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Abstract 

Precision Livestock Farming (PLF) technology aims to improve farming productivity and animal 

welfare by ensuring better livestock management. Such systems are supported by monitoring 

the animal's needs. Two case studies of PLF technologies based on computer vision are 

developed in this thesis: a mobile system for counting laying hens and a sheep biometric 

identification system. In both systems advanced machine learning methods were applied.  

 

Counting laying hens  

The Israeli laying hens industry is regulated by production quota; a farm can produce eggs 

according to a prefixed allocated number of hens. With the new community battery cages 

that have been recently introduced to the Israeli egg industry, which house thousands of 

hens, a manual head count of the hens is a very difficult task resulting in inaccurate and 

meticulous results. In this study, a machine vision system was developed to detect and count 

laying hens in community battery cages. The project aims to replace the manual counting, 

with an automatic algorithm. 

A mobile system which can be driven along the cages alley was developed. The experiments 

were conducted at a commercial hen house located in Kidron. The hen house stacked in 6 

floors, with 37 community cages set in a rows and between 30-40 hens in per cage. The hens 

were video-recorded with an Intel RealSense RGBD D435 camera, which acquired images at 

30 frames per second (fps). Videos were processed with the Faster R-CNN algorithm. After 

detection, the hens' locations were tracked using a tracking algorithm, which assigns every 

detection with an ID, representing a single hen. Testing on a dataset that included 5600 

images resulted in detection accuracy of 88%, with mean absolute error of 4.5 hens per cage. 

Sensitivity analyses revealed that the minimum number of frames needed for high detection 

while shortening runtime is 35 frames, instead of using a full video, which consists of more 

than 44 frames. 

The system is inexpensive, fast, user-friendly, and does not rely on a specific feature of the 

test hen house. Thus, it can potentially be used in different farms, ensuring adequate hen 

density according to the limits set by regulations. Future work should include a depth channel 

to improve results.  

 



   
 

   
 

Sheep biometric identification 

A sheep biometric identification system based on facial images was developed. A machine 

vision system and deep learning models were developed and applied for animal identification. 

The system included two 8-MegaPixels cameras installed in a monitoring drinking facility 

adapted to work with NVIDIA Jetson Nano embedded system-on-module (SoM). Data from 

81 Assaf breed sheep aged two to three months, from two different groups of sheep, were 

collected over a period of two weeks. The biometric identification model included two steps: 

face detection and classification. In order to locate and localize the sheep face in an image, 

the Faster R-CNN deep learning object detection algorithm was applied. The detected face 

was provided as input to seven different classification models. Different transfer learning 

methods were examined. The best performance was obtained using a ResNet50V2 model 

with the state-of-art ArcFace loss function. The identification system resulted in average 

accuracies of 95.4% and 95.7% image detection for the two groups tested and in 100% sheep 

identification. When applying transfer learning method, average identification accuracies 

improved to 97% in both groups (with 100% sheep identification), and the training process 

was accomplished more rapidly. 

 

Key words: Precision Livestock Farming (PLF), laying hens, counting, sheep, lamb, algorithm, 

Deep learning, convolutional neural network, object detection, Biometric identification, 

Faster R-CNN, Face recognition. 
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1 Introduction 

1.1 Problem description and motivation 

1.1.1 Precision livestock farming 

Precision Livestock Farming (PLF)  aims to improve the efficiency of production, while 

increasing animal and human welfare, by means of applying advanced information, targeted 

resource use and precise control of the production process (Banhazi et al., 2012). Precision 

livestock farming (PLF) develops real-time tools for monitoring livestock with information 

collected without the stress of animal disturbance or handling (Hamilton et al., 2004). The 

assumption is that animals that are provided with optimal conditions will yield maximum 

production (Halachmi et al., 2019). In recent years, the importance of monitoring livestock 

animals increased and has been applied to all types of livestock animals, such as cows (Bloch 

et al., 2019), sheep (Morgan-davies et al., 2018), pigs (Hemeryck et al., 2015), broilers 

(Fontana et al., 2015) and hens (Sassi et al., 2016). PLF can provide objective animal welfare 

assessment in modern livestock production (Werkheiser, 2018) and improve management. 

Recently, new image recognition models based on machine learning models, like the 

Convolution Neural Network (CNN), allow to better understand complex processes in 

agricultural environments (Liakos et al., 2018). These machine learning methods produce 

better results than traditional image processing techniques (Gongal et al., 2015). As a result, 

more applications of livestock management (Qiao et al., 2019) have been automated using 

computer vision (Liakos et al., 2018) and deep learning methods (Guo et al., 2016). However, 

these techniques require a massive amount of data  for building the models (Szegedy et al., 

2016). 

 

1.1.2 Counting laying hens 

Intensive research has focused on hens and broilers monitoring with a variety of sensors and 

cameras (Neila et al., 2016). This includes inspection of poultry carcasses by spectral and 

hyperspectral imaging  (Park and Chen, 2000), predicting eggs freshness with image 

processing technique (Suktanarak and Teerachaichayut, 2017), 3D imaging for broilers weight 

estimation (Mortensen et al., 2016), and visible light imaging for hens tracking (Kashiha et al., 

2014). 
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Since the Israeli laying hens industry is regulated by quota (Geffen et al., 2019) in addition to 

the welfare and health considerations, which implies that a farm can produce eggs according 

to a fixed number of hens, monitoring and counting of hens must be done regularly (Geffen 

et al., 2019). With the new community battery cages that have been recently introduced to 

the Israeli egg industry (Appleby, 2003), which house thousands of hens, a manual head count 

of the hens is very difficult task which leads to inaccurate and meticulous results (Geffen et 

al., 2019). Moreover, manual counting is a laborious task which is a major cost component 

affecting profitability of farmers (Cronin et al., 2008). By developing an automatic counting 

system, efficiency of labor use can be improved and may lead to improvement of surveillance 

that may lead to better hen welfare (Cronin et al., 2008). 

Laying hens counting in community battery cages is a challenging task: the hens do not stand 

still but constantly move, they stand at different distances and angles from the camera which 

effect the ability to contrast them from the background, and because of the battery cages 

structure, they can only be photographed from front view (Geffen et al., 2019). Therefore, 

not all hens in a cage are visible in each frame. These factors reduces image quality making 

automatic counting a difficult computer vision task (Geffen et al., 2019). 

A recent neural network system based on Faster R-CNN (region-based convolutional neural 

network) was developed to count hens by using deep learning methods (Geffen et al., 2019). 

The feeder was equipped with a Media Tech W9R camera and the cages were video recorded 

while the feeder traveled along and acquired images (Geffen et al., 2019). An accuracy of 90% 

was obtained with an algorithm that used object detection, focusing on the hen's head. 

However, the algorithms were tailored designed to the specific conditions and were not 

adjustable to varying lighting conditions (Geffen et al., 2019). Moreover, they were fitted for 

the specific cages and did not fit cages with no separation in the middle, as customary in the 

industry. In these cages counting must include depth of the images (Geffen et al., 2019). 

 

1.1.3 Biometric identification of sheep 

Sheep farming has been limited in research in machine vision and deep learning applications 

(Morgan-Davies et al., 2018). However, more awareness to global sheep economics, animal 

welfare and agricultural policies, influence the sheep farming practices and stimulate wider 

adoption of deep learning systems (Morgan-davies et al., 2018), such as – individual 
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monitoring of sheep (Salama et al., 2019), pain estimation (Mahmoud et al., 2018),  and lamb 

growth monitoring (Zhuang et al., 2018).  

Performance recording of sheep enable automated data collection that provides better 

quality data, contributing to better decision-making and thus improved management (Ait-

Saidi et al., 2014). Collected data, including individual sheep ID and the recorded 

performances like body condition score, milk yield, and body weight (Salama et al., 2019), 

facilitate animal handling, contributing to improved husbandry practices, reducing labour 

requirements (Morris et al., 2012), and allowing better disease management (Salama et al., 

2019). For those reasons, sheep ID should be unique and permanent for an adequate 

performance recording (Ait-Saidi et al., 2014) and for providing farmers an efficient way to 

recognize and track each individual in a large group of sheep (Salama et al., 2019). 

Different methods of marking sheep were used by herders (Landais, 2001). Historically, the 

main methods used for sheep identification were; branding by fire or freezing (Landais, 2001), 

tattooing, ear tagging and electronic identification such as RFID tags and barcodes (Caja et al., 

2004). However, these methods have proved inefficient (Koik and Ibrahim, 2012), and may 

harm the animal and even affect its behavior (Caja et al., 2004). A further key drawback of 

these methods is the higher cost and that they must be recorded manually, which can easily 

introduce human errors, while the labour cost of such a practice is also high (Trevarthen, 

2007).  

Due to the need of increased profitability with minimal unfavorable environmental impact 

and high concern of animal welfare nowadays (Mollo et al., 2010), using biometric traits 

instead of traditional identification methods, has gained a lot of attention in current livestock 

identification systems (Corkery et al., 2007).  

Sheep facial biometrics include many significant features that can be used for identification 

such as muscles, the eyes, mouth and many hidden features and therefore are very promising 

(Corkery et al., 2007; Salama et al., 2019). 

Sheep face recognition was achieved using a convolutional neural network (Salama et al., 

2019). In this research, the Bayesian Optimization was used to automatically set the 

parameters for a convolutional neural network and in addition, the AlexNet configuration was 

also examined (Salama et al., 2019). The sheep recognition algorithms were tested on a data 

set of 52 sheep, with 10 images taken per sheep (Salama et al., 2019). The experiments 

achieved an accuracy of 98% (Salama et al., 2019). However, the research was tailored 
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designed to the specific conditions and was tested on small set of sheep with great variability, 

and therefore may not be accurate enough in order to replace other biometric identification 

methods in used (Corkery et al., 2007). 

 

1.2 Objectives 

This research aimed to develop two automatic precision livestock farming systems: a mobile 

system for counting laying hens and a sheep biometric identification system. 

 

1.2.1 Counting laying hens 

The research objective was to develop a machine vision system that will automatically count 

hens in community battery cages, with the following specific deliverables: 

 A mobile system which can be transferred between cages. 

 Algorithms to detect and count hens in a battery cage.  

 Algorithms that operate in varying illumination conditions. 

The research was based on a previous system in which feasibility was proven (Geffen et al., 

2019). The innovation of the current research was a new design which included a mobile 

platform equipped with a RGBD camera. The current project focused on the new design and 

developing algorithms for the variable illumination conditions. It used a previous developed 

tracking algorithm however, a new image processing and object detection algorithm were 

developed. Additionally, in depth sensitivity analyses were conducted.  

 

1.2.2 Biometric identification of sheep 

The objective of this work was to investigate the potential of facial recognition as a biometric-

based identification system for sheep by using a machine vision system, with the following 

specific deliverables: 

 An identification system that can be used for any sheep pens. 

 Replacing the use of traditional methods with a sheep identification model. 

 Examine whether sheep maturation affects identification. 
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1.3 Thesis overview 

This thesis begins with a literature review presented in chapter 2. The review starts with precision 

livestock farming introduction (2.1), followed by computer vision research, including an overview 

of object detection in agriculture using deep learning (2.2). Next, the recent advancements of 

counting laying hens (2.3) and sheep biometric identification (2.5). The mobile system for 

detecting and counting laying hens by machine-vision processing of RGB images is described in 

chapter 4. Automated system for sheep identification based on deep learning is described in 

chapter 5. Both chapters describe the research methodology, the system and algorithms 

developed and results. Discussion and conclusions are discussed in chapter 6 and chapter 7. 
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2 Literature Review 

This section reviews relevant literature on precision livestock farming (section 2.1), computer 

vision including object detection (section 2.2), laying hens counting (section 2.3), biometric 

identification and existing models of livestock identification (section 2.4), and finally a review 

of biometric identification of sheep (section 2.5). 

 

2.1 Precision Livestock Farming 

Automated monitoring and control techniques are becoming more important to support 

management by the farmer (Pham & Stack, 2018) in larger farms and improve production 

decisions. Precision Livestock Farming (PLF)  mainly propose is to improve the efficiency of 

production, while increasing animal and human welfare, by means of applying advanced 

information, targeted resource use and precise control of the production process (Banhazi et 

al., 2012). PLF technologies, can be used to improve food safety and quality and to achieve 

efficient and sustainable livestock farming (Laberge and Rousseau, 2017).  

PLF originated from the increased use of information technology (IT) products in support of 

livestock management (Guarino et al., 2008; Mertens et al., 2011). PLF objectively assesses 

animal welfare in modern livestock production (Dawkins, 2017). It continuously monitors 

individual animals on large farms using network devices, to compare this information to 

expected norms, and to use algorithms to automatically manage individual animals according 

to changes in climate, feeding, or reproductive decisions (Werkheiser, 2018).  

Real-time systems have been developed for livestock monitoring (Scholten et al., 2013). These 

monitoring systems enable to collect information without the stress of animal disturbance or 

handling (Hamilton et al., 2004). The goal of these technical tools is not to replace the farmers 

but to support them for better decision making. PLF provides unlimited observation time, 

because computers can track the animals in a row (Wolfert et al., 2017). 

The main purpose is to attain a full picture of animal status and behavior on a continuous 

basis, focusing on animal health and performance (Cangar et al., 2008). Precision Livestock 

Farming includes measurement, prediction and data analysis of livestock, also offering new 

possibilities for continuous, automatic collection and analysis of data (Berckmans, 2004). 
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Figure 1. Precision livestock model (Berckmans, 2004). 

 

PLF must meet the needs of both the farmer and the consumer to be commercially viable. For 

the farmer, increased profitability with minimal unfavorable environmental impact and high 

concern of animal welfare, while for the consumer, the food must be safe, nutritious and 

affordable (Mollo et al., 2010). 

 

2.1.1 PLF in the poultry sector 

Poultry farming, and in particular broiler farming, is an important sector due to the large  

quantities of animals involved which have great potential for improvements in their welfare 

(Rowe and Dawkins, 2019).  

Broilers are the world’s most numerous bird, with a standing population of 22.7 billion, an 

order of magnitude greater than the standing stocks of any other farmed species (Bennett et 

al., 2018). The highest farm animal numbers are found in poultry operations, with up to tens 

of thousands of individuals in one barn (Rowe and Dawkins, 2019). Modern broilers suffer 

from problems such as sudden death syndrome, ascites, lameness and contact dermatitis as 

a result of their fast growth rate (Bessei, 2006). The highest farm animal numbers are found 

were in poultry, with up to thousands of individuals in one granary (Wilhelmsson et al., 2019). 

Each individual animal is worth comparatively little and the turnover is very fast, therefore 

the concern for the welfare of an individual may be low (Rowe and Dawkins, 2019). 
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Additionally the profit margin for poultry farmers is small, creating further conflict between 

production and bird welfare (Khuda, 2007). 

Along with the growing human population and increasing urbanization, poultry consumption 

is predicted to increase (Scholten et al., 2013). Poultry farming is increasing in low income 

countries which are not aware of  animal welfare (Vaarst and Alrøe, 2012). Moreover, in 

intensive poultry production, there are factors, such as stocking density, environmental 

deterioration, unsuitable social environments or thermal stress, which can cause welfare 

aggravation (Meluzzi and Sirri, 2009). Thus, poultry welfare is an important area to focus 

efforts on improving livestock welfare. This can be achieved by continuous monitoring and 

tracking of individual hens, benefiting their welfare (Rowe and Dawkins, 2019). Precision 

livestock farming (PLF), is based on collecting data from diverse sources from smart sensors, 

which are then analyzed to create an automatic management system based on real-time 

monitoring to control animal performance, health, and welfare (Hendrawan, 2005). 

The poultry industry is divided into two separate sections - meat production and egg 

production (Corkery et al., 2013). The environmental conditions in poultry houses influence 

the wellbeing and health of production staff as well as the individual bird (Marchewka et al., 

2013). Poultry that are not healthy, will not provide optimal performance (Corkery et al., 

2013). Techniques developed in Precision Livestock Farming (PLF) should be applied to 

automatically manage commercial poultry farm (Mollo et al., 2010). 

Poultry monitoring systems have great potential to advance poultry production. These 

systems can log real-time data, and  become an essential predictive tool within the poultry 

community (Corkery et al., 2013; Mollo et al., 2010). By using sensor technologies, potential 

applications to improve poultry welfare were investigate, such as - Feed intake 

measurements, Thermal comfort estimation, Stress detection, Assessing locomotion 

deficiency in broilers and Indoor climatic conditions’ assessment (Sassi et al., 2016). 

