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Abstract

Precision Livestock Farming (PLF) technology aims to improve farming productivity and animal
welfare by ensuring better livestock management. Such systems are supported by monitoring
the animal's needs. Two case studies of PLF technologies based on computer vision are
developed in this thesis: a mobile system for counting laying hens and a sheep biometric

identification system. In both systems advanced machine learning methods were applied.

Counting laying hens

The Israeli laying hens industry is regulated by production quota; a farm can produce eggs
according to a prefixed allocated number of hens. With the new community battery cages
that have been recently introduced to the Israeli egg industry, which house thousands of
hens, a manual head count of the hens is a very difficult task resulting in inaccurate and
meticulous results. In this study, a machine vision system was developed to detect and count
laying hens in community battery cages. The project aims to replace the manual counting,
with an automatic algorithm.

A mobile system which can be driven along the cages alley was developed. The experiments
were conducted at a commercial hen house located in Kidron. The hen house stacked in 6
floors, with 37 community cages set in a rows and between 30-40 hens in per cage. The hens
were video-recorded with an Intel RealSense RGBD D435 camera, which acquired images at
30 frames per second (fps). Videos were processed with the Faster R-CNN algorithm. After
detection, the hens' locations were tracked using a tracking algorithm, which assigns every
detection with an ID, representing a single hen. Testing on a dataset that included 5600
images resulted in detection accuracy of 88%, with mean absolute error of 4.5 hens per cage.
Sensitivity analyses revealed that the minimum number of frames needed for high detection
while shortening runtime is 35 frames, instead of using a full video, which consists of more
than 44 frames.

The system is inexpensive, fast, user-friendly, and does not rely on a specific feature of the
test hen house. Thus, it can potentially be used in different farms, ensuring adequate hen
density according to the limits set by regulations. Future work should include a depth channel

to improve results.



Sheep biometric identification

A sheep biometric identification system based on facial images was developed. A machine
vision system and deep learning models were developed and applied for animal identification.
The system included two 8-MegaPixels cameras installed in a monitoring drinking facility
adapted to work with NVIDIA Jetson Nano embedded system-on-module (SoM). Data from
81 Assaf breed sheep aged two to three months, from two different groups of sheep, were
collected over a period of two weeks. The biometric identification model included two steps:
face detection and classification. In order to locate and localize the sheep face in an image,
the Faster R-CNN deep learning object detection algorithm was applied. The detected face
was provided as input to seven different classification models. Different transfer learning
methods were examined. The best performance was obtained using a ResNet50V2 model
with the state-of-art ArcFace loss function. The identification system resulted in average
accuracies of 95.4% and 95.7% image detection for the two groups tested and in 100% sheep
identification. When applying transfer learning method, average identification accuracies
improved to 97% in both groups (with 100% sheep identification), and the training process

was accomplished more rapidly.

Key words: Precision Livestock Farming (PLF), laying hens, counting, sheep, lamb, algorithm,
Deep learning, convolutional neural network, object detection, Biometric identification,

Faster R-CNN, Face recognition.
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1 Introduction

1.1 Problem description and motivation

1.1.1 Precision livestock farming

Precision Livestock Farming (PLF) aims to improve the efficiency of production, while
increasing animal and human welfare, by means of applying advanced information, targeted
resource use and precise control of the production process (Banhazi et al., 2012). Precision
livestock farming (PLF) develops real-time tools for monitoring livestock with information
collected without the stress of animal disturbance or handling (Hamilton et al., 2004). The
assumption is that animals that are provided with optimal conditions will yield maximum
production (Halachmi et al., 2019). In recent years, the importance of monitoring livestock
animals increased and has been applied to all types of livestock animals, such as cows (Bloch
et al., 2019), sheep (Morgan-davies et al., 2018), pigs (Hemeryck et al., 2015), broilers
(Fontana et al., 2015) and hens (Sassi et al., 2016). PLF can provide objective animal welfare
assessment in modern livestock production (Werkheiser, 2018) and improve management.

Recently, new image recognition models based on machine learning models, like the
Convolution Neural Network (CNN), allow to better understand complex processes in
agricultural environments (Liakos et al., 2018). These machine learning methods produce
better results than traditional image processing techniques (Gongal et al., 2015). As a result,
more applications of livestock management (Qiao et al., 2019) have been automated using
computer vision (Liakos et al., 2018) and deep learning methods (Guo et al., 2016). However,
these techniques require a massive amount of data for building the models (Szegedy et al.,

2016).

1.1.2 Counting laying hens

Intensive research has focused on hens and broilers monitoring with a variety of sensors and
cameras (Neila et al., 2016). This includes inspection of poultry carcasses by spectral and
hyperspectral imaging (Park and Chen, 2000), predicting eggs freshness with image
processing technique (Suktanarak and Teerachaichayut, 2017), 3D imaging for broilers weight
estimation (Mortensen et al., 2016), and visible light imaging for hens tracking (Kashiha et al.,

2014).



Since the Israeli laying hens industry is regulated by quota (Geffen et al., 2019) in addition to
the welfare and health considerations, which implies that a farm can produce eggs according
to a fixed number of hens, monitoring and counting of hens must be done regularly (Geffen
et al., 2019). With the new community battery cages that have been recently introduced to
the Israeli egg industry (Appleby, 2003), which house thousands of hens, a manual head count
of the hens is very difficult task which leads to inaccurate and meticulous results (Geffen et
al., 2019). Moreover, manual counting is a laborious task which is a major cost component
affecting profitability of farmers (Cronin et al., 2008). By developing an automatic counting
system, efficiency of labor use can be improved and may lead to improvement of surveillance
that may lead to better hen welfare (Cronin et al., 2008).

Laying hens counting in community battery cages is a challenging task: the hens do not stand
still but constantly move, they stand at different distances and angles from the camera which
effect the ability to contrast them from the background, and because of the battery cages
structure, they can only be photographed from front view (Geffen et al., 2019). Therefore,
not all hens in a cage are visible in each frame. These factors reduces image quality making
automatic counting a difficult computer vision task (Geffen et al., 2019).

A recent neural network system based on Faster R-CNN (region-based convolutional neural
network) was developed to count hens by using deep learning methods (Geffen et al., 2019).
The feeder was equipped with a Media Tech W9R camera and the cages were video recorded
while the feeder traveled along and acquired images (Geffen et al., 2019). An accuracy of 90%
was obtained with an algorithm that used object detection, focusing on the hen's head.
However, the algorithms were tailored designed to the specific conditions and were not
adjustable to varying lighting conditions (Geffen et al., 2019). Moreover, they were fitted for
the specific cages and did not fit cages with no separation in the middle, as customary in the

industry. In these cages counting must include depth of the images (Geffen et al., 2019).

1.13 Biometric identification of sheep

Sheep farming has been limited in research in machine vision and deep learning applications
(Morgan-Davies et al., 2018). However, more awareness to global sheep economics, animal
welfare and agricultural policies, influence the sheep farming practices and stimulate wider

adoption of deep learning systems (Morgan-davies et al., 2018), such as — individual



monitoring of sheep (Salama et al., 2019), pain estimation (Mahmoud et al., 2018), and lamb
growth monitoring (Zhuang et al., 2018).

Performance recording of sheep enable automated data collection that provides better
quality data, contributing to better decision-making and thus improved management (Ait-
Saidi et al.,, 2014). Collected data, including individual sheep ID and the recorded
performances like body condition score, milk yield, and body weight (Salama et al., 2019),
facilitate animal handling, contributing to improved husbandry practices, reducing labour
requirements (Morris et al., 2012), and allowing better disease management (Salama et al.,
2019). For those reasons, sheep ID should be unique and permanent for an adequate
performance recording (Ait-Saidi et al., 2014) and for providing farmers an efficient way to
recognize and track each individual in a large group of sheep (Salama et al., 2019).

Different methods of marking sheep were used by herders (Landais, 2001). Historically, the
main methods used for sheep identification were; branding by fire or freezing (Landais, 2001),
tattooing, ear tagging and electronic identification such as RFID tags and barcodes (Caja et al.,
2004). However, these methods have proved inefficient (Koik and Ibrahim, 2012), and may
harm the animal and even affect its behavior (Caja et al., 2004). A further key drawback of
these methods is the higher cost and that they must be recorded manually, which can easily
introduce human errors, while the labour cost of such a practice is also high (Trevarthen,
2007).

Due to the need of increased profitability with minimal unfavorable environmental impact
and high concern of animal welfare nowadays (Mollo et al., 2010), using biometric traits
instead of traditional identification methods, has gained a lot of attention in current livestock
identification systems (Corkery et al., 2007).

Sheep facial biometrics include many significant features that can be used for identification
such as muscles, the eyes, mouth and many hidden features and therefore are very promising
(Corkery et al., 2007; Salama et al., 2019).

Sheep face recognition was achieved using a convolutional neural network (Salama et al.,
2019). In this research, the Bayesian Optimization was used to automatically set the
parameters for a convolutional neural network and in addition, the AlexNet configuration was
also examined (Salama et al., 2019). The sheep recognition algorithms were tested on a data
set of 52 sheep, with 10 images taken per sheep (Salama et al., 2019). The experiments

achieved an accuracy of 98% (Salama et al., 2019). However, the research was tailored

3



designed to the specific conditions and was tested on small set of sheep with great variability,
and therefore may not be accurate enough in order to replace other biometric identification

methods in used (Corkery et al., 2007).

1.2 Objectives

This research aimed to develop two automatic precision livestock farming systems: a mobile

system for counting laying hens and a sheep biometric identification system.

1.2.1 Counting laying hens
The research objective was to develop a machine vision system that will automatically count
hens in community battery cages, with the following specific deliverables:

e A mobile system which can be transferred between cages.

e Algorithms to detect and count hens in a battery cage.

e Algorithms that operate in varying illumination conditions.
The research was based on a previous system in which feasibility was proven (Geffen et al.,
2019). The innovation of the current research was a new design which included a mobile
platform equipped with a RGBD camera. The current project focused on the new design and
developing algorithms for the variable illumination conditions. It used a previous developed
tracking algorithm however, a new image processing and object detection algorithm were

developed. Additionally, in depth sensitivity analyses were conducted.

1.2.2 Biometric identification of sheep
The objective of this work was to investigate the potential of facial recognition as a biometric-
based identification system for sheep by using a machine vision system, with the following
specific deliverables:

e An identification system that can be used for any sheep pens.

e Replacing the use of traditional methods with a sheep identification model.

e Examine whether sheep maturation affects identification.



1.3 Thesis overview

This thesis begins with a literature review presented in chapter 2. The review starts with precision
livestock farming introduction (2.1), followed by computer vision research, including an overview
of object detection in agriculture using deep learning (2.2). Next, the recent advancements of
counting laying hens (2.3) and sheep biometric identification (2.5). The mobile system for
detecting and counting laying hens by machine-vision processing of RGB images is described in
chapter 4. Automated system for sheep identification based on deep learning is described in
chapter 5. Both chapters describe the research methodology, the system and algorithms

developed and results. Discussion and conclusions are discussed in chapter 6 and chapter 7.



2 Literature Review

This section reviews relevant literature on precision livestock farming (section 2.1), computer
vision including object detection (section 2.2), laying hens counting (section 2.3), biometric
identification and existing models of livestock identification (section 2.4), and finally a review

of biometric identification of sheep (section 2.5).

2.1 Precision Livestock Farming

Automated monitoring and control techniques are becoming more important to support
management by the farmer (Pham & Stack, 2018) in larger farms and improve production
decisions. Precision Livestock Farming (PLF) mainly propose is to improve the efficiency of
production, while increasing animal and human welfare, by means of applying advanced
information, targeted resource use and precise control of the production process (Banhazi et
al., 2012). PLF technologies, can be used to improve food safety and quality and to achieve
efficient and sustainable livestock farming (Laberge and Rousseau, 2017).

PLF originated from the increased use of information technology (IT) products in support of
livestock management (Guarino et al., 2008; Mertens et al., 2011). PLF objectively assesses
animal welfare in modern livestock production (Dawkins, 2017). It continuously monitors
individual animals on large farms using network devices, to compare this information to
expected norms, and to use algorithms to automatically manage individual animals according
to changes in climate, feeding, or reproductive decisions (Werkheiser, 2018).

Real-time systems have been developed for livestock monitoring (Scholten et al., 2013). These
monitoring systems enable to collect information without the stress of animal disturbance or
handling (Hamilton et al., 2004). The goal of these technical tools is not to replace the farmers
but to support them for better decision making. PLF provides unlimited observation time,
because computers can track the animals in a row (Wolfert et al., 2017).

The main purpose is to attain a full picture of animal status and behavior on a continuous
basis, focusing on animal health and performance (Cangar et al., 2008). Precision Livestock
Farming includes measurement, prediction and data analysis of livestock, also offering new

possibilities for continuous, automatic collection and analysis of data (Berckmans, 2004).
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Figure 1. Precision livestock model (Berckmans, 2004).

PLF must meet the needs of both the farmer and the consumer to be commercially viable. For
the farmer, increased profitability with minimal unfavorable environmental impact and high
concern of animal welfare, while for the consumer, the food must be safe, nutritious and

affordable (Mollo et al., 2010).

2.1.1 PLF in the poultry sector

Poultry farming, and in particular broiler farming, is an important sector due to the large
guantities of animals involved which have great potential for improvements in their welfare
(Rowe and Dawkins, 2019).

Broilers are the world’s most numerous bird, with a standing population of 22.7 billion, an
order of magnitude greater than the standing stocks of any other farmed species (Bennett et
al., 2018). The highest farm animal numbers are found in poultry operations, with up to tens
of thousands of individuals in one barn (Rowe and Dawkins, 2019). Modern broilers suffer
from problems such as sudden death syndrome, ascites, lameness and contact dermatitis as
a result of their fast growth rate (Bessei, 2006). The highest farm animal numbers are found
were in poultry, with up to thousands of individuals in one granary (Wilhelmsson et al., 2019).
Each individual animal is worth comparatively little and the turnover is very fast, therefore

the concern for the welfare of an individual may be low (Rowe and Dawkins, 2019).
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Additionally the profit margin for poultry farmers is small, creating further conflict between
production and bird welfare (Khuda, 2007).

Along with the growing human population and increasing urbanization, poultry consumption
is predicted to increase (Scholten et al., 2013). Poultry farming is increasing in low income
countries which are not aware of animal welfare (Vaarst and Alrge, 2012). Moreover, in
intensive poultry production, there are factors, such as stocking density, environmental
deterioration, unsuitable social environments or thermal stress, which can cause welfare
aggravation (Meluzzi and Sirri, 2009). Thus, poultry welfare is an important area to focus
efforts on improving livestock welfare. This can be achieved by continuous monitoring and
tracking of individual hens, benefiting their welfare (Rowe and Dawkins, 2019). Precision
livestock farming (PLF), is based on collecting data from diverse sources from smart sensors,
which are then analyzed to create an automatic management system based on real-time
monitoring to control animal performance, health, and welfare (Hendrawan, 2005).

The poultry industry is divided into two separate sections - meat production and egg
production (Corkery et al., 2013). The environmental conditions in poultry houses influence
the wellbeing and health of production staff as well as the individual bird (Marchewka et al.,
2013). Poultry that are not healthy, will not provide optimal performance (Corkery et al.,
2013). Techniques developed in Precision Livestock Farming (PLF) should be applied to
automatically manage commercial poultry farm (Mollo et al., 2010).

Poultry monitoring systems have great potential to advance poultry production. These
systems can log real-time data, and become an essential predictive tool within the poultry
community (Corkery et al., 2013; Mollo et al., 2010). By using sensor technologies, potential
applications to improve poultry welfare were investigate, such as - Feed intake
measurements, Thermal comfort estimation, Stress detection, Assessing locomotion
deficiency in broilers and Indoor climatic conditions’ assessment (Sassi et al., 2016).
Monitoring and inspection is done with a variety of sensors and cameras, such as spectral
imaging to inspect poultry carcasses (Park and Chen, 2000), hyperspectral imaging for
predicting eggs freshness (Suktanarak and Teerachaichayut, 2017), 3D imaging for broilers
weight estimation (Mortensen et al., 2016), and visible light imaging for hens tracking
(Kashiha et al., 2015).

Although most technologies are still in the experimental phase, some are already available

and can be introduced in commercial poultry farms with good results (Marchewka et al.,

8



2013). These available technologies have huge potential to enable better poultry welfare, or
to be applied for an automatic welfare assessment (Banhazi et al., 2012; Ruiz-Garcia et al.,
2009; Sassi et al., 2016).

Poultry behavioral actions are categorized into events such as eating, drinking, preening,
resting, and stereotyped activities directed at different targets (Meluzzi and Sirri, 2009). It is
time-consuming, costly, tedious, and prone to errors, to assess those methodologies.
Therefore, there is an increasing need for systems which can collect automatically event-

based behavioral responses (Puma et al., 2001).

2.1.2 PLF in the sheep sector

New PLF systems are constantly being developed for extensive and pasture based farming
systems (Lima et al.,, 2018). The development of technologies for grazing animals is of
particular interest for the sheep farming sector, since it could bring benefits for animal
performance, economical performance and labour (Morgan-Davies et al., 2018). Moreover,
there has been an increase in average herd size for several years, which reduces the time that
farmers can spend on individual observation of their animals throughout the sheep
production cycle (Villeneuve et al., 2019). This increase leads to a real need to improve the
performance control that allows farmer to better control their herds (Wishart, 2019).
However, adoption of PLF technologies does not take place immediately in the sheep sector,
compared to other sectors (Villeneuve et al., 2019), as sheep farmers usually belong to more
conservative technology consumers (Kaler and Green, 2013). As such, investments,
innovation and failure are known to all the community members in a short time which create
a social barrier and risk eversion (Villeneuve et al., 2019). All the listed characteristics have
negative influence regarding the openness of this farming sector to innovation (Kaler and
Green, 2013).

In addition, PLF approaches have been successfully applied to intensive systems, but there
are limited examples of application to sheep systems (Morgan-Davies et al., 2018). The focus
in the field of sheep is small because unlike other livestock animals, animal care is less
frequent, for sample, dairy cattle are treated at least twice a day for milking (Tullo et al.,
2017). Application of PLF has the potential to improve sheep farming and is an important area

of research that, to date, has received limited exploration (Morgan-Davies et al., 2018).



Nevertheless, trends such as global sheep economics, awareness to animal welfare and
agricultural policies, influence the sheep farming practices and stimulate wider adoption of
PLF systems (Morgan-davies et al., 2018), such as — individual monitoring of sheep (Salama
et al., 2019), pain estimation (Mahmoud et al., 2018), lamb growth monitoring (Zhang et al.,
2018) and selective breeding using measures such as Estimated Breeding Values (Conington
et al., 2006).

