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Abstract 

Life expectancy is rising resulting in a rapidly growing increase in the world’s elderly 

population. In contrast, the population of caregivers is decreasing in relation to the number of 

older adults leading to an increased need in finding solutions that will make it possible to deal 

with the lack of caregivers in hospitals, care centers, and homes. A possible solution to 

overcome this problem is the development and use of assistive robots (AR) and more 

specifically, the development of mobile robotic telepresence (MRP) which enable robots to be 

controlled remotely. As robots become more and more capable and autonomous, the use of 

robots in daily tasks by nonprofessional users will increase. In order for such MRP systems to 

provide assistance in daily and healthcare tasks, additional research is needed to ensure smooth 

and efficient interaction. One aspect of the interaction is to make the MRP systems more 

understandable to their operator and to the environment. 

This research examined the interaction and understanding between MRP systems and 

technological and non-technological operators. Creating a successful and understandable 

interaction is a challenging task.  Some of the critical factors in human-robot interaction are the 

feedback and the way that the robot communicates with the user. To achieve this, robots must 

be able to convey information to the user in the right way and help the user understand their 

decisions, the thoughts that led to the decision, and their actions. In this thesis, we examined 

how feedback and explanations from the MRP system should be communicated to the user, 

what information should be communicated to the user and when it should be communicated. 

The first part of the research examined an MRP system in a simulated healthcare setting to 

assist caregivers to perform their daily tasks, such as providing medication and food and taking 

measurements from patients while they perform a secondary task (e.g., filling out forms) and 

tried to answer the question of how feedback and explanations from the MRP system should be 

communicated to the user. We designed and evaluate two interaction modes that are different 

in the way that the users receive the information from the robot, denoted as proactive and 

reactive interaction modes. The effect of the two interaction modes on performance and user 

perception was evaluated with 50 participants that were divided into two groups - 40 

engineering students (defined as the technological group) and 10 healthcare students (defined 

as the non-technological group). In this experiment,  two different user interfaces for each of 

the interaction modes were implemented on a Keylo Wyca MRP to test their effect. 



 

In the second part, the experimental setting was arranged to resemble a complex clinic that 

contained obstacles and patients and the task was to control the MRP system and by receiving 

explanations from it, to succeed in overcoming obstacles to reach the patients and provide them 

appropriate treatment. This part examined what information should be communicated to the 

user and when it should be communicated. We proposed two levels of clarity – high and low 

and two levels of explanation patterns – dynamic and static. Based on these, we designed three 

different levels of explanation (LOE) – high, medium, and low. The evaluation was conducted 

for two conditions related to time criticality, with and without a time limit. Two different groups 

of engineering students operated an MRP robot, the Keylo Wyca robot, in a healthcare 

simulated task in our labs. Each group which included 30 students (a total of 60 students in both 

groups) experimented with a different condition with an interface specially designed for the 

condition. 

The main conclusion from the first study was that the proactive ('Push') interaction mode was 

the preferred way to communicate with the user and enhances performance, understanding, and 

reduced workload of the users compared to the reactive ('Pull') interaction mode. We also found 

that the users' understanding of the robot had a significant impact on all the other variables that 

were tested. It improves performance, satisfaction, and situation awareness and reduces the 

workload of the users. From the second study, we found that high LOE was preferred for the 

'without time limit' condition for both completion time and adequacy of explanation. It was 

further found that both, high and medium LOEs were fluent and trusted in the case of the 

'without time limit' condition. However, in the 'with time limit' condition, high and medium 

LOEs were similar and preferred in all measures compared to low LOE. 

This research presents the importance of the way of interaction between humans and robots and 

emphasizes the need for the robot to be understandable and how this can be done by adjusting 

the correct LOE in different situations. 

Keywords: mobile robotic telepresence (MRP), interaction modes, explanation, understandable, 

level of explanations (LOE), proactive, reactive, clarity, patterns. 
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Chapter 1. Introduction 

1.1 Overview 

The elderly population rate is growing rapidly (United Nations, 2020) which causes an 

increased demand for healthcare services. The shortage of healthcare professionals and 

caregivers to cope with this increasing demand leads to an increased need in developing 

solutions to handle this problem (Murray, 2002; Nora, 2002). In addition, the Covid-19 

pandemic emphasized the need for remote work and social distancing. The development of 

assistive robots has become a promising solution to deal with these problems (Broekens et al., 

2009; Shishehgar et al., 2018).  Assistive robots enable to support older adults and caregivers in 

homes, hospitals, and care centers (Aymerich-Franch & Ferrer, 2020; Broekens et al., 2009; 

Tavakoli et al., 2020). In this research, we focused on mobile robotic telepresence (MRP) which 

is a specific form of assistive robots that can be controlled remotely and can perform tasks 

automatically providing a possible solution to these problems. However, their use still has many 

challenges such as the way the robot communicates and interacts with the operator, and how to 

make the robot understandable to the user in different situations.  

The feedback from the robot and the way it communicates is a critical factor for the success of 

interaction between the human and the robot during a task (Agrawal & Yanco, 2018a). In 

addition, the increase in robot autonomy enables robots to make decisions and execute them, 

but without explaining their reasons, they become not understood. The robot needs to help the 

user to understand its decision and why it takes them (Fong et al., 2002). 

