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Abstract
This thesis provides contributions to improve an autonomous harvesting robot’s operational
aspects, focusing on dynamic sensing and planning, leading to improved performance –
increased detection and reduced cycle times. These gaps have been identified as major
bottlenecks in the economic feasibility of current robotic harvesters. Four challenges have
been addressed to optimize the system’s performance – detectability and viewpoints analyses,
dynamic sensing, task sequencing and fruit approaching. The case study of autonomous
sweet-pepper harvesting has been selected for demonstration. All challenges are addressed
using data acquired through a methodological acquisition of greenhouse data developed as
part of this thesis. Using this methodology large datasets have been gathered in cooperation
with other researchers as part of the EU Horizon 2020 SWEEPER project in which the results
of this research has been partially implemented.

Detectability and multiple viewpoints modelling. Statistical models for fruit detectability
were developed to provide insights into preferable variable configurations for better robotic
harvesting performance. The modelling enables to identify how many peppers can be detected
from a single sensing operation (viewpoint) or a combination of viewpoints. The methodology
includes several steps: definition of controllable and measurable variables, data acquisition
protocol design, data processing, definition of performance measures, and statistical modelling
procedures. Given the controllable and measurable variables, a data acquisition protocol is
defined to allow adequate variation in the variables, and determine the dataset size to ensure
significant statistical analyses. Performance measures are defined for each combination of
controllable and measurable variables identified in the protocol. Descriptive statistics of the
measures allow insights into preferable configurations of controllable variables given the
measurable variables’ values. The statistical model is performed by back-elimination Poisson
regression with a loglink function process. Spatial and temporal analyses are performed. The
methodology was applied to develop statistical models for sweet pepper (Capsicum annuum)
detectability revealing best viewpoints. 1312 images acquired from 10 to 14 viewpoints for
56 scenes were collected in commercial greenhouses, using an eye-in-hand configuration of a
6-DOF manipulator equipped with an RGB sensor and an illumination rig. Three databases
from different sweet-pepper varieties were collected along different growing seasons. The
conclusions were that target detectability greatly depends on the imaging acquisition distance
and the sensing system tilt. A minimum of 12 training scenes are necessary to discover the
statistically significant spatial variables. Better prediction was achieved at the beginning of
the season with slightly better prediction achieved in a temporal split of training and testing
sets.

Adaptive and dynamic sensing. Since each sensing operation costs time, the number of
sensing operations must be minimized to ensure reduced cycle times. Dynamic sensing
strategies were developed to improve detection results for a pepper harvesting robot. The
algorithm decides if an additional viewpoint is needed and selects the best-fit viewpoint
location from a pre-defined set of locations based on the predicted profitability of such an
action. The suggestion of a possible additional viewpoint is based on image analysis for fruit
and occlusion level detection, prediction of the expected number of additional targets sensed
from that viewpoint, and final decision if choosing the additional viewpoint is beneficial. The

xix



developed heuristic was applied on 96 greenhouse images of 30 sweet peppers and resulted
in up to 19% improved detection. The harvesting utility cost function decreased by up to 10%
compared to the conventional single viewpoint strategy.

Task sequencing. Given the decision on an additional viewpoint and its location, received
from the dynamic sensing algorithm, the planner decides on how to sequence the sensing
operation with the harvesting tasks in a time efficient manner. Planning the sequence of
harvesting and sensing tasks is achieved using the traveling salesman paradigm by considering
the costs of the sensing and harvesting actions along with the traveling times. The developed
methodology is validated and evaluated in both laboratory and greenhouse conditions for a
case study of a pepper harvesting robot. The results indicate that planning the sequence of
tasks for a sweet pepper harvesting robot can reduce travel costs on average by 12% compared
to currently used ordering heruristics.

Fruit approaching. After detecting the fruit, it must be approached for harvesting. Robotic
harvesters that use visual servoing must choose the best direction from which to approach the
fruit to minimize occlusion and avoid obstacles that might interfere with the detection along
the approach. This work proposes different approach strategies, compares them in terms of
cycle times, and presents a failure analysis methodology of the different approach strategies.
The different approach strategies are: in-field assessment by human observers, evaluation
based on an overview image using advanced algorithms or remote human observers, or
attempting multiple approach directions until the fruit is successfully reached. In the latter
approach, each attempt costs time. Alternatively, a single approach strategy that only attempts
one direction can be applied if the best approach direction is known a priori. The different
approach strategies were evaluated for a case study of sweet pepper harvesting, in laboratory
and greenhouse conditions. The first experiment, conducted in a commercial greenhouse,
revealed that the fruit approach cycle time increased 8% and 116% for reachable and
unreachable fruits, respectively, when the multiple approach strategy was applied, compared
to the single approach strategy. The second experiment measured human observers’ ability to
provide insights to approach directions based on overview images taken in both greenhouse
and laboratory conditions. Results revealed that human observers are accurate in detecting
unapproachable directions while they tend to miss approachable directions.

Automatic data acquisition protocols. Automatic data acquisition protocols were developed
to supporting development and evaluation of the four main challenges. The data collected in
the thesis served as a basis for algorithm development and validation, and has been partially
released to the public to use as part of the H2020 SWEEPER project data management plan.

Keywords: autonomous harvesting; agricultural robots; robotic harvesters; dynamic sensing;
adaptive sensing; approach planning; task planning; sweet pepper,agricultural databases;
viewpoint;
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1Introduction

„There can be economy only where there is efficiency.

— Benjamin Disraeli
(Former British Prime Minister)

Current state of the art in autonomous harvesting robotics has demonstrated proof of concept
in field conditions with operational feasibility achieved [Pitla, 2018; Blackmore, 2016; Bac
et al., 2014b]. The goal set by researchers in the early 90’s of solving the whole loop
needed for successful robotic harvesting – crop detection, maturity evaluation, reaching
the fruit, grasping and detaching it [Sarig, 1993] - has been accomplished for many case
studies. Several of those robots (e.g., [McCool et al., 2016; Sa et al., 2016; Bac et al., 2014b;
Hemming et al., 2014a; Kamilaris & Prenafeta-Boldú, 2018; Bac et al., 2017; Han et al.,
2012; van Henten et al., 2002]) have presented very advanced capabilities, bringing the day
where autonomous harvesting robots will be available on the market closer than ever. Several
recent publications predict vast penetration of robotics into the agricultural field [Duckett
et al., 2018; Pitla, 2018; Shamshiri et al., 2018]. These predictions impose that it is no longer
enough to address the feasibility of the technologies, but these robots should be improved to
perform quickly and efficiently. New building blocks must be approached to bring commercial
profit to the growers and thereby lead to market penetration [Blackmore, 2016].
This thesis focuses on some of these blocks aiming to improve the performance of current
autonomous harvesters. The main gap addressed in this thesis is improving the robot’s opera-
tional aspects, focusing on adaptive sensing and planning leading to improved performance –
increased detection and reduced cycle times. These have been identified as major bottlenecks
in the economic feasibility of current harvesters [Bac et al., 2014b].
Current robotic harvesters work hierarchically in a sense-plan-act paradigm [Kim et al., 2005;
Murphy, 2000]. The dynamically changing agricultural environment is unstructured [Bac
et al., 2014b] and with three types of variation: variation of the object within the crop,
the environmental variations, and variation between different types of crops [Bac et al.,
2014b]. One way to overcome these problems is by shifting the paradigm into an operational
flow where sensing and planning are interconnected and continuously repeated until an
action is performed, by incorporating dynamic and adaptive sensing and task planning. This
thesis proposes adaptive sensing and planning strategies and algorithms to overcome the
uncertainties that are formed by the unstructured and highly variable conditions. Specifically
this thesis focuses on the following four challenges: detectability and viewpoints analyses,
adaptive/dynamic sensing, task sequencing and fruit approaching. Some of the solutions in-
clude development of new algorithms and techniques, while others deal with implementation
and adaptation of methods used in other domains to agricultural robotics.
Since most agricultural domains are unstructured, robotic performance must be evaluated for
a variety of crop conditions [Edan & Miles, 1994]. Therefore, to evaluate the performance of
the algorithms as well as for their development, large datasets were acquired. To achieve this,
autonomous robotic acquisition protocols were developed.
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To demonstrate the applicability in real world conditions, the case study of autonomous sweet-
pepper harvesting has been selected. The results have been partially implemented as part of
the EU HORIZON 2020 SWEEPER project1, aiming to bring a sweet pepper harvesting robot
to the market. The results were published in four reviewed publications (two journal publica-
tions and two conference proceedings) and presented in three international conferences as
detailed in the publication list (p. xxi). The developed methods, with some adjustments, can
be applied to other harvesting robots, as described in the conclusions (Chapter 8).

1.1 Problem formulation
A robot, in general, has three functional components [Kim et al., 2005; Murphy, 2000]:
sensing, planning, and acting. Several robotic paradigms were developed during the years
to describe the relation between these three components [Murphy, 2000]. The hierarchical
(deliberative) paradigm assumes that the robot operates top-down in a sequential mode,
relying heavily on planning: the robot senses the world, plans the next action, and then acts.
The reactive (behavior-based) and hybrid paradigms have been developed to tie together
these functional components [Murphy, 2000]. The reactive paradigm assumes that actions
are linked directly to sensing without planning them, while the hybrid paradigm assumes
that the global tasks are planned and divided into sub-tasks that may be solved in a reactive
manner.
As noted, the current practice for agricultural robots to date is the sense-plan-act paradigm.
This thesis aims to tie together the sensing and acting functional components via dynamic
sensing and task planning, a practice that has been developed for robots dealing with dynamic
environments. While not proposing a new paradigm, the proposed algorithms focus on the
ability to plan the sensing actions in a dynamic manner for agricultural harvesting robots.
Planning of the sensing tasks is achieved by evaluating the costs of sensing in relation to their
contribution to the overall performance. This planning contributes to improved detection
while taking into account cycle times to ensure improved performance.
For simplicity, let us consider the following example. A robotic harvester has performed a
sensing operation in which n targets were detected. The sensing action is completed and
this information has been transferred to the planner. Current existing robotic harvesters that
operate in a hierarchal/sequential manner would prioritize one of the fruits based on some
sequencing mechanism and plan an approach and harvest action for that fruit and then move
back to the sensing location to search again for the remaining n−1 fruits. Some harvesters will
attempt to harvest the remaining n−1 fruits without sensing again by planning a harvesting
sequence for all n fruits together. Now, let’s assume a more advanced planner, which is
based on previous knowledge of similar scenes. Based on this knowledge it can assume
that m additional fruits have not yet been detected. Based on the hierarchical paradigm
the planner will attempt to find them in the next sensing operations only after all first n
fruits are harvested. The proposed dynamic paradigm (Figure 1.1) executes the additional
sensing operation to be performed before an action is taking place, i.e., it plans the sensing

1http://www.sweeper-robot.eu
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while performing the action. This planning is dependent on the scenario, hence requiring
dynamic response from the robot. In the described example a planner may decide to perform
an additional sensing immediately or after harvesting some of the targets, depending on their
locations and on the actual number of fruits detected in each sensing operation.
The proposed operation flow (Figure 1.1) imposes the following new challenges which are
the main contributions of this thesis (Chapters 4-7):

• Detectability and multiple viewpoints modeling. To be able to identify how many
peppers can be detected from a single sensing operation (viewpoint) or a combination
of viewpoints, modeling of detectability is required. Most harvesters are equipped with
a RGB sensor placed on the robotic manipulator in an eye-in-hand configuration for
fruit detection. Current best reported results are 87% detection rate with a false alarm
rate of 3.8% [Kamilaris & Prenafeta-Boldú, 2018; Vitzrabin & Edan, 2016a; Bac et al.,
2014b]. These performance measures are calculated using annotation where the labels
are used as a benchmark for the algorithm evaluation. However, the annotation of a
single image is not a sufficient benchmark for ground truth evaluation – the actual
number of objects within the scene. For example, a scene containing 2 fruits, one fully
visible on the image and one occluded by a leaf will be annotated by only segmenting
the visible pepper. A detection algorithm that will be able to detect the labeled pepper
but not the occluded one will yield a detection rate of 100%, but in reality only 50% of
the peppers have been detected. Previous research [Hemming et al., 2014b; Bulanon
et al., 2009] revealed that only about half of the fruit present in the field of view are
visible from a single viewpoint. Hence, multiple viewpoints are necessary to overcome
the detection rate bottleneck limiting harvesting performance. This thesis addresses a
more profound analysis of fruits visible from each viewpoint, and the characteristics
of the preferable viewpoints needed (Chapter 4), resulting in a new methodology
for visibility analyses. The methodology is based on intensive data acquisition used
for development and validation, as apposed to previous research which was done on
limited manually acquired datasets.

• Dynamic and adaptive sensing. Given the understanding that often more than a sin-
gle viewpoint is needed to increase overall detectability, one would suggest an infinite
number of viewpoints to reach maximum detectability. This would have been possible
in a non-resource constraint environment where the time given to the robot to detect
a fruit is infinite. In a more realistic scenario, where the harvesting cycle time is a
major bottleneck preventing commercialization of harvesting robots [Bac et al., 2017;
Elkoby, 2016; Elkoby et al., 2014], the number of viewpoints should be limited, and the
location of the next viewpoint should be carefully calculated so as to select viewpoints
that provide maximum detectability is applied.
With the general guidelines of preferable viewpoints or combinations of viewpoints,
gathered in the detectability analysis, the planner must decide if an additional viewpoint
is needed based on the information retrieved from the first sensing operation in the
first viewpoint. Then, the cost of an additional viewpoint must be weighed against the
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predicted profit from sensing additional targets and the location from which to make
another sensing operation must be derived. In this challenge active sensing methods
are introduced to the agricultural robotics domain while developing novel information
content measures that are most suitable to the proposed environment (Chapter 5).

• Task sequencing. Given the decision on an additional viewpoint and its location,
received from the adaptive sensing algorithm, the planner must decide how to sequence
the sensing operation with the harvesting tasks in a time efficient manner. Since the
robotic arm is equipped both with the sensors and the harvesting tool, both the sensing
and the harvesting operations require traveling of the robotic arm between locations
of sensing viewpoints and sensed targets. Reduction of the travel time required can
significantly reduce the harvesting cycle time. Therefore, the third challenge of this
thesis addresses the sequencing optimization problem. It aims to minimize the overall
cycle time by optimizing the sequence of sensing operations and targets to be visited
based on their spatial locations (Chapter 6).

• Fruit approaching. The first viewpoint from which a detection is performed is typically
done from an overview location from where several plants are visible. Once a target is
detected, approaching the fruit when eye-in-hand cameras are used is often divided
into two steps [Barth et al., 2016]. The first step involves moving from the overview
location to an approach location where a single fruit is centered in the image. The
second step uses visual servoing [Barth et al., 2016; Chang, 2007] to move towards
the fruit until it is reached and is necessary to continuously refine the fruit position
detected from the overview image. Given the complexity of the environment and the
continuous detection required when using visual servoing, there is a high risk of losing
the fruit along the approach. Therefore, it is important to approach the fruit from an
approach location where the fruit is not occluded by leaves and other obstacles along
the approach. The fourth challenge addressed in this thesis (Chapter 7) deals with
evaluation of different strategies for fruit approaching.

The main common thread tying together these challenges is the need to plan the sensing ac-
tions to reach optimal detectability in minimum time (minimal arm movements). With
each sensing action, detectability increases; however, with extra arm movement harvesting
cycle time also increases and the profitability of the robot decreases. On the other hand, with
each undetected fruit the efficiency of the robot decreases and so does its profitability.
To enable the development of all four challenges real-world data had to be acquired. Beyond
the importance of validating algorithms and evaluating performance in real field conditions
and on real world [Edan et al., 2000] the agricultural domain places extra benchmarking
challenges due to the high variability and limited repeatability available [Edan & Miles, 1994].
Therefore, performance must be evaluated on a wide range of conditions and based on a
statistical analysis [Edan & Miles, 1994] requiring large amounts of data. Protocols for
automated data acquisition in greenhouse conditions are described in Chapter 3.2 and are a
major contribution essential for all the algorithms development.
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Figure 1.1: Autonomous pepper harvester sensing-planning-acting paradigm breakdown and
the defined challenges.
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1.2 Research objectives
This thesis outlines the following research objectives corresponding to the above noted
challenges:

• RO1: Statistical evaluation of detectability from a combination of viewpoints to
provide insights into characteristics of best viewpoints.
– RQ1.1: What are the static best characteristics of a sensing viewpoint for sweet

pepper harvesting? Are there any at all?
– RQ1.2: How do the preferred viewpoint characteristics change along the season,

growing conditions, cultivation techniques, and varieties?
– RQ1.3: What methodologies should be applied to perform a similar analysis for

different crop variety/conditions?
– RQ1.4: What is the minimal dataset needed for dynamic learning of best viewpoint

characteristics for a given setting?
– RQ1.5: Are there temporal relations between subsequent plants along the row in

terms of detectability and best viewpoint characteristics?
• RO2: Development of an dynamic sensing algorithm that will predict the need

for an additional viewpoint and its location.
– RQ2.1: How should information content of a viewpoint be measured?
– RQ2.2: How to predict the overall number of peppers in the scene based on informa-

tion gathered from one viewpoint?
– RQ2.3: How to make a profitable decision on another viewpoint?
– RQ2.4: Where should an additional viewpoint be placed? How is the location

dependent on the information extracted from the first viewpoint?
• RO3: Compare different strategies of harvesting and sensing sequencing.

– RQ3.1: How to calculate traveling distance/cost function given a robot configuration?
– RQ3.2: What is the travel time decrease if optimization is introduced in the described

conditions with full a priori knowledge of target locations?
– RQ3.3: How should unknown locations be treated in planning of a harvesting

sequence?
• RO4: Compare different approach strategies.

– RQ4.1: What is the value of knowing the approach direction vs searching for it?
– RQ4.2: Can humans identify an approachable direction?
– RQ4.3: What common failures occur during fruit approach in visual servoing?

To evaluate all above research objectives in real world scenarios the case study of autonomous
sweet-pepper harvesting was selected for demonstration. All challenges were addressed
using data acquired through the following research objective which provided the basis for
evaluation of all research objectives:

• RO5: Data collection protocols in agricultural settings and collection of large
agricultural databases.
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1.3 Innovation and contribution
Autonomous robotic harvesters are now on a verge between proof-of-concept products to
machinery that can actually enter the market. Addressing optimization problems that shorten
the harvesting cycle time and increase detectability rate is a “hot topic” that is in its first
steps of development [Blackmore, 2016]. The idea of planning the sensing actions in order
to achieve these two goals is the main innovation and contribution of this thesis. The thesis
provides new solutions to several challenges that have not been approached or have been
approached in very limited contexts in the scientific literature of agricultural robotics – all
related to adaptive sensing and planning. The specific gaps this thesis addresses are noted in
Table 1.1.
Specifically, this thesis contributes with the following innovations. First, for developing
and evaluating algorithms real world data is needed. This is especially important in the
unstructured agricultural environment due to the high variability and limited repeatability
available [Edan & Miles, 1994]. Therefore, performance must be evaluated on a wide range
of conditions and based on a statistical analysis requiring large amounts of data. A common
practice for R&D of complicated problems is the acquisition of a large database (e.g., Labelme
[Russell et al., 2008]). These datasets enable to advance algorithms development [Sa et al.,
2016; Kapach et al., 2012] and provide a benchmark for evaluating new algorithms. To
the best of our knowledge, to date there is no large dataset available for R&D dealing with
agricultural objects in the greenhouse environment. A major reason for the limited data
is the manual acquisition protocols applied that require tedious high labor demands. In
this thesis we developed and implemented an automatic data acquisition protocol (Section
3.2). The thesis is based on field experiments that include a robotic arm operating in the
greenhouse; as result of the automatic data acquisition a considerable number of labeled
images were collected and made available to the public as part of the data management
plan of the SWEEPER project2. The collected data has been used in each of the algorithms
developed as described in Chapters 4-7 and serve an important basis for evaluating the
algorithms developed on real world data.
Second, the question of detectability from a single or multiple viewpoints has been limitedly
covered before [Hemming et al., 2014b; Bulanon et al., 2009]. Previous research analyzed
single viewpoint detection rate (number of fruits visible from a viewpoint with ideal detection
algorithm due to occlusions) for peppers [Hemming et al., 2014b] and citrus plants [Bulanon
et al., 2009]. Their conclusions were based on a limited amount of data due to manual
acquisition, and in un-generalized conditions (all were collected in the same greenhouse,
same variety, single repetition in a specific growing season). This thesis (Chapter 4) introduces
a statistical methodology for analysis of viewpoint data on a larger dataset that includes
variability in season, growing conditions, and varieties. It also includes analysis of sequential

2The specific acquisition protocol has been designed specifically for the data collection required for
this thesis and was conducted by me for the datasets analyzed in this thesis; the actual databases
are a combined effort of several researchers in this project - it required special programming of the
robotic and imaging systems; all databases noted in this thesis have been collected by me (with
technical support of others).
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temporal relations that has not been addressed in previous studies. The contribution of the
analysis is not only in drawing conclusions for the conditions described, but also in providing
a methodology for future similar analysis by automating the procedure, which allows a larger
dataset to be analyzed in a relatively fast manner. The results have been published in the
Journal of Biosystems Engineering [Kurtser & Edan, 2018a].
Third, integration of dynamic sensing into the domain of agricultural robotics has not been
previously considered in any of the literature reviewed. Dynamic and adaptive sensing
methodologies have been explored in other domains in highly predictable environments
where the sensing is based on heavy modeling of the environment (see more details in
background section in Chapter 5.1). The lack of such a model, or the ability to develop one,
as was shown in the statistical analysis in Chapter 4 [Kurtser & Edan, 2018a], limits the
ability to use the standard measures of information content often used in dynamic sensing
[Vázquez et al., 2002; Vázquez et al., 2001; MacKay, 1992; Bajcsy, 1988]. Furthermore, the
vast majority of general dynamic sensing literature, providing methodologies for adaptive
and dynamic sensing, overlooks the question of resource allocation and the cost of additional
sensing. Since each sensing operation takes time (mostly due to arm movements to the
new sensing location) and therefore prolongs the overall harvesting cycle time (Section 2.3),
the challenge of dynamic sensing should also consider these sensing costs. The algorithms
developed in Chapter 5 address both described challenges – the measurement of information
content in the dynamic agricultural setting and the implementation of sensing costs for
the dynamic decision support of an additional sensing operation. These are both new for
agricultural harvesting robots. These results have been published in the Proceeding of the
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018)
[Kurtser & Edan, 2018b].
Fourth, the application of operations research (OR) methodologies in the agricultural domain
has been traditionally applied for improving logistics of greenhouse management (e.g., alloca-
tion of workers, heavy machinery, cycles of operations; see Section 2.4), but has not yet been
considered in the autonomous harvesting process. The first contribution in this domain has
been in the application of harvesting sequencing optimization using methodologies developed
for solving the traveling salesman problem (Section 2.4). This includes development of
suitable utility functions that describe the cost of travel between two points by a robotic
harvester and evaluation of their performance. The development of a task planning algorithm
that deals with sequencing of the sensing and harvesting tasks is addressed in Chapter 6. This
research is underway to be submitted to a robotics journal.
A fifth contribution is related to the question of motion planning in robotic arm operation,
which has been vastly explored in the general robotics literature with new algorithms appear-
ing on a regular basis. These algorithms assume perfect knowledge of the location of the
target to be reached and the obstacles in the scene are either known a priori or constantly
sensed. In the cases where the targets’ locations are not accurately known, a visual servoing
mechanism [Barth et al., 2016] is applied where the fruit is being re-detected over and over
again, adjusting its location until reached. Since the redetection is not necessarily performed
from the location where the fruit has been detected in the first instance, there is a chance
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of losing the fruit if it has been approached from an occluded direction. This thesis focuses
on determining the correct approach direction. Strategies of approach direction determi-
nation are described in Chapter 7, including repetitive search and inclusion of a human in
the loop. The results have been published in both a conference proceeding and a journal
publication3[Ringdahl et al., 2018; Ringdahl et al., 2017].
All the above developments have been applied to real field data from the HORIZON 2020
SWEEPER project [Horizon 2020 SWEEPER 2015-2018] with some of the conclusions also
partially implemented in the operational system. The data was collected with protocols
defined as part of this thesis (described in Section 3.2); these protocols can be applied for
collecting data for additional crops and evaluating the developed algorithms.

1.4 Thesis Structure
Chapter 2 outlines the background supporting the claims made in the introduction and
a general literature review of the state of the art in the relevant fields for the proposed
questions. Chapter 3 describes the common methods used to meet the challenges defined
in the research objectives section (Section 1.2) including the data acquisition protocols and
the availability of the gathered data. Chapters 4-7 describe each of the algorithms developed
(detectability analysis; dynamic sensing; task planning; and fruit approaching). Each of
Chapters 4-7 are published or submitted papers. Hence, each chapter is independent and
includes background, methods, results, and conclusions sections. As a result there is some
repetition in the introduction sections and some of the literature review in this thesis. Chapter
8 describes the overall conclusions drawn from this research, and suggestions how to adapt
the methodologies to other crops and environments along with recommendations for future
work.

3The idea to evaluate different approach strategies was my contribution, the specific strategies
proposed and their implementation were a collaborative effort advanced in several iterations.
Advanced development of software for the robotic manipulator was necessary to validate the
proposed strategies. This was conducted mainly by the first author who was the project software
integrator. I was involved in the software implementation throughout the process (design and
implementation). The experimental design and data analysis were performed by me, while the
field experiments and paper writing were a collaboration.
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Table 1.1: List of gaps that are addressed in this thesis.
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2Background

„The chances of finding out what’s really going on in
the universe are so remote, the only thing to do is
hang the sense of it and keep yourself occupied.

— The Hitchhiker’s Guide to the Galaxy
(Douglas Adams)

This chapter provides the background related to autonomous harvesters challenges and
bottlenecks. The overview includes review of:

1. Robotic harvesting & fruit detection algorithms,
2. Viewpoint analysis,
3. Harvesting cycle times calculations and estimations,
4. Implementation of the traveling salesman problem into the agricultural domain, and
5. Available agricultural datasets.

More detailed reviews related to each challenge are described in the introduction section of
each chapter related to each algorithm developed.

2.1 Autonomous robotic harvesters
Robotic harvesters operating autonomously in the field has been a vision for the precision
agriculture community since the mid-eighties [Sarig, 1993; Edan et al., 1991; Edan et al.,
1993]. The tedious manual labor involved in the harsh agricultural domain has led to shortage
in manpower leading to rising demand for automation of the processes involved. This need
has brought automation to almost all elements of greenhouse operation. In today’s cutting-
edge greenhouses all sorting, packaging, and fruit transportation is performed automatically
with the human serving only as a supervisor. Harvesting is one of the few tasks that have not
yet been automated and is still performed manually.
Research in harvesting robots [Bac et al., 2014b] focuses on robot design (e.g.,[ Bloch et al.,
2017; De-An et al., 2011; Edan & Miles, 1994; van Henten et al., 2009]), sensing [Kamilaris &
Prenafeta-Boldú, 2018; Kapach et al., 2012; Zhao et al., 2016; Sa et al., 2016], path planning
[Luo et al., 2018; Bac, 2015; Barth et al., 2016] and grasping (e.g.,[Eizicovits & Berman,
2014; Eizicovits et al., 2016]). Currently reported attempts of fully integrated autonomous
harvesting includes cucumber harvesting [van Henten et al., 2002; van Henten et al., 2003],
strawberry harvesting [Hayashi et al., 2010], cherry tomatoes [Tanigaki et al., 2008; Feng
et al., 2018], eggplant harvesting [Hayashi et al., 2002], apple picking [De-An et al., 2011;
Yuan et al., 2016], and sweet peppers harvesting [Bac et al., 2017; Lehnert et al., 2017].
Robotic harvesters are often equipped with an eye-in-hand configuration, where an RGB
camera is mounted at the tip of a robotic manipulator[Bac et al., 2014b]. Some robotic
harvesters are also equipped with additional sensors, such as an RGB-D camera or a second
camera (used for stereo vision) to be used on both the robotic manipulator and the robotic
cart placed statically within the greenhouse lane [Bac et al., 2014b; van Henten et al.,
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2002; Barth et al., 2016; Bontsema et al., 2015]. To allow sensing operations in various
lighting conditions, some robotic harvesters are equipped with artificial illumination, placed
on the cart [Bontsema et al., 2015; Hemming et al., 2014a] or on the manipulator [Horizon
2020 SWEEPER 2015-2018]. Artificial illumination allows both acquisition in low intensity
natural light condition as well as development of advanced algorithms for improvement of
object detectability, (e.g., Flash-No-Flash [Arad et al., 2018]). These algorithms use both
the illuminated and the natural light images to cope with intense natural light. Others apply
advanced algorithms for dynamic thresholding (e.g., [Vitzrabin & Edan, 2016a; Zemmour
et al., 2017; Ostovar et al., 2018]).
In their 2014 review, which served as a major motivator for this thesis, Bac et al. [Bac et al.,
2014b] outlined the main bottlenecks preventing autonomous harvesting from penetrating
into the market. The first bottleneck is the low detection rates of current vision algorithms.
The reported numbers in the review were 87% detection rate and since 2014 this has not
increased significantly [Kamilaris & Prenafeta-Boldú, 2018; Zhao et al., 2016]. The second
bottleneck is the too long harvest cycle times, reducing the profitability of the robot. This
thesis contributes in developments that aim to improve both bottlenecks by developing
dynamic sensing and task planning algorithms to improve the harvesting process.

