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Abstract

This research presents an automatic parameter tuning process for a dynamic adaptive
thresholding algorithm for fruit detection. The algorithm enables robust detection in highly variable
lighting conditions. The image is dynamically split into variable sized regions, where each region has
approximately homogeneous lighting conditions. Nine thresholds were selected to accommodate
three different illumination levels for three different dimensions in four color spaces: RGB, HSI, NDI
and LAB. The thresholds were selected by quantifying the required relation between the true
positive rate and false positive rate. A tuning process was developed to determine the best fit values
of the algorithm parameters to enable easy adaption to different fruits, colors and illumination
conditions. Extensive analyses were conducted on three different databases: red apples (9 images
of 113 apples), green grapes (129 images of 1078 grapes) and yellow peppers (30 images of 73
peppers) acquired in outdoor conditions. Results show the importance of the tuning process for the
generalization of the algorithm to different kinds of fruits and environments. In addition, this
research revealed that for each kind of fruit the use of a different color space might be superior over

the others.
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1.Introduction

1.1. Problem description
Object detection is an important and essential task in many agricultural applications including

autonomous navigation and obstacles avoidance (Loianno et al., 2018), precision and selective spraying (
Tona et al., 2018), weed control (Albert and Michaels, et al., 2017), yield estimation (Liu et al., 2017),
ripeness and quality evaluation (Pereira et al., 2018), phenotyping (Ghosal et al., 2018) and fruit
detection for robotic harvesters (Almendral et al., 2018; Kapach et al., 2012; Gongal et al., 2015, Bac et
al., 2014).

Despite intensive research conducted in identifying fruits, implementing a real time vision system
remains a complex task (Gongal et al., 2015;Kapach et al., 2012). Current detection is limited to 87-88%
detection rate with 3.8% false alarms (Luo et al., 2018; Vitzrabin and Edan, 2016; Bac et al., 2014) in

robotic harvesting.

Features such as shape, texture and location, are subject to high variability in the agricultural domain
(Gongal et al., 2015). Moreover, fruits grow in an unstructured environment with highly variable lighting
conditions (Vitzrabin and Edan, 2016) and obstructions (Barth et al., 2016) that influence detection
performance. Color and texture are fundamental characteristics of natural images and play an important

role in visual perception (Arivazhagan et al., 2010).

Images can be represented by different color spaces (e.g., RGB, HSI, LAB, NDI); each one emphasizes
different color features (Arivazhagan et al., 2010). RGB is the most common color space, representing
each pixel in the image in three color channels as acquired: red, green and blue. HSI represents every
color with three components: hue (H), saturation (S) and intensity (1), also known as HSV (Zheng et al.,
2009). LAB color space is an approximate of human vision (Shmmala and Ashour,2013). An additional
color space commonly employed in the agriculture field (Vitzrabin and Edan, 2016) is the normalized
difference index (NDI) space. The NDI is used to differentiate between fruit and the background
(Woebbecke et al., 1992) since it helps to overcome changes in illumination and shading due to its
normalization technique (Shrestha, 2014). Each dimension in the NDI space is the normalized difference
index between 2 colors in the RGB space, resulting in three dimensions (Equation 1). These operations
are applied for all pixel locations in the image, creating a new image with this contrast index. These

equations yield NDI values ranging between -1 and +1.
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One of the most common methods for fruit detection is image segmentation (e.g., Wang et al., 2013;
Jiang et al., 2008; Arroyo, et al., 2016; Rong, et al., 2017). Many segmentation algorithms have been
developed (Zhang, 1996) including: Kmeans (Shmmala and Ashour, 2013); Mean shift analysis (Zheng et
al., 2009); Artificial neural networks (ANN) (Al-allaf, 2014), Support vector machines (SVM) (Sakthivel et
al., 2015), Deep learning ( Sa et al., 2016), Reinforcement learning (RL) (Ostovar et al., 2018) and several

others.

This research focuses on segmenting objects in the image using an adaptive thresholding method.
Observing the histogram of the image color implies that a threshold can be determined to best
differentiate between the background and the object distributions (Park et al., 2011). The threshold is
computed by finding the histogram minimum (Figure 1) separating between two peaks — the object and
the background. However, the global minimum between the distributions is very hard to find in most

cases (Hannan et al., 2007).
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FIGURE 1: OPTIMAL THRESHOLD IN BIMODAL HISTOGRAM

Current most optimal thresholding algorithms determine the threshold only in a one-dimensional space,
for example in the RGB space, either R or G or B or a linear combination of their values (e.g. grayscale
transformation) will be used (Bulanon et al., 2001). In the transformation from three dimensions into

one, information is lost. In this research, a three-dimensional thresholding algorithm based on (Vitzrabin
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and Edan, 2016) was applied and evaluated also for additional color spaces (RGB, NDI, HSI and LAB color

spaces) — a threshold is determined for each dimension in the color space.

There are two common adaptive thresholding algorithm concepts: 1) global thresholding, in which for
each image, a different threshold is determined according to specific conditions for the entire image
that is then transformed into a binary image; 2) local thresholding, in which the image is divided into
sections, and a different threshold is calculated for each section; the sections are then combined to a

binary image.

There are several methods that utilize dynamic local thresholding algorithms (Gunatilaka and Baertlein,
2001; Kanungo et al., 2010). A common approach is to use multi-resolution windows which apply a
bottom up method, merging pixels while a criteria is met (Gunatilaka and Baertlein 2001; Kanungo et al.,
2010). Another approach is the top down method, where the image is divided into sub regions according
to criteria. The top down approach reduces execution speed and improves generalization (Hall and

McMullen, 2004) and was therefore used in this research.

The adaptive thresholding algorithm presented in this research is based on previous work (Vitzrabin,
2016) that aimed to detect peppers, in which a set of three thresholds were determined for each region
of the image according to its lighting setting. The algorithm dynamically divides the image into several
regions, each with approximately the same lighting conditions. The main contribution of the adaptive
local 3D thresholding is a very high true positive rate (TPR) and low false positive rate (FRP) in the fruit
detection task in an unstructured, highly variable, and dynamic crop environment. Another contribution
is the ability to change in real time the task objective in the algorithm behavior based on the desired
ratio between TPR and FRP; this contributes to a better success rate in the grasping operation itself
(Vitzrabin and Edan, 2016). Both the high performances and the changing task objectives are key issues
regarding detection in robotic harvesting applications (Vitzrabin and Edan, 2016). This thesis advances

the previous research with specific contributions as noted below.
1.2. Objectives
Current research objectives and contributions:
e A new parameter tuning process developed to best-fit the parameters to the specific database.

e Intensive evaluation of the adaptive thresholding algorithm for different color spaces.

e Application and evaluation of the algorithm to different kinds of fruit.
3



Literature Review

This chapter presents scientific background concerning the research related to object detection,
adaptive thresholding algorithms, color spaces used for image representation and robotic applications in
agriculture.

2.1. Object detection using computer vison
Object detection is an important and essential task in many agricultural applications including

autonomous navigation and obstacles avoidance (Loianno et al., 2018), precision and selective spraying (
Tona et al., 2018), weed control (Albert and Michaels, et al., 2017), yield estimation (Liu et al., 2017),
ripeness and quality evaluation (Pereira et al., 2018), phenotyping (Ghosal et al., 2018) and fruit
detection for robotic harvesters (Almendral et al., 2018; Kapach et al., 2012; Gongal et al., 2015, Bac et
al., 2014). This research focuses on vision for stationary cameras and “eye-in-hand” cameras for robotic

harvesters (Figures 2,3) in outdoor conditions.

Usually an image includes objects of interest and a background represented by anything else in the
image. Objects detection and recognition in images are significant tasks in computer vision field (Jalled

and Voronkov, 2016).

Computer vision aims to imitate human vision by perceiving and understanding an image or a video
through pixels and their relations using: artificial intelligence, neurobiology, signal processing and more.
Although vision seems natural for humans, image interpretation is a challenging task for computers. The
transformation of the world from 3D to 2D causes loss of information (e.g. geometric structure, distance
between objects). In addition, while measuring the real world (using images and videos), vision systems
deal with a large amount of noise caused by physical conditions such as brightness, shadow area or
measurement errors. Lastly, analyzing the image pixel by pixel makes hard for a computer to understand

the whole picture (Schalkoff, 1989).

Despite all the challenges mentioned above, computer vision systems are used today in a varied field of
application including face detection (Li et al., 2015), autonomous cars (Alhaija et al., 2017) and many

more.

Computer vision applications include image acquisition , image processing and analysis interpretation

(Nuske et al., 2014).



2.1.1. Image acquisition
First step in image acquisition process deals with capturing the image data using a camera. The image is

represented by a matrix of discrete picture elements (i.e. Pixels) (Szeliski, 2010). The pixels values
represent the light intensity in the image. These values are converted into digital value by an analog
digital converter. The digital value depends on the number of bits used in the vision system (Nuske et
al., 2014). For instance, binary vision presents the light intensity using only two values: zero for black
pixels and one for white pixels (Sonka et al., 2014). Another common image representation is the
greyscale vision system showing different shades of grey according to the number of bits in each pixel
(Nuske et al., 2014). More advanced vision systems can represent color. This method evaluates for each
pixel three number in range [0,256], each one represents a different color intensity red, green or blue

(Mohanty et al., 2016)

2.1.2. Image processing and analysis
Processing and analyzing the image are the following steps of object detection process. A variety of

techniques have been developed to process and understand the image data. A common method used
for object detection is segmentation (e.g., Rong, et al., 2017; Arroyo, et al., 2016; Wang et al., 2013;
Jiang et al., 2008). Segmentation is a process of partitioning the image into different objects or

connected regions that do not overlap (Jameel and R. Manza, 2012).

Image segmentation algorithms are based on either the discontinuity principle or the similarity principle
(Haward, 2016). The discontinuity principle consists in extracting regions that differ in properties such as
intensity, color, texture, or any other image statistics. The similarity principle consists in grouping pixels
based on a common property (Sonka et al., 2014). Thresholding is an example for segmentation that

uses the discontinuity principle.

Thresholding, one of the simplest methods for image segmentation, usually uses the grayscale image to
create a binary image that represents objects vs. background in the image (Shapiro et al. 2001). The
thresholding method assumes that the density color of the object can be differentiated from the density
color of the background (Figure 1). In this method, a histogram is created based on the image color. In a
second step the method tries to find the local minimum between the density of the background and the
density of the object. This value is set as the threshold value. Using the threshold value, pixels are

categorized as white (part of the fruit) or black (representing the background) (Figure 4).



General computer vision literature indicates that predefined global thresholding fails in most scenarios
(Haralick et al., 1985; Nalwa, 1993; Zhang et al., 2010). To overcome the problem, several vision
applications apply adaptive thresholding algorithms (reviewed in section 2.2) where the threshold

adaptively changes to the new illumination conditions (Boulmerka et al., 2014; Hannan et al., 2007).

The outcome of the segmentation procedures is a binary image creating similar regions which helps to
define and identify in the image (Sonka et al., 2014). Features extraction process is following the
segmentation process . Features can be used by a machine vision algorithm to define an object in the
image (Nuske et al., 2014). Some of the features extracted from the segmented image are simple
features such as area, width and length and others are more complex, such as center of gravity, shape
and aspect ratio (Sonka et al., 2014). The combination of a few features together usually describes the

object and helps to recognize it and interpret the image (Szeliski, 2010).

