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ABSTRACT

This thesis presents a method based on leaf spectral reflectance to classify between infected and
healthy corn plants, before infection can be visually identified on the leaves. Focus was on Fusarium,
a fungus with a global distribution, capable of infecting a wide range of crop plants, including cereals
such as maize, wheat or barley. It may rapidly result in very high crop losses and quality reductions.
Moreover, mycotoxins, potentially generated by these fungi, are poisonous and harmful for both
human and animal nutrition.

Data of 249 plants was collected from a controlled experiment conducted at Evogene’s research
facilities in Central Israel. Corn seeds were germinated in a greenhouse for a period of 3 weeks. Two
types of spectral measurements were performed 21 days after sowing: (a) point spectral
measurements with a field spectro-radiometer (FieldSpec, ASD) in the range of 300-2500 nm and (b)
hyper-spectral images with a pushbroom type system (SPECIM) in the range of 400-1000 nm. After
the last sampling day, the plants’ roots were exposed and the disease infection level was manually
examined by an agronomist and classified into 6 levels, according to the state of the roots. These
levels were then aggregated into infected and healthy plants resulting with an imbalanced data set
which included 154 infected and 96 healthy plants.

Several classification algorithms were developed and evaluated using the ASD data and the hyper-
spectral images. To simplify the algorithm development, stepwise regression was used to determine
the significant wavelengths for Fusarium detection using the point spectral measurements. The most
significant wavelengths for disease detection were wavelengths 400, 440, 630, 700nm that are mainly
influenced by leaf pigment content and 750, 820, 900 nm that depend on the leaf biology structure.
Using these wavelengths, a random forest classifier was used to classify between infected and
healthy plants using features from the hyperspectral images. The classifier was evaluated using the
leave one out cross validation method.

Fusarium infection was successfully classified with 82% accuracy (67.5% True Positive and 8.7% False
Positive) and 0.79 AUC. These results prove the feasibility of detecting Fusarium at a stage which
currently is not possible without destroying the plant.

Keywords: hyperspectral imaging, spectral imaging, hyperspectral analysis, disease detection,
Fusarium, random forest, corn
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1.1 PROBLEM DESCRIPTOPN

Over the next five decades the global demand for food is projected to increase by 1.5-2 times, with
the world’s population crossing the six billion mark and expected to increase by another three billion
(Seelan et al., 2003). Current production rates will not satisfy the demands of the world’s population
by 2050 (An et al., 2016). The production of high-quality food must increase with reduced inputs,

along with addressing the challenges of global environmental change (Tester & Langridge 2010).

Plant diseases cause major production and economic losses in agriculture, it is estimated that the
crop losses due to plant pathogens in United Stated result in about 33 billion dollars every year
(Savary et al., 2012). To achieve food security is one of the major challenges for plant science and

crop improvement in the 21st century.

Fusarium is a large genus of filamentous fungi, part of a group often referred to as hyphomycetes,
widely distributed in soil and associated with plants which has remarked worldwide as a disease of
economic importance (Windels, 2000). It is a phytopathogenic fungus with a global distribution,
capable of infecting a wide range of crop plants, including cereals such as maize, wheat or barley
(Jurado et al., 2006). The pathogen is capable of causing a variety of diseases: head blight or 'scab’

on wheat, barley, rice, oats, Gibberella stalk and ear rot disease on maize (Zea) and soybean.

USDA ranks Fusarium Head Blight (FHB) caused by Fusarium graminearum in wheat as the worst plant
disease to hit the US since the rust epidemics in the 1950s (Windels, 2000). Combined direct and
secondary economic losses of FHB between 1993 and 2001 were $7.67 billion (Goswami & Kistler,
2004) due to very high crop losses and quality reductions. Moreover, mycotoxins, potentially
generated by these fungi, are poisonous and harmful both in human and animal nutrition (Browne et
al.2005). These compounds may be present even after removal of mycelium (Falasconi et al., 2005).
Since most of them are resistant to physical and chemical treatments, they usually stay in the food

during processing and storage (Falasconi et al., 2005).

The early detection of the fungal species producing mycotoxins or of the mycotoxins themselves has
become very important to prevent the human and animal risk deriving from the entry of mycotoxins
into the food chain (Falasconi et al., 2005). Traditional methods used for plant assessment are still
time- consuming, labor intensive and destructive in nature (Busemeyer et al., 2013). Introduction of
modern technologies to improve crop yield, provide information to enable better in-field
management decisions, reduce chemical and fertilizer costs through more efficient application,

permit more accurate farm records, increase profit margin and reduce pollution (Li et al., 2014).



The appearance of Fusarium-infected ears and plants largely changes during the development of this
disease, mostly due to degradation of chlorophyll contents and pronounced water. These changes
lead to pronounced variations in spectral properties of infected grains and total ears losses (Bauriegel
etal.,, 2011). Both fungi and bacteria usually cause damages at molecular, cellular and/or tissue levels,

which, in turn, can be detected as changes in the spectral signatures (West et al., 2003).

Utilization of spectral analysis for detection of fungal and bacterial diseases has been investigated
(e.g., Luetal., 2018; Zarco-Tejada et al., 2018). Moreover, some applications of hyper- spectral fungal
detection are already working (Bauriegel et al., 2011). Research on Fusarium infections in wheat
found occurrence of head blight can easily be recognized by spectral analysis during BBCH-stage 71—
85 using hyper-spectral imaging (Bauriegel et al., 2011). To the best of our knowledge, there are no

known works of early detection of Fusarium in corn.

1.2 OBIJECTIVES

The research objective is to develop an algorithm to classify between infected and healthy corn leaves

using a hyperspectral sensor. Specific objectives are to:

1. Find significant wavelengths for Fusarium detection.

2. Develop an algorithm to classify between Fusarium infected and healthy plants.

1.3 RESEARCH CONTRIBUTION & INNOVATION

Computer vision has significantly developed with innovative applications in agriculture (Abdulridha
et al.,, 2019; Hariharan et al.,, 2019). Agriculture provides a great challenge for developing such
technology due to the high object variability caused by the biological nature along with the unknown,

dynamic and unstructured environment. This research is innovating in two aspects:

1. Application of hyperspectral imaging in the field of agriculture for organic diseases detection.
This will enable detection at early stages which has been studied very little in the past.

2. Development of intelligent algorithms combined with advanced statistical algorithms to
detect diseases at an early stage.

In our pre-research, we have found no such combination. We truly believe that this research provides

an important development in disease detection contributing to the advance of precision agriculture.



2.1 PRECISION AGRICULTURE

Over the next five decades the global demand for food is projected to increase by 1.5-2 times, with
the world’s population crossing the six billion mark and expected to increase by another three billion
(Seelan et al., 2003). Current production rates will not satisfy the demands of the world’s population
by 2050 (An et al., 2016). The production of high-quality food must increase with reduced inputs, but
this accomplishment will be particularly challenging in the face of global environmental change and
with the reduction of land availability (Tester & Langridge 2010).

Precision agriculture promotes variable management practices within a field, according to site
conditions (Seelan et al., 2003). It enables better management by implementing the right decision in
the right place at the right time (Mulla, 2013).Precise agriculture is defined as “a management
strategy that uses information technologies to bring data from many sources for decision-making

related to crop production” (Seelan et al., 2003).

The progress in sensor and information technologies together with the expansion of geographic
information systems opens new opportunities for precision agriculture and plant phenotyping
(Mahlein, 2016). A survey of ranging and imaging techniques for precision agriculture sensing for
detection and morphological features and sensing for physiological assessment includes ultrasonic,
time-of-flight, and light detection and ranging (LiDAR), structured light, color, RGBD, stereo vision
cameras, thermal cameras, multispectral and hyperspectral cameras and spectroscopy sensors

(Figure 1).

2.2 FUSARIUM INFECTION

Fusarium is a phytopathogenic fungus with a global distribution, capable of infecting a wide range of
crop plants, including important main food crops such as maize, wheat or barley. Infection can be
seed borne and systemic in the crop from seedling to harvest, or starting during the pollination where
the silks are infected by the airborne conidia (Morales-Rodriguez et al., 2007). These pathogens
survive in the soil, in infected plant debris, and inside apparently healthy seed and can affect the
embryo and pericarp without visible symptoms. The disease was recorded most frequently under
hot, wet climatic conditions where significant yield losses and mycotoxin accumulation in grain were
reported (Mcleod, 1993). Fusarium infection has been studied for decades, most of the work on
Fusarium graminearum has focused on Fusarium head blight, mainly of small-grain crops, but some

of the results obtained are also relevant to maize (Munkvold, 2003).



RGB Multispectral Hyperspectral Thermal

Infrared Fluorescence X-ray 3D sensors

Figure 1: Sensors used for disease detection (Mahlein, 2016)

2.2.1 RISKS FROM FUSARIUM INFECTION

Fusarium graminearum (also known as Gibberella zeae) is the causal agent of Gibberella ear rot,
seedling blight during germination, root and stalk rot of maize and Fusarium head blight of small grain
crops (Goswami & Kistler 2004). Entry of Fusarium spp. into maize ears can occur by growth of
mycelium down silks to the kernels and cob (rachis) from spores germinating on the silks or through
wounds through the husk caused by insects or birds (Reid et al., 2002). When there is an epidemic
in the field at a young stage, it can eliminate the entire field. Moreover, there is a critical health risk
in the late stage of the rash, since Fusarium produces Mycotoxins. Fusarium graminearum is known
to produce two important mycotoxins, deoxynivalenol (DON) and zearalenone, which can
contaminate the diseased grain. Humans and animals, including dairy cows and beef cattle, are
sensitive to those toxins. The fungal toxin zearalenone has estrogenic properties and produces many
reproductive disorders in animals. To protect consumers from mycotoxicosis, by the end of 2003,
approximately 100 countries (covering approximately 85% of the world’s inhabitants) had specific

regulations or detailed guidelines for mycotoxins in food (Van Egmond et al., 2007).

4



2.2.2 DISEASE DETECTION BY SPECTRAL ANALYSIS

The appearance of Fusarium-infected ears and plants, respectively, largely changes during the
development of this disease, mostly due to degradation of chlorophyll contents and pronounced
water losses. Hence, these changes lead to pronounced variations in spectral properties of infected
grains and total ears (Bauriegel et al., 2011). Both fungi and bacteria usually cause damages at
molecular, cellular and/or tissue levels, which, in turn, can be detected as changes in the spectral
signatures (West et al., 2003). Thus, spectral analysis and, especially, spectral imaging has been found

suitable for the detection of Fusarium infection (Bauriegel et al., 2011).

2.3 DISEASES DETECTION

It is estimated that the crop losses due to diseases in United Stated result is about 33 billion dollars
every year (Pimentel, Zuniga, & Morrison, 2005). Early information on crop health and disease
detection can enable to control diseases through proper management strategies such as pesticide
applications, fungicide applications, and disease-specific chemical applications; and can improve

productivity. Disease detection techniques can be broadly classified into direct and indirect methods.

2.3.1 DIRECT METHODS

After the onset of plant disease symptoms, the presence of disease in plants can be verified using
several disease detection techniques. The most significant advance, especially in virus detection is
the enzyme linked immunosorbent assay (ELISA) (Clark & Adams, 1977) The method enables the
highly sensitive detection of a number of morphologically different viruses in purified preparations
and in unclarified extracts of herbaceous hosts and of infected crop plants (Lépez et al., 2003). Virus
concentrations are estimated by photometric measurement of the color intensity of the hydrolyzed
substrate (Clark & Adams, 1977). Various applications of ELISA are detection of potato viruses S, X,
and Y (Banttari & Goodwin, 1985), detection of apple chlorotic leafspot virus (Flegg & Clark, 1979),

detecting the red core disease of strawberries (Mohan, 1988) etc.

The polymerase chain reaction (PCR), developed by Carrie Molis (who won the Nobel Prize for his
invention) in the early 1980s, is a method widely used in molecular biology to make many copies of
a specific DNA segment. PCR is a method used widely used in molecular biology for rapid replication
of DNA segment. PCR has many applications for the in vitro detection and diagnosis of disease
pathogens in agriculture e.g. to determine genetic variability of bean golden mosaic virus (Gilbertson

etal.,, 1991), detection of Fusarium in cotton tissue (Moricca et al., 1998).

These molecular techniques are time-consuming and labor-intensive, and require an elaborate
procedure, especially during sample preparation, collection and extraction, to obtain reliable and
accurate results on plant disease detection. In addition, these techniques require consumable

reagents that must be tailored to detect each specific pathogen (Sankaran et al., 2010).



2.3.2 INDIRECT METHODS

In indirect methods, plant diseases are identified by detecting the impact of pathogen on the
physiological plant response and not through direct identification of the pathogen. When plants
become diseased, they can display a range of symptoms such as colored spots, or streaks that can
occur on the leaves, stems, and seeds of the plant. These visual symptoms continuously change their

color, shape and size as the disease progresses.

Common methods for detection of plant diseases include visual plant disease estimation by human
raters, e.g., estimate severity of Fusarium head blight of wheat (Stack & McMullen, 1998),
assessment of Andean bean diseases using visual keys (Stonehouse, 1994). The disease is detected
based on characteristic plant disease symptoms (e.g., lesions, blight, galls, tumors, cankers, wilts,
rots, or damping-off) or visible signs of a pathogen (e.g., uredinospores of Pucciniales, mycelium or
conidia of Erysiphales) (Mahlein, 2016). Reliability and accuracy are benchmarks for the performance
of visual assessment ratings. Visual estimation has become more accurate and reliable due to the
availability of detailed guidelines and standards used for assessment training (Bock et al., 2010).
Nevertheless, visual estimation is always subject to an individual’s experience and can be affected by
temporal variation. This variation causes significant interrater variability and changes in interrater
repeatability (Nutter et al., 1993). These time-consuming methods demand experienced individuals

with well-developed skills in diagnosis and disease detection and are thus subject to human bias.

Despite availability of these techniques, there is a demand for a fast, sensitive, and selective method
for detection of plant diseases. It is desirable that the plant disease detection tool should be rapid,
specific to a particular disease, and sensitive for detection at the early onset of the symptoms (Lopez
et al.,, 2003). New technologies offer opportunity to assess disease with greater objectivity
(reliability, precision, and accuracy). Various spectroscopic and imaging techniques have been
studied for the detection of symptomatic and asymptomatic plant diseases (West et al., 2003). The
methods include multispectral or hyperspectral imaging (detailed in 2.5.2 section), infrared
spectroscopy (Purcell et al., 2009; Spinelli et al., 2006), fluorescence imaging (Chaerle et al., 2007,
Moshou et al., 2005), fluorescence spectroscopy (Lins, Belasque et al., 2009; Marcassa et al., 2006),
RBG (Neumann et al., 2014) and X-ray imaging (Karunakaran et al., 2004; Narvankar et al., 2009),
thermal imaging or thermography (Lindenthal et al., 2007) and 3D sensors (Paulus et al., 2014).

These sensors assess the optical properties of plants within different regions of the electromagnetic
spectrum and are able to utilize information beyond the visible range. They enable to detect early
changes in plant physiology due to biotic stresses, since disease can cause modifications in tissue
color, leaf shape, transpiration rate, canopy morphology, and plant density as well as variation in the

interaction of solar radiation with plants (West et al., 2003).



2.4 IMAGE PROCESSING

Color information is very important for feature
extraction. There are different color spaces, such as
RGB (red-green-blue) and HSV (hue saturation value).
The RGB color format is common in digital images since
it possesses compatibility with computer displays.

However, a major drawback of the RGB space is that it

anjep >

is not perceptually uniform. Therefore, uniform

quantization of RGB space gives perceptually

redundant bins and perceptually uniform holes in the

Figure 2: HSV color space

color space. Ordinary distance functions defined in RGB
space will be unsatisfactory since perceptual distance is a function of position in RGB space (Xin, Zhou,

& Zheng, 2006). The HSV color space is commonly used in agriculture image analysis.

One aspect of image processing is to split the image into multiple distinct regions based on their
similarity concerning some spatial or spectral properties, to reduce the image complexity for further
analysis (Wu & Sun, 2013). Image segmentation algorithms have been developed based on
threshold, clustering, morphological operations, edge or contour detection and watershed
transformation. All these techniques can adequately perform segmentation on a single wavelength
image or a monochromatic image with a scalar intensity value (spatial properties). Typically, the
easiest way to perform image segmentation in the spatial domain is by using threshold methods
(Mishra et al., 2017). These methods use different color spaces for thresholding (Zemmour et al.
2019).

2.5 SPECTRAL SENSORS

Reflectance is defined as the ratio between the returned radiation by that surface and the radiation
received to the surface. The ratio is influenced by the chemical characteristics of the object, the micro

topographical surface of the object and the incident's angle of the light source.

In the earth's atmosphere, water vapor absorbs many wavelengths of IR energy, while others are not
absorbed. Those sections of the electromagnetic spectrum that it does not absorb, are like windows

in the atmosphere, allowing electromagnetic energy to flow freely in and out of the system.

It has been suggested that spectral derivatives have important advantages over spectral reflectance,
such as their ability to reduce variability due to changes in illumination reflectance (Blackburn, 2007).
A Savitzky—Golay filter is a digital filter that can be applied to a set of digital data points for the
purpose of smoothing the data, that is, to increase the precision of the data without distorting the

signal tendency (Savitzky & Marcel, 1964).



2.5.1 VEGETATION SPECTRAL BEHAVIOR
Spectral information is related to the chemical composition of the plant, i.e., its physiological status

(Behmann et al., 2015). The wavelengths are defined as follows:

Blue - wavelengths under 500nm
Green - wavelengths between 500nm and 600nm
Red - wavelengths between 600nm and 700nm

NIR - wavelengths between 700nm and 1000nm

o O O O O

SWIR - wavelengths above 1000nm.

The visible range (VIS 400 to 700 nm) is mainly influenced by leaf pigment content, the near-infrared
reflectance (NIR 700 to 1,000 nm) depends on the leaf structure, internal scattering processes, and
on the absorption by leaf water, and the short-wave infrared (1,000 to 2,500 nm) is influenced by the

composition of leaf chemicals and water (Jacquemoud & Ustin, 2001).

Various combinations between these wavelengths are defined as Index Vegetation (Xue & Su 2017).
The index is constructed as a numerical value that defines the power of a general phenomenon, which
is too complex to break down into specific known characteristics, found to be well correlated with
various vegetation parameters including green leaf area, biomass, percent green cover, productivity,
and photosynthetic activity (Huete, 1988). The vegetation indices should maximize their sensitivity
to the physical parameters of the plant and normalize external influences (such as the angle of the
sun), normalize internal effects (such as the return of radiation not from the measured object)
(Bannari et al., 2009). A specific biophysical index that can be measured in order to conduct quality
control of the index. The most common of these indices utilize red and near infrared canopy
reflectance's or radiances in the form of ratios (normalized difference and ratio vegetation indices)

or in linear combination.
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Figure 3: Typical spectral reflectance curve for vegetation image (source: gsp.humboldt.edu)



Each material reflects differently the electromagnetic radiation (Figure 4). For vegetation, there is a
known difference between the red spectrum (around 650 nm) and the NIR spectrum (around 750

nm) reflected radiation due to chlorophyll characteristics.
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Figure 4: Spectral reflectance (a) of corn (b) of wheat

2.5.2 HYPERSPECTRAL IMAGING

Hyperspectral sensing is the ability to acquire information from an area by separating the spectral
dimension of the electromagnetic radiation returning from the area into narrow and continuous
bands (Shaw & Manolakis 2002). An HSI (Hyper Spectral Imaging) system integrates a spectrograph
that records reflectance in a wide range of the spectrum, including the ultraviolet (UV), visible (VIS)
and near-infrared (NIR) into a digital sensor. Data is generated in the form of a 3D spatial map of
spectral variation: the first two dimensions provide the spatial information and a third-dimension
accounts for the spectral information (Mishra et al., 2017) (Figure 5). For each wavelength there is a

separate matrix indicating the spectral reflectance at each point in the image.

Being an integration of imaging and conventional spectroscopy, hyperspectral images obtain
complementary information from both domains. The conventional spectroscopy exploits the fact
that all materials reflect, absorb, and emit electromagnetic energy, at specific wavelengths, in
distinctive patterns related to their molecular composition (Manolakis & Shaw 2002). The imaging
provides spatial information and enables the use of fast and efficient image algorithms for
classification. In combination, hyperspectral images have the potential to extract integrated spatial
and spectral information related to the plant's functional dynamics regarding both structure and
physiology (Mishra et al., 2017). The application of HSI can be found in diverse domains of research

such as medical (Lu & Fei 2014), remote sensing (Goetz, 2009), food quality and safety control (Feng



& Sun 2012), archaeology and art conservation (Liang, 2012), crime scene detection (Schuler et al.
2012), etc.

Sub-images
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-

Figure 5: Example of hyperspectral image acquired from a green leaf
(a) Stack of narrow band sub- images forming a 3-D hypercube
(b) Reflectance spectrum of a particular pixel (Mishra et al., 2017)

2.5.2.1 Noise extraction
Hyperspectral images can be very noisy, and the amount of noise may differ from band to band
(Karami, Heylen, & Scheunders, 2015). Therefore, noise reduction is an important preprocessing step
to analyze the information in the hyperspectral image (Mishra et al., 2017). The signal-to-noise ratio
(SNR) is a measure that compares the level of a desired signal to the level of background noise. The

definition models SNR based on the mean signal of the time series and the standard deviation of the

noise in the time series, SNR = Gi As such, the global signal level, comprised of the baseline and
N

activation, is related to the noise.