2.2 Fruit detection from single and multiple
viewpoints

Many algorithms and methods have been developed for fruit detection as noted in several
reviews [Kamilaris & Prenafeta-Boldú, 2018; Zhao et al., 2016; Kapach et al., 2012] and
a few more relevant papers [Bargoti & Underwood, 2017; Zemmour et al., 2017; Sa et al.,
2016; Vitzrabin & Edan, 2016a; Vitzrabin & Edan, 2016b; Gongal et al., 2015]. The most
common method for fruit detection is the implementation of image segmentation algorithms
used in other domains [Ostovar et al., 2018; Rong et al., 2017; Zemmour et al., 2017;
Arroyo et al., 2016; Wang et al., 2013]. These algorithms include different methods such
as K-means [Shmmala & Ashour, 2013]; mean shift analysis [Zheng et al., 2009]; artificial
neural networks (ANN) [Al-Allaf, 2014]; support vector machines (SVM) [Sakthivel et al.,
2015]; and deep learning [Kamilaris & Prenafeta-Boldú, 2018].
These methods, applied to agricultural datasets, report detectability rates up to 87% with
a false alarm rate of 3.8%. To calculate the true detectability rate, the standard procedure
applied in the computer vision community involves image labelling [Russell et al., 2008].
Manual annotators review an image [Deng et al., 2009; Russell et al., 2008] and segment
it into areas that represent targets and background. These labels are often used both as a
training set for supervised learning as well as a benchmark for detection algorithms.
However, the annotation of a single image is not sufficient for object detectability within a
scene. The number of targets within the scene is defined as the ground truth. The common
procedure for obtaining detectability ground truth is either manual counting of the number
of fruits within the scene [Hemming et al., 2014b; Bulanon et al., 2009] or placing several
sensors that simultaneously sense the same scene and then combining and annotating the
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joint number of targets in the scene [Dollar et al., 2012; Russell et al., 2008]. Hemming et al.
revealed that only 40-60% of the fruit present in the field of view are visible from a single
viewpoint by a human observer [Hemming et al., 2014b]; this work was limited and based
on analysis of 30 sweet pepper plants. Similar research on citrus harvesting [Bulanon et al.,
2009] for a total number of 5 trees reported 40-70% visibility. Despite these low detection
rates most work to date in agricultural robotics [Kamilaris & Prenafeta-Boldú, 2018; Bac et al.,
2014b; Kapach et al., 2012; Bulanon et al., 2009] rely on detection from a single viewpoint.
The main reason is probably that since the focus was on proving the technical feasibility of
detection, R&D was concentrated on sensing methods and algorithms.
This question of dynamically calculating another viewpoint is addressed in the literature as the
“best-next viewpoint” problem. The process of a best viewpoint search mostly depends on how
much a priori geometrical information about the scene is available [Maver & Bajcsy, 1993].
The search for an optimal viewpoint has been extensively investigated in many fields, such
as computational geometry [Vázquez et al., 2001; Maver & Bajcsy, 1993], graph drawing
[Vázquez et al., 2001], and multi-camera stereo vision [Zabulis & Daniilidis, 2004]. In
robotics applications optimal viewpoint analyses have been investigated for motion planning
[Vázquez et al., 2001], grasping [Krainin et al., 2010], and medical intervention planning
[Mühler et al., 2007]. These algorithms often rely on static placement of the sensors and a
priori information. Since the greenhouse environment is very dynamic and unstructured, the
best viewpoints cannot be selected a priori and therefore the selection of viewpoints should
be adaptive to the sensed information. The selection of the viewpoint can not promise an
optimal viewpoint, but a better one given the environment sensed. Dynamic selection of
viewpoints is regarded as adaptive sensing, active sensing, active perception, dynamic sensing,
or next best viewpoint selection algorithms. Classical research in the active sensing field
[Bajcsy, 1988] assumes that: ”in scenarios where data measurements are relatively expensive
or slow, we want to know where to look next so as to learn as much as possible...” [MacKay,
1992], where information is often measured as viewpoint entropy [Vázquez et al., 2002].
Additionally, the question of visibility from a viewpoint has been addressed in the search of
the least occluded direction to perform visual servoing from while planning a path towards
the fruit. Related research dealt with determining reachability cones for robot design [Bloch,
2017] and obstacle detection (e.g., [Bac, 2015; Barth et al., 2016]).

2.3 Harvesting cycle times
In order for a robot to be commercially relevant, it should not only harvest peppers but also do
so in a fast manner. An economic evaluation for sweet-pepper harvesting in the Netherlands
[Pekkeriet, 2011] showed that a cycle time of 6s should be achieved. This number was
provided for a robot catalog price of C 100k, 50% of the sweet peppers harvesting rate, use of
120h per week for 35 weeks per year within the harvesting season, and the assumed worker
wage of C 16 per hour. In comparison a skilled human harvests peppers at 3.6 sec per fruit
[Elkoby, 2016; Elkoby et al., 2014; Pekkeriet, 2011]. Current state of the art robots reported
an average of 33 sec for all reviewed fruits [Bac et al., 2014b] with 94 sec per pepper in the
latest paper by Bac et al. as part of the FP7 CROPS project [Bac et al., 2017]. Suggestions
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to reduce cycle time [Bac et al., 2017] included: post-harvest logistics optimization (e.g.,
collection of fruits through a pipe versus carrying them to a collecting basket), better motion
planning (e.g., waypoints used to reach the harvesting position), and reduction of number of
motions required for sensing (e.g., use of a static sensor on the cart as opposed to an eye-in-
hand configuration). While the use of a static sensor instead of an eye-in-hand configuration
will reduce cycle times, due to the viewpoint analysis described in Chapter 4, it will limit
the number of detected peppers to 40%-60% making the robot commercially unfeasible.
Alternatively, the reduction of number of sensing points or unnecessary arm movements due
to incorrect task and harvest sequencing can significantly reduce cycle times, a solution is
proposed in this thesis (Chapters 5 and 6).

2.4 Traveling salesman problem in agriculture
The application of operations research (OR) in the agricultural domain was traditionally
applied for improving logistics of greenhouse management (e.g., [Bochtis et al., 2015; Bochtis
& Sørensen, 2010; Bochtis & Sørensen, 2009; Ali et al., 2009]), where an action, such
as watering or seeding, is required to be accomplished by multiple vehicles/humans or
cooperation between the two. Often the problems are distributed (e.g., coordination of
teams of autonomous agricultural vehicles [Vougioukas, 2012]) and involve route planning
[Edwards et al., 2017; Bochtis et al., 2015], or coverage planning [Jensen et al., 2015].
The optimization problems presented in this thesis are derived from the field of operations
research with the specific relevant paradigm the traveling salesman problem (TSP). The
TSP is a combinatorial optimization problem that has been widely researched and studied
over the past few decades [Laporte, 1992; Lawler, 1985; Rosenkrantz et al., 1977], thereby
giving rise to several formulations. The most widely used definition is the optimal tour
solution of a “complete weighted undirected graph G, specified by a pair (N,d) where N
is a set of nodes and d is a distance function mapping pairs of nodes (or edges) into real
numbers” [Rosenkrantz et al., 1977]. The large-scale combinatorial problem is NP complete
and is hence usually solved by a heuristic that provides a near optimal solution in reasonable
computational times, depending on the application and computational power available.
The traveling salesman problem, or the vehicle routing problem, in the context of agricultural
applications has been addressed in the literature for agricultural field logistics problems (e.g.,[
Bochtis & Sørensen, 2010; Ali et al., 2009; Bochtis & Sørensen, 2009]), where an action, such
as watering or seeding, is required to be accomplished by multiple vehicles or humans or
cooperation between the two. The required action is repetitive and static, and an optimal
plan should be developed before traveling, relying on ideal knowledge of the targets and the
cost of transportation between them.
In fully integrated robotic harvesters to date, planning of the sensing operations has not
been noted [McCool et al., 2016; Bac et al., 2014b; Hemming et al., 2014a]. The harvesting
sequence is usually defined using a heuristic sequence with some pre-set order such as
distance to the sensing rig or along the lane. Applying the solution of the traveling salesman
problem (TSP) [Laporte, 1992; Lawler, 1985] to the case of harvesting robots has been
noted to significantly decrease harvesting cycle times [Mann et al., 2016; Zion et al., 2014;
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Edan et al., 1991]. Edan et al. showed that for a citrus harvesting robot the near-optimal
harvesting sequence of fruits depends on the robot kinematics and the tree structure, by
applying solutions of the TSP cycle times can be reduced [Edan et al., 1991]. Mann et al.
[Mann et al., 2016] and Zion et al.[Zion et al., 2014] developed algorithms to define the
sequence of melons picking for a multi-arm melon-picking robot by modeling the problem
as a task of coloring an interval graph; they then used a greedy algorithm to produce an
optimal solution for a k colorable sub-graph problem. In both these cases, the set of targets
was assumed to be known in advance. The case when targets are unknown a priori and
are discovered while traveling is called the rolling horizon TSP, [Golden et al., 2008] or the
stochastic TSP also known as the “dynamic salesman problem”. These methods introduce
randomness and uncertainty into some of the initial conditions, or provide an adaptable to
new information traveling plan [Pillac et al., 2013; Gendreau et al., 1996]. The distance
utility function, aimed to be minimized by the TSP, should take under consideration the path
planning capabilities of the robot as well as the mechanical configuration of the arm.
In this thesis we applied (Chapter 6) TSP to the dynamic case in which new target points are
revealed along travelling to existing points corresponding to the defined research objectives.

2.5 Data acquisition
A common practice for image processing R&D for complicated problems is the acquisition of a
large database (e.g., Labelme labeling database [Russell et al., 2008], Oxford building dataset
[Philbin et al., 2007]). These datasets enable to advance vision algorithms development
[Szeliski, 2010] and provide a benchmark for evaluating new algorithms.
To the best of our knowledge, to date there is no open dataset available for R&D in research
related to agricultural objects. Evaluation of previously reported algorithms was based on
limited data [Sa et al., 2016; Hemming et al., 2014b; Bulanon et al., 2009]. Previous research
indicated the importance of evaluating algorithms for a wide range of sensory, crop, and
environmental conditions [Hemming et al., 2014b]. Furthermore, real world data is important
for algorithm development and validations. Moreover, since most agricultural domains are
unstructured with high variability, robotic performance must be evaluated for a variety of
crop conditions [Edan & Miles, 1994] and/or based on statistical analyses of vast amounts of
data.
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3Research methods

„Though this be madness, yet there is method in’t.

— Hamlet
(William Shakespeare.)

This chapter provides an overview of methods applied in the thesis. The methods used for
developing each of the algorithms, are described in detail in Chapters 4-7.

3.1 Overview
The thesis contributes with development of methods related to the following gaps (Table 3.1,
Figure 1.1):

1. Acquiring large databases.
2. Statistical analysis of viewpoint data.
3. Dynamic sensing.
4. Task planning.
5. Determining the approach direction.

The methodology for acquisring large databases in based on an automatic data acquisition
protocol, described in Section 3.2. A robotic acquisition system and procedure was developed
using a 6 degree of freedom manipulator, equipped with 3 different sensors to automatically
acquire images from several viewpoints with different sensors and illumination conditions
(see detailed description of hardware in Section 3.2). By using a robotic manipulator high
precision and repetition are achieved allowing fast acquisition of greenhouse data along
the day and the growing season. This allows greater homogeneity within the data that was
acquired in similar conditions. On the other hand, it imposes challenges such as manual
labeling and ground truth data acquisition. The pros and cons of this methods are also
covered in this chapter.
Based on the data gathered according to the protocols defined in Chapter 3.2, in Chapter 4, I
describe a methodology developed for statistical analysis of viewpoint data. This includes
acquisition of three separate databases with high variability in both viewpoint features (angles,
distances, focal length) and greenhouse features (varieties, growing methods, countries),
allowing application of statistical methods for evaluating detectability from each viewpoint.
Two viewpoints are considered different given any change in their features (change in angle,
distance or focal length). By splitting the data into “training” and “testing” sets in both spatial
and temporal fashions, the different relations between consecutive scenes are explored in a
way of predictive models generation. The developed methodology allows insights into the
preferable viewpoints and viewpoint combinations as well as identification of the number
of viewpoints needed for a given crop. The chapter also outlines the differences between
detectability and visibility and proposes alternative methods for ground-truth collection that
are more suitable for mass acquisition, such as the robotic data acquisition proposed. The
limitations of the method as well as the crops suitable for such an analysis are outlined.
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Table 3.1: Summary of methods and corresponding chapters.

Problem Gap Methods

Acquisition of
large databases
for algorithm
development

Current algorithms in
harvesting robotics
are evaluated on
small manually
collected datasets.

Development of a protocol based on a
6DOF robotic manipulator equipped with
color and depth sensors as well as
artificial illumination.
Acquisition of 5 datasets contributing to
the thesis and additional 3 open
access datasets, all in commercial
greenhouses.

Chapters
3.2-3.3

Best viewpoint
characteristic
for detection

The characteristics of
sensing viewpoints
has not been
investigated on large
datasets

Acquisition of 3 datasets and analyzing
them by finding statistically significant
parameters through a Poisson regression
model.
Splitting the dataset in temporal manner
allows analysis of spatial and temporal
features.
Testing on data gathered in greenhouse
conditions.

Chapter
4

Next best
viewpoint
search

The search of
next best viewpoint
has been limited
in agricultural robotics

Development of a dynamic next best
viewpoint decision support algorithm
for agricultural harvesting robot
that analyzes a given image for prediction
of number of targets from an additional
viewpoints and compares the financial
loss of those targets in comparison
to the financial loss as a result of
prolonged scanning action.
Testing on data gathered in greenhouse
conditions.

Chapter
5

How to order
the tasks of
sensing and
harvesting

No optimization of
harvesting sequencing
or sensing actions
is done in
agricultural robotics

Employment of TSP for harvesting
sequencing and evaluation of task
planning strategies including those
that sense first and then harvest
all fruit or those optimizing the sensing
location in the overall traveling sequence.
Testing in laboratory and simulative
conditions.

Chapter
6

How to approach
a detected
pepper without
losing it
from sight

After detection the
path planning to
the fruit doesn’t
take into account
the least occluded
direction

Approach strategies are evaluated for
their efficiency (search pattern vs single
approach vs human determining the
approach direction).

Chapter
7
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Given the conclusions of Chapter 4, that there are no single or combinations of viewpoints that
can be predefined as the best ones in any operation mode, but only guidelines that depend on
growing conditions (e.g., time in the season, location in the greenhouse), a dynamic sensing
algorithm is developed in Chapter 5. This algorithm, decides if an additional viewpoint is
needed and where should it be located based on the analysis of a single viewpoint image. It
is achieved by estimating the expected number of peppers to be detected from an additional
viewpoint using a Poisson regression model. Then comparing the economic profitability of
loss of these peppers to the cost of an additional sensing point due to travel of the robotic
arm of the harvester. The algorithm is validated on an additional dataset gathered according
to protocols similar to the ones outlined in Chapter 3.2.
Next, given the algorithm for dynamic sensing that is capable of suggesting if a second
viewpoint is needed and where it should be located, a task planning algorithm is developed
in Chapter 6. This algorithm employs the traveling salesman paradigm (TSP) for optimization
of harvesting and sensing sequencing to minimize the traveling time of the robotic harvester
between the harvesting locations and the sensing locations. The algorithm evaluates the
performance of different utility functions that measure the distance between locations. Addi-
tionally, it reviews different task planning strategies including those that sense first and then
harvest all fruit or those optimizing the sensing location in the overall traveling sequence.
To evaluate the algorithm a special technique for measuring exact location of peppers in the
greenhouse is developed. Using this technique locations of peppers has been registered in the
greenhouse. The developed algorithms were then evaluated based on the registered locations
in laboratory and simulative conditions.
Finally, given the algorithms planning the harvesting sequence a method to determine the
approach direction to each fruit before harvest is developed in Chapter 7. Using the pepper
localization technique developed for the task planning algorithm in Chapter 6, peppers has
been approached using different developed strategies in a repetitive manner in both laboratory
and greenhouse conditions. In this chapter I also address the question of whether humans
can detect the right approach direction by using questionnaires.

3.2 Data acquisition
3.2.1 Equipment and acquisition protocol
A Fanuc LR Mate 200iD/7L 6DOF robotic arm was equipped with three sensors and an
illumination rig, simultaneously attached using the gripper described in Figure 3.1. The
following sensors were used:

• iDS UI-5250RE RGB camera1.
• Fotonic C70 RGB-D camera2 based on time-of-flight methodology.

1https://en.ids-imaging.com/store/ui-5460re-poe.html
2Fotonic LTD has seized to exist, the camera is not available on the market. Similar here:

https://acroname.com/sites/default/files/assets/fotonic_e-serien_2014_1_datasheet_0.pdf
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Figure 3.1: Robotic arm, sensor and lighting configuration.

Figure 3.2: The 14 viewpoints from which image acquisition is performed.

• Sick DT20 Hi distance sensor3.

The robotic arm was placed on a cart in an 80-cm wide isle (Figure 3.3). The iDS camera
was placed in a way that the camera would in most cases face a mature pepper in its first
position, and the height of the cart was manually readjusted accordingly. The robotic arm
was configured to a planned sequence of 14 viewpoints in relation to the centered target, as
shown in Figure 3.2. A user interface and an acquisition triggering software were written for
image acquisition and image storage in C++. For the viewpoint evaluation described above,
only the RGB images from the strobe light and natural light were used. An example of the
acquired images is given in Figure 3.4. In general, in this thesis, the depth data produced by
the Fotonic camera has not been applied. However, the data acquired in the process proposed
as part of this thesis is available to the public via the sweeper databases as noted below.

3.2.2 Processing and labeling
Three human annotators were requested to perform labeling in which they were asked
to perform segmentation of the image into pepper and background. The annotation was
performed using GNU Image Manipulation Program (GIMP). Images from both natural light
and strobe light were labeled.

3https://www.sick.com/ag/en/distance-sensors/displacement-measurement-sensors/dt20-
hi/c/g176377
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Figure 3.3: Data acquisition setup. Left: Isle in a sweet pepper commercial greenhouse.
Right: Prof. Yael Edan, Dr. Boaz Arad and me during data acquisition.

Figure 3.4: Two example images taken from the same distance from two viewpoints. Left:
an image taken from the right. Right: an image taken from the left.

3.3 Acquired datasets
The datasets acquired according to the defined protocol include the following:

1. Viewpoints datasets. 1312 images acquired from 10-14 viewpoints for 56 scenes were
collected in commercial greenhouses. Three databases from different sweet-pepper
varieties were collected from different growing seasons. Details on the data collected
are described in Chapter 4, this data was used to evaluate algorithms presented in
Chapters 4 and 7.

2. Dynamic viewpoints dataset and 3D locations dataset. 96 greenhouse images of 30
sweet peppers in a single research greenhouse from 12 viewpoints. Details in Chapter 5.
The locations of each viewpoint and pepper were registered according to the protocol
in Chapter 7 and used in Chapter 6.

An additional dataset used in this thesis was acquired according to the protocol in Chapter 7
used for determining the approach direction.
The first dataset from the viewpoint datasets has been made available for the public4 as part of
the Horizon 2020 SWEEPER data management plan. Two more datasets acquired according
to a similar protocol to the one defined and are not used in this thesis will be also open to the
public through the same media and through the submitted publication:
Boaz Arad, Polina Kurtser, Ehud Barnea, Ben Harel, Yael Edan, Ohad Ben-Shahar. "Controlled
lighting and illumination-independent target detection for real-time cost-efficient applications.
The case study of sweet pepper harvesting robots". Submitted July 2018.

4Will be open to the public after Nov 2018, end of the Horizon 2020 sweeper project. Accessible
here: http://icvl.cs.bgu.ac.il/lab_projects/agrovision/DB/Sweeper01/#/scene
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4Statistical models for fruit
detectability: spatial and
temporal analyses

„Since I’ve written many of my books from a
less-than-sympathetic viewpoint, I think that being
able to see things from all sides is a useful talent.

— Alex Flinn
(American writer of novels for young adults.)

• Published in: Kurtser, Polina & Yael Edan (2018). “Statistical models for fruit detectabil-
ity: spatial and temporal analyses of sweet peppers”. Biosystems Engineering, pp.
272–289.

• Research objective RO1: Statistical evaluation of detectability from combination of
viewpoints to provide insights into characteristics of best viewpoints.

Statistical models for fruit detectability were developed to provide insights into prefer-
able variable configurations for better robotic harvesting performance.
The methodology includes several steps: definition of controllable and measurable vari-
ables, a data acquisition protocol design, data processing, definition of performance
measures and statistical modeling procedures. Given the controllable and measurable
variables, a data acquisition protocol is defined to allow adequate variation in the
variables, and determine the dataset size to ensure significant statistical analyses. Per-
formance measures are defined for each combination of controllable and measurable
variables identified in the protocol. Descriptive statistics of the measures allow insights
into preferable configurations of controllable variables given the measurable variables
values. The statistical model is performed by back-elimination Poisson regression with
a loglink function process. A spatial and temporal analysis is performed.
The methodology was applied to develop statistical models for sweet pepper (Capsicum
annuum) detectability and revealed best viewpoints. 1312 images acquired from 10-
14 viewpoints for 56 scenes were collected in commercial greenhouses, using an eye-
in-hand configuration of a 6 DOF manipulator equipped with an RGB sensor and an
illumination rig. Three databases from different sweet-pepper varieties were collected
from different growing seasons.
Target detectability highly depends on the imaging acquisition distance and the sensing
system tilt. A minimum of 12 training scenes are necessary to discover the statistically
significant spatial variables. Better prediction was achieved at the beginning of the sea-
son with slightly better prediction achieved in a temporal split of training and testing
sets.
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4.1 Introduction
Despite intensive R&D on harvesting robots, to date no commercial harvesting robot exists
[Bac et al., 2014b]. One major limitation of current developments is the low detection rates
of around 87% [Bac et al., 2014b] caused by the complex and highly variable agricultural
environment.
The most common placement of the vision sensor in robotic harvesters till today in an eye-in-
hand configuration [Bac et al., 2014b]. Current agricultural robotics detection algorithms
usually use a single preset viewpoint [McCool et al., 2016; Sa et al., 2016; Bac et al., 2014b],
however since single viewpoint visibility is limited [Hemming et al., 2014b; Bulanon et al.,
2009] multiple viewpoints are necessary to improved detection rates. Since cycle times
are critical [Bac et al., 2014b] it is important to direct the robot to a minimum number of
viewpoints that can provide maximal detectability.
The search for an optimal viewpoint has been extensively investigated in many fields [Foix
Salmerón et al., 2011; Fleishman et al., 2000; Reed & Allen, 2000; Maver & Bajcsy, 1993].
However, the high scene variability in a harvesting application, which is inherent to the
biological nature of the scene, reduces the ability to calculate a-priori the best viewpoints
due to the very limited geometric information about the scene. The complexity of the
fruit detection task is due to the unstructured and dynamic nature of both the objects and
the environment [McCool et al., 2016; Sa et al., 2016; Gongal et al., 2015; Kapach et
al., 2012]: fruits have a high inherent variability in size, shape, texture, and location; in
addition, occlusion and variable illumination conditions significantly influence the detection
performance. This research aims to determine the dependency of detectability on the chosen
viewpoint, and to analyze the temporal and spatial relations between consecutive scenes.
The proposed methodology for developing statistical prediction models of fruit detectability
for vision based robotic harvesters enables to prove correlations between controllable and
measurable variables and the detectability performance measures, providing insights into
preferable configurations for better robotic harvesting performance.
The chapter starts with a literature survey of common practices in detectability and visibility
research. Section 4.3 outlines a methodology for viewpoint detectability modeling and
definition of performance measures. It aims to present the minimum size of training sets
for which the suggested controllable variables are still found to be significant and therefore
will lead to a correct sensing plan that will increase detectability. Section 4.4 presents the
results of application of the proposed methods on a case study database of Capsicum annuum
(sweet peppers). Section 4.5 outlines the drawn conclusions and Section 4.6 summarizes the
relevant research questions and answers.
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4.2 Background
4.2.1 Detectability and visibility
Current agricultural robotic detection algorithms aim to maximize the true positive rate
and minimize the true negative rate [Vitzrabin & Edan, 2016b]. The standard procedure
applied in the computer vision community for defining true positive and true negative rates is
labeling images [Russell et al., 2008]. The labeling process includes either a bounding box or
pixel-wise labeling resulting in segmented image into areas representing the targets and the
background. This is performed by annotators reviewing the images for unlimited amount of
time [Deng et al., 2009; Russell et al., 2008]. In some cases the annotators are requested
to classify the targets annotations into fully revealed targets, partially occluded targets and
truncated targets [Geiger et al., 2012]. The labels are often used both as a training set of
supervised learning algorithms as well as a benchmark for the detection algorithms.
However, the annotation of a single image is not sufficient for object detectability within
a scene. The number of targets within the scene is defined as the ground truth. The
common procedure for obtaining detectability ground truth is placing several sensors that
simultaneously sense the same scene and then combining and annotating the joint number
of targets in the scene [Dollar et al., 2012; Russell et al., 2008]. By doing so, a benchmark
of joint detectability using vision sensors is generated. The placement of the sensors in a
way that covers the whole operational area is critical for proper ground truth acquisition,
providing detection of all targets relevant to the robotic task (e.g., reachable by the robotic
manipulator, to be avoided by an autonomous vehicle).
An alternative type of ground truth, that has been used for agricultural applications [Bac
et al., 2014b; Hemming et al., 2014b], and some SLAM applications [Blanco et al., 2009]
is the visibility ground truth. Visibility in robotic harvesting is defined as “The visible part
of a fruit in an image expressed as a percentage of total fruit area which would be seen in
an image without occlusion” [Hemming et al., 2014b]. To obtain the visibility ground truth
an in-field human observer manually counts the actual number of targets in the scene. The
visibility analysis compares between targets manually labeled from the vision system to the
actual number of targets present within the scene. This allows a visibility benchmark given
sensors capable of detecting targets occluded by other objects in the scene. While it is an
important analysis for evaluating the final performance of a robotic harvester, it does not
provide a true benchmark for vision-based robots that cannot “see-through” obstacles.
Furthermore, it is limited in the number of data that can be analyzed since it requires accurate
counting of all fruit in the analyzed scenes. Reported numbers should be separated into
two – fruits that grow on trees with high density of targets on a single plant (e.g., citrus
or apple trees) and fruits that grow on stems, where the density of fruits in a scene is low
(e.g., peppers, cucumbers, eggplants). The latest research groups in the field report a 40-150
targets for apple trees [De-An et al., 2011; Sites & Delwiche, 1988], 150-900 targets for citrus
trees [Lee & Rosa, 2006; Plebe & Grasso, 2001]; although these numbers are relatively high
they do not enable systematic statistical modeling since they represent data from 1-2 trees.
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The quantity of ground truth drops significantly for low density crops with 60-200 targets for
cucumbers [Tang et al., 2009; van Henten et al., 2002] and 40 targets for eggplants [Hayashi
et al., 2002].
To develop a statistical modeling methodology for determining the optimal viewpoints and the
fruit detectability a dynamic protocol that defines the changes in environmental and hardware
conditions must be repeated a sufficient number of times for each condition combination. This
requires a large database. In order for the protocol to be performed autonomously, without
human intervention, the ground truth gathering should be automated. Current algorithms’
detection rates are low and hence, do not allow automatic detection to be treated as ground
truth. Therefore, the common practice for ground truth acquisition protocols is based on
manual processing of images acquired. As a result the models presented in this research focus
on detectability modelling. The detectability ground truth is gathered by manual evaluation
of all viewpoints from a given scene to determine the overall number of targets detectable in
the scene.
Most robotic harvesters are equipped with a vision sensor in an eye-in-hand configuration
[Bac et al., 2014b]. Some harvesters include additional sensors such as RGB-D cameras, or
dual cameras used both on the robotic manipulator and the robotic cart statically placed
within the greenhouse lane [Barth et al., 2016; Bontsema et al., 2015; Bac et al., 2014b].
Due to the dynamic nature of the agricultural scene sensor fusion is highly unreliable for
localization of the harvesting targets [Barth et al., 2016]. Additional sensors also increase the
overall complexity and price of the robotic harvester. Therefore, additional static sensors are
uncommon and usually vision based robotic harvesting relies on a single sensor placed on the
robotic manipulator [Barth et al., 2016; Bac et al., 2014b]. A subset of viewpoints is chosen
to perform detection at each scene. The viewpoints are reached by the robotic manipulator
equipped with a camera. At each viewpoint an image is captured followed by its analysis.
Each additional viewpoint requires additional travel time by the manipulator and additional
computational time of the image processing. Therefore, the number of viewpoints should be
minimized.

