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Abstract

This thesis focuses on the problem of recognizing objects in agricultural environments through
computer vision. This problem has been studied for many decades. However, few commercialized
agricultural applications use computer vision. A major hindrance to commercialization is the
relatively low levels of accuracy caused by the unstructured, highly variable and complex crop
environment. Hence, in many parts of the world there is low adoption of agricultural applications
using computer vision.

Promising advancements in deep neural network algorithms have shown impressive performance
in solving many problems of image recognition in many fields. However, in agriculture deep
learning research has been more scarce. Therefore, this thesis investigates the different aspects in
implementing deep neural networks for image recognition tasks in agriculture.

Two tasks were pursued in this thesis. The first task dealt with classifying images of potato tubers
into four disease classes, as a basis of a sorting application. The second task focused on detecting
tomato flowers in images for a drone pollinator. Data was acquired specifically for this thesis and
served as training data for the deep learning algorithms. Both image recognition algorithms for the
two tasks are based on deep convolutional neural networks. These types of deep neural networks
have shown major improvements in image recognition performance in general and in detection
and classification tasks in particular. Adjustments were made in order to adapt the algorithm to the
specific tasks.

Results show high detection and classification accuracy, slightly better or comparable to other
similar tasks. An exact comparison is hard to present due to the many different methods and
performance measurements used in the literature.

The main contribution of this thesis is an empirical evidence a deep neural network framework
can produce good results in image recognition tasks in agriculture. With further fine-tuning of the
algorithm, through more data or otherwise, this approach could potentially be used to develop
applications that automate and enhance the performance of agricultural tasks.
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1Introduction

1.1 Description of the problem

As humans, we see the world around us easily. We can segment an object from its background and
identify it regardless of the lighting or shading of the scene. We can recognize shapes and colors
effortlessly, and in pictures with other humans in it, we can relate to their feelings and even guess
their emotions. However, computer vision systems and algorithms have many difficulties perceiving
the world around them as we do [88].

Computer vision in agriculture (agrovision) has been studied intensively for a few decades now.
Agrovision systems have been developed for many agricultural tasks. However, despite the intensive
research and development, commercialized applications that use agrovision are scarce [43]. The
main reasons are a) variable and uncertain outdoor environment, mainly due to lighting and
illumination conditions; b) complex and variable plant color, texture and shape structure; and
c) the required speed and robustness in an agricultural application, leading to higher costs compared
to human labor [22, 23, 46, 57]. These obstacles reduce performance in a basic and crucial step -
detecting the target object and classifying it in field conditions, and make it hard for the agrovision
systems to compete against manual labor [2].

Many approaches have been studied in order to address the recognition problem. Object recognition
is about attaching semantic category labels to objects and scenes in a given image [55], mainly
using different types of sensors and their combination with computer vision algorithms. Sensors
such as color cameras, stereo cameras, and spectral or hyper-spectral cameras are used for image
acquisition. These sensors mostly differ in the amount and type of data they acquire in every
image, affecting acquisition and analysis time, and their cost [23]. In this thesis all algorithms were
developed with the intention to analyze simple images acquired through simple off-the-shelf RGB
cameras.

Along with the sensors, various computer vision algorithms are used for recognizing the target
object, or in other words detecting and classifying it. Recognition algorithms rely on several types
of features, derived from the image. Features such as color, texture, shape and their combination.
Hand engineering these features have been abundant in the literature [42, 23, 43]. Yet in recent
years the use of automatically feature learning algorithms such as deep neural networks and
evolution constructed features have been steadily increasing due to their impressive performance
[4, 66, 59, 51].
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In recent research on object recognition in agriculture, focusing on fruit targets, researchers
reported accuracy of detection algorithms were from 70% to 92% for citrus and apples [23], and
85% average detection and localization success [2]. Most researchers in these projects used hand
engineered features for the recognition tasks. Both pointed out that an increase of accuracy and
robustness of algorithms is needed in order for them to be implemented in real world applications.
Furthermore, both noted that the comparison of the performances of methods is hard due to lack of
a benchmark datasets and quantitative evaluation measures definition. Therefore, a comparison of
the performance between recognition algorithms in general and between algorithms using hand
and automatic engineered features is complicated. In this thesis the image recognition algorithms
developed focuses on an automatic feature learning methods using deep learning.

Deep learning is a machine learning method used to learn representations (i.e. features) from raw
data automatically, for detection or classification tasks [49]. In 2012 a group of researchers from
Toronto used deep learning to train a Deep Convolution Neural Network (DCNN) which won the
Large Scale Visual Recognition Challenge (ILSVRC) competition by improving the classification
of the ImageNet database by more than 10%. They achieved a top-5 error rate of 15.3%, while
the second best achieved 26.2% error rate on classifying 1.2 million high resolution images into
1000 different categories [47]. Since then, major technology companies initiated research and
development projects in the field of DCNN and have been implementing them in their products
and applications [49]. In agricultural application DCNN have been increasingly used only in recent
years [4, 73]. This thesis’ goal is to investigate and apply DCNNs for agricultural recognition tasks
and applications.

1.2 Research Objective

This research focuses on developing, implementing and training Deep Convolutional Neural Net-
works for object recognition in two specific agricultural applications, both using RGB images
acquired by various off-the-shelf cameras. The first application is to detect tomato flowers in
greenhouse conditions for a drone pollinator. The second, is to detect and classify potato tubers’
diseases for a potato sorting application. The objective was to develop robust algorithms for the
two tasks with high accuracy and while minimizing the requirements of acquisition devices and
conditions.

1.3 Thesis Structure

This thesis begins with a literature review (chapter 2) of computer vision research in general (2.1),
delving deeper into the research and algorithms applied to the agricultural field (2.2). Next a review
of deep learning focused on deep learning for image recognition is presented (2.3), following the
recent advancements of deep learning in agriculture (2.4). Methodology of the two main research

1.2 Research Objective 2



conducted as a part of this thesis is depicted in chapter 3. The potato disease detection is described
in chapter 4. The tomato flower detection research is described in chapter 5. Conclusions and
future research are discussed in chapter 6.

1.3 Thesis Structure 3



2Literature Review

2.1 Computer Vision Overview

Computer vision is an interdisciplinary field involving artificial intelligence, neurobiology, signal
processing and more, that aims to duplicate human vision by perceiving and understanding an
image or a video through pixels and their relations. Despite the ease in which humans perceive the
world, interpreting an image as we do is a challenging task for computers due to several reasons.

First, transforming the 3D world to a 2D picture causes inevitable loss of information. The geometric
structure of the eye or camera and the projective transformation, the main process of capturing an
image, results a misperception of the distance of objects. Big far-away objects and small close-by
objects can appear the same size and can be interpreted the same. Humans use long gathered
knowledge and reasoning to solve this problem almost instinctively. However, computer vision
systems have not yet been as successful [74].

Second, while measuring the real world computer vision systems captures a huge amount of data in
the form of images or videos, a large part of the data can be considered as noise, making it hard
and more complex for computer vision processes to understand the image and to perform tasks in
real-time. In addition, the brightness measured in an image, which in theory could have provided
physical information on objects, gives us little useful information, due to the fact that brightness is
composed of many variables, and the dependencies between them are hard to decipher from pixels
alone [24].

Finally, a computer analyzes the image through a keyhole, pixel by pixel, which makes it hard
for it to understand the whole picture. Nevertheless, there has been impressive development in
computer vision capabilities since its beginning. Today computer vision is used in a wide variety of
applications, such as in medical imaging, autonomous cars, face detection, machine inspection for
quality assurance and many more [83].

The process of computer vision applications include the acquisition of image data, followed by the
processing and analysis of that data, and ending with interpretation of the image [26].
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Figure. 2.1: Computer vision main process.

2.1.1 Image acquisition

Image acquisition and digitization is the process of capturing and storing the image data with a
camera and a digitizing system. This process begins when the image in front of the camera is
obtained and transformed into a matrix of discrete picture elements called pixels [88]. Each pixel
receives a value that is proportional to the light intensity of that portion of the scene. These values
are then converted to an equivalent digital value by an analog to digital converter. The digital value
depends on the number of bits used in the vision system [26]. The simplest vision system is a binary
vision, the light intensity of each pixel is decided using a certain threshold. The threshold divides
each pixel into two values, black or white and thus a binary picture is assembled [83]. Similarly, a
greyscale vision system can determine between different shades of grey according to the number of
bits in every pixel [26]. More sophisticated vision systems can distinguish between greater numbers
of intensities, such as 24 bits called true color. This method provides 256 shades of red, green and
blue for every pixel, meaning 8 bits for each. As vision systems becomes more and more advanced,
they acquire more information about the scene that can be used in a variety of applications [24],
but is outside the scope of this thesis.

The basic and most usable image acquisition devices used in previous studies are color Charge-
Coupled Device (CCD) cameras or complementary metal oxide semiconductor (CMOS) cameras,
also called RGB cameras, and in early studies black and white cameras [42]. However, the use of
thermal, multispectral, hyperspectral, depth or a combination of the cameras is also investigated for
computer vision applications [23].

2.1.2 Image processing and analysis

After the image is acquired, the processing and analysis of its data begins. Several techniques have
been developed to understand image data. One of the first and most studied category of techniques

2.1 Computer Vision Overview 5



is called image segmentation [88]. It is a critical and essential component for image analysis. The
goal of this category of techniques is to define and separate points or regions of interest in the
image [26]. Image segmentation algorithms are based on either the discontinuity principle or
the similarity principle [8]. The idea behind the discontinuity principle is to extract regions that
differ in properties such as intensity, color, texture, or any other image statistics. The idea behind
the similarity principle is to group pixels based on a common property [83]. Thresholding is an
example for segmentation that uses the discontinuity principle. A predefined threshold divides
the picture into a binary value according to its intensity level. If a pixel’s intensity value is greater
than the threshold, it is given a binary value of white, 1 for example. Otherwise, if the pixel’s
intensity level is lower than the threshold, it is given a binary value of black, 0 for example [26].
The simplest approach to segment an image is based on the similarity assumption is that every
pixel is compared with its neighbor for similarity check (for gray level, texture, color, shape). If the
result is positive, then that particular pixel is “added” to the pixel and a region is “grown” like-wise.
The growing is stopped when the similarity test fails. These procedures of reducing the image to
a binary image or forming similarity regions aids in defining and identifying objects in an image
[83]. Another category in the processing of the image that normally follows image segmentation is
features extraction. Through these features the machine vision algorithm defines an object in the
image [26]. Some of the features extracted from the segmented image are simple features such as
area, width and length and others more complex ones, such as center of gravity, shape and aspect
ratio [83]. The combination of a few features together usually describes the object in a satisfactory
way so as to understand and interpret the image and recognize objects in it [88]. Usually the
features are defined empirically, this requires expertise in the specific domain. Many techniques
have been developed for feature extraction [3, 28, 53]. Modern computer vision algorithms such as
deep convolutional neural networks extract features automatically from images through supervised
learning (reviewed in section 2.3.1) [27].

2.1.3 Image interpretation

Based on the extracted features, image interpretation is usually the final stage and objective of the
machine vision system [74]. The main goal of this stage is to recognize the objects in the image by
comparing it to predefined models or standard values. The most common and simple technique
is template matching. This method compares one or more features extracted from the image
to a predefined model or template representing the object of interest [26]. More sophisticated
techniques involve machine learning, artificial neural networks and many more methods that offer
solutions to the interpretation and classification of an image [24].

2.2 Computer Vision in Agriculture
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2.2.1 Overview

[80] predicted that due to the combined factors of increased international competition in the
agricultural section, advances in computer technology, the low cost of new technologies and the use
of intelligent and automated machines applications in agriculture was supposed to be imminent.
Indeed, many tasks have been automated since, and computer vision has a major role in the
automation of these tasks [91]. Tasks such as autonomous navigation and obstacles avoidance [50],
precision and selective spraying [90], weed control [82], yield estimation [44], ripeness and quality
evaluation [22], meat, fish and ham quality control [40, 52] and fruit detection for harvesting and
counting [23, 42, 43] have been automated through agrovision or researched for automation using
agrovision. Still, many problems hinder the widespread commercialization of these tasks [22, 46,
57].

Figure. 2.2: Examples of computer vision applications in agriculture

2.2.2 Object recognition in agriculture

Detection, classification and localization of objects in an image is a crucial aspect in the development
of agricultural applications. In order to harvest fruits or vegetables, navigate in the field, spray
selectively etc. the objects’ location in an image must be determined. According to the task, an
object’s 3D location has to be calculated, obstacles in the way have to be detected and object’s
characteristics such as ripeness and size have to be estimated. For some applications the presence
and classification of diseases is sought as well [23, 22, 42]. Significant object recognition research
has been conducted on a variety of fruits and vegetables. According to Jimenez et al. [42] the
major steps involved with object recognition in agriculture are a) Image acquisition b) Image
preprocessing, for restoration or enhancement and c) Image analysis to detect the target.