There is also a range of real-time monitoring sensors for sheep being developed to measure
location, movement, heart rate, chewing, estrus, urine, contact, respiration and temperature
(Fogarty et al., 2018). The greatest advantage of such real-time monitoring technology is the
potential to provide early warning systems for when measures deviate from the expected
(Fuchs et al., 2019). These sensors could also be accompanied by location technology (GPS)
so the animals can be found (Fogarty et al., 2018).

Such sheep systems have important roles for environmental management, and production of
lamb meat and breeding animals (Umstatter et al., 2013). However, they face difficulties
including: low productivity, poor economic viability, labour availability and capability, and
ensuring good animal welfare (Lima et al., 2018). PLF is one such approach to overcome these

difficulties (Morgan-Davies et al., 2018; Wishart, 2019).

2.2 Computer Vision

2.2.1 Computer Vision background

Computer vision is a scientific field that focus on how to gain high-level understanding from
digital images or videos by using computers (Huang, 1997). Computer vision aims to solve
computational models of the human visual system and to build autonomous systems which
could perform some of the tasks which the human visual system can perform (Huang, 1997).
Computer vision began in the late 1960s, when researchers from universities tried to mimic
the human visual system (Szeliski, 2010). Computer vision includes three main stages (Floyd
and Sabins, 1987; Morris, 2004):

e Image acquisition - capturing an image using sensors that use pixel values that correspond

to light intensity in one or several spectral group captured (Floyd and Sabins, 1987).
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e Image processing and analyzing - transforming raw data and understanding the image
data (Floyd and Sabins, 1987). These techniques deal with feature extraction, extraction
of regions that differ in properties such as intensity, color, texture, or any other image
statistics (Morris, 2004). By combining features together, the machine vision algorithm
defines an object in the image (Groover, 2007).

e Image interpretation - converting the image into meaningful information for a wide range
of users. One popular task of interpretation is recognizing the type of the objects in the
image by comparing the extracted feature from the previous stage to predefined models

or standard values (Klette, 2014).

2.2.2 Computer vision in agriculture

There are many computer vision applications in agriculture (Liakos et al., 2018) yielding
improved automation of tasks (Figure 2) such as; (a) crop management (Kamilaris and
Prenafeta-Boldu, 2018) including applications on yield prediction, disease detection, weed
detection crop quality and species recognition (Ali et al., 2017; Kung et al., 2016) (b) livestock
management, including applications on animal welfare and livestock production (Hansen et
al., 2018; Qiao et al., 2019), (c) water management (Mehdizadeh et al., 2017) and (d) soil

management (Morellos et al., 2016).
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Figure 2. Computer vision applications in agriculture (Liakos et al., 2018)
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Despite many years of research of computer vision in agricultural environments, there are
still many problems that hinder implementation of agricultural applications (Gongal et al.,
2015). The highly variable and unstructured outdoor environment with changing illumination
conditions and obstructions (Kapach et al., 2012), along with the complex plant structure and
variable product shape, size, color, texture and location make it hard to find a global solution
to the detection of objects in the complex agricultural environment (Gongal et al., 2015;
Liakos et al., 2018).

In recent years, new approaches of computer vision have emerged, based on machine
learning algorithms, such as neural networks (NN) (Rawat and Wang, 2017). These algorithms
together with big data technologies and high-performance computing, create new
opportunities to unravel, quantify, and understand data intensive processes in agricultural
operational environments (Liakos et al., 2018). One of the most powerful implementations of

the neural network is the CNN (Rawat and Wang, 2017).

2.2.3 Object detection

Object detection deals with two related problems — classification and localization (Girshick,
2015). In the classification problem one or more dominant objects are determined and
labelled in an image, while in the localization problemes, it is much complexes to detect since
in addition to labelling the dominant objects, it also must be localized in the image (Wang,
2014). Localization is usually done by determining a bounding box around the image region
that is occupied by the object and providing it coordinates. The difficulty of this task may
increase if there are other objects in the image where must be labelled, or if multiple objects
of the same category can appear in one image (Girshick, 2015).

Using bounding boxes while classifying each box over an image is a simple approach for object
detection (Girshick, 2015). However, this approach has two main drawbacks — it is expensive
due to the huge search space, and it cannot be used if the number of bounding boxes is
unknown (Girshick, 2015). An early method that implements the sliding window approach is
the Viola-Jones detector (Viola et al., 2001). This approach includes three key contributions.
The first is the use of a new image representation that allows the features to be computed
very quickly classifiers (Freund and Schapire, 1995). The second is a learning algorithm, based

on AdaBoost, which yields extremely efficient classifiers (Freund and Schapire, 1995). The
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third is a method for combining more complex classifiers which allows background regions of
the image to be quickly discarded while focusing on promising object-like regions classifiers
(Freund and Schapire, 1995).

The object detector is arranged in stages with increasing complexity (Viola et al., 2001). In
each stage, the detector decides whether the current windows are not an object (Viola et al.,
2001). If a stage decides that the current windows are not an object, the rest of the stages are

not evaluated. Only true object windows trigger the entire stages (Viola et al., 2001).
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Figure 3. Object detection related problems (Girshick, 2015).

2.23.1 Object detection in fruit and flora

Deep learning using convolution neural networks is taking a significant part in object
detection (Table 1) (Chen et al., 2017; Sa et al., 2016). One direction is yield estimation with
latest works resulting in advanced performances in different scenarios, such as apple orchards
and mango orchards (Koirala et al., 2019). In most research fruit and flora estimation can be
classified as a generic object counting problem which can be solved either indirectly by using
object detectors (Bargoti and Underwood, 2017) or with architectures that set up a regression
problem to directly infer the number of object instances in the image (Rahnemoonfar and

Sheppard, 2017).

2.2.3.2  Object detection in livestock
Object detection image processing techniques, have been applied to livestock farming (Table
2), for automatic recording of activity, movement, and interactions of animals (Noldus et al.,

2001) to determine livestock weight estimation, lameness detection and identification (Tsai
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and Huang, 2014). Using object detection, it is able to carry out patterns of quantitative
measurements of the animals’ observed behavior (Noldus et al., 2001) and behaviors that
occur over many hours, like diurnal variation in behavior (Olivo and Thompson, 1988) in a

trustworthy manner (Noldus et al., 2001).

2.3 Laying hens counting

Laying hens have been bred for their high egg yield, therefore may lay over 300 eggs per year
(Cooper and Appleby, 1996). Most laying hens are housed in conventional laying cages, often
called battery cages, with automated control of light, temperature, feed, water, egg collection
and faces removal (Bowler, 1994). It is acknowledged that battery cages cause welfare
problems. Farm animals should have freedom to stand up, lie down, turn around, groom
themselves, and stretch their limbs, which battery cages mostly contravene (Appleby, 2003).
Therefore, in recent years, laying hen’s cages have been criticized on the lack of possibilities
for hens to perform natural behavior (Appleby, 2003).

Nowadays all new technical systems and equipment for the housing of laying hens have to be
approved with regard to animal health and welfare before becoming available commercially
(Appleby, 2003). In order to obtain approval for the use of a new technical systems, health
must be at least as good as in existing systems and hens must be able to exhibit natural
behavior (Weeks and Nicol, 2006). Furthermore, incidence of disease must be lower and
environmental working conditions must not be worse than in older existing systems (Weeks
and Nicol, 2006). As a result, quota policies of poultry raising in battery cages durable around
the world (Bouvarel, 2011). In addition, quota limitation is necessary also in order to retain
the powers for the regulation of production (Alston, 1999).

Counting hens become a necessary task for quota regulation (Geffen et al., 2019). Stock
people who work in modern cages, are responsible for the counting task, which takes about
half-day per an average poultry farm (Cronin et al.,, 2008). Over and above their daily
operational tasks such as, supervise the mechanical egg collection belts looking for potential
blockages that may result in cracked or broken eggs during the collection process (Savory,
2004). Another daily task for the stockperson is to conduct a welfare inspection of the hens
in every cage. In multi-tier cages, stock people require special equipment to assist the

inspection of hens in the upper tiers located above head height. Thus, monitoring upper tiers
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may require extra stockperson time for inspection of hens (Cronin et al., 2008). Moreover,
the detection and removal of dead hens from upper level cages and other foreign objects on
the upper level is an important task since failure to adequately monitor upper-tier cages can
prejudice the inefficiency of production, if the dead hens gravitate onto the egg collection
belt and result in egg belt blockage (Cronin et al., 2008). The detection and removal of dead
require additional stockperson time compared with inspectorate of the lower cages. In order
to achieve profitable management, these tasks are essential in modern multi-tier cage
systems. By using the counting technology, efficiency of labor use can be improved parallel to
improving frequency of surveillance.(Cronin et al., 2008).

Laying hens counting in community battery cages is a challenging task: first, the hens do not
stand still but constantly moving (Shimmura et al., 2007). Secondly, they stand in different
distance and angles from the camera which effect the ability to contrast them from the
background (Geffen et al., 2019). Finally, because of the cages structure, they can only be
photographed from a front view (Geffen et al., 2019). Hence, not all hens are visible in a single
image (Geffen et al., 2019). These factors do not apply in free range cages which can be
counted in various methods such as background separation (Sergeant et al., 1998) or thermal
imaging and pattern recognition (Zaninelli et al., 2018). In these research the camera was
positioned above the hens (Sergeant et al., 1998; Zaninelli et al., 2018).

Counting hens in battery cages, with eight hens in each cage, was achieved using a camera
placed on the automatic feeder that moved at a constant rate along the cages row (Cronin et
al., 2008). The hen's legs were detected by automatic detection algorithms that was
developed for the research. This method obtained only 79% accuracy, the main difficulties
being hens lifting one leg, sitting, or being occluded behind another hen (Cronin et al., 2008).
Another research counted hens by using deep learning methods (Geffen et al., 2019). The
cages were video recorded while the feeder traveled along them. In this study, a tracking
algorithm that tracks the hen's head locations, and assigns every hen with a unique ID was
used, leading to 98% accuracy result. However, the algorithms were tailored designed to the
specific conditions and were not able to adjust to varying lighting conditions (Geffen et al.,
2019). Moreover, it does not apply on cages without separation in the middle, as is customary
in the industry. In these cages counting must refer to depth of photography (Geffen et al.,

2019).
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Table 1. Fruit and flora object detection research (Kalantar, 2019)

Object Sensors Train Test Algorithm Results Ref
Images Images

Sweet Multi-Spectral, RGB cameras, the JAI AD 100 22 Faster R-CNN 0.838 F1 score (Sa et al., 2016)

pepper 130GE and Microsoft Kinect 2.

Almond Handheld Canon EOS60D 385 100 Faster R-CNN 0.775 F1 score (Bargoti and
VGG16 NET Underwood, 2017)

Tomato Synthetic generated images 24,000 2500 Inception- ResNet 0.9103 Accuracy (Rahnemoonfar and

Sheppard, 2017)

Orange Bluefox USB 2 camera at 10 Hz 36 35 FCN, CNN 0.91 Ratio counted (Chen et al., 2017)
andregression

Apple PointGrey USB 3 camera at 6 Hz 11 10 FCN, CNN and 0.97 Ratio counted (Chen et al., 2017)
regression

Strawberry RGB camera 3640 910 SSD 0.842 AP (Lamb and Chuah,

2018)

Green citrus RGB camera 1200 300 Faster R-CNN 0.855 Map (XIONG et al., 2018)

Weed, soil Simulated images 6744 1686 VGGNet-16 0.94 Accuracy (Dyrmann et al., 2016)

and maize

crop

Wheat Nikon D5100 DSLR camera 2,500 20 Author defined 0.984 Accuracy (Pound et al., 2017)

plantsroot CNN

Mango Spectrum camera (RGB) 11,096 1500 MangoNet based 0.84 F1 score (Kestur et al., 2019)
on CNN

Mango Prosilica 1154 270 SSD based on VGG 0.91 F1 score (Liang et al., 2018)

GT3300c +strobe lightning
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Object

Cattle

Cattle

Cattle

Cattle

Hens

Hens

Sheep

Sheep

Pigs

Pigs

Research subject

Autonomously visual
identification of cattle

Automated detection of
Mounting

Counting cattle in large area
of livestock.

Autonomously find and
visually identify by coat
pattern individual cattle in
freely moving herds.
Tracking

and maintaining identities of
individual hens

Classify the laying hens’
behavior to achieve
automatic recognition.

recognizing individual
sheep

Face recognition as a
biometric identifier of sheep

Detecting sow drinking,
urination, and mounting
behaviors

Automatic Individual
Detection and Tracking

Table 2. Livestock object detection research

sensor

Kinect 2 sensor & RGBD
camera

Side-view camera

Unmanned Aerial Vehicles

(UAVs) cameras

M100 UAV with Onboard
Deep Inference

3D vision camera -
Cambube3, PMDTec

Video camera LC5505E7-
C83R)

Mobile camera

PowerShot G3, Canon

Infrared network camera

2D video camera

Test
data

86,000

90

2,704

1,039

600

778

10,400

150

573

4,200

Algorithm

ASIFT algorithm

Gaussian Mixture
Model & Motion
History Image (MHI).

CNN algorithm

YOLOv2 CNN

Fast watershed
algorithm

HSVM Tracker algorithm

Bayesian optimization
function was used to
determine the CNN
ICA algorithm &
InfoMax

SBDA-DL detection
algorithm

SSD algorithm

Results

0.97
Accuracy

0.999
Accuracy

0.95
Accuracy

0.919
Accuracy

0.95
Accuracy

0.75
Accuracy

0.98
Accuracy

0.953
Accuracy

0.934
Accuracy

0.9474
Accuracy

Ref

(Andrew and Campbell,
2017)

(Chung et al., 2015)

(Omatu et al., 2014)

(Andrew et al., 2019)

(Nakarmi et al., 2014)

(Wang et al., 2016)

(Salama et al., 2019)

(Corkery et al., 2007)

(Zhang et al., 2019)

(zhang et al., 2019)
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2.4 Biometric Identification

24.1 Background

Biometric identification techniques are techniques that can be used to identify an object’s
identity based on their unique features (Jaiswal, 2011). Biometric features can be physiological
(Guo and Zhang, 2019), which are features possessed by person or animal, such as finger-prints,
palm-prints, facial features, ears, irises and retinas (Minaee et al., 2019), or behavioral (Minaee
et al., 2019), which are apparent in a person’s or animal’s interaction with the environment, such
as signatures, gaits, and speech (Guo and Zhang, 2019). The aforementioned techniques have
different attributes, and thus they are preferred in different types of applications (Wada et al.,
2013). For example, facial recognition is commonly used for crime prevention, verification of a
person’s identity, information security, and access control (Guo and Zhang, 2019).

Broadly, biometric identification systems can be divided into two main types: unimodal and
multimodal biometric systems (Al-Waisy et al., 2018). Unimodal systems are based on using a
single source of information (e.g., right iris, left iris, or face) to establish an object identity (Wada
et al., 2013). Multimodal systems combine evidence from multiple sources of information to
identify an object identity (Al-Waisy et al., 2015). Considerable attention has been paid to
multimodal systems due to their ability to achieve better performance compared to unimodal
systems (Al-Waisy et al., 2018). In general, designing and implementing a multimodal biometric
system is a challenging task since several factors that have a great influence on the overall
performance must be addressed (Jaiswal, 2011), including the cost, resources of biometric traits,
accuracy, and fusion strategy employed (Al-Waisy et al., 2018). However, the most fundamental
issue for the designer of the multimodal system is choosing the most powerful biometric traits
from multiple sources in the system, and finding an efficient method to fuse them (Wada et al.,
2013).

Traditionally, the biometric recognition process involved several key steps (Figure 4). First, image
data are acquired via (various) camera or optical sensors (Rokkones, 2018), and are then pre-
processed so as to make the algorithm work on as much useful data as possible (Al-Waisy et al.,
2018). Then, features are extracted from each image (Rokkones, 2018) and then fed into a

classifier to perform recognition (Zhao et al., 2017).

18



Many challenges arise in a traditional biometric recognition task (Minaee et al., 2019). For
example, the hand-crafted features that are suitable for one biometric, will not necessarily
perform well on others (Minaee et al., 2019). Therefore, it would take a great number of
experiments to find and choose the most efficient set of hand-crafted features for a certain

biometric (Minaee et al., 2019).

Dataset

Feature
Feature Poolin
Pre-processing —¥ . ] = &/ — Classifier ——» Person #x
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Reduction
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Figure 4. The block-diagram of most of classical biometric identification algorithms
(Minaee et al., 2019).

However, a paradigm shift started to occur in 2012, when a deep learning-based model, AlexNet,
won the ImageNet competition by a large margin (Guo et al., 2016). Since then, deep learning
models have been applied to a wide range of problems in computer vision achieving promising
results (Druzhkov and Kustikova, 2016). Not surprisingly, biometric identification methods were
not an exception, and were taken over by deep learning models (Zhao et al., 2017). Deep learning
based models provide an end-to-end learning framework, which can jointly learn the feature
representation while performing classification (Minaee et al., 2019). In particular, due to the
convolutional neural networks (CNNs), there have been significant advance in biometric
identification technology (Zhao et al., 2017) in both human and livestock identification tasks

(Corkery et al., 2007; Parmar and Mehta, 2014).

2.4.2 Biometric identification in humans
Face is the most common characteristic used for human identification tasks (Guo and Zhang,
2019). Human face is often used for identification since it contains a lot of information, but any

area which might provide enough information is applicable (Schroff et al., 2015). However, its
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susceptibility to change due to factors such as expression, position or aging, may present a
challenge in computer vision and image understanding (Deng et al., 2019).

Various studies in the human identity authentication field have applied in enormous areas such
as finance, military, public security (Yi et al., 2014). The studies (Table 3) were performed on
different types of human face datasets (Guo and Zhang, 2019), and used various techniques that
combine convolution neural network algorithms (Deng et al., 2019; Ranjan et al., 2017), and
supervised by classification loss functions (Deng et al., 2017a; Weiyang, 2017), metric learning
loss functions (Schroff et al., 2015) or both (Qi and Su, 2018). Metric learning loss functions such
as contrastive loss (Qi and Su, 2018) or triplet loss (Schroff et al., 2015) usually require carefully
designed sample mining strategies and the final performance is very sensitive to these strategies
(Guo and Zhang, 2019), so increasingly more researchers shift their attentions to building deep
face verification models based on improved classification loss functions (Deng et al., 2019;

Weiyang, 2017).

