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Abstract	
This dissertation deals with the development and investigation of different aspects of 

temporal coordination among collaborating partners – human and robot – working in a team 

sharing work- and time-space for a collaborative handover task.   

Methodology 

Overview 

The overall approach includes two main steps. First, human-human joint-action in 

collaborative handover tasks was investigated through field studies, simulations and 

experiments to understand its design implication for developing Human-Robot (H-R) 

collaborative systems. Based on this study, the second step included the development of 

three human-robot collaboration models – Timing, Sensor and Adaptive – for H-R team-

work. The performance of these three models was evaluated using analytical, simulation 

and experimental analyses. The influencing parameters of a H-R collaborative system 

investigated in this research can be categorized into collaboration design-, task- and agent-

intrinsic parameters. 

Analyses  

Analytical and simulation studies were done for users with different proficiency levels 

(novice/expert). Analytical study of adaptive systems also included the study of the effect of 

prolonged work-periods (learning/fatigue). Using experimental analyses, the performance 

of the H-R system in each of the three models was evaluated for three task types with 

varying length and complexity – Short & Simple, Long & Simple, Long & Complex. The 

study helped in understanding the strengths and limitations of each of the collaboration 

models and their specific suitability for different task types.  

Measures	of	H-R	collaborative	system	performance	

i. Objective Measures: Coordination in the team is measured in terms of temporal 

fluency using the following metrics – total idle time, total assembly time (human 

and robot together) and rate of successful handover.  

ii. Subjective Measures: Questionnaires were used in two of the four experimental 

studies for subjective assessment of the system and the team-coordination in the 

collaborative handover task.  
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Investigating	Human-Human	joint-action 	

Human-human joint-action in collaborative handover tasks was investigated for a case-

study of hand-over of bottles in a supermarket. It included a three pronged approach – 

work-methods field studies in multiple supermarkets, simulation analysis using Jack, an 

ergonomics software package, and by conducting an in-house lab experiment on human-

human joint-action by re-creating the environment and conditions of a supermarket. The 

developed methodology provides a systematic method to analyze similar tasks. 

 Evaluations included both objective and subjective measures. Objective analyses 

revealed, among other things, that (a) the task of the giver is physically more strenuous than 

that of the receiver, (b) the art of well-coordination among the team partners is not 

influenced by the increasing or decreasing frequency of handovers. Subjective evaluations 

revealed, among other things, differences in the way individual team partners perceive a 

common joint-action depending upon their role (giver/receiver). Results also indicate the 

crucial role of temporal perception and prediction in the success of collaborative handover 

tasks. Combining the results of the three analyses, this research provided a basis for the 

development of the H-R collaboration models.  

Study	of	H-R	collaborative	system	

The main influencing parameters of H-R collaboration were identified and broadly 

classified into collaboration design-, task- and agent-intrinsic parameters. The current study 

of the H-R collaborative system focuses on the problem of a H-R team in a handover task 

(the task) requiring temporal coordination among the collaborating teammates when the 

external influencing parameters in the process are user-proficiency (an agent-intrinsic 

parameter), task length and complexity (task parameter), in a repetitive collaborative task 

(task parameter), for a single agent non-buffered interaction (collaboration design 

parameters), for different coordination protocols (collaboration design parameter), when 

there is learning/fatigue in the process (an agent-intrinsic parameter). 

Human-Robot	collaboration	models	

Based on the basic principles of how humans perceive and process time, three Human-

Robot collaboration models – Timing, Sensor and Adaptive – were developed for H-R 

team-work in a handover task. 
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i. Timing Control Model – Coordination is based on the principle of single or multi-

level rhythmic interaction. The operational cycle of robot actions is only governed 

by time. 

ii. Sensor Control Model – The robot actions are initiated by a triggering signal from 

a sensor that provides information about the human’s state of action. The signal 

helps the robot to compute the probable time of the subsequent handover, and hence 

it may plan its action accordingly. 

iii. Adaptive Model – The robot perceives, predicts and adapts in time to the rhythm of 

the human action, based on a temporal model. The system does a time-series 

analysis of the past and incoming temporal data to anticipate the time of the next 

handover cycle. 

Analytical	and	simulation	study	of	H-R	collaboration	models		

The behavior of the H-R collaborative system in each of the three collaboration models was  

studied and compared using analytical and simulation analyses for users with different 

proficiency levels (novice/expert), prolonged work periods (learning/fatigue) and system 

reliability (the various factors that affect sensor data accuracy and mechanical constraints). 

 The analytical analyses were done by developing an objective function of the H-R 

system. The system objective function was developed by taking into account the costs of 

human waiting and robot idle time in each work cycle. To illustrate the methodology, three 

case-studies were presented for which exact solutions were found for the given context.  

 A simulation model of the H-R system was developed in Matlab. Four case-studies were 

presented using the developed simulation model to study the effect of system recalibration, 

different coordination protocols and human-factors (novice/expert) on team coordination 

and productivity. The collaborative scenarios investigated in the case-studies were 

simulated for 106 times using the Monte Carlo method. 

 The analytical and simulation study of the H-R collaborative systems resulted in the 

development of coordination strategies and guidelines for better team-coordination in a 

collaborative handover task and improved system productivity in a team-work, which are 

presented separately in Chapter 8. 
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Experimental	study	of	H-R	Collaboration	models	

Using experimental analyses, the performance of the H-R system in each of the three 

collaboration models was evaluated for three types of tasks with varying degree of 

complexity in terms of cognitive- and time-demand – Short & Simple, Long & Simple, Long 

& Complex.  

 An integrated human-robot collaborative work-cell was designed for the experiments. 

This work-cell facilitated close Human-Robot interaction in a shared work-, time-space 

collaborating with the aim of executing a time-critical task. Three experiments with 200 

subjects in total were conducted to validate, evaluate and compare the models.  

 Statistical analyses included total idle time, total assembly time and rate of successful 

handovers for each of the collaboration models. The study helped to understand the 

strengths and limitations of each of the collaboration models and their specific suitability 

for different tasks type. Among others, results indicate that while the Timing Control Model 

is best suited for short and simple tasks, the Adaptive Model is best suited for long and 

simple, and long and complex tasks. The experiments also demonstrated the importance of 

time- perception in H-R collaborative system. 

Guidelines	for	designing	H-R	collaborative	system	

Based on the study of Human-Human joint action together with the analytical, simulation 

and experimental study of H-R team work in collaborative handover tasks, system design 

implications and guidelines for designing robots as co-workers in collaborative tasks were 

recommended (detailed in Chapter 8). 

 

Keywords 

Human-Robot team-work, fluency, temporal coordination, team coordination, joint-action, 

collaborative task 
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 |	Introduction	

Chapter Overview 

A global overview of the problem investigated in this dissertation is presented. Four 

specific research objectives dealing with the problem of temporal coordination in Human-

Robot collaborative system for handover tasks are subsequently presented. This is followed 

by a section explaining the research significance, which explains how this dissertation 

provides a comprehensive view on the design needs and requirements for developing an H-

R system. The chapter concludes by highlighting the specific research contributions and 

innovations of the current study. 

1.1. Description	of	the	problem		
Robots are still primarily kept and operated in safety cages and separated from human 

operators (Stanescu et al. 2008). To widen the contributions of robotics, the current trend in 

industrial automation is to enable human-robot collaboration (Nikolaidis et al. 2013; 

Sadrfaridpour et al. 2014; Cherubini et al. 2016).   

Recent advances in industrial robots that showcase this upcoming trend are Baxter 

Robot (Fitzgerald 2013), ABB Yumi and Kuka IIWA-LBR Light Weight Robot (Bischoff 

et al. 2010). These are smart, flexible, and easily customizable robots suitable for diverse 

tasks, involving close human-robot collaboration, sharing both work- and time-space 

(Kamali et al. 1982; Parasuraman et al. 2000; Fitzgerald 2013). These collaborative robots 

and the vision to integrate them in our workplace as partners, co-workers and peers 

provides many promises for advanced systems if the challenges that come along with it can 

be overcome (Haddadin et al. 2011).  

One of the key challenges in these collaborative systems is coordination among the 

partners (Glasauer et al. 2010; Cakmak et al. 2011).  Human-Robot collaboration is often 

structured in a stop-and-go rigid regime of turn-taking operations inducing delays (Hoffman 

and Breazeal 2010). For robots to become social or human-like in collaborative actions, 

robot-human interactions must reach a level of fluency, close to that of human-human 

interactions (Hoffman and Breazeal 2007). 

There has been a growing interest in the robotics research community in understanding 

the role of timing and temporal coordination in Human-Robot Interaction (HRI) (Glasauer 
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et al. 2010; Hoffman 2013; Iqbal et al. 2014; Maniadakis and Trahanias 2014; Lorenz et al. 

2015). Research focused on different aspects, such as timing from the perspective of joint-

action in teams (Huber et al. 2008; Glasauer et al. 2010), temporal cognition in artificial 

systems (Maniadakis and Trahanias 2011; Maniadakis and Trahanias 2014), and methods to 

improve communication and interactive features in robots e.g., (Michalowski and 

Sabanovic 2007; Namera et al. 2008; Iqbal et al. 2014; Grand et al. 2014).   

Several studies on temporal aspects of human-robot collaboration have used timing as a 

measure of temporal fluency among the collaborating agents and as a performance measure 

of the overall H-R system (Hoffman and Breazeal 2007; Shah et al. 2009; Wilcox et al. 

2012; Hoffman 2013; Mutlu et al. 2013; Nikolaidis et al. 2013; Gombolay et al. 2013b; 

Huang et al. 2015). 

 This dissertation investigates the problem of integrating a human and a robot in a 

collaborative handover task. The research focus is on temporal coordination in a human-

robot team, using temporal fluency as a measure, with the external influencing parameters 

involved are user-proficiency (an agent-intrinsic parameter), task length and complexity 

(task parameter), in a repetitive collaborative task (task parameter), for a single agent non-

buffered interaction (collaboration design parameters), for different coordination protocols 

(collaboration design parameter) when there is learning/fatigue in the process (an agent-

intrinsic parameter). 

1.2. Research	objectives			
The main objective of this research is to investigate the temporal aspects of human-robot 

collaboration when working as a team in handover tasks. The specific research objectives 

are to: 

1. Investigate Human-Human joint-actions in handover tasks and their design 

implications for developing H-R collaborative systems for handover tasks.  

2. Investigate coordination strategies for better H-R team-coordination and improved 

system productivity in handover tasks.  

3. Develop Human-Robot collaboration models of time perception for fluent and 

intuitive team-coordination in handover tasks. 
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Based on this research, system design implications for improving the temporal coordination 

in a Human-Robot team for handover tasks will be developed. 

1.3. Research	significance	
1. The study of human-human joint-action shows how the given job-role 

(giver/receiver) determines user-perception and behavior in a collaborative task. 

The results of this study have several design implications for developing H-R 

collaborative systems for repetitive handover tasks. These tasks are commonly 

found in supermarkets, warehouses and manufacturing industries. The results are 

therefore relevant for the robotics community.  

2. The developed H-R collaboration models provide ways for integrating a human and 

a robot in a work-cell sharing time- and work-space. It has several practical 

applications in industries with the need for automating low-volume, complex and 

customized processes which are still done by human labor.  

3. Human-Robot collaboration is currently structured in a stop-and-go rigid regime of 

turn-taking operation inducing delays. The developed models can improve the 

temporal coordination of a H-R system. This can make the collaboration process 

fluent and natural, and hence, offer a better user-experience.  

4. The study of H-R collaborative system shows the dependence of the models and 

coordination strategies on several influencing parameters, including task length and 

complexity, coordination protocols, user-proficiency and work-periods.   

5. The combined studies on human-human joint-actions and H-R collaborative systems 

provide a comprehensive view of the design needs and requirements for developing 

an H-R system with fluent and intuitive team-coordination in handover tasks.  

1.4. Research	contributions	and	innovations	
1. The study of human-human joint-action in repetitive handover tasks showed the 

conflicting perspective of the team-partners – a giver and a receiver. It provides 

insight on how a joint-action is perceived differently by a giver and a receiver, and 

hence how different their needs and behavior are in a handover task. 

2. Three H-R collaboration models were developed, based on how humans perceive 

and process temporal events in a collaborative task, as studied in the research on 
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human-human joint action. The models improve the temporal coordination between 

the partners and the productivity of an H-R system. 

3. The three-pronged design analysis methodology presented here – simulation, 

analytical and experimental – can be used by the robotics community to compare 

and evaluate the performance of H-R collaborative systems.  

4. The influence of user-proficiency, learning/fatigue and task-type on the design 

requirements of an H-R system shows that different H-R collaboration models can 

be the best model of collaboration, depending on the needs and requirements of the 

scenario.  

5. Coordination strategies for fluent Human-Robot handovers in a team-work are 

proposed.  

 



Chapter	2	 Page	5	
 

 |	Scientific	Background	

Chapter Overview 

A brief literature review of the investigated problem is presented. The first section deals 

with human-robot collaborative manufacturing and recent trends in industrial robotics. 

System performance metrics of Human-Robot collaborative systems and the role of human-

factors in the design of such systems are subsequently presented to give an overview of the 

design challenges. The next two sections deal with joint-action in repetitive handover tasks, 

with presentations of the psychology and robotics literature concerning temporal 

coordination in human-human and human-robot collaboration. The review ends with an 

overview of the different approaches, tools and methods for analytical and simulation 

studies of human-robot system. 

2.1. Human-Robot	collaborative	manufacturing	
The current trend in industrial robotics is to expand the application of industrial robots 

beyond the safety cages by developing human-robot collaborative systems (Krüger et al. 

2009; Tan et al. 2009; Duan and Tan 2011; Duan et al. 2012; Unhelkar et al. 2014). This 

requires the development of smart, flexible and customizable robots that share work and 

time-space (Fitzgerald 2013). Such robot assistants can be used as multi-purpose robots in 

collaboration with human workers for diverse tasks in industries, e.g., in the packaging of 

products with different shapes, sizes and weights or in assisting in the assembly of 

complicated objects (Cherubini et al. 2016; Tsarouchi et al. 2016a) or in aircraft assembly 

industries (Gombolay 2013; Gombolay et al. 2013b). Several robotic developments are 

advancing this approach, including Baxter Robotics (Fitzgerald 2013), ABB Yumi and 

Kuka IIWA-LBR Light Weight Robot (Bischoff et al. 2010). 

2.1.1. Human-Robot	system	performance		

Human-Robot (H-R) collaborative systems may result in improved efficiency and accuracy 

(Kamali et al. 1982; Parasuraman et al. 2000) since they rope in the individual strengths of 

humans (e.g., perception, adaptivity, decision making) and robots (e.g., speed, accuracy, 

consistency). H-R system performance has been measured using different methods, 

including operator workload and team performance (Howard 2005; Howard 2007), human 

physiological responses (Sarkar 2002) or by determining the autonomy level based on cost-
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benefit decision analyses (Bechar et al. 2009; Tkach et al. 2011). H-R system performance 

can also be measured in terms of task metrics (Nikolaidis et al. 2015) and fluency metrics 

(Hoffman 2013). Temporal fluency is defined as the level of coordination among the 

collaborating partners and measured using three common metrics (Hoffman and Breazeal 

2007; Shah et al. 2009; Wilcox et al. 2012; Gombolay et al. 2013a; Hoffman 2013) – 

concurrent time, human idle time, functional delay and the robot idle time.  

 This dissertation employed temporal fluency as H-R system performance metric in a 

three-pronged design analysis framework, consisting of simulation, analytical and 

experimental study of H-R system. This framework can be used by the robotics community 

to compare and evaluate the performance of H-R collaborative systems. 

2.1.2. Human-factors	in	Human-Robot	collaborative	system	

Humans obviously play an important role in H-R collaborative systems, so human factors 

must be considered (Casper and Murphy 2003). A human-aware robot can significantly 

improve team-coordination in collaborative tasks (Lasota and Shah 2015). Robot-human 

hand-overs can be made seamless by taking human preferences into account (Cakmak et al. 

2011; Strabala et al. 2013). Anticipation of timing in human-human collaboration (also 

known as joint-action) is influenced by several intrinsic system variables, including 

perceptual latency (Seifried et al. 2010), temporal preparation (Bausenhart et al. 2010), and 

rhythm of operation (Fraenkel 1994; Sanabria et al. 2011). Besides, it can also be 

influenced by external factors (e.g., experience, fatigue, training) that affect intra- and 

interpersonal movements to become temporally coupled (also known as entrainment) 

(Vesper et al. 2011), which in turn induces synchronization. 

In a human-robot repetitive handover task, waiting times arise if the human or the robot 

are early or late at the point of handover (Strabala et al. 2013). The waiting times of the 

collaborating partners have been defined as human waiting time and robot idle time 

(Hoffman and Breazeal 2010) in repetitive handover tasks. Waiting times result in irregular 

handover patterns, generating a lack of coordination in the H-R system (Hoffman 2013), 

which directly affects the overall system productivity. 

 This dissertation investigated the influence of human-factors on team fluency in a H-R 

collaborative system. Several human-factors including user-proficiency, user-state 

(learning/fatigue), coordination protocols, task-complexity, length of the task and the 
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frequency of H-R interaction during a task were investigated in this study. The study helped 

to understand the strengths and limitations of each of the H-R collaboration models and 

their specific suitability for different types of tasks from a user-centric design perspective.  

2.2. Joint-action	in	repetitive	tasks	
There are many examples of short-cycle and repetitive joint-actions among humans, such as 

drill sessions, military parades and professional rowing. Literature in human-factors define 

short-cycle repetitive task as a physical task, done by a human with an individual cycle 

length of the task / sub-task varying approximately between 2 sec (or less) to a maximum of 

20 sec (Moore and Wells 2005; Garg et al. 2006; Bosch et al. 2012). Examples of such 

tasks, as stated above, which are done in a team are related to joint-action. It is defined in 

(Sebanz et al. 2006) as “joint action can be regarded as any form of social interaction 

whereby two or more individuals coordinate their actions in space and time to bring about a 

change in the environment”. It may seem that joint-action in synchrony is the domain of 

professionals and experts, however, knowingly or unknowingly (Richardson et al. 2007), 

every human coordinates his/her actions with others in many tasks, such as in aerobic 

classes, basketball or while doing the dishes with a partner. 

The science of joint-action is discussed in cognitive psychology (Vesper et al. 2011; 

Vesper et al. 2013), philosophy (Bratman 1992) and musicology (Keller 2008; Merker et al. 

2009). Recently, this field has received much attention in the HRI community (Mörtl et al. 

2012; Clodic et al. 2014; Mörtl et al. 2014). It has profound importance for designing 

friendlier and ergonomic Human-Robot (H-R) collaborative systems. Such design 

methodologies and principles have been successfully implemented in a number of cases 

(Huber et al. 2008; Lorenz et al. 2011; Boucher et al. 2012; Mutlu et al. 2013; Strabala et al. 

2013). The worldwide popularity of the toy robot Keepon (Kozima et al. 2008) is a simple 

example of designing human-friendly robots by taking cues from Human-Human rhythmic 

interaction. 

Investigation in goal-directed joint-tasks (Lorenz et al. 2011) (such as two people 

moving a table together) show that humans tend to synchronize their arm movements, 

which calls for precise movements. In general, movement synchronization is a guiding 

dynamical process that leads to stable coordination patterns in natural human-human joint 

action (Mörtl et al. 2012). Hence, synchronization among the team partner must exist to be 
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able to work together. This helps in building team coordination, which plays an important 

role in joint-action in repetitive tasks. 

The fluency (Hoffman 2013) of team coordination among humans engaged in a joint-

task depends on many factors, including, team communication (Eccles and Tenenbaum 

2004; Richardson et al. 2005), agreeableness among team members (Neuman and Wright 

1999; Bernardin et al. 2000), habit persistence for their preferences (Thunholm 2004) and 

their ability to adapt, attend and anticipate (Keller and Koch 2008). Adding to that, a joint-

action in a short-cycle repetitive task involves closer and more frequent interaction. 

Therefore, for the robot and the human to collaborate successfully in such a H-R system, it 

has to be attuned to the actions of the human (Garg et al. 2006; Wilcox et al. 2012). 

This dissertation presents a three-fold systematic approach to study and analyze joint-

action in repetitive tasks. It also gives insight into the science of joint-action for short-cycle 

repetitive tasks and its implications for human-robot collaborative system design. 

2.2.1 Human-Human	and	Human-Robot	Handovers		
A joint-action may involve direct or indirect handover between the collaborating partners. 

Studies in human-human handover, e.g., (Basili et al. 2009; Huber et al. 2013; Strabala et 

al. 2013; Moon et al. 2014; Huang et al. 2015) have been instrumental in designing robots 

with human like handovers, e.g., (Gharbi et al. 2015; Huang et al. 2015; Zheng et al. 2015). 

These human-human and human-robot handovers generally deal with face-to-face handover 

scenarios where communication between partners is possible through eye-gaze and other 

non-verbal communication cues (Gharbi et al. 2015). In such cases, the point-of-handover 

(p-o-h) in a joint-action is generally determined by the giver (Basili et al. 2009). In short-

cycle repetitive handovers, however, there may or may not exist an eye-gaze in every 

handover cycle. In the absence of an eye-gaze by the receiver, a-priori expectation of the 

receiver about the probable p-o-h plays a more significant role in the success of the 

handover (Huber et al. 2013).  

This dissertation showed the conflicting perspective of the team-partners – a giver and a 

receiver – in human-human joint-action in repetitive handover tasks. It provides insight on 

how a joint-action is perceived differently by a giver and a receiver, and hence how 

different their needs and behavior are in a handover task. Three H-R collaboration models 

were designed for H-R handover based on the study on human-human handover. 
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2.3. Temporal	coordination		

2.3.1. Temporal	coordination	in	human-human	collaboration	

Humans’ ability to perceive time is what makes them so good in coordination in 

collaborative tasks (Sebanz and Knoblich 2009). Some collaborative tasks like competitive 

rowing or hand clapping games require rhythmic interaction among the team partners 

requiring the ability to perceive rhythms (Keyfitz and McNeill 1996). Another type of 

collaborative tasks, like musical jam sessions or classical dance, require temporally 

adaptive interaction, which in turn requires the ability to perceive, predict and adapt 

according to the changing rhythms and/or incoming temporal cues (Merker et al. 2009).  In 

the case of unstructured and complex collaborative tasks where prediction may not always 

be possible, humans rely on external stimuli, temporal or otherwise (Suri and Schultz 

2001). 