2.5.2.2 Hyperspectral imaging in agriculture
In agriculture, vegetation monitoring has been studied using hyperspectral images for many years
(Blackburn, 2007), and has motivated the use of HSI for exploring plants at close range. Individual
plant pixels captured by HSI provide vast spectral information (multiple wavelengths). Various
emerging applications of hyperspectral imaging (Table 1) HSI are abiotic stress detection (Gowen et
al. 2009; Rapaport et al. 2015), biotic stress detection (Bauriegel et al., 2011; Bravo et al., 2003),
species identification (Kumar et al. 2010), foliar biochemistry estimation (Yu et al., 2014) and ripeness

classification (Lle6 et al., 2011).
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2.6 CLASSIFICATION

2.6.1 GENERAL

Classification algorithms are predictive calculations used to assign data to preset categories by
analyzing sets of training data. Classification algorithms in machine learning use input training data
to predict the likelihood that subsequent data will fall into one of the predetermined categories
(Kotsiantis et al., 2006). There are various types of classification algorithms: logistic regression, naive
bayes classifier, K-nearest neighbors, decision tree (include random forest), support vector machines
(SVM) and convolutional neural network (CNN) etc.

2.6.2 RANDOM FOREST

Random forest (RF)algorithm is an ensemble method for classification and regression that operates
by constructing a multitude of decision trees at training time and outputting the class that is
the mode of the classes (classification) or mean prediction (regression) of the individual trees (Akar
& Gungor, 2012). This strategy makes the random forest algorithm good in accuracy, it is also very
fast and robust against overfitting, and it is possible to form many trees (Akar & Glingor, 2012). The
significant advantages of random forest algorithms using multispectral images is the accuracy (Ghose,
et al. 2010). The performance of RF algorithm using multispectral images revealed their advent (e.g.,
detect the effects of oil pollution on vegetation (Ozigis et al., 2020); detect tobacco mosaic virus, Zhu

et al., 2016) and hence it was employed in this research.
To initialize the RF algorithm, three parameters must be defined:

o The maximum depth of the trees.
o The number of features to consider when looking for the best split.

o The number of trees in the forest.
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Spectral

Applications | GT Plants Domain Platform Range (nm) | Features Data Analysis | Reference
Abiotic stress Greenhouse, | Ground-based
Detection Water status | Grapevine vineyard system 400-1,700 PLS (Rapaport et al., 2015)
Abiotic stress Ground-based
Detection Freeze Mushroom Laboratory system 400-1,000 PCA (Gowen et al. 2009)
Biotic stress | Infection Ground-based
Detection estimated Wheat Laboratory system 400-1,000 HBI PCA (Bauriegel et al., 2011)
Biotic stress Infection Ambient Self-made 543, 630, 750, 861
Detection estimated Wheat conditions buggy 460-900 nm F-test (Bravo et al., 2003)
Foliar 992, 756, 749, 918,
biochemistry | Chemical Mobile 909, 921, 758,912
estimation analysis Pepper Laboratory platform 400-1,000 nm PLS (Yuetal., 2014)
Foliar
biochemistry | Nitrogen Ground-based (Onoyama, Ryu,
estimation Content Rice Field system 400-1000 PLS Suguri, & lida, 2013)
Host-
pathogen Ground-based
Phenotyping | interactions | Barley Greenhouse | system 400-1000 SivM (Kuska et al., 2015)
Biochemical (Ge, Bai, Stoerger, &
Phenotyping | traits Maize Greenhouse 550-1750 PLS Schnable, 2016)
Ripeness Ground-based (Wei, Liu, Qiu, Shao, &
classification | Ripeness Persimmon Laboratory system 400-1000 518, 711, 980 nm SPA He, 2014)
Ripeness
classification | Ripeness Peach Laboratory 400-1000 Ind2 ANOVA (Lled et al., 2011)
Species Ground-based
identification | Species Eucalyptus Laboratory system 400-2400 550, 630, 800 nm F-test (Kumar etal. 2010)
Species Tree - honey Urban (Sugumaran & Voss,
identification | Species locust, maple, oak | environment | Airborne 400-980 LiDAR 2007)
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3.1 OVERVIEW

This section presents:

o The data collection process which included two experiments.

o The algorithms used to derive significant wavelengths for Fusarium detection
o The method developed to extract information from hyperspectral images
o

Classification algorithms developed.

Spectral measurements were collected using two different systems:
o Spectro-Radiometer (ASD), that provides the spectral reflectance of the plant at a single point.
o A hyperspectral camera that provides a multi-dimensional image of the spectral reflectance

of the whole plant.

3.2 EXPERIMENTS

Data was collected from two experiments conducted at Evogene’s research facilities in central Israel
(31° 52’ 55.80” N 34° 50’ 30.77” E), in June 2019 and in November 2019.

3.2.1 PLANT MATERIAL

Commercial corn seeds (7210) were inoculated with Fusarium and germinated in a greenhouse for a
period of 3 weeks. In each experiment, three treatments were applied at sowing in order to create
variation in the disease severity level of the plants. Three levels of infection were created by
drenching with spores of Fusarium Graminearum. In addition, a control group was sown, these seeds
were not infected and used as a control group. The seeds were germinated in 380 ml pots. The
number of seeds that sowed in each experiment and in each treatment described in Table 2.Also the

number of seeds germinated and sampled.

Exp. 1 - June 2019 Exp. 2 - November 2019

Treatment Sown Germination | Treatment Sown Germination
Fus 1075 24 21 Fus 1076 50 34

Fus 1073 24 23 Fus 1075 50 43

Fus 1072 24 20 Fus 107N 50 36
Untreated 24 24 Untreated 50 49

Total 96 87 Total 200 162

Table 2: Plant material from the two experiments according to the different treatments

13



In each experiment the greenhouse temperature was maintained at 24+2°C during the day and at
20+2°C during the night. Drip irrigation with no fertilization (inhibits fusarium infection) was applied,

with the irrigation frequency defined according to plot weight at 50% water content.

3.2.2 EXPERIMENTAL AND MEASUREMENT PROCEDURE

In each experiment, the plants were sampled 21 days after seeding,
defined as stage V2 according to the BBCH scale (Lancashire et al.,
1991). The sampling was conducted between 09:00 to 12:30 local
time (UTC-2). At each sampling day, all plants were sampled with
both the spectro-radiometer and with the hyperspectral camera.
One day after the sampling day, 22 days after seeding, the roots of
the plants were exposed and the disease severity level was

manually classified into 5 levels by an agronomist expert where 0 is

healthy, 5 is an infected plant (Figure 7).

Figure 6: RBG image of plant
21 days after seeding

Healthy Black dots on Black dots on Large stains on Large stains on Rotten parts/

root root and stem  root root and stem rootless/ stem less

Figure 7: Plant labelling protocol for different disease levels according to plant root status.

Due to the small number of samples and the imbalance between the samples at each level (described
in Table 3, the number of infestation levels were aggregated to infected and healthy: levels 0 and 1

were aggregated to healthy, and levels 2 to 5 were aggregated to infected.
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3.2.2.1 Experiment 1

This experiment performed in June 2019 included 96 plants of which 88 germinated.

Treatment Number of Number of Number Number | Number Number Number | Number
sown plants | germinated of plants | of plants | of plants | of plants | of plants | of plants
plants that that that that that that
labeled labeled labeled labeled labeled labeled
asDS=0 | asDS=1 | asDS=2 |asDS=3 | asDS=4 | asDS=5
Fus 10r5/6 | 24 21 0 3 8 9 1 0
Fus 1073/ 5 24 23 0 1 11 9 2 0
Fus 1072/ 4 24 20 1 4 5 7 2 1
Untreated 24 24 10 12 2 0 0 0
Total 96 88 11 20 26 25 5 1
Table 3: Distribution of disease levels by treatment, experiment 1

The disease severity distribution (Table 3) reveals imbalance between the different disease levels of

the plants.

Each plant was sampled once with the ASD and twice with the hyperspectral camera. After all the

plants were sampled once, they were all sampled again. This enabled to enlarge the dataset for

training the classification algorithms.

3.2.2.2 Experiment 2

The experiment performed in November 2019

included 200 sown plants sown, of which 162

germinated.
Treatment Number of Number of Number | Number | Number | Number | Number | Number
sown plant germinated of plants | of plants | of plants | of plants | of plants | of plants
plants that that that that that that
labeled labeled labeled labeled labeled labeled
asDS=0 | asDS=1 | asDS=2 | asDS=3 | asDS=4 | asDS=5
Fus 1075/ 6 50 34 1 4 8 12 9 0
Fus 1073/ 5 50 43 3 1 18 11 8 2
Fus 1072/ 4 50 36 3 4 9 11 9 0
Untreated 50 49 46 3 0 0 0 0
Total 200 162 53 12 35 34 26 2
Table 4: Distribution of disease levels by treatment, experiment 2

In this experiment there was also no balance between the different disease levels of the plants. There

are more plants with high disease severity level (2- 5) than plants with low disease level (0, 1). Despite

the aggregation of the level of disease, there is no balance between the 2 classes- infected and

healthy.
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3.2.3 SPECTRAL MEASUREMENT SYSTEM
3.2.3.1 Spectro-Radiometer (ASD) reflectance

Spectral measurements were performed by point spectral measurements with a spectro-radiometer
(ASD FieldSpec 4 hi-res, ASD Inc. Malvern Panalytical, Boulder, Colorado, USA) with a 25° field of view
in the range of 350-2500 nm with 3 nm spectral resolution in the visible and near- infrared (VNIR)
range and 8 nm in the short- wave infrared (SWIR) range. All measurements were conducted on the
last leaf that was fully developed, at fixed locations at approximately 10 mm distance from the leaf

surface, resulting in an effective sampling area of about 60 mm?

A 100 mm diameter spectralon plate was used as a white reference, to obtain reflectance curves.
Each recorded spectrum was the average of four sequential measurements at the same spot, where
each measurement was the average of 30 full spectrum scans. Total acquisition time for each leaf

was about 10 s.

3.2.3.2 Hyperspectral images
Spatial spectral measurements were performed by the V10E hyperspectral camera (SPECIM, Oulu,
Finland). With a CMOS detector in the VIS and VNIR ranges of 400-1,000 nm. Full spectral range can
be acquired with 150 fps at 1,312 spatial location sand up to 100 Hz with higher spatial resolution of
1,775 pixels. The spectral resolution is 3 nm, and the maximum imaging size is 1,312 x 1,775 (spatial
pixels) pixels, each pixel size is 8 x 8 um. All measurements were conducted at locations at
approximately 1,500 mm distance from the plant with black background (black Foam Sheet). A 100
mm diameter spectralon plate was used as a white reference, to obtain reflectance curves in each

image. Total acquisition time for each plant was about 40s.

10 mm ? ‘-x‘_‘ Black

. || distance 2 background @ :

last fully camera on [
developed ! tripod '
leaf [

Figure 8: Experiment setting (a) ASD measurement (b) Hyperspectral images measurement
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3.3 ALGORITHEMS
The image processing and analysis were performed in Python, RStudio, and MATLAB environments.

The different algorithms (Figure 9) , for both the data from ASD and the images from the hyper-
spectral camera, were developed using data combined from the two experiments. The following
analyses were performed with details in ASD (chapter 4) and hyperspectral camera (chapter 5).

3.3.1 SPECTRO-RADIOMETER REFLECTION ANALYSIS (ASD)

The ASD data was used to: (1) derive the most significant wavelengths for Fusarium detection; (2)
develop algorithms to classify between infected and healthy plants (based on these wavelengths).

(1) Significant wavelengths were determined with several methods:

1. T-test

Analysis of Variance (Anova)

Stepwise regression

Random forest

Partial Least Squares Regression (PLSR)

vk wN

(2) Two algorithms to classify between infected and healthy plants:
1. Logistic regression
2. Random forest
3.3.2 HYPERSPECTRAL IMAGES ANALYSIS
The hyper-spectral image was used to develop algorithms to classify between infected and healthy
plants. Random forest algorithms were composed using different features from the multispectral

images.

Find significant

Develop

classification
algorithms

Using the ASD data
Algorithms:

T-test

wavelengths for
Fusarium detection

L Using the ASD data Using the hyperspectral images
2. Anova_ . Algorithms: Algorithm:

3. Stepwise regression 1. Logistic regression 1. Random forest

4. Random forest 2. Random forest

5. PLSR

Figure 9: Flowchart of the development process

17



3.4 PERFORMANCE MEASURES

The performance of the various classifiers was assessed using leave-one-out [LOO] cross validation
method. LOO cross-validation is a special case of cross-validation where the number of folds equals
the number of instances in the data set. is applied once for each instance, using all other instances
as a training set and using the selected instance as a single-item test set similar to jack-knife
estimation (Efron, 1982). In this method all observations are used both to build the classifier and to
evaluate it. The classifier is examined with many observations, however there is no final classifier for

examination. In each iteration a different classifier is built, fitted to the data in that iteration.

The classifiers performance was evaluated by two metrics: accuracy and AUC. The metrics were
calculated using the following values:

e True Positive (TP)- the proportion of actual positives that were correctly identified. The
healthy plants which were predicted as healthy.

e False Positive (FP)- The rate of infected plants which were predicted as healthy.

e True Negative (TN)- the proportion of actual negatives that were correctly identified. The
infected plants which were predicted as healthy.

e False Negative (FN)- The rate of healthy plants which were predicted as infected.

Ground truth
5 ° :
kS,
3 0 TP FP
[=%

1 FN TN

Figure 10: Confusion matrix

Accuracy: Accuracy is defined as the fraction of predictions that the model classified correctly

TP+TN

(qu) ACCUT‘CIC}/ = m
Equation 1

In addition, a 95% confidence interval is calculated for the accuracy to determine whether there is a

statistically significant difference between the different models (Eq.2).

acc * (1 — acc)

confidence interval : [ acc + 1.96 * -

Equation 2
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AUC: The Area under the Curve (AUC) of Receiver Operating
Characteristic (ROC) curve (Tsenkova et al, 2009). The ROC curve
is the plot of True Positive (TP) on y-axis versus False Positive
(FP) on the x-axis. Each point on the curve describes the TP and
FP for a specific probability threshold of classification. The AUC
is the area under this curve, a value that quantifies how the
classifier is capable of distinguishing between classes. The
higher the AUC, the better the classifier is at predicting the
actual value (in our research, distinguishing between infected

plants and healthy plants).
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4.1 DATA

The point spectral reflectance of a total of 162 infected and 97 healthy plants were used for the
classifier development from the two experiments. Each sample includes 2150 wavelengths from the
spectral reflectance of the plant in the range 350- 2,500 nm.

4.2 METHODS

The difference between the classifiers using the entire spectrum of ASD (VIS/NIR/SWIR range, 350 -
2,500 nm) was tested, and compared to classifiers that used only the existing wavelengths in the
hyperspectral camera (VIS/NIR range, 400 - 1,000 nm), using the spectral reflectance and using the

smoothed first derivative of the spectral reflectance.

4.2.1 PRE- PROCESSING
4.2.1.1 Noise reduction

The water vapor atmospheric absorption windows were removed from the data by analyzing the
image obtained from the spectralon plate (Figure 12). Accordingly the following wavelengths of the
water vapor atmospheric absorption windows were removed from the spectral data: 1350-1410nm,
1800-1950nm and 2250-2500nm (Figure 13).

20"
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Figure 12: Spectralon plate Figure 13: Spectral response of white reference

4.2.1.2 Savgol

Spectral derivatives were used to reduce variability due to changes in illumination reflectance
(Blackburn, 2007). To minimize noise from the environment, the first derivative of the spectral

reflectance was calculated, and simultaneous smoothing was applied with a 2 order polynom for
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smoothing and a filter length of 11 (window in which the smoothing and derivation was performed)

wavelengths (using the Savgol function implemented with R software?).

a g
24 cown
80
o -

2 5 °
g g
£, T
L: S g 0
- 20+ ST e
B3 g0
5 °
[ )
© 34 \/\ E I\
0o T
2 e %o,
) 2 U

o v 0

g T

T T T T T m T T T T I
500 1000 1500 2000 2500 E 500 1000 1500 2000 2500

Wavelength (nm) Wavelength (nm)

Figure 14: (a) Spectral reflectance of corn plant
(b) the smoothed first derivative of the spectral reflectance

4.2.2 WAVELENGTH SELECTION

The significant wavelengths for disease detection were selected using T-test, Anova, random forest,
Partial Least Squares (PLS) and stepwise regression.

The importance of each of the wavelengths (the significant wavelengths obtained from the different
methods) was analyzed using stepwise regression on the spectral reflectance (SR data) and the first
derivative of the spectral reflectance of all individual spectra (R1D data). Stepwise regression
considers the relationship between the different wavelengths which together are significant for

Fusarium detection. Each wavelength was rated for its level of importance.

4.2.2.1 T-test
T-test was used to determine at which wavelengths is the most significant difference expressed

(Chaves et al., 2009), between Fusarium infected and healthy plants using Eq.3.

Equation 3

’)?—)?
t = 1 2’
s

When the variance of the two data sets, s1 and s, cannot be assumed to be equal (the size of the

two samples may or may not be equal), the variance of the set, s, is estimated by equation 4.

! https://www.rdocumentation.org/packages/pracma/versions/1.9.9/topics/savgol
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Equation 4

where s;2 is the unbiased estimator of the variance of each of the two sets with n; the number of

samples in set i.

4.2.2.2 Analysis of variance (Anova)
Anova was used to determine at which wavelengths the most significant difference between the six
different disease levels occurs. The F statistic was applied to test whether the population means were

different was calculated as Eq.5.
Equation 5: Analysis of variance

— MSBetween
MSwithin
Where MSE (Mean Square Between) denote the sample variance between groups and MSW (Mean

Square Within) is the sample variance within groups.

4.2.2.3 Random forest
The wavelengths’ importance within the random forest algorithm, was calculated by the “Gini
impurity” metric (Zhi, et al. 2018). Gini impurity is a measure of how often a randomly chosen
element from a set would be incorrectly labeled if it was randomly labeled according to the
distribution of labels in the subset. If we have C total classes and (i) is the probability of picking a

point from the data set with class i, then the Gini Impurity is calculated as:

Equation 6: GINI impurity
c
6= p®x(1-p®)
i=1

The quality of each split was determined by weighting the impurity of each branch. The weight was
defined as the number of elements the branch was divided into by the total number of the elements.
The perfect split will reach impurity of 0. The gain between the Gini impurity of data set and the Gini
impurity after a specific split is defined the “Gini gain”. The higher the Gini gain, the better the split.

4.2.2.4 Partial least squares (PLS)
PLS is a method that uses data compression to reduce the large number of collinear measured
spectral variables, to a few orthogonal latent variables (LV’s) (REF). It is employed in spectral remote
sensing for studying vegetation and soil characteristics (Atzberger et al., 2010). The LVs represent the
relevant structural information, which is present in the reflectance measurements to predict the

dependent variable. PLS regression uses component projection successively to find latent structures
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(REF). Visual inspection of score-plots and validation residual variance plots was used to find the
optimal number of LVs, to prevent over-fitting. In most cases, this procedure can reduce the number

of spectral variables to a few independent LVs.

In the PLS method the most influencing features were selected to maximize the spectrum variance.
To understand which bands contribute more, the variable importance in projection (VIP) score was
calculated (Wold, 1993). VIP scores summarize the influence of individual X-variables on the PLS
algorithm. VIP scores are calculated as the weighted sum of squares of the PLS weights, which take
into account the amount of explained y-variance in each extracted latent variable (dimension/
component) (Chong & T, 2005).

4.2.2.5 Stepwise regression
Stepwise methods for variable selection are widely used in applications. (Yamashita, et al. 2007) used
stepwise regression and applied the Akaike Information Criterion (AIC). AIC estimates the relative
amount of information lost by a given model: the less information a model loses, the higher the
guality of that model. In estimating the amount of information lost by a model, AIC deals with the

trade-off between the goodness of fit of the model and the simplicity of the model.
Equation 7
AIC = 2k — 2In(L)
where, kis the number of estimated parameters in the model and L is the maximum value of
the likelihood function for the model.
4.2.1 CLASSIFICATION ALGORITHMS

4.2.1.1 Logistic regression
Logistic regression is a statistical algorithm that uses a logistic function to model a binary dependent
variable (Figure 15). A binary logistic algorithm has a dependent variable with two possible values,

which is represented by an indicator variable, where the two values are labeled "0" and "1".
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Figure 15: Logistic regression curve showing probability to be infected versus the spectral reflectance
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4.2.1.2 Random forest

All combinations of the following values of the three different parameters that define the RF

algorithm were examined:

o max_depth — The values that tested were [3, 4, 5, 6, 7].
o max_features — The values that tested were [10, 20, 30, 40, 50, 60, 70, 80, 90, 100].
o n_estimators — The values that tested were [5, 10, 15, 20, 25, 30, 40, 50].

Result reveal that the best results (Figure 16) derived according to accuracy and AUC were achieved

for the following values: max_depth=6, max_features=50 and n_estimators=40.

error

2.1

- 2.0

1.9

1.8

Figure 16: The accuracy of the RF classifier for the different parameters’ combinations

4.2.2 SENSITIVITY ANALYSIS
4.2.2.1 Probability classification threshold

The classifiers return the probabilities of belonging to class 1, denoted as ‘infected plant’. The
‘healthy’ plants were derived as those with a predicted probability below 0.5; the ‘infected’ plants
were derived as those with a predicted probability over 0.5. Sensitivity analysis was conducted to

examine the exact threshold that minimizes the accuracy of each classification algorithm.
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4.2.2.2 Number of wavelengths

Sensitivity analyzes were performed for classifiers that used a different number of the significant
wavelengths. Between a classifier that uses one wavelength and a classifier that uses 12 wavelengths,
and a different number of wavelengths between them.