2.2 Computer Vision in Agriculture 7



The major challenges with object recognition in agriculture is associated with the highly uncon-
strained, unstructured environment in which the target objects are situated [43, 23, 42, 2]. The
main attributes of this environment are: a) the variability of the objects’ colors, shapes, sizes,
textures, and reflectance characteristics; b) the highly unstructured scenes with great levels of
uncertainty and complexity; c) the changing illumination and lighting conditions; d) and the
inevitable occlusions created by other fruit or vegetable, or by the surrounding leaves and branches
[42, 23].

2.3 Deep Learning for Image Recognition

2.3.1 Deep Learning Overview

Deep Learning (DL) is a type of representation learning [25]. These kinds of learning methods
allow the computer to create computational models that learn internal representations (i.e. feature
vectors) of raw data so as to discover the specific representations needed for a detection or
classification task. Until the introduction of such representation learning techniques, researchers and
engineers carefully designed and crafted feature extractors, requiring sufficient domain knowledge
to engineer good extractors that transform the raw data into useful internal representations [76].
This process was than followed by a linear or kernel learning algorithm, such as a support vector
machine or regression, that used the human-crafted feature vector to produce a detector or a
classifier [49]. These feature extractors were usually designed by the researcher’s intuition about
breaking down the problem into sub-problems and multiple levels of representation.

A typical way to extract features in object recognition problems in images begins by transforming
the raw pixels into gradually more abstract representations. For example, starting by a search for
edges in the image, followed by forming more complex shapes, up to identifying more abstract
categories which form the objects and finally putting them all together to recognize what is needed
in the image (see figure 2.3). This process is difficult not only due to the challenge of finding the
appropriate representations for each level of abstractions, but also because of its task specific nature
[7].

For high dimensional data inputs such as images, highly varying mathematical functions are needed
in order to express the intricate statistical relationships, for successful object classification or
detection. An object, such as a flower, can be resembled by many possible images which can differ
from each other greatly if investigated at the pixel intensity level or through edges and shapes
alone [7]. Thus, in order to capture these complex feature combinations a hierarchical processing
structure can be used to form suitable representations of the data, according to the "neuron doctrine"
of perception [5]. Therefore, many researchers have been trying to develop deep architectures
learning algorithms for many years [76]. These architectures learn feature hierarchies automatically
from the raw data. This capability is especially important for high levels of abstractions, which are

2.3 Deep Learning for Image Recognition 8



Figure. 2.3: The raw input image is being transformed into gradually higher levels of representation,
representing more and more abstract functions of the raw input, e.g., edges, local shapes, object
parts, etc. until a very high level of abstraction we can expect from a human. Figure inspired by
[7].

harder for researchers and engineers to characterize specifically [7]. This thesis’ uses concepts and
approaches from the prevalent sub-field of deep learning architectures - Deep Learning in Artificial
Neural Networks (ANNs).

2.3.2 Deep Learning in Artificial Neural Networks

ANNs are computing models biologically inspired by the study of neural computation in humans
and other animals. A standard artificial neural network consists of many simple, connected, infor-
mation processors called neurons [76]. These neurons operate as simple, non-linear components
that transform the representation at one level of the hierarchy, starting from the raw data, into a
representation at a higher slightly more abstract level. Given enough of these hierarchical transfor-
mations, very complex functions can be learned [49]. However, ANNs’ architecture were not always

2.3 Deep Learning for Image Recognition 9



deep, and only until several breakthroughs both in artificial intelligence (AI) and neuroscience and
the collaboration between the fields, DL in ANNs could have become implementable [29]. The
introduction of the backpropagation algorithm for training, convolutional neural networks for image
recognition and dropout layers are important examples [47, 76]. In addition to the algorithmic
improvements, the utilization of graphical processing units (GPUs) for deep learning tasks enabled
successful scaling up of deep learning algorithms. The use of GPUs allowed the implementation of
bigger models which can be learned from larger sets of data [67, 11].

2.3.2.1 The Artificial Neuron

The artificial neuron was initially proposed by Rosenblatt et al. [71] and was a model to describe
how the brain perceives and saves information of its surrounding. The model is loosely inspired
by the biological model of a neuron (see figure 2.4). Each neuron receives input signals from
its dendrites, calculates an output signal along its axon and "fires" an output through the axon
terminals if a certain threshold is passed.

Figure. 2.4: Model of biological neuron [89]

The artificial neuron model is composed of an input vector X that is multiplied by a weights vector
W , summed and than inserted into a certain activation function which determines if the neuron is
activated and an output is generated (see figure 2.5). The main idea is that the synaptic strength
(e.g. W ) is learnable and determines the amount of influence an input has on the final output of the
artificial neuron. There are many types of activation functions. Here are depicted three of them.

Sigmoid The Sigmoid non-linearity activation function has the following mathematical expression

σ(x) = 1
1 + e−x

(2.1)

2.3 Deep Learning for Image Recognition 10
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Figure. 2.5: Model of artificial neuron

The Sigmoid function takes the input value and transforms it between 0 and 1. This transformation
causes the gradient in the extremes, 0 or 1, to be nearly zero (This phenomena is also called
saturating non-linearity). Thus, the learning procedure fails to modify the weights parameters
adequately.

Hyperbolic Tangent The Tanh non-linearity activation function has the following mathematical
expression

tanh(x) = ex − e−x

ex + e−x
(2.2)

The tanh transforms input values number between -1 and 1. Thus, it suffers from the same
saturating non-linearity as the Sigmoid activation function.

Rectified Linear Unit The ReLU non-linearity activation function has the following mathematical
expression

ReLU(x) = max(o, x) (2.3)

The ReLU has become very popular in recent years as it does not suffer from saturating non-linearity.
In addition it accelerates convergence, does not suffer from vanishing or exploding gradients and
the function is computed relatively cheap compared to other activation function. However, it does
not allow negative information [47].

A formal mathematical equation of the computational process of an artificial neuron j with inputs
Xj , weights Wj and bias bj is displayed in equation 2.4.

αj =
n∑

i=1
wijxi + bj (2.4)
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The final output of the artificial neuron with a ReLU activation function would be computed as
follows:

yj = ReLU(αj) = max(o,
n∑

i=1
wijxij + bj) (2.5)

2.3.2.2 The Artificial Neural Network

Combining artificial neurons together and arranging them in layers form artificial neural networks.
The motivation behind this kind of structure is depicted in 2.3.2 and is also inspired by the biological
brain. Nonetheless, the human brain has an approximate of 86 billion neurons that are connected
by some 1014 − 1015 synapses [33], so ANNs, which are comprised of much less components, are
only a very simplistic model of the brain [29]. A typical ANN is constructed of at least an input
layer and an output layer. Layers in between these two are usually called hidden layers. Each layer
is comprised of artificial neurons which are connected to each neuron in the next layer, additionally
called fully connected layers (see figure 2.6).

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure. 2.6: An example of an ANN consisting of 2 fully-connected layers (one hidden layer of 5 neurons
and one output layer with one neuron). In an N-layer neural network we do not count the input
layer

The output of the network is computed sequentially, layer after layer. This type of sequential layers
structure allows ANNs to be evaluated by using matrix operations, an easy and efficient computation
process. Therefore, in practice the input layer’s output is computed by a matrix multiplication of
the input vector by the weights matrix, followed by an activation function. Thus, the output of each
layer is the input of the consecutive layer. For example, a full forward pass of data processing of the
ANN in figure 2.6 amounts to simply two matrix multiplications interwoven with the the activation
functions [25].

In theory an ANN is a universal approximator. That is, given any continuous function f(x) and
a positive non-zero ε there exists a G(x) ANN with one hidden layer and a non-linear activation
function such that ∀x,|G(x)-f(x)|>ε [12]. Nevertheless, even though one hidden layer in a ANN
can approximate any function in theory, the ANN may not be able to learn and generalize correctly
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[7]. In addition the ANN could be infeasibly large for implementation and in practice that is the
case. Many empirical studies show that shallow ANNs, with one hidden layer, perform poorly in
many cases compared to deeper architectures [25]. In recent years deep ANNs have been making
major advances in solving problems that have been studied in the AI community for years. Problems
such as image recognition, speech recognition, natural language understanding and many more
[49].

2.3.2.3 Training an Artificial Neural Network

ANNs’ ability to learn representations of data is their main asset. The goal of the learning stage is
to find the optimal parameters of the network so the network produces the desired output. The
learned parameters are the weights of the network, W , and the biases, b. Learning is carried
out by feeding the training data into the network, called the feed forward stage, and in iterative
process adjusting the weights of the network to produce better results, also called the backward
stage. The ANN is considered to be trained after reaching the desired performance level or after a
predetermined time period.

In this thesis learning is done by training a deep artificial neural network (DNN) on labelled datasets.
The datasets include images with the desired objects for the recognition tasks and their labels. This
type of learning is called supervised learning. Learning from an unlabeled dataset is referred to as
unsupervised learning and require different and specialized algorithms.

Training a DNN for image recognition requires to determine a few key concepts - a score function, a
loss function and an optimization method.

Score function The score function maps the raw data input into a score, determining the output’s
success in the task. For example, in classification tasks, the score function refers to the class
score of the raw input data.

Choosing the architecture for the network is actually defining the score function. As the input data
will flow through the network and change according to the network’s parameters and structure and
output a score in each output neuron.

Loss function The loss function quantifies the agreement between the predicted scores of the
network to the ground truth labeled data.

Determining the loss function is another decision to make when training an DNN. In general there
are many loss functions that can be used and usually the choice depends on the task [41]. For
image recognition cross-entropy or hinge loss and their variations are the most commonly used
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functions. For example, if we abbreviate f = f(W,xi) as the activation function of the output layer
in a DNN than the cross-entropy function loss will be a softmax function:

Li = efyi∑
j e

f
i

(2.6)

followed by a cross-entropy function, together typically called a softmax classifier:

C = −
Nc∑
c

Lclog(Li) (2.7)

where the correct target label is Lc.

Optimization While the loss function quantifies the quality of a particular set of weights of the
network, the aim of the optimization is to find the set of weights that minimizes the loss
function.

The core idea of optimization is to search for the best next set of weights in an iterative and effective
process. Given the data loss of the output layer it is possible to calculate the derivative for each
neuron in the output layer that will minimize the loss function. Because the loss is composed of a
sum of sub-functions evaluated at different sub-samples of data, optimization can be made more
efficient by taking gradient steps with respect to the individual sub-functions, i.e. stochastic gradient
descent (SGD). Although it has no theoretical proof of good convergence, SGD converges to local
minima in practice [45]. Furthermore, based on the chain rule for derivatives it is possible to adjust
the other interconnected neurons of the network through backpropagation [32]. The procedure
relies on the fact that the derivatives (or gradients) of the loss function with respect to the input of
the ANN can also be computed by working backwards from the derivative of the output of the ANN
or any other preceding layer, hence backpropagation [49].

Over the years many methods were developed for efficient stochastic optimization. Some were
utilized for DNNs as well. Other than SGD, some optimization algorithms rely on more advanced
techniques such as momentum, second order approximation and adaptive learning rates [85, 45].
They are known to converge faster and their parameters are sometimes easier to fine-tune. However,
each iteration of the algorithm take more processing time and use more memory.

After deciding on the DNNs architecture (i.e. score function), the loss function and the optimiza-
tion method and before training can begin there are a few more crucial steps to be made - the
initialization of the weights of the DNN and picking regularization methods.
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Initialization The process of deciding on the initial values of the weights and biases of the DNN.

As optimization methods in DNNs are usually iterative, initialization affects strongly the success
of the learning process due to local minima cnvergence. The initial weights can determine how
quickly the algorithm converges, or will it converge at all [62]. Most initialization techniques today
are heuristic and simple because neural network optimization is not yet well understood. Therefore,
these heuristics are based on achieving good results at the beginning of learning but it is not well
understood if those properties are kept throughout the whole learning process. One property that is
known to be beneficial for initialization is that the initial weights of two artificial neurons with the
same activation functions need to be different from one another if they are connected to the same
inputs [25]. So DNNs are generally initialized with Layer-sequential unit-variance (LSUV). This
method initializes each weight of the DNN as a Guassian random variable with a mean value of
zero and standard deviation of 1√

ninputs
, biases are initialized to zero as well [58].

Another option for weights initialization is through a method called - transfer learning. This method
uses the values of weights and biases of a pretrained DNN as the initial weights for training. This
method exploits what has been learned in one setting for the task in hand. The assumption is that
when using transfer learning, many of the factors that explained variation in the first setting are
relevant for the pursued task [25]. In image recognition problem many visual objects share low
level features such as edges, shapes and other geometric features, which can be used to form higher
level features for recognition [62].

Regularization A central problem in machine learning which takes place in deep learning in neural
networks as well, is overfitting. In such cases the learning process adjusts the DNN to features
specifically apparent in the training data, which can cause the trained DNN to generalize
poorly and perform badly on unseen test data . To solve this problem many regularization
techniques were developed that make modifications in the learning algorithm, intended to
create DNN models which generalize better [25].

