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Abstract  

This research presents an automatic parameter tuning process for a dynamic adaptive 

thresholding algorithm for fruit detection. The algorithm enables robust detection in highly variable 

lighting conditions. The image is dynamically split into variable sized regions, where each region has 

approximately homogeneous lighting conditions. Nine thresholds were selected to accommodate 

three different illumination levels for three different dimensions in four color spaces: RGB, HSI, NDI 

and LAB. The thresholds were selected by quantifying the required relation between the true 

positive rate and false positive rate. A tuning process was developed to determine the best fit values 

of the algorithm parameters to enable easy adaption to different fruits, colors and illumination 

conditions. Extensive analyses were conducted on three different databases: red apples (9 images 

of 113 apples), green grapes (129 images of 1078 grapes) and yellow peppers (30 images of 73 

peppers) acquired in outdoor conditions. Results show the importance of the tuning process for the 

generalization of the algorithm to different kinds of fruits and environments. In addition, this 

research revealed that for each kind of fruit the use of a different color space might be superior over 

the others.  
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1. Introduction 
1.1. Problem description 
Object detection is an important and essential task in many agricultural applications including 

autonomous navigation and obstacles avoidance (Loianno et al., 2018), precision and selective spraying ( 

Tona et al., 2018), weed control (Albert and Michaels, et al., 2017), yield estimation (Liu et al., 2017), 

ripeness and quality evaluation (Pereira et al., 2018), phenotyping (Ghosal et al., 2018)  and fruit 

detection for robotic harvesters (Almendral et al., 2018; Kapach et al., 2012; Gongal et al., 2015, Bac et 

al., 2014).  

Despite intensive research conducted in identifying fruits, implementing a real time vision system 

remains a complex task (Gongal et al., 2015;Kapach et al., 2012). Current detection is limited to 87-88% 

detection rate with 3.8% false alarms (Luo et al., 2018; Vitzrabin and Edan, 2016; Bac et al., 2014) in 

robotic harvesting.   

Features such as shape, texture and location, are subject to high variability in the agricultural domain 

(Gongal et al., 2015). Moreover, fruits grow in an unstructured environment with highly variable lighting 

conditions (Vitzrabin and Edan, 2016) and obstructions (Barth et al., 2016) that influence detection 

performance. Color and texture are fundamental characteristics of natural images and play an important 

role in visual perception (Arivazhagan et al., 2010).  

Images can be represented by different color spaces (e.g., RGB, HSI, LAB, NDI); each one emphasizes 

different color features (Arivazhagan et al., 2010). RGB is the most common color space, representing 

each pixel in the image in three color channels as acquired: red, green and blue. HSI represents every 

color with three components: hue (H), saturation (S) and intensity (I), also known as HSV (Zheng et al., 

2009). LAB color space is an approximate of human vision (Shmmala and Ashour,2013). An additional 

color space commonly employed in the agriculture field (Vitzrabin and Edan, 2016) is the normalized 

difference index (NDI) space. The NDI is used to differentiate between fruit and the background 

(Woebbecke et al., 1992) since it helps to overcome changes in illumination and shading due to its 

normalization technique (Shrestha, 2014). Each dimension in the NDI space is the normalized difference 

index between 2 colors in the RGB space, resulting in three dimensions (Equation 1). These operations 

are applied for all pixel locations in the image, creating a new image with this contrast index. These 

equations yield NDI values ranging between -1 and +1.   
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𝑁𝐷𝐼1 =  
𝑅−𝐺

𝑅+𝐺
 ; 𝑁𝐷𝐼2 =

𝑅−𝐵

𝑅+𝐵
; 𝑁𝐷𝐼3 =

𝐵−𝐺

𝐵+𝐺
  (1) 

 

One of the most common methods for fruit detection is image segmentation (e.g., Wang et al., 2013; 

Jiang et al., 2008; Arroyo, et al., 2016; Rong, et al., 2017). Many segmentation algorithms have been 

developed (Zhang, 1996) including: Kmeans (Shmmala and Ashour, 2013); Mean shift analysis (Zheng et 

al., 2009);  Artificial neural networks (ANN) (Al-allaf,  2014), Support vector machines (SVM) (Sakthivel et 

al., 2015), Deep learning ( Sa et al., 2016), Reinforcement learning (RL) (Ostovar et al., 2018) and several 

others.  

This research focuses on segmenting objects in the image using an adaptive thresholding method. 

Observing the histogram of the image color implies that a threshold can be determined to best 

differentiate between the background and the object distributions (Park et al., 2011). The threshold is 

computed by finding the histogram minimum (Figure 1) separating between two peaks – the object and 

the background. However, the global minimum between the distributions is very hard to find in most 

cases (Hannan et al., 2007).   

 

FIGURE 1:  OPTIMAL THRESHOLD IN BIMODAL HISTOGRAM 

Current most optimal thresholding algorithms determine the threshold only in a one-dimensional space, 

for example in the RGB space, either R or G or B or a linear combination of their values (e.g. grayscale 

transformation) will be used (Bulanon et al., 2001). In the transformation from three dimensions into 

one, information is lost. In this research, a three-dimensional thresholding algorithm based on (Vitzrabin 
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and Edan, 2016) was applied and evaluated also for additional color spaces (RGB, NDI , HSI and LAB color 

spaces) – a threshold is determined for each dimension in the color space. 

There are two common adaptive thresholding algorithm concepts: 1) global thresholding, in which for 

each image, a different threshold is determined according to specific conditions for the entire image 

that is then transformed into a binary image; 2) local thresholding, in which the image is divided into 

sections, and a different threshold is calculated for each section; the sections are then combined to a 

binary image.  

There are several methods that utilize dynamic local thresholding algorithms (Gunatilaka and Baertlein, 

2001; Kanungo et al., 2010). A common approach is to use multi-resolution windows which apply a 

bottom up method, merging pixels while a criteria is met (Gunatilaka and Baertlein 2001; Kanungo et al., 

2010). Another approach is the top down method, where the image is divided into sub regions according 

to criteria. The top down approach reduces execution speed and improves generalization (Hall and 

McMullen, 2004) and was therefore used in this research.   