Many techniques have been developed for feature extraction process in computer vision field (Lowe,
1999; Harris and Stephens, 1988) and more modern algorithms have been created such as deep
convolutional neural networks (Ruiz-del-Solar et al., 2018).

2.1.3. Image interpretation

The image interpretation process is the final step of the object detection. Based on the extracted
features, machine vision algorithms can define objects in the image (Nuske et al., 2014). Usually, this
process uses predefined models or values to recognize the objects. A common method is called
Template Matching. In this method the system compares the extracted features to a predefined model
template that represents object in images (Nuske et al., 2014). Today, advance techniques emerge using

machine learning, artificial neural networks (Ruiz-del-Solar et al., 2018) and more.

This research focuses on the detection process using adaptive thresholding methods.



FIGURE 3: STATIONARY CAMERA

FIGURE 4: BINARY SEGMENTATION

2.2. Adaptive thresholding algorithms

Changing lighting conditions in outdoor environments, due to sunlight direction and shadowed areas
(caused by object or clouds) impact the robotic vision (Figure 5,6). Several object detection algorithms
used thresholds derived specially for images with high variability (Aufrére et al., 2000; Rasolzadeh et al.,
2010; Rakun et al.,, 2011). In addition, target detection algorithms were developed for determining
thresholds for images with high variability (Reibman et al., 1987; Wuhib et al., 2008; Rosin et al., 2003;
Kong et al., 2010). Another approach to solve the high variability problem is to assign a different
threshold for each sub-image (Kong et al., 2010; Kanungo et al., 2010;Shih et al., 2005; Revol-Muller et
al., 2002).
Two common adaptive thresholding algorithm approaches are used for object detection:

e Adaptive global thresholding - for each image a different threshold is determined according to

specific conditions for the entire image, which is then transformed into a binary image.



e Adaptive local thresholding - the image is divided into sections and a different threshold is
calculated for each section. The division to section can be conducted using different rules (e.g.
minimizing stand deviation or entropy on each section). Finally, the sections are combined to a

binary image.

FIGURE 6: CHANGING LIGHTING CONDITIONS FIGURE 5: SHADOWED AREAS

In this research we adapted a previous developed thresholding algorithm (Vitzrabin, 2016) that adapts
to different illumination conditions within and between images. It dynamically applies a local threshold
to different areas in the image.

2.3. Color spaces

Color models, like all mathematical representations of physical phenomena, can be expressed in many
ways, each with its advantages and drawbacks. Some representations are formulated to help humans
select colors and others are formulated to ease data processing in machines using various color space.
Historically, whatever the meaning assigned to the color space variables, three of them were enough to
describe all colors: Red-Green-Blue (RGB), Hue-Saturation-Brightness (HSB), L*a*b* etc. (Pascale, 2003).

This chapter covers RGB, HSI, NDI and LAB color spaces.

RGB - The RGB color space differentiate between Red Green and Blue colors in the image (Figure 7).
Each dimension is represented by a value range 0-255. The RGB color space is one of the most

commonly used image representation (Pascale, 2003; Shmmala and Ashour, 2013).



FIGURE 7: RGB COLOR SOLID CUBE
NDI - Each dimension in the NDI space is the normalized difference index between 2 colors (e.g. NDI
first dimension represents the difference between red and green in RGB space, (Equation 1 in Section 1);
second dimension represents the difference between red and blue in RGB space) as aforementioned,
resulting in three dimensions. These operations are applied for all pixel locations in the image, creating a

new image with this contrast index. These equations yield NDI values ranging between -1 and +1.

Using the NDI space in the dynamic thresholding process instead of the grey scale image enables us to
learn 3D information about the threshold that best distinguishes between the background and the fruit

(Woebbecke et al., 1992).

HSI - The HSI color space (Hue, Saturation and Intensity) defines a model in terms of its components.
This color space is recommended for processing images when they are affected by lighting changes. HSI
space can separate the intensity of the intrinsic color information, which would refer to the hue and

saturation (Gasparri et al .2011).

HSI space representation is through a double cone, as shown in Figure 8. The center of this double cone
is a circumference divided into angles of equal magnitude (Gasparri et al .2011) which range is [0,2n]
comparative to angle 0 at red axis, 2 1t/3 at green axis, 41/3 at blue axis and red again at 2rt (Shmmala
and Ashour, 2013).The distance from the center of the exterior circumference represents the saturation
found in every color and takes values from 0 to 1, indicating how the color is diluted with white light.
Finally, the axis through the two cones corresponds to the intensity component. This has a normalized
value from 0 (black) to 1 (white) and indicates the amount of light in a color. Removing a small
circumference of the figure formed by two cones, colors close to an intensity of 1 are lighter than those

close to zero. When the saturation component is close to 0, colors only reflect a change between black



and white. When this component is close to 1, the color will reflect the true value represented by the

hue (Gasparri et al .2011).

FIGURE 8: HSI COLOR SPACE REPRESENTATION

LAB - The Lab color space describes mathematically all perceivable colors in the three dimensions: L

represents lightness while a and b represent the color opponents green—red and blue—yellow.

One of the most important attributes of the Lab model is device independence. This means that the

colors are defined independent of their nature of creation or the device they are displayed on.

The LAB space is a three-dimensional real number space that contains an infinite number of possible
representations of colors. However, in practice, the space is usually mapped onto a three-dimensional
integer space for device-independent digital representation, and for these reasons, the L*, a*, and b*

values are usually absolute, with a pre-defined range.

The lightness, L*, represents get a range from 0 (darkest — black) to 100 (brightest-white). The color
channels, a* and b*, represent true neutral gray values when a* = 0 and b* = 0. The red/green opponent
colors are represented along the a* axis, with green at negative a* values and red at positive a* values.
The yellow/blue opponent colors are represented along the b* axis, with blue at negative b* values and
yellow at positive b* values. The scaling and limits of the a* and b* axes will depend on the specific
implementation of Lab color, but they often run in the range of +100 or -128 to +127 (Shmmala &

Ashour, 2013).
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2.4. Robotic applications in agriculture
There is an increasing need for robots in agriculture to respond to the increasing demand of food at a

competitive price and ensure high quality food (Jukema and Van de Meer 2009).

Robotic applications can improve yield and agriculture quality by enabling better control over
environmental implications. For instance, extracting information such as leaf measures, steam
properties, climate condition and yield data per plan helps to take appropriate measures in a proactive
approach. In addition, agricultural robots can reduce manual labor and production costs (Edan and
Miles, 1994; Kapach et al., 2012). Robotic applications enable new functionality using sensing abilities
that obtain better performances than humans in accuracy and consistency (Jukema and Van de Meer
2009). For example, agricultural applications can help in detecting fruits diseases. By enabling focused
treatment on a specific area, the use of chemicals can be decreased (Gorbe and Calatayud 2012).
During the past 30 years, robotics applications in agriculture has been a vast research subject (Sarig,
1993). Many robotic systems were developed for different agricultural applications such as
transplanting, cultivating, spraying, trimming and selective harvesting (Edan and Miles, 1994; Kapach et
al., 2012).

However, agriculture automated system has yet been commercialized for harvesting fruit crops (Gongal
et al. 2015). The main reason for low performances of harvesting robots are the complexity of the corps
and environment (Henten, C. Wouter Bac and Eldert J. van, Jochen Hemming, 2014). Fruits inherent high
variability in size, shape, texture, and location (Figure 9) (Kapach et al., 2012). In addition, unstructured,
uneven illumination, and dynamic nature of the environment makes harvesting robot real time system
implementation in an outdoor environment is still a complex problem (Figures 3,4) (Bulanon et al. 2002;

Kapach et al. 2012; Bac et al. 2014).

11
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3.Research methods

3.1. Overview
This research is based on a dynamic thresholding algorithm, which incorporated changing task

objectives algorithm to improve sweet pepper detection for a robotic harvester (Vitzrabin & Edan,
2015). The algorithm was implemented in Matlab 2015a following the flow presented by (Vitzrabin &
Edan, 2015). The algorithm includes an offline process (train), in which the algorithm learns color
thresholds for detection followed by an online process responsible for implementing the thresholds
learned in the offline process on a new image, in order to detect pixels that represent fruit in real time
(Vitzrabin & Edan, 2015) . Previous analyses indicated the superiority of the dynamic thresholding
algorithm (Vitzrabin & Edan, 2015) as compared to traditional algorithms such as constant threshold,

bimodal histogram and a constant threshold 3D thresholding.
The current developments include:

1. Generalizing the algorithm by applying different color spaces (RGB, NDI, HSI, LAB) to enable
robust detection for a wide range of fruit varieties.

2. Developing a tuning process to enable automatic and improved fruit detection.

3.2. Assumptions
e Different objects in the images have different color densities that can be differentiated by local

minimum threshold between them.
e The images contain fruits and background.
e Image light level can be represented by computing the average pixel values in the grayscale

image.

3.3. Algorithms
As a first step, the previously developed algorithm (Vitzrabin & Edan, 2015) was implemented. Then, the

algorithm performances were improved for apple detection by omitting the fusion module which was
specific for this database and developing a dynamic use of the NDI color dimensions. The third step in
the algorithm development included extension to a multitude of color spaces used for segmentation
(RGB, HIS, and LAB). Finally, a dynamic parameter tuning module was developed to ensure employment
of best-fit parameters for the algorithm initialization when changing the detection task (detection of

different kind of fruit and/or different environment).

13



3.4. Databases
The algorithms were evaluated on three databases representing three different fruit colors: red (apples),

green (grapes) and yellow (peppers) for two environmental settings (greenhouse, field) in different

illumination conditions. Images were acquired with different cameras.

Apples - The orchard apples database includes 113 "Royal Gala" apples in 9 images acquired from an
orchard in Chile in March 2012 under natural growing conditions with a Prosilica GC2450C camera with
1536x2048 resolution; the camera was attached to a pole. The images were captured in daylight: half of
the images were acquired under direct sunlight, and half of the images were acquired in the shade.

Ground truth was manually marked (Figure 10).

FIGURE 10: APPLES IMAGE RGB IMAGE (LEFT) AND GROUND TRUTH (RIGHT) EXAMPLE

Grapes - The images used originated from a commercial vineyard growing green grapes of the
“superior” variety. An RGB camera (Microsoft NX-6000) with 600x800 resolution was manually driven at
mid-day along a commercial vineyard in Lachish, Israel, during the summer season of 2011, one month
before harvest time. The images were captured from 5 different growing rows. The targets were defined
as the grape clusters. A group of three experts was guided to mark the closing perimeter of each grape
cluster in the image. The final ground truth was marked using the judge rules criteria (if a given pixel was
marked by two or more experts, it was considered a target). A set of 129 images were marked using this
technique and used as a ground truth for the following research. The images included 1078 grape

clusters (Figure 11).

14



FIGURE 11: GRAPES IMAGE RGB IMAGE (LEFT) AND GROUND TRUTH (RIGHT) EXAMPLE

Peppers — The dataset includes 30 images of 73 yellow peppers acquired in a commercial greenhouse in
lisselmuiden, Netherlands using a 6 degree of freedom manipulator (Fanuc LR Mate 200iD/7L), equipped
with an iDS Ui-5250RE RGB camera with 600x800 resolution. The images were manually marked in order
to compare the algorithm performances to manual detection by a human labeler. The database was
marked twice, one time marking only peppers with high visibility (denoted as “high visibility peppers”,
this was done for 10 images of 25 yellow peppers) and a second time marked as well peppers in dark
areas that are less visible in the image (will be refer as “including low visibility peppers”, done for all 30

images) (Figures 12,13).