2.4.3 Biometric identification in livestock

Biometric identification is an emerging research field that due to convolution neural network
techniques, has received increasing interest in livestock farming (Table 4) (Kumar et al., 2018;
Schilling et al., 2019; Tharwat et al., 2014).

The need for on farm identification of individual animals has become more pressing in recent
years as sustainable intensification has become commonplace (Hansen et al., 2018), and the
ability to monitor inputs to, and outputs of each animal is increasingly desired (Schilling et al.,
2019). By representing and detecting the visual appearances of animal based on generic features
and primary biometric characteristics (Kumar and Singh, 2017; Schilling et al., 2019), it is possible
to identify individual animal without the use of traditional methods such as ear tags, tattos etc
(Andrew et al., 2019; Salama et al., 2019).

Various biometric features for the identification of animals have been investiged, including -
muzzle pattern matching (Kumar and Singh, 2017), coat pattern (Andrew and Campbell, 2017),
mammary glands (Schilling et al., 2019) and facial recognition (Salama et al., 2019; Wada et al.,

2013). Although the number of animals in those studies are relatively small and the images have
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not been taken over a long enough period to see any large changes in the animal (Hansen et al.,
2018), the presented researches have shown extremely accurate recognition performance is

possible (Schilling et al., 2019).

2.5 Sheep biometric identification

Performance recording of sheep enable automated data collection that provides better quality
data, contributing to better decision-making and thus improved management (Ait-Saidi et al.,
2014). Collected data, including individual sheep ID and the recorded performances like body
condition score, milk yield, data recording at lambing and body weight (Salama et al., 2019),
facilitate animal handling, contributing to improved husbandry practices and reduced labor
requirements (Morris et al., 2012). Moreover, it is important to track individuals with disease for
treatment and for disease management, especially if there is an epidemic disease (Salama et al.,
2019). In addition, buyers sometimes keep their sheep on the farm for some time; as a result,
they have no guarantee of which animal they have bought (Koik and lbrahim, 2012). For those
reasons, sheep ID should be unique and permanent for an adequate performance recording (Ait-
Saidi et al., 2014) and for providing buyers, sellers and farmers an efficient way to recognize and
track each individual in a large group of sheep (Salama et al., 2019).

Different methods of marking sheep were used by herders (Landais, 2001). Historically, the main
methods used for sheep identification were; branding by fire or freezing (Landais, 2001), ear
marking by notching, tattooing and ear tagging (Caja et al., 2004), and electronic identification
such as RFID tags and barcodes (Caja et al., 2004). Nowadays, branding and tattooing animals is
forbidden in countries with advanced animal welfare laws (Defra, 2013), and therefore ear tags
is the main methods usually used for sheep identification. However, this method has proved
inefficient, since they can be either lost or their numbers can be obscured due to the
environments in which sheep live (Koik and lbrahim, 2012). In addition, this process harms the
animal and may even affect its behavior (Caja et al., 2004). A further key drawback of ear tags is
that they require visual detection and must be recorded manually, which can easily introduce
human errors, while the labor cost of such a practice is also high (Trevarthen, 2007). Therefore,

the demand for the use of electronic identification systems, which providing real savings for
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farmers primarily due to a reduction of labor costs, increases (Vlad et al., 2012). Electronic
identification systems also offers to farmers a way to guarantee the traceability throughout the
feed-animal-food chain, and the ability to better manage individual production and feeding of
each sheep (Trevarthen, 2007). From all electronic identification technologies, Radio Frequency
Identification (RFID) is the most common used since it provides many advantages over the others
(Vlad et al.,, 2012). These advantages include the ability to store more information ensure
successful reading of information and lack of stress to sheep (Trevarthen, 2007). In particular,
they provide easier use, under field conditions, since there is no need to have visual contact of
the tag — they simply must enter the scanning field of the reader (Voulodimos et al., 2010). This
therefore dramatically increases ease of use, as well as providing greater reliability in light of
general wear and tear, and environmental elements such as dirt and dampness (Domdouzis et
al., 2007). On the other hand, one could pinpoint as the main drawbacks of electronic means of
identification, especially RFID, the higher cost in comparison with the less expensive conventional
methods (Trevarthen, 2007). In addition, the RFID tags are vulnerable to compromise, which
requires knowledge of the technology and careful alignment in order to prevent signal damage
(Wojcik and Sikora, 2017). Moreover, the small but not inexistent risk of a tag remaining in the
food products (injectable tags) and the inability to protect from possible fraud (Voulodimos et
al., 2010) are referred to as possible disadvantages of the RFID-based tracking methods
(Trevarthen, 2007) .

To increase profitability with minimal unfavorable environmental impact and high concern of
animal welfare nowadays (Mollo et al., 2010), using biometric traits instead of traditional
identification methods, has gained a lot of attention in current livestock identification systems
(Corkery et al., 2007). Only two research has focused on sheep identification so far (Corkery et
al., 2007; Salama et al., 2019).

Sheep facial biometrics include many significant features that can be used for identification such
as muscles, the eyes, mouth and many hidden features (Corkery et al., 2007). Therefore, facial
biometrics are very promising and efficient features for sheep recognition (Salama et al., 2019).
Sheep face recognition was achieved using a cosine distance classifier trained on facial images of

50 sheep whose ages ranged from 3 to 4 years (Corkery et al., 2007). In this research, each sheep
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was represented by 7 images taken at a forward-facing posture with a black background, using
Canon professional PowerShot camera (Corkery et al., 2007). The faces of the sheep were cleaned
of dirt and all possible sources of noise before being imaged (Corkery et al., 2007). Sheep were
also held using special tools so that a certain fraction of each sheep face was within the image
(Corkery et al., 2007). This approach achieved 96% accuracy but required considerable human
intervention for image acquisition(Corkery et al., 2007).

In the second research, sheep identities were recognized by a convolutional neural network using
facial biometrics (Salama et al., 2019). A Bayesian optimizer was used to automatically set the
parameters for the convolutional neural network and in addition, the AlexNet configuration was
also examined (Salama et al., 2019). The sheep recognition algorithms were tested on a data set
of 52 sheep between five months and five years old, with 10 images taken per sheep (Salama et
al., 2019). Also, data augmentation methodologies such as rotation, reflection, scaling, blurring,
and brightness modification were applied (Salama et al., 2019). The experiments conducted in
this paper achieved an accuracy of 98% (Salama et al., 2019).

However, those researches were tailored designed to the specific conditions and were not able
to adjust to varying lighting conditions and different face postures (Corkery et al., 2007; Salama
et al., 2019). Moreover, they were tested on small set of sheep with great variability (Corkery et

al., 2007).
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Subject

Feature learning using deep
convolutional neural
networks

Sphereface: Deep
hypersphere embedding

Feature learning

Softmax loss for
discriminative face
recognition

Unified embedding for face
recognition and clustering
Face representation

Marginal loss for deep face
recognition

Improving the generalization
ability of DCNN

Face representation using
joint sample and set-based
supervision

Git loss for deep face
recognition

Range loss withlLong-tailed
training data

Conntrastive center loss for
deep neural networks
Additive margin softmax for
face verification

Table 3. Human biometric identification researches.

Loss Function

Additive angular
margin loss
(ArcFace)
Angular softmax
(A-softmax) loss

Congenerous
cosine distance
L2-Softmax loss

Triplet loss

N-pair loss

Marginal loss
Noisy softmax

Max-Margin loss

Git loss
Range loss
Contrastive-

Center loss
AM-softmax

Train
Datasets

CASIA,
VGGFace2 and
MS1IMV2.
CASIA-
WebFace

MNIST and
CIFAR-10
MS-Celeb1M

LFW and YTF

WebFace

MS-Celeb-
1M
WebFace

VGG Face

VGG Face2
WebFace
and Celeb1M
WebFace

WebFace

Test
Datasets

LFW, and
YTF

LFW and YTF

LFW

LFW and
1JB-A

LFW and YTF

LFW

LFW and YTF

LFW and
YTF
LFW and
YTF

LFW and
YTF

LFW and
YTF

LFW

LFW and
MegaFace

Algorithm

ResNet100

Author defined
64-layer CNN

COCO
algorithm
Face-ResNet
DCNN

FaceNet

CasiaNet

ResNetl
VGG-net

Inception-
ResNet

Inception-
ResNet
ResNet2

ResNetl

ResNet2

Results

0.9953 accuracy

0.9942 and 0.95
accuracy respectively

0.9986 accuracy

0.9933 accuracy

0.9963 and 0.9512
accuracy respectively
0.9833 accuracy

0.9948 and 0.9548
accuracy respectively
0.9918 and 0.94.88
accuracy respectively
0.9603 and 0.9244
accuracy respectively

0.9930 and 0.9530
accuracy respectively
0.9952 and 0.937
accuracy respectively
0.9868 accuracy

0.9917 and 0.8444
accuracy respectively

Ref

(Deng et al.,
2019)

(Weiyang, 2017)

(Liu et al., 2017)

(Ranjan et al.,

2017)

(Schroff et al.,
2015)
(Yietal, 2014)
(Deng et al.,
2017b)

(Chen et al.,
2017a)

(Gecer et al.,
2017)

(Calefati et al.,
2019)

(zhang et al.,
2017)

(Qi and Su,
2018)

(Wang et al.,
2018)
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Object

Cattel

Cattel

Cattel

Cattel

Cattel

Cattel

Pigs
Pigs

Sheep

Sheep

Table 4. Livestock biometric identification researches

Method

Identidiction via selcetive local
coat pattren matching in RGBD
imagery

Identidiction using muzzle point
pattern

Using cow’s mammary glands as
a novel biometric identification
modality

Identification via coat pattern
individual cattle in freely moving
herds & data augmentation was
used

Identification via cattle animals
using muzzle print images
Transfer learning approch for
recognition of cattle using muzzle
point image

pattern

face recognition using
convolutional neural networks
Recognition using eyes pattern

Identidiction using the cosine
distance classifier

Bayesian optimization was used
to find the best CNN parameters
& data augmentation was used

Sensors

Kinect 2 sensor

20-megapixel
camera

Go Pro camera
with Near-
Infrared (NIR)
sensors

DJI Zenmuse
X3 camera
located on a
drone

Used exisiting
dataset
30-megapixel
camera

Sogatel USB2.0
webcam
Digital camera

PowerShot G3

Mobile camera

Train
Images

83
images

3000
images

150
images

3120
images

124
images
100
images

932
images
256
images
200
images

4160
images

Test
Images

294
images

2000
images

152
images

1039
images

93
images
400
imgaes

621
images
64
images
150
images

1040
images

Algorithm

ASIFT algorithm with
RBF-SVM

K-means segmentation
algorithm to find ROI &
Fuzzy-K-NN for
classification
Scikit-learn machine
learning library
evaluated with Support
Vector Machine (SVM)
InceptionV3

LBP, LDA & SVN
classifier
Author defined DCNN

VGG Face & Liner SVN
classifier
PCA using eigenspace

Independent
Component Analysis
(ICA) algorithm.
Author defined CNN
& AlexNet

Results

0.97
accuracy

0.9674
accuracy

0.60
accuracy

0.944
accuracy

0.995
accuracy
0.9899
accuracy

0.967
accuracy
0.979
accuracy
0.96
accuracy

0.98
accuracy

Ref

(Andrew and
Campbell,
2017)

(Kumar and
Singh, 2017)

(Schilling et al.,
2019)

(Andrew et al.,
2019)

(Tharwat et al.,
2014)

(Kumar et al.,
2018)

(Hansen et al.,
2018)

(Wada et al.,
2013)
(Corkery et al.,
2007)

(Salama et al.,
2019)
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3 Methods

This thesis includes two machine vision applications for PLF; detecting and counting laying

hens (chapter 4) and sheep biometric identification (chapter 5).

3.1 Mobile system for detecting and counting laying hens

The research goal was to develop a mobile system for counting laying hens in battery cages,
which consist of 4-6 six floors, where each floor contains about 40 cages housing thousands
of hens. The research included designing the mobile imaging system and developing
algorithms for counting the hens. The system was designed to be mobile to suit different hen
houses. The counting algorithm received as input a color video record of a cage containing
about 35 hens, which was acquired from an Intel RealSense RGBD camera, and the output
was the number of hens counted and their location. Two experiments were performed in
which a total of 6,300 images were acquired for the algorithm development. As part of the
development, two different counting algorithms were developed. The first algorithm aimed
to detected and count areas with red color which is an indication of the hen’s comb, while
the second algorithm aimed to detect and count hens based on Faster R-CNN algorithm.

Details are provided in Chapter 4.

3.2 Automated system for sheep identification

This research focused on developing an automated system for data collection and a deep
learning model for sheep facial biometric identification. The automated system video
recorded the sheep faces at all daylight hours, ensuring a variety of light conditions and
shooting angles data, which were used for the model development. Data collection was made
on two different groups of sheep and throughout their growth period, where the sheep
gained about 25 kg in weight, in order to examine whether weight gain and the sheep
maturation influenced the biometric identification. The first group (group 1) contained 47
sheep and the second group (group 2) contained 34 sheep. The biometric identification model
developed in this thesis, took a set of different sheep faces as input and applied two steps on
each image - face detection, using Faster R-CNN algorithm, and classification, using

ResNet50V2 CNN and ArcFace loss function. The model is described in Chapter 5.
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4 Mobile system for counting laying hens

This chapter describes the development of a mobile system (Section 4.1) for detecting and
counting laying hens using color images acquired from a digital camera mounted on a mobile
cart, the experiments and their evaluation (section 4.2), the development of an image
processing algorithm and object detection algorithm for hen detection and counting (section

4.3) and the results of this study (section 4.4).

4.1 System design

A mobile system which can be transferred between hens houses was developed (Figure 5).
The system aims to replace the manual counting of laying hens, with an algorithm that uses a
RGBD camera to detect and count hens. Since the narrowest path besides cages, in all the
hen's battery cages in Israel, is one-meter-wide, the system was mounted on a 60 cm wide
cart. Since the system must be disinfected before each entering to the hen’s battery cage, the
cart was made from aluminum, a material that is easy to disinfect. The Intel RealSense depth
camera D435 camera was used for image acquisition at 30 frames per second (fps). The
camera was connected to a mobile computer with a USB cable, allowing to track the data
collection in real time (Appendix 1A). The camera was positioned at 90-degree angle to allow
direct view of the laying hens (the hen houses structure enables only front view access). The
RGBD camera was mounted on an aluminum rod which was attached to the front of the cart.
Since battery cages consist of 4-6 floors up to 3.5 meters, the rod has a variable length, with

maximum length of 4 meters, in order to fit it to the floor which must be photographed.

4.2 Methods

4.2.1 Experimental design

The system was examined in a single commercial hen house located in Moshav Kidron,
located in central Israel. The hen house is 87 m long, on the second floor that contains 37
cages, each cage is 2.4 m long, 0.54 m tall, and 0.74 m depth, housing 18—34 hens per cage.

In the hen house, there is an external feeder situated in the front of the cages.
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Figure 5. The developed mobile system. The system was mounted on a 60 cm wide and 80
cm long cart. The system includes; (a) Mobile computer. (b) Aluminum rod with a variable
length. (c) Intel RealSense depth camera D435, located 160 cm from the floor.

Figure 6. Battery cage stacked on six floors, with 37 community cages set in a row.

To determine the optimal time for counting the hens, the behavior of the hens was monitored
in several observations to better understand their habits. Feeding events occur four times a
day, at 6:30, 13:30, 14:30, and 17:00. Following the feeding routine up to 15:00, most of the
hens sat in the cages and laid eggs; sitting at the back of the cages and huddling together,
reducing the ability to count them. The last feeding event was selected as the adequate time

point for counting, as most hens stood in front of the cages and waited for the last meal of

the day.
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Hens are easily frightened by any foreign object such as a person’s presence or a camera.
Hens do not notice the blue color. Therefore, in order to reduce panic level, the man
conducting the experiment wore blue clothing and the cart was painted in blue. In the hen
house, one cage consists of two cells with no partition between them (Figure 7). Since the
RGB-D camera lens is not wide enough to absorb a full cage, each cell was recorded
separately. The hens were video-recorded for 30 minutes during the last feeding event of the
day. During the feeding event, the feeder travelled backward and forward along the cages
line. Accordingly, the cart moved with and by the feeder pace (forward —the user pushed the
cart; backward — the user pulled the cart). As a result, every cell was recorded at least twice,

at a camera speed of 30 fps when about 120 frames were collected per cell (Appendix 1B).

Figure 7. A photo of one cage; the cage boundaries are colored in blue, while the green line
indicates the middle of the cage which consists of two cells.

4.2.2 Data

Two datasets were used — one for developing the image processing algorithm (from Geffen
et al., 2019), and the other for the object detection algorithm (a newly acquired one).

The dataset used for the development of the image processing algorithm included 4,440
images that were acquired in a previous research in 2019 (Geffen et al., 2019). The images
were acquired with a Media Tech W9R camera with a 170-degree wide angle lens. The camera
was tuned to full HD mode (1080p), filming 30 frames per second (fps). The hens were
recorded while the camera was mounted on a steel rod attached to the feeder, 90 cm in front
of the cages, and positioned in a way that allowed direct view of the hens. For the algorithm
development, 105 frames were used consisting of the first three frames of each of the cages

number 2-35 in the second floor.
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The second dataset, which was used for the new developed object detection algorithm, was
specially collected as part of this thesis on two different days (February 25 and 26, 2020). A
total of 6,300 images were collected. Prior to recording, the number of hens in every cage
was counted manually by a human observer, which was later used as the ground truth, to
compare with the count obtained by the system.

In order to train and test the object detection algorithm, a labelled dataset was manually
created (Appendix 1C) using “Labeling” image annotation tool. The dataset includes images
in which bounding boxes around the hens with the right class tag —'chicken' marked. The
object detection algorithm was trained and tested using 700-tagged images, 560 images in
the training dataset and 140 images in the test dataset. The other 5600 left images were used
to evaluate the whole system, which contains the detection algorithm and the tracking

algorithm.

4.2.3 Algorithm

As part of the development, two different algorithms were developed (section 3.3). The first
system relies on an image processing technique that detects and counts areas with red color,
which signifies a hen’s red comb. The second algorithm relies on an advanced deep learning
classification schema. Both systems include two main stages: hen’s recognition (detection)

followed by counting and estimation.

4.2.4 Performance measures

In order to evaluate the correctness of the image processing algorithm, two errors were
calculated: the first compared the algorithm counting results to the ground truth obtained
using the manual counting of hen's combs (defined as E1). The second error calculation
compared the algorithm's results to manual counting of hens in the corresponding images.
This comparison was made in order to assess whether the hen's comb is a sufficient feature

to accurately detect laying hens (define as E2).

