 � Cm3j =

Sm2;j+1 + t2 + p3 = p1 + 2t1 + te1 + (j � 1)(
2X
i=1

ti +

2X
i=1

tei) + t2 + p3

(due to Case 4 condition that
P2

i=1 ti +
P2

i=1 tei � p3) for j = 1; :::; n � 2; and that Sm3n =
Sm3;n�1+ te2+ t2 � Cm3;n�1 = Sm3;n�1+ p3 (due to the fact that t2+ te2 � maxfp2; p3g), implies
that there are no overlaps between processing of jobs in any machine. Moreover, the fact

that Cm11 = Sr11 = p1; that Cm1j = jp1 < Sr1j = p1 + t1 + te1 + (j � 2)(
P2

i=1 ti +
P2

i=1 tei)

for j = 2; :::; n (since t1 + te1 � p1 and
P2

i=1 ti +
P2

i=1 tei � p1); that Cr11 = p1 + t1 = Sm21;
that Cr1j = p1 + 2t1 + te1 + (j � 2)(

P2
i=1 ti +

P2
i=1 tei) = Sm2j for j = 2; :::; n; that Cm21 =
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p1 + t1 + p2 � Sr21 = p1 + 2t1 + te1 (since t1 + te1 � p2); that

Cm2j = p1 + 2t1 + te1 + (j � 2)(
2X
i=1

ti +

2X
i=1

tei) + p2 �

Sr2j = Sm2;j+1 = p1 + 2t1 + te1 + (j � 1)(
2X
i=1

ti +

2X
i=1

tei)

for j = 2; :::; n� 1 (since
P2

i=1 ti +
P2

i=1 tei � p2); that

Cm2n = p1 + 2t1 + te1 + (n� 2)(
2X
i=1

ti +

2X
i=1

tei) + p2 � Sr2n = Sm3;n�1 + te2 = Sm2n + t2 + te2

= p1 + 2t1 + te1 + (n� 2)(
2X
i=1

ti +
2X
i=1

tei) + t2 + te2

(since t2 + te2 � p2); that Cr2j = Sm2;j+1 + t2 = Sm3;j for j = 1; :::; n � 1; and that Cr2n =
Sm3;n�1 + te2 + t2 = S

m
3n, implies that there is no overlap between processing and transferring

operations of job Jj for j = 1; : : : n. Thus, Condition 1 holds.

Once job J1 is completed on M1, the robot moves this job to M2 during time interval

[p1; p1 + t1] and returns empty to M1 during time interval [p1 + t1; p1 + t1 + te1]. Then, for

j = 2; :::; n, the robot moves Jj from M1 to M2 during time interval [p1 + t1 + te1 + (j �
2)(
P2

i=1 ti +
P2

i=1 tei); S
r
1j + t1]. This move is followed by the move of job Jj�1 from M2 to

M3 during time interval [Sr2j; C
r
2j] = [S

m
2;j+1; S

r
2j + t2], which is followed either by an empty

move to M1 during time interval [Sm3j ; S
m
3j +

P2
i=1 tei] if j = 1; :::; n� 2, or by an empty move

to M2 during time interval [Sm3;n�1; S
m
3;n�1 + te2] if j = n� 1: Lastly, the robot moves job Jn

from M2 to M3 during time interval [Sm3;n�1 + te2; S
r
2n + t2]. The fact that

p1+ t1+ te1+ (j � 2)(
2X
i=1

ti+
2X
i=1

tei) + t1 = S
m
2;j+1 = p1+2t1+ te1+ (j � 2)(

2X
i=1

ti+
2X
i=1

tei)

for j = 2; :::; n; that Cr2j = S
m
2;j+1 + t2 = S

m
3j ; and that

Sm3;n�2 +
2X
i=1

tei = Sm2;n�1 + t2 +
2X
i=1

tei = p1 + 2t1 + te1 + (n� 3)(
2X
i=1

ti +
2X
i=1

tei) + t2 +
2X
i=1

tei �

Sm3;n�1 = Sm2n + t2 = p1 + 2t1 + te1 + (n� 2)(
2X
i=1

ti +
2X
i=1

tei) + t2;
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implies that there is no overlap between robot operations. Thus, Condition 2 holds.

The fact that Cm11 = Sr11 = p1, and that Cm1j = jp1 < Sr1j = p1 + t1 + te1 + (j �
2)(
P2

i=1 ti +
P2

i=1 tei) for j = 2; :::; n (since t1 + te1 � p1 and
P2

i=1 ti +
P2

i=1 tei � p1),

implies that job Jj is ready to move from M1 to M2 at time Sr1j. Moreover, the fact that

Cm21 = p1 + t1 + p2 � Sr21 = p1 + 2t1 + te1 (since t1 + te1 � p2), and that

Cm2j = p1 + 2t1 + te1 + (j � 2)(
2X
i=1

ti +

2X
i=1

tei) + p2 � Sr2j =

Sm2;j+1 = p1 + 2t1 + te1 + (j � 1)(
2X
i=1

ti +

2X
i=1

tei)

for j = 2; :::; n� 1 (since
P2

i=1 ti+
P2

i=1 tei � p2), implies that job Jj is ready to move from
M2 to M3 at time Sr2j. Thus, Condition 3 holds as well.