There has been a constant growth of studies regarding the way of communication and 

understanding between humans and robots due to the great importance of these issues to 

improve human-robot interaction.  

This research examined the interaction and understanding between MRP systems and 

technological and non-technological operators. Creating a successful and understandable 

interaction is a challenging task.  Some of the critical factors in human-robot interaction are the 

feedback and the way that the robot communicates with the user. To achieve this, robots must 

be able to convey information to the user in the right way and help the user understand their 

decisions, the thoughts that led to the decision, and their actions. In this thesis, we examined 

how feedback and explanations from the MRP system should be communicated to the user, 

what information should be communicated to the user and when it should be communicated. 

This research focuses on two main gaps that remain understudied and unanswered. In the first 
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part, which addresses the how aspects, we implemented two different interaction modes – 

proactive and reactive and compare them on interaction aspects. In the second part which 

focuses on what and when aspects, we focused on developing three levels of explanation to 

improve the operator's understanding of the robot. 

1.2 Background and problem description 

1.2.1    Assistive Robots 

Assistive robots are defined as fully or partially automated technologies (Bartneck & Forlizzi, 

2004; Naneva et al., 2020) that are developed to be socially intelligent and interact naturally 

with humans to help increase the quality of life in a variety of applications such as health, 

communication, and education (Naneva et al., 2020; Pieska et al., 2013). 

Assistive Robotics (AR) has emerged as an important goal in the field of social robotics. 

Beyond the basic capabilities of moving and acting autonomously, the development of these 

robots focused on the use of the robot's physical embodiment to communicate and engagingly 

interact with users through social and emotional intelligence that could enable the robot to sense 

and interpret various human emotions, moods, and attitudes to guide its interaction and 

communication and to be guided by social norms, values and demands (Feil-Seifer & Mataric, 

2011; Tapus et al., 2007). Examples of social robot applications include conversational robots 

(Sabelli et al., 2011), companionship robots (Breazeal & Scassellati, 2000), pets (Wada & 

Shibata, 2007), therapeutic aids (Dautenhahn, 2003), and toys (Fong et al., 2002).  In AR, the 

robot's goal is different from that of a social robot in that its purpose is to create a close and 

effective interaction with the human user in order to assist and achieve measurable progress in 

specific applications such as convalescence, rehabilitation, and learning and not just for the 

sake of interaction itself (Feil-Seifer & Mataric, 2011). Designing such a robot raises many 

challenges due to the many requirements to consider, depending on the goal, the person using 

it, and the environment of the robot.  

Evidence and research from the behavioral and neuroscience sciences demonstrate that people 

experience interactions with agents who are physically embodied, like robots, more fun and 

motivating than interactions with screens. In addition, people are more likely to be active, 

change their behavior and learn in such a context (Matariæ, 2017). This gives a strong 

motivation for AR design and development, which have gained increased attention in 

applications such as health care, education, entertainment, and elder care (Tapus et al., 2007). 
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It is easy to imagine how such robots can monitor and develop physical, cognitive, and social 

development and help patients in hospitals, people in rehabilitation, and older adults (Matariæ, 

2017). But there are still a lot of challenges and issues that must be solved for assistive robots 

to be able to address the various needs in the best and the possible way such as levels of 

automation (LOA) (Vagia et al., 2016), acceptance of robots by users (Broadbent et al., 2009), 

the way of communicating with the robot and the interaction with it (Agrawal & Yanco, 2018), 

and making the robot more understandable (Fong et al., 2002). 

1.2.2 Mobile Robotic Telepresence (Tele-Operated Robots) 

Telepresence is about the sense of being in another environment. In particular, Mobile Robotic 

Telepresence (MRP) offers the ability to connect to a remote location with the added value of 

navigating and performing various operations (Kristoffersson et al., 2013). An MRP is a robot 

that is controlled by a remote operator and performs tasks and services as if the operator was 

on the spot (Van Osch et al., 2014). 

MRP systems are becoming increasingly popular within certain application domains such as 

healthcare environments, independent living for the elderly, and office environments. They 

offer obvious benefits in terms of assisting the healthcare system (Tavakoli et al., 2020), and in 

performing operations for a caregiver as pre-diagnosis, food delivery, or monitoring. The ability 

to remotely perform a variety of tasks through robots contributes to workload reduction in 

hospitals supporting staff by performing assistive functions (Aymerich-Franch & Ferrer, 2020). 

Usually, the operator controls the MRP system through a dedicated operator interface. The 

operator interface is one of the most important components in the MRP system and it influences 

many parameters such as effectiveness, security of operations, and workload. The functions, 

the design, and how the information is transmitted from the robot to the operator are critical to 

creating conditions for the system's success (Labonte et al., 2006). 

Caregivers usually have multiple tasks to perform (e.g. monitoring patients while filling out 

reports and attending bystander inquiries). Hence, to ensure that the collaboration with the robot 

will improve their efficiency and performance they must perform tasks in parallel to the robot. 