Monitoring and inspection is done with a variety of sensors and cameras, such as spectral 

imaging to inspect poultry carcasses (Park and Chen, 2000), hyperspectral imaging for 

predicting eggs freshness (Suktanarak and Teerachaichayut, 2017), 3D imaging for broilers 

weight estimation (Mortensen et al., 2016), and visible light imaging for hens tracking 

(Kashiha et al., 2015).  

Although most technologies are still in the experimental phase, some are already available 

and can be introduced in commercial poultry farms with good results (Marchewka et al., 
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2013). These available technologies have huge potential to enable  better poultry welfare, or 

to be applied for an automatic welfare assessment (Banhazi et al., 2012; Ruiz-Garcia et al., 

2009; Sassi et al., 2016). 

Poultry behavioral actions are categorized into events such as eating, drinking, preening, 

resting, and stereotyped activities directed at different targets (Meluzzi and Sirri, 2009). It is 

time-consuming, costly, tedious, and prone to errors, to assess those methodologies. 

Therefore, there is an increasing need for systems which can collect automatically event-

based behavioral responses (Puma et al., 2001). 

 

2.1.2 PLF in the sheep sector 

New PLF systems are constantly being developed for extensive and pasture based farming 

systems (Lima et al., 2018). The development of technologies for grazing animals is of 

particular interest for the sheep farming sector, since it could bring benefits for animal 

performance, economical performance and labour (Morgan-Davies et al., 2018). Moreover, 

there has been an increase in average herd size for several years, which reduces the time that 

farmers can spend on individual observation of their animals throughout the sheep 

production cycle (Villeneuve et al., 2019). This increase leads to a real need to improve the 

performance control that allows farmer to better control their herds (Wishart, 2019). 

However, adoption of PLF technologies does not take place immediately in the sheep sector, 

compared to other sectors (Villeneuve et al., 2019), as sheep farmers usually belong to more 

conservative technology consumers (Kaler and Green, 2013). As such, investments, 

innovation and failure are known to all the community members in a short time which create 

a social barrier and risk eversion (Villeneuve et al., 2019). All the listed characteristics have 

negative influence regarding the openness of this farming sector to innovation (Kaler and 

Green, 2013).  

In addition, PLF approaches have been successfully applied to intensive systems, but there 

are limited examples of application to sheep systems (Morgan-Davies et al., 2018). The focus 

in the field of sheep is small because unlike other livestock animals, animal care is less 

frequent, for sample, dairy cattle are treated at least twice a day for milking (Tullo et al., 

2017). Application of PLF has the potential to improve sheep farming and is an important area 

of research that, to date, has received limited exploration (Morgan-Davies et al., 2018).  
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Nevertheless, trends such as global sheep economics, awareness to animal welfare and 

agricultural policies, influence the sheep farming practices and stimulate wider adoption of 

PLF systems  (Morgan-davies et al., 2018), such as – individual monitoring of sheep (Salama 

et al., 2019), pain estimation (Mahmoud et al., 2018), lamb growth monitoring (Zhang et al., 

2018) and selective breeding using measures such as Estimated Breeding Values (Conington 

et al., 2006). 

There is also a range of real-time monitoring sensors for sheep being developed to measure 

location, movement, heart rate, chewing, estrus, urine, contact, respiration and temperature 

(Fogarty et al., 2018). The greatest advantage of such real-time monitoring technology is the 

potential to provide early warning systems for when measures deviate from the expected 

(Fuchs et al., 2019). These sensors could also be accompanied by location technology (GPS) 

so the animals can be found (Fogarty et al., 2018).  

Such sheep systems have important roles for environmental management, and production of 

lamb meat and breeding animals (Umstatter et al., 2013). However, they face difficulties 

including: low productivity, poor economic viability, labour availability and capability, and 

ensuring good animal welfare (Lima et al., 2018). PLF is one such approach to overcome these 

difficulties (Morgan-Davies et al., 2018; Wishart, 2019). 

 

 

2.2 Computer Vision  

2.2.1 Computer Vision background 

Computer vision is a scientific field that focus on how to gain high-level understanding from 

digital images or videos by using computers (Huang, 1997). Computer vision aims to solve 

computational models of the human visual system and to build autonomous systems which 

could perform some of the tasks which the human visual system can perform (Huang, 1997). 

Computer vision began in the late 1960s, when researchers from universities tried to mimic 

the human visual system (Szeliski, 2010). Computer vision includes three main stages (Floyd 

and Sabins, 1987; Morris, 2004):  

 Image acquisition - capturing an image using sensors that use pixel values that correspond 

to light intensity in one or several spectral group captured (Floyd and Sabins, 1987).  
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 Image processing and analyzing - transforming raw data and understanding the image 

data (Floyd and Sabins, 1987). These techniques deal with feature extraction, extraction 

of regions that differ in properties such as intensity, color, texture, or any other image 

statistics (Morris, 2004). By combining features together, the machine vision algorithm 

defines an object in the image (Groover, 2007).  

 Image interpretation - converting the image into meaningful information for a wide range 

of users. One popular task of interpretation is recognizing the type of the objects in the 

image by comparing the extracted feature from the previous stage to predefined models 

or standard values (Klette, 2014). 

 

2.2.2 Computer vision in agriculture  

There are many computer vision applications in agriculture (Liakos et al., 2018) yielding 

improved automation of tasks (Figure 2) such as; (a) crop management (Kamilaris and 

Prenafeta-Boldú, 2018) including applications on yield prediction, disease detection, weed 

detection crop quality and species recognition (Ali et al., 2017; Kung et al., 2016) (b) livestock 

management, including applications on animal welfare and livestock production (Hansen et 

al., 2018; Qiao et al., 2019), (c) water management (Mehdizadeh et al., 2017) and (d) soil 

management (Morellos et al., 2016). 

 

 
Figure 2.  Computer vision applications in agriculture (Liakos et al., 2018) 
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Despite many years of research of computer vision in agricultural environments, there are 

still many problems that hinder implementation of agricultural applications (Gongal et al., 

2015). The highly variable and unstructured outdoor environment with changing illumination 

conditions and obstructions (Kapach et al., 2012), along with the complex plant structure and 

variable product shape, size, color, texture and location make it hard to find a global solution 

to the detection of objects in the complex agricultural environment (Gongal et al., 2015; 

Liakos et al., 2018). 

In recent years, new approaches of computer vision have emerged, based on machine 

learning algorithms, such as neural networks (NN) (Rawat and Wang, 2017). These algorithms 

together with big data technologies and high-performance computing, create new 

opportunities to unravel, quantify, and understand data intensive processes in agricultural 

operational environments (Liakos et al., 2018). One of the most powerful implementations of 

the neural network is the CNN (Rawat and Wang, 2017). 

 

2.2.3 Object detection 

Object detection deals with two related problems – classification and localization (Girshick, 

2015). In the classification problem one or more dominant objects are determined and 

labelled in an image, while in the localization problems, it is much complexes to detect since 

in addition to labelling the dominant objects, it also must be localized in the image (Wang, 

2014). Localization is usually done by determining a bounding box around the image region 

that is occupied by the object and providing it coordinates. The difficulty of this task may 

increase if there are other objects in the image where must be labelled, or if multiple objects 

of the same category can appear in one image (Girshick, 2015).  

Using bounding boxes while classifying each box over an image is a simple approach for object 

detection (Girshick, 2015). However, this approach has two main drawbacks – it is expensive 

due to the huge search space, and it cannot be used if the number of bounding boxes is 

unknown (Girshick, 2015). An early method that implements the sliding window approach is 

the Viola-Jones detector (Viola et al., 2001). This approach includes three key contributions. 

The first is the use of a new image representation that allows the features to be computed 

very quickly classifiers (Freund and Schapire, 1995). The second is a learning algorithm, based 

on AdaBoost, which yields extremely efficient classifiers (Freund and Schapire, 1995). The 
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third is a method for combining more complex classifiers which allows background regions of 

the image to be quickly discarded while focusing on promising object-like regions classifiers 

(Freund and Schapire, 1995).  

The object detector is arranged in stages with increasing complexity (Viola et al., 2001). In 

each stage, the detector decides whether the current windows are not an object (Viola et al., 

2001). If a stage decides that the current windows are not an object, the rest of the stages are 

not evaluated. Only true object windows trigger the entire stages (Viola et al., 2001). 

 

 

Figure 3. Object detection related problems (Girshick, 2015). 

 

 

2.2.3.1 Object detection in fruit and flora 

Deep learning using convolution neural networks is taking a significant part in object 

detection (Table 1) (Chen et al., 2017; Sa et al., 2016). One direction is yield estimation with 

latest works resulting in advanced performances in different scenarios, such as apple orchards 

and mango orchards (Koirala et al., 2019). In most research fruit and flora estimation can be 

classified as a generic object counting problem which can be solved either indirectly by using 

object detectors (Bargoti and Underwood, 2017) or with architectures that set up a regression 

problem to directly infer the number of object instances in the image (Rahnemoonfar and 

Sheppard, 2017). 

 

2.2.3.2 Object detection in livestock 

Object detection image processing techniques, have been applied to livestock farming (Table 

2),  for automatic recording of activity, movement, and interactions of animals  (Noldus et al., 

2001) to determine livestock weight estimation, lameness detection and identification (Tsai 
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and Huang, 2014). Using object detection, it is able to carry out patterns of quantitative 

measurements of the animals’ observed behavior (Noldus et al., 2001) and behaviors that 

occur over many hours, like diurnal variation in behavior (Olivo and Thompson, 1988) in a 

trustworthy manner (Noldus et al., 2001).  

 

2.3 Laying hens counting 

Laying hens have been bred for their high egg yield, therefore may lay over 300 eggs per year 

(Cooper and Appleby, 1996).  Most laying hens are housed in conventional laying cages, often 

called battery cages, with automated control of light, temperature, feed, water, egg collection 

and faces removal (Bowler, 1994). It is acknowledged that battery cages cause welfare 

problems. Farm animals should have freedom to stand up, lie down, turn around, groom 

themselves, and stretch their limbs, which battery cages mostly contravene (Appleby, 2003). 

Therefore, in recent years, laying hen’s cages have been criticized on the lack of possibilities 

for hens to perform natural behavior (Appleby, 2003).  

Nowadays all new technical systems and equipment for the housing of laying hens have to be 

approved with regard to animal health and welfare before becoming available commercially 

(Appleby, 2003). In order to obtain approval for the use of a new technical systems, health 

must be at least as good as in existing systems and hens must be able to exhibit natural 

behavior (Weeks and Nicol, 2006). Furthermore, incidence of disease must be lower and 

environmental working conditions must not be worse than in older existing systems (Weeks 

and Nicol, 2006). As a result, quota policies of poultry raising in battery cages durable around 

the world (Bouvarel, 2011). In addition, quota limitation is necessary also in order to retain 

the powers for the regulation of production (Alston, 1999). 

Counting hens become a necessary task for quota regulation (Geffen et al., 2019). Stock 

people who work in modern cages, are responsible for the counting task, which takes about 

half-day per an average poultry farm (Cronin et al., 2008). Over and above their daily 

operational tasks such as, supervise the mechanical egg collection belts looking for potential 

blockages that may result in cracked or broken eggs during the collection process (Savory, 

2004). Another daily task for the stockperson is to conduct a welfare inspection of the hens 

in every cage. In multi-tier cages, stock people require special equipment to assist the 

inspection of hens in the upper tiers located above head height. Thus, monitoring upper tiers 
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may require extra stockperson time for inspection of hens (Cronin et al., 2008). Moreover, 

the detection and removal of dead hens from upper level cages and other foreign objects on 

the upper level is an important task since failure to adequately monitor upper-tier cages can 

prejudice the inefficiency of production, if the dead hens gravitate onto the egg collection 

belt and result in egg belt blockage (Cronin et al., 2008). The detection and removal of dead 

require additional stockperson time compared with inspectorate of the lower cages. In order 

to achieve profitable management, these tasks are essential in modern multi-tier cage 

systems. By using the counting technology, efficiency of labor use can be improved parallel to 

improving frequency of surveillance.(Cronin et al., 2008). 

Laying hens counting in community battery cages is a challenging task: first, the hens do not 

stand still but constantly moving (Shimmura et al., 2007). Secondly, they stand in different 

distance and angles from the camera which effect the ability to contrast them from the 

background  (Geffen et al., 2019). Finally, because of the cages structure, they can only be 

photographed from a front view (Geffen et al., 2019). Hence, not all hens are visible in a single 

image (Geffen et al., 2019). These factors do not apply in free range cages which can be 

counted in various methods such as background separation (Sergeant et al., 1998) or thermal 

imaging and pattern recognition (Zaninelli et al., 2018). In these research the camera was 

positioned above the hens (Sergeant et al., 1998; Zaninelli et al., 2018). 

Counting hens in battery cages, with eight hens in each cage, was achieved using a camera 

placed on the automatic feeder that moved at a constant rate along the cages row (Cronin et 

al., 2008). The hen's legs were detected by automatic detection algorithms that was 

developed for the research. This method obtained only 79% accuracy, the main difficulties 

being hens lifting one leg, sitting, or being occluded behind another hen (Cronin et al., 2008). 

Another research counted hens by using deep learning methods (Geffen et al., 2019). The 

cages were video recorded while the feeder traveled along them. In this study, a tracking 

algorithm that tracks the hen's head locations, and assigns every hen with a unique ID was 

used, leading to 98% accuracy result. However, the algorithms were tailored designed to the 

specific conditions and were not able to adjust to varying lighting conditions (Geffen et al., 

2019). Moreover, it does not apply on cages without separation in the middle, as is customary 

in the industry. In these cages counting must refer to depth of photography (Geffen et al., 

2019). 
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Table 1. Fruit and flora object detection research (Kalantar, 2019) 

Object Sensors Train 
Images 

Test 
Images 

Algorithm Results Ref 

Sweet 
pepper 

Multi-Spectral, RGB cameras, the JAI AD 
130GE and Microsoft Kinect 2. 

100 22 Faster R-CNN 0.838 F1 score (Sa et al., 2016) 

Almond Handheld Canon EOS60D 385 100 Faster R-CNN  
VGG16 NET 

0.775 F1 score (Bargoti and 
Underwood, 2017) 

Tomato 
 

Synthetic generated images 24,000 2500 Inception- ResNet 0.9103 Accuracy 
 

(Rahnemoonfar and 
Sheppard, 2017) 

Orange Bluefox USB 2 camera at 10 Hz 36 35 FCN, CNN 
andregression 

0.91 Ratio counted (Chen et al., 2017) 
 

Apple PointGrey USB 3 camera at 6 Hz 11 10 FCN, CNN and 
regression 

0.97 Ratio counted (Chen et al., 2017) 
 

Strawberry RGB camera 3640 910 SSD 0.842 AP (Lamb and Chuah, 
2018) 

Green citrus RGB camera 1200 300 Faster R-CNN 0.855 Map (XIONG et al., 2018) 

Weed , soil 
and maize 
crop 

Simulated images 6744 1686 VGGNet-16 0.94 Accuracy (Dyrmann et al., 2016) 

Wheat 
plantsroot 

Nikon D5100 DSLR camera 2,500 20 Author defined 
CNN 

0.984 Accuracy (Pound et al., 2017) 

Mango Spectrum camera (RGB) 11,096 1500 MangoNet based 
on CNN 

0.84 F1 score (Kestur et al., 2019) 

Mango Prosilica 
GT3300c +strobe lightning 

1154 270 SSD based on VGG 0.91 F1 score (Liang et al., 2018) 
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Table 2.  Livestock object detection research 

Object Research subject sensor Test 
data 

Algorithm Results Ref 

Cattle Autonomously visual 
identification of cattle 

Kinect 2 sensor & RGBD 
camera 

86,000 ASIFT algorithm 0.97 
Accuracy 

(Andrew and Campbell, 
2017) 

Cattle Automated detection of 
Mounting 

Side-view camera 90 
 

Gaussian Mixture 
Model & Motion 
History Image (MHI). 

0.999 
Accuracy 

(Chung et al., 2015) 

Cattle Counting cattle in large area 
of livestock. 

Unmanned Aerial Vehicles 
(UAVs) cameras 

2,704 CNN algorithm 0.95 
Accuracy 

(Omatu et al., 2014) 

Cattle Autonomously find and 
visually identify by coat 
pattern individual cattle in 
freely moving herds. 