The adaptive thresholding algorithm presented in this research is based on previous work (Vitzrabin, 

2016) that aimed to detect peppers, in which a set of three thresholds were determined for each region 

of the image according to its lighting setting. The algorithm dynamically divides the image into several 

regions, each with approximately the same lighting conditions. The main contribution of the adaptive 

local 3D thresholding is a very high true positive rate (TPR) and low false positive rate (FRP) in the fruit 

detection task in an unstructured, highly variable, and dynamic crop environment. Another contribution 

is the ability to change in real time the task objective in the algorithm behavior based on the desired 

ratio between TPR and FRP; this contributes to a better success rate in the grasping operation itself 

(Vitzrabin and Edan, 2016). Both the high performances and the changing task objectives are key issues 

regarding detection in robotic harvesting applications (Vitzrabin and Edan, 2016). This thesis advances 

the previous research with specific contributions as noted below. 

1.2. Objectives 
Current research objectives and contributions: 

 A new parameter tuning process developed to best-fit the parameters to the specific database. 

 Intensive evaluation of the adaptive thresholding algorithm for different color spaces.  

 Application and evaluation of the algorithm to different kinds of fruit.  
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Literature Review 

This chapter presents scientific background concerning the research related to object detection, 

adaptive thresholding algorithms, color spaces used for image representation and robotic applications in 

agriculture. 

2.1. Object detection using computer vison  
Object detection is an important and essential task in many agricultural applications including 

autonomous navigation and obstacles avoidance (Loianno et al., 2018), precision and selective spraying ( 

Tona et al., 2018), weed control (Albert and Michaels, et al., 2017), yield estimation (Liu et al., 2017), 

ripeness and quality evaluation (Pereira et al., 2018), phenotyping (Ghosal et al., 2018)  and fruit 

detection for robotic harvesters (Almendral et al., 2018; Kapach et al., 2012; Gongal et al., 2015, Bac et 

al., 2014). This research focuses on vision for stationary cameras and “eye-in-hand” cameras for robotic 

harvesters (Figures 2,3) in outdoor conditions.  

Usually an image includes objects of interest and a background represented by anything else in the 

image. Objects detection and recognition in images are significant tasks in computer vision field (Jalled 

and Voronkov, 2016).  

Computer vision aims to imitate human vision by perceiving and understanding an image or a video 

through pixels and their relations using: artificial intelligence, neurobiology, signal processing and more.  

Although vision seems natural for humans, image interpretation is a challenging task for computers. The 

transformation of the world from 3D to 2D causes loss of information (e.g. geometric structure, distance 

between objects). In addition, while measuring the real world (using images and videos), vision systems  

deal with a large amount of noise caused by physical conditions such as brightness, shadow area or 

measurement errors. Lastly, analyzing the image pixel by pixel makes hard for a computer to understand 

the whole picture (Schalkoff, 1989).    

Despite all the challenges mentioned above, computer vision systems are used today in a varied field of 

application including face detection (Li et al., 2015), autonomous cars (Alhaija et al., 2017) and many 

more. 

Computer vision applications include image acquisition , image processing  and analysis interpretation 

(Nuske et al., 2014). 
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2.1.1. Image acquisition 
First step in image acquisition process deals with capturing the image data using a camera. The image is 

represented by a matrix of discrete picture elements (i.e. Pixels) (Szeliski, 2010). The pixels values 

represent the light intensity in the image. These values are converted into digital value by an analog 

digital converter. The digital value depends on the number of bits used in the vision system (Nuske et 

al., 2014). For instance, binary vision presents the light intensity using only two values: zero for black 

pixels and one for white pixels (Sonka et al., 2014). Another common image representation is the 

greyscale vision system showing different shades of grey according to the number of bits in each pixel 

(Nuske et al., 2014). More advanced vision systems can represent color. This method evaluates for each 

pixel three number in range [0,256], each one represents a different color intensity red, green or blue 

(Mohanty et al., 2016) 

2.1.2. Image processing and analysis  
Processing and analyzing the image are the following steps of object detection process. A variety of 

techniques have been developed to process and understand the image data. A common method used 

for object detection is segmentation (e.g., Rong, et al., 2017; Arroyo, et al., 2016; Wang et al., 2013; 

Jiang et al., 2008). Segmentation is a process of partitioning the image into different objects or 

connected regions that do not overlap (Jameel and R. Manza, 2012).  

Image segmentation algorithms are based on either the discontinuity principle or the similarity principle 

(Haward, 2016). The discontinuity principle consists in extracting regions that differ in properties such as 

intensity, color, texture, or any other image statistics. The similarity principle consists in grouping pixels 

based on a common property (Sonka et al., 2014). Thresholding is an example for segmentation that 

uses the discontinuity principle.  

Thresholding, one of the simplest methods for image segmentation, usually uses the grayscale image to 

create a binary image that represents objects vs. background in the image (Shapiro et al. 2001). The 

thresholding method assumes that the density color of the object can be differentiated from the density 

color of the background (Figure 1). In this method, a histogram is created based on the image color. In a 

second step the method tries to find the local minimum between the density of the background and the 

density of the object. This value is set as the threshold value. Using the threshold value, pixels are 

categorized as white (part of the fruit) or black (representing the background) (Figure 4).  
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General computer vision literature indicates that predefined global thresholding fails in most scenarios 

(Haralick et al., 1985; Nalwa, 1993; Zhang et al., 2010). To overcome the problem, several vision 

applications apply adaptive thresholding algorithms (reviewed in section 2.2) where the threshold 

adaptively changes to the new illumination conditions (Boulmerka et al., 2014; Hannan et al., 2007). 

The outcome of the segmentation procedures is a binary image creating similar regions which helps to 

define and identify in the image (Sonka et al., 2014). Features extraction process is following the 

segmentation process . Features can be used by a machine vision algorithm to define an object in the 

image (Nuske et al., 2014). Some of the features extracted from the segmented image are simple 

features such as area, width and length and others are more complex, such as center of gravity, shape 

and aspect ratio (Sonka et al., 2014). The combination of a few features together usually describes the 

object and helps to recognize it and interpret the image (Szeliski, 2010).  

Many techniques have been developed for feature extraction process in computer vision field (Lowe, 

1999; Harris and Stephens, 1988)  and more modern algorithms have been created such as deep 

convolutional neural networks (Ruiz-del-Solar et al., 2018). 

