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Abstract 
This thesis focuses on developing an algorithm for detection and yield estimation of 

melons in the field using color images acquired from a digital camera mounted on an 

unmanned aerial vehicle. The system receives as input an aerial RGB image of a melon 

field, and the output is a report that includes each melon's location and estimated weight.  

One of the motivations for implementing such a system is related to the fact that 

estimating yield production before harvesting is considered as a labor intensive task, since 

it requires a detailed account of accumulated yield and general yield distribution, in 

addition to detailed measurements of melon size and location. 

The problem of object detection and yield estimation in agricultural environments using 

computer vision methods has been studied intensively in the past decades. Promising 

advancements in deep neural network algorithms have shown impressive performance in 

solving many problems of object detection. However, despite the wide research in this 

field, only a few commercialized agricultural applications use computer vision based 

models. This is because detecting objects in a real world scene is considered a difficult 

task and further complicated in the complex and unstructured agricultural environment. 

In addition, much of the published work focused on improving the accuracy of algorithms 

to accurately predict the number of fruits within images. However, in this work, we try 

establish a system which will not only predict the number of the fruits but will also 

estimate the actual weight of each fruit.  

Two different systems were developed in this present work using an algorithm pipeline. 

Both systems include three sequential main stages: 1) melon recognition\detection, 2) 

feature extraction, 3) yield estimation. The implementation of the first two stages in each 

system was different. The yield estimation stage was identical in both systems and was 

based on a linear regression. The first system is composed of a classical and light CNN 

algorithm that requires less computational effort. The second system is based on deep 

learning methods and solves the drawbacks that rose from the first system. A dedicated 

experiment was performed in order to acquire data for both systems.  

Results on 4 images including 2,264 melons acquired in 3 different seasons show high 

detection and promising level of yield estimation. The first system achieved average 

precision of 0.82 and F1 score of 0.85 for detection and more than 4% yield estimation 

error. The second system outperformed the first system with an overall average precision 

score of 0.92  and a F1-score of 0.9 for detection and only 3% yield estimation error. 

The main contribution of this thesis is development of algorithms suitable for yield 

detection from UAV images that are characterized by small sized objects. Yield estimation 

includes the weight of each individual melon in additional to the traditional melon count. 

The research provides empirical evidence that the automation of this agriculture task can 

be obtained using an engineered system. With further fine-tuning of the algorithm 

pipeline, these systems could potentially become productive. 
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1. Introduction 

1.1 Problem description  
Spatial information of crop growth can be provided by accurate yield estimation leading 

to improved resource management and marketing agronomic decisions (Lobell, Cassman, 

& Field, 2009). Yield estimation is especially important for providing an accurate 

assessment of crop yield to retailers. 

Estimating the yield production before harvesting is a labor intensive almost impossible 

task, since it requires a detailed account of accumulated yield and general yield 

distribution, in addition to detailed measurements of melon size and location (Bergerman, 

Billingsley, Reid, & van Henten, 2016). Due to lack of human resources and the high cost 

of human labor (van’t Ooster, Bontsema, van Henten, & Hemming, 2014) many efforts 

have been made to automate this process (Sarig, 1993), (Bac, van Henten, Hemming, & 

Edan, 2014), (Bergerman et al., 2016).  

Many technologies have been used for yield estimation including satellite imagery, aerial 

remote sensing, geographic information systems, and ground robots/sensors (Farjon, 

Krikeb, Hillel, & Alchanatis, 2019). 

An important tool for field monitoring and precision farming is the Unmanned Aerial 

Vehicle (UAV). The UAV allows to explore the crop field in a short time and provides an 

overview of the crop yield (Zhang & Kovacs, 2012). A prerequisite for observing and 

analyzing the yield is the ability to identify crops from image data (Cheng & Han, 2016),  

(Milioto, Lottes, & Stachniss, 2017). The fruit location in the field, its size, shape and 

maturity can be identified using machine vision techniques (Kapach, Barnea, Mairon, 

Edan, & Ben-Shahar, 2012), (Cheng & Han, 2016), (Koirala, Walsh, Wang, & McCarthy, 

2019a), (Lobell et al., 2009).  

The complexity of applying computer vision in the natural field environment is due to 

adverse weather conditions, luminance variability and the presence of obstructing leaves 

and branches dust, insects and other unavoidable image noises (Pereira, Morais, & Reis, 

2017). Advanced image analysis achieved impressive results overcoming some of the  

challenges (Koirala, Walsh, Wang, & McCarthy, 2019b), (Guo et al., 2016), (Pereira et al., 

2017), (Liakos, Busato, Moshou, Pearson, & Bochtis, 2018), (Gongal, Amatya, Karkee, 

Zhang, & Lewis, 2015). 

Recently, new image recognition methods based on machine learning algorithms, such as 

the Convolution Neural Network, are creating new opportunities to understand complex 

processes in agricultural operating environments (Liakos et al., 2018). These supervised 

machine learning methods yield better results than traditional image processing 

techniques, which were based on hand-engineered features to encode visual attributes 

(Gongal et al., 2015). Applications such as crop management (Kamilaris & Prenafeta-

Boldú, 2018), livestock management (Qiao, Truman, & Sukkarieh, 2019), water 
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management (Mehdizadeh, Behmanesh, & Khalili, 2017), (Feng, Peng, Cui, Gong, & Zhang, 

2017) and soil management (Morellos et al., 2016), (Nahvi, Habibi, Mohammadi, 

Shamshirband, & Al Razgan, 2016), have been automated using computer vision (Liakos 

et al., 2018). 

Although it requires a strong computational resource and a large resource of labelled data 

for training recently deep learning methods have gained more practical adoption, 

followed the development of graphical processing units (GPU) which allow to overcome 

the computational resource constraint (Guo et al., 2016).  

 

1.2 Objectives  
The main research objective is to develop a robust algorithm for detection and yield 

estimation of melons in agricultural environment using color images acquired from a 

digital camera mounted on an unmanned aerial vehicle. The specific objectives are to: 

1. Detect melons in the open field and provide their exact location in the image. 

2. Find the contour of each melon in the image. 

3. Fit an ellipse on top of the contour and perform feature extraction of the ellipse axis. 

3. Using statistical and machine learning models for yield estimation based on the 

extracted geometrical features. 

 

1.3 Thesis structure  
This thesis begins with a literature review presented in chapter 2. The review starts with 

computer vision research in general (2.1), followed by a review of methods which are used 

in computer vision based on deep learning, such as artificial neural networks (2.2) and 

convolution neural networks (2.3). Next, a review of different approaches for object 

detection task based on deep learning is provided (2.4), followed by the recent 

advancements of object detection in agriculture using deep learning (2.5). The 

methodology of the two main research tasks conducted as part of this thesis is depicted 

in chapter 3. Estimating open-field melon yield by machine-vision processing of UAV 

images is described in chapter 4. A deep learning system for yield estimation of melons 

using UAV images is described in chapter 5. Conclusions and future research are discussed 

in chapter 6. 
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2. Literature Review 
The scientific background related to the different parts of the research are reviewed in 

this section including computer vision (2.1), artificial neural networks (2.2) convolution 

neural networks (2.3), object detection (2.4) and finally a review of image detection in 

agriculture using deep learning (2.5). 

2.1 Computer Vision 

2.1.1 Computer vision background 

Computer vision is an interdisciplinary scientific field that deals with how computers can 

be made to gain insight from digital images or videos. From the perspective of 

engineering, it seeks to automate tasks that the human visual system can do (Sonka, 

Hlavac, & Boyle, 2014) (Huang, 1996) and beyond. Computer vision has been applied to a 

wide variety of applications, such as in medical imaging (Faust, Hagiwara, Hong, Lih, & 

Acharya, 2018), (Li, Zhang, Müller, & Zhang, 2018), (Anwar et al., 2018) autonomous cars 

(Nguyen, Jenssen, & Roverso, 2018), (Voulodimos, Doulamis, Doulamis, & 

Protopapadakis, 2018) face detection (Kumar, Kaur, & Kumar, 2019) and many more 

(Szeliski, 2010). 

 

Computer vision began in the late 1960s, researchers from universities were pioneering 

artificial intelligence by trying to mimic the human visual system, as a stepping stone to 

endowing robots with intelligent behavior (Huang, 1996), (Szeliski, 2010). As a scientific 

discipline, computer vision is concerned with the theory behind artificial systems that 

extract information from images. These systems rely on artificial intelligence, machine 

learning, robotics, signal processing and geometry theory (Floyd & Sabins, 1987).  

The process of computer vision includes three main stages (Floyd & Sabins, 1987), (Klette, 

2014), (Morris, 2004):  

a) Image acquisition – an action of capturing an object using a sensor and storing the 

information into a matrix as a raw data. Each cell in the matrix is called a pixel, the pixel 

values typically correspond to light intensity in one or several spectral bands captured 

(Floyd & Sabins, 1987).  

b) image processing and analyzing –image processing is a procedure that converts the raw 

data into an image, while analyzing refers to several techniques to understand the image 

data (Floyd & Sabins, 1987). These techniques deal with feature extraction, extraction of 

regions that differ in properties such as intensity, color, texture, or any other image 

statistics (Morris, 2004). The combination of several features together assists to 

understand and interpret the image (Szeliski, 2010). Through these features the machine 

vision algorithm defines an object in the image (Groover, 2007).  

c) Image interpretation – converting the image into information that is meaningful and 

valuable for a wide range of users. One popular task of interpretation is recognizing the 

type of the objects in the image by comparing the extracted feature from the previous 

stage to predefined models or standard values. 
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2.1.2 Computer vision in agriculture 

Agriculture plays a critical role in the global economy. With the continuing expansion of 

the human population, together with the increase of global competition, pressure on the 

agricultural system will always increase (Liakos et al., 2018). In addition, the advance in  

intelligent computer technologies along with hardware cost reduction creates an 

opportunity to automate many tasks, Applications based on computer vision take a 

significant role in those tasks (Tillett, 1991). Applications (figure 1) such as, (a) crop 

management (Kamilaris & Prenafeta-Boldú, 2018), including applications on yield 

prediction, disease detection, weed detection crop quality and species recognition (Kung, 

Kuo, Chen, & Tsai, 2016), (Ali, Cawkwell, Dwyer, & Green, 2016), (Pantazi, Moshou, 

Alexandridis, Whetton, & Mouazen, 2016), (b) livestock management, including 

applications on animal welfare  and livestock production (Qiao et al., 2019), (Hansen et 

al., 2018) , (c) water management (Mehdizadeh et al., 2017), (Feng et al., 2017)  and (d) 

soil management  (Morellos et al., 2016), (Nahvi et al., 2016), were automated using 

computer vision (Liakos et al., 2018). 

 
Figure 1 - Computer vision applications in agriculture (Liakos et al., 2018) 

Despite many years of research of computer vision in agricultural environments, there are 

still many problems that hinder implementation of agricultural applications (Gongal et al., 

2015), (Lobell et al., 2009), (Pereira et al., 2017). The highly variable and unstructured 

outdoor environment with changing illumination conditions and obstructions, along with 

the complex plant structure and variable product shape, size, color, texture and location 

make it hard to find a global solution to the detection of objects in the complex 

agricultural environment (Gongal et al., 2015), (Kapach et al., 2012), (Rawat & Wang, 

2017), (Liakos et al., 2018), (Koirala et al., 2019a). 

In recent years, new approaches of computer vision have emerged, based on machine 

learning algorithms, such as neural networks (NN). These algorithms together with big 

data technologies and high-performance computing, create new opportunities to unravel, 

Computer 
vision 

application in 
agriculture
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water
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quantify, and understand data intensive processes in agricultural operational 

environments (Liakos et al., 2018). One of the most powerful implementations of the NN 

is the convolution neural network (CNN).   

 

2.2 Artificial Neural Networks 

2.2.1 Background 

Artificial neural networks (ANN) are computing systems that were inspired by the human 

brain (Hemming, 2003). The elementary units in an ANN are the artificial neurons, were 

presented first by Rosenblatt et al. on purpose to model the work of biology neurons in 

the human brain (Lee, 1988; Rosenblatt, 1958). The human brain contains an enormous 

amount of nerve cells called neurons. Each of these cells are connected to many other 

similar cells, creating a very complex network of signal transmission. Each cell collects 

inputs from all other neural cells it is connected to, and if it reaches a certain threshold, it 

signals to all the cells it is connected to (Hemming, 2003). Similar to the biology neurons, 

the artificial neuron receives one or more inputs and sums them to produce an output. 

Illustration of artificial and live neural cells is presented in figure 2. 

 
Figure 2 – Artificial Neuron (right)  inspired by Biological Neuron (left) (Hemming, 2003) 

 

2.2.2 Neural networks characteristics  

Artificial neural networks include three fundamental characteristics (Hemming, 2003) : a) 

the network architecture. b) activation functions c) the weight of input connections. 

The network architecture together with the activation functions are chosen at the initial 

stage and remain the same during the training process. The performance of the neural 

network depends on the value of the weights. The weights are tuned during the training 

process to obtain a specific output.  
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Architectures of Neural networks 

Neural networks include at least three different layers (figure 3): the input layer which 

contains the input feature vector Xq = (X1, X2, X3), the output layer that consists of the 

neural network response, and a hidden layer, the layer in between that contains the 

neurons that connect to both the input and output layers (Jain, Mao, & Mohiuddin, 1996).  

An example for neural networks is presented in figure 3 where the input layer receives a 

vector, two fully connected hidden layers, each layer has 3 neurons multiplied by vector 

W, and a final output layer Y- vector with 3 output elements.  

 

 
Figure 3 - The Parts of an Artificial Neural Network (Jain et al., 1996) 

 

Each hidden layer contains several artificial neurons neuron units that in the basic scheme 

are fully connected to the neurons of the next layer; the artificial neuron output is the 

summed multiplication between the input vector X and a weights vector W. This sum goes 

through an activation function which determines if the neuron is activated and 

accordingly an output is generated. 

 

Activation function 

Artificial neural networks are designed as universal function approximators and are 

capable to calculate and learn polynomial degree functions. Thanks to the non-linear 

activation functions, stronger learning of networks can be achieved.  

The activation functions (equation 1) are executed after the input vector 𝑥 is multiplied 

with the weight vector 𝑊  

𝑥[𝑙]  =  𝑓(𝑊[𝑙]  · 𝑥[𝑙−1])                                                        (1) 

where 𝑓 is an activation function applied to each of its elements. Different nonlinear 

activation functions can be used (LeCun, Bengio, & Hinton, 2015) e.g. sigmoid (Han & 

Moraga, 1995) ,ReLU (Nair & Hinton, 2010) , Tanh (Nwankpa, Ijomah, Gachagan, & 

Marshall, 2018), softmax (Goodfellow, Bengio, & Courville, 2016) 
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Sigmoid   

A sigmoid function is a bounded differentiable real function that is defined for all real 

input values that have a positive derivative everywhere (Han & Moraga, 1995), (figure 4a). 

The output of the sigmoid logistic function is in the range (0,1) compared to (-inf, inf) of a 

linear function. Additionally, the sigmoid function provides the option to have a 

continuous output instead of a binary result such as signal/not signal according to some 

threshold. Due to the function shape most of its’ outputs will be very close to the extremes 

of 0 or 1 (Nwankpa et al., 2018) 

Relu 

Rectified linear unit (ReLU) is an activation function defined as the positive part of its 

argument (figure 4b). As long as the input has a value below zero, the output will be zero 

but, when the input rises above, the output is a linear relationship with the input variable 

(Nair & Hinton, 2010). The ReLU activation function has proven to work in many different 

situations and is currently widely used, considered as the most popular non-linear 

function since it typically learns faster than other activation functions in networks with 

many layers (LeCun et al., 2015).  

 
Figure 4 - Sigmoid function Vs. Relu a) sigmoid, b) ReLU 

 

 

Softmax 

The softmax function takes a N-dimensional vector of real numbers and transforms it into 

a vector of a real number in range (0,1) (Goodfellow et al., 2016). The Softmax function 

(equation 2) is a soft version of the max function. Instead of selecting one maximum value, 

it will transform the values in the vector in a way that the larger input components will 

correspond to larger probabilities. Since the output is a probability distribution it is 

suitable for probabilistic interpretation in classification tasks. 

𝑃(𝑦 = 𝑗|𝑥, 𝑊) =
𝑒𝑥𝑝(𝑥𝑗

𝐿)

∑ 𝑒𝑥𝑝 (𝑥𝑐
𝐿)𝐶

𝑐=1
                           (2) 



8 |  

 

2.2.3 Training neural networks 

Overview 

The training process in neural networks, relates to learning the values of the parameters 

in the network (Wij - weights, Bj - biases), The training process include three main stages 

that operate in sequence in an iterative way: forward-propagation, back-propagation, and 

optimization (figure 5).  

 

 
Figure 5 – Main stages of neural network training process 

The training process (figure 5) includes the following steps: 

1. Start with values (often random) for the network parameters (wij - weights 

and bj - biases) . 

2. Forward-propagation - Take a set of examples of input data and pass them 

through the network to obtain their prediction . 

3. Compare these predictions obtained with the values of expected labels 

and calculate the loss with them. 

4. Perform the backpropagation in order to propagate this loss to each and 

every one of the parameters that make up the model of the neural network . 

5. Optimize the performance of the network by using the propagated 

information, update the parameters of the neural network with the gradient 

descent in a way that the total loss is reduced and a better model is obtained. 

6. Continue iterating in the previous steps until a good model is obtained. 

 

Forward-propagation  

The first forward-propagation phase occurs when the network is exposed to the training 

data. The input data passes through the network in such a way that all the neurons apply 

their activation function to the information they receive from the neurons of the previous 

layer and send it to the neurons of the next layer. When the data has crossed all the layers, 

and all its neurons have made their calculations, the final layer will be reached with a 

result of a label prediction for those input examples. Next, a loss function is used to 

measure how good the prediction result was in relation to the correct result. 
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Loss function 

A loss function quantifies how close a particular neural network is to the ideal weight 

during the training process. Therefore, it could be used as a target function that must be 

minimized. Ideally, the error should be zero, that is, without divergence between 

estimated and expected value. Therefore, as the model is being trained, the weights of 

the interconnections of the neurons will gradually be adjusted until good predictions are 

obtained. There are many types of loss functions, while each loss can be fitted to specific 

task (Janocha & Czarnecki, 2017). One of the most common losses in the classification task 

is the cross-entropy (Janocha & Czarnecki, 2017), also known as the log loss. The log loss 

presented in equation 3, measures the performance of a classification model whose 

output is a probability value between 0 and 1. The loss increases as the predicted 

probability diverges from the actual label. Hence, a perfect model would have a log loss 

of 0. 

 

  𝐶𝐸(𝑝�̂�|𝑦𝑏
𝑡𝑟𝑢𝑒) = {

− log(𝑝�̂�)          , 𝑦𝑏
𝑡𝑟𝑢𝑒 = 1

−log (1 − 𝑝�̂�)   , 𝑦𝑏
𝑡𝑟𝑢𝑒 = 0

     (3) 

 

Back-propagation 

In order to optimize the performance of the network a gradient descent algorithm is used. 

The partial derivatives of the loss function are calculated and used to back-propagate to 

adjust each weight in the network in proportion to how much it contributes to overall 

error (Guo et al., 2016).  The propagation process done layer by layer, first, the output 

layer error is calculated and passed to the hidden layer before it. After calculating the 

hidden layer error, its error value is passed on back to the previous hidden layer before it. 

As we keep on moving back through the network, we use the chain rule at every layer to 

calculate the derivative of cost with respect that layer’s weights. This resulting derivative 

tells us in which direction to adjust the weights to reduce overall cost. 

Optimization using Gradient descent 

Gradient descent is one of the most popular algorithms to perform optimization and by 

far the most common way to optimize neural networks (Ruder, 2016). The algorithms 

minimize a target function parameterized by a model’s parameters by updating the 

parameters in the opposite direction of the gradient of the target function to the 

parameters. The gradient descent relies on the resulting derivative found for each layer 

at the back-propagation stage and on the learning rate 𝜀  that determines the size of the 

steps we take to reach a local minimum (equation 4). 

𝑊𝑡 = 𝑊𝑡−1 −  𝜀 
𝑑𝐿

𝑑𝑊
        (4) 

 

At each iteration, the derivative of the loss with respect to the weights is calculated, the 

process continues until reaching a local minimum.  

One of the main challenges of NN implementation is deriving the correct hidden layer size. 

When the number of neurons is not determined properly, the derived system does not 
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generalize well to unseen instances (Kon & Plaskota, 2000). On the other hand, when too 

much nodes are used, overfitting may occur and the desired optimum may not be found 

at all (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). Deriving the right 

quantity of neurons is discussed in a study by Kon and Plaskota (Kon & Plaskota, 2000).  