4.2.2 Viewpoints analysis
A viewpoint can be described as a set of geometric and optical sensing parameters [Tarabanis
et al., 1995]. The geometric parameters are the six degrees of freedom representation of the
position and orientation of the sensor while the optical parameters depend on the lens setting
(e.g., focal length, field of view). The process of a best viewpoint search mostly depends on
how much a-priori geometrical information about the scene is available [Maver & Bajcsy,
1993].
The search for an optimal viewpoint has been extensively investigated in many fields, such
as computational geometry [Vázquez et al., 2001; Maver & Bajcsy, 1993], graph drawing
[Vázquez et al., 2001], and multi-camera stereo vision [Zabulis & Daniilidis, 2004]. In
robotics applications optimal viewpoint analyses have been investigated for motion planning
[Vázquez et al., 2001], grasping [Krainin et al., 2010], and medical intervention planning
[Mühler et al., 2007]. Most research aims to calculate a global optimal placement of sensors
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(usually a camera), to maximize detection, mutual information, or some other cost function
appropriate in the given application. These methods often rely on generating image-based
models from scenes with known [Fleishman et al., 2000], or unknown [Reed & Allen, 2000]
geometry, for RGB [Fleishman et al., 2000] or TOF [Foix et al., 2015] cameras.
In agricultural robotics most work to date reported on object detectability [Kamilaris &
Prenafeta-Boldú, 2018; Bac et al., 2014b; Kapach et al., 2012; Bulanon et al., 2009],
and relied on detection from a single viewpoint. A next best viewpoint algorithm for leaf
segmentation on data acquired from pots in the lab has been proposed [Foix et al., 2015;
Foix Salmerón et al., 2011]. Manual analyses of 30 sweet pepper plants revealed that only
40-60% of the fruit present in the field of view are visible from a single viewpoint, by a
human observer [Hemming et al., 2014b]. Similar research on citrus harvesting [Bulanon
et al., 2009] for a total number of 5 trees reported a combination of viewpoints raises the
detectability from 40-70% to 80-90%. Hence, multiple viewpoints are necessary to overcome
the detection rate bottleneck limiting harvesting performance.
The number of necessary viewpoints depends on the expected system variability. The vari-
ability is caused by the object, environment and robotic variability. The object variability is
a characteristic of the biological inherent variability, in addition to the variation caused by
the different growing and environmental conditions, resulting in differences in size, color,
shape, location and texture of the targets. The environment variability includes unstructured
obstacle locations (e.g., leaves, branches) and changing lighting conditions (e.g., daylight,
night light, bright sun, shadows), which depend on the time and location and directly affect
the detection performance. Hence, the quality of target detection often relies on the presence
of artificial illumination [Vitzrabin & Edan, 2016a; Tarabanis et al., 1995]. The specific
robotic system modules used (the sensors, illumination and manipulator design, including
degrees of freedom, dimensions and controls) also affect the detection performance. While
the object variability and environment variability may be supported by botanical models to
some extent, their combination with the unpredictable and dynamic lighting conditions (e.g.,
sun direction, clouds), the growing conditions (e.g., climate, weather, cultivar, density of
plants) and the robotic system (specific sensors, illumination, robot) makes it difficult, if
not impossible, to develop an analytical model to predict fruit detectability. When analyzing
detectability it is important to measure also the degree of exposure of the peppers. Fully
revealed peppers are easier to be detected for current detection algorithms [Hemming et al.,
2014b], and fully revealed peppers are easier to be localized for grasping [Eizicovits et al.,
2016]. Therefore, each viewpoint should also receive a weighted score that gives more weight
to views including fully revealed targets than to views with partially occluded or truncated
targets.
For efficient robotic harvesting more than 90% visibility is necessary [Blackmore et al., 2002].
Since cycle times are critical [Bac et al., 2014b] it is important to direct the robot to a minimum
number of viewpoints that can provide maximal detectability. This research is directed by the
concept that by developing a fruit detectability statistical model, the detectability for a given
set of conditions can be predicted enabling to select the best-fit viewpoints for the particular
environmental conditions and hardware. By determining the minimal training set size used
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for prediction of detectability, one can define how often the detectability prediction model
should be re-trained given changes in the environment (e.g., growing practices, season/time
of day) and operating conditions (e.g., robot, camera, illumination). A larger training set will
require less often re-training however, will less fit the dynamic changes. To the best of our
knowledge, this is the first attempt to statistically model detectability for harvesting robotics.
The determination of the best-fit viewpoints can lead to improved robotic performance.

4.3 Statistical model development
methodology

4.3.1 Overview
The statistical models for fruit detectability include the following steps (Figure 4.1):

1. Definition of controllable and measurable variables. These are the commutative
variables controlling the viewpoint (such as pose and orientation), the illumination
(e.g., intensity, direction) and describing the environment (such as cultivar and growing
practices, time along the growing season).

2. Data acquisition protocol design. This is the ground truth viewpoint information
acquisition and experimental design phase enabling data acquisition in a range of
values of the defined variables. The experimental protocol determines the dataset size,
as well as the combinations of variable values.

3. Data processing. Including labeling and tagging of the targets by a human observer
who marks a ROI of the target (e.g., fruit). The fruit may be additionally classified into
fully visible, partially occluded and truncated fruit as common in the computer vision
community [Geiger et al., 2012].

4. Definition of performance measures and statistical modeling. The performance
measure of a good viewpoint is defined in a commutative manner. It provides an overall
descriptive statistical evaluation of the current detectability and weighted viewpoint
score, given the measured variables, and evaluates the prediction capabilities, given
new values of the variables.

4.3.2 Controllable and measurable variables
Each additional variation of environment, object and robotic features carries additional
observations. Therefore, to generate a detectability model, acquisition of large datasets
in predefined conditions are required. This is often challenging due to the harsh outdoor
conditions. Therefore, this research aims to determine a subset of controllable and measurable
variables that can be automatically acquired by a robotic harvester to reduce the volume
of acquired data. A statistical model is generated only for those variables and in a back
elimination process the suggestions for best variable combinations are produced. In this case
the data quantity required is still significant, but is obtainable using an automatic acquisition
protocol.
The controllable spatial parameters aim to define the relation between the geometrical
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Figure 4.1: Flowchart of overall statistical modeling of detectability.

placement of the sensor compared to the fruits position and the greenhouse lane. This
includes distance, tilt and azimuth angle that are derived from both the sensors’ geometric
parameters (e.g., position and orientation) as well as the position of the robot within the
greenhouse lane, the distance between lanes, the height of the cart on which the robot is
placed, physical size of the robot, and the height of the plants.
Machine vision in outdoor conditions must cope with highly varying illumination conditions
[Tian & Slaughter, 1998]. Hence, it is important to ensure the dataset includes a large
variability in illumination; this is achieved by acquiring images at different times along the
day, at different locations within the greenhouse and at different angles towards the sun.
Although natural illumination intensity can be measured using an external illumination sensor
since the values are subject to extreme changes in a matter of split seconds, addressing the
natural light magnitude as an accurate measurable parameter was excluded. Therefore, this
is an uncontrollable variable. Some methods aim to cope with natural illumination by using
artificial illumination [Sun et al., 2007; Jimenez et al., 2000]. Therefore, the presence of
artificial illumination is defined as a controllable variable.
The environmental parameters are defined as measurable parameters. These are the most
complicated parameters to quantify due to the aforementioned high variability which are
not always known in advance. The environmental parameters that highly challenges the
detection are those affecting the expected occlusion. This includes the orientation of the lanes
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and the side of the lane on which the harvesting is performed [Rylski & Spigelman, 1986],
the fruit variety, the plant hardiness zone which determines if a plant is likely to thrive at a
location [Daly et al., 2012], time since planting and time since last harvest.
To focus the question on the choice of the correct sensing point given a static hardware
setting, for the purpose of this thesis, all hardware related parameters including optical
parameters (e.g., lens configuration), robotic parameters (e.g., DOF, length of robotic arm),
and illumination parameters (e.g., flash illumination) are assumed to be measurable and not
controllable. This allows repeatability in greenhouse conditions, minimizing the amount of
physical changes performed in the field and therefore minimizing the chance of human error
and hardware fault in the acquisition protocol.
Given an eye-in-hand sensing configuration, the controllable variables are defined as fol-
lows:

• Spatial variables. Variables describing the spatial orientation of the sensory system. A
viewpoint is defined by three controllable spatial variables (Figure 4.2) – distance to
fruit, tilt angle, and azimuth angle.

• Camera variables. Variables describing the sensing equipment (e.g., lens configuration,
resolution and aperture).

• Illumination variables. Variables describing the presence of artificial illumination.

In addition to the controllable variables, measurable variables that influence the target
detectability are defined as measurable environmental variables. These variables are environ-
mental dependent variables that describe the scene in which the robot operates. The variables
include: number of weeks since beginning of harvesting season, days since last harvesting
and direction of the natural light (e.g, the orientation of the lanes in terms of north/west and
the side of the lane being harvested - Figure 4.3).
At the beginning of the growing season, the scene is less occluded since it has less leaves,
allowing better target detectability. The number of days since last harvesting affects the
number of targets to be detected. The direction of the natural light can create overexposure
of the images acquired if directed towards the cameras and, therefore, creates a challenge
for detection, both for a human observer and for autonomous detection algorithms (Figure
4.4).

4.3.3 Data acquisition protocol design
The acquisition protocol is defined to ensure images are acquired in a wide range of possible
controllable variables (i.e., different viewpoints and different illumination conditions) and
environmental variables (i.e., different greenhouses, different times along the season and
different orientations to the sun).
The databases should be acquired according to the protocols described in Figure 4.5, in
different environmental and acquisition conditions, to provide a wide range of values for the
measurable and controllable variables.
The viewpoints must be defined so as to cover the workable area of the robotic harvester,
under the assumption of obstacles randomly oriented and occluding the fruits. A robotic
harvester operates in the greenhouse by picking fruits from each side of the growing lane,
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Figure 4.2: Definition of a viewpoint by distance and two angles – tilt and azimuth. Left:
the definitions; Middle and Right: estimations by defining the distance to be the
distance to the isle and the azimuth and tilt angle to be θa and θt accordingly as
seen from a top and side views of the greenhouse lane.

Figure 4.3: Peppers to be harvested from each side of the stems are those between the
robot arm and the stems. Given a stem oriented south-north the peppers to be
harvested from lane 1 are facing west and the ones to be harvested in lane 2 are
facing east.
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Figure 4.4: Images taken in different seasonal conditions. Left: beginning of season, 3 days
since last harvesting; Middle: end of season, harvesting performed 2 days prior
acquisition; Right: challenging lighting conditions when images taken against
the light.

similar to the operation of manual workers in the field. Attempting to harvest a plant only
from one side of the lane, by reaching fruits hanging on the opposite side of the stem, is in
risk of hurting the stems which are a viable part of the plant causing severe financial lost to
the greenhouse [Bac, 2015; Bac et al., 2014b]. Therefore, fruits hanging on the opposite side
of the stem, where the stem is in between the camera and the fruit should be harvested from
the opposite side of the stem in the next lane (Figure 4.3). Algorithms have been developed
to avoid the stem [Bac et al., 2016] and perform harvesting of such fruits, but they do not
justify the robotic operation on only one side of the lane. Furthermore, the further the fruit
is hanging from the robotic arm the more obstacles are present both for detection and for
reaching the fruit without hurting the plant. Fruits that are not visible from either side of the
lane are to be disregarded and cannot be harvested.
As a result, for obtaining ground truth information, the viewpoints must be selected to
cover half a cylinder of radius RS around the stem (Figure 4.6). Rs is to be defined by
the expected size of the fruit peduncles of the specific fruit to be harvested. The robotic
manipulator is capable of covering a sphere of radius Rr. The intersection between the robotic
approachable sphere and the cylinder of interest generates a reachable area by the robot
within the vegetation.
Given a sensor with vertical and horizontal angles of view of θCV and θCH the area within the
robot reachable area within the vegetation is defined as presented in Figure 4.6, assuming no
occlusions are present. As a result, the combination of viewpoints required for ground truth
acquisition is defined in a way they will cover the robot reachable area within the vegetation
(Figure 4.6).

4.3.4 Data processing
The collected RGB images data should be tagged for ground truth collection. The tagging
process includes marking of a rectangular ROI around the object by an annotator. The ground
truth collection process is according to the detectability ground truth collection process
described in Section 4.2.1. Additionally, the annotator’s performance should be measured
by providing the distribution of size of the pepper tagged as described in Section 4.3.5. The
applied protocol is described in details in Section 4.4.2.
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Figure 4.5: Acquisition protocol.

Figure 4.6: Viewpoints covering area with no occlusion present.

4.3.5 Definition of performance measures and statistical
modeling

Predictive statistical models versus correlation exploration and descriptive
statistics
The detectability and visibility research for harvesting robotics to date [Hemming et al.,
2014b; Bulanon et al., 2009] focused on finding a set of controllable parameters under the
presence of measurable parameters that will be positively correlated to the visibility and
detectability rates. This allows insights into what controllable variables values are preferable
for better detection and visibility. This kind of descriptive statistics and correlation exploration,
define the possible variables implicating detectability in the setting described.
However, the ability to generalize the model to new observations from the same population,
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and to other populations [van Houwelingen & Le Cessie, 1990] is another important aspect
that must be addressed. After defining a set of parameters that positively correlates with
detectability and visibility a prediction model of detectability for a new scene is viable. This
enables to generate a sensing plan to be executed by the robot prior to harvesting. As
aforementioned, the generation of an analytical model is highly unlikely in the highly variable
setting, where all parameters cannot be determined a-priori and even when defined cannot
always be tracked. Furthermore, no attempt to prove causation relations [Wright, 1921]
between the controllable and measurable parameters and the predicted detectability is needed
for the robot to perform adequately.
The model aims to provide an empirical prediction model based on data gathered in similar
environmental and robotic conditions to the one the harvester will be operating in. This allows
homogeneity in the unmeasurable environmental parameters that creates more adequate
combination of controllable variables to the described setting. The prediction model is
evaluated for its prediction capabilities using goodness of fit measures [van Houwelingen &
Le Cessie, 1990; Willmott, 1981].
The modeling methodology can be performed repetitively before each harvesting session
for the specific data. A harvesting session can be defined as a greenhouse lane, day of the
week, growing month or any other interval that supplies additional variability for which a
previously trained model is not valid any longer. The modeling protocol allows to define the
ranges of controllable parameters values that are most suitable for the current setting, and the
evaluation of significant and insignificant variables. An additional requirement for defining a
repetitive detectability model is the definition of the training set, as described below.

Sample size
In order to find statistically significant variables, the null hypothesis of absence of effects must
be rejected. The power of the reject depends on the number of samples [Murphy et al., 2014],
where more samples enlarge the chances to find statistically significant variables. Obtaining
detectability ground truth information requires annotators reviewing large number of images
for each training scene which is a tedious task and is a time consuming operation limiting the
amount of data to be analyzed.
Therefore, an important decision is the minimal sample size necessary to define a prediction
model for a given set of variables. This question is addressed by modeling the detectability
based on training datasets of varying sizes. The largest training dataset defined the variables
significance for detectability prediction in the given environment. The minimal training set is
defined as the minimal training set size for which the variables that were found significant in
the largest dataset are still significant.
To develop the model, the acquired dataset is usually split between training and testing data
sets [Sa et al., 2016; Guyon, 1997]. The spatial-temporal relations between consecutive
scenes can influence the model development and hence this must be considered in the
splitting of data. In a random training-testing split (Figure 4.7) random scenes are used
for training of the model and testing of its goodness of fit. Since additional variations in
objects and environment are expected due to temporal and spatial effects, where scenes
acquired chronologically in space or time have more common features than random scenes
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Figure 4.7: Example of a set splitting into training and test sets.

taken within the same experiment, the training and testing scenes can be considered to
be chronologically split as opposed to a random split. In this case of temporal split the
detectability prediction model trained on a set of consecutive scenes is applied to test scenes
chronologically placed after the training set (Figure 4.7). The random splits expected to yield
a more general detectability prediction model that is less fitted for each individual scene
while the temporal split is expected to yield more accurate prediction results.

Descriptive measures
Given the detected number of targets in the image and the ground truth information collected
for the overall number of targets available in the scene, two measures were defined, as
described in Equations 4.1-4.2. The proportion of visible targets Pi is defined in Equation 4.1.

Pi = Ti
T

(4.1)

where Ti is the number of targets detected from viewpoint i and T is the joint number of
targets seen from all viewpoints taken at the scene. The proportion of visible targets from
multiple viewpoints Pij is defined in Equation 4.2.

Pij = Tij
T

(4.2)

where Tij is the joint number of targets seen from viewpoints i and j.
The detected targets can be fully visible, partially occluded or truncated (Figure 4.8). The
weighted score of a viewpoint, as function of detected target type k (Fully visible, Partially-
Occluded or Truncated) is defined according to Equation 4.3.

Si =
∑WkTi(k)

T
;∀k =


F Fully−visible
O Partially−occluded
T Truncated

(4.3)

where wk is the relative weight given to each target of type k ∈ (F,O,T ), and Ti(k) is the
number of targets detection from viewpoint i of type k.
The following weight vectors are defined:

• Detectability weights. In this case the weight of all detected peppers are equal.
Important to note that given equal weights for each target type (w=~1) the score results
in Pi = Si.
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Figure 4.8: Example of a tagged image and the classification of the marked peppers into
ROIs of 3 types: fully visible, partially occluded, and truncated.

• Relative weight. Given the assumption that occluded peppers are more difficult to
detect than truncated or full visible peppers a weight of 0.5 is given for occluded
peppers, 0.7 for truncated peppers and 1 for fully visible peppers.

Additionally, to evaluate the minimal size of a detectable pepper by an annotator the bounding
box area Al is measured as the number of pixels of the marked bounding box for pepper l.
Then the relative bounding box area RAl is defined according to Equation 4.4.

RAl = 100 Al
M ∗N

(4.4)

Where M and N are the height and width of the image respectively.

Detectability modeling under spatial and temporal viewpoints
A back-elimination Poisson regression with a log link function [Winkelmann & Zimmermann,
1995] modeling technique was performed to model the relation between the controllable
parameters and the detectability of the targets in given measurable environmental conditions.
This technique, especially suitable for count-data such as the number of detected fruit in an
image, enables to define a short list of statistically significant controllable variables. Modeling
the number of detected peppers in an image as a function of the controllable variables
provides additional insights. The outputs include:

• Statistically significant variables. These enable distinction between differences in
detection rate correlated to the controllable parameters and empirical random error.

• Regression weights. These enable analysis of the correlation between the statistically
significant controllable variables and the number of detected peppers in terms of
positive and negative influence (positive weights and negative weights).

• Statistically significant interaction variables. By including the interaction variables,
an analysis of the joint relation of the controllable variables on detectability prediction
is performed.
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• Prediction model. Prediction of the expected number of peppers, given new values of
the significant controllable parameters.

While the statistically significant variables (independent or interactions between them)
and regression weights are investigated to research the relation between the variables and
detectability, the prediction model aims to explore the ability of the given variables to predict
the detectability for a given viewpoint. Each tagged dataset was separated into two sets: (i)
a training set that includes a subset of scenes used for learning the model of the number of
targets as a function of the viewpoints variables, and (ii) a test set to evaluate the prediction
model, given a new scene.
Since some variations of the object and the environment are not random, consecutive scenes
are expected to have common features. To explore the temporal relations, as opposed to
general spatial relations, within the data, the datasets were split using two different methods:
random split, and temporal split. The random split divides the entire dataset into random
training sets and random test set according to the defined train-test ratio and sample size
(Figure 4.7). The temporal split defines the number of consecutive scenes involved in the
training set and the number of consecutive scenes involved in the test set, where the test
set is chronological to the training set (Figure 4.7). Consecutive temporal split training sets
generated are overlapping.
To evaluate the sensitivity of the model to the number of scenes included for the training
set, and to derive the minimal number of scenes required for exploring the relation between
the detectability and the viewpoint spatial variables, the following ratios were considered:
90:10,80:20,70:30,60:40,50:50,40:60,30:70,20:80,10:90. For each split dataset the following
measures are calculated:

• Minimum training set size. The significance of the variables found statistically signifi-
cant for the full database is re-evaluated for the smaller training subset to define the
minimal training set for which the found spatial variables remain statistically significant.

• Root mean square error (RMSE). A goodness of fit measure of the prediction model,
defined in Equation 4.5:

RMSE =

√∑ (Ti− T̂i)2

N
(4.5)

where Ti is the actual number of detected peppers, T̂i is the predicted number of
detected peppers and N is the number of scenes in the test set used for the evaluation.

• Willmott’s index of agreement (IOA). A goodness of fit measure [Willmott, 1981] for
the prediction model defined in Equation 4.6.

IOA= 1−
∑

(T − T̂i)2∑
(|T̂i− T̄ |+ |Ti− T̄ |)2

(4.6)

where T̄ is the average number of detected peppers in a viewpoint.

4.3 Statistical model development methodology 37



4.4 Detectability analysis for a case study of
sweet peppers

4.4.1 Databases
A dataset of 1312 images of sweet peppers (Capsicum annuum L.) with a total of 798
sweet peppers annotations were acquired in three different greenhouses in different seasons
(beginning, middle and end of the season) using two different acquisition methods (manual
and autonomous) and two illumination types (artificial and natural). More details about the
databases are given in Table 4.1 while the list of used viewpoints is defined in Table 4.2. The
viewpoints are determined according to the guidelines defined in Section 4.3.3, given a 2-4
cm length of the peduncle RS for sweet peppers [Eizicovits et al., 2016]. The acquisition was
performed as follows:

1. Fully autonomous, mid-season database (DB#1). The database was acquired in
a commercial greenhouse in Ijsselmuiden, Netherlands with growing lanes oriented
approximately southwest-northeast, using a 6 degree of freedom manipulator (Fanuc
LR Mate 200iD/7L), equipped with an iDS Ui-5250RE RGB camera with a Lensagon
CMFA0420ND 4.166mm lens set at minimal aperture to automatically acquire images
from 14 viewpoints defined with both artificial and non-artificial illumination conditions
[Kurtser et al., 2016].

2. Manually acquired, end of season database (DB#2). The database was acquired
manually in a commercial greenhouse in Kamehin, Israel, growing lanes oriented
approximately north-south, using the same RGB camera with a Tamron M118FM12
lens with a focal length of 12mm and minimal aperture mounted on a 3 degree of
freedom tripod, both in artificial and non-artificial illumination conditions.

3. Fully autonomous, beginning of season database (DB#3). The database was ac-
quired in a research greenhouse at Sint-Katelijne-Waver, Belgium with growing lanes
oriented approximately southwest northeast and artificial growing lights conditions,
using a 6 degree of freedom manipulator (Fanuc LR Mate 200iD), equipped with the
same RGB camera with a Lensagon CMFA0420ND 4.166mm lens set at minimal aper-
ture to automatically acquire images from 12 viewpoints with artificial illumination
conditions.

Two acquisition protocols were applied for image acquisition (Figure 4.5): a centering
approach and random acquisition approach. In the centering approach, applied to DB#1 and
DB#3, the sensory system was manually centered in front of a pepper or a cluster of peppers,
and then the acquisition was performed. DB#1 includes several random positions and rows
within the greenhouse, while DB#3 is a smaller set acquired from a single row on two sides
with scenes spatially ordered one after the other. DB#3 did not include any natural lighting
conditions. In the random acquisition approach, applied to DB#2, the system was manually
set to a given height and then the acquisition was performed by manually moving the sensory
system along the lane; images were acquired at a constant distance of 1m apart.
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Table 4.1: Databases description

Feature DB#1 DB#2 DB#3
No of scenes 32 16 8
Illumination conditions Artificial/Natural Artificial/Natural Artificial
Growing lights Natural Natural Artificial
Lanes orientation SW-NE N-S SW-NE
Greenhouse Netherlands Israel Belgium
Weeks since season start 22 45 3
Days since last harvest 3 2 3
Acquisition mode Autonomous Manual Autonomous
Resolution 1280X960 1600X1200 800X600
Focal length 4mm 12mm 4mm

Table 4.2: Viewpoint description for each database.

4.4.2 Target identification - image processing, annotation
and ground truth measurements

The acquired images were processed by window based manual tagging, using the MatlabLTD

Training Image Labeler tool (Computer Vision System Toolbox). The annotator was requested
to draw a bounding box around all visible ripe peppers. A ripe pepper was defined as a pepper
with a minimal coloration of 20% of the visible area evaluated visually by the annotator. In
case of truncated or occluded peppers, the annotator was asked to draw a ROI around the
visible area only. The annotator continues until satisfied with the results. The result of the
tagging is a set of peppers ROIs, as shown in Figure 4.9. The annotator was also requested
to classify each tagged pepper in each image of DB#3 into one of three categories: (i) fully
visible; (ii) partially occluded; (iii) truncated. The annotator was directed to mark fully visible
peppers if they are not occluded or truncated by more than 10% of the area. In case peppers
were both occluded and truncated, the peppers were classified as occluded. No specifications
of the occlusion type (stems, leaves, other peppers, foreign object in the images) were noted.
The output of the labeling process is a set of image coordinates representing the tagged
peppers. The tagging process is then translated into a dataset, defining the number of targets
tagged for each image.
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Figure 4.9: Labeling process - window based manual tagging.

Figure 4.10: Same image taken with artificial illumination (left) and natural overexposed
light (right).

The annotator was requested to tag the image by reviewing both the image with natural light
(available in DB#1 and DB#2) and with artificial illumination (Figure 4.10), resulting in a
single merged ROI.
The mutual number of targets detected from multiple viewpoints was also evaluated by
manual review of each couple of images taken from two viewpoints, and manual assessment
of the number of joint targets seen from each combination. The output of the tagging is a set
of viewpoint combinations and the number of joint targets detected.

4.4.3 Minimal detectability of annotators
Bounding box areas Al and relative bounding box area RAl (Equation 4.4) were calculated
for each annotation of DB#2 and DB#3 (Figure 4.11). The minimal RAl for DB#2 was 0.7%
which is equivalent to a bounding box area Al of 13440 px. The minimal RAl for DB#3 was
0.21% which is the equivalent to a bounding box area Al of 1024px.

4.4.4 Single viewpoint results
The average detectability of each viewpoint across all scenes acquired is presented in Figure
4.12. Early in the harvesting season a single viewpoint provides between 40-90% detectability.
In mid-season 40%-60% of the fruit are detected from one viewpoint. At the end of the season
only 20-30% fruit are detected. However, the average detectability of the different viewpoints
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Figure 4.11: Distribution of RAl in DB#2 (Left) and DB#3 (Right).

is 60%-70%, both at the beginning of the season and in the middle of the season, indicating
the importance of finding the best viewpoint.
Detectability results for DB#2 are significantly lower than for DB#1 and DB#3, as expected,
due to the harsh environmental conditions caused by the fact that it was later in the season,
where the occlusion is maximal. Additionally, the acquisition was shortly after the previous
harvesting and the sensing rig was randomly placed along the lane, resulting in a significantly
lower number of detected targets, as well as lower detectability rates.
Detectability analysis as a function of the viewpoint features: distance (Table 4.3), tilt (Table
4.4) and azimuth angles (Table 4.5), are presented. Results show higher detectability with an
increase in the distance to the target, which can be explained by a wider overview taken at a
greater distance. The inconsistent rise of detectability as a function of distance in DB#3 can
be explained by the uneven number of viewpoints taken from each distance according to the
protocol (i.e., one viewpoint from 17cm as opposed to four viewpoints from 19cm). Positive
tilt, in which the camera faces upwards, resulted in better detection results than negative tilt,
and in some cases in results equivalent to detection results at 0 tilt. This supports previous
findings [Hemming et al., 2014b] that suggested that optimal viewpoints are those facing
upwards. Variations in the azimuth angle showed an inconsistent effect on detectability. In
DB#1 no azimuth was preferred, while in DB#2 both positive and negative azimuth angles
equally increased detection. Finally, in DB#3 positive azimuth angles gathered significantly
better results than negative azimuth angles.
A closer look into the correlation between the lane side and the azimuth angle, described for
DB#2 (Table 4.6), reveals that the preference to positive or negative azimuth dependents
on the side of the lane. For the side of the lane with peppers facing west viewpoints with
positive azimuth angles have a better detection rate than viewpoints with negative azimuth
angles. For the side of the lane where the peppers are facing east, the detection rate for
negative azimuth angles is lower than for positive azimuth angles. These results are also
supported by DB#3, which yields better results for positive azimuth angles. The negative
azimuth angle value seems to be too large for the given conditions, providing significantly
lower detection results. DB#3 yielded similar detection results for both sides of the lane,
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Table 4.3: Detectability results, single viewpoint by distance.

DB#1 DB#2 DB#3
Distance

(mm)
Detection

(Pi)
Distance

(mm)
Detection

(Pi)
Distance

(mm)
Detection

(Pi)
300 52% 400 19% 70 61%
350 58% 700 27% 80 56%
450 61% 90 64%

100 55%
170 76%
190 74%

Table 4.4: Detectability results, single viewpoint by tilt angle.

DB#1 DB#2 DB#3
Tilt

(deg)
Detection

(Pi)
Tilt

(deg)
Detection

(Pi)
Tilt

(deg)
Detection

(Pi)
-22 56% -30 5% -20 46%
0 54% 0 29% 0 63%
22 64% 30 23% 10 56%

20 79%

which can be explained by the presence of the artificial growing lights that evened out the
natural orientation of the lane, as opposed to DB#2. Unfortunately, data on lane side of DB#1
were not part of the acquisition protocol.

4.4.5 Weighted viewpoint score results
Results of the weighted viewpoint score, Equation 4.4, as function of the weights and distance
are presented in Table 4.7. Results show expected lower scores for vectors with lower values
of WF +WT +WO, but consistency in rise in score with higher distance, found for detectability
Pi from the i’s viewpoint. Results of the weighted score as function of tilt angle (Table 4.8)
prioritize positive tilt to negative tilt, for all weights. Results of the weighted score as function
of azimuth angle (Table 4.9) show preference to positive azimuth angles consistently for all
weight vectors.

4.4.6 Combined viewpoints results
The results of the combined viewpoint analysis performed on DB#1 (Table 4.10) suggest that
the right combination of viewpoints can raise the detection from the range of 40%-60% for a
single viewpoint up to 85% for a combination of viewpoints. The best results are achieved
by combining different sets of tilt and azimuth angles. For example, the combination of
viewpoints 2 and 4 (Table 4.2) yields the best results in this case (85%); the combination of

Table 4.5: Detectability results, single viewpoint by azimuth angle.

DB#1 DB#2 DB#3
Azimuth

(deg)
Detection

(Pi)
Azimuth

(deg)
Detection

(Pi)
Azimuth

(deg)
Detection

(Pi)
-45 47% -50 27% -50 54%
0 62% 0 20% 0 64%
45 51% 50 27% 20 75%
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Table 4.6: Detectability results, single viewpoint by azimuth angle and lane side for DB#2,
DB#3. For DB#2 lane sides (1) West (2) East. For DB#3 lane side (1)Southeast
(2) Northwest.

DB#2 DB#3
Azimuth/
Lanes side -50 0 50 Total -50 0 20 Total

1 31% 26% 19% 26% 52% 66% 67% 65%
2 21% 12% 38% 19% 56% 63% 80% 63%

Table 4.7: Weighted viewpoint score as function of weights (WF – fully visible weight, WT –
truncated weight, WO - occluded weight) and distance for DB#3.