The main method in which overfitting is identified is by splitting the training data into a training and
a validation set. Testing the DNN model during training on the validation set, can show error rates
on data independent from the data the model is trained on. This way overfitting can be recognized.
At a certain stage of training, the algorithm begins to adjust the weights to fit the training data,
which can be seen after the stopping point in figure 2.7. At this point the validation error begins to
increase while the training error continues to decrease. Thus one of the most popular and effective
method to combat overfitting is to stop training when the validation begins to increase. This is
called early stopping and is carried out by saving a copy of the model each time it is tested on
the validation set, enabling to choose the model which performed the best over the validation set.
In addition there are methods to penalize parameter size, augment data, use dropout layers, use
ensemble of DNNs and more [25].
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Figure. 2.7: Graph comparing training and validation errors as training progresses.

2.3.3 Deep Convolutional Neural Networks

2.3.3.1 Overview

Convolutional neural networks (CNN) are a specialized kind of neural network for processing data
that has a known grid-like topology [25]. Their name is derived from the mathematical operation
called discrete convolution which is a special kind of linear operation between matrices, used in
CNNs. Their architecture is inspired by research of the mammalian visual cortex that revealed how
visual input is filtered and pooled in a hierarchical structure [36]. [19] modeled those discoveries
to an artificial neural network visual processing mechanism which is the basis of modern CNNs [29].
Therefore a typical usage of CNNs is in recognizing objects in an image. Accordingly, one of the
major breakthroughs in deep convolutional neural networks (DCNN) was a DCNN called AlexNet
developed for an image recognition competition called ImageNet Large Scale Visual Recognition
Challenge (ILSVRC). The ILSVRC is a benchmark in object category classification and detection on
hundreds of object categories and millions of images [72]. In 2012, a group of researchers from
Toronto won the competition by improving the classification of the ImageNet database by more
than 10%. They achieved a top-5 error rate of 15.3% while using AlexNet, while the second best
achieved 26.2% error rate [47]. This leap of classification accuracy increased interest in research
and development of DCNNs and since, DCNNs have been used to solve object recognition problems
in many fields [49].

2.3.3.2 Architecture of CNNs

CNNs are designed to process input data in the form of matrices or tensors1. For example, color
images composed of three matrices i.e. a tensor, containing information of the pixel intensities

1Tensors are high dimensional generalizations of matrices. Tensors of order zero are simply scalars, tensors of order one
are vectors and so on.
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in the red, green and blue channels are common inputs for CNNs. The input is processed by
propagating through the CNN’s layers, which modify it according to the characteristics and the
architecture of the layers. This processing creates a representation of the input data that can be
used for different tasks. CNN’s architecture greatly affects the processing of data and are key for
improving CNNs performances. New architectures are developed rapidly. Every few weeks to
months, a new best architecture for a benchmark database is announced, making it hard to specify
a one best architecture [49]. Still, most of them consist of three main layer types: convolutional
layers, pooling layers and fully connected layers [27]. Each layer plays a different role in the overall
design of the network.

Convolutional layer The convolutional layer applies a convolution operation to the input and
passes the result to the next layer. The main purpose of the convolution layer is to detect
local features or a conjunction of local features by applying sets of filters to the input. The
hierarchical structure of the convolutional layers allow the composition of high-level features
from lower-level ones. In images, a combination of edges form shapes, shapes assemble into
parts, and parts compose objects.

The convolutional layer takes the input image x and a set of filters F = {f1, f2, ...fNk
} and applies

the convolution operation, ⊗ between them. This operation produces a set of Nk feature maps h:

hk = fk ⊗ x (2.8)

Each filter is a small 3D or 4D tensor (depending on the dimension of the input and output) learned
during training, much smaller than the image itself. These filters are composed of artificial neurons
described in section 2.3.2. A filter that correlates well with a local region in the image produces
a strong response which is apparent in the feature map (see figure 2.8 for an illustration of the
process). In other words, a filter searches for a certain kind of feature in small local regions in the
image and if the feature is detected it produces a response that is transferred to the feature map.

The convolutional layer exploits two main characteristics typical to images. First, nearby pixels in
images are often highly correlated and form distinctive local features. Second, these local features
are invariant to location in the image. So the fact that the architecture of the convolution layer takes
into consideration these characteristics, bring about three main advantages: a) weight sharing over
the entire image reduces the memory requirements of the model and the number of computational
operations. b) local connectivity learns correlations among neighboring pixels, and c) equivariance
to translation, meaning that if the input changes, the output changes in the same way. Hence, if
an object is moved in the image its representation will move the same amount in the output [27,
25].
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Figure. 2.8: The operation of the convolutional layer [27].

Pooling layer Although the role of the convolutional layer is to detect local conjunctions of features
from the previous layer, the role of the pooling layer is to merge semantically similar features
into one [49]. This merge provides invariance to slightly different input images and to relative
positions of the features.

The pooling layer replaces nearby outputs of the previous convolution layer with a summary
statistic, typically average or max operations. Similar to the convolution layer, pooling is translation
invariant, because their computations take neighboring pixels in feature maps into account (see
figure 2.9). In addition, the summary of a response from a whole neighborhood to one statistic
value reduces the dimension of the representation. [75] conducted a comparison between max
and average pooling and found that max-pooling can lead to faster convergence, select superior
invariant features and improve generalization. Formally, pooling executes the chosen summary
operation over the feature map, in a small spatial region R:

pR = max
i∈R

hi (2.9)

There are many other approaches related to the pooling layers. One approach called spatial pyramid
pooling (SPP) deals with the fact that CNNs require a fixed-size input image. The SPP can extract
representations in a fixed length from a previous layer, allowing for arbitrary region or image scale,
size and aspect ratio.

Fully connected layer Following multiple convolutional and pooling layers, the CNN typically
ends with one or more fully connected neural network layers. These layers perform like a
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Figure. 2.9: The operation of the pooling layer [27].

regular ANN and are the last process before the final classifier. They provide the high-level
reasoning of the network and are designed according to the task at hand.

Fully connected layers convert the 2D feature map from the last pooling layer to a feature vector, for
further processing (as seen in figure 2.10). Although there are usually only a few fully connected
layers they contain approximately 90% of the parameters [27].

Finally, the last fully connected layer is fed into a classifier which represents the target labels y as a
vector, hl where l is the last layer of the model, with Nc elements, where Nc refers to the number of
classes to discriminate between. A classifier, such as the softmax classifier, is then calculated for
each element in the vector hl:

ŷc = softmax(hl
i) = ehl

i∑
j h

l
j

(2.10)

When training the network, a loss is calculated. A softmax classifier uses a cross-entropy loss for
optimization:

C = −
Nc∑
c

yc log(ŷc) (2.11)
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Figure. 2.10: The operation of the fully connected layers [27].

Figure 2.11 shows the general architecture of CNNs. The configuration of the various types of
layers has a major effect on the classification performance. Some of the most successful CNN
architectures try to replicate the hierarchical organization of mammalian cortical systems, with both
convergent and divergent information flow in successive, nested processing layers [29]. Similar to
the convolutional and pooling layers and the successive non-linear computations in layers.

Figure. 2.11: A general architecture of layers in a CNN [27].

A few remarkable CNN architectures have advanced CNN’s performances. AlexNet [47], as noted
before, was an important architecture that set the tone for many following researchers. It consists
of five convolutional layers with intermediate pooling layers followed by three fully connected
layers and produced state-of-the-art results on the huge ILSVRC2012 database. Still, it had two
major drawbacks: a) a fixed image size is required, and b) there was no clear understanding as to
why it performed so well. In order to gain insight about the intermediate layers, [93] developed a
visualization technique which enabled them to modify their network’s configuration to outperform
AlexNet and win first place in the ILSVRC in the succeeding year. Those visualizations reveals the
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features learned in training are interpretable patterns, such as edges, contours and shapes as can be
seen in figure 2.12.

Figure. 2.12: A visualization of the first and second layers of the CNN trained and visualized by the technique
developed in [93]. Reconstructing patterns from the validation set that caused high activation
values in a the first and second feature maps created these visualizations. Near every feature
map in the figure the corresponding image patch is shown. It is clear that the feature maps
that the model learned are distinctive and intuitive.

Deeper neural networks were assumed to provide better results. Recently, they have even been
proven to provide better or comparable results to shallower models [16]. Accordingly, the next
breakthroughs in classification performance were deep architectures such as the VGG [78] network
and the GooLeNet [86] network, which had 16-30 and 22 layers respectively. However, training
these very deep networks became harder. Vanishing or exploding gradients became a problem,
solved with the aid of intermediate normalization layers. Nevertheless, a new problem arised,
degradation, which lead to higher training errors for deeper networks not caused by overfitting
[84]. So the next breakthrough came with the introduction of the deep residual learning framework.
[30] developed a deep residual neural network called ResNet. The core idea of ResNets is to create
identity shortcut connections between layers that allows skipping one or more layers. Skipping
unnecessary layers is learned during training time (see figure 2.13 for the main building block that
was added).

Based on the deep residual network framework, a ResNet with 152 layers won the first place in the
ILSVRC and the Common Objects in Context (COCO) 2015 in several computer vision detection
and classification tasks [30].

CNNs did not only achieve state-of-the-art results in image classification tasks, but were part of the
improvements in object segmentation and detection tasks. Further details in section 2.3.4.
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Figure. 2.13: Residual neural network building block [30].

2.3.3.3 Training CNNs

As in ANNs, CNNs are trained via a forward and backward stage. The forward stage represents the
input image and maps it into a score. In classification tasks, for example, this score represents the
prediction of the CNN about the input image class category. The prediction is than used to calculate
the loss cost according to the ground truth class of the image and the loss function chosen for the
network. Based on the loss cost the backward stage begins and gradients of each parameter of the
CNN are computed, updated and prepared to the next image. Training is complete after sufficient
iterations of forward and backward iterations.

In practice successfully training a deep CNN requires more than just good knowledge of what
algorithms exist and the way they work. The choice of an algorithm for a particular task at hand,
different methods of regularization, hyperparameters and the methods of training highly affect
overfitting and results in general [25]. In image recognition problems there are several commonly
used methods for successfully training CNNs and avoiding overfitting.

Weight decay Weight decay adds a term to the cost function to penalize the model’s weight
parameters size, preventing them to fit exactly the training data and suppress irrelevant
components of the weights, improving generalization [48].

Dropout When using dropout while training a CNN, on each forward pass of a training case,
artificial neurons are randomly omitted from the network with omission probability often
different than 0.5. This technique prevents complex co-adaptations on the training data,
meaning that the artificial neuron does not rely on its connections to other neurons [34].
Another way to view dropout is as an efficient way to implement ensemble learning, as every
training case is processed through a different network. There is a variety of improvements
and versions to the original dropout method, all working to decrease overfit and improve
generalization.
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Data augmentation Data augmentation is a technique used to generate additional training data
without the need to label or acquire more data. Simple and well known techniques are
cropping, rotating, and flipping input images producing more new images from the existing
labeled training data. More advanced method include changing the style of the image and
applying transformations corresponding to color and contrast and more.

Transfer learning Transfer learning refers to initializing the weights of the CNN with pre-trained
parameters, followed by adapting and fine tuning the last output layer according to the new
specific task. Many researchers use this method by initializing their CNN with the weights of
networks such as AlexNet, VGG and ResNet, which were successful in the ILSVRC competitions
[27].

2.3.4 Deep Learning for Object Detection

Object detection tasks are closely related to image classification, but differ in one main aspect.
When classifying an image all the pixel data in the image is utilized as the input to predict the class
of the object in the image. However, in object detection tasks, the position of object or objects must
be estimated prior to classifying the class of the object.

Shortly after the success of AlexNet [47] in the classification task, many researchers tried applying
CNNs for detection. A general approach is to generate many bounding boxes proposals as candidates
for objects and classify those using CNNs. Two main problems arise from this approach. First,
searching for potential objects in an image highly affects the performance of the algorithm, but
proposing too many and then classifying them is very computationally intensive. Second, involves
localizing the bounding boxes proposals to fit the object detected [77].

The most representative approach is the Regions with CNN features (R-CNN) [21]. It uses a selective
search algorithm [92] to generate bounding boxes proposals, extract useful features using a CNN
and classifying each with an SVM (see figure 2.14). Using the R-CNN scheme on the PASCAL Visual
Object Classes (VOC) 2010 dataset achieved a mean average precision (mAP) of 53.7%, compared
to the 33.4% of the than popular deformable part models [18]. The PASCAL VOC is a challenging
benchmark dataset most widely employed for the evaluation of object detection algorithms [17].
There are 20 object classes labeled and localized in this dataset. The goal is to predict the bounding
boxes and class of each object in the test images.

Following the improvements achieved by the R-CNN, two main research directions initiated. The
first, was to decrease the training and testing process in various methods such in [69, 31, 68]. The
second approach was to improve the accuracy of the bounding boxes proposals algorithms, such as
EdgeBoxes [94] and BING [10].
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Figure. 2.14: R-CNN algorithm overview [21].

