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Abstract 
In recent years, the rRecognition of various high value substances produced by micro-algae when 
put under environmental stress stimulated this research field. Today, different species of micro-
algae are cultivated for that purpose. This research aims to produce a dedicated control system 
that will serve for assessment and execution of microalgal growth by controlling environmental 
conditions adjustable by the user. The system reporting environmental and growth data, also 
controls physical factors to optimize growth. The highly flexible system is useful in physiological 
research of different micro-algal species, being able to store growth data, as well as environmental 
parameters as stress indicators. Moreover, two models have been developed: a deterministic 
model for predicting the biomass concentration inside the photo-bioreactor, that has been 
extended by statistical methods, and a stochastic model for describing the light transfer inside the 
photo-bioreactor in a single dimension. 
The specific developments of the thesis include development of: 

1. Control system software and its implementation on an Arduino controller. 
2. Calibration procedure for transforming sensors readings to light intensity in terms of 

photosynthetically-active radiation (PAR). 
3. Controlling algorithm for microalgae growth inside Illuminated photo-bioreactor. 
4. Deterministic model for predicting the concentration inside the photo-bioreactor. 
5. Stochastic model describing the light transfer inside photo-bioreactors in a single dimension. 

The system consists of a growth vessel illuminated by a LEDs array with two distinct colors. It is 
monitored and controlled by an Arduino Mega 2560 microprocessor, connected to the following 
input devices: two light sensors for incident and exiting light intensities, temperature sensor and a 
pH electrode. The Arduino board additionally controls LEDs light intensities as well as CO2 supply 
valve to regulate the pH. The microprocessor was programmed using the native Arduino software, 
while using Megunolink Pro for data presentation and control. The system also enables data 
acquisition. The data gathered by the system was analyzed using R (RStudio), Matlab and Excel. 
The algorithmic flow can be conceptually separated into two fundamental parts. The first is 
responsible for estimating the algal biomass content based on the measured light intensities 
before and after the photo-bioreactor. This updated estimate serves for determining the amount 
of each colored light that should in turn be supplied to the algae, to reach a constant light per 
biomass ratio. The second part consists of continuous measurement of pH and temperature. The 
pH of the suspension spontaneously increases with CO2 consumption. Since the latter increases 
during active photosynthesis, CO2 must be supplemented accordingly to keep a constant supply. 
An instantaneous target value for the pH is determined, considering the current light intensity and 
biomass concentration. The controlling algorithm was validated and the results were examined to 
be consistent and logic. 
Analyses of collected data were conducted at different parts of the research: (i) validation of the 
research assumptions; (ii) formulating calibration procedure for transforming the local sensors 
readings to global light intensity in terms of photosynthetically-active radiation (PAR), in addition 
to estimation of the absorbance of the photo bioreactor in the absence of algae; (iii) the 
formulated deterministic model was fitted to observations collected by the system and actually 
measured in the lab.  
 
Keywords: Microalgae, control system, monitoring system, controlling algorithm, statistical 
methods, Markov Chain, Arduino, light absorption, light transmission, light scattering. 
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1. Introduction 

1.1. Problem description 
Microalgae are unicellular organisms able to use light energy to fix carbon dioxide and transform it into 
complex biomolecules (e.g., sugars, lipids, proteins) needed for their proliferation (Cronquist, 1960). The 
cellular process, known as photosynthesis, depends not only on the number and energy of photons 
absorbed per cell, but also on the frequency at which they are absorbed (proper light:dark exposure). 
The latter is determined by three major variables (Zarmi et al., 2013): (i) incident light intensity and 
spectral quality, (ii) cells density (light absorption), and (iii) rate and mode of mixing (transfer between 
zones of high and low light intensities in the culture vessel). 

Microalgal growth can be increased by optimal conditions (Borowitzka, 1999). Algal biomass of fixed 
composition accumulates at a maximal rate to generate daughter cells after division of mother cells. 
Under sub-optimal conditions, the organisms are under physiological stress, the growth rate is slower, 
and some microalgae overproduce compounds that assist them to overcome the stress (Borowitzka, 
1999). The latter may represent compounds of high commercial value, such as protective pigments 
(antioxidants), and/or high nutritive value lipids (omega 3 and 6 poly-unsaturated fatty acids), or just 
excess oil, which can be extracted and processed to make biodiesel, an energy source that represents a 
renewable substitute to fossil fuel (petroleum-based). Sustainable production of high added-value 
compounds and/or alternative energies represents a major field for research and development of the 
future (Boussiba & Aflalo, 2005; Chisti, 2007; Li et al., 2008). 

In order to ensure a maximum yield, a prediction model for the growth rate is essential (Mata et al., 
2010). A few models have been proposed (Evers, 1991; Meireles et al., 2008; Bernard & Remond, 2012; 
Tastan et al., 2013; Zarmi et al., 2013), but they address each of the environmental factors separately 
and often do not apply multivariate analysis or consider mutual relations. 

Today, different tools and methods are available to support the growth process and evaluate the effect 
of various factors on production. This research aims to produce a dedicated control system that will 
serve for assessment and execution of microalgal growth by controlling the environmental conditions. 
Moreover, two models have been developed; a deterministic model that has been extended by 
statistical methods for predicting the biomass concentration inside the photo-bioreactor and a 
stochastic model for describing the light transfer inside the photo-bioreactor in a single dimension. 

The (semi) automated control system, developed in this thesis, enables data acquisition, monitoring and 
controlling culture conditions (light intensity, light quality, temperature, pH, and CO2 supply) in a photo-
bioreactor containing a disposable culture vessel (20 L) illuminated by a panel of blue and red LEDs, and 
mixed by bubbling air (with or without CO2) over an appropriate growth period (7-14 days). Controlling, 
monitoring and real-time calculations is executed using the Arduino Mega 2560, an open-source 
microcontroller board containing a USB port for serial communication with a server, as well as several 
digital and analog I/O ports. A powerful package (MegunoLink Pro) functions as a visual interface with 
the microprocessor has been used, enabling both monitoring and user control of the system. 

 

1.2. Objectives 
The aim of this research is to develop a control system in support of microalgal growth. An algorithm for 
monitoring the growth and controlling the environmental conditions is developed.  

A prediction model of the biomass concentration in the culture, using the light transmission measured 
by the light sensors has been proposed and developed. A stochastic model for the estimation of the 

Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Not Italic, Complex Script Font: Italic

Formatted: Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic



 
 

 
2 

attenuated light in photo-bioreactors has been developed, considering the physical interaction between 
light and the algal cells (reflection, absorption and transmission).  

The data monitored and processed by the system can assist in determining the conditions yielding 
maximum growth by performing a multivariate analysis. 

The specific objectives are to develop: 

1. Calibration procedures for light measurements. This enables estimation of the true light 
absorption by the microalgae. 

2. An adequate estimation of the microalgal concentration in the bioreactor, based on the 
calibration procedures and statistical modeling of the correlation between light attenuation and 
the culture density.  

3. A real-time algorithm to support microalgal growth in a semi-automated intelligent control 
system. 

4. A model for describing the light transfer in the photo-bioreactor, for improved estimation of the 
attenuated light. 

1.3. Contributions 
- A deterministic model The Beer-Lambert equation has been extended was developed to enable 

(1) estimation of several pigments' concentrations and (2) consider the attenuated light owing to 
the scattering effect by extending the Beer-Lambert equation to account for scattering. 

- A stochastic model whasas been developed to consider the physical interactions of the photons 
and algae cells. The cells in suspension are modeled in a single dimension, which enables 
implementation in illuminated photo-bioreactors. 

- Statistical techniques were used to apply real-time transformation of the voltage sent to the 
LEDs panel and the local sensors reading in Hz to the global light intensity in PAR units (flux) 
estimated on the incident and outcoming faces of the PBR (calibrated using an external 
independent quantum sensor). 

- An automated control system was developed in C/C++, included ~3000 lines of code, and 
deployed inand implemented in Arduino.  
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2. Literature review 

2.1. Microalgae 
Microalgae are photosynthetic microorganisms that can grow rapidly and live under harsh conditions 
due to their unicellular structure (Li et al., 2008). Similar to aerial plants, microalgae transform solar 
energy, water and CO2 into chemical energy and biomass (Cronquist, 1960), mostly composed of 
carbohydrate (sugars), protein and oil (Richmond, 2004).  

The number of microalgal species is estimated to be around 50,000, but only 30,000 have been 
identified (Cronquist, 1960; Richmond, 2004; Guiry, 2012). Some species naturally produce high value 
compounds (Meireles et al., 2008), such as vitamins and pigments, and are extensively cultivated and 
studied around the world for various applications in the fields of pharmaceuticals, feed, energy and 
others (Boussiba & Aflalo, 2005; Mata et al., 2010). 

There are several factors influencing algal growth (Mata et al., 2010): physical factors such as light 
intensity, light quality, temperature, CO2, pH, nutrient concentration, O2, salinity, and toxic chemicals; 
biotic factors such as bacteria, fungi, viruses and competition with other algae; operational factors such 
as stress produced by inappropriate mixing, dilution rate or harvest frequency. 

Increasing energy demand, fossil fuels shortage, and environmental concerns have motivated the search 
for alternative and cleaner energy sources (Kirrolia et al. 2009). Microalgal species provide diverse 
sustainable solutions to human needs; they are widely produced for use of cosmetics, pharmaceutical, 
nutraceutical, and food industries (Richmond, 2004; Boussiba & Aflalo, 2005; Doughman et al., 2007). 

Microalgae have attracted considerable interest as a potential feedstock for biofuel production, as 
sugars and fats are the raw materials for bioethanol and biodiesel transport fuels (Carlsson et al., 2007). 
Microalgae also produce proteins, a validated source for domestic animals feeding. After extracting 
some substances from the microalgae, the residue may serve as organic fertilizer (Richmond, 2004; Li et 
al., 2008). 

Production at industrial scale is usually performed in open ponds or raceways (Meireles et al., 2008) and 
is preferred over agricultural crops due to the low water consumption and efficient use of CO2 (Li et al., 
2008). Despite this, microalgal cultures are often characterized by low biomass productivity and are 
restricted to only a few species (Borowitzka, 1996, Boussiba & Aflalo, 2005). Several closed systems, 
usually of the tubular or flat-panel types, have been developed (Miron et al., 1999); however, they 
present difficulties for effective control, require a large area of land, are expensive to operate and show 
high frequency of contamination by organisms competing on the microalgae (Meireles et al., 2007). 
Therefore, new design of compact and clean photo-bioreactors is persistently pursued (Ogbonna, 1999). 

Closed photo-bioreactors offer better control of culture conditions, such as CO2 supply, water supply, 
optimal temperatures, and efficient exposure to light, culture density, pH levels, and mixing rates. For a 
large-scale production of biomass, efficient photo-bioreactors are required (Gupta et al., 2015).  

One of the major factors that affect microalgal growth is light (Borowitzka, 1996; Loera-Quezada et al., 
2011), needed as a primary energy source to drive carbon fixation; however, excess light can cause 
photoinhibition, promoting cell death (Evers, 1991). Hence, a light control system is desirable for closed 
photo-bioreactors to adjust light intensity to microalgal density. Assessment of the light available for 
photosynthesis, lowered by self-shading at high densities (Bricaud & Morel, 1986), is important in order 
to accomplish accurate and continuous control of light intensity (Evers, 1991; Zarmi et al., 2013; 
Meireles et al., 2008). 



 
 

 
4 

At saturating light intensities, CO2 availability may limit algal photosynthesis (CO2 fixation). pH is also an 
important factor for algal growth as in addition to its inference on CO2 solubility, it can affect the activity 
of different enzymes. In general, microalgae have variable ranges for tolerance to pH (Ying et al., 2014). 

During photosynthesis, microalgae consume CO2 (Cronquist, 1960) and the pH level correspondingly 
increases. In addition, evaporation of the former is taking place. Therefore, CO2 must be supplied during 
the day.  

CO2 is not consumed during night (no light), since photosynthesis does not occur. The microalgae 
consume its energy by cellular respiration (Rich, 2003), a set of metabolic reactions which include the 
following processes: (i) digesting of inner materials (e.g., glucose) combined with oxygen consumption. 
This process creates CO2 and tends to lower the pH level in the culture. (ii) Intracellular organic acids 
consumption, tends to increase the pH level. Overall, the pH level in the culture is increasing in the dark 
and eventually stabilizes; therefore, CO2 should not be supplied during night. 

Temperature is the most important growth-influencing factor after light intensity (Huesemann et al., 
2016). The optimal temperature range is approximately 20 − 26℃. Many species can easily tolerate 
temperatures up to 15℃ lower than their optimal, but exceeding the optimum temperature by only 2 −
4℃ may result in substantial decrease of growth rate (Moheimani, 2005; Bernard & Remond, 2012). 

2.2. Light 
Photosynthetic active radiation (PAR) is the spectral range (wavelength) of solar radiation (visible light) 
between 400-700 nm (Thomas, 1994). Photosynthetic organisms uses those wavelengths while 
transforming it into chemical energy uses for growth. The growth rate is determined by both light 

intensity (Barber & Andersson, 1992), commonly described as PAR (in mol photons/m2/s), and light 
quality (i.e., wavelength) (Antoine D & Morel, 1996). The dependence of growth at light intensity is 
known as photoinhibition and shown in Figure 1; increase of growth rate at low light intensity, and 
decrease after reaching a maximum at high intensity (Kok, 1956). 

 

Figure 1 - Qualitative behavior of growth rate caused by photoinhibition. Above certain value of light 
intensity, a further increase in light level recuces the biomass growth rate (Kok, 1956).  

The optimal light intensity should change in corresponding to the microalgae density in the suspension 
(Yuki et al., 2014) since as the density increases, mutual shading occurs (between the cells) and as a 
result, the interaction of light with part of the cells is low (Chen et al., 2011).  
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Photosynthetic organisms has unique preferences regarding the range of wavelength causing high 
growth rate (Lee, 1999). Wavelengths higher than 700 nm do not contain enough energy to initiate the 
photosynthetic process. On the other hand, wavelength lower than 400 nm may harm the cellular 
systems (protein/DNA) (Strid et al., 1994). 

2.3. Interaction between light and an object 
Photon flux is defined as the number of photons striking a unit area per time as follows (Van der Meer, 
2004): 

 𝐼 =
𝜇𝑚𝑜𝑙 𝑝ℎ𝑜𝑡𝑜𝑛𝑠

𝑚2∙𝑠𝑒𝑐𝑜𝑛𝑑
 (1) 

When an object is irradiated by light, the incident photon flux is split due to the interaction of light with 
the object: (i) part of the radiation is reflected, (ii) the object absorbs some of the radiation, and (iii) the 
rest is transmitted through the object. The amount of the absorbed radiation is what affects the 
photosynthesis process. The radiation flux upholds the conservation of energy rule, as follows. 

 Iin = IR + IA + Iout (2) 

Where Iin is the total flux hits the object, Ir is the flux reflected by the object, Ia is the flux absorbed by 
the object and Iout is the flux transmitted though the object. 

Since photon flux does not include information on their energy, the wavelength (λ) of the photons 
(determining their energy) must be specified. 

2.3.1. Absorption 
Absorption radiation is the radiation that stays in the object. The absorption radiation is usually 
transformed to another kind of energy, usually heat. Each substance is responsible for absorption at a 
different wavelength. 

2.3.2. Reflection 
Reflection is defined as the ratio between the intensities of incident radiation (𝐼𝑖𝑛) and the reflected 
radiation (I𝑅), as follows: 

 𝑅𝜆 =
𝐼𝑅

𝐼𝑖𝑛
 (3) 

The chemical characteristics and the micro topographical surface of the object influence that ratio, as 
well as the incident angle of the light source. 

2.3.3. Transmission 
Transmission is defined as the amount of light radiation that goes through an object. The transmittance 
of an object is determined by its physical and chemical characteristics. 

2.4. Microalgal optical properties 
The optical properties of algae in suspension are derived from the pigmented cells, which are minute 
absorbing and scattering bodies (Bricaud & Morel, 1986). The absorption and scattering properties 
depend on the wavelength of a beam crossing a layer of suspension. The attenuation is defined as the 
sum of absorption and scattering. An additional but negligible property of the medium is the 
backscattering, which reflects the light scattered back to the light source direction (Bricaud & Morel, 
1986).  

The particular structure (shape, depth and width) in which absorbing species is contained and the 
chemical structure of it material effects the amount of energy absorbed by the body (Pottier et al., 
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2005). Thus, absorption features can be directly related to the chemistry and structure of the cell. The 
absorption depth is an indicator for the amount of the material causing the absorption in a sample. 
Furthermore, the absorption depth is related to the particle’s size. A larger cell has a greater internal 
path where photons may be absorbed according to Beer’s Law (Beer, 1852). In smaller cells there are 
proportionally more surface reflections compared to the internal photon path lengths. 

Chlorophyll is the main photosynthetic pigment in green algae and it is often used to quantify the 
microalgal biomass in a suspension (Bricaud & Morel, 1986). The specific absorbance of the pure 
pigments (e.g., chlorophyll a, chlorophyll b & carotenoid) is determined using a spectrophotometer, by 
transmitting light at different wavelengths through the solution, which absorbed differently by the 
pigments (Harold, 1942). Despite this, the spectrum of the light absorbed by the specific pigments does 
not completely describe the actual light absorption in a suspension, due to the protein-binding within 
the cells (Bidigare et al., 1990). Since the pigments are packed inside the cell (the "packing effect"), 
enhanced mutual shading of the pigment molecules accrues, which alters the absorption spectra as 
follows: (a) the peaks of the pigments are wavelength-shifted (Bidigare et al., 1989) and (b) the 
spectrum is flatten and lower, comparing to that obtained from extracted cells in solution (see Figure 2). 
The overall efficiency of light absorption is lowered since the layout of the packed pigments inside the 
cells decrease the probability that the light passes through the suspension would strike a cell (Duysens, 
1956). 

  

Figure 2 – Absorption spectrum of Chlorophyll a for (i) extracted cells in solution and (ii) packed cells in 
suspensiton. The latter was calculated by Bidigare et al., 1990, according to Duysens' principles (Duysens, 
1956); similar calculations were done for chlorophyll b and carotenoid (Bidigare et al., 1990). Red (646-
670 nm) and blue (440-464 nm) columns specify the ranges of wavelength supplied by the LEDs panel in 
our system.  
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3. Research methods 

3.1. Overview 
The main components of the system are presented in section 3.23.2, the assumptions are presented in 
section 3.33.3, the consensus methods, which serves as a basis for present development, are presented 
section 3.43.4, the calibration methodology in section 3.53.5, the system flow in section 3.63.6 and the 
acquisition and processing methods in section 3.73.7. The growth parameters are introduced in 
and used by the controlling algorithm described in section 3.93.9. Methods for statistical and stochastic 
models are described in section 3.103.10. The performance measures for the algorithm and models are 
presented in section 3.113.11.  

3.2. System components 
A custom-made photo-bioreactor was coupled to an acquisition and control system (see Appendix B – 
System hardware specification) and setup to illuminate an algal culture, controlling light quality and 
intensity, temperature and pH in a 20.0 L experimental culture vessel.  

3.2.1. Arduino 
The system is monitored and controlled by an Arduino Mega 2560 microprocessor, an open-source 
microcontroller board containing 54 digital I/O pins and 16 analog I/O portsinputs. 

3.2.2. LEDs 
Light is supplied by a LEDs array composed of 72 Red (λ = 665 nm) and 12 blue (λ = 452 nm) LEDs. The 
colored lights are controlled by separate dimmable constant current power supplies using voltage 
supplied by the Arduino board in a range of 0-255 Pulse Width Modulation (PWM) equivalent to DIM 
voltage of 0-5 V. In order to supply adequate light intensity to the microalgae culture, the light intensity 
received on the PBR surface has to be modeled as a function of PWM. 

3.2.3. Sensors: Light 
The light sensors have different sensitivity to light color and were installed with different number of 
neutral density filters (to protect from excess light). Therefore, the measured light in Hz has to be 
properly processed. Moreover, since the light sensors reports light intensity in Hz (while the standard 

units are expressed in mol photons/m2/s), units’ conversion must be applied online. 

3.2.4. Sensor: pH 
The pH level in the culture is monitored and continuously balanced by suppling CO2. A valve, controlled 
by the Arduino, allows opening and closing of the CO2 supply in real time. 

3.2.5. Sensor: Temperature 
The temperature is continuously monitored and uses for calibrating the pH sensor. The temperature is 
controlled by an external air conditioner set to 25°C. 

3.2.6. Biological materials 
- Algae 

A sweet water green alga (Chlorophyta) Chromochloris (or Chlorella) zofingiensis was used, which 
has been reported to turn orange or red upon stress. 

- Growth conditions (medium components and environmental conditions) 
The growth medium is composed of (mM): NaNO3, 5.0; KH2PO4, 0.7; K2HPO4*3H2O, 0.7; Na2CO3, 
0.19; MgSO4*7H2O, 0.27; CaCl2*2H2O, 0.24; FeSO4*7H2O, 0.036; Na2-EDTA*2H2O, 0.047; H3BO3, 
0.0463; MnCl2*4H2O, 0.00915; ZnSO4*7H2O, 0.00077; Na2MoO4 *2H2O, 0.00161; CuSO4*5H2O, 
0.00032; Co(NO3)2 *6 H2O, 0.00017. 
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Temperature around 25 °C, pH around neutral, mix of blue and red lights from LEDs with adjustable 
balance and specific intensities (per biomass). The culture in the 20.0 L experimental culture vessel 
(4 cm width) was mixed by bubbling air (with or without CO2) at rate of 0.3 vol gas/vol 
culture/minute.  