2.1.3. Image interpretation  
The image interpretation process is the final step of the object detection. Based on the extracted 

features, machine vision algorithms can define objects in the image (Nuske et al., 2014). Usually, this 

process uses predefined models or values to recognize the objects. A common method is called 

Template Matching. In this method the system compares the extracted features to a predefined model 

template that represents object in images (Nuske et al., 2014). Today, advance techniques emerge using 

machine learning, artificial neural networks (Ruiz-del-Solar et al., 2018) and more.  

This research focuses on the detection process using adaptive thresholding methods.   
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FIGURE 2: “EYE IN HAND” CAMERA  FIGURE 3: STATIONARY CAMERA 

 

 

FIGURE 4: BINARY SEGMENTATION 

2.2. Adaptive thresholding algorithms 
 

Changing lighting conditions in outdoor environments, due to sunlight direction and shadowed areas 

(caused by object or clouds) impact the robotic vision (Figure 5,6). Several object detection algorithms 

used thresholds derived specially for images with high variability (Aufrère et al., 2000; Rasolzadeh et al., 

2010; Rakun et al., 2011). In addition, target detection algorithms were developed for determining 

thresholds for images with high variability (Reibman et al., 1987; Wuhib et al., 2008; Rosin et al., 2003; 

Kong et al., 2010). Another approach to solve the high variability problem is to assign a different 

threshold for each sub-image (Kong et al., 2010; Kanungo et al., 2010;Shih et al., 2005; Revol-Muller et 

al., 2002).  

Two common adaptive thresholding algorithm approaches are used for object detection: 

 Adaptive global thresholding - for each image a different threshold is determined according to 

specific conditions for the entire image, which is then transformed into a binary image. 
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 Adaptive local thresholding - the image is divided into sections and a different threshold is 

calculated for each section. The division to section can be conducted using different rules (e.g. 

minimizing stand deviation or entropy on each section). Finally, the sections are combined to a 

binary image. 

 

    

 

In this research we adapted a previous developed thresholding algorithm (Vitzrabin, 2016) that adapts 

to different illumination conditions within and between images. It dynamically applies a local threshold 

to different areas in the image.  

2.3. Color spaces  
Color models, like all mathematical representations of physical phenomena, can be expressed in many 

ways, each with its advantages and drawbacks. Some representations are formulated to help humans 

select colors and others are formulated to ease data processing in machines using various color space. 

Historically, whatever the meaning assigned to the color space variables, three of them were enough to 

describe all colors: Red-Green-Blue (RGB), Hue-Saturation-Brightness (HSB), L*a*b* etc. (Pascale, 2003). 

This chapter covers RGB, HSI, NDI and LAB color spaces.  

RGB - The RGB color space differentiate between Red Green and Blue colors in the image (Figure 7). 

Each dimension is represented by a value range 0-255. The RGB color space is one of the most 

commonly used image representation (Pascale, 2003; Shmmala  and Ashour, 2013). 

FIGURE 6: CHANGING LIGHTING CONDITIONS FIGURE 5: SHADOWED AREAS 
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FIGURE 7: RGB COLOR SOLID CUBE 

NDI - Each dimension in the NDI space is the normalized difference index between 2 colors (e.g. NDI 

first dimension represents the difference between red and green in RGB space, (Equation 1 in Section 1); 

second dimension represents the difference between red and blue in RGB space) as aforementioned, 

resulting in three dimensions. These operations are applied for all pixel locations in the image, creating a 

new image with this contrast index. These equations yield NDI values ranging between -1 and +1.   

Using the NDI space in the dynamic thresholding process instead of the grey scale image enables us to 

learn 3D information about the threshold that best distinguishes between the background and the fruit  

(Woebbecke et al., 1992). 

HSI - The HSI color space (Hue, Saturation and Intensity) defines a model in terms of its components. 

This color space is recommended for processing images when they are affected by lighting changes. HSI 

space can separate the intensity of the intrinsic color information, which would refer to the hue and 

saturation (Gasparri et al .2011). 

HSI space representation is through a double cone, as shown in Figure 8. The center of this double cone 

is a circumference divided into angles of equal magnitude (Gasparri et al .2011) which range is [0,2π] 

comparative to angle 0 at red axis, 2 π/3 at green axis, 4π/3 at blue axis and red again at 2π (Shmmala 

and Ashour, 2013).The distance from the center of the exterior circumference represents the saturation 

found in every color and takes values from 0 to 1, indicating how the color is diluted with white light. 

Finally, the axis through the two cones corresponds to the intensity component. This has a normalized 

value from 0 (black) to 1 (white) and indicates the amount of light in a color. Removing a small 

circumference of the figure formed by two cones, colors close to an intensity of 1 are lighter than those 

close to zero. When the saturation component is close to 0, colors only reflect a change between black 
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and white. When this component is close to 1, the color will reflect the true value represented by the 

hue (Gasparri et al .2011).  

 

 

FIGURE 8: HSI COLOR SPACE REPRESENTATION 

 

LAB - The Lab color space describes mathematically all perceivable colors in the three dimensions: L 

represents lightness while a and b represent the color opponents green–red and blue–yellow.  

One of the most important attributes of the Lab model is device independence. This means that the 

colors are defined independent of their nature of creation or the device they are displayed on. 

The LAB space is a three-dimensional real number space that contains an infinite number of possible 

representations of colors. However, in practice, the space is usually mapped onto a three-dimensional 

integer space for device-independent digital representation, and for these reasons, the L*, a*, and b* 

values are usually absolute, with a pre-defined range. 

The lightness, L*, represents get a range from 0 (darkest – black) to 100 (brightest-white). The color 

channels, a* and b*, represent true neutral gray values when a* = 0 and b* = 0. The red/green opponent 

colors are represented along the a* axis, with green at negative a* values and red at positive a* values. 

The yellow/blue opponent colors are represented along the b* axis, with blue at negative b* values and 

yellow at positive b* values. The scaling and limits of the a* and b* axes will depend on the specific 

implementation of Lab color, but they often run in the range of ±100 or −128 to +127 (Shmmala & 

Ashour, 2013).  
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2.4. Robotic applications in agriculture 
There is an increasing need for robots in agriculture to respond to the increasing demand of food at a 

competitive price and ensure high quality food (Jukema and Van de Meer 2009).  