2.3 Convolutional neural networks 
 

2.3.1 Motivation 

 

Convolutional Neural Networks (CNN), also known as convnets, are a specialized kind of 

an artificial neural network for processing data that has a known grid-like topology 

(Goodfellow et al., 2016). The name convolutional neural network comes from the 

mathematical operation the network executes. Convolution is a specialized kind of linear 

operation applied on two functions that produce a third function that expresses how the 

shape of one is modified by the other (Kim & Casper, 2013). In general, convolution is used 

to apply filters to signals (Burrus & Parks, 1985), to perform functions such as extracting 

edges (Rawat & Wang, 2017) and reducing unwanted noise (Gustafsson, Claesson, & 

Nordholm, 2001). In the context of NN convolution term is used to describe a spatially 

repetitive local filtering, where not all of convolution characteristics are pressed. CNN 

commonly applied to analyzing images for classification, the task of taking an input image 

and outputting a class (Wang et al., 2016). Images typically contain a large number of 

pixels ordered in matrix structure where each pixel composed from three layers of colors 

RGB. In order to analyze image with traditional ANN, the image structure must be 

reshaped. The network will dense all the layers into one-dimension, create a large input 

vector that will require a strong computational power in order to solve the task. In 

addition, by breaking the relations between the layers a vital information about the local 

features of the object is lost.  Since traditional ANN is limited in processing high 

dimensional features data and require a one-dimensional input vector, the convnets are 

established to overcome this limitation by using local filters, instead of fully connected 

layers that are used in traditional ANN.  The idea for using local filters arose from the fact 

that in images, pixels that are located far away from the object provides no further 

information about the object. Since objects are defined by their local structure, and not 

by pixel which is located in distant from them, it is possible to understand that meaningful 

structure is found within local image patches. Convolution leverages three important 

ideas that can help improve a machine learning system: sparse interactions, parameter 

sharing and equivariant (Ke et al., 2018) 

 

Sparse interactions 

The structural information contained in local regions of images motivated the use of 

patch-like connections between layers instead of full connections. Traditional neural 

network layers use matrix multiplication by a matrix of parameters with a separate 

parameter describing the interaction between each input unit and each output unit. This 
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means that every output unit interacts with every input unit. Convolutional networks, 

however, typically have sparse interactions, this is the same as using connections where 

every weight is zero, except the weights within some patch region. The zeros represent 

the fact that information outside of the patch do not determine anything related to the  

filter's local area. Only the neurons within a filter would be fully connected to single 

neurons in the next layer (Ke et al., 2018) (see figure 6). By reducing the number of 

connections, the number of weight parameters is reduced and less computational power 

and memory is required (Ke et al., 2018) ,(Mahmood et al., 2017).  

  

    

Figure 6 - Fully connected ANN vs. CNN , in CNN Each neuron in the convolutional layer is 

connected only to a local region in the input volume spatially (Ke et al., 2018) 

Parameter sharing and equivariant 
Parameter sharing refers to using the same parameter for more than one function in a 

model. Rather than learning a separate set of parameters for every location, we learn only 

one global set that prevents overfitting of the network and reduces the number of 

parameters. In convnets, filters keep the same weights as they are convolved through 

various positions in a feature map. This means that a filter is using the same weights for 

detecting the same sort of feature at multiple locations in a feature map (figure 7). The 

parameter sharing causes the layer to have a property called equivariance to translation, 

shifting the image and then feeding it through a number of layers is the same as feeding 

the original image through the same layers and then shifting the resulting feature maps 

(Cohen & Welling, 2016). In other words, the symmetry is preserved by each layer, 

enabling to exploit it also in higher layers of the network. 

 

Figure 7 - A diagram expressing parameters sharing of a two-dimensional convolutional 

operator as an operation of sliding the same filter matrix (Kernel) across the target 
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Image and recording elementwise products into the feature map (I*K) (Cohen & Welling, 

2016) 

2.3.2 Convolutional neural networks architecture   

There are several variations of CNN architectures (Koirala et al., 2019a). However, in 

general, most of them include three fundamental units (LeCun et al., 2015): convolutional 

layers, pooling layers followed by fully connected output layer, same as in a standard 

feedforward neural network. Usually convolutional layers and pooling layers are grouped 

together into one module, these modules are often stacked on top of each other to form 

a deep CNN model (Rawat & Wang, 2017). A typical architecture can be described by the 

next few steps (see figure 8): first an image is input directly to the network followed by 

several stages of convolution and pooling layers, each stage produces a feature map. 

Thereafter, representations from these operations feed one or more fully connected 

layers. Finally, the last fully connected layer outputs the class label. Development and 

application of novel CNN architectures have been investigated (LeCun et al., 2015) in order 

to improve image classification accuracy or reduce computational costs. 

 

Figure 8 - A typical convolutional neural network architecture 

Convolutional layer 

The convolutional layers serve as feature extractors that learn the feature representations 

of the images (LeCun, Bottou, Bengio, & Haffner, 1998). The neurons in the convolutional 

layers are arranged into feature maps, each neuron in a feature map has a receptive field, 

which is connected to a neighborhood of neurons in the previous layer. The neuron in the 

feature map (M) is a result of convolution between the receptive field (R) and a specific 

filter (K) applied by nonlinear activation function (𝒇) (see equation 5). Traditionally sigmoid  

activation function were  used, recently, rectified linear have become popular (LeCun et 

al., 2015). 

                                                                  𝑀 =  𝑓(𝑅 ∗ 𝐾)                                                            (5) 
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The principle of parameter sharing is reflected by using the same filter which convolve 

through all the pixels in the image and create a unique feature map. Each feature map 

represents a specific feature that can be located in several places in the image. However, 

different feature maps within the same convolutional layer have different filters so that 

several features can be extracted at each location (LeCun et al., 2015), (LeCun et al., 1998). 

By using the local receptive fields (figure 9), neurons can extract elementary visual 

features such as oriented edges, corners. These features are then combined by 

subsequent layers in order to detect higher-order feature. 

  

 

Figure 9 - Convolution operation between input image and filters, receptive field mark in 

blue 

Pooling layer 

Often convolutional layers are followed by a pooling layer.  Pooling layers provide a 

summary statistic, by computing the maximum or average mathematical operation over 

a small region in the feature map (figure 10). This results in a subsampling of the input. 

Pooling reduces the dimensionality of the feature maps, increases the scale, and also 

supports translation invariance in the sense that a slight translation of the input does not 

change the output (Pai et al., 2017). Once the feature is detected, the exact location of 

the feature in the feature map is less important, an approximate position with the relative 

position to the other feature is essential. In general, the operation of maximum pooling is 

more effective than average pooling (Boureau, Ponce, & LeCun, 2010). It might expect 

that a better way to pool would be to keep the average intensity per pixel the same, rather 

than increasing the intensity of pixels after operating the maximum calculation. However, 

in practice, this case was discovered to be not correct.  
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Figure 10 -Max pooling layer taken over 4 numbers (little 2x2 square). 

Milestone architectures in deep convolutional neural network 

Several architectures in the field of convolutional networks have been developed as part 

of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), where the main task 

is to correctly classify and detect objects and scenes. The first successful applications of 

convolutional networks were developed by Yann LeCun in 1990’s by using an architecture 

called LeNet-5 (LeCun et al., 1995). The LeNet-5 architecture was used to read zip codes 

and digits, it includes two sets of convolutional and average pooling layers, followed by a 

flattening convolutional layer, then two fully-connected layers and finally a SoftMax 

classifier. A limitation of the network was the input size of image, the network could 

process only small images with 32x32 pixels.  Follow the LeNet -5,  the first work that 

popularized convolutional networks in computer vision was the AlexNet, developed by 

Alex Krizhevsky, Ilya Sutskever and Geoff Hinton (Krizhevsky, Sutskever, & Hinton, 2012). 

The AlexNet was submitted to the ILSVRC challenge in 2012 and significantly 

outperformed all other networks. The network had a very similar architecture to LeNet, 

but was deeper, bigger, and featured convolutional layers stacked on top of each other, 

previously it was common to only have a single convolution layer always immediately 

followed by a pooling layer.  In ILSVRC 2013 winner was a ZFNet , the network was an 

improvement of AlexNet by tweaking the architecture hyper-parameters, in particular by 

expanding the size of the middle convolutional layers and making the stride and filter size 

on the first layer smaller. Improved performance of AlexNet as compared to LeNet was 

achieved by adding additional layers to the network. In 2014 two groups came with deep 

CNN architectures, VGGNet and GoogLeNet which had 16 and 22 layers respectively. The 

VGGNet main contribution was in showing that the depth of the network is a critical 

component for good performance. The VGGNet is a very simple structure (figure 11), it 

contains 16 layers that only performs 3x3 convolutions and 2x2 pooling from the 

beginning to the end.  A drawback of the VGGNet is that it is more expensive to evaluate 

and uses a lot more memory and parameters, where most of these parameters are 

located in the first fully connected layer. 

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://www.image-net.org/challenges/LSVRC/2014/
http://arxiv.org/abs/1311.2901
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Figure  11  - the VGGNet-16 architectures, contains 16 layers 

In parallel to the VGGNet , google released their own convolutional network named 

GoogLeNet (Szegedy et al., 2015). Its main contribution was the development of 

an Inception Module that dramatically reduced the number of parameters in the network. 

Additionally, in contrast to VGGNet, the GoogLeNet uses average pooling instead of fully 

connected layers at the top of the ConvNet, with that, it successfully eliminating a large 

number of parameters. The GoogLeNet was the winner of 2014 ILSVRC, it achieved a top-

5 error rate of 6.67% which was very close to human level performance. Followed the 

VGGNet and GoogLeNet success researchers tried to perform much deeper networks. 

However, despite the conjecture that a deeper model should be able to perform at least 

as well as the shallower model, in practice, deeper networks start converging, resulting 

with a vanishing gradients problem exposed. With the increasing network depth, accuracy 

gets saturated and then degrades rapidly. The Residual Network (ResNet) developed by 

Microsoft group (He, Zhang, Ren, & Sun, 2016) overcame this problem by using special 

skip connections and a heavy use of batch normalization (figure 12), this architecture was 

the winner of ILSVRC 2015 with a top-5 error rate of 3.57% which beats human-level 

performance on this dataset. The idea behind the skip connection is to let the network to 

skip layers that do not improve network performance. 

  

 
Figure 12 - Residual unit with skip connection (He et al., 2016) 
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Previously, increasing network depth past a certain point was shown to actually decrease 

network performance. With residual networks, network performance continues to 

increase beyond depths at which regular convnets yielded decreased performance. With 

the skip connection technique, it was possible to train a convnets up to 152 layers. The 

ResNet also used as a pre-trained network (Lei et al., 2018), by training the network with 

transfer learning method, it can be implemented to solve different tasks.  

 

Training CNN with transfer learning 

Transfer learning is a very popular method widely used among computer vision 

researchers (Huh, Agrawal, & Efros, 2016) when one has sufficient training data for one 

supervised learning task (the source/training domain), but only very limited training data 

for a second task (the target/test domain) that is similar but not identical to the first                

(Wang & Schneider, 2014). By using transfer learning, we try to store the knowledge 

gained in form of the feature extractor, while solving the source task in the source domain 

and then apply it to new problem of interest (figure 13). Since the training was performed 

on a large set of data, the knowledge that was gained is translated as a feature extractor 

in the first layers, those features are global and can be used also for different tasks, more 

specifically in tasks where the number of images is limited (Yosinski, Clune, Bengio, & 

Lipson, 2014).  A very popular source domain is the ImageNet dataset, it contains 1.2 

million high-resolution images over 1000 different classes (Krizhevsky et al., 2012). Using 

ImageNet pre-trained CNN features, impressive results were obtained on several image 

classification datasets (Donahue et al., 2014), (Sharif Razavian, Azizpour, Sullivan, & 

Carlsson, 2014), as well as in object detection tasks (Sermanet et al., 2013),(Girshick, 

Donahue, Darrell, & Malik, 2014). 

  

 

Figure 13 - Visualization of feature extractors at first and second layer. 

The main reason of using transfer learning for tasks with small data is the problem of 

overfitting. Training a CNN from scratch on a small dataset will often lead to overfitting, 

since the number of parameters (neurons) in the CNN are much larger than the number 

of input images (LeCun et al., 2015). Transfer learning was implemented very successfully 
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in such cases (Litjens et al., 2017). It requires to change the output layer according to the 

new task and retrains the network on the new dataset, a process noted as fine-tuning. As 

a result, the weights of the network will be updated according to the new task. In order 

to fine tune the network successfully additional methods such as data augmentation, 

dropout and regularization terms which helps to avoid overfitting are required. 

Data augmentation 

Data augmentation is a technique that increases the variety of samples while not 

degrading the quality of the data set. As aforementioned, in order to train a deep neural 

network it usually needs a large amount of training data (Wang et al., 2014). With data 

augmentation more data that could be feed into the network is generated resulting in 

improved neural network performance and generalization by reducing overfitting. To 

augment an image data set, the original images can be flipped horizontally and vertically, 

and subsamples of the original images can be selected at random positions in the original. 

These subsampled images can then also be flipped horizontally and vertically (Agrawal, 

Girshick, & Malik, 2014). 

Dropout 

Dropout is a technique developed for preventing overfitting of a network to the particular 

variations of the training set (Dahl, Sainath, & Hinton, 2013). The term “dropout” refers 

to dropping out units (hidden and visible) in a neural network with some defined 

probability, p. By dropping a unit out of the network (figure 14), the unit temporarily 

removes from the network, along with all its incoming and outgoing connections during 

the training process (Srivastava et al., 2014). After training is over, the units are replaced 

in the network with their original weights. This prevents the fully connected layers from 

overfitting to the training data set, and improves performance on the validation set. 

 

 
Figure 14 - Dropout neural network model (LeCun et al., 2015) 

 

Weight decay 

Weight decay is another regularization mechanism for preventing networks from 

overfitting to the data. Weight decay adds a term to the loss function that suppresses any 

irrelevant components of the weight vector by choosing the smallest vector that solves 

the learning problem (Krogh & Hertz, 1992). A regularization technique called L2 
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regularization (equation 6), places a penalty on the sum of weights squared, with a weight 

decay parameter denoted 𝜆. This sort of regularization results in smaller, more distributed 

weights, which reduces overfitting. 
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Another technique, called L1 regularization (equation 7), places a penalty on the sum of 

the absolute values of the weights. L1 regularization promotes sparsity, and many 

weights end up being zero. 

 

        𝐿(𝑊, 𝑏) =
1

𝑁
∑

1

2
 𝑁

𝑖=1 (ℎ𝑊,𝑏(𝑥(𝑖)) − 𝑦(𝑖))2 +
𝜆

2
∑ ∑ ∑ |𝑊𝑗𝑖

(𝑙)
|

𝑠𝑙+1
𝑗=1

𝑠𝑙
𝑖=1  

𝑛𝑙−1
𝑙=1                   (7) 

 

Convolutional networks were some of the first neural networks to solve important 

commercial applications and remain at the forefront of commercial applications of deep 

learning today [26]. In recent years, CNN have become the leading architecture for most 

image recognition, classification and detection tasks (LeCun et al., 2015), (Rawat & Wang, 

2017), (Mazzini, Buzzelli, Pauy, & Schettini, 2018), (Yao, Lei, & Zhong, 2019). 

2.4 Object Detection 
Object detection is a task related to computer vision, which includes two closely related 

sub-problems (Girshick, 2015). The first is the classification problem, where one dominant 

object in a given image should be determined and labelled. The second is the localization 

problem. The second problem is more complicated than the first, since, in addition to 

labelling the dominant object, it also must be localized in the image, usually by 

determining a bounding box around the image region that is occupied by the object and 

providing their coordinates. The difficulty of this task increases if not only one but all 

objects in an image must be labelled and multiple objects of the same category can appear 

in one image.  A general and simple approach for object detection can be implemented 

using a sliding window (bounding box) over the image and classifying each box. The big 

drawback of this approach is that it is not applicable if the number of bounding boxes is 

unknown. Also, it is extremely expensive due to the huge search space. In order to reduce 

the amount of times that the classifier runs, it could be applied with a bigger window, but 

this has the risk of missing the ideal bounding box.  An early method that implements the 

sliding window approach is the Viola-Jones detector (Wang, 2014), (Viola & Jones, 2001)  

which use Haar feature and AdaBoost to train a series of cascaded classifiers for face 

detection. The Viola-Jones detector that was first presented in (Viola & Jones, 2001) 

includes a cascade object detector composed of ensemble of a number of weak classifiers. 

The cascade object detector is arranged in stages with increasing complexity. The role of 

each stage is to decide whether the current windows is certainly NOT an object. If a stage 

decides that the current windows is not an object the rest of the stages are not evaluated, 

so only true object windows trigger the entire cascade of stages. 

 

https://www.sas.com/en_us/insights/analytics/computer-vision.html
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2.4.1 CNN based models for object detection  

Deep learning convolutional neural networks have dramatically improved object 

detection performance as compared to previous methods (Girshick, Donahue, Darrell, & 

Malik, 2016). Below we present some of the most influencing CNN architectures for object 

detection. All the presented networks rely on pre-trained convolutional networks, such as 

ResNet or VGGNet, considered as 'backbone' networks that could be fine-tuned with 

processes of transfer learning to the relevant domain. The object detection task 

dominated by the CNN-based detectors can be roughly divided into two-stage and one-

stage approaches. 

The two-stage approach 

The two-stage approach includes two parts, where the first one generates a sparse set of 

candidate object proposals, and the second one determines the accurate object regions 

and the corresponding class labels (figure 15). 

 

 

Figure 15 - Two stage approach 

This approach was successfully introduced by Girshick et al. (Girshick et al., 2014) in their 

work called R-CNN. The R-CNN generates 2000 regions from the image based on a 

selective search algorithm (Uijlings, Van De Sande, Gevers, & Smeulders, 2013) and called 

them region proposals (figure 16.a). Next, each candidate region proposals are wrapped 

into a square and fed into a convolutional neural network. The CNN acts as a feature 

extractor and outputs a dense layer including the features extracted. These features are 

fed into an SVM to classify the presence of the object within that candidate region 

proposal (figure 16.a). In addition to predicting the presence of an object within the region 

proposals, the algorithm also predicts four values which are offset values to increase the 

precision of the bounding box. Despite the big success of R-CNN achieved, it has two main 

drawbacks. The first is related to the selective search algorithm which is not a learning 

algorithm. A second weakness is the long time to train the network since the image 

contains 2000 region proposals that should be classified. 

The Fast R-CNN (Girshick, 2015) solves some of the drawbacks of R-CNN to build a faster 

object detection algorithm. Instead of feeding each region proposals to the CNN, the 

entire input image is fed to the CNN to generate a convolutional feature map. From the 

convolutional feature map, the region of proposals was identified (using selective search 
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algorithm) and wrap them into squares, by using a region of interest (RoI) pooling layer 

the squares were reshape into a fixed size so that it can be fed into a fully connected layer. 

From the RoI feature vector, we use a softmax layer to predict the class of the proposed 

region and also the offset values for the bounding box (figure 16.b). Due to the fact that 

the Fast R-CNN feeds the entire image to the network only one time instead of 2000 times 

and shares computation of convolutional layers between proposals for an image, the 

training time of Fast R-CNN is much faster. However, the test time of the network was not 

satisfying because it was not able to process in a real time. This is caused since the 

extraction of the region proposal is with algorithms that are not a part from the CNN 

architecture. Both previous detectors use selective search to find out the region 

proposals. As aforementioned, selective search is a slow and time-consuming process, 

affecting the network performance. Therefore, the Faster R-CNN replaces the selective 

search algorithm and lets the network learn the region proposals (Ren, He, Girshick, & 

Sun, 2015). A region proposals network (RPN) is a fully convolutional network that takes 

an image as input and outputs a set of anchors boxes (rectangles) candidate object 

proposals, each anchor has different aspect ratio and scale, so all the anchors are not 

similar. With the anchor, the RPN minimizes two loss functions: 1) binary classification 

loss - an object or not in the box. 2) regression loss for corrections of the anchors boxes 

coordinates. Similar to Fast R-CNN, the entire image is provided as an input to the 

convolution layers of Faster R-CNN to produce a convolutional feature map, then RPN is 

used to predict the region proposals. The predicted region proposals are then reshaped 

using a RoI pooling layer and fed into FC layers to classify the image within the proposed 

region and predict the offset values for the bounding boxes (figure 16.c). As a result, Faster 

R-CNN is much faster than the previous network and can be used for real-time object 

detection. 

  

 
Figure 16 -The development of the R-CNN models: (a) R-CNN model, (b) Fast R-CNN 

model, (c) Faster R-CNN model 

 

The one-stage approach   

So far, all the methods discussed handled detection as a classification problem. This was 

achieved by building a pipeline where first, object proposals are generated and then these 

proposals are sent to classification and regression stages. The network does not look at 
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the complete image. Instead, it focuses on parts of the image which have high 

probabilities of containing the object.  Several other methods pose detection as a 

regression problem. These methods implement a one-stage approach which produce 

bounding boxes in an end-to-end fashion. In this approach, classification and regression 

is done in a single shot using regular and dense sampling with respect to locations, scales 

and aspect ratio. The "You Only Look Once" (YOLO) (Redmon, Divvala, Girshick, & Farhadi, 

2016) object detector was one of the first models that implemented the one-stage 

approach. It is considered an extremely fast network that uses a single feedforward 

convolutional network to directly predict object classes and locations. YOLO, (shown on 

figure 17), divides each image into a fixed S x S grid, within each cell of the grid we take B 

bounding boxes. For each of the bounding box, the network outputs a class probability 

and offset values for the bounding box. The bounding boxes having the class probability 

above a threshold value is selected and used to locate the object within the image. 

 
Figure 17 -The YOLO model (Redmon et al., 2016) 

YOLO is a very fast network. However, it is not good at recognizing irregularly shaped 

objects or a group of small objects due to a limited number of bounding box candidates. 

The "Single Shot Detector" (SSD) (Liu et al., 2016) object detector is designed in a way that 

overcomes these problems and successfully achieves a good balance between speed and 

accuracy. The SSD network is able to detect objects of various sizes by using pyramidal 

feature hierarchy. SSD uses the VGG-16 model as a backbone, it takes an image as input 

which passes through multiple convolution layers with different filter sizes. Feature maps 

from conv layers at different positions of the network are used to predict the bounding 

boxes. They are processed by a specific convolution layers called extra feature layers, to 

produce a set of bounding boxes which are similar to the anchor boxes of the Fast R-CNN. 