3.3. Assumptions 
- The total intensity for the incident or exiting light composed of multiple colors is the arithmetic sum 

of its components, as reflected by the sensors measurements. 
- The fraction of the absorbed light is independent of the incident light intensity. 
- The algal pigments absorb each light color differently. 
- Light attenuated by the culture is the combination of the sum of absorbance by packed pigments 

and scattering by cells. 
- The calibration procedure provide results independent of the variation of the LEDs intensity through 

time. 
- Biomass of particles other than algae are neglected. 

3.4. Working Hypothesis  
The Beer-Lambert law was used to estimate the microalgal concentration based on the light intensity 
(LI) measured before (incident) and after (exiting) the photo-bioreactor (PBR), see illustration in Figure 
3Figure 3. As a global working hypothesis for modeling purposes, the assumption is that the 
the sensors represent the sum of intensities of red and blue lights. Moreover, the postulate that light 
absorption is independent of the incident light intensity has been verified; while this is valid at any given 
wavelength, this is not completely valid for a combination of colors. 

 

Figure 3 - Left panel: Side view for light behavior inside the photo-bioreactor. LI: Light intensity. The red 
and blue curves indicate local LI as a function of the position in the PBR. Right panel:  <L> (i.e., the area 
under the curve) represents the light intensity available to the suspension integrated over the PBR width. 

Similarly, light attenuation in the culture will be modelled as the combination of the sum of absorbance 
by packed pigments and scattering by cells, for each color (see Appendix A – Decomposition of light 
attenuation). The treatment for each color is required since the pigments absorb the corresponding 
photons differently. 
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LI out  - 

LI in  - 

LI out  - 

LEDs 
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Finally, photosynthetic activity is determined by the rate of photons absorption. A well-known feature of 
the photosynthetic system is that after a photon has been absorbed, the resultant photosynthetic 
activity, directly dependent on the number of photons absorbed, is largely independent of the absorbed 
photon’s energy, i.e., wavelength. 

Light transmission in solution is defined as (Marcuse, 1972): 

 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =
𝑃𝐴𝑅𝑜𝑢𝑡(𝜆)

𝑃𝐴𝑅𝑖𝑛(𝜆)
 (4) 

where 𝑃𝐴𝑅𝑖𝑛(𝜆) and 𝑃𝐴𝑅𝑜𝑢𝑡(𝜆) are the light intensities (as photons flux, expressed in mol 
photons/m2/s) incident and exiting the containing vessel, respectively. In other words, 𝑃𝐴𝑅𝑖𝑛(𝜆) 
considered as the incident light intensity on the vessel surface and 𝑃𝐴𝑅 𝑜𝑢𝑡(𝜆) as the light intensity 
after it passes through the solution. 

Light absorbance at any wavelength , is defined as (Beer, 1852): 

 𝐴𝑏𝑠(𝜆) =  − 𝑙𝑜𝑔10(𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛) = − 𝑙𝑜𝑔 (
𝑃𝐴𝑅𝑜𝑢𝑡(𝜆)

𝑃𝐴𝑅𝑖𝑛(𝜆)
) (5) 

Beer-Lambert law showing the relationship between absorbance and concentration of an absorbing 
species in solution (Beer, 1852): 

 − 𝑙𝑜𝑔10 (
𝑃𝐴𝑅𝑜𝑢𝑡(𝜆)

𝑃𝐴𝑅𝑖𝑛(𝜆)
) =  𝜀(𝜆) ∙ 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 ∙ 𝑤𝑖𝑑𝑡ℎ (6) 

 is defined as the wavelength-dependent effective absorption coefficient, determined empirically for 
a given absorbing molecular species; width, optical path length for light absorption (in solution), could 
simply refer to the width of the vessel; Concentration, the algal concentration estimate based on the 
light absorption by the microalgal packed pigments. 

Alternatively, 

 
𝑃𝐴𝑅𝑜𝑢𝑡(𝜆)

𝑃𝐴𝑅𝑖𝑛(𝜆)
=  10−𝜀(𝜆)∙𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 ∙𝑤𝑖𝑑𝑡ℎ (7) 

Isolating Concentration (independent of 𝜆) results in 

 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =  
− 𝑙𝑜𝑔10(

𝑃𝐴𝑅𝑜𝑢𝑡(𝜆)

𝑃𝐴𝑅𝑖𝑛(𝜆)
)

𝜀(𝜆)∙𝑤𝑖𝑑𝑡ℎ
 (8) 

Since each light color is absorbed differently by the algae (and by the photo-bioreactor), both the light 
intensities (𝑃𝐴𝑅𝑜𝑢𝑡(𝜆), 𝑃𝐴𝑅𝑖𝑛(𝜆)) and the effective absorption coefficient (𝜀(𝜆)) should be 
arithmetically disassembled into red and blue components according to their respective intensities. 

3.5. Calibration 
The photo-bioreactor itself (its plastic components and the bubbling liquid medium) also contributes to 
apparent light absorption. In the special case where no algae exist in the photo-bioreactor (blank), the 
incident and outcoming light intensities are defined as 𝑃𝐴𝑅𝑖𝑛𝑏𝑙𝑎𝑛𝑘(𝜆) and 𝑃𝐴𝑅𝑜𝑢𝑡𝑏𝑙𝑎𝑛𝑘(𝜆), 
respectively. 

The total light absorbed by the system is defined as follows  

 𝐴𝑏𝑠𝑇𝑜𝑡𝑎𝑙(𝜆) =  𝐴𝑏𝑠𝐴𝑙𝑔𝑎𝑒(𝜆) + 𝐴𝑏𝑠𝑏𝑙𝑎𝑛𝑘(𝜆) = − 𝑙𝑜𝑔10 (
𝑃𝐴𝑅𝑜𝑢𝑡(𝜆)

𝑃𝐴𝑅𝑖𝑛(𝜆)
) − 𝑙𝑜𝑔10 (

𝑃𝐴𝑅𝑜𝑢𝑡𝑏𝑙𝑎𝑛𝑘(𝜆) 

𝑃𝐴𝑅𝑖𝑛𝑏𝑙𝑎𝑛𝑘(𝜆) 
) (9) 
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where 𝐴𝑏𝑠𝑡𝑜𝑡𝑎𝑙(𝜆) is the absorption by both the algae and the PBR components (blank). We can define 

the term − log10 (
𝑃𝐴𝑅𝑜𝑢𝑡𝑏𝑙𝑎𝑛𝑘(𝜆) 

𝑃𝐴𝑅𝑖𝑛𝑏𝑙𝑎𝑛𝑘(𝜆) 
) as PBR(λ), a constant correction to apply to the measured 

𝐴𝑏𝑠𝑇𝑜𝑡𝑎𝑙(𝜆) to obtain  

 𝐴𝑏𝑠𝐴𝑙𝑔𝑎𝑒(𝜆) = 𝐴𝑏𝑠𝑇𝑜𝑡𝑎𝑙(𝜆) − 𝑃𝐵𝑅(𝜆) (10) 

Therefore, the numerator in Right hand side of equation (8) should be updated as follows: 

 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =  
−𝑙𝑜𝑔10(

𝑃𝐴𝑅𝑜𝑢𝑡(𝜆)

𝑃𝐴𝑅𝑖𝑛(𝜆)
∙

𝑃𝐴𝑅𝑖𝑛𝑏𝑙𝑎𝑛𝑘(𝜆)

𝑃𝐴𝑅𝑜𝑢𝑡𝑏𝑙𝑎𝑛𝑘(𝜆)
)

𝜀(𝜆)∙𝑤𝑖𝑑𝑡ℎ
=

𝐴𝑏𝑠𝑇𝑜𝑡𝑎𝑙(𝜆)−𝑃𝐵𝑅(𝜆)

𝜀(𝜆)∙𝑤𝑖𝑑𝑡ℎ
 (11) 

The constant 𝑃𝐵𝑅(𝜆) for each light color (λ) is therefore estimated through a separate calibration 
process conducted in the absence of algae (bubbling medium only in the container). 

In addition, the local light measured by the sensors is determined in Hz units. Since the convention unit 

for photosynthetically active radiation (PAR) is mol photons/m2/s, the calibration procedure is 
extended to formulate the transformation functions from local light intensity in Hz measured by the 
sensor, to average light intensity as PAR measured by an independent light sensor (LI-COR LI-190R 
Quantum Sensor).  

3.6. System flow 
In the developed system1, sensors readings go through online preliminary processing (e.g., temperature 
measurement to fine-tune that of the pH, unit conversion, counting light pulses over time and compute 
Hz). Error-handling routines were implemented to avoid collecting aberrant data such as nulls or 
negative numbers. Furthermore, raw measurements of (continuous) light intensity are constantly 
aggregated into sums and averaged over 5 feasible samples in order to reduce noise and prevent data 
overload. For the latter reason, each sensor is sampled at independent time intervals, which are stored 
as variables and can be adjusted by the user. 

Having the sensors readings available in the program in real-time as variables enables further online 
processing of the data measured and gathered (as discussed in section 3.2.33.2.3).  

The algorithm steps for controlling the growth conditions and the estimation of the microalgal 
concentration are made in real-time and serve as an automatic control feedback to the system (see 
Figure 4), adapting its outputs (light intensity, light color, and pH level) accordingly. For that, the 
developed equations for each step of the algorithm and the deterministic model (see section 3.93.9) 
validated, deployed on the system in C/C++ and used in real time. 

3.7. Data acquisition and processing 
The system collects raw data from the sensors (Light in, Light out, temperature, pH; See Appendix B – 
System hardware specification). The data are continuously  gathered,  processed and summarized as 
results report, presented to the user through the control panel, and saved to a text file. 

  

                                                      

 

 

1 https://github.com/EladDan/ControlSystem/blob/master/ControlSystemR28.ino 
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3.7.1. Acquired data  
 Illumination mode (function: Cmd_SetIllumination). 

 Date and time (function: Cmd_SetTimeDate). 

 Voltage levels (red and blue) currently supplied to the LEDs panel (function: PowerLEDs). 

 Sensors readings (in Hz) at the incident and exiting faces of the photo-bioreactor (lines: 674-760). 

 Temperature inside the photo-bioreactor (function: ReadTemp). 

 pH level in the extra-cellular culture medium (function: ReadPH). 

3.7.2. Data processing 
 Conversion of sensors readings (in Hz) into PAR (in mol photons/m2/s) (lines: 514-515, 2830-

2831). 

 Red and blue light as PAR available for absorption to the algal cells in the culture (function: 
L_availCalc). 

 Estimated concentration based on independent measurement of red and blue light absorption at 
moderate intensity, at fixed periods (function: ConCalc). 

 Calculated growth rate between consecutive periods (lines: 920). 

3.7.3. Report 
 Periodically update the user interface panel (acquired and processed data) (function: 

UpdateIndicatorsFunction). 

 Add comments annotating user's initiated interventions (function: PrintCSV).  

 Save the above in a file for further offline processing (function: PrintCSV). 

 

 

Figure 4 - Conceptual flow chart for the Arduino sketch (code) driving the algal culture in the 
photo-bioreactor. 

3.8. Growth parameters 
The use of a control system over a closed photo-bioreactor enables monitoring the culture conditions. 
Culture parameters are acquired continuously to serve as inputs for possible multivariate analysis. Our 

modeling aim is to maximize the microalgal growth rate   (=
∆ log10(𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛)

∆ 𝑡𝑖𝑚𝑒
, assuming 

exponential growth).  
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The parameters presented in Table 1Table 1 were chosen with the aim to assess and control the culture 
environmental conditions (see section 4.34.3). Given the systems inputs and outputs, those parameters 
the potential to likely effect the growth rate; in simple words, they allow an adequate control of the 
light quality, diel light intensity and pH level as a proxy to CO2 level. 

Table 1 - Parameters formulated to control the culture's enviromental conditions 

Parameter General 
description 

Details Control 

Fraction Red: Relative 
contribution of red light  

Light quality 
Independent power supply to red 
and blue LEDs 

Auto 

Ratio of ambient light 
per biomass 

Light intensity 
Ratio <PAR>*/Concentration 

mol photons · L/m2/s/mg] 
Auto 

Illumination mode 
Distribution of 
light intensity 
during day 

Standard illumination modes: 
1. Continuous light 
2. Constant light-dark 
3. Sinusoid daylight 

Auto 

pH level (CO2 supply) 
Acidity level in 
the culture 

Target for average pH Auto 

* Total light available for absorption by the culture along the width of the photo-bioreactor 

3.9. Controlling growth conditions 
The algorithm flow (see Figure 5) was conceptually separated into two fundamental parts.  

The first part is responsible mainly for measuring the lights intensities, estimating the algae 
concentration and determining the amount of each colored light that should be supplied to the algae, 
and finally supplying it, according to the illumination mode, by controlling the LEDs panel.  

The second part consists of continuous measurement of pH and temperature. The pH of the suspension 
spontaneously decreases with CO2 consumption. Since the latter increases during active photosynthesis, 
CO2 must be supplied accordingly to balance the acidity level in the suspension. An instantaneous target 
value for the pH is determined, considering the current light intensity and biomass concentration 
(intense light and high biomass content necessitates increased CO2 supply). Since the light intensity is 
already adjusted to the biomass concentration, the target pH value is determined solely according to 
light intensity. 

The two parts are connected through the target pH level, which is determined based on the light 
supplied. 
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Figure 5 - The algorithm flow. * represents a tentative start point.  

3.10. Predictive models 
Two models were developed:  

1. Deterministic model for concentration estimation (Section 4.2.14.2.1). The Beer-Lambert law was 
extended to include the contribution of scattered light that modulates the optical path of light in 
the photo-bioreactor, thereby altering the odds for photon absorption, and thus microalgal 
growth. This deterministic approach differs from the currently used (e.g., Pottier et al., 2005) 
assertion which models light scattering as an additional agent for light absorption.  
The formulated model aims to predict the concentration level of each of the light-absorbing 
pigments in the culture, using the light sensors measurements as inputs.  

2. Stochastic model for photon-cell interaction (Section 4.2.24.2.2). The measured transmission is 
dependent on the concentration of the absorbing species (see equations {4, 8}). The transmission 
reflects also physical phenomena unrelated to absorption (e.g., scattering). In an effort to assess 
and correct the measured transmission, a stochastic model has been developed to predict the fate 
of light as it passes through a suspension. As a simplification, we considered a 1-dimensional 
problem, in which scattering (3-Dim) reduces to reflection (1-Dim). Thus, the model predicts the 
relative probabilities for absorption and reflection. 
2.  

Two approaches for assessment and validation were explored: 
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CalcPARimax) 
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rate (lines: 920) 
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1. Linear and Non-Linear Regression Model. Suitable transformations were applied as necessary to 
achieve Maximum Likelihood. For instance, log transform (Durbin et al., 2002), and Box-Cox 
power transformation (Box & Cox, 1964) was applied. 

2. Markov Chain. The Markov chain formalism was used to model the possible states of the 
incident light and it interactions with the culture cells along the photo-bioreactor. 

3.11. Performance measurement 
The performance of the models, algorithm, system (i.e., sensors readings) and, lab results and models 
arewas assessed as follows: 
- The deterministic model yields an equation predicting a value for biomass concentration (chlorophyll 

a). The latter is independently measured in the lab. The fit between predicted and measured values 
is evaluated using R squared indicator (𝑅2). 

 The stochastic model was evaluated using sensitivity analysis. The inputs of the model was explored 
and the results were tested to be rational and consistent. 

-   
- Validation of the algorithm was done using simulation. The deterministic model-based algorithm 

enables predicting a behavior for the culture (output) according to variable environmental 
conditions (inputs). Outputs are also simulated using an independent program (Matlab). The 
correctness of the output is evaluated for a range of inputs (sensors readings and user's target 
values). 

- The repeatability of the light sensors measurements and the lab results for the assessed algae 
biomass (i.e., Chlorophyll a concentration) is evaluated by five repetitions under similar conditions. 

3.12. Algorithm simulation 
A simulation2 was programmed in Matlab in order to test the controlling algorithm correctness. The 
simulation imitates growth by a decrease of the light measured by the exiting sensor. In each iteration 
throughout the simulation, the algorithm calculates the environmental conditions (e.g., total PAR, red 
PAR, blue PAR, Fraction Red). 

3.13. Statistical analysis 
The formulated models are evaluated using R squared indicator (𝑅2). 𝑅2 is commonly used as an 
indicator of how well observed outcomes fit the equation formulated in the model. Formally, 𝑅2 
indicates the proportion of the explained variance (out of the total variance) of the dependent variable 
that is predictable from the independent variables and is defined as follows: 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
 , 

where SSE is the sum of squares error (𝑒𝑟𝑟𝑜𝑟𝑖 = 𝑌𝑖 − 𝑌𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) and is defined as: 

𝑆𝑆𝐸 = ∑ (𝑌𝑖 − 𝑌𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2𝑛
𝑖=1 , 

and SST is the total sum of squares, which is proportional to the variance of the dependent variable, and 
is defined as: 

                                                      

 

 

2 https://github.com/EladDan/AlgorithmSimulation 
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𝑆𝑆𝑇 = ∑ (𝑌𝑖 − �̅�)2𝑛
𝑖=1 , 

where n denotes the number of observations and �̅� =
∑ 𝑌𝑖

𝑛
𝑖=1

𝑛
, is the average of observations. 
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4. Calibration, Models and Algorithm development 

4.1. Calibration 
The calibration procedure included: (a) a model for describing the local light intensity in Hz measured by 
the light sensors in the absence of algae (section 4.1.14.1.1) and (b) a model for describing the global 

intensity as PAR (in mol photons/m2/s) (section 4.1.24.1.2).  

Those procedures enable the prediction of both local Hz and global PAR measurements using the PWM. 

4.1.1. Calibration part 1 
A calibration script3 was programed to measure the local light intensities (in and out) at variable voltage. 
The voltage sent to the LEDs panel from the Arduino board as digital signal using Pulse Width 
Modulation (PWM) and ranges between 0 – 5 volt, is represented as 0 – 255 PWM.  

In the calibration script, the voltage sent to the LEDs panel ranges from 30 (no light) to 245 PWM, in 
steps of 5. Each set of colored LEDs (72 red and 12 blue accordingly) was powered separately. The light 
sensors measured the light intensities at the incident and outcoming faces, respectively, in Hz units. The 
period for a single measurement was set to 10 seconds. For noise reduction, any light intensity, received 
at each step, was measured three times and the average intensity reported to a text file in comma 
separated values (CSV) format. Three sets of measurements were performed. 

The following steps are done in order to model the local light intensities in Hz (measured by the light 
sensors) as function of PWM, with absence of algae. 

1. In order to minimize the number of functions modeling the light intensity (in Hz), the 
measurements of the local light sensors in Hz are normalize to the light intensity at 140 PWM 
(moderate light used as reference, as discussed in section 4.3.14.3.1). Therefore, the light 
of two colors and two sensors (four dependencies in total) is modeled as two functions (one per 
light color) and two scalars are used to distinguish the light sensor (in or out). It is assumed that 
the curves for the same light are similar up to a scalar (verified at section 5.2.15.2.1). 

2. The normalized light intensities are transformed using Box-Cox power transformation. 
3. The transformed light intensities are modeled using linear regression. 

4.1.2. Calibration part 2 
A second calibration was conducted in order to convert the local measurements in Hz received by the 

light sensors to global light intensity as PAR  (in mol photons/m2/s) at the incident and exiting surfaces 
of the PBR using an external and independent quantum sensor (LI-COR LI-190R Quantum Sensor). The 

measurements obtained from the latter represent PAR [mol photons/m2/s], a photon-based flux light 
intensity. 

The light intensities as PAR (in mol photons/m2/s) were measured manually in front of each of the LEDs 
combos (12 measurements total). Since this calibration was done manually, the voltage sent to the LEDs 
panel ranges from 40 (apparent light) to 240 PWM, in steps of 50 (i.e., 40, 90,140,190,240). This 
procedure was done for each color (120 measurements total). Each measurement took about 10 
seconds in order to achieve a statistically stable (noise-free) value. 

                                                      

 

 

3 https://github.com/EladDan/Calibration 
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The following steps were conducted: 

1. The measurements of all twelve LEDs combos were averaged. 
2. Same as in section 4.1.14.1.1, the (averaged) measurements values were normalized to the 

light intensity in PAR at 140 PWM. 
3. A model is built to predict the (averaged) normalized light intensities in PAR, using the 

normalized light intensities in Hz (see section 4.1.14.1.1). 

4.2. Empirical Models 
The Beer-Lambert equation is reformulated and extended in section 4.2.14.2.1, and its specific 
are estimated in section 5.35.3. Furthermore, a stochastic model (applying the Markov Chain formalism) 
considers the photons-cells interaction is developed in section 4.2.24.2.2. 

4.2.1. Deterministic model for predicting the concentration 
As explained in chapter 3.43.4, the concentration of absorbing pigments inside the photo-bioreactor is 
estimated using the formula in equation 11, resulting from the Beer-Lambert law. 

However, although the calculated concentration must be independent on the light color considered, 
the product of 𝜀(𝜆) ∙ 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 in equation 6, reflecting the specific absorptivity of the pigment 
and its concentration, strongly depends on the wavelength absorbed. These considerations provide a 
powerful means to assess the relative pigments composition. The product 𝜀(𝜆) ∙ 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 is 
modeled as the sum of contributions of the different pigments: 

 𝜀(𝜆) ∙ 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = ∑ (𝜀𝑖(𝜆) ∙ 𝐶𝑖)𝑖 , (12) 

where 𝜀i(𝜆) and Ci represent the specific absorptivity and the concentration of each pigment, 
respectively.   