FIGURE 13: RGB IMAGE (RIGHT) AND LABELED IMAGE (LEFT)

“HIGH VISIBILITY PEPPERS” MARKED IN RED AND “LOW VISIBILITY PEPPERS” MARKED IN BLUE
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Note that ‘imclose’ MATLAB function was used (with disk=5) when converting the ground truth to binary images

as follows to remove numbers that were written on images when tagged (Figure 14).

) 8

. "

FIGURE 14: BINARY IMAGE BEFORE “IMCLOSE” FUNCTION (LEFT) AND AFTER (RIGHT)

3.5. Analyses
The following analyses were conducted for the three databases, apples, grapes and peppers, using 70%

of the data for training and 30% for testing (Guyon & Isabelle, 1997). This rate was chosen to be more
rigid to the algorithm performances since the number of images in each DB were relativity small. In
addition, to ensure robustness of the results each test was repeated five times with random selection of

images for each repetition and average results of all performance measures were reported.

e Tuning parameters: parameters were computed for each database with procedures defined in

section 3.3 and compared to previous predefined parameters.

e Color spaces analyses: algorithm performances were tested on all databases for four different

color spaces: NDI, LAB, HSI, RGB.

e Sensitivity analyses: sensitivity analyses were conducted for all the databases and included:
a) Noise - noise was created by adding to each pixel in the RGB image a random number
from the mean normal distribution for noise values up to 30%. The artificial noise represents the
algorithms robustness toward other cameras with more noise, or when capturing images with
different camera settings. Noise values of 5%, 10%,20%,30%, were evaluated.

b) Thresholds learned in offline process - thresholds were changed by £5%, +10% and +15%

according to the threshold in each region.

c) Stop condition - the selected std value was changed by 5%, 10% to test the robustness of
the algorithm to these parameters.

d) Train vs. Test -The algorithm performances were evaluated while using different

percentage of DB images for the training and testing processes.
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e Morphological operation contribution — performances were tested for imaging with and without

the morphological operations process.

3.6. Performance measures
Performance measures included TPR (true positive rate, also noted as hit), FPR (false positive rate, also

noted as false alarms) and F score (Goutte & Gaussier, 2005). The TPR metric (Equation 2) states the
number of correctly detected objects relative to the actual number of objects, while the FPR metric
calculates the number of false objects detected relative to the actual number of objects (Equation 3).

The F score (Equation 4), balances between TPR and FPR equally.

TPR= pixels detected correctly as part of fruit
Actual number of pixels that represent the fruit

()

false detected pixels

FPR = Actual number of pixels that represent background (3)
F(TPR,FPR) :M (4)
TPR+(1-FPR)
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4.Algorithm
4.1. Algorithm flow
The RGB images are the inputs for the offline process. Some areas in the images contain more

illumination than others, depending on the position of the light source and shading caused by leaves,
branches and the covering net when exists. To overcome this issue, the algorithm divides each image
into multiple sub images, with approximately homogenous illumination conditions (Figure 15). These
sub images are categorized into three illumination conditions: low, medium, and high. The illumination
level is obtained by calculating the average on the gray scale sub images. The gray scale image shows
values between 0 (completely dark) and 255 (completely white). In the previous algorithm (Vitzrabin
and Edan, 2016), the sub images were categorized into groups using levels selected empirically as 10,
70, and 130, corresponding to low, medium, and high level images based on manual image analyses. The
high value was set as 130 in order to filter overexposed areas in the images. In the current algorithm a

tuning parameter process (detailed in section 3.3) is developed to determine these three values.

FIGURE 15: IMAGE SPLIT INTO SUB-IMAGES - VISUALIZATION

The algorithm then creates a 3D color space image (can transform the RGB image to NDI, HSI, LAB space
or uses directly the RGB space). For each color dimension a binary image (mask) is created, where each
pixel that represents the fruit receives a value of one and all other pixels receive a value of zero (Figure
16). Finally, the algorithm creates a ROC (receiver operator characteristics curve) representing TPR as a
function of FPR (Siegel & Wu, 2003) representing all the nine thresholds learned from the offline process.
Figure 17 presents an example of nine ROC curves computed for three sub images with different light
levels (L1, L2, L3) in the NDI color space. In this example, the sub image with light level 2 (L2) in the first

NDI dimension obtained the best performances (high TPR and low FPR).
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FIGURE 16: USE OF NDI DIMENSION INTERSECTION TO INCREASE PERFORMANCE
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FIGURE 17: 9 ROC CURVE - 3 DIMENSIONS X 3 LIGHT LEVELS

NDIi_L) | REPRESENTS THE COLOR SPACE DIMENSION; J REPRESENTS THE ILLUMINATION LEVEL
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In the online process, the algorithm receives RGB images from the camera in real time, transforms the
representation to the relevant color space (NDI/HSI/LAB) and creates a binary image by applying the
thresholds as following: three thresholds, one for each dimension are calculated from the nine
thresholds learned by linear interpolation between two of the three illumination regions (Low, Medium,
and High) selected as closest to the calculated illumination level for the specific sub-image from the

grayscale image and using Equation 5.

__ T(closest from below)*(Light level—Ligh from below)+T(closest from above)(Light level from above—Light level)
- Light from above—Light from below

T

(5)

For example, if the current light level is 40, and the thresholds in the offline process for the Low,
Medium and High light levels were 10, 70 and 130, the threshold would be calculated in the following

way:

- T(10) * (40 — 10) + T(70)(70 — 40)
B 70 — 10

4.2. Morphological operations
The algorithm result is a binary image with major fruit detected and small clusters of pixels that were

wrongly classified as fruits (e.g., Figure 18 — present figure with this before and after morphological
operation). In addition, some fruits are split between several clusters. Several morphological operations

were performed to overcome these problems.

Morphological opening operations were executed based on previous research which indicate their
contribution (Vitzrabin and Edan, 2016) using the same method: erosion followed by dilation with a
neighborhood of 11x11-pixel squares. The square function was used since there was no pre-defined
knowledge about the expected fruit orientation. To connect close clusters, the closing morphological
operation was then applied by dilation followed by erosion implemented with a 5x5-pixel square

neighborhood.
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Morphological
operations

FIGURE 18: MORPHOLOGICAL OPERATION

4.3. Parameter tuning
The algorithm uses several parameters that influence the algorithm performances: T1, T2, Std,

Classification rule direction- D1/D2. The following parameter tuning procedure (Figure 20) was
developed and should be performed when exploring images from a new database, new operating

conditions (cameras, illumination) or when exploring a new color space. The parameters are:

Light level thresholds (T1, T2) —The algorithm splits the images into sub images set to 1% of the entire

image. Then, the algorithm computes the light level of each sub-image by calculating the average pixels
values of the grayscale sub-image. Finally, the algorithm groups the sub images into three light level

categories (see Figure 19) using two thresholds as presented in Equation 6.

Low, 0 <x<T1
f(x) = {Medium, T1 <x <T2 (6)
High, x > T2
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Light level distribution DB-apples
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FIGURE 19: SUB-IMAGES LEVEL OF LIGHT DISTRIBUTION

To identify the PDF function of the data distributions of each database a y? goodness of fit tests was
conducted for the following distributions: Normal distribution, Poisson distribution or Negative binomial
distribution. These distributions were selected based on the nature of the data. Once the distribution is
selected for each database, the algorithm chooses the T1, T2 in a different way, as described in Figure

21.

Note that as described in the algorithm flow, the algorithm uses a third threshold. Sub-images above
that threshold are ignored in the training process due to their high values (the sub images are almost

completely white).

Stop splitting condition (std) - the algorithm splits an image into sub-images until the sub image

achieves a predefined standard deviation (STD) value. This approach assumes that a larger sub-image
contains higher STD value. To test this assumption, STD was calculated for different sizes of sub images
for the different databases. The stop condition value (STD minimum value) is determined by maximizing

the F score (Equation 4).

Classification rule direction— (D1, D2, D3) as detailed in the introduction, in the thresholding method, a

value that differentiates the intensity of the object from its background is determined. When using
different color spaces, one of the issues encountered was to determine for each color dimension if the

intensity of the object is greater or smaller than the background. This information was learned as part of
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the tuning process. For this step a simple heuristic rule was used as follows based on the assumption
that the images contain more background pixels than objects: 1. Execute image>Threshold. 2. If the
pixels categorized as background represent less than 70% of the image, reverse the thresholding

direction images <Threshold.

|npui‘ N[-";'\"-_ Create sub - N Select mndomly Calculate sub-images Create light level
%, database ¢ images 30% of the data light level histogram

Caleulate T1,T2

SInput color ™, Learn thresholding direction Train & Test algorithm Select STD that [ P
{ L ‘ ) = ! T1,T2, 5TD, D1,D2, D3
. space for each dimenzion for a range of STD values maximizes F_score

FIGURE 20: PARAMETER TUNING PROCESS

light_levels_array = calculate_light_level_for_each_sub_image (sub_images)

#chi tests goodness of fit

is_normal ,mu,sigma= test_normal_distribution(light_levels_array)

is_ poisson,lambda= test_poisson_distribution(light_levels_array)
is_negative_binomial,p,r= test_negative_binomial_distribution(light_levels_array)

if (is_normal):

T1=mu-sigma; T2=mu+ sigma;
else:

if (is_ poisson):

[TL,T2]= get_thresholds(Xy’ - e~ ~0.15, g 2 e~# ~0.85)
1! 2!

else:
if (is_negative_binomial):
[T1,T2]= get_thresholds(Y 2, (T1 +Tr B 1) (1-p)pT~0.15, X2, (T2 +TT B 1) (1 —p)"pk~0.85)
1 2
else:
T1 =get_percentile_0.15(light_levels_array)
T2 = get_ percentile_0.85(light_levels_array)

FIGURE 21 PSEUDO CODE FOR THRESHOLDS SELECTION
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5.Results & Discussion
5.1. Sub-image size vs. STD value

Figure 22 confirms the assumption that splitting an image to small sub images (small S) decreases the

average STD of the sub images (in all three databases).
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FIGURE 22: SUB IMAGE SIZE VS AVERAGE STD

5.2. Tuning process
This section presents the tuning process results, including thresholds derived to categorize the sub

images into light level groups as well as the recursive stop condition that achieved best result for each

database.

Light level distribution: As a first step the algorithm tried to fit for each database a known distribution.

As shown in Table 1 the hypotheses were rejected in all three databases (significant level a=0.05).

TABLE 1 P-VALUE RESULTS FOR EACH DATABASE AND TESTED DISTRIBUTION

DB/ Ho: X~N(ao, u) Ho: X~Poiss(A) Ho: NB~(r,p)
Hypothesis (a=0.05) H1: Not H1: Not H1: Not
HO rejected HO rejected HO rejected
Apples
P value: 0.0201 P value: 6.8764e-129 P value: 0

Grapes HO rejected HO rejected HO rejected
P value: 1.2959e-21 P value: 0 P value: 0.002

Peppers HO rejected HO rejected HO rejected

P value: 0.0013

P value: 2.4285e-222
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Therefore, the light level distribution was computed empirically for each database (Figure 23) along with
T1 and T2 (Table 2). The variation in the light distributions between the different databases are
described in Table 3. The variance of light in the grapes databases is significantly higher than in both the
apples and the peppers databases, the pepper database is significantly darker and highly skewed.
Therefore, for each database T1 and T2 were significantly different implying the importance of the

tuning process.