Weighted viewpoints score(Si)
Distance (mm) WF = 1 WT = 1 WO = 0 WF = 1 WT = 0.7 WO = 0.5

70 61% 42%
80 56% 41%
90 64% 40%

100 55% 39%
170 76% 57%
190 74% 54%

the distance of 450mm from different tilt angles (0◦ and 22◦) and different azimuth angles
(45◦ and 0◦) yields the best results. However, it must be noted that none of these viewpoints
are the best single viewpoint, which is viewpoint 1 (69% detectability). The detection Pi

of those viewpoints, when analyzed as a single viewpoint (59% and 65%, accordingly, for
viewpoints 2 and 4), do not yield the best detectability results. However, their combination
yields the best results, probably due to the variation in the tilt and azimuth angles. On the
other hand, the combination of viewpoint 7 and viewpoint 12 yields the worst results in this
case (53%) and are, according to the protocol, a combination of the same tilt angle (0◦) and
azimuth angles (−45◦) but a variation in distance (300mm and 350mm, accordingly). In
this case, the simple change in distance with no change in angles yields very little additional
detectability, since viewpoint 7 alone provides 43% detectability while viewpoint 12 alone
provides 46% detectability.
Analyzing the fruit detectability dependence on distance to fruit suggests that combinations
of higher distances provide better detection results, while repeating the same higher distance
is better than a combination of lower distances (Table 4.11). Analysis by tilt angle (Table
4.11) suggests that the combination of positive tilt and 0 tilt yields best detection results.
Analysis by azimuth angle (Table 4.11) suggests that the combination of no azimuth with a
positive azimuth provides the best detection.

Table 4.8: Weighted viewpoint score as function of weights (WF – fully visible weight, WT –
truncated weight, WO - occluded weight) and tilt angle for DB#3.

Weighted viewpoints score(Si)
Tilt (deg) WF = 1 WT = 1 WO = 0 WF = 1 WT = 0.7 WO = 0.5

-20 46% 36%
0 63% 44%

10 56% 43%
20 79% 55%
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Table 4.9: Weighted viewpoint score as function of weights (WF – fully visible weight, WT –
truncated weight, WO - occluded weight) and azimuth angle for DB#3.

Weighted viewpoints score(Si)
Azimuth (deg) WF = 1 WT = 1 WO = 0 WF = 1 WT = 0.7 WO = 0.5

-50 54% 41%
0 64% 46%

20 75% 51%

Figure 4.12: Detectability results, single viewpoint.

These results are similar to the single viewpoint results. Greater distance and positive tilt
yield better detectability in both single and combined viewpoints. The combined viewpoints
analysis provides additional insights, suggesting combining viewpoints with different angles
for a better overview of the scene. Combining different distances does not provide significant
additional detectability, and higher distance of any viewpoint is always preferable. This is
though limited both by the greenhouse size and the resolution of the camera. Therefore, this
conclusion is defined under the assumption that the camera controllable parameters remain
static and that the variation of distances is within the close range to the distances presented,
to which these conclusions can be extrapolated.

4.4.7 Detectability modeling results
The results of the detectability model for DB#1 (Table 4.12) support the descriptive results,
with statistically significant correlation between distance and number of detected peppers
(p.value 0.045), as well as near statistically significant (when using a significance level of
5%) correlation for tilt (p.value 0.061). Both variables present positive correlation with the
number of detected peppers, implying that for higher distance and tilt, the expected number
of detected peppers is higher. The results of DB#2 (Table 4.12) show significance for lane side
with positive correlation (implying a higher number of peppers detected when the peppers are
facing east) and for the interaction between the distance and the tilt. While this interaction
was found to be statistically significant, the regression weight is negligible. For DB#3 (Table
4.12), all three controllable variables revealed a statistically significant positive relation.
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Table 4.10: Detectability results, combined viewpoints for DB#1.

Table 4.11: Detectability results, combined viewpoints for DB#1 by distance, tilt and az-
imuth.

In order to retain the discovered relation between the distance and tilt, and the number of
detected peppers, a minimum of 12-16 scenes (40%-50% training ratio) is needed for DB#1
(Table 4.13). A smaller dataset, results in a loss of the ability to determine these features as
significant. The minimum number of scenes required for DB#3 is more challenging to define
since it showed an inconsistent rise in p.values for smaller datasets. This could be related to
the overall small number of scenes in DB#3 (8) compared to DB#1 (32). Nevertheless, a
minimum of 4 scenes (50% training ratio) is the critical number of scenes for which none
of the features initially found significant in the overall dataset are significant any longer.
DB#2 was not reviewed in this setting, due to the low significant results presented in the
detectability modeling on the whole dataset presented in Table 4.12.
The goodness of fit feature RMSE (Table 4.13), which aims to evaluate the ability of the
model to predict the number of detected peppers, revealed an expected growth in error for
smaller training datasets for DB#1 and DB#3. The range of values for the RMSE of DB#3
is higher than for DB#1. This can be explained by the smaller dataset in DB#3 and the
higher variance of the overall number of targets visible in each scene in DB#3 (std=1.504)
compared to DB#1(std=0.932). The values of the RMSE for all training-testing sets of
DB#1 are significantly lower than the standard deviation, implying that the prediction model
is significantly better than a T̄ model which constantly predicts only the average number
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Table 4.12: Modeling results, including significant variables and interactions, and regression
weights.

DB#1 DB#2 DB#3
Regress.
weight p.val

Regress.
weight p.val

Regress.
weight p.val

Control.
var.

Distance 0.001 0.045** - >0.1 2.38 0.042**
Tilt 0.006 0.061* - >0.1 0.009 0.022**
Azimuth - >0.1 - >0.1 0.005 0.043**
Lane side NA NA 0.668a 0.015** NA NA

Inter.
var.

Distance*Tilt - >0.1 <10−4 0.039** - >0.1
Distance*Azimuth - >0.1 - >0.1 - >0.1
Distance*Lane side NA NA - >0.1 NA NA
Tilt*Azimuth - >0.1 - >0.1 - >0.1
Tilt* Lane side NA NA - >0.1 NA NA
Azimuth* Lane side NA NA - >0.1 NA NA

a - Peppers facing east; *p.val<0.1; **p.val<0.05

Table 4.13: Prediction model accuracy and significant variables at random train-test split.

DB#1 DB#3
Train
/test
ratio

No.
train

scenes

Dist
p.val

Tilt
p.val RMSE IOA

No.
train

scenes

Dist.
p.val

Tilt
p.val

Azim.
p.val RMSE IOA

90/10 28 0.099* 0.038** 0.849 0.342 NA
80/20 25 0.054* 0.084* 0.749 0.358 6 0.041** 0.097* 0.235 1.538 0.57
70/30 22 0.14 0.266 0.764 0.2 5 0.193 0.026** 0.086* 1.646 0.477
60/40 19 0.199 0.026** 0.957 0.236 NA
50/50 16 0.192 0.086* 0.861 0.273 4 0.427 0.067* 0.101 1.632 0.515
40/60 12 0.026** 0.050** 0.918 0.339 3 0.108 0.325 0.177 1.462 0.504
30/70 9 0.447 0.778 0.998 0.251 2 0.522 0.19 0.040** 1.495 0.564
20/80 6 0.609 0.134 0.935 0.268 1 0.189 0.969 0.313 1.656 0.525
10/90 3 0.307 0.941 1.005 0.362 NA

*p.val<0.1, **p.val<0.05

of peppers. This suggests that the defined variables do indeed make the prediction more
accurate. DB#3 did not yield similar results, suggesting that the size of the dataset is too low
for an accurate perdition model.
The IOA values remained relatively static for all train-test splitting ratios, presenting signifi-
cantly higher values for DB#3 than for DB#1. This suggests that the prediction ability with
the variability presented in DB#3 is significantly higher than in DB#1 due to the complexity
of the scene in the middle of the growing season compared to complexity at the beginning of
the season.
Temporal analysis performed on DB#3 (Table 4.14) resulted in slightly lower RMSE values
compared to the random split dataset, and similar IOA and spatial variable significance values.
This implies that prediction in a temporal manner is slightly better, but the training sets were
too small to indicate if these results are significant.

4.5 Conclusions
This research provides a methodology to model fruit detectability based on data acquired
automatically in the field. The methodology includes a protocol for automatic data acquisition
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Table 4.14: Prediction model accuracy and significant variables at temporal train-test split,
DB#1. Average values across all possible combinations.

No of
train scenes

No of
test scenes

Distance
p.value

Tilt
p.val

Azim.
p.val RMSE IOA

7 1 0.073 0.019 0.066 1.498 0.489
6 1 0.186 0.011 0.1 1.494 0.51
5 1 0.321 0.035 0.109 1.292 0.543
4 1 0.404 0.068 0.174 1.328 0.555
6 2 0.167 0.01 0.119 1.393 0.529
5 2 0.301 0.019 0.115 1.301 0.57
4 2 0.426 0.074 0.199 1.317 0.556

to ensure data includes the object, environment and robot variability. Although the developed
model was applied only for sweet pepper data analyses, it can be applied to model detectability
of other fruit varieties.

4.5.1 Viewpoints
Choosing the right viewpoints or combination of viewpoints for detection is crucial to provide
high detectability rates in autonomous harvesting systems. For sweet pepper harvesting, at
the beginning of the season it is crucial to determine the right viewpoint a-priori based on
analyses on real data in real world conditions, since the difference between the detectability
from the best viewpoint and the worst is up to 50%. In these less complex environmental
conditions, a single best viewpoint can provide detection of up to 90%; therefore, it might be
sufficient to perform detection with only one viewpoint. In mid-season the variation between
viewpoints is only 20%. This means that it is still crucial to find the best viewpoint, but even
the best one will provide only up to 70% detectability, and the key for sufficient detectability
for robotic harvesting lies in combining multiple viewpoints. Hence, it is important to employ
the methods presented in this chapter to determine the best combination of viewpoints.
Distance from fruit has significant influence on detectability, with greater distance resulting
in better detectability. However, this of course depends on sensor and robot specifications
(e.g., resolution, reachability) and on greenhouse conditions (e.g., lane width, plant density).
Moreover, the distance cannot be used as a sole predictor of detectability, since the same
distance revealed different detectability rates in different growing conditions.
Positive tilt angles yields better detectability. In some of the environmental conditions, the
differences between no tilt and positive tilt were not very significant. The azimuth angle
does not influence detectability as an independent parameter. However, when analyzed in
combination with the lane side, better results are achieved with positive azimuth angles for
peppers facing east and with negative azimuth angles for peppers facing west. This can be
explained by the direction of leaf growth in relation to the sun.
Weighted viewpoints score results resulted in similar viewpoints for improved detectability.
Therefore, the recommended viewpoints in the case study of sweet peppers remain those with
positive tilts, higher distance and in some cases positive azimuth.
The combined viewpoint analysis revealed that in mid-season 85% of the fruits can be detected
for a combination of viewpoints; this represents a significant increase in detectability from
40%-60% from a single viewpoint. In-depth analysis suggests that a combination of viewpoints
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with different spatial angles (tilt and azimuth) provides better detectability. The highest
chosen distance should remain static, since a combination of lower and higher distances does
not provide additional detectability compared to the higher distance alone.

4.5.2 Detectability modeling and training set minimal
size

The statistical modeling results support the conclusions of the descriptive statistics, where,
in most cases, distance and tilt yielded a positive relation to detectability. The data from
DB#2 showed too harsh conditions to enable proper modeling, with too low detection rates
to statistically model detectability.
The prediction results of the detectability modeling revealed that a minimum of 40%-50%
training ratio (∼ 12 scenes) is necessary in order to be able to discover the statistically
significant spatial variables. Beginning of the season measurements in DB#3 showed better
predictability results, due to the less occluded scenes present at the beginning of the season
and the consistent environmental variables, such as orientation of the lane and placement in
the greenhouse.
Temporal analysis of DB#3 revealed a slight reduction in RMSE, but similar results to the
RMSE of random split. This suggests that the size of the dataset was too low for significant
environmental differences between the first and the last scenes.

4.5.3 Applicability of the results
This research provides an important step towards improving detection rates, which are
currently a bottleneck to robotic harvesting, by finding the best viewpoints to increase
detectability. Results indicate in which conditions multiple viewpoints are necessary in
order to increase detection rates. The specific viewpoints for sweet pepper harvesting were
determined in a systematic manner.
The ground truth measured in this research is based on a human annotator that marks
acquired images, but eliminates a need of a human in the field for ground truth acquisition
which is a tedious task. With the advancement of learning algorithms [McCool et al., 2016;
Sa et al., 2016] ideal detection can become feasible and enable to replace human annotators
for providing ground truth.
This research also provides a methodology for identifying controllable variables that signifi-
cantly affect the detectability rate. Using the defined protocols similar detectability models
can be applied to other robotic harvesters aiming to provide prediction of detectability given
a set of controllable variables that are manageable by the provided hardware. If a given
harvester is equipped with additional degrees of freedom such as dynamic lens or artificial
lighting these can also be included into the model by following the protocol described.
In this work natural illumination was not noted as a measurable variable. The values were
subject to extreme changes and therefore manual measurements were not feasible. In a sys-
tem equipped with an autonomous natural light sensor the influence of it should be evaluated
along with development of algorithms that are robust to natural light fluctuations such as

48 Chapter 4 Statistical models for fruit detectability: spatial and temporal analyses



flash cut techniques [Sun et al., 2007]. Since in most research to date controlled illumination
was used to overcome the natural illumination variability this was defined as a controllable
variable.
The developed methodologies can be applied to improve robotic harvesting of other crops in
dense environments. Ongoing work aims to include the findings regarding the best viewpoints
to improve the harvesting performance of a sweet pepper harvesting robot as a continuation of
the European FP7 project Clever Robots for Crops - CROPS1 [Bontsema et al., 2015; Hemming
et al., 2014a], and within the current European Horizon 2020 project SWEEPER [Ringdahl
et al., 2017].

4.6 Research questions answered
The following research questions defined in Section 1.2 have been met:

RQ1.1: What are the static best characteristics of a sensing viewpoints for sweet
pepper harvesting? Are there any at all? Guidelines for preferred viewpoints features
have been outlined for the given use case of sweet pepper harvesting using the outlined
robotic configuration. Nevertheless, no global best viewpoint has been found and
therefore an algorithm for dynamic viewpoint selection has been designed and is
described in Chapter 5.

RQ1.2: How do the preferred viewpoint characteristics change along the season,
growing conditions, cultivation techniques, and varieties? Common characteristics
of better viewpoints have been defined along seasons (e.g. tilt angle). However, the
conclusions differ between growing conditions e.g., beginning of season detectablity is
high enough for a single viewpoint while mid to end of season require combination of
viewpoints.

RQ1.3: What methodologies should be applied to perform a similar analysis for
a different crop variety/conditions? Methods have been outlined along with an
accommodating flow chart (Figure 4.1).

RQ1.4: What is the minimal dataset needed for dynamic learning of best view-
point characteristics for a given setting? Minimal dataset sizes were derived for
specific statistically significant features through power analysis.

RQ1.5: Are there temporal relations between subsequent plants along the row in
terms of detectability and best viewpoint characteristics? Some temporal relations
were found but the results were insignificant in the given conditions.

1http://www.crops-robots.eu/
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5The use of dynamic sensing
strategies to improve detection

„There are things I can’t force. I must adjust. There are
times when the greatest change needed is a change of
my viewpoint.

— Denis Diderot
(French philosopher, art critic, and writer.)

• Published in Kurtser, Polina & Yael Edan (2018). "The use of dynamic sensing strategies
to improve detection for a pepper harvesting robot". IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).

• Research objective RO2: Development of a dynamic sensing algorithm that will
predict the need of an additional viewpoint and its location.

This chapter presents the use of dynamic sensing strategies to improve detection re-
sults for a pepper harvesting robot. The algorithm decides if an additional viewpoint
is needed and selects the best-fit viewpoint location from a pre-defined set of locations
based on the predicted profitability of such an action. The suggestion of a possible
additional viewpoint is based on image analysis for fruit and occlusion level detection,
prediction of the expected number of additional targets sensed from that viewpoint,
and final decision if choosing the additional viewpoint is beneficial. The developed
heuristic was applied on 96 greenhouse images of 30 sweet peppers and resulted in up
to 19% improved detection rates compared to conventional single viewpoint sensing.
The harvesting utility cost function decreased by up to 10% compared to the single
viewpoint strategy.

5.1 Introduction
Commercial applicability of autonomous harvesting robots indicates a need to detect at least
90% of the actual number of fruits in the field [Blackmore et al., 2002]. To date most work in
agricultural robotics relied on detection from a single viewpoint. However, the number of
actual fruits visible from a single viewpoint (defined as the visibility from a single viewpoint)
in the agricultural environment is known to be limited to 40%-60% [Kurtser & Edan, 2018a;
Hemming et al., 2014b; Bulanon et al., 2009]. The term of visibility from a single viewpoint
should not be confused with the standard performance measures of image detectability
applied in the computer vision community, which defines true positive and true negative rates
by comparing the number of objects detected by the algorithm to the number of objects in
the image as labeled by a human annotator [Russell et al., 2008]. Current algorithms have
limited 85-90% true positive rates (also noted as detection rates, [Vitzrabin & Edan, 2016a;
Bac et al., 2014b]) identified as a major bottleneck limiting agricultural robots’ performance
[Bac et al., 2014b].
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The low visibility rates are mostly due to the dense agricultural environment (e.g., occlusions
by leaves [Ringdahl et al., 2018], Figures 5.1 and 5.2). Attempts to cope with occlusion
have been made using hyperspectral imaging [Lass & Prather, 2004], but the high cost of
hyperspectral cameras as well as their weight has caused RGB cameras to be the most widely
used cameras in robotic harvesting [Bac et al., 2014b]. Additional solutions to overcome
occlusions include mechanical removal in a temporal manner using air blowing [Edan et al.,
2000; Yoshida et al., 1985], and permanent pruning of leaves. Both methods can cause
reduced yield and damage the plant, and hence are preferably avoided.
In this chapter we investigate an alternative way to improve detectability for high-density
crops with low visibility by combining multiple viewpoints [Kurtser & Edan, 2018a; Hemming
et al., 2014b; Bulanon et al., 2009] to increase visibility and thereby detection rates.
The search for optimal viewpoints has been extensively investigated in several domains (e.g.,
computational geometry, visual servoing, robot motion, graph drawing, grasping, medical
intervention planning, and multi-camera stereo vision [Krainin et al., 2010; Mühler et al.,
2007; Vázquez et al., 2001]). These methods often rely on generating image-based models
from scenes with known [Reed & Allen, 2000] or unknown [Bajcsy, 1988] geometry. Often,
the underlying assumption is the existence of an analytical model to support calculation of
the best viewpoint. The viewpoints are calculated to obtain optimal information given some
initial model. As a result the selected viewpoints are often static and predefined.
Previous research that analyzed viewpoints for sweet pepper detectability [Kurtser & Edan,
2018a] revealed that due to the inherent biological variability no specific viewpoint provides
best detection in all cases. However, multiple viewpoints provide increased detectability
by providing more information. Therefore, in this chapter we present a new approach for
agricultural robots that uses a dynamic sensing strategy.
Dynamic selection of viewpoints is regarded as active sensing, active perception, dynamic
sensing, or next best viewpoint selection algorithms. Classical research in the active sensing
field [Bajcsy, 1988] assumes that "in scenarios where data measurements are relatively
expensive or slow, we want to know where to look next so as to learn as much as possible..."
[MacKay, 1992], where information is often measured as viewpoint entropy [Vázquez et al.,
2002]. This method assumes all additional information is valuable and does not take into
account the cost of the additional sensing versus the benefit from it. The information gathered
by an additional viewpoint, suggested by a maximum information policy, might bring too
little profit compared to the cost of the sensing operation and therefore undermine the overall
performance. The sensing operation’s costs are caused by the time of the additional path
travelled by the robotic manipulator to and from the viewpoint and the actual additional
sensing time, which both increase cycle times. The extra sensing is expected to provide
improved detection by overcoming occlusions from an additional viewpoint.
In this research we present an algorithm that decides if an additional viewpoint is needed
and heuristically selects the best-fit viewpoint location from a pre-defined set of locations
based on the predicted profitability of such an action. Similar algorithms often rely on
viewpoint entropy [Vázquez et al., 2002] as a measure for information content; however,
this might be problematic in the unstructured dynamic agricultural environment, where
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scene modeling is very limited [Kurtser & Edan, 2018a]. Therefore, we introduced a more
domain-related heuristic measure of information content. Since additional sensing increases
the cycle time, another limiting factor of harvesting feasibility [Elkoby, 2016; Elkoby et al.,
2014], an additional viewpoint should be pursued only if the additional sensing provides
valuable enough information. Hence a possible additional viewpoint is proposed by predicting
the expected number of additional targets sensed from that viewpoint based on image
analysis for fruit and occlusion level detection, and deciding if the additional viewpoint is
beneficial, taking into account the value of these additional targets versus the cost of their
acquisition. The viewpoint is selected from a pre-defined set of locations to simplify the
robotic operations and limit reachability issues in the dense agricultural environment where
motions are limited.
The objective of this chapter is to propose a dynamic sensing algorithm that decides if
an additional viewpoint is profitable based on the information derived from the current
viewpoint, and if so, directs the robot to the best-fit viewpoint from a set of predefined
list of possible viewpoints. To the best of our knowledge, active/dynamic sensing has been
limitedly investigated in the agricultural domain [Foix et al., 2015] and has not been applied
to robotic harvesting. The proposed algorithm is evaluated for a case study of sweet pepper
harvesting.

5.2 Dynamic sensing algorithm
The algorithm includes four main steps: (i) analyze the image to detect fruit and occlusion
level; (ii) suggest a possible additional viewpoint; (iii) predict the expected number of
additional targets sensed from that viewpoint; (iv) decide if choosing the additional viewpoint
is beneficial.

5.2.1 Image analysis of the scene
The targets (fruits) and occlusions (leaves and stems) detection algorithm includes three
empirically developed steps to derive the number of fruits and calculate the occlusion level in
the current scene.

Image segmentation
A k-means clustering algorithm [Lloyd, 1982] is applied on the transformed image (Figure
5.3) according to Equation 5.1.

Channel1 =G−R

Channel2 =B−R
(5.1)

where R, G, and B are the RGB channels of the original image. K-means clustering is a
common data-partitioning algorithm that assigns each observation to a predefined number
of clusters based on the least distance between each observation and the centroid of each
cluster. The cluster containing a centroid with the lowest values of the B−R channel is
defined as the peppers cluster, the cluster with a centroid with the highest values of B−R
is the background cluster, while the cluster in between corresponds to the occlusion cluster.
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Figure 5.1: Examples of visibility variability in different crop types. Left: Cherry tomatoes,
high visibility. Right: Grapes, mid/low visibility.

Figure 5.2: Image taken in a greenhouse including 3 peppers, frontal leaves, side leaves, and
additional occluding items.

As a result, the image (Figure 5.2) is segmented into three clusters - fruits, occlusions, and
background (Figure 5.4).

Number of fruits
The classified peppers cluster goes through a filtration procedure of all connected elements
by thresholding based on their area, aspect-ratio, and the average intensity of the hue level of
the element in the original image (e.g., Figure 5.5). The number of unconnected elements
remaining in the cluster after this process is defined as the number of revealed peppers,
NRP .

Occlusion level calculation
A two-step filtering process is performed to separate frontal leaves and side leaves and
stems (Figure 5.7). First, the image is cleared of noise (such as the pepper edges and small
artifacts) using erosion-dilation-hole filling procedures (Figure 5.6). Then, the cluster is
filtered based on two values calculated for each unconnected element in the mask: the area
and the aspect-ratio.
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Figure 5.3: Results of k-means classification on a transformed RGB image. Groups 1-3
represent the classification into peppers, occlusion and background.

The occlusion level (OL) of the image (Equation 5.2) is defined as the ratio between the
occluded area and the overall area in the scene.

OL=
∑N0
i=1Ai
AS

(5.2)

where Ai is the area of the occluding element i, AS is the area of the obtained image, and
No is the number of occluding elements. The value of OL is estimated using the obstacle
mask generated: Ai is calculated by summing the produced binary mask of occlusion, No

is the number of unconnected items within the mask, and AS is static for a given camera
resolution.

5.2.2 Suggestion of an additional viewpoint
Since previous research [Kurtser & Edan, 2018a; Hemming et al., 2014b] revealed that no
viewpoint is consistently best in greenhouse conditions and that two consecutive scenes have
very little resemblance in terms of best viewpoint, a heuristic method was developed to find
the next viewpoint. The method is based on general guidelines for improving detection

Figure 5.4: Three clusters classified by the k-means procedure. Left: occlusion, middle:
peppers, right: background.
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Figure 5.5: Resulted filtered pepper mask. NRP = 1.

Figure 5.6: Noise reduction procedure on occlusion cluster.

Figure 5.7: Threshold by area and aspect-ratio.
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Figure 5.8: Change in yaw angle in highly occluded scenes. Yaw angles left: 45◦, right: 135◦.

Figure 5.9: Same scene with 3 viewpoints decreasing in distance between camera and stems
from left to right. Left: 19cm, middle: 10cm, right: 7cm.

revealed in previous research [Kurtser & Edan, 2018a]. Two causes for undetected peppers
are dealt with: frontal occlusions and camera field-of-view limitations. An occluding leaf
sensed from one angle will no longer be occluding from another angle (Figure 5.8). Missed
peppers caused by a limited field of view might be detected by increasing the distance of the
sensor (e.g., camera) to the stems (Figure 5.9). Previous research [Kurtser & Edan, 2018a]
indicated that a greater distance of the sensor (assuming the same lens configuration is
used) improves detection up to the limit of image resolution. But keeping a greater distance
from the crop at all times causes additional fruit approach time from the overview point
[Ringdahl et al., 2018; Ringdahl et al., 2017] causing an extended harvesting cycle, as well as
reachability issues due to the configuration of the robotic arm, and potential harm of the lane
behind the robot due to the tight space in which the robot operates. Hence, closer viewpoints
were noted as preferable.
The additional viewpoint location is calculated based on the occlusion level revealed from the
first viewpoint and the distance from the viewpoint to the target.
The decision process is as follows (Figure 5.10): if the image’s occlusion level is low the
robotic manipulator is moved away from the plant, retaining the angle but increasing the
distance; for a highly occluded image, the yaw angle from which the scene is sensed is
changed to provide fewer occluded scenes.
A predefined list of yaw angles (0, left, and right) and two distances (low and high) is used
based on previous analyses in real world conditions [Kurtser & Edan, 2018a]. The value
separating high and low occlusion levels is based on the median of the occlusion levels
encountered in the dataset.
The performance of the suggested decision process is evaluated using the measures defined
in Section 5.3.4.
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Figure 5.10: Next viewpoint decision tree.

5.2.3 Predicting the expected number of targets from the
additional viewpoint

The number of targets to be revealed from a second viewpoint is predicted by deriving the
number of sensed targets from the first viewpoint and modelling the expected scene yield
from the second viewpoint.
The scene yield is assumed to be distributed as a spatial Poisson process [Privault, 2013] with
an expected value of λ peppers within a scene. This is due to the nature of the problem where
count data per area is used, and low numbers are present. The average scene yield λ depends
on the growing conditions (e.g., the time of year, the variety of the pepper, distances between
stems) and is derived based on ground truth information (Section 5.3.2).
The probability of a scene yielding NP peppers is defined by the probability mass function
of the Poisson distribution (Equation 5.3). The conditional probability of the scene to yield
a total of NP targets when NRP targets has already been revealed is presented in Equation
5.4. The expected value of the scene yield is presented in Equation 5.5, and represents the
expected number of overall targets in the scene given that NRP targets have already been
revealed.

P (NP = k) = λke−k

k! (5.3)

P (NP = k|NP ≥NRP ) =


λke−k

k!(1−
∑NRP−1

i=0
λie−i
i! )

NRP ≥ 1
λke−k

k! NRP = 0
(5.4)
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E(NP |NP ≥NRP ) =


∑∞

k=NRP
λke−λ
(k−1)!

1−
∑NRP−1

i=0
λie−i
i!

NRP ≥ 1

λ NRP = 0
(5.5)

The expected number of additional targets to be revealed from another viewpoint given NRP

depends on the detection probability PD. The detection probability PD is estimated according
to the procedure described in Section 5.3.2. The expected value of targets to be revealed is
defined in Equation 5.6.

E(NR|NP ≥NRP ) = E((NP −NRP )P̂D|NP ≥NRP ) =

P̂D[E(NP |Np ≥NRP )−NRP ] (5.6)

5.2.4 Additional viewpoint decision
Sensing from an additional viewpoint is performed when the costs of sensing are lower than
the potential loss as a result of undetected targets, and vice versa, an additional viewpoint
is not executed when the cost of sensing is higher than the cost of potential undetected
targets.
The cost of an undetected target (CUT ) is the economic loss caused by a non-harvested
fruit target. The cost of a sensing operation (CS) is the cost associated with the additional
sensing operation: the sum of the cost of the travel time of the robotic manipulator to the
viewpoint and the sensing cost (time).
A sensing operation is performed when the condition in Equation 5.7 is satisfied.

E(NR|NP ≥NRP )CUT >CS (5.7)

To simplify calculations, the sensing cost is assumed to be of constant value and independent
of the viewpoint location. This assumption can be applied to robotic systems where the
viewpoints are close and processing times are negligible.