Three major pigments absorb light in the red and/or blue ranges: chlorophyll a, chlorophyll b, and 
carotenoids. The latter does not absorb red light. Therefore, the product 𝜀(𝜆) ∙ 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 is 
expressed as: 

 ∑ (𝜀𝑖(𝜆). 𝐶𝑖)𝑖 = 𝜀𝑎(𝜆) ∙ 𝐶𝑎 + 𝜀𝑏(𝜆) ∙ 𝐶𝑏 + 𝜀𝑐(𝜆) ∙ 𝐶𝑐 , (13) 

in which the indices a, b and c stand for chlorophyll a, chlorophyll b and carotenoids, respectively. 

Although the absorption properties of the pigments in solution are known, their existence in a packed 
state within cells in suspension, results in substantial deformation of their respective absorbance 
spectra (Duysens, 1956). Namely, since the pigments are packed inside the cell, the "packing effect" 
results in (i) flattening of pigments absorption spectra and (ii) wavelength red shift for their peaks. Thus, 
𝜀i(𝜆) was estimated empirically according to Duysens principles (Bidigare et al., 1990). Specifically, for 
each light color 𝜆 and pigment i, 𝜀i(𝜆) is calculated as the average over the range of wavelengths of the 
red and blue LEDs used in our system, as given by equation 14. 

 𝜀𝑖(𝜆) =
∑ 𝜀𝑖(𝜆)𝜆𝑚𝑎𝑥

𝜆=𝜆𝑚𝑖𝑛

𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛
 , (14) 

where 𝜆𝑚𝑖𝑛 and 𝜆𝑚𝑎𝑥 are the wavelengths around the peak enclosing 2/3 of each LED emission 
spectrum.  

Moreover, the presence of particles in suspension (rather than solution) leads to scattering of light, 
which may result in considerably altering the effective optical path of the light in the photo-bioreactor, 
and hence the probability for light absorption. The latter phenomenon depends on the particles size, 
shape, and density (Duysens, 1956).  
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Thereby, OP is defined as the effective optical path length for light absorbance in suspension. OP is 
composed of the photo-bioreactor width and the effect of light scattering. We thereby postulate OP to 
be proportional to concentration. That is, the photo-bioreactor width is multiplied by a wavelength-
dependent coefficient (𝐾(𝜆)) reflecting opto-geometrical properties of the particles and their density 
(𝐶𝑑) in a suspension.  

 𝑂𝑃 = 𝐾(𝜆) ∙ 𝐶𝑑 ∙ 𝑤𝑖𝑑𝑡ℎ, (15) 

in which 𝐶𝑑, 𝐾(𝜆) and 𝑤𝑖𝑑𝑡ℎ stands for cell density, effective dependency of the optical path at the 
particles shape and size, and the actual photo-bioreactor width, respectively. The product 𝐾(𝜆) ∙ 𝐶𝑑 
represents the ratio between OP, the effective optical path in suspension (altered by scattering) to 
width, which is the optical path length in solution.   

Equations 13 and 15 yields a more detailed form for attenuation than stated in equation 6, describing 
absorption by a pigment in solution: 

 − 𝑙𝑜𝑔10 (
𝑃𝐴𝑅 𝑜𝑢𝑡(𝜆)

𝑃𝐴𝑅 𝑖𝑛(𝜆)
) = (𝜀𝑎(𝜆) ∙ 𝐶𝑎 + 𝜀𝑏(𝜆) ∙ 𝐶𝑏 + 𝜀𝑐(𝜆) ∙ 𝐶𝑐) ∙ 𝐾(𝜆) ∙ 𝐶𝑑 ∙ 𝑤𝑖𝑑𝑡ℎ.  (16) 

Alternatively, using relative concentrations to 𝐶𝑎 (𝐶𝑥
∗ =

𝐶𝑥

𝐶𝑎
), namely 𝐶𝑏

∗, 𝐶𝑐
∗ and 𝐶𝑑

∗, we get 

 − 𝑙𝑜𝑔10 (
𝑃𝐴𝑅 𝑜𝑢𝑡(𝜆)

𝑃𝐴𝑅 𝑖𝑛(𝜆)
) = (𝜀𝑎(𝜆) + 𝜀𝑏(𝜆) ∙ 𝐶𝑏

∗ + 𝜀𝑐(𝜆) ∙ 𝐶𝑐
∗) ∙ 𝐾(𝜆) ∙ 𝐶𝑑

∗ ∙ 𝑤𝑖𝑑𝑡ℎ ∙ 𝐶𝑎
2. (17) 

Note that equation 17 includes parameters independent of concentration (𝜀a(𝜆) + 𝜀𝑏(𝜆). 𝐶𝑏
∗ +

𝜀𝑐(𝜆). 𝐶𝑐
∗) ∙ 𝐾(𝜆) ∙ 𝐶𝑑

∗ ∙ 𝑤𝑖𝑑𝑡ℎ, and reveals a squared dependence on the concentration of the main 
pigment (𝐶𝑎), in which the cell density (𝐶𝑑, or dry weight) is assumed to be proportional to the 
concentration of the main pigment (Ca) in the suspension.  

For simplification in the subsequent equations, a combined parameter reflecting a specific attenuance 
coefficient (SAC(𝜆)) is introduced, including both absorbance and scattering on a chlorophyll a (𝐶𝑎) 
basis. 

 𝑆𝐴𝐶(𝜆) = (𝜀𝑎(𝜆) + 𝜀𝑏(𝜆) ∙ 𝐶𝑏
∗ + 𝜀𝑐(𝜆) ∙ 𝐶𝑐

∗) ∙  𝐾(𝜆) ∙ 𝐶𝑑
∗. (18)  

The concentrations Ci are independently measured in the laboratory after pigment extraction 
(Lichtenthaler & Buschmann, 2001). In the following development, these values will be regarded as 
observations. On the other hand, the corresponding values calculated in the Arduino sketch will be 
considered as predictions. 

The specific absorption coefficients for packed pigments are used as previously assessed (Bidigare et al., 
1990) and further validated (Pottier et al., 2005).  

Finally, the parameter 𝐾(𝜆) could be calculated by resolving system of multiple equations {11, 13} 
obtained for each color, in which many variables are known (calculated in the Arduino sketch or 
measured in the lab), yielding also the pigments and cells density. Alternatively, it can be solved 
empirically using the respective observations measured at laboratory (Chlorophyll a concentration) and 
by the system (light transmission). 

To conclude, the inputs for the model described in equation 19 (equation 11 updated by equation 18) 
are the parameters detailed above and the updated incident and exiting lights, estimated using the light 
sensors. The result (output) is the concentration (in mg/L) for the main pigment, Chlorophyll a. The 
concentration for the other pigments (i.e., Chlorophyll b and Carotenoid) is achieved by multiplying each 
of their relative concentrations (𝑖. 𝑒. , 𝐶𝑥𝑖

∗ ) by the Chlorophyll a concentration. 
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 𝐶𝑎 =  √
− 𝑙𝑜𝑔10(

𝑃𝐴𝑅 𝑜𝑢𝑡(𝜆)

𝑃𝐴𝑅 𝑖𝑛(𝜆)
∙

𝑃𝐴𝑅 𝑖𝑛𝑏𝑙𝑎𝑛𝑘(𝜆)

𝑃𝐴𝑅 𝑜𝑢𝑡𝑏𝑙𝑎𝑛𝑘(𝜆)
)

𝑆𝐴𝐶(𝜆)∙𝑤𝑖𝑑𝑡ℎ
= √

𝐴𝑏𝑠𝑇𝑜𝑡𝑎𝑙(𝜆)−𝑃𝐵𝑅(𝜆)

𝑆𝐴𝐶(𝜆)∙𝑤𝑖𝑑𝑡ℎ
. (19) 

4.2.2. Stochastic model for photon-cell interaction 
The concentration prediction model, developed in section 4.2.14.2.1, is based on measured 
However, the causality is that the transmission is partially determined by the concentration. Therefore, 
this chapter is dedicated to formulate a stochastic model that describes the transmission as function of 
the concentration.  

The result of this model is the probability for an incident light to (a) reflect out of the PBR, (b) absorb 
inside the cells, or (c) exit the PBR (transmitted). 

The suspension is modeled in a single dimension. Accordingly, cells are grouped into layers (which are 
reflecting and absorbing elements) that align in a 1D array along the width of the PBR (see Figure 6).  

 

Figure 6 - Schematic modelling of lighten suspension: cells are modeled as N (=4) layers which interact 
with the incident light. Light states (Fi, Ri and Ai) are defined in Table 2. 

Cells in suspension are modeled as cubes. Each cubic cell is projected upon the PBR area, such that they 
form N layers. The number of layers, which is proportional to the biomass concentration, is defined as 
follows: 

 𝑁 = ⌈𝑐𝑒𝑙𝑙 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ∙ 𝑤𝑖𝑑𝑡ℎ ∙ 𝑐𝑒𝑙𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦⌉ .  (20) 

Incoming photons, traveling along the PBR width, encounter an algal element i. The incoming photons, 
represented by a flux Iin, may either  

1. be reflected (scattered) with probability r, such that IR = r Iin; 

2. be absorbed by the pigments in element i, with probability a such that IA = (1 - r) a Iin, or 
3. pass through the element with probability t, such that Iout = (1 - r)(1- a) Iin ==> (1- r - a + a r) Iin.  

The energy conservation relation Iin = IR + IA + Iout is thereby validated. 

Thus, for element i, a fraction r of the incident light from a neighboring element (i-1 or i+1) will be 
reflected; a fraction (1 - r) a will be absorbed in element i, while the non-reflected and non-absorbed 

fraction (1 - r)1- a)  will pass through. Note that the process is bi-directional. 

The inputs for the model are therefore the elementary probabilities for reflection (r) and absorption (a). 
The probability a depends on the inner cell properties and is defined based on Beer-Lambert law, 
assuming PARin is the light that was not reflected. The inner absorption by a cubic cell is defined as: 
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 𝐴𝑏𝑠 = −𝑙𝑜𝑔10 (
𝑃𝐴𝑅𝑜𝑢𝑡

𝑃𝐴𝑅𝑖𝑛
) = (𝜀𝑎(𝑟𝑒𝑑) + 𝜀𝑏(𝑟𝑒𝑑) ∙ 𝐶𝑏

∗ + 𝜀𝑐(𝑟𝑒𝑑) ∙ 𝐶𝑐
∗) ∙ 𝐶ℎ𝑙𝑎𝑖𝑛 ∙ 𝑐𝑒𝑙𝑙_𝑑𝑖𝑚_𝑐𝑢𝑏𝑒 ,  (21) 

where 𝐶ℎ𝑙𝑎𝑖𝑛  is the intracellular Chlorophyll a concentration in mg/cm3 and cell_dim_cube is the 

dimension of cell width equivalent for a cube. Applying 10−(𝑥) on the above equation yields: 

 
𝑃𝐴𝑅𝑜𝑢𝑡

𝑃𝐴𝑅𝑖𝑛
= 10−(𝜀𝑎(𝑟𝑒𝑑)+𝜀𝑏(𝑟𝑒𝑑)∙𝐶𝑏

∗+𝜀𝑐(𝑟𝑒𝑑)∙𝐶𝑐
∗)∙𝐶ℎ𝑙𝑎𝑖𝑛∙𝑐𝑒𝑙𝑙_𝑑𝑖𝑚_𝑐𝑢𝑏𝑒 ,  (22) 

which could be referred to as the probability for an entering beam, PARin, to go through the cell. 
Therefore, the (complementary) elementary probability for absorption by a "cubic" cell (corresponding 
also for layer of cells) is defined as: 

 𝑎 = 1 −
𝑃𝐴𝑅𝑜𝑢𝑡

𝑃𝐴𝑅𝑖𝑛
= 1 − 10−(𝜀𝑎(𝑟𝑒𝑑)+𝜀𝑏(𝑟𝑒𝑑)∙𝐶𝑏

∗+𝜀𝑐(𝜆)∙𝐶𝑐
∗)∙𝐶ℎ𝑙𝑎𝑖𝑛∙𝑐𝑒𝑙𝑙_𝑑𝑖𝑚_𝑐𝑢𝑏𝑒  (23) 

Three formal states for photons are defined, in relation to each element i. The state space comprise 
three groups:  (1) Fi: photons moving in the forward direction from element i-1 to element i, (2) Ri: 
photons moving in the backward direction, from element i+1 to element i, and (3) Ai: photons absorbed 
in element i. 

Two sub-models for photon-cell interaction are examined: 

1. The case of an integer number of N complete layers (sub-model 1). 
2. An extended model in which the cells are distributed on a large number of layers (Nmax) 

containing holes (sub-model 2). In this case, the probability for photon-cell encounter is defined 
as: 

 𝑝𝑒𝑛𝑐 = [𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛]/𝑁𝑚𝑎𝑥  (24) 

The number of elements in sub-model 1 is N+2. For modeling purposes, elements with index i = 

[1,…,N] represent the layers, while indices i = 0 and N+1 represent the PBR borders in which incident 
light enter from the left side. For indexing purposes, Nmax replaces N in sub-model 2. 

We shall use the Markov Chain formalism to describe the possible transitions from one state to another. 
For that purpose, we build a 2D square matrix consisting of the probabilities of transition from an initial 
state k in rows, to a final state l in columns; these probabilities will be denoted as pkl.  

The process starts in one of these states and moves stepwise from one state to another. If the chain is 
currently in state k, then it moves to state l at the next step with a probability denoted by pkl. 

Table 2 shows the possible states for a photon, which may be dynamic (photon is in motion – group 
states Fi or Ri) or static (photon is trapped – group state Ai). 

The transition probabilities to go from state 𝑘 = [1, … ,3𝑁 − 1] to state 𝑙 = [1, … ,3𝑁 − 1] are defined 
in Table 3. 
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Table 2 - Possible states for a photon 

Group state Size Matrix element index Description State Type 

Fi - Moving 
Forward 
i=[1,...,N] 

N k=[1,...,N] 
Beam is moving in positive 
direction from element i-1 to 
element i. 

Transient 

Ri - Moving 
Backward  
i=[1,...,N-1] 

N-1 k=[N+1,…,2N-1] 
Beam is moving in negative 
direction from element i+1 to 
element i. 

Transient 

Ai - Absorbed   
i=[0,...,N+1] 

N+2 k=[2N,…,3N+1] Beam is absorbed in element i.  Absorbing 

 

Table 3 – Transition probabilities to go from state k to state l; the probabilities rely on the elementary 
probabilities defined above.  

State Matrix element index Probabilities for sub-model 1 Probabilities for sub-model 2 

F1 𝑘 = 1 𝑝1,𝑙 = {

𝑡, 𝑖𝑓 𝑙 = 2
𝑟, 𝑖𝑓 𝑙 = 2𝑁

(1 − 𝑟)𝑎, 𝑖𝑓 𝑙 = 2𝑁 + 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑝1,𝑙 = {

(1 − 𝑝𝑒𝑛𝑐) + 𝑝𝑒𝑛𝑐 ∙ 𝑡, 𝑖𝑓 𝑙 = 2
𝑝𝑒𝑛𝑐 ∙ 𝑟, 𝑖𝑓 𝑙 = 2𝑁

𝑝𝑒𝑛𝑐 ∙ (1 − 𝑟)𝑎, 𝑖𝑓 𝑙 = 2𝑁 + 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Fi 𝑘 = [2, … , 𝑁 − 1] 𝑝𝑘,𝑙 = {

𝑡, 𝑖𝑓 𝑙 = 𝑘 + 1
𝑟, 𝑖𝑓 𝑙 = 𝑘 + 𝑁 − 1

(1 − 𝑟)𝑎, 𝑖𝑓 𝑙 = 𝑘 + 2𝑁
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑝𝑘,𝑙 = {

(1 − 𝑝𝑒𝑛𝑐) + 𝑝𝑒𝑛𝑐 ∙ 𝑡, 𝑖𝑓 𝑙 = 𝑘 + 1
𝑝𝑒𝑛𝑐 ∙ 𝑟, 𝑖𝑓 𝑙 = 𝑘 + 𝑁 − 1

𝑝𝑒𝑛𝑐 ∙ (1 − 𝑟)𝑎, 𝑖𝑓 𝑙 = 𝑘 + 2𝑁
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

FN 𝑘 = 𝑁 𝑝𝑁,𝑙 = {

𝑟, 𝑖𝑓 𝑙 = 2𝑁 − 1
(1 − 𝑟)𝑎, 𝑖𝑓 𝑙 = 3𝑁

𝑡, 𝑖𝑓 𝑙 = 3𝑁 + 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑝𝑁,𝑙 = {

𝑝𝑒𝑛𝑐 ∙ 𝑟, 𝑖𝑓 𝑙 = 2𝑁 − 1

𝑝𝑒𝑛𝑐 ∙ (1 − 𝑟)𝑎, 𝑖𝑓 𝑙 = 3𝑁
(1 − 𝑝𝑒𝑛𝑐) + 𝑝𝑒𝑛𝑐 ∙ 𝑡, 𝑖𝑓 𝑙 = 3𝑁 + 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

R1 𝑘 = 𝑁 + 1 𝑝𝑁+1,𝑙 = {

𝑟, 𝑖𝑓 𝑙 = 2
𝑡, 𝑖𝑓 𝑙 = 2𝑁

(1 − 𝑟)𝑎, 𝑖𝑓 𝑙 = 2𝑁 + 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑝𝑁+1,𝑙 = {

𝑝𝑒𝑛𝑐 ∙ 𝑟, 𝑖𝑓 𝑙 = 2
(1 − 𝑝𝑒𝑛𝑐) + 𝑝𝑒𝑛𝑐 ∙ 𝑡, 𝑖𝑓 𝑙 = 2𝑁

𝑝𝑒𝑛𝑐 ∙ (1 − 𝑟)𝑎, 𝑖𝑓 𝑙 = 2𝑁 + 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Ri 𝑘 = [𝑁 + 2, … ,2𝑁 − 1] 𝑝𝑘,𝑙 = {

𝑟, 𝑖𝑓 𝑙 = 𝑘 − 𝑁 + 1
𝑡, 𝑖𝑓 𝑙 = 𝑘 − 1

(1 − 𝑟)𝑎, 𝑖𝑓 𝑙 = 𝑘 − 𝑁
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑝𝑘,𝑙 = {

𝑝𝑒𝑛𝑐 ∙ 𝑟, 𝑖𝑓 𝑙 = 𝑘 − 𝑁 + 1

(1 − 𝑝𝑒𝑛𝑐) + 𝑝𝑒𝑛𝑐 ∙ 𝑡, 𝑖𝑓 𝑙 = 𝑘 − 1

𝑝𝑒𝑛𝑐 ∙ (1 − 𝑟)𝑎, 𝑖𝑓 𝑙 = 𝑘 − 𝑁
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Ai 𝑘 = [2𝑁, … ,3𝑁 + 1] 𝑝𝑘,𝑙 = {
1, 𝑖𝑓 𝑙 = 𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑝𝑘,𝑙 = {

1, 𝑖𝑓 𝑙 = 𝑘
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

The Markov Chain (see Figure 7) is defined based on Table 2 (states space) and Table 3 (transition 
probabilities). 
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Figure 7 - The Markov Chain for sub-model 1. 
a* denotes (1-r)a; example for N=4 

The transitions matrix T (sized 3N+1 × 3N+1) is built based on the transition probabilities in Table 3. 
Figure 8 shows the transitions matrix T for N, the number of full layers, equals five. 

 

Figure 8 - Schema for the transition probabilities matrix T. Example for T matrix when N = 5. 

Each matrix element (𝑇𝑘,𝑙) is the probability to transit from an initial state k (in rows) to reach a final 

state l (in columns), in a single step. Since we model the states of photons, which travel at the speed of 
light, a large number of such transits can be accomplished rapidly, eventually reaching a steady state. In 
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addition, the probabilities for transient states vanish after a high number of steps (Grinstead & Snell, 
2012). 

The transition probabilities matrix, T, should stabilize (steady state probabilities) after a large number of 
iterations, where each iteration is the multiplication of the transition matrix by itself (raising the matrix 
to power 2). 

Therefore, 𝝅 is defined as the steady-state matrix (size 3N+1 × 3N+1) where each element (𝝅𝑘,𝑙) is the 

probability to eventually absorb in state l, given we started in state k. Since states k,l = [1,…,2N-1] are 
transients, they should be zeroed, meaning 𝝅𝑘,𝑙 = 0 for those states. 

𝝅𝒌
(𝑨𝒊)

 (sub matrix of 𝝅) denotes the matrix probabilities (size 2N-1 × N+2) to eventually absorb in state l, 

one of the absorbing states (group state Al, or states l = [2N,…,3N+1]), given we started at state k, 

(group states Fi and Ri or states k =[1,…,2N-1]). Therefore 𝝅𝑘
(𝐴𝑖)

 is the partial steady-state matrix which 

contains the elements of our interest (which are not expected to zero at steady state). 

Since the incident beam is considered as the first state (k=1), we care only about the first row of the 

partial steady-state matrix - 𝝅𝒌=𝟏
(𝐴𝑖)

, which indicates the probabilities of the incident beam to absorb in 

each of the absorbing states (Ai states group). 

As mentioned, one way to obtain 𝝅𝒌
(𝐴𝑖)

 is by multiplying the transition matrix T by itself. This way is less 

favorable since we deal with real time system, where high computation time could result in low 

performances (e.g., not closing\opening the CO2 valve on time). A more elegant way to obtain 𝝅𝒌
(𝐴𝑖)

 is by 

solving a system of equations as follows. 