For each bounding box (shown on figure 18), the model produces a vector of probabilities 

corresponding to the confidence over each class of object. In order to handle the scale, 

SSD predicts bounding boxes after multiple conv layers. Since each conv layer operates at 

a different scale, it is able to detect objects of various scales. 
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Figure 18 -An example of how the anchor box size is scaled up with the layer index ℓ, the 

scale increase from 0.2 to 0.9 as moving forward (deeper) in the layer. 

Although the one-stage detectors have made good progress, their accuracy are still lower 

than that of two stage methods (Lin, Dollár, et al., 2017). The main reason for this gap is 

that, two-stage detectors use a large amount of proposals for each object.  

More specifically, one-stage detectors perform poorly in data with extreme class 

imbalance and also struggle to detect small objects. The RetinaNet is designed to solve 

these problems.  

 

2.4.2 RetinaNet 

Focal loss for dense object detection, known as RetinaNet, is a simple one-stage unified 

object detector which works on dense sampling of object locations in an input image. The 

model consists of a backbone network and two task-specific subnetworks. The backbone 

network relies on a pre-trained network such as ResNet and it implements the concept of 

feature pyramid network (FPN) (Lin, Dollár, et al., 2017). The output of the FPN is feed 

into two subnetworks, which perform convolutional object classification and 

convolutional bounding box regression. 

FPN 

Feature Pyramid Network (FPN) is a feature extractor designed for pyramid concept with 

accuracy and speed in mind. It generates multiple feature map layers that are used as 

multi-scale feature maps with better quality information than the regular feature pyramid 

for object detection. FPN includes a bottom-up and a top-down pathway.  
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Figure 19 - (a) Using an image pyramid to build a feature pyramid. Features are 

computed on each of the image scales independently, which is slow. (b) using only single 

scale features for faster detection, e.g. Fast-RCNN. (c) An alternative is to reuse the 

pyramidal feature hierarchy computed by a ConvNet as if it were a featurized image 

pyramid, e.g. YOLO. (d) proposed Feature Pyramid Network (FPN) is fast like (b) and (c), 

but more accurate, e.g. RetinaNet. feature maps are indicated by blue outlines and 

thicker outlines denote semantically stronger features.(Lin, Dollár et al., 2017) 

The bottom-up pathway is the regular convolutional network for feature extraction. As 

we go up, the spatial resolution decreases as well as the semantic value for each layer 

increases. As a result, by using the top layers more high-level structures can be detected. 

However, although the bottom layers are in high resolution there are not selected for 

object detection, since their semantic value is not high enough to justify its use. In 

addition, using these layers in this form will slow-down the speed of the network and will 

hurt the performance. Hence, only upper layers used for detection. As a result small 

objects are hard to detect. 

The top-down pathway constructs higher resolution layers with a semantic rich layer. 

Using nearest neighbor up sampling, the last feature map from the bottom-up pathway is 

rescaled to the same scale as the second-to-last feature map. These two feature maps are 

then merged by element-wise addition to form a new feature map. This process is iterated 

until each feature map from the bottom-up pathway has a corresponding new feature 

map connected with lateral connections. The top-down pathway and lateral connections 

produces a multi-scale feature representation in which all levels are both semantically and 

spatially strong, including the high-resolution levels. As a result, this property enables a 

model to detect objects across a large range of scales by scanning the model over both 

positions and pyramid levels, providing better performance in accuracy.  
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Figure 20 - RetinaNet structure, (a) using ResNet as backbone network, (b) FPN, (c)  

Following the FPN, at each feature map layer anchor boxes are generated in different sizes 

and aspect ratio, feeding into two subnetworks. The first performs convolutional object 

classification and the second performs convolutional bounding box regression. 

 

Detecting a small object at high-resolution levels creates a problem since foreground and 

background classes are extremely imbalanced. As a result, it hurts the performance of the 

detector since most of the proposal regions can be easily classified as background and 

contribute no useful learning information, since the large portion of the input is 

background, they can overwhelm the loss and computed gradients and lead to 

degenerated models. The RetinaNet overcomes this problem by using a re-designed loss 

function named Focal loss for the classification task. 

 

 

Focal loss  

The focal loss (FL) is a novel loss function that was first proposed in (Lin, Goyal, Girshick, 

He, & Dollár, 2017) in order to handle one stage object detection scenario where the 

network suffers from extreme foreground and background class imbalance (equation 8). 

The loss function is reshaped to down-weight easy examples and thus focuses training on 

hard negatives. To do this a modulating factor (1 − 𝑝�̂� )𝛾 is added to the original cross-

entropy loss function. Additionally, an 𝛼 parameter is added to deal with the imbalanced 

number of examples per class, but it doesn't contributes to differentiate between easy 

and hard examples. 

  𝐹𝐿(𝑝�̂�|𝑦𝑏
𝑡𝑟𝑢𝑒) = {

−𝛼 ∗ (1 − 𝑝�̂� )𝛾 ∗ log(𝑝�̂�)          , 𝑦𝑏
𝑡𝑟𝑢𝑒 = 1

−(1 − 𝛼) ∗ 𝑝�̂�
𝛾 ∗ log (1 − 𝑝�̂�)   , 𝑦𝑏

𝑡𝑟𝑢𝑒 = 0
                     (8)  

When an example is misclassified and 𝑝�̂� (probability of ground truth class y) is small, the 

modulating factor is near 1 and the loss is unaffected. As 𝑝�̂� goes to 1, the factor goes to 

0 and the loss for well-classified examples is down-weighted. The focusing parameter 𝛾 

smoothly adjusts the rate at which easy examples are down-weighted. When 𝛾 = 0, focal 

loss is equivalent to cross-entropy. When 𝛾 is increased, the effect of the modulating 

factor is likewise increased.  
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Figure 21 - Focal loss Vs. Cross-entropy loss (𝛾 = 0) (Lin, Goyal, et al., 2017)  

Since objects in the image can be predicted by multiple anchor boxes, RetinaNet selects 

at most 1000 anchor boxes per class with the highest probability score from each FPN 

level. In order to remove duplicated anchor boxes, it applies, non-maximum-suppression 

(NMS) (Neubeck & Van Gool, 2006) algorithm for each class, which iteratively chooses an 

anchor box with the highest probability score and removes any overlapping anchor boxes 

with an intersection over union (IoU) greater than 0.5 (Ren et al., 2015),(Girshick et al., 

2014). In the final stage, for each remaining anchor, the regression subnet gives offset 

predictions that can be used to refine the anchor to obtain a bounding box prediction. 

Similar to the Fast R-CNN regressor, the convolutional bounding box regression subnet 

output four numbers, the first two numbers specify the offset between the centers of 

anchor and ground-truth object, while the last two numbers specify the offset between 

the width and height of the anchor and the ground-truth. The second subnetwork 

performs convolutional object classification. 

 

2.5 Image detection in agriculture using deep learning 
Agricultural objects detection is an extremely challenging task due to the highly variable 

and unstructured nature of both the objects (variable shape, color, size) and environment 

(illumination, adverse weather ) and the presence of obstructions (leaves, branches, dust, 

insects) and other unavoidable image noises (Pereira et al., 2017), (Koirala et al., 2019a), 

(Kamilaris & Prenafeta-Boldú., 2018).  

Fruits detection based on supervised machine learning methods has yielded better results 

than simple image processing techniques (Koirala et al., 2019b), (Guo et al., 2016), which 

were based on hand-engineered features to encode visual attributes. Although it requires 

a strong computational resource and a great resource of labelled data for training, it 

provides a promising method. Detectors have been developed with a wide variety of 

strategies, from classification by using low-level keypoint extractions to segmentation and 

detection (Koirala et al., 2019b), (Guo et al., 2016), (Kamilaris & Prenafeta-Boldú., 2018) . 

A summary of research that uses deep learning with convolution neural network approach 
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as the main method of recognition is presented in the following section, in particular - 

classification, object detection and yield estimation. 

2.5.1 Object classification  

Various studies in the agriculture field have applied classification using convolution neural 

networks (Guo et al., 2016), (Koirala et al., 2019a), (Kamilaris & Prenafeta-Boldú., 2018), 

(Pereira et al., 2017). The studies (Tables 1, 2)  were performed on different types of crops 

and used various techniques that combine convolution neural network algorithms, 

starting from basic networks AlexNet (Reyes, Caicedo, & Camargo, 2015), (Lee, Chan, 

Wilkin, & Remagnino, 2015), (Yalcin, 2017)  and LeNet (Amara, Bouaziz, & Algergawy, 

2017)  up to deep neural networks  such as VGGNet (Mortensen et al., 2016), (Dyrmann, 

Karstoft, & Midtiby, 2016) and GoogleNet (Mohanty, Hughes, & Salathé, 2016). Others try 

to build CNN classifiers by themselves (Hall, McCool, Dayoub, Sunderhauf, & Upcroft, 

2015),  (Kussul, Lavreniuk, Skakun, & Shelestov, 2017),  (Grinblat, Uzal, Larese, & Granitto, 

2016). Since standard convolution neural network were trained on regular RGB images, 

the various research on crop images was done mostly on RGB cameras. In these images 

the crop was located at the middle of the images and captured most of the image space. 

Images from a satellite multi-spectral camera were analyzed using a custom developed 

CNN that achieved 0.946 accuracy (Kussul et al., 2017). 
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Table 1 - Classification tasks with CNNS for different types of land crops. 

Crop Sensors Environment 
# train 

images 

# test 

images Algorithm Results Ref 

33 types of 
leaves 

Digital RGB camera + scanner Laboratory  

1.2 
million 

(Huh et 
al., 

2016) 

1907 

Author- 
defined CNN 

+ Random 
Forest 

0.973 

±0.006 

Accuracy 

(Hall et al., 2015) 

15 types of 
fruit leaves  

Web images Laboratory 
 

30880 

 

2589 
CaffeNet 

0.96 

Accuracy 

(Sladojevic, 
Arsenovic, Anderla, 

Culibrk, & Stefanovic, 
2016) 

14 types of 
crop Leaves 

Mobile phone HD camera Laboratory 43445 10861 GoogleNet 
0.9935 

F1 score 

(Mohanty et al., 
2016) 

Banana Leaves Wtandard digital camera Field 1850 1850 LeNet 
0.9971 

F1 score 
(Amara et al., 2017) 

Wheat, maize, 
soybeans 

sunflower and 
sugar beet 

Multi- 

spectral camera acquired from 

Landsat-8 and Sentinel-1A RS satellites 

Field 274 273 
Author- 

defined CNN 

0.946 

accuracy 
(Kussul et al., 2017) 

Barley weed Sony a7 with a 35 mm lens Field 36 12 VGGNet 
0.79 

accuracy 
(Mortensen et al., 

2016) 
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22 different 
types of crops 

Canon IXUS 220 HS with a CMOS de 
12.1 MP sensor and a 24 mm 

equivalent focal length 
Field 180 36 

CNN-HistNN 
network 

0.9 

F1 score 
(Rebetez et al., 2016) 

7 views of 
different 
plants: 

entire plant, 
branch, flower, 
fruit, leaf, stem 

and scans 

RGB digital camera Field 91758 21446 AlexNet 

0.487 

Precision 

 

(Reyes et al., 2015) 

44 different 
plant species 

- Laboratory - - AlexNet 
0.996 

Accuracy 
(Lee et al., 2015) 

White bean 

 

Hewlett Packard Scanjet-G 3110 
scanner 

Laboratory 

155 17 

Author- 
defined CNN 

0.9 

Accuracy 

(Grinblat et al., 2016) Red bean 245 27 
0.983 

Accuracy 

Soybean 380 42 
0.988 

Accuracy 

  91 types of 
weed seeds 

Standard digital camera Laboratory 3155 825 PCANet 
0.91 

F1 score 
(Xinshao & Cheng, 

2015) 

22 types of 
weed 

Data provided from different RGB 
cameras and scanners 

Laboratory 6248 4165 VGG16 
0.86 

Accuracy 
(Dyrmann, Karstoft, 

et al., 2016) 
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Wheat 

Standard digital camera Open-field - - AlexNet 

0.8368 

Accuracy 

0.8364 

F1 score 

(Yalcin, 2017) 

Barley 

0.7843 

Accuracy 

0.7715 

F1 score 

Lentile 

0.7417 

Accuracy 

0.7376 

F1 score 

Cotton 

0.8658 

Accuracy 

0.8654 

F1 score 

Pepper 

0.8728 

Accuracy 

0.8714 

F1 score 

Corn 

0.8658 

Accuracy 

0.8654 
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F1 score 

Wheat and barley Canon PowerShot G15 camera Field 4000 500 DenseNet 
0.97 

Accuracy 

(Sørensen, Rasmussen, 
Nielsen, & Jørgensen, 

2017) 

 

 

Wheat 

 

Consumer grade 12MP camera 
Field 

 

 

415 

 

 
105 

Stacked 
hour- glass 

CNN 

0.83-0.89 

for spikes 
0.88-0.96 

for 
spikelets, F1 

score 

(Pound, Atkinson, 
Wells, Pridmore, & 

French, 2017) 
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2.5.2 Object detection and yield estimation researches in agriculture 

Recently, yield estimation has gained particular attention and the latest works have 

shown impressive results in different scenarios, such as apple orchards and mango 

orchards (Koirala et al., 2019a). Much of the published work has focused on improving the 

accuracy of algorithms to accurately predict the number of fruits within images. Less work 

that relates image fruit counts to actual yield have been reported (Koirala et al., 2019a). 

In the majority of those research the problem of yield estimation is devised as a fruit 

detection task that can be formulated as a more generic object counting problem and 

solved either indirectly by using object detectors (Bargoti & Underwood, 2017a) or 

explicitly with architectures that learn to count and set up a regression problem to directly 

infer the number of object instances in the image (Rahnemoonfar & Sheppard, 2017a),  

(Chen et al., 2017). Since object detection is essential for counting, learning schemas such 

as based on deep convolution neural networks, are taking a significant part on both 

approaches of yield estimation, counting by detection and counting by regression.  

Counting by detection 

Counting by detection is considered straightforward. In order to do yield estimation, it is 

required to use a detector that detects all the instances of the object in the scene followed 

by counting all the objects. Convolution neural network detectors have been successfully 

used in the context of supervised fruit counting for yield estimation (Koirala et al., 2019a). 

The first report which uses deep learning with CNN for fruit detection was by Sa et al. (Sa 

et al., 2016) . The objective of the research was to create a neural network that would be 

used by autonomous robots that can harvest fruits. These authors implemented a multi-

modal extension of faster R-CNN architecture which was trained on color RGB and Near-

Infrared (NIR) images. The multimodal network obtains fruit detection and performs yield 

estimation much better than the existing networks (obtained a 0.84 F1 score).  Another 

study that used Faster R-CNN for yield estimation in context of fruit counting was 

presented by Bargoti and Underwood (Bargoti & Underwood, 2017a). The study included 

detection of fruits, in apple, almond and mango orchards and resulted in detecting apples 

and mangos, with a F1 score >0.9, The results were superior to work using pixel wise CNN 

segmentation and regression for apple counting (Bargoti & Underwood, 2017b) which 

achieved a 0.861 F1 score. Additional examples of research that employed a deeper CNN 

for counting yield using object detection pre-define networks can be found in (Liang et al., 

2018),(Bresilla et al., 2019) and (Lamb & Chuah, 2018) where the use of architectures of 

YOLO and SSD were implemented for detection of mango (Liang et al., 2018),  apple 

(Bresilla et al., 2019) and strawberry (Lamb & Chuah, 2018) resulting in F1 scores of 0.91, 

0.9 and 0.842 average precision (AP) respectively.   A recent research, present by Kestur 

et al. (Kestur, Meduri, & Narasipura, 2019), proposed a new deep CNN named 

'MangoNet'. The network used a full convolutional deep CNN to segment mango fruit in 

the images followed by connected object detection for fruit counting in images. Results 

of the network demonstrate the robustness of detection for a multitude of factors 
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characteristic to open field conditions such as scale, occlusion, distance and illumination 

conditions. 

Counting by Regression 

Another approach to provide yield estimation is counting by regression. This approach 

aims to directly map visual features extracted globally or locally from image patches to 

the number of object instances (Koirala et al., 2019a). With this approach, the model 

explicitly learns to count not only those crops that are seen in the image but also those 

that are occluded, by involving calculation of a correction factor for the occluded fruits, 

which results in more robust and precise estimations. A very common and simple 

implementation of the approach is to use the slope of the linear regression between the 

machine vision image count and harvest count for a set of calibration trees for fruit load 

estimation. Among the research that implemented this approach, the most significant 

works that use the regression approach for yield estimation, resulting in more than 0.9 

accuracy were  (Rahnemoonfar & Sheppard, 2017a) and (Chen et al., 2017). Additional 

research by (Stein, Bargoti, & Underwood, 2016), (Koirala et al., 2019b) also reported  

promising results using this approach. In (Chen et al., 2017) the authors designed a count 

architecture composed from three stages. In the first stage, a blob detector based on a 

fully convolutional network (FCN) extracts candidate regions in the images. A counting 

algorithm based on a second convolutional network then estimates the number of fruits 

in each region. Finally, a linear regression model maps that fruit count estimate to a final 

fruit count. The presented architecture was trained on oranges and apples and achieved 

0.97 and 0.91 ratio count respectively.  

In (Rahnemoonfar & Sheppard, 2017a), the researchers implemented a tomato fruit 

counting task. They proposed a modified version of Inception-ResNet architecture to 

output the fruit count without detection and localization of objects. The model was 

trained entirely on synthetic tomato fruit images and tested on natural images. The 

algorithm was robust to varying degrees of lighting conditions, occlusions and fruit 

overlaps and reached 91% average test accuracy. Both (Stein et al., 2016), (Koirala et al., 

2019b) deal with the task of fruit detection, localization and yield estimation in a mango 

orchard. In the first research (Stein et al., 2016), the authors combine the Faster R-CNN 

model for object detection with a monocular multi-view tracking module that relies on a 

GPS system to locate the fruit in 3D dimension, enabling a number of spatial statistics per 

tree. This improved the yield estimation resulting in an error rate of only 1.36% for 

individual trees. The second research was  published recently (Koirala et al., 2019b) and 

dealt with comparing detection results for between different architectures: Faster-RCNN, 

SSD and YOLO,  resulting with F1 scores of 0.939, 0.959 and 0.968 respectively. 

Additionally, the authors redesigned the YOLO architecture by passing the information 

from early detection layers to that of the later detection layers. This architecture known 

as MangoYOLO outperformed the previous one with 0.968 F1 score for mango detection.  
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Table 2 – Agriculture object detection research using deep learning 

Crop Sensors Environment 
# train 

images 

# test 

images Algorithm Results Ref 

Sweet pepper and 
rock melon 

Multi-Spectral and RGB cameras, the JAI 
AD 130GE and Microsoft Kinect 2 

Greenhouse 209 48 Faster R-CNN 
0.84 

    F1 score 

(Sa et al., 2016) 

 

Apple PointGrey LadyBug + strobe lightning 

Orchards 

 

729 

 

112 

 

Faster R-CNN 

 

0.904 

F1 score 

(Bargoti & Underwood, 
2017a) 

 
Mango 

Prosilica GT3300c + 

strobe lightning 

 

1154 

 

270 

 

0.908 

F1 score 

Almond Handheld Canon EOS60D 385 100 
0.775 

F1 score 

Tomato 

 
Synthetic generated images Field 24,000 

2,400 

+ 100 

real 
images 

modified 
Inception- 

ResNet 

 

0.91 

Accuracy 

(Rahnemoonfar & 
Sheppard, 2017b), 

(Rahnemoonfar & 
Sheppard, 2017a) 

 

Wheat plants root Nikon D5100 DSLR camera 

Field 

2,500 20 
Author- defined 

CNN 

0.984 

Accuracy (Pound, Atkinson, 
Townsend, et al., 2017) 

Wheat plants shoot Canon 650D cameras 1,664 20 
0.973 

Accuracy 
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Orange Bluefox USB 2 camera at 10 Hz 

Orchards 

36 35 

FCN+CNN + 
regression 

0.91 

Ratio 
counted  (Chen et al., 2017) 

 

Apple PointGrey USB 3 camera at 6 Hz 11 10 

0.97 

Ratio 
counted  

Apples 

Point Grey Lady-bug3 spherical digital 
video camera containing six 2MP cameras 
oriented to capture a complete 360-deg 

panoramic view. 