4.3 RESULTS

Figure 17 revealed the 95% confidence interval of each leaves’ spectral reflectance of the plants\ of
the first derivative of leaf spectral reflectance of each disease level. There is no significant different

using the reflectance or using the first derivative of one wavelength between the different disease

levels for both 2 and 6 classes.
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Figure 17: Mean and the 95% confidence interval of leaves’ spectral reflectance of the plants

(a) according to 6 different disease levels (b) according to 2 different disease levels

Mean and the 95% confidence interval of first derivative of leaf spectral reflectance of the plants

(c) according to 6 different disease levels (d) according to 2 different disease levels
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4.3.1 WAVELENGTH SELECTION
4.3.1.1 High resolution spectral data in the VIS/NIR range

A classifier that used the wavelengths in the range of the hyperspectral camera [400- 1000nm] was
examined with wavelengths at 10 nm intervals. Results reveal that some wavelengths are significant
in the different tests, with T-test (2 classes) and Anova (6 classes) showing similar results (Table 5).
Details are presented in Appendix 4.
The significant wavelengths derived from the SR data analysis are:

o 400nm as determined in the T-test, Anova and Random forest.

o 780nm as determined in the T-test method and Anova.
The significant wavelengths derived from the R1D data analysis are:

o 410nm as determined in the T-test method and PLS.

o 950nm as determined in the T-test method, Anova, Random forest and PLS.

Significant wavelengths [nm]

Statistic test SR data analysis R1D data analysis
T-test 940, 820, 900, 850, 780, 880, 400 | 950, 750,410, 810, 720, 900, 780
Anova 940, 820, 850, 880, 780, 750, 400 | 950, 750, 410, 720, 810, 440, 680

Random forest | 700, 600, 520, 460, 760, 640, 400 | 740, 950, 860, 430, 400, 550, 670

PLS 400, 700, 470, 500, 440, 630, 600 | 770,950, 740, 410, 460, 550, 680

Table 5: Significant wavelengths in the VIS/NIR range
according to the various methods for disease detection

Ranked results from the combination of the wavelengths from the different methods (Table 6) reveal
that 400nm was found as the most significant wavelength for disease detection using the SR data, (it
was found significant according to three methods: T-test method, Anova and Random forest). This
wavelength is mainly influenced by leaf pigment content. 770nm was found as the most significant
wavelength for disease detection using the R1D data (it was found significant according to PLS). This

wavelength depends on the leaf biology structure.
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SR data: R1D data:

Wavelength [nm] | Importance Wavelength [nm] | Importance
400 6.021 770 6.014
700 3.038 410 5.536
750 2.979 460 4.041
440 2.978 860 3.683
900 2.968 700 3.497
820 2.862 720 3.393
630 2.726 480 3.198
500 2.714 900 3.024
460 2.650 550 2.903
940 2.466 450 2.288
730 2.368 680 1.904
760 2.28z 780 1.887
640 2.107 430 1.655

Table 6: The aggregated significant wavelengths for disease detection in the VIS/NIR range
4.3.1.2 High resolution spectral data in the VIS/NIR/SWIR range

A classifier that used the wavelengths in the range of the hyperspectral camera [350- 2500] was
examined with wavelengths at 10 nm intervals. Results reveal that some wavelengths are significant
in the different tests, with T-test and Anova showing similar results (Table 7). The significant
wavelength derived from the SR data analysis was 400nm as determined in the random forest and
PLS algorithm. Details are presented in Appendix 5.
The significant wavelengths derived from the R1D data analysis are:

o 750nm as determined in the T-test, Anova and PLS.

o 1000nm as determined in the T-test method, Anova and PLS.

o 1150nm as determined in the T-test Anova and Random forest.

Significant wavelengths [nm]
Statistic test SR data analysis R1D data analysis
T-test 940, 380, 820, 1120, 900, 850, 780 1670, 1280, 1150, 750, 1000, 2050,
950
Anova 940, 820, 850, 880, 780, 380, 750 1670, 1000, 950, 2050, 750, 1150, 410
Random forest 360, 2050, 1500, 550, 400, 2000, 460 | 1150, 950, 740, 400, 2050, 1670, 430
PLS 400, 1960, 1420, 670, 700, 470, 1670 | 430, 750, 1420, 1150, 1000, 950, 1670

Table 7: Significant wavelengths according to the various methods for disease detection in the
VIS/NIR/SWIR range
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Ranked results from the combination of the wavelengths from the different methods (Table 8) reveal
that 750nm was found as the most significant wavelength for disease detection using the SR data,
which was found significant only according to Anova. But it has a high correlation to 740nm which
was found as significant in Step regression. 740nm was found as the most significant wavelength for
disease detection using the R1D data, which was found significant according to three methods (T-

test, Anova and PLS. These wavelengths are mainly influenced by leaf pigment content.

SR data: R1D data:
Wavelength [nm] | Importance Wavelength [nm] | Importance
750 6.746 740 6.772
740 6.582 710 5.372
400 5.647 1000 4.221
870 4.360 1670 4.164
850 4.195 1260 3.756
550 3.487 410 2.938
1120 3.287 840 1.832
2050 3.222 950 1.633
1960 2.893 670 1.571
420 2.586 430 1.406
1670 2.386 1150 -

940 2.220 2050 -
1420 2.124 750 -

Table 8: Aggregation of the significant wavelengths in the VIS/NIR/SWIR range for disease detection

4.3.2 CLASSIFICATION ALGORITHMS
4.3.2.1 High resolution spectral data in the VIS/NIR range

A classifier that used 7 wavelengths was compared to a classifier that used the entire range of

wavelengths.

4.3.2.1.1Using 7 wavelengths

The SR data and the first derivative of all individual spectral were used to build a logistic regression
classifier that discriminates between infected and healthy plants using the 7 most significant

wavelengths.
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a Density plot for infected and non-infected plant b Density plot for infected and non-infected plant
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Figure 18: Density plot distributions of the predicted values of the infected and the healthy plants of
logistic regression classifier using 7 wavelengths in the VIS/NIR range
(a) using SR data (b) using the first derivative of all individual spectra

There is difference between the density of the predicted probability of the infected and the density
of the healthy plants as expected (Figure 18). The density of the predicted probability of the

‘infected’ centered around predicted probability 1, while the ‘healthy’ center lower.

SR data R1D data

Healthy Infected Healthy Infected
Predicted as ‘healthy’ | TP — 57 FP-21 TP -60 FP-21
Predicted as ‘infected’ | FN — 40 TN -141 FN -37 TN -141

sensiyivity specificity sensiyivity specificity

TP _ TN _ TP _ TN

T TP+FN T TN+ FP T TP+FN T TN+ FP

27 5 —141—087 —60—0618 —141—087

So7 = 0987 | =75 =087 1 =5;=0 =162~ "

Table 9: Confusion matrix of logistic regression classifier using 7 wavelengths in the VIS/NIR range
The classification of the infected plants is consistently better than healthy plant classification (Table
9) in both data sets, SR and R1D. This is probably due to the imbalanced data set (there are 162

infected plants, compared to 97 infected plants).

Performance measure SR data R1D data
AUC 0.729 0.744

198 _ 201 _
Accuracy /259 = 0.764 /259 = 0.776

95% confidence interval

0.725 0.826

95% confidence interval
0.713 0.816

Table 10: Logistic regression classifier using 7 wavelengths results in the VIS/NIR range

The classifier that used the R1D data is better than the classifier that used the SR data by 101.5% in

accuracy. But, there is no significant difference (Table 10).
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4.3.2.1.2Model that uses all wavelengths

The SR data and the first derivative of all individual spectral (61 features total) were used to build a

random forest classifier.

0.4 1

0.2 1

0.0

Ds

— 0

T T T
-0.25 0.00 0.25

T
0.50
Probability

T
0.75

0.0

Ds

— 0

T T
1.00 1.25

T
-0.25

T T T T
0.50 0.75 1.00 1.25

Probability

T T
0.00 0.25

Figure 19: Density plot distributions of the predicted values of the ‘healthy’ and the ‘infected’ plants of
random forest classifier using all wavelengths in the VIS/NIR range
(a) using SR data (b) using the first derivative of all individual spectra

There is difference between the density of the predicted probability of the infected and the density

of the healthy plant as expected (Figure 19). The density of the predicted probability of the ‘infected’

centered around predicted probability 1, while the healthy center lower. In addition, the prediction

of the infected plants is consistently better than healthy plant prediction. The bias probably exists

due to the imbalanced data set (there are 162 infected plants, compared to 97 healthy plants).

Visual analysis reveals (Figure 19) that if the threshold would be set to be higher than 0.5 (the cut

point between the graphs of the infected and healthy plants), the accuracy could be better.

Sensitivity analyses for different thresholds are detailed in section 4.4.1, revealing that a threshold
of 0.543 in SR data improves the results by 1.7% in accuracy, and a threshold of 0.57 in R1D data

improves the results by 1.1% in accuracy.

Performance measure SR data R1D data
AUC 0.65 0.757

172 _ 181 _
Accuracy /59 = 0.664 /759 = 0.698

95% confidence interval

95% confidence interval

0.606 0.721

0.643 0.754

Table 11: Random forest classification classifier results using all wavelengths in the VIS/NIR range
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The classifier that using the R1D data is better by accuracy than classifier that using the SR data by
105.23%. But, there is no significant difference (Table 11).

In addition, results reveal that there is no advantage to using the wavelengths in the entire range
compared to using only 7 wavelengths (Table 10 _+ Table 11). This may be due to the low number of
samples which leads to overfitting when using a large number of features. For the SR data, the
classifier that used 7 wavelengths is better than the classifier that used all wavelengths by 15.1% by
accuracy. But, there is no significant difference. For the R1D data, the classifier that used the 7
wavelengths is better than the classifier that used all wavelengths by 111.05% as define by accuracy.

But, there is no significant difference.

4.3.2.2 High resolution spectral data in the VIS/NIR/SWIR range

Classifier that used 7 wavelengths was compared to a classifier that used the entire range of

wavelengths.

4.3.2.2.1Using 7 wavelengths
The SR data and the first derivative of all individual spectral were used to build a logistic regression
classifier that using the 7 most significant wavelengths: 400, 550nm that are mainly influenced by
leaf pigment content, 740, 750, 850, 870nm that depend on the leaf biology structure and 1120nm

that is influenced by the composition of leaf chemicals and water.

a Density plot for infected and non-infected plant b Density plot for infected and non-infected plant
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Figure 20: Density plot distributions of the predicted values of the infected and the healthy plants of
logistic regression classifier using 7 wavelengths in the VIS/NIR/SWIR range
(a) using SR data (b) using the first derivative of all individual spectra
Here also, we received the same trend as in the VIS/NIR range. There is difference between the

density of the predicted probability of the infected and the density of the healthy plant as expected
(Figure 20). The density of the predicted probability of the infected centered around predicted
probability 1, while the healthy center lower. In addition, the prediction of the infected plants is
consistently better than healthy plant prediction. The bias may be existing because the data set is

not balanced (there are 162 infected plants, compared to 97 healthy plants).
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Visual analysis reveals (Figure 20) that if the threshold would be set to be higher than 0.5 (the cut

point between the graphs of the infected and healthy plants), the accuracy could be better.

Sensitivity analyses for different thresholds are detailed in section 4.4.1, revealing that a threshold

of 0.635 in R1D data improves the results by 3.8% in accuracy.

SR data R1D data

Healthy Infected Healthy Infected
Predicted as ‘healthy’ | TP —43 FP-21 TP -63 FP -18
Predicted as ‘infected’ | FN — 54 TN -141 FN -34 TN -144

sensiyivity specificity sensiyivity specificity

TP _ TN _ TP _ TN

" TP+FN " TN+ FP " TP+FN " TN+ FP

43 " 141 63 . 144

=5; = 0443 | =1 5=087 o7 = 0649 | =725=10.89

Table 12: Confusion matrix of logistic regression classifier using 7 wavelengths in the VIS/NIR/SWIR range

The classification of the infected plants is consistently better than healthy plant classification (Table
9) in both data sets, SR and R1D. This is probably due to the imbalanced data set (there are 162
infected plants, compared to 97 healthy plants).

Performance measure SR data R1D data
AUC 0.657 0.769

184 _ 207 _
Accuracy /259 = 0.71 /759 =0.8

95% confidence interval

95% confidence interval

0.655 0.765

0.75 0.848

Table 13: Logistic regression classifier using 7 wavelengths results in the VIS/NIR/SWIR range

The classifier that used the R1D data is better than the classifier that used the SR data by 112.5% in

the accuracy. But, there is no significant difference (Table 10).

In the SR data the classifier that used the 7 wavelengths in the VIS/NIR range is better than the
classifier that used the 7 wavelength from the VIS/NIR/SWIR range by 107.6% in the accuracy. But,

there is no significant difference.

In the R1D data the classifier that used the 7 wavelength in the VIS/NIR/SWIR range is better than

the classifier that used the 7 wavelength in the VIS/NIR range by 102.98% in accuracy. But, there is

no significant difference.
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4.3.2.2.2Using all wavelengths
The SR data and the first derivative of all individual spectral (169 features total) were used to build a

random forest classifier that discriminates between infected and healthy plants.
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Figure 21: Density plot distributions of the predicted values of the infected and the healthy plants of
random forest classifier using all wavelengths in the VIS/NIR/SWIR range
(a) using SR data (b) using the first derivative of all individual spectra

There is difference between the density of the predicted probability of the infected (centered around
1) and healthy plants centered lower as expected (Figure 21). In addition, classification of the
infected plants is consistently better than healthy plant prediction. The bias may be due to the

unbalanced data set (there are 162 infected plants, compared to 97 healthy plants).

Performance measure SR data R1D data

AUC 0.647 0.656
161 _ 170 _

Accuracy /259 = 0.62 /259 = 0.656
95% confidence interval 95% confidence interval
0.56 0.68 0.59 0.71

Table 14: Random forest classifier results using all wavelengths in the VIS/NIR/SWIR range

The classifier that used the R1D data is better by accuracy than classifier that using the SR data by

% * 100 = 105.6%. But, there is no significant difference (Table 14).

Results reveal that there is no advantage to using the wavelengths in the entire range compared to

using only 7 wavelengths (Table 13 + Table 14). This may be due to the low number of samples causing
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overfitting when using a large number of features. In the SR data the classifier that used the 7
wavelength is better by accuracy than classifier that using the entire range by % * 100 = 114.28%.
But, there is no significant difference. In the R1D data the classifier that using the 7 wavelength is
better by accuracy than classifier that using the entire range by % * 100 = 121.76%. But, there is
no significant difference.

In addition, it can be seen that there is no significant difference between the classifier that use the
all wavelengths in the High resolution spectral data in the VIS/NIR/SWIR range to the classifier that
use the High resolution spectral data in the VIS/NIR range (Table 11 + Table 14).

In the SR data the classifier that using the entire range from the VIS/NIR range is better by accuracy
than classifier that using the entire range from the VIS/NIR/SWIR range % * 100 = 106.8%. But,

there is no significant difference. In the R1D data the classifier that using the entire range from the

VIS/NIR range is better by accuracy than classifier that using the entire range from the VIS/NIR/SWIR

range % * 100 = 106.47%. But, there is no significant difference.

There is not enough data to determine that there is a significant difference between the classifiers

that used also the SWIR range compared to the classifiers that used only the VIS and NIR ranges.

4.4 SENSITIVITY ANALYSIS

4.4.1 PROBABILITY CLASSIFICATION THRESHOLD

Analysis reveals (Table 17) that for each classifier different threshold should be defined for
classification between infected and healthy plants in order to maximize the accuracy. Etc. the random
forest using all wavelengths in the VIS/NIR/SWIR range classifier revealing that a threshold of 0.499

in SR data improves the results by 6.8% in accuracy.
4.4,2 NUMBER OF WAVELENGTHS
4.4.2.1 High resolution spectral data in the VIS/NIR range

Results reveal same trend for the SR data and the first derivative data. using 4 wavelengths
significantly improves the results of classifiers than classifiers that using less than 4 wavelengths
(Figure 22).

4.4.2.2 High resolution spectral data in the VIS/NIR/SWIR range

Results reveal same trend for the SR data and the first derivative data. The more wavelengths the

model is based on, the better it is classified (in both, accuracy and AUC) (Figure 23).
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Algorithm Data Accuracy Classification Accuracy Improvement
analyses | with 0.5 threshold that rate
threshold maximizes
accuracy
Logistic regression | SR 198/259 0.51 199/259 199 + 100
using 7 = 0.764 =0.768 198
wavelengths in the 2= éOO.S Yo
VIS/NIR range R1D 201/,cq | 0.52 203/)59 % 100
=0.776 = 0.783 = 100.9%
Ra'ndom forest SR 172/259 0.543 175/259 175 100
using all = 0.664 =0676 | 172
wavelengths in the = 101.74%
VIS/NIR range R1D 181/259 0.57 183/259 12? 100
= 0.689 = 0.706 —1011%
Logistic regression | SR 184/259 0.5 - -
using 7 = 0.71
wavelengths inthe pip 207 0.635 215 215
VIS/NIR/SWIR B 0/8259 ~ 0/82359 507 * 100
range - o = 103.86%
Ra.ndom forest SR 161/259 0.499 172/259 172 « 100
using all =062 = 0.664 161 .
wavelengths in the = 106.8%
VIS/NIR/SWIR R1D 170/,cq | 0499 176/,c0 | 179, 100
range = 0.656 = 0.62 17903 S,
— . 0

Table 15: Sensitivity analysis by changing the threshold value
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SR data: R1D data:
1 1
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
0 0
0 5 10 15 0 5 10 15
—®—auc —@—accuracy —@—auc —@®—accuracy

Figure 22: Sensitivity analysis of classification with increasing number of wavelengths in the in the
VIS/NIR range (a) using SR data (b) using the first derivative of all individual spectra

a b
1 1
0.8 0.8
0.4 0.4
0.2 0.2
0 0
0 5 10 15 0 5 10 15
—@®—auc +aCCUraCy —@—auc +aCCUraCy

Figure 23: Sensitivity analysis of classification classifiers with increasing number of wavelengths in the
VIS/NIR/SWIR range (a) using SR data (b) using the first derivative of all individual spectra

36



5.1 DATA

Hyperspectral images from the two experiments were used for the classifier development (208
infected and 126 healthy plants). Each image included the spectral reflectance of all wavelengths in
the range 400- 1,000 nm with a total of 840 bands. The length of each image was 1600 pixels; the
width of the images was changed manually to include the entire plant (different boundaries were set

for each image according to the acquired plant image).
5.2 METHODS

5.2.1 NOISE EXTRACTION
The SNR was calculated as follows (Figure 24) for each image for each wavelength based on the mean
and standard deviation calculated from 10 x 10 (100) pixels from the white reference in the images.

The average SNR was calculated from the aggregation of all images for each band.

Input: images with hyper cube with the range of 400 to 1000 nm
Output: images with hyper cube with all wavelengths with SNR > 12

for i from 400 to 1000:
for image in images:
WR = 10*10 pixels from the center of the white reference
mean[i, image] = mean(WR pixels in wavelength 1)
std[i, image] = std(WR pixels in wavelength 1)
SNR[i, image] = mean / std

SNR[i] = mean(SNR([j, :])

if (SNR[i]) < 12:
removed from the spectral data in all images

return images hyper cube with all wavelengths with SNR > 12

Figure 24: SNR calculation

37



100
90
80
70
60
50
40
30
20
10

0 200 400 600 800 1000

Figure 25: signal-to-noise ratio for each band

The threshold was set to SNR = 12, this value was determined by the noise in a black reference
image, where the reflectance should be 0. The bands (wavelengths) with a lower SNR 740- 840 (930-

1,005nm) were removed from the spectral data.

5.2.2 PRE- PROCESSING

Pre-processing included several steps for additional noise reduction and reduction of the image size
(Figure 26).

Cropping
Save RGB Find WR Normalize image in
image contour image space
Convert Find Non-plant Save
to HSV plant pixel multispectral
contour values =0 image with 7
bands
Figure 26: Hyperspectral images pre-processing flowchart
5.2.2.1 Segmentation
Segmentation was performed using seven steps as detailed below:
Step1- Save the RGB images from the hyperspectral images.
Step2- Converted to HSV color space (hue, saturation, value).
Step3-  Multiple masks, a low threshold and a high threshold were applied for hue, saturation

and value in order to find the pixels with these values using “inRange” functions from “cv2”
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library. Any pixel within these thresholds was set to 1 and the remaining pixels was set to
zero.
The HSV threshold of the plants includes hues of green and brown:
o Lower threshold —[10, 50, 15]
o Upper threshold —[70, 255, 255]
The HSV threshold of the white reference board includes:
o Lower threshold — [0, 0, 100]
o Upper threshold —[140, 255, 255]
Step4-  From the mask the contours of all the areas in the image that are within the defined
threshold were found with “findContours” functions from “cv2” library.
Step5-  Each contour has the size of the area it delimits. In each image the bigger contour was
the plant/ white reference board.

Step6-  All the pixels outside the counter were converted to 0 in all bands.

5.2.2.2 Normalize image
The hyperspectral images not only acquire information about the plants but also reflects the
influence of nuisance signals coming from illumination effects, the detector sensitivity and the
transmission properties of the optics (Geladi, Burger, & Lesstanderas, 2004). Spectral calibration was

conducted to compensate for these effects by using black and white references (Mishra et al., 2017).

The black image was acquired when the camera shutter is completely turned off. The white reference
was obtained on each image by a white surface board, a 100 mm diameter spectralon plate, which

has a uniform, stable and high reflectance surface. These two references were used to correct the

. . . . Irqw—1
raw images by using the following equation: I = w.
white~!dark

where, I is the calibrated reflectance image, I,.4,, is the raw intensity image measured, I ;,,« is the
average intensity of 800 pixels for each column and band of the black reference, and It is the

most common value of the white reference intensity for each band.
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Input: hyperspectral images + dark image
Output: normalized hyperspectral images

for 1 from 400 to 1000:
for w from 1 to 840 (images width):
dark;,, = mean(dark image,,)

for image in images:
WR = white reference pixels
for i from 400 to 1000:
white; = mode(WR;)
for w from 1 to 840 (images width):
for h from 1 to 1400 (image length):

image;\, p—dark; y,

normalized image,,,, = e
W

return normalized images
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Figure 27: Diameter spectralon plate  Figure 28: Histogram of the white reference pixels, band 200

Step7-  Each pixel in the image normalized with this equation. The hyperspectral images were
cropped to the minimum rectangle containing the contour (that contain all plant pixels) and

the non-plant pixels were set to zero.
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Step 1+2- Save RGB image from the hyperspectral Step 3- Applied multiple masks

cube and convert the image to HSV color space

Step 4+5- Find the contour of the plant in image Step 6+7- Normalize image and remove

background

Figure 29: Hyperspectral images pre-processing steps

5.2.3 DATA ANALYSIS

For each hyper-spectral image of a plant, the different pixels of the plant in the image were examined.