For a photon moving toward element i=[1,…,N], meaning states k = [1,…,2N-1], the probability to 
eventually get locked in group state Aj is composed of the probabilities for all of the moving forward (Fi 
group) and backward (Ri group) photons to eventually absorb in one of the absorbing states (Aj group), 
and is defined as: 

 𝝅
𝒌

(𝑨𝒋)
= 𝝅

𝑭𝒊

(𝑨𝒋)
+ 𝝅

𝑹𝒊

(𝑨𝒋)
,  (25) 

where 

 𝝅
𝑭𝒊

(𝑨𝒋)
= 𝑟 ∙ 𝝅

𝑹𝒊−𝟏

(𝑨𝒋)
+ 𝑡 ∙ 𝝅

𝑭𝒊+𝟏

(𝑨𝒋)
+ (1 − 𝑟) 𝑎 ∙ 𝑰{𝒊=𝒋}, 

 𝝅
𝑹𝒊

(𝑨𝒋)
= 𝑟 ∙ 𝝅

𝑭𝒊+𝟏

(𝑨𝒋)
+ 𝑡 ∙ 𝝅

𝑹𝒊−𝟏

(𝑨𝒋)
+ (1 − 𝑟) 𝑎 ∙ 𝑰{𝒊=𝒋}. 

Where 𝑰{𝒊=𝒋}, a column vector (size 2N-1 × 1), holds "1" at rows (corresponding to the transition matrix 

T) in which moving photons (group states Fi and Ri) get trapped (group states Aj) in the next step, and 
"0" otherwise. 
Note that in the generalized form of the above set of equations, the special cases where photons exit 
the PBR in either direction (reverse or forward, elements i=0 and N+1, respectively) are considered as 

trapped (out of the PBR). The required modifications are applied later with the definition of 𝜼(𝑨𝒋). 

More generally, for any i, and a specific absorbing state Aj, it could expressed as follows: 

 𝝅(𝐴𝑗) = �̂� ∙ 𝝅(𝐴𝑗) + 𝜼(𝐴𝑗) (26) 

Where �̂� is a partial transition matrix (size 2N-1 × 2N-1) for only the transient states 𝑘, 𝑙 = [1, … ,2𝑁 −

1] and 𝜼(𝐴𝑗) is a vector (size 2N-1 × 1) that holds the probabilities for states 𝑘 = [1, … ,2𝑁 − 1] (a 



 
 

 
24 

moving photon; group states Fi or Ri) to absorb in element 𝑙 = [2𝑁, … ,3𝑁 + 1] (trapped photon; group 

state Aj) in the next step. In other words, 𝜼(𝐴𝑗) holds the probabilities to move from states Fi and Ri to 

state Aj. Following is the formal definition for 𝜼(𝐴𝑗): 

 𝜼(𝐴𝑗)  = 𝑝(𝑃ℎ𝑜𝑡𝑜𝑛 𝑡𝑟𝑎𝑝𝑝𝑒𝑑 − 𝑨𝒋| 𝑚𝑜𝑣𝑖𝑛𝑔 𝑃ℎ𝑜𝑡𝑜𝑛 − 𝑭𝒊 𝑜𝑟 𝑹𝒊) 

Table 4 shows the definition for 𝜼(𝐴𝑗) (for each absorbing state j). 

Table 4 - Definition of 𝜼(𝑨𝒋), the probability for a moving photon to get trapped in element j.  

Absorbing state Value for 𝜼(𝐴𝑗) 

𝑗 = 1 (𝜂(𝐴𝑗))𝑘 = {

𝑟, 𝑘 = 𝑗 
𝑡,         𝑘 = 𝑁 + 𝑗

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

1 < 𝑗 < 𝑁 + 2 (𝜂(𝐴𝑗))𝑘 = {
𝑎(1 − 𝑟), 𝑘 = 𝑗 𝑜𝑟 𝑘 = 𝑁 + 𝑗

0,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑗 =  𝑁 + 2 (𝜂(𝐴𝑗))𝑘 = {
𝑡,                  𝑘 = 𝑁
0,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Equation 26 could be solved by isolating 𝝅(𝑨𝒋) as follows: 

 𝝅(𝐴𝑗) − �̂� ∙ 𝝅(𝐴𝑗) = 𝜼(𝐴𝑗) (27) 

 (𝑰 − �̂�) ∙ 𝝅(𝐴𝑗) = 𝜼(𝐴𝑗) (28) 

 𝝅(𝐴𝑗) = (𝑰 − �̂�)−1 ∙ 𝜼(𝐴𝑗) (29) 

Where 𝝅(𝐴𝑗) a vector (size 2N-1 × 1), shows the probabilities for any moving beam to absorb in state Aj 

and 𝑰 is an identity matrix (size 2N-1 × 2N-1) in which the elements on the main diagonal are equal to 
one and the other elements are equal to zero.  

Thus, concatenating 𝝅(𝐴𝑗) (by columns) for any absorbing state Aj, should produce the desired stabilized 

probabilities matrix 𝝅(𝑨𝒋). As mentioned, since our interest is the initiate beam probability to absorb in 

any element, we take only the first row of the stabilized probabilities matrix - 𝝅
𝒌=𝟏

(𝑨𝒋)
. 

After obtaining an analytical solution for 𝝅𝑘=1

(𝑨𝒋)
, we propose another solution that evade matrix 

multiplication. This solutions should consider N, the number of grouped cells, as a parameter.  

We saw that the expression for 𝝅(𝐴𝑗) is composed of the multiplying of (𝑰 − �̂�)−1 by 𝜼(𝑨𝒋). 𝜼(𝑨𝒋) is 

known and was defined earlier. Finding an equation to express the elements of (𝑰 − �̂�)−1, or only it first 

row, will enable us to multiply that row by the relevant column vector 𝜼(𝐴𝑗) for any j. This will yield 𝝅𝑘=1

(𝑨𝒋)
 

for a specific Aj. The sum of probabilities for the initiate beam to eventually absorb in any state Aj equals 

1. Therefore, one may calculate 𝝅𝑘=1

(𝑨𝒋)
 only for j = 0 and j = N+1 (the left and right sides of the PBR), and 
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reduce those values from 1 in order to obtain the probability for the initiate beam to absorb in any 
element j = 1..N (the suspension). 

In order to find an expression for (𝑰 − �̂�)−1, we use the following rule: 

 (𝑰 − �̂�)−1 ∙ (𝑰 − �̂�) = 𝑰. (30) 

We address the elements at the first row of (𝑰 − �̂�)−1, 𝑍𝑖, as variables: 

 (𝑍1, 𝑍2, … , 𝑍2𝑁−1) ∙ (𝑰 − �̂�) = 𝑰. (31) 

Alternatively, we address 𝑍𝑖  as two groups of variables as follows: 

 (𝑋0, 𝑋1, … , 𝑋𝑁−1, 𝑌1, 𝑌2, … , 𝑌𝑁−1) ∙ (𝑰 − �̂�) = 𝑰. (32) 

Where 𝑋0 = 𝑍1 … 𝑋𝑁−1 = 𝑍𝑁 and 𝑌1 = 𝑍𝑁+1 … 𝑌𝑁−1 = 𝑍2𝑁−1 (or shortly: 𝑌𝑗 = 𝑋𝑁+𝑗−1). 

The following system of equations is expressing the equations formulating by the multiplication of 𝑍𝑖  at 

any row of (𝑰 − �̂�) with the result of the corresponding column at the first row of 𝑰 (1, 0, 0, … ,0): 

i =[1,…,N] yields: 

 𝑋0 = 1 

 𝑋𝑗−1 ∙ (1 − 𝑎) ∙ (1 − 𝑟) + 𝑌𝑗−1 ∙ 𝑟 = 𝑋𝑗 (33) 

and i =[N+1,…,2N-1] yields: 

𝑋𝑗 ∙ 𝑟 + 𝑌𝑗+1 ∙ (1 − 𝑎) ∙ (1 − 𝑟) = 𝑌𝑗 

 𝑌𝑁−1 = 𝑟 ∙ 𝑋𝑁−1 (34) 

Where for i = [1,…,N] and i = [N+1,…,2N-1] we consider Yj and Xj as constants, respectively. 

The above system of equations produces a 2-dimensional recursive equation (with two conditions). In 
order to find Zi elements, the equations could be solved using Wolfram Mathematica. This produces 
equations dependent on N, the number of layers, and enabling to deploy and solve it in real-time while 
avoiding the built of P and (I – P)-1 matrices. 

4.3. Algorithm for controlling growth conditions 
A summary for the algorithm steps described in this chapter is presented as follows. 

1. Measure incident and exiting lights. 
2. Background lights subtraction. 
3. Separate the measured lights into it red and blue components based on the routinely measured 

reference light, as solution of system of equations. 
4. Convert local measurements in Hz to PAR intensity on the PBR surfaces in mol photons/m2/s. 
5. Estimate absorbance by the culture (after reducing the PBR absorbance) based on Beer-Lambert law. 
6. Concentration estimation of Chlorophyll a pigment, based on the absorbed lights, using the 

deterministic model. 
7. Estimate Chlorophyll b, Carotenoid and Dry Weight relative to the Chlorophyll a concentration. 
8. Calculate the appropriate total incident light as PAR that should be supplied to the culture, according 

to the biomass concentration. 
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9. Split the total incident light to supplied into it red and blue components according to the user’s input 
(target red fraction of available light for absorbance by the biomass’ cells) and the effective 
absorption of the biomass’ cells. 

10. Update the incident light to be supplied according to (i) the illumination mode (users’ input), (ii) the 
time of day (e.g., maximum light supplied at noon), as well as the reduction of light due to the 
photo-bioreactor absorption (i.e., independent of the algae).  Translate calculated PAR intensity to 
be supplied into voltage values sent to the LEDs panel. 

11. Update LEDs panel to supply the appropriate lights intensity. 
12. Calculate the red fraction light available for absorbance. 
13. Calculate the biomass growth rate. 
14. Go to step one. 

4.3.1. Light intensity and quality 
The incident (𝐿𝑖𝑔ℎ𝑡𝑖𝑛) and outcoming (𝐿𝑖𝑔ℎ𝑡𝑜𝑢𝑡) lights from the photo-bioreactor are measured 
continuously and independently by the respective sensors. In order to reduce the measurement error, 
low light intensities measured during a relatively long period. The period for measuring each light sensor 
is constrained between 0.2 to 2 seconds for 𝐿𝑖𝑔ℎ𝑡𝑖𝑛  and 7.5 to 10 seconds for 𝐿𝑖𝑔ℎ𝑡𝑜𝑢𝑡.  

The pulses from the light sensors are summed up throughout that period and used for calculating a 
time-averaged light intensity in Hz as follows: 

 𝐿𝑖𝑔ℎ𝑡 =
𝑃𝑢𝑙𝑠𝑒𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 

𝑃𝑒𝑟𝑖𝑜𝑑
 (35) 

The measured total light intensities are finally averaged over time (5 to 15 min).  

As previously discussed, The light intensities are separated into it components (according to light color), 
and determine the contribution of each color to the light sensors, 𝐿𝑖𝑔ℎ𝑡𝑖𝑛 and 𝐿𝑖𝑔ℎ𝑡𝑜𝑢𝑡. 

In order to detect possible changes in the relative pigments composition occurring slowly during growth, 
we measured periodically (every 4h) the absorption of red and blue light separately at moderate 
(PWM=140) incident light intensities. The changes in absorbance reflect the changes in pigments 
composition. We shall use the notations 𝐿𝑖𝑔ℎ𝑡𝑜𝑢𝑡,𝑟𝑒𝑓(𝑟𝑒𝑑), 𝐿𝑖𝑔ℎ𝑡𝑖𝑛,𝑟𝑒𝑓(𝑟𝑒𝑑), 𝐿𝑖𝑔ℎ𝑡𝑜𝑢𝑡,𝑟𝑒𝑓(𝑏𝑙𝑢𝑒) and  

𝐿𝑖𝑔ℎ𝑡𝑖𝑛,𝑟𝑒𝑓(𝑏𝑙𝑢𝑒) for the corresponding periodically updated reference intensities. 

We first postulate that the light measured at the sensors is the arithmetic sum of its red and blue 
components:  

  𝐿𝑖𝑔ℎ𝑡𝑜𝑢𝑡 = 𝐿𝑖𝑔ℎ𝑡𝑜𝑢𝑡(𝑟𝑒𝑑) + 𝐿𝑖𝑔ℎ𝑡𝑜𝑢𝑡(𝑏𝑙𝑢𝑒) (36) 

  𝐿𝑖𝑔ℎ𝑡𝑖𝑛 = 𝐿𝑖𝑔ℎ𝑡𝑖𝑛(𝑟𝑒𝑑) + 𝐿𝑖𝑔ℎ𝑡𝑖𝑛(𝑏𝑙𝑢𝑒) (37) 

where 𝐿𝑖𝑔ℎ𝑡𝑖𝑛and 𝐿𝑖𝑔ℎ𝑡𝑜𝑢𝑡 are knowns and 𝐿𝑖𝑔ℎ𝑡𝑜𝑢𝑡(𝑟𝑒𝑑), 𝐿𝑖𝑔ℎ𝑡𝑖𝑛(𝑟𝑒𝑑), 𝐿𝑖𝑔ℎ𝑡𝑜𝑢𝑡(𝑏𝑙𝑢𝑒), 
𝐿𝑖𝑔ℎ𝑡𝑖𝑛(𝑏𝑙𝑢𝑒) are unknowns. 

In a second step, since the ratio 
𝐿𝑖𝑔ℎ𝑡𝑜𝑢𝑡(𝜆)

𝐿𝑖𝑔ℎ𝑡𝑖𝑛(𝜆)
 is independent of incident light intensity, we shall use the 

periodically updated reference value to generate two additional equations, as follows: 

 𝐿𝑖𝑔ℎ𝑡𝑜𝑢𝑡(𝑟𝑒𝑑) = 𝐿𝑖𝑔ℎ𝑡𝑖𝑛(𝑟𝑒𝑑) ∙
𝐿𝑖𝑔ℎ𝑡𝑜𝑢𝑡,𝑟𝑒𝑓(𝑟𝑒𝑑)

𝐿𝑖𝑔ℎ𝑡𝑖𝑛,𝑟𝑒𝑓(𝑟𝑒𝑑)
 (38)

 𝐿𝑖𝑔ℎ𝑡𝑜𝑢𝑡(𝑏𝑙𝑢𝑒) = 𝐿𝑖𝑔ℎ𝑡𝑖𝑛(𝑏𝑙𝑢𝑒) ∙
𝐿𝑖𝑔ℎ𝑡𝑜𝑢𝑡,𝑟𝑒𝑓(𝑏𝑙𝑢𝑒)

𝐿𝑖𝑔ℎ𝑡𝑜𝑢𝑡,𝑟𝑒𝑓(𝑏𝑙𝑢𝑒)
 (39) 
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The resolution of the system of equations {36, 37, 38, 39} enables assessing the contribution of each 
light color to the total absorbance of composite light in the photo-bioreactor. 

Those variables will serve as two sets of inputs (one set for each light color) for computing the ratio 
𝐿𝑖𝑔ℎ𝑡𝑜𝑢𝑡(𝜆)

𝐿𝑖𝑔ℎ𝑡𝑖𝑛(𝜆)
 which itself be used in the calculation of the algae concentration inside the photo-bioreactor. 

Once the concentrations of the pigments in the photo-bioreactor are known using equation 19 in 
section 4.2.14.2.1, the incident light intensity supplied by the LEDs panel should be dynamically adjusted 
the new concentration. An increase of the concentration level should result in enhancement of the light 
intensity and vice versa. 

In order to determine the appropriate light intensity for the new concentration estimated, we shall 

consider the ratio 
<𝑃𝐴𝑅(𝝀)>

𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏
 as the amount of light available per biomass. <PAR(𝜆)> represents the 

total amount of light available to the cells inside the photo-bioreactor (i.e., the area under the curve in 
the graphs LI vs. width in Figure 3Figure 3), and 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 represents the amount of Chlorophyll a 
photo-bioreactor (estimated using equation 17). We consider that ratio as constant, enabling us to 
control the specific amount of light supplied per biomass. 

For the definition of < 𝑃𝐴𝑅(𝜆) >, we consider the light intensity, 𝑃𝐴𝑅(𝜆), as a function of x, the local 
position along the width of the photo-bioreactor. Thus, in this section, 𝑃𝐴𝑅(𝜆, 𝑥) is considered as the 
light intensity at width x (in centimeters) of the photo-bioreactor. Correspondingly, 𝑃𝐴𝑅𝑖𝑛(𝜆) and 
𝑃𝐴𝑅𝑜𝑢𝑡(𝜆) is the light intensities at width 0 and width of the photo-bioreactor and denoted 
as 𝑃𝐴𝑅(𝜆, 0) and 𝑃𝐴𝑅(𝜆, 𝑤), correspondingly. Re-assigning those in equation 7 gives: 

 𝑃𝐴𝑅(𝜆, 𝑥) = 𝑃𝐴𝑅(𝜆, 0) ∙  10−𝜀(𝜆)∙𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 ∙𝑥,  (40) 

or by applying equations {13, 15, 18},  

 𝑃𝐴𝑅(𝜆, 𝑥) = 𝑃𝐴𝑅(𝜆, 0) ∙ 10−𝑆𝐴𝐶(𝜆)∙𝐶𝑎
2∙𝑥.  (41) 

Integrating equation 41 over x yields the total amount of light available for absorbance throughout the 
width of the photo-bioreactor: 

 < 𝑃𝐴𝑅(𝜆) >= ∫ 𝑃𝐴𝑅(𝜆, 𝑥) ∙ 𝑑𝑥
𝑤𝑖𝑑𝑡ℎ

0
= 𝑃𝐴𝑅(𝜆, 0) ∙

1−𝑒−2.303∙𝑆𝐴𝐶(𝜆)∙𝐶𝑎
2 ∙𝑤𝑖𝑑𝑡ℎ

𝑆𝐴𝐶(𝜆)∙𝐶𝑎
2  (42) 

Where the constant 2.303 represents ln(10), needed for integration. Note that < 𝑃𝐴𝑅(𝜆) > is inversely 
proportional to the square of Chlorophyll a concentration. 

Once an expression for the total amount of light available for absorption by the cells inside the photo-

bioreactor is obtained, the ratio 
<𝑃𝐴𝑅>

𝐶𝑎
 is used for determining the light available for absorption per 

biomass of algae. 

This ratio should remain constant thought-out the growth period as a condition (imposed requirement) 
for adequate light supply, keeping a constant specific light supply whose value is: 

 
<𝑃𝐴𝑅(𝜆)>

𝐶𝑎
=

𝑃𝐴𝑅(𝜆,0)∙(1−𝑒−2.303∙𝑆𝐴𝐶(𝜆)∙𝐶𝑎
2 ∙𝑤𝑖𝑑𝑡ℎ)

𝑆𝐴𝐶(𝜆)∙𝐶𝑎
3∙𝑤𝑖𝑑𝑡ℎ

  (43) 

We note that this constant ratio is now inversely proportional to the cube of Chlorophyll a 
concentration. 
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As a mean for proper control, this constant ratio will serve to compute the new light intensity to be 
supplied after any change in Chlorophyll a concentration. Thus, the available light intensity per biomass 
(one of the main growth conditions) is kept constant over time, so that 

 
𝑃𝐴𝑅(𝜆,0)∙(1−𝑒−2.303∙𝑆𝐴𝐶(𝜆)∙𝐶𝑎

2 ∙𝑤𝑖𝑑𝑡ℎ)

𝑆𝐴𝐶(𝜆)∙𝐶𝑎
3∙𝑤𝑖𝑑𝑡ℎ

=
𝑃𝐴𝑅(𝜆,0)′∙(1−𝑒−2.303∙𝑆𝐴𝐶(𝜆)∙𝐶𝑎

′2∙𝑤𝑖𝑑𝑡ℎ)

𝑆𝐴𝐶(𝜆)∙𝐶𝑎
′3∙𝑤𝑖𝑑𝑡ℎ

  (44) 

where 𝑃𝐴𝑅(𝜆, 0)′ and 𝐶𝑎
′  represent the new net incident light intensity that should be supplied and the 

new estimated concentration, respectively, while 𝑃𝐴𝑅(𝜆, 0) and 𝐶𝑎 represent the respective old values.  

After simplification, the following constant ratio (denoted as 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝐿𝑖𝑔ℎ𝑡𝑆𝑢𝑝𝑝𝑙𝑦(𝜆), or shortly 
𝑆𝐿𝑆(𝜆)) is received: 

 𝑆𝐿𝑆(𝜆) =
𝑃𝐴𝑅(𝜆,0)∙(1−𝑒−2.303∙𝑆𝐴𝐶(𝜆)∙𝐶𝑎

2 ∙𝑤𝑖𝑑𝑡ℎ)

𝐶𝑎
3 =

𝑃𝐴𝑅(𝜆,0)′∙(1−𝑒−2.303∙𝑆𝐴𝐶(𝜆)∙𝐶𝑎
′2∙𝑤𝑖𝑑𝑡ℎ)

𝐶𝑎
′3   (45) 

Similarly to 
<𝑃𝐴𝑅(𝜆)>

𝐶𝑎
, 𝑆𝐿𝑆(𝜆) should also remain constant throughout the growth period, to insure an 

even growth condition. 

Isolating the new light intensity to supply, 𝑃𝐴𝑅(𝜆, 0)′, from equation 45, yields the following expression: 

 𝑃𝐴𝑅(𝜆, 0)′ = 𝑆𝐿𝑆(𝜆) ∙
𝐶𝑎

′3

1−𝑒−2.303∙𝑆𝐴𝐶(𝜆)∙𝐶𝑎
′2∙𝑤𝑖𝑑𝑡ℎ

  (46) 

Thus enables us to dynamically update the light intensity supplied by the LEDs panel according to 
changes of the concentration level, while ensuring that the light intensity per biomass remains constant. 

Equation 46 also reveals that SLS accounts for the proportion between the new (measured) 
concentration and the adjusted new light to supply. This allows us to use it in the system as a tuning 
variable, which controls the integrated light intensity per biomass during the experiment, so the amount 
of light intensity available per unit biomass (expressed as Chlorophyll a) is constrained, predetermined 
and sustained throughout the growth period. 