In order to effectively control the robot, remote operators must be aware of several types of 

interactions that occur simultaneously such as human-robot interaction, which is the interaction 

that occurs between the MRP and the persons in the environment of the MRP system, human-

computer interaction, which is the interaction that occurs between the operator and interface of 

the MRP, and human-human interaction which occurs between the persons in the MRP 
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environment and the operator. All these interactions create a lot of information that the operator 

must absorb and respond to (Bolarinwa et al., 2019; Kristoffersson et al., 2013; Lee & 

Takayama, 2011). Therefore, it is important to convey the information to the operator in a 

correct way and in a form that is clear and understandable to him. Accordingly, this thesis 

focused on interaction modes (how the information is transmitted to the operator) and different 

levels of explanation (what and when information is conveyed). 

1.2.3 Robot Feedback 

The “Feedback loop” is an important feature of interactive systems. It represents the nature of 

the interaction between a person and a dynamic system. The user provides input to the system 

in order to achieve a goal, gets an output reply from the system (feedback), and interprets it 

(Dubberly & Pangaro, 2019). 

 In this manner, the robotic system may provide feedback about a task and its progress as well 

as about safety concerns associated with the task and/or the environment (Kuffner, 2018). 

Feedback is an important factor in human-robot interaction (Mirnig et al., 2020). Properly timed 

feedback encourages natural flow in the communication among the system elements and makes 

the robot more understandable (Tsui et al., 2011). In addition, feedback has been identified as 

a crucial factor in increasing trust in robots during human-robot collaboration missions. 

Feedback from the robot can help people assess the robot's internal state and overall goals. This 

importance is intensified when humans and robots cooperate in performing different tasks 

(Agrawal & Yanco, 2018). 

 The feedback can be provided in different modalities. Robots can provide information to 

humans through tactile devices (Dzindolet et al., 2003; Khoramshahi & Billard, 2020), verbal 

feedback (Céspedes et al., 2020; Shishehgar et al., 2019; Markfeld et al., 2019; Markfeld et al., 

2020), and visual feedback (Céspedes et al., 2020; Ferris & Sarter, 2008) like screens and more. 

Similarly, humans can communicate with the robot in several modalities, including gestures, 

and voice, using a touch screen and interfaces (Berg & Lu, 2020, Gutman et al., 2023).  

The type of feedback can impact system performance, especially in an environment in which 

conditions change over time (Doisy et al., 2014). Furthermore, feedback is critical for the usage 

of learning robotic systems by non-expert users (Rouanet et al., 2013). However, not every type 

of information is beneficial and it is necessary to find the right balance between increasing the 

system performance and not overloading the user (Doisy, 2014). 
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Two main factors that affect the interaction between a human and a robot are how the feedback 

is transmitted to the operator (defined as interaction modes) and the timing of the feedback 

(Mirnig et al., n.d.). 

1.2.4 Timing of feedback 

Timing of feedback is another critical feature for successful human-robot interaction (Mirnig 

et al., n.d.). Adequately timed feedback can maintain true understanding during communication 

between the person and the robot. Providing feedback too late may be confusing  (Mirnig et al., 

n.d.). Alternatively, feedback given too soon will not be linked to the status of the robot or the 

mission performed. Moreover, the temporal proximity between user input and the robot's 

reaction is an important characteristic of natural interaction (Fischer et al., 2013). On the other 

hand, there is also a drawback between proximity feedback and action, since feedback given 

during tasks can interrupt the performance, interfere with the cognition of performing tasks, 

and prevent the user from learning.  

The significant effects of cross-modal signals indicate the need to develop adaptive multimodal 

interfaces in which the location, modulation, and timing of the presentation of information are 

varied as a function of revolving stimuli and a consume (Ferris & Sarter, 2008a). Feedback 

scheduling can be considered in another context - the context of changes. That is, whether the 

timing of the feedback will be constant or only when there is a change in the environment of 

the robotic system. Research revealed that there is a definite advantage to providing feedback 

to the operator about changes in a common task (Doisy et al., 2014). 

1.2.5 Interaction Modes 

Interaction between a human and a robot encompasses activities that occur when a human is 

involved with a robot. These activities include interactivity, control, feedback, creativity, 

adaptation, and communication between the human and the robot (Rosales et al., 2018). It also 

includes the method through which the human accesses the information provided by the robot. 

This method of information access can define interaction modes commonly graded as reactive, 

proactive, and coactive (Sims, 1995) or mutual (Tianguang & James, 2003; Schwier & 

Misanchuk, 2003). It delimitates the degree of control the user has over the content and structure 

of the information being presented in the interaction (Rhodes, 1985). 

Reactive interaction is an interaction mode in which information is given only when demanded 

(Tianguang & James, 2003). It describes a time dimension of feedback where information is 

given only on demand. In contexts such as HRI, it is referred to as the ‘pulling' of information 
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to describe the process of requesting information which is the interaction pattern that dominates 

this interaction mode (McNeese et al., 2018). The robot provides information to the human only 

when the information is ‘pulled’. It is considered the lowest interaction mode because it has the 

least potential for engagement in the interaction (Schwier & Misanchuk, 1993). The user has 

more control over the information being presented. This will be accompanied by some level of 

contextual awareness of the readiness of the robot to respond to information 'pull'. 