Visual analysis was performed in order to examine whether the data from the ASD is similar to the
data from the hyper-spectral camera. The average spectral signature of the plant was examined to
examine if it is similar to the distribution obtained from a single point in the plant from ASD. For each
wavelength, the average value of all the pixels of the plant in the image was calculated and compared
to the ASD value.

The smooth first derivative of the average spectral signature also was calculated from the average
spectral signature. The first derivative of the spectral reflectance was calculated, and simultaneous
smoothing was applied with a filter order of 2 and a filter length of 11 wavelengths (using the

“savgol_filter” function from “scipy” library).

5.2.4 FEATURES

Features 1- 5 were calculated for each channel of the multispectral image. Features 1-3 were
examined based on common features in the literature. The first feature does not use the spatial

information contained in the multispectral image. Features 2- 7 used the spatial information
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contained in the multispectral image. Features 4-5 are based on the Fusarium infection process. The

infection process starts from the roots and continues to the edges of the leaves (Figure 30). Features

6- 7 are related to the shape of the plant (equal in all channels), therefore were calculated once for

each plant.

Figure 30: (a) All plant pixels (b) pixels at the edges of the plant (c) pixels not in edges

Average()) - average reflectance of all plant pixels in the image at wavelength A.

2. SD(A) - standard deviation of all plant pixels in the image at wavelength A.

3. Coefficient of Variation(A) (CV) - Ethe average reflectance of all plant pixels in the

6.
7.

image at wavelength A divided by the standard deviation of all plant pixels in the image
at wavelength A.

Hedges—Hcenter

Discriminability(A) (Disc) - the average reflectance of pixels in the edge

Hall
of the plant (1,qges) Subtraction of the pixels in the center of the plan (pcenter) divided

by the average reflectance of all plant pixels () in the image at wavelength A.

ER(A) - Ledges the average reflectance of pixels in the edge of the plant (peqg4.,) divided

Hcenter

by the pixels in the center of the plan (lsepnter) in the image at wavelength A.
LAI - the number of the plant’s pixels (B. Zhang, et al. 2012)
Height/Width Ratio - the ration between the height to the width of the plant

Features 6- 7 are related to the shape of the plant and therefore were calculated once for each

plant (not calculated for each channel).

8.
0.

LAI - defined as the area of single sided leaves per area of soil (B. Zhang, et al. 2012).
Height/Width Ratio - the ration between the height to the width of the plant
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Total 37 features (5;4ices X 7panas + 2 = 37) for each multispectral image.

5.2.5 CLASSIFICATION ALGORITHMS
The various features from the multispectral image were introduced into a RF algorithm to classify
between infected and health plants. Combinations of three different parameters that define the RF

algorithm were examined:

o max_depth — The values that tested were [2, 3, 4, 5, 6, 7].

o max_features — The values that tested were [5, 10, 15, 20, 25, 30, 35].

o n_estimators — The values that tested were [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 65,
70].

5.2.6 SENSITIVITY ANALYSIS

The classifier was evaluated using data with different bandwidths, which simulate a lower spectral
resolution than that of the camera. Images with bandwidths of 10, 30, 50, and 150 nm were
examined. The narrower the bandwidth, the higher the cost of the sensors. If the classifier is found

to be insensitive to bandwidth, we can lower the cost of sensors significantly.

For each bandwidth, each wavelength, from the 7 wavelengths, Gaussian image calculated using the
images from all wavelengths within the bandwidth. When the bandwidth included wavelengths that
are not within the camera range [400- 1,000nm], the image was calculated with a cut Gaussian and

divided by the weight of the images.

Bandwidth Number of images
10 15

30 41

50 67

150 423

Table 16: The number of images from which the bandwidth image was calculated

5.3 RESULTS

5.3.1 DATA ANALYSES
Visual analysis reveals there is a correlation between the distribution obtained from a single point in
plants from the ASD, and the average distribution of the pixels in the plant obtained from the

hyperspectral images (Figure 31+ Figure 32).

The significant wavelengths for disease detection from the ASD analysis available in the hyperspectral

camera [VIS/NIR range], were used to build algorithm to classify between infected and healthy.
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Figure 31: Mean and the 95% confidence interval of leaves’ spectral reflectance of the plants from ASD
(a) according to 6 different disease levels (b) according to 2 different disease levels
Mean and the 95% confidence interval of first derivative of leaf spectral reflectance of the plants from
ASD (c) according to 6 different disease levels (d) according to 2 different disease level
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Figure 32: Mean and the 95% confidence interval of leaves’ spectral reflectance of the plants from
hyperspectral images
(a) according to 6 different disease levels (b) according to 2 different disease levels
Mean and the 95% confidence interval of first derivative of leaf spectral reflectance of the plants
from hyperspectral images
(c) according to 6 different disease levels (d) according to 2 different disease level

Input: hyperspectral images
Output: average spectral signature of the images

for image in images:
plant = all plant pixels in the image
for i from 400 to 1000:
x; = mean(plant)
plant average spectral signature = x

average spectral signature of the images = plant average spectral signature

The average standard deviation and the geometric feature height/width ratio of the plants in the
images were examined using Anova analysis (Figure 33).
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There is an adjustment, the higher the reflectance the higher standard deviation is (Figure 34). In

addition, according to Anova method there is no significant different between the height/ width ratio

of the different disease severity levels.

group
hesithy

— hesithy

4:‘:
band

Figure 33: Mean and the 95% confidence interval of the standard deviation of the leaves’ spectral
reflectance of the plants
(a) according to 6 different disease levels (b) according to 2 different disease levels
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Figure 34: Mean and the 95% confidence interval of the height/width ratio of the plants
(a) according to 6 different disease levels (b) according to 2 different disease levels

5.3.2 CLASSIFICATION ALGORITHMS

5.3.2.1 Tuning parameters
Results (Appendix 6) reveal that best accuracy and AUC results are obtained for using the
combination of 6 for the following combination of parameters: maximum depth of the trees, 15

features for the best split and 50 different trees by both (Figure 35).
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Figure 35: The accuracy of the RF algorithm for each parameters combination
5.3.2.2 Results
The features were used to build a random forest classifier between infected and healthy plants using

the 7 most significant wavelengths using the above parameters.
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Figure 36: Density plot distributions of the predicted values of the infected and the healthy infected
plants

There is difference between the density of the predicted probability of the infected and the density

of the healthy plant as expected (Figure 36). The density of the predicted probability of the infected

centered around predicted probability 1, while the healthy center lower.
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Healthy Infected
Predicted as ‘healthy’ | TP —85 FP-18
Predicted as ‘infected’ | FN —41 TN -190
Sensitivity = TPZ% = 18756 = 0.675 | specificity = % = % =0.913

Table 17: Confusion matrix of RF classifier using the features

The classification of the infected plants is consistently better for healthy plant classification (Table
17). This is probably due to the imbalanced data set (there are 208 infected plants, compared to 126
healthy plants).

Algorithm Data analyses | Accuracy AUC
Logistic regression using 7 | ASD - SR 198/259 =0.764 |0.729
wavelengths in the VIS/NIR 0.713 [0.816
range ASD - R1D 201/259 — 0.776 | 0.744
0.725 | 0.826
Random forest using all ASD - SR 172/259 = 0.664 |0.65
wavelengths in the VIS/NIR 0.606 [0.721
range ASD - R1D 181/259 — 0689 |0.757
0.643 | 0.754
Logistic regression using 7 | ASD - SR 184/259 =0.71 |0.657
wavelengths in the 0.655 ‘ 0.765
VIS/NIR/SWIR range ASD - R1D 207/,.0=08 |0.769
0.75 | 0.848
Random forest using all ASD - SR 161/259 =0.62 |0.647
wavelengths in the 0.56 l 0.68
VIS/NIR/SWIR range ASD - R1D 170/259 — 0656 | 0.656
0.59 | 0.71
Random Forest Features 275/334 —0.823 | 0.794
from the 0782 | 0.86
multispectral
images

Table 18: Comparison between the different algorithms

5.3.2.3 Significant wavelengths
The importance is calculated according to the average decrease in impurity on trees. Results reveal
that the most significant feature for disease detection is LAIl, the area of the plant, then the
height/width ratio and then the other features calculated from the various wavelengths from the
multispectral images (Figure 38). Logistic regression classifier using these two features achieved an
accuracy of 63.5% and AUC of 0.64.

48



5.4 SENSITIVITY ANALYSIS
The wider the bandwidth the average spectral signature of the plant is smoother (Figure 37).

Results reveal that the classifier is not sensitive to the bandwidth of the images (Table 19). In
addition, it can be seen that the smoothing does not significantly change the average plant spectral

signature for 50nm bandwidth (Figure 37).
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Figure 37: The plant's average spectral signature from the hyperspectral image (blue), and from the
hyperspectral image after recalculating all bands by 50nm (orange) and 150nm (green) bandwidths
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Figure 38: The importance of the features
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Bandwidth Number Accuracy | AUC
of images

Hyperspectral | 1 g_;i —o0s823 | 0-7°4

10nm 15 g_;i 0823 | 079

30nm 41 g_;i — 0823 | 079

50nm 67 g_;i 0823 | 0794

150nm 211 g_;i — 0823 | 079

50

Table 19: Classification results of the RF classifier for different multispectral bands




6.1 CONCLUSIONS

The stepwise regression algorithm was used to determine the significant wavelengths for Fusarium
detection using point spectral measurements from the ASD. The wavelengths that allow
differentiation between spectra of infected and healthy corn plants: 400, 440, 630, 700, 750, 820 and
900nm. A random forest classifier that used features from the hyperspectral images that were
calculated from the seven wavelengths yielded classification accuracy of 82%, (67.5% True Positive
and 8.7% False Positive) and 0.79 AUC.

The classifier yielded better results in predicting both infected and healthy plants from the classifier
used the ASD data. These results prove it is feasible to identify Fusarium at a stage which currently is

not possible without destroying the plant.
6.2 RESEARCH LIMITATIONS

There is not enough data to determine whether the spectral reflectance or the first derivative of the
spectral reflectance is better for classifying between infected and healthy plants. Additionally, there
is not enough data to determine that there is a significant difference between the classifier that used
also the SWIR range compared to the classifier that used only the VIS and NIR ranges. There is a
correlation between the distribution obtained from a single point in plants from the ASD, and the

average distribution of the pixels in the plant obtained from the hyperspectral images.

The classification of the infected plants is consistently better for healthy plant classification. This is
probably due to the imbalanced data set. An improved classifier can be constructed with a balanced
data set (there are statistics methods for balancing a data set, for example removing some of the
diseased plants from the data set). However, due to the small dataset this was not conducted as part

of this research.

6.3 FUTURE WORK

There is a statistically significant difference between the different disease levels in analysis of the
distribution of the hyperspectral images. We would like to consider the choice of wavelengths from

the analysis of the images themselves.

More samples should be collected over the course of the growing stages to provide a better
understanding of the spectral discrimination over time. To develop a more generic classifier it is
necessary to collect images in different lighting conditions, from different areas on the plants and of
different varieties. Increasing the data set will also enable to build a stronger classifier that in this

case was based on leave-one-out due to the small datasets.
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6.4 CONTRIBUTIONS

This research proved the feasibility of detecting Fusarium in infected plants before the visual
symptoms appear. Additionally, the importance of hyperspectral imaging has been demonstrated.
However, to lower computational and sensory costs the most important wavelengths were derived
and prove sufficient for disease classificaition. The algorithms and methods developed can be
potentially used in the future to create infestation maps for site specific management of the disease.
However, the algorithms presented are limited to the corn variety, the growing stage and the imaging
and lighting conditions. It needed to imaging under different conditions and make the algorithm more
generic, as well as to examine the possibility of imaging the corn plants from above in order to test

the feasibility of hovering imaging.

52



Abdulridha, J., Ehsani, R., Abd-elrahman, A., & Ampatzidis, Y. (2019). A remote sensing technique for
detecting laurel wilt disease in avocado in presence of other biotic and abiotic stresses.
Computers  and  Electronics  in  Agriculture,  156(December  2018), 549-557.
https://doi.org/10.1016/j.compag.2018.12.018

Akar, O., & Giingor, 0. (2012). Classification of multispectral images using Random Forest algorithm.
Journal of Geodesy and Geoinformation, 90(462), 105-112.
https://doi.org/10.9733/jgg.241212.1

An, N., Palmer, C. M., Baker, R. L., Markelz, R. J. C, Ta, J., Covington, M. F., ... Weinig, C. (2016). Plant
high-throughput phenotyping using photogrammetry and imaging techniques to measure leaf
length and rosette area. Computers and Electronics in Agriculture, 127, 376-394.
https://doi.org/10.1016/j.compag.2016.04.002

Atzberger, C., Guérif, M., Baret, F., & Werner, W. (2010). Comparative analysis of three chemometric
techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat.
Computers and Electronics in Agriculture, 73(2), 165-173.
https://doi.org/10.1016/j.compag.2010.05.006

Bannari, A., Morin, D., Bonn, F., & Huete, A. R. (2009). A review of vegetation indices. Taylor & Francis,
13(April), 95-120. https://doi.org/10.1080/02757259509532298

Banttari, E., & Goodwin, P. (1985). Detection of potato viruses S, X, and Y by enzyme-linked
immunosorbent assay on nitrocellulose membranes (dot-ELISA). Plant Disease. Retrieved from
http://www.csa.com/partners/viewrecord.php?requester=gs&collection=ENV&recid=1083666

Bauriegel, E., Giebel, A., Geyer, M., Schmidt, U., & Herppich, W. B. (2011). Early detection of Fusarium
infection in wheat using hyper-spectral imaging. Computers and Electronics in Agriculture, 75(2),
304-312. https://doi.org/10.1016/j.compag.2010.12.006

Behmann, J., Mahlein, A. K., Rumpf, T., Rémer, C., & Plimer, L. (2015). A review of advanced machine
learning methods for the detection of biotic stress in precision crop protection. Precision
Agriculture, 16(3), 239-260. https://doi.org/10.1007/s11119-014-9372-7

Blackburn, G. A. (2007). Hyperspectral remote sensing of plant pigments. Journal of Experimental
Botany, 58(4), 855—867. https://doi.org/10.1093/jxb/erl123

Bock, C. H., Poole, G. H., Parker, P. E., & Gottwald, T. R. (2010). Plant disease severity estimated visually,
by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant
Sciences, 29(2), 59—107. https://doi.org/10.1080/07352681003617285

Bravo, C., Moshou, D., West, J., McCartney, A., & Ramon, H. (2003). Early disease detection in wheat
fields using spectral reflectance. Biosystems Engineering. https://doi.org/10.1016/S1537-
5110(02)00269-6

Browne, R. A., Murphy, J. P., Cook, B., Devaney, D., Walsh, E. J., Griffey, C. A., & Al, E. (2005). Evaluation
of components of Fusarium head blight resistance in soft red winter wheat germ plasm using a
detached leaf assay. Plant Disease, 89(4), 404—411. https://doi.org/10.1094/PD-89-0404

53



Busemeyer, L., Mentrup, D., Mdller, K., Wunder, E., Alheit, K., Hahn, V., ... Ruckelshausen, A. (2013).
Breedvision - A multi-sensor platform for non-destructive field-based phenotyping in plant
breeding. Sensors (Switzerland), 13(3), 2830-2847. https://doi.org/10.3390/5130302830

Chaerle, L., Lenk, S., Hagenbeek, D., Buschmann, C., & Van Der Straeten, D. (2007). Multicolor
fluorescence imaging for early detection of the hypersensitive reaction to tobacco mosaic virus.
Journal of Plant Physiology, 164(3), 253—262. https://doi.org/10.1016/j.jplph.2006.01.011

Chaves, R., Ramirez, J., Gorriz, J. M., Lépez, M., Alvarez, |., & Segovia, F. (2009). SVM-based computer-
aided diagnosis of the Alzheimer ' s disease using t -test NMSE feature selection with feature
correlation weighting. Elsevier, 461, 293—297. https://doi.org/10.1016/j.neulet.2009.06.052

Chong, I., & T, C. J. (2005). Performance of some variable selection methods when multicollinearity is
present.  Chemometrics  and  Intelligent  Laboratory  Systems, 78, 103-112.
https://doi.org/10.1016/j.chemolab.2004.12.011

Clark, M. F., & Adams, A. N. (1977). Characteristics of the microplate method of enzyme linked
immunosorbent assay for the detection of plant viruses. Journal of General Virology, 34(3), 475—
483. https://doi.org/10.1099/0022-1317-34-3-475

Falasconi, M., Gobbi, E., Pardo, M., Della Torre, M., Bresciani, A., & Sberveglieri, G. (2005). Detection
of toxigenic strains of Fusarium verticillioides in corn by electronic olfactory system. Sensors and
Actuators, B: Chemical, 108(1-2 SPEC. ISS.), 250-257. https://doi.org/10.1016/j.snb.2004.09.046

Feng, Y. Z., & Sun, D. W. (2012). Application of Hyperspectral Imaging in Food Safety Inspection and
Control: A Review. Critical Reviews in Food Science and Nutrition, 52(11), 1039-1058.
https://doi.org/10.1080/10408398.2011.651542

Flegg, C. L., & Clark, M. F. (1979). The detection of apple chlorotic leafspot virus by a modified
procedure of enzyme-linked immunosorbent assay (ELISA). Annals of Applied Biology.
https://doi.org/10.1111/j.1744-7348.1979.tb07413 .x

Ge, Y., Bai, G., Stoerger, V., & Schnable, J. C. (2016). Temporal dynamics of maize plant growth, water
use, and leaf water content using automated high throughput RGB and hyperspectral imaging.
Computers and Electronics in Agriculture, 127, 625-632.
https://doi.org/10.1016/j.compag.2016.07.028

Geladi, P., Burger, J., & Lestandera, T. (2004). Hyperspectral imaging : calibration problems and
solutions.  Chemometrics and Intelligent  Laboratory  Systems, 72, 209-217.
https://doi.org/10.1016/j.chemolab.2004.01.023

Gilbertson, R. L., Rojas, M. R., Russell, D. R., & Maxwell, D. P. (1991). Use of the Asymmetric Polymerase
Chain-Reaction and Dna Sequencing To Determine Genetic-Variability of Bean Golden Mosaic
Geminivirus in the Dominican-Republic. Journal of General Virology, 72(1991), 2843—-2848.
https://doi.org/10.1099/0022-1317-72-11-2843

Goetz, A. F. H. (2009). Three decades of hyperspectral remote sensing of the Earth: A personal view.
Remote Sensing of Environment, 113(SUPPL. 1), S5-S16.
https://doi.org/10.1016/j.rse.2007.12.014

Goswami, R. S., & Kistler, H. C. (2004). Heading for disaster: Fusarium graminearum on cereal crops.
Molecular Plant Pathology, 5(6), 515-525. https://doi.org/10.1111/J.1364-3703.2004.00252.X

54



Gowen, A. A., Taghizadeh, M., & O’Donnell, C. P. (2009). Identification of mushrooms subjected to
freeze damage using hyperspectral imaging. Journal of Food Engineering, 93(1), 7-12.
https://doi.org/10.1016/].jfoodeng.2008.12.021

Hariharan, J., Fuller, J., Ampatzidis, Y., & Abdulridha, J. (2019). Finite Difference Analysis and Bivariate
Correlation of Hyperspectral Data for Detecting Laurel Wilt Disease and Nutritional Deficiency in
Avocado. Remote Sensing.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. /EEE Conf.
on Computer Vision and Patt. Recognition, 770-778.

Huete, A. R. (1988). A {S}oil-{A}djusted {V}egetation {I}ndex ({Savi}). Remote Sensing of Environment.

Jacquemoud, S., & Ustin, S. L. (2001). Leaf optical properties: a state of the art. Proceedings of the 8th
International Symposium Physical Measurements & Signatures in Remote Sensing, 8-12 January
2001, CNES, Aussois, France, 223—-232.

Jurado, M., Vazquez, C., Marin, S., Sanchis, V., & Teresa Gonzalez-Jaén, M. (2006). PCR-based strategy
to detect contamination with mycotoxigenic Fusarium species in maize. Systematic and Applied
Microbiology. https://doi.org/10.1016/j.syapm.2006.01.014

Karami, A., Heylen, R., & Scheunders, P. (2015). Band-Specific Shearlet-Based Hyperspectral Image
Noise Reduction. /EEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 53(9), 5054—
5066.

Karunakaran, C., Jayas, D. S., & White, N. D. G. (2004). Identification of wheat kernels damaged by the
red flour beetle wusing X-ray images. Biosystems Engineering, 87(3), 267-274.
https://doi.org/10.1016/j.biosystemseng.2003.12.002

Kotsiantis, S. B., Zaharakis, I. D., & Pintelas, P. E. (2006). Machine learning a review of classification and
combining techniques.pdf.

Krizhevsky, A., Sutskever, ., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional
Neural Networks. In Papers published at the Neural Information Processing Systems Conference

(pp. 1-9).