M100  UAV with Onboard 
Deep Inference 

1,039 YOLOv2 CNN 0.919 
Accuracy 

(Andrew et al., 2019) 

Hens Tracking 
and maintaining identities of 
individual hens 

3D vision  camera -
Cambube3, PMDTec 

600 Fast watershed 
algorithm 

0.95 
Accuracy 

(Nakarmi et al., 2014) 

Hens Classify the laying hens’ 
behavior to achieve 
automatic recognition. 

Video camera LC5505E7-
C83R) 

778 HSVM Tracker algorithm 0.75 
Accuracy 

(Wang et al., 2016) 

Sheep recognizing individual 
sheep 

Mobile camera 10,400 Bayesian optimization 
function was used to 
determine the CNN 

0.98 
Accuracy 

(Salama et al., 2019) 

Sheep Face recognition as a 
biometric identifier of sheep 

PowerShot G3, Canon 150 ICA algorithm & 
InfoMax 

0.953 
Accuracy 

(Corkery et al., 2007) 

Pigs Detecting sow drinking, 
urination, and mounting 
behaviors 

Infrared network camera 573 SBDA-DL detection 
algorithm 

0.934 
Accuracy 

(Zhang et al., 2019) 

Pigs Automatic Individual 
Detection and Tracking 

2D video camera 4,200 SSD algorithm 0.9474 
Accuracy 

(Zhang et al., 2019) 



   
 

18 
 

2.4 Biometric Identification  

2.4.1 Background 

Biometric identification techniques are techniques that can be used to identify an object’s 

identity based on their unique features (Jaiswal, 2011). Biometric features can be physiological 

(Guo and Zhang, 2019), which are features possessed by person or animal, such as finger-prints, 

palm-prints, facial features, ears, irises and retinas (Minaee et al., 2019), or behavioral (Minaee 

et al., 2019), which are apparent in a person’s or animal’s interaction with the environment, such 

as signatures, gaits, and speech (Guo and Zhang, 2019). The aforementioned techniques have 

different attributes, and thus they are preferred in different types of applications (Wada et al., 

2013). For example, facial recognition is commonly used for crime prevention, verification of a 

person’s identity, information security, and access control (Guo and Zhang, 2019). 

Broadly, biometric identification systems can be divided into two main types: unimodal and 

multimodal biometric systems (Al-Waisy et al., 2018). Unimodal systems are based on using a 

single source of information (e.g., right iris, left iris, or face) to establish an object identity (Wada 

et al., 2013). Multimodal systems combine evidence from multiple sources of information to 

identify an object identity (Al-Waisy et al., 2015). Considerable attention has been paid to 

multimodal systems due to their ability to achieve better performance compared to unimodal 

systems (Al-Waisy et al., 2018). In general, designing and implementing a multimodal biometric 

system is a challenging task since several factors that have a great influence on the overall 

performance must be addressed (Jaiswal, 2011), including the cost, resources of biometric traits, 

accuracy, and fusion strategy employed (Al-Waisy et al., 2018). However, the most fundamental 

issue for the designer of the multimodal system is choosing the most powerful biometric traits 

from multiple sources in the system, and finding an efficient method to fuse them (Wada et al., 

2013). 

Traditionally, the biometric recognition process involved several key steps (Figure 4). First, image 

data are acquired via (various) camera or optical sensors (Rokkones, 2018), and are then pre-

processed so as to make the algorithm work on as much useful data as possible (Al-Waisy et al., 

2018). Then, features are extracted from each image (Rokkones, 2018) and then fed into a 

classifier to perform recognition (Zhao et al., 2017). 
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Many challenges arise in a traditional biometric recognition task (Minaee et al., 2019). For 

example, the hand-crafted features that are suitable for one biometric, will not necessarily 

perform well on others (Minaee et al., 2019). Therefore, it would take a great number of 

experiments to find and choose the most efficient set of hand-crafted features for a certain 

biometric (Minaee et al., 2019).  

 

Figure 4. The block-diagram of most of classical biometric identification algorithms  
(Minaee et al., 2019). 

 

 However, a paradigm shift started to occur in 2012, when a deep learning-based model, AlexNet, 

won the ImageNet competition by a large margin (Guo et al., 2016). Since then, deep learning 

models have been applied to a wide range of problems in computer vision achieving promising 

results (Druzhkov and Kustikova, 2016). Not surprisingly, biometric identification methods were 

not an exception, and were taken over by deep learning models (Zhao et al., 2017). Deep learning 

based models provide an end-to-end learning framework, which can jointly learn the feature 

representation while performing classification (Minaee et al., 2019).  In particular, due to the 

convolutional neural networks (CNNs), there have been significant advance in biometric 

identification technology (Zhao et al., 2017) in both human and livestock identification tasks 

(Corkery et al., 2007; Parmar and Mehta, 2014). 

  

2.4.2 Biometric identification in humans 

Face is the most common characteristic used for human identification tasks (Guo and Zhang, 

2019). Human face is often used for identification since it contains a lot of information, but any 

area which might provide enough information is applicable (Schroff et al., 2015). However, its 



   
 

20 
 

susceptibility to change due to factors such as expression, position or aging, may present a 

challenge in computer vision and image understanding (Deng et al., 2019). 

Various studies in the human identity authentication field have applied in enormous areas such 

as finance, military, public security (Yi et al., 2014).  The studies (Table 3) were performed on 

different types of human face datasets  (Guo and Zhang, 2019), and used various techniques that 

combine convolution neural network algorithms (Deng et al., 2019; Ranjan et al., 2017), and 

supervised by classification loss functions (Deng et al., 2017a; Weiyang, 2017), metric learning 

loss functions (Schroff et al., 2015) or both (Qi and Su, 2018). Metric learning loss functions such 

as contrastive loss (Qi and Su, 2018) or triplet loss (Schroff et al., 2015) usually require carefully 

designed sample mining strategies and the final performance is very sensitive to these strategies 

(Guo and Zhang, 2019), so increasingly more researchers shift their attentions to building deep 

face verification models based on improved classification loss functions (Deng et al., 2019; 

Weiyang, 2017). 

 

2.4.3 Biometric identification in livestock 

Biometric identification is an emerging research field that due to convolution neural network 

techniques, has received increasing interest in livestock farming (Table 4) (Kumar et al., 2018; 

Schilling et al., 2019; Tharwat et al., 2014). 

The need for on farm identification of individual animals has become more pressing in recent 

years as sustainable intensification has become commonplace (Hansen et al., 2018), and the 

ability to monitor inputs to, and outputs of each animal is increasingly desired (Schilling et al., 

2019). By representing and detecting the visual appearances of animal based on generic features 

and primary biometric characteristics (Kumar and Singh, 2017; Schilling et al., 2019), it is possible 

to identify individual animal without the use of traditional methods such as ear tags, tattos etc 

(Andrew et al., 2019; Salama et al., 2019). 

Various biometric features for the identification of animals have been investiged, including -  

muzzle pattern matching (Kumar and Singh, 2017), coat pattern (Andrew and Campbell, 2017), 

mammary glands (Schilling et al., 2019) and facial recognition (Salama et al., 2019; Wada et al., 

2013). Although the number of animals in those studies are relatively small and the images have 
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not been taken over a long enough period to see any large changes in the animal (Hansen et al., 

2018), the presented researches have shown extremely accurate recognition performance is 

possible (Schilling et al., 2019). 

 

2.5 Sheep biometric identification  

Performance recording of sheep enable automated data collection that provides better quality 

data, contributing to better decision-making and thus improved management (Ait-Saidi et al., 

2014). Collected data, including individual sheep ID and the recorded performances like body 

condition score, milk yield, data recording at lambing and body weight (Salama et al., 2019), 

facilitate animal handling, contributing to improved husbandry practices and reduced labor 

requirements (Morris et al., 2012). Moreover, it is important to track individuals with disease for 

treatment and for disease management, especially if there is an epidemic disease (Salama et al., 

2019). In addition, buyers sometimes keep their sheep on the farm for some time; as a result, 

they have no guarantee of which animal they have bought (Koik and Ibrahim, 2012). For those 

reasons, sheep ID should be unique and permanent for an adequate performance recording (Ait-

Saidi et al., 2014) and for providing buyers, sellers and farmers an efficient way to recognize and 

track each individual in a large group of sheep (Salama et al., 2019). 

Different methods of marking sheep were used by herders (Landais, 2001). Historically, the main 

methods used for sheep identification were; branding by fire or freezing (Landais, 2001), ear 

marking by notching, tattooing and ear tagging (Caja et al., 2004), and electronic identification 

such as RFID tags and barcodes (Caja et al., 2004). Nowadays, branding and tattooing animals is 

forbidden in countries with advanced animal welfare laws (Defra, 2013), and therefore ear tags 

is the main methods usually used for sheep identification. However, this method has proved 

inefficient, since they can be either lost or their numbers can be obscured due to the 

environments in which sheep live (Koik and Ibrahim, 2012). In addition, this process harms the 

animal and may even affect its behavior (Caja et al., 2004). A further key drawback of ear tags is 

that they require visual detection and must be recorded manually, which can easily introduce 

human errors, while the labor cost of such a practice is also high (Trevarthen, 2007). Therefore, 

the demand for the use of electronic identification systems, which providing real savings for 
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farmers primarily due to a reduction of labor costs, increases (Vlad et al., 2012). Electronic 

identification systems also offers to farmers a way to guarantee the traceability throughout the 

feed-animal-food chain, and the ability to better manage individual production and feeding of 

each sheep (Trevarthen, 2007). From all electronic identification technologies, Radio Frequency 

Identification (RFID) is the most common used since it provides many advantages over the others 

(Vlad et al., 2012). These advantages include the ability to store more information ensure 

successful reading of information and lack of stress to sheep (Trevarthen, 2007). In particular, 

they provide easier use, under field conditions, since there is no need to have visual contact of 

the tag – they simply must enter the scanning field of the reader (Voulodimos et al., 2010). This 

therefore dramatically increases ease of use, as well as providing greater reliability in light of 

general wear and tear, and environmental elements such as dirt and dampness (Domdouzis et 

al., 2007). On the other hand, one could pinpoint as the main drawbacks of electronic means of 

identification, especially RFID, the higher cost in comparison with the less expensive conventional 

methods (Trevarthen, 2007). In addition, the RFID tags are vulnerable to compromise, which 

requires knowledge of the technology and careful alignment in order to prevent signal damage 

(Wójcik and Sikora, 2017). Moreover, the small but not inexistent risk of a tag remaining in the 

food products (injectable tags) and the inability to protect from possible fraud (Voulodimos et 

al., 2010) are referred to as possible disadvantages of the RFID-based tracking methods 

(Trevarthen, 2007) .  

To increase profitability with minimal unfavorable environmental impact and high concern of 

animal welfare nowadays (Mollo et al., 2010), using biometric traits instead of traditional 

identification methods, has gained a lot of attention in current livestock identification systems 

(Corkery et al., 2007). Only two research has focused on sheep identification so far (Corkery et 

al., 2007; Salama et al., 2019).  

Sheep facial biometrics include many significant features that can be used for identification such 

as muscles, the eyes, mouth and many hidden features (Corkery et al., 2007). Therefore, facial 

biometrics are very promising and efficient features for sheep recognition (Salama et al., 2019). 

Sheep face recognition was achieved using a cosine distance classifier trained on facial images of 

50 sheep whose ages ranged from 3 to 4 years (Corkery et al., 2007). In this research, each sheep 
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was represented by 7 images taken at a forward-facing posture with a black background, using 

Canon professional PowerShot camera (Corkery et al., 2007). The faces of the sheep were cleaned 

of dirt and all possible sources of noise before being imaged (Corkery et al., 2007). Sheep were 

also held using special tools so that a certain fraction of each sheep face was within the image 

(Corkery et al., 2007). This approach achieved 96% accuracy but required considerable human 

intervention for image acquisition(Corkery et al., 2007). 

In the second research, sheep identities were recognized by a convolutional neural network using 

facial biometrics (Salama et al., 2019). A Bayesian optimizer was used to automatically set the 

parameters for the convolutional neural network and in addition, the AlexNet configuration was 

also examined (Salama et al., 2019). The sheep recognition algorithms were tested on a data set 

of 52 sheep between five months and five years old, with 10 images taken per sheep (Salama et 

al., 2019). Also, data augmentation methodologies such as rotation, reflection, scaling, blurring, 

and brightness modification were applied (Salama et al., 2019). The experiments conducted in 

this paper achieved an accuracy of 98% (Salama et al., 2019).  

However, those researches were tailored designed to the specific conditions and were not able 

to adjust to varying lighting conditions and different face postures (Corkery et al., 2007; Salama 

et al., 2019). Moreover, they were tested on small set of sheep with great variability (Corkery et 

al., 2007). 
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Table 3. Human biometric identification researches. 

Subject Loss Function Train 
Datasets 

Test 
Datasets 

Algorithm Results Ref 

Feature learning using deep 
convolutional neural 
networks  

Additive angular 
margin loss 
(ArcFace) 

CASIA, 
VGGFace2 and 
MS1MV2. 

LFW, and 
YTF  

ResNet100 
 

0.9953 accuracy  (Deng et al., 
2019) 

Sphereface: Deep 
hypersphere embedding  

Angular softmax 
(A-softmax) loss 

CASIA-
WebFace  

LFW and YTF  Author defined 
64-layer CNN 

0.9942 and 0.95 
accuracy respectively 

(Weiyang, 2017) 

Feature learning Congenerous 
cosine distance  

MNIST and 
CIFAR-10  

LFW COCO 
algorithm 

0.9986 accuracy (Liu et al., 2017) 

Softmax loss for 
discriminative face 
recognition 

L2-Softmax loss MS-Celeb1M LFW and 
IJB-A 

Face-ResNet 
DCNN 

0.9933 accuracy (Ranjan et al., 
2017) 

Unified embedding for face 
recognition and clustering 

Triplet loss LFW and YTF  LFW and YTF  FaceNet 0.9963 and 0.9512 
accuracy respectively 

(Schroff et al., 
2015) 

Face representation  N-pair loss WebFace LFW CasiaNet 0.9833 accuracy (Yi et al., 2014) 

Marginal loss for deep face 
recognition 

Marginal loss MS-Celeb-
1M 

LFW and YTF  ResNet1 0.9948 and 0.9548 
accuracy respectively 

(Deng et al., 
2017b) 

Improving the generalization 
ability of DCNN 

Noisy softmax WebFace LFW and 
YTF 

VGG-net 0.9918 and 0.94.88 
accuracy respectively 

(Chen et al., 
2017a) 

Face representation using 
joint sample  and set-based 
supervision 

Max-Margin loss VGG Face LFW and 
YTF 

Inception-
ResNet 

0.9603 and 0.9244 
accuracy respectively 

(Gecer et al., 
2017) 

Git loss for deep face 
recognition 

Git loss VGG Face2 LFW and 
YTF 

Inception-
ResNet 

0.9930 and 0.9530 
accuracy respectively 

(Calefati et al., 
2019) 

Range loss withlLong-tailed 
training data 

Range loss WebFace 
and Celeb1M 

LFW and 
YTF 

ResNet2 0.9952 and 0.937 
accuracy respectively 

(Zhang et al., 
2017) 

Conntrastive center loss for 
deep neural networks 

Contrastive-
Center loss 

WebFace LFW ResNet1 0.9868 accuracy (Qi and Su, 
2018) 

Additive margin softmax for 
face verification 

AM-softmax WebFace LFW and 
MegaFace 

ResNet2 0.9917 and 0.8444 
accuracy respectively 

(Wang et al., 
2018) 
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Table 4. Livestock biometric identification researches 

Object Method Sensors Train 
Images 

Test 
Images 

Algorithm Results Ref 

Cattel  Identidiction via selcetive local 
coat pattren matching in RGBD 
imagery 

Kinect 2 sensor  83 
images 
 
 

294  
images 

ASIFT algorithm with 
RBF-SVM 

0.97 
accuracy  

(Andrew and 
Campbell, 
2017) 

Cattel  
 

Identidiction using muzzle point 
pattern 

20-megapixel 
camera 

3000 
images 

2000 
images 

K-means segmentation 
algorithm to find ROI & 
Fuzzy-K-NN for 
classification 

0.9674 
accuracy  

(Kumar and 
Singh, 2017) 

Cattel Using cow’s mammary glands as 
a novel biometric identification 
modality 

Go Pro camera 
with Near-
Infrared (NIR) 
sensors 

150 
images 

152 
images 

Scikit-learn machine 
learning library 
evaluated with Support 
Vector Machine (SVM) 

0.60  
accuracy  

(Schilling et al., 
2019) 

Cattel Identification via coat pattern 
individual cattle in freely moving 
herds & data augmentation was 
used 

DJI Zenmuse 
X3 camera 
located on a 
drone 

3120 
images 

1039 
images 

InceptionV3 0.944 
accuracy 

(Andrew et al., 
2019) 

Cattel Identification via cattle animals 
using muzzle print images 

Used exisiting 
dataset 

124 
images 

93  
images 

LBP, LDA & SVN 
classifier  

0.995  
accuracy 

(Tharwat et al., 
2014) 

Cattel Transfer learning approch for 
recognition of cattle using muzzle 
point image 
pattern 

30-megapixel 
camera 

100  
images 

400  
imgaes 

Author defined DCNN 0.9899 
accuracy 

(Kumar et al., 
2018) 

Pigs 
 

face recognition using 
convolutional neural networks 

Sogatel USB2.0 
webcam 

932  
images 

621 
images 

VGG Face & Liner SVN 
classifier 

0.967 
accuracy 

(Hansen et al., 
2018) 

Pigs 
 

Recognition using eyes pattern Digital camera 256  
images 

64 
images 

PCA using eigenspace  0.979 
accuracy 

(Wada et al., 
2013) 

Sheep Identidiction using the cosine 
distance classifier 

PowerShot G3  200  
images 

150  
images 

Independent 
Component Analysis 
(ICA) algorithm. 