Light level histogram DB-apples Light level histogram DB-grapes  Light level distribution DB-Yellow Peppers
& ) A ' il

X

A il 1 0 B oW a r o oW = W 1m & W = ™

FIGURE 23: LIGHT LEVEL DISTRIBUTION WAS COMPUTED FOR EACH DATABASE

TaBLE 2: T1 AND T2 VALUES DETERMINED FOR EACH DATABASE
Measure/DB  Apples Grapes Peppers
T1 84 49 18
T2 140 130 47

TABLE 3: DESCRIPTIVE STATISTICS OF THE DIFFERENT LIGHT DISTRIBUTIONS

Measure/DB  Apples Grapes Peppers

Mean 118.46 88.00 32.09
Std 28.04 37.90 18.92
Skewness 0.40 0.68 3.16
Kurtosis -0.17 -0.13 15.36

Median 116.31 81.06 26.93
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Stop splitting condition: Using a low STD value as a stop condition, increases performance (Figure 24).

This happens since smaller sub images contain less illumination differences. However, small STD values
can create also too small sub-images which may not contain fruit and background pixels in the same
frame. In these cases, the algorithm cannot learn a threshold that could differ between them.
Additionally, results reveal that when using high STD values the performances stay constant. This

happens since beyond a certain value the algorithm does not split the image even once.

As part of the parameter tuning process, the STD value is selected by testing the performances of a
range of STD [0,100]. For each STD value the algorithm runs five iterations were it randomly select P% of
the images, from the selected images it uses 70% for train and 30% test. Final selected STD values are

presented in Table 4 for each database and color space (using P=30% and 50%).

Classification rule direction: as shown in Table 4, the direction of the classification rule in the

thresholding process can be different for each color dimension, therefore this must be learned as part of

the tuning process.

F score vs stop condition

95 —
HsI
90 - LAB
RGB
85 - NDI
80
1]
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50 i i i i i i
10 20 30 40 50 60 70 80 90 100

Std (stop condition) value

FIGURE 24: F-SCORE VS. INCREASING STD VALUE AS STOP CONDITION FOR THE RECURSIVE FUNCTION ON APPLES DB
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DB
Color space
STD (P=30%)
STD (P=50%)

Classification

rule direction

D1
D2
D3

TABLE 4: STD VALUE CHOSEN FOR EACH DATABASE AND COLOR SPACE
Apples Grapes
LAB NDI RGB HSI LAB NDI RGB

30 10 20 10 20 60 20
10 10 30 20 20 70 20
< > > < > > >
> > < > < > >
> > < < > < <
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5.3. Color spaces analyses
In this section algorithm performances results are presented in figures for each color space followed by

a table representing the best color space performances including performances for all color space

dimensions combinations.

Apples — Results (Figure 25) reveal that NDI and LAB color spaces result in similar best performances. In
Table 5 the preferences for each dimension in the NDI color space and the performances when using the
intersection between them is shown. The NDI first dimension (see Equation 1) represents the difference
between the red and green colors in the image. The objects in this database are red apples and most of
the background is green leaves therefore, as expected, the first NDI obtained the best F of 93.17%. In
the LAB color space, results (Table 6) reveal that the second dimension (A) yields the best F score of

93.19%.

Performances - Apples DB
100 T T

90 -
80
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40+ e
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L o L= H
NDI LAB RGB HSI
Color space

FIGURE 25: : COLOR SPACES PERFORMANCES - APPLES DB

TABLE 5: PERFORMANCES OF EACH NDI DIMENSION AND INTERSECTIONS — APPLES

Measure /Dimension 1 2 3 1n2 1n3 2n3 1n2n3
% FPR 259 4091 31.38 164 132 248 048

% TPR 89.45 83.53 68.39 78.52 64.82 54.65 54.10

% F 93.17 67.85 67.80 86.75 77.60 69.67 69.69
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TABLE 6: PERFORMANCES OF EACH LAB DIMENSION AND INTERSECTIONS — APPLES

Measure /Dimension 1 2 3 1n2 1n3 2n3 1n2n3
% FPR 33.58 245 77.08 1.78 28.55 1.55 1.07

% TPR 61.26 1 89.34 85.26 56.59 52.95 76.27 48.80

% F 56.79 1 93.19 35.85 69.02 54.61 85.37 62.58

Grapes — The NDI color space obtained the best result for grapes (Figure 26) with a F score of 73.52%.
The second-best color space is the LAB with a F score of 62.54% The best NDI results were obtained

using the second dimension (Table 7).
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FIGURE 26: COLOR SPACES PERFORMANCES - GRAPES DB

TABLE 7: PERFORMANCES OF EACH NDI DIMENSION AND INTERSECTIONS — GRAPES

Measure /Dimension 1 2 3 1n2 1n3 2n3 1n2n3
% FPR 3586 33.35 5290 486 550 3235 4.09

% TPR 4452 89.48 89.99 38.53 37.27 87.50 36.70

% F 47.19 73.52 58.05 50.12 48.93 ' 73.20 48.65
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Peppers

High visibility — Figure 27a indicates that HSI color space obtained the best results with relatively low
FPR (0.81%) and very high TPR (99.43%) resulting in a high F score (99.31%). The second-best color space
is NDI with FPR=2.48% and TPR=97.96% (F= 97.72%). The best HSI result, were obtained using the

combination of the first and the second dimensions (Table 8).

Including low visibility — Figure 27b indicates that NDI color space obtained the best results with

relatively low FPR (5.24%) and very high TPR (95.93) resulting in high F score (95.19%). Although on the
“high visibility” peppers HSI obtained the best performances, when trying to detect peppers in dark
areas that are less visible, NDI shows better results. The best NDI results were obtained using the

intersection between the first and the second dimensions (Table 9).

Performances - Peppers DB including Low visibility peppers Performances - Peppers DB High visibility peppers
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FIGURE 27: COLOR SPACES PERFORMANCES - PEPPERS DB
TABLE 8: PERFORMANCES OF EACH HSI DIMENSION AND INTERSECTIONS — PEPPERS HIGH VISIBILITY
Measure/DB 1 2 3 1n2 1n3 2n3 1n2n3
% FPR 2.48 515 064 @ 081 248 5.15 0.64
% TPR 97.96 98.75 93.91 99.43 9796 98.75 9391
% F 97.72 96.73 96.51 99.31 97.72 96.73 96.51
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TABLE 9: PERFORMANCES OF EACH NDI DIMENSION AND INTERSECTIONS — PEPPERS INCLUDING LOW VISIBILITY

Measure /Dimension 1 2 3 1n2 1n3 2n3 1n2n3
% FPR 66.57% 5.24% 9.23% 142% 1.24% 4.57% 0.99%

% TPR 85.61% 1 95.93% 92.49% 82.20% 78.64% 92.33% 78.61%

% F 46.96%  95.19% 91.24% 88.91% 86.59% 93.51% 86.67%

5.4. Sensitivity analysis
a) Noise —analysis shows that the algorithm is robust to noise in the image up to 15% in the apples

and peppers databases (Figure 28). The grapes images are more sensitive to noise and performance
drops when noise values of 5% are added. Although better F score values were obtained for NDI and
HSI for grapes and peppers, we can see that LAB color space yields more robust performance when

adding noise to the images.

Grapes Peppers Apples
100% 100% 100%
90% 90%
95%
80% 80% —
70% \ 70% 90% \
60% 60%
o o g
S 50% 8 50% g 85%
* o 20% “ 20% .
80%
30% 30% ’
20% 20% 75%
10% 10%
0% 0% 70%
0 005 01 02 03 0 005 01 02 03 0 005 0.1 0.2 0.3
% noise added to image % noise added to image % noise added to image
s ND | LAB e N D| LAB e HS]| s \ D | LAB

FIGURE 28: SENSITIVITY ANALYSIS - ADDING NOISE TO IMAGES

b) Thresholds learned in offline process - as expected, TPR decreases when the threshold values

change. The algorithm is relatively robust to the change in the thresholds for apples and peppers.
Performance in the grapes images is more sensitive to threshold changes and yields a significant
decrease in TPR when increasing the threshold value (Table 10).
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TABLE 10: THRESHOLD VALUES CHANGED BY 5%, £10% AND +15% ACCORDING TO THE THRESHOLD IN EACH REGION

Measure/Change in

DB
thresholds

%FPR
Apples

%TPR

%FPR
Grapes

%TPR

%FPR
Peppers

%TPR

-15

3.58
91.47
21.59
78.02

0.98
99.25

-10

3.43
91.28
18.40
72.63

0.91
99.22

-5

3.30
91.07
15.53
66.42
0.86
99.20

2.59
89.45
33.35
89.48

0.81
99.43

3.06%
90.75%
11.00%
50.99%

0.78%
99.12%

10

2.93
90.57
9.23
43.63
0.70
99.07

15

2.81
90.44
7.72
36.24
0.65
99.04

c) Stop condition - the algorithm shows more robustness to apples and peppers images than grapes

(Figure 29).
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FIGURE 29: SENSITIVITY ANALYSIS - ADDING NOISE TO STD STOP CONDITION
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d) Train/Test — the expectation is that more training images leads to better performance until overfitting is

accommodated. There is a clear increase in TPR however FPR increases as well at 80%,90% train.

TABLE 11: PERFORMANCES VS. DIFFERENT % IMAGES DATABASE AS TRAIN SET
DB Measure / 10 20 30 40 50 60 70 80 0

%Train
%FPR 32.81 37.08 2854 36.16 31.83 29.10 29.63 40.51 40.80

Grapes
%TPR 88.79 89.62 87.01 8844 87.58 82,55 87.14 9453 95.85

%F 7335 7020 75.19 6941 7249 70.24 7392 7255 72.54

The tuning process resulted in increased performances for both the grapes and peppers databases with
40% and 1.49% increase respectively. The results for the apple databased were similar with only a 0.1%
increase as expected (since this was similar to the database the previous parameters were derived

from).

TABLE 12: PARAMETER TUNING CONTRIBUTION TO ALGORITHM PERFORMANCES

Performances using Performances using
DB Measure
Previous params Tuning process

%FPR 2.53 2.59

Apples %TPR 89.23 89.45
%F 93.08 93.17

%FPR 18.63 33.35

Grapes %TPR 63.70 89.48
%F 67.30 73.52

%FPR 1.00 0.81

Peppers %TPR 97.97 99.43
%F 98.47 99.31

The morphological operations process increases the F score by 2.85%, 8.59%, and 2.71% for the apples

grapes and peppers databases respectively (Figure 30).
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6.Conclusions & Future work
The algorithm successfully detected apples and peppers in variable lighting conditions with an F-score of

93.15% and 97.40% respectively, resulting in one of the best detection rates achieved to date in fruit
detection to the best of our knowledge. Previous research has shown 85%-90% TPR (Bac et al., 2014;
Vitzrabin and Edan 2016; Sa et al., 2016). The algorithm has shown less impressive results in the grapes
database (F score of 73.52%) due to difficulties associated with differentiating between green fruits and
a green background (leaves). In this case, additional features (e.g. morphological operations fitted for

grapes see Bernstein, Shahar, Shapiro, Edan, 2010) should be used to increase performance.

Different color spaces yielded best results for each fruit variety, implying that the color space must be
analyzed and fitted to the specific fruit. The LAB color space is more robust to noise in images and hence
should be used when images are of low quality. The algorithm is robust to changes in the threshold
learned by the offline process and to noise effects in images. Morphological operations can improve

performance and hence should be utilized.