Robotic applications can improve yield and agriculture quality by enabling better control over 

environmental implications.  For instance, extracting information such as leaf measures, steam 

properties, climate condition and yield data per plan helps to take appropriate measures in a proactive 

approach. In addition, agricultural robots can reduce manual labor and production costs (Edan and 

Miles, 1994; Kapach et al., 2012). Robotic applications enable new functionality using sensing abilities 

that obtain better performances than humans in accuracy and consistency (Jukema and Van de Meer 

2009).  For example, agricultural applications can help in detecting fruits diseases. By enabling focused 

treatment on a specific area, the use of chemicals can be decreased (Gorbe and Calatayud 2012). 

During the past 30 years, robotics applications in agriculture has been a vast research subject (Sarig, 

1993).  Many robotic systems were developed for different agricultural applications such as 

transplanting, cultivating, spraying, trimming and selective harvesting (Edan and Miles, 1994; Kapach et 

al., 2012). 

However, agriculture automated system has yet been commercialized for harvesting fruit crops (Gongal 

et al. 2015). The main reason for low performances of harvesting robots are the complexity of the corps 

and environment (Henten, C. Wouter Bac and Eldert J. van, Jochen Hemming, 2014). Fruits inherent high 

variability in size, shape, texture, and location (Figure 9) (Kapach et al., 2012). In addition, unstructured, 

uneven illumination, and dynamic nature of the environment makes harvesting robot real time system 

implementation in an outdoor environment is still a complex problem (Figures 3,4) (Bulanon et al. 2002; 

Kapach et al. 2012; Bac et al. 2014). 
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FIGURE 9: HIGH VARIABILITY IN SIZE SHAPE COLOR AND LOCATION 
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3. Research methods 
3.1. Overview 
This research is based on a dynamic thresholding algorithm, which incorporated changing task 

objectives algorithm to improve sweet pepper detection for a robotic harvester (Vitzrabin & Edan, 

2015). The algorithm was implemented in Matlab 2015a following the flow presented by (Vitzrabin & 

Edan, 2015). The algorithm includes an offline process (train), in which the algorithm learns color 

thresholds for detection followed by an online process responsible for implementing the thresholds 

learned in the offline process on a new image, in order to detect pixels that represent fruit in real time 

(Vitzrabin & Edan, 2015) . Previous analyses indicated the superiority of the dynamic thresholding 

algorithm (Vitzrabin & Edan, 2015)  as compared to traditional algorithms such as constant threshold, 

bimodal histogram and a constant threshold 3D thresholding.  

The current developments include: 

1.  Generalizing the algorithm by applying different color spaces (RGB, NDI, HSI, LAB) to enable 

robust detection for a wide range of fruit varieties. 

2. Developing a tuning process to enable automatic and improved fruit detection.   

3.2. Assumptions 
 Different objects in the images have different color densities that can be differentiated by local 

minimum threshold between them.  

 The images contain fruits and background. 

 Image light level can be represented by computing the average pixel values in the grayscale 

image. 

 

3.3. Algorithms  
As a first step, the previously developed algorithm (Vitzrabin & Edan, 2015) was implemented. Then, the 

algorithm performances were improved for apple detection by omitting the fusion module which was 

specific for this database and developing a dynamic use of the NDI color dimensions. The third step in 

the algorithm development included extension to a multitude of color spaces used for segmentation 

(RGB, HIS, and LAB). Finally, a dynamic parameter tuning module was developed to ensure employment 

of best-fit parameters for the algorithm initialization when changing the detection task (detection of 

different kind of fruit and/or different environment).  
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3.4. Databases 
The algorithms were evaluated on three databases representing three different fruit colors: red (apples), 

green (grapes) and yellow (peppers) for two environmental settings (greenhouse, field) in different 

illumination conditions. Images were acquired with different cameras. 

Apples - The orchard apples database includes 113 "Royal Gala" apples in 9 images acquired from an 

orchard in Chile in March 2012 under natural growing conditions with a Prosilica GC2450C camera with 

1536x2048 resolution; the camera was attached to a pole. The images were captured in daylight: half of 

the images were acquired under direct sunlight, and half of the images were acquired in the shade. 

Ground truth was manually marked (Figure 10).  

   

FIGURE 10: APPLES IMAGE RGB IMAGE (LEFT) AND GROUND TRUTH (RIGHT) EXAMPLE 

 

Grapes - The images used originated from a commercial vineyard growing green grapes of the 

“superior” variety. An RGB camera (Microsoft NX-6000) with 600×800 resolution was manually driven at 

mid-day along a commercial vineyard in Lachish, Israel, during the summer season of 2011, one month 

before harvest time. The images were captured from 5 different growing rows. The targets were defined 

as the grape clusters. A group of three experts was guided to mark the closing perimeter of each grape 

cluster in the image. The final ground truth was marked using the judge rules criteria (if a given pixel was 

marked by two or more experts, it was considered a target). A set of 129 images were marked using this 

technique and used as a ground truth for the following research. The images included 1078 grape 

clusters (Figure 11). 
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FIGURE 11: GRAPES IMAGE RGB IMAGE (LEFT) AND GROUND TRUTH (RIGHT) EXAMPLE 

Peppers – The dataset includes 30 images of 73 yellow peppers acquired in a commercial greenhouse in 

Ijsselmuiden, Netherlands using a 6 degree of freedom manipulator (Fanuc LR Mate 200iD/7L), equipped 

with an iDS Ui-5250RE RGB camera with 600x800 resolution. The images were manually marked in order 

to compare the algorithm performances to manual detection by a human labeler. The database was 

marked twice, one time marking only peppers with high visibility (denoted as “high visibility peppers”, 

this was done for 10 images of 25 yellow peppers) and a second time marked as well peppers in dark 

areas that are less visible in the image (will be refer as “including low visibility peppers”, done for all 30 

images) (Figures 12,13).  

   

FIGURE 12: PEPPERS RGB IMAGES (LEFT) AND GROUND TRUTH (RIGHT) EXAMPLE  

 

   

FIGURE 13:  RGB IMAGE (RIGHT) AND LABELED IMAGE (LEFT) 

    “HIGH VISIBILITY PEPPERS” MARKED IN RED AND “LOW VISIBILITY PEPPERS” MARKED IN BLUE 
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Note that ‘imclose’ MATLAB function was used (with disk=5) when converting the ground truth to binary images 

as follows to remove numbers that were written on images when tagged (Figure 14). 