0.96 
accuracy 

(Corkery et al., 
2007) 

Sheep  Bayesian optimization was used 
to find the best CNN parameters 
& data augmentation was used 

Mobile camera 4160 
images 

1040 
images 

Author defined CNN 
& AlexNet 

0.98 
accuracy 

(Salama et al., 
2019) 
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3 Methods 

This thesis includes two machine vision applications for PLF; detecting and counting laying 

hens (chapter 4) and sheep biometric identification (chapter 5). 

 

3.1 Mobile system for detecting and counting laying hens 

The research goal was to develop a mobile system for counting laying hens in battery cages, 

which consist of 4-6 six floors, where each floor contains about 40 cages housing thousands 

of hens. The research included designing the mobile imaging system and developing 

algorithms for counting the hens. The system was designed to be mobile to suit different hen 

houses. The counting algorithm received as input a color video record of a cage containing 

about 35 hens, which was acquired from an Intel RealSense RGBD camera, and the output 

was the number of hens counted and their location. Two experiments were performed in 

which a total of 6,300 images were acquired for the algorithm development. As part of the 

development, two different counting algorithms were developed. The first algorithm aimed 

to detected and count areas with red color which is an indication of the hen’s comb, while 

the second algorithm aimed to detect and count hens based on Faster R-CNN algorithm. 

Details are provided in Chapter 4. 

 

3.2 Automated system for sheep identification 

This research focused on developing an automated system for data collection and a deep 

learning model for sheep facial biometric identification. The automated system video 

recorded the sheep faces at all daylight hours, ensuring a variety of light conditions and 

shooting angles data, which were used for the model development. Data collection was made 

on two different groups of sheep and throughout their growth period, where the sheep 

gained about 25 kg in weight, in order to examine whether weight gain and the sheep 

maturation influenced the biometric identification. The first group (group 1) contained 47 

sheep and the second group (group 2) contained 34 sheep. The biometric identification model 

developed in this thesis, took a set of different sheep faces as input and applied two steps on 

each image - face detection, using Faster R-CNN algorithm, and classification, using 

ResNet50V2 CNN and ArcFace loss function. The model is described in Chapter 5. 
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4 Mobile system for counting laying hens 

This chapter describes the development of a mobile system (Section 4.1) for detecting and 

counting laying hens using color images acquired from a digital camera mounted on a mobile 

cart, the experiments and their evaluation (section 4.2), the development of an image 

processing algorithm and object detection algorithm for hen detection and counting (section 

4.3) and the results of this study (section 4.4). 

 

4.1 System design  

A mobile system which can be transferred between hens houses was developed (Figure 5). 

The system aims to replace the manual counting of laying hens, with an algorithm that uses a 

RGBD camera to detect and count hens. Since the narrowest path besides cages, in all the 

hen's battery cages in Israel, is one-meter-wide, the system was mounted on a 60 cm wide 

cart. Since the system must be disinfected before each entering to the hen’s battery cage, the 

cart was made from aluminum, a material that is easy to disinfect. The Intel RealSense depth 

camera D435 camera was used for image acquisition at 30 frames per second (fps). The 

camera was connected to a mobile computer with a USB cable, allowing to track the data 

collection in real time (Appendix 1A). The camera was positioned at 90-degree angle to allow 

direct view of the laying hens (the hen houses structure enables only front view access). The 

RGBD camera was mounted on an aluminum rod which was attached to the front of the cart. 

Since battery cages consist of 4-6 floors up to 3.5 meters, the rod has a variable length, with 

maximum length of 4 meters, in order to fit it to the floor which must be photographed.  

 

4.2 Methods 

4.2.1 Experimental design  

The system was examined in a single commercial hen house located in Moshav Kidron, 

located in central Israel. The hen house is 87 m long, on the second floor that contains 37 

cages, each cage is 2.4 m long, 0.54 m tall, and 0.74 m depth, housing 18–34 hens per cage. 

In the hen house, there is an external feeder situated in the front of the cages. 

 

https://en.wikipedia.org/wiki/Israel
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To determine the optimal time for counting the hens, the behavior of the hens was monitored 

in several observations to better understand their habits. Feeding events occur four times a 

day, at 6:30, 13:30, 14:30, and 17:00. Following the feeding routine up to 15:00, most of the 

hens sat in the cages and laid eggs; sitting at the back of the cages and huddling together, 

reducing the ability to count them. The last feeding event was selected as the adequate time 

point for counting, as most hens stood in front of the cages and waited for the last meal of 

the day. 

Figure 5. The developed mobile system. The system was mounted on a 60 cm wide and 80 

cm long cart. The system includes; (a) Mobile computer. (b) Aluminum rod with a variable 

length. (c) Intel RealSense depth camera D435, located 160 cm from the floor. 

 

Figure 6. Battery cage stacked on six floors, with 37 community cages set in a row. 
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Hens are easily frightened by any foreign object such as a person’s presence or a camera. 

Hens do not notice the blue color. Therefore, in order to reduce panic level, the man 

conducting the experiment wore blue clothing and the cart was painted in blue. In the hen 

house, one cage consists of two cells with no partition between them (Figure 7). Since the 

RGB-D camera lens is not wide enough to absorb a full cage, each cell was recorded 

separately.  The hens were video-recorded for 30 minutes during the last feeding event of the 

day. During the feeding event, the feeder travelled backward and forward along the cages 

line. Accordingly, the cart moved with and by the feeder pace (forward – the user pushed the 

cart; backward – the user pulled the cart). As a result, every cell was recorded at least twice, 

at a camera speed of 30 fps when about 120 frames were collected per cell (Appendix 1B).  

 

 

Figure 7. A photo of one cage; the cage boundaries are colored in blue, while the green line 
indicates the middle of the cage which consists of two cells. 

 

4.2.2 Data 

Two datasets were used – one for developing the image processing algorithm (from Geffen 

et al., 2019), and the other for the object detection algorithm (a newly acquired one).  

The dataset used for the development of the image processing algorithm included 4,440 

images that were acquired in a previous research in 2019 (Geffen et al., 2019). The images 

were acquired with a Media Tech W9R camera with a 170-degree wide angle lens. The camera 

was tuned to full HD mode (1080p), filming 30 frames per second (fps). The hens were 

recorded while the camera was mounted on a steel rod attached to the feeder, 90 cm in front 

of the cages, and positioned in a way that allowed direct view of the hens. For the algorithm 

development, 105 frames were used consisting of the first three frames of each of the cages 

number 2-35 in the second floor.  
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The second dataset, which was used for the new developed object detection algorithm, was 

specially collected as part of this thesis on two different days (February 25 and 26, 2020). A 

total of 6,300 images were collected. Prior to recording, the number of hens in every cage 

was counted manually by a human observer, which was later used as the ground truth, to 

compare with the count obtained by the system.  

In order to train and test the object detection algorithm, a labelled dataset was manually 

created (Appendix 1C) using “Labeling” image annotation tool. The dataset includes images 

in which bounding boxes around the hens with the right class tag –'chicken' marked.  The 

object detection algorithm was trained and tested using 700-tagged images, 560 images in 

the training dataset and 140 images in the test dataset. The other 5600 left images were used 

to evaluate the whole system, which contains the detection algorithm and the tracking 

algorithm. 

 

4.2.3  Algorithm 

As part of the development, two different algorithms were developed (section 3.3). The first 

system relies on an image processing technique that detects and counts areas with red color, 

which signifies a hen’s red comb. The second algorithm relies on an advanced deep learning 

classification schema. Both systems include two main stages: hen’s recognition (detection) 

followed by counting and estimation. 

 

4.2.4 Performance measures 

In order to evaluate the correctness of the image processing algorithm, two errors were 

calculated:  the first compared the algorithm counting results to the ground truth obtained 

using the manual counting of hen's combs (defined as E1). The second error calculation 

compared the algorithm's results to manual counting of hens in the corresponding images. 

This comparison was made in order to assess whether the hen's comb is a sufficient feature 

to accurately detect laying hens (define as E2).   

 

   E1 =
Manual comb counting − Algorithm counting result

Manual comb counting
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E2 =
Manual hen counting − Algorithm counting result

Manual hen counting
 

 

Object detection performance was evaluated using recall and precision indicators together 

with the F1-score, based on the confusion matrix. This matrix is used to describe the 

performance of a classification model on a set of test data for which the true values are 

known. For object detection we used the concept of Intersection over Union (IoU) as a 

threshold for classification decision. IoU computes intersection over the union of the two 

bounding boxes; the bounding box for the ground truth and the predicted bounding box. 

 

 

Figure 8. Red is ground truth bounding box and green is predicted bounding box. 

 

A classification is true if it matches the ground truth with IoU > N. IoU is a way to measure if 

a predicted bounding box is well-located; high IoU means that a predicted bounding box has 

a big overlap with a ground truth bounding box. N is a number between 0 and 1, and it is a 

threshold for IoU. The confusion matrix reflects the resulting matches between ground-truth 

and detections, when the horizontal rows represent the target values (what the model should 

have predicted - the ground-truth) and the vertical columns represent the predicted values 

(what the model actually predicted). The final row and column correspond to the class 

“nothing” which is used to indicate when an object of from the class 'chicken' was not 

detected, or an object that was detected was not part of the ground-truth. The confusion 

matrix reports the number of true positives, false positives, false negatives and true 

negatives: 
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 True positives (TP): A hen detection is considered to be a true if the predicted and 

ground-truth bounding box had an intersection over union (IoU) greater than a fixed 

threshold. 

 False positives (FP): (also denoted as false detection) refers to an algorithm’s mistake 

in predicting background as an object - hen. 

 False negatives (FN): A miss by the algorithm, refers to its failure to detect a real hen. 

 True negatives (TN): This indicator is not useful for object detection, since it represents 

the correct detection of a background (not an object). Hence we ignore TN.  

 

Precision indicates the fraction of the algorithm’s predictions that are hens. Recall is the 

fraction of hens in the image that were detected by the algorithm. Increasing recall usually 

comes at the expense of precision. The harmonic mean so-called F1 score provides a balance 

between the two and was calculated. 

 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  ,       Recall =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 , 𝐹1 =

2PR

𝑃 + 𝑅
 

 

The area under the Precision–Recall curve is called the Mean Average Precision (mAP), and it 

was used as the performance measure for the object detection algorithm. 

 

4.2.5 Sensitivity analysis 

Two sensitivity analysis were conducted: 

1. Directional analysis: the differences between the video acquired while moving forward 

(the user pushed the cart) and backward (the user pulled the cart) was evaluated and 

compared to ground truth. The statistical F test was used to test the null hypothesis that 

the variances of the two videos are equal.  

2. Number of frames: to determine the minimum number of frames needed for high 

detection while shortening runtime, the analyses evaluated the number of detections for 

different numbers of frames: 1, 4, 10, 20, 30, 35, 40, 44 and a full video containing more 

than 44 frames. 
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4.3 Algorithms 

4.3.1 Image processing algorithm 

The system receives as input a RGB image of each cell in the battery cage. The output is the 

number of combs counted and their location. The counting algorithm included the following 

steps (Figure 10): convert RGB image to HSV, thresholding, red color detection, noise removal, 

erosion, dilation, blob detector and counting. The image processing algorithms were 

programmed in Python 3, since it has access to great libraries for image processing, flexibility, 

platform independence, and a wide community (Appendix 1D).  

 

 

 

 

 

 

 

 

 

 

Convert RGB image to HSV, and split color components 

The first step involved transforming the RGB color space into the HSV (hue, saturation, value) 

space which is a color space that describes color information in a similar way that is used by 

the human vision system. 

 

Thresholding and red color detection 

The histograms of the object (hen's comb) was plotted, and the spread of an object in the 

color space was taken as its primary identification. The threshold color values were obtained 

to distinguish the object from the background, in HSV color space to achieve a better 

separation.  Red color objects have Hue value in range: from 0 to 10, as well as in range from 

170 to 180. Therefore, thresholding included two conditions to ensure only hen's comb pixels 

remain in the images. 

 

Figure 9. Hen comb: a fleshy growth or crest on the top of the head. 
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Noise removal 

Some of the combs that were present were incorrectly recognized and formed unwanted 

noise. The following image processing operations were performed to remove the unwanted 

noise through median filtering. A median filter is more effective than others when the goal is 

to simultaneously reduce noise and preserve edges. The median was calculated by first 

sorting all of the pixel values from the surrounding neighborhood into the corresponding 

numerical order and then replacing the pixel that was under consideration with the middle or 

the median pixel value (if the neighborhood under consideration contained an even number 

of pixels, the average of the two middle pixel values was used). 

 

Produce a binary image 

 A binary image was used in order to separate the object in the image (hen's comb) from the 

background. The binary image effectively masks comb regions in the image. The white color 

referred to the object, while the rest is referred as the background, colored by black. 

 

Erosion and dilation 

Dilation and erosion were combined to remove small objects from an image and smooth the 

border of large objects. Dilation adds pixels to the boundaries of objects in an image, while 

erosion removes pixels on object boundaries. The number of pixels added or removed from 

the objects defines according to the structuring element also known as a kernel. The current 

algorithm used 2 iterations for each operation, with kernel size of 7 on 7 to process the image. 

 

Blob detection 

A blob is a group of connected pixels in an image that share some common property. The goal 

of blob detection is to identify and mark those groups. The SimpleBlobDetector, which was 

used in the algorithm, is a simple algorithm, controlled by parameters which define the type 

of required blobs. Several filters can be employed including filter the blobs based on size, filter 

according to shape circularity, which measures how close to a circle the blob is, filter by shape 

convexity (defined as the Area of the Blob / Area of its convex hull) or filter shape according 

to inertia Ratio that measures how elongated a shape is. 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/strctel.htm
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Comb counting 

The number of blobs in the segmented image were then counted. The blobs that were 

counted, were limited by both the lower and the upper limit on the number of pixels in a blob. 

The lower limit served to remove noises from the image. The upper limit had the effect of 

rejecting some of the comb where several combs had been overlapped. 

 

 Input RGB Image 

Convert RGB Image to HSV 

 

 

 

 

 

 

 

 

 

 

Split color components: H, S, and V 

Thresholding by each component 

Red Color Detection 

Background color change to black 

Red color change to white 

Noise Removal 

Produce a Binary Image 

Erosion 

Dilation 

Blob Detector 

Comb Counting 

Figure 10. Flowchart algorithm of the overall methodology. 
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Figure 11. Counting algorithm steps; (a) Input RGB image, (b) HSV image, (c) H panel 
image, (d) S panel image, (e) V panel image, (f) Red Color Detection, (g) Background 

color change to black and red color change to white, (h) Noise Removal, (i) Erosion, (g) 
Dilation (k) Blob Detector. 
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4.3.2 Object detection counting algorithm 

The counting algorithm took a two second video sequence of every cage and processed the 

video frames. First, the Faster R-CNN deep learning object detection algorithm was applied 

to detect hens in each frame. Then, a Non-Maximal Suppression (NMS) algorithm was applied, 

to overcome multiple detections. Next, the frames with the resulting identifications were fed 

into a tracking algorithm, which tracked the location of each identified hen along the video 

frames, based on its location in the previous frame. 

In the tracking process, every hen was assigned with a unique ID, and the tracking procedure 

enabled each hen to continually be identified with the same ID along the frames. Newly 

detected hens, which had been obstructed in previous frames were assigned with new IDs, 

and false detections were removed. This process compensates for inaccuracies that may 

occur in the hen detection stage. 