1= Manual comb counting — Algorithm counting result

Manual comb counting
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_ Manual hen counting — Algorithm counting result

Manual hen counting

Object detection performance was evaluated using recall and precision indicators together
with the Fl-score, based on the confusion matrix. This matrix is used to describe the
performance of a classification model on a set of test data for which the true values are
known. For object detection we used the concept of Intersection over Union (loU) as a
threshold for classification decision. loU computes intersection over the union of the two

bounding boxes; the bounding box for the ground truth and the predicted bounding box.

Intersection over Union=

Figure 8. Red is ground truth bounding box and green is predicted bounding box.

A classification is true if it matches the ground truth with loU > N. loU is a way to measure if
a predicted bounding box is well-located; high loU means that a predicted bounding box has
a big overlap with a ground truth bounding box. N is a number between 0 and 1, and it is a
threshold for loU. The confusion matrix reflects the resulting matches between ground-truth
and detections, when the horizontal rows represent the target values (what the model should
have predicted - the ground-truth) and the vertical columns represent the predicted values
(what the model actually predicted). The final row and column correspond to the class
“nothing” which is used to indicate when an object of from the class 'chicken' was not
detected, or an object that was detected was not part of the ground-truth. The confusion
matrix reports the number of true positives, false positives, false negatives and true

negatives:
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e True positives (TP): A hen detection is considered to be a true if the predicted and
ground-truth bounding box had an intersection over union (loU) greater than a fixed
threshold.

e False positives (FP): (also denoted as false detection) refers to an algorithm’s mistake
in predicting background as an object - hen.

o False negatives (FN): A miss by the algorithm, refers to its failure to detect a real hen.

e True negatives (TN): This indicator is not useful for object detection, since it represents

the correct detection of a background (not an object). Hence we ignore TN.

Precision indicates the fraction of the algorithm’s predictions that are hens. Recall is the
fraction of hens in the image that were detected by the algorithm. Increasing recall usually
comes at the expense of precision. The harmonic mean so-called F1 score provides a balance

between the two and was calculated.
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The area under the Precision—Recall curve is called the Mean Average Precision (mAP), and it

was used as the performance measure for the object detection algorithm.

4.2.5 Sensitivity analysis

Two sensitivity analysis were conducted:

1. Directional analysis: the differences between the video acquired while moving forward
(the user pushed the cart) and backward (the user pulled the cart) was evaluated and
compared to ground truth. The statistical F test was used to test the null hypothesis that
the variances of the two videos are equal.

2. Number of frames: to determine the minimum number of frames needed for high
detection while shortening runtime, the analyses evaluated the number of detections for
different numbers of frames: 1, 4, 10, 20, 30, 35, 40, 44 and a full video containing more

than 44 frames.
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4.3 Algorithms

4.3.1 Image processing algorithm

The system receives as input a RGB image of each cell in the battery cage. The output is the
number of combs counted and their location. The counting algorithm included the following
steps (Figure 10): convert RGB image to HSV, thresholding, red color detection, noise removal,
erosion, dilation, blob detector and counting. The image processing algorithms were
programmed in Python 3, since it has access to great libraries for image processing, flexibility,

platform independence, and a wide community (Appendix 1D).

o= Y ¥ = “li g
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Figure 9. Hen comb: a fleshy growth or crest on the top of the head.

Convert RGB image to HSV, and split color components
The first step involved transforming the RGB color space into the HSV (hue, saturation, value)
space which is a color space that describes color information in a similar way that is used by

the human vision system.

Thresholding and red color detection

The histograms of the object (hen's comb) was plotted, and the spread of an object in the
color space was taken as its primary identification. The threshold color values were obtained
to distinguish the object from the background, in HSV color space to achieve a better
separation. Red color objects have Hue value in range: from 0 to 10, as well as in range from
170 to 180. Therefore, thresholding included two conditions to ensure only hen's comb pixels

remain in the images.
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Noise removal

Some of the combs that were present were incorrectly recognized and formed unwanted
noise. The following image processing operations were performed to remove the unwanted
noise through median filtering. A median filter is more effective than others when the goal is
to simultaneously reduce noise and preserve edges. The median was calculated by first
sorting all of the pixel values from the surrounding neighborhood into the corresponding
numerical order and then replacing the pixel that was under consideration with the middle or
the median pixel value (if the neighborhood under consideration contained an even number

of pixels, the average of the two middle pixel values was used).

Produce a binary image
A binary image was used in order to separate the object in the image (hen's comb) from the
background. The binary image effectively masks comb regions in the image. The white color

referred to the object, while the rest is referred as the background, colored by black.

Erosion and dilation

Dilation and erosion were combined to remove small objects from an image and smooth the
border of large objects. Dilation adds pixels to the boundaries of objects in an image, while
erosion removes pixels on object boundaries. The number of pixels added or removed from
the objects defines according to the structuring element also known as a kernel. The current

algorithm used 2 iterations for each operation, with kernel size of 7 on 7 to process the image.

Blob detection

A blob is a group of connected pixels in an image that share some common property. The goal
of blob detection is to identify and mark those groups. The SimpleBlobDetector, which was
used in the algorithm, is a simple algorithm, controlled by parameters which define the type
of required blobs. Several filters can be employed including filter the blobs based on size, filter
according to shape circularity, which measures how close to a circle the blob is, filter by shape
convexity (defined as the Area of the Blob / Area of its convex hull) or filter shape according

to inertia Ratio that measures how elongated a shape is.
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Comb counting

The number of blobs in the segmented image were then counted. The blobs that were
counted, were limited by both the lower and the upper limit on the number of pixels in a blob.
The lower limit served to remove noises from the image. The upper limit had the effect of

rejecting some of the comb where several combs had been overlapped.

{ Input RGB Image ]

v

Convert RGB Image to HSV ]

v

[ Split color components: H, S, and V ]

——

[ Thresholding by each component ]

v

[ Red Color Detection ]

v

[ Background color change to black ]

v

[ Red color change to white ]

v

[ Noise Removal ]

\4

[ Produce a Binary Image ]

v

[ Erosion ]

[ Blob Detector ]

[ Comb Counting ]

Figure 10. Flowchart algorithm of the overall methodology.
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Figure 11. Counting algorithm steps; (a) Input RGB image, (b) HSV image, (c) H panel
image, (d) S panel image, (e) V panel image, (f) Red Color Detection, (g) Background
color change to black and red color change to white, (h) Noise Removal, (i) Erosion, (g)
Dilation (k) Blob Detector.
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4.3.2 Object detection counting algorithm

The counting algorithm took a two second video sequence of every cage and processed the
video frames. First, the Faster R-CNN deep learning object detection algorithm was applied
to detect hens in each frame. Then, a Non-Maximal Suppression (NMS) algorithm was applied,
to overcome multiple detections. Next, the frames with the resulting identifications were fed
into a tracking algorithm, which tracked the location of each identified hen along the video
frames, based on its location in the previous frame.

In the tracking process, every hen was assigned with a unique ID, and the tracking procedure
enabled each hen to continually be identified with the same ID along the frames. Newly
detected hens, which had been obstructed in previous frames were assigned with new IDs,
and false detections were removed. This process compensates for inaccuracies that may

occur in the hen detection stage.

Faster R-CNN

Faster R-CNN is a region-based detectors object detection algorithm based on a convolutional
neural network (CNN) (Ren et al., 2015) that comprise two modules — a Region Proposal
Network (RPN) and a classifier. The RPN is a kind of mechanism to focus attention, directing
the classifier where to look for objects in the image. It does this by identifying regions
(bounding boxes) in an image, which are more likely to have objects in them. First, the image
is fed into a pre-trained base network, then the RPN slides on top of the last shared
convolution layer, and finds three hundred such boxes in the original image. The proposed
regions are fed into the second module of the Faster R-CNN (classifier), which classifies hens
and corrects the bounding boxes’ locations. The output of this process is an image with
bounding boxes around the objects it has found. The base network used in this research is
ResNet101 (He et al., 2016) pre-trained on the Common Objects in Context (COCO) dataset.
The object detection algorithm was trained and tested using 700 tagged images (section 3.4)

and is described in Appendix 1E.
Non maximal suppression (NMS)

A single object might be detected multiple times, as it may fit well enough in more than one

proposed bounding box. In the case of multiple detections of a single hen, only one detection
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that fits better will be kept (Figure 13). Multiple detections have a big overlap; thus, they were

identified by calculating the Intersection over Union (loU) index.

Figure 13. Bounding boxes, A and B are two different detections of the same hen in the
same frame.

After hens are detected in a frame, NMS is applied. First, all the bounding boxes are put in
order by decreasing size. The biggest is compared with the second biggest box, and so on
down to the smallest box. Smaller boxes with an loU greater than 0.06, which was obtained
experimentally, are deleted. Next, the second biggest box left in the boxes list, is compared

with all the boxes smaller than it, and so on. In this way, no bounding boxes are compared to
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the same bounding box more than once, because each box is compared only with boxes
smaller than itself. In any case of multiple detections, the biggest bounding box is kept. That
is because the biggest box usually contains a significant part of the smaller one, but does not
contain multiple hens; a big box usually contains a larger part of the hen’s body; a smaller box
contained in the big one, will usually detect a smaller feature of the same hen, e.g. an eye or
a beak. By keeping the biggest box, a single hen is not assigned multiple IDs during the tracking

process.

Tracking and counting algorithm

Hens are located in different places in a cage; some stand, sit or are hidden by others. In

addition, hens move very fast; even in the short time of 1/30 seconds between two successive

frames, a hen may move her head down significantly. Because of these movements and

obstructions, not all the hens in a cage are visible to the camera in every frame. Moreover,

not all the hens visible to the camera are necessarily detected in every frame. In order to

address these problems, a tracking algorithm that keeps and follows the detections from

previous frames was developed (Appendix 1F), based on previous work development (Geffen

et al., 2019). The tracker receives a video sequence of about two seconds of every cell (an

average of 60 frames, each with the detected bounding boxes of the hens), and tracks the

hens' locations, as follows:

e Each detected hen in the first frame of the sequence is assigned with a unique ID number.

e Detected hens in the next frame are assigned with IDs from the last frame, or with new
IDs, as follows: Euclidian distance was calculated between every new bounding box and
existing ones, the pair of bounding boxes with the minimal distance are chosen to be
compared - If the loU between those boxes is greater than 0.1, the new box is assigned
with its pair's ID from the previous frame. Otherwise, the box is assigned with a new ID,
which means that a new hen was detected (Figure 14).

e If a hen was detected in a previous frame, but not in the current frame, the amount of
times it wasn’t detected again will be counted (Figure 15).

e After all the frames in the sequence are processed, the tracker has logged all the hens’ IDs
and number of appearances. If an ID appeared only once, it will be deleted, as it is

considered a false detection.
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e The tracker calculates the maximum detection for each cage, as a sum of two cell's

detection, according to a method explained later (section 3.3).

Figure 14. An example of a hen that was detected in a previous and in the current frames.
The bounding box from the previous frame is on the right, the one from the current frame is
on the left. The Euclidean distance between the centres of these two boxes is the
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Figure 15. Tracking example; (a) First frame - each detected hen is assigned with a unique ID
number, (b) Following frame - a new hen was detected - ID 16, (c) Following frame - in blue -
a hen was previously detected but not in the current frame. The disappearance counter
display next to the ID
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4.4 Results

The results of the image processing algorithm and the object detection algorithms are

reported.

44.1 Image processing

The image processing algorithm (section 3.2) resulted in less red combs as compared to the
human manual counting (Figure 16), with an average of 6.21 missed (SD: 1.72, maximum
missed: 11, minimum missed: 2). The errors E1 and E2 (Figure 17), indicate that using red
comb as a single feature is not sufficient. In manual counting probably additional features

such as the legs, eyes, and neck are considered.
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Figure 16. Cells 3-35 counting results. The cell number presented on the X-axis; the Y-axis is
the number of target counting.

The E1 error is up to 40% (min error - 0.08, max error - 0.36, SD - 0.064), while the E2 error is
higher than E1 (Figure 17) with errors up to 50% (min error - 0.14, max error - 0.5, SD - 0.080).
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Figure 17. Cells 3-35 errors calculation - the error colored by green represent E1, and the
blue one represent E2. The cell number presented on the X-axis; the Y-axis is the error
calculated.

The difference between the two errors indicates that the hen's comb is not an accurate
enough feature for detecting laying hens. Therefore, other features should be included in
order to improve the algorithm results. In addition, additional steps must be taken in order

to improve the algorithm results.

4.4.2 Object detection

Most of the results derived with an loU of 0.5 are correct, and most of the hens were detected,
according to the results of the test set which includes 141 labeled images (Table 5). When
loU=0.50, less overlap is required between the ground truth boxes and the predicted boxes
compared to an loU of 0.75. Therefore, for loU=0.75 the mAP dropped. The drop in the mAP

suggests that many of the detections are made in the range of 0.5<loU<0.75.

Table 5. Mean Average Precision (mAP) with different Intersection over Union (loU) values.

loU 0.50 0.75
mPA 0.962 0.446
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The confusion matrix (Table 6) for loU=0.5, revealed 89.54% true positive.

Table 6. Confusion matrix for loU=0.5.

Predicted Positive Predicted Negative
Actually Positive 1696 106
Actually Negative 92 0

Table 7 presents the Precision, Recall and F1-Score values, which were calculated based on

the confusion matrix displayed earlier.

Table 7. Precision, Recall and F1-Score

Precision Recall F1-Score
loU=0.5 0.941 0.948 0.944

Table 8 presents the result of the tracking algorithm - the maximum count for each cage in
the range of 2-36 is compared to the manual count. The maximum values were chosen out of
40 frames, from the ‘back’ and ‘forth’ videos acquired in the experiment. The number of the
hens in the different cages was obtained by adding up the number of hens in the cages found
by the system and by manually counting the hens. 978 and 923 hens were detected, on the
way forth and back, respectively out of total 1103 hens counted manually. The detected

frames and counting results are described in Appendix 1G.
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Table 8. Maximum number of detected hens in each cage as compared to ground truth.

Cage number Ground truth Forward max Backward max
2 41 38 40
3 25 21 24
4 40 28 25
5 43 36 30
6 37 36 34
7 27 26 28
8 28 24 26
9 34 26 25
10 37 32 33
11 29 31 22
12 42 44 31
13 42 34 30
14 23 19 23
15 35 34 32
16 26 25 23
17 38 31 29
18 36 35 32
19 33 32 27
20 31 28 29
21 37 23 24
22 35 32 30
23 26 33 27
24 30 22 25
25 24 24 19
26 21 20 18
27 29 19 25
28 27 26 26
29 31 28 24
30 21 23 19
31 34 21 23
32 28 22 21
33 27 26 20
34 28 22 23
35 23 27 23
36 35 30 33

Total counted 1103 978 923

Table 9 presents the accuracy and mean absolute error (MAE) calculated according to the
total counted number presented in the Table 8; accuracy is calculated as the total number of
hens that the algorithm counts out of the total number of hens counted by human. These

results were calculated with a certainty level of 0.8 and loU=0.5.
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Table 9. Accuracy and Mean Absolute Error (MAE) result

Forward Backward
Accuracy 88.66% 83.68%
Mean Absolute Error 4.54 5.25

As noted, the system tracked and counted the hens in all the different cages; the number of
hens in the cages varied. The lighting conditions are not the same in all the cages, thus, images
of hens might have different clarity. Moreover, the hens do not stand still, but move around
inside the cages. Therefore, they were in different locations in every video sequence
comprised of successive frames. In addition, the RGB-D camera lens is not wide enough to
absorb all the hens as a human eye can do, and therefore misses objects. Despite all the
difficulties described above, counting laying hens in battery cages was achieved with up to
88% accuracy (Table 9). The algorithm can detect objects in a densely populated picture,

containing multiple overlapping objects.

4.4.3 Sensitivity analysis

Directional analysis

Videos acquired while moving backwards were more accurate with 92% accuracy compared
to ground truth (Figure 18) and compared to 88% obtained when moving forward (Appendix
1H). The test revealed no statistical difference between the forward and backward direction

videos (F-critical 1.981, F-statistic 1.853), with alpha level of 5%. (Table 10).
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Figure 18. Average accuracy and standard deviation in detections compared to ground truth.
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Table 10. F-Test Two-Sample for Variances

Variable 1 Variable 2
Mean 0.932 0.896
Variance 0.0385 0.0207
Observations 35 35
df 34 34
F 1.8535
P(F<=f) one-tail 0.0381
F Critical one-tail 1.9811

Number of frames per video

When using a full video (which contains more than 44 frames) the average detection ratios
compared to ground truth was 0.914. While, when using only 35 frames from a video, the
average detection ratios compared to ground truth is 0.883, and 0.968 when compared to full
video. 40 frames and 44 frames average detection ratios compared to full video result with

0.975 and 0.981 respectively.

Results compared to ground truth: It can be concluded that using only 35 frames, leads to
similar detection results as using a full video, when compared to ground truth (Figure 19,
Figure 20, and Table 11).

Results compared to full video analysis: The counting results converge with 10 frames with
88% average detection ratio compared to full video (Figure 21 and Figure 22). However, the
standard deviation is relatively high compared to the standard deviation of 35 frames (Table

12).

In conclusion, the object detection algorithm can use only 35 frames of each video instead of
using a full video, which includes more than 44 frames. Satisfactory results can be obtained
with shortened algorithm runtime; 87% difference compared to ground truth for 35 frames,

with ~7-minute elapsed time, versus 89% for full video with ~8.5-minute elapsed time.
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Figure 19. Forward sensitivity evaluation; the minimum, average and maximum detection
ratios compared to ground truth (SD is presented in Table 11).
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Figure 20. Backward sensitivity evaluation; the minimum, average and maximum detection
ratios compared to ground truth (SD is presented in Table 11).

Table 11. Average standard deviation according to number of frames used, compared to
ground truth.

number of frames 1 4 10 20 30 35 40 44 44+
Backward 0.14 0.15 0.15 0.16 0.16 0.19 0.19 0.20 0.20
Forward 0.13 0.13 0.13 0.13 0.13 0.15 0.15 0.15 0.15

49



1.6

1.4

1.2

0.8

0.6

0.4

0.2

1 frame 4 frames 10 frames 20 frames 30 frames 35 frames 40 frames Adframes

I Minvalue M Average [ Maxvalue

Figure 21. Forward sensitivity evaluation; the minimum, average and maximum detection
ratios compared to full video detections (SD is presented in Table 12).
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Figure 22. Backward sensitivity evaluation; the minimum, average and maximum detection
ratios compared to full video detections (SD is presented in Table 12).