The tuning process developed in this research enables the algorithm to adapt automatically to changing
conditions/objectives (i.e. to detect other fruit with different colors and other outdoor conditions) and

hence should be used for improved target detection in highly variable illumination conditions.
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Abstract— This paper presents a dynamic
thresholding algorithm for robotic apple detection.
The algorithm enables robust detection in highly

image can be represented by different color spaces,
cach one emphasizing other color behavior [9].

Most object detection algorithms use a histogram of

variable lighting conditions. The image is the image in order to determine the threshold that best
dynamically split into variable sized regions, where differentiates between the background and the object
each region has approximately homogeneous |4]. The threshold is computed by finding the

lighting conditions. Nine thresholds were selected so
as to accommodate three different illumination
levels for three different dimensions in the natural
difference index (NDI) space by quantifying the
required relation between true positive rate and
false positive rate. This rate can change along the
robotic harvesting process, aiming to decrease FPR
from far views (to minimize cycle times) and to
increase TPR from close views (to increase grasping
accuracy). Analyses were conducted on apple
images acquired in outdoor conditions. The
algorithm improved previously reported results and
achieved 91.14% true positive rate (TPR) with
3.05% false positive rate (FPR) using the NDI first
dimension and a noise removal process

Keywords—dynamic thresholding;
apples detection; robotic harvesting.

object detection;

I. INTRODUCTION

Robotic  harvesting systems can increase
agricultural productivity by reducing manual labor and
production costs [1]. When developing a robotic
harvester, a basic step is to be able to identify the fruit
|2]. Despite intensive research conducted in identifying
fruits, implementing a real time vision system still
remains a complex task [1],]2] and current detection is
limited to 87% detection rate with 3.8% false alarms
13].

Features such as size, shape, texture and location,
which help in object detection are subject to high
variability in the agricultural domain [3]. Moreover,
fruits grow in an unstructured environment with highly
variable lighting conditions and obstructions that
influence detection performance [3]. Color and texture
are fundamental characteristics of natural images and
play an important role in visual perception [9]. An
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histogram minimum (Fig. 1). However, the global
minimum is very hard to find in most cases |[5].

Current optimal thresholding algorithms determine
the threshold only in a one-dimensional space - either
R or G or B or a combination of their values [10]. In
the transformation from three color dimensions into
one information is lost. In this paper we use a three
dimensional thresholding algorithm.

Several “state of the art”™ approaches deal with
image segmentation using the HSI space. The HSI
color model represents every color with three
components: hue (H), saturation (S) and intensity (I).
The H-component describes color itself in the form of
an angle between 0° and 360°. The S-component
signals how much the color is polluted with white color
in a range [0. 1]. The range of I is also in the [0, 1]
range, where O represents black and 1 represents white
[11]. For example, in [12] the segmentation is
conducted using a K-means algorithm over the HSI
color space. The K-means algorithm is used to locate
clusters of colors within a color image. The hue,
saturation, and intensity components are used in the
segmentation process instead of the red, blue, and
green components so that the segmentation is based
upon human visual perception of color. Two separate
K-means are performed one over the one-dimensional
hue space and the other over the two-dimensional
saturation-luminance space [12].

K-means segmentation is also commonly used with
the LAB color space. The LAB color space is a color-
opponent space with dimension L for lightness and A.
B for the color opponent dimensions [18]. The LAB
color space is designed to approximate human vision.
It aspires to perceptual uniformity with its L
component closely matching human perception of
lightness. It can thus be used to make accurate color
balance corrections by modifying output curves in the
A and B components, or to adjust the lightness contrast
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using the L component which models the output of
physical devices rather than human visual perception
[19].

Another segmentation method [11] uses mean shift
analysis. A non-parametric feature-
space analysis technique is employed to locate the
maxima of a density function, based on multiple color
features, such as hue and saturation in HSI color space,
as well as red, green and blue value in RGB color space

[11].

==

Fig.1. Optimal threshold in bimodal histogram

In the current study the algorithm uses the three
dimensional normalized difference index (NDI) space.
NDI is commonly employed in agricultural settings to
differentiate between the fruit and the background [13]
since it helps to overcome changes in illumination and
shading due to its normalization technique [14].

These three dimensions are used with a dynamic
thresholding algorithm [3]. There are several methods
that use dynamic thresholding algorithms [6].[7]. A
common approach is to use multi-resolution windows
which apply a bottom up method, merging pixels while
a criteria is met [6].[7]. Another approach is the top
down method, where the image is divided into sub
regions according to a criteria. The top down approach
reduces execution speed and improves generalization

8].

In this paper a set of three thresholds is determined
for each region of the image according to the lighting
setting in this region which changes. The algorithm
dynamically divides the image into several regions,
each with approximately the same lighting conditions.

II. METHODS

A. Overview

This research is based on a dynamic thresholding
algorithm which incorporated changing task objectives
algorithm to improve sweet pepper detection for a
robotic harvester [3]. The algorithm was implemented
in Matlab 2015a following the flow presented by [3].
The algorithm includes an offline process, in which the
algorithm learns color thresholds for detection
followed by an online process responsible for
implementing the thresholds learned in the offline
process on a new image. in order to detect pixels that
represent fruit in real time (Fig. 4) [3]. Previous
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analyses indicated the superiority of the dynamic
thresholding algorithm [3] as compared to traditional
algorithms such as constant threshold, bimodal
histogram and a constant threshold 3D thresholding.

In the current paper, analyses were conducted to
determine the NDI dimensions that result in best
performance. Furthermore, a noise removal process
was added.

B. Database

The orchard apples database includes 113 "Royal
Gala" apples in 9 images coming from an orchard in
Chile in March 2012 under natural growing conditions
with a Prosilica GC2450C camera. The images were
captured in daylight, half of the images were acquired
under direct sunlight, and half of the images were
acquired in the shade. Ground truth was manually
marked.

C. Performance measures

Metrics included the TPR (true positive rate, also
noted as hit), FPR (false positive rate, also noted as
false alarms) and the F score [16]. The TPR metric
(Equation 1) states the number of correctly detected
objects relative to the actual number of objects, while
the FPR metric calculates the number of false objects
detected relative to the actual number of objects
(Equation 2). The F score (Equation 3), balances
between TPR and FPR equally.

ixels detected correctly as partof fruit
TPR = —2 el L (N
Actual number of pixels that represent the fruit
alse detected pixels
FPR = e - Q)
Actual number of pixels that represent the fruit
2+(TPR+(1~FPR)
F(TPR, FPR) = 2{[ER-0-FPR)) (3)

TPR+(1-FPR)

D. Analyses

Performance was evaluated while exploring the effect
of using different FPR values instead of the F score on
the algorithm accuracy. This analyses were important
since most previous work in agricultural detection did
not deal with reporting false alarms at all [17].

In addition, sensitivity analyses were conducted to
evaluate the performance and robustness when adding
random noise to the images and for slight changes in
threshold values.

The noise was created by adding to each pixel in the
RGB image a random number from the mean normal
distribution for noise values up to 30%. The artificial
noise represents the algorithms robustness toward other
cameras with more noise, or when capturing images
with different camera settings.
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Evaluations were conducted using the leave one out
method: eight images were used for the training
process and one for testing. Averape results are
presented. Additional analyses were conducted using
different sizes of training sets {using the “leave -3 out™
method).

The algorithm performances were compared to several
methods  including:  constant  threshold, bimodal
histogram, a constant threshold using the three NDI
dimensions and segmentation using K-means with
LAB and HSI color spaces.

II. ALGORITHM
A, Algorithm flow (3]

The offline process of the algorithm gets as input
RGB images. Some areas of the images have more
illumination than others, depending on the position of
the light source and shading caused by leaves, branches
and the covering net. In order to overcome this issue,
the algorithm divides each image into multiple sub-
images, having  approximately  homogenous
illumination conditions (Fig. 2). These sub images are
categorized into three illumination conditions: low,
medium, and high. The illumination level is obtained
by calculating the average on the gray scale sub
images. The gray scale image shows values between
zero (totally dark) and 255 (totally white). The chosen
levels were selected empirically as 10, 70, and 130,
corresponding to low, medium, and high level images
based on manual image analyses. The high value was
set as 130 so as to overcome the noise.

Fig. 2. Image split into sub-images - visualization

The algorithm transforms the RGB images to a 3D NDI
space images. For each NDI dimension a binary image
is created, where each pixel representing a fruit
receives a value of one and all other pixels receive a
value of zero (Fig. 4). Finally, the algorithm creates a
ROC  (receiver operator characteristics curve)
representing TPR as a function of FPR [15]
representing all the 9 thresholds learned from the
offline process (Fig. 3).

Fig. 3. RO curve

In the online process the algorithm receives RGB
images from the camera in real time and creates a
binary image using the thresholds learned where white
areas represent the fruits and the black areas represent
the background (Fig. 5).

Criflina Prawmis Cinlire Prosui
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Stap 2.1 Cakulals and wie Srae g 3 Preform morphological
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Fig. 4. Flowchart of al algomthm

B, NDI color space exploration

As part of the algorithm process, the RGB image is
transformed to an WDI image: each dimension in the
NDI space is the normalized difference index between
2 colors (eg. NDI first dimension represents the
difference between red and green in RGB space, Fig.
5; second dimension represents the difference between
red and blue in RGB space) as aforementioned,
resulting in three dimensions (Equation 4). These
operations are applied for all pixel locations in the
image, creating a new image with this contrast index.
These equations yield NDI values ranging between -1
and +1.

Using the NDI space in the dynamic thresholding
process instead of the grey scale image enables us to
learn 3D information about the threshold that best
distinguishes between the background and the fruit.

R=iz k-8 8-z
Imagey, = —:Imagey, = _—iImagens =5 (4)

MM 2 NOI 3

Fig. 5. Example for three dimensions of the NDI space
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A binary image is created for each of the NDI
dimensions (Equation 1 - DI, D2, and D3). Pixels
categorized as part of a fruit are set equal to one; all
other pixels are set to zero (Figure 6). In the binary
output image of the algorithm pixels that were
categorized as part of a fruit in all of the three binary

images were set equal to one.

The use of pixels intersection from the three binary
images helped reduce noise. However, this procedure
can miss pixels that were comectly detected in one or

two of the binary images.

Hinary imoge ming X011 Binary Limige g =00 2

Fig. &. Example of binary images results from NDI space

C. Morphological operations

The algorithm result (binary image) has noise in the
shape of small clusters of pixels that were wrongly
classified as fruits. In addition, some fruits are split
between several clusters. Several morphological
operations  were performed to  overcome these

problems.

Morphological opening operations were executed
using erosion followed by dilation with a neighborhood
of [1=11 pixel squares. The square function was used
since there was no pre-defined knowledge about the
expected fruit orientation. To connect close clusters,
the closing morphological operation was then applied
by dilation followed by erosion implemented with a

5=5 pixel square neighborhood.
IV. RESULTS

A, NDI and HS5I color space exploration

The wuwse of NDI dimensions strongly affected
performance as compared to H5I, as can be seen in
Tables 1 and 2. The use of HSI space in the current
algorithm, leads to higher FPR. The intersection
between the bimary images created by HSI space
decreases the FPR, however it decreases the TPR as
well. HSI obtains a higher F score (63.18%) which is
obtained by the intersection between the S and |

dimensions.