Orchards 1000 100 Pixel Wise CNN 
0.861 

F1 sore 

(Bargoti & Underwood, 
2017b) 

Strawberry Nikon COOLPX S6500 camera Greenhouse 298 75 
Author- defined 

CNN 

0.88 

mAP 

(Habaragamuwa et al., 
2018) 

Mango 

Prosilica 

GT3300c + 

strobe lightning 

Orchards 
 

1154 

 

270 

SSD based on 
VGG 

0.91 

F1 score 
(Liang et al., 2018) 

Apple webcam, DSLR camera, smartphone Orchards 50 130 YOLO 
0.9 

F1 score 
(Bresilla et al., 2019) 

Peach,  

Apple, 

 orange 

standard digital camera Orchards - - Faster R-CNN 

0.915, 0.942, 
0.902 

AP 

(Tao, Zhou, Wang, & 
Shen, 2018) 

Strawberry RGB camera Field 3640 910 SSD 
0.842 

AP 
(Lamb & Chuah, 2018) 

Green citrus RGB camera Orchards 1200 300 Faster R-CNN 
0.855 

mAP 
(XIONG et al., 2018) 
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Mango 
Basler, Canon 5 Mega-pixel RGB camera 

and Kinect camera 
Orchards 1430 300 

MangoYOLO 
based on YOLO 

0.968 

F1 score 
(Koirala et al., 2019b) 

Mango spectrum camera (RGB) Orchards 11,096 1500 
MangoNet 

based on CNN 

0.84 

F1 score 
(Kestur et al., 2019) 

Apple, litchi, navel 
orange, Huangdi gan 

Standard digital camera Orchards - - 
SSD based on 

ResNet 

0.96 

F1 score 
(Koirala et al., 2019a) 

22 types of weeds Standard digital camera Field 1274 153 
DetectNet 
based on 

GoogLeNet 

0.603 

F1 score 

(Dyrmann, Jørgensen, & 
Midtiby, 2017) 

Sugar beets and 
weeds 

JAI camera in nadir view capturing 
RGB+NIR images 

Field 1674 295 
Author- defined 

CNN 

0.97 

F1 score 
(Milioto et al., 2017) 

 

Weeds 
Multi-spectral camera, JAI AD 130 Field 1,600 - 

Author- defined 
CNN 

 

0.913 

mAP 

(Potena, Nardi, & Pretto, 
2016) 

Weeds, soil or maize 
crop 

Simulated images Field 6744 1686 VGGNet-16 
0.94 

accuracy 

(Dyrmann, Mortensen, 
Midtiby, & Jørgensen, 

2016) 

Mango 

Prosilica GT3300c + 

strobe lightning and Velodyne HDL64E 3D 
LiDAR 

Orchards 1250 250 Faster R-CNN 
0.881 

F1 score 
(Stein et al., 2016) 
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In this work we will try not only to detect all the melons in the field but also estimate the 

total yield weight. To date, most yield estimation research focused on fruit counting. 

Below we review research that estimated fruit weight using computer vision. 

Fruit weight estimation using computer vision 

Estimating total yield in terms of weight is a complex task that requires estimation of fruit 

size together with the fruit amount in field. This require first fruit detection. Fruit weight 

can be correlated to fruit dimensions in many fruits. Such a relationship allows fruit weight 

to be estimated using machine vision, given a measure of camera to fruit distance (Koirala 

et al., 2019a).  

This relationship was implemented in (Stajnko, Rakun, & Blanke, 2009) where the authors 

proposed a model for estimating apple fruit yield at harvest, based on segmentation that 

relied on color, shape and texture image analysis. The model provided simple counting of 

apples and measurement of their diameters needed for objective modelling of forecasting 

yield. The forecasting yield was based on the formula:  

    𝑌𝑡 = 𝑁 × 𝑎 × 𝐷𝑏      (8) 

where 𝑌𝑡 represents the yield per tree, N the number of fruits per tree, D average diameter 

and a, b constants depending on apple variety  (Stajnko et al., 2009). Another researcher 

that uses the correlation between weight fruit and its lineal dimensions was presented in 

(Calixto, Neto, da Silveira Cavalcante, Aragão, & de Oliveira Silva, 2019), where the weight 

of yellow melons were estimated using an RGB image. The authors detect melon's 

contours by using an image processing method called Otsu (Otsu, 1979)  which separates 

the melon from the image background, allowing to calculate the area of the melon. By 

using area-based linear regressions, it was possible to predict the weight of each melon in 

kilograms (Calixto et al., 2019) followed by estimating the total yield weight. Results 

indicated an average absolute error inferior to 0.05 kg in weight measurement. 

ANN has been used to predict total weight by regressing the inputs of fruit segmentation. 

In (Cheng, Damerow, Sun, & Blanke, 2017) , the researchers extract  four features from 

segmented image : total cross-sectional area of fruits, fruit number, total cross-section 

area of small fruits and cross-sectional area of foliage. The features were used as inputs 

to a back propagation neural network (BPNN) which predicted the total weight yield.  

Another study that used ANN for estimating fruit yield (Rahman, Robson, & Bristow, 2018) 

the potential of high-resolution satellite imagery to estimate yield of mango by integrating 

both geometric (tree crown area) and optical (spectral vegetation indices) data using 

artificial neural network (ANN) model was evaluated. 

For the best of our knowledge, deep learning has yet to be applied to such tasks of fruit 

estimation (Koirala et al., 2019a). In practice, there are several recent researches that 

deals with the task of estimating fruit yield in terms of weight, with the use of computer 
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vision methods such as image segmentation or implementation of Otsu's method. 

However, most of the current work focus on yield estimation based on fruit counting. 
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3. Methods 
The research goal was to develop a pipeline algorithm for detection and yield estimation 

of melons in the agricultural environment using color images acquired from a digital 

camera mounted on an unmanned aerial vehicle. The system receives as input an aerial 

RGB image of a melon field, and the output is a report that includes each melon's location 

and weight.   

In order to build such a system, we performed an experiment in which we acquired images 

(2018) for system training. In addition, we used images from two previous seasons (2016, 

2017) to enrich the data we have in our hands and to provide a more robust system.   

As part of the development, two different systems have been developed. The first system 

(described in chapter 4) relies on an algorithm pipeline composed of a classical and light 

CNN algorithm that requires less computational effort. To solve drawbacks that arise from 

the classical region proposal and the nature of a hybrid classical/CNN scheme used in the 

first system a second system was suggested. This system relies on an advanced deep 

learning classification schema requiring greater amount of computational power 

(described in chapter 5).  

Both systems consist of the three following sequential main stages: 1) melon 

recognition\detection, 2) feature extraction, 3) yield estimation. The implementation of 

the first two stages in each system was different. The yield estimation stage was identical 

in both systems and was based on a linear regression.  

3.1 First method, research narrative and training   
For training and testing of the first system images from 2016, 2017 were used (2 images 

from 2016 and 3 images from 2017). During the training of the second system we used 

only 4 images from 2018 season, which contain an overall of 4000 labeled melons. For 

testing the performance of the second system, we selected different environments from 

all three seasons. One image from each season of 2016 and 2017 and two images from 

2018 season were used for the testing. 

The difference in the systems resulted in differences in trainings needs. Starting with the 

first system, (chapter 4) the first step of the algorithm dealt with melon recognition. Since 

the melons cover only a small portion of the field, there are relatively rare targets among 

other possible objects in the UAV image. To reduce unneeded computational effort, the 

recognition process for a melon target was split into two sub-stages: region proposal, and 

region classification. Regions of interest (ROI) were found using the Viola–Jones (VJ) 

algorithm. For the classification task an CNN pretrained network was used. The 

recognition process was trained with 3031 negative images (without a melon) and 1933 

positive images (with melon) that were extracted from 2016 and 2017 season images. 

During the training process several augmentation techniques were applied to increase the 

number of training samples to 44,256 positive images and 43,168 negative images 

(without a melon). After finding a candidate for ROI, each proposed region undergoes a 
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classification process using a pretrained CNN trained by transfer learning, resulting in an 

average precision of 0.82 and F1 score of 0.85.  

For each ROI classified as a melon, the melon's geometrical features were extracted by 

fitting an ellipse for the melon contour. The ellipse-fitting process was achieved by 

minimizing a cost function related to the region homogeneity between the melon and the 

background using a gradient descent method. The weight of each melon was predicted 

using the feature size of the melon in a regression model trained to estimate the weight 

of a single melon.  

Testing resulted in an individual melon weight accuracy of 16%. Analyses revealed this can 

be improved to 4% by accurate estimation of local ground sample distance.  

3.2 Second method, research narrative and training   
Reviewing the first system, it was possible to identify that there is room for improvement 

at the melon detection stage; using an object detector based on deep neural network 

could perform better. In addition, several models for improving the ellipse-fitting problem 

were suggested, such as the Chan–Vese model for active contours that is more efficient 

in term of time processing and ellipse-fitting. These suggestions were constituted as 

guidelines for the development of the second system. Since acquired images were too big 

a pre-processing activity was necessary. Hence, the system splits each image to grids of 

ten by ten sub-images. After each sub-image is separately processed, the algorithm 

recomposes the original image by using the initial coordinates of each sub image in the 

original image. This results with a complete image with all the detected melons anchor 

boxes coordinates. To avoid duplicate identification of melons which were located at the 

overlapping areas between two images a non-maximum-suppression (NMS) algorithm 

was applied. Current state of the art deep convolution neural networks (DCNN) are 

challenged to detect objects in the constraints we had - the images contain an unbalanced 

ratio between the background and the melons, and in addition, the size of the melons is 

small. RetinaNet DCNN was applied to overcome these limitations and provide the 

required accuracy. The network was modified and then fine-tuned using the transfer 

learning method. 4220 labeled melons taken from 4 different images were used for the 

transfer learning. This data set was enlarged by data augmentation performed during the 

fine tuning process of melon fruit detector. The detection process achieved an average 

precision score of 0.92 with a F1-score more than 0.9 in a variety of agriculture 

environments. For each detected melon, feature extraction was applied by using the Chan 

Vese active contour algorithm and PCA ellipse fitting method. By using the same 

regression that was used in the first system, the weight of each melon was estimated.  

The system results for estimating the weight of a single melon measured by the mean 

absolute percentage error index achieved 16%. Analysis revealed that this can be 

decreased to 12% error with more accurate geometrical feature extraction. Overall yield 

estimation derived by summarizing the weights of all melons in the field and resulted in 

only 3% underestimation from total actual yield.    
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Abstract  
 

Monitoring plants for yield estimation in melon breeding is a highly labor-intensive 

task. An end-to-end algorithmic pipeline for yield estimation of melons from top-view 

UAV images of a melon field was developed. The pipeline has three main stages: 

melon recognition, geometric feature extraction, and individual melon weight 

estimation. The proposed regions of interest undergo a classification process using a 

pretrained convolutional neural network trained by transfer learning, resulting in an 

average precision of 0.82 and an F1 score of 0.85. For each region of interest classified 

as a melon, the melon's geometrical features are extracted by fitting an ellipse for the 

melon contour. The weight of each melon is predicted using the feature size of the 

melon in a regression model trained to estimate the weight of a single melon. The 

modified R2 value of the regression model was 0.94.  Testing resulted in an individual 

melon weight accuracy of 16%. Analyses revealed this can be improved to 4% by 

accurate estimation of local ground sample distance.  

 

Keywords: Precision agriculture, Machine learning, CNN, Active contour, Melon, 

Yield estimation. 
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Introduction 

 

Accurate yield determination is important in many agricultural tasks, such as 

phenotyping (Busemeyer et al. 2013; Fukai and Fischer 2012), maturity determination 

for logistics planning (Bargoti and Underwood 2017b); Nuske et al. 2014; Stein et al. 

2016), and disease/stress  monitoring (Lu et al. 2017; Mohanty et al. 2016; Sladojevic 

et al. 2016). 

Melons are delicate, fleshy fruits with more than 200 known species that vary in size, 

shape, texture, and color (Edan et al. 2000). They grow randomly scattered over the 

field, either individually or in small groups (Edan and Simon 1997), and are often 

hidden by leaves.  Melon breeding requires a detailed account of information at the 

field level, such as accumulated yield and its distribution, and individual information 

such as melon size and location, which are essential for connecting yield to 

treatment/melon genetics. Currently, melon yield is estimated manually, requiring 

intensive and costly human resources. Hence, automation of the yield-estimation 

process could be beneficial (Gongal 2016; Kestur et al. 2019).  

Different methods have been applied for yield estimation, including airborne 

hyperspectral imaging (Ye et al. 2007), smartphone imaging (Qian et al. 2018), Kinect 

camera imaging (Koirala  et al. 2019a), and high-resolution multispectral satellite 

imaging (Rahman et al. 2018). Some work has been done on image-based yield 

measurements in fruit, but mostly for trees or in greenhouse-growing practices using 

a static camera (Chen et al. 2017; Kestur et al. 2019; Payne et al. 2013; Rahnemoonfar 

and Sheppard 2017; Yamamoto et al. 2014). Automated yield analysis for melons can 

be achieved by applying computer-vision and machine-learning methods to an 

unmanned aerial vehicle (UAV) view of a melon field. However, in most applications, 

yield measurements have focused on counting the number of objects (Bargoti and 

Underwood 2017b); Bresilla et al. 2019; Kestur et al. 2019; Lamb and Chuah 2018; 

Liang et al. 2018; Liu et al. 2013; Nuske et al. 2014; Sa et al. 2016) or estimating their 

volume (Chaivivatrakul et al. 2010; Herrero-Huerta et al. 2015; Moonrinta et al. 2010). 

To the best of our knowledge, very few studies have dealt with actual weight 

measurements of the individual fruit (Koirala et al. 2019b).  

Yield estimation has garnered particular attention of late, and recent studies have 

shown impressive results in different scenarios, such as with apple (Bargoti and 

Underwood 2017b; Bresilla et al. 2019; Chen et al. 2017; Tao et al. 2018), orange (Chen 

et al. 2017; Tao et al. 2018) and mango orchards (Bargoti and Underwood 2017a; 

Koirala et al. 2019a; Liang  et al. 2018). These studies used computer-vision methods 

such as convolutional neural networks (CNN) to obtain results with over 0.9 precision.  

Machine-learning is extensively employed for fruit detection and recognition 

(Kamilaris and Prenafeta-Boldú 2018a; Kamilaris and Prenafeta-Boldú 2018b; Koirala 

et al. 2019b; Liakos et al. 2018) using different recognition methods, such as k-nearest 

neighbors, k-means with color information (Anisha et al. 2013; Qureshi et al. 2017), 



44 |  

 

and Faster Region-CNN (Bargoti and Underwood 2017a). Detection of almonds, 

mangoes, and apples resulted in precisions ranging from 0.7 to 0.9 (Bargoti and 

Underwood 2017a). Machine-learning techniques have also been used to estimate 

yield loss, such as a system that detects fruit on the orchard ground (Choi et al. 2013), 

and yield detection (Koirala et al. 2019b). Despite intensive research on object 

detection in agricultural environments, there are still many problems that hinder the 

implementation of agricultural applications (Gongal et al. 2015). The highly variable 

and unstructured outdoor environment, with changing illumination conditions and 

obstructions, along with the complex plant structure and variable product shape and 

size, make it hard to find a global solution for object detection in the complex 

agricultural environment (Kapach et al. 2012).  

The present work proposes a framework for the detection and yield estimation of 

melons from color images acquired from a digital camera mounted on a UAV. It 

extends our previous studies, which proposed a detection algorithm with preliminary 

results (Dashuta and Klapp 2018), and provided initial analyses (Kalantar et al. 2019). 

Here, object detection under highly variable outdoor conditions, along with feature 

extraction and models for yield prediction, are detailed in the described algorithmic 

pipeline and results are presented. The focus in this work was on the prediction of 

individual melon weight, a feature not previously investigated in yield-detection work 

which is usually dealt with by counting the number of fruit at the field/tree level. 

 

Materials and methods 
 

Field trials 

 

Melon plants for this experiment were grown in an open field in the summers of 2017 

and 2018. Seedlings were transplanted in early April in Newe Ya’ar (32°43'05.4"N 

35°10'47.7"E). The seedlings were spaced 0.5 m apart on raised beds covered with 

silver-colored plastic mulch (Ginnegar), 2 m between bed centers. The soil type was 

grumusol, and the plants were drip-irrigated and drip-fertilized to approximately 180 

L m-2 over the course of the growing season.  

 

Data acquisition  

 

A UAV hovering above the site was used to acquire the data. To improve image 

detection, foliage coverage was reduced by stopping irrigation 1 week prior to 

acquisition. Acquisition was performed at midday on 17 Aug 2017, and when , 2018 at 

the fruit-ripening stage. RGB images were taken with a Sony ILCE-5000 camera 

mounted on a drone (Quad-Copter) hovering about 15 m above the field, with the 

camera facing vertically downward, of a 280 m x 15 m area. Before starting the image 

acquisition, 30 melons with different shapes, sizes, and colors were randomly tagged 
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in the field and used for ground-truth data. These melons were analyzed in the 

laboratory after field image acquisition with a "Tomato Analyzer" tool (Gonzalo et al. 

2009). The analysis provided a dataset of ground-truth geometrical features for each 

melon. The data acquired in 2018 were used to validate the statistical model by cross-

validation (Hawkins 2004). 

 The images were saved in .jpg format with a resolution of 3064 × 5456 pixels. 

Overall, there were thousands of highly diverse melons. The variation in the dataset 

ensured the modeling of a robust and accurate detection algorithm that would 

generalize well under outdoor environmental conditions. 

A typical UAV image is presented in figure 1. For the sake of training and validation of 

the extraction of geometrical features, 1056 melons were randomly chosen and 

manually tagged in the images. In addition, to tie mass to geometry, an additional 30 

melons were randomly chosen and tagged with signboards, each with a different 

character (with different font size and thickness) which enabled their recognition in 

the UAV images. An example of such a tagged melon is shown in Fig. 1. 

 
 

 

Fig. 1 A typical UAV image. In the black box, example of a selected melon which was 

labeled with a sign with the letter "N" to allow its recognition in the UAV image. This 

melon was then weighed in the laboratory providing accurate ground truth data. 
 

Data augmentation  

 

To train the cascade object detector, 3031 negative training images (of background) 

and 1933 positive training images (of melons) were created. CNN training was based 

on 1383 of the positive, and 1349 of the negative training images. All melons were 
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randomly selected. Augmentation techniques were used to increase robustness from 

every single training image; 31 additional, new images were produced by subjecting 

the training image to every single combination of the following transformations: 

rotate by 0o, 90o, 180o or 270o, reflect about a vertical axis (or not), convolve with a 

Gaussian blur kernel (or not), add Gaussian noise (or not). This augmentation resulted 

in a training set with 44,256 positive images (with melon) and 43,168 negative images 

(without a melon). An example of data augmentation on a single positive training 

image is presented in Fig. 2. 

 

 
Fig. 2 Each row contains the input image and its possible rotations and reflections. 

The first row has no noise and no blurring applied to it, the second row has only 

blurring applied, the third row has only noise applied, and the fourth row has both 

noise and blurring applied  

 

Metrics 

 

The following metrics were used to evaluate the developed algorithms.  
 

Goodness of geometrical feature extraction 

 

Detection performance was evaluated using recall and precision indicators together 

with the F1-score metric. A fruit detection is considered to be a true detection (true 

positive, TP) if the predicted and ground-truth bounding box had an intersection over 

union (IoU) greater than a fixed threshold (Bargoti and Underwood 2017b). False 

detection (also denoted as false positive, FP), refers to an algorithm’s mistake in 

predicting background as a melon. A miss by the algorithm (denoted as false negative, 

FN), refers to its failure to detect a real melon. Precision indicates the fraction of the 

algorithm’s predictions that are melons. Recall is the fraction of melons in the image 

that was detected by the algorithm. Increasing recall usually comes at the expense of 

precision. The harmonic mean so-called F1 score provides a balance between the two.  
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 Precision–recall curves depend upon the IoU threshold. In previous work, Zhu 

(2004) suggested using the average precision (AP) as a figure of merit for algorithm 

accuracy,  such that:  

 

                                               ( ) ( ) ( )1
n

AP R n R n P n = − −                                        (2)  

where n is the number of recognized melons. AP is a summation of the precision–

recall curve and is calculated as the weighted mean of the precisions achieved at 

each threshold, with the increase in recall from the previous threshold used as the 

weight. The AP measurement has been used in the Pascal visual object classes (VOC) 

challenge, which is considered a benchmark in visual object category recognition and 

detection (Everingham et al. 2010).  

To estimate the goodness of extraction of the melons' geometrical features and the 

ellipse border, labeled melons were tagged manually such that the label was the actual 

contour of the melon section. For each detection, the IoU was calculated between a 

binary mask in the labeled fruit borders to a binary mask in the ellipse border, such 

that it reflects the goodness of the extraction of the geometrical borders. 

 

 Regression quality 

 

A regression model was developed to tie the melon's geometrical features to its 

weight. An adjusted 2R statistic was used to avoid dependency on the number of 

terms used (Montgomery 1997): 

                                                    
( )2

/
1

/ ( 1)
Adj

SSE n p
R

SST n

−
= −

−
                                           (3)  

 

where SST is the total sum of squares and SSE is the sum of squares of residuals, the 

number of points is n = 30, and the number of parameters is p = 2.  

 

Algorithm  
 

The proposed algorithm pipeline for automated yield prediction from RGB images of 

a melon field includes the following three sequential main stages (Fig. 3): 1) melon 

recognition, 2) feature extraction, 3) yield estimation. The input for the system are the 

RGB images of a melon field, and the output is a report that includes each melon's 

location and weight. Each stage is based on results from the previous stage.  

The algorithm was implemented on a standard laptop equipped with an Intel Core i7-

7500U, 64-bit double-core 2.9 GHz CPU, 8 GB memory running on the Microsoft 
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Windows 10 system. Efficient processing was emphasized along development to avoid 

the need for using a GPU.  

   

 

 
Fig. 3 Algorithm pipeline for automated yield tracking 

   

Melon recognition  

 

The first step of the algorithm dealt with melon recognition. Since the melons cover 

only a small portion of the field, they are a relatively rare target among other possible 

objects in the UAV image. To reduce unneeded computational effort, the recognition 

process for a melon target was split into two substages: region proposal (1A), and 

region classification (1B).  