2.3.2. Temporal	coordination	in	human-robot	collaboration	

The role of timing is often overlooked in the study of Human-Robot Interaction (HRI), let 

alone the study of Human-Robot Collaboration (HRC). Human-robot collaboration is often 

structured in a stop-and-go rigid regime of turn-taking operations inducing delays (Hoffman 

and Breazeal 2007). For robots to become social or humanlike in collaborative actions, 

robot-human interactions must reach a level of fluency close to that of human-human 

interactions (Hoffman and Breazeal 2010). 

This requires action coordination, which is defined as the harmonization between the 

actions of a human and a robot, providing real-time coordination between them (Lorenz et 

al. 2015). Without such action coordination, the joint-efficiency of the collaborative system 

can be extremely poor (Huang et al. 2015). Joint-efficiency in this research is defined as the 

net throughput of the H-R system (i.e., the team work) for the given task (as opposed to 

their individual throughput or efficiency). Thus, system performance of such H-R systems 

is evaluated by considering both the human and the robot as integral contributors to 

performance (Oren et al. 2012). 

There has been a growing interest in the robotics research community in understanding 

the role of timing and temporal coordination in HRI (Glasauer et al. 2010; Hoffman 2013; 

Iqbal et al. 2014; Maniadakis and Trahanias 2014; Lorenz et al. 2015). Research focuses on 

different aspects, such as timing from the perspective of joint-action in teams (Huber et al. 
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2008; Glasauer et al. 2010), on temporal cognition in artificial systems (Maniadakis and 

Trahanias 2011; Maniadakis and Trahanias 2014), and methods to improve communication 

and interactive features in robots e.g., (Michalowski and Sabanovic 2007; Namera et al. 

2008; Iqbal et al. 2014; Grand et al. 2014).   

Several studies focus on temporal aspects of human-robot collaboration. They deal with 

timing as a measure of temporal fluency among the collaborating agents and as a 

performance measure of the overall H-R system (Hoffman and Breazeal 2007; Shah et al. 

2009; Wilcox et al. 2012; Gombolay et al. 2013; Hoffman 2013; Mutlu et al. 2013; 

Nikolaidis et al. 2013; Huang et al. 2015). These studies, however, do not consider the role 

of human-factors on temporal coordination and temporal perception of the partner that 

come into play in a collaborative teamwork.  

 The three H-R collaboration models developed and evaluated in this dissertation are 

based on the three principles of temporal coordination in human-human collaboration. 

Timing-based model is based on the principle of rhythmic interaction, Sensor-based model 

is based on external stimuli and Adaptive model is based on the principle of perceive, 

predict and adapt. These models improve the temporal coordination between the partners 

and the productivity of an H-R system. The influence of human-factors including, user-

proficiency, user-state (learning/fatigue), coordination protocols, task-complexity and 

length on the design requirements of an H-R system shows that different H-R collaboration 

models can be the best model of collaboration, depending on the needs and requirements of 

the scenario.  

2.4. Analytical	 and	 simulation	 study	 of	 human-robot	 coordination	 in	 a	
repetitive	collaborative	task		

Analytical models of repetitive work cycles show the temporal behavior of a worker over 

time (Eilon 1964; Gentzler et al. 1977). Experimental studies on temporal behaviors of 

humans in repetitive tasks have also been done in the field of human factors and 

ergonomics (Garg et al. 2006; Dempsey et al. 2010; Bosch et al. 2012). These studies 

investigated temporal changes in humans’ movement strategy over time and the influence 

of pace and temporal organization on human performance during a fatiguing short-cycle 

repetitive task. The studies provide design guidelines for better system ergonomics and 

higher productivity in repetitive tasks, done solely by humans. In contrast to these studies, 
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the research presented here investigates the collaborative performance of repetitive 

handover tasks by a human-robot system. So far, no system design guidelines on effective 

coordination strategies exist for such a task. The existing body of work on H-R system 

design guidelines generally deals with safety (Michalos et al. 2015; Zanchettin et al. 2016), 

and workstation layout problems (Tsarouchi et al. 2016b). 

The analysis of an H-R system in an industrial context apparently makes the problem 

similar to workstation design and optimization issues – an area well investigated using 

analytical and simulation analyses. Examples of such analyses include the application of 

methodologies like Factorial Experiments (FE) and Response Surface Methodology (RSM), 

together with graphical simulation tools to find optimal solutions for multiple-objective 

workstation problems with multiple performance measures (Ben-Gal and Bukchin 2002). In 

ergonomic analyses, workstation design problems are generally investigated with the use of 

Digital Human Modeling and Simulation (DHMS) tools, e.g., (del Rio Vilas et al. 2012; 

Harari et al. 2017).  

Investigation of these design issues as an integrated collaborative system with the 

human-in-the-loop has only lately received attention. Examples include the simulation 

model of an industrial H-R collaborative system  (Ore et al. 2013; Khalid et al. 2015), and 

work-method studies of farmers for agricultural automation (Riemer and Bechar 2016), 

where the biomechanical workload and operation time of a human is analysed to find 

optimal H-R collaborative system design solutions. Simulation tools have also been 

employed for optimized task distribution in an H-R collaborative assembly task (Ding et al. 

2014). Recent work also includes the use of interactive virtual environments as tools to 

model industrial H-R system (Matsas et al. 2016). H-R system modeling using analytical 

methods is useful for quantitative evaluations. Examples include (Nikolaidis et al. 2013), 

where the entropy rate of the Markov chain were computed to evaluate the system and 

(Someshwar and Kerner 2013), where operations research methods were used in optimizing 

the waiting times of the collaborating partners.  

Analytical modelling of workstation design, flexible manufacturing system and its 

productivity optimization, focusing on scheduling and flexibility under different 

constraints, parameters and scenarios is another well investigated area (Akturk et al. 2005; 

Wilhelm and Zhu 2009; Al-Hinai and Elmekkawy 2011; Arviv et al. 2015). Scheduling 

problems of industries with temporal constraints (Levner et al. 1997; Agnetis 2000; Guo et 
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al. 2011) are of interest to the current research. However, previous investigations on 

analytical modelling excluded humans from the system control loop and focused on the 

optimization models. Recently temporal scheduling techniques were applied to the design 

of human-in-the-loop collaborative systems (Wilcox et al. 2012; Gombolay et al. 2013b). 

These scheduling techniques aim at decreasing the waiting/idle time of the partners to 

improve the system fluency (Hoffman 2013).  

The analytical framework developed by Wang (Wang et al. 2015) shows the influence of 

the control scheme and scheduling strategies on H-R mutual trust and hence on the 

collaborating system design. Using the numerical simulation analysis in Matlab, they have 

shown how inclusion of human factors like H-R trust dynamics in scheduling strategies can 

improve H-R collaboration (Sadrfaridpour et al. 2014; Wang et al. 2015). This is an 

example that shows how analytical and simulation studies can be used to study H-R 

systems to understand the interaction of system parameters in different scenarios. 

Other studies of analytical models of H-R collaborative systems deal with the kinematics 

and robust control framework (Krüger and Surdilovic 2008). The control scheme of an H-R 

system could be manual, semi-autonomous or autonomous, depending on the level of 

automation (LOA) of the system (Parasuraman et al. 2000). Together with the control 

schemes and LOA, a coordination protocol is needed between the partners for realizing the 

handover or the actual physical interaction. The coordination protocol can be defined as the 

pre-defined and explicit rules of collaboration or “high-level protocol used in coordination 

process” between the partners in a mutually dependent task (Kuwabara et al. 1995).  

Effective H-R coordination strategies and their design implications have been presented 

for human-robot handover tasks (Huang et al. 2015) and for target recognition tasks (Tkach 

et al. 2011; Oren et al. 2012). (Huang et al. 2015) showed that different strategies, such as 

the ‘slowing-down strategy’ and the ‘waiting strategy’ can improve the team-coordination 

and offer better user-experience in a human-robot handover task. 

This dissertation investigates team fluency and productivity of the H-R system using 

analytical and simulation analyses methods and proposes effective H-R coordination 

strategies. The methodology presented can be used to: (i) predict the level of team-

coordination between the partners and hence performance of human-robot collaboration as 

a team; (ii) study the behavior of the system when the influencing parameters are tuned 



Chapter	2	 Page	13	
 

thereby predicting the preferable (and when possible optimal) way to collaborate for 

dynamic scenarios; (iii) develop a system objective function which can be employed as a 

general design tool to measure H-R system performance. 
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 |	Methodology	

Chapter Overview 

The general problem definition investigated in this thesis and the overall approach are 

presented followed by the methodology of the sequential steps applied in this research. The 

steps include the investigation on Human-Human joint action, followed by the development 

of H-R collaboration models. Then, the influencing parameters of H-R collaboration and 

the measures of H-R system performance that were investigated are explained. The chapter 

concludes with the H-R system design analysis and evaluation methodology that was 

implemented to study, compare and evaluate the three H-R collaboration models.  

3.1. General	

3.1.1. Problem	definition	

An H-R collaborative task where the human and the robot physically collaborate with each 

other requires the accurate anticipation of the spatial and temporal point of handover for an 

efficient coordination during the process. This research deals with the analysis of the timing 

component of this handover to improve team-coordination.   

3.1.2. The	overall	approach	

The overall approach is described in Figure 3.1 and includes two main steps. Human-

human joint-action in repetitive handover tasks was investigated to understand its design 

implication for developing H-R collaborative systems. The study included a three pronged 

approach – a field-study, simulation and experimental studies – for a case-study of short-

cycle repetitive tasks, which includes the hand-over of bottles in a supermarket. 

Based on this study, three human-robot collaboration models were developed – Timing, 

Sensor and Adaptive. The performance of these three models was evaluated using analytical 

and simulation analyses for users with different proficiency levels (novice/expert) and 

prolonged work periods. Using experimental analyses, the performance of the H-R system 

in each of the three models was evaluated for three types of handover tasks – short & 

simple, long & simple, long & complex. The study helped to understand the strengths and 

limitations of each of the collaboration models and their specific suitability for different 

handover task types.  
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 The study resulted in the development of coordination strategies for fluent and intuitive 

Human-Robot collaboration in handover tasks. The different studies on Human-Human 

joint-action and the H-R System for different user-proficiency, coordination protocols and 

task-types provide a holistic view on the design needs and requirements for developing a H-

R system with fluent and intuitive team-coordination in handover tasks. The thesis 

concludes by presenting this in the form of design guidelines for developing H-R 

collaborative systems for handover tasks.  

3.2. Human-Human	joint	action	in	repetitive	handover	tasks	
:  Chapter 4 describes this study in detail  

The human-human joint action in short-cycle repetitive handover tasks was analyzed 

through a real world case-study. The specific joint-action was the handover of bottles in a 

supermarket. It was analyzed in a project conducted as part of this thesis (BGU final project 

report, Kozak and Zeev, 2015) using three methods – (a) field studies of work-methods in 

Figure 3.1 An illustrative overview of the overall methodology employed in this research 

Chapter 4 

Chapter 5 

Chapter 7 

Chapter 6 

Chapter 8 
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supermarkets, (b) simulation analyses using Jack, an ergonomics software package, and (c) 

lab experiments simulating the conditions of a supermarket.   

The motivation behind the work-methods field studies was to get a first-hand 

understanding of the scenario, the problem, the needs, and the nature of the task, and at the 

same time to study the work methods of humans working in teams in supermarkets. It was 

carried out by recording data in three supermarket stores at different locations in southern 

Israel, followed by data analyses.  

The Jack simulation study was conducted to analyze the involved bio-mechanics and 

ergonomic aspects of short-cycle repetitive tasks. It provided an understanding of which of 

the sub-tasks is physically more strenuous and hence could be delegated to a robot, if a 

human-robot collaborative system is commissioned for the given job.  

Based on the observations and the data collected in the field studies, a laboratory 

experiment was subsequently carried out by re-creating the conditions of a supermarket. 

The lab experiment aimed at providing psychological aspects in human-human joint action 

for the given task. The experiment included two variables – shelf height (Higher 

Shelf/Lower Shelf) and frequency of handover (Normal Mode/Competitive Mode). As a 

result, the experiment had four phases in total and each of the pairs of participants went 

through all the four conditions: (i) Normal Mode – Higher Shelf, (ii) Normal Mode – 

Lower Shelf, (iii) Competitive Mode – Lower Shelf, and (iv) Competitive Mode – Higher 

Shelf.  

Task-related performance of participants was measured through an objective analysis of 

the number of bottles shelved every 10sec during each phase, and with the off-line video 

data analysis of the joint-task, focusing on the level of coordination in the team during the 

task. The level of coordination was assessed by measuring the partners’ waiting time in 

every handover.  

Subjective analyses of the participants’ experiences in the experiment were assessed 

through two questionnaires, given during and after the experiment. Subjects were asked to 

report their experiences by comparing the current phase with the previous ones in terms of 

(i) comfort and (ii) coordination /synchronization during each of the intervals. At the end of 

the experiment, subjects were given a post-experimental questionnaire to assess the 

psychological aspects in human-human joint action in repetitive tasks. 
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All experiments were formally approved by the BGU Human Subject Research Ethics 

Committee. 

3.3. Human-Robot	collaboration	models		
: Chapter 5 describes this study in detail  

Three Human-Robot Collaboration Models – Timing, Sensor and Adaptive – were 

developed, based on the above study of human-human joint action in repetitive tasks. The 

models are based on the three preliminary ways in which human, knowingly or 

unknowingly (Richardson et al. 2005) processes the perceived time in order to coordinate 

effectively in a collaborative task.  

Timing Control Model – It is based on the principle of single or multi-level rhythmic 

interaction. The operational cycle of robot actions is governed by only one parameter in this 

case, and that is time. The robot performs a series of pre-defined tasks at fixed intervals of 

time that are set by the end-user, depending upon the needs and operational demands of the 

scenario. An example where this model suits the scenario is a human assisting a pick and 

place robot in an assembly station. 

Sensor Control Model - This collaboration model is based on the principle  that in the 

case of unstructured and complex collaborative tasks, where prediction may not always be 

possible, humans rely on external stimuli, temporal or otherwise (Suri and Schultz 2001; 

Sebanz and Knoblich 2009).The robot actions are initiated by a triggering signal, issued as 

a function of the temporal or state information of the human’s action. When receiving the 

signal, the robot computes the likely time of the subsequent handover and plans its action 

accordingly.  

Adaptive Control Model - This model is inspired by the human’s ability to perceive, 

predict and adapt according to the changing rhythms and/or incoming temporal cues 

(Merker et al. 2009; Vesper et al. 2011; Keller et al. 2014). They allow humans to adapt in 

time with each other, giving rise to what psychologists define as emergent coordination. In 

the temporally adaptive model, the robot perceives, predicts and adapts in time to the 

rhythm of the human action. The perception, anticipation and adaptation are purely 

temporal in this model. The system does a time-series analysis of the past and incoming 

temporal data to anticipate the time of the next handover cycle. 
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3.4. Influencing	parameters	investigated		
The influence of the following types of parameters was investigated (Figure 3.2). It is 

explained in detail in Chapter 5 (sec. 5.1). 

a) Collaboration design parameters: Parameters that are connected to the design of 

the workspace and to the collaboration aspects fall into this category. For example, 

coordination protocol, buffered or non-buffered coordination. 

b) Task parameters: Parameters that are connected to the design of the task fall into 

this category. For example, task length and complexity, exclusive task or shared 

task. 

c) Agent-intrinsic parameters: The inherent characteristics of the participating agents 

(human and robot) in a collaborative task can be defined as agent-intrinsic 

parameters (Someshwar et al. 2012a). For example, learning or fatigue, system 

reliability, user-proficiency. 

 

Figure 3.2 Investigated influencing parameters of H-R collaboration  
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3.5. Measures	of	H-R	collaborative	system	performance	

3.5.1. Objective	measures		

Team Fluency is measured in this research in terms of temporal coordination using the total 

idle time, total assembly time (human and robot together) and rate of successful handover 

as metrics (Hoffman and Breazeal 2007; Hoffman and Breazeal 2010; Hoffman 2013). 

i. Total idle time – It is the sum of the total waiting times of the human for the robot 

or vice-versa at the point of handover in a team-work. Idle time generally arises 

when one of the team-partner is delayed, making the other wait for the handover.  

ii. Total assembly time – It is the sum of the total time taken by the human and the 

robot together as a team to accomplish the given team-work.  

iii. Rate of successful handovers – When the human and the robot arrive at the point of 

handover at almost the same time, and the H-R handover is executed with no 

waiting times, it is defined in this research as successful handovers. Rate of 

successful handover is thus calculated as, 

𝑅𝑎𝑡𝑒	𝑜𝑓	𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙	ℎ𝑎𝑛𝑑𝑜𝑣𝑒𝑟	 = 	
𝑁𝑟. 𝑜𝑓	𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙	ℎ𝑎𝑛𝑑𝑜𝑣𝑒𝑟
𝑇𝑜𝑡𝑎𝑙	𝑛𝑟. 𝑜𝑓	ℎ𝑎𝑛𝑑𝑜𝑣𝑒𝑟𝑠 	×100 

3.5.2. Subjective	measures		

Questionnaires were used in two of the four experimental analyses for subjective 

assessment of the system, the collaborative task and the participants’ experience of working 

in different experimental conditions. They were analyzed using Microsoft Excel and the R 

software.  

3.6. Analytical	and	simulation	study	of	H-R	system	
: Chapter 6 describes this study in detail  

The behavior of the H-R collaborative system was studied using analytical and simulation 

analyses for different user-proficiency levels (novice/expert) and system reliability 

functions (the various factors that affect sensor data accuracy and mechanical constraints) 

for different pre-defined rules of collaboration (defined as coordination protocols) and 

control models. An objective function of the H-R system was developed for the analytical 

analyses taking into account the costs of human waiting and robot idle time in each work 

cycle. This objective function was used as the H-R system performance measure to 
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determine the level of coordination (temporal fluency) between the partners for a given 

scenario. To illustrate the methodology, three case-studies were developed and presented 

for which exact solutions were found for the given context. The results of the case-studies 

were further studied by looking into its design implications to get a holistic view for 

developing H-R collaborative systems for handover tasks. 

Subsequently, complex collaborative scenarios were investigated to study the effect of 

techniques like system recalibration, different coordination protocols and influencing 

parameters like user-proficiency (novice/expert), system reliability (sensor data accuracy) 

on H-R team coordination in handover tasks. Analytical analyses of the effect of these 

factors together made the problem computationally intensive and complex by nature.  

Therefore, a simulation model of the H-R system was developed in Matlab to explore 

the interaction of these factors and their effect on team coordination and system 

productivity. Four case-studies were analyzed using the developed simulation model. They 

show the effects of system recalibration, different coordination protocols and human-factors 

(novice/expert) on team coordination and productivity. Each of the collaborative scenarios 

was simulated for 1000x1000 times using the Monte Carlo method. The values of each of 

the variables (robot total time, RTT and human total time, HTT) were randomly sampled 

each time to analyze H-R system performance. 

A comparative analysis of the results of the analytical and simulation study of the H-R 

system was done for one of the case-studies to assess the robustness of the two approaches. 

The analytical and simulation study of the H-R collaborative system resulted in the 

development of coordination strategies for fluent and intuitive human-robot handover in 

collaborative tasks.  

3.7. Experimental	study	of	the	H-R	system	
: Chapter 7 describes the experimental study in detail (click on chapter 7) 

Using experimental analyses, the performance of the H-R system in each of the three 

models was evaluated for three types of tasks – short & simple, long & simple, and long & 

complex. It was conducted as part of two final projects performed as part of this thesis 

(BGU final project reports, Sayfeld and Peretz 2014, Moyal and Goldshtein, 2015).  

An integrated human-robot collaborative work cell was designed for the experiments. 

The system consisted of a 5 DOF revolute robotic arm (Scorbot ER4U) mounted on a table 
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top with an area dedicated to human-robot interaction and two other areas dedicated to the 

primary and secondary (if applicable) tasks of the robot respectively. This work-cell 

facilitated close Human-Robot interaction in a shared work, time-space collaborating with 

the aim of executing a time-critical joint task (as done in the manufacturing and assembling 

industry).  

Three experiments with 200 subjects in total were conducted to validate, evaluate and 

compare the models for three types of collaborative task, which vary in their degree of 

complexity in terms of cognitive- and time-demands. Statistical analyses were conducted 

on the total idle time, total assembly time and the rate of successful handovers for each of 

the collaboration models. The study helped to understand the strengths and limitations of 

each of the collaboration models and their specific suitability for different types of tasks.
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 |	Investigating	joint-action	in	repetitive	handover	tasks		

Chapter Overview 

Human-human joint-action in short-cycle repetitive tasks was investigated for a bottle 

handover task, using three methods – work-methods field studies, simulation analyses and 

an in-house lab experiment (BGU final project report, Kozak and Zeev 2015). Analyses 

included both objective and subjective measures. These three methods and their respective 

results are presented in detail in three dedicated sections, 4.2, 4.3 and 4.4. This is followed 

by a common discussion on the three methods along with comprehensive analyses. The 

chapter concludes with several guidelines for the design and development of user-friendly 

human-robot systems for joint-action in collaborative tasks.  

4.1. Methods	
The human-human joint action in short-cycle repetitive handover tasks was analyzed 

through a real world case-study (Kozak and Zeev 2015). The selection of a real world task 

is important for providing reliable and valid results. The scenario investigated represents a 

typical job of supermarket workers – the task of stacking bottles in store shelves from the 

cartons. The bottle handover task in supermarkets was analyzed using three methods – (a) 

work-methods field studies in supermarkets, (b) simulation analysis using Jack, an 

ergonomic software package, and (c) in-house lab experiments simulating the conditions of 

a supermarket.  