5.2.5 Estimation of costs
While the economic calculation behind obtaining CUT and CS is out of the scope of this
research, the algorithm assumes the presence of such costs. The cost of 1 sec of robot
operation can be extracted given the price of the robotic harvesting system and the overall
greenhouse profit. As a result, given that an additional viewpoint requires more time, this
time can be converted into a financial loss.
Given a price for each pepper harvested, the costs of not harvesting a pepper or the cost of
a human operator working side by side with the robot complementing for the peppers not
harvested by the robotic system can be derived.
Initial calculations of such costs has been performed [Elkoby, 2016; Elkoby et al., 2014] but
are highly variable between greenhouses. For manual pepper harvesting, the average yield
reported by manual harvesters ranges between 0.6 and 0.8kg/m2 per day (13-16 harvesting
hours) with an average of 3-9 seconds per pepper [Elkoby et al., 2014]. Assuming this is the
pace of harvesting for a robotic harvester to be profitable, the cost of an unharvested pepper
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in time units is assumed to be in the range of 3-9sec.
The cost of sensing, in time units, is defined as the distance to be travelled to a viewpoint.
This largely depends on the robotic configuration. The additional viewpoint time cost CS can
be estimated as 0.4-1 sec, since the viewpoints in this experiment were located at distances
between 20 and 50cm from each other, with an average robotic manipulator speed of 0.5
m/s for safety reasons. The processing time was assumed to be negligible. Therefore, for the
given setting the CUT /CS ratio was varied between 3 and 20.
A 6 sec per pepper harvest cycle time was assumed to be profitable for the autonomous
harvester based on analysis by the fp7 CROPS project1 [Pekkeriet, 2011 and the HORIZON
2020 SWEEPER project2. This can be translated to a CUT /CS ratio of 6:1. Since other robotic
harvesters might require a different ratio, a whole range of ratios were evaluated.

5.3 Evaluation methods
The described algorithms were evaluated on a dataset of sweet peppers (Capsicum annuum)
images acquired in a greenhouse from several viewpoints, as well as ground truth information
about the actual number of targets in each scene. The number of fruits visible from each
viewpoint and also the number of fruits visible from each combination of two viewpoints (joint
targets) were manually counted in the images. The proposed dynamic sensing algorithm was
compared to an algorithm that included only a single viewpoint. Analyses were conducted for
different sensing and undetected target costs.

5.3.1 Data collection and annotation
The database was acquired in a research greenhouse at Sint-Katelijne-Waver, Belgium, using
a 6 degree of freedom manipulator (Fanuc LR Mate 200iD), equipped with an iDS UI-5250RE
RGB camera to automatically acquire images from 12 viewpoints with artificial illumination
conditions.
The spatial locations of the 12 viewpoints were defined by three parameters: distance to
the plant, tilt angle, and azimuth angle (Figure 5.11). The viewpoints were selected as
derived from the literature [Kurtser & Edan, 2018a; Hemming et al., 2014b; Bulanon et al.,
2009] to ensure that half a sphere around the stem will be covered in the joint field of view
[Kurtser & Edan, 2018a] and based on robotic reachability limitations only, as examined in a
pretest in laboratory conditions. The acquisition protocol included manual centering of the
sensory system in front of a pepper or a cluster of peppers to ensure correct ground truth
measurements that were measured by manually counting the number of peppers in the scene.
This also ensured that images with peppers are acquired for the analyses. Since peppers grow
along the main stem and are planted at constant distances, this assumption is realistic for
the robotic harvester, which can advance along the row in constant steps [Hemming et al.,
2014a] or until the main stem is detected (e.g., [Bac et al., 2014b]).
A dataset with a total of 96 RGB images of 30 peppers, divided into 8 scenes with 2-6
peppers in each, was registered. The number of detected targets NRP in each viewpoint was

1http://www.crops-robot.eu
2http://www.sweeper-robot.eu
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Figure 5.11: Definition of a viewpoint by distance and two angles – tilt and azimuth.

extracted either by manual annotation (denoted as NM
RP ), or based on the image analysis

algorithm (denoted as NA
RP ).

The number of joint targets NJRP was manually calculated for each pair of images by
an annotator that either counted the joint number of targets from the original images
(NM

JRP ) or counted the peppers in the automatically generated pepper masks of the original
images (NA

JRP ). This enabled providing insights into the algorithm performance for both
optimal detection rates provided by the human annotator (defined as the gold standard)
and suboptimal detection algorithms provided by the automatically obtained image analysis
number of peppers.

5.3.2 Parameters estimation
The reachable area is defined as the average number of reachable stems S multiplied by the
average number of reachable clusters C. This was derived based on field observations, which
indicated that peppers usually grow on stems in two clusters, one above another. To estimate
λ, the expected value of peppers in a scene Equation 5.8 is applied.

λ̂=NS SC (5.8)

where NS is the average number of peppers on a stem and λ̂ is the estimated value of λ. All
parameters can be derived by either visually evaluating the scenes in a greenhouse prior to
harvesting, or from botanical data gathered by the growers and from evaluation of images
from previously collected scenes. The detection probability PD is estimated by Equation 5.9.

P̂D = NRP

λ̂
(5.9)

where NRP is the average number of detected peppers in all acquired images.

5.3.3 Sensing strategies evaluation and costs
Two sensing strategies are compared for each collected image from each viewpoint.
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Single viewpoint
The total harvesting cost (TC) is calculated according to Equation 5.10.

TC = CS + (NP −NRP )CUT (5.10)

where NP is the number of peppers in the scene as logged in the dataset and CS and CUT are
the defined costs of sensing and undetected targets.

Dynamic sensing
If an additional viewpoint is not suggested, no additional costs are calculated and the total
cost remains as described in Equation 5.10. If an additional viewpoint is suggested, the total
cost includes the cost of two viewpoints and is based on the joint number of detected peppers
NJRP and is calculated according to Equation 5.11.

TC = 2CS + (NP −NJRP )CUT (5.11)

5.3.4 Performance measures
The performance measures include:

Descriptive dataset measures
The measures include the average number of peppers in a scene λ̂ as collected from the
ground truth information, average occlusion level of a viewpoint OL , average number of
detected peppers NRP (as detected by the manual annotators and the image analysis), and
the accuracy measures of the target detection algorithm (precision and recall).

Suggested viewpoint evaluation measures
To evaluate the viewpoints suggested by the algorithm a number of measures are defined:

• The number of targets prediction accuracy measures the difference between the
expected number of targets in the scene as predicted by Equation 5.5 and the actual
number of targets in the scene NP . The related measures include the average difference,
root mean square error (RMSE), and normalized root mean square error (NRMSE).
Similar measures are calculated for the difference between the expected number of
additional targets to be sensed from an additional viewpoint as predicted by Equation
5.6 to the actual number of additional targets as sensed from the next viewpoint.

• The detection increase (DI) is defined as NJRP −NRP , and measures the number
of additional targets detected when an additional viewpoint is added. The relative
detection increase defined in Equation 5.12 measures the ratio between the detection
increase and the ground truth information collected about the scene.

RDI = NJRP −NRP

NP
(5.12)

• The occlusion level reduction measure (OLD) is defined as the ratio of the occlusion
level as calculated in Equation 5.2 between the original viewpoint image and the second
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Figure 5.12: Occlusion level as detected in all images of the database.

viewpoint image. OLD is measured only where an additional viewpoint is possible
according to the decision process described in Section 5.2.4.

Sensing strategy evaluation
The relative total cost decrease (RTCD), calculated according to Equation 5.13 for each image
taken, aims to find the relative decrease in the total cost as a result of the use of the dynamic
sensing strategy proposed.

RTCD = 1− TCD
TCS

(5.13)

where TCS is the total cost as a result of the single viewpoint strategy and the TCD is the
total cost as a result of the dynamic sensing strategy. Additionally, the ratio of the number of
cases in which an additional viewpoint is suggested is also presented.

5.3.5 Sensitivity analysis
Sensitivity analysis is performed for all defined measures (Section 5.3.4) as a function of
changes in cost ratios and the number of detected peppers.

Cost ratios
Since the costs of sensing and undetected targets depend on a multitude of parameters
(Section 5.2.5) [Elkoby, 2016; Elkoby et al., 2014], the analysis was conducted for the full
range of ratios of CUT /CS to vary from 1 to infinity.

Number of detected peppers
To allow insights into the algorithm performance for both optimal and suboptimal detection
algorithms, all measures are derived for both manual (human annotator) and automatically
obtained (via image analysis) number of peppers.
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Figure 5.13: Images and detected obstacles. Top - high occlusion level. Bottom - low
occlusion level.

5.4 Results
5.4.1 Descriptive dataset measures
The collected ground truth of the scenes in the greenhouse revealed 30 ripe peppers with
an average of 3.75 and standard deviation(std.) of 1.4 peppers in a scene (λ̂= 3.75). The
average number of peppers in an image was 2.3 (std.=0.95) and 1.4 (std. 0.9) for the manual
annotation (NM

RP ) and automatic image analyses (NA
RP ), respectively.

The median value of the detected occlusion level (OL) (Figure 5.12) of 10% was taken to
separate into low and high occlusion levels, with examples presented in Figure 5.13.
The target detection algorithm had precision and recall rates of 0.95 and 0.63, respectively.

5.4.2 Parameters estimation
According to Equation 5.9, given the found NA

RP and NM
RP , the image analysis detection

probability and the manual evaluation detection probability are estimated as P̂AD = 0.37 and
P̂MD = 0.61, respectively.

5.4.3 Suggested viewpoint evaluation measures
With a second viewpoint, detection rates increase by 19% from an average of 46% (95% confi-
dence interval:39.0%-53.0%) detection to an average of 65% (95% confidence interval:57.6%-
72.4%) detection. In 83.9% of the cases the next viewpoint resulted in lower occlusion levels.
Separating the viewpoints into highly occluded (OL > 10%) and low occluded viewpoints
showed 84.3% reduction in occlusion level of the second viewpoint for viewpoints with high
occlusion level, and an average 55% increase in occlusion level for low occluded viewpoints.
Even though viewpoints with low occlusion level encountered a higher occlusion level in the
second viewpoint, the additional viewpoint revealed additional targets at similar rates to the
initial viewpoints with high occlusion level.
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Figure 5.14: Relative total cost decrease.

The average difference between the expected number of targets as predicted in the scene
according to Equation 5.5 to the actual number of peppers in the scene was 0.57 (RMSE=1.58,
NRMSE=0.42). The average difference between the expected number of peppers to be
detected from a second viewpoint according to Equation 5.6 and to the actual number of
peppers detected was 0.89 (RMSE=1.03).

5.4.4 Sensing strategy evaluation
Results (Figure 5.14) reveal that if image analysis is non-optimal (i.e., when not all peppers in
an image are revealed), a cost ratio higher than 3 yields a 5-10% cost decrease. The algorithm
is not profitable when 100% detection is achieved in the first viewpoint; in these cases a
single viewpoint should be employed since a second viewpoint is more costly than beneficial.
These results reveal that the selected heuristic improves detection by combining viewpoints
according to the recommended second viewpoint. For ideal manual detection the heuristic
has failed to show any conditions in which additional detection overcomes the cost of an
additional viewpoint.
The ratio of cases in which a second viewpoint is employed (Figure 5.15) reveal that for a
ratio above 2 between costs all tested images in the database satisfied the condition defined
in Equation 5.7. In this case a second viewpoint is suggested according to Section 5.2.2 in
58.3% of the cases. These results show that for a ratio above 2, if there is a viewpoint that
is recommended by the heuristic it is always employed and therfore the detection remains
constant.

5.5 Conclusions
The use of a dynamic sensing strategy, which chooses the next viewpoint if the cost/benefit
associated with an additional viewpoint is beneficial, resulted in 19% increased detection
rates with 5-10% decreased costs. These results were achieved for a small number of
predefined specific viewpoints and occlusion levels. A larger set of viewpoints with higher
resolutions in yaw, distance, and occlusion level might yield better results. Improved image
analysis algorithms (e.g., [Zemmour et al., 2017; Vitzrabin & Edan, 2016a]) can further
improve detection, however regardless, due to the inherent visibility limitation as noted in
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Figure 5.15: Ratio of cases in which a second viewpoint was employed.

the literature, adding a viewpoint is critical. For crops with inherently high visibility rate due
to low occlusion levels (e.g., cherry tomatoes and grapes [Berenstein et al., 2010] - Figure
5.1), probably a single viewpoint strategy is sufficient to overcome the occlusion problem.
This new concept of improving detection rates by dynamically adding a viewpoint is an
important step towards advancing applicability of harvesting robots in high density crops. The
proposed strategy was developed heuristically based on guidelines derived from viewpoints
analyses for the specific crop.
To implement dynamic sensing for other crops the following main steps must be tailored to
the specific application: 1) developing image processing algorithms for object and occlusion
detection, 2) modeling the sensing costs assumptions, and 3) statistical analyses of different
viewpoints to provide guidelines for developing heuristics related to the number of viewpoints
and their combinations. For real-time implementation it is important to keep a simple decision
process. However, future work should evaluate the benefit of finding the optimal location of
an additional viewpoint versus a best-fit viewpoint selected using heuristics as in this work.

5.6 Research questions answered
The following research questions defined in Section 1.2 have been met:

RQ2.1: How can information content of a viewpoint should be measured? A
measure of information content has been defined as the number of peppers detected
compared to the number of expected peppers in the scene and the occlusion level.

RQ2.2: How to predict the overall number of peppers in the scene based on
information gathered from one viewpoint? The number of peppers was modeled as
a random Poisson variable. Therefore, the probability of detecting additional peppers
was modeled as a conditional probability given the number of detected peppers in the
first viewpoint.

RQ2.3: How to make a profitable decision on another viewpoint? Two costs were
defined: the cost of loosing the undetected peppers and the cost of an additional
viewpoint. The cost of loosing the undetected peppers depends on the number of
peppers that were not detected. A comparison between the two costs leads to the
decision if to add a viewpoint.
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RQ2.4: Where should an additional viewpoint be placed? How is the location
dependent on the information extracted from the first viewpoint? The features of
the additional viewpoint are defined based on the occlusion level and the distance to
targets extracted from the first viewpoint. Based on that data and a heuristic developed
from the results of Chapter 4 the new viewpoint location is chosen from a list of
predefined possible viewpoints. Future work should include an accurate calculation of
the viewpoint.
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6Planning the sequence of
tasks

„The obvious rule of efficiency is you don’t want to
spend more time organizing than it’s worth.

— Daniel Levitin
(Cognitive psychologist, neuroscientist, writer.)

• Polina Kurtser, Yael Edan. "Planning the sequence of tasks for harvesting robots".
Submitted to a robotics journal 2018.

• Research objective RO3: Compare different strategies of harvesting and sensing
sequencing.

This chapter focuses on an algorithm for planning the sequence of tasks for a harvest-
ing robot. The fruit targets are situated at unknown locations and must be detected
by the robot through a sequence of sensing activities. Once the targets are detected,
the robot must execute a harvest action at each target location. Planning the sequence
of harvesting and sensing tasks is achieved using the traveling salesman paradigm by
considering the costs of the sensing and harvesting actions along with the traveling
times. The developed methodology is validated and evaluated in both laboratory and
greenhouse conditions for a case study of a sweet pepper harvesting robot. The results
indicate that planning the sequence of tasks for a sweet pepper harvesting robot can
reduce travel cost on average by 12%. Incorporating the sensing operation in the plan-
ning sequence for fruit harvesting is a new approach in fruit harvesting robots and is
important for cycle time reduction.

6.1 Introduction
Ongoing research is performed on harvesting robots, but still with no commercial success
[Bac et al., 2014b; Hemming et al., 2014a]. The robotic harvesting cycle includes detecting
the fruit, reaching the fruit, deciding whether it is ripe, and harvesting the fruit [Edan et al.,
1991]. Major limitations are low detection rates—87% [Bac et al., 2014b] and low harvesting
cycle times [Hemming et al., 2014a]. Most research to date focuses on improving detection
algorithms [McCool et al., 2016; Sa et al., 2016; Bac et al., 2014b], and very little research is
devoted to cycle time optimization [Mann et al., 2016; Zion et al., 2014; Edan et al., 1991]
which is the main thrust of this chapter.
The complexity of the fruit detection task is due to the unstructured and dynamic nature
of both the objects and the environment [Kapach et al., 2012]: fruits have a high inherent
variability in size, shape, texture, and location; in addition, occlusion and variable illumination
conditions significantly influence the detection performance. Previous research indicated
that from a single viewpoint only 60% of the fruit are visible [Hemming et al., 2014b] and
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that detection can be improved to 85-90% by combining multiple viewpoints. However, to
provide better detectability it is important to select best-fit sensing points. Furthermore, since
each sensing operation leads to additional travel and time costs it is important to plan these
sensing tasks so as to reduce the overall cycle times.
Cycle times can be improved by optimizing the harvesting sequence [Edan et al., 1991]. The
near-optimal harvesting sequence of fruits depends on the robot kinematics and the plant
structure [Edan et al., 1991], and can be improved by applying solutions of the traveling
salesman problem (TSP) to the fruit coordinates. Previous research of planning in harvesting
robots assumed all fruit coordinates are known in advance (through previous detection).
Since the TSP is NP hard [Lenstra & Kan, 1981], in most cases heuristics are used for large
scale problems [Lawler, 1985]. Optimal solutions can be derived only for problems with
few targets using exhaustive search [Laporte, 1992]. Algorithms to define the sequence of
citrus harvesting were based on the TSP using the geodesic as the minimum path [Edan
et al., 1991]; the sequence of melon picking for a multi-arm harvester was modeled as a
task of coloring an interval graph based on GPS tagging of the fruit locations [Mann et al.,
2016; Mann et al., 2014; Zion et al., 2014] before harvesting begins. In both works only the
harvesting tasks were considered in the planning.
The traveling salesman problem, and the vehicle routing problem, in the context of agricultural
applications has also been addressed for agricultural field logistics problems [Orfanou et al.,
2013; Bochtis et al., 2010; Bochtis & Sørensen, 2010; Bochtis & Sørensen, 2009; Ali et al.,
2009], where an action, such as watering or seeding, is required to be accomplished by
multiple vehicles or humans or cooperation between the two. The required action is repetitive
and static. Hence, the optimal plan was developed prior to actual traveling, relying on ideal
knowledge of the targets and the cost of transportation between them.
In robotic harvesters to date, planning of the sensing operations has not been noted [McCool
et al., 2016; Bontsema et al., 2015; Bac et al., 2014b]. Detection is conducted either from a
fixed position or continuously using an "eye-in-hand" configuration [Barth et al., 2016; Bac
et al., 2014b]. For harvesters that detected fruit a priori (e.g., [Bontsema et al., 2015; Bac
et al., 2014b]), the harvesting sequence is usually defined using a heuristic sequence with
some preset order such as distance to the sensing rig or along the lane [Bac et al., 2014b].
However, when detection is not performed a priori, continuous sensing is needed to reveal
the fruit. This requires tying the harvesting sequence problem with planning the sensing
actions to retrieve the target locations. Increasing the number of viewpoints increases cycle
times and hence must be minimized.
Attempts to approach the question of planning of sensing actions, has been done before in
other applications. This includes planning of sensor operations based on information content
[Olawsky et al., 1993], and a stochastic planning approach, which models the task planning
as a Markov Decision Process [Hansen, 1994].
The aim of this chapter is to develop a methodology for planning the sequence of tasks for
a robotic harvester i.e., planning both the sensing and harvesting actions and motions to
optimize the average harvesting time. To accommodate the possibility of other sensors that
are not RGB (e.g. hyper spectral, thermal cameras, etc) in this chapter the term sensing point
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(the physical location where sensing is performed) is substituting the viewpoint term used
in previous chapters. The meaning remains the same - the pose (position & orientation) of
the sensor, that needs to be achieved by the robotic manipulator. The value of this planning
is evaluated by comparing the results to optimal harvesting, assuming all fruit locations are
known a priori; and to common harvesting strategies to-date, which are mostly heuristic
and do not employ any optimization method. The developed methodology is validated and
evaluated in both laboratory and greenhouse conditions for a case study of a sweet pepper
harvesting robot.

6.2 Formalization and algorithm
The methodology used to calculate the costs associated with traveling between the sensing
points and targets to be harvested along with the sensing and harvesting operations is
described. Then, the methodology of optimal sequence calculations is detailed given the
locations of sensing points and sensed targets.

6.2.1 Formalization and notations
Given a 3D operational area A of size LR ∗LC ∗LD, the following locations are defined:

• Harvesting targets xF = {x1. . . xNFT } are the NFT fruit locations to be visited and
serviced by performing a harvest action (e.g., grasping the fruit and cutting it).

• Sensing points y = {y1. . . yNSP }. The NSP locations where sensing actions are per-
formed for revealing unknown targets. Each sensing operation performed at point
yi ∈ y reveals a subset of harvesting targets xRF (yi)⊆ xF .

• Revealed harvesting targets is the consolidation of the subsets of targets xRF (y1). . . xRF (yk)
revealed in previous k sensing actions. If the robot have not performed any sensing
operations yet then the revealed harvesting targets set is ∅ .

The following costs are defined based on the robotic harvesting cycle:
• Sensing cost Sc. The cost of performing a sensing action, at sensing point yi, for

revealing undetected targets, i.e, the image processing time to detect the targets.
• Traveling costs Wc(ci, cj). The cost of traveling between two points, a function of

spatial coordinates (ci can be a harvesting targets xi or sensing points yi) defining the
cost of travel between them.

• Harvesting cost HC . The cost of performing a harvesting action, at a target xi, i.e.,
the time of the harvesting operation (e.g., grasp and cut, grasp and twist).

Both sensing cost SC and harvesting cost HC are considered constant since sensing and har-
vesting are repetitive tasks which are not dependent on the spatial locations of the sensing’s
or target’s locations.

The travel sequence SeqT is a list of ordered target and sensing coordinates that the robot
travels through. The total traveling cost is defined as the path length in Equation 6.1.
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TPL =
NFT+NSP−1∑

i=1
Wc(SeqT (i),SeqT (i+ 1)) (6.1)

The overall total travel cost Tc of a travel sequence SeqT is defined by Equation 6.2, by
adding the cost of travel to the cost of sensing and harvesting.

Tc = TPL+HCNTF +SCNSP (6.2)

For a constant number of targets NTF and sensing points NSP the total cost can be considered
as the total travel cost TC with an addition of a constant. The optimal travel sequence Seq∗T
is the sequence minimizing the total travel cost.

6.2.2 Target-sorting methods
Given xRF (yi) revealed targets from sensing action yi and the travel costs between them the
following target-sorting methodologies were considered:

• Optimal target-sorting method sorts the targets according to the minimal distance
between their spatial locations. This method solves the traveling salesman problem
(TSP) for the given targets locations

• Heuristic target-sorting method. Sorts the coordinates of detected fruit in one di-
mension (e.g., near-to-far, right-to-left). This sequencing methodology does not aim to
optimize the traveling cost, and is common in practice in many robotic harvesters.

An illustration of the different target-sorting methodologies is presented in Figure 6.1
Important to note that for the described application of a robotic harvester, the number of
targets expected to be harvested from a single robotic platform location is NFT < 15. This
allows the optimal target-sorting method to solve the TSP problem using exhaustive search.
Sweet peppers usually have an average of 3 peppers on a stem [Kurtser & Edan, 2018a]; this
corresponds also to results by Sa et al.,[Sa et al., 2016] which revealed an average of 2-3
stems in an image. The database gathered in this chapter reports similar numbers. Other
plants might have a larger amount of targets, and might require a sub-optimal TSP solution
(Laporte, 1992; Lawler, 1985) of the traveling salesman problem. To avoid distraction of
the main focus of the chapter, these cases are not covered and should be reviewed in the
future.

72 Chapter 6 Planning the sequence of tasks



Figure 6.1: Illustration of target-sorting methods for sensing point y1 and the revealed targets
xRF (y1) = {x1. . . x5}. Left: optimal target sorting method. Right: Heuristic target
sorting method (top-down).

6.2.3 Sensing methods
To obtain global full information about the targets locations several sensing operations are
required. It is assumed that all sensing points’ locations are set a priori based on optimal
viewpoint analyses. The sensing method defines when the sensing operation will be performed
within the travel sequence. The following sensing methods were compared (Figure 6.2):

• “A priori-sensing” – “Sense-all-first followed by harvest-all”. In this case all sensing
points are performed a priori before the harvesting sequence is derived, to obtain loca-
tions of all targets and perform a global optimum calculation of the targets harvesting
sequence.

• “Batch-sensing” – “look and move”. Each sensing point is followed by harvest of all
targets revealed as a result of the previous sensing action. The next sensing point is
selected only after the harvesting of all targets revealed is completed.

• “Sensing-in-harvest” – “sensing included in harvesting sequence”. The sensing points
are included in the list of locations to be visited. When the robot travels between
target locations, and reaches a sensing location, it performs a sensing action. The new
revealed targets are now integrated into the whole list of targets and a new optimized
sequence is calculated.

In the example presented in Figure 6.2, the "a-priori sensing" is where y1 and y2 are traveled to
first and then all the revealed targets xI = {x1. . . x8} are sorted top-down. The batch sensing
includes traveling to y1 where targets xRF (y1) = {x1. . . x5} are revealed, and then sorting
xRF (y1) in a top-down order, then y2 is visited where xRF (y2) = {x6. . . x8} are revealed and
sorted in a top-down order. Finally, the sensing-in-harvest includes visit to y1 where targets
xRF (y1) = {x1. . . x5} are revealed, followed by sorting xRF (y1) as well as y2 is a top-down
order. In this case y2 is visited after visiting targets x1 and x2 where xRF (y2) = {x6. . . x8} are
revealed as a result targets {x3. . . x8} are re-ordered in a top-down order.
It is important to note that the "a priori-sensing" method cannot be used as the optimal
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Figure 6.2: Illustration of sensing methods for two sensing points y1 and y2 and the revealed
targets xRF (y1) = {x1. . . x5}, xRF (y2) = {x6,x7,x8}. A top-down target-sorting
is used. Top-left: a-priori sensing. Top-right: batch sensing, Bottom: Sensing in
harvest.

benchmark since it is not necessarily the optimal solution. The optimal sequence is highly
dependent on the unknown fruit distribution and on the sensing points’ locations. It is also
important to note that "a priori-sensing" can be performed by a different system/robot. In
this case the costs of travel to the sensing points might be minimized by having the system
designed for overview points locations. However the cost of an extra system in place and the
registration errors derived should be considered.

6.2.4 Harvesting targets location and sensing data
The expected locations of the targets in space are highly dependent on the application. While
in some applications, the locations of the targets can be assumed to be uniformly distributed,
in agricultural applications some areas have more probability for target occurrence than
others due to the biological nature of the problem (i.e., fruits will grow on a stem, in a certain
height window, with a certain growth distribution). The target location is described as a
random variable drawn from a 3D target locations probability function PT (c) defining the
probability of the target to be present at the coordinate c(x,y,z) ∈ A. Given target xi, a
revelation probability PRj defines the probability of the target to be revealed at a sensing
point yj . This generates a target-sensing pairs where a sensing action at sensing point yj
reveals a subset of targets xRFj ∈ xF .

6.2.5 Traveling costs definition
The traveling cost Wc(ci, cj) between two spatial coordinates ci, cj (targets or sensing points)
depends on the traveling agent degrees of freedom, on the path, and its motion profile. The
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cost is defined as the time of travel between two coordinates by a robotic arm. The general
notation presented in this research can be generalized to other traveling costs as well, such
as energy consumption and traveled distance. The following methods for traveling costs
estimation are used in this chapter:

• Time of travel with a robotic arm performing point-to-point motion (time matrix).
In this case the robotic arm performs a point-to-point motion between two coordinates
according to the intrinsic velocity profile of the robotic arm. A point-to-point motion
is a path minimizing the squared sum of angular distances of the joints required to
travel between ci and cj . The actual times of travel are registered and are used as the
traveling cost.

• Weighted sum of angular distances of the RRT connect path solution. In this case,
the path between each two points is calculated using the RRT connect algorithm
[Kuffner & LaValle, 2000] for path solution. The path length is then defined as the root
of the sum of square angular distances of the joints required to travel between ci and
cj weighted by joint angular speed ω.

The time travel matrix approach does not make a priori assumptions regarding the path
planning algorithm or internal joint speeds of the robot. The weighted sum approach assumes
the robot path planner is RRT connected and that the angular speed of the joints is known.
The time travel matrix does not assume symmetry, and allows the cost of travel between ci
and cj to be different from the cost of travel from cj to ci.

6.3 Methods
To validate and evaluate the proposed methodology in both laboratory and greenhouse
conditions, the following experimental protocols were applied:

1. Datasets generation and acquisition protocols where target points and sensing
points are registered in both a simulative environment and greenhouse environment.

2. Target-Sensing dataset. The datasets are processed into a list of sensing points and
the resulting revealed targets in each scene as a result of the revelation probability or
actual information gathered in the greenhouse.

3. Acquisition of traveling cost between all points. Acquisition of the traveling costs
between each two points according to the defined measures of Wc(ci, cj).

4. Application of the sensing and sorting methodologies and performance measures
calculation. Given the targets and the travel costs the different sensing and sequencing
methodologies are applied. For each of the proposed sensing and sequencing method-
ologies a set of performance measures is calculated to evaluate the best sensing and
sequencing methods given the revelation probability, traveling cost, and experimental
hardware setup.

6.3.1 Datasets generation and acquisition protocols
Two datasets were used – an artificial database (DB#1) and a greenhouse database (DB#2).
The greenhouse database (DB#2) consists of known locations extracted from greenhouse
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Figure 6.3: Robot acquisition of target locations and sensing points in the greenhouse as well
as axis origin and orientation in the robotic base.

data. 3D locations are based on data extracted from experiments performed in greenhouse
conditions, generating a 3D database of actual locations, retaining a 10−2 decimal accuracy.
The greenhouse dataset (DB#2) was acquired in April, 2017 in a research greenhouse at
Sint-Katelijne-Waver, Belgium, using a 6 degree of freedom manipulator (Fanuc LR Mate
200iD). The robot was equipped with an iDS Ui-5250RE RGB camera (Figure 6.3) to automat-
ically acquire images from 12 viewpoints described in Table 6.2 with artificial illumination
conditions. It includes 3D locations of 12 peppers in 2 scenes as registered early in the
harvesting season according to the protocol described in [Barth et al., 2016].
To generate the artificial database (DB#1) a theoretical distribution (PT (c)) was used.
PT (c) is defined based on distributions assumed to be relevant to the application. In pepper
harvesting, the targets are expected within a vicinity of the stem in a finite range in height.
In commercial greenhouses the stems are placed at a constant distance from one another.
Given PT (c) the DB#1 is generated by randomly drawing target coordinates according to this
distribution, retaining a 10−2 decimal accuracy. The artificial dataset (DB#1) includes 12
artificially generated scenes. Each scene includes 7 targets and 2 sensing points with locations
drawn from the location probability functions described in Table 6.1 according to the axis
describe in Figure 6.3. All randomly selected locations used are rounded at 10−2cm accuracy.
The locations were separated into three groups:

• Full 3D uniform distribution. In this case, the full area reachable by the robot was
used, forming a cube centered around the robot, eliminating the area too close to the
robot and therefore unreachable. Both targets and sensing points were chosen from
that area.