   

FIGURE 14: BINARY IMAGE BEFORE “IMCLOSE” FUNCTION (LEFT) AND AFTER (RIGHT) 

3.5. Analyses   
The following analyses were conducted for the three databases, apples, grapes and peppers, using 70% 

of the data for training and 30% for testing (Guyon & Isabelle, 1997). This rate was chosen to be more 

rigid to the algorithm performances since the number of images in each DB were relativity small. In 

addition, to ensure robustness of the results each test was repeated five times with random selection of 

images for each repetition and average results of all performance measures were reported.  

 Tuning parameters: parameters were computed for each database with procedures defined in 

section 3.3 and compared to previous predefined parameters.  

 Color spaces analyses:  algorithm performances were tested on all databases for four different 

color spaces: NDI, LAB, HSI, RGB.  

 Sensitivity analyses: sensitivity analyses were conducted for all the databases and included: 

a) Noise - noise was created by adding to each pixel in the RGB image a random number 

from the mean normal distribution for noise values up to 30%. The artificial noise represents the 

algorithms robustness toward other cameras with more noise, or when capturing images with 

different camera settings. Noise values of 5%, 10%,20%,30%, were evaluated. 

b) Thresholds learned in offline process - thresholds were changed by ±5%, ±10% and ±15% 

according to the threshold in each region. 

c) Stop condition - the selected std value was changed by 5%, 10% to test the robustness of 

the algorithm to these parameters.  

d) Train vs. Test -The algorithm performances were evaluated while using different 

percentage of DB images for the training and testing processes. 
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 Morphological operation contribution – performances were tested for imaging with and without 

the morphological operations process.  

3.6. Performance measures  
Performance measures included TPR (true positive rate, also noted as hit), FPR (false positive rate, also 

noted as false alarms) and F score (Goutte & Gaussier, 2005). The TPR metric (Equation 2) states the 

number of correctly detected objects relative to the actual number of objects, while the FPR metric 

calculates the number of false objects detected relative to the actual number of objects (Equation 3). 

The F score (Equation 4), balances between TPR and FPR equally.   

 

TPR= 
𝑝𝑖𝑥𝑒𝑙𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑎𝑠 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑓𝑟𝑢𝑖𝑡

𝐴𝑐𝑡𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑡ℎ𝑎𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡ℎ𝑒 𝑓𝑟𝑢𝑖𝑡
       (2) 

𝑭𝑷𝑹 =  
𝑓𝑎𝑙𝑠𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑡ℎ𝑎𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
   (3) 

𝑭(𝑻𝑷𝑹, 𝑭𝑷𝑹) =
2∗(𝑇𝑃𝑅∗(1−𝐹𝑃𝑅))

𝑇𝑃𝑅+(1−𝐹𝑃𝑅)
                                            (4) 
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4. Algorithm  
4.1. Algorithm flow  
The RGB images are the inputs for the offline process. Some areas in the images contain more 

illumination than others, depending on the position of the light source and shading caused by leaves, 

branches and the covering net when exists. To overcome this issue, the algorithm divides each image 

into multiple sub images, with approximately homogenous illumination conditions (Figure 15).  These 

sub images are categorized into three illumination conditions: low, medium, and high. The illumination 

level is obtained by calculating the average on the gray scale sub images. The gray scale image shows 

values between 0 (completely dark) and 255 (completely white). In the previous algorithm  (Vitzrabin 

and Edan, 2016), the sub images were categorized into groups using levels selected empirically as 10, 

70, and 130, corresponding to low, medium, and high level images based on manual image analyses. The 

high value was set as 130 in order to filter overexposed areas in the images.  In the current algorithm a 

tuning parameter process (detailed in section 3.3) is developed to determine these three values.   

  

FIGURE 15: IMAGE SPLIT INTO SUB-IMAGES - VISUALIZATION 

 The algorithm then creates a 3D color space image (can transform the RGB image to NDI, HSI, LAB space 

or uses directly the RGB space). For each color dimension a binary image (mask) is created, where each 

pixel that represents the fruit receives a value of one and all other pixels receive a value of zero (Figure 

16). Finally, the algorithm creates a ROC (receiver operator characteristics curve) representing TPR as a 

function of FPR (Siegel & Wu, 2003) representing all the nine thresholds learned from the offline process.  

Figure 17 presents an example of nine ROC curves computed for three sub images with different light 

levels (L1, L2, L3) in the NDI color space. In this example, the sub image with light level 2 (L2) in the first 

NDI dimension obtained the best performances (high TPR and low FPR).   
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FIGURE 16: USE OF NDI DIMENSION INTERSECTION TO INCREASE PERFORMANCE 

 

 

FIGURE 17:  9 ROC CURVE -  3 DIMENSIONS X 3 LIGHT LEVELS 

NDII_LJ I REPRESENTS THE COLOR SPACE DIMENSION; J REPRESENTS THE ILLUMINATION LEVEL 
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In the online process, the algorithm receives RGB images from the camera in real time, transforms the 

representation to the relevant color space (NDI/HSI/LAB) and creates a binary image by applying the 

thresholds as following:  three thresholds, one for each dimension are calculated from the nine 

thresholds learned by linear interpolation between two of the three illumination regions (Low, Medium, 

and High) selected as closest to the calculated illumination level for the specific sub-image from the 

grayscale image and using  Equation 5.  

𝑇 =
𝑇(𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑓𝑟𝑜𝑚 𝑏𝑒𝑙𝑜𝑤)∗(𝐿𝑖𝑔ℎ𝑡 𝑙𝑒𝑣𝑒𝑙−𝐿𝑖𝑔ℎ 𝑓𝑟𝑜𝑚 𝑏𝑒𝑙𝑜𝑤)+𝑇(𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒)(𝐿𝑖𝑔ℎ𝑡 𝑙𝑒𝑣𝑒𝑙 𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒−𝐿𝑖𝑔ℎ𝑡 𝑙𝑒𝑣𝑒𝑙)

𝐿𝑖𝑔ℎ𝑡 𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒−𝐿𝑖𝑔ℎ𝑡 𝑓𝑟𝑜𝑚 𝑏𝑒𝑙𝑜𝑤 
  (5) 

For example, if the current light level is 40, and the thresholds in the offline process for the Low, 

Medium and High light levels were 10, 70 and 130, the threshold would be calculated in the following 

way: 

𝑇 =
𝑇(10) ∗ (40 − 10) + 𝑇(70)(70 − 40)

70 − 10 
 

 

4.2. Morphological operations  
The algorithm result is a binary image with major fruit detected and small clusters of pixels that were 

wrongly classified as fruits (e.g., Figure 18 – present figure with this before and after morphological 

operation). In addition, some fruits are split between several clusters. Several morphological operations 

were performed to overcome these problems.   