The motivation behind the work-methods field studies was to get a first-hand 

understanding of the scenario, the problem, the needs, and the nature of the handover task, 

and at the same time, to study the work methods of humans working in teams in handover 

tasks in supermarkets. It was carried out by visiting three supermarket chains at different 

locations in Israel and recording data in real world conditions, followed by data analyses. 

Field studies indicated that this job is generally done by a team of two people, each with a 

specific role. One is a giver whose job is to pick up a bottle from the carton and hand it to 

the receiver whose job it is to take the bottle from the hands of the giver and place (and 

align) it at the right location on the shelf.  

A Jack simulation study was conducted to analyze the involved bio-mechanics and 

ergonomic aspects of short-cycle repetitive tasks. It provided an understanding which of the 
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sub-tasks is physically more strenuous, and hence could be delegated to a robot, if a human-

robot collaborative system is commissioned for the given job. 

Finally, based on the observations and the data collected from the field-study, an in-

house lab experiment was subsequently executed by re-creating the conditions of a 

supermarket. The lab experiment aimed at providing psychological aspects in human-

human joint action for the given task. 

All experiments were formally approved by BGU Human Subject Research Committee. 

4.2. Work-methods	field	studies	in	supermarkets	
 Work-methods analyses were conducted at different supermarkets in southern Israel 

during the fall of 2014 (Figure 4.3 and Figure 4.4a). In most locations, video recording was 

not allowed by the store manager, and in these cases, the following objective data was 

manually recorded by two observers after notifying workers and receiving their consent: the 

cycle time of each handover, the number of missed or unsynchronized handovers, the 

difference in height between the given carton of bottles and the shelf, rest time and the total 

ON time. ON time in repetitive tasks is defined as the amount of time a team spends 

working together at a stretch (Dempsey et al. 2010). The two observers were assigned 

different responsibilities. One was solely responsible for noting the cycle times of each 

handover; the other was responsible for noting the number of missed or unsynchronized 

handovers and other objective measures, as mentioned above. Data was recorded separately 

for the higher, medium and lower shelves (Kozak and Zeev, 2015).  

4.2.1. Results	

The average cycle times varied between 1.7sec (SD = 0.5) and 3.3sec (SD = 1.4) (Table 

4.1). The number of missed or unsynchronized handovers over a single ON time varies 

between 7 and 19%. The speed (cycle time) and efficiency of the team was found to depend 

upon the relative height between the given carton of bottles and the shelf, which defines the 

amount of relative bending required in the task. The shelves heights in the supermarket 

were 165 cm for the upper shelf, 124 cm for the medium shelf and 10 cm for the lower 

shelf.  
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4.3. Software	simulation	
Jack (Siemens 2015) is an ergonomic simulation software package from Siemens, used for 

modeling humans in workplace environments, aimed to address the ergonomic aspects of 

manual operations. It is commonly used for testing and validating designs and operations 

for a wide variety of human factors, including injury risk, fatigue limits, time of operation, 

user-comfort, line-of-sight, energy expenditure and other important parameters (Siemens 

2015). Two humans with equal physical features, a shelf and a stack of bottles were 

modeled in the simulation environment (Figure 4.1).  

 To simulate the conditions of a supermarket, the human models were given the task to 

stack bottles in the shelves – one was assigned with the role of a giver and the other as a 

receiver. Only one bottle was handed over at a time. The shelves in the simulation 

environment had the dimensions, 145 cm – upper shelf height, 95 cm – medium shelf 

height and 43 cm – lower shelf height. The height of the shelves (higher/medium/lower) 

and the physical attributes of the human model (Body-Mass Index) were varied and its 

influence on the fatigue measures was evaluated.  

 The analysis was done for three groups representing 5, 50 and 95 percentile of the 

population. This population distribution is an in-built feature of the simulation software and 

is based on the height-weight ratio of the entire world population. The fatigue measures 

included Lower Back Analysis (LBA), Estimated Recovery Time Needed, and Muscle 

Strain Time History. 

Table 4.1  Results of the work-methods field studies in supermarkets 

S. Nr. Shelf height (cm) Bottle carton 
height (cm) 

Average 
Cycle Time 

(sec) 

Std. Deviation 
(sec) 

% of 
Unsynchronized 

Handovers 

1 0 30 3.3 1.4 12.49 

2 0 100 3.7 1 11.27 

3 124 100 1.7 0.5 23.20 

4 165 30 3.4 0.9 11.95 

5 165 100 2.3 0.9 17.44 
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Figure 4.1 Example of a bottle hand-over in the Jack simulation environment  
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Figure 4.2 The Lower Back Analysis (LBA) for a handover task (higher shelf)  

Table 4.2 Simulation Results showing the output of the Lower Back Analysis (LBA) indicating 
the average and maximum pressure sustained on the lower back for the giver and receiver for 
different shelf heights (Low/Medium/High) and for different population groups (5/50/95 percentile) 
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The underlying assumptions of this simulation study include the following: 

a) The handover takes place in standing position. 

b) The shelving of bottles takes place at a constant speed. 

c) The point-of-handover between the giver and the receiver is fixed at 80 cm above 

the ground level. 

d) The giver and the receiver are on the opposite sides of the matrix of bottles to be 

shelved. 

e) The eye-gaze of both the giver and the receiver is fixed at the p-o-h during the 

handover process. 

4.3.1. Results	

Simulation results are presented in detail in Table 4.2. It shows the output of the Lower 

Back Analysis (LBA) indicating the average and maximum pressure (in Newton) sustained 

on the lower back for the giver and receiver for different shelf height (Low/Mid/High) and 

for different population group (5/50/95 percentile). Fig. 4.2 shows the Lower Back Analysis 

(LBA) of the giver (in blue-dashed) and the receiver (in red-bold) belonging to the 95-

percentile population group during the course of the task of shelving bottles in the higher 

shelf. Figure 2 indicates that the peak to peak difference, PPeak-Diff, in the sustained pressure 

(which is the difference between the variable’s extreme values) between a giver and a 

receiver is 36%. The average pressure sustained by the giver is 2203 Newton (SD=825) and 

by the receiver is 774 Newton (SD=210), resulting an avg. difference PAvg-Diff of 65%.  

4.4. In-house	lab	experiments	

4.4.1. Experimental	design	

(1) The Scenario: Figure 4.3 illustrates the real-life scenario of a supermarket that was re-

created inside the IMT Robotics Lab of Ben-Gurion University of the Negev (BGU). The 

experimental area, as shown in Figure 4.4b, consisted of an empty shelf and a set of 120 

soft-drink bottles of 1.5 liter filled with water, each weighing approximately 1.5 kg. The 

shelves used in the experiment were approximately of the same dimensions as those found 

in supermarkets (165 cm – upper shelf height, 124 cm – medium shelf height and 10 cm – 

lower shelf height). The given task was to fill the empty shelf with these bottles.  



Chapter	4	 Page	28	
 

(2) Conditions: The experiment included two variables – shelf height (higher shelf/lower 

shelf) and frequency of handover (normal mode/competitive mode). In the normal mode, 

the teams were expected to work at a normal pace, without any time pressure or 

productivity target. In the competitive mode, teams were instructed to work faster than in 

the normal mode. The motivation behind the competitive mode was to simulate the peak 

hours/days of a supermarket prior to weekends or holiday seasons when the work pressure 

and the expected output increase considerably. Subjects were informed that the team with 

the highest throughput in the competitive mode will receive a prize. However, in either of 

the modes, no productivity target or time pressure was given. 

   

 

Figure 4.3 Field-studies done in this specific area of the supermarket 
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Figure 4.4 Human-Human team-work in (a) the supermarket and (b) the experimental arena   
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Furthermore, in both modes, subjects were unaware of the total time for which they are 

supposed to carry out the given task in each phase, the total number of bottles to be placed 

in the shelf and the total number of bottles in the inventory. They were informed that they 

need to continue until they were asked to stop. The motivation behind this was to ensure 

they should invest their energy smartly so that they are able to work for a longer stretch of 

time, since the goal was not to empty the inventory (because it is unlimited). In other 

words, the aim was to ensure a natural speed of work to resemble the speed of supermarket 

workers who do this job for a span of 8 hours. 

 The experiment had four phases, and each of the pairs went through all the four 

conditions: (i) Normal Mode – Higher Shelf, (ii) Normal Mode – Lower Shelf, (iii) 

Competitive Mode – Lower Shelf, (iv) Competitive Mode – Higher Shelf. The shelf height 

was assigned randomly; however, the competitive mode followed only after the normal 

mode was executed for both shelves.  

(3) Dependent Measures: Participants’ task-related performance was measured by objective 

analyses of the number of bottles shelved every 10sec during each phase and by off-line 

video data analysis of the joint-task, focusing on the level of coordination in the team 

during the task. The level of coordination was assessed by measuring the waiting time of 

the partner in every handover. 

The number of bottles shelved every 10 sec measures the average throughput of the 

given pair. For each phase of the experiment, 12 measurements were taken (12x10=120sec; 

resulting in 2 minutes of each phase) for which the average productivity was derived. This 

process follows the central limit theorem in which the 12 random variables (each obeying 

the Poisson distribution) are distributed normally, regardless of the underlying distribution. 

The analysis of participants’ subjective experiences was based on two questionnaires, 

given during and after the experiment. Subjects were asked to report their experiences by 

ranking the current phase relative to the previous ones in terms of (i) comfort and (ii) 

coordination/synchronization during each of the intervals. 

(4) Participants: A total of 42 participants (18 female, 24 male) took part in the experiment.                                    

4.4.2. Results	-	Objective	evaluation 	

Table 4.3 shows the average productivity (number of bottles/10sec) and variance of the 

different groups in the competitive mode (the first value in each cell) and normal mode (the 
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second value in each cell). The performance of all 21 teams for the lower and higher shelf 

is presented in the fourth and fifth row respectively. Results show that the average 

productivity in any shelf during the competitive mode and normal mode is approximately 8 

and 5 respectively. The F-Test of equality of variances was done for different combinations 

of shelf height and speed/mode. The left and right curly brackets in Table 2 show a 

significance of p<0.0001.  

 The data was further analyzed and teams were classified into three categories, high-, 

average- and low-yield teams, based on their productivity in the competitive mode. Teams 

with an average productivity rate of 9 and above were categorized as high-yield (7 Teams), 

those between 8 and 9 as average-yield (6 Teams), and teams with 8 or less were 

categorized as low-yield teams (8 Teams).  

 The first three rows in Table 4.3 show the average productivity and variance of these 

three productivity-based categorized groups. Results indicate that the variance of the high-

yield teams in competitive mode is significantly higher (p<0.015) than that of the low-yield 

teams by 43%. The high-yield teams in competitive mode are also the high-yield teams in 

Group 

Average productivity/10sec 

Competitive Mode/ 

Normal Mode 

Variance 

Competitive Mode/ 

Normal Mode 

High Yield 
9.60 

5.89 

2.73 

2.57 

Avg. Yield 
8.62 

4.97 

2.89 

1.37 

Low Yield 
7.23 

4.71 

1.90 

1.31 

Entire Group – Lower 

Shelf 

8.47 

5.08 

3.48 

2.06 

Entire Group – Higher 

Shelf 

8.37 

5.28 

3.45 

1.93 

Table 4.3 Average productivity rate (nr. of bottles/10sec) and variance for the competitive 
mode and the normal mode. The left and the right curly brackets show a significance of 
p<0.0001 (others are not statistically significant) 
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the normal mode, their productivity and their variance being significantly higher 

(p<0.0001) than that of the low-yield teams in normal mode by 25% and 96% respectively.  

4.4.3. Results	-	Subjective	evaluation	

1) Team communication during the task 

In response to the question on team communication that helped in increasing the mutual 

coordination between the partners, results (Figure 1 in Appendix A) show that the most 

frequent dialogues (39%) were concerning their relative positions to each other. Examples 

of such interactions include, “I stand here, and you go there”. Other frequent exchanges 

were about the number of bottles to be transferred in subsequent handover. Together, they 

constituted 73% of all different types of communication. 

2)  Perception of the Level of Difficulty of the task of the team partner when compared to       

oneself  

Results (Figure 2a in Appendix A) show that 95% of the receivers rated the level of 

difficulty of the giver’s task compared to their own task, as having the same difficulty or 

being more difficult than theirs. However, only 23% of the givers say that the job of a 

receiver was “less difficult or easier” than their own. In fact, more than 70% of the givers 

said the task of a receiver has the same difficulty as theirs.   

3) How was the point-of-handover (p-o-h) decided? 

Subjects were asked in the questionnaire how the point-of-handover (p-o-h) was decided 

among them. Results (Figure 3.3 in Appendix A) show a difference in opinion between the 

givers and receivers. While 47% of the givers say they decided the subsequent p-o-h by 

looking at the location of the team partner’s hand, an equal number of receivers did not 

bother to give a serious thought about the p-o-h because their perception of handover is “it 

happened automatically, with no thinking”.   

Figure 4.4, a still snapped during the in-house lab experiment clearly illustrates this 

observation. In addition, 33% of the givers and receivers say that they expected the p-o-h to 

be approximately at the same location as the previous handover. 

4) Habit persistence in decision making? 

Results (Fig. 2b in Appendix A) show that subjects tend to stick to their current roles if 

given a choice to switch (their roles) in a future experiment. 66% of the givers prefer to 

remain as givers and 90% of the receivers prefer to remain as receivers in future roles. 
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5) Perception of the level of commitment of the partner towards the task 

Results (Table 1, Q5 in Appendix A) also show that 95% of the team members rated their 

partner as equally committed during the task.  

6) Relative ranking of the most comfortable phase and the most well-coordinated phase of 

the experiment  

Results (Figure 4 in Appendix A) show that 62% of all subjects generally felt most 

comfortable working in the normal mode. The lower shelf-normal mode was chosen as the 

favorite by the majority (67%) of the givers (Figure 4a) and the higher shelf-normal mode 

was chosen by 57% of the receivers (Figure 4b). Furthermore, results of the relative 

rankings of the best level of coordination (Figure 4) indicate that 30% (highest among the 

other options) of the givers rate the lower shelf-competitive mode as their favorites while 

43% (highest among the other options) of the receivers rate the higher shelf-competitive 

mode as their favorites. In general, however, givers showed more diversity in choosing 

their favorites for the best level of coordination, as compared to receivers. 

7) Perception of the speed and rhythm of the partner and how they adapted to each other 

Results (Table 1, Q3 & Q4; Appendix A) indicate that most of the subjects (95%) noted 

they developed a rhythm and that they adapted themselves to match the speed of their 

partner. When asked about the perception of the speed of the partner, compared to 

themselves, Fig. 8 shows that 64% of the subjects considered their partner’s speed as 

inconsistent (i.e., sometimes fast/sometimes slow). No giver is perceived as slower by the 

receiver and no receiver is perceived as faster by the giver (0%, Fig. 5 of Appendix A). 

8) Preference for using two hands (2 bottles at a time) 

Results (Table 3, Q2; Appendix) show that, if given a choice, 76% of the givers and 

receivers prefer to transfer 2 bottles at a time, as compared to one. 

9) Subjects’ preferences towards working together or alone  

Results (Table 1, Q6; Appendix A) show that 90% of the subjects prefer to work in teams, 

even if that means they need to do double the work as a whole (100 bottles together), as 

compared to the option of shelving 50 bottles alone. 

10)  Tendency when team coordination was perceived as perfect 

Results (Table 3, Q7; Appendix) show that no subjects (0%) felt the urge to slow down 

when they perceived that the coordination between them and their partner was perfect. 
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They either felt the tendency to speed-up (60% of the subjects) or maintain that speed (40% 

of the subjects).  

11)  Fatigue 

Results (Table 4, Q8; Appendix) show that almost 85% of the subjects felt a level of fatigue 

that is equivalent to ‘not at all’ or ‘a bit tiring’. Also, 95% of the subjects mentioned that 

the allotted break time between each mode was enough to recuperate from the tiredness. 

4.4.4. Results	–	offline	video	analysis	

1) Point-of-Handover (p-o-h) 

Video analyses show that there is not always an eye-contact between the subjects at the p-o-

h in every handover cycle. In these cases, the giver reaches up to the receiver’s hand while 

the receiver extending his hand unconsciously to the previous p-o-h and keeping his/her 

gaze fixed towards the shelf.  

2) Location of the grasps on the bottle 

Video analyses indicated that when the subjects were delivering two bottles at a time, they 

tend to grasp the top part of the bottles. Whereas when the handover was one at a time, 

subjects tend to grasp the thicker bottom portion of the bottle. Also, when the bottle is 

transferred to the lower-shelf, subjects tend to hold the top part of the bottles and for the 

higher-shelf; it is seen that subjects tend to grasp the thicker bottom portion of the bottle. 

3) Negotiation in choosing roles in the joint-task 

Video analyses of the experiments shows that subjects mutually decided among themselves 

what role they want to choose and never had any disagreement during the negotiation; the 

negotiation was approximated to be achieved in less than 20 sec. The negotiation took place 

mostly non-verbally.  

4) Task expertise 

Video analysis indicated that the subjects slowly developed some sort of understanding in 

terms of team strategy and mutual speed of working, which resulted in better action 

coordination over time. This, however, did not remain constant and kept evolving, 

depending on the given experimental conditions (shelf height and mode). 

4.5. Discussion		
The research results allow us to draw several quantitative and qualitative conclusions 

related to human–human joint action in short-cycle repetitive tasks. 
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4.5.1. Objective	analysis	(compiling	the	results	from	all	three	methods)	

Both the Jack simulation and the surveys of the supermarket workers indicate that the task 

of the giver is physically more strenuous than the task of the receiver. The maximum 

pressure on the lower back of a giver, belonging to the 95 percentile population group may 

go up to 3411.50 Newton (Table 4.2) which exceeds the threshold safety-limit for the lower 

back (Chaffin and Page 1994). 

The average productivity rate in the experiment (5 in Normal Mode and 8 in 

Competitive mode; every 10 sec) was found to be similar to what was measured in 

supermarkets, confirming that the experimental data was collected in close to real 

conditions. Results (Table 4.3) of the objective analysis of experimental data indicate that 

the teams achieved higher productivity at the cost of higher variability in handover 

frequency. Lower values of variance among the low-yield teams indicate that the variability 

in handover frequency was lower, which in turn means the handover cycles were mostly 

stable, indicating good coordination. This implies that the low-yield teams are in fact, the 

most well-coordinated teams.  

When the productivity of these three productivity-based groups was checked in normal 

mode, it turns out that the high- and low-yield teams in competitive mode continue to 

remain high- and low-yield teams in normal mode respectively. Variance of the high-yield 

teams are also significantly higher (96%, p<0.0001) than the other. This means the art of 

well-coordination among the team partners is probably not influenced by the 

increasing or decreasing frequency of handover. The well-coordinated teams continue to 

remain well-coordinated in either of the modes and vice-versa.  

The existence of higher variability in high-yield teams can be explained, based on speed-

accuracy trade-off of motor control in prehensile movements, which follows Fitts’ Law 

(Serfaty et al. 1998). As the speed of the team partners increased, the point of handover 

kept moving (from L to R or from R to L along the length of the shelf) at a faster rate, 

which might influence the variability following Fitts’ Law. Since increased variability 

resulted in poor-coordination, ‘accuracy’ is in a sense compromised here. 

The variability in handover frequency may also be attributed to the evolving team 

dynamics and bottle placement strategy. In other words, the differences in the way the 

bottles are placed in the shelf and the number of bottles delivered in each handover may 

have an effect on the variability. Bottle placement strategy was not used as a metric to 
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measure variability because different teams came up with different strategies (each 

individual team sometimes even had different strategies for upper/lower shelves). As a 

result, it could be hard to classify this metric into a small ‘n’ number of categories to 

understand its role on productivity. 

In addition, as observed during offline video analysis, when the expertise in handover 

grows over time during the course of the experiment, and participants are starting to 

develop some sort of coordination between them, variability tends to decrease. However, 

based on sec. 4.4.3.11, it can be said that there was no significant impact on the variability 

due to fatigue. 

4.5.2. Subjective	analysis		

1) Team Communication: The communication among the team partners mostly consisted of 

interactions related to their relative position to each other. Research in sports psychology 

shows that when team members are in situations where verbal communication is feasible 

(in terms of physical distance, time taken to communicate, etc.), then inexperienced teams 

prefer to communicate task–specific knowledge through intentional verbal communication, 

to ensure high-levels of accuracy of the message transfer (Serfaty et al. 1998; Eccles and 

Tenenbaum 2004; Richardson et al. 2005; Galati and Avraamides 2013). Considering that 

the subjects were doing the given job for the first time, the observation can be related to the 

above explanation. 

2) Modesty influences Team dynamics: Almost every subject considered their team 

partner as equally committed towards the task. This probably influenced the way 

subjects rated the relative difficulty level of the task of the other (Table 1, Q5, Appendix 

A). This observation can be interpreted, in other words, as both partners in more than 90% 

of the teams showing a level of modesty when rating their partner’s performance.  

Support for this result can be found in applied psychology research where it has been 

shown that at an individual level of analysis, personality traits like agreeableness have a 

major influence on peer-ratings of team member performance (Bernardin et al. 2000), 

irrespective of job-specific skills and general cognitive ability (Neuman and Wright 1999). 

Results show that 95% of the team members rated their partner as equally committed 

during the task, indicating a good level of agreeableness (the tendency to be good-natured, 

cooperative, and trusting) between the partners in our experiment. 
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3) Habit persistence in Decision Making: Even though the job of a giver is apparently and 

ergonomically more difficult than that of a receiver, the majority of givers opted to stick to 

their current role (Fig. 2b in Appendix A). This observation is generally explained by 

psychologists, using the theory of habit persistence in decision-making (Dynan 2000; 

Haaijer and Wedel 2001; Thunholm 2004). According to this theory, habit plays a certain 

role in decision-making. In our experiment, subjects spent only 20 minutes on the task 

(including break sessions), and even in this limited time clear signs of habit persistence 

were indicated. So, it can be concluded that habit-persistence in decision-making is a 

phenomenon that can occur even in repetitive handover tasks of smaller durations.   