• One side 3D uniform distribution. In this case, limiting the X-axis to only positive
values allows the evaluation of the case commonly applied in the greenhouse where
only one side of the lane is harvested at a time. Therefore, only one side of the robot is
sensed and harvested. Both targets and sensing points are chosen from the same area.

• Greenhouse distribution. In this case one-sided X-axis limited area is split into two
narrow zones in the Y-axis, each 5 cm wide. Sensing points are taken closer to the robot
than the targets and therefore the sensing points were limited by X.
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Table 6.1: DB#1 – Generated scenes according to the axis in Figure 6.3.

Scene
Location

type Coordinate
Distribution

PT (c)

1-4
Full 3D

Target
X X ∼ U(−0.3,−0.6)&U(0.3,0.6)
Y Y ∼ U(−0.3,−0.6)&U(0.3,0.6)
Z Z ∼ U(0.3,0.8)

Sensing
X X ∼ U(−0.3,−0.6)&U(0.3,0.6)
Y Y ∼ U(−0.3,−0.6)&U(0.3,0.6)
Z Z ∼ U(0.3,0.8)

5-8
One side

Target
X X ∼ U(0.3,0.6)
Y Y ∼ U(−0.3,−0.6)&U(0.3,0.6)
Z Z ∼ U(0.3,0.8)

Sensing
X X ∼ U(0.3,0.6)
Y Y ∼ U(−0.3,−0.6)&U(0.3,0.6)
Z Z ∼ U(0.3,0.8)

9-12
Greenhouse

Target
X X ∼ U(0.4,0.6)
Y Y ∼ U(0.33,0.38)&U(0.53,0.58)
Z Z ∼ U(0.3,0.8)

Sensing
X X ∼ U(0.3,0.4)
Y Y ∼ U(0.3,0.6)
Z Z ∼ U(0.3,0.8)

Table 6.2: DB#2 - 12 sensing points’ description of locations and orientation.

Sensing
point

Distance
(mm)

Tilt
(degrees)

Azimuth
(degrees)

1 19 20 0
2 19 -20 0
3 8 -20 0
4 19 10 -50
5 10 10 -50
6 10 0 -50
7 10 20 0
8 9 0 0
9 7 20 20
10 7 0 20
11 19 20 20
12 17 0 0

6.3.2 Target-Sensing dataset
This process generates a list of target-sensing sets where each sensing point has a subset of
targets that are revealed as a result of performing a sensing action at that spatial point. As
mention in Section 6.2.4, the revelation probability PRj defines the probability of the target
to be revealed at a sensing point yj . In this protocol this probability is defined in two ways

• Constant probability. Previous research [Hemming et al., 2014b] has shown that
40-60% of peppers are revealed from a single sensing point. Therefore, as part of
the simulation protocol a constant revelation probability PRj = [0.4,0.5,0.6] is defined
at each sensing point, in a way that all simulated targets have PRJ probability to
be revealed from any sensing point. Meaning, for each sensing point yj , n random
variables Ii,j ∼ Bernouly(PRJ ) ∀ i = 1. . . n are drawn. If Iij = 1 then target xi is
revealed from sensing point yj else it is not. By doing so, independence between
the detectability of the targets on other targets is assumed to maintain a constant
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Figure 6.4: Detectability rate example marking Left: 50%; Right: 25%.

detectability rate. As a result DB#1 is processed into a list of simulated sensing points
and target locations revealed from the sensing points.

• Known sensing point information from greenhouse data. The greenhouse dataset
DB#2 also includes sensing points and the detectability of the targets from each of
them. This data is derived from the manual data tagging precedure (Chapter 5). The
detectability of a target is marked on a scale of 0% to 100% with 25% increments,
representing the revealed part of the pepper (Figure 6.4). A combination of two sensing
points is chosen according to the following criteria: (i) the combination of sensing
points must provide full detectability of all peppers available in the scene; and (ii) the
combination must provide the maximum sum of joint detectability of all peppers among
the combinations complying with the first criteria. This information is processed to
derive the two best sensing points and the list of targets revealed from each of them.

6.3.3 Acquisition of traveling cost between all points
To derive the traveling costs described in Section 6.2.5 the following procedures were imple-
mented.
A 7-DOF Kuka LWR4 was placed in a simulated environment using the V-Rep version 3.4
simulation software. The simulated targets and sensing points of DB#1 were placed in the
scene as shown in Figure 6.5. In the simulated environment the robotic manipulator moved
from one point to another using the solution of the RRT connect algorithm provided by the
OMPL software package. At each point the cost of travel to all unvisited points was calculated
and registered according to the weighted sum of angular distances of the path with joint
angular velocities of {1,1,1,1,1,1,1}.
The extracted 3D locations of targets and sensing points from greenhouse DB#2 were
implemented in a harvesting sequence of a 7-DOF collaborative robotic arm Kuka LBR iiwa in
laboratorial conditions (Figure 6.6). The robotic arm moved from each registered point to
another and the time of travel was logged. The time assumed needed for harvesting a pepper
was assigned to be 3 sec and the time of sensing processing at each viewpoint was assigned to
be 1 sec corresponding to required time operations for successful robotic harvesting [Elkoby
et al., 2014].
These procedures resulted in a travel cost matrix with distances of travel between each two
points in the scene for both DB#1 and DB#2.
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Figure 6.5: Simulated environment of the Kuka LWR4 robot and the targets.

Figure 6.6: Laboratory reconstruction of the greenhouse conditions on a KUKA LBR iiwa.

6.3.4 Application of the sensing and sequencing
methodologies and performance measures
calculation

Given the traveling cost matrix of a scene all combinations of sequencing and sensing
methodologies were applied both in simulated and laboratory conditions. The heuristic
sequencing method included sorting the location in different common strategies: (i) right-to-
left; (ii) up-to-down; (iii) near-to-far. For each generated sequence the following measures
were calculated:

• Average travel cost for fruit (T̄c). Given sequence travel cost TC as described in
Equation 6.1 and NRT number of jointly revealed targets as a result of all sensing
operations, the average travel cost for fruit is defined as (T̄c = TC/NRT ).

• Joint detectability. Defined as the ratio of revealed targets as a result of all sensing
operations, and the overall number of targets in the scene. For example, let us assume
a scene where 5 peppers (x1...x5) are to be harvested. Let’s assume from the first
viewpoints (y1) only x1,x3 and x4 has been reveled. From the second viewpoint (y2)
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Figure 6.7: Average travel cost per fruit as a function of sensing sequencing methodology
and location probability function.

Figure 6.8: Average travel cost per fruit as a function of revelation probability and location
probability function.

x1 and x2 are revealed. The detectability from the first viewpoint is 3/5 and from the
second viewpoint is 2/5 while the joint detectability from the two viewpoints is 4/5.

The simulated procedure was performed once for each combination of sensing sequencing
methods, while in laboratory conditions each combination was performed three times for
each sensing sequence and sequencing method.

6.4 Results
The results of the average travel cost for fruit calculated as a weighted sum of angular
distances of artificial DB#1 yield an average 8% and 12% decrease in travel cost for "sensing
in harvest" sequence compared to "a priori-sensing" and "batch-sensing" respectively (Figure
6.7). The analysis of the weighted sum of angular distances’ travel cost as a function of
sensing sequencing methodologies under different target locations probability functions
is presented in Figure 6.7. Results indicate that the "sensing-in-harvest" sequence is the
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Table 6.3: Average decrease in travel cost for "sensing-in-harvest" sensing methodology
compared to other sensing methods as function of target probability functions.

Target locations
probability functions

Average decrease in travel cost
"a-priori-sensing" "batch-sensing"

Full 3D 4% 8%
One side 13% 17%
Greenhouse 6% 10%
Combined 8% 12%

sequencing methodology that yields best results (minimum travel cost) for all tested location
probability functions, with a highest decrease of 17% for a one sided location probability
function as compared to "batch-sensing" (Table 6.3).
The results of the same average travel cost as a function of revelation probability PRj resulted
in an average 6% cost increase for 50% revelation probability compared to 60% revelation
probability, and 17% cost increase for 40% revelation probability compared to 60% (Figure
6.8). The average travel cost as a function of revelation probability for different location
probability functions is presented in Figure 6.4. Results indicated maximum 24% reduction
in travel cost with higher revelation probability (Table 6.4).
The results of the same average travel cost as a function of revelation probability for different
sensing sequencing methodologies are presented in Figure 6.9. Average decrease in travel
cost is up to 18% (Table 6.5). A more in depth analysis of this relation is presented in
Figure 6.10, indicating the relation between the same average traveling cost and the joint
detectability as defined in Section 6.3.4. Results show a linear negative relation where the
higher the joint detectability the lower the average cost of travel. The "sensing-in-harvesting"
method consistently results in better performance at all detectability levels, followed by the
"a priori-sensing" and the "batch-sensing".
The total travel costs Tc obtained using the greenhouse data-based experimental protocol as
a function of the sorting and sensing methodologies are presented in Figure 6.11. "batch-
sensing" resulted in worst performance in all sorting methodologies, with an increase of up to
9% in overall traveling costs compared to the other sensing methodologies. "A priori-sensing"
resulted in best or equivalent results to "sensing-in-harvest". "Sensing-in-harvest" resulted
in similar performance to "a priori-sensing" cases where the heuristic sorting methods yield
optimal sequencing.
When the sorting was performed according to a heuristic (right-to-left or bottom-up), per-
forming "sensing-in-harvest" caused an increase of up to 6% in travel time compared to the
other methods. This implies that for a non-optimal sorting heuristic, "a priori-sensing" still
yields the best results compared to sequencing the sensing by using a non-optimal sorting
heuristic. However, when applying "a priori-sensing" in a right-to-left sequencing approach
yields similar results (only 0.6% increase), as compared to the time matrix sequencing. This
can be explained by the growth model in the greenhouse where peppers grow at similar
heights, in clusters, and therefore harvesting in a sequential manner stem-by-stem often yields
the same harvesting sequence as the optimal sequencing.

6.4 Results 81



Table 6.4: Average decrease in travel cost 60% revelation probability compared to lower
revelation probability as function of target probability functions.

Target locations
probability functions

Average decrease in travel cost
PRJ

= 50% PRJ
= 40%

Full 3D 6% 24%
One side 2% 12%
Greenhouse 10% 14%
Combined 6% 17%

Table 6.5: Average decrease in travel cost for "sensing-in-harvest" sensing methodology
compared to other sensing methods as function of revelation probability.

Revelation probability
PRJ

Average decrease in travel cost
"a priori-sensing" "batch-sensing"

60% 5% 8%
50% 5% 9%
40% 12% 18%

Figure 6.9: Average travel cost per fruit as a function of revelation probability and sensing
methodology.

Figure 6.10: Average travel cost per fruit as s function of sensing methodology and joint
detectability.
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Figure 6.11: Total cost as a function of sequencing and sensing methodology.

6.5 Conclusions
A method to plan the sequence of tasks for a harvesting robot has been presented and defines
the task sequence considering both harvesting and sensing tasks. This is the first time sensing
operations have been considered in the planning of tasks for a harvesting robot.
For the case study of a sweet pepper harvesting robot, planning the sensing operations
combined with planning of harvesting motions ("sensing-in-harvest") reduces overall travel
costs by 12% on average, compared to the currently widely used approach of "batch-sensing"
where harvesting is performed immediately after sensing operations.
The results of the simulation-based data show that "sensing-in-harvest" sensing sequence
performs best to minimize average travel cost. This difference is particularly dominant as the
variability of the fruits location probability function increases. When the sensing points were
different in their location probability function, the difference between "a priori-sensing" and
"sensing-in-harvest" was reduced even more due to the tendency of the "sensing-in-harvest"
solution to group the sensing points together, similar to the "a priori-sensing" methodology.
This becomes even more vivid in the result of the greenhouse data. The results indicate
that "a priori- sensing" yields significantly better results than "batch-sensing", but close or
equivalent results to the "sensing-in-harvest" sequence. However, this conclusion is limited by
the assumption that once a target has been detected it will remain static in its location until
harvested. Since the environment is highly flexible and dense the fruits can move from their
initial location while the robot harvests; hence, the "look and move" approach is currently
the dominant approach. Nevertheless, the estimated decrease of travel cost as a result of
"batch-sensing" is high, and should be considered in further developments of harvesting robots
to reduce cycle times.

6.6 Research questions answered
The following research questions defined in Section 1.2 have been met:

RQ3.1: How to calculate the traveling distance/cost function given a robot con-
figuration? Different cost functions were evaluated including distance calculated using
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a path planner and an empirically derived distance matrix, measured from actual
robotic motions.

RQ3.2: What is the travel time decrease if optimization is introduced in the de-
scribed conditions with full a-priori knowledge of target locations? As expected
the travel time decreased with introduction of sequencing when a proper cost function
was introduced for both simulative and laboratorial conditions.

RQ3.3: How unknown locations should be treated in planning of a harvesting
sequence? Inclusion of the additional sensing points into the overall traveling sequence
and readjusting the plan when new target has been detected ("sensing-in-harvest") has
revealed reduction in travel time.
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7Evaluation of approach
strategies for harvesting
robots

„I think that if your approach is one where you don’t
want to alienate anybody, you’re going to have to
soften the viewpoint or the information that you’re
offering to such an extent that it doesn’t have the
power to make any difference. You have to take that
risk.

— Eddie Vedder
(American musician, multi-instrumentalist and

singer-songwriter)

• Published in: Ringdahl, Ola, Polina Kurtser, & Yael Edan (2018). “Evaluation of
approach strategies for harvesting robots: Case study of sweet pepper harvesting”.
Journal of Intelligent and Robotic Systems,Springer,pp.1-11.

• Based on the publications: Ringdahl, Ola, Polina Kurtser, & Yael Edan (2017). “Strate-
gies for selecting best approach direction for a sweet-pepper harvesting robot”. Towards
Autonomous Robotic Systems: 18th Annual Conference. Guildford, UK: Springer, pp.
516–525.

• Research objective RO4: Compare different approach strategies.

Robotic harvesters that use visual servoing must choose the best direction from which
to approach the fruit to minimize occlusion and avoid obstacles that might interfere
with the detection along the approach. This work proposes different approach strate-
gies, compares them in terms of cycle times, and presents a failure analysis methodol-
ogy of the different approach strategies. The different approach strategies are: in-field
assessment by human observers, evaluation based on an overview image using ad-
vanced algorithms or remote human observers, or attempting multiple approach direc-
tions until the fruit is successfully reached. In the latter approach, each attempt costs
time, which is a major bottleneck in bringing harvesting robots into the market. Alter-
natively, a single approach strategy that only attempts one direction can be applied if
the best approach direction is known a-priori. The different approach strategies were
evaluated for a case study of sweet pepper harvesting, in laboratorial and greenhouse
conditions.
The first experiment, conducted in a commercial greenhouse, revealed that the fruit
approach cycle time increased 8% and 116% for reachable and unreachable fruits re-
spectively when the multiple approach strategy was applied, compared to the single
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approach strategy.
The second experiment measured human observers’ ability to provide insights to ap-
proach directions based on overview images taken in both greenhouse and laboratorial
conditions. Results revealed that human observers are accurate in detecting unap-
proachable directions while they tend to miss approachable directions.
By detecting fruits that are unreachable (via automatic algorithms or human opera-
tors), harvesting cycle times can be significantly shortened leading to improved com-
mercial feasibility of harvesting robots.

7.1 Introduction
Due to the lack of skilled workforce and increasing labour costs, advanced automation is
required for greenhouse production systems [Comba et al., 2010]. The development of
autonomous robots [Mann et al., 2016; Bontsema et al., 2015; Urrea & Muñoz, 2015; Edan
et al., 1993] for agriculture aims to fulfill that requirement. Despite ongoing research on
harvesting robots, harvesting robtos to date has yet penetrated the market and there are not
in commercial use [Bac, 2015; Bac et al., 2014b]. Robotic harvesting includes several tasks:
detecting the fruit, approaching it, deciding whether the fruit is ripe, and finally grasping
the fruit and detaching it from the stem [Edan et al., 1991]. The steps are further described
below.
Detection is considered to be one of the major limitations preventing commercialization of
autonomous harvesting robots today with state of the art detection rate limited at 85% [Bac
et al., 2014b]. A major problem is the unstructured and dynamic nature of the agricultural
environments [Kapach et al., 2012]: fruits have a high inherent variability in size, shape,
texture, and location; in addition, variable illumination conditions and occlusion significantly
influence the detection performance. Significant research have been focused on developing
detection algorithms [Gongal et al., 2015; Bac et al., 2014b; Hemming et al., 2014b]. Vari-
able illumination conditions have been overcome using different techniques such as adaptive
thresholding (e.g. [Vitzrabin & Edan, 2016a]), adding controlled illumination (e.g. [Font
et al., 2014]), applying high dynamic range cameras [Suh et al., 2018], and color modifica-
tion [Tang et al., 2016]. Attempts to deal with occlusion have previously been made using
hyperspectral imaging [Lass & Prather, 2004]. However, due to the high cost as well as the
weight of hyperspectral cameras, RGB cameras have become the most commonly used sensor
since fruits, particularly ripe, tend to be different in color than the background [Bac et al.,
2014b]. Additional solutions include mechanical removal of occlusion in a temporal manner
using air blowing [Yoshida et al., 1985], or permanently by pruning leaves. Both methods,
from internal conversations with growers and experts in the field, cause disagreement in the
growers community due to the possible impact on yield and damage to the plant. Pruning of
leaves also involves a lot of manual work which will impact the economical feasibility of a
harvesting robot.
Detecting the fruit is typically done from an overview waypoint W0 where several plants are
visible [Bontsema et al., 2015] (Figures 7.1 & 7.5). This can be done either by using external
static sensors or eye-in-hand cameras mounted on a robotic manipulator [Bontsema et al.,
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2015] with different algorithms [Zemmour et al., 2017; McCool et al., 2016; Sa et al., 2016;
Vitzrabin & Edan, 2016a; Bac et al., 2014b; Kapach et al., 2012]. Viewpoints analyses in
harvesting robotics indicate that only 60% of the fruit can be detected from a single detection
direction [Hemming et al., 2014b]. Improved performance can be achieved by including
a human in the interpretation of the visual information received from the robot sensors
[Berenstein & Edan, 2012; Bechar & Edan, 2003].
Approaching the fruit when eye-in-hand cameras are used is often divided into two steps
[Barth et al., 2016; Han et al., 2012]. The first step involves moving from the overview
waypoint W0 to an approach waypoint W1 where a single fruit is centered in the image. This
waypoint is identified using the approach direction θ′1, defined as the angle the robot should
use to approach the fruit from, and distance d to the fruit, as seen in Figure 7.1. The second
step uses visual servoing [Barth et al., 2016; Chang, 2007] to move towards the fruit until it is
reached. The first step is not always used [Kitamura & Oka, 2005], but can be introduced to
shorten the time it takes to reach the fruit since the distance needed for visual servoing will be
shorter, while the second step is used to continuously refine the fruit position detected from
the overview image. The first step is important so as to reduce the long overall harvesting
cycle time which is another major limitation preventing commercializing harvesting robots
[Bac et al., 2014b]. Planning a path towards the fruit needs to take into account plant
stems and other obstacles to prevent harming the vegetation [Bac et al., 2016; Bac, 2015;
Bac et al., 2014a]. A methodology to derive reaching cones for agricultural environment
characterization was developed by Bloch et al.,[Bloch, 2017]. The work is a preliminary
method to describe obstacle-free areas for the robotś motion however is not applicable for
real-time approaching of a fruit. When the fruit has been reached, or sometimes on the
approach towards the fruit, the maturity of the fruit must be evaluated to determine if it
should be harvested or not [Harel et al., 2016]. If it is determined to be ripe enough, the
fruit must then be grasped. The accurate grasping of a fruit is a difficult problem due to
the limitations of available robotic grippers and the inherent difficulties of grasp planning
[Eizicovits & Berman, 2014; Rosenbaum et al., 2006]. Eizicovits and Berman [Eizicovits &
Berman, 2014] developed geometry-based grasp quality measures based on 3D point cloud
to determine the best grasping pose of different objects, including sweet peppers. This kind
of solution depends on detailed 3D sensor information of the object [Eizicovits et al., 2016;
Lehnert et al., 2016] which is very difficult to achieve in dense greenhouse environments.
Obtaining this information in enough detail prolongs the harvesting cycle. Some gripper
solutions that do not need an accurate grasping pose have been reported, but currently the
harvesting success is limited [Bac et al., 2017]. Once the fruit has been grasped, it must be
detached without damaging the plant or fruit. This operation is fruit dependent (e.g., for
sweet peppers the detaching is performed by cutting the peduncle of the pepper; for apples a
twist and snap operation is needed).
Given the dense environment and the continuous detection required when using visual servo-
ing, there is a high risk of losing the fruit along the approach due to occlusion, regardless
of the detection algorithm used. To reduce the risk of losing a fruit due to occlusion it is
important to approach it from a waypoint from where the fruit is not occluded by leaves
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Figure 7.1: Overview waypoint W0 (camera facing front direction) and approach waypoint
W1, identified using the distance to fruit d and approach direction θ′1.

and other obstacles along the approach. An approach strategy is the method of finding an
approach waypoint from which visual servoing will not lose the fruit due to occlusion. The
aim of this chapter is to propose different approach strategies and compare them in terms
of cycle times and success rates and identify failure causes. To focus on the approach task,
standard color segmentation algorithms for detecting fruits and ripeness are used while
limitations of grasping and detaching the fruits are not regarded. The work is demonstrated
for a case study of sweet pepper (Capsicum annuum) harvesting in a research greenhouse as
part of the Horizon 2020 EU SWEEPER project (G.A. 644313)1 using a robotic manipulator
equipped with an eye-in-hand camera. Previous limited work in lab conditions revealed that
the choice of approach strategy influenced cycle time up to 40–45% but did not influence
the success rate, which was 100% regardless of strategy [Ringdahl et al., 2017]. However, in
greenhouse conditions one would expect lower success rate and cycle times. This chapter
aims to analyze the effect of the approach direction on performance. Additionally, a failure
analysis methodology of the different approach strategies provides several conclusions for
implementation in robotic harvesters.
Previous research on human-robot collaboration for target recognition has indicated that
improved performance can be achieved by including a human in the interpretation of the
visual information received from the robot sensors [Berenstein & Edan, 2012; Bechar &
Edan, 2003]. Therefore, another aim with this work is to measure the ability of human ob-
servers to provide insights on approach directions based on overview images taken in the field.

7.2 Approach strategies
An approach strategy is the method of finding an approach waypoint from which visual
servoing will not lose the fruit due to occlusion. It is computed using the approach direction
θ′1 and distance to fruit d (Figure 7.1). Two approach strategies are proposed and evaluated:

• Single approach strategy: the robot attempts only one approach direction which is
considered to be the best one with least occlusion. This direction can be obtained either
by advanced algorithms that map the environment or by a human operator doing an

1http://www.sweeper-robot.eu
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assessment in-field or remotely by looking at images taken by the robot at the overview
waypoint.

• Multiple approach strategy: the robot autonomously attempts each approach direc-
tion from a sequence of a-priori defined approach directions until it finds one that leads
to a successfully reached fruit.

This section describes how approach waypoints are calculated, and provides a detailed
description of the two strategies.

7.2.1 Approach waypoint calculation
To calculate the pose of the approach waypoint, the following information must be known:
the location of the pepper, the approach direction, and the visual servoing distance, i.e. the
distance to the fruit from the approach waypoint (marked as d in Figure 7.1).
Given position Pi(xi,yi,zi) of (the surface of) fruit i at approach direction θi = 90◦ the position
for approach waypoint Wi(x′i,y′i,z′i), located at a predefined distance d from fruit i at an
approach direction θ′i, is calculated according to:

x′i = xi− (r+d)∗ cos(θ′i) (7.1)

y′i = yi+ r− (r+d)∗sin(θ′i) (7.2)

z′i = zi (7.3)

where r is the fruit radius, and d,θ′i, as described in Figure 7.1.

7.2.2 Proposed approach strategies description
Two approach strategies are evaluated, based on the conclusion from the previously published
laboratory experiment ([ringdahl2017strategies] attached in Appendix 10.2). In the single
approach strategy, a single approach direction θ′i should be determined for each fruit i. If
possible, approaching from front (θ′i = 90◦) is preferred [Bac et al., 2016], otherwise the least
occluded direction should be chosen (more details in Section 7.3.2). The approach cycle
starts with moving the end-effector to a pre-defined overview waypoint W0(x,y,z) where
the location of all visible fruits are recorded. From there, using the position and selected
approach direction of each target fruit i, the approach waypoint Wi(x′i,y′i,z′i) is calculated
according to Equations 7.1-7.3. The control unit plans a path for the end-effector to the first
waypoint. After reaching it, a visual servo procedure guides the manipulator towards the
target until the end-effector reaches the fruit. If the manipulator is able to reach the target
fruit, the fruit is marked as reachable. If the manipulator cannot reach the fruit for some
reason, e.g. the view of the fruit is lost during visual servoing or the controller is not able
to plan a path there, the fruit is marked as unreachable. After the fruit has been marked as
either reachable or unreachable, the approach cycle for fruit i ends. The next approach cycle
starts with the robot moving to the approach waypoint of the next fruit, Wi+1. The cycle ends
when all fruits detected from the overview image have been attempted to be approached.
The left part of Figure 7.2 shows a flowchart of this approach strategy.
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Figure 7.2: Flowchart describing the two different approach strategies. Left: single approach
direction; Right: multiple approach direction (differences marked with dashed
lines).

In the multiple approach strategy, the best approach direction θ′i is unknown, and therefore
must be searched from a list of predefined potential approach directions θ′i,1. . . θ

′
i,k as seen

in Figure 7.3. For each target fruit i and potential approach direction θ′ij the control unit
calculates the path of the robotic manipulator to a waypoint Wij(x′ij ,y′ij ,z′ij) according to
Equations 7.1-7.3. The manipulator moves to each waypoint in turn for the first fruit until the
fruit is marked as reachable or all waypoints have been tried. In the case that all approach
directions θ′i,1. . . θ

′
i,k have been attempted without being able to reach the fruit, the target

fruit is marked as unreachable. After success or fail, the path to the waypoint Wi+1,1 for the
next fruit and its first approach direction θ′i+1,1 is calculated. The right part of Figure 7.2
shows a flowchart of this approach strategy.

7.3 Experimental methods
Two experiments were conducted to compare the performance of the approach strategies.
In the first experiment, the multiple approach strategy is compared to the single approach
strategy assessed by a human operator placed in the field. In-field human assessment was
selected as opposed to fully autonomous algorithms due to lack of sensor technology and
algorithms to date. Current algorithms are often partially based on manual data [Barth et al.,
2016] and not sufficiently accurate or fast to map greenhouse environments for determining
possible approach directions. Stems are not detected in the system used in this work and are
thereby not avoided unless they block the view of the fruit.
The second experiment measures the ability of human observers to provide insights to
approach directions based on overview images collected in laboratorial and greenhouse
conditions.
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Figure 7.3: For each target fruit i and potential approach direction θ′j the control unit
calculates the path of the robotic manipulator to a waypoint Wij(x′ij ,y′ij ,z′ij) in
the multiple approach strategy. The figure illustrates a center-right-left approach.

7.3.1 Equipment
A 6DOF robotic manipulator Fanuc LR Mate 200iD equipped with an eye-in hand iDS UI-
5250RE RGB camera and a Sick DT20HI displacement measurement laser sensor was placed
in-front of each scene. The end-effector used in the greenhouse experiments was slightly
different than the one used in the previous lab experiment [Ringdahl et al., 2017]. Primarily
the lab version had a suction cup mounted in front that could touch the peppers while the
greenhouse version lacked this. Therefore, the greenhouse version never touched the peppers
but stopped just before it reached the pepper. In laboratorial conditions, an artificial plastic
pepper crop with yellow plastic fruits and green plastic leaves were used for the experiments.
An example from the laboratorial and greenhouse setups can be seen in Figure 7.4.
The workflow of the robot was implemented using a generic ROS software framework for
development of agricultural and forestry robots previously developed [Hellström & Ringdahl,
2013]. The framework is constructed with a hybrid robot architecture, using a state machine
implementing a flowchart as described by Ringdahl et al. [Ringdahl et al., 2016].