SLS maximal value is limited for any 𝜆 by (a) the maximal incident light intensity in PAR that could be 
supplied by the LEDs panel and (b) the maximum biomass concentration (𝐶𝑎,𝑚𝑎𝑥) we chose during the 
experiment. Thereby, SLS maximal value is calculated as follows: 

 𝑆𝐿𝑆(𝜆)𝑚𝑎𝑥 =
𝑃𝐴𝑅(𝜆,0)𝑚𝑎𝑥∙(1−𝑒−2.303∙𝑆𝐴𝐶(𝜆)∙𝐶𝑎,𝑚𝑎𝑥

2 ∙𝑤𝑖𝑑𝑡ℎ)

𝐶𝑎,𝑚𝑎𝑥
3   (47) 

Figure 9 demonstrates the power relation between increasing concentration levels to the matching 
incident light intensity should be supplied. In addition, it shows that the light intensity per biomass 

(
<PAR(λ)>

Ca
 ratio) remains constant. In the figure, PAR was calculated using equation 46 and 

<PAR(λ)>

Ca
 ratio 

using equation 43, see parameters in Figure 9 legend. 
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Figure 9 – Dependence of light intensity on concentration according to equation 46. <PAR>/Ca ratio is 
calculated at any concentration level and remains constant. This inlustrates the case for concentration 
level increasing linearly from 5 to 20. SAC=0.106, SLS(𝜆)max=0.02, width=4.  

After obtaining an expression for determining the incident light intensity to supply in PAR, one has to 
determine how should it be distributed between the red and blue lights, i.e., the contribution of light 
quality.  

FractionRed (FrR) is used as a tuning variable, accounts for the fraction of the red light available for 
absorption by the algae out of the total incident light available for absorption inside the photo-
bioreactor, composed of red and blue lights. Therefore, FrR is defined as follows: 

 𝐹𝑟𝑅 =

<𝑃𝐴𝑅>𝑅𝑒𝑑
𝐶𝑎

<𝑃𝐴𝑅>𝑅𝑒𝑑
𝐶𝑎

+
<𝑃𝐴𝑅>𝐵𝑙𝑢𝑒

𝐶𝑎

=
<𝑃𝐴𝑅>𝑅𝑒𝑑

<𝑃𝐴𝑅>𝑅𝑒𝑑+<𝑃𝐴𝑅>𝐵𝑙𝑢𝑒
 (48) 

Using < 𝑃𝐴𝑅 > defined in equation 42, and reducing further yields: 

 𝐹𝑟𝑅 =

𝑃𝐴𝑅(𝑟𝑒𝑑,0)∙(1−𝑒−2.303∙𝑆𝐴𝐶(𝑟𝑒𝑑)∙𝐶𝑎
2 ∙𝑤𝑖𝑑𝑡ℎ)

𝑆𝐴𝐶(𝑟𝑒𝑑)

𝑃𝐴𝑅(𝑟𝑒𝑑,0)∙(1−𝑒−2.303∙𝑆𝐴𝐶(𝑟𝑒𝑑)∙𝐶𝑎
2 ∙𝑤𝑖𝑑𝑡ℎ)

𝑆𝐴𝐶(𝑟𝑒𝑑)
+

𝑃𝐴𝑅(𝑏𝑙𝑢𝑒,0)∙(1−𝑒−2.303∙𝑆𝐴𝐶(𝑏𝑙𝑢𝑒)∙𝐶𝑎
2 ∙𝑤𝑖𝑑𝑡ℎ)

𝑆𝐴𝐶(𝑏𝑙𝑢𝑒)

 (49) 

Isolating 𝑃𝐴𝑅(𝑏𝑙𝑢𝑒, 0) yields: 

 𝑃𝐴𝑅(𝑏𝑙𝑢𝑒, 0) =
1−𝐹𝑟𝑅

𝐹𝑟𝑅
∙

𝑆𝐴𝐶(𝑏𝑙𝑢𝑒)

𝑆𝐴𝐶(𝑟𝑒𝑑)
∙

1−𝑒−2.303∙𝑆𝐴𝐶(𝑟𝑒𝑑)∙𝐶𝑎
2 ∙𝑤𝑖𝑑𝑡ℎ

1−𝑒−2.303∙𝑆𝐴𝐶(𝑏𝑙𝑢𝑒)∙𝐶𝑎
2 ∙𝑤𝑖𝑑𝑡ℎ

∙ 𝑃𝐴𝑅(𝑟𝑒𝑑, 0) (50) 

Thus, expressions for 𝑃𝐴𝑅(𝑟𝑒𝑑, 0) and 𝑃𝐴𝑅(𝑏𝑙𝑢𝑒, 0) are formulated, so the light intensity and light 
quality per biomass is pre-determined by the user and will remain constant through-out the growth 
period as follows: 

 𝑃𝐴𝑅(𝑟𝑒𝑑, 0) = 𝑆𝐿𝑆(𝑟𝑒𝑑)𝑚𝑎𝑥 ∙
𝐶𝑎

′3

1−𝑒−2.303∙𝑆𝐴𝐶(𝑟𝑒𝑑)∙𝐶𝑎
′2∙𝑤𝑖𝑑𝑡ℎ

 (51) 

 𝑃𝐴𝑅(𝑏𝑙𝑢𝑒, 0) =
1−𝐹𝑟𝑅

𝐹𝑟𝑅
∙

𝑆𝐴𝐶(𝑏𝑙𝑢𝑒)

𝑆𝐴𝐶(𝑟𝑒𝑑)
∙

1−𝑒−2.303∙𝑆𝐴𝐶(𝑟𝑒𝑑)∙𝐶𝑎
2 ∙𝑤𝑖𝑑𝑡ℎ

1−𝑒−2.303∙𝑆𝐴𝐶(𝑏𝑙𝑢𝑒)∙𝐶𝑎
2 ∙𝑤𝑖𝑑𝑡ℎ

∙ 𝑃𝐴𝑅(𝑟𝑒𝑑, 0) (52) 
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Since those equations do not consider SLS(blue)max, one has to make sure that the obtained SLS(blue) 
ratio does not exceed SLS(blue)max. 

To conclude the last steps, the Chlorophyll concentration inside the photo-bioreactor was estimated 
using the measurements of the light sensors. According to the concentration level, the amount of 
incident light to supply the algae was determined, and the fraction each color should contribute to the 
light composition. Those yielded an expression for determining the incident light intensity in PAR that 
should supplied for each light color (𝑃𝐴𝑅(𝜆, 0)).  

As discussed in section 3.83.8, the light intensity to supply to the algae is also varying according to the 
illumination mode (continuous light / constant light-dark / sinusoid daylight). The previously obtained 
expressions for 𝑃𝐴𝑅(𝑟𝑒𝑑, 0) is considered as the maximal light to supply at noon and is denoted as 
𝑃𝐴𝑅(𝜆, 0)𝑚𝑎𝑥. The expressions for determining the current light to supply (in each of the illuminations 
mode) keeps the total light intensity supplied during the day (24 hours) equal. 

Thus, the current light to supply, considering the illumination mode (and the time), is determined 
according to the following formulas, ensuring similar amount of light supply during a full day: 

1. Continuous light:  

 𝑃𝐴𝑅(𝜆, 0) = 𝑃𝐴𝑅(𝜆, 0)𝑚𝑎𝑥 ∗ 0.5 ∗
𝑑𝑎𝑦_𝑙𝑒𝑛𝑔𝑡ℎ

24
 (53) 

2. Constant light-dark: 

 𝑃𝐴𝑅(𝜆, 0) = {
𝑃𝐴𝑅(𝜆, 0)𝑚𝑎𝑥 ∗ 0.5, 𝑖𝑠_𝑑𝑎𝑦

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (54) 

3. Sinusoid daylight:  

 𝑃𝐴𝑅(𝜆, 0) = {
𝑃𝐴𝑅(𝜆, 0)𝑚𝑎𝑥 ∙ 0.5 ∙ (1 − 𝑐𝑜𝑠 (

2∙𝜋∙(𝑡𝑜𝑑−𝑑𝑎𝑦_𝑠𝑡𝑎𝑟𝑡)

𝑑𝑎𝑦_𝑙𝑒𝑛𝑔𝑡ℎ
)) , 𝑖𝑠_𝑑𝑎𝑦

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (55) 

where day_length is a parameter indicating the length of daylight in hours (e.g., 18 hours), day_start is 

the hour for sunrise and is defined as 
24−𝑑𝑎𝑦_𝑙𝑒𝑛𝑔𝑡ℎ 

2
 and is_day is a Boolean variable indicating if it is 

daytime as follows: 

  𝑖𝑠_𝑑𝑎𝑦(𝑡𝑖𝑚𝑒) = {
𝑡𝑟𝑢𝑒, 𝑑𝑎𝑦_𝑠𝑡𝑎𝑟𝑡 < 𝑡𝑖𝑚𝑒 < 24 − 𝑑𝑎𝑦_𝑙𝑒𝑛𝑔𝑡ℎ

𝑓𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (56) 

At the next step, the current light intensity to supply is enhanced in order to reflect the light absorbance 
by the incident face of the PBR. In other words, the obtained net light intensity should be supplied 
(𝑃𝐴𝑅(𝜆, 0), denoted as 𝑃𝐴𝑅(𝜆, 0)𝑛𝑒𝑡) is increased to gross light intensity to supply as follows: 

  𝑃𝐴𝑅(𝜆, 0)𝑔𝑟𝑜𝑠𝑠 =
𝑃𝐴𝑅(𝜆,0)𝑛𝑒𝑡

𝑃𝐵𝑅𝑇𝑟𝑎𝑛𝑠(𝜆)
 (57) 

Where PBRTrans is the estimated transmission (according to the calibration procedure) of the PBR 
plastic components and bubbling water (see methods, calibration) and is defined as: 

 𝑃𝐵𝑅𝑇𝑟𝑎𝑛𝑠(𝜆) = 10
−0.333∙𝑙𝑜𝑔10

𝑃𝐴𝑅(𝜆,𝑤𝑖𝑑𝑡ℎ)𝑏𝑙𝑎𝑛𝑘
𝑃𝐴𝑅(𝜆,0)𝑏𝑙𝑎𝑛𝑘  (58) 

Note that only 
1

3
 of the transmission is attributed to the incident face of the PBR. 
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The gross PAR (for each color) is then converted back to the voltage (in PWM) that should be sent to the 
LEDs array, for each light color. The transformation is done by reversing the calibration procedures 
described in section 4.14.1. That is, the desired gross light intensity in PAR is converted to the PWM 
to be sent to the LEDs array in order to produce that gross light intensity. 

4.3.2. Measured pH and CO2 supply 
During photosynthesis, the microalgae consumes CO2 and protons, causing the pH level in the 
suspension to increase. The control of the pH level is done by opening and closing of a CO2 valve; if the 
pH level is above or below upper and lower boundaries (pHhigh and pHlow accordingly), the CO2 valve is 
opened and closed, correspondingly. The range for the pH level is determined according to a target pH 
level (pHtarget) as follows: 

 𝑝𝐻ℎ𝑖𝑔ℎ = 𝑝𝐻𝑡𝑎𝑟𝑔𝑒𝑡 + 0.05 

 𝑝𝐻𝑙𝑜𝑤 = 𝑝𝐻𝑡𝑎𝑟𝑔𝑒𝑡 − 0.05  

As discussed in section 3.93.9, the target pH is determined by the supplied light intensity (Light) 
to the structure of a logistic function as follows 

 𝑝𝐻𝑡𝑎𝑟𝑔𝑒𝑡(𝐿𝑖𝑔ℎ𝑡) = 𝑝𝐻𝑚𝑖𝑛 +
𝑝𝐻𝑟𝑎𝑛𝑔𝑒

1+𝑒−𝑠𝑡𝑒𝑒𝑝𝑛𝑒𝑠𝑠∙(𝐿𝑖𝑔ℎ𝑡−𝐿𝑖𝑔ℎ𝑡𝑚𝑖𝑑𝑑𝑙𝑒) , (59) 

where pHmin is the minimum pH target level could be determined (i.e., pHtarget minimum value is pHmin), 
pHrange is the pH level could be determined above pHmin (i.e., pHmin<pHtarget<pHmin+pHrang), steepness is 

the slope 
𝑑𝑝𝐻

𝑑𝐿𝑖𝑔ℎ𝑡
 at the inflexion point and Lightmiddle is the value for Light at the inflexion point. The 

point is where the curve changes from being concave up to concave down. 

4.4. Simulation of exponential growth 
Exponential growth rate is calculated as follows: 

 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑡 = 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛0 ∙ 𝑒𝜇∙𝑡 (60) 

where t is the time elapsed from time 0 (t=0), at which the concentration equals 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛0.  

The ratio between concentrations at two sequential time units (t, t+t) is therefore 𝑒𝜇, as follows:  

 
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑡+∆𝑡

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑡
=

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛0∙𝑒𝜇∙(𝑡+∆𝑡)

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛0∙𝑒𝜇∙𝑡 = 𝑒𝜇 (61) 

The formula of the deterministic model (equation 19) is used to replace Concentrationt; constant terms 
were gathered and denoted as A1 and A2 (as defined in Appendix D – Analysis of the heterogeneous 
datasetAppendix D – Analysis of the heterogeneous dataset, equations {D1, D2}). Using the definition 

 𝑒𝜇 =
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑡+∆𝑡

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑡
=

(−
𝑙𝑜𝑔10(𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑡+∆𝑡⋅𝐴1)

𝐴2
)

𝛽𝑝𝑜𝑤

(−
𝑙𝑜𝑔10(𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑡⋅𝐴1)

𝐴2
)

𝛽𝑝𝑜𝑤
= (

𝑙𝑜𝑔10(𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑡+∆𝑡⋅𝐴1)

𝑙𝑜𝑔10(𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑡⋅𝐴1)
)

𝛽𝑝𝑜𝑤

 (62) 

 𝑒
𝜇

𝛽𝑝𝑜𝑤 =
𝑙𝑜𝑔10(𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑡+∆𝑡⋅𝐴1)

𝑙𝑜𝑔10(𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑡⋅𝐴1)
 (63) 

 (𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑡 ⋅ 𝐴1)𝑒

𝜇
𝛽𝑝𝑜𝑤

= 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑡+∆𝑡 ⋅ 𝐴1 (64) 

Combining equation 64 with the definition of transmission (equation 4), and assuming that PARint+t is 

effectively equal to PARint for small enough time increment, t, we get: 
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 𝑃𝐴𝑅𝑜𝑢𝑡𝑡+∆𝑡 = 𝑃𝐴𝑅𝑜𝑢𝑡𝑡
𝑒

𝜇
𝛽𝑝𝑜𝑤

∙ (
𝐴1

𝑃𝐴𝑅𝑖𝑛𝑡
)

𝑒

𝜇
𝛽𝑝𝑜𝑤  − ∆𝑡

 (65) 

Thus, in order to simulate an exponential growth rate, the new exiting light, PARoutt+t, given in 
equation 65. The incident light (PARin) at any time interval is taken as constant. 

Note that for the purpose of simulation, the obvious dependence of µ on available light intensity has 
been disregarded (µ assumed to be constant).  
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5. Results & Discussion 

5.1. Validation of the assumptions 
The assumptions presented in section 3.33.3 are critically assessed as follows: 

- The measurements obtained by the calibration procedure are independent of the LEDs intensity 
variation. 
Repetitions of 5 measurements was conducted at 140 PWM, see Table 5. 

Table 5 - Repetitions of light intensity measurements at 140 PWM for each light color and for both light 
sensors, taken by our system. Information regarding the pigments' concentrations is reported in Table 6 
(Chlorophyll a is around 5.7).  

Repetition 
# 

Red in [Hz] Red out [Hz] 
Ratio 
out/in 

Blue in 
[Hz] 

Blue out 
[Hz] 

Ratio out/in 

1 17207 285.1 0.01657 9152 15.33 0.00168 

2 17200 284.1 0.01652 9145.6 15.28 0.00167 

3 17185 285.1 0.01659 9142 15.23 0.00167 

4 17189 284.1 0.01653 9141 15.03 0.00164 

5 16844 274.1 0.01627 8896 14.83 0.00167 

Avg 17125 282.5 0.0165 9095.3 15.14 0.00166 

Std 157.3 4.72 0.00013 111.5 0.21 0.000012 
𝑆𝑡𝑑

𝐴𝑣𝑔
 0.919% 1.672% 0.775% 1.226% 1.370% 0.717% 

 
It is shown that the standard deviation (relative to the averaged values) is low (~1.3%) for each light 
sensor and light color, and even lower for the apparent transmission (~0.7%). As shown, the ratio 
out/in (representing the uncorrected transmission) for blue light is one order of magnitude lower 
than that for red light, due to the higher absorbance of blue light for both the PBR and the 
microalgae. 
 

- The lab results providing a fair approximation for the real biomass concentrations. 
Repetitions of 5 lab measurements (by spectroscopic analysis) was done for a given culture. The 
pigments concentrations are presented in Table 6.  

Table 6 - Repetitions of lab measurements for the pigments concentrations. 

Repetition # 
Chlorophyll a 

[mg/L] 
Chlorophyll b 

[mg/L] 
Carotenoid 

[mg/L] 

1 5.3239 1.9160 3.0495 

2 5.5663 1.9930 3.2200 

3 6.0195 2.1589 3.4547 

4 5.8104 2.1061 3.3628 

5 6.0343 2.1835 3.4859 

Avg 5.7509 2.0715 3.3146 

Std 0.3051 0.1137 0.1806 
𝑆𝑡𝑑

𝐴𝑣𝑔
 5.31% 5.49% 5.45% 
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On the average, the standard deviation (relative to the average value) is of the order of 5%, a 
commonly accepted accuracy for this kind of measurements. 
 

- The total intensity for the incident or exiting light, composed of multiple colors, is the arithmetic 
sum of its components. 
It is shown in Table 7 that the arithmetic sum of the colored light measured by the light sensors (in 
Hz) is similar to the measurements of both light colors projected together. 

Table 7 – Representative measurements from lights sensors; the arithmetic sum of separate colored 
lights at 140 PWM is about the same light intensity received by projecting 140 PWM by both lights 
simultaneously. Representative values for calibration, done in the absence of algae. 

 Red Blue Blue + Red  Blue & Red 
Relative 

difference  

Light In [Hz] 14573.1 7152.5 21725.6 21626.7 -0.46% 

Light Out [Hz] 3166.7 708.7 3875.4 3878.6 0.08% 

 
- The observed relative differences are substantially low and are conserved in the order of magnitude, 

but not the sign (randomly negative or positive). 
 

- The fraction of the absorbed light, calculated in terms of PAR, is independent of the incident light 
intensity. 
This statement is shown to be valid in section 5.2.25.2.2. 

 
- The algal pigments absorb each light color differently. 

Light measurements of the same culture result in a different transmission for each light color, and 
thereby different absorbance, see Table 5. 
 

- Light attenuated by the culture is the combination of the sum of absorbance by packed pigments 
and scattering by cells. 
Based on literature review - spectra of solution (absorbance only) vs. suspension (absorbance + 
scattering). 
 

- Biomass of particles other than algae are neglected. 
This assumption has not been assessed. 

5.2. Calibration 

As described in section 3.2., the ratio 
𝑃𝐴𝑅 𝑖𝑛𝑏𝑙𝑎𝑛𝑘(𝜆)

𝑃𝐴𝑅 𝑜𝑢𝑡𝑏𝑙𝑎𝑛𝑘(𝜆)
 represents the transmission for the photo-

bioreactor and the bubbling water (absence of algae). The ratio is decomposed arithmetically 

(
𝑃𝐴𝑅 𝑖𝑛𝑏𝑙𝑎𝑛𝑘(𝑟𝑒𝑑)+𝑃𝐴𝑅 𝑖𝑛𝑏𝑙𝑎𝑛𝑘(𝑏𝑙𝑢𝑒)

𝑃𝐴𝑅 𝑜𝑢𝑡𝑏𝑙𝑎𝑛𝑘(𝑟𝑒𝑑)+𝑃𝐴𝑅 𝑜𝑢𝑡𝑏𝑙𝑎𝑛𝑘(𝑏𝑙𝑢𝑒)
), enabling the estimation of each of its elements, as locally measured 

by the system. Moreover, the global light intensity at the face of the PBR is measured as PAR by an 
external quantum sensor (Li-COR 190R, USA) at increasing PWM. 

Therefore, models for describing the local light intensity in Hz measured by the light sensors is 
formulated in Section 5.2.15.2.1, while in Section 5.2.25.2.2 the global light intensity (in PAR) at the 
incident face of the PBR is modeled as a function of the local light intensity in Hz given by the light 
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sensors. Note that the ensemble of both models results in the estimation of the global light intensity in 
PAR as function of PWM. 

5.2.1. Calibration part 1: LEDs and local light sensors [Hz] 
Measurements of the light sensors at increasing PWM are presented at Figure 10.  

 

Figure 10 – Incident and exiting light sensors measuremenets (in Hz) for red and blue lights projected by 
the LEDs panel at increasing voltage (in steps of 5 PWM, see section 4.1.14.1.1). This figure shows 
measurements for a single repetition in the absence of algae. 

The results reveal that the light intensities for the red light is higher than the blue light (Figure 10). The 
differences is due to the number of red and blue LEDs (for specifications of the LEDs panel, see Appendix 
B – System hardware specification). In addition, it is clear that the dependence of the light intensity on 
the PWM is not linear. 