4) Emergent Coordination: Subjects on the one hand were inconsistent (Fig. 5 in 

Appendix A), and on the other hand, they were rhythmic (Table 1, Q3 & Q4; Appendix 

A). This observation of adapting themselves to form a rhythm is termed as emergent 

coordination (Knoblich et al. 2011) by the psychologists, where the partners sometimes 

speed-up or slow down, depending upon the context, to match their partners’ speed, giving 

rise to a rhythm between the partners. 

5) Leading and Lagging: Analyses of the results of the subjects’ perception of the speed of 

the other (Fig. 5 in Appendix A) indicate that givers were generally perceived as faster than 

receivers and vice-versa. Considering that movement synchronization is a guiding 

dynamical process, which leads to stable coordination patterns in natural human-human 

joint action, it can be concluded that givers led and set the pace of coordination. 

6) Does the most comfortable/ergonomic work method, when speeded up, create the 

perception of the most well-coordinated joint-action?  

Subjects, in general, felt most comfortable working in the normal mode (sec. 4.4.3.6). 

Such preferences can be easily explained on the basis of minimum bio-mechanical efforts 

and strain that one has to put-in for their chosen favorites. The Jack simulation study also 

shows that these modes offer the least fatigue and better ergonomics for their respective 

roles. 

The relative ranking of best-coordination, however, shows that there exists a possible 

trend. Subjects perceive the competitive mode of their most comfortable working mode 

as the most well-coordinated phase of the experiment. We conclude from this 

observation that the act of perceiving the level of coordination among team partners may 
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not be the same for the same joint-action, because it depends upon their perceived effort, 

which again depends on the role of the subject. 

7) Preference towards the use of two hands: From sec. 4.4.3.8, it can be concluded that 

subjects in general have a preference towards using two hands together for the given 

task.  

8) Negotiation in Decision Making: A high level of agreeableness between the partners is 

probably the reason for such frictionless negotiation among team partners for choosing their 

individual roles (sec. 4.4.3.10). The agreeableness factor has its roots in applied psychology 

(Neuman and Wright 1999) and has been explained above in the discussion section under 

sec. 4.5.2.2 – Modesty influences Team dynamics. 

9) Preference towards working in Teams: From sec. 4.4.3.9, we conclude that subjects 

have shown clear preference for working in teams. 

10) Rhythms that speed us up: Support for the behavioral tendency of the subject, when the 

team coordination was perceived as perfect, can be found in research in Musicology and 

Psychology, where it has been shown that humans feel the urge to speed-up under 

certain rhythms (Sanabria et al. 2011). The current observation is in line with these 

findings and has implications for adaptive control system design, which is discussed in the 

next section. 

11) Point-of-Handover: Results (sec. 4.4.3.3) indicate that the decision on handover point is 

taken sub-consciously or automatically by the giver / receiver in many of the cases. In other 

cases, both receiver and giver expect the handover to take place around the same location as 

the previous handover. In other words, the anticipation of the p-o-h of the subsequent h/o in 

short cycle repetitive task is based on the experience of the previous handover. 

 It is to be noted that the handover in the experiment is facilitated without necessarily 

having eye-contact between the giver and receiver (sec. 4.4.4.1). So the p-o-h is not 

necessarily determined by the giver, as in (Basili et al. 2009), but it varies in this 

experiment. For example, when the giver and receiver do not have eye-contact, then the p-

o-h is unconsciously decided by the receiver as the giver reaches up to the receiver’s hands 

(while the receiver extends a hand unconsciously to the previous p-o-h and keeps his/her 

gaze fixed towards the shelf). This observation supports previous findings that in repetitive 
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handovers, a-priori expectation of the receiver about the probable p-o-h plays an important 

role in the success of the handover (Huber et al. 2013) 

12) Location of the grasps on the bottles: Results of sec. 4.4.4.2 can be explained based on 

the end-state comfort effect governing motor control which predicts that “people will grasp 

an object for transport in a way that allows joints to be in mid-range at the end of the 

transport” (Rosenbaum et al. 1990; Rosenbaum et al. 1996). It also supports previous 

findings (Cohen and Rosenbaum 2004; Meyer et al. 2013) that this observation is probably 

a distinct effect of recall and generation on movement planning, and that the end-state 

comfort effect facilitates joint-action (Herbort et al. 2012). 

4.6. Control	system	design	implication	
A-priori expectation of the receiver about the probable p-o-h plays an important role in the 

success of the handover in a short-cycle repetitive task (sec. 4.5.2.11). Section 4.5.1 

revealed that well-coordinated teams continue to remain well-coordinated in all the tested 

conditions, and hence they have the least variability in their handover frequency.  

 In the case of a short-cycle repetitive task in supermarkets, where duration of each 

handover cycle could be as low as 2-3 seconds, generating 100% accurate adaptive motion 

and determining the exact p-o-h for each handover cycle through action coordination based 

on Keller’s framework (Repp and Keller 2004; Keller and Koch 2008) of adaptation, 

attention and anticipation will generate non-rhythmic motions (due to processing times 

involved in delivering high accuracy) resulting in a stop-and-go motion with no fluency in 

joint action. This may potentially have a high cost on team coordination and productivity. 

 Based on the findings of sec. 4.5.2.11 and 4.5.1, it is argued that if team productivity is 

deemed critical for a human-robot system, executing a short-cycle repetitive task, a robot 

with a fixed periodic motion and a fixed p-o-h, pre-set by the respective user, is 

probably better suited than highly accurate systems with non-rhythmic or reactive 

motions. This is because, a robot working with a fixed rhythm is more well-coordinated 

and predictable than any other system. So, mutual coordination can be easily achieved 

through human adaptation, because humans are considered experts in working jointly in 

rhythmic activities. A recent study has also shown that human adaptation in a human-robot 

system can significantly improve team collaboration (Nikolaidis et al. 2016).  
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 The robot should, however, be equipped with advanced sensors to be able to track the 

human partner as a whole for valid safety reasons. Also, the robot must be able to 

understand that the job is over / at pause and should not blindly continue the fixed rhythmic 

motion for indefinite time.  

 This type of fixed rhythmic robot motion is similar to the pro-active behavior, as 

demonstrated in a human-robot repetitive handover experiment (Huang et al. 2015). Results 

(Huang et al. 2015) show that the proactive method provided the greatest levels of team 

performance, but offered the poorest user experience, compared to the reactive and adaptive 

methods. The reactive motion offered the best user experience but the worst team 

performance, while the adaptive motion offered a balance of the two requirements.  

 In a fixed rhythmic H-R interaction, the user should ideally be given the opportunity to 

pre-define the robot’s periodic motion and the p-o-h during the learning by demonstration 

phase, to ensure that the user is very much in control of the desired speed and p-o-h. This 

could offer a somewhat better user-experience and may offset the poor user experience 

involved in such pro-active behavior. A recent study (Sun and Sundar 2016) shows that the 

possibility to customize the interaction with a robot as per one’s individual preferences 

creates a sense of “self-agency” in humans, which has a strong positive influence on user-

experience. 
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 |	Human-Robot	Collaboration	Taxonomy	and	Models		

Chapter Overview 

The taxonomy of a H-R collaborative system is discussed in this chapter. The influencing 

parameters of a H-R collaborative system and its broad classification into three groups is 

discussed in detail with examples. Based on the preliminary principles of how humans 

perceive and process time in a handover task, analyzed in the previous chapter, three 

human-robot collaboration models – timing, sensor and adaptive – were developed for 

fluent and intuitive team-coordination in handover tasks. These models are discussed in 

detail in this chapter. 

5.1. Influencing	parameters	of	H-R	collaboration	
An H-R collaborative system is influenced by many parameters that affect its performance 

(Bechar and Edan 2003; Bechar et al. 2009; Oren et al. 2012). In this dissertation, the 

parameters were classified into three main groups, based on the source of origin of each 

influencing parameter: collaboration design, task and agent-intrinsic (Someshwar et al. 

2012a). Different combinations of all these parameters for a given dynamic environment 

can give rise to different types of dynamic scenarios. 

5.1.1. Collaboration	design	parameters	

Parameters that are connected to the design of the workspace and to the collaboration 

aspects fall into this category. These include, for example: 

 Buffered or non-buffered coordination: Existence or non-existence of a buffer between 

a human and a robot can influence the human´s and/or the robot´s waiting times during a 

coordination process. The buffer capacity also plays an important role. 

 Single agent or multi-agent: The presence of a single or multiple robots in the 

collaborative task also influences the overall performance. Examples of multi-agent 

scenarios when there are, let’s say, two humans and two robots involved in the process 

could be (i) a cycle consisting of human-robot1 and then robot1-robot2, (ii) a cycle 

consisting of human-robot1 followed by human-robot2, (iii) a cycle consisting of human1-

robot1 followed by robot1-human2.  
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Mathematically, we can define these multi-agent scenarios using an allocation matrix a, 

such that: 

î
í
ì ×= ingcollaborat is R-Ror  H-H   0

ingcollaborat arerobot  andhuman  1
, if

ifa ji  

 Coordination protocols: These are the pre-defined and explicit ‘rules of collaboration’ 

between the partners in a mutually dependent task. It is pre-defined on the basis of the 

workspace design and task objectives. Two distinct coordination protocols were 

investigated in this research:  

Protocol 1 – Whoever comes first waits for the other; (relevant for single agent-singly 

tasked scenario, e.g., one human and one robot) 

Protocol 2 – Robot never waits for the human but continues its periodic cycle. The 

human, however, when arriving earlier, will wait for the robot (relevant for multi-agent 

multi-tasked scenario, e.g., 2 human and 1 robot or 2 humans and 2 robots) 

In the first case, whoever arrives first waits for the other at the spatial point of handover 

until the handover is executed successfully. As a result, there is no cumulative error in this 

mode of coordination, because the earliness or tardiness of the human/robot in one cycle 

does not affect the subsequent cycles. It is relevant for single agent-singly tasked scenario, 

e.g., one human and one robot. 

 In the second protocol, the robot never waits for the human at the point of handover but 

continues its cycle of periodic movement if the collaborating partner is not arriving at the 

right time. The human, on the other hand, waits for the robot if it happens to arrive earlier. 

Therefore, if the handover is not successful in the first attempt, the human waits for the 

second turn of the robot to repeat the same action. Such a protocol can be very useful for a 

scenario where a multi-tasking robot is employed that is responsible for additional jobs 

besides collaborating with the human or if the robot is collaborating with two or more 

humans, e.g., in scenarios investigated in (Ding et al. 2013).  

5.1.2. Task	parameters	

Parameters that are connected to the design of the task fall into this category. These include, 

for example:  

 Exclusive task or shared task: An exclusive task exists if each of the participants in the 

collaboration is responsible for an individual task and the act of collaboration exists only at 
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the point of handover (Someshwar et al. 2012a); e.g., assembling of electronic circuit 

boards done by the collaborating robot and quality inspection is done by the human). When 

the joint-task requires the collaboration of each of the participants at every subsequent step 

of its execution, it is called a shared task (Someshwar et al. 2012a); e.g., drilling of holes in 

an assembly piece is done by the robot, and fixing of nut-bolts in the respective holes is 

done by the human. 

 Repetitive process or a one-time handover: Repetitive processes are those in which the 

human and the robot work collaboratively repeating the same sequence of actions over a 

considerable period of time (Someshwar et al. 2012a); e.g., assembly operations in a 

manufacturing industry. In such cases, the accumulated temporal delay in the last cycle may 

have an effect on the subsequent one, and over a period of time it may result in a 

cumulative effect. In one-time handovers, the human-robot collaborative act is just a one-

time process and the subsequent collaborative action has no correlation with the previous 

action (Someshwar et al. 2012a); e.g., a robot delivering a drink to a guest when the robot 

serves as a waiter. 

 Task length: Two types of repetitive tasks are analyzed in this research – short-cycle 

and long-cycle. A short-cycle repetitive task is defined as a physical task done by a human 

with an individual cycle length of the task / sub-task varying approximately between 2 sec 

(or less) to a maximum of 20 sec (Garg et al. 2006; Bosch et al. 2012; Wilcox et al. 2012). 

The lengths of long-cycle tasks have not been defined precisely in the literature; for this 

research, any job with the cycle length of the task / sub-tasks exceeding 20 sec has been 

classified as a long-cycle task. 

 Task complexity: As per (Byström and Järvelin 1995), “The literature suggests many 

task characteristics related to complexity: repetitivity, analyzability, a priori 

determinability, the number of alternative paths of task performance, outcome novelty, 

number of goals and conflicting dependencies among them, uncertainties between 

performance and goals, number of inputs, cognitive and skill requirements, as well as the 

time-varying conditions of task performance (Campbell, 1988; Daft et al., 1988; Fischer, 

1979; Fiske & Maddi, l961; Hart & Rice, 1991; Javelin, 1986; March & Simon, 1967; 

MacMullin & Taylor, 1984; Tiamiyu, 1992; Tushman, 1978; Van de Ven & Ferry, 1980; 

Wood, 1986; Zeffane & GUI, 1993)”. In the current research, one of these characteristics – 

temporal variability in task performance – has been considered to define task complexity.  
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5.1.3. Agent-intrinsic	parameters	

The inherent characteristics of the participating agents (human and robot) in a collaborative 

task can be defined as agent-intrinsic parameters (Someshwar et al. 2012a). Below three 

examples of such parameters are discussed. 

 User-proficiency: Two levels of user-proficiency are analyzed in this research – novice 

and expert. A novice user, in this research, is characterized by a collaborating partner with 

large variation in their average time of arrival at the point of handover. Similarly, an expert 

user-profile is characterized by smaller variation and greater consistency (compared to a 

novice user) in their average time of arrival at the point of handover during a repetitive 

process (Someshwar et al. 2012b). This will change with training and time.   

 Learning (speeding up) or fatigue (slowing down): The robot may learn from its 

previous handover experiences and may anticipate its subsequent action better over time. It 

can improve the accuracy of its time of arrival at the point of handover. Similarly, the 

waiting time may reduce through human learning or training. The collaborating human may 

also feel fatigue over time, and this may slowly change the handover cycle time. The effect 

of the user speeding-up / slowing down over time when performing repetitive H-R 

handover tasks was analyzed in this research as learning and fatigue respectively. 

 System reliability: The system reliability variable takes into account the various factors 

that affect sensor data accuracy and mechanical constraints (Someshwar et al. 2012a). 

System variables of a robot, such as sensor resolution, response time of sensors, resolution 

of the time-stamp, computation time, degree of freedom, repeatability, mechanical 

constraints and other agent intrinsic variables which affect a robot’s reliable performance is 

included in the system reliability parameter.  In a repetitive collaborative task, perceptual 

latency of the human (Seifried et al. 2010), temporal preparation (Bausenhart et al. 2010), 

and the rhythm of operation (Sanabria et al. 2011) can influence the coordination in H-R 

systems, and hence they are also included in the system reliability parameters. 

5.2. The	H-R	collaborative	manufacturing	scenario	
This dissertation investigates the problem of H-R collaboration in a repetitive handover task 

(the task) requiring temporal coordination among the collaborating partners when the 

external influencing parameters in the process are user-proficiency (an agent-intrinsic 

parameter), task length and complexity (task parameter), in a repetitive and exclusive 
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collaborative task (task parameter), for a single agent non-buffered interaction 

(collaboration design parameter), when there is learning/fatigue in the process (an agent-

intrinsic parameter). 

 A typical industrial scenario was considered, where a human and a robot work 

collaboratively in a shared work-, time-space executing a common time-critical handover 

task (Figure. 5.1). Each of the partners is responsible for a discrete set of independent tasks. 

The collaboration happens in every H-R handover cycle with physical H-R interaction. 

From the right, the robot picks up the job from an assembly line (Figure 5.1a) and delivers 

it directly into the hands of the human (Figure 5.1b). The human receives it and inspects the 

 

 

 

quality of the processed job and thereafter places it on another assembly line for packaging 

or in the defective lot. The process continues repetitively over time from right to left. 

Figure 5.1 The Human-Robot handover task (a) Robot and Human is doing a discrete set of   
independent tasks, thereby preparing for the next H-R handover cycle; (b) Robot is handing 
over the job through physical human-robot interaction 

Fig. 5.1 (a) 

Fig. 5.1 (b) 
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5.3. The	H-R	collaboration	models		
Three H-R collaboration models were developed for fluent and intuitive team-coordination 

in handover tasks, inspired by the way humans collaborate with each other in joint-actions 

with a common goal (Sebanz et al. 2006).   

5.3.1. Timing	control	model	

The operational cycle of robot actions is governed by only one parameter, time. The robot 

performs a series of pre-defined tasks at fixed intervals of time that is set by the end-user, 

depending upon the needs and operational demands of the scenario as shown in Figure 5.2a. 

The robot should, however, be equipped with advanced sensors to be able to track the 

human partner as a whole for valid safety reasons. Also, the robot must be able to 

understand that the job is over / at pause and should not blindly continue the fixed rhythmic 

motion for indefinite time. From a social perspective, this control model exhibits ‘pro-

active behavior’, as demonstrated in a human-robot repetitive handover experiment 

reported in (Huang et al. 2015). An example where this model suits the scenario is a pick 

and place robot in an assembly station.  

5.3.2. Sensor	control	model	

The robot actions are initiated by a sensor signal. Two types of models are investigated in 

this research – the timing-based sensor model (Figure 5.2b) and the position-based sensor 

model (Figure 5.2c).  

 Timing-based sensor model: The robot enters the post-preparation or pre-action phase 

when the human sends a signal as he or she expects to finish the remaining part of the 

preparation in X seconds. For example, in an assembly station, where a human and a robot 

work collaboratively, the robot starts its preparation for the action when it receives this 

timing signal from the sensor. 

 Position-based sensor model: The robot will start its action when the human has 

reached a certain point in the action sequence. Using the example of the same assembly 

station, in this case the robot starts its preparation for the actual action when the human has 

just picked up the block from the assembly line that is to be delivered to the robot.  
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Fig. 5.2(a) 

 Fig. 5.2(b) 
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Abbr.: HA/ RA= Human / Robot Action Time, HW/RW= Human / Robot Waiting Time 

5.3.3. Adaptive	Model	

This model is inspired from the human’s ability to perceive, predict and adapt according to 

the changing rhythms and/or incoming temporal cues (Merker et al. 2009; Vesper et al. 

2011; Keller et al. 2014). They allow humans to adapt in time with each other, giving rise 

to what psychologists call, emergent coordination. In a temporally adaptive model, the 

robot perceives, predicts and adapts in time to the rhythm of the human action. The 

perception, anticipation and adaptation are purely temporal in this model. The system does 

a time-series analysis of the past and incoming temporal data to anticipate the time of the 

next handover cycle. 

Sources of Temporal Data: The following temporal data were used in this model: 

(i) Temporal data of the handover cycle of all the previous end-users who collaborated 

with the robot for the given task (implemented in chapter 7 – exp. I, II, III). 

Auto Trigger

H-R	Handover
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Figure 5.2 Human-Robot handover cycle during (a) timing control model (b) timing-based 
sensor control (c) position-based sensor control.  

 Fig. 5.2(c) 
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(ii) Temporal data of the current end-user in all the previous handovers thus far 

(implemented in chapter 7 – exp. I, II, III). 

(iii)  Temporal data of the current end-user in the recent handover cycles. The temporal 

durations of the immediately preceding series of events have a strong correlation to 

the successive event (Madison and Merker 2005) (implemented in exp. I, II, III). 

(iv)  Temporal data of end-user for the recently done sub-task, when the given task is 

long and complex, and hence is executed in the form of multiple sub-tasks 

(implemented in exp III only). 

Experiment Nr. Experiment Title 

Experiment I H-R Collaboration in Long and Simple Task 

Experiment II H-R Collaboration in Short and Simple Task 

Experiment III H-R Collaboration in Long and Complex Task 

Modeling the collaborating partner based on temporal data: Based on the collected 

temporal data from all the aforementioned sources, the collaborating team partner is 

modeled in the following way: 

(i) Naturally Fast/Average/Slow: This is computed by comparing the temporal data of 

the current end-user with the data generated by the end-users of the pilot 

experiment. If it is found that the current user is faster than the mean population in 

most of the handover cycles, then it is reasonable to categorize him/her as Faster. 

Similarly, users can be categorized as Average and Slow. 

(ii) Accelerating Mode (Energetic)/Decelerating Mode (Fatigue)/ Relatively Stable 

Mode: This is computed recursively by comparing the variability in the temporal 

data of the current end-user for all the previous respective handovers thus far. 

Thereby, it can be checked if the person is in accelerating mode (energetic), 

decelerating mode (fatigue) or relatively stable mode. 

Table 5.1 The three H-R team-work experiments (Chapter 7) 
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 In the case of a complex collaborative task (relevant for scenarios as described in 

Experiment III – Human-Robot Collaboration in Long and Complex Task), when the given 

task is not the same in every cycle, it is difficult to predict the variability of the end-user for 

the current sub-task of a given joint-task. This problem can be overcome to some extent by 

categorizing the given collaborative task, using the temporal variability data collected from 

the pilot experiments.   

(i) Task-level Categorization (Difficult, Average or Easy): Based on the observed 

temporal variability among the subjects in the pilot experiment, the sub-tasks can be 

categorized as Difficult, Average and Easy. A task with higher temporal variability 

among subjects implies a difficult task, whereas tasks with lower variability among 

subjects imply an easy task.  

(ii) Task-length Categorization (Short, Medium or Long): In a complex collaborative 

task, not all sub-tasks are of equal length. Some are of shorter duration, while others 

are longer. Such prior categorization of sub-tasks in terms of task-length (based on 

pilot experiments) helps in better temporal prediction as explained below. 