Kumar, L., Skidmore, A. K., & Mutanga, O. (2010). Leaf level experiments to discriminate between
eucalyptus species using high spectral resolution reflectance data: Use of derivatives, ratios and
vegetation indices. Geocarto International, 25(4), 327-344,
https://doi.org/10.1080/10106040903505996

Kuska, M., Wahabzada, M., Leucker, M., Dehne, H. W., Kersting, K., Oerke, E. C., ... Mahlein, A. K.
(2015). Hyperspectral phenotyping on the microscopic scale: Towards automated
characterization of plant-pathogen interactions. Plant Methods, 11(1).
https://doi.org/10.1186/s13007-015-0073-7

Lancashire, D., Bleiholder, H., Van Den Boom, T., Langeluddeke, P., Stauss, R., Weber, E.Hack, H., &
Witzenberger, A. (1991). A uniform decimal code for growth stages of crops and weeds. Annals
of Applied Biology, 119(3), 561-601. https://doi.org/10.1111/j.1744-7348.1991.tb04895.x

Lecun, VY., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436—444.
https://doi.org/10.1038/nature14539

55



LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (n.d.-a).
backpropagation applied to handwritten zip code recognition. Neural Computation, 4, 541-551.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (n.d.-b).
Handwritten Digit Recognition with a Back-Propagation Network. Advances in Neural Information
Processing Systems, 2, 396—-404.

LECUN, Y., BOTTOU, L. 'EON, Bengio, Y., & Haffner, P. (1998). Gradient-Based Learning Applied to
Document Recognition. Proceedings of the IEEE, 86(11), 2278-2324.

Li, L., Zhang, Q., & Huang, D. (2014). A review of imaging techniques for plant phenotyping. Sensors
(Switzerland), 14(11), 20078-20111. https://doi.org/10.3390/s141120078

Liang, H. (2012). Advances in multispectral and hyperspectral imaging for archaeology and art
conservation. Applied Physics A: Materials Science and Processing, 106(2), 309-323.
https://doi.org/10.1007/s00339-011-6689-1

Lindenthal, M., Steiner, U., Dehne, H.-W., & Oerke, E.-C. (2007). Effect of Downy Mildew Development
on Transpiration of Cucumber Leaves Visualized by Digital Infrared Thermography.
Phytopathology, 95(3), 233-240. https://doi.org/10.1094/phyto-95-0233

Lins, E. C., Belasque, J., & Marcassa, L. G. (2009). Detection of citrus canker in citrus plants using laser
induced fluorescence spectroscopy. Precision Agriculture, 10(4), 319-330.
https://doi.org/10.1007/s11119-009-9124-2

Lled, L., Roger, J. M., Herrero-langreo, A., Diezma-iglesias, B., & Barreiro, P. (2011). Comparison of
multispectral indexes extracted from hyperspectral images for the assessment of fruit ripening,
104, 612—620. https://doi.org/10.1016/j.jfoodeng.2011.01.028

Lépez, M. M., Bertolini, E., Olmos, A., Caruso, P., Gorris, M. T., Llop, P., ... Cambra, M. (2003). Innovative
tools for detection of plant pathogenic viruses and bacteria. International Microbiology, 6(4),
233-243. https://doi.org/10.1007/s10123-003-0143-y

Lu, G., & Fei, B. (2014). Medical hyperspectral imaging: a review. Journal of Biomedical Optics, 19(1),
010901. https://doi.org/10.1117/1.JB0.19.1.010901

Lu, J., Ehsani, R., Shi, Y., Ana Isabel, C. De, & Wang, S. (2018). Detection of multi-tomato leaf diseases
(late blight, target and bacterial spots) in different stages by using a spectral-based sensor.
Scientific Reports, 8(1), 1-11. https://doi.org/10.1038/s41598-018-21191-6

Mahlein, A.-K. (2016). Plant Disease Detection by Imaging Sensors — Parallels and Specific Demands for
Precision Agriculture and Plant Phenotyping. APS, 100(February), 241-251.

Manolakis, D. G., & Shaw, G. (2002). Detection algorithms for hyperspectral imaging applications. IEEE
Signal Processing Magazine, 19(1), 29-43. https://doi.org/10.1109/79.974724

Marcassa, L. G., Gasparoto, M. C. G., Belasque, J., Lins, E. C., Dias Nunes, F., & Bagnato, V. S. (2006).
Fluorescence spectroscopy applied to orange trees. Laser Physics, 16(5), 884—888.
https://doi.org/10.1134/s1054660x06050215

Mcleod, L. (1993). Fusarium ear blight ( scab ) in small grain cereals — a review. Review Literature And
Arts Of The Americas, 207-238. https://doi.org/10.1111/j.1365-3059.1995.tb02773.x

Mishra, P., Asaari, M. S. M., Herrero-Langreo, A., Lohumi, S., Diezma, B., & Scheunders, P. (2017). Close

56



range hyperspectral imaging of plants: A review. Biosystems Engineering, 164, 49-67.
https://doi.org/10.1016/j.biosystemseng.2017.09.009

Mohan, S. B. (1988). Evaluation of antisera raised against Phytophthora fragariae for detecting the red
core disease of strawberries by enzyme-linked immunosorbent assay (ELISA). Plant Pathology.
https://doi.org/10.1111/j.1365-3059.1988.tb02066.x

Morales-Rodriguez, |., De Yafiez-Morales, M. J., Silva-Rojas, H. V., Garcia-De-Los-Santos, G., & Guzman-
De-Pefia, D. A. (2007). Biodiversity of Fusarium species in Mexico associated with ear rot in maize,
and their identification using a phylogenetic approach. Mycopathologia, 163(1), 31-39.
https://doi.org/10.1007/s11046-006-0082-1

Moricca, S., Ragazzi, A., Kasuga, T., & Mitchelson, K. R. (1998). Detection of Fusarium oxysporum f.sp.
vasinfectum in cotton tissue by polymerase chain reaction. Plant Pathology, 47(4), 486—494.
https://doi.org/10.1046/j.1365-3059.1998.00262.x

Moshou, D., Bravo, C., Oberti, R., West, J., Bodria, L., McCartney, A., & Ramon, H. (2005). Plant disease
detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using
Kohonen maps. Real-Time Imaging, 11(2), 75-83. https://doi.org/10.1016/j.rti.2005.03.003

Mulla, D. J. (2013). Twenty five years of remote sensing in precision agriculture: Key advances and
remaining knowledge gaps. Biosystems Engineering, 114(4), 358-371.
https://doi.org/10.1016/.biosystemseng.2012.08.009

Munkvold, G. P. (2003). Epidemiology of Fusarium diseases and their mycotoxins in maize ears Gary.
European Journal of Plant Pathology, 109(2), 705-713.
https://doi.org/10.1023/A:1026078324268

Nair, V., & Hinton, G. E. (2010). Rectified Linear Units Improve Restricted Boltzmann Machines. Rawat,
W., & Wang, Z. (2017). Deep Convolutional Neural Networks for Image Classification: A
Comprehensive  Review. Communicated by Vincent Vanhoucke, 2449, 2352-2449.
Https.//Doi.Org/10.1162/NECO, (3), 807-814.

Narvankar, D. S., Singh, C. B., Jayas, D. S., & White, N. D. G. (2009). Assessment of soft X-ray imaging
for detection of fungal infection in wheat. Biosystems Engineering, 103(1), 49-56.
https://doi.org/10.1016/j.biosystemseng.2009.01.016

Neumann, M., Hallau, L., Klatt, B., Kersting, K., & Bauckhage, C. (2014). Erosion band features for cell
phone image based plant disease classification. Proceedings - International Conference on Pattern
Recognition, d, 3315—-3320. https://doi.org/10.1109/ICPR.2014.571

Nutter, F. W., Gleason, M. L., Jenco, J. H., & Christians, N. C. (1993). Assessing the accuracy, intra-rater

repeatability, and inter-rater reliability of disease assessment systems. Ecology and Epidemiology,
83,312-323.

Onoyama, H., Ryu, C., Suguri, M., & lida, M. (2013). Potential of hyperspectral imaging for constructing
a year-invariant model to estimate the nitrogen content of rice plants at the panicle initiation
stage. IFAC Proceedings Volumes (IFAC-PapersOnline) (Vol. 4). I[FAC.
https://doi.org/10.3182/20130828-2-SF-3019.00054

Ozigis, M. S., Kaduk, J. D., & Jarvis, C. H. (2020). Detection of oil pollution impacts on vegetation using
multifrequency SAR , multispectral images with fuzzy forest and random forest. Environmental
Pollution, 256, 1-17. https://doi.org/10.1016/j.envpol.2019.113360

57



Paulus, S., Behmann, J., Mahlein, A. K., Plimer, L., & Kuhlmann, H. (2014). Low-cost 3D systems:
Suitable tools for plant phenotyping. Sensors (Switzerland), 14(2), 3001-3018.
https://doi.org/10.3390/s140203001

Pimentel, D., Zuniga, R., & Morrison, D. (2005). Update on the environmental and economic costs
associated with alien-invasive species in the United States. Ecological Economics, 52(3 SPEC. ISS.),
273-288. https://doi.org/10.1016/j.ecolecon.2004.10.002

Purcell, D. E., O’shea, M. G., Johnson, R. A., & Kokot, S. (2009). Near-infrared spectroscopy for the
prediction of disease ratings for fiji leaf gall in sugarcane clones. Applied Spectroscopy, 63(4), 450—
457. https://doi.org/10.1366/000370209787944370

Ranzato, M. A., Huang, F., Boureau, Y., & Lecun, Y. (2007). Unsupervised Learning of Invariant Feature
Hierarchies with Applications to Object Recognition. In Proceedings IEEE Conference on Computer
Vision and Pattern Recognition, 1-8.

Rapaport, T., Hochberg, U., Shoshany, M., Karnieli, A., & Rachmilevitch, S. (2015). Combining leaf
physiology, hyperspectral imaging and partial lefor grapevine water status assessmentast
squares-regression (PLS-R). ISPRS Journal of Photogrammetry and Remote Sensing, 109, 88—97.
https://doi.org/10.1016/].isprsjprs.2015.09.003

Reid, L. M., Woldemariam, T., Zhu, X., Stewart, D. W., & Schaafsma, A. W. (2002). Effect of inoculation
time and point of entry on disease severity in Fusarium graminearum, Fusarium verticillioides, or

Fusarium subglutinans inoculated maize ears. Canadian Journal of Plant Pathology, 24(2), 162—
167. https://doi.org/10.1080/07060660309506991

Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting
plant  diseases. Computers  and  Electronics  in  Agriculture, 72(1), 1-13.
https://doi.org/10.1016/j.compag.2010.02.007

Savary, S., Ficke, A., Aubertot, J. N., & Hollier, C. (2012). Crop losses due to diseases and their
implications for global food production losses and food security. Food Security, 4(4), 519-537.
https://doi.org/10.1007/s12571-012-0200-5

Savitzky, A., & Marcel, J. E. G. (1964). Smoothing and Differentiation of Data by Simplified Least Squares
Procedures. Analytical Chemistry, 36(8), 1627—1639. https://doi.org/10.1021/ac60214a047

Schuler, R. L., Kish, P. E., & Plese, C. A. (2012). Preliminary Observations on the Ability of Hyperspectral
Imaging to Provide Detection and Visualization of Bloodstain Patterns on Black Fabrics. Journal of
Forensic Sciences, 57(6), 1562—1569. https://doi.org/10.1111/j.1556-4029.2012.02171.x

Seelan, S. K., Laguette, S., Casady, G. M., & Seielstad, G. A. (2003). Remote sensing applications for
precision agriculture: A learning community approach. Remote Sensing of Environment, 88(1-2),
157-169. https://doi.org/10.1016/].rse.2003.04.007

Shaw, G., & Manolakis, D. (2002). Signal processing for hyperspectral image exploitation. /EEE Signal
Processing Magazine, 19(1), 12—16. https://doi.org/10.1109/79.974715

Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image
Recognition. ArXiv:1409.1556, 1-14.

Spinelli, F., Noferini, M., & Costa, G. (2006). Near infrared spectroscopy (NIRs): Perspective of fire blight
detection in  asymptomatic plant material. Acta  Horticulturae, 704, 87-90.

58



https://doi.org/10.17660/ActaHortic.2006.704.9

Stack, R., & McMullen, M. (1998). A visual scale to estimate severity of Fusarium head blight of wheat.
NDSU Extension Service.

Stonehouse, J. (1994). Assessment of Andean bean diseases using visual keys. Plant Pathology, 43(3),
519-527. https://doi.org/10.1111/j.1365-3059.1994.tb01586.x

Sugumaran, R., & Voss, M. (2007). Object-Oriented Classification of LIDAR-Fused Hyperspectral
Imagery for Tree.pdf.

Szegedy, C., Liu, W, Jia, Y., Reed, S., Sermanet, P., Vanhoucke, V., & Rabinovich, A. (2015). Going
deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 1-12.

Tester, M., & Langridge, P. (2010). Breeding Technologies to Increase Crop Production in a Changing
World. Science, 818(5967), 818—822. https://doi.org/10.1126/science.1183700

Tsenkova, R., Meilina, H., Kuroki, S., & Burns, D. H. (2009). Near infrared spectroscopy using short
wavelengths and leave-one-cow-out cross-validation for quantification of somatic cells in milk.
Journal of Near Infrared Spectroscopy, 17(6), 345-351. https://doi.org/10.1255/jnirs.868

Van Egmond, H. P., Schothorst, R. C., & Jonker, M. A. (2007). Regulations relating to mycotoxins in
food : PPPPerspectives in a global and European context. Analytical and Bioanalytical Chemistry,
389(1), 147-157. https://doi.org/10.1007/s00216-007-1317-9

Wei, X,, Liu, F., Qiu, Z., Shao, Y., & He, Y. (2014). Ripeness Classification of Astringent Persimmon Using
Hyperspectral Imaging Technique. Food and Bioprocess Technology, 7(5), 1371-1380.
https://doi.org/10.1007/s11947-013-1164-y

West, J. S., Bravo, C., Oberti, R., Lemaire, D., Moshou, D., & McCartney, H. A. (2003). The potential of
optical canopy measurement for targeted control of field crop diseases. Annual Review of
Phytopathology, 41(1), 593—614. https://doi.org/10.1146/annurev.phyto.41.121702.103726

Windels, C. E. (2000). Economic and Social Impacts of Fusarium Head Blight: Changing Farms and Rural
Communities in  the Northern Great Plains.  Phytopathology, 90(1), 17-21.
https://doi.org/10.1094/PHYT0.2000.90.1.17

Wu, D., & Sun, D. (2013). Advanced applications of hyperspectral imaging technology for food quality
and safety analysis and assessment : A review — Part | : Fundamentals. /nnovative Food Science
and Emerging Technologies, 19, 1-14. https://doi.org/10.1016/].ifset.2013.04.014

Xin, D., Zhou, X., & Zheng, H. (2006). Contour Line Extraction from Paper-based Topographic Maps.
Journal of Information and Computing Science, 1(5), 275—283.

Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: a review of developments and
applications. Journal of Sensors, Vol.2017, 17p. https://doi.org/10.1155/2017/1353691

Yamashita, T., Yamashita, K., & Kamimura, R. (2007). A Stepwise AIC Method for Variable Selection in
linear regression. Taylor & Francis, 0926, 2395-2403.
https://doi.org/10.1080/03610920701215639

Yu, K. Q., Zhao, Y. R, Li, X. L., Shao, Y. N., Liu, F., & He, Y. (2014). Hyperspectral imaging for mapping of
total nitrogen spatial distribution in  pepper plant. PLoS ONE, 9(12), 1-19.

59



https://doi.org/10.1371/journal.pone.0116205

Zarco-Tejada, P. J., Camino, C., Beck, P. S. A, Calderon, R., Hornero, A., Herndndez-Clemente, R., ...
Navas-Cortes, J. A. (2018). Previsual symptoms of Xylella fastidiosa infection revealed in spectral

plant-trait alterations. Nature Plants, 4(7), 432—439. https://doi.org/10.1038/s41477-018-0189-
7

Zhang, B., Wu, D., Zhang, L., & Jiao, Q. (2012). Application of hyperspectral remote sensing for

environment monitoring in mining areas. Environmental Earth Sciences, 65(3), 649-658.
https://doi.org/10.1007/s12665-011-1112-y

Zhi, T., Luo, H., & Liu, Y. (2018). A Gini Impurity-Based Interest Flooding Attack Defence Mechanism in
NDN. IEEE, 22(3), 2018-2021.

60



8.1 EARLY DETECTION OF FUSARIUM INFECTION IN CORN USING SPECTRAL
ANALYSIS

Early detection of Fusarium infection in corn using spectral analysis
Abstract

Fusarium has been pronounced worldwide as a disease of economic importance. There 1s an
increased need to develop tools for early detection of infections and their spatial location. This
work presents a non-destructive method for early detection of Fusarium infection by spectral
analysis in the range of 400— 1000nm A commercial cormn seeds infected by drenching n a
suspension contaimning spores of Fusarium Graminearum. The com plants growth m an
experimental greenhouse conditions and sampled with two spectral systems: (1) a single point and
(2) A hyperspectral camera. A stepwise regression method was used to determine the significant
wavelengths for Fusarium detection. Dimensionality reduction enable to build a simpler model
and reduce sensor cost dramatically. Using these wavelengths, a random forest model was used
to classify between infected and healthy plant using features derived from the hyperspectral
images. Fusarium infection was successfully classified during the VS growth stage with 82% truth
rate, 67.3% in sensitivity and 91.3% in specify. This is a significant result enabling identification
at a stage which currently is not possible without destroying the plant and can be potentially used
in the future to create infestation maps for site specific management of the disease.

Keywords: hyperspectral, spectral analysis, disease detection, fusarium, random forest
Introduction

The global demand for food is projected to increase by 1.5- 2 umes with the world's population
crossing the six billion mark and expected to increase by another three billion over the next five
decades (Seelan, Laguetie, Casady, & Seielstad, 2003). Plant diseases cause major production and
economic losses in agriculture. It s estimated that the crop losses due to plant pathogens in United
Stated result in about 33 billion dollars every vear (Savary, Ficke, Aubertot, & Hollier, 2012).
Fusarium is a phytopathogenic funeus with a global distribution, capable of infectine a wide range
of crop plants, including cereals such as maize, wheat or barley (Jurado, Vazquez, Marin, Sanchis,
& Teresa Gonzilez-Jaén, 2006). It may rapidly result in very hich crop losses and quality
reductions (Windels, 2000). Moreover, mycotoxins, potentially generated by these fungi, are
poisonous and harmful for both human and animal nutrition (Browne et al 2005). These
compounds may be present even after removal of mycelium and since most of them are resistant
to physical and chemical treatments, they usually stay in the food during processing and storage
(Falasconi et al., 2005).

Early detection of the fungal species producing mycotoxins or of the mvcotoxins themselves has
become very important to prevent the human and animal risk deriving from entry of mycotoxins
into the food chain (Falasconi et al., 2005). Traditional methods used for plant disease detection
are still time-consuming, labor intensive and destructive in nature (Busemever et al, 2013).
Various modem sensing technologies and imaging technmiques have been studied for disease
detection. The methods include multispectral or hyperspectral imaging (detailed in Hyper- spectral
imaging chapter), infrared spectroscopy (Purcell et al., 2009; Spinelli et al., 2006), fluorescence
imaging (Chaerle et al., 2007: Moshou et al., 2005), fluorescence spectroscopy (Lins, Belasque et
al., 2009; Marcassa et al, 2006). RBG imaging (Neumann et al. 2014), X-ray imaging
(Karunakaran et al., 2004; Narvankar et al., 2009), thermal imaging or thermography (Lindenthal
et al., 2007), 3D sensors (Paulus et al., 2014).

61



The appearance of Fusarium in infected ears and plants, largely changes during the development
of this disease, mostly due to degradation of chlorophyll contents and pronounced water losses.
Hence, these changes lead to pronounced variations in spectral properties of infected grains and
total ears. Both fungi and bacteria usually cause damages at molecular, cellular and/or tissue levels,
which, in turn, can be detected as changes in the spectral signatures (West et al.. 2003).
Utilization of spectral analysis for detection of fungal and bacterial diseases has been investigated
(Ray et al., 2017). According to (Bauriegel et al., 2011) in the spectral range of 400-1000 nm the
spectral patterns of healthy and diseased ear of wheat during BBCH-stage 71-85 were
significantly different.

Different classification algorithms have been emploved for disease detection using multispectral
imaging including including Random Forests (Zhu et al., 2016), Support Vector Machine (SVM)
(Rumpf et al. 2010) and Maximum Likelihood Classification (MLC) algorithms (Ozdarici-ok et
al., 2015). Results reveal RF yields higher classification accuracies than other methods (Akar &
Giingdr, 2012). Random forest is an ensemble method for classification and regression that
operates by constructing a multitude of decision trees at training time and outputting the class that
is the mode of the classes (classification) or mean prediction (regression) of the individual trees.
The significant advantages of random forest algorithms using multispectral images is the accuracy
(Lowe & Arun, 2015). The performance of RF algorithm using multispectral images revealed
their advent (e.g., detect the effects of oil pollution on vegetation (Ozigis et al., 2020); detect
tobacco mosaic virus (Zhu et al., 2016)).

The objective of this study was to develop a method to detect infected and healthy corn plants at
early growth stages, based on their leaves spectral reflectance.

Materials and Methods

Experimental and Plant material

Two experiments were conducted (Table 1). Commercial com seeds (7210) were infected and
germinated in a greenhouse for a period of 3 weeks. at Evogene’s research facilities (31° 52 55.80™
N 34°50° 30.77" E). Three levels of infection were induced by drenching the seeds in a suspension
containing [10% — 10°] spores of Fusarium Graminearum in order to create a wide range in the
disease status of the plants. In addition, a control group of seeds, that were not infected. was also
created. The seeds were germinated in 380 ml pots. Each experiment included seeds with 3
different treatments and a control group. In all treatment groups the same number of seeds were
sown. The more spores the seeds contained, the worse the disease severity and fewer seeds
germinated.