 

Faster R-CNN 

Faster R-CNN is a region-based detectors object detection algorithm based on a convolutional 

neural network (CNN) (Ren et al., 2015) that comprise two modules – a Region Proposal 

Network (RPN) and a classifier. The RPN is a kind of mechanism to focus attention, directing 

the classifier where to look for objects in the image. It does this by identifying regions 

(bounding boxes) in an image, which are more likely to have objects in them. First, the image 

is fed into a pre-trained base network, then the RPN slides on top of the last shared 

convolution layer, and finds three hundred such boxes in the original image. The proposed 

regions are fed into the second module of the Faster R-CNN (classifier), which classifies hens 

and corrects the bounding boxes’ locations. The output of this process is an image with 

bounding boxes around the objects it has found. The base network used in this research is 

ResNet101 (He et al., 2016)  pre-trained on the Common Objects in Context (COCO) dataset. 

The object detection algorithm was trained and tested using 700 tagged images (section 3.4) 

and is described in Appendix 1E.  

 

Non maximal suppression (NMS) 

A single object might be detected multiple times, as it may fit well enough in more than one 

proposed bounding box. In the case of multiple detections of a single hen, only one detection 
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that fits better will be kept (Figure 13). Multiple detections have a big overlap; thus, they were 

identified by calculating the Intersection over Union (IoU) index. 

 

 

Figure 12. Test images detection result, after training Faster R-CNN algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

After hens are detected in a frame, NMS is applied. First, all the bounding boxes are put in 

order by decreasing size. The biggest is compared with the second biggest box, and so on 

down to the smallest box. Smaller boxes with an IoU greater than 0.06, which was obtained 

experimentally, are deleted. Next, the second biggest box left in the boxes list, is compared 

with all the boxes smaller than it, and so on. In this way, no bounding boxes are compared to 

Figure 13. Bounding boxes, A and B are two different detections of the same hen in the 
same frame. 



   
 

40 
 

the same bounding box more than once, because each box is compared only with boxes 

smaller than itself. In any case of multiple detections, the biggest bounding box is kept. That 

is because the biggest box usually contains a significant part of the smaller one, but does not 

contain multiple hens; a big box usually contains a larger part of the hen’s body; a smaller box 

contained in the big one, will usually detect a smaller feature of the same hen, e.g. an eye or 

a beak. By keeping the biggest box, a single hen is not assigned multiple IDs during the tracking 

process. 

 

Tracking and counting algorithm 

Hens are located in different places in a cage; some stand, sit or are hidden by others. In 

addition, hens move very fast; even in the short time of 1/30 seconds between two successive 

frames, a hen may move her head down significantly. Because of these movements and 

obstructions, not all the hens in a cage are visible to the camera in every frame. Moreover, 

not all the hens visible to the camera are necessarily detected in every frame. In order to 

address these problems, a tracking algorithm that keeps and follows the detections from 

previous frames was developed (Appendix 1F), based on previous work development (Geffen 

et al., 2019). The tracker receives a video sequence of about two seconds of every cell (an 

average of 60 frames, each with the detected bounding boxes of the hens), and tracks the 

hens' locations, as follows: 

 Each detected hen in the first frame of the sequence is assigned with a unique ID number.  

 Detected hens in the next frame are assigned with IDs from the last frame, or with new 

IDs, as follows: Euclidian distance was calculated between every new bounding box and 

existing ones, the pair of bounding boxes with the minimal distance are chosen to be 

compared - If the IoU between those boxes is greater than 0.1, the new box is assigned 

with its pair's ID from the previous frame. Otherwise, the box is assigned with a new ID, 

which means that a new hen was detected (Figure 14). 

 If a hen was detected in a previous frame, but not in the current frame, the amount of 

times it wasn’t detected again will be counted (Figure 15).  

 After all the frames in the sequence are processed, the tracker has logged all the hens’ IDs 

and number of appearances. If an ID appeared only once, it will be deleted, as it is 

considered a false detection.  
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 The tracker calculates the maximum detection for each cage, as a sum of two cell's 

detection, according to a method explained later (section 3.3). 

 

 

Figure 14. An example of a hen that was detected in a previous and in the current frames. 
The bounding box from the previous frame is on the right, the one from the current frame is 

on the left. The Euclidean distance between the centres of these two boxes is the 
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Figure 15. Tracking example; (a) First frame - each detected hen is assigned with a unique ID 

number, (b) Following frame - a new hen was detected - ID 16, (c) Following frame - in blue - 

a hen was previously detected but not in the current frame. The disappearance counter 

display next to the ID 
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4.4 Results 

The results of the image processing algorithm and the object detection algorithms are 

reported.  

  

4.4.1 Image processing  

The image processing algorithm (section 3.2) resulted in less red combs as compared to the 

human manual counting (Figure 16), with an average of 6.21 missed (SD: 1.72, maximum 

missed: 11, minimum missed: 2). The errors E1 and E2 (Figure 17), indicate that using red 

comb as a single feature is not sufficient. In manual counting probably additional features 

such as the legs, eyes, and neck are considered. 

 

 

Figure 16. Cells 3-35 counting results. The cell number presented on the X-axis; the Y-axis is 
the number of target counting. 

 

The E1 error is up to 40% (min error - 0.08, max error - 0.36, SD - 0.064), while the E2 error is 

higher than E1 (Figure 17) with errors up to 50% (min error - 0.14, max error - 0.5, SD - 0.080).  
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Figure 17. Cells 3-35 errors calculation - the error colored by green represent E1, and the 
blue one represent E2. The cell number presented on the X-axis; the Y-axis is the error 

calculated. 

 

The difference between the two errors indicates that the hen's comb is not an accurate 

enough feature for detecting laying hens. Therefore, other features should be included in 

order to improve the algorithm results. In addition, additional steps must be taken in order 

to improve the algorithm results. 

 

4.4.2 Object detection 

Most of the results derived with an IoU of 0.5 are correct, and most of the hens were detected, 

according to the results of the test set which includes 141 labeled images (Table 5). When 

IoU=0.50, less overlap is required between the ground truth boxes and the predicted boxes 

compared to an IoU of 0.75. Therefore, for IoU=0.75 the mAP dropped. The drop in the mAP 

suggests that many of the detections are made in the range of 0.5<IoU<0.75. 

 

Table 5. Mean Average Precision (mAP) with different Intersection over Union (IoU) values. 

IoU 0.50 0.75 

mPA 0.962 0.446 
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The confusion matrix (Table 6) for IoU=0.5, revealed 89.54% true positive. 

 

Table 6. Confusion matrix for IoU=0.5. 

 Predicted Positive Predicted Negative 
Actually Positive  1696 106 
Actually Negative  92 0 

 

Table 7 presents the Precision, Recall and F1-Score values, which were calculated based on 

the confusion matrix displayed earlier. 

 

 

Table 7. Precision, Recall and F1-Score 

 Precision Recall F1-Score 

IoU=0.5 0.941 0.948 0.944 

 

Table 8 presents the result of the tracking algorithm - the maximum count for each cage in 

the range of 2-36 is compared to the manual count. The maximum values were chosen out of 

40 frames, from the ‘back’ and ‘forth’ videos acquired in the experiment. The number of the 

hens in the different cages was obtained by adding up the number of hens in the cages found 

by the system and by manually counting the hens. 978 and 923 hens were detected, on the 

way forth and back, respectively out of total 1103 hens counted manually. The detected 

frames and counting results are described in Appendix 1G. 

 

 

 

 

 

 

 

 

 

 

 



   
 

46 
 

Table 8. Maximum number of detected hens in each cage as compared to ground truth. 

Cage number   Ground truth    Forward max   Backward max 
2 41 38 40 
3 25 21 24 
4 40 28 25 
5 43 36 30 
6 37 36 34 
7 27 26 28 
8 28 24 26 
9 34 26 25 

10 37 32 33 
11 29 31 22 
12 42 44 31 
13 42 34 30 
14 23 19 23 
15 35 34 32 
16 26 25 23 
17 38 31 29 
18 36 35 32 
19 33 32 27 
20 31 28 29 
21 37 23 24 
22 35 32 30 
23 26 33 27 
24 30 22 25 
25 24 24 19 
26 21 20 18 
27 29 19 25 
28 27 26 26 
29 31 28 24 
30 21 23 19 
31 34 21 23 
32 28 22 21 
33 27 26 20 
34 28 22 23 
35 23 27 23 
36 35 30 33 

Total counted 1103 978 923 

 

Table 9 presents the accuracy and mean absolute error (MAE) calculated according to the 

total counted number presented in the Table 8; accuracy is calculated as the total number of 

hens that the algorithm counts out of the total number of hens counted by human. These 

results were calculated with a certainty level of 0.8 and IoU=0.5.  
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Table 9. Accuracy and Mean Absolute Error (MAE) result 

 Forward Backward 

Accuracy  88.66% 83.68% 

Mean Absolute Error 4.54 5.25 

 

As noted, the system tracked and counted the hens in all the different cages; the number of 

hens in the cages varied. The lighting conditions are not the same in all the cages, thus, images 

of hens might have different clarity. Moreover, the hens do not stand still, but move around 

inside the cages. Therefore, they were in different locations in every video sequence 

comprised of successive frames. In addition, the RGB-D camera lens is not wide enough to 

absorb all the hens as a human eye can do, and therefore misses objects.  Despite all the 

difficulties described above, counting laying hens in battery cages was achieved with up to 

88% accuracy (Table 9). The algorithm can detect objects in a densely populated picture, 

containing multiple overlapping objects.  

 

4.4.3 Sensitivity analysis 

Directional analysis 

Videos acquired while moving backwards were more accurate with 92% accuracy compared 

to ground truth (Figure 18) and compared to 88% obtained when moving forward (Appendix 

1H).  The test revealed no statistical difference between the forward and backward direction 

videos (F-critical 1.981, F-statistic 1.853), with alpha level of 5%. (Table 10). 

 

 

Figure 18. Average accuracy and standard deviation in detections compared to ground truth. 

https://www.statisticshowto.com/what-is-an-alpha-level/
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Table 10. F-Test Two-Sample for Variances 

 Variable 1 Variable 2 

Mean 0.932 0.896 
Variance 0.0385 0.0207 
Observations 35 35 
df 34 34 
F 1.8535  
P(F<=f) one-tail 0.0381  
F Critical one-tail 1.9811  

 

Number of frames per video 

When using a full video (which contains more than 44 frames) the average detection ratios 

compared to ground truth was 0.914. While, when using only 35 frames from a video, the 

average detection ratios compared to ground truth is 0.883, and 0.968 when compared to full 

video. 40 frames and 44 frames average detection ratios compared to full video result with 

0.975 and 0.981 respectively. 

 

Results compared to ground truth: It can be concluded that using only 35 frames, leads to 

similar detection results as using a full video, when compared to ground truth (Figure 19, 

Figure 20, and Table 11).  

Results compared to full video analysis: The counting results converge with 10 frames with 

88% average detection ratio compared to full video (Figure 21 and Figure 22). However, the 

standard deviation is relatively high compared to the standard deviation of 35 frames (Table 

12).  

 

In conclusion, the object detection algorithm can use only 35 frames of each video instead of 

using a full video, which includes more than 44 frames. Satisfactory results can be obtained 

with shortened algorithm runtime; 87% difference compared to ground truth for 35 frames, 

with ~7-minute elapsed time, versus 89% for full video with ~8.5-minute elapsed time.   
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Figure 19. Forward sensitivity evaluation; the minimum, average and maximum detection 
ratios compared to ground truth (SD is presented in Table 11). 

 

 

 

Figure 20. Backward sensitivity evaluation; the minimum, average and maximum detection 
ratios compared to ground truth (SD is presented in Table 11). 

 

 
Table 11. Average standard deviation according to number of frames used, compared to 

ground truth. 

number of frames 1 4 10 20 30 35 40 44 44+ 
Backward 0.14 0.15 0.15 0.16 0.16 0.19 0.19 0.20 0.20 
Forward 0.13 0.13 0.13 0.13 0.13 0.15 0.15 0.15 0.15 



   
 

50 
 

 

Figure 21. Forward sensitivity evaluation; the minimum, average and maximum detection 
ratios compared to full video detections (SD is presented in Table 12). 

 

 

Figure 22. Backward sensitivity evaluation; the minimum, average and maximum detection 
ratios compared to full video detections (SD is presented in Table 12). 

 

Table 12. Average standard deviation according to number of frames used, compared to full 
video. 

  

Number of frames 1 4 10 20 30 35 40 44 
Backward 0.06 0.06 0.07 0.06 0.06 0.04 0.03 0.02 
Forward 0.09 0.07 0.08 0.06 0.06 0.04 0.04 0.03 
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5 Automated system for sheep identification 

This chapter describes the development of an automatic system for real-time data collection 

of sheep facial photographs (section 5.1), the research methodology describing the 

experiments and their evaluation (section 5.2), the sheep biometric identification model 

(section 5.3) and the study results (section 5.4). 

 

5.1 System design 

The overall system (Figure 24) was developed and built on a drinking monitoring facility to 

ensure that all sheep had frequent access per day, voluntarily, without human involvement. 

The drinking facility, located in a research sheep pen in Volcani Center, Bet Dagan, monitored 

each sheep's body weight and water intake per visit. Two 8-MegaPixels RGB cameras, of 

Digital Single Lens Reflex (DSLR) type, with USB connections were connected to a NVIDIA 

Jetson Nano embedded system-on-module (SoM) (Appendix 2C). Both cameras video-

recorded the sheep while they were drinking water. The cameras were located at a height of 

80 cm, one at the face area; the second camera acquired photos of each sheep's ear tag 

(Figure 1). The system includes an Infrared Red (IR) sensor, which activates the cameras when 

a sheep inserts its head into the system area. The same IR sensor ends the recording the 

moment it no longer detects a sheep in the drinking facility (Figure 2). Similarly, if the sensors 

erroneously detect movement, e.g. a bird triggers them, they will immediately stop the 

cameras when the bird flies out. Videos were acquired at a speed of 30 frames per second 

(fps) from both cameras in parallel. The cameras and the Jetson Nano were placed in airtight 

boxes to protect them from dirt and heat. The system included a SIM card with an Internet 

network to enable remote connection via a USB dongle. 

The logical flow of the system operation is detailed in Figure 23. 
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Figure 23. Flowchart of the overall system. 

 

 

5.1.1 Overview of the existing smart drinking facility  

The existing system aimed to document the weight of each sheep and the drinking amount it 

drank per visit. The facility included a RFID antenna, basin with capacitive sensor and a digital 

weight which was set across the 40 cm wide facility floor. The digital weight and the RFID 

antenna were connected to an Arduino program. When an animal arrived to drink, it stepped 

on the facility floor and it weight was identified. If the sheep weighs more than 10 kg (which 

means the whole sheep’s body is on the facility and not only 2 legs) then the Arduino gets a 

signal to start recording the amount of water the sheep drank and documents the current 

weight. In parallel, the RFID antenna, which is located above the basin, at a height of 95 cm 

from the ground, tries to read the sheep ear tag for individual recognition, and if successful 

the tag number is reported to the Arduino. All the data was written to an Excel file with a time 

stamp of the animal arrival. The program was implemented in C++ and is described in 

Appendix 2C.  
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Figure 24. Illustration of the automatic imaging system which was built on the existing 
drinking facility. The system included the NVidia Jetson Nano embedded system-on-module 
(SoM), a front camera used for facial video-recording, a side camera used for recording the 

ear tag used as GT, Basin, an IR sensor and a digital weight.  
 

 

5.1.2 Infrared (IR) sensor 

An IR sensor can detect changes in the amount of infrared radiation impinging upon it, which 

varies depending on the temperature and surface characteristics of the objects in front of the 

sensor. When an object, such as a sheep, passes in front of the background, the temperature 

at that point in the sensor's field of view will rise from the environment temperature to body 

temperature. The sensor converts the resulting change in the incoming infrared radiation into 

a change in the output voltage, and this voltage is sent to the Jetson Nano as trigger for 

starting and ending videos. The IR sensor was located at the entrance of the facility, at a height 

of 70 cm from the floor. 

 

 

https://en.wikipedia.org/wiki/Room_temperature
https://en.wikipedia.org/wiki/Body_temperature
https://en.wikipedia.org/wiki/Body_temperature
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5.1.3 NVidia Jetson Nano embedded system-on-module (SoM). 