Expected System Behavior: The deduced model of the collaborating partner can be 

combined with the concept of task categorization to generate an expected system behavior. 

For example, consider the following scenarios: 

 When the current end-user in accelerated mode finishes a supposedly difficult sub-task 

in less than the computed mean time (w.r.t the pilot subjects), then it is reasonable to 

predict that the same human will probably finish the subsequent difficult task faster. On the 

other hand, an end-user in fatigue mode will probably finish a long and difficult task, taking 

more time than the computed mean. Through this temporal reasoning, the robot can 

anticipate the next handover cycle more accurately, thereby taking into account the 

expected variability associated with a given task. 

Temporal Prediction Model: Based on the collected temporal data of the H-R system, the 

prediction model for a temporally adaptive H-R system is represented in generalized form 

by the following equation: 
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𝑛- Number of handover cycles,	𝐷9-general mean time of the population for execution of the 

given handover task, 𝐷:- mean of the current end-user for the given handover task in all the 

preceding cycles, P<- length of the handover cycle in the immediate ‘q’ preceding cycles.  

 The other variables alpha, beta gamma, theta, delta, epsilon are the weights of these 

parameters. This prediction model is suitable for short-cycle and long-cycle repetitive tasks 

where the given job is same in every cycle. It has been implemented as an adaptive model 

in Experiments I and II, respectively, and is presented in detail in chapter 7.  

 However, for complex collaborative tasks, the temporal prediction model was extended 

by incorporating the Expected System Behavior, which takes into account the expected 

variability in collaborating partners and the given task as shown in Table 5.2. 

EXPECTED SYSTEM BEHAVIOR 
Human Mode Task-Length Task-level Prediction 
Accelerated 

 
Fatigue 

Short Easy Zero Variability 

Accelerated 
 
 

Fatigue 

Short Difficult 

Low Variability with 
chances of error 

 
Low Variability 

Accelerated 
 
 

Fatigue 

Long Easy 

Expected Early with low 
variability 

 
Expected Delay with low 

variability 

Accelerated 
 
 
 

Fatigue 

Long Difficult 

Expected Early with high 
variability 

 
Expected Delay with high 

variability with 
 chances of error 

 

The extended form of the equation can be written as: 

      
 )*......**(*** 1 qnnnST PPPDDF -- +++++= qedgba        Equation 5.1 

Table 5.2 Expected system behavior based on temporal variability 

      YFP .h+=          Equation 5.2 
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where,    )_(0
)_(1

TaskSimple
TaskComplex

=
=

h
h

 

 

 

 where, W = Deviation in the immediately preceding Sub-Task  

         ESB = Expected System Behavior 

             Ω = 1 [prediction is as expected]; 

             Ω = 0 [no prediction possible] 

   F = the predicted value   

   n = number of sub-tasks done (assembled) 

 DT = general mean of population for assembly of one cube 

 DS = mean of the current human for assembly of one cube  

 Pn = mean of assembly time for the-n cube 

The value of Ω varies between 0 and 1, depending on its predictive accuracy in the previous 

handover cycles. Equation 2 is the generalized form of the temporal prediction model, 

which has been adapted accordingly in the three experiments, as detailed in Chapter 7. 

 

 
 

       )*......**(*** 1 qnnnST PPPDDF -- +++++= qedgba     Equation 5.1 

           ESBWY ... W+=q        Equation 5.3 
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 |	Analytical	and	Simulation	Studies	

Chapter Overview 

Analytical (Part A) and simulation studies (Part B) of a Human-Robot (H-R) team 

collaborating in a repetitive handover task were performed. Temporal fluency of the H-R 

coordination was used as the system performance measure. The influence of user-

proficiency (novice/experienced), prolonged work periods (learning / fatigue over time) and 

system reliability (the various factors that affect sensor data accuracy and mechanical 

constraints) for different co-ordination protocols were evaluated through six case-studies. 

The results of the case-studies are discussed with system design implications. The chapter 

concludes with the comparative analyses of the two analyses methods and of the H-R 

collaboration models.  

Part	A	–	Analytical	Study	

A typical industrial scenario, as described in Chapter 5, was considered where a human and 

a robot work collaboratively in a shared work-, time-space executing a common time-

critical task. Each of the partners is responsible for a discrete set of independent tasks. 

Collaboration occurs in every H-R handover cycle with physical H-R interaction. The robot 

picks up the job from an assembly line (Figure 5.1a) and delivers it directly into the hands 

of the human (Figure 5.1b). The human receives it and inspects the quality of the processed 

job and thereafter places it in another assembly line for packaging or in the defective lot. 

The process continues repetitively over time. H-R teamwork fluency for this scenario was 

investigated using an analytical approach described below. To illustrate the application of 

the analysis methodology, two case-studies were developed for which exact solutions were 

found for the given context. The case-studies differ in the way the human interacts with the 

robot, characterized as human delay distribution in a repetitive task. 

6.1. Methodology	
The system objective function was used as the H-R system performance measure to 

maximize the level of team-coordination (temporal fluency) between the partners for a 

given scenario. It was developed by taking into account the costs of human waiting and 

robot idle time in each work cycle using the following steps:  
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i. Model the problem in analytical language for the given protocol, thereby developing 

the problem statement. 

ii. Take into account the agent-intrinsic parameters affecting a human, a random delay 

with (known) distributions was considered. 

iii. Formulate the cost for human and robot in each periodic cycle.  

iv. Develop the system objective function.  

v. Determine the agent (human and robot) timing that minimizes the expected average 

cost. 

6.2. Analytical	analyses	of	timing-based	control	model	of	H-R	system	

Let us consider that the robot arrives at the point of handover at a regular interval of A time 

units, and it continues its periodic motion repeatedly during the production cycle. 

Coordination protocol 2 is modeled in this analysis. Figure 6.1 shows the timeline of H-R 

collaboration during this coordination protocol. The optimized value of A is calculated 

according to the solution of the optimization problem that is developed later in this section 

and solved in the form of case-studies I and II.   

 

Figure 6.1 The human and the robot timeline during H-R collaboration in timing-based 
control with the coordination protocol 2. The dashed blue line indicates the unproductive 
cycle 
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6.2.1. The	decision	variables	and	influencing	parameters	

The decision variables are t, the time when the human is scheduled and A, the time between 

two consecutive visits of the robot. The influencing parameters are RC , the cost for an 

unproductive visit of the robot, HC , the human waiting cost per time unit and the function 

)(×YF , the distribution of the human delay (while the random human delay is denoted by Y). 

We define a random variable T = Y + t where T is the actual human arrival time. The cost 

of waiting for the human W, is calculated as: 

 

where R(t) and H(t) are the times taken by the robot and human respectively to complete 

one round of operation. When A<T<2A, that is the human misses the robot in the first robot 

operational cycle, then two types of cost comes into play – the human waiting cost, W, and 

the robot unproductivity cost, U.  

In this case, 

It is to be noted however, it is not necessary that the handover or the meeting between the 

human and the robot would definitely take place at the latest in the second operational 

cycle. Depending upon the value of )(×YF , the time T can vary from a value less than ‘t’ and 

to a value far greater than A and hence it may take many unproductive robot operational 

cycles. 

6.2.2. The	objective	function	of	the	H-R	system	

Given the decision variables t and A, for any realization of T, the above expressions of the 

waiting/unproductivity costs of human and robot, respectively, can be rewritten in a more 

                                                    	𝑾 = 𝑪𝑯	 𝑹 𝒕 − 	𝑯(𝒕)                              Equation 6.1  

                                                   𝑾 = 𝑪𝑯	 𝑨 − 𝑻 	𝒇𝒐𝒓	𝑨 > 𝑻        Equation 6.2 

                                      𝑾 = 𝑪𝑯	 𝟐𝑨 − 𝑻 	𝒇𝒐𝒓	𝑨 > 𝑻 > 𝟐𝑨                        Equation 6.3     

                                            𝑼𝑹𝒐𝒃𝒐𝒕 = 	𝑪𝑹	𝒇𝒐𝒓	𝑨 > 𝑻 > 𝟐𝑨                             Equation 6.4 
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generalized way as follows. The number of robot visits until the first productive one is úú
ù

êê
é
A
T

where é ùa is the rounding up of a. Note that the cost of unproductivity per time unit is 

úú
ù

êê
é
A
T

A
CR . The human waiting time, W is then T

A
TA -úú
ù

êê
é . Thus, the total expected cost per 

time unit of the H-R system is:  

Hence, the objective function of the H-R system can be expressed in the following way: 

The solution of this optimization problem is to find t and A that minimize ).,( AtCost

Although, the inconsistency of human time is referred to here as “delay”, this value can also 

be negative. This is because the human is sent to the station with the aim to be there at time 

t, but the human might rush and arrive earlier than t. In terms of the delay's distribution 

function, we mean that )0(YF may be positive.  

6.2.3. Exact	solutions	in	case-studies	

Two case-studies, as described in Table 6.1 were analyzed. 

Case-

Study 

Analysis 

Method 

Control 

Model 

Co-ordination 

Protocol 

User-

Proficiency 

I Analytical Timing Protocol 2 Novice 

II Analytical Timing Protocol 2 Expert 

Case-study	I	

Assume that yyFY =)( , i.e., the delay is uniform along the interval (0,1). Clearly, for any 

choice of t, the optimal choice of A is between t and t+1. Furthermore, any t >1 will be sub-

optimal, because with it either needless human waiting or an unproductive robot visit are 

guaranteed (a unit of time is simply lost in every cycle).  The expected human waiting time 

by integration, given ( )At,  equals 

                                ngRobotWaitingHumanWaitiSystem CostCostTotalCost +=        Equation 6.5 

                                   .),( ú
û

ù
ê
ë

é
úú
ù

êê
é+÷÷

ø

ö
çç
è

æ
-úú
ù

êê
é=

A
T

A
CT

A
TACEAtCost R

HT                      Equation 6.6 

Table 6.1 Analytical case-studies 
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The expected number of unproductive robot visit equals  
 

 
The total cost of the H-R system is then 

 

 
Note that this function has discontinuities (since part of it includes step functions) which 

complicates the analysis. The optimal H-R system cost and optimal ( )At,  is presented in 

Figure 6.2, when the human cost hC  ranges between 1 and 200 and the robot 

unproductivity cost is assumed to be constant with 1=rC . Due to the uniform nature of the 

human delay, the optimal t equals 0 for any choice of the parameter. That is, the human 

should aim at arriving as soon as possible. Figure 6.2a indicates that for a certain range of 

values of hC , the value of optimal A remains constant. Outside this range the change occurs 

in steps.  

 

Case-study	II 

This study focused on a solution for a different delay distribution of the collaborating 

human. One can assume that the human delay distribution follows an exponential 

distribution with rate 1 expressed mathematically as y
Y eyF --=1)( . Due to the memory-

less property of the delay distribution, it is suboptimal to choose a value of A smaller than t.   

By simple integration, the expected human waiting time is calculated as: 

 

                                                            
2

2tAtA +-
     Equation 6.7 
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 The expected number of robot visits until the first successful handover is equal to: 

Figure 6.2 Case-study I (a) The optimal value of A as a function of CH (b) The optimal cost of 
the system as a function of CH 
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Results for values of hC  between 0.1 and 15, while fixing 1=rC  are presented in Figure 6.3 

(note that the horizontal axis is not on zero). The optimal value of t turns out to be always 

t=0. This is because aiming for arriving at any time later than t=0 will only add to the 

waiting time.  

6.2.4. Discussion	of	case-studies	

In Figure 6.2a (Case-study I), it can be seen that for a certain range of values of hC , the 

value of optimal A remains constant and then the change is observed in steps. This result 

has direct implications on H-R control system design.  

 In repetitive tasks, if the human cycle time changes with time, as in case-study I, the H-

R coordination is optimal when the robot cycle time (defined by A) does not change 

accordingly in every handover cycle. In this case, for a given bounded range of hC , the 

robot cycle time must remain constant. This is when the timing-based control model is best 

suited for the operation of the H-R system. However, once hC  exceeds a certain value, the 

robot cycle time must change/adapt accordingly. For this function, the H-R system needs 

sensor-based control, which could trigger the change/switch of the robot cycle time 

accordingly. It shows the importance of a future design of a hybrid control system, fusing 

timing- and sensor-based control models.  

 For novice users, whose arrival time at the point of handover varies greatly, this 

coordination strategy can assist in training with the system. It gives a novice user the 

chance to develop a working rhythm with the robot, as a fixed robot cycle time is 

predictable. For expert users, with low variability in their arrival time, a consistent speed of 

the robot supports better adaptation to the system. A recent study has also shown that 

human adaptation in a human-robot system can significantly improve team collaboration 

(Nikolaidis et al. 2016). 
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+ A
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     Equation 6.11 
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6.3. Analytical	analyses	of	sensor-based	control	model	of	H-R	system	
In a sensor-based control model of an H-R system, the location of the sensor that informs 

the robot of the human’s current state of action must be considered. The inclusion of this 

sensor in the system however, does not affect the analytical solution of the optimization 

problem. This is because, instead of estimating the total human action time distribution (as 

in timing-based control), now it is needed to estimate the human time distribution between 

Figure 6.3 Case-study II (a) The optimal A as a function of CH (b) The optimal cost of system 
as a function of CH  

Fig. 6.3 (a) 

Fig. 6.3 (b) 
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the action that triggered the sensor signal and the completion of the task. After estimating 

this distribution, the analysis is identical to the timing-based control model analysis. 

 Nevertheless, the total cost associated with sensor-based system should be compared to 

the one without them, and the value of installing a sensor is implied by this comparison. 

The following example demonstrates how optimization of sensor-based control of H-R 

system simplifies into an optimization problem similar to timing-based control.  

 Two tasks are performed sequentially, each by a different collaborating partner. The 

duration of the first task, performed by the human, is a random variable X with the 

distribution function )Pr()( xXxFX £= . The second task is performed by the robot.   

 The aim is to place the robot in the place where the human completes the task (a known 

location), at the completion time. If the robot arrives before the human, there is a cost of Cr 

per time unit of robot waiting. If the robot arrives after the human, there is a cost of Ch per 

time unit of human's waiting. The optimization problem is when to locate the robot. If the 

robot is located at time t then the total cost is, 

where a+ = max{a,0}, which is a random variable. In this case, minimizing E(U(t)) is the 

right criterion, for example because this process is repeated over and over, and hence the 

average cost is the point of interest. Mathematically, this problem is equivalent to one of the 

variants of the classical inventory problem called “the news vendor problem” (Laderman et 

al. 1953) and hence the optimal time t is the solution of: 

 

The optimal time is the percentile of the processing time distribution:  

Assume now that we can set a sensor that inspects the human at some moment during the 

task (or at some point along the route). Consequently, the distribution of the time from the 

sensing and until the human-robot action is not different and can be derived similarly to the 

 	
                                               	𝑼 𝒕 = 𝑪𝒓(𝑿 − 𝒕)O + 𝑪𝒉(𝒕 − 𝑿)O                    Equation 6.12 

F (t) = 
 Cr 
Cr + Ch 

  

           Equation 6.13 
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timing-based control model. Specifically, for every possible location of the sensor, some 

data needs to be collected and the relevant distribution should be estimated. Assume that 

there are n possible locations for the sensor. We introduce the following notations: 

• Xi is time needed for completing the task from sensing the human at location i. 

• Fi(x) is the distribution function of Xi : Fi(x) = Pr(Xi<x).  

• ai is the cost of setting the sensor in location i. 

• ti
* is the optimal time of locating the robot after sensing at location i. 

• 𝑢R = 𝐸 𝐶U(𝑋R − 𝑡R)O + 𝐶W(𝑡R − 𝑋R)O + 𝑎R  is the total cost after installing the 

sensor at location i. 

Let 𝑢X = 𝑢R = 𝐸 𝐶U(𝑋R − 𝑡R)O + 𝐶W(𝑡R − 𝑋R)O + 𝑎R  be the cost in the model without 

sensor.  

The main problem is to solve whether to place the sensor and when the solution is positive, 

the location of the sensor must be determined. The solution for this problem is: set the 

sensor in location i* and locate the robot t* time units after sensing where, 

We can see here that, i* and t* are identical to the optimization function of timing-based 

control. Hence, from the analytic point of view, sensor-based control is conceptually the 

same as the timing-based model, with the addition of another simple layer indicating the 

location. 

6.4. Analytical	analyses	of	adaptive	control	model	of	H-R	system	
In an H-R collaborative system that involves a repetitive task over a prolonged time-period, 

the human operator may slowly get tired over time due to fatigue. Novice operators’ 

working speed may also increase over time as they develop task expertise and become 

proficient users of the system. For such a system, the robot should be able to adapt to the 

changing speed of the human. Such system needs can be easily met by deploying an 

adaptive control system in the robot that is able to adapt and change its speed in accordance 

to maintain the coordination between the human and itself. 

 However, the question that is investigated here is whether an adaptive control can yield 

higher productivity, compared to a timing-based control system, for a Human-Robot system 

                                                      i* = arg mini=0…n {ui}      Equation 6.15     



Chapter	6	 Page	63	
 

doing a prolonged repetitive task with coordination protocol 2 (robot continues its action, 

human waits if arrived earlier at the p-o-h). 

6.4.1. The	case	of	fatigue	

To analyze the fatigue effect on the system, we assume that the human total time has an 

exponential delay distribution which represents the fatigue. Let N denote the total number 

of cycles. The human delay distribution F(x) is represented by the following equation, 

 

6.4.2. The	case	of	human	experience	or	learning	

The human delay distribution F(x) in the case of experience or learning can be represented 

by the following equation,  

 

6.4.3. Discussion	

Figure 6.4 (a and b, respectively) indicates the percentage increase (∆) in the productivity of 

the adaptive system, as compared to a timing-based control system for robot cost rC = 15 

when there is fatigue or learning in the process. In the case of fatigue, the increase in 

productivity is only significant (6%) for the first 20 cycles (between N=1 and 20), and 

thereafter, with the increasing number of cycles (between N=20 and 50), indicating 

prolonged collaborative work periods, the productivity increase is only 1%. The system 

behavior in the case of learning is also the same. The productivity increase is 3.8% for the 

first 10 cycles, and thereafter the difference is almost negligible (only 0.2% for the next 10 

cycles between N=10 and 20).  
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 For the given condition, adaptive control does not offer a significant advantage over 

timing-based control in terms of productivity for a Human-Robot system doing a prolonged 

repetitive task with coordination protocol 2. The conclusion can, however, not be 

generalized, as it depends on the human delay distribution and the adaptive control model 

performance. 

6.5. A	practical	case-study	of	a	pallet	manufacturing	system	
A pallet1 is the structural foundation of a unit load which allows handling and storage 

efficiencies. The pallet manufacturing process is semi-autonomous2 and an example of a 

human-robot collaborative repetitive task. A real life application of the above described 

analytical methodology to improve team-coordination is shown below. 

6.5.1. Description	of	the	scenario:	

In this pallet assembly station, the robot does the difficult and dangerous work of nailing 

the wooden pieces and the human does the job of laying the wooden pieces into the 

respective frame. The square frame is placed on a rotor-base that turns the frame once on 

the human side (when wooden frames are being laid) and the other time on the robot side 

(when it nails the wooden blocks, thereby building up the pallet). The cycle time of the 

rotor is 70 sec (raw data collected online from an assembly station of Jointec AB3, 

Sweden). 

 Assume the human takes roughly 35 seconds for its task of picking up wooden blocks 

from a pile and laying it in the frame in the correct order and the robot takes 35 seconds to 

nail down and then place the finished product over the stack of finished pallets. The human-

robot collaborative work continues following coordination protocol 2 for a period of 8 

hours every day. 

6.5.2. Analytical	system	modelling 

Since this is a case of collaborative work, the human and the robot could devote their time 

to the assembly station for a fixed time period of length T (say a working day). Under this 

assumption, the determining factor influencing the joint-productivity of the system is the 

length of an individual cycle. The aim is to produce a maximal number of pallets per day.  

                                                
1 Definition - https://en.wikipedia.org/wiki/Pallet 
2 https://www.youtube.com/watch?v=6BSF2146wj4 
3 http://www.jointec.se/ 
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Figure 6.4 Percentage increase in productivity (D) of the adaptive system as compared to 
timing-based control system Vs. the total number of cycles (N) in a repetitive task for changes  
in (a) the case of fatigue (b) the case of learning 

Fig. 6.4 (a) 

Fig. 6.4 (b) 
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 Therefore, there is an obvious incentive to have a shorter cycle. However, a too short 

cycle may result in an unproductive cycle which implies a cost (e.g., a too short cycle may 

cause human error which may increase the number of defective pallets). The decision 

variable is therefore the length of a cycle denoted by A. The influencing parameters of this 

collaborative system are:  

Figure 6.5 A Human-Robot cooperative pallet assembly station (picture courtesy: Jointec) 

Figure 6.6 The human and the robot timeline during an H-R collaborative task. The blue line 
indicates an unproductive round   
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a) The length of the interval (T) (not so relevant because in any reasonable cost 

function, T will be a multiplicative constant).  

b) The cost of unproductive collaboration for one cycle (c). 

c) The distribution of the time required for the human to perform his task (denoted by 

a probability density function f and cumulative distribution function, F).  

6.5.3. System	objective	function	

Let ,..., 21 XX be the (random) times required by the human operator to finish his task. Given 

a cycle length A, c is the cost of the H-R system as a combined entity, the utility function of 

the system is calculated as:  

AXi > denotes the cases when the length of the current cycle is greater than the fixed cycle 

of length A (Xi is greater means human took more time to finish his task and as a result the 

robot had to wait for the human at the point of handover). All such cases will result in a 

fixed cost of value c. The total number of possible cycles (in ideal case) can be obtained by 

dividing the total time-interval with the length of each cycle, T/A. So the system utility 

function is thus obtained by summing up the utility of the all the individual cycles until T/A. 