Table 12. Average standard deviation according to number of frames used, compared to full

video.
Number of frames 1 4 10 20 30 35 40 44
Backward 0.06 0.06 0.07 0.06 0.06 0.04 0.03 0.02
Forward 0.09 0.07 0.08 0.06 0.06 0.04 0.04 0.03
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5 Automated system for sheep identification

This chapter describes the development of an automatic system for real-time data collection
of sheep facial photographs (section 5.1), the research methodology describing the
experiments and their evaluation (section 5.2), the sheep biometric identification model

(section 5.3) and the study results (section 5.4).

5.1 System design

The overall system (Figure 24) was developed and built on a drinking monitoring facility to
ensure that all sheep had frequent access per day, voluntarily, without human involvement.
The drinking facility, located in a research sheep pen in Volcani Center, Bet Dagan, monitored
each sheep's body weight and water intake per visit. Two 8-MegaPixels RGB cameras, of
Digital Single Lens Reflex (DSLR) type, with USB connections were connected to a NVIDIA
Jetson Nano embedded system-on-module (SoM) (Appendix 2C). Both cameras video-
recorded the sheep while they were drinking water. The cameras were located at a height of
80 cm, one at the face area; the second camera acquired photos of each sheep's ear tag
(Figure 1). The system includes an Infrared Red (IR) sensor, which activates the cameras when
a sheep inserts its head into the system area. The same IR sensor ends the recording the
moment it no longer detects a sheep in the drinking facility (Figure 2). Similarly, if the sensors
erroneously detect movement, e.g. a bird triggers them, they will immediately stop the
cameras when the bird flies out. Videos were acquired at a speed of 30 frames per second
(fps) from both cameras in parallel. The cameras and the Jetson Nano were placed in airtight
boxes to protect them from dirt and heat. The system included a SIM card with an Internet
network to enable remote connection via a USB dongle.

The logical flow of the system operation is detailed in Figure 23.
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Figure 23. Flowchart of the overall system.

5.1.1 Overview of the existing smart drinking facility

The existing system aimed to document the weight of each sheep and the drinking amount it
drank per visit. The facility included a RFID antenna, basin with capacitive sensor and a digital
weight which was set across the 40 cm wide facility floor. The digital weight and the RFID
antenna were connected to an Arduino program. When an animal arrived to drink, it stepped
on the facility floor and it weight was identified. If the sheep weighs more than 10 kg (which
means the whole sheep’s body is on the facility and not only 2 legs) then the Arduino gets a
signal to start recording the amount of water the sheep drank and documents the current
weight. In parallel, the RFID antenna, which is located above the basin, at a height of 95 cm
from the ground, tries to read the sheep ear tag for individual recognition, and if successful
the tag number is reported to the Arduino. All the data was written to an Excel file with a time
stamp of the animal arrival. The program was implemented in C++ and is described in

Appendix 2C.
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Figure 24. Illustration of the automatic imaging system which was built on the existing
drinking facility. The system included the NVidia Jetson Nano embedded system-on-module
(SoM), a front camera used for facial video-recording, a side camera used for recording the

ear tag used as GT, Basin, an IR sensor and a digital weight.

5.1.2 Infrared (IR) sensor

An IR sensor can detect changes in the amount of infrared radiation impinging upon it, which
varies depending on the temperature and surface characteristics of the objects in front of the
sensor. When an object, such as a sheep, passes in front of the background, the temperature
at that point in the sensor's field of view will rise from the environment temperature to body
temperature. The sensor converts the resulting change in the incoming infrared radiation into
a change in the output voltage, and this voltage is sent to the Jetson Nano as trigger for
starting and ending videos. The IR sensor was located at the entrance of the facility, at a height

of 70 cm from the floor.
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Figure 25. IR sensor attached to the existing drinking facility.

5.1.3 NVidia Jetson Nano embedded system-on-module (SoM).

Besides the fact that it is a small and fast computer, which made it convenient to use in
outdoor conditions, the Jetson Nano can also interface with external devices through the
communication pins which are directly connected to the Jetson Nano module. Using this
ability, the Jetson Nano was connected to the IR sensor, controlling the data collecting process
according to the voltage that arrived - 3 volt was used as signal for starting videos and GRD (0
volt) as a signal for ending. In addition, by using a serial (TX-RX) communication, the Jetson
was connected to the smart drinking facility Arduino, that transferred the RFID tag to the
Jetson Nano embedded system-on-module (SoM), through a specially written Python code
which saved the tag number as the video’s name, creating an automated tagging of the data
collected. The video-recording code (Appendix 2D) was programmed in Python3 under
Ubuntu, an open source Linux operating system. Videos were acquired at 30 frames per
second (fps) from both cameras in parallel. In order to prevent damages in the outdoor

environment, the cameras and the Jetson Nano were placed in airtight boxes.
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Figure 26. Jetson Nano embedded system-on-module (SoM), including - (A) three USB
connections for the two cameras and the WIFI dongle. (B) The communication pines used to
connect with Arduino and IR sensor. (C) Jetson Nano attached to the existing facility.

5.2 Methods

5.2.1 Experimental design

Four experiments were conducted in 2020 and 2021 in Volcani’s Center research sheep pen
on two groups of sheep. The sheep were raised from two months of age until five months,
during which time the sheep gained about 25 kg in weight. The pen included three feeding
facilities that contained food all the time, and a single drinking source where the experimental
photography system was located ensuring data collection on all sheep.

The experiments were conducted on two different groups of sheep, both from Assaf breed —
the first group (group 1) contained 47 sheep that were raised from September to March, and
the second group (group 2) were raised from April to August contained 34 sheep. The
experiments with group 2 were used to evaluate the model’s capability to learn new

identities.

Group 1 experiments:

In order to obtain a rich and varied dataset for the model development, a two-week
experiment was conducted on group 1 (47 sheep) in November (experiment 1), when the
sheep were two months old and weighted about 30 kg (average=33.6, SD=6.6). Two additional
experiments were conducted. One experiment was done in the middle of the growth period

(experiment 2), at the end of December 2020, when the sheep weighed about 45 kg each
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(average=44.4, SD=6.51). The other was conducted at the end of February 2021, at the end
of the growth period (experiment 3); the sheep were at their maximum weight, about 60 kg
(average=57.2, SD=7.82). Each experiment was conducted over three consecutive days.
Experiments 2 and 3 included only 32 sheep, since 15 sheep were removed from the pen
during the course of experiments, due to illness.

In all the experiments made, data was collected automatically at all daylight hours ensuring a
variety of light conditions affected by sunlight and weather. Each sheep arrived 2-3 times per
day, at different hours, and were captured in a different posture at the drinking facility,

resulting in a diverse sheep facial database.

Group 2 experiments:

Similar to experiments done on group 1, a two-week experiment was conducted in April
(experiment 4) on group 2 (34 sheep) when the sheep were two months old and weighed

about 30 kg (average=32.5 SD=7.60).

5.2.2 Data

A total of four datasets corresponding to the four experiments were obtained (Table 13), with
the following steps: first, each sheep's face video (acquired from the front camera) was
manually tagged with the sheep's ID, obtained from the corresponding side video. Then, each
video file was converted with a Python3 code to an image sequence.

The first dataset included images only from the beginning of growth period (experiment 1),
with which the biometric identification model was developed. The second dataset, aimed to
examine the growth influence on identification, included images from three different time
periods — beginning, middle and end of growth (from experiment 1-3). The first dataset
included 3055 images, 65 images for each of the 47 sheep, of which 52 images were randomly
selected for the model development and the 13 images remained were used to test the model
ability to identify individual sheep. The second dataset contained 2080 images, 65 images for
each of the 32 sheep; 1248 images were taken from the beginning of growth period
(experiment 1), 416 images from the middle of growth period (experiment 2) and 416 from
the end of growth period (13 images for each of the 32 sheep), were sheep were at their

maximum weight (experiment 3).
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The third dataset included images of group 2 sheep, only from their beginning of growth
period (experiment 4). Similar to the first dataset - this dataset included 2210 images, 65
images for each of the 34 sheep, of which 52 images were randomly selected for the model
development.

In addition, for the object detection algorithm, which aims to locate the sheep's face in each
image, a labeled dataset was created from 30 sheep videos. This dataset included a total of
400 images, manually tagged with a bounding box around each sheep's face.

All datasets (Appendix 2E) included video files that were converted with Python3 code to an
image sequence, and then using a specially developed face detection algorithm (section 5.3),
the sheep face were captured and saved as a newly images, which then were resized from
640 heights on 480 widths, to 112*112, to enable the deep learning model to train faster on

smaller images.

Table 13. Summary of datasets

Dataset purpose Group Experimental period Sheep Images
Group 1 dataset 1 Beginning of growth 47 3055
Growth sensitivity 1 Beginning, middle, end of growth 32 2080
Group 2 dataset 2 Beginning of growth 34 2210
Object detection 1 Beginning of growth 30 400

5.2.3 Model

The biometric identification model applied to each image (Hitelman, 2021) entailed two
steps: (1) face detection and (2) classification (section 5.3). Face detection was achieved using
a Faster R-CNN algorithm. For classification seven different CNNs architectures were
compared. Each CNN examined was used as the embedding network for implementing
ArcFace loss function, resulting in seven classification models. Those models were chosen
based on previous classification task success; AlexNet was implemented by (Salama et al.,
2019) which resulted high performance on sheep facial classification, VGG16 made
improvement over AlexNet (Simonyan and Zisserman, 2015) and achieved top-5 test accuracy
classification on ImageNet. ResNet50 was used as the embedding network for implementing
ArcFace loss function (Deng et al., 2019) and therefore was examined along size similar
variants — ResNet50v2, ResNet101V2. EfficientNet reached State-of-the-Art accuracy on both

ImageNet and common image classification transfer learning methods (Tan and Le, 2019).
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In addition, since the Softmax loss function is widely used in deep face recognition (Cao et al.,
2018; Parkhi et al., 2015), as a baseline, classification performance using Softmax was
evaluated, when ResNet50 used as embedding network.

All models were pre-trained on the ImageNet dataset, and were trained and tested on group
1 dataset, i.e. 47 sheep, 2444 and 611 randomly selected images included in the train and test
sets respectively. The models’ hyper parameters (Appendix 2F) values were determined by
trial and error on the ResNet50 model, where for the Softmax model, the values were set as
follows; Learning Rate (LR) max value - 0.01 and min value - 0.00001, 100 Epochs, Batch Size
equal to 32, Weight Decay value set to 0.001 and Dropout to 0.5. All seven tested embedding
networks combined with ArcFace loss function were set with the same values, as follows;
Learning Rate (LR) max value - 0.005 and min value - 0.00001, 30 Epochs, Batch Size equal to
32, Weight Decay value set to 0.001 and Dropout to 0.5, ArcFace parameter S set to 3 and M
to 0.05.

The seven classification models were compared using the Post-hoc Tukey’s statistical
significance test. After selection of the best classification model, the model was trained and
evaluated on group 1 and group 2 separately, and on a unified group which included all the
sheep. Additionally, transfer learning methods were examined to decrease the training time

while maintaining a lower generalization error (section 3.5).

5.24 Performance measures

Sheep biometric identification performance was evaluated by two indices - accuracy and
categorical cross entropy. Accuracy is the quintessential classification metric, and is calculated
from the confusion matrix as the proportion of true results among the total number of cases

examined in the model.

TP+TN
TP+TN+FP+FN

Accuracy =

Categorical cross entropy is a loss function that is used in multi-class classification tasks, as
had been researched in this thesis. The loss function is defined as the difference between the

predicted value by the model and the true value, computed by the following sum:
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Wherey;; denotes the true value and p;; denotes the probability predicted by the model of
sample i belonging to class j. The loss function is used to optimize the model while accuracy
metric is used to measure the model’s performance in an interpretable way, while the main
objective in a learning model is to reduce (minimize) the loss function's value and increase

(maximize) the model accuracy.

The confusion matrix compares the actual ID’s with those predicted by the model. The
horizontal rows represent the target values (what the model should have predicted - the
ground-truth) and the vertical columns represent the predicted values (what the model
actually predicted), while the diagonal represents the number of predictions where the
classifier correctly predicts the positive class as positive (true positives).

Precision is the proportion of predicted positives which truly positive, and was calculated as
the sum of true positives across all classes (sheep ids) divided by the sum of true positives and
false positives across all classes. Recall is the proportion of actual positives which correctly
classified, and was calculated as the sum of true positives across all classes divided by the sum

of true positives and false

5.2.5 Analysis

Two analyses were conducted:

1. Cross Validation: The K-Folds Cross Validation process was used to evaluate the models
implemented, to ensure that the data distribution did not influence the model’s
performance. Data was split into five equal folds, and the model was trained on all but
one fold; the remaining fold was used to evaluate performance. This process was repeated
five times, with a different fold utilized for evaluation each time. The mean, minimum,
maximum and standard deviation accuracy results were calculated for each model, in
order to evaluate performance (section 5.4).

2. The effect of sheep growth: In order to determine whether sheep gain weight and

matures throughout their growing process influence identification, performance on
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images from the end of growth were evaluated twice - when the model was trained only
on images from the beginning of growth period, and when the model was trained on
images from the middle and beginning of growth combined together. The two growth
models were trained on the 32 remain sheep from group 1 (1344 and 416 images in the
train and test sets respectively), with the same hyper parameters values as details in

section 5.2.3.

5.2.6 Sensitivity Analysis

Two sensitivity analyses were conducted to determine the impact that different quantities of

data have on the model's performance. Both analyses were performed on group 1 dataset.

1. Amount of training images: The model was trained nine times. Each training was
performed with a different number of images between 10 and 52 images for each training
run. All models were tested on the same 13 images. The identification accuracy achieved
for each sheep and the average accuracy of the group were evaluated for each run.

2. Number of frames needed for identification: Since the videos were acquired while the
sheep were drinking, each video contained more than 1,000 frames. Running the model
on all the frames is time consuming. Furthermore, the sheep were captured in various
postures; many frames captured only partial faces or individual features, which are much
more difficult to identify. This analysis evaluated the minimum number of frames required
to be randomly sampled from a full video in order to ensure that each sheep was identified
correctly. Accuracy was evaluated on different quantities of randomly sampled frames of
the trained model that used 52 images, between one to ten frames. The decision
regarding each sheep’s identity was made based on the ID that the majority of the frames

indicated.

5.3 Model

The biometric identification model included two steps — face detection and classification
(Figure 4). In order to locate and localize the sheep's face in an image, the Faster R-CNN deep
learning object detection algorithm (section 4.3.2) was applied (Jiang and Learned-Miller,

2017). Then, the detected face was cropped, and resized to 112X112 pixels according to Deng
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et al., (2019). Finally, the cropped face was provided as input to the second step which
included the classification model (Figure 27).

One of the main challenges in classification using Convolutional Neural Networks (CNNs) for
face recognition is the design of appropriate loss functions that enhance discriminative
power. In this thesis, the recent state-of-the-art loss function was implemented - Additive
Angular Margin Loss (ArcFace) which obtained highly discriminative features for face

identification, when resNet50v2 was chosen as the embedding network to train ArcFace.

Bounding box around
the sheep’s face

Sheep ID:
3506

Faster
R-CNN

Classification
Model

Sheep image Cropped face
resized 112*112

Figure 27. Biometric identification model schematic flowchart.

5.3.1 Selected classification model

The selected classification model design (Appendix 2F) was based on the ResNet50v2 CNN
architecture pre-trained on the ImageNet database. In ResNet50, the input of a convolutional
layer bypasses one or more layers, and is added to the outputs of forward layers, denoted as
residual mappings. The ResNet50 architecture avoids a vanishing gradient, enabling easier
learning even with deeper structures, because the information is directly transmitted
(Yamazaki et al., 2019). ResNet50V2 is the advanced version of Resnet50 CNN, which is all
about using the pre-activation of weight layers instead of post-activation (He et al., 2016).

The ResNet50V2 includes five stages. In the first stage, the architecture performs the initial
convolution and max-pooling using 7x7 and 3x3 kernel sizes respectively. Then, each of stages
2-5 consisted of a convolution block and several identity block performed in a row, where
each convolution block and identity block is composed of 3 convolution layers. The three
layers are 1x1, 3x3, 1x1 kernel size, where the 1x1 convolution layers are responsible for
reducing and then restoring the dimensions and the 3x3 layer is left as a bottleneck with
smaller input or output dimensions. The difference between those blocks are that the

convolution block reduces the size of the input by half in terms of height and width and
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doubles the channel width, while identity blocks keep the same input size. Finally, the
recommended sequence of actions (Figure 28) between the last layer of the last block and
the ArcFace layer was implemented according to (Deng et al., 2019). The architecture

included a total of 197 layers and a total number 40,376,832 parameters.

Recommended sequence of
actions for implementing ArcFace

(Deng et al., 2019).
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Figure 28. Schematic description of the classification model architecture; the input is a
sheep facial image in size 112x112. Stage 1: initial convolution and max-pooling using 7x7
and 3x3 kernel sizes. Stage 2-5: in blue — the convolution block, in pink — Identity block,
performed 2, 3, 5 and 3 times respectively at each stage. The last layer of the last block is
connected to ArcFace layer according to the recommended sequence. The output is the loss
of the highest probability predicted class for the image by Softmax.

5.3.2 ArcFace

The ArcFace loss function (Figure 29) aims to reduce the angle 8 during learning, which is the
angle between the facial image which best represent the class (ground truth) by the
appropriate weight column, and the input facial images which is represented by the 512 size
feature vector — X. The implementation of ArcFace layer was done by the following steps,
using Tensorflow and Keras Python open source: first, Vector X and the weight matrix — W,
underwent normalization according to L2. Then, cosé, which also called “Logit” was extracted
from the multiplication between X and W by calculating the arcos (cos8). Afterwards, a hyper
parameter m that represents an additive angular margin penalty was added to the angel 6.
The m value was set to 0.05 following trial and error. Then the new Logit, cos(6+m), was
calculated and multiply by another hyper parameter, which represented the
hypersphere radius —s (Deng et al., 2019), which was set to 3 following trial and error. Finally,
the Logit went through the Softmax function and to the cross-entropy calculation.

In addition, in order to better monitor the training process, two important metrics were
added: (1) the size of the mean of the 8 vector, (2) the size of the average Logits vector. These
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metrics were presented in addition to accuracy and loss calculation. ArcFace implementation

is described in Appendix 2F.