The best F score (91.78%) was obtained for the WDI
first dimension (difference between red and green
channels) which achieved maximum TPR-88.14% and

relatively low FPR-3.05%. Although the intersection
between the first and second NDI dimensions
decreases FPR by 1.5%, it also decreases TPR by
1.15% and correspondingly the F score by 1.07%
placing it as the second best performing algorithm.

B.  Noise removal process

The noise removal process increased the F score by
1.02%, with increased 1.03% TPR and decreased
0.71% FPR (Table 3), consequently improving
detection and minimizing false detection. The removal
process increases computation time of both offline and
online processes (Table 3). However, the online
process is still relatively fast (26.86 sec on an Intel 17
2.60Hz laptop computer with 16GB memory).

. Sensitivity analysis

Results (figure 7) reveal that when adding random
noise to the image, noise values up to 10% hardly affect
performance (TPR and FRP remain around #8% and
4 28% respectively with an F score over 91% for all
noise values). When noise increases to above 30% F
score goes below 90%% (89,98 with TPR of 86.24 and
FPR of 5.94%).

Takde 1 - KIH color space exploration reselis —pan 1

Combinations of Intersection between binary
Metric images from NI and HS1 color spaces
1 2 3
FPR%: | 427 4116 3068
Nl | TPR®, | BE14 §1.31 Gb.65
F% 9174 GE.2T 67
FPR% | 14.02 53.66 5263
HSI | TPR% | 4582 74.54 7218
F% 6228 57.15 57.20

Results (Figure &) reveal that the algorithm
performances are not significantly influenced by
changing the threshold walue. Both TPR and FPR
remain relatively stable with changes up to 8%.
Changes above 10% cause decrease of TPR
performance by 1.6%.

Analyses results (Table 4) indicate that when the
threshold from the ROC curve maximizes the ratio
TPR/FPR instead of the F score, FPR changed by less
than 2%, however TPR decreased by 7.68%. In
addition, choosing a threshold from the ROC with
FPR=0.02 and FPR=0.04 improved TPR by 4.79% and
392% respectively. However, results indicate
increased false alarms with FPR up to 10% and 16%.




Results shown in Table 5 indicate that changes in the
traming set do not influence the algonthm
performances.

Table 2 ND and HIS color space exploratson resalts - part 2

Combinations of Intersection between
. binary images from NDI and HSI color
Metric )
spaces
1n2 1n3 n3 1N2n3
FPR™ | 282 169 0.29 029
NDI | TPRe, | 7646 62.64 5100 | 5101
F% 85.59 76.52 6749 | 67.4%
FPR% | 349 1252 19.85 316
HSL | TPR% | 3748 3939 5214 | 2924
F% 54.00 5432 6318 | 4492
Tahle 3 — Reduction of nidse process results
. Before A_t’[_er
Metric . Moise
Noise Removal
Remaoval
I.'II“UHJD 42? 3'}4
TPRY, BE.14 91.14
e 91.78 93.96
Offline | 11.91 sec 556.77 sec
Running | process
Time% Online | 5.27 sec 26.86 sec
process
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Fig. 7. TPR & FPR vs Noise in Image
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Tablke 4 — Change of FPR effec! on perfomunces nesulls

Metric | MAX(F) | MANCED) | FPR=LOZ | FPR=0.04
FPR% | 427 1.72 16.48 10.16
TPR%: | 8814 %137 9237 91.60
F% 9178 89.03 87.72 90.71

Table 5 algorthm performances using “Leave 1-5 out “method

Metric | 3 2 3 4 5
Frr® | 427 427 407 429 416

TPRv, | 5814 88.17 8967 88.14 8743
FPRe, | 9178 91.78 9269 91.77 91.44

Performance results of constant threshold, bimodal
histogram and constant threshold 3D indicate that best
performance was achieved by the dynamic
thresholding algorithm for both TPR and the FPR
(Table 6). The TPR was 4.9% better than the second
best algorithm, which was, in this case, the bimodal
histogram, with 10.9% difference in the FPR and an F-
score over 90%.

Table & Performance results for different algomthmes on apples real workl orchard database

Constant Bimodal Constant Current
Metric threshold histogram threshold algorithm
Ll
FPR% 0.551 0151 0.149 0042
TPRYa 0.509 0.832 0819 0881
F% 0477 0 840 0835 0918

Best segmentation performance for K-Means
algorithm was obtained with the use of the LAB color
space with F-score 89.19%. Although the use of Hue
dimension obtained the lowest FPR, TPR 1s less than
50% when used.

Tablke 7 Segmentalion wiang K-Mears over Lab and HSl color spaces
Metric | RGB | Lab H b | HNIs | HUIS

FPR% | 4591 | 588 | 148 | 4481 | 015 | 4849

TPRY | 7246 | 8548 | 4827 | 6619 | 3366 | 8345
¥ 5400 | 8919 | 6427 | 5727 | 4967 | 6248

V. CONCLUSIONS AND FUTURE WORK

The algornithm successfully detects apples in variable
lighting conditions resulting with an F-score of 93 96%
using the NDI first dimension (with 91.14% correct
detection and 3.04% false alarms). By applying
thresholding with the NDI dimension improved results
are obtained (as compared to 91.36% obtained by
Vitzrabin 2016 [3]). The addition of a noise removal
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process o the images further inecreased TPR by 3% and
decreased FPR by X% resulting in  increasing
performance (F ssore increased by 2%). The algorithm
ia robust @ changes in the threshold learmed by the
offline process and to noise effects

The dynamic sei of three thresholds derived for
different image regions and for a changing task
objective enables to apply the algorithm for improved
robotic harvesting deteetion. Adapting the threshold 1o
image regions with homogenous lighting conditions
imiproved TPR and FPR measures. Ongoing research is
fircised on optimizing the threshold selection process
and expanding the algorithm for detecting additional
agriculiural objects in parallel o its implementation on
& sweet pepper harvesting robot.
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robotic fruit detection
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Abstract - This paper presents an automatic parameter tuning process for a dynamic adaptive thresholding algorithm for fruit detection of a robotic harvester. The
algorithm enables robust detection in highly variable lighting conditions. The image is dynamically split into variable sized regions, where each region has
approximately homogeneous lighting conditions. Nine thresholds were selected to accommodate three different illumination levels for three different dimensions in
four color spaces: RGB, HSI, NDI and LAB. The thresholds were selected by quantifying the required relation between the true positive rate and false positive rate. A
tuning process was developed to determine the best fit values of the algorithm parameters to enable easy adaption to different fruits, colors and illumination conditions.
Extensive analyses were conducted on three different databases: red apples (9 images of 113 apples), green grapes (129 images of 1078 grapes) and yellow peppers
(30 images of 73 peppers) acquired in outdoor conditions. Results show the importance of the tuning process for the generalization of the algorithm to different kinds
of fruits and environments. In addition, this research revealed that for each kind of fruit the use of a different color space might be superior over the others.

Keywords: Adaptive thresholding, Fruit Detection, Robotic harvesting, Parameter tuning

1. Introduction

Robotic harvesting systems can increase agricultural productivity by reducing manual labor and production costs (Bac et al., 2014). When developing a
robotic harvester, a basic step is to be able to identify the fruit (Kapach et al., 2012; Gongal et al., 2015). Despite intensive research conducted in identifying
fruits, implementing a real time vision system remains a complex task (Kapach et al., 2012; Gongal et al., 2015). Current detection is limited to 87-88%
detection rate with 3.8% false alarms (Vitzrabin and Edan, 2016; Bac et al., 2014, Luo et al., 2018).
Features such as shape, texture and location, are subject to high variability in the agricultural domain (Gongal et al., 2015). Moreover, fruits grow in an
unstructured environment with highly variable lighting conditions (Vitzrabin and Edan, 2016) and obstructions (Barth et al., 2016) that influence detection
performance. Color and texture are fundamental characteristics of natural images and play an important role in visual perception (Arivazhagan et al., 2010).
Images can be represented by different color spaces (e.g., RGB, HIS, LAB, NDI); each one emphasizes different color features (Arivazhagan et al., 2010).
RGB is the most common color space, representing each pixel in the image in three color channels as acquired: red, green and blue. HSI represents every
color with three components: hue (H), saturation (S) and intensity (I), also known as HSV (Zheng et al., 2009). LAB color space is an approximate of human
vision (Shmmala and Ashour,2013). An additional color space commonly employed in the agriculture field (Vitzrabin and Edan, 2016) is the normalized
difference index (NDI) space. The NDI is used to differentiate between fruit and the background (Woebbecke et al., 1992) since it helps to overcome changes
in illumination and shading due to its normalization technique (Shrestha, 2014). Each dimension in the NDI space is the normalized difference index between
2 colors in the RGB space, resulting in three dimensions (Equation 1). These operations are applied for all pixel locations in the image, creating a new image
with this contrast index. These equations yield NDI values ranging between -1 and +1.

NDI, = 2 ;NDIl, === NDl, = — (1)
One of the most common methods for fruit detection is image segmentation (e.g., Wang et al., 2013; Jiang et al., 2008; Arroyo, et al., 2016; Rong, et al.,
2017). Many segmentation algorithms have been developed (Zhang, 1996) including: Kmeans (Shmmala and Ashour, 2013); Mean shift analysis (Zheng et
al., 2009); Artificial neural networks (ANN) (Al-allaf, 2014), Support vector machines (SVM) (Sakthivel et al., 2015), Deep learning ( Sa et al., 2016),
Reinforcement learning (RL) (Ostovar et al., 2018) and several others.
This research focuses on segmenting objects in the image using an adaptive thresholding method. Observing the histogram of the image color implies that a
threshold can be determined to best differentiate between the background and the object distributions (Park et al., 2011). The threshold is computed by finding
the histogram minimum (Fig. 1) separating between two peaks — the object and the background. However, the global minimum between the distributions is
very hard to find in most cases (Hannan et al., 2007).
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Fig. 1. Optimal threshold in Bimodal histogram
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Current most optimal thresholding algorithms determine the threshold only in a one-dimensional space, for example in the RGB space, either R or G or B or
a linear combination of their values (e.g. grayscale transformation) will be used (Bulanon; et al., 2001). In the transformation from three colors dimensions
into one, information is lost. In this research, a three-dimensional thresholding algorithm based on (Vitzrabin and Edan, 2016) was applied and evaluated also
for additional color spaces (RGB, NDI, HSI and LAB color spaces) — a threshold is determined for each dimension in the color space.

There are two common adaptive thresholding algorithm concepts: 1) global thresholding, in which for each image, a different threshold is determined
according to specific conditions for the entire image that is then transformed into a binary image; 2) local thresholding, in which the image is divided into
sections, and a different threshold is calculated for each section; the sections are then combined to a binary image.

There are several methods that utilize dynamic local thresholding algorithms (Gunatilaka and Baertlein, 2001; Kanungo et al., 2010). A common approach is
to use multi-resolution windows which apply a bottom up method, merging pixels while a criteria is met (Gunatilaka and Baertlein 2001; Kanungo et al.,
2010). Another approach is the top down method, where the image is divided into sub regions according to criteria. The top down approach reduces execution
speed and improves generalization (Hall and McMullen, 2004) and was therefore used in this research.