 To find the best strategy of collaboration between the partners (human and robot), the 

goal is to maximize the expected utility, which is:                                                                  

6.5.4. Timing-based	control	model	

We assume the human total time has a normal distribution with mean 70 (mean data 

collected from Jointec AB website4) and standard deviation 5. For an 8 hour work shift, T is 

calculated as 8 x 60 x 60 = 28,800. Assuming a cost of 5 units (in other words, let’s say for 

every defective pallet 5$ is to be calculated as loss incurred and for each perfect pallet the 

company earns a profit of 1$), when the expected utility is maximized as represented by 

equation – 6.20 above. Figure 6.7 and Figure 6.8 indicate the system behavior. 

                                                
4 www.jointec.se 
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Figure 6.7 Number of cycles (T/A) vs. the profit for a H-R system with system cost varying 
from 1 to 5   

Figure 6.8 Optimal number of cycles (T/A) vs. H-R system cost to ensure optimal productivity 
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 Next, we analyze how the variable T/A (the total number of cycles) gets affected when 

the cost is varied from 0 to 10. The graph above shows the system behavior. The figure 

indicates that as the H-R system cost increases by 10 folds, the total number of pallets that 

can be produced decreases by nearly 4%, as expected. To avoid the possibility of human 

error, the cycle time must increase so that the human operator receives ample amount of 

time to finish his task and cross-check for error. As cycle time increases, the total number 

of cycles (T/A) offering optimal productivity keeps decreasing steadily. 

6.5.5. Adaptive	control	model	

Assume that the human preparation time for pallet i# is normally distributed with a known 

mean iµ and known standard deviations . T 

he question to be asked now, if the robot can be programmed with adaptive control (a 

different length for each cycle), what are the optimal lengths of the cycles. Mathematically, 

the optimization problem has two stages. In the first stage, the number of cycles (n) should 

be determined. In the second stage, the robot inter-visits times ( nAA ,...,1 ) should be 

determined. It should be noted that TA
n

i
i =å

=1
means that the total time of robot action is a 

working day. The second stage is as follows. For any n, one needs to solve the optimization 

problem, 

We recall that, ( ) ÷
ø

ö
ç
è

æ -
F=<

s
µ ii

ii
A

AXPr .  

We apply the method of Lagrange multipliers as follows. This method formulates the 

constraint in the form ( ) 0,...1 =nAAg  and the whole problem is formulated as, 

  

Then we seek for nAA ,...1 and l (called the Lagrange multipliers) such that for all ni ,...,1=  

we have,  

                                  ( )( ) TAtscAXcMax
n
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..Pr)1(  Equation 6.22 
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And, ( ) 0,...1 =nAAg .  

In our case the problem is, 

 

We can see that in our problem the function are additive in the variables, and hence the 

equations to be solved are,  

Recall that, from 2/2

2
1)(' xex -=F
p

 we get that iiA µ-  is a constant.  The constant 

(denoted by a ) is determined by the constraint, ( ) åå
==

-=-=
n

i
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n

i
ii TAna

11
µµ  and 

therefore, 

   

 

In this way, we can calculate the optimal length of each adaptive cycle (Ai) and the total 

number of H-R interaction cycles (n) possible in the given time period (T) to complete the 

task of pallet manufacturing.  Since one pallet is produced in every H-R interaction cycle, 

the total number of possible H-R interaction cycles (n) also indicates the maximum number 

of pallets that can be produced using the adaptive control model.  
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Part	B	–	Simulation	Study	

Complex collaborative scenarios (Table 6.2) were also investigated to study the effect of 

influencing parameters, like user-proficiency (novice/expert), system reliability variables 

(e.g., sensor data accuracy, mechanical constraints), for different coordination protocols and 

control models. Analytical analyses of the effect of these factors are computationally 

intensive and complex by nature. Therefore, a simulation model of the same H-R system 

was developed and four complex case studies were analyzed. 

6.6. Methodology	
The simulation model was developed in Matlab and system analysis was performed by 

employing the Monte Carlo method. For the given user-proficiency level, system reliability, 

coordination protocol and control model, the behavior of the H-R system was studied based 

on 1000x1000 iterations of simulated H-R handovers. The values of each of the variables 

(Robot total time, RTT and Human total time, HTT) were randomly sampled each time to 

compute the results. Four case-studies were analyzed for which effective coordination 

strategies were derived. 

6.6.1. Investigated	influencing	parameters	

Two influencing parameters were evaluated, user-proficiency (novice/expert) and system 

reliability for different coordination protocols and control models. User proficiency was 

modelled by variability in user’s time of arrival at the point of handover (novice – high 

variability; expert - consistent average arrival times). The system reliability variable takes 

into account the various factors that affect sensor data accuracy and mechanical constraints. 

 User-proficiency and system reliability were expressed as the HSD (human standard 

deviation) and the RSD (robot standard deviation) for the human total time (HTT) and 

robot total time (RTT). HSD will be larger if the human is a novice and smaller for an 

expert. Similarly, a robot with low mechanical constraints will have a lower RSD and a 

robot with unreliable sensors will have greater variance. When an averagely trained human 

works with the robot, we still consider differences in HSD. This is because the level of 

preparedness or the skill set of the human directly influence the human's perceptual latency, 

temporal preparation etc., which influence coordination in a collaborative task. 
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6.6.2. Control	model	implementation	

It is assumed that the mean time required for the human and the robot individually to 

complete one cycle of the given collaborative task is T seconds. The robot and the human 

repeat the pre-defined set of actions every T seconds. Thus the H-R interaction at the spatial 

point of handover should ideally occur every T seconds. The two variables, HSD and RSD, 

were assigned with different values to simulate scenarios with novice/expert user-

proficiency and similarly scenarios with reliable/unreliable sensors and low/high 

mechanical constraints. The cost of waiting at the point of handover W, for the human is 

calculated as, W = R(t) – H(t), where, R(t) and H(t) are the times taken by the robot and 

human respectively to complete one round of action. The scenario was simulated for RTT 

(Robot Total Time) and HTT (Human Total Time) with mean values of T=30 seconds. By 

applying the Monte Carlo method, each of the scenarios was simulated for 106 iterations for 

each combination of HSD and RSD. The values of RTT and HTT were randomly sampled 

in each simulation. Results indicate the average human waiting cost for 106 iterations under 

different scenarios. 

6.7. Simulation	analysis	of	timing-based	control	model	of	H-R	system	

Case-study	III	

Assume a collaborative scenario where the human proficiency level is that of an expert with 

low variance, HSD=1, and the robot has some inherent mechanical constraint that causes 

some variance in its motion so that, RSD=3. The coordination protocol 1 was implemented 

between the partners, i.e., whoever arrive first waits for the other. Figure 6.9 shows the 

average human cost of waiting (W) for a simulation with these scenario settings, using the 

aforementioned cost equation, averaged over 106 times of operation (total number of 

collaborative events in the simulation model), and plotted against the HTT, the total human 

time required for completing one round of action. The human cost of waiting is lower when 

HTT of the collaborating human is greater than its mean value. Overall, the cost is lower 

for HTT values in the range between 27 and 35 sec. So, the bounded range between -10% 

and +17% of mean cycle time can be considered as the best zone or “critical zone” of 

collaboration for the given context. 
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Case-Study Analysis 

Method 
Control Model 

Co-ordination 

Protocol 

User-

Proficiency 

III Simulation Timing Protocol 1 Novice / Expert 

IV Simulation Timing Protocol 2 Novice / Expert 

V Simulation Sensor Protocol 1 Novice / Expert 

VI Simulation Sensor Protocol 2 Novice / Expert 

The current collaborative task can have a higher level of team-coordination if the human 

completes the task in between 27 and 35 sec in every handover cycle.  

 Similarly, the coordination will be worse when the human is operating in the range 

between 24 and 27 sec, with the cost reaching its maximum when time taken by the human 

to complete one round of action is about 26 sec. When completing the action faster than 

required, humans may feel that they raise the productivity of the collaborative task, but 

actually team coordination suffers, and the throughput of the collaborative task decreases. 

Better team-coordination is achieved in such scenarios for the region where HTT is greater 

than its mean value. A higher value of RSD is representative of a robot with lower 

accuracy, and an HTT greater than its mean value signifies a slow user. Hence, it can be 

derived that it is always better for a user to work slowly with an inaccurate robot. 

 When the variance of both collaborating partners decreases (as with expert users and 

fairly accurate robots), better coordination is possible for the region where HTT is closer to 

its mean value. As it can be expected that an expert user will have better consistency in its 

arrival time, the region closer to the mean value is representative of the temporal behaviour 

of such users. So, the effective coordination strategy between an expert user and a fairly 

accurate robot would be to maintain consistency. 

Case-study	IV	

Coordination protocol 2 was implemented in this simulation. In this case, if the handover is 

not successful in the first attempt, the human waits for the return of the robot to repeat the 

action. If missed handovers happen consecutively, the coordination protocol may generate 

significant system costs, along with an inherent cumulative error in the process, causing the  

Table 6.2 Case-studies for simulation analyses of H-R system  
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Figure 6.9 Case-study III and V: Average human waiting cost for 1000x1000 H-R handover 
cycles with timing-based control (dotted red line) and sensor-based control (bold blue line) 

Figure 6.10 Case-study IV and VI: The cost curve for the collaborative system with 
cumulative effect (dotted line) and with system recalibration (blue line) 
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collaborative process to become completely arrhythmic. A cumulative error arises in the 

process because in this coordination protocol, the success or failure of the handover in the 

previous handover cycle may have an effect on the current one. This scenario was 

simulated for HSD=4 and RSD=8 and the cost curve is represented by the red dotted line in 

Figure 6.10. 

 The HTT within the range 15-20 sec is basically the region when the human proactively 

attempts to arrive at the point of handover before the robot. In the range between 35 and 40 

sec, the human arrives in most cases late and hence misses the first handover, having to 

wait for the second turn and adding a cumulative cost to the process. If the human arrives 

too early, the cost is higher than the optimum value, but it is always lower than the cost of 

handover in the second turn. If a system does not have the ability/possibility to recalibrate 

itself, it is always better (for the human) to maintain a tendency to arrive earlier, before the 

robot (to be on the lower side of the mean). However, the best zone of collaboration, 

offering most effective team-coordination, is in the region between 20 and 25 sec for the 

scenario represented by the cost curve in dotted lines. It should be noted that this region 

was considered as the worst zone of collaboration in the cost curve of Case-Study III. This 

implies that H-R effective coordination strategy must be context specific. 

6.8. Simulation	analysis	of	sensor-based	control	model	of	H-R	system		

Case-study	V	

A simulation model of the H-R system was developed for the sensor-based control model, 

using coordination protocol 1 (as in case-study III). The robot´s action in this case depends 

on the information it received from its sensors that sense the state of the human and the 

robot. An average human was modelled with HSD=4. In the simulation, the robot has low 

quality sensors, and consequently the variance of the robot total time, RTT, is high with 

RSD = 8. 

 This scenario was simulated, and the average human waiting cost was calculated for 106 

iterations, as shown by the blue continuous line in Figure 6.9. The graph clearly shows that 

the system cost in this case is much higher than case-study III as represented by the dotted 

line. So, in such a scenario, the best collaboration is in the range of 33-40 sec (higher than 

the mean value) and the cost increases as the human total time drops beneath its mean 
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value. This implies that when the robot has an unpredictable motion, it is always better to 

collaborate as slowly as possible to improve team-coordination. 

Case-study	VI	

In this case-study, the previous case-study IV was simulated with the robot equipped with 

the ability to sense and recalibrate itself whenever it crosses a certain threshold value of 

human waiting time. This threshold value can be defined as the maximum time allowed for 

a single event of H-R handover to be executed. If such functionality is added to the H-R 

system, team-coordination can be drastically improved. Such a scenario was simulated for 

the same value of parameters (HSD=4, RSD=8), and we plotted the result with the bold 

continuous line (in blue), as shown in Figure 6.10. Clearly the cost of such a system is 

much lower than the previous case for a wider range of values.  

 The best zone of collaboration in this case is between 22 and 31 sec, a rather broad 

range. Normally, a novice user collaborating with the system can have a higher chance of 

arrhythmic or unpredictable movement. Such a broad range defined as the best zone of 

collaboration is essentially suitable for such user groups collaborating with the system.  

Thus, a novice user can maintain adequate H-R team coordination if the system has the 

ability to recalibrate itself. 

6.9. Comparative	 analysis	 of	 analytical	 and	 simulation	 study	 of	 H-R	
system	

A comparative analysis of analytical and simulation study of H-R system was done for 

case-study I. Results (Figure 6.11) show that the overall behavior of the system remains the 

same and point to the same conclusions. Figure 6.11a shows the average system cost 

against constant robot cycle time, A. For a given robot cycle time (A), the system cost was 

computed for each H-R handover cycle and averaged over 104 cycles of H-R collaboration. 

The graph shows the characteristics of the system as the robot cycle time increases from 0.5 

to 1.2. The five plots show the characteristics of the system when the cost of human waiting 

per unit time, Ch increases from 0.5 (the bottom line shown in black) to 5.5(the top line 

shown in magenta). 

It indicates that the system cost is lowest when A equals 1 for Ch varying between 0.5 and 

2.5. Thereafter, as Ch further increases in value, the system cost is lowest for A=0.5. This 

behavior points to the same two conclusions as obtained from analytical study, namely:   
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a) For certain range of values of Ch, the value of optimal A remains constant.   

b) Outside this range, the change in the optimal value of A occurs in steps (from 

A=1 to A=0.5) 

Figure 6.11 indicates the average system cost when Ch increases from 0 to 200. The 

behavior of the system remains the same as in the case of analytical study (Figure 6.2). It 

should however be noted that for the simulation study, average system cost was computed 

instead of optimal system cost as done in the analytical study. This is because, in the 

simulation study, the system cost is computed through simulations of all the possibilities.   

6.10. Comparative	analysis	of	timing-	and	sensor-based	control	models		

6.10.1. Functional	comparison	of	timing-	and	sensor-based	control	model	(Case-

study	III	and	V)	

Figure 6.9 shows the cost-curve for case-study III (timing-based control model) and V 

(sensor-based control model) for coordination protocol 1.  Results indicate that the system 

cost is very high in sensor-based control.  So, timing-based control model could be a better 

option than sensor-based control for a system with unreliable or inferior quality sensors. 

6.10.2. Comparison	of	 timing-	and	sensor-based	control	model	 for	novice	users	

(Case-study	III	&	V)	

In Figure 6.9, the HTT region spanning 15-45 sec is where the novice user mostly operates, 

with some being too early (15-20 sec) or too late (35-45 sec) and some fluctuating between 

the two extremes. 

 The results of case-study V (Figure 6.9) indicate that a sensor-based control model, 

equipped with unreliable and/or inferior sensors can be problematic for a novice user, 

because the cost of waiting (the blue line in the figure) for a novice user with a tendency to 

work at a faster pace can be maximum (the area marked with a red ellipse). If it is 

compared to the average cost for an expert user in the sensor-based model (as indicated by 

the horizontal red arrow), the cost varies only between 13 to 40% of the maximum value. 

This is the average waiting cost that will exist even during the timing-based control. High 

waiting cost implies that the user’s average waiting time for each round of collaboration 

can be quite high. 



Chapter	6	 Page	78	
 

 

 

 

 

Figure 6.11 Simulation analysis of the case-study I - average system cost against a constant 
robot cycle time, A 

Figure 6.12 Simulation analysis of the case-study I - average system cost against human 
waiting cost per unit time, CH 
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 This will directly affect the H-R coordination and the productivity of the system. With 

lack of coordination, it is also difficult for a user to develop a natural rhythm in 

synchronization with the robot partner resulting in poor user-experience in sensor-based 

control. In these cases, a timing-based control model can help the novice user. With it, the 

user can develop a natural rhythm, synchronized with the robot’s predictable fixed rhythm. 

Such user behaviour is in line with research in psychology, which shows evidence that 

humans have a natural tendency to adapt to an external rhythm (Keyfitz and McNeill 1996; 

Lorenz et al. 2015). 

 A recent study has also shown that human adaptation in a human-robot system can 

significantly improve team collaboration (Nikolaidis et al. 2016). In contrast, with the 

sensor-based control model, the robot follows the user, and the user will have greater 

difficulty developing a synchronized rhythm. When the user arrives with a long delay, 

irrespective of the control model used, the robot will be ready for handover (waiting cost 

close to zero). This, however, is not an efficient solution, as the long waiting time for the 

robot means lower throughput and will add to unnecessary unproductivity costs. 

 

Figure 6.13 Timing based model suits better for Novice Users whereas Sensor based model is 
most appropriate for expert user 
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6.10.3. Comparison	of	 timing-	and	sensor-based	control	model	 for	expert	users	

(Case-study	III	and	V)	

An expert user profile, for the investigated scenario, is characterized by a human with small 

variation and better consistency in the average time of arrival at the point of handover. As 

such, the HTT region closer to the mean value (Figure 6.9) is a representative of the 

temporal behavior of such a user group. The area marked by the broad horizontal red arrow 

(for HTT values ranging between 27 and 35 sec) has been considered as the operational 

zone for expert user profile in this study. Figure 6.9 indicates that both control models fare 

equally well for expert users. The waiting cost in either of the cases follows the same trend 

and hardly has any significant difference. As can be seen in the figure, the cost in either of 

the control models varies between 13 to 40% of the maximum cost in sensor-based control 

in this region.  

 This is logical, because an expert user will take more or less the same amount of time to 

accomplish each cycle of tasks. As a result, it can be assumed that an expert user has 

already developed a natural rhythm for the collaborative task. As discussed in the previous 

section, a timing-based control model is suitable for rhythmic interaction; it is now self-

explanatory why waiting cost is lower for expert users in timing-based control model.  

 The sensor-based control model, too, has a low waiting cost for expert users, because in 

this case the user remains always predictable. Since the user already has an inbuilt rhythm 

for the task, this control model does not introduce any discontinuity into the system, as is 

the case for a novice user using a sensor-based model. Instead of making the trained user 

follow a fixed robot rhythm, the sensor-based control assists such users to continue at a 

pace that is appropriate for them. 

 Even though both models fare equally for an expert user, a sensor-based control model 

is better for such users, because it can offer greater flexibility. Moreover, fatigue effects 

may slow the user over time and may lead to changes in performance. In this case, a sensor-

based model would give a feeling of an ideal companion as a co-worker that adapts itself to 

the changing pace of the partner. Another possibility for an expert user is to have a hybrid 

control system, offering both options. Timing-based control, in that case, can initially be 

used for the collaborative task, and sensor-based control can be used after task performance 

has become consistent. Thereby the benefits from both control systems can be reaped. 
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6.11. Discussion	of	Analytical	and	Simulation	Study	

Table 6.3 below summarizes the six case-studies on H-R collaboration investigated using 

analytical and simulation methods. Based on this study, it can be said that depending upon 

the user’s proficiency level, the system reliability and the coordination protocols used for a 

given task, different coordination strategies can be employed to improve temporal fluency 

in team coordination and overall system productivity. The effective coordination strategy 

for human in different scenarios is presented in Table 6.3. These strategies are user-centric 

and aim at improving the team fluency and system productivity.  

 The analytical and simulation analyses methodology presented in this chapter can be 

used to: 

- predict the level of team-coordination between the partners and hence performance 

of human-robot collaboration as a team for a given repetitive task;  

- study the behaviour of the system when the influencing parameters are tuned 

thereby predicting the preferable (and when possible optimal) way to collaborate 

for dynamic scenarios; 

- develop a system objective function which can be employed as a general design 

tool to measure H-R system performance. 
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Table 6.3. Suggested Human Coordination Strategy for Different Scenarios 

Case-

Study 

Control 

Model 

Co-ordination 

Protocol 

User-

Proficiency 

Robot 

Characteristics 

System 

Recalibration 

Suggested 

Coordination Strategy 

for Human 

I Timing Protocol 2 Novice Accurate 
Not 

investigated 

Avoid any deliberate 

delay. 

II Timing Protocol 2 Expert Accurate 
Not 

investigated 

Avoid any deliberate 

delay 

III Timing Protocol 1 Novice Fairly Accurate N/A 
Work slower than robot 

mean cycle time 

   Expert Fairly Accurate N/A 

Maintain consistency 

around robot mean 

cycle time 

IV Timing Protocol 2 
Novice / 

Expert 
Unpredictable 

Without 

Recalibration 

Work faster than robot 

mean cycle time 

V Sensor Protocol 1 

Novice Unpredictable N/A 

 

Work slower than robot 

mean cycle time 

Expert Unpredictable N/A 

 

Work slower than robot 

mean cycle time 

maintaining consistency 

around +20% of robot 

mean cycle time 

VI Sensor Protocol 2 

 

Novice 

 

Unpredictable 

 

With 

Recalibration 

Avoid being too fast or 

too slow 

Expert Unpredictable 
With 

Recalibration 

 

Work faster than robot 

mean cycle time 

maintaining consistency 

around -20% of robot 

mean cycle time 

N/A = System Recalibration is not applicable for Protocol 1 
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 |	Experimental	Study	of	H-R	Collaboration	Models	

Chapter Overview 

This chapter presents the experimental studies of the human-robot collaboration models 

presented in chapter 5. The models were implemented in an integrated Human-Robot 

operational system involving a time-critical joint handover task in a shared work, time-

space.   

 Three experiments with 200 subjects in total were conducted to validate, evaluate and 

compare the models for a wide range of collaborative tasks with varying degrees of 

complexity in terms of cognitive and time-demand. The first experiment analyzed H-R 

collaboration in long and simple tasks [BGU final project, Sayfeld and Peretz 2014]; the 

second and third experiments analyzed a short-cycle and simple task and a long and 

complex task respectively [BGU final project, Moyal and Goldshtein, 2015]. The chapter is 

structured into three main sections where each of these experiments is discussed in detail. 