LS
#

| o
—_— e e e s s s s s s s s s s s s === =====a

Normalized FuTurt

i
I - - I
! . - _:r.-ﬁ alt L
[ . _E"'j
Varceos(cosfy, ) - r cos(B, +m)fl—- i f y
, ; o Featured  Softmax . =log y
/ I i, &, +m Re-scale ch"
W ] s 5, u 3
' L
ﬁ ’_ o8l " m == ﬁ_dfttm_ﬂn_gu_lulh!at_a!P_enflt_v ________ - s # postl Probability  Ground Truth  Cross-entropy
‘ je€ |l ..... n

i

Logit One Hot Vector Loss

Nermaliz

Figure 29. ArcFace schema (Deng et al., 2019)

5.3.3 Model additions

In order to achieve best performance, the following steps were implemented: All images were
normalized based on Wang et al., (2018) by zero-centring each color channel (red, green,
blue), in order to prevent the Vanishing Gradient Problem. To adjust the learning rate during
training, the Cosine Annealing Scheduler was used (Loshchilov and Hutter, 2017). An early
stopping method was used to automatically stop the training process when the model’s loss
performance stopped improving on the validation set (Xu et al., 2019). This method helped
to avoid overfitting of the neural network. Finally, a SGD optimizer was implemented, with
momentum set to 0.85, to help accelerate gradient vectors in the right directions, thus leading
to faster converging. In addition, each image was augmented about seven - eight times via
vertical flip, random rotation up to 30-degree, Gaussian noise addition, sharpening images
and changing the brightness of images (Figure 30). The technique resulted in a total of 400

augmented images created per sheep, used for the model training.

Figure 30. Data augmentation examples from left to right; original image, vertical image,
random rotation image, darken image, brighten image.
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5.3.4 Transfer learning

Transfer learning is a very popular method widely used among computer vision researchers
(Guo et al., 2018). Transfer learning enable to utilize knowledge from previously learned tasks
and apply them to newer, related ones. In the case of problems in the computer vision
domain, knowledge from an existing task, such as edges, shapes, corners and intensity, can
be shared acts as an additional input when learning a new target task (Huh et al., 2016).
Therefore, transfer learning has the benefit of decreasing the training time for a neural
network model and resulting in lower generalization error. In this research, transfer learning
methods were used in order to improve performance, by training the model on one group of
sheep and then retrained the convolution layers on the other group, with a faster learning
rate. Transfer learning methods were trained and evaluated on the same datasets, i.e. the
test sets of both groups included 13 images per sheep; and with the same hyper parameters

values detailed earlier but with a decreased learning rate of 0.0001 (Appendix 2F).

Task 1

Data First icti
ata Firs Model 1 Prediction
Group First Group
1 Knowledge Transfer
Data Second Model 2 Prediction
Group Second Group
Kﬁf—J
Task 1
Data Second icti
Model 2 Prediction
Group Second Group
2 Knowledge Transfer
Data First Model 1 Prediction
Group First Group
Task 2

Figure 31. Transfer learning; in this research learning process was transfer from group 1
model to the group 2 model, and vice versa.
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5.4 Results

The results of the biometric identification model and sensitivity analyses are reported.

5.4.1 Sheep biometric identification model
Softmax loss function
Results obtained after training converged (stopped automatically using the early stopping

method after 70 Epochs) were 72.66% accuracy with a 2.01 loss value (Appendix 2F).

Comparison of classification models

Results (Table 14, Appendix 2G) reveal that all the examined models achieved better
performance than Softmax in a shorter run-time (converged after 30 Epochs maximum, while
Softmax converged after 70 Epochs). ResNet50V2 and ResNet50 were significantly better
than the other models (Post-hoc Tukey’s statistical significant test, a = 0.05) (Appendix 2H).
ResNet50V2 achieved the best accuracy (Table 2); specifically, it was 22% better than the
worst model (VGG16), and 1.5% better than the second best model (ResNet50).

Table 14. Summary results of the different models

Classification model Accuracy in % Convergence Epoch
ResNet50 93.4 29
ResNet50V2 94.9 29
ResNet101V2 91.3 29
EfficientNetBO 85.2 14
EfficientNetB3 87.3 14
AlexNet 76.2 29
VGG16 72.9 28

Selected model

Using the cross-validation technigue, ResNet50V2 CNN combined with the ArcFace loss
function resulted in an average 95% accuracy for groups 1 and 2, while the unified group
achieved lower results, but only by 2% (Table 15, Appendix 2G). All three trained models
converged after 25 epochs. The low standard deviation of the five folds (less than 0.01 for all

models, Appendix 2J) proves the model's reliability.
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Table 15. Average classification performance on the experimental groups.

Accuracy Loss
Group 1: 47 sheep 0.954 2.069
Group 2: 34 sheep 0.957 1.811
Unified group: 81 sheep 0.939 2.437

The decrease in the unified group performance can be explained due to similarities between
the groups, since some of the sheep in the different groups were born to the same parents

and therefore were very similar (Figure 32).

Figure 32. Example of sheep pairs similarities between groups; green images - sheep from
group 1, blue images — sheep from group 2.

Confusion matrixes (Appendix 2l) calculated on the test set, which included 13 images per
sheep, revealed 94.92% and 96.83% true positive on group 1 and 2 respectively. As it can be
deduced from the matrixes, most of the sheep were identified in at least 12 out of 13 images,
with an average of 12.76 and 12.58 correct identification images for group 1 and group 2
(Table 16, Figure 33, Figure 34). Furthermore, all sheep (in both groups) were correctly
identified with a minimum of 10 images. Therefore, according to the majority classification
rule, we can assume 100% successful identification for each sheep. The specific images that
the model failed to identify were difficult to identify even by the human eye (Figure 35).

For convenience only, the presented performances are related to the first fold of the cross-

validation technique.
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Table 16. Average, minimum, maximum and standard deviation of the correct identification

images (out of 13 per sheep).

Mean Min Max sD
Group 1 12.76 10 13 0.80
Group 2 12.58 10 13 0.84

30

25

20

15

10

Number of sheep

13 images 12 images 11 images 10 images

Number of correct identification images

Figure 33. Group 1 identification results; 24 sheep were identified in all 13 images, 17 sheep

in 12 images, 4 sheep in 11 images and only 2 in 10 images.

13 images 12 images 11 images 10 images

30
25
20
15
10

Number of sheep

Number of correct identification images

Figure 34. Group 2 identification results; 26 sheep were identified in all 13 images, 4 sheep

in 12 images, 2 sheep in 11 images and 2 in 10 images.

Precision, Recall and F1-Score indexes were calculated for each group, with an average of

96.2%, 95.8%, 95.8% respectively (Table 17).
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Table 17. Classification measurements results.

Precision Recall F1-Score
Group 1: 47 sheep 0.952 0.949 0.949
Group 2: 34 sheep 0.972 0.968 0.968
Unified group: 81 sheep 0.943 0.939 0.941

True ID: 3622 Predicted ID: 3527 True ID: 1015 Predicted ID: 1016

Figure 35. Example of wrong identification of single image; left - one image of sheep 3622
from group 1, was wrongly classified as sheep 3527, right — one image of sheep 1015 from
group 2, was wrongly classified as sheep 1016.

Transfer learning

Transfer learning achieved by the cross-validation technique (Table 18, Appendix 2G) resulted
in an average improvement of 1.85% increase in accuracy and a 0.25 decrease in loss value
(Table 5), with a shorter training process (9 vs. 25 epochs). The data distribution had no effect

on the identification performance as revealed by the low standard deviations.

Table 18. Average performance of the transfer learning methods.

Transfer model Accuracy Loss
Gl1->G2 0.977 1.695
G2->G1 0.971 1.705

Biometric identification of sheep was achieved with 95% accuracy on both experimental
groups. The biometric identification performances were improved by 2% in accuracy using
transfer learning methods. All five trained models presented in this study were saved to be

used as a classifier for unseen sheep images (Appendix 2G).
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5.4.2 Analysis
K-Folds Cross Validation
The performance of the folds for each of the five models (models for group 1, group 2, unified

group, and two the transfer learning models) are presented in Table 19, and detailed in

Appendix 2J.
Table 19. K-Fold accuracy results (summary of five runs)
Group Group Unified Transfer Transfer
1 2 Group G1l->G2 G2 ->G1
Mean 0.954 0.957 0.939 0.977 0.971
Min 0.939 0.940 0.930 0.963 0.959
Max 0.966 0.966 0.946 0.987 0.978
SD 0.009 0.009 0.005 0.009 0.007

Table 19 revealed that the standard deviation of the five folds was less than 0.01 for all
models, therefore we can assume that random data distribution had no effect on models

performance.
The effect of sheep growth
Growth models (Table 20, Appendix 2G) achieved 93.7% and 91.3% accuracy respectively,

which is lower in 1.7% and 4.1% from the base model performance.

Table 20. Growth models classification results

Model Accuracy Loss
Growth1: trained on beginning and middle images 0.937 2.084
Growth2: trained on beginning of growth images 0.913 2.189

Training on images from the beginning of growth only while testing on images from the end
of growth (Growth2), achieved 2.4% lower accuracy than did training with images from the
middle as well as the beginning of the growth period (Growth1). However, the difference in
accuracy of Growth2 is relatively small compared with that of the base model (4.1%).

In order to analyze the identification performance of the growth sheep model, the confusion
matrix was calculated on the second model, the model without the middle images (Appendix

21). The matrix revealed 91.34% true positives, with an average of 11.87 correct identification
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(Table 21, Figure 36). All sheep in Growth2 were identified in at least 10 images out of 13,
equal to the minimum correct identified images achieved with the base dataset (Table 21).

Figure 37 shows examples of sheep that were correctly identified during the growth period.

Table 21. Average, minimum, maximum and standard deviation of growth model correct
identification images (out of 13 per sheep).

Mean Min Max SD
Growth2 model 11.875 10 13 0.906
30
25

N
o

=
o

Number of sheep
(=Y
[9)]

u

13 images 12 images 11 images 10 images

o

Number of correct identification images

Figure 36. Growth identification results; 9 sheep were identified in all 13 images, 14 sheep in
12 images, 5 sheep in 11 images and 4 sheep in 10 images.

ID Avg weight - 33 kg Avg weight - 44 kg Avg weight - 57 kg

s

3503

3509

3525

-

Figure 37. Correct prediction growth examples of sheep, from left to right: image from
beginning, middle and the end of growth period.
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5.4.3 Sensitivity analysis

Amount of training images

Training each sheep with at least 35 images resulted in a minimum identification accuracy
exceeding 69% per sheep (Figure 38, Appendix 2K, i.e. at least nine of the 13 images were
properly classified). By utilizing the majority-based decision described above, each sheep was

correctly identified with decreasing SD as the number of images increase (Table 22).

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

10 15 20 25 30 35 40 45 52

Quantity of training images

Accuracy

Min value &I Average M Max value

Figure 38. Quantity of training images evaluated; the minimum, average and maximum
accuracy achieved (SD is presented in Table 22).

Table 22. Standard deviation according to number of images used.

Number of images 10 15 20 25 30 35 40 45 52
0.20 0.179 0.11 0.15 0.12 0.10 0.09 0.08 0.06

Number of randomly sampled frames

When classification was done using eight and nine frames, the image identification average
accuracy was 59.5% and 63.7% respectively (Figure 39 and Table 23). Results revealed that
there were sheep that were identified in less than half of the frames and therefore were
misclassified. However, when ten frames were used, the average image identification
accuracy was 71.7%, with a minimum of six out of ten images, implying correct classification
of all sheep. Accordingly, in order to ensure proper identification of each sheep, the

classification decision must be made based on a majority of at least ten randomly selected
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frames (Appendix 2L). Then, 100% sheep identification can be achieved (with average image

accuracy of 95%).

0.9
0.8

0.6 S
0.5
0.4
0.3
0.2

0.1 H
0

2 3 4 5 6 7 8 9 10

Accuracy

Quantity of randomly sampled frames

# Min value &] Average M Max value

Figure 39. Number of randomly sampled frames; the minimum, average and maximum
accuracy achieved (SD is presented in Table 23).

Table 23. Standard deviation according to number of images used.

Number of frames 2 3 4 5 6 7 8 9 10

0.22 0.27 0.24 0.294 0.26 0.18 0.14 0.12 0.10
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6 Discussion

6.1 Mobile system for detecting and counting laying hens

The developed system does not rely on a specific feature of the test hen house and proved
operational in variable illumination conditions. It provides an inexpensive, fast and user-
friendly system that can potentially be used in different farms, ensuring adequate hen density
according to the limits set by regulations (Rajsic and Fox, 2017).

The 88% detection accuracy achieved in this study was lower than the previous study which
achieved 90% (Geffen et al.,, 2019). The slightly lower results can be attributed to the
differences in the setups - in the previous study, data was automatically collected, without
any human present, resulting in minimum disturbance to the hens; in the current study a
mobile cart was led by human, which caused more movement of the hens while the video
was recorded due to their panic from the humans around. Moreover, the camera used in the
previous study had a wide lens which acquired the whole width and height of the cages at
once and detected a significant part of each hen's entire body. Part of the algorithms
inaccuracy in the current system was since hens in neighbouring cages were captured and
counted, as they were part of the cage in focus.

Hens tracking is challenging; a hen might be visible to the camera only in specific frames, due
to the hen's constant movements. In addition, not all the hens were detected in every frame.
Thus, using the detection of hens in successive frames is valuable for tracking. In our study,
the detector was trained on sequences of 2D images. The tracking algorithm included the 2D
images, and the dimension of time resulting in 3D images. We utilized the advantages of the
video camera setup, which provided 3D information from multi views on the hens from

successive frames, and achieved a reliable hen count.

6.2 Automated system for sheep identification

To our knowledge, this study was the first to implement robust biometric identification of
young sheep (2-3 months old). Compared with earlier studies (Corkery et al., 2007; Salama et
al., 2019), the slightly lower image identification accuracies achieved in this study can be
attributed to differences in the data collection methods and differences between the sheep.

In the study that achieved 96% accuracy (Corkery et al., 2007), images were manually
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acquired in controlled conditions on adult sheep aged 3-4 years which have higher
differences. In the other study which achieved 98% accuracy (Salama et al., 2019), CNNs were
tested on a group of sheep, in which the ages of the individual sheep varied greatly. In our
study, biometric identification was done on identically-aged young sheep (lambs) with an
automated machine vision system in field conditions, implying a more natural but
complicated identification process. We surmise that the model will perform better when
applied to adult sheep that have greater differences between individuals.

Furthermore, the presented study reveals that identifying animals before and after
maturation (after 2-3 months) is feasible. Each sheep was successfully identified in at least 10
of the 13 images in both datasets (baseline and Growth2). Therefore, classifying the sheep
based on a majority of 13 images, we can assume a 100% success rate in identifying each
sheep daily, throughout the growing period tested, which corresponds to the growing period
of young sheep raised on commercial farms.

An advantage of the proposed identification system is that it can be installed in a commercial
sheep pen - cameras can be altered positioned at different angles and distances from the

sheep.

74



7 Conclusions and future work

7.1 Conclusions

7.1.1 Mobile system for detecting and counting laying hens

The mobile system developed to count hens held in community battery cages reached
detection accuracies of 88% with a MAE of 4.56 hens per cage. This MAE was achieved by
using Faster R-CNN with a single class (“hen”), and using a tracking algorithm which used

successive frames of a video acquired while moving along the hen house.

7.1.2 Automated system for sheep identification

A biometric identification model for individual sheep recognition based on machine vision and
advanced CNNs was designed, developed and implemented. The average identification
accuracy achieved on two different groups of similarly-aged sheep was 95% accuracy.
Transfer learning methods improved accuracy by an average of 1.85%, in a shorter training
process, resulting in an average of 97% identification accuracy. It must be noted that these
reported accuracies are the imaging identification accuracies; sheep were detected with
100% correct identification (when a minimum of 10 images were used).

The model was implemented using Faster-RCNN algorithm and a ResNet50V2 model with the
ArcFace loss function. The training process should include at least 35 images per sheep, while
classification should be calculated by majority decision on at least ten randomly chosen

frames per visit per sheep, from a full video.

7.2 Future Work

7.2.1 Mobile system for detecting and counting laying hens

In order to improve counting accuracy and to decrease the wrong detection of hens from
neighbouring cages, a better understanding of cage boundaries must be achieved. Therefore,
future work should include more information from the scene by inserting the depth channel
in the training process. Improved results will also be obtained by developing an autonomous
mobile cart; as aforementioned, the hens were disturbed by the human moving the cart which

can be avoided. In further research, the ability of the newly developed system to detect and
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track hens can be valuable for PLF applications, to develop an animal behaviour model, find
the dominant hens in a cage, and detect a hen that does not eat. With this information, hens'

welfare may be improved along with improved management.

7.2.2 Automated system for sheep identification

As sensory systems improve in quality, and computer systems increase in computational
power more innovations and improvements should be introduced to these systems.

Future research may focus on developing a real-time system, automating all steps for reliable
operation in a livestock environment. In addition, it is suggested to develop an unsupervised
learning model so that this model can be easily adapted to unknown new herds. In an
unsupervised learning algorithm each sheep should be identified in an unlabeled data set
based on the underlying features in the data. This may shorten the data collection and data
pre-processing because there will be no need to collect videos of the ear-tags which are used
as ground truth and therefore no need for manual tagging.