Proactive interaction is an interaction mode in which information is continuously generated for 

the user even when it is not demanded (Tianguang & James, 2003). The feedback timing 

dimension is somewhat continuous since it does not depend on the user’s impulse (Tianguang 

& James, 2003). In HRI contexts, information is ‘pushed’ to the human by the robot without 

the human requesting it (McNeese et al., 2018). It is considered a higher interaction mode than 

the reactive one because it potentially promotes more interactivity (Schwier & Misanchuk, 

1993; Tianguang & James, 2003). The robot has more control over the presentation of 

information since it presents it without the consent of the user. 

The coactive (mutual) interaction mode is characterized by a mutually adaptive pattern of 

interaction where the interaction could be reactive or proactive based on the situation, context, 

and environmental demand (Tianguang & James, 2003). Depending on the task/situation, 

information can either be 'pulled' by the human from the robot or 'pushed' to the human by the 

robot. It is the highest interaction mode where the interaction pattern between the robot and 

human adapts to changing situations (Schwier & Misanchuk, 1993; Tianguang & James, 2003). 

Studies in various fields such as vehicle safety systems, robots, and activity tracking have dealt 

with comparing 'pushing' and 'pulling' feedback. They showed that 'push' feedbacks increase 

alertness, and awareness, encourages active actions and creates positive and encouraging 

thoughts during use compared to 'pull' feedback which made the task feel more difficult and 

boring (Cauchard et al., 2019). There have not been many studies on this topic related to robots. 

Accordingly, we examined two different interaction modes, proactive and reactive. 

1.2.6   Understandable robots 

As robots become more and more capable and autonomous, the use of robots in daily tasks by 

nonprofessional users and bystanders will increase. To improve the interaction and make it 

smoother and more efficient, robots need to be designed such that their behavior and states are 

understood by the interacting humans. 
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In the field of understandable robots, a theoretical model was proposed by (Hellström & 

Bensch, 2018) based on the requirement of generating communicative actions when there is a 

disparity between the robot’s mind and the human model inside the robot’s mind. The 

communicative action was based on what information needs to be communicated, why an action 

or plan has been decided, and when and how should the robot communicate its explanation. 

The challenges of generating explanations need to take into account the basic element of 

sensemaking (Papagni & Koeszegi, 2021). Furthermore, the authors suggest that explanations 

should include iterative communication, contextual explanations, and a combination of non-

verbal and verbal cues. In both aforementioned studies, user studies were lacking; research was  

limited to presenting a theoretical framework for understandable robots. 

This work is related to ongoing work in the explainable AI field (Sado et al., 2020). Previous 

review work in the field of GDXAI (an artificial intelligence framework, entirely written in 

Java, for game development, Iovino et al., 2022) categorized according to the behavioral aspects 

of the interaction between the agent and the human i.e., deliberative (where agents plans ahead 

to achieve a goal), reactive (agents respond to the environmental changes), and hybrid model 

(combination of reactive and deliberative actions, Sado et al., 2020). The goal-driven action 

plan generates explanations when an agent finds a mismatch between the expectation of a plan 

and the current status by tracking the agent's behavior (Jaidee et al., 2011; Molineaux et al., 

2010; Nau, 2007b). The belief, desire, and intention (BDI) model explain based on underlying 

beliefs and desires (Georgeff et al., 1999; Harbers et al., 2010; Malle, 1999b; Van Camp, 2013). 

The main aspect is to explain human errors (Malle, 1999a). The situation awareness model is 

built on the BDI model which had built an interface communicating information not only about 

current status and reasoning but also about future projection (Boyce et al., 2015; Chen et al., 

2018). In a proactive explanation model, the agent explains the surprise element of its action 

proactively such that participants are not flabbergasted (Gervasio et al., 2018). 

The automated rationale generation model trains the encoder-decoder neural network to 

generate the explanation of the behavior of the agent as if a person explains it to another 

(Sequeira & Gervasio, 2020). The explainable reinforcement learning way to generate an 

explanation allows them to learn the policy to explain the behavior based on trial and error  

(Sequeira & Gervasio, 2020). The generation of explanations for robotics failures has been 

addressed by invoking explainable AI models such as action-based, context-based, and history-

based explanations (Das et al., 2021; Diehl & Ramirez-Amaro, 2022). To explain robot action 

binary trees have been used to generate explanations (Han, Giger, et al., 2021). The progressive 
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explanation generation algorithm has proved to increase the performance of the task in a 

scavenger hunt and escape room task (Zakershahrak et al., 2021b). This study considered the 

mental model of the human being as the state of reinforcement learning and reward function 

has been generated by the inverse reinforcement learning from retrieved human preference. 

Another study on the comparison between non-verbal and verbal communication suggests that 

the non-verbal mode alone is not sufficient to explain the actions or plans of the robot (Han, 

Phillips, et al., 2021). 

1.2.7 Levels of Explanation (LOEs) 

The robot must help the user understand its decision, 'thinking', and actions (Fong et al., 2002). 