7.1. Methods	

7.1.1. Overview		

An integrated human-robot collaborative work cell was designed for the experiments. Three 

separate experiments with 200 subjects in total were carried out for three types of 

collaborative tasks respectively, as detailed in Table 7.1 below (Sayfeld and Peretz 2014; 

Moyal and Goldshtein 2015). The tasks had varying degrees of complexity in terms of 

cognitive and time-demand, namely – Short and Simple Task, Long and Simple Task, Long 

and Complex Task. Four performance measures were analyzed – (i) Total assembly time 

(ii) Total idle time distribution (iii) Rate of successful handovers (iv) Subjects’ preferences 

for working with the three models (only for Exp. 1). 

 Subjects were asked to do a given task three times with a break of 5 minutes between 

sessions. In each of these sessions, subjects worked with the robot with a different 

randomly chosen H-R collaboration model (timing, sensor and adaptive) to accomplish the 

given task.  

 All the experiments were officially approved by the University’s Human Subject 

Research Ethics Committee. 
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Experiment Title 

Experiment I HRC for Long and Simple Task 

Experiment II HRC for Short and Simple Task 

Experiment III HRC for Long and Complex Task 

7.1.2. The	system	

The system Figure 7.1 consisted of a five degree of freedom revolute robotic arm (Scorbot 

ER4U) mounted on a table top with an area dedicated to human-robot interaction and two 

other areas dedicated towards primary and secondary (if applicable) tasks of the robot 

respectively.  

7.1.3. Participants	

80 subjects participated in Experiments I and II and 40 subjects participated in Experiment 

III. The subjects consisted of undergraduate students from the University aged 21-27 years. 

Each subject spent about 30 minutes working with the H-R system. As the subjects entered 

the experimental arena, they were briefed about the H-R system, the given collaborative 

task, the primary and secondary task of the robot and of the human (in this case, the 

subject). There was no secondary task for the robot in Exp. II as it was a short-cycle task 

requiring frequent interaction. 

 Of the total subjects, half of them were informed about the working principle of the 

three models and half of them were only aware that they are supposed to work with three 

different models in each of the three sessions they executed the task. Subjects were video 

recorded with their consent. The subjects received a score of 1 point towards an 

undergraduate course in Automation Engineering as an incentive for investing their time in 

the experiment. 

7.1.4. Performance	measures	

Three performance measures of fluency of a collaborative task were recorded and analyzed 

– total assembly time (human and robot together), total idle time, rate of successful 

handover. Experiment I also includes subjective measures – subjects were asked to fill-out 

Table 7.1 The three experiments on H-R team-work 
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a questionnaire for subjective assessment of the system, the collaborative task and their 

experience of working with each of the three models. 

7.1.5. Data	analysis	

Data analysis was done separately for each of the three experiments using SPSS and 

included the following steps: 

1) Outlier removal  

2) One-way ANOVA with block was done on the idle time distribution and total assembly 

time for each of the three models. The block represented the subjects and the goal was to 

check if there was any effect of the subjects on the results. 

3) Two hypotheses were formed for ANOVA analysis: 

Hypothesis 1 

𝐻X:	𝜇] = 𝜇^ = 	𝜇_		 
 
There is no significant difference between the models 
 

𝐻]:	𝜇` 
 

At least one of the models is different from the other 
 
Hypothesis 2 

𝐻X:	𝜎				bcdef^ = 0 
 

There is no significant difference between the subjects 
 

𝐻]:	𝜎				bcdef^ > 0 
 

There is significant difference between the subjects 
 

4) Following a one-way ANOVA analysis with block, if the null hypothesis remains valid, 

i.e., there is no statistically significant difference between the subjects, then the block was 

ignored and the first hypothesis was re-evaluated using one-way ANOVA without block.  

5) Following the ANOVA analysis (with or without block depending upon the results), 

post-hoc analysis using the LSD / HSD method for multiple comparisons was performed. 

Results of the analysis have been abbreviated by using T for timing-, S for sensor- and A 

for adaptive control model.  

 Three hypotheses were formed for this analysis: 
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Hypothesis 1 

𝐻X:	𝜇gRhRij −	𝜇klikdU = 0	
	

Timing model is not significantly different from the sensor model	
	

𝐻]:	𝜇gRhRij −	𝜇klikdU ≠ 0	
	

Timing model is significantly different from the sensor model	
	
Hypothesis 2 

𝐻X:	𝜇gRhRij −	𝜇nonpgRql = 0 
 

Timing model is not significantly different from the adaptive model 
 

𝐻]:	𝜇gRhRij −	𝜇nonpgRql ≠ 0 
 

Timing model is significantly different from the adaptive model 
 

Hypothesis 3 

𝐻X:	𝜇nonpgRql −	𝜇klikdU = 0 
 

Adaptive model is not significantly different from the sensor model 
 

𝐻]:	𝜇gRhRij −	𝜇klikdU ≠ 0 
 

Adaptive model is significantly different from the sensor model 
 

6) Following the analysis of idle time distribution and total assembly time, logistic 

regression was performed on the data relating to the rate of successful handovers to check 

for any significant difference between the models. 

7) The effect of human learning curve on the models was checked by computing the 

Spearman’s correlation coefficient. The possible learning effect during each model was 

assessed from the slope of the graph between the number of rounds of H-R handover cycles 

and the respective assembly time for that particular round. 

7.2. Experimental	hypotheses	
The objective of the experimental study was to analyze the performance of the three control 

models for different types of tasks differing in length and complexity. The following 

hypotheses were investigated through three experiments. 

 For Human-Robot collaborative team work: 
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Hypothesis 1: Timing control model is best suited for short-cycle and simple tasks. 

Hypothesis 2: Sensor control model is best suited for long and simple tasks.  

Hypothesis 3: Adaptive control model is best suited for long and complex tasks. 

7.3. Experiment	I	–	Long	and	simple	task	

7.3.1. The	task	

In this experiment (Figure 7.1) the collaborative task is to build a tower using Lego blocks. 

The robot delivers these blocks to the human through human-robot handovers involving 

direct HRI. The primary task of the human is to fix the building blocks on to the tower 

platform.  

 The secondary task of the human is to fix 20 pins around the periphery of the tower for 

each level. The human is supplied with a box of pins from which the subject may pick only 

one at a time. The box has a proximity sensor which tracks the number of pins picked up by 

the human over time. The human can move to the next floor level only after these 20 pins 

are mounted. In between each human-robot handover cycle, the robot has a secondary task 

of filling-up the buffer of Lego blocks to be used in the primary task. Unlike the secondary 

task of human, the robot may halt the on-going secondary task anytime and proceed with its 

primary task. This is to ensure that the robot remains at the disposal of the human as and 

when needed.  

 
Figure 7.1 The Human-Robot collaborative task in experiment I (A) the robot (B) the robot 
secondary task buffer (C) operating system (D) pins for human secondary task (E) assembly 
task 

(A) 

(B) 

(D) (E) 

(C) 
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The point of H-R handover is pre-defined so as to focus on the temporal aspect of HRI. 

Four H-R handover cycles were performed for each control model resulting in the 

completion of the given collaborative task (building of a tower for each model).  

7.3.2. Implementation		

The subject and the robot worked together in each of the three H-R collaboration models in 

the following way: 

i. Timing control model: The robot delivers the necessary pieces for the tower at fixed 

intervals of time. The robot arrives at the pre-defined point of handover 70 seconds after 

the preceding handover. 

ii. Sensor control model: The robot keeps track of the secondary task of the human 

(picking and placing 20 pins – one by one). When the human picks up the 13th pin, it 

triggers the robot to halt its on-going secondary task and initiate its preparation for the 

next H-R handover cycle. As a result, the robot switches its attention towards the 

primary task and picks up the piece and arrives at the point of handover X seconds after 

the received triggering signal.   

iii. Adaptive Model: The robot anticipates the timing of the next handover cycle using 

three types of temporal cues/information: temporal data of the handover cycle of all the 

previous end-users; temporal data of the current end-user in all the previous handovers 

thus far; and the temporal data of the current end-user in the immediately preceding 

series of events. The latter is computed by checking the rate at which the subject picks 

up the three pins (11th, 12th and 13th) leading to the triggering signal (of the Sensor 

Model). The temporal prediction model for this experiment is represented by the 

following equation: 

 where,   

  F = the predicted value   

  n = number of pins assembled 

DT = general mean of population for assembly of one cube 

DS = mean of the current human for assembly of one cube 

Pn = mean of assembly time for the-n cube 

                  )}*......**(***){20( 1 qnnnST PPPDDnF -- +++++-= qedgba   

                Equation 7.1 
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The initial values of the weights were calculated manually using the experimental data of a 

pilot experiment. The robot anticipated and accordingly adapted itself in time for each H-R 

handover cycle based on this equation. 

7.3.3. Results		

(a) Total assembly time: Analysis of the data relating to the total assembly time indicated 

the following: 

i. There are significant differences (p=0.001) between the subjects (H0 is rejected in 

the one-way ANOVA with block  

ii. At least one of the models is significantly different (p=0.000) from the others.  

iii. There is a significant difference (p=0.0001, p=0.002, respectively) between A & T 

and between A & S (Tukey HSD test).  

The total assembly time for the adaptive model is significantly lower (p=0.002, p=0.0001) 

than the sensor control model and the timing control model by 7% and 14% respectively 

Figure 7.2. No significant difference (p=0.716) between the timing and the sensor control 

model was found.   

  

 

  

Figure 7.2 The total assembly time in timing, sensor and adaptive model 
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(b) Total idle time: Analysis of the data relating to the total idle time indicated the 

following: 

i. There are no significant differences (p=0.192) between the subjects (H0 is not 

rejected in the one-way ANOVA with block.  

ii. At least one of the models is significantly different (p=0.001) from the others (re-

evaluation using one-way ANOVA without block.  

iii. There is a significant difference (p=0.0001, p=0.0001, p=0.002 respectively) 

between each of the models (T & S, A & T and A & S) (Tukey HSD test).  

The total idle time for the adaptive model is significantly lower (p=0.002, p=0.0001) than 

the sensor control model and the timing control model by 60% and 39% respectively 

(Figure 7.3). The total idle time for the timing control model is significantly lower 

(p=0.0001) than the sensor control model by 35%.   

(c) Rate of successful handovers: Figure 7.4 shows the rate of successful handovers for 

each of the control models.  

 

 

 

 

Figure 7.3 The total idle time for timing, sensor and adaptive model    
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Figure 7.5 Task learning curve (Sayfeld and Peretz, 2014) 

Figure 7.4 Rate of successful handovers for timing, sensor and adaptive model 
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(d) Task learning curve: Figure 7.5 indicates a decrease in the total assembly time for 

building a tower implying human learning. This learning curve was expected during the 

design of the experiment and therefore a randomized sequence of models was selected to 

cancel the effect. 

(e) Subjective assessment of the H-R collaboration model: Figure 7.6 shows the user-

preference for the three control models following their working experience with the robot. 

Results indicate that the adaptive model was chosen by 45% of the subjects as the most 

preferred model for team-work followed by sensor model with 37%. Timing control model 

was the least preferred model with a user-preference of only 18%. 

 

7.3.4. Discussion		

Results show conclusively that there is a substantial decrease in total idle time (60% and 

39% respectively) and significant reduction in total assembly time (7% and 14% 

respectively) for the adaptive model (best performing model) in comparison to the sensor- 

and timing control models. The adaptive model also had the highest rate (55%) of 

successful handovers which implies that the robot functional delay (Hoffman and Breazeal 

2010) is the least in this model. The subjective measure of the user-preference for each of 

the control models also reveals that the adaptive model is the most preferred model for H-R 

collaboration. Based on these results, it can be said that adaptive model is best suited for 

long and simple tasks and the preliminary hypothesis that the sensor based model is best 

suited for this type of task is rejected. 

Figure 7.6 Subjective assessment of the timing, sensor and adaptive model 
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7.4. Experiment	II	–	Short	and	simple	task	

7.4.1. The	task	 	

Since the interaction between human and robot is too frequent (less than 15 sec), the robot 

is assigned with no secondary task. The robot picks up a Lego block consisting of 4 small 

pieces of different colors – red, orange, blue, pink – and hands it over to the human. The 

human dismantles the four small pieces and performs the job of color sorting by putting the 

red piece in Box 1, black piece in Box 2 and the remaining two pieces (yellow and blue) in 

Box 3. This collaborative work goes on for 20 successive cycles with 20 H-R handovers. 

 The given task resembles a typical industrial task of manual inspection and sorting. 

Subjects were instructed to do the given task (20 H-R handover cycles of sorting) three 

times with intervals of 5 minutes between each session. In each session subjects worked 

with a different H-R collaboration model chosen randomly to accomplish the given task. 

7.4.2. Implementation	

The three H-R collaboration models were implemented in the following way: 

 

  
(Fig. 7.7a) 
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(Fig. 7.7b) 

 

 
(Fig. 7.7c) 

 
(Fig. 7.7d)  

Figure 7.7 The sequence of the Human-Robot collaborative task in Experiment II (a) the 
robot picks up a Lego block from parts warehouse (b) the robot-human handover 
(c) the Lego block that is being handed over (d) the human color sorting task 
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i. Timing control model: The robot arrives at the pre-defined spatial point of handover 

(p-o-h) 10 sec after the conclusion of the last handover cycle. The robot continues this 

pre-defined repetitive action for 20 successive cycles.   

ii. Sensor control model: The robot starts its action for the next cycle (i.e., picking up the 

subsequent Lego block from the assembly line) in reaction to the triggering signal it 

received about the state of the human work cycle. Of the three boxes (1, 2 and 3) where 

the human is supposed to place the dismantled (and sorted) pieces of Lego blocks in 

order, the one in the middle (2nd box) was equipped with a proximity sensor which 

sends a binary signal to the robot every time when the human drops the small pieces 

inside it thereby signaling the beginning of the preparations for the next handover 

cycle. The robot arrived at the p-o-h after 4 seconds from receiving this triggering 

signal. 

iii. Adaptive model: The robot anticipates the timing of the next handover cycle using two 

types of temporal cues/information: temporal history of the preceding subjects and 

temporal history of the current subject in the last three handover cycles. Combining 

them, the temporal predictive model is represented by the following equation:  

   where,    

  F = the predicted value of the robot cycle time 

DT = Mean time-period of the handover cycle of the population (all the subjects who     

has previously worked with the robot) 

  n = number of the immediately preceding handover cycle of the current subject  

 Pi = time-period of the current subject in the ith handover cycle 

   𝛼, 𝛽, 𝛾, 𝛿, 𝜃 were calculated manually based on the pilot experiment data. 

7.4.3. Results		

(a) Total assembly time: Analysis of the data relating to the total assembly time indicated 

the following: 

i. There are no significant differences (p=0.454) between the subjects (H0 is not 

rejected in the one-way ANOVA with block.  

                                    )***(** 21 -- +++= nnnT PPPDF qdgba     Equation 7.2 



Chapter	7	 Page	96	
 

ii. At least one of the models is significantly different (p=0.001) from the others (re-

evaluation using the one-way ANOVA without block.  

iii. There is a significant difference (p=0.001, p=0.001, p=0.001 respectively) between 

each of the models (T & S, A & T and A & S) (LSD test).  

 The total assembly time for the timing control model is significantly lower (p=0.001, 

p=0.001) than the sensor control model and the adaptive model by 30% and 10% 

respectively (Figure 7.8). The total assembly time for the adaptive model is significantly 

lower (p=0.001) than the sensor control model by 20%.  

(b) Total idle time: Analysis of the data relating to the total idle time indicated the 

following: 

i. There are no significant differences (p=0.261) between the subjects (H0 is not 

rejected in the one-way ANOVA with block.  

ii. At least one of the models is significantly different (p=0.001) from the others (re-

evaluation using the one-way ANOVA without block.  

iii. There is a significant difference (p=0.0001, p=0.0001 respectively) between T & S 

and A & S. (LSD test).  

 The total idle time for the adaptive model and the timing control model is significantly 

lower (p=0.001, p=0.001) than the sensor control model by 30% and 23% respectively 

(Figure 7.9). There is however, no significant difference (p=0.127) between the adaptive 

and timing control models. 

(c) Rate of successful handovers: Logistic regression analyses indicated that the timing 

and sensor control models are significantly different (p=0.004, p=0.0001, respectively) 

from the adaptive model. The highest number of successful handovers (91%) is in the 

timing control model followed by the adaptive model with 80% success rate (Figure 7.10). 

(d) Task learning curve: Figure 7.11 shows the task learning curve for the three models.  

Spearman’s correlation coefficient was calculated for the data and it shows that there is a 

significant negative correlation (𝜌~ − 1) between the models. This implies that the random 

sequential order of the model was not enough to cancel the effect of the learning curve. So, 

after removing the first 5 data points, Spearman’s correlation coefficient was re-calculated 

resulting in 𝜌	~	0, thereby indicating the cancellation of the learning effect. 
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Figure 7.8 The total assembly time for timing, sensor and adaptive model respectively  

Figure 7.9 The total idle time for timing, sensor and adaptive model respectively  
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Figure 7.10 Rate of successful handover in timing, sensor and adaptive model     

Fig. 7.11(a) 
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Figure 7.11 Task learning curve for (a) timing (b) sensor and (c) adaptive model  

(b) 

(c) 
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Fig. 7.11(b) 

Fig. 7.11(c) 
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7.4.4. Discussion	

Results indicate that there is a significant decrease in the total assembly time for the timing 

control model in comparison to the sensor control (30%) and adaptive models (10%). The 

adaptive model also fared substantially well against the sensor control model in decreasing 

the total assembly time by 20%. The performance of the timing and adaptive models are 

also significantly better than the sensor control model in decreasing the total idle time by 

30% and 23% respectively. The timing control model also had the highest rate (91%) of 

successful handovers which implies that the robot functional delay is the least in this model.  

Overall, it can be said that the timing control model is the best performing model followed 

by the adaptive model; the sensor control model is the worst performing model for short-

cycle and simple tasks. This corresponds with the hypothesis that timing control model is 

best suited for short-cycle and simple tasks. 

7.5. Experiment	III	–	Long	and	complex	task	

7.5.1. Experimental	design		

A long and complex task consisting of assembling four Lego characters – a dog, a tree, a 

doll and a toy car was chosen for this experiment. The robot workspace consists of a first-

in-first-out stack of blocks representative of parts warehouse. The human workspace 

consists of the following items: 

i. A blue box mounted with a proximity sensor. 

ii. An instruction booklet – The task being complex, subjects were given a pictorial 

instruction booklet that illustrates the step-by-step process to build the respective 

structures. 

iii. On the other side of the human workspace, 2 x 6 sets of glasses are provided and are 

representative of small parts and tools warehouse.    

Six H-R handover cycles are needed to accomplish the given collaborative task. Two 

glasses are assigned for each H-R handover cycles (hence, 2 x 6 sets of glasses). These 12 

glasses are numbered from 1 to 12 and filled with the necessary pieces for the assembly of 

the components assigned for the respective H-R handover cycle. The human is assigned 

with two sub-assembly tasks – I and II – to be done sequentially for each H-R handover 

cycle. Each glass is assigned for the respective sub-assembly (I or II) of the respective 
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handover cycle. When the human finishes executing the task for the sixth handover cycle, 

the collaborative task of assembling the four Lego characters is completed. 

 The twelve sub-assembly tasks are unique, have different levels of complexity and 

cognitive demand and require different amount of time to complete. Task complexity is 

analyzed on the basis of the human temporal variability in accomplishing the given task 

during the pilot experiment. The average execution times of each of the sub-assemblies are 

thus different. Subjects went through a practice session immediately before the main 

experiment due to the complexity of the task. 

The following seven steps explain the given human-robot collaborative task: 

a) The robot hands over a piece to the human. It consists of four Lego blocks plugged 

together as a cuboid. 

b) The human dismantles this given piece into 4 parts. 

c) The human then plugs any one of these four pieces into the Lego platform fixed 

within the blue box. 

d) Only when the above step has been successfully done, the human can fetch the 

respective glass assigned for sub-assembly I of the respective handover cycle. The 

human assembles the given components following the instructions in the 

information booklet. 

e) After sub-assembly I is over, the human plugs the second piece obtained from step 2 

into the same blue box as in step 3.  

f) The human can now proceed to fetch the respective glass assigned for sub-assembly 

II of the respective handover cycle. The human assembles the given components 

following the instructions in the information booklet. 

g) After sub-assembly II is over, the human plugs the remaining third and fourth pieces 

obtained from step 2 into the same blue box as in step 3. And, this completes one H-

R handover cycle. 

A proximity sensor is mounted on the blue box which gets triggered every time the human 

works with it. During the course of the experiment, the human plugs the dismantled Lego 

blocks thrice into a Lego platform in the blue box thereby triggering a signal – at the 

beginning of sub-I, after the conclusion of sub-I and after the conclusion of sub-II. 
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Fig. 7.12a 

Fig. 7.12b 

Fig. 7.12c 
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7.5.2. Performance	measures	

Rate of successful handovers was recorded manually using a stop watch mobile app in an 

android smartphone. Robot idle time, human idle time, human assembly time and length of 

each H-R handover cycle were computed automatically using the sensors in the work cell. 

7.5.3. Implementation	

The three H-R collaboration models were implemented in the following way: 

(i) Timing control model: The robot delivered the necessary pieces at fixed pre-defined 

time intervals. However, unlike the other two experiments, in this case, the pre-defined time 

between each handover cycle is different (it varies from 21 sec to 65 sec). It varies for the 

Figure 7.12 The Human-Robot collaborative team-work in Experiment III (a) the robot picks 
up a Lego block from parts warehouse (b) the robot-human handover (c) the human fetches 
the respective glass assigned for sub-assembly (I and later II) (d) the human assembles the 
given components (e) the final output of the collaborative team-work 

Fig. 7.12d 

Fig. 7.12e 
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six H-R handovers depending upon the length and complexity of each of the six cycles. 

This time interval is calculated by averaging the data collected during a pilot experiment. 