The adaptive thresholding algorithm presented in this paper is based on previous work (Vitzrabin and Edan, 2016) that aimed to detect peppers, in which a
set of three thresholds were determined for each region of the image according to its lighting setting. The algorithm dynamically divides the image into several
regions, each with approximately the same lighting conditions. The main contribution of the adaptive local 3D thresholding is a very high true positive rate
(TPR) and low false positive rate (FRP) in the fruit detection task in an unstructured, highly variable, and dynamic crop environment. Another contribution
is the ability to change in real time the task objective in the algorithm behavior based on the desired ratio between TPR and FRP; this contributes to a better
success rate in the grasping operation itself (Vitzrabin and Edan, 2016). Both the high performances and the changing task objectives are key issues regarding
detection in robotic harvesting applications (Vitzrabin and Edan, 2016). Previous research (Zemmour et al., 2017) presented preliminary results of this
algorithm for apple detection.

The current paper advances previous research (Zemmour et al., 2017) with several new contributions: 1) A new parameter tuning process developed to best-
fit the parameters to the specific database. 2) Intensive evaluation of the adaptive thresholding algorithm for different color spaces. 3) Application and
evaluation of the algorithm to different kinds of fruit. 4) Comparing the contribution of the new developments (items 1-2) to previous developments.

2. Materials and methods

2.1. Databases
The algorithm was evaluated on three databases representing three different fruit colors: red (apples), green (grapes) and yellow (peppers) for two
environmental settings (greenhouse, field) in different illumination conditions. Images were acquired with different cameras.

Apples - The orchard apples database includes 113 "Royal Gala" apples in 9 images acquired from an orchard in Chile in March 2012 under natural growing
conditions with a Prosilica GC2450C camera with 1536x2048 resolution; the camera was attached to a pole. The images were captured in daylight: half of
the images were acquired under direct sunlight, and half of the images were acquired in the shade. Ground truth was manually marked (Fig 2).

() & d !

Fig. 2. Apples image RGB image (left) and ground truth (right) example

Grapes - The images used originated from a commercial vineyard growing green grapes of the “superior” variety. An RGB camera (Microsoft NX-6000)
with 600x800 resolution was manually driven at mid-day along a commercial vineyard in Lachish, Israel, during the summer season of 2011, one month
before harvest time. The images were captured from 5 different growing rows. The targets were defined as the grape clusters. A group of three experts was
guided to mark the closing perimeter of each grape cluster in the image. The final ground truth was marked using the judge rules criteria (if a given pixel was
marked by two or more experts, it was considered a target). A set of 129 images were marked using this technique and used as a ground truth for the following
research. The images included 1078 grape clusters (Fig 3).

Fig. 3. Grapes image RGB image (left) and ground truth (right) example



Peppers — The dataset includes 30 images of 73 yellow peppers acquired in a commercial greenhouse in ljsselmuiden, Netherlands using a 6 degree of
freedom manipulator (Fanue LR Mate 2001D/7L), equipped with an 1DS Ui-5250RE RGB camera with 600x800 resolution. The images were manually
marked in order to compare the algorithm performances to manual detection by a human labeler. The database was marked twice, one time marking only

peppers with high visibility (denoted as “high visibility peppers™, this was done for 10 images of 25 yellow peppers) and a second time marked as well peppers
mn dark arcas that are less visible in the image (will be refer as “including low visibility peppers™, done for all 30 images) (Fig 4.5).

Fig. 5 RGB image (nght) and labeled image (left).
“High visibility peppers™ marked 1n red and “Low visibility peppers™ marked in blue

2.2. Performance measures

Metncs included the TPR (true positive rate, also noted as hit), FPR (false positive rate, also noted as false alarms) and the F score (Goutte & Gaussier, 2005).
The TPR metnc (Equation 2) states the number of correctly detected objects relative to the actual number of objects. while the FPR metnc calculates the

number of false objects detected relative to the actual number of objects (Equation 3). The F score (Equation 4), balances between TPR and FPR equally.

-~ pixels detected corvectly as part of fruit
I'PR=

(Y
Actual number of pixels that represent the fruit (2)
4 faise detected pixels
FPR = : 3)
Actual rnumber of pleels that represent background
- . 2«{TPR+(1~FPR))
F(TPR,FPR) = —————— (4)

TPR+{1~FPR)

2.3. Analyses

The following analyses were conducted for the three databascs, apples, grapes and peppers, using 70% of the data for traming and 30% for testing (Guyon &
Isabelle, 1997). This rate was chosen to be more ngid to the algonithm performances since the number of images in cach DB were relativity small. In addition,
to ensure robustness of the results cach test was repeated five times with random section of images for cach repetition and average results reported.

. Tuning parameters: parameters were computed for cach database with procedures defined in 3.3 and compared to previous predefined parameters.

e Color spaces analyses: algonthm performances were tested on all databases for four different color spaces: NDI, LAB, HSIL, RGB.

. Sensitivity analyses: sensitivity analyses were conducted for all the databases and included:

a) Noisc - noisc was created by adding to each pixel in the RGB image a random number from the mean normal distribution for noise values up to
30%. The artificial noisc represents the algorithms robustness toward other cameras with more noisc. or when captunng images with different
camera settings. Noisc values of 5%. 10%.20%.30%, were cvaluated.

b)  Thresholds lcamed in offline process - thresholds were changed by 5%, +10%6 and +15% according to the threshold in each region.

c)  Stop condition - the selected std value was changed by 5%, 10% to test the robustness of the algorithm to these parameters.

d) Tran vs. Test -The algorithm performances were evaluated while using different percentage of DB images for the training and testing processes.

*  Morphological operation contribution — performances were tested for imaging with and without the morphological operations process.
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3. Algorithm

3.1. Algorithm flow

The RGB images are the inputs for the offline process. Some areas in the images contain more illumination than others, depending on the position of the light
source and shading caused by leaves, branches and the covenng net when exists. To overcome this issue, the algorithm divides cach image into multiple sub

ges, with approx ty homogenous illumination conditions (Fig. 6). These sub images are categorized into three illumination conditions: low, medium,
and high. The illumination level is obtained by calculating the average on the gray scale sub images. The gray scale image shows values between (0 (completely
dark) and 255 (completely white). In the previous algonthm (Vitzrabin and Edan, 2016), the sub images were categonized mto groups using levels selected
empirically as 10, 70, and 130, corresponding to low, medium, and high level images based on manual image analyses. The high value was set as 130 in order
to filter overexposed areas in the images. In the current algorithm a tuning parameter process (detailed in section 3.3) is developed to determine these three
values.

Fig. 6. Image split into sub-images - visualization

The algorithm then creates a 3D color space image (can transform the RGB image to NDI, HSL LAB space or uses directly the RGB space). For each color
dimension a binary image (mask) is created, where each pixel that represents the fruit receives a value of one and all other pixels receive a value of zero.
Finally. the algorithm creates a ROC (receiver operator characteristics curve) representing TPR as a function of FPR (Siegel and Wu 2003) representing all
the nine thresholds leamed from the offline process. Fig. 7 presents an example of nine ROC curves computed for three sub images with different light levels
(L1, L2, L3) in the NDI color space. In this example. the sub image with light level 2 (L2) in the first NDI dimension obtained the best performances (high
TPR and low FPR).
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Fig. 7.9 ROC curve - 3 Dimensions X 3 Light levels
NDIi_Lj I represents the color space dimension; j rep ts the illumination level

In the online process, the algorithm receives RGB images from the camera in real time, transforms the representation to the relevant color space
(NDI/HSVLAB) and creates a binary image by applying the thresholds as following: three thresholds, one for cach dimension are calculated from the nine
thresholds learned by linear interpolation between two of the three illumination regions (Low, Medium, and High) selected as closest to the calculated
illumination level for the specific sub-image from the grayscale image and using Equation 5.
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T = Tlclesest from bedow)(Light kevel=Ligh from below)+Ticlosest from above)(Light level from above-Light level) &
- Light [rom abowe—Light from below )

For example, if the current light level is 40, and the thresholds in the offline process for the Low, Medium and High light levels were 10, 70 and 130, the
threshold would be calculated in the following way:

_ TOL0) » (40 = 100 + TC70)(70 = 40)
= 70 =10
The end of the process results in a binary image where white areas (1 value pixels) in the binary image represent the fruits and the black areas (0 value pixels)
represent the background (see Fig 2.3 4).

3.2, Morphelogical operations

The algorithm result is a binary image with major fruit detected and small clusters of pixels that were wrongly classified as fruits (e.g.. Fig 8 — present figure
with this before and after morphological operation). In addition, some fruits are split between several clusters (eg., Fig. 8). Several morphological operations
were performed to overcome these problems.

Muorphological opening operations were executed based on previous research which indicate their contribution (Vitzrabin and Edan, 2016) using the same
method: erosion followed by dilation with a neighborhood of 11=11-pixel squares. The square function was used since there was no pre-defined knowledge
ghout the expected fruit orientation. To connect close clusters, the closing morphological operation was then applied by dilation followed by erosion
implemented with a 5= 5-pixel square neighborhood.

Fig. 8 Morphological operation

3.3 Parameter tuning

The algornithm uses several parameters that influence the algorithm performances: T1, T2, Std, Classification rule direction- DM/D2. The following parameter
tuning procedure (Fig. 10) was developed and should be performed when exploring images from a new database, new operating conditions (cameras,
illumination) or when exploring & new color space. The parameters are:

Light level thresholds (T1. T2) ~The algonthm splits the images into sub images set to 1% of the entire image. Then, the algonithm computes the light level
of cach sub-image by calculating the average pixels valucs of the grayscale sub-image. Finally, the algorithm groups the sub images into three light level
categories (see Fig. %) using two thresholds as presented in Equation 6.

Low, 0 <x<T1
fix) ={Medium, Tl <x < T2 ()
High, x > T2

Light level distribution DB-apples

Sub-images 8

D & & B0 w0 el W0 im0
Light level

Fig. 9. Sub-images level of light distribution

Research was done to identify the PDF function of the data distributions of each database through a ¥* goodness of fit tests. However, due to the lack of
significant kevel in the tests the thresholds were selected empinically as follows: T1 and T2 were chosen so that 15% of the data will be categorized as Low,
15% as High and 70%% will be categorized as Medum.

Mote that as described in the algorithm flow, the algorithm uses a third threshold. Sub-images above that threshold are ignored in the training process due to
their high values the sub images (are almost completely white).
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Stop splitting condition (std) - the algorithm splits an image into sub-images until the sub image achieves a predefined standard deviation (STDY) value. This
approach assumes that a larger sub-image contains higher STD value. To test this assumption, STD was calculated for different sizes of sub images for the
different databases. The stop condition value (STI minimum vahie) is determined by maximizing the F score (Equation 4)

Classification mile direction— (D1, D2, D3) as detailed in the introduction, in the thresholding method, a value that differentiates the intensity of the object
from its background is determined. When using different color spaces, one of the issues encountered was to determine for each color dimension if the intensity
of the object is greater or smaller than the background. This information was leamed as part of the tuning process. For this step a simple heuristic rule was
used as follows based on the assumption that the images contain more background pixels than ohjects: 1. Execute image=>Threshold. 2. If the pixels
categorized as background represent less than 70% of the image, reverse the thresholding direction images <Threshold.

"lnputr:l:l;t Create sub - Select mndomly | | Caleulate sub-images Create light level

| database /| images | | 30%ofthedata | | lightlevel M histogram »{Caleulate TLT2

input color Learn thresholding direction Train & Test algorithm Select STD that g Output:
.'x space for each dimension "|fora range of 5TD values ™ maximizes F_score Y T1,12, STD, 0,02, 08 ;:

Fig. 10 Parameter tuning process

4. Results and discussion

4.1 Sub-image size vs. STD value
Fig. 11 confirms the assumption that splitting an image to small sub images (small 5) decreases the average STD of the sub images (in all three databases).