The temperature in the greenhouse was maintained at 24+2°C during the day and at 20:2°C during
the night. Drip irrigation with no fertilization (fertilizer inhibits Fusarium infection) was applied,
and irrigation frequency was defined according to plot weight at 50% water content.

Exp. 1 - June 2019 Exp. 2 - November 2019

Treatment Sown Germination Treatment Sown Germination
Fus 1075 24 21 Fus 1076 50 34

Fus 1073 24 23 Fus 1075 50 43

Fus 1072 24 20 Fus 104 50 36
Untreated 24 24 Untreated 50 49

Total 96 87 Total 200 162
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Table 1: Plant material from the two experiments according to the different treatments

Measuring procedure

The spectral reflectance of the leaves of the plants was measured 21 days after seeding. when they
reached stage V2, according to developmental stages of growth defined by the BBCH scale
(Lancashire et al., 1991). Spectral measurements were conducted between 09:00 AM to 12:30PM
local time (UTC-2).

Figure 1: Labelling
protocol of plants to
different levels of
disease according to
plant status after 21
days

dotson stanson stmm

mot root and root on root motless
stem and stem less
stem

22 days after seeding, in the day after the spectral sampling, the plants were taken out of the pots
and the disease infection level was visually assessed by an agronomist expert. by visually
inspecting the roots of the plant, according to a protocol similar to (Manandhar et al., 2016). The
discase severity was classified from level 0 to 5 where level 0 represented a healthy and level 5
represented a severely infected plant, according to the state of the roots of each plant (Figure 1).

Spectral measurement system

All plants were sampled with two systems (Figure 3): (1) Spectro-Radiometer (ASD), that
provided the spectral reflectance of one of the plant’s leaves at a single point and (2) A
hyperspectral camera that provides a hyper cube that contains the spectral reflectance of each point
of the plant.

Spectro-Radiometer (ASD)

Spectral measurements were performed by point spectral measurements with a field spectro-
radiometer (FieldSpec 4 hi-res, ASD Inc. Malvern Panalytical. Boulder, Colorado, USA) in the
range of 350- 2500 nm, with 3 nm spectral resolution in VNIR range and 8 nm in SWIR range. All
measurements were conducted at approximately lecm distance from the leaf surface, using an
optical fiber with a 25° field of view, resulting to an effective sampling area of about 0.6 cm’. Data
were acquired from the last leaf that was fully developed. A 10 cm diameter spectralon plate was
used as a white reference, to obtain reflectance curves. Each recorded spectrum was the average
of four sequential measurements at the same spot, where each measurement was the average of 30
full spectrum scans. Total acquisition time for each leaf was about 10s.

Hyperspectral camera
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Spatial spectral measurements were performed by the VIOE hyperspectral camera (SPECIM.
Oulu, Finland). With a CMOS detector 1in the VIS and VNIR ranges of 400-1,000 nm. Full spectral
range can be acquired with 150 fps at 1,312 spatial location sand up to 100 Hz with higher spatial
resolution of 1,775 pixels. The spectral resolution is 3 nm, and the maximum imaging size 1s 1 312
x 1,775 (spatial pixels) pixels, each pixel size is 8§ x 8 um. All measurements were conducted at
locations at approximately 1,500 mm distance from the plant with black background (black Foam
Sheet). A 100 mm diameter spectralon plate was used as a white reference, to obtain reflectance
curves in each image. Total acquisition time for each plant was about 40s.

In addition, a one black reference hyperspectral image was acquired when the camera’s lens was
completely covered.

camera an
tropcd

Figure 3: Experimental setting (a) ASD measurement (b) Hyperspectral camera measurement

Data analysis

The image processing, statistical analysis and classification models were developed in the Python
environment using spectral, sklearnm, numpy and pandas Packages.

Overview

The point spectral measurements from the ASD were used to determine the significant
wavelengths for Fusarium detection using the stepwise regression. Using the derived significant
wavelengths, two classification models were developed: (1) logistic regression model that used the
point spectral measurements from the ASD, (2) random forest model that used features from the
hyperspectral images.

Spectro-Radiometer (ASD)

The seven most significant wavelengths (corresponding to most multispectral cameras which have
7 bands) were derived using a stepwise regression model applied with the Akaike Information
Criterion (AIC, Yamashita et al. 2007). AIC estimates the relative amount of information lost by
a given model: the less information a model loses, the higher the quality of that model.

Logistic regression was used to develop an algorithm to classify between healthy and infected
plants using the 7 wavelengths reflectance from the ASD (model 1).
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Hyperspectral images
Pre-processing included several steps for noise reduction (Karami. Heylen. & Scheunders. 2015:
Mishra et al., 2017) ) and reduction of the image size by cropping the image to the minimum size
that contain all plant’s pixels (Figure 4). Segmentation was performed in order to find the White
Reference (WR) and plant contour. The camera measures the radiance which is captured as an
integer number from 0 to 4,000. The recorded number is affected by the spectral reflectance of the
plant, but also reflects the influence of nuisance signals coming from illumination effects, the
detector sensitivity and the transmission properties of the optics (Geladi, Burger, & Lesstanderas,
2004). Spectral calibration was conducted to compensate for these effects in order to calculate the
spectral reflectance by using black and white references (Mishra et al, 2017). The black reference
hyperspectral image and the white reference in each image were used to correct the raw images by
using Eq. 1.
R = —l’rm'-lf"k Eq. 1

white=/dark
Where, Iy is the calibrated reflectance image, I, ., is the raw intensity image measured, [, 1S
the intensity recorded by the sensor when no light enters the camera and Lypiz. is the mode value
of the white reference intensity for each wavelength.
Reflectance images of the 7 most significant wavelengths were calculated and saved as
multispectral cubes with 7 bands.

Save Find Cropping
RGB WR Normalize image in
image contour image space
Convert Find Non-plant Save
to HSV plant pixel multi
contour values = 0 image with 7

Figure 4: Hyperspectral images pre-processing flowchart

After images pre-processing, several features were calculated from the multispectral images as
detailed below.
Five different features were calculated for each channel of the multispectral image. features 1-3
were examined based on common features in the literature. The first feature does not use the spatial
information contained in the multispectral image. features 2- 7 used the spatial information
contained in the multispectral image. features 4-5 are based on the Fusarium infection process
which starts from the roots and continues to the edges of the leaves. features 6- 7 are related to the
shape of the plant (equal in all wavelengths), therefore were calculated once for each plant from
the first wavelength (400nm).

(1) Average(A) — average reflectance of all plant pixels in the image at wavelength A.

(2) SD(X) — standard deviation of all plant pixels in the image at wavelength A.
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(3) Coefficient of Variation(X) (CV)— Ethe average reflectance of all plant pixels in the

image at wavelength A divided by the standard deviation of all plant pixels in the image at
wavelength A.

(4) Discriminability() (Disc) - M’# the average reflectance of pixels in the edge
of the plant (j,4ge5) subtraction of then:ixcls in the center of the plan (p o) divided by
the average reflectance of all plant pixels (g ) in the image at wavelength A.

(5) ER() - ::“:':’ the average reflectance of pixels in the edge of the plant (p ;4.5 ) divided

by the pixels in the center of the plan ([iceneer ) in the image at wavelength A

(6) LAI — the number of the plant’s pixels (B. Zhang, et al. 2012)

(7) Height/Width Ratio - the ration between the height to the width of the plant
This resulted in a total of 37 features (5p.qeures X 7panas + 2 = 37) that were calculated from
each multi-spectral image. A random forest model was developed to classify between healthy and
infected plants using these 37 features (model 2). Each decision tree was built over a random
extraction of the observations from the dataset and a random extraction of the features
(wavelengths). Since not every tree sees all the features or all the observations, this guarantees that
the trees are de-correlated and therefore less prone to over-fitting (Ghojogh & Crowley. 2019).
Combinations of three different parameters that define the RF model were examined by accuracy
and AUC: the maximum depth of the trees, the number of features to looking for the best split and
the number of trees in the forest.

Performance measures

The performance of the two models was evaluated with the leave-one-out cross validation method
(Tsenkova, Meilina, Kuroki, & Burns, 2009). with AUC on the ROC curve and accuracy. The
ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR)
for various threshold settings. The area under the curve (AUC) is the definite integral of ROC and
is a known metric to evaluate the model quality (Tsenkova et al. 2009). The 95% confidence
interval of the accuracy was calculated to examine if there is a statistically significant difference
between the models.

Sensitivity analysis

The model was evaluated using data with different bandwidths, which simulate a lower spectral
resolution than that of the camera. Images with bandwidths 10, 30, 50, and 150 nm were examined.
For each bandwidth, each wavelength, from the 7 wavelengths, a Gaussian image was calculated
using the images from all wavelengths within the bandwidth. When the bandwidth included
wavelengths that are not within the camera range [400- 1,000nm], the image was calculated with
a cut Gaussian and divided by the weight of the images.

Results and Discussion

Due to the small number of samples. the number of disease levels were aggregated from five to
two: levels 0 and 1 were aggregated to healthy, and levels 2 to 5 were aggregated to infected
(Figure 2).
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Visual analysis reveals there is a correlation between the distribution obtained from a one point in
plants from the ASD, and the average distribution of the pixels in the plant obtained from the

hyperspectral images (Figure 6).
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Figure 6: Mean and the 95% confidence interval of leaves’ spectral reflectance of the healthy plants in
blue and the infected ones in red (a) hyper-spectral images (b) ASD data

Wavelength [nm] Importance
400 6.021
700 3.038
750 2979
440 2978
900 2.968
820 2862
630 2.726
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Table 2: The aggregated 7 most
significant wavelengths for disease
detection in the VIS/NIR range

Spectro-Radiometer (ASD)

Stepwise regression ranked results (Table 2Table 2: The aggregated 7 most significant wavelengths for
disease detection in the VIS/NIR range) reveal that 400nm was found as the most significant
wavelength for disease detection with additional wavelengths as noted. 400, 440, 630, 700nm are
mainly influenced by leaf pigment content and 750, 820, 900nm depends on the leaf biology
structure.

The reflectance of these individual spectra were integrated into a logistic regression model to
classified between healthy and infected plants (model 1). The model was able to predict the state
of the plant for 76% of the plants. The prediction of the infected plants is consistently better than
healthy plants prediction (correctly classified 87% of the infected plants vs. to 56% of healthy
plants).

Hyperspectral images

Figure 5 shows the different steps in images pre-processing flowchart, from saving the RGB image
to save the normalized multispectral cube and cropped.

A random forest model was built based on the 37 features (Model 2) from the multispectral cube.
The random forest includes 50 different trees, each tree in maximum depth of 6, looking for 15
of features to the best split. These parameters define the RF and were chosen to maximize
accuracy and AUC (Figure 7).

Save RGB image Applied multiple masks Normalize image and remove
background

Figure 5: Hyperspectral images pre-processing

The importance is calculated according to the average decrease in impurity on trees. Results reveal
that the most significant feature for disease detection is LAI, the area of the plant. then the
height/width ratio and then the other features calculated from the various wavelengths from the
multispectral images (Figure 8). The 2 geometric ones are the most important. Logistic regression
model using these two features achieved an accuracy of 63.5% and AUC of 0.64.
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each parameters combination

Table 3 summarizes the classification results of the models with AUC and accuracy depicted for
models' comparison. The model which was based on the hyperspectral features (model 2) was able
to predict the state of the plant for 82% of the plants compared to 76% in model 1. This result is
very significant since identification was carried out at an early stage where it was not possible to
classify between healthy and infected plants without destroying the plant (Chemical testing or
taken the plant out and visually assessed the roots).

Model Performance measure

AUC Accuracy
Model 1 Confidence interval
Logistic Regression - ASD 0.729 0.76 0713 | 0316
Model 2 Confidence interval
Random Forest - features from MSI | 0.7%4 0.82 0.782 | 0.864

Table 3: Summary of classification results of the models

The density plots of the predicted probability for the healthy plants and for the infected plants
(Figure 9) reveal the same trend for the two models. There is difference between the density of the
predicted probability of the infected and the density of the healthy plant as expected. Prediction of
the infected plants is consistently better than healthy plants prediction (correctly classified 87% of
the infected plants vs. to 56% of healthy plants in model 1 and 91.3% vs. 67.5% in model 2).
Model 2 is better in predicting both healthy and infected plants (67.5% vs. 58.7% in sensitivity
and 91.3% vs. 87% in specify).
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Figure 9: Density plot distributions of the predicted values of the healthy and the infected plants of
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Figure 10: The average spectral signature from the hyperspectral image (blue), and after
recalculating the image for 50nm bandwidth (orange). and for 150nm bandwidth (green)

Sensitivity analysis

Result reveal that the wider the bandwidth the average spectral signature of the plant is smoother.
The smoothing does not significantly change the average plant spectral signature for 50nm
bandwidth in the wavelengths with the SNR ratio bigger than 12 (Figure 10).

The 37 features were calculated using the smoothed images with the different bandwidths. Model
2 (based on the features that calculated from the multispectral cube without smoothing) was
evaluated using these features (features that calculated from the 50nm bandwidth multispectral cube
and the 150nm bandwidth multispectral cube). The classification results of the model did not change
for any of the bandwidths.
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The model is not sensitive to the bandwidth of the images. The model has a large number of
weights to learn. The 2 geometric features are the most important in the model, these features are
not affected by bandwidth.

Conclusions

Non-destructive and rapid methods to assess diseases, yield and other traits for large numbers of
samples is essential for precision agriculture and high throughput phenotyping.

To the best of our knowledge. early detection of Fusarium infection without distractive
phenotyping is still a big challenge that might have a massive impact on the future agriculture
economy. Therefore, classification accuracy of 82% applying spectral analysis is a step towards
early detection of the disease.

The evaluated wavelength range 400- 1000 nm reliably detected corn plants infected with
Fusarium. Dimensionality reduction enable to build a simpler model and reduce sensor cost
dramatically. The stepwise regression model was used to determine the significant wavelengths
for Fusarium detection using point spectral measurements from the ASD. The wavelengths that
allow differentiation between spectra of infected and healthy com plants: 400, 440, 630, 700, 750,
820 and 900nm. The random forest model that used features from the hyperspectral images
calculated from the seven wavelengths yielded better results in predicting both healthy and infected
plants.

The narrower the bandwidth, the higher the cost of the sensors. The model is found to be insensitive
to bandwidth, so we can lower the cost of so the sensors significantly.

For future work. more samples should be collected over the course of the growing stages to provide
a better understanding of the spectral discrimination over time. In addition, it is necessary to collect
images in different lighting conditions, from different area and of different varieties in order to
build a model that will be more generic. In this research because of the small dataset we used the
leave one out method to evaluate the models. Increasing the data set will allow to split the data to
train and test set and build a stronger model
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Abstract

This work presents a non-destructive methodology for early detection of Fusarium
infection. by spectral analysis in the 350 2500nm ranese. Com plants in sreenhouse
conditions were analvzed using spectral analysis. The Lasso model was used fo
differentiate mfected from non-infected plants based on the first dervative of leaf spectral
reflectance. Fusarium infection was successfully recognized m plants at V2 growth stage
with 74% success rate. This result enables infection detection at a stage which currently
15 not possible without destroving the plant, which can be further applied to map the
disease m field scale.

Kevwords: mmltispectral, spectral analysis, disease detection, fusarmm

Introduction

Plant diseases cause major production and economic losses in agriculture. It is estimated
that the crop losses due to plant pathogens m the USA amount to about 33 billion dollars
every vear ( Savary et al. 2012). In recent vears, Fusarmim has been pronounced worldwide
as a disease of economic mmportance (Windels, 2000). Fusarmm is a phytopathogenic
fungus with a global distribution. capable of infecting a wide range of crop plants.
including cereals such as maize, wheat or barley (Turado et al, 2006). It may rapidly result
i vervy high crop losses and quality reductions. Moreover, myveotoxins, potentially
generated by these fungi, are poisonous and harmful for both human and animal mrtrition
(Browne et al. 2005). These compounds may be present even after removal of mrveelnim
and since most of them are resistant fo physical and chemical treatments. they usually
stay m the food during processing and storage (Falascond et al, 2005).

Early detection of the fungal species producms mveotoxins or of the myveotoxins
themselves has become verv important to prevent the human and animal risk deriving
from entrv of myeotoxins imto the food chain (Falascond et al.. 2003). Traditional methods
used for plant assessment are still time-consuming. labor intensive and destructive in
nature (Busemeyer et al, 2013). Introduction of modern sensmg technologies can
improve crop yvield, provide information to enable better in-field management decisions,
reduce chemical and fertilizer costs through more efficient application, permit more
accurate farm records, increase profit margin and reduce pollution (Li et al 2014).

The appearance of Fusarmm m mnfected ears and plants, largely changes during the
development of this disease. mostly due to degradation of chlorophyll confents and
pronounced water losses. Hence, these changes lead to pronounced variations in spectral
properties of infected grains and total ears. Both fungi and bacteria usually cause damage
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at molecular, cellular and/or tissue levels, which, in furn, can be detected as changes m
the spectral signatures (West et al., 2003).

Utilization of spectral analysis for detection of fungal and bacterial diseases 1s currently
extensively under mvestigation with several working applications (Ray et al, 2017).
According to Bauriegel et al (2011), m the spectral range of 400-1000 nm, there was a
significant difference between the spectral patterns of healthy and diseased ears of wheat
during BBCH-stage 71-85 (Lancashire et al. 1991). There are no known works of early
detection of Fusarmm in corn.

The objective of this study was to develop a method to detect infected and non- mfected
corn plants at early growth stages, before it can be visually identified on the leaves, based
on leaf spectral reflectance.

Material and Methods

Plant material

Cormn seeds were infected and germinated in a greenhouse for a period of 3 weeks, at
Evogene’s research facilities in central Israel (317 527 55.80™ N 34° 50° 30.77" E).
Twelve bio pesticide microbial treatments were applied in two commercial corn varieties
(P2088. 72100, on mfected and non-infected plants in order to create variation in disease
status ofthe various plants. Infection was created by drench with 1074 spores of Fusarium
Graminearum. Four seeds were germinated in 380 ml pots. Five pots were repeated for
each treatment 140 pots were sampled, each pot contammed 4 plants, but during the
experiment only one plant (the same plant each time) was sampled.

The greenhouse temperature was mamtained at 24=2°C during the day and at 20=2°C
during the mght. Drip imigation with no fertilization (inhibits fiusarmm infection) was
applied, and irrigation frequency was defined according to plot weight at 50% water
content.

Experimental and measuring procedure

The plants were sampled four times during a two-week period (from 11 davs after
seedmg, stage V1, unfil 22 days after seeding. stage V2) between 09:00 fo 12:30 local
time (UTC-2). Developmental stages of growth were graded according to the BBCH scale
(Lancashire et al. 1991). At each sampling dav, all plants were sampled with a field
spectro-radiometer. Data were acquired from the last leaf that was fully developed. After
the last sampling dav. the roots of the plants were exposed and the disease infection level
was manually examined by an agronomist expert. The disease was classified from level
0 to 5 where 0 1s healthy. 5 is an infected plant, according to the state of the roots of the
different plants (Figure 1. Due to the small mumber of samples, the number of infestation
levels were aggregated from 6 to 2: levels 0 and 1 were aggregated to non-infected, and
levels 2 to 5 were aggregated to infected.

Spectral measurement system
Spectral measurements were performed by point spectral measurements with a field

spectro-radiometer (ASD FieldSpec 4 hi-res, ASD Inc. Malvern Panalvtical Boulder,
Colorado, USA) with a 25° field of view in the range of 350-2500 nm with 3 nm spectral
resolution in the visible and near- infrared (VINIR) range and 8 nm m the short- wave
infrared (SWIR) range. All measurements were conducted at fixed locations at
approximately 10 mm distance from the leaf surface, resulting to an effective sampling
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area of about 60 mm’. A 100 mm diameter spectralon plate was used as a white reference.
to obtain reflectance curves.

Each recorded spectrum was the average of four sequential measurements at the same
spot, where each measurement was the average of 30 full spectrum scans Totfal
acquisition time for each leaf was about 10 s.

Figure 1:
Labelling
protocol of
plants to
different levels
of disease
accordmg to
plant status.
Black Black Eﬂﬂﬂﬂ
dx:rts on dotson stams on
root and unmut root and mnﬂf:ss."
stem stem stem less
Data analysis
Normalized Difference Indices

The normalized difference vegetation mdex (NDVI) (Rouse et al 1974) 15 the most
widely used for retrieval of vegetation canopy biophysical properties (Jiang et al. 2006).
This mdex normalizes the differences between two selected bands. It has been related to
crop varniables such as biomass, leaf area, plant cover, leaf gap fraction, mitrogen and
chlorophvll in cereals (Hansen & Schjoerring 2003). NDVT values can range from (—1)
to (1) while the normalization 15 effective n standardizing the spectral response to
observed targets.

The generic form of normalized difference mdices (NDI) was used in this work, where
all combmations of wavelengths {1 1} m {350 2500nm} were substiuted in Eq. 1.

NDI = 278 (py

Ri+R;
Partial Least Squares Regression (PLSR)

PLS is a method that uses data compression fo reduce the large number of collinear
measured spectral variables, to a few orthogonal latent variables (LV's). It is employed
in remote sensmng for studying vegetation and soil characteristics (Atzberger et al 2010).
The LVs represent the relevant structural information. which is present in the reflectance
measurements to predict the dependent variable. In principle, PLS regression uses
component projection successively to find latent structures. Visual mspection of score-
plots and validation residual variance plots was used to find the optimal number of LVs,
to prevent over-fitting. In most cases, this procedure can reduce the mumber of spectral
variables to a few independent L'Vs. Validation of the models was carned out by the area
under the curve (AUC) of recerver operating charactenistic curve (ROC) — explamed
below.