Not addressing this issue can hamper the user's perception of the robot (Bensch et al., 2017), 

safety during the interaction, efficiency in interaction as well as future usability of the system 

by the user (Baud-Bovy et al., 2014). A robot's inability to explain its 'thinking' or action could 

even lead to anxiety among the interacting human (Nomura & Kawakami, 2011) since the latter 

treats the prior as an agent similar to another human. 

The generation of explanations for robotics failures has been addressed by invoking explainable 

artificial intelligent models including action-based, context-based, and history-based 

explanations (Das et al., 2021). In another study (Tabrez & Hayes, 2019), an explanation was 

generated based on two components the explanation of the robot and the justification of its 

'thinking' along its operation. 

Further, a theoretical model of levels of explanation (LOE) has been defined in previous work 

(Dazeley et al., 2021). This theory focuses only on mapping the psychological model of the 

human social process. Accordingly, in this research, we proposed and examined three different 

levels of explanation. 

1.3 Research objectives 

This thesis investigates two crucial issues in human-robot interaction (the way of interaction 

and understanding) and tries to answer three fundamental questions that arise as a result of 

these issues. How the information (feedback and explanations) should be conveyed to the 

operator when using MRP systems (defined as Interaction mode in this study), What 

information and When should it be transmitted to the operator (defined as levels of 

explanation). This research was divided into two studies with two systems designed and 

developed accordingly.  
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The specific objectives were to design and compare the effect of : 

1. Proactive and reactive interaction modes, and 

2. Different levels of explanation (High, Medium, and Low). 

in a remote user interface of a telecare task on interaction aspects including performance, and 

user perception. 

 

1.4 Thesis structure 

The overall research methodology is depicted in Chapter 2. The research includes two separate 

studies corresponding to two experiments related to two main issues in human-robot interaction. 

The first study focused on interaction modes (study 1, Chapter 3), and the second study focused 

on levels of explanation (LOE) (study 2, Chapter 4). Each chapter is independent research but 

there is a strong connection between the issues. Findings from the first study led to the second 

study and emphasized its importance. The overall conclusion and future research are discussed 

in Chapter 5. 
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Chapter 2. Methodology 

2.1 Overview 

This research aims to evaluate the influence of different interaction modes (the way that the 

robot communicates with the user) on the interaction between the operator and the MRP system  

and examine how the user's understanding of the robot can be improved through different levels 

of explanation. Two studies were designed to examine these two issues (Table 1). In the first 

study, we examined how the information from the MRP system should be communicated to the 

user by designing and comparing two interaction modes.  The findings from this study 

emphasized the importance of the user's understanding of the robot and led to the design of the 

second study.  The second study focused on levels of explanation to answer two questions -  

what information and when the MRP system should be communicated to the user? Based on 

these we designed three levels of explanations and evaluated them in two different time-critical 

conditions (with and without a time limit). Both studies were performed in a simulated 

telenursing task with the Keylo Wyca MRP. 

Table 1. Overview description of experiments 

 Study 1 Study 2 

Independent 

variable 

Interaction modes                    

(proactive, reactive) 

Levels of explanation         

(High, Medium, Low) 

 

Participants 

Engineering students   

(technological group) 

Healthcare students                          

(non-technological group) 

 

Engineering students  

Thesis chapter Chapter 3 Chapter 4 

Publications C1, J1 J2 
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2.2 Study 1: Comparison of Proactive and Reactive Interaction Modes 

in a Mobile Robotic Telecare Study 

This study explored how the information needs to be communicated to the user by examining 

two different interaction modes and evaluating their influence on performance and the user's 

perceptions. In an experiment carried out as part of this study, participants performed a primary 

task parallel to a secondary task. Details are provided in Chapter 3 and appear in publications 

C11, and J12. 

Usually, operators control the MRP system through a dedicated operator interface. The operator 

interface is one of the most important components in the MRP system with an influence on 

several terms such as effectiveness, security of operations, navigation strategies, and workload. 

In order for such robots to be operated efficiently and effectively by the user, it is important to 

examine how the information needs to be communicated from the robot to the user (Labonte et 

al., 2006). 

A Keylo Wyca teleoperated robot was programmed by the Robot Operation System (ROS) for 

a telenursing task performed by two different types of operators (technological and non-

technological) in two different interaction modes, proactive and reactive. To increase workload, 

a secondary task was introduced via a secondary task screen. 

The interaction modes were examined by building two different main user interfaces, one for 

each interaction mode. The main interface was used to control the robot and perform the main 

task. It contains information from three different cameras (front, bottom front, and rear), 

feedback from the robot at important points along the robot's path or warnings from obstacles, 

arrows for manual navigation, and boxes for filling in relevant information along the task.  

In the proactive mode interface, the user received all the elements of the main interface and 

feedback from the robot continuously and constantly without being able to control it. 

The reactive mode interface was designed in a way that the user only got the front camera, and 

if he/she wanted to use the other elements or get feedback from the robot, he/she had to 'pull' 

them by using four buttons that were added to this interface compared to the user interface in 

 
1 C1 includes preliminary results in which we compared 10 engineering students (technological group) to 10 

healthcare students (non-technological group). The data analysis in this paper was relatively limited. 
2 J1 is an extension of C1, including additional experiments (additional engineering students) and analysis and 

presents new aspects. 
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the proactive mode. In this mode, the user had almost complete control over the elements in the 

interface and could open and close them during the task as much as he wanted. 