7.3.2 In-field experimental protocol
The experimental protocol used for the robotic experiments in the greenhouse resembles the
previously described laboratory experiment protocol [Ringdahl et al., 2017], while addressing
some of the conclusions and their implementation in greenhouse conditions. Table 7.1
outlines the protocol used for laboratorial and greenhouse experiments respectively. The
difference between greenhouse and laboratorial conditions can be seen in Figure 7.5, which
shows overview images taken from the respective environment.
The greenhouse experiment was conducted in a research greenhouse at Sint-Katelijne-Waver,
Belgium, early in the season. The robotic manipulator and its sensory system were placed
in an aisle and manually centerd in front of a pepper or a cluster of peppers, defined as a
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Figure 7.4: The experimental setup in the greenhouse (left) compared to the previous exper-
iment in laboratorial conditions using artificial fruits and leafs (right).

scene. First, the locations of all the fruits in the scene were registered. In this experiment the
system was not equipped with a RGB-D camera, which would typically be used for automatic
registration of fruits locations. Instead, the manipulator was manually positioned in front of
each fruit before the experiment began. The end-effector was brought close to the fruit and
the position was determined by adding the distance to the fruit, given by the laser mounted
on the end-effector (Figure 7.6), to the current end-effector position. The system used in
the experiment lacked a sensor to accurately measure the fruit radius, but even with such
sensor it can be difficult to estimate the correct radius due to occlusion of parts of the fruit.
Peppers in a greenhouse have a natural variation in size but normally have an average radius
r = 0.04m [Bac et al., 2014b; Tadesse et al., 2002], so this value was used for the calculations
in Equations 7.1-7.3. All fruit locations were added into the system in form of spheres so
that the robot could avoid them when planning a path. Each fruit was evaluated for it’s
approachable direction θ′i by a human observer who examined the fruit and chose the front
direction θ′i = 90◦ if it was clear and if not one of the angular approach directions. Next, an
approach cycle was performed five times for each fruit; once for the single approach strategy
and four times for the multiple approach strategy, one for each potential approach direction
(Table 7.1). Since ripe peppers are in high color contrast with the foliage and branches around
them, color is the most useful visual cue. Therefore the visual servoing used for each approach
attempt employs a color based blob detection algorithm for the continuous detection of the
target. Minimum and maximum thresholds of the blobs’ bounding and inner circles radii were
introduced to limit false positive artefacts. Different visual servoing distances were evaluated
in this experiment as opposed to a fixed distance in the lab, as well as a different number
of approach directions and their order. The list is ordered in two possible ways: center first
(CF) or left first (LF) and can have either 3 or 5 directions. Previous results [Ringdahl et al.,
2017] showed no significant difference for different robotic maximum speeds, therefore each
configuration is performed at 25% of maximum speed to assure safe operation in the field.

Measurements
At the end of each approach attempt, the following measures were registered: the result of
the attempt (success/failure) and the reason of any attempt failure (collision, planning failure,
or lost fruit from sight during visual servoing). For each fruit, additional measures were
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Table 7.1: Experimental protocol in the greenhouse compared to the laboratory experiments
presented in [Ringdahl et al., 2017].

registered: the fruit approach cycle time and the number of attempted approach directions.
Fruit approach cycle time is the time it takes from when the robot starts moving to the first
waypoint of a fruit until it has been marked as reachable or unreachable. Additionally, the
following measures were calculated for each approach strategy and are presented in form of
descriptive statistics in the results section:

• Cycle time relative increase. Defined as the ratio between the average fruit approach
cycle time for the multiple approach strategy and the single approach strategy. It
measures the impact on the fruit approach cycle time given an approach direction
known a-priori.

• Ratio of reachable fruits in each approach strategy. Allows a comparison between the
success ratio of each approach strategy.

• Ratio of successfully approach attempts. Allows insights into which approach direc-
tions are most successful.

• Approach attempt failure ratio. Provides insights into the reasons an approach
attempt fails and the frequency at which failures occur.

Additionally, the statistical significance of the differences in the value of the measures was cal-
culated. The fruit approach cycle time is analysed in a box-cox transformed linear regression
[Sakia, 1992]. The reachable fruit rate as function of approach strategy and visual servoing
distance is analysed in a logistic regression [Hosmer Jr et al., 2013].

Failure analysis
To be able to investigate the reasons leading to unsuccessful approaches, the following
failure analysis methodology is presented. The failure analysis looks into the reasons why
an approach strategy fails, resulting in a fruit being marked as unreachable, as well as the
reasons for failure of individual approach attempts in the multiple approach strategy. The
main failure reason this chapter addresses is related to occlusion, but one should consider
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Figure 7.5: An overview image taken from the robot’s camera looking at a laboratorial scene
(left) and a greenhouse scene (right).

Figure 7.6: The position of each pepper was measured by manually moving the robotic arm
close to the fruit and using the laser to estimate the distance to the fruit (the
end-effector used in the greenhouse lacked the suction cup seen in the picture).

the tight space between plant lanes in which the robot has to operate in a safe manner,
minimizing the harm caused to the plants around. Therefore, other failures, caused by the
planner, are considered and measured. As mentioned in Section 7.3.2 the visual servoing
failures are registered at the end of each unsuccessful approach attempt. The failure reasons
are then separated into three categories:

• Occlusion related failure. Cases where the fruit was lost from sight during the visual
servoing stage.

• Visual servoing planning failure. Cases where the next coordinate generated in the
visual servoing path planner cannot be reached due to physical constraints of the
manipulator, collision between the robot and that the environment, or the planner fails
to find a solution.

• Approach waypoint planning failure. Cases where approach waypointWij is unreach-
able due to the physical constraints, collision between the robot and the environment,
or that the planner fails to find a solution.

Looking into the different reasons causing an approach to fail is important from two aspects.
First, it provides insights into the reasons for failure due to non-occlusion related issues. It
also provides an estimation of the expected success rate of an approach attempt that has been
made with no prior knowledge about the best approach direction as in the multiple-approach
strategy. The failure analysis presents the approach attempt failure ratio divided into the
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three categories listed above. It also provides analyses of the difference in success rates for
different approach directions with and without planning related failures.

7.3.3 Overview images evaluation protocol
To evaluate the human ability to provide insights into possible approach directions θ′i or
limiting the number of directions that should be attempted by determining directions that are
not approachable, two datasets containing images taken at the overview waypoint W0 were
collected:

1. DB-LAB - Laboratorial images acquired at the overview waypoint W0 in the laboratorial
experiment described in our previous publication [Ringdahl et al., 2017].

2. DB-Greenhouse - Greenhouse images acquired mid-season in a commercial greenhouse
in Ijsselmuiden, Netherlands using the same camera as in DB-LAB mounted on a Fanuc
LR Mate 200iD/7L manipulator. The images were automatically acquired from 14
waypoints [Kurtser et al., 2016].

Images from the greenhouse experiment described in Section 7.3.2 were not used for the
evaluation due to the excess number of non-visual servoing related failures.
A questionnaire was handed out to 13 human observer participants and included images from
the two datasets, divided into two parts:

1. Laboratory part: contained 6 images: one example image (Figure 7.7) and five from
DB-Lab (one of them is presented in Figure 7.5).

2. Greenhouse part: contained 6 images from DB-Greenhouse. The images were ran-
domly selected with the following limitations: a) image was taken in daytime; b) at
least 2 ripe peppers were visible from front view. One of the images is presented in
Figure 7.8.

The fruits in the images displayed to the participants were bounded by red boxes. The
participants were asked to mark all directions (if any) from which, in their opinion, each
pepper could be successfully approached (left/front/right). According to the instructions a
pepper must be visible in the robot camera for a successful approach. They were given an
example image (Figure 7.7) with views of one fruit from the laboratorial setting from the
three potential approach directions. Even if a fruit is partly occluded by a stem it should still
be regarded as approachable, as seen in Figure 7.7 (right). By purpose the participants were
not given a definition of how visible a fruit must be to be approached. The participants were
also asked to indicate if they had any previous experience working in greenhouse environment
or doing research within agricultural robotics.
By processing the answers an observed approachability list APijk which defines for each fruit i
marked in the overview image if it is reachable from the approach direction θ′j , by the vote of
observer k is generated. Given the results of the approach attempt performed in the laboratory
a ground truth approachability list AP ∗ij is defined as the rounded ratio of successful attempts
for fruit i from approach direction θj , to the overall number of attempts performed for that
fruit. Given the ground truth approachability and the observed approachability list APijk,
the contribution of a human participant’s ability, from an overview image only, to predict
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Figure 7.7: Example lab image of a fruit from three different viewpoints given to the ques-
tionnaire participants. They were told that the left and right viewpoints are
reachable, while the center one is not.

if an approach direction will lead to a successful approach is evaluated. The evaluation is
performed using precision and recall measures, defined as follows:

Precision=NTP /(NTP +NFP ) (7.4)

Recall =NTP /(NTP +NFN ) (7.5)

Where:
• NTP is the number of correctly classified approachable directions as approachable by a

participant.
• NFP is the number of incorrectly classified unapproachable directions as approachable

by a participant.
• NFN is the number of incorrectly classified unapproachable directions by a participant.

Due to the lack of a ground truth approachability list AP ∗ij in DB-Greenhouse, precision
and recall are not calculated. Instead the reliability of agreement Fleiss’ Kappa [Fleiss &
Cohen, 1973] is measured for both greenhouse and laboratorial conditions. This allows us
to gain initial insights into the inter-rater agreement between participants on the choice of
approachable directions. Various scales of Fleiss’ Kappa are accepted in the literature. In this
chapter we follow Landis and Koch’s guidelines [Landis & Koch, 1977].

7.4 Results
7.4.1 Approach strategies cycle time and success rate

comparison
A single plant row was measured orientated approximately southwest – northeast. The
platform was placed in both aisles on the both sides of the row in the aim to cancel the
influence of the foliage growth direction (due to sunlight direction) on approachability. A
total of 18 peppers facing the first aisle (approximately northwest), divided in five scenes,
were approached from 9 cm and a total of 12 peppers facing the second aisle (approximately
southeast), divided in 3 scenes, were approached from 15 cm. Each pepper was attempted to
be approached five times, one for each approach strategy described in Section 7.3.2. This
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Figure 7.8: An overview image from a greenhouse scene. The questionnaire participants
were asked to determine all possible approach directions for the peppers marked
with red boxes.

creates a dataset with 150 fruit approaches (30 fruits multiplied by 5 approaching strategies
combinations) in eight scenes with 2-6 peppers in each scene. In total, 244 approach attempts
were made. The total ratio of reachable fruits was 86%. 84% and 87% of the fruit are
reachable in the single approach strategy and in the multiple approach strategy respectively
(Table 7.2). As seen in Figure 7.9, the most approachable direction θi was 90◦, with 74%
successful approaches made from that direction. This number is as expected lower the the
fruit approach success since a single fruit was approached more then once till success. Very
few approaches were made at 135 and 155 degrees, implying that the fruit was successfully
approached at one of the other approach directions (right was always tested last in all
approach strategies). Removing all cases where the robot failed to plan a safe path or collided
with another fruit in a cluster during approach shows that 125◦ is the most approachable
direction (although only approached 7 times) with 90◦ the second best (approached 93 times).
Comparing performance of the single approach strategy to the multiple approach strategy
revealed that the fruit approach cycle time increased when a multiple approach strategy was
applied by 8% for reachable and by 116% for unreachable fruits respectively (Table 7.2).
In 16% of the cases for the single approach strategy, the fruit was unreachable even though
it was assessed manually in-field as the best approach direction (see Section 7.4.1 for an
analysis of failure cases). For the single approach strategy, the fruit approach cycle time of
unreachable fruits was 33% shorter than for the reachable fruits. In the multiple approach
strategy, the fruits were unreachable in 13% of the cases and the fruit approach cycle time
was 33% longer for unreachable fruits than for reachable fruits.
Table 7.3 shows the average fruit approach cycle time in seconds for the different approach
strategies described in Table 7.1 for the two visual servoing distances (9 and 15 cm). The
single approach strategy yielded the shortest overall time for 9 cm visual servoing distance
with 13% shorter time than the next best strategy, CF3. At 15 cm approach distance, the CF3
and single approach strategy took approximately the same amount of time on average. As
can be seen in Figure 7.10, CF3 and CF5 needed on average only one approach to succeed,
meaning that most of the time it only needed to go to the center position without needing to
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Figure 7.9: Rate of successfully approach attempts by approach direction θ′i, and the number
of times each approach direction was attempted. In the right bars, cases where
the robot failed to plan or collided with other fruits in the scene were removed.

Table 7.2: Average fruit approach cycle times in seconds for the different approach strategies.

Approach
strategy

Reachable Unreachable

Overall 16.02 (N=129, SD=7.67) 18.85 (N=21, SD=12.02)
Single 15.04 (N=25, SD=5.74) 9.99 (N=5, SD=11.15)
Multiple 16.26 (N=104, SD=8.08) 21.61 (N=16, SD=11.18)

try another direction. The LF5 method needed most trials, with an average of two approaches
before success.
Figure 7.11 shows the success rate for the different approach strategies (Table 7.1) for the
two visual servoing distances in the greenhouse. In general, the success rate was between
75-95% with slightly lower success when approaching from 15 cm than when approaching
from 9 cm, with the exception of the LF5 strategy. Using five approach directions yielded
slightly higher success rate than when using three approach directions.

Failure analysis of greenhouse data
Of the total 244 approach attempts, 30 attempts were part of a single approach strategy and
214 were part of the multiple approach strategy. Forty-seven percent (115 approaches) of
the approach attempts failed, indicating the importance of determining a correct approach.
The most common reason (41%) for failure was due to the robot planner not being able to
find a safe path to the fruit during visual servoing or while moving to the next approach
waypoint. 37% of the failed approach attempts were because the fruit was lost from view
along the visual servoing. The remaining 22% of the failures were due to a collision between
the robot and another fruit in the scene. Figure 7.12 presents the ratio of all approach
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Table 7.3: Average fruit approach cycle time in seconds for the different approach strategies
described in Table 7.1 for two different visual servoing distances.

Success Failure Overall
Potential
approach
direction

9cm 15cm 9cm 15cm 9cm 15cm

Multiple
ap-
proach
Strategy

CF3 13.2
(SD=4.5)

13.5
(SD=3.7)

24.1
(SD=29.8)

25.3
(SD=9.3)

14.4
(SD=9.1)

16.4
(SD=7.4)

LF3 14.0
(SD=4.5)

19.7
(SD=12.5)

23.4
(SD=8.6)

20.4
(SD=13.9)

15.6
(SD=6.2)

19.8
(SD=12.1)

CF5 15.8
(SD=8.9)

19.5
(SD=11.4)

9.5
(SD=0)

23.5
(SD=13.3)

15.5
(SD=8.7)

20.2
(SD=11.2)

LF5 15.7
(SD=6.7)

21.5
(SD=7.9)

19.4
(SD=4.6)

15.4
(SD=0)

16.1
(SD=6.5)

20.9
(SD=7.8)

Single approach
Strategy

- 13.4
(SD=4.7)

17.9
(SD=6.4)

8.2
(SD=11.1)

11.2
(SD=13.4)

12.8
(SD=5.5)

16.3
(SD=8.5)

attempts outcomes for the two approach strategies separately. Approach attempts made
from an approach direction obtained by manual in-field assessment as part of the single
approach strategy was successful in 84% of the cases. In 10% of the unsuccessful approaches
the fruit was lost during visual servoing (i.e. the fruit was no longer detected) while the
remaining cases (6%) were a result of a collision between some part of the robot (usually the
end-effector) and another fruit in the cluster or that the planner could not find a safe path
while moving to the next approach waypoint.
Looking at each individual approach attempt as part of the multiple approach strategy, only
49% of the approaches were successful, while 18% were lost in visual servoing and 10% were
lost as a result of planning failure during visual servoing. While moving to the next approach
waypoint, 23% of all approach attempts failed due to planning failure or collision.
Figure 7.9 presents the approach success rate by approach direction θ′i. Removing all the cases
where the robot failed to plan a safe path or collided with another fruit in the cluster during
approach shows that almost no planning related failures happened at 90◦ (81% compared
to 74%) while the side views caused a significant amount of planning failures, increasing as
function of |θ′i−90| (e.g., 65% compared to 31% for 25◦). This supports the assumption made
in Section 7.2.2 that approaching from front 90◦ should be preferred as long as this approach
is not occluded. The low rate of planning related failures for 90◦ can be explained by the
fact that this scene contains much fewer fruits and other obstacles from the front approach
direction, making the planning task less complex and the risk of colliding with obstacles lower.
When side approach directions are applied (|θ′i−90|> 0) the robotic manipulator needs to
reach deeper into the plant making it more likely to cause collisions between the robot and
other fruits. Additionally, it seems the approach directions from the right (θ′i > 90◦) fail more
often due to planning than from the left. Important to note that these differences are not due
to any botanical changes since these are planning failures, which are not connected to the
growth of foliage in greenhouse conditions. Since much fewer attempts were made from the
right this needs to be verified in future work.
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Figure 7.10: Average number of approaches till successful fruit approach for the different
potential approach directions of the multiple approach strategy described in
Table 7.1 for two visual servoing distances.

Approach cycle times and fruit reachability analyses
The results of a Box-Cox transformed (λ= 0.44) fruit approach cycle time regression shows
statistical significant (sig < 0.0001) differences between the multiple approach strategies (CF
and LF) and the single approach strategy. The multiple approach strategy adds on average
3.5 seconds to the fruit approach cycle time as compared to the single approach strategy. No
statistical significant differences were found between the CF and LF approach direction sort-
ing (sig = 0.72). The number of approach directions were not statistically significant either
(sig = 0.18). The visual servoing distance was found to be a significant factor (sig = 0.001),
increasing the fruit approach cycle time by 0.28 seconds for each extra cm of visual servoing.
The approach cycle time of a reachable fruit was on average 2.4 seconds longer than an
unreachable fruit. Significant differences in approach cycle time between scenes were found,

Figure 7.11: Success rate for the different approach strategies described in Table 7.1 for two
different approach distances.
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Figure 7.12: Ratio of all approach attempts outcomes for the two approach strategies sep-
arately. Lost in VS means the fruit was no longer detected while doing visual
servoing. Failure occurred due to not finding a safe path or due to collision
between the end-effector and a fruit.

implying that additional variations between the scenes also affects the cycle time. This
requires further investigation on larger datasets.
Looking into the interaction between the approach strategy and if the pepper was reachable or
unreachable (Figure 7.13), reachable fruits yield shorter approach cycle times than unreach-
able fruits for the multiple approach strategy. In the single approach strategy, unreachable
fruits yield shorter approach cycle time than reachable fruits. These results support the
conclusions drawn from Table 7.2 and found statistically significant (sig = 0.001).
The result of a logistic regression on reachable fruit rate as function of approach strategy and
visual servoing distance revealed no statistically significant differences. This might be due to
the relatively small dataset gathered in the greenhouse experiment.

7.4.2 Human contribution to approach direction
assessment

In both the greenhouse and the previous laboratory experiments, the average fruit approach
cycle time increased for the multiple approach strategy as compared to the single approach
strategy using in-field assessment by human observer. In this section the human ability to
determine the best approach direction from overview images is evaluated.
All 13 participants answered all questions. Four participants had prior experience of work in
greenhouse conditions and 9 never worked in greenhouses before.
In laboratorial images collected, the average precision per person (Equation 7.4) was 92%
(min=85%, max=97%) and the average recall per person (Equation 7.5) was 71% (min=40%,
max=83%). No significant differences were found between the four participants who had
prior work experience in greenhouse conditions, to the nine who were not.
As aforementioned, the precision and recall on the greenhouse data cannot be calculated due
to the lack of ground truth information. Instead, the evaluation includes investigation of the
degree of agreeability between the participants, e.g. if all answered front as an approachable
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Figure 7.13: Interaction plot of fruit approach cycle time as function of approach strategy
for reachable and unreachable fruits.

Table 7.4: Fleiss’ Kappa values for data collected in the laboratory and greenhouse.

Laboratorial
conditions

Greenhouse
conditions

All data 0.514 0.217
Front approachability 0.739 0.168
Side approachability (left/right) 0.402 0.201
Expert participants all data 0.48 0.37
Non-expert participants all data 0.52 0.15

direction for fruit i. Fleiss’ Kappa for the laboratorial images is 0.514, corresponding to mod-
erate agreement level, and for the greenhouse collected data was 0.217 which corresponds
to a slight-to-fair agreement. This is a significant reduction in the inter-rater agreement
between participants which indicates that as expected the greenhouse task is by far more
difficult to analyse. A closer look into the measured Kappa as a function of approach di-
rection and the participants work experience in greenhouse conditions can be found in Table 4.

7.5 Discussion
7.5.1 Approach strategies experiments
The results from the greenhouse experiments support previously reported results [Ringdahl
et al., 2017] indicating an increased fruit approach cycle time when using the multiple
approach strategy as compared to a single approach direction yielded from manual-infield
assessment of human observers. Therefore, additional information about approachable
directions is necessary to shorten robotic harvesting times. The data from the greenhouse
experiment showed a less prominent time increase (ca 8%) compared to the previously
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published laboratorial experiment (ca 40-45%). Even so, it was found to be statistically
significant. Longer visual servoing distances was also found to increase fruit approach cycle
time. On the other hand, the number of approach directions (3 or 5) or their order in the
multiple approach strategy did not significantly influence the fruit approach cycle time. This
validates the conclusions reported from the laboratorial experiments.
While the robot eventually managed to approach all peppers in the laboratorial experiment,
in the greenhouse each approach strategy resulted in only between 75-95% approachable
peppers. The most successful approach direction was from front, supporting the decision
to prioritise it in the single approach strategy. Failure analysis showed multiple reasons for
failure during an approach attempt. The most common failure (41%) was the inability to
plan a safe path in the tight space between plant lanes and stems in the greenhouse. Another
reason for failure was that the end-effector collided with another fruit in a cluster while
moving towards the next approach viewpoint. This failure is expected to happen much less
often in a real application where the peppers are harvested and thereby would not be in the
way for the robot when moving towards the next fruit. Only 37% of all failures were due
to fruit loss from view due to occlusion during visual servoing towards the fruit. In ideal
conditions, one would expect this to be the only reason for not being able to approach the
pepper. This is also the only failure one could expect a human observer to predict in field
or by observing overview images. If we remove all other reasons for failure (73 cases of the
total 244 approach attempts), the robot not reaching the fruit due to occlusion only occurs in
25% of all approach attempts.
Results showed slightly lower reachable fruit rate for the single approach strategy than for the
multiple approach strategy. However, no statistically significant difference could be seen in
the greenhouse data, probably due to the limited size of the dataset. Since only one approach
attempt is made per fruit in single approach strategy, slightly lower fruit reachability is to be
expected since it cannot attempt any other approach directions if the first was unsuccessful.
Furthermore, the non-occlusion related failures mentioned above were not considered when
best approach direction was chosen by an in-field human observer for the single approach
strategy.

7.5.2 Human contribution
The evaluation of the human ability to assist in determining the best approach direction in
laboratorial conditions revealed high precision (92%), implying that the participants rarely
predicted non approachable directions to be approachable. Consequently the participants
showed a high ability to detect unapproachable directions. On the other hand, the 70%
recall suggests that they tend to miss possible approach directions. The implications of these
conclusions are that one should consider humans for reducing the list of possible approach
directions used in the search pattern, but should not rely on a human operator to define the
best approach direction. The greenhouse experiment showed that an increased number of
approach directions does not significantly increase fruit approach cycle time. The implication
of this is that the system would be best served by letting humans determine which peppers are
unreachable and thereby saving a considerable amount of time, especially since the multiple
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approach strategy takes significantly longer time to fail.
A deeper view into the values of the kappa for front/side approach directions reveals significant
agreement on the front direction in laboratorial conditions, and lower agreement on the side
views. This implies that a human finds the side view to be more complex for approachability
prediction. This difference was not found in greenhouse conditions, where the agreement level
remained low for both front and side approach directions. In greenhouse conditions though,
participants with prior experience in agricultural robotics or greenhouse environments showed
greater agreement among themselves compared to the non-experienced participants. No such
difference is seen in the laboratorial setting. The results imply that though no significant
difference was found in precision and recall in laboratorial conditions for experienced and
non-experienced participants, these differences might become significant when the experiment
is performed in the more complicated greenhouse conditions where experience can become
advantageous.

7.5.3 Limitations
This work aimed to evaluate the human’s ability to determine that a pepper is not approachable
at all by a robot. As concluded in Section 7.5.2 the laboratorial tests showed that the humans
are quite good at this. The data from the greenhouse experiment described in Section 7.3.2
was unfortunately not sufficient to generalize these results to greenhouse conditions due to
multiple non-occlusion failures as noted in Section 7.5.1. Future work with a more optimal
harvesting system should reduce these failures and allow for a fair comparison.
In this work, stems were not avoided unless they covered significant parts of the fruit and
thereby causing the visual servoing to lose the fruit from sight. Future work on selecting
approach directions should incorporate stem detection in the robotic harvesting cycle to avoid
stems that are between the fruit and the approach waypoint in order not to damage them.
Some initial work on detecting and avoiding stems has been done [Bac et al., 2014a] and
could be extended to be used in this application in the future.
Sunlight is a significant factor in the botanical growth models of the leaves. As mentioned
in Section 7.4.1, the protocol aimed at creating a balanced dataset to cancel the influences
of growth direction of the foliage due to different sunlight direction. The results showed
that the vast majority of the successful approaches were for θ′i <= 90, regardless of side of
aisle (and thereby sunlight direction). One would expect that if the sunlight direction was a
factor in approachability, there would be a difference in which angles are more successful for
different sides of the aisle. The results showed no significant differences in which directions
were successful and not between the different sides of the aisle, indicating that the sunlight
direction did not matter. However, since the visual servoing distance were different for the
different sides of the aisle it is not possible to prove explicitly that sunlight did not play a part.
Current detection rates (up to 85% [Bontsema et al., 2015; Bac et al., 2014b; Kapach et
al., 2012]) allow evaluation of the approach direction strategies independent of detection
performance. Any effect of sunlight direction (or other environmental conditions) on the
visual servoing performance is not addressed in this chapter (e.g. if the fruit was lost from
sight due to the sunlight).
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7.6 Conclusions
The main contribution of this work is to suggest and compare approach strategies, while
measuring cycle times and success rate as well as analyzing causes of approach attempt
failures. For the proposed greenhouse environment and hardware configuration it was shown
that a multiple approach strategy results in 8% longer cycle time than a single approach
strategy and that the most common failure was the inability to plan a safe path in the
tight space between plant lanes and stems in the greenhouse. The exact measures might
vary between different harvesting systems, but the evaluation method of different approach
strategies can be applied to any robotic system using visual servoing in highly cluttered
environments.
The issue of human in the loop is a question that is often raised in the literature as a
possible alternative to fully autonomous systems which have limited performance. The
slight increase in fruit approach cycle time in the multiple approach direction strategy is
highly unlikely to justify the inclusion of a human observer in the field to assess the best
approach direction. Therefore, it is important to develop algorithms that will be able to
provide this information in shorter times and lower costs. For other hardware configurations
and greenhouse environments, the increase might be significant enough to justify a human
in the loop. To identify these cases one should consider comparing the different approach
strategies using the methods proposed in this work.
Since the ability to detect fruits that are unreachable from overview images can significantly
shorten the overall harvesting cycle time methods should be explored to determine this. More
research is needed to investigate the times it takes for a human to detect unreachable fruits
in order to analyse the economics of human robot collaboration for the proposed tasks.
Given the high failure rate of the single approach direction due to non-occlusion related
failures, one should consider a hybrid approach strategy. This strategy would start with using
the single approach strategy, since it yields the shortest cycle times. If the direction assessed
to be the best one fails, the multiple approach strategy can be applied to search for a possible
approach direction. The hybrid approach aims to increase the ratio of reachable fruits and
should be investigated further. If no information about the best approach direction is available,
the multiple approach strategy should be considered to lower the rate of unreachable fruits.
If a fixed approach direction is the only applicable strategy then the proposed approach
direction for sweet pepper harvesting is from the front (90◦).
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7.7 Research questions answered
The following research questions defined in section 1.2 have been met:

RQ4.1: What is the value of knowing the correct approach direction vs searching
for it? The time reduction as a result of knowledge of the correct approach direction
has been evaluated in the described robotic setting. A reduction of 40% and 8% in
laboratory and greenhouse conditions respectively has been achieved.

RQ4.2: Can humans identify the correct approach direction? The ability of humans
to evaluate the approach direction from images has shown limited ability however,
human observers are able to detect unapproachable directions.

RQ4.3: What are the common failures occurring during fruit approaching in vi-
sual servoing? Main types of failures have been identified and separated into two
groups- visual failures and mechanical failures. The frequency of such failures was
recorded and analyzed.
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8Conclusions &
Recommendations

„I am turned into a sort of machine for observing facts
and grinding out conclusions.

— Charles Robert Darwin
(English naturalist, geologist and biologist)

This thesis presented several methods for improving performance of autonomous har-
vesting robots by introducing planning of sensing actions into the robot’s operation.
The research contributes with developments related to planning the static locations
of the sensing points, introducing dynamic locations choice, introducing task plan-
ning after the locations have been derived, and planning the sensing for harvesting
and approach towards the fruit. All four enhancements have yielded reduction in har-
vesting cycle time and increase in detectability – both major bottlenecks preventing
autonomous harvesting robots from penetrating the market.

8.1 Main results
The statistical analysis of fruit detectability revealed that choosing the right combination of
viewpoints leads to a significant increase in detection in complex mid season environment.
This combination of viewpoints does not remain static between growing methods, or even
within the season and therefore should be analyzed dynamically. A dynamic sensing strategy
results in increased detection and decreased costs as compared to the single viewpoint strategy
employed today. Optimizing the harvesting sequence resulted in 12% reduction in cycle times.
Cycle times can be further reduced by choosing the correct approaching direction.

8.2 Recommendations
It is recommended, in future developments of robotic harvesters to:

• Perform statistical analysis of best viewpoint combinations. Each crop, environment
and robotic setting will have a different set of guidelines and therefore it is important
to identify the best-fit viewpoints for a given combination of crop-environment-robot.

• Incorporate dynamic sensing. If sensing is limited from a single viewpoint, an algorithm
similar to the one presented in this thesis should be included. The algorithm should
compare the benefit of additional viewpoints to the cost and accordingly decide if
additional viewpoint(s) is needed and where should they be located.

• Perform calculation of best harvesting sequence. Robotic harvesters should sequence
the targets and the sensing operations.

• Evaluate approach strategies. In occluded settings, identification of proper approach
directions is crucial for visual servoing based fruit approach and should be integrated.
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Some limitations that are important to note as well as future enhancements that should be
considered are outlined in the following subsections.