In the future, the model identification ability can be improved using new features such as
legs or tail identification. Furthermore, additional information such as the weight of the
sheep, the height and the amount of water the sheep drinks can be included in the
identification model. The recommended model may be adapted to identify other animals,

such as beef cattle and pigs, replacing traditional identification methods.
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9 Appendices

9.1 Mobile system for detecting and counting laying hens

Appendix 1A. Data collection and preparation code files
Data preparation code files (Volcani access only) - URL

=

Data_Preparation.txt

Appendix 1B. Collected data
** If needed, contact llan Halachmi. Email: halachmi@volcani.agri.gov.il for access
Collected data (Volcani access only) - URL

e Raw data

Raw_Data

-> Backward Data

-——> Videos

———> Frames

—————— > Tagged Frames
—————— > Analyzed Data
-> Forward Data

———> Videos

———> Frames

—————— > Tagged Frames
—————— > Analyzed Data

Appendix 1C. Tagged images for algorithm development
** If needed, contact Ilan Halachmi. Email: halachmi@volcani.agri.gov.il for access
Tagged images for algorithm development (Volcani access only) - URL

Appendix 1D. Image processing algorithm
Image processing algorithm (Volcani access only) - URL

=

Image_Processing_Algorithm.txt

Appendix 1E. Object detection algorithm
Object detection algorithm (Volcani access only) - URL

=

Object_Detection_Algorithm.txt
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mailto:halachmi@volcani.agri.gov.il
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FCounting%5FLaying%5FHens%2FData%2FTagged%5FImages&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DBA6E%2D46784C5A6357%7D
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FCounting%5FLaying%5FHens%2FDevelopment%2FImage%20Processing%20Algorithm&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2D
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FCounting%5FLaying%5FHens%2FDevelopment%2FObject%20detection%20algorithm&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2D

Appendix 1F. Tracking algorithm (Geffen et al., 2019)
Tracking algorithm (Volcani access only) - URL

=

Tracking_Algorithm.txt

Appendix 1G. System counting result
System counting result (Volcani access only) - URL

Counting_Result.xlsCounting_Comparit
X ion.xlsx

Appendix 1H. Sensitivity analysis code files and result
Sensitivity analysis code files and result (Volcani access only) - URL

Sensetivity_Evaluati ~—-|

on.xlsx Sensetivity_Analysis.txt
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9.2 Automated system for sheep identification

Appendix 2A. Biometric identification of sheep via machine-vision system

Biometric identification of sheep applying via
machine-vision system

Submitted to: Computers and Electronics in Agriculture
Authors: Almog Hitelman, Yael Edan, Assaf Godo, Ron Berenstein, Joseph Lepar and llan

Halachmi.
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This paper describes a sheep biomeftric identification
system based on facial images. A machine vision
system and deep learning model were developed and
applied for animal identification. The system included
two 8-MegaPixels cameras installed in a monitoring
drinking facility adapted to work with NVIDIA Jetson
Nano embedded system-on-module (SoM). Data from
81 Assaf breed sheep aged two to three months, from
two different groups of sheep, were collected over a
period of two weeks. The biometric identification
model included two steps: face detection and
classification. In order to locate and localize the sheep
face in an image, the Faster R-CNN deep learning
object detection algorithm was applied. The detected
face was provided as input to seven different
classification models. Different ftransfer learning
methods were examined. The best performance was
obtained using a ResNet50V2 model with the state-of-
art ArcFace loss function. The identificafion system
resulted in average accuracies of 95.4% and 95.7% for
the two groups tested. When applying transfer learning
method, average identification accuracies improved to
97% in both groups, and the training process was
accomplished more rapidly.

Keywords: Small ruminants, Biometric identification,
Deep learning, convolutional neural network, Facial
recognition.

INTRODUCTION

Collecting automated data on individual sheep can
contribute to better animal handling and reduce labor
requirements (Morris et al., 2012; Voulodimos et al.,
2010). In addition, individual monitoring helps to
manage disease and reduce risk of injury (Salama et al.,
2019). Hence, automatically identifying (ID) each
individual sheep is important (Halachmi and Guarino,
2016).

Traditional methods used for marking livestock with
IDs include: branding, tattooing, ear tagging, and more
recently electronic identification devices, such as RFID
tags and barcodes (Ait-Saidi et al., 2014; Caja et al.,
2004; Landais, 2001). However, those methods may
stress the animal, and require frequent maintenance and
cleaning (Ait-Saidi et al., 2014; Caja et al., 2004).
Recently, utilizing biometric traits instead of traditional
methods for identifying individual animals has gained
attention (Andrew et al., 2019; Halachmi et al., 2019;
Hansen et al., 2018). Various biometric features can be
used for livestock identification, including: facial
imaging, matching muzzle patterns, coat patterns,
mammary glands: and ins imaging (Corkery et al.,
2007: Kumar and Singh, 2017). Nonetheless, facial
recognition is promising since it contains many
significant features (Hou et al., 2020; Salama et al.,
2019).

Using the cosine distance classifier, Corkery et al.,
(2007), achieved 96% identification accuracy on 50
sheep, crossbreeds of Cheviot and Suffolk breeds aged
three to four years. In this study, seven images of each
sheep were manually acquired against a black
background after cleaning the sheep's face. In another
study (Salama et al., 2019) 98% identification accuracy
was achieved with two different neural network models:
Convolutional Neural Network (CNN) with parameters
set automatically with a Bayesian optimizer, and with
the AlexNet CNN. The CNNs were trained and tested
on 52 Barqi breed sheep, between five months and five
years old, where for each sheep, ten images were
acquired.

Various CNNs have been developed for recognition
tasks (Szeliski, 2010; Zhao et al., 2017) and specifically
for biometric identification (Salama et al., 2019;
Szeliski, 2010; Zhao et al, 2017). Significant
contributions began in 2012, when AlexNet won the
ImageNet recognition competition (Guo et al., 2016).
Since then, many new architectures have been
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developed to improve recognition accuracy, they
include: VGG, ResNet and EfficientNet architectures
(Guo and Zhang, 2019; Talo et al., 2019).

An integral part of the CNN design is the choice of an
appropriate loss function, in order to enhance facial
feature discimination (Deng et al., 2019; H. Wang et
al., 2018). In this paper, implementation of the state-of-
art ArcFace loss function (Deng et al., 2019), which so
far was only used for human facial recognition, was
applied to animals.

The objective of the current study was to develop a
sheep biometric identification system based on facial
images.

MATERIALS AND METHODS
MACHINE VISION SYSTEM

The imaging setup was built on a drinking monitoring
facility (Figure 1) to ensure that all sheep had frequent
access per day, voluntarily, without human
involvement. The drinking facility monitored each
sheep's body weight and water intake per visit. Two 8-
MegaPixels RGB cameras, of Digital Single Lens
Reflex (DSLR) type, with USB connections were
connected to a NVIDIA Jetson Nano embedded system-
on-module (SoM). Both cameras video-recorded the
sheep while they were drinking water. The cameras
were located at a height of 80 cm, one at the face area;
the second camera acquired photos of each sheep's ear
tag (Figure 1). The system includes an Infrared Red (IR)
sensor, which activates the cameras when a sheep inserts
its head into the system area. The same IR sensor ends
the recording the moment it no longer detects a sheep in
the drinking facility (Figure 2). Similarly, if the sensors
erroneously detect movement, e.g. a bird triggers them,
they will immediately stop the cameras when the bird
flies out. Videos were acquired at a speed of 30 frames
per second (fps) from both cameras in parallel. The
cameras and the Jetson Nano were placed in airtight
boxes to protect them from dirt and heat. The system
included a SIM card with an Internet network to enable
remote connection via a USB dongle.

DATA COLLECTION

Two experiments were conducted in Volcani’s Institute
research sheep pen on two different groups of Assaf
breed sheep. The first experiment, used for model
development, was conducted on a group that included
47 sheep (group 1). The second experiment was

conducted on 34 sheep (group 2) and was used to
evaluate the model capability to learn new identities.
Measurements on group 1 were conducted in November
2020, when the sheep were two-three months old and
weighed about 30 kg (average=33.6, SD=6.6). Group 2
data were recorded in April 2021, when the sheep were
also two-three months old and weighed about 30 kg
(average=32.5 SD=7.60). Each group’s data was
recorded for a period of two weeks, during which data
were collected automatically throughout all daylight
hours, to ensure a variety of illuminations. Each sheep
arnived voluntarily two to three times per day, at
different hours; their postures at the drinking facility
differed, which resulted in a diverse database of sheep
faces.

FIGUREI
DATA COLLECTION SETUP BUILT ON A CONTROLLED
DRINKING FACILITY, INCLUDING; 1. NVIDIA JETSON NANO
EMBEDDED SYSTEM-ON-MODULE (SOM), 2. FRONT CAMERA
USED FOR FACIAL VIDEO-RECORDING, 3. SIDE CAMERA USED
FOR RECORDING THE EAR TAG, 4. IR SENSOR.

DATA COLLECTION

Two datasets were created with the following steps:
first, each sheep's face video (acquired from the front
camera) was manually tagged with the sheep's ID,
obtained from the corresponding side video. Then, each
video file was converted with a Python3 code to an
image sequence. Finally, 65 images of each sheep were
manually selected for training and validation. The first
dataset included 3055 images of group 1 and the second
dataset included 2210 images of group 2. For each
sheep, 52 images were randomly selected to train the
models. The remaining 13 images were used for
evaluation.

In addition, for the object detection algorithm, which
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aims to locate the sheep's face in each image, a labeled
dataset was created from 30 sheep videos. This dataset
included a total of 400 images, manually tagged with a
bounding box around each sheep's face.

Each training image (out of the 52 images) was
augmented seven to eight times using the following
augmentation techniques: vertical flip, random rotation
up to 30 degrees, Gaussian noise addition, and adjusting
image brightness (Figure 3). The techniques resulted in
a total of 400 augmented images created per sheep, used
to train the model.

FIGURE 2
FLOWCHART OF THE DATA COLLECTION SETUP.

Sheep enters
the drinking
facility

v

False
Videos end “

IR sensor
detected object - *
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Jetson Nano closes True |
both cameras
Jetson Nano
v opens cameras
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with date and time Sheep is video-

recorded with both
cameras

FIGURE 3

DATA AUGMENTATION EXAMPLES FROM LEFT TO RIGHT;
ORIGINAL IMAGE, VERTICAL IMAGE, RANDOMLY ROTATED
IMAGE, DARKENED IMAGE, BRIGHTENED IMAGE.

BIOMETRIC IDENTIFICATION MODEL

The biometric identification model included two steps —
face detection and classification (Figure 4). In order to
locate and localize the sheep's face in an image, the
Faster R-CNN deep learning object detection algorithm

was applied (Jiang and Learned-Miller, 2017). Then, the
detected face was cropped, and resized to 112X112
pixels according to Deng et al., (2019). Finally, the
cropped face was provided as input to the second step
which included the classification model.

FIGURE 4
BIOMETRIC IDENTIFICATION MODEL SCHEMATIC FLOWCHART
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CLASSIFICATION MODEL

Seven different CNN architectures were compared.
Each CNN examined was used as the embedding
network for implementing ArcFace loss function,
resulting in seven classification models (Figure 5). The
recommended sequence of actions between the last layer
in each CNN and the ArcFace layer was followed as per
Deng et al. (2019) and implemented using Python open
source Tensorflow and Keras. The architectures
examined were: 1. AlexNet (Salama et al, 2019) 2.
VGG16 (Simonyan and Zisserman, 2015) 3-4.
ResNet50, ResNet50V2, 5. ResNet101V2 (Deng et al.,
2019: Rahimzadeh and Attar, 2020) 6-7.
EfficientNetBO0, EfficientNetB3 (Tan and Le, 2019). All
models were pre-trained on the ImageNet dataset, and
were trained and tested on group 1 dataset, 1.e. 47 sheep,
2444 and 611 randomly selected images included in the
train and test sets respectively. The hyper parameters
values were determined by trial and error on the
ResNet50 network. All tested classification models
were set with the same values, detailed in Appendix A.
All images were normalized based on Wang et al,
(2018) by zero-centering each color channel (red, green,
blue), in order to prevent the Vanishing Gradient
Problem. To adjust the learning rate during training, the
Cosine Annealing Scheduler was used (Loshchilov and
Hutter, 2017). An early stopping method was used to
automatically stop the ftraining process when the
model’s loss performance stopped improving on the
validation set (Xu et al., 2019). This method helped to
avoid overfitting of the neural network. Finally, a SGD
optimizer was implemented, with momentum set to
0.85, to help accelerate gradient vectors in the right
directions, thus leading to faster converging. The seven
classification models were compared using the Post-hoc
Tukey’s statistical significance test.
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FIGURE 3

SCHEMATIC DESCRIPTION OF THE CLASSIFICATION MODEL;
THE INPUT IS A SHEEP FACIAL IMAGE 112x112 PINELS IN SIZE.
IN BLUE — THE EXAMINED CININ ARCHITECTURE, USED AS THE

EMBEDDING NETWORE FOR IMPLEMENTING ARCFACE. THE

LAST LAYER OF THE CINN Is CONNECTED TO THE ARCFACE

LAYER ACCORDING TO THE RECOMMENDED SEQUENCE. THE

OUTPUT IS THE LOSS OF THE HIGHEST PROBABILITY
PREDICTED CLASS FOR THE IMAGE BY SOFTMAX.

E awbneabediang The recommended segquencs of sclions for

NaTWOrK implanting ArcFace layer (Deng e al., 2019)

e

MODEL EVALUATION AND ANALYSIS
PERFORMANCE MEASTRES

Five performance measures (PM) as detailed in Table 1
were used. Categorical cross-entropy is the output of the
ArcFace loss function and is uwsed in mulfi-class
classification tasks, as had been researched in this study.
The cross-entropy is defined as the difference between
the predicted value by the model and the true value
{Table 1) wherein y_(ij) denotes the true value and
p_(1]) denotes the probability predicted by the model
of image 1 belonging to class j (Zhong and Zhao, 2020).
The other four PMs are expressed through the calculated
Tre Positives (TP), Tme Negatives (TN), False
Positives (FP), and False Negatives (FIN) for any given
sheep (Dong et al , 2019).

E
£
]
=

Batch-noem

TRAINING AND TESTING

The selected classification model was trained and
evaluated on group 1 and group 2 separately, and on a
unified group which included all the sheep.
Additionally, transfer learning methods were examined
to decrease the training time while maintaining a lower
generalization error. The model was trained on one
group of sheep and then retrained the convolution layers
on the other group, with a faster learning rate.

Transfer leaming methods were trained and evaluated
on the same datasets, ie the test sets of both groups
included 13 images per sheep; and with the same hyper

parameters values detailed earlier but with a decreased
learning rate of 0.0001.

TABLE 1
PERFORMANCE MEASURES.
Index Formula
Categorical 1o e
cross-entropy _EZ ZJ"E. jlog(pi ;)
i=1 j=1
Accuracy TP +TN
TP+TN 4+ FP +FN
Precision TP
TP+ FP
Recall T
TP +FN
F1-5core 2 * Precision = Recall
Precizsion + Recall
ANALYSIS

The K-Folds Cross Validation process was used to
evaluate the models implemented, to ensure that the data
distribution did not influence the model’s performance.
Data was split into five equal folds, and the model was
trained on all but one fold; the remaining fold was used
to evaluate performance. This process was repeated five
times. with a different fold utilized for evaluation each
time. The mean, minimum, maximom and standard
deviation accuracy results were calculated for each
model, in order to evaluate performance.

SENSITIVITY ANALYSIS

Two sensitivity analyses were conducted to determine
the impact that different quantities of data have on the
model’s performance. Both analyses were performed on
group 1 dataset.

1. Quantity of training images for each sheep: The
model was trained nine times with a different number of
images between 10 and 52 images for each training run.
All models were tested on the same 13 images The
identification accuracy achieved for each sheep and the
average accuracy of the group were evaluated for each
training mn.

2. The mininm number of testing frames for each
sheep: Since the videos were acquired while the sheep
were drinking, each video contained more than 1.000
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frames. Running the model on all the frames is therefore
time consuming. Furthermore, the sheep were captured
in various postures; many frames captured only partial
faces or individual features. which are much more
difficult to identify. This analysis evaluated the
minimum number of frames required to be randomly
sampled from a full video in order to ensure that each
sheep was identified correctly. Accuracy was evaluated
on different quantities of randomly sampled fames of
the trained model that used 52 images, between one to
ten frames. The decision regarding each sheep’s identity
was made based on the ID that the majority of the frames
indicated, e.g. in two out of five frames, the model
identified a sheep as "3502"; in the three remaining
frames, 1t was identified as sheep "3633". Thus, the sheep
was identified as 3633".

RESULTS
COMPARISON OF CLASSIFICATION MODELS

ResNet50V2 and ResNet50 were significantly better
than the other models (Post-hoc Tukey’s statistical
significant test. o = 0.05). ResNet50V2 achieved the
best accuracy (Table 2); specifically, it was 22% better
than the worst model (VGG16). and 1.5% better than the
second best model (ResNet50). The selected
classification included a total of 197 layers with a fotal
0f 40,376,832 parameters.

TABLE 2
SUMMARY RESULTS OF THE DIFFERENT CLASSIFICATION
MODELS (COMBINED OF A CNN AND ARCFACE LOSS

FUNCTION).
CNN Accuracy in %
ResNet50V2 94.9
ResNet50 934
ResNet101V2 913
EfficientNetB3 873
EfficientNetB0 852
AlexNet 76.2
VGG16 729
SELECTED MODEL (RESNET50V?2)

Using the cross-validation technique, ResNet50V2
CNN combined with the ArcFace loss function resulted
in an average 95% accuracy for group 1 and group 2,
while the unified group achieved lower results, but only
by 2% (Table 3). All three trained models converged
after 25 epochs. The low standard deviation of the five

folds (less than 0.01 for all models, Table 3) proves the
model's reliability. The decrease in the unified group
performance can be explained due fo similarities
between the groups. since some of the sheep in the
different groups were bom to the same parents (see
some examples in Figure 6).

TABLE 3
K-FOLD PERFORMANCE RESULTS OF THE SELECTED MODEL
(ResNET50V2 CNN COMBINED WITH THE ARCFACE LOSS

FUNCTION).
Groupl Group2 Unified
Accuracy
Min 0.93 0.94 0.93
Max 0.96 0.96 0.94
Mean 0.95 0.95 0.93
SD 0.01 0.01 0.00
Loss
Min
2.00 173 240
Max 2.18 1.87 248
Mean 2.06 1.81 243
SD 0.06 0.05 0.02
FIGURE 6

EXAMPLE OF SIMILARITIES IN PAIRS OF SHEEP PAIR BETWEEN
GROUPS; IN GREEN - SHEEP FROM GROUP 1, IN BLUE — SHEEP
FROM GROUP 2.

Group 1: 3568 Group 2:1038
- N

Group 1:3509 Group 2: 1001

Average precision, recall and F1-Score indices were
96.2%, 95.8%, 95.8% respectively (Table 4). An
average of 12.76 and 12.58 out of 13 images per sheep
were correctly identified. Furthermore, all sheep (in
both groups) were correctly identified with a minimum
of 10 images. Therefore, according to the majority
classification rule, we can assume 100% successful
identification for each sheep. The specific images that
the model failed to identify were difficult to identify
even by the human eye (Figure 7).
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FIGURE 7
EXAMPLE OF INCORRECT IDENTIFICATION OF A SINGLE
IMAGE; LEFT - ONE IMAGE OF SHEEP 3622 FROM GROUP 1,
WAS WRONGLY CLASSIFIED AS SHEEP 3527, RIGHT — ONE
IMAGE OF SHEEP 1015 FROM GROUP 2, WAS WRONGLY
CLASSIFIED AS SHEEP 1016.