Besides the fact that it is a small and fast computer, which made it convenient to use in 

outdoor conditions, the Jetson Nano can also interface with external devices through the 

communication pins which are directly connected to the Jetson Nano module. Using this 

ability, the Jetson Nano was connected to the IR sensor, controlling the data collecting process 

according to the voltage that arrived - 3 volt was used as signal for starting videos and GRD (0 

volt) as a signal for ending. In addition, by using a serial (TX-RX) communication, the Jetson 

was connected to the smart drinking facility Arduino, that transferred the RFID tag to the 

Jetson Nano embedded system-on-module (SoM), through a specially written Python code 

which saved the tag number as the video’s name, creating an automated tagging of the data 

collected. The video-recording code (Appendix 2D) was programmed in Python3 under 

Ubuntu, an open source Linux operating system. Videos were acquired at 30 frames per 

second (fps) from both cameras in parallel. In order to prevent damages in the outdoor 

environment, the cameras and the Jetson Nano were placed in airtight boxes.  

 

Figure 25. IR sensor attached to the existing drinking facility. 

 

. 
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Figure 26. Jetson Nano embedded system-on-module (SoM), including - (A) three USB 
connections for the two cameras and the WIFI dongle. (B) The communication pines used to 

connect with Arduino and IR sensor. (C) Jetson Nano attached to the existing facility.   

 

5.2 Methods 

5.2.1 Experimental design  

Four experiments were conducted in 2020 and 2021 in Volcani’s Center research sheep pen 

on two groups of sheep. The sheep were raised from two months of age until five months, 

during which time the sheep gained about 25 kg in weight. The pen included three feeding 

facilities that contained food all the time, and a single drinking source where the experimental 

photography system was located ensuring data collection on all sheep.  

The experiments were conducted on two different groups of sheep, both from Assaf breed – 

the first group (group 1) contained 47 sheep that were raised from September to March, and 

the second group (group 2) were raised from April to August contained 34 sheep. The 

experiments with group 2 were used to evaluate the model’s capability to learn new 

identities.   

 

Group 1 experiments: 

In order to obtain a rich and varied dataset for the model development, a two-week 

experiment was conducted on group 1 (47 sheep) in November (experiment 1), when the 

sheep were two months old and weighted about 30 kg (average=33.6, SD=6.6). Two additional 

experiments were conducted. One experiment was done in the middle of the growth period 

(experiment 2), at the end of December 2020, when the sheep weighed about 45 kg each 

A 

B 

C 
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(average=44.4, SD=6.51). The other was conducted at the end of February 2021, at the end 

of the growth period (experiment 3); the sheep were at their maximum weight, about 60 kg 

(average=57.2, SD=7.82). Each experiment was conducted over three consecutive days. 

Experiments 2 and 3 included only 32 sheep, since 15 sheep were removed from the pen 

during the course of experiments, due to illness. 

In all the experiments made, data was collected automatically at all daylight hours ensuring a 

variety of light conditions affected by sunlight and weather. Each sheep arrived 2-3 times per 

day, at different hours, and were captured in a different posture at the drinking facility, 

resulting in a diverse sheep facial database. 

 

Group 2 experiments: 

Similar to experiments done on group 1, a two-week experiment was conducted in April 

(experiment 4) on group 2 (34 sheep) when the sheep were two months old and weighed 

about 30 kg (average=32.5 SD=7.60). 

 

5.2.2 Data 

A total of four datasets corresponding to the four experiments were obtained (Table 13), with 

the following steps: first, each sheep's face video (acquired from the front camera) was 

manually tagged with the sheep's ID, obtained from the corresponding side video. Then, each 

video file was converted with a Python3 code to an image sequence. 

The first dataset included images only from the beginning of growth period (experiment 1), 

with which the biometric identification model was developed. The second dataset, aimed to 

examine the growth influence on identification, included images from three different time 

periods – beginning, middle and end of growth (from experiment 1-3). The first dataset 

included 3055 images, 65 images for each of the 47 sheep, of which 52 images were randomly 

selected for the model development and the 13 images remained were used to test the model 

ability to identify individual sheep. The second dataset contained 2080 images, 65 images for 

each of the 32 sheep; 1248 images were taken from the beginning of growth period 

(experiment 1), 416 images from the middle of growth period (experiment 2) and 416 from 

the end of growth period (13 images for each of the 32 sheep), were sheep were at their 

maximum weight (experiment 3).  
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The third dataset included images of group 2 sheep, only from their beginning of growth 

period (experiment 4). Similar to the first dataset - this dataset included 2210 images, 65 

images for each of the 34 sheep, of which 52 images were randomly selected for the model 

development.  

In addition, for the object detection algorithm, which aims to locate the sheep's face in each 

image, a labeled dataset was created from 30 sheep videos. This dataset included a total of 

400 images, manually tagged with a bounding box around each sheep's face.  

All datasets (Appendix 2E) included video files that were converted with Python3 code to an 

image sequence, and then using a specially developed face detection algorithm (section 5.3), 

the sheep face were captured and saved as a newly images, which then were resized from 

640 heights on 480 widths, to 112*112, to enable the deep learning model to train faster on 

smaller images.  

 

Table 13.  Summary of datasets 

Dataset purpose    Group    Experimental period Sheep     Images 

Group 1 dataset 1 Beginning of growth 47 3055 

Growth sensitivity 1 Beginning, middle, end of growth 32 2080 
Group 2 dataset 2 Beginning of growth 34 2210 
Object detection 1 Beginning of growth 30 400 

 

5.2.3 Model 

The biometric identification model applied to each image (Hitelman, 2021) entailed two 

steps: (1) face detection and (2) classification (section 5.3). Face detection was achieved using 

a Faster R-CNN algorithm. For classification seven different CNNs architectures were 

compared. Each CNN examined was used as the embedding network for implementing 

ArcFace loss function, resulting in seven classification models. Those models were chosen 

based on previous classification task success; AlexNet was implemented by (Salama et al., 

2019) which resulted high performance on sheep facial classification, VGG16 made 

improvement over AlexNet (Simonyan and Zisserman, 2015) and achieved top-5 test accuracy 

classification on ImageNet. ResNet50 was used as the embedding network for implementing 

ArcFace loss function (Deng et al., 2019) and therefore was examined along size similar 

variants – ResNet50v2, ResNet101V2. EfficientNet reached State-of-the-Art accuracy on both 

ImageNet and common image classification transfer learning methods (Tan and Le, 2019).  

http://www.image-net.org/
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In addition, since the Softmax loss function is widely used in deep face recognition (Cao et al., 

2018; Parkhi et al., 2015), as a baseline, classification performance using Softmax was 

evaluated, when ResNet50 used as embedding network.  

All models were pre-trained on the ImageNet dataset, and were trained and tested on group 

1 dataset, i.e. 47 sheep, 2444 and 611 randomly selected images included in the train and test 

sets respectively. The models’ hyper parameters (Appendix 2F) values were determined by 

trial and error on the ResNet50 model, where for the Softmax model, the values were set as 

follows; Learning Rate (LR) max value - 0.01 and min value - 0.00001, 100 Epochs, Batch Size 

equal to 32, Weight Decay value set to 0.001 and Dropout to 0.5. All seven tested embedding 

networks combined with ArcFace loss function were set with the same values, as follows; 

Learning Rate (LR) max value - 0.005 and min value - 0.00001, 30 Epochs, Batch Size equal to 

32, Weight Decay value set to 0.001 and Dropout to 0.5, ArcFace parameter S set to 3 and M 

to 0.05. 

The seven classification models were compared using the Post-hoc Tukey’s statistical 

significance test. After selection of the best classification model, the model was trained and 

evaluated on group 1 and group 2 separately, and on a unified group which included all the 

sheep. Additionally, transfer learning methods were examined to decrease the training time 

while maintaining a lower generalization error (section 3.5). 

 

5.2.4 Performance measures 

Sheep biometric identification performance was evaluated by two indices - accuracy and 

categorical cross entropy. Accuracy is the quintessential classification metric, and is calculated 

from the confusion matrix as the proportion of true results among the total number of cases 

examined in the model. 

 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
   

 

Categorical cross entropy is a loss function that is used in multi-class classification tasks, as 

had been researched in this thesis. The loss function is defined as the difference between the 

predicted value by the model and the true value, computed by the following sum: 
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Cross − entropy =  −
1

n
∑ ∑ 𝑦𝑖,𝑗log (𝑝𝑖,𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

 

 

Where yi,j  denotes the true value and  pi,j  denotes the probability predicted by the model of 

sample i belonging to class j. The loss function is used to optimize the model while accuracy 

metric is used to measure the model’s performance in an interpretable way, while the main 

objective in a learning model is to reduce (minimize) the loss function's value and increase 

(maximize) the model accuracy.  

 

The confusion matrix compares the actual ID’s with those predicted by the model. The 

horizontal rows represent the target values (what the model should have predicted - the 

ground-truth) and the vertical columns represent the predicted values (what the model 

actually predicted), while the diagonal represents the number of predictions where the 

classifier correctly predicts the positive class as positive (true positives). 

Precision is the proportion of predicted positives which truly positive, and was calculated as 

the sum of true positives across all classes (sheep ids) divided by the sum of true positives and 

false positives across all classes. Recall is the proportion of actual positives which correctly 

classified, and was calculated as the sum of true positives across all classes divided by the sum 

of true positives and false 

 

5.2.5 Analysis 

Two analyses were conducted: 

1. Cross Validation: The K-Folds Cross Validation process was used to evaluate the models 

implemented, to ensure that the data distribution did not influence the model’s 

performance. Data was split into five equal folds, and the model was trained on all but 

one fold; the remaining fold was used to evaluate performance. This process was repeated 

five times, with a different fold utilized for evaluation each time. The mean, minimum, 

maximum and standard deviation accuracy results were calculated for each model, in 

order to evaluate performance (section 5.4). 

2. The effect of sheep growth: In order to determine whether sheep gain weight and 

matures throughout their growing process influence identification, performance on 

https://kharshit.github.io/blog/2018/03/02/gradient-descent-the-core-of-neural-networks
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images from the end of growth were evaluated twice - when the model was trained only 

on images from the beginning of growth period, and when the model was trained on 

images from the middle and beginning of growth combined together. The two growth 

models were trained on the 32 remain sheep from group 1 (1344 and 416 images in the 

train and test sets respectively), with the same hyper parameters values as details in 

section 5.2.3.  

 

5.2.6 Sensitivity Analysis 

Two sensitivity analyses were conducted to determine the impact that different quantities of 

data have on the model's performance. Both analyses were performed on group 1 dataset. 

1. Amount of training images: The model was trained nine times. Each training was 

performed with a different number of images between 10 and 52 images for each training 

run. All models were tested on the same 13 images. The identification accuracy achieved 

for each sheep and the average accuracy of the group were evaluated for each run. 

2. Number of frames needed for identification: Since the videos were acquired while the 

sheep were drinking, each video contained more than 1,000 frames. Running the model 

on all the frames is time consuming. Furthermore, the sheep were captured in various 

postures; many frames captured only partial faces or individual features, which are much 

more difficult to identify. This analysis evaluated the minimum number of frames required 

to be randomly sampled from a full video in order to ensure that each sheep was identified 

correctly. Accuracy was evaluated on different quantities of randomly sampled frames of 

the trained model that used 52 images, between one to ten frames. The decision 

regarding each sheep’s identity was made based on the ID that the majority of the frames 

indicated. 

 

5.3 Model 

The biometric identification model included two steps – face detection and classification 

(Figure 4). In order to locate and localize the sheep's face in an image, the Faster R-CNN deep 

learning object detection algorithm (section 4.3.2) was applied (Jiang and Learned-Miller, 

2017). Then, the detected face was cropped, and resized to 112X112 pixels according to Deng 
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et al., (2019). Finally, the cropped face was provided as input to the second step which 

included the classification model (Figure 27). 

One of the main challenges in classification using Convolutional Neural Networks (CNNs) for 

face recognition is the design of appropriate loss functions that enhance discriminative 

power. In this thesis, the recent state-of-the-art loss function was implemented - Additive 

Angular Margin Loss (ArcFace) which obtained highly discriminative features for face 

identification, when resNet50v2 was chosen as the embedding network to train ArcFace. 

 

 

Figure 27. Biometric identification model schematic flowchart. 

 

5.3.1 Selected classification model  

The selected classification model design (Appendix 2F) was based on the ResNet50v2 CNN 

architecture pre-trained on the ImageNet database. In ResNet50, the input of a convolutional 

layer bypasses one or more layers, and is added to the outputs of forward layers, denoted as 

residual mappings. The ResNet50 architecture avoids a vanishing gradient, enabling easier 

learning even with deeper structures, because the information is directly transmitted 

(Yamazaki et al., 2019). ResNet50V2 is the advanced version of Resnet50 CNN, which is all 

about using the pre-activation of weight layers instead of post-activation (He et al., 2016). 

The ResNet50V2 includes five stages. In the first stage, the architecture performs the initial 

convolution and max-pooling using 7×7 and 3×3 kernel sizes respectively. Then, each of stages 

2-5 consisted of a convolution block and several identity block performed in a row, where 

each convolution block and identity block is composed of 3 convolution layers. The three 

layers are 1×1, 3×3, 1×1 kernel size, where the 1×1 convolution layers are responsible for 

reducing and then restoring the dimensions and the 3×3 layer is left as a bottleneck with 

smaller input or output dimensions. The difference between those blocks are that the 

convolution block reduces the size of the input by half in terms of height and width and 
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doubles the channel width, while identity blocks keep the same input size. Finally, the 

recommended sequence of actions (Figure 28) between the last layer of the last block and 

the ArcFace layer was implemented according to (Deng et al., 2019). The architecture 

included a total of 197 layers and a total number 40,376,832 parameters. 

 

Figure 28. Schematic description of the classification model architecture; the input is a 
sheep facial image in size 112x112. Stage 1: initial convolution and max-pooling using 7×7 

and 3×3 kernel sizes. Stage 2-5: in blue – the convolution block, in pink – Identity block, 
performed 2, 3, 5 and 3 times respectively at each stage. The last layer of the last block is 

connected to ArcFace layer according to the recommended sequence. The output is the loss 
of the highest probability predicted class for the image by Softmax. 

 

5.3.2 ArcFace  

The ArcFace loss function (Figure 29) aims to reduce the angle 𝜃 during learning, which is the 

angle between the facial image which best represent the class (ground truth) by the 

appropriate weight column, and the input facial images which is represented by the 512 size 

feature vector – X. The implementation of ArcFace layer was done by the following steps, 

using Tensorflow and Keras Python open source: first, Vector X and the weight matrix – W, 

underwent normalization according to L2. Then, cos𝜃, which also called “Logit” was extracted 

from the multiplication between X and W by calculating the arcos (cos𝜃). Afterwards, a hyper 

parameter m that represents an additive angular margin penalty was added to the angel 𝜃. 

The m value was set to 0.05 following trial and error. Then the new Logit, cos(𝜃+m), was 

calculated and multiply by another hyper parameter, which represented the 

hypersphere radius – s (Deng et al., 2019), which was set to 3 following trial and error. Finally, 

the Logit went through the Softmax function and to the cross-entropy calculation.  

In addition, in order to better monitor the training process, two important metrics were 

added: (1) the size of the mean of the 𝜃 vector, (2) the size of the average Logits vector. These 
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metrics were presented in addition to accuracy and loss calculation. ArcFace implementation 

is described in Appendix 2F. 

 

 

Figure 29. ArcFace schema (Deng et al., 2019) 

 

5.3.3 Model additions  

In order to achieve best performance, the following steps were implemented: All images were 

normalized based on Wang et al., (2018) by zero-centring each color channel (red, green, 

blue), in order to prevent the Vanishing Gradient Problem. To adjust the learning rate during 

training, the Cosine Annealing Scheduler was used (Loshchilov and Hutter, 2017). An early 

stopping method was used to automatically stop the training process when the model’s loss 

performance stopped improving on the validation set (Xu et al., 2019). This method helped 

to avoid overfitting of the neural network. Finally, a SGD optimizer was implemented, with 

momentum set to 0.85, to help accelerate gradient vectors in the right directions, thus leading 

to faster converging. In addition, each image was augmented about seven - eight times via 

vertical flip, random rotation up to 30-degree, Gaussian noise addition, sharpening images 

and changing the brightness of images (Figure 30). The technique resulted in a total of 400 

augmented images created per sheep, used for the model training.  