8.3 Limitations
In addition to the discussed limitations of each of the developed methods as detailed in
Chapters 4 - 7, general assumptions have been made regarding the configuration of the
robotic manipulator and its operation as detailed below.
The algorithms developed in this thesis assume an eye-in-hand configuration of the robotic
harvester. Even though, as discussed in the introduction and background, this is the most
common configuration of a robotic harvester, other static configurations may not allow
dynamic sensing points or visual servoing to take place. For these configurations, other
methods of dealing with occlusions should be provided. These methods can include (as
outlined in Chapter 5 and Chapter 7), mechanical blowers or growing techniques that will
limit the amount of occlusion.
Another assumption in this research is real-time operation of the robotic system (assuming
negligible processing times). While some previous robots [Bac et al., 2014a] resulted in slow
operation times and increased cycle times due to limited computational power (e.g., path
planning algorithms, image processing), recent research has shown this issue has been nearly
solved. Since computational power is expected to increase this has been disregarded in the
calculation of viewpoint processing and task planning. The entire focus in this research is on
minimizing arm movements by planning of sensing.
In this research, both the dynamic sensing algorithms and the sequencing of targets employs
a heuristic resulted in increased performance. However, the results could be further improved
by developing optimal algorithms.
Furthermore, the calculation of viewpoints, task planning, and approaching was limited in
this research regarding consideration of safety operations within the greenhouse. Safety
can be considered in two aspects – safe operation for the humans working next to the
robotic harvester, as well as safety in harvesting without harming vegetation. While all
safety measures for humans have been implemented (including operating in lower speeds
than maximal speed, emergency button configuration, etc.) very little has been done for
obstacle avoidance, e.g., not hurting stems. Several algorithms have been developed in
the literature to address this issue [Bac, 2015], but integration of such functionality might
affect the utility functions due to the change in path planning between harvesting points.
Additionally, this thesis focuses on improvements of autonomous harvesters that assumes
no human intervention, The work performed in Chapter 7 on evaluation of a human-robot
collaboration strategy is limited and is conducted for comparison to autonomous strategies.
Finally, this research assumes that the harvested fruit is directly transported to a bin (assuming
there are no additional movements from the fruit location to a bin). Since additional
movements prolong harvesting times this should be the common practice of using solutions
such as a plastic tube collecting the harvested peppers to the bin (e.g., [Bac et al., 2017]).
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Figure 8.1: Robot location within the lane. d is the distance of advancing along the lane.

Figure 8.2: High occlusion level crop.

8.4 Future work
Ongoing work is related to planning of sensing locations while the robotic harvester platform
advances along the lane (Figure 8.1). In this research the robotic harvester platform is
assumed to be placed at a specific location along the lane. The exact location has not been
addressed. Initial calculations to derive the platform location were made in Chapter 4 but
they were not sufficient for deriving a definitive conclusion for questions such as - at what
distance (d in Figure 8.1) along the lane should the robotic cart stop in the search for sweet
peppers and should this decision be dynamic as well (change according to previously sensed
data).
The application of the developed methods to other crops requires adaptions as noted below.
The viewpoint analysis can be applied using the presented methodologies to crops with high
presence of occlusions (e.g., citrus [Bulanon et al., 2009], grapes (Figure 5.2) and tomatoes
(Figure 8.2)). Crops with high inherent visibility (e.g., Cherri tomatoes Figure 5.2) will most
likely not benefit from such an analysis.
Task sequencing, in particular harvest sequencing, has been shown before to be practical for
melon and apple harvesting [Mann et al., 2016; Zion et al., 2014; Edan et al., 2000; Edan
et al., 1993; Edan et al., 1991]. The dynamic aspects described in Chapter 5 will be relevant
to crops with fruit detected dynamically (e.g., melon locations can be tagged a priori and do
not move but apples’ locations will differ along harvest due to wind blowing, removal of other
fruit). Since determining the approach direction can decrease cycle time, real-time algorithms
for reachability should be developed in future research. They could be based on reachability
cones (e.g., [Bloch, 2017]) which must be combined with real-time obstacle avoidance [Barth
et al., 2016; Bac, 2015].
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8.5 Application to other crops
Given a suitable crop and sensors the following steps should be advanced to benefit from
the research developed in this thesis. The first step is to collect data with an autonomous
system using the protocols developed in this thesis. The data collection should include all
feasible conditions that might impact the visibility and detectability (e.g., angles, illumination
conditions, crop growing directions, as detailed in Chapter 3.2). Once the data collection
protocol is defined, and images are collected, a visibility and detectability analysis should be
performed as outlined in Chapter 4 to generate guidelines to derive the best viewpoint/s. If
the results are definitive and reproducible in different growing conditions then the guidelines
should be defined statically, and the locations of sensors should be defined. If the detectability
is dynamic, and changes as a function of environmental conditions, the dynamic sensing
algorithm described in Chapter 5 should be adapted to the crop. The dynamic sensing
algorithm should include a measure of information content, and actions to be made to
increase it as a result of a previous sensing if needed. Finally, when the sensing strategy is
defined, the number of cases in which occlusions cause loss of fruit in fruit approach should be
identified using the methodology described in Chapter 7. If the number is high, the approach
direction strategy should be evaluated, and humans in the loop should be considered along
the protocols defined in this thesis. The overall optimization procedure should be measured
in two main ways – harvesting cycle time optimization and detectability increase.

„If we knew what it was we were doing, it would not be
called research, would it?

— Albert Einstein
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10Appendixes

10.1 List of software and databases
The following software packages were developed in this thesis:

• Joint detectability labeling user interface (MATLAB) - Chapter 4
• Robotic viewpoint acquistion protocol software (ROS,C++)- Chapters 3.2,4
• Dynamic sensing algorithm implementation (MATLAB) - Chapter 5
• TSP simulation (MATLAB,V-Rep) - Chapter 6
• TSP laboratory experiment (Java) - Chapter 6
• Approach strategies implementation (ROS,C++) - Chapter 7
• Statistical modeling of viewpoints (SPSS,EXCEL) - Chapter 4
• Statistical modeling for prediction of target in the scene for dynamic viewpoint

(SPSS,R,EXCEL) - Chapter 5
• Statistical analysis of questionnaires responses (SPSS,EXCEL)- Chapter 7

The following databases were acquired and are available for future research:
• Viewpoint databases (1-3), described and used in Chapter 4. DB#1 is available to the

public.
• Viewpoint for dynamic sensing database, used in Chapter 5.
• Pepper locations database, used in Chapters 6 and 7.
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Executive Summary 
 

During two visit to the grower's greenhouse (July and Sep 2015), the first set of field data was 
collected and organized. While deliverable 5.1 is the dataset itself, this short report describes its 
design and content, and how to publically access it.  

  



3 
 

Contents 
Executive Summary .................................................................................. 2 

1. Introduction ........................................................................................ 4 

2. Dataset design and protocol .................................................................. 4 

3. Dataset Content .................................................................................. 6 

4. Public web access and graphical user interface ........................................ 7 

Appendix A: ............................................................................................. 9 

 

 

 

  



4 
 

1. Introduction 
 

Sweeper detection and localization algorithms are designed to be data-driven. To 
facilitate this approach, the Sweeper research plan includes no less than 4 data 
collection sessions to serve algorithm design for both the basic and advance 
system. In July and Sep 2015, teams from BGU, DLO, and Irmato met and 
collaborated in the Grower’s greenhouse, to make initial sensor evaluation (in 
July) and then run the first systematic data collection (in Sep) that resulted in 
the first dataset of sweet pepper greenhouse scenes as eventually acquired by 
the Sweeper robot. According to the research plan, this dataset, as well as the 
forthcoming ones, should be made public both for the Sweeper community and 
the research community in general. The rest of this short document describes the 
content of this dataset and how to access it.  

2. Dataset design and protocol 
 

The Sweeper robot is likely to observe the sweet pepper plant from various 
angles and distances (as much as the space between aisles permits). In addition, 
illumination conditions may vary from direct sun light to complete darkness 
(during night time). To facilitate data collection under all these conditions we 
designed an acquisition protocol that utilizes the selected sensors, the selected 
sweeper manipulator, an available artificial illumination sources, and custom-
made software, to collect data in the following way: 

• Sensors were mounted on the tip of the manipulator (Fanuc LR mate 
200iD, 900mm 7L version) that was programmed to move between 15 
predefined configurations that cover 5 viewpoints at each of 3 distances 
from the plant. Since on the ground it was found that the furthest and 
highest viewpoint pushes the limits of the arm, that viewpoint was 
discarded, leaving 14 viewpoints for each scene.  

• The manipulator itself was positioned on a lift that was manually moved 
along the aisle and lifted to the proper height to face scenes with sweet 
peppers. 

• At each such view point, an image was taken from the RGB-D Fotonic 
sensor, and from the iDS camera. Furthermore, images from the latter 
were taken both under natural illumination, and under strobed artificial 
illumination.  

• Upon completion of all viewpoints, the robot switched to a homing 
position, the platform was moved to a new place to face a new scene, and 
the entire sequence of operation restarted. 
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Figure 1 shows the sensory rig and the robot in the aisle. 

  

 
 
Figure 1: The sensory rig on the top of the robotic manipulator are 

mounted on the platform in the greenhouse 
 

 

Note that all RGB image from the iDS and Fotonics were taken under custom-
made automatic exposure control. The automatic exposure mechanism was 
designed to adjust camera exposure interval in order to maximally match the 
resultant histogram to a desired canonical structure (that was measured from a 
large set of images that were judged “good” by a human observer and were not 
over or under saturated). While the present procedure only attempted to 
optimize histogram peak position, future version will try to optimize the entire 
histogram and consider regions of interest other than the center. The canonical 
histogram used is shown in Figure 2. 
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Figure 2: A canonical histogram that the auto exposure procedure 

was attempting to obtain by adjusting the exposure time 
of the camera. The present version of the auto exposure 
mechanisms attempted to adjust exposure time in order 
to obtain an image histogram with peak position that 
matches the canonical histogram. Future version will 
attempt to optimize additional features of the histogram. 

 
 

3. Dataset Content 
Given the mechanisms and protocol as above, the data collection session 
included 1.5 days of collection with the robotic arm, including one night session. 
More specifically, the first Sweeper datasets includes 

• A total of 43 scenes, each constituting 14 consistent viewpoints. 
•  At each viewpoint, 4 images are available (see Figure 3) 

o An RGB image from the Fotonic camera 
o A registered depth image from the Fotonic camera 
o An RGB image from the iDS camera (not registered with the 

Fotonics) under natural illumination 
o An RGB image from the iDS camera under artificial strobed light.  

• Of the 43 scenes 
o 8 were taken on  a cloudy day in the afternoon 
o 2 were taken during night time 
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o 14 were taken under direct sun light from behind the fruit (and thus 
directly into the lens) 

o 19 were taken with the sun behind (and above) the sensors. 

 

 
Fotonic RGB 

 
Fotonic Depth 

  
iDS RGB natural light  iDS RGB Strobed light 

 
Figure 3: One sample of the 4 images taken from a single viewpoint.  

 

4. Public web access and graphical user interface 
 

All data of the first Sweeper DB are available publically through a web interface 
at the following URL: 

http://www.cs.bgu.ac.il/~icvl/lab_projects/agrovision/DB/Sweeper01/ 

A snapshot of the main screen and the intuitive user interface is shown in Fig. 4. 
This web interface allows interactive browsing through the dataset, and it 
provides downloading features of a single image, a single image set (from a 
given viewpoint), or the entire dataset in one click of a button. 
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Figure 4: A snapshot of the interactive web interface to the first Sweeper DB. 
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Appendix A: Backup images 
 
The robotic manipulator arrived at the greenhouse and due to some 
technical problems it was set up by Irmato for the experiment relatively 
late, leaving essentially one day for systematic data collection. In order to 
ensure that data is collected even if the manipulator does not work, an 
earlier effort of data collection employed a manual rig as shown in Figure 
2. This rig (made by DLO’s Bart van  Tuijl) was placed on the platform, its 
viewpoint fixed, and images were acquired as the platform was moved 
along the aisle. Thus, unlike the data described above, each scene 
acquired included only a single set of images. Overall, 320 scenes were 
imaged this way (each constituting a set of the sort shown in Fig. 3) and 
this backup data is available from BGU upon request. 
 

 
 

 
 
Figure 2: The sensory rig on the top of the manual rig – a contingency setup 

that was used before the robotic arm was utilized. 
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Abstract. An autonomous sweet pepper harvesting robot must perform several
tasks to successfully harvest a fruit. Due to the highly unstructured environment
in which the robot operates and the presence of occlusions, the current chal-
lenges are to improve the detection rate and lower the risk of losing sight of the
fruit while approaching the fruit for harvest. Therefore, it is crucial to choose the
best approach direction with least occlusion from obstacles.
The value of ideal information regarding the best approach direction was

evaluated by comparing it to a method attempting several directions until suc-
cessful harvesting is performed. A laboratory experiment was conducted on
artificial sweet pepper plants using a system based on eye-in-hand configuration
comprising a 6DOF robotic manipulator equipped with an RGB camera. The
performance is evaluated in laboratorial conditions using both descriptive
statistics of the average harvesting times and harvesting success as well as
regression models. The results show roughly 40–45% increase in average har-
vest time when no a-priori information of the correct harvesting direction is
available with a nearly linear increase in overall harvesting time for each failed
harvesting attempt. The variability of the harvesting times grows with the
number of approaches required, causing lower ability to predict them.
Tests show that occlusion of the front of the peppers significantly impacts the

harvesting times. The major reason for this is the limited workspace of the robot
often making the paths to positions to the side of the peppers significantly longer
than to positions in front of the fruit which is more open.

1 Introduction

Due to the lack of skilled workforce and increasing labor costs, advanced automation is
required for greenhouse production systems [1]. Despite intensive R&D on harvesting
robots, there are no commercial harvesting robots for sweet peppers [2, 3]. Robotic
harvesting of sweet peppers includes several tasks: detecting the fruit, approaching it,
deciding whether the fruit is ripe, and finally detaching the fruit from the stem [4, 5].
The major limitation most commonly tackled today is the non-optimal detection rates;
Bac et al. [3] reported state of the art being 85% in their 2014 review. Viewpoints
analyses in harvesting robotics indicate that only 60% of the fruit can be detected from
a single detection direction [6]. Therefore, current research focuses on detection
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algorithm development [3, 6–8]. Another challenge often described in the literature is
the task of how to grasp a fruit, due to the limitations of available robotic grippers and
the inherent difficulties of grasp planning [9, 10]. Eizicovits and Berman [10] devel-
oped geometry-based grasp quality measures based on 3D point cloud to determine the
best grasping pose of different objects, including sweet peppers. This kind of solution
depends on detailed 3D sensor information of the object [11] which is very difficult to
achieve in dense greenhouse environments. These environments have an unstructured
and dynamic nature [12]: fruits have a high inherent variability in size, shape, texture,
and location; in addition, occlusion and variable illumination conditions significantly
influence the detection performance. Given the complexity of both detection and grasp
planning tasks, approaching the correct fruit pose must be done dynamically, taking
into account obstacles such as stems and leaves. The most common way to do this is
visual servoing, i.e. using eye-in-hand sensing to guide the robot towards the fruit by
always keeping it in the center of the image [13]. When using this method, it is crucial
to choose the best approach direction with least occlusion from leaves and other
obstacles to maximize the chance for the visual servoing to reach the desired grasping
pose. This research focuses on measuring the value of ideal information regarding the
best approach direction for successful visual servoing, compared to a method using a
search pattern to find the best direction.

2 Methods

A 6DOF robotic manipulator Fanuc LR Mate 200iD equipped with an eye-in hand iDS
Ui-5250RE RGB camera and a Sick DT20HI displacement measurement laser sensor
was placed in-front of an artificial plastic pepper crop with yellow plastic fruits and
green leaves (Fig. 1). The workflow of the robot was implemented using a generic
software framework for development of agricultural and forestry robots [14]. The
framework is constructed with a hybrid robot architecture, using a state machine
implementing a flowchart as described by Ringdahl et al. [15].

Fig. 1. The experimental setup consisted of a robotic harvester in front of an artificial crop.

Strategies for Selecting Best Approach Direction for a Sweet-Pepper Harvesting Robot 517



A scene consisting of five plastic fruits placed at different locations on two artificial
stems was setup before each experiment. The number of fruits were set to 5 to be
similar to an actual sweet pepper plant, the right stem had three fruits, the left had two
fruits. Each fruit had one or two leaves placed on different side (left/front/right) of it to
create occlusion. An example of an overview image taken by the robot can be seen in
Fig. 2. For each fruit the best fit harvesting approach, defined as the “optimal” har-
vesting approach direction, was set as the angle from either left (−45°), front (0°), or
right (45°) where the target was least occluded, was noted manually. Figure 3 shows a
flowchart describing the decision process for the manual selection.

2.1 Harvesting Scenarios

Two harvesting scenarios were tested. The first scenario, the full a-priori knowledge
scenario, represents the ground-truth where both position Pi xi; yi; zið Þ and approach

Fig. 2. An overview image taken from the robot’s camera looking at a laboratorial scene with 5
peppers on two stems covered by leaves.

Fig. 3. Decision flowchart for manually selecting the optimal approach direction to a pepper.
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direction h�i are known for each fruit i. The harvesting cycle consists of approaching a
pre-defined overview waypoint W0 x; y; zð Þ, and then selecting each target fruit in order
from the list of positions and optimal approach directions of all fruits. The control unit
then calculates the path of the robotic manipulator to a waypointWi x; y; zð Þ, positioned at
a defined distance from fruit i with respect to the optimal harvesting approach direction
and position xi; yi; zi; h

�
i

� �
. After reaching the waypoint, a visual servo procedure based

on color blob detection and distance measurements received from the laser guides the
manipulator towards the target until the end-effector touches the fruit. If the manipulator
reaches the target fruit, the harvest of that fruit is marked as successful and the path to the
next waypoint is then calculated. In case the fruit was not found or was lost from view
while in visual servo, the harvest of the fruit is marked as failed and the path to the next
waypoint is calculated. The cycle ends when all fruits have been attempted to be
approached. The left part of Fig. 4 shows a flowchart of this harvesting scenario.

The second scenario, the auto approach direction search scenario, is a variation of
the ground-truth scenario in which the optimal approach direction h�i is unknown, and
therefore must be searched from a list of predefined possible approach directions h1::hk.
For each target fruit i and possible approach direction hj the control unit calculates the
path of the robotic manipulator to a waypoint Wij x; y; zð Þ positioned at a defined dis-
tance from the target fruit with respect to hj until the harvest of the fruit is marked as
successful or sight of the fruit is lost. If successful, the path to the waypoint Wij for fruit
iþ 1 and h1 is calculated. If the fruit was lost during visual servoing, the next approach
direction hjþ 1 is selected. In case all approach directions h1::hk were attempted without
being able to reach the fruit, the harvest of the target fruit is marked as failed and the
path to the waypoint Wij for fruit iþ 1 and h1 is calculated. The right part of Fig. 4
shows a flowchart of this harvesting scenario.

Fig. 4. Flowchart describing the two different harvesting scenarios. Left: auto approach
direction search scenario. Right: full a-priori knowledge scenario (differences marked with
dashed lines).
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2.2 Experimental Protocol

Six laboratory scenes with different leaves and optimal approach directions were set up
as defined in Table 1. The pose of each pepper was measured by manually moving the
robotic arm in the desired approach direction into the position where the gripper
touched the fruit, as seen in Fig. 5.

A harvesting cycle is performed for each of the defined scenes and scenarios
according to the following configurations. Each one of the scenes defined is performed
in three possible configurations:

• Full a-priori knowledge scenario selecting the optimal approach direction from the
set {−45°, 0°, 45°}

• Auto approach direction search scenario with two different search patterns:
• Side first: hj ¼ �45�; 0�; 45�½ � (left-center-right)
• Center first: hj ¼ 0�;�45�; 45�½ � (center-left-right)

Table 1. Six scenes with different configurations for leaf (L = left, F = front, R = right) and
approach direction (−45°, 0°, 45°).

Scene Pepper 1 Pepper 2 Pepper 3 Pepper 4 Pepper 5
L F R L F R L F R L F R L F R

1 � � 45 � � 0 � 0 � −45 � 0
2 � � 0 � � −45 � −45 � 0 � 0
3 � � 0 � � −45 � 0 � 0 � −45
4 � 0 � 0 � � 0 � −45 � � 45
5 � 0 � 45 � � 0 � 0 � � 45
6 � 0 � 0 � � 0 � −45 � � 45

Fig. 5. The pose of each pepper was measured by manually moving the robotic arm in the
desired approach direction to the position where the gripper touched the fruit.
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Each configuration is performed at 50% and 100% of maximum speed respectively
to enable sensitivity analysis in relation to the robot speed. At the end of each har-
vesting attempt cycle times and the result of the attempt (success/failure) are registered.

2.3 Measures and Statistical Analysis

To evaluate the performance, the following three measures are defined:

– Pepper harvest time Th is the time it takes from a fruit is selected from the list of
fruit poses until the fruit has been successfully harvested (all fruits were harvested
in the experiments).

– Average logarithmic harvest time LTh as shown in Eq. 1.

LTh ¼ 1
n

Xn

i¼1
ln Thið Þ ð1Þ

Where n is the number of successfully harvested fruits.
– The number of attempted approach directions Nhi for fruit i.

In addition to descriptive statistics of the aforementioned measures, the statistical
significance of the differences in the value of the measures was measured. The pepper
harvest time Th is analyzed in a form of a log transformed linear regression [16]:

ln Thið Þ ¼ b0 þ b1Hci þ b2Oi þ b3VR þ b4OFi þ b5Hci � Oi þ �i ð2Þ

Where Hci is the harvesting scenario of pepper i, Oi is the number of occluding
leaves, VR is the robot speed, OFi is the front occlusion (1 if the front is occluded, 0
otherwise), and b0; b1; b2; b3; b4; b5 the corresponding weights of the regression to
be estimated. Additionally, independence v2 test [17] is performed for analyzing the
relation between the number of failed approach directions NhFi and the harvesting
scenario Hci .

3 Results

To determine the value of an optimal harvesting approach direction, a total of 180 fruit
harvesting attempts were performed on 6 scenes with 5 artificial peppers each, in a set
up according to Table 1, with different harvesting scenarios (full a-priori, center first
search pattern, and side first search pattern) using two different robot velocities (50%
and 100% of maximum). The total average harvest time Th for all combinations was
8.56 s (SD = 3.88). The distribution among the three harvesting scenarios is presented
in Fig. 6. The results show roughly 40–45% increase in average harvest time when no
a-priori information of the correct harvesting direction is available.

Homogeneous subsets Tukey-HSD test show a significant (p-value = 0.011) dif-
ferences between LTh (Eq. 1) calculated from the full a-priori and the center first search
pattern harvesting scenarios. The difference between LTh for full a-priori and side first
search pattern harvesting scenarios was also significant (p-value = 0.006). The

Strategies for Selecting Best Approach Direction for a Sweet-Pepper Harvesting Robot 521



differences between LTh for the two search patterns were found to be statistically
insignificant (p-value = 0.98).

Results of the logarithmic transformed ln Thð Þ regression model (Eq. 2) revealed
significance for front occlusion (p-value < 0.001) and harvesting scenario
(p-value = 0.02). The number of occluding leaves was not found significant
(p-value = 0.774) on its own but was borderline significant in an interaction with the
harvesting scenario (p-value = 0.098). A profile plot describing the interaction is
presented in Fig. 7. It shows that both search patterns have shorter harvesting times for
less occluded scenes. It seems that in the full a-priori information scenario it takes
slightly less time to harvest in more complicated scenes with higher occlusion then for
simpler scenes. However, this difference was found statistically insignificant
(p-value = 0.16). The difference between the two robot velocities (50% or 100% of
maximum) was found to be insignificant (p-value = 0.155). This can be explained by
the visual servoing technique that limits step sizes between images causing the robot
not to obtain the maximum speed during this phase. This is needed to provide sufficient
time to process image data during visual servoing.

From the total of 180 harvesting attempts performed, all 60 approaches (100%)
performed with full a-priori information were successful on the first attempt with an
average harvesting time of 6.71 s (SD = 3.05). Out of the 120 cycles performed using a
search pattern, 76 (63%) were successful on the first attempt with average harvesting
time of 6.62 s (SD = 2.78). 30 cycles (25%) were successful on the second attempt
with average time of 11.16 s (SD = 5.4) and the remaining 14 cycles (12%) were
successful only on the third attempt with average time of 21.34 s (SD = 6.9). The
number of highly occluded peppers and partially occluded peppers were roughly the
same (46% and 54% respectively). While the average harvesting time increased as a
nearly linear function of the number of attempts, the standard deviation also increased
for more complex cases requiring more attempts until harvesting. The analysis of the

Fig. 6. Average harvesting time as function of the harvesting scenario
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number of approaches performed until successful harvest as function of search pattern
method is presented in Fig. 8. It can be seen that about 30% more fruits were harvested
at the first attempt using the side first search pattern than the center first pattern. An
independence v2 test showed border line significant dependences between the search
methods and the number of attempts (p-value 0.0978).

Fig. 7. Profiles plots for occlusion level and search method

Fig. 8. Number of approaches until successful harvest as function of the search pattern method
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4 Conclusions

Results show significant increase in harvesting times for a search pattern compared to
ideal initial information about the harvesting direction. The harvesting time grows near
linearly with the number of approaches required until successful harvest. Furthermore,
the variability of the harvesting time grows with the number of approaches required,
causing lower ability to predict harvesting times. Therefore, it is clear that ideal
information about the best harvesting approach direction is valuable for increasing the
performance of a robot harvesting system.

The harvesting time does not significantly differ for the two different harvesting
direction search patterns. This should be validated on a greater variation of search
patterns and in greenhouse conditions where the occlusion is less likely to appear in a
random manner as designed in the given experiment. To see how this depends on the
kind of robot used, validating the results using a robot with different kinematic setup
would also be beneficial. It has been shown that if there is an occlusion of the front of a
fruit the harvesting times significantly increase compared to fruits that can be harvested
from front, regardless of search method. The major reason for this is the limited
workspace of the robot; the distance to the fruits is around 35–40 cm, with leaves often
being even closer, and the gripper mounted on the end of the robot is 24 cm long. This
makes it difficult to reach positions to the side of the peppers and the paths often
become quite long due to the limited space and the joint limitations of the robot.
Pruning techniques used for crops optimization might take this into consideration to
facilitate robotic harvesting.

30% more fruits were harvested at the first attempt when using the side first search
pattern than when using the center first pattern. Equal number of scene configurations
had fruits blocked by leaves from left and center, therefore the number of approaches
would have been expected to be equal for both search patterns. A probable explanation
is that some fruits were detected during visual servoing even though they were (partly)
blocked by leaves and therefore should not have been possible to harvest. This
occurred in 26% of all attempts of harvest from the left and in 13% of all attempts from
the front. However, this most likely did not affect the reported recall and precision since
they are calculated in comparison to actual harvest approach success rates, i.e. that the
robot actually reached the fruit.

The results of this research have shown significant factors affecting harvesting
times and success rates in laboratorial conditions. Suggested validation of the results is
to perform experiments in greenhouse conditions, which must be done during the
growing season when ripe fruits are available.
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 תקציר
שיפור ביצועים אופרטיביים של רובוט קטיף אוטונומי תוך המחקר מתמקד ב

התמקדות בחישה דינמית ותכנון משימות. השיפורים מובילים להגדלת אחוזי זיהוי 
שני מדדים מרכזיים של רובוטי קטיף אוטונמיים, המונעים  –והקטנת זמני קטיף 
ניתוח  – אתגרים מרכזייםארבעה במסגרת המחקר הוגדרו מהם כניסה לשוק. 

חישה, חישה דינמית, תכנון משימות קטיף וגישה תכננון גישה לפרי. מבט ונקודות 
בוחן של קטיף אוטונמי של פלפל. במסגרת  ימקרהאלגוריתמים שפותחו נבחנו על 

התזה האתגרים נפתרו בין היתר על ידי איסוף מסדי נתונים נרחבים דרך פרוטוקלי 
יים בסביבת חממות. נאספו מסדי נתונים בקנה מידה גדול איסוף נתונים חלקא
בו SWEEPER  איפוספים כחלק מהפרוייקט האיחוד האירשיתוף עם חוקרים נו

 .גם יושמו חלקית מסקנות מחקר זה
 

. ניתוח ססטיסטי של נקודות מבט המאפשר תובנות ניתוח נקודות מבט וחישה
זיהוי הפרי. נמצא כי מנקודת  ובחירת נקודות מבט מיטביות לביצוע חישה עבור

מהפרי. נמצאו תובנות לנקודות מבט מייטביות  40-60%מבט בודדת ניתן לזהות 
מהפרי  85%והחלטה כי שתי נקודות מבט הינן תנאי מינימלי להשגת זיהוי של עד 

 .בשטח
 

בפועל צריך להיות מינימלי להקטנת זמן  . מספר נקודות החישהחישה דינמית
הקטיף. על כן פותח. אלגוריתם תומך החלטה לביצוע נקודת חישה נוספת אשר 
חוזה את מספר הפלפלים העתידים להיות מזוהים ומשווה את עלות איבודם אל 
מול עלות זמן ריצה ארוך יותר. האלגוריתם הראה שיפור הן בזמני הקטיף )בעד 

 (.19%הזיהוי )ב ( והן באחוזי10%
 

אך ורק מתוך פעולות חישה ואינם  . במצב בו הפירות מזוהיםתכנון משימות הקטיף
ידועים מראש תכנון סדר החישה והקטיף נדרש לשיפור זמני הקטיף. בעבודה זו 

 המחזור נידר הפעולות אשר הובילו להקטנת זמפותחו אלגוריתמים ליעול ס
 .12%בממוצע ב

 
חשיבות לגישה לפרי מנקודת מבט אשר אינה חסומה על ידי  יש. תכנון גישה לפרי

עלים. במסגרת המחקר נבחנו מספר שיטות לבחירת נקודת מבט זו ונבחנה יכולת 
 .האדם לזהות נקודות גישה מייטביות
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