Morphological opening operations were executed based on previous research which indicate their 

contribution (Vitzrabin and Edan, 2016) using the same method: erosion followed by dilation with a 

neighborhood of 11×11-pixel squares. The square function was used since there was no pre-defined 

knowledge about the expected fruit orientation. To connect close clusters, the closing morphological 

operation was then applied by dilation followed by erosion implemented with a 5×5-pixel square 

neighborhood. 
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FIGURE 18: MORPHOLOGICAL OPERATION 

 

4.3. Parameter tuning  
The algorithm uses several parameters that influence the algorithm performances: T1, T2, Std, 

Classification rule direction- D1/D2. The following parameter tuning procedure (Figure 20) was 

developed and should be performed when exploring images from a new database, new operating 

conditions (cameras, illumination) or when exploring a new color space. The parameters are: 

 

Light level thresholds (T1, T2) –The algorithm splits the images into sub images set to 1% of the entire 

image. Then, the algorithm computes the light level of each sub-image by calculating the average pixels 

values of the grayscale sub-image. Finally, the algorithm groups the sub images into three light level 

categories (see Figure 19) using two thresholds as presented in Equation 6. 

 

𝑓(𝑥) = {
Low , 0  < 𝑥 < 𝑇1

Medium , T1 < 𝑥 < T2
High , 𝑥 > T2

 (6) 

 

Morphological 

operations 
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FIGURE 19: SUB-IMAGES LEVEL OF LIGHT DISTRIBUTION 

 

To identify the PDF function of the data distributions of each database a 𝜒2 goodness of fit tests was 

conducted for the following distributions: Normal distribution, Poisson distribution or Negative binomial 

distribution. These distributions were selected based on the nature of the data. Once the distribution is 

selected for each database, the algorithm chooses the T1, T2 in a different way, as described in Figure 

21.  

Note that as described in the algorithm flow, the algorithm uses a third threshold. Sub-images above 

that threshold are ignored in the training process due to their high values )the sub images are almost 

completely white).  

Stop splitting condition (std) -  the algorithm splits an image into sub-images until the sub image 

achieves a predefined standard deviation (STD) value. This approach assumes that a larger sub-image 

contains higher STD value. To test this assumption, STD was calculated for different sizes of sub images 

for the different databases. The stop condition value (STD minimum value) is determined by maximizing 

the F score (Equation 4).  

Classification rule direction– (D1, D2, D3) as detailed in the introduction, in the thresholding method, a 

value that differentiates the intensity of the object from its background is determined. When using 

different color spaces, one of the issues encountered was to determine for each color dimension if the 

intensity of the object is greater or smaller than the background. This information was learned as part of 
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the tuning process. For this step a simple heuristic rule was used as follows based on the assumption 

that the images contain more background pixels than objects: 1. Execute image>Threshold. 2. If the 

pixels categorized as background represent less than 70% of the image, reverse the thresholding 

direction images <Threshold. 

 

 

FIGURE 20: PARAMETER TUNING PROCESS 

 

 

FIGURE 21 PSEUDO CODE FOR THRESHOLDS SELECTION 

  

light_levels_array = calculate_light_level_for_each_sub_image (sub_images) 
 
#chi tests goodness of fit  
is_normal ,mu,sigma= test_normal_distribution(light_levels_array) 
is_ poisson,lambda= test_poisson_distribution(light_levels_array) 
is_negative_binomial,p,r= test_negative_binomial_distribution(light_levels_array) 
 
if (is_normal): 
     T1=mu-sigma; T2=mu+ sigma;  
else: 
     if (is_ poisson): 

         [T1,T2]= get_thresholds(∑
𝝀𝒕

𝑻𝟏!
𝒆−𝝀𝑻𝟏

𝟎 ~0.15 , ∑
𝝀𝒕

𝑻𝟐!
𝒆−𝝀𝑻𝟐

𝟎 ~0.85) 

    else: 
         if (is_negative_binomial): 

              [T1,T2]= get_thresholds(∑ (
𝑇1 + 𝑟 − 1

𝑇1
) (1 − 𝑝)𝑟𝑝𝑇1

𝑇1
𝑖=0 ~0.15 ,  ∑ (

𝑇2 + 𝑟 − 1
𝑇2

) (1 − 𝑝)𝑟𝑝𝑘𝑇2
𝑖=0 ~0.85) 

         else: 
              T1 = get_ percentile_0.15(light_levels_array) 
              T2 = get_ percentile_0.85(light_levels_array) 
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5. Results & Discussion 
5.1. Sub-image size vs. STD value    
 Figure 22 confirms the assumption that splitting an image to small sub images (small S) decreases the 

average STD of the sub images (in all three databases).  

 

FIGURE 22: SUB IMAGE SIZE VS AVERAGE STD 

5.2. Tuning process  
This section presents the tuning process results, including thresholds derived to categorize the sub 

images into light level groups as well as the recursive stop condition that achieved best result for each 

database.  

Light level distribution: As a first step the algorithm tried to fit for each database a known distribution. 

As shown in Table 1 the hypotheses were rejected in all three databases )significant level α=0.05).   

TABLE 1 P-VALUE RESULTS FOR EACH DATABASE AND TESTED DISTRIBUTION  

DB / 

Hypothesis (α=0.05) 

Ho: X~N(𝝈, 𝝁) 

H1: Not 

Ho: X~Poiss(𝛌) 

H1: Not 

Ho: NB~(r,p) 

H1: Not 

Apples 
H0 rejected 

P value: 0.0201 

H0 rejected 

P value: 6.8764e-129 

H0 rejected 

P value: 0 

Grapes 

 

H0 rejected 

P value: 1.2959e-21 

H0 rejected 

P value: 0 

H0 rejected 

P value: 0.002 

Peppers 

 

H0 rejected 

P value: 0.0013 

H0 rejected 

P value: 2.4285e-222 

H0 rejected 

P value: 0.0014 
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Therefore, the light level distribution was computed empirically for each database (Figure 23) along with 

T1 and T2 (Table 2). The variation in the light distributions between the different databases are 

described in Table 3. The variance of light in the grapes databases is significantly higher than in both the 

apples and the peppers databases, the pepper database is significantly darker and highly skewed. 