2.3.4.1 Faster R-CNN

The Faster Regions based Convolutional Neural Network (Faster R-CNN) is a third evolution of the
network architecture and region proposal algorithm from [21] research from 2014. The original
R-CNN used a region proposal algorithm, such as Selective Search [92] or Objectness [1] for
detecting regions of interest (ROIs) in the image, as potential area containing the target object.
These ROIs would subsequently be the input to a CNN for extracting features for classification by a
support vector machine (SVM) see figure 2.15(a) for a visualization of the process. These methods
of ROI extraction, which are external to the CNN are usually computationally intensive processes
slowing the whole pipeline of the algorithm.

The second version [20] uses a different approach for classifying ROIs. Instead of applying a CNN
on each of the region proposals, the image is inserted fully to the CNN and its output is inserted
to a spatial pyramid pooling (SPP) layer [31]. Only ROIs obtained by a region proposal method
are used in the SPP layer (see figure 2.15(b)). This process omits the need to perform a whole
forward pass through the CNN for each ROI shortening execution time by a factor of 10 to 100X at
test time and 3X at training. However, it still requires an external region proposal algorithm – a
computational bottleneck.

The Faster R-CNN tackles this limitation. Furthermore, it creates a single pipeline for training. In
Faster R-CNN a Region Proposal Network (RPN) is added as a part of the network’s architecture
(see figure 2.15(c)). The RPN is a small fully connected convolution network which slides over
the output of the CNN’s last layer (a feature map), searching for objects and their location in the
feature map. The sliding network maps the feature map to a lower-dimensional vector, which in
turn is fed into two fully connected layers. A box-regression layer (reg) - fitting bounding boxes
around ROIs, and a box-classification layer (cls) - distinguishing between objects and non-objects in
the ROIs. These proposed ROIs are than classified into categories. Finally, the network’s outputs are
predictions of bounding boxes and the category of the object inside the bounding box. These ROIs
are created in a novel approach proposed in the paper. Each time the feature map is fed to the RPN,
an n× n spatial window slides over the feature map and maps those windows to the reg and cls
layers. Simultaneously k more region proposal (called anchors) in different sizes and shapes are
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created from the center of the sliding window, in order to search for a greater variety of object’s
shapes and sizes. During training, the RPN minimizes two loss functions: a) a box-regression loss
and b) a box-classification loss. Since the RPN is a part of the network, adding it came with little
cost to execution time and training time.

Figure. 2.15: The evolution of the Faster R-CNN algorithm: (a) Illustrates the feed forward pass of the
first version. Notice each bounding box proposal is fed through a CNN for classification; (b)
Illustrates the second version, where the original image is fed to one CNN and bounding boxes
proposals are extracted from the last feature map of the CNN; (c) Is the current Faster R-CNN
algorithm [21].

Faster R-CNN achieved state-of-the-art object detection accuracy on PASCAL VOC 2007 and 2012,
with a mAP of 73.2% and 70.4% respectively [69]. In this thesis an adaptation of the Faster R-CNN
[69] algorithm is used in order to detect tomato flowers.

2.4 Image Recognition in Agriculture Using Deep Learning

The fields of precision agriculture, agricultural robotics and others aimed at developing agricultural
applications has seen a rise of interest in implementing deep learning methods, especially CNN
based algorithms. Part of the reason is trying to replicate the successes of CNNs in other tasks such
as face recognition, segmentation of biological images, traffic sign recognition and the detection of
faces, text and pedestrians in natural images [49]. All these tasks had relative abundance of labeled
images which is crucial for successful training of deep CNNs. In agriculture the limited amount of
labeled images for specific tasks is an obstacle for using CNNs. In addition, the images acquired from
the unstructured real-world agricultural conditions are usually harder to interpret using computer
vision algorithms. However, some researchers invested resources and time in acquiring and labeling
many images for the CNN to learn from. The main tasks researchers are using CNNs in agriculture
are: fruit, vegetable or weed detection for harvesting, thinning and yield estimation and disease
detection and classification for disease control and treatment. The following includes a summary of
the main research for object and disease detection and classification using deep learning.
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2.4.1 Disease classification research in agriculture

Produce such as fruit, vegetables and tubers can carry pathogens that can produce disease which
affect processing and fresh market trade and sales [56]. Early and accurate disease detection
systems can aid in avoiding such cases. Moreover, it can improve the management of the crop and
can further prevent the spread of diseases [70]. Today, disease management has become even more
complicated due to the global market for produce. Diseases are transferred globally more easily and
new diseases occur in places where they previously were unidentified. Apparently most diseases
generate some form of manifestation in the visible spectrum which can be leveraged for detection.
Therefore, computer vision presents an opportunity to aid in disease detection and management
[81]. A recent paper on plant stress phenotyping reviewed many researches, most of them detecting
diseases in plants. However, except from one paper non used deep learning methods for the task
[79]. Table 2.1 presents the main relevant disease classification research utilizing deep learning for
the task.

Table. 2.1: Disease classification research in agriculture using deep learning

Ref Produce
#

Diseases
Sensors

# train
images

# test
images

Network
architec-

ture
Results

[81]

Pear, Apple,
Peach and
Grapevine

leaves

13
disease
classes

Images form
the web

30,880 2589 AlexNet
0.963

Accuracy

[54]
Rice leaves
and stems

10
diseases

Canon EOS 5D
Mark III digital
color camera +

scanned
images from a

book +
agricultural

pest and insect
pests picture

database

500 -
Based on
AlexNet

0.955
Accuracy

[59]
Leaves of
14 crop
species

26
diseases

Plant Village
dataset [37]

54,306 -
AlexNet

&
GooLeNet

0.993
Accuracy

[35]
Phalaenopsis

seedlings
(Orchid)

3
diseases

Sony XC-711
NTSC CCD

Color Camera
145 144

3-Layer
ANN

0.896
Accuracy

Table 2.1 shows that the state of deep learning research for plant disease classification is still at
its inception, as far as this short review encompasses. The studies presented show the potential of
deep learning for such a task. However, only 2 studies collected images especially for the research
in conditions relevant for the task. For that reason further investigation of applying deep learning
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algorithms on images from agricultural settings is important for evaluating their strength and
applicability for disease classification.

2.4.2 Object detection research in agriculture

As detailed in section 2.2.2, detecting objects in agricultural environment is an initial capability
for many application. Many agricultural applications such as robotic harvesters, drones for yield
estimation and more are still struggling to produce sufficient detection accuracy on large and varied
datasets, many performed tests on small datasets taken at a specific time of the day not resembling
a common day on the farm [2, 23].

Table. 2.2: Agriculture object detection research using deep learning

Ref Produce Sensors
# train
images

# test
images

#
objects

Algorithm Results

[73]

Sweet
pepper

and rock
melon

Multi-
spectral

camera, the
JAI AD

130GE and
Microsoft
Kinect 2

209 48 -
Faster
R-CNN

0.83 F1
score

[4]

Apple

PointGrey
LadyBug +

strobe
lightning

729 112 4.5±2.9
Faster
R-CNN

0.904 F1
score

Mango

Prosilica
GT3300c +

strobe
lightning

1154 270 5.0±3.8
Faster
R-CNN

0.908 F1
score

Almond
Handheld

Canon
EOS60D

385 100 7.4±5.6
Faster
R-CNN

0.775 F1
score

[64] Weeds

Multi-
spectral

camera, the
JAI AD 130

1,600 - -

NDVI
theshold
+ 1 layer

CNN

0.913
mAP

[65] Wheat
consumer

grade 12MP
camera

415 105

4,100
ears

48,000
spikelets

Stacked
hour-
glass
CNN
[60]

0.83-0.89
for spikes
0.88-0.96

for
spikelets,
F1 score

[66] Tomato
Synthetic
generated

images
24,000

2,400
+ 100

real
images

-
modified
Inception-
ResNet

0.91
Accuracy
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Bargoti and Underwood [4] are the only researchers, as far as was found, which used a large and
varied dataset, consisting of thousands of target object examples for its training and evaluation. Yet
the images of apples and mangoes were acquired with sophisticated sensors and an external strobe
lighting, making the detection problem less complex. Performance on almond images acquired with
a simpler sensor, was accordingly significantly lower (see table 2.2).

Although deep learning research for image recognition in general and object detection in particular
has shown strong results in many fields, there are some drawbacks and obstacles. The underlying
theory and understanding of which architectures work better than others is not well understood.
And despite progress in deep learning theory and some visualization techniques, there are many
studies trying and succeeding in fooling DCNNs [61, 87]. Furthermore, because larger DCNNs
trained on more data generally perform better, computational resources and the amount of labeled
data have become a bottleneck for progress [27]. These drawbacks apply in the agricultural field
as well, and some limitations are even more severe. For instance, acquiring enough labeled data
for a specific task such as detecting fruit, can be very time and resource intensive. Moreover, the
acquisition process has to be done for each new target object. Still there are some solutions to the
problem, such as augmenting data through synthesizing images [6]. In conclusion, using deep
learning with its limitations, has shown good results in many fields and is showing promising
potential in the agricultural field as well.
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3Methodology

3.1 General

3.1.1 Problem Definition

The research goal was to implement deep Learning algorithms in object recognition tasks for
agricultural applications. Two tasks were pursued, an object classification task and an object
detection task, both in real-world uncontrolled lighting conditions using simple off-the-shelf RGB
cameras. The classification tasks was to classify potato tubers into diseased classes according to
images acquired with several RGB cameras in a warehouse. The detection task was to detect tomato
flowers in images acquired in uncontrolled greenhouse conditions.

3.2 Databases

3.2.1 Image Acquisition

Images for the experiments conducted for this thesis were acquired using simple off-the-shelf RGB
cameras, either smartphone cameras or simple CCD cameras (see table 3.1 for specifications). Due
to their relative high quality and low cost nowadays, developing image recognition algorithms with
minimal sensor hardware constraints can be beneficial for farmers worldwide [59]. Moreover, as
more than 80% of the agricultural production is generated by smallholder farmers and smartphone
technology is becoming prevalent worldwide, developing robust algorithms, not camera specific,
for simple sensors is an important research direction [39, 38].

Table. 3.1: Sensors

Camera type Resolution Research used
Sony DSC-T200 3264× 2448 Potato disease classification
Apple iPhone 4 960× 640 Potato disease classification

Samsung Galaxy S3 720× 1280 Potato disease classification
LG G4 H815 2988× 5312 Tomato flower detection

Canon PowerShot 590IS 1832× 3264 Tomato flower detection
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Acquiring images in various illumination conditions was another principle guiding the acquisition
process. Therefore, images were acquired on several different occasions and in different times of
the day. Furthermore, angles and distance from target objects were not fixed or controlled.

In conclusion, the acquisition process was carried out with the goal of creating diverse and
challenging datasets, so that the algorithms proposed in this thesis would generalize sufficiently
well to real-world conditions.

3.2.2 Image Labeling

Labeling of ground truth instances was done using Matlab’s 2014b image labeler application. Each
ground truth instance was annotated using a rectangular bounding box (see figure 3.1(d)). This
practice is standard in computer vision research, especially when using CNNs with square filters for
the vision task. However, annotating images on the pixel-level (see figure 3.1(b)) can lead to better
results in some cases. There are vision tasks where a rectangular bounding box is not a sufficient
method for ground truth annotation, such as segmenting an object in an image [27]. Therefore,
there is a tradeoff between the labeling time and the precision of the labeling method. Due to the
big number of images used in deep learning, the vast majority of researchers use bounding box
annotations, providing many more labeled examples compared to other methods. However, for
some tasks a combination of methods can produce better results [63, 13].

Figure. 3.1: Examples of labeling methods: (a) Unlabeled image; (b) A pixel-level labeling of image (a); (c)
Unlabeled image; (d) A rectangle bounding box labeling of image (c).
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3.3 Algorithm Development

3.3.1 CNN Architecture

Since training an entire CNN from scratch requires a huge amount of data and computational
resources. It is common practice in the field of deep learning for object recognition to use state-of-
the-art DNN models built for similar tasks, and adapt them to a specific task [25]. For example, a
modern CNN can take 2-3 weeks to train across multiple GPUs on a dataset such as ImageNet. For
image classification tasks, AlexNet is a standard CNN architecture and very influential, used as a
base model in many real-world applications. However, due to implementation considerations the
similar CNN-F of the Visual Geometry Group (VGG) was used for the potato disease classification
task [9]. For object detection tasks, Faster R-CNN is a successful and influential architecture. An
adaptation of the model was used for detecting tomato flowers.

Minor changes of these architectures were made in order to fit the architecture to the tasks. The last
layers were changed to match the number of classes of each problem and several hyperparameters
were adapted as well. Overall, the main process of fitting the model was done in the training
phase.