 

Candidate region proposal  

 

“Candidate” regions suspected as "melon" regions of interest (ROIs) were proposed 

by running a sliding window over the entire input image. This requires an exhaustive 

search and therefore must be implemented with low time complexity. The step was 

also designed to have a high recall, at the expense of low precision. The Viola–Jones 

face detector (Viola and Jones 2001) was chosen to realize this coarse preliminary 

detection. The Viola–Jones detector includes a cascade object detector composed of 

an ensemble of a number of weak classifiers. The cascade object detector is arranged 

in stages with increasing complexity. The role of each stage is to decide whether the 

current window is definitely not an object. If a stage decides that the current window 

is not an object, the remaining stages are not evaluated, so only true object windows 

trigger the entire cascade of stages. This mechanism ensures low computational 

complexity. The feature type selected for the detector in the Matlab implementation 

was a histogram of oriented gradients (Dalal and Triggs 2005), which was found 

suitable for capturing the elliptic nature of the melon.  

 

 

 



49 |  

 

Region classification 

 

Having suspected melon candidates, the algorithm classifies the suspected regions 

using a CNN schema Error! Reference source not found.. This was performed as a 

‘transfer-learning’ methodology (Li et al. 2016) using pretrained Matlab 

implementation on the CIFAR-10 dataset (Krizhevsky 2009), a 10-category 32 x 32 

color image dataset. The final fully connected layer, which is essentially an image 

classifier based on a 64-dimensional feature vector produced by the hidden layers, 

was changed from a layer with output size of 10 (the original dataset had 10 classes) 

to one with an output size of 2 labels—melon and background. Replacing the final 

layer also implies that its weights are randomly initialized  while the remaining 

previous layers keep their weights. In accordance with the transfer-learning 

methodology, the learning rate for the weights in the final layer is 20 times higher than 

the learning rate of the previous layers. This implies that most of the learning is done 

at the final layer, while the previous layers adjust only slightly. The structure of the 

CNN net is presented in Table 1. Each ROI classified as containing a melon was further 

processed to derive melon features in the next stage. 

 

Table 3 The architecture of the convolutional neural network used as the region 

classification model 
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Geometrical feature extraction 

 

The outcome of the first stage is the set of ROIs containing a single melon. Using the 

pre-knowledge that the shape of each individual melon can be well approximated by 

a spheroid (Heinzen et al. 1998), the top view of the melon contour should be 

recognized as an ellipse. The aim is to fit an ellipse model to the melon’s contour, from 

which the melons’ geometrical features are derived.   

Once the ellipse with the best fit for each detected melon is derived, the feature 

extraction is trivial. The ellipse partitions the patch into two regions: inner region 

(inside the ellipse) and outer region (in the proposed candidate region, outside the 

ellipse), using the following decision rule: pixels in the inner region are classified as 

‘melon’ and pixels in the outer region are classified as ‘background’.  Every possible 

ellipse can be parametrized by five parameters: semi-major axis ( c ), semi-minor axis 

Layer Layer type Properties 

1 Input image layer 
InputSize = [32,32,3], Normalization = 

’zero-center’ 

2 Convolution 2D layer 

FilterSize = [5,5], NumChannels = 3, 

NumFilters = 32, Stride = [1,1], PaddingSize 

= [2,2,2,2] 

3 Rectified linear unit layer  

4 Max pooling 2D layer 
PoolSize = [3,3], Stride = [2,2], PaddingSize 

= [0,0,0,0] 

5 Convolution 2D layer 

FilterSize = [5,5], NumChannels = 32, 

NumFilters = 32, Stride = [1,1], PaddingSize 

= [2,2,2,2] 

6 Rectified linear unit layer  

7 Max pooling 2D layer 
PoolSize = [3,3], Stride = [2,2], PaddingSize 

= [0,0,0,0] 

8 Convolution 2D layer 

FilterSize = [5,5], NumChannels = 32, 

NumFilters = 64, Stride = [1,1], PaddingSize 

= [2,2,2,2] 

9 Rectified linear unit layer  

10 Max pooling 2D layer 
PoolSize = [3,3], Stride = [2,2], PaddingSize 

= [0,0,0,0] 

11 Fully connected layer InputSize = 576, OutputSize = 64 

12 Rectified linear unit layer  

13 Fully connected layer InputSize = 64, OutputSize = 2 

14 Softmax layer  

15 Classification output layer 
OutputSize = 2, LossFunction = ‘cross-

entropy’ 
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( a ), centroid x coordinate ( 0x ), centroid y coordinate ( 0y ), and angle of tilt ( ). 

Finally, the contour of every melon in the field can be approximated as an ellipse:   

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

0 0 0 0

2 2

cos sin sin cos
 = 1

x x y y x x y y

a c

      − − − − + −   +     (4)                     

 

 The five parameters defining the ellipse are a point in 5   such that, every 

point 5

0 0( , , , , )a c x y = x  in the parameter space corresponds to a single ellipse 

(single solution) in the given ROI. To derive these parameters, the following algorithm 

is proposed; first, an initial ellipse that fits the contour is derived, then parametrization 

is conducted, followed by solution optimization using a cost function minimization 

problem (Dashuta and Klapp 2018).  

 

Finding the initial ellipse 

 

Finding the initial ellipse for each ROI included the following three main stages:  

1. The input ROI is segmented using the k-means clustering algorithm Error! 

Reference source not found. with two centroids for melon and background. The 

set of data points that are clustered by the k-means algorithm are the RGB pixel 

values of all pixels in the image. The k-means algorithm is set to repeat three times 

(for different initial centroids). After clustering, a heuristic rule is applied to decide 

which cluster corresponds to the melon and which cluster corresponds to the 

background by computing the average distance between the spatial coordinates 

of pixels in each cluster to the center of the image: ( ) ( ), 0.5 ,0.5x y W H= , where 

W is the input image’s width and H is the input image’s height. Assuming the 

melon is located roughly at the center of the input image, the cluster with the 

lower average distance to the center of the image is chosen as the melon cluster. 

Only the largest connected (melon) component present in the binary mask is left. 

Figure 4a shows eight different arbitrary melons. The resultant binary mask is 

presented in Fig 4b.  

2. The obtained melon binary mask is used to approximate the blob in the center, 

corresponding to the melon, by an ellipse using principal component analysis 

(PCA) (Paplinski and Wijewickrema 2004). To ensure computational efficiency, the 

binary mask is first decimated. This is achieved by constructing a binary decimation 

mask where in each row, every 
thd pixel is set, and in each column, every 

thd pixel 

is set, where the decimation factor d  is the smallest co-prime with H or W . The 

segmentation mask and the decimation mask are logically AND-ed to receive the 

decimated segmentation mask (Fig. 4d). From this point, only the spatial 
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coordinates of the pixels that are set in the decimated segmentation mask are 

used as the sample set.  

3. To determine the initial ellipse, the mean of the sample set ( ),x y =μ is 

computed. Then, PCA (Tseng and Yun 2009) is performed on a mean-centered 

sample set. The PCA algorithm returns a set of two normalized eigenvectors 

(arranged as two columns in a matrix) and their two corresponding eigenvalues: 

 

                                   ( )
1 2

1 2 1 21 2
 = , 1, ,

x x

y x

v v
V

v v
   

 
= =   
 

λ                                 (5)                     

 

        

The ellipse parameters are then estimated according to the following formulae:

12a =       
22b =    0 xx =   

0 yy =   ( )1 1arctan /y xv v =  . Examples for the 

resultant initial ellipses are presented in Fig. 4d.  

 
Fig. 4 Examples of the initial ellipse generation algorithm. From left to right: (a) input 

image; (b) segmentation mask from k-means (largest connected component only), 

where the black pixels belong to the set identified as ‘melon’; (c) decimated 

segmentation mask; (d) output initial ellipse imposed on the input image 
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 Finding an accurate ellipse parameter     

 

To determine the optimal ellipse parameter that fits the melon's border, the 5-

parameter active contour cost function was minimized. Assuming the melon is distinct 

from the background, the minimization criteria rely on the inner (melon) and outer 

(background) color. If the melon and the background each have their own 

characteristic colors when the ellipse exactly overlaps the melon, high homogeneity is 

induced in both the inner and outer regions. A change in ellipse size or orientation 

results in increased nonhomogeneity. Therefore, the best possible fitted ellipse is 

indeed a minimum, or at least a local minimum of a cost function which minimizes 

nonhomogeneity.  

Applying a stopping criterion at a point where both inner quantities and outer 

quantities are minimized shares similarity with the Chan–Vese (Chan and Vese 2001) 

segmentation algorithm. The ellipse solution benefits from the direct estimation of 

ellipsoid parameters and results in a very high correlation with the melon's mass. In 

addition, constraining the solution to an ellipse bypasses possible errors in estimating 

the melons’ contours, due to partial occlusion of the melons by leaves. 

 The following measure, based on sample covariance matrices, was used to 

quantify homogeneity of the image region: ,IN OUTC C  are the sample covariance 

matrices computed from the sets of the pixels’ RGB-n. Note that homogeneous 

regions have low variance values, so minimizing the values in the covariance matrices 

will maximize the homogeneity. 

In color RGB images, each pixel holds three values, resulting in a 3 x 3 dimensional 

covariance matrix. The standardized generalized variance (Diago et al. 2014), defined 

as follows, was used as the cost function: ( )detdSGV C=  where C  is a sample 

covariance matrix and d is its dimensionality. The following quantities are also 

defined: ,IN OUTN N , which are the number of pixels in the inner and outer regions, 

respectively.  The suggested cost function is defined as: 

 

( )( ) ( ) ( ) ( )3 3
0 0, , , , 1 det detIN IN OUT OUTf a b x y N C N C  = = − +x                  (6)                     

 

The coefficient (0,1)   is a tunable parameter. Notice that the two terms of the cost 

function have units of “energy”, in [gray level2] units. For 0.5 1  , the outer term 

is more dominant and such a cost function will tend to prefer solutions where the 

outer region has lower energy at the expense of more energy in the inner region. This 

essentially translates to a tendency toward expansion of the ellipse outward to 

decrease the outer energy by reducing the sample size. For 0 0.5  , the inner term 

is more dominant and such a cost function prefers solutions where the inner region 

has lower energy at the expense of more energy in the outer region. This essentially 
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translates to a tendency toward contraction of the ellipse inward to decrease the inner 

energy by reducing the sample size.  

An 0.6 =  was selected to ensure that the ellipse covers all melon parts. The 

minimization process was implemeted using the gradient descent algorithm (Tseng 

and Yun 2009), which was selected since it was both easy to implement and produced 

good results. The algorithm is outlined here: 
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where initx  are the initial derived ellipse parameters, ( )0 0, , , ,n n n n n na b x y =x  is the 

current solution at iteration n , f is the cost function,  
1n

f

−=



 x xx
is the 5-dimensional 

gradient of f evaluated at the point 1n−x , and   is a tunable parameter known as 

“step size” or “learning rate”. The gradient is computed numerically by first evaluating 

f at 1n−x  and then perturbing every component of  1n−x  separately, evaluating f

again and finally taking the difference. The algorithm is terminated when it reaches a 

maximum number of iterations (200) or if the maximal error magnitude among the 5 

gradient components is lower than a threshold (0.01). At the end of this stage, the 

location of each melon in the field was derived, and the size of the melon in the image 

was extracted and is presented in centimeters. 

 

 Yield estimation model 

 

To estimate the yield, a model that ties the melon's geometry to its weight was 

developed. A spheroid model was applied using a 3D shape with same-sized width and 

depth axes (Fig. 5).  The parameters derived from the fitted ellipse in the 2D image, in 

particular, the sizes of the minor and major axes,  were correlated to the semi-height 

and semi-width of the melon based on which the melon weight was predicted.    
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Fig. 5 Ellipsoid model (Wikipedia 2019) 

 

 

 

Regression model between melon's geometry and melon's weight 

 

The regression model was built from 30 random individual melons which were both 

imaged by the UAV and measured for their weight and geometry in the laboratory. To 

estimate melons axes, each melon was cut in half along the long axes, where the 

maximum length and width were assumed as the measures of the ellipsoid axes. The 

best derived regression was: 

 

                                      
2W = 0.1096653 + 0.003397929  c a                                          (8)  

where W is the melon weight, a is the ellipse semi-width and c is the ellipse semi-

height (semi-long axis). The ellipsoid model for a melon is presented in Fig. 5.  The 

resulting weight is in linear proportion to the volumatic character, equal to 
2cV a=    

 

Regression model 

 

The regression model (Eq. 4, Fig. 6) resulted in a 2

AdjR of 0.94 (for n = 30 melons).  
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Fig. 6 Training set analysis of the regression model 

 

 

 

Converting imagery information to ellipsoid parameters 

 

The regression in Eq. 4 relies on volumetric features given in metric units. 

Minimization of the active contour resulted in ellipse parameters given in pixels and 

was translated to centimeters using the ground sample distance (GSD) measurement; 

GSD is a measure of the spatial resolution of an image and is defined as the linear 

dimension of a single pixel’s projection on the ground. The naïve first-order estimation 

for the GSD includes three measurements: 

                                                                
h p

GSD
f


=                                               (9)  

 

where h  is the altitude at which the image was acquired, p is the sensor’s pixel size, 

and f is the focal length setting at which the image was acquired. An accurate 

estimation of the GSD should consider the dependence of perspective and magnitude 

on the distance of each melon from the image center: the further a melon is from the 

image center, the smaller it appears in the image. In addition, the distance (h) depends 

on both the UAV height variation—which was not measured accurately due to the 

instability of the drone while hovering, and ground level, which is not a constant. Due 

to these problems, a-priori field calibrations using a signboard of known dimensions 

placed near each melon was used to derive a calibration ratio which was applied to 

the features of the marked melon in the image located near the signboards. For all 

other melons, the average GSD value was applied. 

Finally, the overall end-to-end yield estimation was performed individually for each of 

the individual melons in the field using the following process (Fig. 7): images were 

captured by a UAV (Fig. 7a), and postprocessed to obtain an ellipse model for each 

individual melon (Fig. 7b); using the GSD, the ellipse parameters were converted into 
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metric parameters of an ellipsoid (Fig. 7c); using the regression model (Fig. 7d), each 

individual melon’s weight was estimated (Fig. 7e). 

 

 
 

Fig. 7 End-to-end yield estimation  
 

 

Results and discussion 
 

Performance analysis was conducted for each stage: geometrical feature extraction, 

weight regression model, and yield estimation calculated as melon weight.   

 

Validation of the goodness of geometrical feature extraction 

 

Precision–recall-based analysis was conducted for two different IoU thresholds. The 

first was 0.5, as used in Pascal VOC challenges (Everingham et al. 2010), which resulted 

in relatively small fruit size with respect to the image resolution; errors in detecting 

melons were obtained, causing them to be registered as false negatives. To reduce 

the false negative misclassification, a smaller threshold of 0.2 was applied, which 

equates to a 58% overlap along each axis of the object; this has been considered 

sufficient for fruit-mapping applications (Krizhevsky et al. 2012). Lowering the IoU 

reflects inherent inaccuracies stemming from the manual labeling errors in drawing 

the borders of the training and validation sets.  

Attached melons may cause difficulty in melon segmentation.  In several cases, a single 

ellipse captured two attached melons. Similarly, when a single ellipse catches part of 

two attached melons, only the melon with the larger overlap is counted. 

The detection algorithms resulted in an average precision of 0.62 and F1 score of 0.71 

for an IoU of 0.5. Reducing the threshold to 0.2 yielded improved performance, with 

average precision of 0.82 and F1 score of 0.85. Using an IoU of 0.2 improved both the 

recall rate and precision (Fig. 8), with 87% of the tagged fruit used for the detected 

calibration. 
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Fig. 8 Average precision–recall curve from the experimental results (Kalantar et al., 

2019)  

 

 Figure 9 shows a typical UAV image after processing to identify melons and 

extracting the geometrical features of the melon's envelope. The positive 

identifications are marked by green rectangular frames, which in most cases were 

true. The ellipse border associated with the resultant geometrical features was printed 

in black. A closer look at some typical results is given in Fig. 10. Figure 10a presents a 

correct identification of melon envelopes when the melons are well separated. The 

candidate proposal (subsection 1A in the algorithm section) may be sensitive in cases 

where two melons are attached to each other. When two attached melons are 

recognized as a single melon, only one frame and one ellipse are proposed, as shown 

in Fig. 10b. The tendency for this type of error requires a parallel attachment between 

the melons. In another activity not presented here, a pile of melons was shown to be 

divisible into sub-melons when considering the expected size of a melon. In cases 

where two attached melons arrange in a "row-like" order, the candidate proposal 

recognizes two separate melons. Since the estimation of the geometrical feature relies 

on the assumption of an elliptical shape, this resulted in correct border identification 

even under partial occlusion of one melon by the other (Fig. 10c). This was also true 

when partial occlusion originated from leaves or weeds (Fig. 10d).     
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Fig. 9 A selected region in an output image. Stage 1: melon recognition – green 

bounding boxes represent the ROI classified as a melon. Stage 2: feature extraction – 

a black ellipse-shaped contour drawn around every single ROI. From this example, the 

melons covered by flora are seen to be difficult to recognize, as are melons that are 

placed very close together and overlap, which are recognized as one melon. These 

challenging cases affect the results for feature extraction leading to missing fit of the 

ellipse 

 

 
 

Fig. 10 A close look at the atypical results of the selected region in an output image. 

(a) Correct ellipse fitting. (b–d) Overcoming partial occlusion due to the elliptical shape 

assumption    

 
Validation of regression quality 

 

The validation results (Fig. 11) reveal satisfactory agreement between this setup and 

the proposed regression line (Eq. 8). The average weight estimation resulted in a 2% 

error of overweight (Fig. 12 presents the error histogram).   

 

 
Fig. 11 Validation set analysis of the regression model 
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Fig. 12 Histogram of error in weight estimation of the validation set. The kernel 

density estimation is shown as a continuous line 

 

End-to-end individual melon yield estimation – preliminary results 

 

A few of the 30 signs aimed for ground truth measurements were flipped by the wind 

during the experiments, and due to the random sampling, a few others were not 

found. A review of all of the images collected in the field experiments using the drone 

identified only 15 melons. Since the yield-estimation stage relies heavily on the melon-

detection stage, 13 of these 15 melons were selected by the algorithm. From these 13 

melons, an ellipse was adjusted during the feature-extraction process. Four melons 

were visually identified as a good match between the melon counter and the ellipse. 

The GSD metric was used to convert the pixel units to centimeter units with a derived 

ratio of 0.4 centimeters per pixel. Using this ratio, the actual yield was forecasted. A 

detailed account of the results for each melon is given in Table 2, where it can be seen 

that  most of the weight errors originated from errors in ellipse fitting. In six cases—

melons 5, 6, 9, 10, 11 and 12—the melon contours were underestimated; the weight 

estimation in these cases also tended to be deficicient. In cases where the error 

originated from a bad GSD estimation, it was corrected by evaluating the GSD locally. 

Finally, in some cases, the fitting error was damaged by occlusions caused by other 

objects in the field, such as foliage. The overall result was overestimated by 16% more 

than the actual yield. 

Table 2 Weight estimation results of individual melons 

# Semi 

major 

axis [cm] 

Semi 

minor 

axis [cm] 

Estimated 

weight 

[kg] 

Actual 

weight 

[kg] 

Delta 

[kg] 

Ellipse 

fitted 

Gap reasons 

1 9.715 6.513 1.510 1.280 0.230 good 
 

2 5.959 3.417 0.346 1.688 -1.342 good Occlusions, GSD 

3 6.804 5.145 0.722 0.578 0.144 good 
 

4 12.439 7.836 2.705 1.956 0.749 good GSD 

5 13.072 7.522 2.623 2.742 -0.119 underfit 
 

6 8.811 5.951 1.170 1.822 -0.652 underfit Viola–Jones BBOX 

not good 
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7 13.584 8.499 3.444 0.812 2.632 bad fit 
 

8 6.412 5.509 0.771 3.040 -2.269 bad fit 
 

9 6.278 5.079 0.660 1.257 -0.597 underfit 
 

10 8.261 7.227 1.576 1.550 0.026 underfit 
 

11 7.879 4.939 0.763 1.142 -0.379 underfit 
 

12 10.075 5.226 1.045 3.750 -2.705 underfit occlusion 

13 10.516 8.001 2.397 1.974 0.423 bad fit contour includes 

another melon 

 

 

 In cases where the gap between the estimated weight and actual weight could 

be explained by inaccurate GSD, variation might originate from: a variable distance 

between the drone and the ground due to variation in field flatness and/or a variation 

in flight height,  vibrations of the UAV, and wind causing movements in the drone 

while hovering. For the sake of the local GSD estimation, the metric size of the pixels 

near each melon was estimated from the targets that were located next to the labeled 

melons (Fig. 1), using the ratio between their actual size and pixel size; an adaptive 

ratio for each melon was found. To isolate the influence of possible error in 

geometrical feature estimation on the weight estimation, the five melons with the 

best-fitted ellipses were selected. Results revealed that the error was limited to about 

4% of the total actual weight with an average deviation of 50 g per melon. This implies 

that finding the correct GSD is essential to making an accurate yield estimation; such 

a space-variant calibration can rely on a grid of simple man-made rectangular plastic 

targets, which is relatively easy to implement.  
 

Summary and future works  

 

An algorithmic pipeline for yield estimation of melons from top-view UAV images of a 

melon field was developed. The pipeline includes three main stages: melon 

recognition, geometric feature extraction, and individual melon yield estimation. ROIs 

that might contain a melon are recognized using the Viola–Jones algorithm. The 

proposed regions undergo a classification process using a pretrained CNN trained by 

transfer learning, resulting in an average precision of 0.82 and F1 score of 0.85. For 

each ROI classified as a melon, the melon's geometrical features were extracted by 

fitting an ellipse for the melon contour. The ellipse-fitting process was achieved by 

minimizing a cost function related to the region homogeneity between the melon and 

the background using a gradient descent method. The weight of each melon was 

predicted using the feature size of the melon in a regression model trained to estimate 

the weight of a single melon.  