70 W
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e S —
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B Apples A Grapes & Yellow Peppers
Fig. 11. Sub image size vs average STD

4.2 Tuning process
This section presents the tuning process results, incliding thresholds derived to categorize the sub images into light level groups as well as the recursive stop

condition that achieved best result for each database.

Light level distribution: The light level distribution was computed for each database (Fig. 12) along with T1 and T2 (Table 1). The vanation in the light
distributions between the different databases are described in Table 2. The vanance of light in the grapes databases is significantly higher than in both the
apples and the peppers databases, the pepper database is significantly darker and highly skewed. Therefore, for each database T1 and T2 were significanthy
different implying the importance of the tuning process.
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Fig. 12. Light level distiibution was computed for cach database

Table 1 T1 and T2 values determined for each database

Measure/DB Apples Girapes FPeppers
T 84 49 18
Tz 140 130 47

Table?  Descriptive statistics of the different light distributions

Measure/DB Apples Grapes Peppers
Mean 11846 HE.00 200
Std 2804 37.90 18.92
Skewness 040 068 3.16
Kurtosis 017 013 15.36
Median 11631 #1.06 26.93

Stop splitting condition: Using a low STD value as a stop condition, increases performance (Fig. 13). This happens since smaller sub images contain less
illumination differences. However, small STD values can create also too small sub-images which may not contain fruit and background pixels in the same
frame. In these cases, the algorithm cannot learn a threshold that could differ between them. Additionally, resulis reveal that when using high STD values the

performances stays constant. This happens since beyond a certain value the algorithm does not sphit the image even once.

As part of the parameter tuning process, the STD value is selected by testing the performances of a range of STD [0,100]. For cach STD value the algorithm
runs five terations were it randomly select P% of the images, from the selected mmages it uses 70% for train and 30% test. Final selected STD values are

presented in Table 3 for each database and color space (using P=30%0 and 50°0).

Classification rule direction: as shown in Table 3, the direction of the classification rule in the thresholding process can be different for each color dimension,

therefore this must be leamed as part of the tuning process.
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Fig. 13. F-score vs. increasing STD value as stop condition for the recursive function on apples DB

Table 3 STD value chosen for each database and color space

ne Apples Grapes Peppers
Color space HSI | LAE | NDI  RGB | HSI  LAB | NDI  RGE | HSI | LAE | NDI  RGB
STD (P=30"%) 0 30 10 20 10 20 Gl 0 100 10 10 10
STD (P=50%) 20 1 1 30 20 20 T 20 1040 20 10 10
1 = < = = < = = = < = =
Classification = D2 = = > < = < = = = =

rule direction | 33

= > > = = = = = =
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4.3 Color spaces analyses
In this section algonthm performances results are presented m figure for each color space followed by a table representing the best color space performances

including performances for all color space dimensions combinations.

Apples — Results (Fig 14) reveal that NIV and LAB color spaces result in similar best performances. In Table 4 the preferences for each dimension in the
MDD color space and the performances when using the intersection between them is shown. The MDI first dimension (see Equation 1) represents the difference
between the red and green colors in the image. The objects in this database are red apples and most of the background is green leaves therefore, as expected,
the first NDI obtained the best F of 93.17%. In the LAB color space, results (Table 5) reveals that the second dimension (A) yields the best F score of 93.19%.

= P«fﬂ:muu -.Anpl_n DB

P orrares

Licd L L=i.al
M LAB RiGE
Canler squicn

Fig. 14. Color spaces performances - Apples DB

Table 4 - Performances of cach NDI dimension and intersections — Apples

Measure /Dimension 1 2 3 1N2 M3 213 | 1N2N3
% FFR 258 4091 | 3138 1.64 1.32 248 048

% TPR BO45 33153 | 6539 | TRSD | 6482 | 5465 54.10

%a F Q3017 6785 | 6780 | 8675 | TT.60 | 6967 649.6%9

Table 5 - Performances of each LAB dimension and intersections — Apples

Measure /Dimension 1 2 3 1N2 M3 213 | 1N2N3
% FFR 1358 | 245 T8 1.74 2855 1.55 107

% TPR 6126  BO34 R526 | 5659 | 5295 | 7627 | 4880

% F 5679 SONGS 1585 | 69.02 | 5461 | B5AT 62.58

T[RRI WE] T8
g :

T

1n2 in3 Zn3

Fig. 15. Use of NDI dimension intersection to increase performance

B+

Grapes — The NDI color space obtained the best result for grapes (Fig. 16) with a F score of 73.52%. The second-best color space is the LAB with a F score
of 62.54% The best NDI results were obtained using the second dimension (Table 6)
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Fig. 16. Color spaces performances - Grapes DB

Table 6 - Performances of each NDI dimension and intersections — Grapes

Measure /Dimension 1 1 3 1M2 13 N3 | 1N2N3
" FPR 3586 | 3333 | 5200 | 486 | 530 - 409
% TPR 4452 | B948 | RO9% | 3853 | 3727 - 36.70
% F 47.19 | 7352 | 5805 | 50.12 | 4893 (JAI0 4865

Peppers

High visibility — Fig. 17a indicates that HS1 color space obtained the best results with relatively low FPR (0.81%) and very high TPR (9%.43%) resulting m a
high F score (99.31%). The second-best color space 1s NDI with FPR=2.48% and TPR=97.96% (F= 97.72%). The best HSI result, were obtained using the

combination of the first and the second dimensions (Table 7).

Inchiding low visibility — Fig. 17b indicates that NI color space obtained the best results with relatively low FPR (5.24%) and very high TPR (95.93)
resulting in high F score (95.19%). Although on the “high visibility” peppers HSI obtained the best performances, when trying to detect peppers in dark
areas that are less visible, ND1 shows better results. The best NIDI result, were obtained using the intersection between the first and the second dimensions

(Table 8).

Parformances - Peppers DB High visibility pappers Parforman ces - Peppers DB including Low visiblity peppers
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Fig. 17. Color spaces performances - Peppers DB

Table 7 - Performances of each HS1 dimension and intersections — Peppers high visibility

Measure/DB 1 2 3 2 | w3 | 2n3 | 1n2n3
% FPR 748 515 | 064 - 748 | 515 | 064
% TPR 9796 98.75 | 93.91 - 9796 | 9875 | 9301

" F 97.72 96.73 | 96.51 - 97.72 | 9673 | 9651
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Table & — Performances of each NDI dimension and intersections — Peppers including low visibility

Measure /Dimension 1 1 3 1Mz 1N3 3 1M2N3
% FPR 66.57% 923% 1.42% 1.24% 457 | 099

% TPR 85.601% - 92.49% | 82200 | TE.A4% | 9233% | TH61%

% F 46.96% - 91.24% | BEOI% | B6.5%% | 9351% | BA6T

4.3 Sensitivity analysis

a)  Moise — analysis shows that the algorithm is robust to noise in the image up to 15% in the apples and peppers databases (Fig. 18). The grapes images
are more sensitive to noise and performance drops when noise values of 5% are added. Although better F score values were obtained for WD and HSI
for grapes and peppers, we can see that LAB color space yields more robust performance when adding noise to the images.

Grapes Peppers Apples
100% 100% 1005
0% 0%
955
20% 20%
0% 0% 0% "‘\
» &0% ” &0% o
g s0% g 50% o 85%
“ o a0% “ao% .
0% 0% A
0% 0% —
10% 10%
0% 0% 0%
0 005 01 02 03 0 005 01 02 03 0 00s 01 02 03
% noise added to image % noise added to image % noise added to image
o N [] e | A8 NDI LAB HSI o [ [ e | 4B

Fig. 18. Sensitivity analysis - adding noise to image
b Thresholds learned in offline process - as expected, TPR decreases when the threshold values change. The algorithm is relatively robust to the change in
the thresholds for apples and peppers. Performance in the grapes images is more sensitive to threshold changes and vields a significant decrease in TPR when
increasing the threshold value (Table %)

Table 9 - Threshold values changed by +5%, £10% and +15% according to the threshold in each region

DE Measure -15 -10 5 [ 5 10 15
[Change in
thresholds
Apples Y%FPR 358 343 330 259 I06% 293 281
“WTPR 41.47 91.28 91.07 945 W.T75% Q057 44
Grapes Y%FPR 21.59 18.40 1553 3335 11.00% 923 7.32
“WTPR T8.02 T2.63 .42 BO48 50.99% 43.63 3624
Peppers Y%FPR 098 091 086 081 0.78% 0.70 a5
“WTPR 9925 922 99.20 9943 99.12% 9907 .04

¢} Stop condition - the algorithm shows more robustness to apples and peppers images than grapes (Fig. 19).
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Fig. 19. Sensitivity analysis - adding noise to std stop condition

d}  TrainTest — the expectation is that more training images leads to better performance until overfitting is accommodated. There is a clear increase in
TPR however FPR mcreases as well at 80%. 90" train.

Table 10 - Performances vs. different % images database as traim sct
DB Measure / 10 20 30 40 50 &0 70 s 90
%, Train
" FPR 3281 | 370K 854 | 3606 | 3183 | 29010 | 2963 | 4051 40.80
Grapes *TPR BR.79 | B9 #7.01 1544 87.58 #2.55 5714 94.53 95.85
FoF 73.35 T0.20 75.19 69.41 72.49 T0.24 73.92 7255 7254

The tuning process resulted in increased performances for both the grapes and peppers databases with 40% and 1.49% increase respectively. The results for
the apple databased were similar with only a 0.1% increase as expected (since this was similar to the database the previous parameters were derived from).

Table 11 — Parameter tuning contribution to algonthm performances

DB Measure Performances using Performances
Previous params using
Tuning process
Apples %EPR 153 259
“WIPR #9.23 §9.45
%F 93.08 9317
Grapes “FPR 18.63 3335
“WIPR 63.70 k948
FaF 6730 7352
Peppers “aFPR 100 081
“WIPR 97.97 9943
FaF G847 9431

The morphological operations process increases the F score by 2.85%,8.59%,2.71% for the apples grapes and peppers databases respectively (Figure 20).
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Fig. 20. Morphological operation contribution
5. Conclusions and future work

The algonthm successfully detected apples and peppers in variable lighting conditions with an F-scare of 93.15% and 97.40% respectively, resulting in one
of the best detection rates achieved to date in fruit detection to the best of our knowledge. Previous research has shown 853%-90% TPR (Bac et al., 2014;
Vitzrabin and Edan 2016; Sa et al, 2016). The algorithm has shown less impressive results in the grapes database 73.52% due to difficulties associated with
differentiating between green fruits and a green background (leaves). In this case, additional features (e.z. morphological operations fitted for grapes see
Bernstein, Shahar, Shapire, Edan, 2010) should be used to increase performance.

Different color spaces viekded best results for each fruit variety, implying that the color space must be analyzed and fitted to the specific fruit. The LAB color
space is more robust to nolse in images and hence should be used when images are of low quality. The algonithm is robust to changes in the threshold leamned
bry the offline process and to noise effects in images. Morphological operations can improve performance and hence should be utilized.

The tuning process developed in this paper enables the previous algonthm (Zemmour, Kurtser, and Edan 2017) to adapt automatically to changing
conditions/objectives (ie. to detect other fruit with different colors and other outdoor conditions) and hence should be used for improved target detection in

highly vanable illumination conditions.
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