Performance measures

A receiver operating characteristic curve (ROC) is a graphical plot that illustrates the
diagnostic ability of a binary classifier system as its discrimmation threshold is vared.
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The ROC curve 15 created by plotting the true positive rate (TPR) agamst the false
positive rate (FPR) for various threshold settings. The area under the curve (AUC) 1s
the definite integral of ROC and is a known metric to evaluate the model quality.

The performance of all the models was evaluated with the leave-one-out cross validation
method (Tsenkova et al, 2009

Results and Discussion

Data analyses were performed on the data from the last sampling day, 22 days after
seedmyg, stage V2, closest to the day when the manual classification of disease level was
performed. Different models were built for the P2088 vanety.

It has been suggested that spectral derivatives have important advantages over spectral
reflectance, such as therr ability to reduce vanability due to changes m illummation
reflectance (Blackburn, 2007). In this work, the first derivative of the spectral reflectance
was calculated, and simultaneons smoothing was applied (using the Savgol function
implemented with R software?) (Savitzky & Marcel 1964), mn order to mininuze noise
from the environment.

The first dervative of all individual spectra was subjected to a partial least squares
regression (PLS) to build a model that disciminates between non- mfected and mfected
plants (model 1).

In addition, the confidence intervals of the mean for the non- infected plants and the
infected ones were calculated, to find wavelength ranges where there is a difference
befween the mean of the non- infected and the infected plants.

Figure 2 shows the spectral reflectance and the first dertvative of the spectral reflectance
of infected and non-infected plants in the entire spectral range. The graph shows that there
are several wavelength ranges where there is a statistically significant difference between
the mean of the non- mfected and the infected plants.

Although there was a significant difference m reflectance between mnfected and non-
infected plants. this measure was not used despite its low computation complexity.
Instead the derivative of reflectance was used smce 1t 15 known to minimize noise and
(Blackburn, 2007) and revealed more significant results.

Using the first derivative, the wavelengths with the most significant differences between
non- infected and infected plants were derived using the statistical T-test. The most
significant wavelengths were 715, 755, 920, 050, 975, 1160, 1170 and 1280 nm These
wavelengths marginally include spectral regions sensitive to leaf [Chi] (715nm) while all
remaming wavelengths are near-infrared (INIE), sensitive to leaf parenchyma conditions.
Using the first derrvative at these wavelengths, a classification model was built to separate
non- infected from infected plants. The least absolute shrinkage and selection operator
{Lasso) classification method was used (Tibshiram 1996). The Lasso classifier model
smultaneously conducts prediction and variable selection. selecting the most relevant
wavelengths to discriminate between non- infected and mfected plants (model 2).
Classification results are depicted m table 1, model 2.

hittps:/fwaw rdocumentation org packages pracma’versions'1. 9.9/ topics/savgol *
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Figure 2: Mean and the 95% confidence interval of leaves’ spectral reflectance of (a)
non-mfected plants and (b) mfected plants.

Mean and the 95% confidence interval of first dervative of leaf spectral reflectance
of (c) non-mfected and (d) of mfected plants.

An additional model was built, based on NDIs. Figure 3 shows the correlation between
the normahzed difference index (INDI) fo the plant visually assessed level of the disease,
for every two-band combination m a defined spectral range.

The areas with the higher correlation were for the followmg NDIs:

RHE_R‘IED RESD_RLEJD RLDHD_RL:I.BD RESD_Rl.E-iE R:I.I.EE_R:I.BEG
Rﬂﬂ+ﬂ‘1097 RESEI"-RI.EIJD: RIDHD+RL:I.ED: RESEI"-RI.EJE: R1155+R1520.
Logistic regression models were examined for these indices. A logistic model 15 a widely
used statistical model that uses a logistic function to model a bmary dependent varable.
The model which maximized the value of the AUC was based on the NDI with
wavelengths 1155, 1220nm. Results are depicted in table 1, model 3.
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Figure 3: Correlation map of all possible two-band combinations by NDIs with the
visually assessed level of the disease.

Table 1 summarizes the classification resulis of the three models with AUC and accuracy
depicted for model comparison. There is no significant difference between models 1, 2
and 3. The best model according to the truth rate values 1s model 2 followed by models 1
and 3. Model 3 yielded best results for AUC values. Furthermore, models 2 and 3 are
smmpler than model 1, since in model 1 all the wavelengths in the range 350- 2500nm are
included, whereas in models 2 and 3. only significant wavelengths are mncluded.

Model 2 was able to predict the state of the plant for 74% of the plants. This result 1s very
significant since identification was carnied out at an early stage where if was not possible
to classify between non- infected and infected plants without destroyving the plant.

Table 1: Summary of classification results of the three models.

Model Performance measure

| auc Truth rate
Model 1 (PLS) 0.744 50/z0 =071
Model 2 (derivative of single wavelength] | 0.740 32/7p =074
Model 3 (NDi) 0.793 7 =070

Figure 4 shows the density plots of the predicted probability for the non- infected plants
and for the infected plants, for model 2. The three models show the same trend, while the
prediction of the non- infected plants 1s consistently befter than infected plant prediction
Another frend that appears m all the models are the 2 peaks in the distributions, on both
sides of the threshold This behavior should be exanuned i future work.

For future work, more samples should be collected over the course of the growing stages
to provide a better understanding of the spectral discrimination over time. Additionally,
further research should focus on developmg measures fo identify at earher stages. The
point sampling techmque that was used in this work cannot describe the spatial variability
of the leaves spectral reflectance. Hyper-spectral images (HSI) can be useful to capture
the complementary mformation from both domains - spatial domain and spectral domain.
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Undergomg research is ammed at utilizing a hyperspectral maging system in order to
classify vegetation can add an mmportant data source in order to achieve these goals
successfully.
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Figure 4: (a) Density plot distributions of the predicted values of the non- mnfected plants
for model 2. The plants with predicted probabaility below 0.5 were correctly classified.
(b) Density plot distributions of the predicted values of the infected plants for model 2.

Conclusion

To the best of the authors’” knowledge, early non-destructive defection of Fusarmm
infection 1s still a big challenge that nught have a large mmpact on the firture agneulture
economy. Therefore, achieving a classification accuracy of 74% of mfected plants by
applying spectral analysis 15 a step towards early detection of the disease.

The evaluated wavelength range 350- 2500 nm reliably detected corn plants infected with
Fusarmm The Lasso classifier model was applied to identify distinct wavelengths that
allow differentiation between spectra of mfected and non-infected corn leaves: 715, 735,
020, 950, 975, 1160, 1170 and 1280 nm.
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8.3 CONVOLUTIONAL NEURAL NETWORKS (CNN)

8.3.1 LITERATURE REVIEW:

In the last years, convolutional neural networks (CNN) have become one of the most promising
methods for both general image classification tasks (He et al. 2016). CNN are a special type of neural
networks that present a series of convolutional layers especially designed to cope with inputs in the

form of multidimensional arrays (image patches) (Lecun et al., 2015).

A CNN consists of an input and an output layer, as well as multiple hidden layers. The hidden layers

of a CNN typically consist of a series of convolutional layers, pooling layers and fully connected layers.

a
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Figure 39: Convolutional neural networks layers
(a) Neuronal network structure (b) Convolutional layer (c) Max-Pool layer

8.3.1.1 Convolutional Layers
The convolutional layers serve as feature extractors, they learn the feature representations of their
input images. The neurons in the convolutional layers are arranged into feature maps. Each neuron
in a feature map has a receptive field, which is connected to a neighborhood of neurons in the
previous layer via a set of trainable weights (Lecun et al., 2015). Inputs are convolved with the learned
weights in order to compute a new feature map, and the convolved results are sent through a
nonlinear activation function. All neurons within a feature map have weights that are constrained to

be equal; however, different feature maps within the same convolutional layer have different
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weights so that several features can be extracted at each location ( Lecun et al., 1998). Nonlinear

activation functions allow for the extraction of nonlinear features.

The standard way to model a neuron’s output f(x) as a function of its input x is with:

Tanh: Sigmoid: RelLU:

f(x) = tanh(x) fX) =0 +e™) L f(x) = max(o, x)

A

A

v

v
v

Figure 40: Activation functions in convolutional layer
Traditionally, the sigmoid and hyperbolic tangent functions were used; recently, rectified linear units
(ReLU) have become the most used (Nair & Hinton, 2010). Deep convolutional neural networks with
RelUs train several times faster than their equivalents with tanh units (Krizhevsky, Sutskever, &
Hinton, 2012).

8.3.1.2 Pooling Layers
Pooling layers in CNNs summarize the outputs of neighboring groups of neurons in the same kernel
map. The purpose of the pooling layers is to reduce the spatial resolution of the feature maps and
thus achieve spatial invariance to input distortions and translations (LeCun et al., 1989a; 1989b).
Initially, it was common practice to use average pooling aggregation layers to propagate the average
of all the input values, of a small neighborhood of an image to the next layer (LeCun et al., 1989a;
1989b). However, in more recent models (Szegedy et al., 2015), max pooling aggregation layers

propagate the maximum value within a receptive field to the next layer (Rsanzato et al., 2007).

8.3.1.3 Fully Connected Layers
Several convolutional and pooling layers are usually stacked on top of each other to extract more
abstract feature representations in moving through the network. The fully connected layers that
follow these layers interpret these feature representations and perform the function of high-level

reasoning (Simonyan & Zisserman, 2015).

8.3.2 METHODS
Data analyses were performed on the data from the two experiment from the second sampling day,
21 days after seeding, stage V2, closest to the day when the manual classification of disease level was

performed.

Convolutional neural network to disease detection.
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The input for the convolutional neural network were the 7 bands (with high SNR value) selected from
the data analysis in the ASD. Allimages were padded with zeros so that they were all at the maximum
width and maximum height from the images. Allimages had the same spatial and spectral size (width-
368, height- 1480, bands- 7). The 7 bands selected were 7, 64, 332, 429, 497, 592, 700 corresponding
to the selected wavelengths: 400, 440, 630, 700, 750, 820, 900nm.

A number of different networks with different structures were examined to best fit the small data

set. The model is selected according to the accuracy of the validation set.

8.3.2.1 The Architecture
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Figure 41: An illustration of the architecture of the CNN

The input to the CNN is an multi spectral image of size 123 X 292 X 7 with “resize” functions from
“cv2” library in order to resize the images in space. All images in all the data sets- training, validation

and test were converted to this size.

The first convolutional layer filters the 123 X 292 X 7 input image with 32 kernels of size 4 X 4 X 7
with a stride of 1 pixels (this is the distance between the receptive field centers of neighboring
neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and max pooled) output of the first convolutional layer and filters it with 48 kernels of size 3 X 3 X

32. The dense layer 617 neurons. In the last layer there are 2 neurons — ‘healthy’ or infected.
The chosen parameters for the training model were:
Epocs=40, steps_per_epoch=213 size of train set, batch_size=1 image size.

8.3.3 RESULTS
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Figure 42: The training and validation
(a) accuracy curve during the training of the CNN (b) loss curve during the training of the CNN
Results reveal that there is overfitting. The model is significantly better in classifying the observations

on the train set than the observations in the validation set. The model trains a large number of

parameters, and there is not enough data in order to train them.
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Figure 43: Density plot distributions of the predicted
values of the infected and the healthy plants of CNN
model (a) train set (b) validation set (c) test set

Table 20: Classification results of CNN model for train, validation and test set
Results reveal that there is a difference between the density of the ‘infected’ and ‘healthy’ plant. In
addition, it can be seen that in all sets the probability predicted in the CNN model is centered around

probability 0 and probability 1.

In addition, the result shows the same trend, implying overfitting.

Healthy Infected
Predicted as ‘healthy’ | TP —16 FP-11
Predicted as ‘infected’ | FN —6 TN -34
Sensitivity = P10 477 specificity = V3% 785
TP+ FN ~ 22 TN +FP ~ 45

Table 21: Confusion matrix of CNN model, test set
Result reveal that the prediction of the infected plants is better than ‘healthy’ plant prediction. The
bias may be existing because the imbalanced dataset (there are 208 images of infected plants,
compared to 126 healthy plants). The model trained on 133 images of infected plants and only 80

images of ‘healthy’ ones (images in train set).

8.3.4 SENSITIVITY ANALYSIS

In this section the sensitivity of the CNN model was tested.

8.3.4.1 other bandwigth
Result reveal that the model is not sensitive to the bandwidth of the images. In addition, it can be
seen that the smoothing does not significantly change the average plant spectral signature. In
addition, the model has a large number of weights to learn. It might be that the reason that the

different bandwidth given the similar results is due to lack in amount of images.
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bandwidth Number | Accuracy | AUC
of images

Hyperspectral | 1 20 0746 | 07414
67
50

10nm 15 S0 _ h7a6 | 07414
67
50

30nm 41 S0 _ h7ag | 07414
67
50

50nm 67 S0 _ h7ag | 07414
67
51

150nm 211 o= 0761 0.7641

Table 22: Classification results of CNN model for different multispectral bands

8.3.4.2 other grothe stage

In the previous sections, the models used only the data that were collected 21 days after sowing

(stage V2), the day before the disease level was classified for train, validation and test sets.

Healthy Infected
Predicted as healthy | TP -7 FP -5
Predicted as infected | FN —55 TN -93
TP _7_0113 TN 93 _
sensiyivity = TP+FN 62 % specificity = TNTFP 98 0.949

Table 23: Confusion matrix of CNN model, V1 growth stage plants

The model classified most plants from growth stage V1, both infected and healthy , as infected

( 5493 _ iﬁ = 0.925). Compared to 12 plants classified as healthy (0.075).
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Figure 44: Density plot distributions of the
predicted values of the infected and the healthy
plants of CNN model (a) samples collected 14 days
after sowing (b) samples collected 21 days after
sowing

Table 24: Classification results of CNN model for plant on different growth stage

Results reveal that predictions of diseases in growth stage V2 is consistently better by

0.746
0.625

* 100 = 119.4% than the prediction of the plant on test set in growth stage V1.
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8.4 FEATURE SELECTION VIS/NIR RANGE