Therefore, for each database T1 and T2 were significantly different implying the importance of the 

tuning process.  

 

       

TABLE 2: T1 AND T2 VALUES DETERMINED FOR EACH DATABASE 

Measure/DB Apples Grapes Peppers 

T1 84 49 18 

T2 140 130 47 

    

TABLE 3: DESCRIPTIVE STATISTICS OF THE DIFFERENT LIGHT DISTRIBUTIONS 

Measure/DB Apples Grapes Peppers 

Mean 118.46 88.00 32.09 

Std 28.04 37.90 18.92 

Skewness 0.40 0.68 3.16 

Kurtosis -0.17 -0.13 15.36 

Median 116.31 81.06 26.93 

 

FIGURE 23: LIGHT LEVEL DISTRIBUTION WAS COMPUTED FOR EACH DATABASE 
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Stop splitting condition: Using a low STD value as a stop condition, increases performance (Figure 24). 

This happens since smaller sub images contain less illumination differences. However, small STD values 

can create also too small sub-images which may not contain fruit and background pixels in the same 

frame. In these cases, the algorithm cannot learn a threshold that could differ between them. 

Additionally, results reveal that when using high STD values the performances stay constant. This 

happens since beyond a certain value the algorithm does not split the image even once.  

As part of the parameter tuning process, the STD value is selected by testing the performances of a 

range of STD [0,100]. For each STD value the algorithm runs five iterations were it randomly select P% of 

the images, from the selected images it uses 70% for train and 30% test. Final selected STD values are 

presented in Table 4 for each database and color space (using P=30% and 50%).  

Classification rule direction: as shown in Table 4, the direction of the classification rule in the 

thresholding process can be different for each color dimension, therefore this must be learned as part of 

the tuning process.    

 

FIGURE 24: F-SCORE VS. INCREASING STD VALUE AS STOP CONDITION FOR THE RECURSIVE FUNCTION ON APPLES DB 
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TABLE 4: STD VALUE CHOSEN FOR EACH DATABASE AND COLOR SPACE 

DB Apples Grapes Peppers 

Color space HSI LAB NDI RGB HSI LAB NDI RGB HSI LAB NDI RGB 

STD (P=30%) 20 30 10 20 10 20 60 20 100 10 10 10 

STD (P=50%) 20 10 10 30 20 20 70 20 100 20 10 10 

 

Classification 

rule direction 

D1 > < > > < > > > < > > > 

D2 > > > < > < > > > > > > 

D3 > > > < < > < < > > < < 
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5.3. Color spaces analyses  
In this section algorithm performances results are presented in figures for each color space followed by 

a table representing the best color space performances including performances for all color space 

dimensions combinations.   

Apples – Results (Figure 25) reveal that NDI and LAB color spaces result in similar best performances.  In 

Table 5 the preferences for each dimension in the NDI color space and the performances when using the 

intersection between them is shown. The NDI first dimension (see Equation 1) represents the difference 

between the red and green colors in the image. The objects in this database are red apples and most of 

the background is green leaves therefore, as expected, the first NDI obtained the best F of 93.17%.  In 

the LAB color space, results (Table 6) reveal that the second dimension (A) yields the best F score of 

93.19%. 

 

FIGURE 25: : COLOR SPACES PERFORMANCES - APPLES DB 

 

TABLE 5: PERFORMANCES OF EACH NDI DIMENSION AND INTERSECTIONS – APPLES 

Measure /Dimension 1 2 3 1∩2 1∩3 2∩3 1∩2∩3 

% FPR 2.59 40.91 31.38 1.64 1.32 2.48 0.48 

% TPR 89.45 83.53 68.39 78.52 64.82 54.65 54.10 

% F 93.17 67.85 67.80 86.75 77.60 69.67 69.69 
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TABLE 6: PERFORMANCES OF EACH LAB DIMENSION AND INTERSECTIONS – APPLES 

Measure /Dimension 1 2 3 1∩2 1∩3 2∩3 1∩2∩3 

% FPR 33.58 2.45 77.08 1.78 28.55 1.55 1.07 

% TPR 61.26 89.34 85.26 56.59 52.95 76.27 48.80 

% F 56.79 93.19 35.85 69.02 54.61 85.37 62.58 

 

Grapes – The NDI color space obtained the best result for grapes (Figure 26) with a F score of 73.52%. 

The second-best color space is the LAB with a F score of 62.54% The best NDI results were obtained 

using the second dimension (Table 7).  

 

FIGURE 26: COLOR SPACES PERFORMANCES - GRAPES DB 

 

TABLE 7: PERFORMANCES OF EACH NDI DIMENSION AND INTERSECTIONS – GRAPES 

Measure /Dimension 1 2 3 1∩2 1∩3 2∩3 1∩2∩3 

% FPR 35.86 33.35 52.90 4.86 5.50 32.35 4.09 

% TPR 44.52 89.48 89.99 38.53 37.27 87.50 36.70 

% F 47.19 73.52 58.05 50.12 48.93 73.20 48.65 

 

  



30 

 

 

 

Peppers  

High visibility – Figure 27a indicates that HSI color space obtained the best results with relatively low 

FPR (0.81%) and very high TPR (99.43%) resulting in a high F score (99.31%). The second-best color space 

is NDI with FPR=2.48% and TPR=97.96% (F= 97.72%). The best HSI result, were obtained using the 

combination of the first and the second dimensions (Table 8).  

Including low visibility – Figure 27b indicates that NDI color space obtained the best results with 

relatively low FPR (5.24%) and very high TPR (95.93) resulting in high F score (95.19%).  Although on the 

“high visibility” peppers HSI obtained the best performances, when trying to detect peppers in dark 

areas that are less visible, NDI shows better results. The best NDI results were obtained using the 

intersection between the first and the second dimensions (Table 9).  