The ratio  
𝐿𝑖𝑔ℎ𝑡 𝑜𝑢𝑡𝑏𝑙𝑎𝑛𝑘(𝜆)

𝐿𝑖𝑔ℎ𝑡 𝑖𝑛𝑏𝑙𝑎𝑛𝑘(𝜆)
 (which is proportional to the transmission, but differ since it is not calculated 

in PAR and not includes the correction of filters and sensitivity of the light sensor) for each colored light, 
at any light intensity is presented in Figure 11.  
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Figure 11 – Light out/Light in ratio (proportional to the transmission) for red and blue lights, calculated 
based on the light sensors local measurements in Hz. 

It is shown that the ratio, as measured by the local sensors, is apparently dependent on the PWM; It is 
constant for PWMs higher than 65 and 60 for the red and blue lights, respectively, but varies strongly at 
lower PWMs (Figure 11). This phenomenon is due to imperfection in the LEDs panel circuit, which does 
not result in similar current supplied to the LEDs combos at the same low voltage input (PWM). 
Consequently, the light sensors, located in front of LEDs combos, report different values than expected 
(not a constant ratio at low light intensities). 

In the following section (Calibration part 2: local light sensor [Hz] and independent sensor 
another calibration procedure is performed in order to replace the local measurements in Hz by 
relevant global measurements in PAR, averaged over the PBR area.  

In addition, Figure 11 shows that each light color has different 
𝐿𝑖𝑔ℎ𝑡 𝑜𝑢𝑡𝑏𝑙𝑎𝑛𝑘(𝜆)

𝐿𝑖𝑔ℎ𝑡 𝑖𝑛𝑏𝑙𝑎𝑛𝑘(𝜆)
 ratio, which means that 

(according to equations {4, 5}) the lights are absorbed differently by photo-bioreactor components 
(specifically, by the plastic bag and the bubbling water). This dictates the use of a different ratio 

(
𝐿𝑖𝑔ℎ𝑡 𝑜𝑢𝑡𝑏𝑙𝑎𝑛𝑘(𝜆)

𝐿𝑖𝑔ℎ𝑡 𝑖𝑛𝑏𝑙𝑎𝑛𝑘(𝜆)
) for each light color λ. 

Figure 12 shows the light sensors measurements (average of three repetitions), normalized to the 
sensor measurement at 140 PWM (at corresponding colors) as a function of PWM. To evaluate the 
similarity between incident and exiting lights (of the same color), the difference between the normalized 
values for each sensor, relative to their average was calculated.  
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Figure 12 – Calculated normalized measurements of incident and exiting light sensors and their relative 
errors. The raw measurements were normalized to reference measurement at 140 PWM for each light 
color. The reported values are the average of three repetitions. The error bars for the standard deviations 
were omitted since they values are smaller than the symbols. A relative error was calculated according to 

the following equation: 
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 <𝑐𝑜𝑙𝑜𝑟> 𝑙𝑖𝑔ℎ𝑡 𝑖𝑛 −𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 <𝑐𝑜𝑙𝑜𝑟> 𝑙𝑖𝑔ℎ𝑡 𝑜𝑢𝑡

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 <𝑐𝑜𝑙𝑜𝑟> 𝑙𝑖𝑔ℎ𝑡 𝑖𝑛 𝑎𝑛𝑑 𝑜𝑢𝑡
. Relative error is non zero 

only for low PWM values, in which the LEDs panel electric current flow is not stable.   

It is shown that measurements of the same light color yields similar curves, regardless to the light sensor 
(in or out) (Figure 12). The curves therefore differ only by a scale factor (that is used for normalizing 
those measurements). Thus, the normalized measurements as function of PWM could be modeled by 
the same function, while the scale factor is used to distinguish them. The scale factor for each light color 
and light sensor was determined as the measurements at 140 PWM (moderate light used as reference, 
as discussed in section 4.3.14.3.1), and are presented in the first and third columns of Table 9. The 
error bars is close to zero (for light measured at PWMs higher than 55 and 60 for the red and blue lights 
accordingly). This approves the claim that each colored light creates similar curves by both of light 
sensors, which is distinguish by a scale factor. 

The light intensity in Hz, for each color, is therefore modeled as the average (of both light sensors) of the 
normalized lights (denoted as Y).  

Since the curves are non-linear, Box-Cox transformation (see equation 66) is applied to Y, and a linear 
regression model (see equation 67) is fitted to predict the transformed Y values based on the PWM 
(denoted as X).  

 𝑌𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 =
𝑌𝛬−1

𝛬
 (66) 

 𝑌𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝛽0 + 𝛽1 ∙ 𝑋 (67) 

The model (see equation 68) is therefore composed of the Box-Cox transformation parameter, Λ, and 
the linear regression coefficients, β0 and β1.  

 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = (𝛬 ∙ (𝛽0 + 𝛽1 ∙ 𝑋) + 1)
1

𝛬⁄  (68) 
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The parameters of the models and the indicators for the goodness of fit are summarized in Table 8. 

Table 8 - Summary of the prediction models for lights in Hz 

[Hz] Λ 𝜷𝟎 𝜷𝟏 SSE SST 𝑹𝟐 
Red light 0.665 -1.823 0.0128 0.0730 29.038 0.997 

Blue light 0.518 -2.353 0.0169 0.0615 30.709 0.998 

 

Figure 13 shows, for each light color, the processed measurements (averaged and normalized) and the 
values fitted by the model in equation 67, using the fitted parameters in Table 8.  

 

 

Figure 13 – Predictions and real values of the averaged normalized (to reference measurement at 140 
PWM) sensors measurements in Hz as function of PWM. Predictions is done according to the model in 
equation 68, using the parameters in Table 8. 

5.2.2. Calibration part 2: local light sensor [Hz] and independent sensor [PAR] 
Figure 14 and Figure 15 show the averaged raw measurements of the light intensity in PAR in front of 
each of the twelve LEDs combos and their standard deviation and range, for red and blue lights 
correspondingly. Appendix C – Calculated incident light at the surface of the PBRAppendix C – Calculated 
incident light at the surface of the PBR, shows the respective local red and blue light intensities (as PAR) 
at the incident face of the PBR.  

It is explicit that each of the twelve LEDs combos produces different light intensities (Figure 14 and 
Figure 15). This, again, illustrates the imperfection in the LEDs panel circuit, as previously discussed in 
section 5.2.15.2.1. 

Figure 16 shows the transmission by the photo-bioreactor (in the absence of algae), calculated by the 
averages light intensities in PAR, and measured using the external sensor. 
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Figure 14 - Calibration measurements of incident (Right) and outcoming (Left) red light intensities (PAR) 
by external sensor showing the average of the 12 LED combos and their standard deviation (error bar), at 
5 selected PWMs. The light sensor (LI-COR LI-190R Quantum Sensor) was placed in front each LEDs 
combo. Min and max light intensities illustrate the range for each PWM among the 12 LED combos. 

    

Figure 15 – Same as Figure 14, with blue LEDs. 
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Figure 16 – Transmitance for red and blue lights in PAR, calculated based on external light sensor (LI-COR 
LI-190R Quantum Sensor). 

It is shown in Figure 16 that once all twelve LEDs combos are considered (by using their average light 
intensity in PAR, as presented in Figure 14 and Figure 15), the transmission (and thereby the 
absorbance, see equation 5) is constant also at low light intensities (e.g., 40 PWM). This illustrates the 
limited diagnostic value of the raw numbers provided by the light sensors (in Hz) since they represent 
local rather than total light intensity impinging on the PBR face. Therefore, one must process the local 
measurements received in real time from the light sensors (in Hz) to yield the total-real light intensity 
(calculated as PAR). 

As conducted in the previous section (Calibration part 1: LEDs and local light sensors [Hz]Calibration part 
light intensities as PAR are normalized to a reference light intensity at 140 PWM (see Table 9 for 
reference values).  

Table 9 – Local sensor readings [Hz] and global PAR [mol photons/m2/s] measured at 140 PWM 
(reference intensity) by the local sensors and quantum sensor, correspondly, for each color and each face 
(in and out) of the PBR, in the absence of algae. The raw measurements were normalized to the 
reference values (by dividing each measurement by the corresponding reference intensity). 

Reference 
intensities 

Sensor: Red 
[Hz] 

PAR: Red 
[mol photons/m2/s] 

Sensor: Blue  
[Hz] 

PAR: Blue 
[mol photons/m2/s] 

in 14755.95 752.98 7462.33 228.77 

out 3027.91 43.30 682.80 6.94 

 

Figure 17 shows the normalized light intensities as PAR and the relative difference between normalized 
incident and exiting intensities  for each color, as function of PWM. 
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Figure 17 – Normalized PAR measurements of incident and exiting light for red (left) and blue (right) 
lights and their standard deviation (error bars). Data were processed as in Figure 12. The processed 
values are calculated from the averages reported in Figure 14 and Figure 15. 

It is shown in Figure 17 that the normalized light intensities of same light color becomes relatively robust 
owing to the normalization processing, as shown by the low calculated relative differences between 
incident and exiting normalized intensities . 

Since both parts of the calibration (sections 4.1.14.1.1 and 4.1.24.1.2) were conducted at similar PWM 
light intensity in Hz could be converted to the matching light intensity as PAR. 

For this purpose, a linear regression model, 

  𝑌 = 𝛽0 + 𝛽1 ∙ 𝑋, (69) 

was build to predict the normalized PAR values (presented in Figure 17 and denoted as Y) based on the 
normalized sensor measurements in Hz (denoted as X). The intercept of the model (𝛽0) was set to zero 
in order to reflect that "zero light" reported by the sensors should yield in "zero light" in PAR units.  

Figure 18 shows the processed measurements (averaged and normalized) and the values fitted by the 
model, for each light color, is given in Table 10.  

A regression model was formulated for each light color, using measurements at both sides of the PBR (in 
and out). The parameters of the models and the indicators for the goodness of fit are summarized in 
Table 10. 

In order to estimate the real light intensity in PAR (based on the PWM level), one has to multiply the 
fitted normalized lights in PAR by the scale factor – the light intensity at 140 PWM (Table 10). 
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Figure 18 - Prediction models for the averaged normalized sensors measurements in PAR. See the 
parameters for the formulated equations in Table 10.  

Table 10 - Summary of the prediction model for normalized lights in PAR. 

[PAR] 𝜷𝟎 𝜷𝟏 SSE SST 𝑹𝟐 
Red light 0 1.0408 0.0157 8.8342 0.998 

Blue light 0 0.9192 0.0383 11.903 0.997 

To conclude, the prediction of the real light intensity in PAR, according to the PWM sent to the LEDs 
array, is based on both calibrations. The steps are summarized as follows:  

1. Normalized_Sensor(λ) = Calibration1(PWM(λ)):  
The PWM value is first processed to yield normalized sensor (local) values using the procedure 
conducted in section 5.2.15.2.1. 

2. Normalized_PAR(λ) = Calibration2(Normalized_Sensor(λ)): 
The normalized Hz values are processed to yield normalized PAR values based on the procedure 
conducted in this section. 

3. PAR(λ) = Normalized_PAR(λ) · reference_factor_PAR(λ)  
Finally, the normalized light intensity in PAR is multiplyed by the reference factor (light intensity in 
PAR recieved at 140 PWM, for the corresponding light color). The result is the average light intensity 
in PAR.  

Due to the frequent need for transforming local meansurements by the light sensor in Hz to global light 
intensity in PAR, transformation factors (see Table 11) has formulated according to the calibration 
procedures, for both red and blue lights. In which, the local measured light intensities are (a) divied by 

𝐻𝑧𝑏𝑙𝑎𝑛𝑘,𝑟𝑒𝑓
𝜆  for normalizing by the light intensity at Hz, received at 140PWM, (b) multiplied by 𝜷𝟏

𝜆, the 

converstion factor previously obtained (see Table 9) for transforming the normalized Hz to normalized 

PAR intensities, and (c) multiplying by 𝑃𝐴𝑅𝑏𝑙𝑎𝑛𝑘,𝑟𝑒𝑓
𝜆  in order to unnormalise it to estimated light 

intensity at PAR.  
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Table 11 - Conversion factors from local light intensity in Hz measured by the sensors to global light 
intensity in PAR 

𝐻𝑧2𝑃𝐴𝑅 Red Blue 

In 𝑃𝐴𝑅𝑖𝑛,𝑏𝑙𝑎𝑛𝑘,𝑟𝑒𝑓
𝑟𝑒𝑑 ∙ 𝜷𝟏

𝑟𝑒𝑑

𝐻𝑧𝑖𝑛,𝑏𝑙𝑎𝑛𝑘,𝑟𝑒𝑓
𝜆=665𝑛𝑚

= 0.0531 
𝑃𝐴𝑅𝑖𝑛,𝑏𝑙𝑎𝑛𝑘,𝑟𝑒𝑓

𝑏𝑙𝑢𝑒 ∙ 𝜷𝟏
𝑏𝑙𝑢𝑒

𝐻𝑧𝑖𝑛,𝑏𝑙𝑎𝑛𝑘,𝑟𝑒𝑓
𝑏𝑙𝑢𝑒 = 0.0281 

Out 𝑃𝐴𝑅𝑜𝑢𝑡,𝑏𝑙𝑎𝑛𝑘,𝑟𝑒𝑓
𝑟𝑒𝑑 ∙ 𝜷𝟏

𝑟𝑒𝑑

𝐻𝑧𝑜𝑢𝑡,𝑏𝑙𝑎𝑛𝑘,𝑟𝑒𝑓
𝑟𝑒𝑑 = 0.0148 

𝑃𝐴𝑅𝑜𝑢𝑡,𝑏𝑙𝑎𝑛𝑘,𝑟𝑒𝑓
𝑏𝑙𝑢𝑒 ∙ 𝜷𝟏

𝜆=452𝑛𝑚𝑏𝑙𝑢𝑒

𝐻𝑧𝑜𝑢𝑡,𝑏𝑙𝑎𝑛𝑘,𝑟𝑒𝑓
𝑏𝑙𝑢𝑒 = 0.0093 

Where 𝑃𝐴𝑅𝑏𝑙𝑎𝑛𝑘,𝑟𝑒𝑓
𝜆  and 𝑃𝐴𝑅𝑏𝑙𝑎𝑛𝑘,𝑟𝑒𝑓

𝜆  are the averages light intensities in PAR received on the incident 

and exiting face of the PBR at 140 PWM, respectively; 𝐻𝑧𝑏𝑙𝑎𝑛𝑘,𝑟𝑒𝑓
𝜆  and 𝐻𝑧𝑏𝑙𝑎𝑛𝑘,𝑟𝑒𝑓

𝜆  are the locals light 

intensities measured by the light sensors at 140 PWM. And 𝜷𝟏
𝜆  is the transformation coefficient from 

normalized (local) light intensity in Hz to normalized (global) light intensity in PAR. 

5.3. Deterministic model 
The aim of this section is to examine whether the model for predicting the Chlorophyll a concentration 
(𝐶𝑎) inside the PBR using the light transmission is valid.  

The dataset available for analysis contains 15 observations measured at random times; each row 
contains measurements taken by the system (red and blue absorbance) and the matching pigments 
concentration measured at the lab (chlorophyll a, chlorophyll b, carotenoid and dry weight). However, 
those observations does not constitute a homogenous dataset since each row reflects an unique 
physiological state of the culture (i.e., different pigments composition). The range of the pigments 
concentrations and the calculated relative concentrations observed in the system are presented in Table 
12. 

Table 12 - Range of the concentrations and relative concentrations (to chlorophyll a) of the pigments in 
the culture measured in the lab during a period of one year. 

 chlorophyll a 
mg/L 

chlorophyll b 
mg/L 

Carotenoid 
mg/L 

dry weight 
mg/L 

𝐶𝑏
∗ 

-- 
𝐶𝑐

∗ 
-- 

𝐶𝑑
∗ 

-- 

Min 1.39 0.81 1.17 63.33 0.32 0.50 29.61 

Max 18.44 6.60 15.12 760.0 0.78 1.41 89.11 

Avg 7.67 3.12 5.44 365.3 0.43 0.72 47.68 

Std 4.39 1.60 3.72 216.8 0.09 0.19 15.26 
𝑆𝑡𝑑

𝐴𝑣𝑔
 

57.2% 51.4% 68.3% 59.3% 20.3% 26.0% 32.0% 

The high variation of the relative concentrations in Table 12 emphasizes the heterogeneous nature of 
the samples composing the dataset. 

Therefore, in a formal matter, the observations in the dataset could not be related, or analyzed, as a 
homogeneous set of data. Nevertheless, we show, as expected, that analysis of the dataset, including 
the use of speculative models, yields poor results, see Appendix D – Analysis of the heterogeneous 
datasetAppendix D – Analysis of the heterogeneous dataset.  

For assessment of the model developed in section 4.2.14.2.1, two sets of calibration measurements are 
used, taken after progressively adding dense algal culture to the photo-bioreactor. This ensures similar 
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pigments composition at each set of measurements, thus yielding two small but homogeneous datasets. 
The calibration measurements are presented in Figure 19. 

 

Figure 19 - Calibration measurements of chlorophyll a (measured at lab) and matching absorbance 
(calculated by the system). Dec16: Cb_=0.48, Cc_=1.65, Cd_=52.51. Jul17: Cb_=0.33, Cc_=1.21, 
Cd_=39.41. 

The input variable of the model to be fitted is the red light absorption (𝐴𝑏𝑠(𝑟𝑒𝑑) =

−log10 (
𝑃𝐴𝑅𝑜𝑢𝑡(𝑟𝑒𝑑)

𝑃𝐴𝑅𝑖𝑛(𝑟𝑒𝑑)
)) which is calculated by the system. The red absorption is preferred over the blue 

absorption since the former does not include the absorption by carotenoid (i.e., 𝜀𝑐𝑎𝑟𝑜𝑡𝑒𝑛𝑜𝑖𝑑
𝑟𝑒𝑑 = 0). In 

addition, chlorophyll, the main pigment in the culture, absorbs around the wavelength of red light. 

The model described by equation 19 is fitted for each set of calibration measurements by changing the 
parameter 𝐾(𝜆) so the SSE is minimized; the results of the fitted models are presented in the first row 
of Table 13 and plotted in Figure 20.  

It is shown that the predictions of the model do not yield curves similar to the real measurements 
(Figure 20), in addition to relatively low 𝑅2 (around 0.7) (Table 13). This indicates that the relation 
between the red absorption and the chlorophyll a concentration was not obtained by the model.  

For further assessment of the fitted model, Figure 21 presents the measured vs. predicted values of 
chlorophyll a. 

As expected, the curves in Figure 21 do not fall on the same line, and present slopes substantially lower 
than 1.0 and strongly positive intercepts, indicating that (i) the predictions of chlorophyll a are 
significantly lower than the corresponding measured values and (b) the model fails to "translate" the 
absence of absorbance as insignificant level of chlorophyll a concentration. 
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Figure 20 - Chlorophyll a: real observations vs. predictions as function of red absorption. Predictions 
made by fitting the parameter K(λ) in equation 19 to two sets of calibration measurements (Dec16 & 
Jul17). 

 

Figure 21 - Chlorophyll a: measured vs. predicted values. Predictions made by equation 19. Straight lines 
passing from the origin and with slope=1.0 indicate good fit. 

Equation A8 in section 8.18.1 matches a simple form of the Beer-Lambert law, in which the effective 
absorption coefficient was extended with additive scattering coefficient. The model is fitted to the 
calibration measurements by changing the scattering coefficient so the SSE is minimized. The results of 
the fitted model are presented in the second row of Table 13 and plotted in Figure 22.  

It is shown in Figure 22 that the curves of the measurements and the corresponding predictions have 
similar slopes in both set of calibrations, especially in calibration Dec16. Moreover, the 𝑅2 is relatively 
high (above 0.97) for both sets of calibrations. This indicates the powerful estimation of the relation 
between the red absorption and chlorophyll a concentration, in compare to the observed relation. In 
addition, the curves fall on almost the lines. 
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Figure 22 - Chlorophyll a: real observations vs. predictions as function of red absorption. Predictions 
made by fitting the parameter scat(λ) in equation A8 to two sets of calibration measurements (Dec16 & 
Jul17). 

In addition, the estimated values of the scattering coefficients seems to be negative and equals (Figure 
22). This indicates that (i) the specific absorption coefficients taken from Bidigare (Bidigare et al., 1990) 
may already include the scattering by the particles and (ii) this has generalization capabilities as it was 
able to fit two sets of calibration with the same scattering coefficient value. 

The model is further assessed by plotting the measured vs. predicted values of chlorophyll a in Figure 
23.    

   

Figure 23 – Same as in Figure 21. Predictions made by fitting equation A8. 

It is shown that the curves of the predictions in Figure 23 present slopes close to 1.0 (fall almost on the 
same line) and their intercepts is very low in compare to those formulate by our model in Figure 21. This 
indicates that the model in equation A8 succeed in predicting the chlorophyll a concentration. 

In both models the relation between measurements and predictions creates straight lines (for each set 
of calibration), which indicates a fair relation between the absorption to the concentration.  
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In the simplified model in equation A8, the relation between the absorption and the chlorophyll a 
concentration is kept similar in the measured and predicted values at both sets of calibrations. This 
indicates a good proportion between the chlorophyll a concentration and the red absorption. However, 
this is qualitatively claims against the use of power of 0.5 in equation 19, since no correction of the 
curves (formulated by the simplified model) is needed. 

Table 13 - Results for fitting parameters in the models to raw experimentral results presented in Figure 
19. The first row shows the results for fitting equation 19 to the measurements by changing K(red). The 
second row shows the results for fitting equation A8 to the same measurements by changing scat(red). 