(ii) Sensor control model: The sensors mounted on the robot gripper and in the human 

workspace helps the robot to keep track of the temporal state of the human action using 

three measures (i) time taken for sub-assembly I (ii) notification of the end of sub-assembly 

I (iii) time taken for sub-assembly II. The robot anticipates the time of the next H-R 

handover cycle in the following way:  

a) It calculates the difference between the time taken for sub-assembly I by the current 

subject and the average time taken for sub-assembly I during the pilot experiment for 

that particular H-R handover cycle.  

b) If the value is positive / negative, i.e., if the current subject has completed it slower / 

faster than the average, the robot anticipates the human to finish the sub-assembly II of 

that particular H-R handover cycle comparatively slower/faster than the average 

respectively. The robot calculates the tentative time-period of sub-assembly II using the 

formula below: 

𝑇 = 𝑥 ± 𝑥 1 −
𝑎
𝑏  

where, 

T = time-period of sub-assembly II for the current subject 

 x = avg. time-period of sub-assembly II (calculated from pilot experiment) 

 a = time-period of sub-assembly I for the current subject 

 b = avg. time-period of sub-assembly I (calculated from pilot experiment) 

c) The robot prepares for the subsequent H-R handover cycle and arrives at the pre-

determined point of handover after T seconds (as calculated above) from the end of sub-

assembly I.    

(iii) Adaptive model: The robot continuously anticipates and temporally adapts to the 

working speed of the human in a collaborative task consisting of 6 H-R handover cycles of 

different lengths and complexity. The six sub-tasks of the six cycles are further classified 

into three groups – easier, medium and difficult – by determining its complexity level based 

on the human temporal variability of that sub-task during the pilot experiment. The 

algorithm predicts the time-period of the nth handover cycle based on –  
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a) Avg. time-period of the nth cycle for all the previous subjects  

b) Profiling of the current subjects (fast / medium / slow) based on his/her relative 

performance in the previous handover cycles in comparison to the pilot population 

average. Highest weight is given to the subject’s performance in the difficult cycles 

followed by medium and easier ones. For example, if the time taken by the current 

subject for a difficult sub-task is smaller than the average of the pilot population, then 

the robot profiles the subject as ‘fast’. 

The temporal predictive model determined the timing of the H-R handover. The prediction 

formula is given below: 

𝐹R	 = 	 𝑎R + 	𝛼 ∗ 𝐷R + 1 − 𝑢𝑛𝑝𝑟𝑒 [𝛽 ∗ 𝐶R + 	𝛾 ∗ 𝑄R + 	𝛿 ∗ 𝐹𝐴𝑆𝑇 + 	𝜃 ∗ 𝑆𝐿𝑂𝑊 + 	𝜀 ∗ 𝑀𝐸𝐷]  

where, 

Fi = the predicted ith cycle time (temporal prediction of the i+1th handover moment) 

Di = pilot population avg. time-period of the Sub-assembly II of the ith cycle 

Ci = avg. of the time taken by the current subject for Sub-Assembly II of the ith cycle in 

the previous model  

 Qi= performance comparison in Sub-Assembly I of the ith cycle in the previous model 

and the current model by the current subject.  

𝐹𝐴𝑆𝑇, 𝑆𝐿𝑂𝑊, 𝑀𝐸𝐷 = profiling (classification) of the current subject as fast, slow or 

medium based on the performance in the previous model. If this is the first model, no 

profiling is done and hence they are set to zero 

unpre = when the subject’s performance is not consistent and hence cannot be profiled 

into any of the categories, the unpredictable variable unpre is set to 1 and any prior 

profiling of the subject as fast, medium or slow is reset. As a result, the prediction will 

be done on the basis of the average of the population only. The value of unpre is set to 

zero otherwise. 

𝛼, 𝛽, 𝛾, 𝛿, 𝜃, 𝜀 = constants (weights that were defined based on 10 pilots). The values of 

the weights 𝛼, 𝛽, 𝛾, 𝛿, 𝜃, 𝜀 were calculated manually based on the pilot experiment data. 
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7.5.4. Results	

(a) Total assembly time: Analysis of the data relating to the total assembly time indicated 

the following: 

i. There are no significant differences (p=0.152) between the subjects (H0 is not 

rejected in the one-way ANOVA with block.  

ii. At least one of the models is significantly different (p=0.006) from the others (re-

evaluation using the one-way ANOVA without block.  

iii. There is a significant difference (p=0.002, p=0.04, respectively) between A & T and 

A & S (LSD test).  

The total assembly time for the adaptive model is significantly lower (p=0.002, p=0.04) 

than the timing- and the sensor control model by 15% and 10% respectively (Fig. 7.13). 

(b) Total idle time: Analysis of the data relating to the total idle time indicated the 

following: 

i. There are no significant differences (p=0.447) between the subjects (H0 is not 

rejected in the one-way ANOVA with block.  

ii. At least one of the models is significantly different (p=0.001) from the others (re-

evaluation using the one-way ANOVA without block.  

iii. There is a significant difference (p=0.001, p=0.001, p=0.001, respectively) between 

each of the models, i.e., between T & S, A & T and A & S (LSD test).  

The total idle time for the adaptive model is significantly lower (p=0.00, p=0.00) than the 

timing- and the sensor control model by 48% and 34% respectively (Fig. 7.14). 

(c) Rate of successful handovers: Logistic regression results indicate that the timing and 

sensor control models are significantly different (p=0.0001, p=0.001 respectively) from the 

adaptive model. The highest number of successful handovers (34%) was obtained for the 

adaptive model followed by sensor control model with 19% success rate (Fig. 7.15). 

(d) Task learning curve: Spearman’s correlation coefficient was calculated for the data 

resulting 𝜌9RhRij�:likdU = 0.24, 			𝜌9RhRij��onpgRql = 	0.95,			𝜌:likdU��onpgRql = 0.068,	 

thereby indicating that the learning effect on the models is significantly negligible. Subjects 

went through a round of practice session immediately before the experiment to get 
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acquainted with the given complex task. It also probably helped in cancelling any possible 

learning effect. 

 

 

 

Figure 7.13 The total assembly time for timing, sensor and adaptive model respectively    

Figure 7.14 The total idle time of the H-R system for timing, sensor and adaptive model 
respectively    
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7.5.5. Discussion	

Results indicate that there is a substantial decrease in total idle time (48% and 34% 

respectively) and significant decrease (15% and 10% respectively) in total assembly time 

for adaptive model in comparison to timing- and sensor control model. The adaptive model 

also had the highest rate (34%) of successful handovers which implies that the robot 

functional delay is the least in this model. Overall, it can be said that adaptive model is the 

best performing model for the long and complex task. Therefore, our preliminary 

hypothesis that the adaptive model is best suited for this type of task holds true. 

7.6. Conclusions	

7.6.1. Adaptive	model	is	best	suited	for	long-cycle	tasks	(simple	and	complex):		

The adaptive model achieves best performance measures for long cycle tasks (simple and 

complex). This is probably because, in a long-cycle task, human do not work in rhythm 

which in turn makes the fixed timing model less suitable. Since human variability in each 

cycle tends to be higher, a predictive and adaptive model best caters the needs of the user. 

Figure 7.15 Rate of successful handover  
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7.6.2. Timing	control	model	is	best	suited	for	short-cycle	and	simple	tasks	

Short-cycle and simple tasks are generally rhythmic in nature. This makes the timing 

control model most suitable to build coordination between the human and the robot. 

7.6.3. Sensor	control	model	is	least	suited	for	short-cycle	and	simple	task	

A sensor control model leaves the robot with very little time (in a short-cycle task) at its 

disposal to sense, perceive and react after the triggering signal is received. This increases 

the robot functional delay, resulting in the human wait most of the times for the robot for 

the next H-R handover. This makes it the least preferred option in the case of short-cycle 

and simple tasks. The robot delay can be compensated to some extent by increasing the 

working speed of the robot. It may, however, make it unsafe for close proximity human-

robot collaboration. 

 Furthermore, the sensors used in the three experimental studies are basic but highly 

reliable. As a result, real-time monitoring of the state of the human task could not be 

performed continuously. This limitation affected the overall performance of the sensor 

control model in all the experiments. Nevertheless, advanced sensor networks were not 

used because the end goal was to develop H-R collaboration models that can be readily 

implemented (i) in any industrial robots for collaborative manufacturing (ii) without 

requiring any design changes in factory floors (iii) with portability that is expected in a 

mobile manipulator (iv) with high sensor data reliability required in the extreme operating 

conditions in industries. 

7.6.4. Well-coordinated	Human-Robot	teams	have	higher	team	productivity	

The study of human-human joint-action revealed that “the teams belonging to the category 

of ‘best performers’ in terms of productivity are, in fact, the most poorly coordinated 

teams”. When the speed of human-human joint-action increases, it also leads to higher 

variance in movements (poor coordination) following Fitts Law of speed-accuracy trade 

off. Higher variance, however, in this case is leading to higher productivity. This is because 

humans have advanced perception and cognitive skills, which allows the team-partners to 

adapt quickly in real-time to the constantly changing and unpredictable working speed of 

the other. As a result, the higher the speed of joint-action, the higher are the number of 

handovers irrespective of the lack of coordination and hence, the team productivity is 

higher. 
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 This observation, however, is only valid to human-human joint-action and cannot be 

translated to Human-Robot team-work where robots have limited sensing and perception 

abilities. When the human task time has higher variance, it makes the handover 

unpredictable, and hence, difficult for the collaborating team-partner (the robot) to adapt 

accordingly in real-time. As a result, higher variance will result in poor-coordination and 

higher idle times in the case of H-R systems. Thus, the lower the human variance, the 

higher is the predictability of the human action and hence, higher is the team-coordination 

and productivity of the H-R team. The results of the three experiments indicate that the H-R 

collaboration models with the least total idle time and the highest number of successful 

handovers (implying better coordination) also has the least total assembly time (implying 

higher team productivity). Thus, it can be said that well-coordinated Human-Robot teams 

have higher team productivity. 
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 |	Conclusions	and	Future	Work	

Chapter Overview 

The first part of this chapter deals with the limitations of the current study. This is followed 

by the general conclusions of this dissertation. It is further elaborated in the form of system 

design guidelines for H-R collaborative systems. The design guidelines are divided into 

four sections (from 8.3.1 to 8.3.4), corresponding to the studies of human-human joint 

action (chapter 4), analytical and simulation study of H-R collaborative system (chapter 6) 

and experimental study of H-R collaborative system (chapter 7). The chapter concludes 

with several recommendations for future work. 

8.1. Limitations	of	the	current	work	

8.1.1. Study	of	human-human	joint	action	

The current work focuses on the subjective experience and psychological perspective of 

givers and receivers in short-cycle repetitive tasks. The objective measures presented are 

limited. As a result, the objective and the subjective measures could not be contrasted for 

bias or consistency.  

 Despite this, the work-methods field study has been instrumental in designing the set-up 

of the lab experiments and most importantly towards defining the experiments parameters 

and conditions. Similarly, the simulation study gave insights on the ergonomic aspects of 

givers and receivers which also influenced the design of the lab experiment (for example, it 

helped us decide that the alignment of giver (G), receiver (R) and the matrix of bottles (B) 

should be R-B-G and not R-G-B. That is, when the bottles are kept in between the giver and 

receiver, it is comparatively less tiring for the giver.  

 The simulation software used in this work did not offer the flexibility of modeling the 

actual movements recorded during the lab experiment. Using other software that offers such 

possibility may help to characterize the variability of energy according to different 

techniques/experience/body shapes etc. 

8.1.2. Study	of	H-R	collaborative	system	

1. The performance measures used in this research for temporal coordination in an H-R 

team is based on the previous work done in the area of H-R collaboration (Hoffman and 
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Breazeal 2007; Hoffman and Breazeal 2010; Shah 2011; Hoffman 2013; Lasota and 

Shah 2015). However, these measures are “ad-hoc” and “non-validated” (Hoffman and 

Breazeal 2007; Hoffman and Breazeal 2010; Hoffman 2013) to measure temporal 

coordination of H-R system.  

2. The experimental study of the H-R collaborative system investigated in this dissertation 

included limited subjective metrics in only one of the three experiments. 

3. Experimental analysis of short and complex tasks was not studied in this dissertation. 

4. The adaptive model developed for the current study is basic and can be substantially 

improved.   

5. The sensors used in this study are basic but highly reliable. As a result, real-time 

monitoring of the state of the human task could not be performed continuously. This 

limitation affected the performance of the sensor control model. Nevertheless, advanced 

sensor networks were not used because the end goal was to develop H-R collaboration 

models that can be readily implemented (i) in any industrial robots for collaborative 

manufacturing (ii) without requiring any design changes in factory floors (iii) with 

portability that is expected in a mobile manipulator (iv) with high sensor data reliability 

required in the extreme operating conditions in industries. 

6. The analytical study done on H-R collaborative system is limited in scope since 

collaborative scenarios involving complex influencing parameters like user-proficiency 

and system reliability characteristics make the problem computationally intensive and 

complex.  

7. The variability in human performance and robot action time were included in the 

simulation study using total cycle time standard deviations. Mathematical equations can 

be used in future research to represent the variability in human performance over 

prolonged time, like e.g., muscle fatigue and recovery model (Sadrfaridpour et al. 

2014). 

8. All the investigated influencing parameters were not studied using all the three methods 

– analytical, simulation and experimental. For example, the real effect of task length 

and complexity can be studied only by experimental studies on human subjects. 

9. The speed of approach of the robot towards the point-of-handover was constant.  
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10. The human-robot handovers took place at the pre-defined point in space in every 

handover cycle. No spatial analysis or optimization was done. The robot also picked up 

the ‘job’ to be delivered to the human from pre-defined coordinates. 

This summarizes the limitations of this dissertation. In the following section, general 

conclusions and the major findings of the overall study is presented. 

8.2. General	conclusions	
This dissertation has dealt with the development and investigation of different aspects of 

temporal coordination among a collaborating human and a robot working in a team sharing 

work- and time-space for a collaborative handover task. The problem was approached by 

taking a bottom-up approach, combining behavioral research and quantitative models to 

determine the effective coordination strategy for human-robot collaboration with better 

team-coordination and improved system productivity.  

 The research included studies on human-human joint action based on which three 

Human-Robot collaboration models – Timing, Sensor and Adaptive – were developed for 

H-R team-work in a handover task. These models were evaluated using analytical, 

simulation and experimental studies. 

 The study on human-human joint-action revealed, among other things, the differences in 

the way individual team partners perceive a common joint-action depending upon their role 

(giver/receiver). Results also indicated the crucial role of temporal perception and 

prediction in the success of collaborative handover tasks. The three human-robot 

collaboration models were developed based on the basic principles of how humans perceive 

and process time,  

 The behavior of the H-R collaborative system in each of the three collaboration models 

was studied and compared using analytical, simulation and experimental studies for 

different influencing parameters. The case-studies show how the developed methodology 

can be used to study H-R collaborative systems and derive effective coordination strategies 

and system design guidelines presented in the next section of this chapter. 

 The collaboration models were further evaluated in real-world conditions by designing 

an integrated human-robot collaborative work-cell that facilitated close human-robot 
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interaction in a shared work-, time-space for time-critical tasks. Three experiments with 

200 subjects in total were conducted to validate, evaluate and compare the models. The 

study helped to understand the strengths and limitations of each of the collaboration models 

and their specific suitability for different tasks type. Among others, results indicate that 

while the Timing Control Model is best suited for short and simple tasks, the Adaptive 

Model is best suited for long and simple, and long and complex tasks. The experiments also 

demonstrated the importance of time-perception in a human-robot collaborative system. 

8.3. Human-Robot	system	design	guidelines	
The design guidelines below are based on the implications from the conclusions of the 

studies on (a) human-human joint-action, (b) analytical, (c) simulation, and (d) 

experimental study. Each of the recommended guidelines is related to the specific derived 

source in the relevant section and indicated if this is a direct or indirect implication. 

8.3.1. Human-Human	joint-action	

1. In a repetitive H-R handover tasks involving considerable bending and lifting of goods 

(e.g., in supermarkets, warehouses), the robot should replace the job of a giver.  

(directly implied from 4.6.1). 

2. Humans in general prefer to stick to their roles and habits (directly implied from 4.6.2.3 

– Habit Persistence in Decision Making). Hence, we imply they would prefer to stick to 

their own convenient working pace. So, in general, the collaborative robot should be 

able to adapt and learn the preference of the user to offer more personalized service. An 

option to save the preferences and profile of each user in robot’s database is thus 

recommended. 

3. Any H-R system for collaborative tasks should be able to play both the role of a giver 

and a receiver to be able to work in any given role, depending upon the choice of the 

user (directly implied from 4.6.2.3). While a single arm robot with a mechanical double 

bottle holder may be able to accomplish the job of a giver, it will not be able to play the 

role of a dual-arm receiver, which also requires aligning the bottles on the shelf. Hence, 

a dual arm collaborative robot (like ABB Yumi and Baxter) is better suited to perform 

both of these roles in equal capacity (directly implied from 4.6.2.7 – Preference 

towards the use of two hands). 
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4. Humans prefer to work in normal mode in comparison to competitive mode (directly 

implied from 4.6.2.6 – Does most comfortable/ergonomic work method when speeded 

up apparently gives a perception of most well-coordinated joint-action?). So the default 

speed setting of the collaborative robot should be the average working speed of human, 

which is around 5 bottles per 10 seconds, as reported in Section 6.1. This will also 

provide less fatigue and stress. 

5. Humans tend to be well-coordinated when they are in competitive mode of the most 

comfortable posture/work method. The vice-versa is also true (directly implied from 

4.6.2.6).  The minimum and maximum speed of each handover cycle can be set for the 

collaborative robot using this principle. This means, when a robot is working together 

with a receiver in the lower shelf-competitive mode, it should not exceed beyond 7 or 8 

bottles/10 sec (5 bottles/10 sec, being average for normal mode) to avoid early fatigue 

of workers. The handover cycle frequency may go upto 9 bottles/10 sec during a higher 

shelf-competitive mode because the receiver finds it to be the most comfortable work-

posture to collaborate. 

6. A robot with a fixed periodic motion and a fixed p-o-h pre-set by the respective user is 

better suited than highly accurate systems with non-rhythmic or reactive motions for 

short-cycle repetitive handover task (implied from Section 4.6). 

8.3.2. Analytical	study	of	Human-Robot	collaborative	system	

1. The robot cycle time should not change in every H-R handover in repetitive tasks to 

improve the fluency of H-R coordination (implied from case-study I, Section 6.2.4). 

2. In repetitive tasks, the H-R control system design should be a fusion of Timing and 

Sensor based control (implied from case-study II, Section 6.2.4 and 6.10.3). 

8.3.3. Simulation	study	of	Human-Robot	collaborative	system	

1. It is always better for a novice user to work slowly with the robot for comparatively 

better H-R coordination (implied from case-study III, Section 6.7). 

2. The fluency of H-R coordination depends on the given scenario and the given set of 

conditions (implied from case-study III, IV, V, VI, Section 6.7 and 6.8). 

3. If a system does not have the ability to recalibrate itself, it is always better to maintain a 

tendency to arrive faster and before the robot (implied from case-study IV, Section 6.7). 
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4. If the functionality of recalibration (under certain threshold) is added to the H-R 

system, the fluency of H-R coordination can be improved (implied from case-study IV, 

Section 6.7). 

5. A novice user can maintain a higher fluency of H-R coordination with the robot if the 

system has the ability to recalibrate itself (implied from case-study IV, Section 6.7). 

6. When the robot has an unpredictable speed in its sequence of action, it is always better 

to collaborate as slow as possible to improve the fluency of H-R coordination (implied 

from case-study V, Section 6.8). 

7. Timing based control model could be a better option than sensor- based control for a 

system with unreliable or inferior quality sensors (implied from case-study III and V, 

Section 6.7 and 6.8, respectively). 

8.3.4. Experimental	study	of	Human-Robot	collaborative	system	

The following guidelines are based on the experimental study of H-R collaboration models 

as discussed in Chapter 7: 

1. Adaptive model is best suited for long-cycle tasks (simple and complex) (implied from 

the conclusions of experiment 1 and 3, Section 7.6.1). 

2. Timing control model is best suited for short-cycle and simple tasks (implied from the 

conclusions of experiment 2, Section 7.6.2). 

3. Sensor control model is least suited for short-cycle and simple task (implied from the 

conclusions of experiment 2, Section 7.6.3). 

4. The study of human-human joint-action revealed that “the teams belonging to the 

category of ‘best performers’ in terms of productivity are, in fact, the most poorly 

coordinated teams”. This is only valid for human-human joint-actions and cannot be 

translated to human-robot systems. The results of all the three experiments showed that 

the H-R collaboration model with the least total idle time and the highest number of 

successful handovers (implying better coordination) also had the least total assembly 

time (implying higher team productivity). So, well-coordinated Human-Robot teams 

have higher team productivity.  
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8.4. Recommendations	for	future	work	
Future work recommendations include: 

1. The development of a hybrid control system with the ability to switch dynamically 

between the three H-R collaboration models (timing / sensor / adaptive) depending 

upon the needs of the task and of the user. Research should focus on the timing and 

frequency of switching and on the level of automation in switching.  

2. Development of a methodical approach to define and validate temporal coordination 

metrics of H-R system. 

3. Subjective measures must be included in all the experiments on H-R collaborative team-

work so as to link the objective and subjective measures and scientifically validate the 

metrics for measuring temporal coordination in H-R system. 

4. Experimental analysis of short and complex tasks should be performed to assess the 

suitability of the developed H-R collaboration models for these task types. 

5. Development of advanced adaptive model for H-R collaboration. 

6. Human-human joint-action future research  should include a more detailed investigation 

of the actual movements from video analysis or by motion tracking with passive 

markers or wearable sensors which can then be contrasted with the subjective measures 

of this experiment to get a broader understanding of human-human joint-action in the 

areas investigated in this research.  

7. Experiments on H-R collaborative team-work should extend over several hours to 

measure the real life effect of the investigated influencing parameters (user-proficiency, 

learning/fatigue, task length and complexity, etc.) on temporal coordination in human-

robot collaboration. 
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