3.3.2 Training Method

Training each model was done separately, but the method of training was similar using transfer
learning. Transfer learning takes advantage of knowledge gained in previous research or problem
solving and apply it to a different but related problem. In deep learning problems there are three
main types of transfer learning: a) Use a pretrained model as feature extractor - in this method
only the convolutional layers of a pretrained CNN is used. The last fully-connected layers are
removed. The convolutional layers can than be used as a feature extractor for a different classifier
[25]. b) Fine-tune a pretrained model - this method involves replacing the original classifier to a
task specific classifier and retraining the network on the new dataset. It is possible to fine-tune all
of the layers of the CNN or keep some layers fixed and other changeable. The idea is that lower
layers learn more general features from the original dataset, so in order to fit the model to the
new task only higher level features needs to be adjusted [15]. c) Use pretrained model with no
changes - For very similar tasks, sometimes using the pretrained CNN without altering the model
can be sufficient [27].

The models trained for this thesis were initially trained on the ImageNet dataset, and then fully
fine-tuned for each task. ImageNet images are very diverse consisting of many categories, many of
them not from the plant world [14]. Hence fine-tuning the whole network is needed.
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3.4 Evaluation

The evaluation of the algorithms was done differently for each task, and is detailed in chapters
5 and 4. Yet for both the goals were similar. First, the effect of the training set size was sought,
through training several models using different amount of images and testing their results on a
held out test set. Evaluating the performance of each model was done according to the acceptable
performance measures for each task. Accuracy and confusion matrix for the classification task and
precision-recall for the detection task. Second, the best model was sought and tested similarly. See
chapters 5 and 4 for specific performance measures equations and dataset divisions.
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Identifying Potato Disease from Visual Cues using
Convolutional Neural Networks

Dor Oppenheim, Guy Shani, and Leah Tsror

Abstract—Many plant diseases have distinct visual symptoms
which can be used to identify and classify them correctly. This
paper presents a potato disease classification algorithm which
leverages these distinct appearances and the recent advances in
computer vision made possible by deep learning. The algorithm
uses a deep convolutional neural network training it to classify
the tubers into five classes, four diseases classes and a healthy
potato class. The database of images used in this study, containing
potatoes of different shapes, sizes and diseases, was acquired,
classified, and labelled manually by experts. The models were
trained over different train-test splits to better understand the
amount of image data needed to apply deep learning for such
classification tasks.

Keywords—Plant disease detection and classification, Image
recognition, Convolutional neural network, Potato diseases.

I. INTRODUCTION

Potato (Solanum tuberosum) is the third most important food
crop in the world, after cereals and rice. Global production
exceeds 300 million metric tons and is an important nutrition
and calorie provider for humanity [10]. Potato production is
threatened by many diseases resulting in considerable yield
losses, and/or downgrade tuber quality causing an increase of
the price of potatoes [17].

Potato tubers carry many seed and soil-borne pathogens
that affect quality and yield [18]. Amongst them the fungal
pathogens Heminthosporium solani causal agent of silver scurf,
Colletotrichum coccodes causal agent of black dot, Rhizoc-
tonia solani causal agent of black scurf and the bacterial
pathogen Streptomyces spp. the causal agent of common scab,
all cause tuber blemishes and affect processing and fresh
market trade and sales [8].

An early and accurate disease detection system can aid in
avoiding such cases. Moreover, it can improve the management
of the crop and can further prevent the spread of diseases
[12]. Examination of tubers with a hand lens or microscope is
required to observe the characteristic black microsclerotia of
C. coccodes, or typical conidiophores and conidia of H. solani
[5, 19]. However, these structures are not always present, and
additional diagnostics methods must be applied (isolation on
selective media, serology or molecular techniques).
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To conclude, manually detecting and sorting potato tubers
(either seed tubers or ware) is difficult, costly, and time con-
suming, while computerized inspection may be more efficient
and cost effective.

Computer vision and machine learning techniques for dis-
ease detection have been broadly researched in the last two
decades [2]. Diseases can be detected using expensive and
bulky digital imaging sensors, such as spectral or near-infrared
sensors. Using such sensors encumbers the widespread im-
plementation of these methods due to its high costs and
maintenance [14]. On the other hand, researchers using the
visible light bandwidth, which can be captured by relatively
low cost cameras, have usually focused on a single type of
disease [20]. A single case identification is insufficient for
real-world applications, as a single tuber can be infected by a
number of diseases [4].

This paper leverages recent advances in computer vision
and object recognition, for classifying multiple diseases in
potatoes. In 2012 a group of researchers from Toronto won the
Large Scale Visual Recognition Challenge (ILSVRC) compe-
tition by improving the classification of the ImageNet database
by more than 10%. They achieved a top-5 error rate of 15.3%
when using a deep Convolution Neural Network (CNN), while
the second best achieved 26.2% error rate [7]. Since then, CNN
methods have improved and recently the classification error
dropped to 3.73% by the winning team for the same task [1].
In the field of computer vision for agricultural applications, the
use of CNNs and other deep neural networks is continuously
increasing [6]. A CNN was recently used for detecting and
classifying seven fruits in field conditions, improving detection
accuracy by 3% from previous methods [13]. CNNs used
in classification tasks, such as disease classification of plant
leaves or quality control of harvested fruit and vegetable,
reached accuracy of more than 97% [9, 16]. In order to
create successful CNNs, a large amount of training data is
needed [15]. Therefore, the first aim of the current research
was the collection of a sufficient dataset and classification of
the displayed diseases. Results indicate a first step towards
multiple disease classification for potatoes using CNNs.

II. MATERIALS AND METHODS

A. Data acquisition
Photos of 400 diseased potato tubers of different cultivars,

shapes, sizes and tones were acquired under normal uncon-
trolled illumination conditions. The tubers were manually
classified by potato pathology experts as a standard procedure
of monitoring the incidence and severity of various diseases
in seed potato tubers prior to planting. This procedure is done
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Fig. 1. Examples of visual symptoms of potato diseases: (a) Black Scurf -
irregular, black, scab-like marks on the skin of the tuber. (b) Silver Scurf -
circular or irregular, tan to silvery gray lesions on the tuber’s skin. (c) Common
Scab - circular brown rough areas, with irregular margins which can coalesce
into larger areas. (d) Black Dot - tiny black dots on the skin of the tuber
(hardly visible in small images). (e) Uninfected tuber.

annually independent of the current research with both seed
lots imported from Europe to Israel for the spring season and
domestic seed lots for the winter season [18]. The potato tubers
were contaminated with several diseases simultaneously, but
for the current research tubers were selected with four different
diseases (separately), all with significant and typical symptoms
on the tubers skin (see figure 1). The images were acquired
using multiple types of standard cameras, captured from one
viewpoint only. The cameras used were Sony DSC-T200, the
Apple iPhone 4 camera, and the Samsung Galaxy S3 camera.

B. Data preparation
The images acquired were used to create the training and

tests sets for the CNN. Every visual symptom of a disease
was marked and labelled using the image labeler application
in MatLab 2014b. The labelling was done with rectangular
bounding boxes encompassing the visual symptom, but also
much regular potato skin, as seen in figure 2. The marked
areas were cropped from the original image, transformed into
grayscale, and resized to a standard 224×224 pixel square.
After preprocessing, a total of 2,465 patches of diseased potato
skin were gathered including: 265 Black Dot patches, 469
Black Scurf patches, 686 Common Scab patches, 738 Silver
Scurf patches and 307 uninfected patches.

C. Performance Measurement
The experiment was designed to evaluate the performance of

the CNN’s learning algorithm in classifying four diseases and

uninfected potatoes. As manually labelling diseased patches
of potatoes is a tedious and time costly task, an important
task was to determine the minimal amount of training data
that provides sufficient classification accuracy. The CNN was
trained with different sizes of training sets. The smallest
training set used for training was 10% of the 2,465 images,
incrementally increasing by 10% to 90% of the whole dataset
as detailed in table 1. In each increment the images were
selected uniformly from the whole dataset. Testing of the
algorithm was done on the remaining data. In total the training
and testing phases was repeated 9 times over different training
set sizes.

TABLE I. TRAIN AND TEST SET DIVISION

Train-
Test
split
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90%-
10% 423/46 618/68 665/73 239/26 277/30

80%-
20% 377/92 550/136 592/146 213/52 247/60

70%-
30% 331/138 482/204 519/219 187/78 217/90

60%-
40% 285/184 414/272 446/292 161/104 187/120

50%-
50% 239/230 346/340 373/365 135/130 157/150

40%-
60% 193/276 278/408 300/438 109/156 127/180

30%-
70% 147/322 210/476 227/511 83/182 97/210

20%-
80% 101/368 142/544 154/584 57/208 67/240

10%-
90% 55/414 74/612 81/657 31/234 37/270

Total 469 686 738 265 307

Each training set was trained for 90 epochs, where one
epoch is defined as a one full training cycle on every sample in
the training set. The choice of limiting to 90 epochs was made
based on empirical observations that revealed that the learning
converged well within 90 epochs (as can be seen in figure
4). In order to compare between the different results over the
9 training sets, the error rate of the best scoring guess was
calculated as the number of errors divided by the total number
of test images in every epoch. The error was calculated both
for test and train sets, in order to understand the over and under
fitting of the procedure.

D. Algorithm
The algorithm chosen for the image classification task was

a deep convolutional neural network (CNN). The basic archi-
tecture chosen for this problem was a CNN developed by the
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Fig. 2. Examples of diseased potato patches before and after the transforma-
tion to grayscale. (a)-(c), (g) and (h) are the original RGB images from each
class. (d)-(f), (i) and (j) are the same images after the conversion to grayscale,
using Matlab’s rgb2gray function.

Visual Geometry Group (VGG) from the University of Oxford
named CNN-F due to its faster training time [3]. Several new
dropout layers were added to the VGG architecture to deal
with problems of over fitting, especially due to the relatively
small dataset. The required input image size for this network
is a 224×224 matrix. The CNN comprises 8 learnable layers,
the first 5 of which are convolutional, followed by 3 fully-
connected layers and ending with a softmax layer (see figure
3). The softmax layer normalizes the input received from the
final fully-connected layer (fc3) producing a distribution of
values, one for each class. The sum of these values add up
to 1 and they represent the probability of the input image
to belong to one of the five classes. This softmax layer
was also altered and adapted, reducing its size from 1,000
to 5 to fit our classification task. Training CNNs usually
requires a large amount of labelled data in order to perform
a good classification. Therefore, two methods were used for
data augmentation; Mirroring creates additional examples by
flipping the images used in training randomly. As the direction
of the photos was arbitrary, mirroring the image horizontally
does not change the correctness of the data; Cropping was
also used, cropping the image randomly to different sizes,
while keeping the cropped image minimum size to 190× 190,
can achieve data diversity. The use of each data augmentation

method was done randomly. Before each image was inserted
into the net for training it was mirrored, cropped or inserted
without altering in equal distributions. Therefore, two thirds
of the images trained were altered.

Fig. 3. A simplified model of the CNN used.

III. RESULTS AND DISCUSSION

Results indicate, as expected, that using more data for the
training phase improves the classification and reduces the error
rate (see figure 4). The best trained model (trained on 90%
of the dataset and tested on the remaining 10%) classified
correctly 96% of the images. Results indicate that for 8 out of
the 9 training sets, accuracy does not drop below 90% as the
training set size decreases (Figure 4); the average difference of
error rates between the best training set (90% train-10% test)
and the worst training set (20% train-80% test) in these 8 sets
was 5.73%. There is a significant drop in performance when
the CNN was trained on 10% of the dataset and tested on
90% of it. Correct classification for this training set decreased
to 83% as opposed to 90% of the classifier obtained with 20%
train and 80% test. The relatively small decrease in accuracy
(Table 2) for most training set sizes, is an indicator that a
small amount of potato images could suffice for training a
sufficiently accurate CNN.

TABLE II. BEST PERFORMING MODEL ACCURACY RESULTS FOR EACH
TRAIN-TEST SET

Train-Test set split Accuracy
90%-10% 0.9585
80%-20% 0.9567
70%-30% 0.9465
60%-40% 0.9454
50%-50% 0.9069
40%-60% 0.9183
30%-70% 0.9041
20%-80% 0.9012
10%-90% 0.8321

In order to further evaluate the CNN’s classification a con-
fusion matrix was calculated. The confusion matrix’s columns
represent the CNN’s class classification while the rows repre-
sent the actual classes. This type of representation can help
evaluate the CNN’s classification of each class. Figure 5
shows a confusion matrix of the best performing CNN, trained
on 90% of the dataset and tested on 10%. The confusion
matrix shows that the CNN classified correctly and with high
accuracy infected potato tubers; 100% of the tubers which
were infected with Black Dot and Black Scurf were classified
correctly; over 92% of the Silver Scurf and Common Scab
infected tubers were classified correctly as well. The CNN’s
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Fig. 4. Results of experiment. Plot shows the accuracy of each training set
(Shown as different colors on graph) according to the epoch number.

performance dropped when classifying uninfected tubers. Most
of the CNN’s misclassifications occurred when classifying
uninfected tubers to the disease class Silver Scurf. Silver
Scurf’s visual symptom are bright tan to silvery gray lesions
on the tuber’s skin that resemble uninfected skin. These
results indicate that the trained CNN can classify correctly
and accurately the four diseases presented here. However,
uninfected tubers were harder to classify. The fact that the
diseases were classified with high accuracy makes it suitable
for a system which identification of the disease is important.
Most misclassifications occurred for the non-infected class, for
practical use these mistakes have less affect since planting
infected tubers can spread the disease and cause considerable
damage while misclassifying uninfected tubers can be solved.
In this experiment only 307 images of uninfected tubers were
used, increasing the amount of data of uninfected tubers can
increase classification accuracy.