 Calibration 
set 

𝛽𝐾(𝑟𝑒𝑑) SSE SST 𝑅2 

Fit equation 19 
to calibration 
measurements 
by changing 
𝛽𝐾(𝑟𝑒𝑑) 

Dec16 0.0010 

 
11.04 35.32 0.687 

Jul17 0.0059 

 
0.602 2.396 0.749 

 Calibration 
set 

𝑠𝑐𝑎𝑡(𝑟𝑒𝑑) SSE SST 𝑅2 

Fit equation A8 
to calibration 
measurements 
by changing 
𝑠𝑐𝑎𝑡(𝑟𝑒𝑑) 

Dec16 -0.0013 0.960 35.32 0.973 

Jul17 -0.0013 0.024 2.395 0.990 

 

5.4. Stochastic model 
The results obtained by sub-model 1 (N complete layers) and sub-model 2 (Nmax layers with holes) 
described in section 4.2.24.2.2, and implemented in Matlab4, are presented is this section. That is, 

reaching a convergent solution for steady-state, in which the final probabilities (represented by 𝝅
𝒌=𝟏

(𝑨𝒋)
) 

for an incident flux (initial state F1) to be reflected out of the PBR (A0), absorbed in cells (∑ 𝐴𝑖), or 
transmitted out of the PBR (AN+1).  

Figure 24 present the total transmission for sub-model 1 and 2. The results were obtained, for each sub-
model, by solving numerically (raising T to high power) and by solving analytically (using equation 26).  

Figure 24 shows that the results of both sub-models are similar and hence we conclude that the 
analytical solution for the study-state is valid. 

The final probabilities for an incident flux to be absorbed by each of the elements in the model (PBR 

sides or layers of grouped cells), represented by 𝝅
𝒌=𝟏

(𝑨𝒋)
, is presented in Figure 25 (for sub-model 1). 

                                                      

 

 

4 https://github.com/EladDan/EladThesis_Model2 
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Figure 24 – Total transmssion vs. N (number of layers), obtained by solving sub-models 1 and 2 
numerically and analytically. The inputs for the models are: r=0.2, a=0.43; for sub-model 2: Nmax=500. 

 

Figure 25 - Reflection, absorption and transmission at steady state. The inputs for the model are: N=5, 
r=0.2, a=0.43 (cell_in=5.2 [mg/cm3], cell_dim_cube= 4.8360e-04 [cm], see equation 23 in 
The order of magnitude for the elementary probability r was set to yield a value for transmission similar 
to that calculated in our experimental system. 

Figure 26 shows the total reflection and transmission of sub-model 1, for N=5 and varying range of r and 
a. The probability for absorption is omitted since it can calculated by subtracting the other probabilities 
from 1.0. Moreover, the probability for total absorption is defined based on beer lambert law (given the 
total transmission), what makes the definition for total absorption by this model redundant.  
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Figure 26 - Results for reflection (left) and transmission (right) over the range of the elementary 
probabilities a and r. N=5. 

The results (Figure 26) reveal that, as expected, the total transmission increases for low values of a and 
r. It is also shown that the total reflection is increases for high values of r and for low values of a. An 
explanation for the behavior of the latter could be that as less photons are absorbed, they are more 
likely to be either reflected or transmitted.  

The behavior for the total reflection and transmission is similar for various values of N, see Figure 27 for 
example in which N=25.  

 

Figure 27 - Same as Figure 26. N=25. 

The changes in both of the graphs in Figure 26 and Figure 27 is seen only for small values of a, probably 
since the photons is absorbed quickly by the layers and vanish from the system (do not reflect of 
transmitted). As one could expect, the graph for the total transmission is lower for higher values of N. 
However, the graph for the total reflection is higher for higher values of N. This behavior is suited with 
the assumption made in the last section, in which the scattering effect is significant only for high levels 
of concentrations (i.e., high N). 

Figure 28 explores the total transmission for different number of layers with holes (Nmax in sub-model 2), 
compared to layers with no holes (sub-model 1). 
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Figure 28 – Comparaison of the total transmission received by sub-models 1 and 2. Sub-model 2 was 
examined for range of Nmax (Nmax=15,30,3000). Results were calculated for a=0.43 and r=0.2. 

Nmax examined for a wider range Figure 29.  

 

Figure 29 - Explore wide range of Nmax effects of the total transmission. Results were calculated for N=5, 
a=0.43, r=0.2. X axis is logarithmic scaled. 

As one can see in Figure 28 and Figure 29, for decreasing values of Nmax, the behavior of sub-model 2 is 
getting similar to sub-model 1, as the total size of holes is lower (for low values of Nmax). Despite that, 
sub-model 2 with Nmax=15 is closer to other higher values in sub-model 2 than in sub-model 1 for low 
values of N. The gap is minimized with the increase of N, which reduces the size of holes. Note that the 
minimum value for Nmax is limited by N (i.e., Nmax >=N). In addition, when Nmax increases, p_enc 
decrease (see equation 24), which makes the probability for transmission higher since "there are more 
holes in the layers" and thereby it is more likely for a photon to be transmitted through a layer. 
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Figure 28 also show that, as expected, for higher values of N, the total transmission is lower. For a fixed 
value of Nmax, the total transmission decreases with the increase of N.  

Similarly to Figure 28, Figure 29 shows that the increase of Nmax results in higher total transmission. 
However, the marginal addition for the total transmission is lower for high values of Nmax.  

In addition, as shown in Figure 29, for fixed values of N, increasing Nmax increases the total transmission. 
That is, the volume is higher (increasing Nmax), but the number of cells is the same (fixed N); therefore, 
as the density (or concentration) decreases the transmission increases, as expected. 

5.5. Behavior of the system 
When a newly inoculated culture (previously exponentially growing under fixed continuous white light 
conditions) was initiated in our system, we observed a failure of the culture to grow under the set of 
conditions chosen for routine function of the system (FrR=0.75, 0.95; SLS(red)=SLSmax(red)=0.0959; 
SLS(blue)=SLSmax(blue)=0.02806; pHtarget=8.5; pHmin=6.5; pHrange=2.0; steepness=-0.00008; 
Lightmiddle=2000; Illumination mode=Sinusoid daylight). 

The failure may be attributed to one or more of the following reasons: 

1. The light supply was not adequate (photo-inhibition for excess light, or photo-limitation 
otherwise). 

2. The balance between red and blue light supply was improper. 
3. The CO2 supply/acidity of the medium was inappropriate. 
4. Mixing achieved by bubbling was inefficient. 

Every one of the above reasons can be tested individually using the system we developed.  
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5.6. Validation of the calculations in the aAlgorithm 
The algorithm goal is to supply proper environmental conditions as detailed in section 3.93.9 (light 
intensity, light quality, illumination mode and pH). In this section, the environmental conditions owing 
to light (i.e., light intensity, light quality, illumination mode) are presented, as calculated by the 
algorithm over growth periods of seven days. The results are shown for different ranges of growth 
parameters (introduced in section 3.83.8). In this section, the part of the algorithm for controlling the 
(by CO2 supply) was not validated, due to the simplicity of that process. The parameters in equation 59 
(steepness, pHrange, Lightmiddle, etc.) need to be adjusted. 

Figure 30 presents the concentration levels for each of the pigments, over a growth period of seven 
days. Initial conditions for light measurements were taken to indicate low Chlorophyll a concentration. 
The initial conditions and description of the simulation procedure is described in the legend.  

  

Figure 30 - Biomass of pigments along growth period of seven days. The biomass was calculated every 4 
hours. Reference inputs for light sensors: red in=14,576[Hz], red out=999.1[Hz], blue in=7,461.9[Hz], blue 
out=170.7[Hz]. Inputs for growth rate: 𝜇(𝑟𝑒𝑑)=0.015, 𝜇(𝑏𝑙𝑢𝑒)=0.018. Initial conditions: Chlorophyll 
a=4.39[mg/L], Chlorophyll b=1.63[mg/L], Carotenoid=1.35[mg/L], DW=175.95[mg/L]. Time period 
between two iterations was simulated as 15 minutes (total of 672 iterations, plus setup iteration), in 
which the process described shortly in Figure 5 was executed and the relevant data was saved in a 
structure.  

The results (Figure 30) reveal, as expected, that the concentrations of the pigments grow exponentially. 
In addition, the carotenoid increases faster than the chlorophyll since the growth rate parameter, 
μ(blue), was set accordingly.  

The measured transmission is presented in Figure 31. 
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Figure 31 - Red and blue transmission as function of chlorophyll a concentration. 

The results (Figure 31) reveal that the relation between the transmission and the chlorophyll a 
concentration is as expected; the transmission is decrease as the concentration level increases.  

Figure 32, Figure 33 and Figure 34 shows the maximal (PARimax) and current (PARi) red and blue light 
intensities determined to be supplied in relation to the chlorophyll a concentration for each of the 
illuminations modes (continuous light, constant light-dark and sinusoid daylight) according to equations 
{53, 54, 55}, correspondingly.  

Due to the limitation in the blue light intensity (1:6 ratio of blue:red LEDs), we cannot cover the full 
range of absolute light intensities for red and blue lights. Consequently, in our simulations, the specific 
blue light supply (SLS(blue) in equation 45) was not constrained; an effective calculated range between 
0.032 to 0.045 [µmol∙L/m2/s/mg] was found for SLS(blue), while the maximum allowable value in our 
system is 0.028.  
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Figure 32 - Light intensity in PAR [µmol/m2/s] vs. growth period of seven days [days]. Results are plotted 
for each light color at continuous illumination mode. PARimax indicates the maximum light intensity to 
supply for each color according to the concentration level (shown in Figure 30), and PARi indicates the 
current light intensity to supply determined according to the illumination mode and the time in day. 
Results plotted at intervals of 15 minutes. Conditions: FrR=0.8, SLS(red)=SLSmax(red)=0.096, effective 
SLS(blue)=0.032-0.045.  

    

Figure 33 - Same as in Figure 32, for constant light-dark illumination mode. 
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Figure 34 - Same as Figure 32, for sinusoid daylight illumination mode. 

The results reveal (Figure 32, Figure 33 and Figure 34) that the maximum light to supply (PARimax) is 
similar for all of the illumination modes, as opposed to PARi, which is determined according to PARimax 
and the time of day (as described in section 4.3.14.3.1). It is also shown, as expected and as described in 
Figure 9, that an increase in the concentration level leads to a power increase of the supplied light 
intensities. 

The total light intensity supplied (equations {51,52} for red and blue lights), integrated over the growth 
period (2.96 [mmol/m2/7days]) and the total specific light available for absorption (equation 42) 
integrated over the growth period (0.118 [mmol∙L2/m2/mg2/7days]) were similar for the three 
illuminations modes. This result is consistent with the basic calculation of light intensities according to 
the illumination modes; indeed, the latter is based on a constant light supply per day. 

Figure 35, Figure 36 and Figure 37 show, for each illumination mode, the light available for absorption 
(<PAR>, calculated by equation 42) for each light color and their summation, and the calculated ratio 
between the lights (FrR parameter, calculated by equation 49) for growth period of seven days. 
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Figure 35 - Light available for absorbance (<PAR>, calculated according to equation 42) for each light 
color and their summation and the fraction of the red light available for absorbance (calculated 
according to equation 49). Results obtained for continuous illumination mode. The light intensity used for 
the calculation of <PAR> was the current light intensity (PARi). 

  

Figure 36 - Same as in Figure 35, for constant dark-light illumination mode. Light:dark cycle=18:6. The 
variable FrR is algebraically undetermined in the dark (=0/0). 
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Figure 37 - Same as in Figure 36, for sinusoid daylight illumination mode. 

It is shown that the fraction of red light available for absorption per biomass remains constant 
throughout the whole growth period. Its also shown, in compare to Figure 32, Figure 33 and Figure 34, 
that the light available for absorption is lower than the incident light, as expected. 

In oppose to Figure 37, Figure 38 shows an example for lower FrR, in which the blue light available for 
absorption is higher than the red. 

 

Figure 38 – Same as in Figure 37, for FrR=0.3. 

Results (Figure 38) show that the blue light available for absorption is higher than the red light, as 
expected for FrR=0.3. However, the total light available for absorption is significantly higher in Figure 
38, as compared to Figure 37. Since the blue light intensity is set in relation to the red light intensity, as 
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seen in equations {51,52}, the total light supplied is not constrained. That is, the red light is the first to 
be determined (according to the culture properties and system limitations) and only afterwards, the 
blue light is determined according to the desired FrR. This demonstrates a drawback of the algorithm. 
The FrR parameter, adjusted by the user, is not determining only the relation between the lights; it may 
also affect the total light intensity supplied. 

  



 
 

 
59 

6. Conclusions & Recommendations 
As photo-bioreactors are usually used with relatively low concentration levels, the scattering effect 
could be neglected. However, as long as higher concentrations are measured, the scattering becomes 
more relevant and therefore it is reasonable to assume the simplified deterministic model would be less 
suitable, and the model we propose may become useful.  

The phenomenon in which the scattering effect is significant at high concentrations levels was predicted 
by the stochastic model. It was shown by simulation that the total reflection (i.e., scattering in a single 
dimension) was increased at high concentration levels (see the differences between Figure 26 and 
Figure 27).  

Traditional use of Beer-Lambert could be extended using the findings of the stochastic model, such that 
the measured transmission was rectified accordingly (reduce the reflectance). Another sensor could be 
added for measuring and subtracting the reflectance. 

In addition, the stochastic model could be adjusted to indicate the absorbance and reflection of a 
different PBR by re-setting the elementary probabilities for reflection and absorption of the PBR 
elements. 

The curves describe the relation between the concentration (or in proportion, the number of layers of 
grouped cells) to the transmission shows similar behavior and order of magnitude for both the 
deterministic and stochastic models. The parameters in the deterministic model and the inputs for the 
stochastic model must be further adjusted in order to achieve matching curves, although it cannot be 
guaranteed that identical curves could be obtained. 

The algorithm for controlling the environmental conditions was shown to achieve expected adjustment 
of the environmental light conditions, according to input by the user. However, the algorithm shows a 
drawback in the set of equations for defining a constant fraction between the lights (the parameter 
FrR). The constant fraction is achieved throughout the growth period; however, changing the value of 
FrR affects the total light intensity supplied throughout the growth period. Moreover, tuning of the pH 
level was not tested by simulation.  

The main limitation of this research is that continuous growth was not achieved by the control system. 
In addition, the Naïve model of Beer-Lambert (see equation A8) was not fitted to the heterogeneous 
dataset examined in section 5.35.3. Moreover, the assumptions of linearity was not tested for the 
approach used in the deterministic model.  

Further research is necessary to validate the stochastic model against real measurements from the 
system. A calibration procedure should be conducted in order to evaluate the light scattered by the 
culture out of the photo-bioreactor. Indeed, this part of the incident light has not been taken into 
account in the currently operative model and the resultant Arduino sketch. The calibration should be 
conducted by adding a third light sensor at the incident face of the PBR, facing the culture, to assess the 

reflected light (in Hz) and convert it into PAR (in mol photons/m2/s), by an additional calibration 
procedure. 

In addition, the mixing rate of the culture was not considered and it may modulate the culture growth. 
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8. Appendices 

8.1. Appendix A – Decomposition of light attenuation 
Relations between light color, measurements, absorbance and scattering. 

 𝐴𝑡𝑡𝑡𝑜𝑡 = − 𝑙𝑜𝑔 (
𝐿𝑜𝑢𝑡

𝑡𝑜𝑡  

𝐿𝑖𝑛
𝑡𝑜𝑡 ) = −𝑙𝑜𝑔 (

𝐿𝑜𝑢𝑡
𝑟𝑒𝑑+𝐿𝑜𝑢𝑡

𝑏𝑙𝑢𝑒 

𝐿𝑖𝑛
𝑟𝑒𝑑+𝐿𝑖𝑛

𝑏𝑙𝑢𝑒 ) (A1) 

Total light attenuation at any wavelength (𝜆) is the sum of absorption by pigments and light scattering 
(Bricaud & Morel, 1986): 

 

 𝐴𝜆
𝑎𝑡𝑡𝑛 =  𝐴𝜆

𝑎𝑏𝑠 + 𝐴𝜆
𝑠𝑐𝑎𝑡 (A2) 

When no absorption occurs (e.g., at 800 nm), the attenuation is due exclusively to scattering. 

𝐴800
𝑎𝑏𝑠 = 0 => 𝐴800

𝑎𝑡𝑡𝑛 = 𝐴800
𝑠𝑐𝑎𝑡 

Assuming that scattering is due exclusively to non absorbing (pigmentless) particles, the apparent 
attenuation by scattering depends on n, the ratio between the characteristic size of the particles to the 
wavelength (𝜆) of the scattered light (Ma et al., 2003). For instance, for small molecules (air, water, etc.), 
n=~4, while for micro particles (e.g., colorless cells), n is of the order of 0.1-0.6, depending on the size 
and shape of the particles. In this case, the contribution of scattering, depends also on the wavelength, 
and is given by: 

 𝐴𝜆
𝑠𝑐𝑎𝑡 = 𝐴800

𝑎𝑡𝑡𝑛 ∙ (
800

𝜆
)𝑛 (A3) 

Thus 

 𝐴𝑟𝑒𝑑
𝑠𝑐𝑎𝑡 = 𝐴𝑏𝑙𝑢𝑒

𝑠𝑐𝑎𝑡 (
𝜆𝑏𝑙𝑢𝑒

𝜆𝑟𝑒𝑑
)𝑛 (A4) 

Allowing the estimation of scattering-free absorbance by the algal pigments, at any wavelength. 

 𝐴𝜆
𝑎𝑏𝑠 =  𝐴𝜆

𝑎𝑡𝑡𝑛 − 𝐴𝜆
𝑠𝑐𝑎𝑡 (A5) 

Finally, one can model the total absorbance by microalgal culture using Beer-Lambert law as a sum of 
individual contributions of each pigment (i: Chlorophyll and Carotenoid) at each wavelength.  

 𝐴𝑏𝑠𝑡𝑜𝑡 = 𝐴𝑏𝑠𝑟𝑒𝑑 + 𝐴𝑏𝑠𝑏𝑙𝑢𝑒 = [∑ 𝜀𝑖
𝑟𝑒𝑑 ∙ 𝐶𝑖𝑖 + ∑ 𝜀𝑖

𝑏𝑙𝑢𝑒 ∙ 𝐶𝑖𝑖 ] ∙ 𝑤𝑖𝑑𝑡ℎ (A6) 

By normalizing concentrations to chlorophyll a concentration and assuming constant ratios of absorbing 
species to chlorophyll, we get: 

 𝐴𝑏𝑠𝑡𝑜𝑡 = 𝐴𝑏𝑠𝑟𝑒𝑑 + 𝐴𝑏𝑠𝑏𝑙𝑢𝑒 = [∑ 𝜀𝑖
𝑟𝑒𝑑 ∙

𝐶𝑖

𝐶𝑎
𝑖 + ∑ 𝜀𝑖

𝑏𝑙𝑢𝑒 ∙
𝐶𝑖

𝐶𝑎
𝑖 ] ∙ 𝐶𝑎 ∙ 𝑤𝑖𝑑𝑡ℎ (A7) 

The equation above generates a system of equations with coefficients of absorption (i) as parameters 
and concentrations (Ci) as unknowns, resolvable in principle. Besides, all Ci are routinely measured 
independently by standard laboratory procedures for validation purposes. 
Equation A7 could be extended using equation A2 to consider also the scattering by the cells, which 
assumed to be proportional to the algal density and depends on the particles size, shape, and density 
(Duysens, 1956).  

  𝐴𝑡𝑡𝑡𝑜𝑡 = 𝐴𝑏𝑠(𝜆) + 𝑆𝑐𝑎𝑡(𝜆) = [∑ 𝜀𝑖(𝜆) ∙
𝐶𝑖

𝐶𝑎
𝑖 + 𝑠𝑐𝑎𝑡(𝜆) ∙

𝐶𝑑

𝐶𝑎
] ∙ 𝐶𝑎 ∙ 𝑤𝑖𝑑𝑡ℎ, (A8) 
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in which 𝐶𝑑 and 𝑠𝑐𝑎𝑡(𝜆) stands for the cell density and the effective dependency of the optical path at 
the particles shape and size. 
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8.2. Appendix B – System hardware specification 
Arduino board – Arduino-Mega 2560_R35. 

LEDs – Luxeon Rebel Star light-emitting diodes6 (LEDs) (Quadica Developments Inc., Canada). 

LEDs Panel – 72 red LEDs; maximal wavelength: 665±5 nm. 12 blue LEDs; maximal wavelength: 452±5 
nm. Power: ~3W/LED. The LEDs panel is assembled of 12 LEDs combos, where each LEDs combo 
includes 7 LEDs: 6 red and 1 blue. The six red LEDs in each LEDs combos is connected in series, and every 
two couples of LEDs combos is connected in parallel, under the control of a Buck Block7 (constant 
current power supply) equipped with a 0-10 Volt dim circuit. The power supply provides a maximal 
current of 1.4 A. In addition, each set of six blue LEDs is connected in parallel and has maximal current of 
1.4 A. Since the Arduino microprocessor may provide a maximal voltage output to the dim circuit of only 
5V, the power supplies operate at half maximal power. 

Figure 39 shows the electrical circuit (right) for the connection of six LEDs combos and a LEDs combo 
(left) of 6 red and 1 blue LEDs. 

Light sensors – TSL235R8. Light intensity to frequency converter (Texas Advanced Optoelectronic 
Solutions Inc.). 

Digital temperature sensor – DS18B209 (Maxim Integrated). 

pH sensor – pH_Circuit_5.010 (Atlas Scientific). 

CO2 Valve – a solenoid valve, controlled by an electric current, for suppling CO2. 

Photo-bioreactor – Polyethylene bag inside a metal cage (size 110x50x5 cm). 