It is implied from the feasibility of Schedule 4.1 that the completion time of job n on M3

is at time

Cm3n = Sm3;n�1 + te2 + t2 + p3 = S
m
2;n + t2 + te2 + t2 + p3 =

p1 + 2t1 + te1 + (n� 2)(
2X
i=1

ti +
2X
i=1

tei) + t2 + te2 + t2 + p3

= p1 + n
2X
i=1

ti + (n� 1)
2X
i=1

tei + p3:

The fact that this time matches the lower bound in (4) implies that this Schedule 4.1 is

optimal for subcase 4.1.

9.4.2 The analysis of subcase 4.2

We leave the analysis of this subcase to future research.
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9.5 Examples and illustrations for the robot selection and schedul-

ing problem

9.5.1 Single robot scheduling

An example of the robot move sequences of Hurink and Knust [38] for n = 6 and

m = 4 is illustrated in Figure 23 , with empty return moves shown in bold.

Figure 23: Illustration of a feasible robot schedule with m=4 and n=6.

The building-up phase in the illustrated example includes three sequences of moves (see

�rst three robot sequences at the bottom of Fig. 23), where in the �rst sequence, a1, the robot

perform operation (J1;M1), and J2 completes on M1. In the 2nd sequence, a2, the robot

perform operations (J2;M1) and (J1;M2), and then J3 completes onM1. In the last sequence,

a3, within this phase the robot perform operations (J3;M1); (J2;M2) and (J1;M3); and then

J4 completes on M1. The identity phase in the example includes two sequences of moves,

where in the �rst sequence the robot perform operations (J4;M1); (J3;M2); (J2;M3), and then

J5 completes onM1. In the second sequence the robot perform operations (J5;M1); (J4;M2)

and (J3;M3), and then J6 completes on M1. The building-down phase in the illustrated

example includes three sequences of moves, where in the �rst sequence, ba1, the robot perform
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operations (J6;M1); (J5;M2) and (J4;M3), and then J6 completes on M2. In the second

sequence, ba2, the robot perform operations (J6;M2) and (J5;M3), and then J6 completes on

M3. The robot schedule ends with sequence ba3 where the robot perform operation (J6;M3).

9.5.2 An illustration of the polynomial reduction

Given a set of six machines (m = 6) and three di¤erent robot types (Q = 3). The trans-

portation times and empty return times from each machine to the other and the cost of each

robot type are given in Table 9 and p = 10.

q t1q t2q t3q t4q t5q te1q te2q te3q te4q te5q �q
1 2 3 1 3 2 1 2 1 1 2 10
2 4 6 3 5 3 2 3 2 2 2 5
3 3 4 2 5 3 1 2 2 2 2 7

Table 9: Numerical Data

According to the polynomial reduction appearing within the proof of Theorem 2, con-

struct a multigraph that includesN = m = 6 nodes (each of which represent a single machine

in the production line). Furthermore, for any combination of a robot type q (q = 1; 2; 3)

and machines Mu and Mv (1 � u � 5 and u + 1 � v � 6), if
Pv�1

i=u(tiq + teiq) � p,

include an arc (u; v)q in the set E which is directed from u to v and corresponds to the

feasible assignment of a robot of type q to serve machines Mu; :::;Mv. The arc included

in set E has length as given by eq. (54) and weight as given by eq. (55). To illustrate

this procedure consider robot type q = 1 and machines Mu = M2 and Mv = M4. SincePv�1
i=u(tiq + teiq) =

P3
i=2(tiq + teiq) = (3 + 2) + (1 + 1) � p = 10, include an arc (2; 4)1 in set

E. According to eqs. (54) and (55), the length of this arc is
P3

i=2 ti1 = 3 + 1 = 4 and its

cost is simply �1 = 10. As an additional example, consider robot type q = 2 and machines

Mu =M3 and Mv =M5. Since
Pv�1

i=u(tiq + teiq) =
P4

i=3(ti2 + tei2) = (3 + 2) + (5 + 2) > p ,

do not include arc (3; 5)2 in set E. Fig. 24 illustrates the resulting multigraph.
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Figure 24: The Multigraph for the numerical example.

9.5.3 An illustration of the implementation of Algorithm 3

Following the numerical example in Appendix 9.5.2, in Steps 1� 3 of Algorithm 3 construct
the simple directed acyclic graph, G(V ;E) from the multigraph G(V;E) that is illustrated

in Fig. 24. In the construction, the weight of each arc is calculated by (56) and then replace

a set of arcs connecting the same nodes with a single arc which corresponds to the minimum

weight. For example, in Fig. 24 there are three arcs connecting nodes 1 and 2 with weights

of 9; 13 and 10. Thus, in G(V ;E) a single arc with a length of 9 is included. The resulting

directed acyclic graph is illustrated in Fig. 25.