True: 1015 Predicle_c_i: 1016

True: 3622 Predicted: 3527

-

TABLE 4
CLASSIFICATION RESULTS.
Precision Recall F1-Score
Group 1: 47 sheep  0.952 0.949 0.949
Group 2: 34 sheep 0.972 0.968 0.968
TRANSFER LEARNING

Transfer learning achieved by the cross-validation
technique resulted in an average improvement of 1.85%
increase in accuracy and a 0.25 decrease in loss value
(Table 5), with a shorter training process (9 vs. 25
epochs). The data distribution had no effect on the
identification performance as revealed by the low
standard deviations.

TABLE 5
AVERAGE PERFORMANCE OF THE TRANSFER LEARNING
METHODS.

Transfer Accuracy: Accuracy: Loss: Loss:
method Avg SD Avg SD
Gl > G2 0.97 0.01 1.69 0.04
G2 > Gl 0.97 0.01 1.70 0.04

SENSITIVITY ANALYSIS
QUANTITY OF TRAINING IMAGES

Training each sheep with at least 35 images resulted in
a minimum identification accuracy exceeding 69% per
sheep (Figure 8, i.e. at least nine of the 13 images were
properly classified). By utilizing the majority-based
decision described above, each sheep was correctly
identified with decreasing SD as the number of images
increase (Table 6).

QUANTITY OF RANDOMLY SAMPLED FRAMES

When classification was done using eight and nine
frames, the average accuracy was 59.5% and 63.7%
respectively (Figure 9). Results revealed that there were
sheep that were identified in less than half of the frames
and therefore were misclassified. However, when ten
frames were used, the average accuracy was 71.7%,
with 2 minimum of six out of ten images, implying
correct classification of all sheep. Accordingly, in order
to ensure proper identification of each sheep, the
classification decision must be made based on a
majority of at least ten randomly selected frames.

FIGURE 8
QUANTITY OF TRAINING IMAGES EVALUATED; THE MINIMUM,
AVERAGE AND MAXIMUM ACCURACY ACHIEVED (SD IS
PRESENTED IN TABLE 6).
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FIGURE 9

NUMBER OF RANDOMLY SAMPLED FRAMES; THE MINIMUM,
AVERAGE AND MAXIMUM ACCURACY ACHIEVED.
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DISCUSSION

To our knowledge, this study was the first to implement
robust biometric identification of young sheep.
Compared with earlier studies (Corkery et al., 2007:
Salama et al., 2019), the slightly lower identification
accuracies achieved in this study can be attributed to
differences in the data collection methods and
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TABLE &
STANDARD DEVIATIONS FOR DIFFERENT GUANTITY OF
IMAGES USED IN TRATNING,

Amount of image:: 10 15 20

25 30 35 40 45 52

Standard deviation 020 017 0.11

015 012 010 002 008 006

differences between the sheep. In the study that
achieved 96% accuracy (Corkery et al., 2007), images
were manually acquired in controlled condifions on
adult sheep aged 34 years which have higher
differences. In the other study which achieved 98%
accuracy (Salama et al, 2019), CNNs were tested on a
group of sheep, in which the ages of the individual sheep
varied greatly. In our study, biometric identification was
done on identically-aged young sheep (lambs) with an
automated machine vision system in field condifions,
implying a more natural but complicated identification
process. An advantage of the proposed identification
system 1s that it can be installed in a commercial sheep
pen - cameras can be altered positioned at different
angles and distances from the sheep.

CONCLUSIONS

A biometric identification model for individual sheep
recognition based on machine vision and advanced
CNNs was designed, developed and implemented. The
average identification accuracy achieved on two
different groups of similarly-aged sheep was 93%.
Transfer leaming methods improved accuracy by an
average of 1. 85%, in a shorter training process, resulting
in an average of 97% identification accuracy.

The model was implemented using Faster-RCNN
algorithm and a ResNet50V2 model with the ArcFace
loss function. The training process should include at
least 35 images per sheep, while classification should be
calculated by majority decision on at least ten randomly
chosen frames per visit per sheep, from a full video.
Further research should aim to develop an unsupervised
learming model for a new herd and implement real-time
identification. The recommended model may be adapted
to identify other animals, such as beef cattle and pigs,
replacing traditional identification methods.
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Epochs 30
Batch Size 32
Weight Decay 0.001

Dropout 05
S (ArcFace) 3
W (ArcFace) 0.05
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Biometric identification provides an important tool for
precision livestock farming. This study investigates the
effect of weight gain and sheep maturation on
recognition performance. Sheep facial identification
was implemented using two convolutional neural
network (CNN) called Faster R-CNN, and
ResNet50V2, equipped with the state-of-art Additive
Angular Margin (ArcFace) loss function. The
identification model was tested on 47 young sheep at
different stages in their growth, when they were
between 2 and 5 months old, throughout which the
sheep gained approximately 25 kilograms in weight.
Results revealed that when the model was trained and
tested on images at the beginning of the growth period,
the average accuracy of the group was 95.4%,
compared with 91.3% when frained on images from
the beginning buft tested on images at the end of the
growth process.

Keywords: biometric identification, lamb,
convolutional neural network, animal aging, deep
learning.

Implications

The findings of this study suggest that young sheep can
be identified using biometric methods throughout the
growth period, which lasts about 4-5 months. Training
the model was performed only once at the beginning of
the growth process. The method presented may be
adapted to other animals, such as cattle and pigs, and
may replace conventional RFID identification systems
with a lower cost and more animal welfare-friendly
system.

INTRODUCTION

An individual animal identification opens the way to
maintain an animal's individual data, such as parentage,

birth date, production records, health & wvaccination
history and disease control, enables improved farm
management (Salama et al, 2019). Traditional
identification methods include: tattoos, ear fags or
electronic means (Caja et al., 2004). Ear tags are easily
lost, and require frequent maintenance and cleaning
(Caja et al., 2004). Tattoos impair animal welfare and
might affect an animal's behavior. Electronic
identification, such as Radio Frequency Identification
(RFID) tags, are more expensive compared to
conventional methods, and are sensitive to local signal-
to-noise ratios (Caja et al., 2004). By representing the
visual appearances of animals based on generic features
and primary biometric characteristics, individual
animals can be identified using cameras (Corkery et al ,
2007).

Different biometric characteristics can be used for
animal identification, such as muzzle pattern matching
and coat pattern (Andrew et al., 2019; Kumar et al.,
2018). Faces contain significant information (Corkery et
al., 2007; Salama et al., 2019). However, biometric
characteristics, especially of the face, are susceptible to
age change (Sawant and Bhurchandi, 2019). Various
studies on human identification have focused on
understanding and improving the effect of age on
recognition (Sawant and Bhurchandi, 2019). However,
to our knowledge, equivalent animal studies have not
yet been performed on lambs. To the best of our
knowledge, no previous study has investigated livestock
biometric identification over a long enough period, nor
examined the influence of aging on recognition.
Biometric identification is an emerging research field.
Livestock farming has become increasingly interested
CNN techniques (Hansen et al, 2018; Salama et al.,
2019). An initial study on sheep facial identification
trained and tested a cosine distance classifier on 50
sheep, aged 3-4 years (Corkery et al., 2007) resulted
with 96% identification accuracy. In this study, front-
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view images were acquired in controlled conditions (on
a black background and with manual cleaning of the
sheep face to minimize noise). A second study (Salama
et al, 2019) vinlizing two different neural network
models, resulted in 98% accuracy. In that study, tests
were performed on 52 sheep, in a wide range of ages
(from five months to five years); 10 images for each
sheep were taken at a single time, from different angles.
However, to our knowledge, no research has yet been
conducted to evaluate the identification performance on
different ages of the same sheep, and none have focused
on identification of yvoung sheep.

In this study, the ResNet30V2 CNN (Yamazaki et al ,
2019) was combined with the state-of-art ArcFace loss
function (Deng et al , 2019), to provide a robust facial
biometric identification model for sheep. The present
study focuses on implementing the model to evaluate
whether the sheep's weight gain and maturation affected
the performance of the biometric identification We
especially focused on young sheep, since recognition of
lambs 15 expected to be more difficult, due to the
similarity between the sheep; rapid growth is also
known to influence their appearance.

MATERIALS AND METHODS
EXPERIMENTAL DESIGN

Sheep facial images were collected using two 8
MegaPixels RGB cameras connected to a Jetson Nano
embedded system-on-module (SoM). The cameras were
installed on a drinking facility, located in a research
sheep pen in Volcani Center, Bet Dagan, Israel. Both
cameras video-recorded the sheep while they were
drinking water, at 30 frames per second (fps). The first
camera was used to photograph the sheep’s RFID ear
tag, which was used as the ground truth. The second
camera acquired photos of each sheep’s face for the
identification model.

A total of three experiments were conducted on 47 Assaf
breed sheep. Images were acquired throughout their
growth process, from ages 2 to 5 months, during which
each sheep gained about 25 kilograms in weight. The
first experiment lasted for two weeks, and was
conducted in November 2020, with 2-month-old sheep
{average weight=33.6, S5D=6.6). Two additional
experiments were conducted. One experiment was done
in the middle of the growth period, at the end of
December 2020, when the sheep weighed about 45 kg
each (average=44 4, SD=651). The other was
conducted at the end of February 2021, at the end of the
growth process; the sheep were at their maximum

weight, about 60 kg (average=57.2, SD=7.82). Each
experiment was conducted over three consecutive days.
The second and third experiments included only 32
sheep, since 15 sheep were removed from the pen during
the course of experiments, due to illness.

EXPERIMENTAL DESIGN

Each video of a sheep taken from the front camera was
tagged with the sheep’s ID tag taken from the side
camera. Each video was divided into an image sequence
(frames) with Python3 code. Then, the images were
normalized (Deng et al, 2019). The following three
datasets were obtained:

» First dataset (baseline dataset): 3055 images were
included from the beginning of the growth process
(65 images for each of the 47 sheep). Among
these, 52 images were randomly selected for the
model development, and the remaining 13 images
were used to evaluate the model’s efficacy in
identifying individual sheep.

* Second dataset (denoted as Growthl): 2080
images were included from three different time
periods — beginning, middle and the end of growth
period (65 images for each of the 32 sheep).
Specifically: 1248 images were taken from the
beginning of the growth process (from the first
dataset), and 416 images were taken from the
middle of growth process (second experiment) for
training the model An additional 416 more
images were taken at the end of growth period
(third experiment) for evaluation.

s Third dataset (denoted as Growth2): 2080 images
were included from two time periods — the
beginning, and the end of the growth period.
Similar to the second dataset, 1664 images taken
from the beginning of the growth process were
used fo train the model, and 416 images taken
from the end of the growth period were used for
evaluation.

An object detection algorithm was developed to locate
the sheep’s face in each image. To this end, a labelled
dataset was created, consisting of 400 images of sheep.
Each image was manually tagged with a bounding box
around each sheep's face. To improve training, data
augmentation techniques were used on all datasets, to
increase the number of training samples. The training
images were augmented seven to eight times using the
following techniques: vertical flip, random rotation up
to 30 degrees, Gaussian noise addition, and adjusting
image brightness.
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ALGORITHM AND MODELLING

The biometric identification model applied to each
image (Hitelman, 2021) entailed two steps: (1) face
detection and (2) classification. First, the faster R-CNN
deep learning object detection algorithm was applied to
locate the sheep's face in an image. Then, the detected
face was cropped, resized to 112*112 pixels according
to Deng et al., (2019) and provided as input to the
classification model. The classification model was
composed of an embedding network and a loss function.
The ResNet50V2 (Yamazaki et al., 2019) was selected
as the embedding network because it outperformed the
other embedding networks examined (Hitelman, 2021).
The state-of-the-art Additive Angular Margin Loss
(ArcFace) function was utilized to extract highly
distinctive features from faces (Deng et al., 2019).

MODEL EVALUATION

The model’s performance was evaluated by applying it
to the three datasets — baseline dataset, Growthl and
Growth2 as described above.

Performance was measured using a confusion matrix on
a test set consisting of 13 images randomly selected for
each sheep. The difference between the baseline and
Growth2 was calculated. Performance was also
evaluated using identification accuracy and categorical
cross entropy on the three datasets. Accuracy was
calculated from the confusion matrix as a proportion of
correctly identified images out of the total images
examined in the model. Categorical cross-entropy
estimated the divergence of the predicted probability
from the actual sheep ID.

RESULTS

The biometric identification model performance on the
baseline dataset achieved superior accuracy (Table 1);
1.7% higher than Growthl and 4.1% higher than
Growth2 performance. Training on images from the
beginning of growth only while testing on images from
the end of growth (Growth2), achieved 2.4% lower
accuracy than did training with images from the middle
as well as the beginning of the growth period (Growthl).
However, the difference in accuracy of Growth2 is
relatively small compared with that of the baseline
(4.1%).

TABLEI
SuMMARY OF THE IDENTIFICATION PERFORMANCE

Accuracy Loss
Baseline 0.95 2.06
Growthl 0.93 208
Growth2 091 2.18

The model's performance on the baseline and Growth?2
datasets (Table 2) yielded 94.92% and 91.34% true
positives respectively. On both datasets, most of the
sheep were identified in at least 12 out of 13 images (41
sheep out of 47 in the baseline dataset and 23 out of 32
sheep in the Growth2 dataset). Furthermore, all sheep in
Growth2 were identified in at least 10 images out of 13,
equal to the minimum comect identified images
achieved with the baseline dataset (Table 2). Fig. 1
shows examples of sheep that were comrectly identified
during the growth period.

TABLE 2
AVERAGE, MINIMUM. MAXIMUM AND STANDARD
DEVIATION OF THE CORRECT IDENTIFICATION IMAGES

(OUT OF 13 PER SHEEP).

Mean Min Max SD
Baseline 12.76 10 13 0.80
Growth2 11.87 10 13 0.90

FIGURE I
CORRECT PREDICTION GROWTH EXAMPLES OF SHEEP,
FROM LEFT TO RIGHT: IMAGE FROM BEGINNING,
MIDDLE AND THE END OF GROWTH PERIOD.

Avg weight - 30 kg Avg weight - 45 ke Avg weight - 50 kg

'.
b
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DISCUSSION

The identification model we developed yielded lower
accuracy than did previous studies (96% and 98%
accuracy rates, Corkery et al., 2007; Salama et al., 2019
accordingly). However, these previous studies
identified sheep of different ages which may have had
higher variability; neither evaluated the identification
performance of their models for young ages of the same
sheep. Our study examined the biometrical
identification of very young sheep (2 to 5 months old),
with very little variance between the animals, making
identification more challenging. We surmise that the
model will perform better when applied to adult sheep
that have greater differences between individuals.
Furthermore, in our study images were acquired
automatically in commercial-farming conditions.

The study presented here reveals that identifying
animals before and after maturation (after 2-3 months)
1s feasible. Each sheep was successfully identified in at
least 10 of the 13 images in both datasets (baseline and
Growth2). Therefore, classifying the sheep based on a
majority of 13 images, we can assume a 100% success
rate in identifying each sheep daily, throughout the
growing period tested, which corresponds to the
growing period of young sheep raised on commercial
farms.

CONCLUSIONS

A biometric identification model (composed of Faster
R-CNN, ResNet50V2 and ArcFace loss function) can be
used to identify young sheep from the beginning to the
end of their intensive growth period. The ability to train
a model on young sheep that can still be identified over
time even after 2-3 months and a gain of about 25
kilograms, may provide alternative method of
identification to traditional methods. Traditional
methods (tattoo, earring tags, RFID tags etc.) might
impair animal welfare, while biometric identification is
not harmful. In further research, the proposed model
maybe applied to identify other livestock animals, such
as beef cattle and pigs.
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Appendix 2C. Existing smart drinking facility program and camera details
** If needed, contact llan Halachmi. Email: halachmi@volcani.agri.gov.il for access
Existing smart drinking facility program (Volcani access only) — URL

Appendix 2D. Video-recording code
Video-recording code (Volcani access only) — URL

=

Video_Recording.txt

Appendix 2E. Collected data
** If needed, contact llan Halachmi. Email: halachmi@volcani.agri.gov.il for access
Sheep collected data (Volcani access only) — URL

e Raw data:

Raw Data

-> First Group

———> Videos

-—-—> Frames

—————— > Selected Frames For Training
—————— > Ground Truth Frames

—————— > Growth Frames

______ > Analyzed Data

-> Second Group

———> Videos

—-—=> Frames

—————— > Selected Frames For Training
—————— > Ground Truth Frames

—————— > Analyzed Data

Appendix 2F. Classification model code and hyper parameters
Classification model (Volcani access only) — URL

Iltq [

“ =
Hyper_Parameters_
Definition.PNG Identification_Model.txt
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Appendix 2G. Trained models: graphs and hdf5 files
** Contact llan Halachmi. Email: halachmi@volcani.agri.qgov.il for hdf5 file access.
Trained models: graphs and hdf5 files (Volcani access only) — URL

e First group training performance — training (red), validation (blue).
X Axis - numbers of epochs, Y Axis - accuracy/loss values:

epoch_accuracy
epoch_loss

42
1 -
ag
34 0a
3
0.8 /
26
22 0.7

=]
(& ]
=
[ ]
=
(5]

20 25

e Transfer learning from first to second group performance — training (orange), validation
(blue).
X Axis - numbers of epochs, Y Axis - accuracy/loss values:

epoch_accuracy epoch_loss
28
1 [ E———
0.8 ///—. 2.4
0.8 f
f 2
0.7
0.5 1.6
o 1 2 2 4 /5 & T & 8 x 1 2 2 4 & 4 T & 8

e Growth2 model performance — training (pink), validation (green).
X Axis - numbers of epochs, Y Axis - accuracy/loss values:

epoch_accuracy epoch_loss

=

1.05
28
0.05 26
2.4
085 25
2

075
1.8
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Appendix 2H. Post-hoc test
Post-hoc test (Volcani access only) — URL

W]

Post_Hoc_Results.d
ocx

Appendix 2l. Confusion matrices
Confusion matrixes (Volcani access only) — URL

Confusion_Matrices
Xlsx

Appendix 2J. K-Fold Cross validation results
K-Fold Cross validation results (Volcani access only) — URL

K_Folds.xlsx

Appendix 2K. Amount of training images
Amount of training images (Volcani access only) — URL

Amount_Of_Trainini
g_lmages.xlsx

Appendix 2L. Amount of test images
Amount of test images (Volcani access only) — URL

Amount_Of_Test_Im
ages.xlsx
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Appendix 2M. Classified faces examples of both groups and growth model
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Appendix 2N. First experimental sheep group — data examples
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Appendix 20. Second experimental sheep group — data examples
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