The secondary interface was designed as an electronic sheet that contained questions regarding 

patients' information and simulated a daily task of medical teams that should be performed 

simultaneously with other tasks. 

This study was designed as a within-design experiment with 40 engineering students that were 

defined as a technological group and 10 healthcare students that were defined as a non-

technological group.  The differences in the sample size between the groups were due to the 

difficulty in recruiting non-technological participants. Despite this, we did choose to examine 

a larger sample group in the technological group and showed that the power of the tests 

increased using the Cohen d test. Therefore, the different sample sizes are justified. 

The results of the experiment showed that the users of both groups preferred the proactive 

interaction mode and it improved performance, the user's understanding of the robot, and 

reduced the workload. In addition, the experiment showed that there is a high correlation 

between understanding and all other dependent variables. This finding may indicate an 

influence of the understanding on the performance and the user's perception, although no clear 

causality can be claimed. led to the design of the second experiment that dealt with improving 

the user's understanding of the robot. 

2.3 Study 2: Levels of Explanation – Implementation and Evaluation 

in a Mobile Robotic Telecare Task 

This study aims to evaluate the potential of different levels of explanation to improve the user's 

understanding of the robot in different situations. We designed and implemented three different 

levels of explanation. Details are provided in Chapter 4 and appear in publication J2 which is 

an extension of this work and includes also a theoretical model that was developed as part of a 

parallel thesis (Kumar, 2022). 

Robots should help users understand their decisions, actions, and 'thinking' (Fong et al., 2002). 

By failing to address this issue, we may adversely affect the user's perception of the robot 

(Bensch et al., 2017), the user's safety during the interaction, the efficiency of the interaction, 

and the user's future usability of the system (Baud-Bovy et al., 2014). In some cases, the 

inability of a robot to explain its 'thinking' or actions can even result in anxiety among the 

human interacting with the robot (Nomura & Kawakami, 2011). A theoretical model of levels 
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of explanation (LOEs) (Dazeley et al., 2021) focused only on mapping the psychological model 

of the human social process.  

In this thesis, we define and evaluate different levels of explanation. The levels of explanation 

related to what information the robot needs to communicate to the user? and when should the 

robot need to communicate explanations? We defined clarity and explanation patterns and 

based on these we designed three levels of explanations (LOEs). 

Clarity was defined as the amount of information that needs to be communicated to the user 

(what) and the explanation pattern is defined as the frequency of communication (when). It is 

divided into two levels – high and low. A high level of clarity is explaining all the smallest 

details in the action that the robot planned. A low level of clarity is explaining the broader sense 

plan without any details. 

Two explanation patterns are defined – static and dynamic: 

A static explanation pattern is an explanation that is given only once before the user started 

executing the robot's action plan. In the dynamic explanation pattern, the robot explains the 

actions of the plan in parallel to its execution by the user. 

Based on these definitions, we designed three levels of explanation as follows: 

• High LOE consists of a high level of clarity and dynamic explanation pattern. 

• Medium LOE consists of a low level of clarity and dynamic explanation pattern. 

• Medium LOE consists of a low level of clarity and static explanation pattern. 

This study was designed as a within-between experiment with 60 engineering students that were 

randomly assigned into two groups to compare the effect of time criticality (a group with a time 

limit was compared to a group without a time limit). 
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Chapter 3.   Comparison of Proactive and Reactive 

Interaction Modes in a Mobile Robotic Telecare 

Study 

 

J1. O. Keidar, Y. Parmet, Samuel A. Olatunji, and Y. Edan.  

Comparison of Proactive and Reactive Interaction Modes in a Mobile Robotic Telecare 

Study. (link for submitted paper)  

Submitted to Applied Ergonomics. 
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Chapter 4. Levels of Explanation – Implementation 

and Evaluation in a Mobile Robotic Telecare Task 

J2. O. Keidar, S. Kumar, Y. Edan.  

Levels of Explanation – Implementation and Evaluation in a Mobile Robotic Telecare Task. A 

partial version of the submitted paper to ACM Transactions on Human-Robot Interaction. (link) 

(without theoretical model which is part of a parallel thesis, Kumar, 2022) 
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Chapter 5. Summary and Conclusions 

In recent years, we have witnessed an increase in the shortage of caregivers compared to the 

older population which is growing at a high rate. In parallel, robotic systems are penetrating 

into many non-industrial environments with increasing interaction with humans.  The Covid-19 

pandemic emphasized the need to use assistive robots and accelerated their entry into our lives. 

These robots are becoming more and more autonomous and their use as a solution to the 

healthcare system is increasing as well as their use by non-professionals and bystanders. This 

highlights the importance of improving human-robot interaction. Some of the critical factors in 

human-robot interaction are the feedback and the way that the robot communicates with the 

user. Creating a successful and understandable interaction is a challenging task.  

In this thesis, we focused on two main aspects of human-robot interaction, the way of 

interaction and the user's understanding of the robot. The research was performed on a 

mobile robotic telepresence system.  