 End-to-end testing resulted in an individual melon weight accuracy of 16%, 

which can be improved to 4% by accurate estimation of local GSD. The overall yield 

was estimated by summing the weights of all melons in the field.  Ongoing work is 
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focused on improving recognition by using improved object-detection techniques, 

based on CNNs. In addition, several models for improving the ellipse-fitting problem, 

such as the Chan–Vese model for active contours (Chan and Vese 2001), are under 

examination. An automated yield analysis system could minimize the labor required 

for this task. 
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A deep learning system for yield estimation of melons using UAV images 

A. Kalantar1,2, Y. Edan1, A. Gur3, I. Klapp2   

 

Abstract Estimating yield production before harvesting is a labor intensive and almost 

impossible task, since it requires a detailed account of accumulated yield and general yield 

distribution, in addition to detailed measurements of melon size and location. This work 

presents a framework for detection and yield estimation of melons from top view color 

images acquired by a digital camera mounted on an unmanned aerial vehicle based on 

deep learning techniques. The yield estimation provides both the number of melons and 

the weight of each melon, allowing to predict the overall weight yield from the entire field. 

The system includes three main stages: melon detection, geometric feature extraction, 

and individual melon yield estimation. The melon detection process was based on the 

RetinaNet deep convolutional neural network. Transfer learning was used for the training 

to successfully detect small objects in high resolution images. The detection process 

achieved an average precision score of 0.92 with a F1-score more than 0.9 in a variety of 

agriculture environments. For each detected melon, feature extraction was applied by 

using the Chan Vese active contour algorithm and PCA ellipse fitting method. A regression 

model that ties the ellipse features to the melon’s weight is presented. The modified 2

AdjR  

value of the regression model was 0.94. The system results for estimating the weight of a 

single melon measured by the mean absolute percentage error index achieved 16 percent. 

Analysis revealed that this can be decreased to 12 percent error with more accurate 

geometrical feature extraction. Overall yield estimation derived by summarizing the 

weights of all melons in the field and resulted in only 3 percent underestimation from 

total actual yield.  

Keywords: Computer vision, Precision agriculture, Fruit detection, deep convolutional neural 

networks, Yield estimating/prediction, Weight estimating/prediction, Melon 
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Introduction  

Precise yield estimation has become an essential skill in the agricultural sector. Generation 

of yield maps enables to base agronomic decisions related to resource management and 

marketing leading to improved production. In particular, during the growing season, 

accurate yield estimation is important for farmers to assess crop yield to retailers.  

Estimating the yield production before harvesting at the single fruit level is very labor 

intensive, since it requires a detailed account of accumulated yield and general yield 

distribution, and detailed measurements of fruit size and location. Manual evaluation is 

infeasible  due to lack of human resources and the high cost of human labor (van’t Ooster 

et al., 2014).  

Significant progress in precision agriculture applications (Pereira et al., 2017)(Liakos et al., 

2018)(Koirala et al., 2019a) has been achieved using advanced technologies including 

computer vision, satellite navigation systems, remote sensing, geographic information 

systems, and unmanned aerial vehicles (UAV) (Farjon et al., 2019) 

The UAV has become an important tool for field monitoring and precision farming, it 

allows to explore the crop field in a short time to provide visual information associated 

with the yield. A prerequisite for observing and analyzing fields from UAV images is the 

ability to identify crops from image data (Milioto et al., 2017).   

Image recognition in agriculture is known as an extremely challenging task due to the 

unstructured nature of the environment and the objects (Guo et al., 2016), (Carrio, 

Sampedro, Rodriguez-Ramos, & Campoy, 2017). Interpreting a digital color image of fruits 

captured in natural field environment is highly complicated due to adverse weather 

conditions, luminance variability and the presence of dust, insects, obstructions (branches 

and leaves) and other unavoidable image noises (Pereira et al., 2017). The high variability 

in the objects which differ by shape, color, size, and texture further complicates this 

task(Patricio & Rieder, 2018). Advanced R&D has dealt with a wide range of problems in 

the agriculture field (Liakos et al., 2018),(Koirala et al., 2019a),(Guo et al., 2016). Appling 

computer vision (CV) techniques such as image recognition on images acquired from UAV, 

can provide the required information about the fruit location in the field, its size, shape 

and maturity (Carrio et al., 2017). 

Emerging new approaches of image recognition based on machine learning algorithms, 

such as convolution neural networks, together with big data technologies and high-

performance computing, creates new opportunities to unravel, quantify, and understand 

data intensive processes in agricultural operational environments (Liakos et al., 

2018),(Patricio & Rieder, 2018),(Koirala et al., 2019b) . These supervised machine learning 

methods yield better results than traditional machine learning techniques, which were 

based on hand-engineered features to encode visual attributes (Koirala et al., 
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2019a),(Grinblat et al., 2016),(Gongal et al., 2015),(Koirala, Walsh, Wang, & McCarthy, 

2019c). 

Yield estimation 

Yield estimation research has focused on improving the accuracy of algorithms to 

predict the number of fruits within images (Koirala et al., 2019a). Only few work relate 

fruit counts to actual yield (Stajnko et al., 2009),(Calixto et al., 2019),(H. Cheng et al., 

2017),(Rahman et al., 2018). In the majority of research, the problem of yield estimation 

is devised as a fruit detection task that was formulated as a more generic object 

counting problem and solved by either indirectly by using object detectors (Bargoti & 

Underwood, 2017a) or explicitly with architectures that learn to count and set up a 

regression problem to directly infer the number of object instances in the image 

(Rahnemoonfar & Sheppard, 2017a),(Chen et al., 2017). R-CNN networks for fruit 

detection resulted with  F1 scores of 0.84 (Sa et al., 2016) and 0.9 (Bargoti & 

Underwood, 2017a) while detecting apples and mangos over 112 and 270 images 

respectively, which contains between 100-1000 fruit per image. In another study 

(Bargoti & Underwood, 2017b) a pixel wise CNN segmentation and regression scheme 

showed apple counting with F1 score=0.861.  Additional examples of research that used 

a deeper CNN for counting yield using an object detection pre-defined network with 

Yolo and SSD architectures were developed for mango (Liang et al., 2018),  apple 

(Bresilla et al., 2019) and strawberry (Lamb & Chuah, 2018) detection with F1 scores of 

0.9 and average precision of 0.842. A new deep CNN named 'MangoNet' (Kestur et al., 

2019) used a full convolutional deep CNN to segment mango fruit in the images followed 

by connected object detection for fruit counting in images. Results of the network 

demonstrate the robustness of detection for a multitude of factors characteristic to 

open field conditions such as scale, occlusion, distance and illumination conditions.  

Another approach to provide yield estimation is counting by regression. A very common 

and simple implementation of the approach is to use the slope of the linear regression 

between the machine vision image count and harvest count for a set of calibration trees 

for fruit load estimation (e.g., (Rahnemoonfar & Sheppard, 2017a),(Chen et al., 2017)).   

Fruit weight estimation using computer vision 

Estimating total yield in terms of weight is a complex task that requires both accurate 

recognition of the fruits in the field and estimation of individual fruit size. Fruit weight can 

be correlated to linear dimensions in many fruits (Sa et al., 2016), (Calixto et al., 2019). 

Such a relationship allows fruit weight to be estimated using machine vision, given a 

measure of camera to fruit distance (Koirala et al., 2019a).  In another work, weight 

estimation of yellow melons was achieved using contour detection that relied on Otsu's 

segmentation (Otsu, 1979). An artificial neutral network was used in another research to 

learn the relation between fruit segmentation and the fruit weight (H. Cheng et al., 2017). 

This work presents a framework for detection and yield estimation of melons from color 

images acquired from a digital camera mounted on an unmanned aerial vehicle drone. 

The work is a step forward from previous work (Dashuta & Klapp, 2018),(Kalantar et al., 
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2019) in which a pipeline for yield estimation of melons from top view UAV images of a 

melon field was suggested. The pipeline included three main stages: melon recognition, 

geometric feature extraction, and individual melon weight estimation.  While the previous 

research (Dashuta & Klapp, 2018),(Kalantar et al., 2019) provided an end to end solution 

to determine individual melon weight, estimation suffered from inaccuracies, resulting 

from false positive detection of the melons regions. This was due to limitations of the 

relatively simple CNN classification model used and errors in the proposed active contour 

schema. In this paper, the the two step region proposal was replaced by a more accurate 

RetinaNet based neural network (Lin, Goyal, et al., 2017). Additionally, the active contour 

algorithm for feature extraction was improved. In the new model presented in this paper 

ellipse fitting by minimizing the PCA (Wijewickrema & Paplinski, 2005) is applied on the 

results of a Chan-Vese active contour (Chan & Vese, 1999), then perform.  

 

The rest of the paper is organized as follows: Section 2 details the materials and methods 

applied in the research. The algorithm is presented in Section 3. Results and discussion of 

the tested system provided in section 4. Section 5 include conclusions and 

recommendations for future work.  

 

Materials and Methods 

Dataset acquisition 

The data was acquired at midday on 23 July 2018 from a 180X260 meter open field at 

Newe Ya‘ar (32°43'05.4"N 35°10'47.7"E) in Israel. The melon plants were at ripening 

stage. 

 

 
Figure 22 – Tested melon field at Newe Ya‘ar (left), a typical image with marked melon 

(right) 

Data was collected using a “Phantom 4 Pro” UAV equipped with a color RGB camera DJI 

FC6310 type. The UAV hovered about 15 m above the field, with the camera facing 

vertically downward during the image acquisition. The images resolution were 5472 × 

3648 pixels, with each image containing hundreds of melons of different size, shape and 

color. Before image acquisition the following operations were conducted in the field:  

• Irrigation was stopped one week before to reduce foliage.  
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• Just before the image acquisition 138 melons were randomly selected and 

marked in the field by placing a sign next to them. The sign was faced up, towards 

the drone so that it could be recognized in the image. These melons were used as 

ground-truth data and were analyzed in the image processing stage by a "Tomato 

Analyzer" tool (Gonzalo et al., 2009) providing for each melon its size and weight 

characteristics.  

Since several of melons were damaged during the collecting and measuring process, it 

was measured only 116 melons. As a result an additional data that were collected the year 

before at the same place with a Sony ILCE-5000 camera mounted on a Quad-Copter drone 

was also used (Kalantar et al., 2019). This data contained 32 measured melons which were 

used later to build the yield estimation regression model. The testing process was 

conducted on an image from another dataset that was collected 2 years before  (Dashuta 

& Klapp, 2018).  

Data preparation 

To reduce computational time the images were divided into 592 × 394 sub images with a 

small overlap between the sub images to prevent loss of melon's images.  To preserve 

image aspect ratio, the height overlap was set to 30 pixels and the width overlap was set 

in the following proportion:  

 

𝑤𝑖𝑑𝑡ℎ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 30 ∗
𝑤𝑖𝑑𝑡ℎ

ℎ𝑖𝑒𝑔ℎ𝑡
    (1) 

All sub images were annotated by an expert who marked manually bounding boxes of the 

melons using a graphical image annotation tool "labelImg" version 1.8.1 (“Labelimg, 

graphical image annotation tool,” 2018).  

 

Eight images were selected, six of them from 2018 season, one of them from 2017 season 

(Kalantar et al., 2019) and one from 2016 season (Dashuta & Klapp, 2018). All images were 

subdivided into a grid of 10x10 resulted in 800 sub-images where each one of them was 

manually tagged. Four images from the 2018 season were allocated for the training 

process, the remaining four images were used for testing the model’s performance. 

 

Algorithm, transfer learning and augmentation 

The algorithm relied on transfer learning (Huh et al., 2016),(X. Wang & Schneider, 

2014),(Yosinski et al., 2014), (Krizhevsky et al., 2012),(Donahue et al., 2014) using the 

RetinaNet pre-trained CNN (Lin, Goyal, et al., 2017). The RetinaNet network was originally 

trained on the ImageNet dataset (Krizhevsky et al., 2012) and then finetuned using the 

transfer learning method.  4220 labeled melons taken from 4 different images were used 

for the transfer learning. This data set was enlarged by data augmentation preformed 

during the fine tuning process of melon fruit detector. Several types of augmentation 

were performed in different combinations including rotation, translation, shear, scaling 

and flipping operation, (Table 1).  
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The algorithm was developed on a NVIDIA GeForce GTX 1080ti GPU, Intel® Core™ i7-8700, 

64-bit six-core 3.2GHz CPU, 32 GB memory running on Microsoft Windows 10 system. 

 

 

 

 

 

Table 4 - The augmentation operations values which were observed. 

Augmentation Type Values 

minimum rotation in radians for the transform as scalar. -0.1 

maximum rotation in radians for the transform as scalar. 0.1 

minimum translation for the transform as 2D column vector. (-0.1, -0.1) 

maximum translation for the transform as 2D column vector. ( 0.1,  0.1) 

minimum shear angle for the transform in radians. -0.1 

maximum shear angle for the transform in radians. 0.1 

minimum scaling for the transform as 2D column vector. ( 0.9,  0.9) 

maximum scaling for the transform as 2D column vector. ( 1.1,  1.1) 

chance (0 to 1) that a transform will contain a flip along X direction. 0.5 

chance (0 to 1) that a transform will contain a flip along Y direction. 0.5 

Performance metrics  

The metrics used for individual melon detection and melon's weight estimation from the 

melon's geometrical features included detection performance and yield prediction. 

 

Detection performance measures  

 

The IoU metric, also referred to as the Jaccard index, is used to quantify the percent 

overlap between the target bounding box and the predicted output (Koirala et al., 2019a). 

By applying the IoU, we can determine if a detection is valid (True Positive) or not (False 

Positive) comparing to a predefined threshold. The calculation of IoU is given by the 

overlapping area between the predicted bounding box and the ground truth bounding 

box divided by the area of union between them. In this work we used IoU>0.5 which is 

considered as standard by the Pascal Visual Object Classes (VOC) challenge (Everingham, 

Van Gool, Williams, Winn, & Zisserman, 2010). This threshold was used also by (Liang et 

al., 2018) ,(J. Wang et al., 2014) for detecting fruits.  

Analyses was conducted using a common threshold equal to 0.5 for IoU (Everingham et 

al., 2010). This threshold is much higher than 0.2 which is considered sufficient for the 

fruit-mapping application (Krizhevsky et al., 2012), and provides a better localization of 

the fruit. The consideration in choosing a higher threshold despite the small melon size, 

stemmed from the fact that in further stages of the algorithm, it was necessary to 

recognize the melon by fully adapting it to the full melon fruit contour, not part of it. 

Hence, a better overlap area was required.   
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The four detection performances measures used were (Koirala et al., 2019a): Precision (P) 

indicates the fraction of the algorithm’s predictions that are melons. Recall (R) is the 

fraction of melons in the image that were detected by the algorithm. F1-score (F1) is a 

metric that balances between precision and recall by calculating the weighted average 

(harmonic mean) such that: 

                      
2

 ,      ,       1
TP TP P R

P R F
TP FP TP FN P R

 
= = =

+ + +
              (2) 

 

Where (TP) True Positive, is a true detection, a fruit detection was considered to be a true 

positive if the predicted and the ground-truth bounding box had an IoU greater than a 

fixed threshold. (FP) False positive, is a false detection, refers to an algorithm’s mistake of 

predicting background as a melon. (FN) False Negative, is a ground truth melon not 

detected, caused due to the failure to detect a real melon by the algorithm. (TN) True 

Negative, represent a corrected misdetection, and was not used since in the current 

object detection task there are many possible bounding boxes that should not be detected 

within an image. Average Precision (AP) is a summary of the precision-recall curve and is 

calculated as a weighted mean of precisions achieved at each threshold, with the increase 

in recall from the previous threshold used as the weight. The AP measure used in the 

PASCAL-VOC challenges which is a benchmark in visual object category recognition and 

detection (Everingham et al., 2010) was also used.  

Melon weight prediction  

The regression quality was evaluated using the adjusted 
2R  statistic (Miles, 2014) since it 

is more robust to the number of variables (Montgomery, 2017): 

                                                    
( )2

/
1

/ ( 1)
Adj

SSE n p
R

SST n

−
= −

−
                                           (3)  

 

Where, SST is the total sum of squares and SSE is the sum of squares of residuals, the 

number of points is n=30, the number of parameters is p=2.  

The system results for estimating the weight of a single melon was measured by the mean 

absolute percentage error index comparing the weight estimated from the image 

processing to the ground truth measured. Overall yield estimation was derived by 

summarizing the weights of all marked melons in the field and comparing to their overall 

actual weight.   

Analysis 

Evaluation for melon detection was done on four different images from different seasons 

and agriculture environments, with a total of 2,394 melons in four different environments 

(Table 3). A visualization of color and texture diversity in the different seasons is presented 

in Figure 8.  
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Table 5 – The different environmental conditions for detection evaluation 

 

A three-level qualitative analysis was performed to evaluate: 

• melons with perfectly ellipse fits or slightly underfitted/overfitted ellipse. 

• melons with ellipses that were not fitted well. 

• all melons.  

Two measures were calculated for each level: the mean absolute percentage error 

measure and the overall deviation of weight percentage. During the analysis all the 

melons were included since in practice it is almost impossible to define an outlier. 

 

 

Algorithm 

The algorithm was developed to automatically detect and estimate the weight of an 

individual melon. The input for the system is an aerial RGB image of a melon field, and the 

output is a report that includes each melon's location and weight.  The algorithm pipeline 

(Figure 2) includes the following three sequential main stages (Kalantar et al., 2019): 1) 

melon detection, 2) feature extraction, 3) yield estimation.  

 

 
Figure 23 – System pipeline for automated detection and yield estimation of melons 

Melon Detection using RetinaNet 

In our previous works (Dashuta & Klapp, 2018),(Kalantar et al., 2019) , melons were 

detected using a two stage approach. First, a region of interest (ROI) suspected to contain 

a melon was implemented using the Viola-Jones detector (Viola & Jones, 2001). Then, by 

using a predefined trained convolution neural network system, each ROI was classified 

whether it contains a melon or not. Despite the high accuracies achieved for IoU set to 

0.2, an average precision of 0.82 and F1 score of 0.85 was achieved. In some cases the 

ROIs were not accurate enough and limited the geometrical feature extraction in the next 

stage.  To improve performance, an advanced detection algorithm was applied in the 

current work. 

 
Image 1 Image 2 Image 3 Image 4 

Period 2 Years Before Year Before Current Current 

Environment lots of foliage 

and occlusions 

muddy, less 

foliage 

regular 

foliage 

lots of 

foliage 

Number of Melons 270 848 1071 205 
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Several CNN schemes were considered including Faster R-CNN (Ren et al., 2015), You Only 

Look Once (YOLO) (Redmon et al., 2016), Single Shot Multi-Box Detector (SSD) (Liu et al., 

2016) and RetinaNet (Lin, Goyal, et al., 2017) previously used for fruit detection (Koirala 

et al., 2019b). The R-CNN suffers from slow rate and minimal required target size, the 

YOLO was fast but not accurate enough, SSD performed poorly due to the extreme class's 

imbalance between the background and the melons (a minority in the image). RetinaNet 

(Lin, Goyal, et al., 2017) was applied to overcome the computational limits and the object 

size and provide the required accuracy.  

Implementation details  

The RetinaNet  algorithm was built using the Microsoft COCO dataset properties (Lin et 

al., 2014) based on the ResNet50 as backbone network (Figure 2). In order to able the 

network to detect small objects, the major modification introduced was changing the 

anchor box. The initial parameters of the network regarding the anchor box included 

boxes with areas of {322, 642, 1282, 2562, 5122} with stride of {16, 32, 64, 128, 256} on 

pyramid levels P3 to P7 respectively, for each level anchors generated with scales values 

of {20, 21/3, 22/3 } and three aspect ratios = {1:2, 1:1, 2:1}. In total nine different anchors 

were generated at each level. Since these parameters were not suitable for detecting 

small object the anchor boxes were reduced to {162, 322, 642, 1282, 2562} with stride of 

{8, 16, 32, 64, 128} along with increasing the scales parameter values to {1, 1.2, 1.6} and 

updating aspect ratio values to {1:2, 1:1, 2:1, 3:1}, resulting with twelve anchors per level. 

These changes produce smaller anchors that more tightly fit the objects resulting in 

improved detection.  

Additionally, before training the network the threshold value used to determine whether 

the box contains melon or background was set for IoU of 0.5.  

 
Figure 24 – RetinaNet implementation in the proposed pipeline 
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Compose sub images 

After each sub-image is separately processed by the RetinaNet the algorithm recomposes 

the original image by using the initial coordinates of each sub image in the original image. 

This results with a complete image with all the detected melons anchor boxes 

coordinates. To avoid duplicate identification of melons which were located at the 

overlapping areas between two images a non-maximum-suppression (NMS) (Neubeck & 

Van Gool, 2006) algorithm was applied separately from the RetinaNet. The algorithm 

removes all overlapped anchor boxes which have an intersection over union (IoU) greater 

than 0.5. 

Melon geometrical feature extraction 

The first stage provides a list with anchor boxes with their coordinates that present the 

location of each detected object in the image. Since each anchor box contains only single 

melon, we can determine the location of all detected melons in the field. 

Moreover, using the anchor boxes list, the entire image is split into many sub images 

which contain only one melon at the center of the image. This enables to perform 

geometrical feature extraction of the individual melon fruit.  