 

 

 

 

  

 
Figure 30. Data augmentation examples from left to right; original image, vertical image, 

random rotation image, darken image, brighten image. 
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5.3.4 Transfer learning  

Transfer learning is a very popular method widely used among computer vision researchers 

(Guo et al., 2018). Transfer learning enable to utilize knowledge from previously learned tasks 

and apply them to newer, related ones. In the case of problems in the computer vision 

domain, knowledge from an existing task, such as edges, shapes, corners and intensity, can 

be shared acts as an additional input when learning a new target task (Huh et al., 2016). 

Therefore, transfer learning has the benefit of decreasing the training time for a neural 

network model and resulting in lower generalization error. In this research, transfer learning 

methods were used in order to improve performance, by training the model on one group of 

sheep and then retrained the convolution layers on the other group, with a faster learning 

rate. Transfer learning methods were trained and evaluated on the same datasets, i.e. the 

test sets of both groups included 13 images per sheep; and with the same hyper parameters 

values detailed earlier but with a decreased learning rate of 0.0001 (Appendix 2F). 

 

 

 

 

 

 

 

 

 

 

 
Figure 31. Transfer learning; in this research learning process was transfer from group 1 

model to the group 2 model, and vice versa. 
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5.4 Results 

The results of the biometric identification model and sensitivity analyses are reported.  

 

5.4.1 Sheep biometric identification model 

Softmax loss function 

Results obtained after training converged (stopped automatically using the early stopping 

method after 70 Epochs) were 72.66% accuracy with a 2.01 loss value (Appendix 2F).  

 

Comparison of classification models 

Results (Table 14, Appendix 2G) reveal that all the examined models achieved better 

performance than Softmax in a shorter run-time (converged after 30 Epochs maximum, while 

Softmax converged after 70 Epochs). ResNet50V2 and ResNet50 were significantly better 

than the other models (Post-hoc Tukey’s statistical significant test, α = 0.05) (Appendix 2H). 

ResNet50V2 achieved the best accuracy (Table 2); specifically, it was 22% better than the 

worst model (VGG16), and 1.5% better than the second best model (ResNet50).  

 

Table 14. Summary results of the different models 

Classification model        Accuracy in %  Convergence Epoch 

ResNet50 93.4 29 
ResNet50V2 94.9 29 
ResNet101V2 91.3 29 
EfficientNetB0 85.2 14 
EfficientNetB3 87.3 14 

AlexNet 76.2 29 
VGG16 72.9 28 

 

Selected model 

Using the cross-validation technique, ResNet50V2 CNN combined with the ArcFace loss 

function resulted in an average 95% accuracy for groups 1 and 2, while the unified group 

achieved lower results, but only by 2% (Table 15, Appendix 2G). All three trained models 

converged after 25 epochs. The low standard deviation of the five folds (less than 0.01 for all 

models, Appendix 2J) proves the model's reliability. 
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Table 15. Average classification performance on the experimental groups. 

 Accuracy Loss 

Group 1: 47 sheep 0.954 2.069 

Group 2: 34 sheep 0.957 1.811 

Unified group: 81 sheep 0.939 2.437 

 

The decrease in the unified group performance can be explained due to similarities between 

the groups, since some of the sheep in the different groups were born to the same parents 

and therefore were very similar (Figure 32). 

 

 

Figure 32. Example of sheep pairs similarities between groups; green images - sheep from 
group 1, blue images – sheep from group 2. 

 

Confusion matrixes (Appendix 2I) calculated on the test set, which included 13 images per 

sheep, revealed 94.92% and 96.83% true positive on group 1 and 2 respectively. As it can be 

deduced from the matrixes, most of the sheep were identified in at least 12 out of 13 images, 

with an average of 12.76 and 12.58 correct identification images for group 1 and group 2 

(Table 16, Figure 33, Figure 34). Furthermore, all sheep (in both groups) were correctly 

identified with a minimum of 10 images. Therefore, according to the majority classification 

rule, we can assume 100% successful identification for each sheep. The specific images that 

the model failed to identify were difficult to identify even by the human eye (Figure 35). 

For convenience only, the presented performances are related to the first fold of the cross-

validation technique. 
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Table 16. Average, minimum, maximum and standard deviation of the correct identification 
images (out of 13 per sheep). 

 Mean       Min Max       SD 
Group 1 12.76  10 13 0.80 
Group 2 12.58  10 13 0.84 

 

 

 

Figure 33. Group 1 identification results; 24 sheep were identified in all 13 images, 17 sheep 
in 12 images, 4 sheep in 11 images and only 2 in 10 images. 

 

 

Figure 34. Group 2 identification results; 26 sheep were identified in all 13 images, 4 sheep 
in 12 images, 2 sheep in 11 images and 2 in 10 images. 

 

Precision, Recall and F1-Score indexes were calculated for each group, with an average of 

96.2%, 95.8%, 95.8% respectively (Table 17). 
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Table 17. Classification measurements results. 

 Precision Recall F1-Score 
Group 1: 47 sheep 0.952 0.949 0.949 
Group 2: 34 sheep 0.972 0.968 0.968 
Unified group: 81 sheep 0.943 0.939 0.941 

 

 

Figure 35. Example of wrong identification of single image; left - one image of sheep 3622 
from group 1, was wrongly classified as sheep 3527, right – one image of sheep 1015 from 

group 2, was wrongly classified as sheep 1016. 

 

Transfer learning  

Transfer learning achieved by the cross-validation technique (Table 18, Appendix 2G) resulted 

in an average improvement of 1.85% increase in accuracy and a 0.25 decrease in loss value 

(Table 5), with a shorter training process (9 vs. 25 epochs). The data distribution had no effect 

on the identification performance as revealed by the low standard deviations. 

 

Table 18. Average performance of the transfer learning methods. 

Transfer model Accuracy Loss 

G1 -> G2  0.977 1.695 
G2 -> G1 0.971 1.705 

 

Biometric identification of sheep was achieved with 95% accuracy on both experimental 

groups. The biometric identification performances were improved by 2% in accuracy using 

transfer learning methods. All five trained models presented in this study were saved to be 

used as a classifier for unseen sheep images (Appendix 2G). 
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5.4.2 Analysis 

K-Folds Cross Validation  

The performance of the folds for each of the five models (models for group 1, group 2, unified 

group, and two the transfer learning models) are presented in Table 19, and detailed in 

Appendix 2J.    

 

Table 19. K-Fold accuracy results (summary of five runs) 

 
Group 

1 
Group  

2 
Unified 
Group  

Transfer 
G1 -> G2 

Transfer 
G2 -> G1 

Mean 0.954 0.957 0.939 0.977 0.971 
Min 0.939 0.940 0.930 0.963 0.959 
Max 0.966 0.966 0.946 0.987 0.978 
SD 0.009 0.009 0.005 0.009 0.007 

 

Table 19 revealed that the standard deviation of the five folds was less than 0.01 for all 

models, therefore we can assume that random data distribution had no effect on models 

performance.  

 

The effect of sheep growth 

Growth models (Table 20, Appendix 2G) achieved 93.7% and 91.3% accuracy respectively, 

which is lower in 1.7% and 4.1% from the base model performance. 

 

Table 20. Growth models classification results 

Model Accuracy Loss 

Growth1: trained on beginning and middle images  0.937 2.084 

Growth2: trained on beginning of growth images 0.913 2.189 

 

Training on images from the beginning of growth only while testing on images from the end 

of growth (Growth2), achieved 2.4% lower accuracy than did training with images from the 

middle as well as the beginning of the growth period (Growth1). However, the difference in 

accuracy of Growth2 is relatively small compared with that of the base model (4.1%). 

In order to analyze the identification performance of the growth sheep model, the confusion 

matrix was calculated on the second model, the model without the middle images (Appendix 

2I). The matrix revealed 91.34% true positives, with an average of 11.87 correct identification 
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(Table 21, Figure 36). All sheep in Growth2 were identified in at least 10 images out of 13, 

equal to the minimum correct identified images achieved with the base dataset (Table 21). 

Figure 37 shows examples of sheep that were correctly identified during the growth period.   

 

Table 21. Average, minimum, maximum and standard deviation of growth model correct 
identification images (out of 13 per sheep). 

 Mean   Min Max       SD 
Growth2 model 11.875 10 13 0.906 

 

 

Figure 36. Growth identification results; 9 sheep were identified in all 13 images, 14 sheep in 
12 images, 5 sheep in 11 images and 4 sheep in 10 images. 

 
 

 
Figure 37. Correct prediction growth examples of sheep, from left to right: image from 

beginning, middle and the end of growth period. 
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5.4.3 Sensitivity analysis 

Amount of training images  

Training each sheep with at least 35 images resulted in a minimum identification accuracy 

exceeding 69% per sheep (Figure 38, Appendix 2K, i.e. at least nine of the 13 images were 

properly classified). By utilizing the majority-based decision described above, each sheep was 

correctly identified with decreasing SD as the number of images increase (Table 22). 

 

 

Figure 38. Quantity of training images evaluated; the minimum, average and maximum 
accuracy achieved (SD is presented in Table 22). 

 

Table 22. Standard deviation according to number of images used. 

 

Number of randomly sampled frames 

When classification was done using eight and nine frames, the image identification average 

accuracy was 59.5% and 63.7% respectively (Figure 39 and Table 23). Results revealed that 

there were sheep that were identified in less than half of the frames and therefore were 

misclassified. However, when ten frames were used, the average image identification 

accuracy was 71.7%, with a minimum of six out of ten images, implying correct classification 

of all sheep. Accordingly, in order to ensure proper identification of each sheep, the 

classification decision must be made based on a majority of at least ten randomly selected 

Number of images 10 15 20 25 30 35 40 45 52 

 0.20 0.179 0.11 0.15 0.12 0.10 0.09 0.08 0.06 
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frames (Appendix 2L). Then, 100% sheep identification can be achieved (with average image 

accuracy of 95%). 

 

 

Figure 39. Number of randomly sampled frames; the minimum, average and maximum 
accuracy achieved (SD is presented in Table 23). 

 

Table 23. Standard deviation according to number of images used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of frames 2 3 4 5 6    7    8    9 10 

 0.22 0.27 0.24 0.294 0.26 0.18 0.14 0.12 0.10 
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6 Discussion 

6.1 Mobile system for detecting and counting laying hens 

The developed system does not rely on a specific feature of the test hen house and proved 

operational in variable illumination conditions. It provides an inexpensive, fast and user-

friendly system that can potentially be used in different farms, ensuring adequate hen density 

according to the limits set by regulations (Rajsic and Fox, 2017).  

The 88% detection accuracy achieved in this study was lower than the previous study which 

achieved 90% (Geffen et al., 2019). The slightly lower results can be attributed to the 

differences in the setups - in the previous study, data was automatically collected, without 

any human present, resulting in minimum disturbance to the hens; in the current study a 

mobile cart was led by human, which caused more movement of the hens while the video 

was recorded due to their panic from the humans around. Moreover, the camera used in the 

previous study had a wide lens which acquired the whole width and height of the cages at 

once and detected a significant part of each hen's entire body. Part of the algorithms 

inaccuracy in the current system was since hens in neighbouring cages were captured and 

counted, as they were part of the cage in focus.   

Hens tracking is challenging; a hen might be visible to the camera only in specific frames, due 

to the hen's constant movements. In addition, not all the hens were detected in every frame. 

Thus, using the detection of hens in successive frames is valuable for tracking. In our study, 

the detector was trained on sequences of 2D images. The tracking algorithm included the 2D 

images, and the dimension of time resulting in 3D images. We utilized the advantages of the 

video camera setup, which provided 3D information from multi views on the hens from 

successive frames, and achieved a reliable hen count. 

 

6.2 Automated system for sheep identification  

To our knowledge, this study was the first to implement robust biometric identification of 

young sheep (2-3 months old). Compared with earlier studies (Corkery et al., 2007; Salama et 

al., 2019), the slightly lower image identification accuracies achieved in this study can be 

attributed to differences in the data collection methods and differences between the sheep. 

In the study that achieved 96% accuracy (Corkery et al., 2007), images were manually 
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acquired in controlled conditions on adult sheep aged 3-4 years which have higher 

differences. In the other study which achieved 98% accuracy (Salama et al., 2019), CNNs were 

tested on a group of sheep, in which the ages of the individual sheep varied greatly. In our 

study, biometric identification was done on identically-aged young sheep (lambs) with an 

automated machine vision system in field conditions, implying a more natural but 

complicated identification process. We surmise that the model will perform better when 

applied to adult sheep that have greater differences between individuals.  

Furthermore, the presented study reveals that identifying animals before and after 

maturation (after 2-3 months) is feasible. Each sheep was successfully identified in at least 10 

of the 13 images in both datasets (baseline and Growth2). Therefore, classifying the sheep 

based on a majority of 13 images, we can assume a 100% success rate in identifying each 

sheep daily, throughout the growing period tested, which corresponds to the growing period 

of young sheep raised on commercial farms. 

An advantage of the proposed identification system is that it can be installed in a commercial 

sheep pen - cameras can be altered positioned at different angles and distances from the 

sheep. 
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7 Conclusions and future work 

7.1 Conclusions 

7.1.1 Mobile system for detecting and counting laying hens 

The mobile system developed to count hens held in community battery cages reached 

detection accuracies of 88% with a MAE of 4.56 hens per cage. This MAE was achieved by 

using Faster R-CNN with a single class (“hen”), and using a tracking algorithm which used 

successive frames of a video acquired while moving along the hen house. 

 

7.1.2 Automated system for sheep identification  

A biometric identification model for individual sheep recognition based on machine vision and 

advanced CNNs was designed, developed and implemented. The average identification 

accuracy achieved on two different groups of similarly-aged sheep was 95% accuracy. 

Transfer learning methods improved accuracy by an average of 1.85%, in a shorter training 

process, resulting in an average of 97% identification accuracy. It must be noted that these 

reported accuracies are the imaging identification accuracies; sheep were detected with 

100% correct identification (when a minimum of 10 images were used). 

The model was implemented using Faster-RCNN algorithm and a ResNet50V2 model with the 

ArcFace loss function. The training process should include at least 35 images per sheep, while 

classification should be calculated by majority decision on at least ten randomly chosen 

frames per visit per sheep, from a full video. 

 

7.2 Future Work 

7.2.1 Mobile system for detecting and counting laying hens 

In order to improve counting accuracy and to decrease the wrong detection of hens from 

neighbouring cages, a better understanding of cage boundaries must be achieved. Therefore, 

future work should include more information from the scene by inserting the depth channel 

in the training process. Improved results will also be obtained by developing an autonomous 

mobile cart; as aforementioned, the hens were disturbed by the human moving the cart which 

can be avoided. In further research, the ability of the newly developed system to detect and 



   
 

76 
 

track hens can be valuable for PLF applications, to develop an animal behaviour model, find 

the dominant hens in a cage, and detect a hen that does not eat. With this information, hens' 

welfare may be improved along with improved management. 

 

7.2.2 Automated system for sheep identification  

As sensory systems improve in quality, and computer systems increase in computational 

power more innovations and improvements should be introduced to these systems.  

Future research may focus on developing a real-time system, automating all steps for reliable 

operation in a livestock environment. In addition, it is suggested to develop an unsupervised 

learning model so that this model can be easily adapted to unknown new herds. In an 

unsupervised learning algorithm each sheep should be identified in an unlabeled data set 

based on the underlying features in the data. This may shorten the data collection and data 

pre-processing because there will be no need to collect videos of the ear-tags which are used 

as ground truth and therefore no need for manual tagging. 