Fig. 5. - A confusion matrix of the CNN trained on 90% of the dataset
and tested on the remaining 10%. Rows represent the actual classes of an
image. Columns represent the CNN’s class prediction. Each cell in the matrix
represent the percentage of images of the row’s class that were classified to
the column’s class.

IV. CONCLUSIONS AND FUTURE WORK

The applicability of a convolution neural network in classi-
fying image patches of diseased potato tubers into four defined
disease categories and an uninfected one was examined. The
2,465 images classified by the trained CNN model varied
in the acquisition device and conditions. Results indicate
the robustness of the classification algorithm allowing for
uncontrolled acquisition conditions. Results reveal that the
correct classification of fully trained CNN models ranges from
83% for the model trained on the least amount of data, to
96%, when the model was trained on 90% of the data. To
obtain classification rates higher than 90% it is sufficient
to use 20% of the images (i.e., 493 images). These results
further show that combining the CNN introduced here with
a sliding window algorithm or an object detection network,
such as faster R-CNN [11], could be utilized for classifying full
images of potato tubers to different diseases with little labelling
work beforehand. Ongoing research is aimed to develop a
classification algorithm with an expanded number of disease
classes. Acquiring data can be done easily since there are no
constraints on the data acquisition.
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Tomato Flower Detection Using Deep Learning

Dor Oppenheim1, Guy Shani2 and Yael Edan1

Abstract— Detecting objects in agricultural environments is
a fundamental capability needed for automating agricultural
tasks. This paper presents the adaption stages of a state-of-the-
art deep learning object detection algorithm for a tomato flower
detection system in a greenhouse environment. Algorithmic
changes and hyper-parameters adjustments in order to succeed
in the task are detailed. The algorithm used is a hybrid of
a deep convolutional neural network and a region proposal
network called Faster R-CNN. The diverse dataset especially
acquired for this task includes 12,381 individual flowers in
771 images acquired with 2 types of cameras from different
tomato cultivators and different time of day. Data augmentation
techniques were used in order to increase the variety of samples
the network learns from. Training and testing the model was
done with datasets of various sizes aiming to reveal the effect of
training set sizes on the model’s performance. Results suggest
that with suitable adaptations of the Faster R-CNN algorithm
and sufficient image training data, a real-world detection system
can be developed. The best trained detector scored an Average
Precision (AP) of 0.788 which is comparable to other publically
available research in agricultural object detection.

I. INTRODUCTION

Detecting objects in an image is a crucial aspect in the
development of agricultural automation applications. In order
to harvest or spray selectively fruit or vegetables, determine
yield, navigate in the field, objects’ location in an image must
be determined and objects’ characteristics such as ripeness
or size must be estimated [18]. Despite many years of
research in agricultural oriented object detection, there are
still many problems that hinder implementation of agricul-
tural applications [10]. The highly variable and unstructured
outdoor environment with changing illumination conditions,
along with the complex plant structure and variable product
shape and size make it hard to find a global solution to the
detection of objects in the agricultural environment [18]. This
paper tackles such a task, detecting tomato flowers in images
taken in a greenhouse environment for a drone pollinator
application. In addition to pollinating the flowers, detection
of the flowers is a basic capability for many other tasks such
as yield estimation [2, 6, 26], thinning [29, 42, 43] and plant
phenotyping [23, 32] in general.

For years, object detection research relied mainly on
hand-crafted features such as color, shape, texture or their
combination [18, 17, 10]. Color, has been one of the most
prominent features used in detection, despite it being affected
greatly by the acquisition device, the variety of the targets

1Dor Oppenheim and Yael Edan are with the Department of Industrial
Engineering and Management, Ben-Gurion University of the Negev, Beer
Sheva, Israel doropp@post.bgu.ac.il, yael@bgu.ac.il

2Guy Shani is with the Department of Software and Information Systems
Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
shanigu@bgu.ac.il

color and the varying illumination conditions [10, 18]. Shape
has been used mainly in detecting circular target objects
such as apples [11], citrus [14] and mangoes [28], because
of the relatively effective implementation of circle detection
algorithms such as Circular Hough Transform. Many such
studies reported that the agricultural environment character-
istics were the main challenges for accurate detection and
localization of the target object [10, 18, 3]. Therefore, during
the years some studies tried pursuing different approaches for
the detection task, such as developing adaptive thresholding
algorithms to overcome the dynamic changes in illumination
[40, 27] and fusing multiple sensors [40, 5, 38]. Several
studies have implemented artificial neural network (ANN)
algorithms [18] so as to overcome the need to define and
select the features.

At first, ANN’s were designed to learn to classify color
features fed to the network in order to separate background
pixels from target’s pixels, which led to the same problems
caused by the variability of the environment [38, 30, 34,
41]. Following recent advancements in computer vision al-
gorithms accredited to deep Convolutional Neural Networks
(CNNs). Performances in several classic vision tasks, such
as classification [19], detection [35] and segmentation [22]
have increased significantly. These networks can be fed raw
data, i.e. the pixels of a flower in the image, and learn
features automatically from it, avoiding the need for hand-
crafted features and the challenges they bring about [20].
With enough data, good representations of the target object
can be learned and a robust system can be created, able to
cope with real-world vision problems which are inherently
characterized by uncertainty and large amounts of variability
[12]. These networks have demonstrated high performance
results in the agricultural domain as well, in tasks such
as disease detection and classification [21, 24, 31], fruit
detection and localization [4, 36] and more. Object detection
research using deep CNNs is depicted in table I.

In this paper an adaptation of the Faster R-CNN algorithm
is explored for a tomato flower detection task. Algorithmic
changes as detailed in this paper were implemented and
hyper-parameters were adjusted in order to succeed in the
task. Image data was collected and manually labeled by hand,
specifically for the drone pollinator research. 12,381 flowers
were tagged in 771 images. The best trained detector scored
an Average Precision (AP) of 0.788 which is comparable
to other publically available research in agricultural object
detection.
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TABLE I
OBJECT DETECTION RESEARCH USING DEEP LEARNING

Object
detected

Detection
algorithm Results Ref

Sweet pepper
& rock melon

Faster
R-CNN

0.83 F1
score [36]

Apple Faster
R-CNN

0.904 F1
score [4]

Mango Faster
R-CNN

0.908 F1
score [4]

Almond Faster
R-CNN

0.775 F1
score [4]

Weeds
NDVI

theshold + 1
layer CNN

0.913 mAP [31]

Wheat
Stacked

hourglass
CNN [25]

0.83-0.89
for spikes
0.88-0.96

for
spikelets,
F1 score

[32]

Tomato
modified

Inception-
ResNet

0.91
Accuracy [33]

II. BACKGROUND & RELATED WORK

A. Faster R-CNN overview

The algorithm chosen for the detection task was a Faster
Regions based Convolutional Neural Network (Faster R-
CNN). The Faster R-CNN is a third evolution of the network
architecture and region proposal algorithm [9]. The original
R-CNN used a region proposal algorithm, such as Selective
Search [39] or Objectness [1] for detecting regions of interest
(ROIs) in the image, as potential area containing the target
object. These ROIs would subsequently be the input to a
CNN for extracting features for classification by a support
vector machine (SVM) see Fig. 4a for a visualization of the
process. These methods of ROI extraction, which are external
to the CNN are usually computationally intensive processes
slowing the whole algorithm pipeline. The second version
[8] uses a different approach for classifying ROIs. Instead
of applying a CNN on each of the region proposals, the
image is inserted fully to the CNN and its output is inserted
to a spatial pyramid pooling (SPP) layer proposed by [16].
Only ROIs obtained by a region proposal method are used
in the SPP layer (see Fig. 1(a)). This process omits the need
to perform a whole forward pass through the CNN for each
ROI shortening execution time by 10 to 100X at test time and
3X at training. However, it still requires an external region
proposal algorithm a computational bottleneck.

This version of the algorithm tackles this limitation. Fur-
thermore, it creates a single pipeline for training. In Faster
R-CNN a Region Proposal Network (RPN) is added as a part
of the network’s architecture (see Fig. 1(c)). The RPN is a

Fig. 1. The evolution of the Faster R-CNN algorithm. (a) Illustrates the
feed forward pass of the first version. (b) Illustrates the second version. (c)
Is the current Faster R-CNN algorithm.

small fully connected convolution network which slides over
the output of the CNN’s last layer (a feature map), searching
for objects and their location in the feature map. The sliding
network maps the feature map to a lower-dimensional vector,
which in turn is fed into two fully connected layers. A box-
regression layer (reg) - fitting bounding boxes around ROIs,
and a box-classification layer (cls) - distinguishing between
objects and non-objects in the ROIs. These proposed ROIs
are than classified into categories. Finally, the network’s
outputs are predictions of bounding boxes and the category of
the object inside the bounding box. These ROIs are created
in a novel approach proposed in the paper. Each time the
feature map is fed to the RPN, a n×n spatial window slides
over the feature map and maps those windows to the reg and
cls layers. Simultaneously k more region proposals (anchors)
in different sizes and shapes are created from the center of
the sliding window, in order to search for a greater variety
of object’s shapes and sizes.

During training, the RPN minimizes two loss functions: 1)
a box-regression loss and 2) a box-classification loss. Since
the RPN is a part of the network, adding it came with little
cost to execution time and training time.

III. METHODOLOGY

A. Data acquisition

Image data for this research was collected in purpose to
create a diverse dataset of tomato flowers, in order to create
a robust detection algorithm. 771 color images of tomato
flowers were acquired in a high end greenhouse in Israel
on the 26th of April 2016 at three time intervals along that
day, morning between 8:00AM to 9:00AM, noon between
11:30AM to 12:30AM and afternoon between 17:00PM to
18:00PM. These time intervals affect the illumination condi-
tions in the greenhouse and were chosen in order to create
diverse images. The images contained 12,183 individual
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Fig. 2. Example images of tomato flowers acquired in a greenhouse in
Israel. Notice the wide variety of flower sizes, hue differences and varying
lighting conditions.

flowers from various cultivars of tomatoes. To minimize the
effect of the acquisition device on the algorithm’s perfor-
mance, images were acquired using two different cameras.
466 images were acquired using a Canon PowerShot 590IS
camera, and saved in a .jpg format with a resolution of
1832×3264. The remaining 305 images were acquired using
the camera of a LG-G4 smartphone, and saved in a .jpg
format as well in resolution of 2988 × 5312. Images were
taken at a random distance from between 0.2m and 0.8m,
within the plant’s rows, and from various angles. The varying
distances, time of acquisition, acquisition device, tomato
flower’s cultivars, hue and background created a diversified
dataset of tomato flowers which differed in size, hue, shape
and illumination conditions (see Fig. 2 for representative
examples). The variation of the dataset intended to ensure
the modelling of a robust and accurate detection algorithm
that would generalize well in the complex and uncertain
environmental conditions.

B. Data preparation

The images acquired were used to create the training
and test sets for the Faster R-CNN algorithm. Every tomato
flower in the images was marked using the image labeler ap-
plication in MatLab 2017a. Very small flowers, usually from
a different plant row were not labeled (see Fig. 3). Flowers
were labeled with rectangular bounding boxes encompassing
the flower. 12,183 flowers were manually labeled in total by
three human labelers, each labeling a third of the database
serving as positive instances, while the negative instances
were extracted from the non-marked area of the images. After
marking all of the flowers in the images the marked dataset
was divided randomly into a training set, a validation set and
a test set. The training set consisted of 80% of the images and
the test set consisted of the remaining 20%. These division
ratios are standard practice in machine learning research [13].

Initial experimentation with training the Faster R-CNN
resulted in very low accuracy and average precision, due to
the ratio between the size of images acquired and the flowers
in the image. Images were large and the flowers very small
(132 × 135 on average). The implementation of the Faster

Fig. 3. Examples of the labeling of flowers with Matlab’s image labeler.

R-CNN presented by [35] resized images so that the shorter
side of the image would be 600 pixels (the longer side was
resized so that the image maintained the same aspect ratio),
because of hardware constraints. This caused the flowers in
the resized image to be too small for the algorithm to extract
meaningful features. Therefore, images were cropped into
3× 3 parts, so resizing won’t affect flowers in the image as
much and images will be similar to those in the PASCAL-
VOC dataset (the dataset on which the Faster R-CNN was
designed and trained). Cropping was done with padding in
order to prevent losing labeled flowers.