 

                                                      

 

 

5 https://store.arduino.cc/usa/arduino-mega-2560-rev3 
6 http://www.luxeonstar.com/assets/downloads/DS68.pdf 
7 http://www.luxdrive.com/content/A009_BuckBlock_V1.pdf 
8 https://www.sparkfun.com/datasheets/Sensors/Imaging/TSL235R-LF.pdf 
9 https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf 
10 https://www.atlas-scientific.com/_files/_datasheets/_circuit/pH_Circuit_5.0.pdf 

https://store.arduino.cc/usa/arduino-mega-2560-rev3
http://www.luxeonstar.com/assets/downloads/DS68.pdf
http://www.luxdrive.com/content/A009_BuckBlock_V1.pdf
https://www.sparkfun.com/datasheets/Sensors/Imaging/TSL235R-LF.pdf
https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
https://www.atlas-scientific.com/_files/_datasheets/_circuit/pH_Circuit_5.0.pdf
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Figure 39 - electrical circuits at the LEDs panel. Left: LEDs combo of 6 red LEDs connect in series and 1 
blue LED. Right: Buck Block (BB) power supply of 1400 mA. 

8.3. Appendix C – Calculated incident light at the surface of the PBR 
The local red and blue light intensities (in Watt/cm2) is calculated for each squared cm element of the 
incident face of the PBR. The contribution from each LED to such a surface element was calculated as 
follows:  

 𝑙𝑖𝑔ℎ𝑡 𝑝𝑜𝑤𝑒𝑟𝑖 ∙
1

𝑑𝑖
2 , (C1) 

where 𝑙𝑖𝑔ℎ𝑡 power𝑖 is the total power in Watt emitted by a specific LED i at zero distance, and di is the 
distance between the LED and the local surface element. 

The total light intensity (in Watt/cm2) at each surface element on the PBR surface is the sum of 
contributions from all LEDs as follows: 

  𝑙𝑜𝑐𝑎𝑙 𝑙𝑖𝑔ℎ𝑡 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑘 = ∑ 𝑙𝑖𝑔ℎ𝑡 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖 ∙
1

𝑑𝑖
2𝑖 , (C2) 

where k is the index of surface elements (total of 92 × 48 elements) on the PBR surface. 

The 𝑙𝑜𝑐𝑎𝑙 𝑙𝑖𝑔ℎ𝑡 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑘  was calculated for each squared cm composing the PBR surface, for each of 
the twelve LEDs combos. The results for the red and blue lights are presented in Figure 40 and Figure 
respectively. 
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Figure 40 - Total red incident light at the face of the PBR. Calculated for red PWM = 240. 

 

Figure 41 - Total blue incident light at the face of the PBR. Calculated for blue PWM = 240.  
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8.4. Appendix D – Analysis of the heterogeneous dataset 
The model to formulate shall lean on the theoretical model described in section 4.2.14.2.1, given by 
19. The dependent variable, Ca, is denoted as Y; the variable 𝐴𝑏𝑠(𝑟𝑒𝑑), thereby considered as 
independent, is denoted as X; The effective scattering coefficient, 𝐾(𝜆), is denoted as 𝛽𝐾(𝜆), and shall 

be determined empirically by minimizing the sum of squared errors of observed (see Table 14 for the 
observations) and predicted Y values. 

Table 14 - Observations gathered within one year, composing the heterogeneous dataset. 

Chl a 
[mg/L] 

Chl b 
[mg/L] 

Car 
[mg/L] 

DW 
[mg/L] 

Lin,ref(red) 
[Hz] 

Lout,ref(red) 
[Hz] 

Lin,ref(blue) 
[Hz] 

Lout,ref(blue) 
[Hz] 

11.51 6.073 10.87 760.0 15516 3.100 7482 0.30 

10.71 4.130 15.12 596.0 16438.9 31.30 8925 1.20 

10.48 3.711 5.936 725.0 15170 29.90 7998 0.950 

9.063 3.248 5.069 586.6 14588 46.51 7629 1.150 

6.060 2.71 5.406 540.0 14985 52.90 7997 0.60 

7.833 2.504 3.894 333.3 16302 70.61 8930 1.550 

11.85 5.193 7.697 620.0 15794 13.05 8412 0.425 

9.577 4.204 5.968 506.6 15625 23.30 8402 0.50 

6.877 3.116 4.695 380.0 16549 65.90 9141 1.050 

5.009 2.440 3.142 313.3 15736 150.2 8404 1.775 

1.386 1.079 1.171 63.33 15802 1176 7605 73.33 

12.48 4.864 9.432 440.0 15342 24.74 7335 0.490 

13.59 5.027 7.182 543.3 16647 15.25 8190 0.493 

12.47 4.576 7.236 415.0 15641 6.440 7595 0.513 

16.09 5.699 10.63 616.7 15133 8.433 7244 0.683 

18.44 6.598 15.11 680.0 15084 8.834 7195 0.583 

4.810 1.786 2.859 366.2 16000 254.4 8400 7.790 

 

For simplification, the constants in equation 19 are combined into new constants, A1 and A2. A1 
represents the inverse of transmission in the absence of algae, and is calculated as follows: 

 𝐴1 =
𝑃𝐴𝑅𝑖𝑛,𝑏𝑙𝑎𝑛𝑘(𝑟𝑒𝑑)

𝑃𝐴𝑅𝑜𝑢𝑡,𝑏𝑙𝑎𝑛𝑘(𝑟𝑒𝑑)
=

𝐻𝑧𝑖𝑛,𝑟𝑒𝑓,𝑏𝑙𝑎𝑛𝑘(𝑟𝑒𝑑)∙𝐻𝑧2𝑃𝐴𝑅𝑖𝑛
𝑟𝑒𝑑

𝐻𝑧𝑜𝑢𝑡,𝑟𝑒𝑓,𝑏𝑙𝑎𝑛𝑘(𝑟𝑒𝑑)∙𝐻𝑧2𝑃𝐴𝑅𝑜𝑢𝑡
𝑟𝑒𝑑 = 17.18  (D1) 

where 𝑃𝐴𝑅𝑖𝑛/𝑜𝑢𝑡,𝑏𝑙𝑎𝑛𝑘(𝑟𝑒𝑑) represents the light intensity at 140 PWM for the incident and exiting sides 

of the PBR and 𝐻𝑧2𝑃𝐴𝑅𝑖𝑛/𝑜𝑢𝑡(𝑟𝑒𝑑) is the conversion factor from local Hz measurements by the sensor 

to global PAR intensity on the PBR surface, formulated by the calibrations (see chapter 5.25.2), the latter 
are presented in Table 15.  

Table 15 - Values for conversion factors from local Hz measured by the sensors to global PAR at the PBR 
surfaces and reference values for blank, used for the definition of A1. 

𝐻𝑧𝑖𝑛,𝑟𝑒𝑓,𝑏𝑙𝑎𝑛𝑘
𝑟𝑒𝑑  𝐻𝑧𝑜𝑢𝑡,𝑟𝑒𝑓,𝑏𝑙𝑎𝑛𝑘

𝑟𝑒𝑑  𝐻𝑧2𝑃𝐴𝑅𝑖𝑛
𝑟𝑒𝑑 𝐻𝑧2𝑃𝐴𝑅𝑜𝑢𝑡

𝑟𝑒𝑑  

14755.95 3027.91 0.05311 0.01488 
 

On the other hand, A2, representing the denominator in equation 19, is calculated as follows: 

𝐴2 = (𝜀𝑎(𝜆) + 𝜀𝑏(𝜆) ∙ 𝐶𝑏
∗ + 𝜀𝑐(𝜆) ∙ 𝐶𝑐

∗) ∙ 𝐶𝑑
∗ ∙ 𝑤𝑖𝑑𝑡ℎ = 
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 (𝜀𝑎(𝑟𝑒𝑑) + 𝜀𝑏(𝑟𝑒𝑑) ∙ 𝐶𝑏
∗̅̅ ̅ + 𝜀𝑐(𝑟𝑒𝑑) ∙ 𝐶𝑐

∗̅̅ ̅) ∙ 𝐶𝑑
∗̅̅ ̅ ∙ 4 = 22.70 , (D2) 

where the effective absorption coefficients (𝜀𝑖
𝜆) were determined according to published in vivo 

measurements (Pottier et al., 2005) and were averaged over the wavelength range (see Figure 2 and 
equation 14), see first row of Table 16. 

Table 16 – Values for the definition of A2. Dry weight was calculated in relations to chlorophyll a since the 
former assumes to be proportional to the algal concentration in the suspension. 

 Chlorophyll a  Chlorophyll b  Carotenoid  Dry weight  

𝜀𝑟𝑒𝑑  [m2∙mg-1] 0.07523 0.07815 0.0 NA* 

𝐶∗̅̅ ̅ 1 0.40146 0.6616 53.2383 
* Dry weight has no color, thus no epsilon. 

For the purpose of further analysis, 𝐶𝑥
∗, the concentrations relative to Ca, were arbitrarily taken as the 

average of the observations measured in the laboratory (see Table 14); they are calculated as follows: 

 𝐶𝑥
∗̅̅ ̅ =

∑
𝐶𝑥,𝑖
𝐶𝑎,𝑖

𝑛
𝑖=1

𝑛
 (D3) 

Note that using the average as estimators assumes the dataset is homogenous, which is conceptually 
wrong since each observation reflects a unique physiological state of the culture (i.e., different pigments 
composition) (see section 5.35.3 for further explanation). 

Follows equation 19 with the above notations: 

 𝑌 = (
−𝑙𝑜𝑔(𝑋⋅𝐴1)

𝐴2⋅𝛽𝐾(𝜆)
)

0.5

+ 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 (D4) 

Where epsilon represents the noise that could accumulate in each estimation of the model. epsilon is 
assumed to have constant variance and its mean, over all measurements, is assumed to vanish. 

Accordingly, Ypred is defined as: 

  𝑌𝑝𝑟𝑒𝑑 = (
−𝑙𝑜𝑔(𝑋⋅𝐴1)

𝐴2⋅�̂�𝐾(𝜆)
)

0.5

 (D5) 

The estimation is done similarly to linear regression, using least square method. Since the function is 
non-linear, the equation does not have an analytic solution, therefore it is solved numerically (using 
optimization).  

The error in each measurement i is thereby defined as: 

 𝑒𝑟𝑟𝑜𝑟𝑖 = 𝑌𝑖 − 𝑌𝑖,𝑝𝑟𝑒𝑑 = 𝑌𝑖 − (−
𝑙𝑜𝑔(𝑋⋅𝐴1)

𝐴2⋅�̂�𝐾(𝜆)
)

0.5

 (D6) 

Where �̂�𝐾(𝜆) is the estimate for 𝛽𝐾(𝜆). 

The non-linear least square problem is solved by minimizing the SSE, which is defined as: 

 𝑆𝑆𝐸(𝑌, 𝑋, 𝐴1, 𝐴2|𝛽𝐾(𝜆)) = ∑ (𝑒𝑟𝑟𝑜𝑟𝑖)
2𝑛

𝑖=1 = ∑ (𝑌𝑖 − (−
𝑙𝑜𝑔(𝑋⋅𝐴1)

𝐴2⋅�̂�𝐾(𝜆)
)

0.5

)

2

𝑛
𝑖=1  (D7) 

Note that the SSE varies according to 𝛽𝐾(𝜆), while 𝑌, 𝑋, 𝐴1, 𝐴2 are considered as knowns. 



 
 

 
70 

An optimization function ("optimize" R package) were used to minimize the SSE (see github link11 for 
the R script). Follows is a formal definition of the optimization problem.  

𝑍 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆𝑆𝐸(𝑌, 𝑥, 𝐴1, 𝐴2|𝛽𝐾(𝜆)) 

Subject to 
 𝛽𝐾(𝜆) ≤ 10−1 

 𝛽𝐾(𝜆) ≥ 10−7 

The limits for 𝛽𝐾(𝜆) were defined after manually place values for �̂�𝐾(𝜆) indicated that it target value has 

an order of magnitude of ~10-3. 

The optimal �̂�𝐾(𝜆) for which the SSE has been minimized and the results for the prediction are 

summarized in the first line of Table 17. Figure 42Figure 42 shows the observations (red pluses) and the 
Chlorophyll a concentration (green line) as a function of the red transmission measured by the system in 
Hz and converted to PAR.  

The low R2 in the first row of Table 17 and the green line of predictions presented in Figure 42Figure 42 
indicates that the obtained model does not go through "the mean" of Y values. Furthermore, for red 
transmission (X) values above ~0.0005, the model overestimate the chlorophyll a concentration (Y). 
Therefore, we conclude that the model is not suitable for that problem.  

Hence, the model in equation D4 is extended in a speculative way, by adding a parameter, 𝛽𝑝𝑜𝑤, 

replacing the constant 0.5 power.  

 𝑌 = (−
𝑙𝑜𝑔(𝑋⋅𝐴1)

𝐴2⋅𝛽𝐾(𝜆)
)

𝛽𝑝𝑜𝑤

+ 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 (D8) 

The new equation could alter it shape to fit Y values. This equation includes our suggestion (given by 
equation 19), and the commonly used model (see section 8.18.1) as special cases for which 𝛽𝑝𝑜𝑤 = 0.5 

1, respectively. Therefore, equation D8 gives more flexibility to fit the data by estimating also the power 
coefficient.  

Note that this equation also includes the scattering coefficient multiplying, which does not included in 
the commonly used model. 

The error is defined as: 

 𝑒𝑟𝑟𝑜𝑟2𝑖 = 𝑌𝑖 − 𝑌2𝑖,𝑝𝑟𝑒𝑑 = 𝑌𝑖 − (−
𝑙𝑜𝑔(𝑋⋅𝐴1)

𝐴2⋅�̂�𝐾(𝜆)
∗ )

�̂�𝑝𝑜𝑤

 (D9) 

The SSE to be minimized is defined as: 

 𝑆𝑆𝐸2 = ∑ (𝑒𝑟𝑟𝑜𝑟2𝑖)
2𝑛

𝑖=1 = ∑ (𝑌𝑖 − (−
𝑙𝑜𝑔(𝑋⋅𝐴1)

𝐴2⋅�̂�𝐾(𝜆)
∗ )

�̂�𝑝𝑜𝑤

)2𝑛
𝑖=1  (D10) 

That is, the optimization will be conducted in recursion of two steps (a) minimization of SSE2 over 𝛽𝑝𝑜𝑤 

(between -2 to 2), in which (b) SSE is minimized over 𝛽𝐾(𝜆). 

                                                      

 

 

11 https://github.com/EladDan/EladThesis_Model1 

https://github.com/EladDan/EladThesis_Model1
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𝑍 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆𝑆𝐸2(𝑆𝑆𝐸(𝑌, 𝑥, 𝐴1, 𝐴2|𝛽𝐾(𝜆))|𝛽𝑝𝑜𝑤)  

Subject to 
 
 𝛽𝑝𝑜𝑤 ≤ 2 

 𝛽𝑝𝑜𝑤 ≥ −2 

 𝛽𝐾(𝜆) ≤ 0.1 

 𝛽𝐾(𝜆) ≥ 0.0000001 

 

The results are shown in the second row of Table 17 and in the blue line (y_pred2) indicating the 
predictions in Figure 42Figure 42. 

A different equation is used in order to make sure that the curve of the models tried earlier are not 
constrained by a particular form of Y. Note that the following model does not consider the theoretical 
models described earlier. 

 𝑌3 = 10−(𝛽0+𝑥∙𝛽1) (D11) 

For formulating the suggested model in equation D11, the target variable (𝑌3) is log transformed (on 10 
basis), and a linear regression model is build to predict it. 

 𝑌3𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 = − 𝑙𝑜𝑔10 𝑌3 = 𝛽0 + 𝑥 ∙ 𝛽1 (D12) 

The results are shown in the third row of Table 17 and in the black line of predictions in Figure 42Figure 

To conclude, this section shows that all of the models tried did not succeed in predicting the chlorophyll 
a concentration based on the heterogeneous dataset. However, the best results is shown for the model 

in which the estimate power (�̂�𝑝𝑜𝑤) was close to 1.0, in oppose to the power in our model (0.5). 
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Table 17 - Results for fitting the parameters in the deterministic model to raw experimentral results as 
visually presented in Figure 42Figure 42. The first row shows the results for fitting Ypred to Y in equation 
changing 𝛽𝐾(𝑟𝑒𝑑). The second row shows the results for fitting Ypred to Y in equation D8 by changing 𝛽𝑝𝑜𝑤 

and 𝛽𝐾(𝑟𝑒𝑑). The third row shows the results for fitting Ypred to Y in equation D11. 

 �̂�𝐾(𝜆) �̂�𝑝𝑜𝑤 SSE SST 𝑅2 

Fit Ypred to Y in equation 
D4 by changing 𝛽𝐾(𝑟𝑒𝑑) 

0.0007844 0.5 105.8 199.5 0.470 

Fit Ypred to Y in equation 
D8 by changing 𝛽𝑝𝑜𝑤 

and 𝛽𝐾(𝜆=665) 
0.01075 1.0891 69.87 199.5 0.650 

 �̂�0 �̂�1 SSE SST 𝑅2 

Fit Ypred to Y in equation 
D11 by changing 𝛽0 and 

𝛽1 
-2.553 276.98 73.204 199.5 0.633 

 

 

Figure 42 - Chlorophyll a: real observations vs. predictions as function of red PAR transmission. Prediction 
made by fitting the parameters in equations D4 (y_pred1), D8 (y_pred2) and D11 (y_pred3) to real 
observations. 

 



 
 

 
 

 תקציר

אצות, זאת עקב הערך הרב הטמון בחומרים שונים אשר -האחרונות גדל ומתפתח תחום המחקר העוסק במיקרובשנים 
אצות לצורכי הפקת -מייצרות אצות אלו, תחת לחצים סביבתיים שונים. בהתאם לכך, מגודלים כיום זנים שונים של מיקרו

 ם.חומרים אלו ונחקרים התנאים הסביבתיים המאפשרים ייצור מוגבר שלה

אצות ובחינתו דרך שליטה במשתני -מטרת מחקר זה היינה יצירת מערכת בקרה אשר תשמש ככלי ייעודי לגידול מיקרו
הסביבה, אשר מכוונים על ידי המשתמש. פלט המערכת הינו מידע אודות תנאי הסביבה והגידול וערכי הפרמטרים 

אצות שונים. בנוסף -שית במחקר פיזיולוגי של זני מיקרוהפיזיולוגים אשר מאפשרים גידול אופטימלי. המערכת הינה שימו
פותחו שני מודלים: מודל דטרמיניסטי לחיזוי ריכוז האצות במתקן הגידול אשר הורחב בעזרת כלים סטטיסטים ומודל 

 סטוכסטי לתיאור מעבר האור במתקן הגידול בממד אחד.

 הפיתוחים הספציפיים שנעשו במסגרת המחקר הינם:

 הבקרה. תוכנת מערכת .1

-photosyntheticallyסינטטית )-פרוצדורת כיול אור אשר מתרגמת את קריאות חיישני האור למונחי קרינה פוטו .2
active radiation.) 

 (.photo-bioreactorאצות במתקן גידול ייעודי )-אלגוריתם לגידול מיקרו .3

 מודל דטרמיניסטי לחיזוי ריכוז האצות במתקן הגידול. .4

 ר את מעבר האור בתוך מתקן הגודל והתרבית, בממד אחד.מודל סטוכסטי המתא .5

 חיישן(, ויוצא)נכנס  אור חיישני משני מידע הקולט, Arduino Mega 2560פותחה באמצעות בקר מסוג  המערכת
בצבעים שונים.  LEDשל נורות  ומערך 2CO(. כמו כן, הבקר שולט על ברז לאספקת pH) חומציות וחיישן טמפרטורה

 המידע. Megunolink Proוהמידע המוצג וממשק השליטה תוכנתו בתכנת  Arduinoהתכנות לבקר נעשה בתכנת 
 .Excel -ו R ,Matlabעל ידי המערכת נותח בעזרת  ףשנאס

מערכת הבקרה ושליטה כוללת שני מודולים עיקריים; הראשון הינו שליטה באור הכולל הקרנת אור בהתאם לקלט 
שתמש )מצב הארה, יחס צבע אור אדום: כחול, יחס כמות אור לתא(, מדידת האור משני צדי מתקן הגידול, חישוב ריכוז המ

והתאמת עוצמת האור לריכוז האצות המחושב. המודול השני אחראי על שפותח האצות בהתאם למודל הדטרמיניסטי 
באמצעות פתיחה וסגירה  איזון של רמת החומציות מדידה רציפה של הטמפרטורה והחומציות בתרבית. כמו כן, מתבצע

בתרבית, אשר משתנה בזמן תהליך החומציות אשר מספק מקור פחמן התומך בגידול ומעלה את רמת  2CO של ברז
סינתזה. לשם כך, נקבע ערך מטרה לרמת החומציות, אשר מתעדכן באופן שוטף בהתאם לרמת האור המסופקת -הפוטו

 אלגוריתם הבקרה נבחן ותוצאותיו נבחנו להיות כעקביות והגיוניות.וריכוז האצות בתרבית. 

ניתוח של המידע שנאסף נעשה בכמה חלקים של המחקר: )א( אימות של הנחות המחקר, )ב( פיתוח פרוצדורת כיול 
ידול המתרגמת את קריאות חיישני האור למונחי קרינה פוטו סינטטית ובנוסף מעריכה את בליעת האור על ידי מתקן הג

)ג( התאמת הפרמטרים במודל הדטרמיניסטי לתצפיות שנאספו באמצעות המערכת ונמדדו  -אצות( ו-)בהעדר מיקרו
 במעבדה בהתאמה.

, מרקוב שרשראות, סטטיסטיות שיטותאצות, מערכת שליטה, מערכת בקרה, אלגוריתם שליטה, -: מיקרומפתח מילות
  .אור פיזור, אור מעבר, אור בליעתארדואינו, 
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