 In the future, the model identification ability can be improved using new features such as 

legs or tail identification. Furthermore, additional information such as the weight of the 

sheep, the height and the amount of water the sheep drinks can be included in the 

identification model. The recommended model may be adapted to identify other animals, 

such as beef cattle and pigs, replacing traditional identification methods. 
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9 Appendices 

9.1 Mobile system for detecting and counting laying hens 

Appendix 1A. Data collection and preparation code files  
Data preparation code files (Volcani access only) - URL 
 

Data_Preparation.txt
 

 
Appendix 1B. Collected data 
** If needed, contact Ilan Halachmi. Email: halachmi@volcani.agri.gov.il for access 
Collected data (Volcani access only) - URL 
 

 Raw data 

 
 

Appendix 1C. Tagged images for algorithm development 

** If needed, contact Ilan Halachmi. Email: halachmi@volcani.agri.gov.il for access 
Tagged images for algorithm development (Volcani access only) - URL 
 

 

Appendix 1D. Image processing algorithm 

Image processing algorithm (Volcani access only) - URL 
 

Image_Processing_Algorithm.txt
 

 

Appendix 1E. Object detection algorithm 

Object detection algorithm (Volcani access only) - URL  
 

Object_Detection_Algorithm.txt
 

 

http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FCounting%5FLaying%5FHens%2FDevelopment%2FData%20Preparation&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DBA6E%2D46784
mailto:halachmi@volcani.agri.gov.il
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FCounting%5FLaying%5FHens%2FData%2FVideos&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DBA6E%2D46784C5A6357%7D
mailto:halachmi@volcani.agri.gov.il
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FCounting%5FLaying%5FHens%2FData%2FTagged%5FImages&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DBA6E%2D46784C5A6357%7D
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FCounting%5FLaying%5FHens%2FDevelopment%2FImage%20Processing%20Algorithm&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2D
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FCounting%5FLaying%5FHens%2FDevelopment%2FObject%20detection%20algorithm&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2D
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Appendix 1F. Tracking algorithm (Geffen et al., 2019) 

Tracking algorithm (Volcani access only) - URL 
 

Tracking_Algorithm.txt
 

 
 

Appendix 1G. System counting result 

System counting result (Volcani access only) - URL 

 

Counting_Result.xls

x

Counting_Comparit

ion.xlsx
 

 

Appendix 1H. Sensitivity analysis code files and result 

Sensitivity analysis code files and result (Volcani access only) - URL 

 

Sensetivity_Evaluati

on.xlsx Sensetivity_Analysis.txt
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FCounting%5FLaying%5FHens%2FDevelopment%2FTracking%20Algorithm&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DBA6E%2D467
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FCounting%5FLaying%5FHens%2FResults%2Fdetected%5Fframes&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DBA6E%2D46784C5A63
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FCounting%5FLaying%5FHens%2FResults%2FSensitivity%20Analysis&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DBA6E%2D46784
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9.2 Automated system for sheep identification 

 

Appendix 2A. Biometric identification of sheep via machine-vision system 

 
Biometric identification of sheep applying via 

machine-vision system 
 

Submitted to: Computers and Electronics in Agriculture 

Authors: Almog Hitelman, Yael Edan, Assaf Godo, Ron Berenstein, Joseph Lepar and Ilan 

Halachmi. 
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Appendix 2B. The effect of age on sheep biometric identification 

 

Short Communication: The effect of age on 
sheep biometric identification 

 

Submitted to: Animal, the international journal of animal biosciences. 

Authors: Almog Hitelman, Yael Edan, Assaf Godo, Ron Berenstein, Joseph Lepar and Ilan 

Halachmi. 
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Appendix 2C. Existing smart drinking facility program and camera details 
** If needed, contact Ilan Halachmi. Email: halachmi@volcani.agri.gov.il for access 
Existing smart drinking facility program (Volcani access only) – URL 
 
 

Appendix 2D. Video-recording code 

Video-recording code (Volcani access only) – URL 
 

Video_Recording.txt
 

 
Appendix 2E. Collected data 
** If needed, contact Ilan Halachmi. Email: halachmi@volcani.agri.gov.il for access 
Sheep collected data (Volcani access only) – URL 

 

 Raw data: 

 

 

Appendix 2F. Classification model code and hyper parameters 

Classification model (Volcani access only) – URL 

  

Hyper_Parameters_

Definition.PNG Identification_Model.txt
 

 

 

 

 

 

 

mailto:halachmi@volcani.agri.gov.il
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FProduct%20Design%2F%D7%A7%D7%95%D7%93%20%D7%9E%D7%A2%D7%A8%D7%9B%D7%AA%20%D7%91%D7%A7%D7%A8%D7%94%2FSV%207%2E0%2E0%2E5&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&Vie
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FSheep%5FBiometric%5FIdentification%2FDevelopment%2FExperimental%5Fcode&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DB
mailto:halachmi@volcani.agri.gov.il
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FSheep%5FBiometric%5FIdentification%2FData&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DBA6E%2D46784C5A6357%7D
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FSheep%5FBiometric%5FIdentification%2FData&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DBA6E%2D46784C5A6357%7D
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FSheep%5FBiometric%5FIdentification%2FDevelopment%2FBiometric%5FIdentification&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DBA6E%2D46784C5A6357%7D
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FSheep%5FBiometric%5FIdentification%2FDevelopment%2FBiometric%5FIdentification&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DBA6E%2D46784C5A6357%7D
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Appendix 2G. Trained models: graphs and hdf5 files 

** Contact Ilan Halachmi. Email: halachmi@volcani.agri.gov.il for hdf5 file access. 
Trained models: graphs and hdf5 files (Volcani access only) – URL 
 

 First group training performance – training (red), validation (blue).  

X Axis - numbers of epochs, Y Axis - accuracy/loss values: 

 

 

 

 

 

 

 

 

 Transfer learning from first to second group performance – training (orange), validation 

(blue).  

X Axis - numbers of epochs, Y Axis - accuracy/loss values: 

  

 Growth2 model performance – training (pink), validation (green).  

X Axis - numbers of epochs, Y Axis - accuracy/loss values: 
 

 

 

 

 

 

 

mailto:halachmi@volcani.agri.gov.il
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FSheep%5FBiometric%5FIdentification%2FResults%2FTrained%5FModels&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DBA6E%2D46784C5A6357%7D
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FSheep%5FBiometric%5FIdentification%2FResults%2FTrained%5FModels&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DBA6E%2D46784C5A6357%7D
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Appendix 2H. Post-hoc test 

Post-hoc test (Volcani access only) – URL  
 

Post_Hoc_Results.d

ocx
 

 

Appendix 2I. Confusion matrices 

Confusion matrixes (Volcani access only) – URL 

Confusion_Matrices

.xlsx
 

Appendix 2J. K-Fold Cross validation results 

K-Fold Cross validation results (Volcani access only) – URL 
 

K_Folds.xlsx

 
 

Appendix 2K. Amount of training images  

Amount of training images (Volcani access only) – URL 

 

Amount_Of_Trainini

g_Images.xlsx
 

 

Appendix 2L. Amount of test images  

Amount of test images (Volcani access only) – URL 

 

Amount_Of_Test_Im

ages.xlsx
 

 

http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FSheep%5FBiometric%5FIdentification%2FResults%2FSensitivity%5FAnalysis%2FPost%5FHoc&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FSheep%5FBiometric%5FIdentification%2FResults%2FSensitivity%5FAnalysis%2FConfusion%5FMatrix&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A76
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FSheep%5FBiometric%5FIdentification%2FResults%2FSensitivity%5FAnalysis%2FK%5FFolds&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FSheep%5FBiometric%5FIdentification%2FResults%2FSensitivity%5FAnalysis%2FAmount%5Ftrain%5Fimages&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B6
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FSheep%5FBiometric%5FIdentification%2FResults%2FSensitivity%5FAnalysis%2FAmout%5Ftest%5Frandom%5Fimages&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&Vi
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Appendix 2M. Classified faces examples of both groups and growth model 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FSheep%5FBiometric%5FIdentification%2FResults%2FClassified%5FSheep&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DBA6E%2D46784C5A6357%7D
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FSheep%5FBiometric%5FIdentification%2FResults%2FClassified%5FSheep&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DBA6E%2D46784C5A6357%7D
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FSheep%5FBiometric%5FIdentification%2FResults%2FClassified%5FSheep&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DBA6E%2D46784C5A6357%7D
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FSheep%5FBiometric%5FIdentification%2FResults%2FClassified%5FSheep&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DBA6E%2D46784C5A6357%7D
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FSheep%5FBiometric%5FIdentification%2FResults%2FClassified%5FSheep&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DBA6E%2D46784C5A6357%7D
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FSheep%5FBiometric%5FIdentification%2FResults%2FClassified%5FSheep&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DBA6E%2D46784C5A6357%7D
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FSheep%5FBiometric%5FIdentification%2FResults%2FClassified%5FSheep&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DBA6E%2D46784C5A6357%7D
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FSheep%5FBiometric%5FIdentification%2FResults%2FClassified%5FSheep&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DBA6E%2D46784C5A6357%7D
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FSheep%5FBiometric%5FIdentification%2FResults%2FClassified%5FSheep&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DBA6E%2D46784C5A6357%7D
http://res-sharepoint/plf_lab/Small_ruminants/_layouts/15/start.aspx#/default.aspx?RootFolder=%2Fplf%5Flab%2FSmall%5Fruminants%2FShared%20Documents%2FAlmog%5FThesis%2FSheep%5FBiometric%5FIdentification%2FResults%2FClassified%5FSheep&FolderCTID=0x01200033013955FF6A574CB4D5F982D9F9FB31&View=%7B615A7680%2D2E2E%2D47CC%2DBA6E%2D46784C5A6357%7D
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Appendix 2N. First experimental sheep group – data examples 
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Appendix 2O. Second experimental sheep group – data examples 
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 זיהוי ביומטרי של צאן 

זכו בשנים האחרונות להתעניינות גבוהה  רשתות עמוקות ומטרי באמצעות אלגוריתמים מבוססיזיהוי בי

בתחום זיהוי בעלי החיים, עם זאת, מחקרים מעטים עסקו בזיהוי ביומטרי של צאן ופרט,  לא נמצא מחקר 

מבוססי רשתות עמוקות לומדים  יםלגוריתמיאשעוסק בזיהוי של טלאים. בעבודה זו פותחה מערכת מבוססת 

 לזיהוי ביומטרי של טלאים המבוססת על תמונות פנים.

נתונים לפיתוח האלגוריתם נאספו באמצעות מערכת איסוף נתונים שפותחה במיוחד, אשר נבנתה על מתקן 

ה עם מחשב )צבע( המותאמות לעבוד RGBמצלמות  2שתייה חכם המותק בדיר במכון וולקני. המערכת כללה 

Jetson Nano חודשים מגזע אסף. הנתונים של  2-3. ניסויים נערכו על שתי קבוצות שונות של כבשים בני

יום בכל שעות היום כדי  14( נאספו באופן אוטומטי לאורך 2טלאים )קבוצה  34( ושל 1טלאים )קבוצה  47

 להבטיח מגוון של תנאי תאורה המושפעים מאור השמש ומזג האוויר.

לזיהוי הפנים, וסיווג זהות הטלה. תחילה, על מנת  – רכת הזיהוי הביומטרי מורכבת משני אלגוריתמיםמע

. פני Faster-RCNNלאתר ולמקם את פני הטלה בתמונה, נעשה שימוש באלגוריתם לזיהוי אובייקטים 

לאלגוריתם שמשה כקלט . תמונה זו דתהטלאים שזוהו, נחתכו מתוך התמונה הגדולה ונשמרו כתמונה נפר

. כדי להשיג את ביצועי הסיווג הטובים ביותר, נבחנו מספר רשתות עמוקות שונות ללמידת הזהות סיווג – השני

בשילוב פונקציית אובדן  ResNet50v2מאפייני הפנים. הביצועים הטובים ביותר הושגו באמצעות רשת 

 .ArcFaceחדישה הממקסמת את ההפרדה בין הטלאים בשם 

את הטלאים בקבוצה הראשונה והשנייה בהתאמה,  95.7%-ו 95.4%-ליח לזהות בדיוק של כהאלגוריתם הצ

אחוזי דיוק, תוך קיצור  97%-ביצועי המערכת שופרו והגיעו ל Transfer-Learningכאשר באמצעות טכניקת 

 זמן תהליך האימון.

 

 למידה עמוקה, ,מיםאלגורית טלאים, חקלאות מדייקת בבעלי חיים, מערכת, תרנגולות מטילות,מילות מפתח: 

 , זיהוי ביומטרי.םזיהוי אובייקטי
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  קצירת

עשויות לעזור לחקלאי לנהל את בעלי החיים שלו,  (PLF) טכנולוגיות העוסקות בחקלאות מדייקת בבעלי חיים

רכי להגדיל את התשואה ולהבטיח את רווחת בעלי החיים. על מנת לתמוך בטכנולוגיות כאלו, יש להבין מהם צ

פיתוח מערכת ניידת לספירת  :PLF-במחקר זה נעשה פותחו שני מחקרי מקרה של טכנולוגיות ה .בעלי החיים

 .צאןתרנגולות מטילות ופיתוח מערכת זיהוי ביומטרית של 

 

 ספירת תרנגולות מטילות

נגולות ענף תרנגולות ההטלה בישראל מוסדר על ידי מכסת ייצור; משק יכול לייצר ביצים לפי מספר התר

תרנגולות בכלוב,  18-34לו לגדל. כלובים קהילתיים חדשים, המכונים גם 'כלובי סוללות' המכילים  שהוקצה

השתלבו לאחרונה בתעשיית הביצים בישראל. ספירה ידנית של התרנגולות בכלובים אלו, עשויה לדרוש זמן 

 לא מדויקות. רב ואף להוביל לתוצאות

ן לולים שונים פותחה. המערכת שמה לה למטרה להחליף את הספירה מערכת ניידת הניתנת להעברה בי

הידנית של תרנגולות מטילות, באלגוריתם אוטומטי, אשר יגלה ויספור תרנגולות ובכך יסייע לפקח על מכסות 

כלובים.  37קומות, כאשר בכל קומה  6 -הגידול. הניסויים נערכו בלול שנמצא במושב "קדרון". הלול בנוי מ

 Intelמטר. התרנגולות הוקלטו באמצעות צילום וידאו שנעשה במצלמת 87-של קומה כזו הינה כ אורכה 

RealSense depth D435  עובדו בעזרת אלגוריתם בינה  והווידאפריימים לשנייה. סרטוני  30אשר מצלמת

מן, נעשה מעקב מכן ומכיוון שהתרנגולות זזות כל הז . לאחר Faster R-CNNםמלאכותית לזיהוי אובייקטים בש

 לכל תרנגולת. יייחודבאמצעות אלגוריתם עקיבה , אשר הקצה מספר  ובווידאאחרי התרנגולות שזוהו 

עם שגיאה ממוצעת  88%-תמונות, הניב תוצאות דיוק של כ 5600 -האלגוריתם שנבחן על מאגר נתונים של כ

נית שנעשתה על ידי אדם והוגדרה תרנגולות לכלוב. תוצאת ספירת האלגוריתם הושוותה לספירת יד 4.5של 

בכדי לשפר את דיוק האלגוריתם יש להמשיך בפיתוח ושיפור המערכת. המשך העבודה .  ground truth-כ

כולל בחינה של הוספת מימד העומק לתהליך הלימוד של האלגוריתם ובכך להשיג הבנה טובה יותר של גבולות 

זוהו כחלק מהכלוב שנבחן אף על פי שאינן  –ן, כלומר הכלוב ולצמצם את מספר התרנגולות שזוהו לא נכו

   בגבולות אותו הכלוב.

המערכת שמוצגת בפרויקט זה הינה זולה, מהירה, ידידותית למשתמש ובנויה באופן גנרי. לכן, ניתן להשתמש 

 במערכת באופן פוטנציאלי בלולים שונים ובכך לאפשר פיקוח יעיל ומהיר יותר על מכסות הגידול.
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 בנגב גוריון-בן אוניברסיטת
 ההנדסה למדעי הפקולטה

 וניהול תעשייה להנדסת המחלקה
 
 

 

בחקלאות מדייקת באמצעות לימוד  ממוחשבת ראייה תומערכ
מכונה: מערכת ניידת לספירת תרנגולות מטילות, ומערכת לזיהוי 

 ביומטרי של צאן
 
 
 

 ההנדסה במדעי מגיסטר תואר לקבלת מהדרישות חלק מהווה זה חיבור
 

 
 

 

 אלמוג חיטלמן :מאת
 הלחמי אילן ופ'פרו אידן יעל' פרופ ת:בהנחיי

 
 
 

 
 19.9.21תאריך:          :............................                                                המחבר חתימת

 
 19.9.21תאריך:                                   :..............................                       המנחה אישור

 19.9.21:          תאריך            ...............                                 :.......המנחה אישור
 

 ......................                    תאריך:.................:......................מחלקתי שני תואר ועדת ר"יו אישור
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 ההנדסה למדעי הפקולטה

 וניהול תעשייה להנדסת המחלקה
 
 

 

בחקלאות מדייקת באמצעות לימוד  ממוחשבת ראייה מערכות
מכונה: מערכת ניידת לספירת תרנגולות מטילות, ומערכת לזיהוי 

 ביומטרי של צאן
 
 
 

 ההנדסה במדעי מגיסטר תואר לקבלת מהדרישות חלק מהווה זה ורחיב
 

 
 

 

 אלמוג חיטלמן :מאת
 הלחמי אילן ופ'פרו אידן יעל' פרופ ת:בהנחיי
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