In the first study, we examined how the feedback and explanations from the robot should be 

communicated to the user by designing two different interaction modes (proactive and reactive), 

and evaluating their influence on performance and the user's perception with two groups, 

technological and non-technological. The main result from this study was that the proactive 

interaction mode was the preferred mode and enhanced performance, understanding of the 

robot by the users, and reduced workload. Moreover,  the results emphasized the importance 

of understanding the robot by the user. We found that the user's understanding of the robot 

affected all the other dependent variables that were examined in the experiment. Participants 

completed the task in a shorter time with better performance in the secondary task, were more 

satisfied with the interaction with the robot, were more aware of the situations in the 

environment, and the workload on them was lower when they understood the robot better.  In 

addition, from the video analyses we conducted and the users' responses, an interesting finding 

emerged. It showed that there are also benefits to the reactive interaction mode.  Participants did 

like in a certain way the ability to control the user interface while performing the task and the 

possibility to use certain elements only at appropriate moments.  This finding should be 

examined in future work by applying a hybrid model that can be considered a proactive-reactive 

mode where most of the basic elements and feedback are 'pushed' to the user and some 

additional is allowed for 'pulling'.  
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On the whole, the first study highlights the potential of improving the interaction between a 

remote operator and robots by using the most appropriate interaction mode but it still has several 

limitations. This experiment examined a specific scenario of a telenursing task in which we 

tried to simulate a hospital environment but in practice was conducted under laboratory 

conditions and not with caregivers. In order to generalize these conclusions, additional 

experiments must be performed to examine more interaction modes (e.g. combination of 

proactive and reactive modes) in different tasks and environments and with different users. 

Caregivers can be divided into adults and young people when our hypothesis is that over time 

young caregivers will adapt to technology and their performance will be comparable to the 

technological population that was tested by us. In contrast, the older population of caregivers 

can have both resistance to accepting the new technology and difficulties in adapting to it, and 

these are things that need to be examined in the future. 

The findings from the first experiment combined with the literature showed the importance of 

examining ways to improve the user's understanding of the robot. One aspect that may improve 

understanding is the explanation that the robot gives to the user. Accordingly, in the second 

study, we focused on what information should be communicated to the user? and when it should 

be communicated to him? in order to improve understanding. Based on these two questions we 

designed levels of explanation based on clarity and explanation patterns. We defined two levels 

of clarity (high and low) and two explanation patterns (static and dynamic). Accordingly, three 

levels of explanation were designed (high, medium, and low) and examined with two different 

groups, representing two conditions related to time criticality, with and without a time limit. 

We hypothesized that high LOE would be preferred in the 'without time limit' group and 

medium LOE in the 'with time limit' group. It was found from this study that high LOE led to 

shorter completion time compared to the medium and low LOEs and was preferred in case 

of the adequacy of explanation in the 'without time limit' group. Further, fluency of 

interaction and trust was similar in the case of medium and high LOEs. In the 'with time 

limit' group, it was found that high and medium LOEs were similar and preferred more 

compared to the low LOE. It was found that the pattern of explanation played an important 

role in affecting the results. The clarity of explanation did affect some of the variables in the 

'without time limit' group. Hence, our study concurs with previous research that a brief and 

precise explanation would be enough for time-limited conditions.  

Despite these findings, the need for justification of an explanation of robotic actions should also 

be taken into consideration. In addition, the time limit is not the only factor that is important 
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for time-critical tasks. Therefore, different modalities like alarms should be considered to 

simulate emergency situations.  

It would also be interesting to examine aspects of usability in future studies in our research 

area and examine their contribution. 
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 תקציר

זו, אוכלוסיית הקשישים בעולם גדלה במהירות. לעומת זאת, אוכלוסיית ה עלייה  העולה ויחד עם    בעולם   תוחלת החיים 

פתרונות שיאפשרו להתמודד   למצואלעלייה בצורך  , דבר שמוביל  ביחס למספר המבוגרים   וקטנההמטפלים הולכת  

ר ( וליתAR. אחד הפתרונות הוא פיתוח ושימוש ברובוטים מסייעים )ו'עם המחסור במטפלים בבתי חולים, בבתים וכ

נייד רובוטית  פיתוח של טלנוכחות  גם לבצע    ,(MRP)  תדיוק,  ומסוגלים  רובוטים הניתנים לשליטה מרחוק  שהם 

הופכים ליותר ויותר אוטונומיים, השימוש ברובוטים חות והם  תשיכולות הרובוטים מתפמשימות באופן אוטונומי. ככל  

ידי משתמשים לא מקצועיים יגדל. על מנת שמערכות   יוכלו להיכנס לחיינו   MRPבמשימות יומיומיות על  כאלה 

רב נוסף  במערכות הבריאות, יש צורך במחקר    הבעיותולספק סיוע במשימות היומיומיות ולסייע בהתמודדות עם  

 וכלפי הסביבה. והן טראקציה איתן לחלקה, יעילה ומובנת הן למפעיל שלהם כדי להפוך את האינב

מערכות   בין  וההבנה  האינטראקציה  את  בחן  זה  יצירת    MRPמחקר  טכנולוגיים.  ולא  טכנולוגיים  מפעילים  לבין 