The melons geometrical features were derived from an ellipse representation of the 

melon similar to our previous work (Dashuta & Klapp, 2018; Kalantar et al., 2019). An 

improved model was developed in this work to fit an ellipse model to the melon's contour, 

from which we gain the melons geometrical features. This stage was separated into two 

sub-stages, to overcome occlusions arising mainly from foliage that disturb the elliptical 

shape. First, the free form contour was estimated using the Chan-Vese active contour 

algorithm (Chan & Vese, 1999), also known as “Active Contours Without Edges”. An 

output binary image where the fruit and the background segmented was derived. Then, 

an ellipse was fitted to the binary image using PCA method. 

 

 

Chan-Vese active contour  

The algorithm starts with an initial pre-defined contour for each melon separately. It 

evolves the contour according to equation 5 which includes four terms so that it stops on 

the boundaries of the foreground region. This is conducted using a gradient descent 

method, which in each iteration the contour shrinks or expands. 

 

1 2

2 2

1 1 0 1 2 0 2

( ) ( )

arg min ( , , )

( ) | ( , ) | | ( , ) |
inside C outside C

F c c C

Lenght C u x y c dxdy u x y c dxdy  

=

 + − + − 
                                

(5) 

The first term is considered as regularization term.  Length penalize limitation (total 

contour length (C) with weight μ1) provides the solution’s smoothness. The last two terms 

perform a pixel wise estimation to decide if the pixels belong to the inner object or to the 

background according to its gray scale u(x,y) distance from the average gray scale value 
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of the two zones denoted c1 and c2 and weights λ1, λ2 respectively. The cost function 

F(c1,c2,C) is solved iteratively. 

 

To ensure the contour belongs to the melon, an initial condition of a square contour with 

size of eleven pixels was assumed. The integrals weights set equals 1 as in  (Chan & Vese, 

1999) with the maximum number of iterations was limited to 500.  

 

 

 

Ellipse fitting 

The ellipse model is characterized by 5 parameters: Centroid x co-ordinate ( 0x
), centroid 

y co-ordinate ( 0y
), semi-major axis ( a ), semi-minor axis ( b ) and angle of tilt ( ). Where 

every point 
5

0 0( , , , , )a c x y = x
 in the parameter space corresponds to a single ellipse 

in a given anchor box.   

 

   
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2

0 0 0 0

2 2

cos sin sin cos
 = 1

x x y y x x y y

a b

      − − − − + −   +         (6)                     

 

Principal Component Analysis (PCA) method was used in order to fit an ellipse to the 

contour (Wijewickrema & Paplinski, 2005). The overall geometrical feature extraction 

process is presented in figure 4.  

 

 
Figure 25- Feature extraction process: (1) An initial contour defined at the center of each 

anchor box (2) Chane Vese active contour (3) Binary image (4) PCA ellipse fitting method 

on top of the binary image applied, as a result, geometrical feature extraction of the 

individual melon received. 

 

Yield weight estimation model 

Yield estimation relies on a regression model between the melon's geometrical 

representation by axis symmetric spheroid model (Figure 5) and the melon's weight based 

on our previous work (Kalantar et al., 2019). The parameters derived from the fitted 
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ellipse section in the 2D image, the sizes of minor and major axes, were correlated to the 

semi-height and semi-width of the melon based on which the melon weight was 

predicted.   

 

 
Figure 26 - Ellipsoid model 

 

Melon weight estimation regression model 

The regression model was built from with 30 randomly individual melons which were both 

imaged by the UAV and measured for their weight and geometry in the laboratory.  

The max height (2*c) and max width (2*a) of each melon was acquired. Table 2 presents 

correlation scores to various regression models between H,W to the weight.  

 

Table 6 – different types of regression fitted for estimating melon weight 

Type of correlation Parameters combination 2

AdjR  value 

Linear 𝑐 + 𝑎 0.914 

Area 𝑐 ∗ 𝑎 0.87 

Volume  𝑐 ∗ 𝑎2 0.94 

Logarithm log (𝑐) ∗ (log (𝑎))2 0.91 

 

The best regression was based on the 2

AdjR value. The resulting weight is in linear 

proportion to the fruit volume:  

                                      
2 = 0.1096653 + 0.003397929  Weight c a                                    (9)  

The training set results are presented in Figure 6. 
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Figure 27 - The regression model resulted with a
2

AdjR
 of 0.94 

Determining the spatial resolution of remote sensing sensor 

The regression in Eq.9 relies on volumetric features given in metric units (Dashuta & Klapp, 

2018). The minimization of the active couture resulted in ellipse parameters given in pixels 

and was translated to millimeters using the ground sample distance (GSD) measurement 

(Kalantar et al., 2019). The naïve first order estimation for the GSD includes three 

measurements: 

                                                                
h p

GSD
f


=                                                      (10)  

 

Where h  is the Altitude at which the image was acquired, p is the sensors pixel size and 

f is the focal length setting at which the image was acquired.  

In order to calculate this ratio, GPS values of each image separately were calculated to 

estimate the approximate height ( h ). The focal length and pixel size have a fixed value 

enabling to calculate the ratio for each image based on the estimated height. The overall 

regression process is illustrated in Figure 7.  

 

 
Figure 28 - Yield estimation process: stage A) represent a melon by spheroid shape - use 

pre-knowledge of melon shape, stage B) convert from 3D to 2D – the width and depth 

would be minor axes and length is the major axes,  stage C) use linear regression for 

predicting yield of each melon, stage D) generate a report for each melon location and 

yield estimation for the all field 
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RESULTS AND DISCUSSION 

Fruit detection results 

Results (Table 4) reveal an overall average precision score of 0.92 with all images obtaining 

F1-scores higher than 0.9. The best results were obtained for image 3 since its 

environment was similar to the training images environment.  

These results are better than in the previous work (Kalantar et al., 2019), in which we 

obtained 0.82 average precision and 0.85 of F1-score with 0.2 threshold for IoU. The 

improvement is due to the better detection of cluster melons and is reflected also in the 

Precision – Recall curve (Figure 9).  

 

 

 

 
Figure 29- Selected regions in output images from different seasons and environments. 

The green boxes present TP, red boxes present FP and blue boxes present FN. 

 

Table 7 - Detection results 

 
Image 1 Image 2 Image 3 Image 4 

True Positive  252 800 1032 180 

False Positive 18 48 39 25 

False Negative 35 89 12 11 
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Precision 0.93 0.94 0.96 0.88 

Recall 0.88 0.90 0.99 0.94 

F1-score 0.90 0.92 0.98 0.91 

 

 

 
Figure 9- Precision-Recall curve of melon detection IoU=0.5 

 

While detection is very promising, there are places where the algorithm failed. Observing 

the results, most of missed melon detection cases occurred when melons were occluded 

by foliage or by another melon. In some cases, the algorithm tagged stones as melons or 

dust that contained a melon that was removed but the melon’s shape was preserved. In 

addition, there were some cases where the algorithm detected melons but during the 

labeling process the labeler missed it. Another case for improvement relates to the 

process of composing the sub-images back to a major image with the NMS algorithm. 

During this process, it was noticed that in some cases melons that were placed in borders 

in one image and detected by the neural network in other overlapping image were 

cropped through the NNS process. This slightly reduced the detection performance. 

Example for this "edge effect" of the NMS algorithm presented in Figure 10. Satisfying 

results were achieved despite the relatively small fruit size with respect to the image 

resolution. 
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Figure 10 - Example of an NMS failure, left presented 2 images with detected anchor boxes 

in blue color, then the images composed into one image using NMS algorithm for 

producing final anchor boxes presented in green, a white line illustrated the composition. 

The right image presents the failure of the NMS algorithm for detecting the left melon in 

the image.   

Validation of regression quality and final yield estimation 

The regression quality test [equation 10] was conducted on 116 randomly selected melons 

from 2018 year. The selected melons were different in their size, in order to estimate the 

size of the error predicted by regression use.  

The mean absolute percentage error (MAPE) index for individual melon estimation was 

9% with an overweight overall yield estimation error of 2.9%.  

 

 
Figure 11 - Validation set analysis of the regression model (left), Histogram of error in 

weight estimation of the validation set with the kernel density estimation shown as a 

continuous (right).  

 

 

Chan-Vese performances in detecting of melon's border 

All 116 marked melons were detected by the system. The ellipse fitting for 65 of the 

melons was perfect as qualitatively assessed (Figure 12). For 33 melons the ellipse was 

not good enough, with most of them obtaining an under fitted ellipse (Figure 13B). In 18 

images an ellipse was not matched at all (e.g. Figure 13A and 13C). 
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Figure 12 - Selected region in an output image, in green presented the anchor box which 

indicates the location of the melon, in each box, an ellipse was fitted for feature extraction 

of the melon. 

The main cause of the lack of perfect ellipse fittings was the Chan Vese algorithm 

limitation, which is based on regional intensity differences which does not apply in all 

cases. In the images where the intensity difference between the fruit and the background 

was clear, the results were good. when intensities gap became lower, curve miss match 

was reflected in several situations. The most common situations occurred when the melon 

was covered by foliage (Figure 13A), or the melon was overlapped with another melon 

(Figure 13B). Another problem was related to heterogeneous color gradients of the melon 

surface (Figure 13C) resulting in partial ellipse fitting. 

         A                                       B                                             C 

           
Figure 30 - Examples for lack of ellipse adjustment caused by Chan Vese algorithm 

limitations. 

Overall and individual performances in weight estimation  

Results for each individual melon (Table 5) and overall results (Table 6) reveal that the 

melons that had good ellipse fitting achieved almost twice better estimation in each of 

the measures with an average percentage of error about ±12% (Table 6), comparing to 

melons with partial ellipse fitting,  

This deviation can be explained by the fact that it included melons with not perfect match. 

Another reason for deviation can be related to the calculation of the GSD ratio and may 

be due to an error arising from the regression equation, which originally achieved 9 

percent error of MAPE.  

 

Overall yield prediction results in 3% error estimation for all the melons. The well fitting 

melons result in an under estimation error of 2% which corresponds to the 2% error of 

the regression quality. 
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Table 8 - An example of detailed account for results for each melon 

Num 

# 

Location and Yield estimation analysis 

yCenter xCenter angle 
major 

[cm] 

minor 

[cm] 

Estimated 

Wieght 

(KG) 

Actual 

Weight 

(KG) 

Delta 

(KG) 

Ellipse 

Fitted 

goodness 

Gap analysis 

18 3369.30 4965.04 127.62 19.78 15.35 2.09 2.32 -0.23 
slightly 

underfitted 
illumination 

28 1067.02 4810.48 117.21 20.54 14.72 2.00 1.994 0.01 perfect  

29 280.04 4705.46 90.51 16.01 12.73 1.21 0.922 0.29 overfitted Chane Vese 

58 3152.33 1155.82 53.71 14.33 12.35 1.04 1.634 -0.60 underfitted occlusion 

63 1527.32 5082.48 65.19 16.24 14.19 1.50 1.672 -0.17 
slightly 

underfitted 
 

64 1811.97 5081.09 73.53 17.67 14.55 1.70 1.63 0.07 perfect  

65 1866.00 5097.28 118.77 18.56 17.53 2.53 2.72 -0.19 
slightly 

underfitted 
 

84 513.37 2801.18 26.55 18.27 14.03 1.64 1.49 0.15 overfitted  

87 3290.75 1777.26 121.67 21.37 14.57 2.04 2.378 -0.34 underfitted illumination 

88 3588.65 4839.86 147.63 16.05 14.41 1.53 1.694 -0.17 no match 
cluster 

melon 

90 2966.70 5104.94 113.93 16.81 13.18 1.35 1.618 -0.27 underfitted Chane Vese 

91 2974.83 5160.54 95.56 16.68 13.82 1.46 1.47 -0.01 
slightly 

underfitted 
 

1R 1288.31 2587.32 14.98 17.80 10.71 0.98 1.196 -0.22 perfect GSD 

3R 1236.47 4902.30 25.16 23.10 13.87 2.00 1.83 0.17 
slightly 

overfitted 
Chane Vese 

H 1369.05 2441.38 149.48 20.90 10.95 1.17 1.406 -0.23 underfitted 
occlusion+ 

illumination 

K 1193.77 3661.82 172.47 19.35 13.31 1.57 1.704 -0.14 
slightly 

underfitted 
 

L 1199.33 4510.84 122.26 22.30 13.82 1.92 1.848 0.07 perfect  

S 1440.16 147.43 10.70 20.76 12.62 1.51 1.564 -0.05 no match illumination 
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Table 9 – Weight estimation results 

  NUMBER 

OF 

MELONS 

TOTAL 

ACTUAL 

WEIGHT (KG) 

OVERALL 

DEVIATION OF 

WEIGHT % 

MAPE  

% 

GOOD 

FITTING OF 

ELLIPSE 

65 117.362 -2 12 

PARTIAL 

FITTING OF 

ELLIPSE 

51 97.014 -4 20 

OVERALL 116 214.376 -3 16 

 

 

Influence of feature extraction on the weight estimation  

 

Above we distinguished between "Good" and "Partial" ellipse fitting. The detailed 

examination of the relation between the feature extraction process and actual size of a 

single melon in these two groups revealed that the melon's minor axis extraction was 

performed less effectively than the major axis. Since the minor axis has polynomial degree 

in the regression for estimating the melon weight, it gains more influence on the final 

weight result. This explains significant gap between the yield estimation per single melon 

results and the MAPE measurement between the two ellipse fitting groups (Table 7). 

 

Table 10 - Correlation between extracted minor and major axis results with actual sizes 

of the melon, per type of ellipse fitting 

 
Good fitting 

of ellipse 

Partial fitting 

of ellipse 

Minor Axis 0.608867  0.39205 

Major Axis 0.687793  0.646899 

 

 

Conclusions and recommendations  

A deep learning system for detection and yield estimation of melons from top view UAV 

images of a melon field was developed. Detection was based on the RetinaNet, a pre-

defined deep convolutional neural network, which was trained using transfer learning in 

order to deal with detecting small objects in high resolution images such as melons from 

top view UAV images. The detection process achieved an overall average precision score 
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of 0.92, and F1-score more than 0.9 for a variety of different agriculture environments.  

Estimating the yield of a single melon measured by the MAPE index achieved 16% which 

can be improved to 12%. Overall yield estimation resulted in 3% underestimation. 

 

If improved yield performance is needed future work should apply more advanced feature 

extraction algorithms. Since the detection algorithm performed well, the Chan Vese 

method should be replaced perhaps with a CNN which can provide local segmentation of 

the melon (e.g., the U-net (Ronneberger, Fischer, & Brox, 2015)). Another direction could 

be to perform instance segmentation (e.g.,  Mask r-cnn (He, Gkioxari, Dollár, & Girshick, 

2017))  and add another layer on top of the segmentation to regress the melon’s weight. 

However, both these methods require to label images at the pixel level which is a 

complicated and labor intensive task.  
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6. Summary, conclusions and future 

research 
A system for detection and yield estimation of melons from top view UAV images of a 

melon field has been developed. The system includes three main stages: melon detection, 

geometric feature extraction, and individual melon yield estimation. The system provides 

an output that includes the estimated weight of each detected melon in the image along 

with localization and position (angle) of each melon. The system sums all the estimated 

melons weights and provides the overall weight yield of the field.  

Initially, a hybrid method classical/CNN algorithm was suggested. A pipeline composed 

from three main stages was developed; it contains melon recognition based on Viola-

Jones cascade and CNN methods, followed by feature extraction by using homogeneity 

cost function and  yield estimation using linear regression based on the extracted features.  

To train the cascade object detector, 3031 negative training images (of background) 

and 1933 positive training images (of melons) were created. CNN training was based 

on 1383 of the positive, and 1349 of the negative training images. All melons were 

randomly selected. Evaluation for melon detection was done on a total of 1056 melons 

from one image from 2016 season and one image from 2017 season. 

The initial hybrid system achieved an average precision of 0.82 and F1 score of 0.85 for 

detection and more than 4% yield estimation error. Analyzing the drawbacks of the first 

method, a second improved method which included improved stages of object detection 

and image extraction was suggested. 

The detection process of melons was based on a pre-defined RetinaNet deep 

convolutional neural network, it was trained using transfer learning to deal well with 

detecting small objects in high resolution images such as melons from top view UAV 

images. The detection process achieved an overall average precision score of 0.92, and a 

F1-score of 0.9 for different agriculture environments. The network was trained with four 

images including 4220 labeled melons from the 2018 season. During the training process, 

an augmentation technique was used in order to increase the variety of melons images. 

Evaluation for melon detection was done on four different images from different seasons 

and agriculture environments, with a total of 2,394 melons. Every melon which is detected 

by the network, is labeled using an anchor box. For each anchor box a feature extraction 

process that included two substages was applied. First, with an active contour method of 

Chan Vese an initial closed form of the melon was identified. Then, the closed form was 

presented with binary mask in order to allow full identification of the melon contour. in 

the second substage, a PCA method for ellipse fitting was perform on the binary mask. 

The melon contour features were extracted including the location and the position of the 

melon, minor and major axes size of the melon provided in terms of pixels.  At the final 
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stage, an individual melon yield estimation is provided. The weight of each melon is 

predicted using the feature size of the melon in a regression model trained to estimate 

the weight of a single melon. The weight estimation of a single melon measured by the 

MAPE index achieved 16% error. This error can be reduced to 12% with more accurate 

geometrical feature extraction. However, yield estimation of the sum of pf all melon 

weights in the field achieved deviation from the total actual yield estimation of only 3% 

underestimation. Hence, the system provides promising results.  

In conclusion, both systems were based on the same main three stages. However, 

performance results were different since they included different methods.  The second system 

outperformed the first system in every aspect, closing most of the gaps that were identified 

during the first system analysis. This was reflected in the first stage where the performance of 

the melon detection and localization yielded better result. The RetinaNet together with NMS 

reached 10% better results in terms of average precision as compared to the Viola-Jones and 

CNN configuration. A better localization allows to perform more accurate feature extraction 

using the Chan Vese active contour algorithm and PCA ellipse. This results in a better yield 

estimation result for the all crop. 

To improve the existing system, future work should apply more advanced feature 

extraction algorithms. Since the detection algorithm performed well, the Chan Vese 

method should be replaced perhaps with a CNN which can provide local segmentation of 

the melon (e.g., the U-net (Ronneberger et al., 2015)). Another direction for 

implementation can be to create a system based on CNN which performs an instance 

segmentation, like Mask R-CNN (He et al., 2017), and on top of the segmentation add 

another layer which regresses the weight of the melon fruit. However, both methods 

suggested above require to label images at the pixel level, which is considered a tedious 

task and imposes a major limitation towards implementation. 
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Abstract 
 

Monitoring plants, for yield estimation in melon breeding, is a highly labor-intensive task. 

An algorithmic pipeline for detection and yield estimation of melons from top-view 

images of a melon's field is presented. The pipeline developed at the individual melon 

level includes three main stages: melon recognition, feature extraction, and yield 

estimation. For each region of interest classified as a melon, the melon features were 

extracted by fitting an ellipse to the melon contour. A regression model that ties the 

ellipse features to the melon’s weight is presented. The modified R2 value of the 

regression model was 0.94. Comparing yield estimation to ground truth, the average 

estimation error was 16%. The yield accuracy is highly dependent on the ellipse estimation 

accuracy, with promising results of only 4% error for the best ellipse-fitted melons.  

 

Keywords: Precision agriculture, machine learning, CNN, active contour, melon, 

breeding, phenotyping, yield estimation. 

 

Introduction 

 

Melon breeding requires a detailed account of accumulated yield and general yield 

distribution, in addition to melon size and location, which are essential for connecting 

yield to treatment/melon genetics. Manual plants monitoring for yield estimation is a 

highly labor-intensive task, thus expensive (Gongal et al., 2015). Hence, automation of the 

process is beneficial. One proposed method for achieving an automated qualitative yield 

analysis is to apply computer-vision and machine-learning methods to color images of a 

top view of a melon field. Machine-learning is extensively used for fruit detection and 

recognition, using different recognition methods such as K nearest neighbors, K means 

with color information (Anisha et.al, 2013),(Qureshi et.al, 2017),  Faster R-CNN (Bargoti & 

Underwood,2017). Detection of almonds, mangoes and apples resulted in precision in the 

range of 0.7 to 0.9 (Bargoti & Underwood,2017). Machine-learning techniques was also 
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used to estimating yield loss such as a system that detects fruits on the orchard ground 

(Choi et.al, 2013). 

This work proposes a framework for detection and yield estimation of melons from color 

images, acquired from a digital camera mounted on a drone. Object detection under the 

highly variable outdoor conditions along with extraction of melon features related to 

yield, such as size, are detailed in the described algorithmic pipeline along with the results. 

The focus is on yield detection based on individual melons. 

 

Materials and methods 

 

Data acquisition 

Data were acquired at an experimental agricultural research farm in Newe Ya'ar, Izrael 

valley, northern Israel. Latitude/Longitude 32.718492/35.181951 respectively. Foliage 

coverage was reduced to improve image detection by stopping irrigation 1 week before 

the acquisition. The acquisition was performed at midday on 17 Aug 2017, at fruit ripening 

stage. RGB images were acquired from a Sony ILCE-5000 camera mounted on a drone 

(Quad-Copter) hovering about 15 m above the field, with the camera facing vertically 

downward. An area of 280 m x 15 m was acquired. Before starting the image acquisition, 

30 melons with different shapes, sizes and colors were randomly tagged in the field and 

used for ground-truth data. These melons were analyzed after image acquisition with a 

"Tomato Analyzer" tool (Gonzalo et al., 2009). The analysis provided a dataset of the 

ground-truth features of each melon, Additional similar data acquired in the following 

year (2018) were used to develop the statistical model to tie extracted section geometry 

to melon weight. The images were saved in .jpg format with a resolution of 3064 × 5456 

pixels. Overall there were thousands of melons with high diversity. The variation in the 

dataset was intended to ensure the modeling of a robust and accurate detection 

algorithm that would generalize well under outdoor environmental conditions. 