 

 

(a)                                                                          (b) 

FIGURE 27: COLOR SPACES PERFORMANCES - PEPPERS DB 

 

TABLE 8: PERFORMANCES OF EACH HSI DIMENSION AND INTERSECTIONS – PEPPERS HIGH VISIBILITY 

 Measure/DB 1 2 3 1∩2 1∩3 2∩3 1∩2∩3 

% FPR 2.48 5.15 0.64 0.81 2.48 5.15 0.64 

% TPR 97.96 98.75 93.91 99.43 97.96 98.75 93.91 

% F 97.72 96.73 96.51 99.31 97.72 96.73 96.51 
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TABLE 9: PERFORMANCES OF EACH NDI DIMENSION AND INTERSECTIONS – PEPPERS INCLUDING LOW VISIBILITY 

Measure /Dimension 1 2 3 1∩2 1∩3 2∩3 1∩2∩3 

% FPR 66.57% 5.24% 9.23% 1.42% 1.24% 4.57% 0.99% 

% TPR 85.61% 95.93% 92.49% 82.20% 78.64% 92.33% 78.61% 

% F 46.96% 95.19% 91.24% 88.91% 86.59% 93.51% 86.67% 

 

5.4. Sensitivity analysis  
a) Noise – analysis shows that the algorithm is robust to noise in the image up to 15% in the apples 

and peppers databases (Figure 28). The grapes images are more sensitive to noise and performance 

drops when noise values of 5% are added. Although better F score values were obtained for NDI and 

HSI for grapes and peppers, we can see that LAB color space yields more robust performance when 

adding noise to the images. 

 

FIGURE 28:  SENSITIVITY ANALYSIS - ADDING NOISE TO IMAGES 

 

b) Thresholds learned in offline process -  as expected, TPR decreases when the threshold values 

change. The algorithm is relatively robust to the change in the thresholds for apples and peppers. 

Performance in the grapes images is more sensitive to threshold changes and yields a significant 

decrease in TPR when increasing the threshold value  (Table 10). 
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TABLE 10: THRESHOLD VALUES CHANGED BY ±5%, ±10% AND ±15% ACCORDING TO THE THRESHOLD IN EACH REGION 

DB 
Measure/Change in 

thresholds 
-15 -10 -5 0 5 10 15 

Apples 
%FPR 3.58 3.43 3.30 2.59 3.06% 2.93 2.81 

%TPR 91.47 91.28 91.07 89.45 90.75% 90.57 90.44 

Grapes 
%FPR 21.59 18.40 15.53 33.35 11.00% 9.23 7.72 

%TPR 78.02 72.63 66.42 89.48 50.99% 43.63 36.24 

Peppers 
%FPR 0.98 0.91 0.86 0.81 0.78% 0.70 0.65 

%TPR 99.25 99.22 99.20 99.43 99.12% 99.07 99.04 

 

c)  Stop condition - the algorithm shows more robustness to apples and peppers images than grapes 

(Figure 29).   

 

FIGURE 29:  SENSITIVITY ANALYSIS - ADDING NOISE TO STD STOP CONDITION 
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d) Train/Test – the expectation is that more training images leads to better performance until overfitting is 

accommodated. There is a clear increase in TPR however FPR increases as well at 80%,90% train. 

TABLE 11: PERFORMANCES VS. DIFFERENT % IMAGES DATABASE AS TRAIN SET 

DB Measure / 

%Train 

10 20 30 40 50 60 70 80 90 

Grapes 

 

%FPR 32.81 37.08 28.54 36.16 31.83 29.10 29.63 40.51 40.80 

%TPR 88.79 89.62 87.01 88.44 87.58 82.55 87.14 94.53 95.85 

%F 73.35 70.20 75.19 69.41 72.49 70.24 73.92 72.55 72.54 

 

The tuning process resulted in increased performances for both the grapes and peppers databases with 

40% and 1.49% increase respectively. The results for the apple databased were similar with only a 0.1% 

increase as expected (since this was similar to the database the previous parameters were derived 

from).  

TABLE 12: PARAMETER TUNING CONTRIBUTION TO ALGORITHM PERFORMANCES 

DB Measure 
Performances using  

Previous params 

Performances using  

Tuning process 

Apples 

%FPR 2.53 2.59 

%TPR 89.23 89.45 

%F 93.08 93.17 

Grapes 

%FPR 18.63 33.35 

%TPR 63.70 89.48 

%F 67.30 73.52 

Peppers 

%FPR 1.00 0.81 

%TPR 97.97 99.43 

%F 98.47 99.31 

 

The morphological operations process increases the F score by 2.85%, 8.59%, and 2.71% for the apples 

grapes and peppers databases respectively (Figure 30). 
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FIGURE 30: MORPHOLOGICAL OPERATION CONTRIBUTION  
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6. Conclusions & Future work 
The algorithm successfully detected apples and peppers in variable lighting conditions with an F-score of 

93.15% and 97.40% respectively, resulting in one of the best detection rates achieved to date in fruit 

detection to the best of our knowledge.  Previous research has shown 85%-90% TPR (Bac et al., 2014; 

Vitzrabin and Edan 2016; Sa et al., 2016). The algorithm has shown less impressive results in the grapes 

database (F score of 73.52%) due to difficulties associated with differentiating between green fruits and 

a green background (leaves). In this case, additional features (e.g. morphological operations fitted for 

grapes see Bernstein, Shahar, Shapiro, Edan, 2010) should be used to increase performance.  

Different color spaces yielded best results for each fruit variety, implying that the color space must be 

analyzed and fitted to the specific fruit. The LAB color space is more robust to noise in images and hence 

should be used when images are of low quality. The algorithm is robust to changes in the threshold 

learned by the offline process and to noise effects in images. Morphological operations can improve 

performance and hence should be utilized.  

The tuning process developed in this research enables the algorithm to adapt automatically to changing 

conditions/objectives (i.e. to detect other fruit with different colors and other outdoor conditions) and 

hence should be used for improved target detection in highly variable illumination conditions. 
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8. Appendices 

 

 

 

Appendix 1 
Dynamic thresholding algorithm 

for robotic apple detection 

(Zemmour et al., 2017) 
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Appendix 2 

Automatic parameter tuning for 
adaptive thresholding in robotic 

fruit detection  
 

(Zemmour et al., under review)  
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