C. Evaluation

The experiment was designed to evaluate the performance
of the Faster R-CNN’s learning algorithm in detecting tomato
flowers in an unstructured and uncontrolled greenhouse en-
vironment. As manually labeling tomato flowers is a tedious
and time costly task, determining the minimal amount of
training data that provides sufficient detection accuracy is
important. Therefore, the Faster R-CNN was trained with
increasing sizes of training sets (see Table II for details).
Training duration was determined by a validation set which
was obtained from the training set by holding out an ad-
ditional 20% of randomly selected images. Training was
considered done when a convergence was detected in the
validation set results or after 50,000 iterations. An iteration
was considered as a full run of the learning algorithm over
one image. Each trained model was then tested on the
same held out test set for model evaluation. Accounting for
variance was done by repeating training 5 times over the
smallest dataset due to the long training times. Fully training
a model requires approximately 15 hours on a PC equipped
with an Intel core i7-6700, 64-bit quad-core 3.4GHz CPU,
an NVIDIA GeForce GTX TITAN X and 32GM memory
running on Microsoft Windows 10 system.

D. Performance Measurement

The algorithm’s detection performance was evaluated us-
ing the recall and precision indicators. Precision indicates
the fraction of the algorithm’s predictions that are flowers
(1). Recall is the fraction of flowers in the images that were
detected by the algorithm (2). TP in the equations refer to
true positive, which specify if a flower in the image was
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TABLE II
EXPERIMENT DATASETS SIZES FOR BENCHMARKING EVALUATION

Set # % training set # train # validation
1 20 1616 400
2 40 3227 806
3 60 4840 1209
4 80 6453 1613
5 100 8067 2016

detected by the algorithm. FP refers to false positive, which
specifies an algorithm’s mistake of predicting background as
a flower. Lastly, FN refers to false negative, which specify
flowers not detected by the algorithm. Precision and recall
are commonly visualized using a Precision-Recall curve.

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

From these indicators average precision (AP) is calculated
(3). AP is a summary of the precision-recall curve and is
calculated as a weighted mean of precisions achieved at
each threshold, with the increase in recall from the previous
threshold used as the weight:

AP =
∑

n

(recalln − recalln−1)precisionn (3)

This scalar score is a conventional measurement for detec-
tion tasks as it provides information about the accuracy of the
algorithm in addition to a consideration to misclassifications
or missed predictions [46]. The AP measurement has been
used in the Pascal Visual Object Classes (VOC) challenge
which is a benchmark in visual object category recognition
and detection [7] and other benchmark competitions as well.

IV. ALGORITHM

A. Faster R-CNN implemetation details

The implementation of the Faster R-CNN for this research
followed the guidelines in the original paper [35]. However,
some algorithmic changes had to be made so the Faster
R-CNN design would be suitable for the tomato flower
detection task. In the original paper two networks are used
and compared, the VGG16 network [37] and the ZF network
[45]. The GPU used in this research did not have enough
memory for implementing the VGG16, which is a very
large network, so we used a residual neural network called
ResNet50. This network has 50 layers, deeper than the
VGG16’s 16 layers, however due to the network’s innovative
design, it still requires less parameters and is less complex.
The core idea of ResNets is to create identity shortcut
connections between layers that allows skipping one or more
layers [15]. Based on the deep residual network framework,

a similar network won the first place in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) and
the Common Objects in Context (COCO) 2015 in several
computer vision detection and classification tasks [15].

Data augmentation techniques were used in order to
increase the variety of samples the network learns from.
This technique has been proven useful in improving neural
network performance and generalization (Krizhevsky et al.
2012). Two simple methods were used 20% of the time: 1)
images were flipped horizontally 2) images were randomly
rotated left or right in 90. More adaptations were made to
deal with the difference in the average object sizes between
the PASCAL-VOC and the tomato flowers database [7]. The
anchor parameters provided initial guesses of the object’s
sizes in the images. For the PASCAL-VOC initial anchor
area sizes were 1282, 2562 and 5122 and aspect ratios were
1:1, 1:2 and 2:1, however these appeared unsuitable for
tomato flowers, since they tend to appear smaller and in
bigger numbers in our images. For these reasons we chose
the initial anchor area sizes to be 642, 1282 and 2562 and
aspect ratios of 1:1, 1:1.5 and 1.5:1. In addition, the number
of bounding boxes proposed were increased from 300 to
2000 during training. This generates many bounding boxes
proposals, some of them overlap. To reduce redundancy, a
non-maximum suppression (NMS) algorithm is adopted on
the proposals based on their cls layer output score. The
threshold for the NMS is chosen to be 0.7. During testing
the number of proposals was reduced to 500 so as to speed
up execution time.

An important parameter is Intersection over Union (IoU).
The IoU is a metric for deciding if an ROI proposal is an
object. It is calculated as the overlapping ratio between a
proposed bounding box to the ground truth bounding box.
IoU scores above 0.6 were considered as a detection of
flowers, while smaller IoU was considered as background. In
general IoU above 0.5 is considered a fairly good detection.

V. RESULTS ANS DISCUSSION

Results indicate that detecting tomato flowers in a green-
house environment through the Faster R-CNN deep learning
framework can lead to reasonable performance, with the right
adaptations. Best AP was achieved on the dataset with 80%
of image data (see table III).

TABLE III
EXPERIMENT DATASETS RESULTS

Set # % training set AP
1 20 0.773
2 40 0.747
3 60 0.786
4 80 0.788
5 100 0.784

However, the differences in AP between all of the datasets
used in the study were not significant, see precision-recall
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Fig. 4. Precision-Recall curve from the experiment’s results.

curve in Fig. 4 for details. These results are derived from the
test set of 424 test images containing 2137 tomato flowers.
More images for training was expected to yield better results
in test time. Here we see that it was not necessarily the case.
Best results were achieved with 80% of the images, second
best results were 60% and when using 100% of the images
third best results were achieved. A possible explanation
could be that there were enough examples for the model to
generalize well with the data augmentation techniques. Even
in the smallest dataset consisting of 2000 images achieved
good and comparable results to the bigger datasets. Cross-
validation on the best performing model (trained on 80% of
the data) was repeated 5 times to account for variance in the
training data, where each time 6,453 random images were
sampled from the training set without replacement.

Studying test images results provides insight about the
algorithm’s mistakes and of the training set data labelling
process. The labelling task is tedious and prone to errors.
Unintentionally missing positive examples or labelling erro-
neous examples occur and can affect the learning phase and
test results greatly. In some cases tomato flower examples
were missed and on others very small tomato flowers from
another plant row were labeled. Occluded and overlapping
flowers were especially challenging, due to each of the
human labeler’s interpretation of when an occluded flower
should be labeled and the challenge of labeling highly
overlapping flowers (see Fig. 5 for examples). There are
several known methods to reduce labeling errors, such as
labeling each image by a number of human labelers, in-
corporating a consensus voting scheme. In addition, more
rigorous and accurate labeling would have helped. However,
these methods are usually expensive and time consuming.

More mistakes can be a consequence of the tomato
flower’s size. Flowers that were too large or too small weren’t
detected. A probable cause for these mistakes is the anchor
size and aspect ratios hyper-parameters. These anchors were
set in three different sizes and aspect ratios, which are

supposed to cover most of the flower’s sizes in the image.
However, some outlier flowers are missed. Expanding the
number of anchors and aspect ratios can increase accuracy,
with the cost of computational speed.

Fig. 5. Examples of Faster R-CNN algorithm’s prediction output. Yellow
bounding boxes represents a correct prediction (True positives). Red bound-
ing boxes represent erroneous predictions of the algorithm (False positives).
Lastly, blue bounding boxes represent misses of the algorithm, ground truth
flowers that were not detected by the algorithm (False negatives). Image (a)
shows an example of a flower that wasn’t labeled properly. Alternatively,
the human labeler did not consider the occluded flower as a flower. (b) is an
example of a flower or a couple of flowers from a different row mistakenly
predicted as flower by the algorithm. (c) is an example of highly overlapping
flowers, the algorithm missed one flower, the top blue box. The bottom blue
box is an example of an ambivalent case, is a flower bud a flower? (d) an
example of an image with many such mistakes similar to (a), (b) and (c).

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a tomato flower detection system for
images acquired in greenhouse settings using the Faster R-
CNN deep learning framework. Results indicate that detect-
ing tomato flowers in the challenging agricultural environ-
ment can be done with reasonable accuracy. Through careful
hyper-parameter settings a detector can be trained to cope
with the large variation, uncertainty and lack of structure
of the agricultural environment. Using this technique image
acquisition can be done with simple cameras in uncontrolled
conditions. Furthermore, there was no need to predefine or
select best-fit features. Average Precision of the best model
trained was 0.788, comparable to other benchmark datasets.

Transfer learning enabled the Faster R-CNN to learn from
a relatively small amount of image examples to detect tomato
flowers. The model trained on the smallest dataset in this
paper got similar results to the model trained on the largest
dataset, which suggests that good results can be acquired
using fairly small datasets, with careful image acquisition
and data augmentation techniques.

The fact that the Faster R-CNN detector operates as a
black box after training is one of the causes of criticism
of deep neural network research and applications. However,
careful investigation of the results and new tools such as
visualizing the activations and features produced by each
layer [44] can help acquire more insight into the algorithms
classification and detection process and can help improve
and fine-tune it.
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Future work should adjust the algorithm to real-time
execution speed and test it in a greenhouse environment. In
addition developing an algorithm that can deal with objects
in a larger variety of sizes would be very helpful for fast
implementation and better performance detectors.
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6Conclusions and Future Research

6.1 Summary and Conclusions

This research investigated the development of deep learning algorithms for image recognition
problems in the agricultural field. The unstructured and complex agricultural environment and
products, makes developing computer vision applications for automation of agricultural tasks or
enhancement of farm management a challenge. These conditions, amongst others, have hindered
integration of many technological advancements in the agricultural sector.

Success of deep learning in solving problems in other fields has been abundant in recent years.
However, due to certain factors, deep learning methods have hardly been utilized in agriculture.
Therefore, this research explored the procedure of adapting the deep learning framework for
two agricultural tasks. Both consists of image recognition problems solved by utilizing deep
convolutional neural network architectures, with adequate adaptations to suit each task.

Training data was acquired and labeled for this research from different agricultural settings using
various off-the-shelf cameras, with the intention of creating diverse datasets for the learning
algorithm and for testing the generalization of them. Contrary to many researches which use
high-end sensors for image acquisition, using off-the-shelf was meant to examine if the strength
of deep learning algorithm could compensate the quality of the acquisition devices. This could
enable a more widespread use of the algorithms developed, due to the lack of dependence on costly
hardware, and relying on more sophisticated software.

The first task was classifying potato tuber diseases from RGB images for a sorting application.
A convolutional neural network was used for classifying each image into one of four classes of
diseases or to a healthy potato tuber class. Due to the complex geometry and colors of the diseases’
visual appearances as well as the uneven lighting conditions, classifying the 2,465 images through
hand-engineered features would have been an impractical effort. Utilizing CNN’s ability of learning
high level features through their hierarchical structure yielded high levels of classification accuracy,
95.85% of the images were classified correctly into the five classes, while training on the largest
dataset consisting of 2172 images. Moreover, not a single image with a disease category was
classified as a healthy potato tuber, an important component of a disease sorting application.
Another aspect of the research was to determine how and to what extent, the amount of training
data affected the performance of the model. As expected the more data used for training, the better
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the results were, but training on 20% of the data already achieved reasonable performance of above
90% accuracy.

The second task was to detect tomato flowers in a greenhouse environment for a drone pollinator. A
modified CNN was used for this task called Faster R-CNN designed by Ren et al. [69]. This network
is an adapted CNN designed to detect and classify objects in images. It is a combination of a CNN
and a region proposal network forming together a single framework for object detection. Detecting
objects in images presents an additional challenge to classification, since first objects have to be
localized in the image, prior to classifying them. Several different studies tackled this problem using
deep learning algorithms, yet as far as I know, most used sophisticated sensors such as multispectral
and depth cameras providing additional information on the environment, or artificial illumination
producing images with more even lighting conditions. In this research simple off-the-shelf cameras
were used for the task, investigating the feasibility of such systems. The database created consists of
771 images containing 12,183 annotated single tomato flowers. The effect of the amount of training
data was tested in this study as well, but no apparent impact on the results was found, probably
due to the test dataset division. The smallest dataset included 2,000 tomato flowers seemingly
consisting of enough data for the learning algorithm to create a good representation of the tomato
flower. Mean average precision of the best trained model was 0.788, slightly better than other
benchmark datasets for detection. Additional insight about the annotation process was discovered
while examining test’s results. As can be anticipated, the precision of labeling flowers in addition to
a coordinated agreement of the human labelers as to what is considered a flower, is essential for
improving detection accuracy.

The deep learning frameworks performed well in both cases exceeding results in similar studies.
Despite there not being any other studies with the same objectives for the same crops using deep
learning. These results provide a proof of concept for implementing deep learning algorithms for
detection and classification tasks in agricultural settings.