אינטראקציה מוצלחת ומובנת היא משימה מאתגרת. חלק מהגורמים הקריטיים באינטראקציה בין אדם לרובוט הם 

המשוב והאופן שבו הרובוט מתקשר עם המשתמש. כדי להשיג זאת, רובוטים חייבים להיות מסוגלים להעביר מידע 

החלטותי את  להבין  למשתמש  ולעזור  נכונה  בצורה  את  הם למשתמש  להחלט  'המחשבות' ,  אלושהובילו  ואת    ות 

מידע יש להעביר   איזה,  MRP-יש להעביר למשתמש משוב והסברים ממערכת ה  כיצד. בתזה זו בדקנו  הם מעשי

 יש להעביר אותו אליו. ומתילמשתמש 

מדומה כדי לסייע למטפלים לבצע את המשימות  רפואית  במסגרת    MRP-החלק הראשון של המחקר בדק את מערכת ה

שהם מבצעים משימה משנית )כגון  תוך כדי  ממטופלים    מדדים לקיחת  ו  היומיומיות שלהם, כגון אספקת תרופות ומזון 

ניסוי זה שימש כמקרה  צריכה לתקשר עם המשתמש.    MRPמערכת ה  כיצד  ,  לענות על השאלהניסינו  פסים( ומילוי ט

לבחינת שני אופני אינטראקציה שונים. תכננו והערכנו שני מצבי אינטראקציה שונים באופן שבו המשתמשים מקבלים  

ההשפעה של שני מצבי האינטראקציה כמצבי אינטראקציה פרואקטיביים ותגובתיים.    הוגדרואת המידע מהרובוט,  

 הוגדרו סטודנטים להנדסה ) 40 -משתתפים שחולקו לשתי קבוצות  50על הביצועים ותפיסת המשתמש הוערכה עם  

 Keyloכקבוצה לא טכנולוגית(. בניסוי זה, השתמשנו ברובוט    הוגדרוסטודנטים לרפואה )  10-כקבוצה טכנולוגית( ו

Wyca ונים עבור כל אחד ממצבי האינטראקציה כדי לבדוק את השפעתם. ובנינו שני ממשקי משתמש ש 

ובאמצעות   MRP-מורכבת המכילה מכשולים וחולים והמשימה הייתה לשלוט במערכת ה  דימינו מרפאהבחלק השני  

להגיע לחולים ולהעניק להם טיפול מתאים. חלק זה בדק איזה   ,מכשולים הקבלת הסברים ממנה, להצליח להתגבר על  

מידע יש להעביר למשתמש ומתי יש להעבירו ועל סמך זה תכננו מודל הסבר. כדי לעצב מודל זה, הצענו שתי רמות 

שלוש רמות שונות של    עיצבנודינמי וסטטי. על סמך אלה,    -גבוה ונמוך ושתי רמות של דפוסי הסבר    -  ברירותשל  

וללא הגבלת  הגבלת זמן  גבוה, בינוני ונמוך. הערכנו את המודל המוצע בשתי קבוצות שונות, עם    - (  LOEsבר )הס

 ובנינו שני ממשקים חדשים, אחד לכל קבוצה.   Keylo Wycaסטודנטים להנדסה. השתמשנו שוב ברובוט    60זמן עם  

הפרואקטיבי האינטראקציה  שמצב  הייתה  הראשון  מהמחקר  העיקרית  המועדפת   המסקנה  הדרך  היה  )'דחיפה'( 

המשתמשים בהשוואה   והוריד את עומס העבודה עלההבנה  את  את הביצועים,    שיפר  והוא   לתקשורת עם המשתמש
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למצב האינטראקציה הריאקטיבית )'משיכה'(.  מצאנו גם שלהבנת המשתמשים את הרובוט הייתה השפעה משמעותית 

פחית את עומס העבודה הו   סביבהרצון ומודעות לה, שביעות  צועים שיפר את הביעל כל שאר המשתנים שנבדקו. זה  

  משך הזמן שלוקח לבצע את המשימה גבוה הועדף במקרה של    רמת הסברהמשתמשים. מהמחקר השני, מצאנו ש  על

זמן  ההסבר  תוהתאמ נמצא  בקבוצה שהייתה ללא הגבלת  עוד  וגם הבינונית.  יצרו שטף    שגם רמת ההסבר הגבוה 

גבוה   רמת הסברזמן,  ה. עם זאת, בקבוצת עם הגבלת  גרמו לאמון ברובוט בקבוצה ללא הגבלת זמןבמהלך המשימה ו

 .כהנמו רמת הסברהיו דומים ומועדפים בכל המדדים בהשוואה לית ובינונ

 מחקר זה מציג את החשיבות של דרך האינטראקציה בין בני אדם לרובוטים ומדגיש את הצורך שהרובוט יהיה מובן 

 שונים.   בהתאם למצבים  רמות הסבר שונותכיצד ניתן לעשות זאת על ידי התאמת  דרךומציג את ה

מפתח )מילות  ניידת  רובוטית  נוכחות   :MRP  ,הסבר אינטראקציה,  מצבי  )הבנה(,  הסברים  רמת   ,LOE ,)

 , דפוסים.ברירותפרואקטיבית, תגובתית, 
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