Figure 25: The simple graph for the example.
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In Step 4, the recursion in (58) for v = 1; : : : ; 6 is applied with the initial condition

G1 = 0, and obtain G6 = 30 as the length of the shortest path in G(V ;E). The internal

vertices of the shortest path are l1 = 1, l2 = 3 and l3 = 6. Accordingly, a robot of type q(1;3)
= 3 is assigned to serve machine set M1 = fM1;M2;M3g and robot of type q(3;6) = 1 to

serve machine setM2 = fM3;M4;M5;M6g.

9.5.4 An illustration of the implementation of Algorithm 7

To illustrate Algorithm 7, consider an instance similar to the numerical example in Appendix

9.5.2, with a single di¤erence that is only includes robots of type 1 (i.e., robots of types 2 and

3 are not available here). In the initialization stage, set l1 = 1 and j = 1. Then, in the �rst

iteration of Steps 1 and 2, a1 = arg max
v=2;:::;m+1

�Pv�1
i=1 (ti + tei)

��Pv�1
i=1 (ti + tei) � 10

	
= 4, and

thus set l2 = a1 = 4 and assign a robot to machine set fM1; :::;M4g. At the second iteration
of Steps 1 and 2, a4 = arg max

v=5;:::;m+1

�Pv�1
i=4 (ti + tei)

��Pv�1
i=4 (ti + tei) � 10

	
= 6, and thus set

l2 = a1 = 6 and assign a robot to machine set fM4; :::;M6g. Since l2 = m, all machines are
covered and the algorithm ends.
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9.6 RA and RR RL collaboration pseudo-code

RA RL collaboration pseudo-code
Input : n, m, IM or NIM, [ti;�], [tei;�], �E, X, Temp (constant or dynamic).

Step 1. Initialize Q(s; a) = 0 for a learning session (i.e. j �Ej episodes learning)
Step 2. Repeat (for each learning episode �Ei i = 1; :::; �E):

Initialize state st as starting state st = [2; 1; :::; 1] and t1

Repeat (for each step of episode):
Calculate " (eq. 69)

if Sample from U~[0; 1] < "

Perform Random action

else

Calculate Qt(s; a) (eq. 70) for feasible actions

Perform Greedy action, i.e. maxQt(s; a)

End if

Update at, Qt(s; a), st+1 and System transition time tt+1

using � (eq. 67)

Until a stopping condition (i.e. reached goal state - S �T )
if number episode learning i > X

Calculate Cave (eq. 71)

If Cave > Ĉmax and Adviser is Not Discarded

Collaborate Adviser (i.e., Perform RL algorithm

using Softmax Action Selection)

if Cmax(adviser) < Ĉmax
Perform Adviser Advice (Schedule)

and Update Qt(s; a)
End if

Update Ha (eq. 72)
Evaluate Adviser Expertise and
Update Discard or Keep Adviser?
else

if Cave < Ĉmax then Update Ĉmax = Cave
End if

End if

At end of E1Update Ĉmax = Cmax( �E1)
Until a stopping condition (desired number of learning episodes j �Ej)
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RR RL collaboration pseudo-code
Input : n,m, IM orNIM, IR orNIR (IRT or NIRT), [pi;�], [ti;�], �E,X, B.

Step 1. Initialize Q1(s; a) = Q2(s; a) = 0 for a learning session (i.e. j �Ej episodes learning)
Step 2. Repeat (for each learning episode �Ei i = 1; :::; �E):

Initialize state st as starting state st = [2; 1; :::; 1]

and t1 = min(� 1; � 2)

Repeat (for each step of episode):
For Rk (k = 1; 2) with min(� 1; � 2)

Calculate " (eq. 69)

if Sample from U~[0; 1] < "

Perform Random action

else

Calculate Qt(s; a) (eq. 70) for feasible actions

Perform Greedy action, i.e. maxQt(s; a)

End if

Update Qk;t(s; a) (eq. 70), ak;t+1, st+1, � k = �+ ti ( � eq. 67)
and System transition time tt+1 = min(� 1; � 2)

Until a stopping condition (i.e. reached goal state - S �T )
if number episode learning i > X

Calculate Cave (eq.77)

If Cave > Ĉmax
For Full / Push / Pull Activate Collaboration mode
For None Stay in Autonomous mode

else

Activate Autonomous mode
Update Ĉmax = Cave

End if

End if

if learning episode / collaboration resulted Cmax( �E1) < Ĉmax
For all Qt(s; a) visited during the learning episode:

Update Q1;t(s; a) Q1;t(s; a) +B

Update Q2;t(s; a) Q2;t(s; a) +B

End if

At end of �E1Update Ĉmax = Cmax( �E1):

Until a stopping condition (desired number of learning episodes j �Ej)
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