The main conclusions from this study are that utilizing deep learning in agriculture can have good
results, when provided with sufficient and varied amount of data. This is quite obvious, however
for both tasks 20% of the collected data was sufficient to provide reasonable results. Meaning, that
with a few hours of acquiring images and labeling the ground truth instances a satisfactory sized
dataset can be established. Furthermore, the fact that the databases for this thesis were acquired
with simple sensors hint that while using deep learning algorithms there isn’t hard constraints
on acquisition devices. I believe that this work succeeded in providing sufficient evidence of the
potential of deep learning algorithms to solve computer vision problems to accelerate technological
advancements in the agricultural sector, providing another tool to help in automation and improved
management of farms and agricultural land.
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6.2 Future Research

Some research areas remain open for future expansion of this work.

On-line implementation Although images were acquired in the field, analysis and performance
measurements were done off-line in the lab. In order to fully appreciate the capabilities of
these algorithms, it is required to adapt them so they can perform on-line with the constraints
and demands of agricultural conditions.

Training data size effect This research presented only empirical results of how training data
affected performance of the algorithms. Nevertheless, for practical use, it would be beneficial
to know before acquiring images, how much should be acquired. This can be done by
repeating some of the experiments with different training set divisions and further statistical
analysis.

Labeling quality effect While examining the predictions in images from the test set of the tomato
flower dataset. It was noticeable that inconsistencies in some of the labeling of ground truth
instances worsened results. For example, in some images, small flowers from a different row
of plants were labeled as flowers and in some they did not, causing the model to sometimes
detect flowers in the image which were not labeled. Another example, is inconsistencies
about when is a partially occluded flower is considered a flower and when not. This raises a
question about the trade-off between quality and speed. Determining an optimal point could
be an important factor for applications that need an active acquisition and labeling of data.
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Many plant diseases have distinct visual symptoms which can be used to identify and classify them correctly. This paper presents a
potato disease classification algorithm which leverages these distinct appearances and the recent advances in computer vision
made possible by deep learning. The algorithm uses a deep convolutional neural network training it to classify the tubers into five
classes, four diseases classes and a healthy potato class. The database of images used in this study, containing potatoes of
different shapes, sizes and diseases, was acquired, classified, and labelled manually by experts. The models were trained over
different train-test splits to better understand the amount of image data needed to apply deep learning for such
classification tasks.

Keywords: Plant disease detection and classification, Computer vision, Convolutional neural network, Potato diseases

Introduction

Potato (Solanum tuberosum) is the third most important food
crop in the world, after cereals and rice. Global production
exceeds 300 million metric tons and is an important nutrition and
calorie provider for humanity (Pareek 2016). Potato production is
threatened by several diseases resulting in considerable yield
losses, and causing decrease in the quality and increase in the
price of potatoes (Taylor et al., 2008). An early disease detection
system can aid in avoiding such cases. Moreover, it can improve
the management of the crop and can further prevent the spread
of diseases (Rich 2013). Manually detecting and sorting potatoes
is difficult, costly, and time consuming, while computerized
inspection may be more efficient and cost effective.
Computer vision and machine learning techniques for

disease detection have been broadly researched in the last
two decades (Garcia and Barbedo 2016). Diseases can be
detected using expensive and bulky digital imaging sensors,
such as spectral or near-infrared sensors. Using such sensors
encumbers the widespread implementation of these methods
due to its high costs and maintenance (Sankaran et al.,
2010). On the other hand, researchers using the visible light
bandwidth, which can be captured by relatively low cost
cameras, have usually focused on a single type of disease
(Zhang et al., 2014). A single case identification is insuffi-
cient for real-world applications, as a single tuber can be
infected a number of diseases (Cubero et al., 2016).
This paper leverages recent advances in computer vision

and object recognition, for classifying multiple diseases in pota-
toes. In 2012 a group of researchers from Toronto won the Large
Scale Visual Recognition Challenge (ILSVRC) competition by

improving the classification of the ImageNet database by more
than 10%. They achieved a top-5 error rate of 15.3% when
using a deep Convolution Neural Network (CNN), while the
second best achieved 26.2% error rate (Krizhevsky, Sutskever, &
Hinton, 2012). Since then, CNN methods have improved and
recently the classification error dropped to 3.73% by the winning
team for the same task (Abdi and Nahavandi 2016). In the field
of computer vision for agricultural applications, the use of CNNs
and other deep neural networks is continuously increasing
(Gongal et al., 2015). A CNNwas recently used for detecting and
classifying seven fruits in field conditions, improving detection
accuracy by 3% from the last state of the art (Sa et al., 2016).
CNNs used in classification tasks, such as disease classification
of plant leaves or quality control of harvested fruit and vege-
table, reached accuracy of more than 97% (Mohanty et al.,
2016; Tan et al., 2015). In order to create successful CNNs, a
large amount of training data is needed (Sermanet et al., 2013).
Therefore, the first aim of the current research was the collection
of a sufficient dataset and classification of the displayed
diseases. Results indicate a first step towards multiple disease
classification for potatoes using CNN.

Materials and Methods

Data acquisition
Photos of 400 contaminated potatoes of different shapes,
sizes and tones were acquired under normal uncontrolled illu-
mination conditions. The tubers were manually classified by
experts as a standard procedure of statistically estimating the
rate of various diseases in seed potato tubers prior to planting
them in the fields. This procedure is done annually independent
of the current research. The potatoes were contaminated with† E-mail: doropp@post.bgu.ac.il
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four different diseases, all with significant visual symptoms on
the tuber’s skin (see Figure 1). The images were acquired using
multiple types of standard cameras, captured from one
viewpoint only. The cameras used were Sony DSC-T200, the
Apple iPhone 4 camera, and the Samsung Galaxy S3 camera.

Data preparation
The images acquired were used to create the training and tests
sets for the CNN. Every visual symptom of a disease was
marked and labelled using the image labeler application in
MatLab 2014b. The labelling was done with rectangular
bounding boxes encompassing the visual symptom but also
much regular potato skin, as seen in Figure 2. The marked
areas were cropped from the original image, transformed into
grayscale, and resized to a standard 224× 224 pixel square.
After preprocessing, a total of 2,465 patches of diseased
potatoes was gathered including: 265 Black Dot patches, 469
Black Scurf patches, 686 Common Scab patches, 738 Silver
Scurf patches and 307 uninfected patches.

Performance Measurement
The experiment was designed to evaluate the performance of
the CNN’s learning algorithm in classifying four diseases

and uninfected potatoes. As manually labelling diseased
patches of potatoes is a tedious and time costly task,
an important task was to determine the minimal amount of
training data that provides sufficient classification accuracy.
The CNN was trained with different sizes of training sets. The
smallest training set used for training was 10% of the 2,465
images, incrementally increasing by 10% to 90% of the
whole dataset as detailed in Table 1. In each increment the
images were selected uniformly from the whole dataset.
Testing of the algorithm was done on the remaining data. In
total the training and testing phases was repeated 9 times
over different training set sizes.
Each training set was trained for 90 epochs, where one epoch

is defined as a one full training cycle on every sample in
the training set. The choice of limiting to 90 epochs was made
based on empirical observations that revealed that the learning
converged well within 90 epochs (as can be seen in Figure 4).
In order to compare between the different results over the
9 training sets, the error rate of the best scoring guess was
calculated as the number of errors divided by the total number
of test images in every epoch. The error was calculated both for
test and train sets, in order to understand the over\under fitting
of the procedure.

Figure 1 Examples of visual symptoms on potato diseases: (a) Black Scurf disease - irregular, black, scab-like marks on the skin of the tuber. (b) Silver Scurf
disease - circular or irregular, tan to silvery gray lesions on the tuber’s skin. (c) Common Scab disease - circular brown rough areas, with irregular margins which
can coalesce into larger areas. (d) Black Dot disease - tiny black dots on the skin of the tuber (magnified in top left corner). (5) Uninfected tuber.

Potato Disease Classification Using Convolution Neural Networks

2457.1 Appendix A. Potato Disease Classification Using Convolutional Neural Networks 59



Algorithm
The algorithm chosen for the image classification task was
a deep convolutional neural network (CNN). The basic
architecture chosen for this problem was a CNN developed
by the Visual Geometry Group (VGG) from the University of
Oxford named CNN-F due to its faster training time (Chatfield
et al., 2014). Several new dropout layers were added to the
VGG architecture to deal with problems of over fitting,
especially due to the relatively small dataset.
The required input image size for this network is a 224× 224

matrix. The CNN comprises 8 learnable layers, the first
5 of which are convolutional, followed by 3 fully-connected
layers and ending with a softmax layer (see Figure 3). The
softmax layer normalizes the input received from the last

fully-connected layer (fc3) producing a distribution of values,
one for each class. The sum of these values add up to 1 and
they represent the probability of the input image to belong
to one of the five classes. This softmax layer was also
altered and adapted, reducing its size from 1,000 to 5 to fit our
classification task.
The hyper-parameters used in each training experiment

were:

∙ Solver type: Stochastic Gradient Descent
∙ Learning rate: 0.0001
∙ Batch size: 50
∙ Momentum: 0.9
∙ Weight decay: 0.0005

Figure 2 Examples of diseased potato patches before and after the transformation to grayscale. (a)–(c), (g) and (h) are the original RGB images from each
class. (d)-(f), (i) and (j) are the same images after the conversion to grayscale, using Matlab’s rgb2gray function.
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Training CNNs usually requires a large amount of labelled
data in order to perform a good classification. Therefore, two
methods were used for data augmentation; Mirroring creates
additional examples by flipping the images used in training
randomly. As the direction of the photos was arbitrary, mirror-
ing the image horizontally does not change the correctness
of the data; Cropping was also used, cropping the image
randomly to different sizes, while keeping the cropped image
minimum size to 190× 190, can achieve data diversity. The use
of each data augmentation method was done randomly. Before
each image was inserted into the net for training it was mirrored,
cropped or inserted without altering in equal distributions.
Therefore, two thirds of the images trained were altered.

Results and discussion

Results indicate, as expected, that using more data for the
training phase improves the classification and reduces the
error rate (see Figure 4). The best trained model (trained
on 90% of the dataset and tested on the remaining 10%)
classified correctly 96% of the images. Results indicate that
for 8 out of the 9 training sets, accuracy does not drop below
90% as the training set size decreases (Figure 4); the average
difference of error rates between the best training set (90%
train-10% test) and the worst training set (20% train-80%
test) in these 8 sets was 5.73%. There is a significant drop in
performance when the CNN was trained on 10% of the
dataset and tested on 90% of it. Correct classification for this
training set decreased to 83% as opposed to 90% of the
classifier obtained with 20% train and 80% test. The rela-
tively small decrease in accuracy (Table 2) for most training
set sizes, is an indicator that a small amount of potato ima-
ges could suffice for training a sufficiently accurate CNN.
In order to further evaluate the CNN’s classification a

confusion matrix was calculated. The confusion matrix’s
columns represent the CNN’s class classification while the
rows represent the actual classes. This type of representation
can help evaluate the CNN’s classification of each class.
Figure 5 shows a confusion matrix of the best performing
CNN, trained on 90% of the dataset and tested on 10%. The
confusion matrix shows that the CNN classified correctly and
with high accuracy infected potato tubers; 100% of the tubers
which were infected with Black Dot and Black Scurf were
classified correctly; over 92% of the Silver Scurf and Common
Scab infected tubers were classified correctly as well. The
CNN’s performance dropped when classifying uninfected
tubers. Most of the CNN’s misclassifications occurred when
classifying uninfected tubers to the disease class – Silver Scurf.
Silver Scurf’s visual symptom are bright tan to silvery gray
lesions on the tuber’s skin that resemble uninfected skin.
These results indicate that the trained CNN can classify

correctly and accurately the four diseases presented here.
However, uninfected tubers were harder to classify. The fact
that the diseases were classified with high accuracy makes it
suitable for a system which identification of the disease is
important. Most misclassifications occurred for the uninfectedTa
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class, for practical use these mistakes have less affect since
planting infected tubers can spread the disease and cause
considerable damage while misclassifying uninfected tubers
can be solved. In this experiment only 307 images of
uninfected tubers were used, increasing the amount of data
of uninfected tubers can increase classification accuracy.

Conclusions and future work

The applicability of a convolution neural network in
classifying image patches of diseased potatoes into four
disease classes and a uninfected class was examined.
The 2,465 images classified by the trained CNN model varied
in the acquisition device and conditions. Results indicate
the robustness of the classification algorithm allowing
for uncontrolled acquisition conditions. Results reveal that
the correct classification of fully trained CNN models ranges

from 83% for the model trained on the least amount of data,
to 96%, when the model was trained on 90% of the data.
To obtain classification rates higher than 90% it is sufficient
to use 20% of the images (i.e., 493 images).
These results further show that combining the CNN intro-

duced here with a sliding window algorithm could be utilized
for classifying full images of potatoes to different diseases
with little labelling work beforehand. Ongoing research is
aimed to develop a classification algorithm with an expanded
number of disease classes. Acquiring data can be done
easily since there are no constraints on the data acquisition.
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