 

Data preparation 

The algorithms included two machine-vision phases: a cascade object detector (COD) 

(Viola & Jones, 2001), and a neural network classifier (NNC). To train the COD, 3031 

negative training images (of background) and 1933 positive training images (of melons) 

were created. NNC training was based on 1383 positive (melon) and 1349 negative 

(background) training images. All melons were randomly selected. Augmentation 

techniques were used to increase robustness, resulting in a training set with 44,256 

positive images and 43,168 negative images. Augmentation was achieved by applying 

blurring, a rotation operation, and adding Gaussian noise, resulting in 31 additional new 

images for each original training image.   
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Figure 31. Algorithm pipeline for automated yield tracking 

 

 

 

Algorithm  

The proposed algorithm pipeline for automated yield prediction from RGB images of a 

melon field includes the following three sequential main stages: 1) melon recognition, 2) 

feature extraction, 3) yield estimation. Each stage uses results from the previous stage. 

The input for the system are RGB images of a melon field, and the output is a report that 

includes each melon's location and weight.  The algorithm pipeline is illustrated in Figure 

1.   

   

Analysis 

Detection performance was evaluated using recall and precision indicators. A fruit 

detection was considered to be a true positive if the predicted and ground-truth bounding 

box had an intersection over union (IoU) greater than a fixed threshold (Bargoti & 

Underwood, 2017b). Two different thresholds were examined. The first was 0.5, used in 

PASCAL Visual Object Classes (VOC) challenges (Everingham et al., 2009), resulted in 

relatively small fruit size with respect to the image resolution, errors in detecting melons 

were received, causing them to be registered as false negative. To reduce the false 

negative misclassification, a smaller threshold of 0.2 was applied, which equates to a 58% 

overlap along each axis of the object; this was considered sufficient for the fruit-mapping 

application (Krizhevsky et al., 2012). 

  

Algorithm 

 

Melon recognition implementation details  

The melons make up only a small portion of typical melon field images. Therefore, to 

reduce computational effort, the recognition process was split into two sub stages: 

detection of proposed “candidate” regions, followed by region classification. First, regions 

of interest (ROI) are derived, the proposal model runs in a sliding window over the entire 

input image and detects possible melon candidates. Since the detection of candidate 

regions requires an exhaustive search over the entire image, it is assigned to have low 

time complexity. It is also designed to have high recall, at the expense of low precision. 

Second, the candidates detected by the candidate region proposal model are classified by 
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an algorithm, which is more computationally expensive, but compensates for the region 

proposal model’s low precision (Dashuta & Klapp, 2018).  

 

1A) Candidate region proposal  

The Viola–Jones face detector was chosen for the candidate region detection model: it 

proposes ROI suspected of containing a melon. The Viola–Jones detector, a COD, is an 

ensemble of a number of weak classifiers. A weak classifier is constructed by simply 

thresholding one co-ordinate of some feature vector of the concurrent window (Dalal & 

Triggs, 2005). The feature type selected for the detector is the histogram of oriented 

gradients (HOG) Error! Reference source not found., which can capture the elliptical 

nature of the melon. The COD is arranged in stages with increasing complexity. The role 

of each stage is to decide whether the concurrent window is certainly NOT an object. If a 

stage decides that the concurrent window is not an object, the remaining stages are not 

evaluated. Hence, only true object windows trigger the entire cascade of stages. This 

mechanism ensures low time complexity of the model. 

 

 

1B) Region classification 

A convolutional neural network (CNN) Error! Reference source not found. was used for 

the region classification model. The model was trained using the well-known ‘transfer-

learning’ methodology Error! Reference source not found.. The learning process was 

initiated with a network that was pre-trained on the CIFAR-10 dataset (Krizhevsky et al., 

2012), a 10 category 32 x 32 pixels color image dataset. In this work, the final fully 

connected layer, which is essentially an image classifier based on a 64-dimensional feature 

vector produced by the hidden layers, was changed from a layer with output size of 10 

labels (the original dataset has 10 classes) to one with an output size of 2 labels—melon 

and background. The training data were expanded using augmentation techniques (Wang 

et al., 2014). Results revealed that the algorithm achieves 85.01% precision and 89.8% 

recall compared to the human identification used for the ground-truth measurement. 

 

2) Feature extraction 

This stage works on patches of the image, that have been detected as ROI and classified 

as melon. Each ROI assumed to contain only one melon. For each melon, the exact 

location in the field and the features that are related to melon size were derived. These 

features help estimate the melon weight. The pre-knowledge that the shape of each 

individual melon can be well approximated by a spheroid (Heinzen et al., 1998) implies 

that from a top view, the melon contour will be recognize as an ellipse. This enables 

translating the feature-extraction problem into an ellipse-fitting problem. Once the ellipse 

with the best fit to each detected melon is derived, the feature extraction is trivial. The 

ellipse partitions the patch into two regions: inner region (inside the ellipse) and outer 

region (in the proposed candidate region, outside the ellipse), using the following decision 

rule: pixels in the inner region are classified as ‘melon’ and pixels in the outer region are 

classified as ‘background’.  Every possible ellipse can be parametrized by 5 parameters: 
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semi-major axis ( c ), semi-minor axis ( a ), centroid x co-ordinate ( 0x ), centroid y co-

ordinate ( 0y ) and angle of tilt ( ). Finally, the contour of every melon in the field can be 

approximated as an ellipse:   

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

0 0 0 0

2 2

cos sin sin cos
 = 1

x x y y x x y y

a c

      − − − − + −   +     (1)                     

 

 Every point 5

0 0( , , , , )a c x y = x  in the parameter space corresponds to a single 

ellipse (single solution) in the given ROI. To derive these parameters, first an initial ellipse 

that fits the contour is derived, then parametrization is conducted, followed by solution 

optimization using a cost function minimization problem (Dashuta & Klapp, 2018). 

 To estimate the yield, a model that ties the melon's geometry to its weight was 

determined. A spheroid model was applied using a 3D shape with same-sized width and 

depth axes (Figure 2). 

 Assuming that a typical melon has a spheroid shape, the parameters derived 

above from the fitted ellipse in the 2D image of the melon, in particular the sizes of the 

minor and major axes, should be correlated to the semi-height and semi-width of the 

melon. Using these two parameters, the melon weight is predicted. The regression model 

was built using information from 30 randomly selected individual melons which were both 

imaged by the UAV and measured for their weight and geometry in the laboratory. The 

best derived regression model was: 

 

                                  2W = 0.1096653 + 0.003397929  c a                                          (2)  

 

Where W is the melon weight, a is the ellipse semi-height and c is the ellipse semi-width. 

 

 
Figure 2. Ellipsoid model 

 

 

 



117 |  

 

 
Figure 3. Weight and spheroid parameter regression results on training set analysis of 

regression 

 

 
 

Figure 4. Yield estimation process. Stage (A) represents a melon by spheroid shape – use 

pre-knowledge of melon shape; stage (B) converts from 3D to 2D– the width and depth 

are minor axes and length is the major axis; stage (C) uses linear regression to predict 

yield of each melon; stage (D) generates a report for each melon location and yield 

estimation for the entire field 

 

  

Following this model, fidelity to data points to the model was estimated using the adjusted 

R2 figure of merit (Montgomery, 1997), resulting in a 
2

AdjR of 0.94, and implying a strong 

fit for the specific dataset (for n = 30, Figure 3). Another dataset of 135 melons obtained 

in the following year (July 2018) was used for cross-validation (Hawkins, 2004). The overall 

yield estimation from the ellipsoid parameter is presented in Figure 4.  

The above method to fit an ellipse contour to the melon image was suggested. Feature 

extraction of such a contour is an ellipsoid section. Thus, assigning the ellipse parameters 

(Eq. 1) in the proposed regression (Eq. 2) results in an estimation of melon weight from 

post-processing of the UAV images.  

 The parameters in Eq. (1) are given in pixels. Pixels were converted into 

centimeters by calculating the ground sample distance (GSD). The GSD was estimated 

from the images of a signboard that was placed next to the 30 randomly selected 

individual melons. A calibration ratio (1/GSD), was derived by dividing the number of 

pixels in the signboard image (along an edge), by the edge size in centimeters.  This ratio 

was applied to the features of the melon marked in the image and located near the 

signboard. For all other melons, the averages of all of the ratios were calculated and 

applied. 
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Results 

 

Precision vs. recall of the experimental results is presented in Figure 5, revealing that the 

precision is retained through almost all of the recalled range. The detection algorithm was 

able to detect only 87% of the tagged fruit used for the calibration. The GSD metric was 

used to convert the pixel units into centimeters with a derived ratio of approximately 0.4 

cm per pixel. Using this ratio, the actual yield was forecast. The result overestimated the 

actual yield by 16%. The error was due to the ellipse error and the error in the GSD 

estimation.  The UAV's distance from the melon effect the image GSD. Wrong GSD 

resulted in estimation error in melon's size. By applying a more accurate GSD estimation 

based on the size of the local known targets for the 5 best recognized melons (accurate 

contour detection), the error was reduced to 4%. 

 
Figure 5. Experimental results precision vs. recall curve, average precision for melon 

detection using different IoU thresholds  

 

Discussion  

Yield accuracy strongly depends on the ellipse estimation accuracy. The weight estimation 

error for the best fitted melons was only 4%. Improvement of melon recognition and the 

fitting model can potentially result in an applicable method for estimation of melon yield 

from aerial surveys.  Ongoing work is focused on improving recognition by using improved 

object-detection techniques, such as a faster R-CNN object detector. In addition, several 

models for improving the ellipse-fitting problem, such as the Chan–Vese model for active 

contours, are under examination. Since individual melons in the same field ripen at 

different rates, harvesting cannot be done in a single pass. Therefore, the field workers 

must sample every melon in the field to determine their ripeness. An automated yield 

analysis system could guide the field workers directly to the ripe melons and thus save 

time. 

 

Conclusions 

 

The above pipeline includes three main stages for yield detection based on calculation 

derived at the single melon level: melon recognition, feature extraction, and yield 
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estimation. This scheme show promising capabilities. First, to recognize individual melon's 

couture. Second upon correct feature extraction predict melon weight with high accuracy. 

To improve the performances of the proposed pipe line the ongoing research focused on 

improving of learning process and possibly the active couture schema. 
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7.2 Code documentation 
 

The first system can be found at the next link:  Estimating open-field melon yield by 

machine-vision processing of UAV images 

The system was implemented using MATLAB 2017b version 

It includes the next folders: 

• Model steps visualization – output images for each step in the system 

• Results and analysis - include results for mAP, regression, final report and Weight 

analysis 

• System code – include all function for each stage of the system 

• tagged dataset – all the labeled images for training and testing 

the system should be executed with the function runme.m which call to the function 

ProcessSingleImagefinal.m and start all the imaging process. 

Before execution please set the image path at the parameter 'image_name' (line 33) 

All details and description for each sub function can be found inside the source code. 

 

The second system can be found at the next link :  A deep learning system for yield 

estimation of melons using UAV images. 

The system was implemented using python and will work only if the pc has GPU 

It includes the next folders: 

• Data – includes all the tagged data which were used for training and validation for 

each year. For each image attached a CSV file with melons annotations  

• Extra – include images and film from the field test day 

• Melon_detection_using_RetinaNet_Train_RetinaNet – include the files for 

training the RetinaNet network (detailed explanation provided below) 

• Project_pipeline – include all the pipeline files (detailed explanation provided 

below) 

• Results and analysis – include two folders: 

o Detection Retinanet results – in this folder we stored all the result for the 

tested images, also includes a script for generate mAP curve with the final 

result. 

o  Final image result with ellipse fitted – include the result for all tested 

images after ellipse fitting stage 

o results of weight – include a script for building the regression model, also 

presented analysis for weight estimation for all the 135 selected melons 

 

 

https://drive.google.com/drive/u/1/folders/11q2VpbYpsgRJn2yi7D-TzWAm5GjVjpo0
https://drive.google.com/drive/u/1/folders/11q2VpbYpsgRJn2yi7D-TzWAm5GjVjpo0
https://drive.google.com/drive/u/1/folders/1jB9XJMAR3xKPI3Ul-AJV7_e7-Bz-A7tj
https://drive.google.com/drive/u/1/folders/1jB9XJMAR3xKPI3Ul-AJV7_e7-Bz-A7tj
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Training the RetinaNet network 

In order to train the RetinaNet network, please follow the steps below: 

Installation 

1) copy the Melon_detection_using_RetinaNet_Train_RetinaNet folder. 

2) Please make sure `tensorflow` and 'Numpy' is installed as per your systems 

requirements. Otherwise run the next line using anaconda sell: 

Numpy: `pip install numpy --user` 

Tensorflow: use the link - https://www.tensorflow.org/install 

3) Using anaconda shell, navigate to the 

'Melon_detection_using_RetinaNet_Train_RetinaNet' folder and   execute  

` pip install . --user`. 

4) If you have some issues with the installation, please use stackoverflow. 

Training  

For training on a [custom dataset], a CSV file can be used as a way to pass the data. 

* See below for more details on the format of these CSV files. 

To train using your CSV, run: 

1) Running directly from the anaconda shell the line: 

``` 

keras_retinanet/bin/train.py --weights snapshots/resnet50_coco_best_v2.1.0.h5 csv 

train_annotations.csv labels.csv --val-annotations val_annotations.csv 

``` 

Where you need to update the next pass parameters: 

* weights: Path to the weights for initializing training 

* csv indicates retinanet is trained on a custom data set 

* train_annotations.csv is path to training annotations 

* labels.csv are the labels in the format class_name, class_id with 0 reserved for 

background class 

* val_annotations is path to validation annotations  

 

 

https://www.tensorflow.org/install
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Annotations format 

The CSV file with annotations should contain one annotation per line. 

Images with multiple bounding boxes should use one row per bounding box. 

Note that indexing for pixel values starts at 0. 

The expected format of each line is: 

``` 

path/to/image.jpg,x1,y1,x2,y2,class_name 

``` 

Labels format 

The class name to ID mapping file should contain one mapping per line. 

Each line should use the following format: 

``` 

class_name,id 

``` 

For example - in my project the csv for training is 'train_annotations.csv',  

validation annotations are in val_annoations.csv  

and labels are in labels.csv 

Evaluating Results  

To calculate mean average precision on the validation set, please run 

``` 

keras_retinanet/bin/evaluate.py csv val_annotations.csv labels.csv 

snapshots/resnet50_csv_01_inference.h5 --convert-model 

``` 

Here we pass the val_annotations, labels and path to the trained weights 

Running Inference on Images 

To run inference on the trained model, first step is to convert the trained model to a 

format that can be used by inference. The command for this is: 

 

``` 
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keras_retinanet/bin/convert_model.py snapshots/resnet50_csv_08.h5 

snapshots/resnet50_csv_01_inference.h5  

``` 

Here first path is the path to the trained model and the second would be the path to the 

converted inference model 

We will use the 'resnet50_csv_01_inference.h5 Inference' for our testing images and for 

the production system 

Also, for testing the Network, the file Melon_detect.com can be used 
 

Project_pipeline 

In order to run the system, please execute the main.py file. This file includes several 

functions, each function proposed described below. Also, documented separately inside 

the code.  

Before running the system, please create a folder with the name = 'images to process' 

and put all the images inside the folder. please set the parameter of imgdir and 

imgSplitdir to the correct path where the images are located. 

The result of the system will be located at: '../images to process/image results'. 

It will include a image with all the tagged melons and a CSV file with the location and 

weight estimation of each melon. 

 

• Main.py – the main function 

• chane_vese.py – function which perform a chane_vese method 

• create_ellipse - artium.py – this function is not used at the current system 

• create_ellipse.py – function that fit ellipse for each proposed bounded box. We use 

this function at this system 

• draw box.py – function that plot on top of the images all detected bounded boxes  

• eval.py – function which generate evaluation report for detection stage 

• gradientDescentEllipseFit.py –function which execute the gradient descent, this 

function is not used at the current system 

• non_max_suppression.py – function that composed the sub images after detection 

process into one big image and perform the NMS algorithm. 

• split2.py – function that split the image into grid of 10 by 10 sub images 

 

In addition to the presented function above, few additional function were used in order 

to create ground true labels for training 

1_gt.py, 2.py, composed_coordinates_csv.py, composed_coordinates_xml.py, convert 

csv to txt.py 
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7.3 Additional regression for yield estimation  
In addition to the regression models that were presented at section 4 and 5, we tried 

another regression which tried to estimate melon weight using logarithmic 

transformation of the max height (2*c) and max width (2*a) of each melon. The suggested 

model gained a correlation score of 2

AdjR  = 0.91. The resulted weight estimation 

regression model was:   

2 = 2.497493 + 210.8525  log( ) (log( ))Weight c a−    

 

The model was tested using 116 randomly selected melons from images taken in the 

last season. The mean absolute percentage error (MAPE) index for individual melon 

estimation was 10% with an overweight overall yield estimation error of 5.5%. 

 

  

Since the additional suggested model results were less better than the regression 

without the logarithmic transformation, we choose to not continue with this model.
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 תקציר
מלונים בסביבה חקלאית באמצעות תמונות צבע שצולמו   תנובת שדהאומדן מערכת לתזה זו עוסקת בפיתוח 

אווירית   RGBהמערכת מקבלת כקלט תמונת . )כטב"מ(  ממצלמה דיגיטלית המותקנת על כלי טייס בלתי מאויש 

 . של כל מלון ומשקלו המשוער  מוח הכולל את המיקו" והפלט הוא דו , נים של שדה מלו

שאומדן תנובת השדה לפני הקטיף נחשב כמשימה עתירת  קשורה לעובדה  ל" הנאחת המניעים ליישום מערכת 

תוך התחייסות למידות  , מפורטת ומדויקת עבור כל מלון בנפרד נדרש לבצע הערכת יבולש וזאת מכוון, עבודה

 .ומיקומו בשדהו המדויקות של גודל

נחקרו במשך עשרות  בעיית זיהוי והערכת תנובת השדה בסביבות חקלאיות באמצעות שיטות לראייה ממוחשבת  

חלה התקדמות משמעותית בתחום הלמידה העמוקה אשר הציגה ביצועים מרשימים  , בשנים האחרונות .שנים

מעט מאוד יישומים  , למרות המחקר הרחב בתחום זה, חד עם זאתי . בפתרון בעיות רבות של איתור אובייקטים

מכיוון שזיהוי אובייקטים בעולם  זאת ו, חקלאיים ממוסחרים משתמשים במודלים מבוססי ראייה ממוחשבת

חלק גדול מהעבודות  ,  בנוסף.  בסביבה חקלאית מורכבת ולא מובניתובפרט  ,  במיוחד  האמיתי נחשב למשימה קשה

.  ההפירות שבתמונ יותר של כמות מדויק לזיהוי התמקדו בשיפור הדיוק של האלגוריתמים , שפורסמו עד כה

את המשקל בפועל של   תשערךאלא גם  בתמונה  הפירות    כמותמערכת שתנבא לא רק את  ציגים  בעבודה זו אנו מ

 .כל פרי

  שלושה  המערכות בשתישונות שפותחו להשגת היעדים שהוזכרו לעיל. י מערכות תזו אנו מציגים ש במחקר

 תכונות אלו. מלון, חילוץ תכונות המתארות את גודל המלון, שערוך משקל המלון על סמך ה זיהוי : שלבים 

 " רזות"  ה ממוחשבת קלאסית יחד עם רשתות נוירונים עצביות ילראיהמערכת הראשונה מסתמכת על שיטות 

במטרה לתת מענה טוב יותר לחלקים פחות יעילים   פותחה השנייההמערכת . מופחתמאמץ חישובי  ותורשהד

  , ובפרט, עמוקהה למידה פיתוח המערכת המתקדמת בוצע על בסיס אלגוריתמים מעולם ה, מהמערכת הראשונית

במסגרת התזה בוצע ניסוי יעודי שמטרתו לאסוף תמונות של שדה מלונים   .רשתות נוירונים עצביות עמוקות

  ה מראות זיהוי גבוה ורמ  ת המתקדמתכתוצאות המער. ור שני המערכותבעב  תהליך למידהשבעזרתם בוצע 

 .היבולמבטיחה של אומדן 

מערכת לאומדן תנובת שדה חקלאי בעזרת תצלומי אויר, המערכת  הינה פיתוח  התרומה המרכזית של תזה זו

נוסף  במשקלו של כל מלון בודד  שערוךביצוע  כמו גם,של אובייקטים בגודל קטן, לבצע זיהוי מדויק מצליחה 

אוטומציה של משימה   מחקר מספק עדויות אמפיריות לכך שניתן להשיגה . לספירת המלונים המסורתית

עם כוונון עדין נוסף לחלק מהאלגורתמים  יה ממוחשבת. י חלקאית הנ"ל באמצעות מערכת הנדסית מבוססת רא

 במערכת, המערכת יכולה להיות בעלת כושר יצרני.  

 

הערכת  , רשת נוירונים קונבולוציונית עמוקות, זיהוי פירוט, חקלאות מדייקת,  ראיה ממוחשבת : מילות מפתח

 מלונים , הערכת משקל, יבול

 