SR Data R1D Data

wl T- test Anova RF PLS T- test Anova RF PLS

X350 1.214639 | 0.455834 | 0.01568 | 0.129494 | 1.404316 | 3.302868 | 0.008929 | -0.00588
X355 1.48658 | 1.165456 | 0.02914 | 0.114706 | 2.028443 | 7.94577 | 0.015574 -0.1084
X360 1.793315 2.2155 | 0.030521 | -0.06724 | 1.020193 | 2.251775 | 0.009104 | -0.05966
X365 1.907073 | 2.488658 | 0.040685 -0.1052 | 1.24316 | 2.030829 | 0.009724 | -0.00144
X370 1.670149 | 1.481783 | 0.015801 | 0.00397 | 2.041145 | 3.841308 | 0.009931 | 0.042449
X375 1.565832 | 1.217072 | 0.003382 -0.0024 | 1.599369 | 1.059946 | 0.006845 | 0.017229
X380 1.866435 | 2.382579 | 0.033535 | -0.22549 | 0.762353 | 0.000778 | 0.004007 | -0.00452
X385 1.762411 | 2.570225 | 0.055348 | -0.23311 | 2.265301 | 3.584447 | 0.001911 | 0.078734
X390 1.495711 | 1.967526 | 0.064646 -0.2574 | 1.988102 | 3.353248 | 0.007157 | 0.063978
X395 0.420348 | 0.029594 | 0.030219 | 0.263558 | 2.261954 | 5.630637 | 0.013156 | 0.097872
X400 0.571791 | 0.68568 | 0.037825 | 0.639938 | 1.704956 | 2.778357 | 0.009123 | 0.057739
X405 0.456314 | 0.438018 | 0.010988 | 0.544963 | 0.95521 | 1.918978 | 0.007215 | -0.06427
X410 0.100033 | 0.054359 | 0.008479 | 0.332447 | 2.528121 | 9.619236 | 0.018028 | -0.13105
X415 0.111312 | 0.002174 | 0.005938 | 0.198373 | 1.93562 | 6.648879 | 0.009312 | -0.08708
X420 0.354568 | 0.118708 | 0.001051 | 0.06201 | 2.30379 | 9.055153 | 0.016239 | -0.09348
X425 0.550512 | 0.337938 | 0.001039 | -0.03824 | 2.171927 | 8.347939 | 0.009177 | -0.08176
X430 0.694405 | 0.567141 | 0.005959 | -0.10694 | 1.970153 | 6.919245 | 0.020665 | -0.06126
X435 0.747298 | 0.678421 0| -0.12899 | 1.141012 | 2.535156 | 0.008366 | -0.03275
X440 0.783327 | 0.743522 | 0.005991 | -0.14521 | 0.961923 | 1.415234 | 0.010852 | -0.07456
X445 0.790823 | 0.769278 | 0.008718 | -0.15924 | 0.198707 0.0005 | 0.002016 | -0.03243
X450 0.781049 | 0.76198 | 0.008832 | -0.16748 | 0.505965 | 0.088961 | 0.004659 | -0.03162
X455 0.71331 | 0.664789 | 0.017994 -0.1566 | 0.641568 | 0.185353 | 0.002162 | -0.04346
X460 0.709972 | 0.667653 0| -0.16771 | 0.355968 | 0.259271 | 0.002243 | -0.10254
X465 0.726749 | 0.699529 | 0.001952 | -0.18598 | 0.006672 | 0.020163 | 0.004913 | -0.06998
X470 0.705496 | 0.669014 | 0.004257 | -0.18419 | 0.366258 | 0.098683 | 0.002871 | -0.02835
X475 0.725813 | 0.700505 | 0.014584 | -0.19009 | 0.367354 | 0.090494 | 0.006816 -0.0109
X480 0.720258 | 0.687295 | 0.006148 | -0.17773 | 0.612368 | 0.447576 | 0.008092 | 0.021972
X485 0.683128 | 0.623907 | 0.005933 | -0.15958 | 1.086066 | 0.997535 | 0.002394 | 0.003916
X490 0.640944 | 0.565282 0.009 | -0.15654 | 1.181918 | 1.102684 | 0.003295 | 0.004541
X495 0.542686 | 0.434779 | 0.007457 | -0.14826 | 1.069117 | 0.921946 | 0.002173 | 0.006705
X500 0.405849 | 0.276525 | 0.009924 | -0.13239 | 0.897587 | 0.689067 | 0.003223 | 0.015187
X505 0.257673 | 0.140978 | 0.006675 | -0.11236 | 0.810793 | 0.56244 | 0.004109 | 0.023233
X510 0.086699 | 0.041112 | 0.006162 | -0.07421 | 0.479018 | 0.178938 | 0.002731 | 0.020016
X515 0.01748 | 0.015763 0| -0.05126 | 0.129475 | 0.007253 | 0.000992 | 0.018225
X520 0.019762 | 0.01332 | 0.019185 | -0.02819 | 0.258096 | 0.08726 | 0.000788 | 0.008714
X525 0.105331 | 0.035619 | 0.006184 | -0.03113 | 0.544667 | 0.33324 | 0.000945 | 0.000344
X530 0.17753 | 0.062978 | 0.013181 | -0.02936 | 0.656348 | 0.460024 | 0.004273 | -0.00103
X535 0.22314 | 0.084103 | 0.013956 | -0.02867 | 0.654013 | 0.422837 | 0.001265 | 0.005266
X540 0.241659 | 0.092066 | 0.002502 | -0.02562 | 0.434959 | 0.163876 | 0.00567 | 0.032435
X545 0.236596 | 0.089369 | 0.008008 | -0.01757 | 0.335461 | 0.047914 | 0.011189 | 0.041304
X550 0.251876 | 0.091406 | 0.004907 | -0.01115 | 0.363342 | 0.019785 | 0.011854 | 0.039329
X555 0.23855 | 0.07842 | 0.006504 | 0.00346 | 1.689244 | 5.524424 | 0.005929 | 0.09351
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X560 0.200847 | 0.05445 | 0.002771 | 0.017653 | 1.191323 | 1.99133 | 0.009817 | 0.034746
X565 0.137358 | 0.028265 0 | 0.028079 | 1.119394 | 1.507193 | 0.002639 | 0.029396
X570 0.037559 | 0.004402 | 0.002601 | 0.047422 | 1.146186 | 1.654938 | 0.006496 | 0.032525
X575 0.063168 | 0.001468 | 0.007226 | 0.067918 | 0.877863 | 0.957505 | 0.000549 | 0.013525
X580 0.118404 | 0.00901 | 0.002807 | 0.07197 | 0.522127 | 0.362247 | 0.002648 | -0.00844
X585 0.151592 | 0.016925 | 0.002324 | 0.071233 | 0.390526 | 0.346448 | 0.002017 | 0.004285
X590 0.167022 | 0.024981 | 0.003413 | 0.078845 | 0.156236 | 0.129737 | 0.001846 | -0.00123
X595 0.175441 0.0271 | 0.000227 | 0.075483 | 0.280248 | 0.02358 | 0.006981 | -0.0336
X600 0.188573 | 0.030262 | 0.021453 | 0.078669 | 0.363383 | 0.105897 | 0.004169 | -0.03102
X605 0.19287 | 0.032481 | 0.007825 | 0.074351 | 0.18472 | 0.105239 | 0.003698 | -0.0234
X610 0.229334 | 0.049894 | 0.007193 | 0.082206 | 0.287184 | 0.20311 | 0.003026 | -0.01058
X615 0.248823 | 0.063755 | 0.007257 | 0.08286 | 0.083406 | 0.048383 | 0.00035 | -0.01889
X620 0.258896 | 0.072219 | 8.58E-05 | 0.082335 | 0.068399 | 0.005867 | 0.007449 | -0.02031
X625 0.266222 | 0.080474 | 0.000251 | 0.087304 | 0.123089 | 0.093251 | 0.003137 | 0.012605
X630 0.265154 | 0.084465 | 0.017104 | 0.096158 | 0.571751 | 0.243151 | 0.00514 | -0.04029
X635 0.260295 | 0.078564 | 0.00226 | 0.091109 | 0.444127 | 0.562726 | 0.00572 | -0.06123
X640 0.239199 | 0.055306 | 0.012127 | 0.067555 | 0.746625 | 1.106357 | 0.002884 | -0.07273
X645 0.151342 | 0.014167 | 0.013869 | 0.019233 | 0.927257 | 1.194434 | 0.003473 | -0.06732
X650 0.072143 | 0.001103 | 0.011891 -0.0104 | 0.882673 | 0.661809 | 0.004452 | -0.05515
X655 0.022912 | 5.64E-06 | 0.013475 | -0.01597 | 0.745655 | 0.225457 | 0.001552 | -0.03035
X660 0.072292 | 0.004456 | 0.009263 | -0.02192 | 0.991586 | 0.675646 | 0.004361 | -0.03392
X665 0.256664 | 0.05026 | 0.007304 | -0.03221 | 1.320498 | 1.404372 | 0.004761 | -0.03683
X670 0.459952 0.1628 | 0.001384 | -0.03665 | 1.478955 | 1.767297 | 0.003867 | -0.02576
X675 0.58374 | 0.25774 | 0.028176 | -0.02672 | 1.344566 | 1.062033 | 0.011824 | 0.020569
X680 0.595161 | 0.249505 0 | 0.001593 | 1.190913 | 2.180402 | 0.006393 | 0.087841
X685 0.366669 | 0.068796 | 0.009323 | 0.040457 | 1.212017 | 2.018284 | 0.007538 | 0.07355
X690 0.090927 | 0.049778 | 0.008742 | 0.158496 | 0.715877 | 0.883989 | 0.006076 | 0.065481
X695 0.181189 | 0.120068 | 0.004169 | 0.232292 | 0.073531 | 0.01687 | 0.008422 | 0.042882
X700 0.021258 | 0.026153 | 0.008317 | 0.258031 | 0.793851 | 0.407607 | 0.004404 | 0.01257
X705 0.31028 | 0.015116 | 0.025654 | 0.23556 | 1.375684 | 1.605603 | 0.005433 | -0.01906
X710 0.589787 | 0.158686 | 0.00831 | 0.196875 | 1.853748 | 3.040643 | 0.004217 | -0.04399
X715 0.864465 | 0.440918 | 0.007641 | 0.150584 | 2.393685 | 4.826275 | 0.006999 | -0.06086
X720 1.157541 | 0.882769 | 0.007888 | 0.095905 | 2.516216 | 5.764489 | 0.004374 | -0.07775
X725 1.353529 | 1.296701 | 0.004776 | 0.053013 | 2.731951 | 6.967827 | 0.005088 | -0.09314
X730 1.509244 | 1.69052 | 0.000798 | 0.017419 | 2.69819 | 7.50237 | 0.02259 | -0.10903
X735 1.60318 | 1.988935 | 0.002606 | -0.01051 | 2.78659 | 8.263208 | 0.013508 | -0.12302
X740 1.674056 | 2.213881 | 0.000906 | -0.02968 | 2.983264 | 9.352843 | 0.04271 | -0.13156
X745 1.724777 | 2.380727 0 | -0.04433 | 3.288814 | 10.97526 | 0.034064 | -0.13957
X750 1.759719 | 2.491228 | 0.012376 | -0.05248 | 3.586002 | 12.65693 | 0.012651 | -0.14289
X755 1.782434 | 2.563141 | 0.013886 | -0.05682 | 3.32578 | 7.767457 | 0.006435 | -0.08123
X760 1.811086 | 2.602452 | 0.000906 | -0.05101 | 1.25725 | 0.340285 | 0.007048 | 0.07859
X765 1.797902 | 2.562716 | 0.002938 | -0.03585 | 0.715057 | 0.00291 | 0.006765 -0.07
X770 1.822277 | 2.690126 | 0.007984 | -0.06164 | 0.449097 | 1.163005 | 0.008879 | -0.14817
X775 1.829872 | 2.716984 | 0.007355 | -0.06338 | 0.911224 | 0.683495 | 0.003623 | -0.03462
X780 1.83653 | 2.737395 | 0.006534 | -0.06367 | 1.425242 | 1.105888 | 0.010723 | -0.00906
X785 1.844798 | 2.756993 0 | -0.06323 | 1.881525 | 1.276396 | 0.00444 | 0.032652
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X790 1.856021 | 2.776283 | 0.003439 | -0.06173 | 1.23247 | 0.294516 | 0.00266 | 0.039249
X795 1.856786 | 2.77813 0 | -0.05961 | 1.315896 | 0.399196 | 0.002534 | 0.014163
X800 1.864008 | 2.793702 | 0.00875 | -0.05904 | 1.553576 | 0.759327 | 0.003568 | -0.00114
X805 1.864883 | 2.796505 | 0.010753 | -0.05739 | 1.197889 | 0.192213 | 0.002876 | 0.003178
X810 1.875889 | 2.815425 | 0.002724 -0.0571 | 2.485418 | 2.469365 | 0.002401 | -0.00027
X815 1.914057 | 2.886697 | 0.001048 | -0.06154 | 2.439736 | 2.653021 | 0.004538 | 0.004723
X820 1.906819 | 2.873503 | 0.002422 | -0.05836 | 2.190381 | 2.150476 | 0.000569 | 0.006998
X825 1.90109 | 2.862409 | 0.006365 | -0.05592 | 1.474982 | 0.955908 | 0.006743 | -0.00607
X830 1.900043 | 2.862364 0 | -0.05392 | 1.514837 | 0.825933 | 0.007412 | -0.01948
X835 1.886505 | 2.833011 0 | -0.05013 | 2.172912 | 2.119547 | 0.007502 | -0.01662
X840 1.878435 | 2.820839 0 | -0.04806 | 1.577185 | 0.958506 | 0.009653 -0.0295
X845 1.872913 | 2.809685 | 0.000157 | -0.04594 | 0.251887 | 0.015163 | 0.011297 | -0.0307
X850 1.869715 | 2.796566 0| -0.04188 | 0.159025 | 0.08455 | 0.006767 | 0.040827
X855 1.868158 | 2.792186 | 0.005938 | -0.03922 | 0.581983 | 0.13171 | 0.008532 | -0.00238
X860 1.862983 | 2.772891 | 0.005516 | -0.03421 | 0.095999 | 0.216074 0.0248 | 0.04245
X865 1.856437 | 2.74641 | 0.003191 | -0.02786 | 0.385362 | 0.021788 | 0.010914 | 0.026426
X870 1.855119 | 2.737535 | 7.15E-05 | -0.02548 | 0.823433 | 4.95E-06 | 0.005853 -0.0173
X875 1.853684 | 2.725281 | 0.000182 -0.0233 | 0.455631 | 0.066514 | 0.004701 | -0.01715
X880 1.855272 | 2.724361 | 0.002412 | -0.02262 | 1.215158 | 0.442386 | 0.008659 | -0.04367
X885 1.860959 | 2.74094 0| -0.0244 | 1.604614 | 0.532927 | 0.007145 | 0.000136
X890 1.860693 | 2.720501 | 0.000699 | -0.01921 | 1.823153 | 0.559657 | 0.009887 | 0.036189
X895 1.879051 | 2.732262 0 | -0.01576 | 2.097599 | 1.295397 | 0.002977 | 0.024756
X900 1.895184 | 2.759089 | 0.004613 | -0.01518 | 1.875407 | 1.282008 | 0.007002 | -0.00024
X905 1.890111 | 2.740647 0| -0.01154 | 2.026629 | 1.292676 | 0.002413 -0.0025
X910 1.908782 | 2.780369 | 0.000165 | -0.01354 | 2.238057 | 2.579169 | 0.004624 | -0.01664
X915 1.907661 | 2.768762 | 0.00421 | -0.01208 | 1.976764 | 2.98993 | 0.00618 | -0.01135
X920 1.89752 | 2.746751 | 0.003564 | -0.01048 | 0.20043 | 0.001008 | 0.006805 | -0.08726
X925 1.91811 | 2.801974 0| -0.01686 | 2.23707 | 1.906357 | 0.005927 | -0.01971
X930 1.975806 | 2.91029 0| -0.02919 | 1.749533 | 1.052802 | 0.003402 | -0.00616
X935 2.040689 | 3.034862 | 9.69E-05 | -0.04244 | 1.237674 | 0.254313 | 0.011467 | 0.03418
X940 2.005154 | 2.911263 | 0.000979 | -0.02632 | 2.443831 | 7.86466 | 0.020505 | 0.126623
X945 2.006352 | 2.917166 | 0.004411 | -0.02804 | 2.587923 | 8.807992 | 0.032914 | 0.127934
X950 1.985187 | 2.84716 0| -0.01476 | 4.042657 | 14.21182 | 0.030359 | 0.141896
X955 1.961854 | 2.795748 | 0.005636 | -0.00688 | 2.259052 | 2.909926 | 0.004522 | 0.042501
X960 1.917728 | 2.683304 | 0.00301 | 0.010545 | 3.050458 | 6.758889 | 0.012071 | 0.073937
X965 1.857263 | 2.523398 | 0.001763 | 0.034112 | 2.070064 | 1.790593 | 0.005824 | 0.010642
X970 1.848072 | 2.532303 | 0.004952 | 0.03007 | 2.918671 | 6.049407 | 0.002069 | 0.057886
X975 1.823243 | 2.45712 0 | 0.042498 | 1.920268 | 2.207732 | 0.014575 | 0.005438
X980 1.816126 | 2.448419 | 0.000812 | 0.044384 | 1.363941 | 0.798183 | 0.004722 | -0.03213
X985 1.800709 | 2.417918 | 0.003121 | 0.046973 | 2.070259 | 2.178553 | 0.005339 | -0.00471
X990 1.780311 | 2.363233 | 0.001588 | 0.054862 | 2.55104 | 4.202555 | 0.010243 | 0.032634
X995 1.776913 | 2.364552 0 | 0.055569 | 1.918713 | 4.151435 0.0118 | 0.071131
X1000 1.781067 | 2.36873 | 0.005724 | 0.055635 | 3.538966 | 13.05229 | 0.020094 | 0.191501

92




8.5 FEATURE SELECTION VIS/NIR/SWIR RANGE

SR Data R1D Data

wl T- test Anova RF PLS T- test Anova RF PLS

X350 1.214639 | 0.455834 | 0.001124 | -0.01528 | 1.404316 | 3.302868 | 0.000114 | -0.00023
X355 1.48658 | 1.165456 | 0.000894 | 0.042607 | 2.028443 | 7.94577 | 0.00258 | -0.01952
X360 1.793315 2.2155 | 0.006162 | 0.035075 | 1.020193 | 2.251775 | 0.003331 | -0.02753
X365 1.907073 | 2.488658 | 0.008755 | 0.016114 | 1.24316 | 2.030829 | 0.000764 | -0.02461
X370 1.670149 | 1.481783 | 0.00424 | 0.006357 | 2.041145 | 3.841308 0 | -0.00348
X375 1.565832 | 1.217072 | 0.002507 | 0.025299 | 1.599369 | 1.059946 | 0.006055 | -0.01892
X380 1.866435 | 2.382579 | 6.51E-05 | 0.007186 | 0.762353 | 0.000778 | 0.000774 | -0.01867
X385 1.762411 | 2.570225 | 0.002794 | 0.027519 | 2.265301 | 3.584447 | 0.002721 | 0.001349
X390 1.495711 | 1.967526 | 0.004083 | 0.044819 | 1.988102 | 3.353248 | 0.000171 | 0.008986
X395 0.420348 | 0.029594 | 0.004295 | 0.111251 | 2.261954 | 5.630637 0 | 0.023202
X400 0.571791 | 0.68568 | 0.000748 | 0.153114 | 1.704956 | 2.778357 | 0.001859 | 0.006904
X405 0.456314 | 0.438018 | 0.004627 | 0.135984 | 0.95521 | 1.918978 | 0.010468 | -0.03958
X410 0.100033 | 0.054359 | 0.001475 | 0.093596 | 2.528121 | 9.619236 | 0.000537 | -0.05982
X415 0.111312 | 0.002174 0 | 0.055021 | 1.93562 | 6.648879 0 | -0.05151
X420 0.354568 | 0.118708 0] 0.022573 | 2.30379 | 9.055153 | 7.32E-05 | -0.05242
X425 0.550512 | 0.337938 | 0.002973 | -0.00159 | 2.171927 | 8.347939 | 0.008899 | -0.04996
X430 0.694405 | 0.567141 | 0.003668 | -0.01782 | 1.970153 | 6.919245 | 0.004937 | -0.04008
X435 0.747298 | 0.678421 | 0.002742 | -0.02631 | 1.141012 | 2.535156 | 0.002665 | -0.04285
X440 0.783327 | 0.743522 | 0.002262 | -0.03352 | 0.961923 | 1.415234 | 0.002006 | -0.06566
X445 0.790823 | 0.769278 | 0.001865 | -0.03784 | 0.198707 0.0005 | 0.000161 -0.0307
X450 0.781049 | 0.76198 | 0.001209 | -0.03923 | 0.505965 | 0.088961 | 0.001766 | -0.02548
X455 0.71331 | 0.664789 | 0.000343 | -0.03998 | 0.641568 | 0.185353 | 0.000266 -0.0313
X460 0.709972 | 0.667653 | 0.003439 | -0.04155 | 0.355968 | 0.259271 | 0.000314 -0.0517
X465 0.726749 | 0.699529 | 0.003058 | -0.04421 | 0.006672 | 0.020163 | 0.003403 | -0.04686
X470 0.705496 | 0.669014 | 0.00089 | -0.04664 | 0.366258 | 0.098683 | 0.003045 | -0.03673
X475 0.725813 | 0.700505 | 0.000424 | -0.04769 | 0.367354 | 0.090494 0 | -0.01621
X480 0.720258 | 0.687295 0| -0.04639 | 0.612368 | 0.447576 | 0.000285 | -0.00333
X485 0.683128 | 0.623907 | 0.00037 -0.0439 | 1.086066 | 0.997535 | 0.002122 -0.0021
X490 0.640944 | 0.565282 | 0.000612 | -0.04106 | 1.181918 | 1.102684 0 | 0.004452
X495 0.542686 | 0.434779 | 0.000276 | -0.03421 | 1.069117 | 0.921946 | 9.03E-05 | 0.01081
X500 0.405849 | 0.276525 | 0.000178 | -0.02252 | 0.897587 | 0.689067 0 | 0.015667
X505 0.257673 | 0.140978 | 0.000604 | -0.00683 | 0.810793 | 0.56244 | 0.000367 | 0.018002
X510 0.086699 | 0.041112 | 0.00318 | 0.00956 | 0.479018 | 0.178938 | 4.81E-05 | 0.017106
X515 0.01748 | 0.015763 | 0.000281 | 0.02251 | 0.129475 | 0.007253 0 | 0.015198
X520 0.019762 | 0.01332 | 8.89E-05 | 0.02944 | 0.258096 | 0.08726 | 0.000444 | 0.009694
X525 0.105331 | 0.035619 | 9.74E-05 | 0.028738 | 0.544667 | 0.33324 0 | 0.004545
X530 0.17753 | 0.062978 | 0.001161 | 0.026107 | 0.656348 | 0.460024 0 | 0.001933
X535 0.22314 | 0.084103 | 0.002905 | 0.023696 | 0.654013 | 0.422837 0 | 0.003024
X540 0.241659 | 0.092066 0| 0.022246 | 0.434959 | 0.163876 | 0.000362 | 0.01752
X545 0.236596 | 0.089369 | 0.005118 | 0.023245 | 0.335461 | 0.047914 | 0.000172 | 0.019815
X550 0.251876 | 0.091406 0| 0.021518 | 0.363342 | 0.019785 | 6.08E-05 | -0.00595
X555 0.23855 | 0.07842 0| 0.022324 | 1.689244 | 5.524424 0 | 0.017335
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X560 0.200847 | 0.05445 0| 0.023182 | 1.191323 | 1.99133 0 | 0.003891
X565 0.137358 | 0.028265 | 0.000197 | 0.023788 | 1.119394 | 1.507193 | 0.00014 | 0.004484
X570 0.037559 | 0.004402 | 0.000738 | 0.02577 | 1.146186 | 1.654938 | 0.00155 | 0.002953
X575 0.063168 | 0.001468 0 | 0.027532 | 0.877863 | 0.957505 0| -0.0029
X580 0.118404 | 0.00901 | 0.000505 | 0.026615 | 0.522127 | 0.362247 | 0.000178 | -0.01175
X585 0.151592 | 0.016925 | 0.001939 | 0.024904 | 0.390526 | 0.346448 | 0.000398 | -0.00271
X590 0.167022 | 0.024981 | 0.000246 | 0.025353 | 0.156236 | 0.129737 | 0.000216 | -0.00065
X595 0.175441 0.0271 | 0.000305 | 0.024664 | 0.280248 | 0.02358 | 0.00118 | -0.01409
X600 0.188573 | 0.030262 | 0.000103 | 0.024787 | 0.363383 | 0.105897 0 | -0.02077
X605 0.19287 | 0.032481 | 0.002559 | 0.023085 | 0.18472 | 0.105239 | 0.001153 -0.0203
X610 0.229334 | 0.049894 | 0.001295 | 0.020815 | 0.287184 | 0.20311 0 | -0.01878
X615 0.248823 | 0.063755 | 0.000792 | 0.017378 | 0.083406 | 0.048383 0 | -0.01985
X620 0.258896 | 0.072219 | 0.001896 | 0.014642 | 0.068399 | 0.005867 0| -0.0155
X625 0.266222 | 0.080474 | 0.001089 | 0.013491 | 0.123089 | 0.093251 0 | 0.000665
X630 0.265154 | 0.084465 | 8.06E-05 | 0.013971 | 0.571751 | 0.243151 0 | -0.00996
X635 0.260295 | 0.078564 | 0.000321 | 0.012579 | 0.444127 | 0.562726 | 0.004023 | -0.02499
X640 0.239199 | 0.055306 | 0.000204 | 0.006533 | 0.746625 | 1.106357 | 0.003946 | -0.02941
X645 0.151342 | 0.014167 | 0.00016 | -0.00415 | 0.927257 | 1.194434 | 0.003416 | -0.0305
X650 0.072143 | 0.001103 | 0.000221 | -0.01583 | 0.882673 | 0.661809 | 0.003652 | -0.03195
X655 0.022912 | 5.64E-06 | 0.000617 | -0.02299 | 0.745655 | 0.225457 | 8.97E-05 | -0.02676
X660 0.072292 | 0.004456 | 0.000537 | -0.03376 | 0.991586 | 0.675646 | 0.000708 | -0.02374
X665 0.256664 | 0.05026 | 0.003094 | -0.04778 | 1.320498 | 1.404372 0| -0.0179
X670 0.459952 0.1628 | 0.002443 | -0.05655 | 1.478955 | 1.767297 | 0.002448 | -0.00673
X675 0.58374 | 0.25774 | 0.000493 | -0.05727 | 1.344566 | 1.062033 0 | 0.024851
X680 0.595161 | 0.249505 | 0.001109 | -0.05076 | 1.190913 | 2.180402 | 0.00284 | 0.047849
X685 0.366669 | 0.068796 | 4.88E-05 | -0.03379 | 1.212017 | 2.018284 | 0.002089 | 0.036188
X690 0.090927 | 0.049778 | 0.000744 | 0.006654 | 0.715877 | 0.883989 | 6.84E-05 | 0.035528
X695 0.181189 | 0.120068 | 0.002899 | 0.03975 | 0.073531 | 0.01687 0 | 0.02655
X700 0.021258 | 0.026153 | 0.003265 | 0.049145 | 0.793851 | 0.407607 | 0.000135 | 0.012844
X705 0.31028 | 0.015116 | 0.002554 | 0.045085 | 1.375684 | 1.605603 | 0.000468 | 0.000112
X710 0.589787 | 0.158686 0 | 0.036525 | 1.853748 | 3.040643 | 0.001492 | -0.00992
X715 0.864465 | 0.440918 0 | 0.025314 | 2.393685 | 4.826275 | 0.000386 | -0.01644
X720 1.157541 | 0.882769 | 7.56E-05 | 0.01166 | 2.516216 | 5.764489 0 | -0.02353
X725 1.353529 | 1.296701 | 0.002806 | 0.001531 | 2.731951 | 6.967827 | 0.010204 | -0.02941
X730 1.509244 | 1.69052 | 0.002549 | -0.00652 | 2.69819 | 7.50237 0 | -0.03565
X735 1.60318 | 1.988935 0| -0.01147 | 2.78659 | 8.263208 | 0.015549 | -0.04056
X740 1.674056 | 2.213881 | 0.002475 | -0.01542 | 2.983264 | 9.352843 | 0.008214 | -0.04426
X745 1.724777 | 2.380727 0 | -0.01832 | 3.288814 | 10.97526 | 0.003948 | -0.04843
X750 1.759719 | 2.491228 | 0.00291 | -0.02044 | 3.586002 | 12.65693 | 0.002079 | -0.05047
X755 1.782434 | 2.563141 0| -0.02183 | 3.32578 | 7.767457 0 | -0.03176
X760 1.811086 | 2.602452 | 0.000163 | -0.02395 | 1.25725 | 0.340285 | 0.000737 | 0.016737
X765 1.797902 | 2.562716 | 0.000251 | -0.02262 | 0.715057 | 0.00291 | 0.005809 | -0.01244
X770 1.822277 | 2.690126 0 | -0.02369 | 0.449097 | 1.163005 | 0.004525 | -0.04014
X775 1.829872 | 2.716984 0 -0.024 | 0.911224 | 0.683495 | 0.000153 | -0.00551
X780 1.83653 | 2.737395 | 0.000792 | -0.02414 | 1.425242 | 1.105888 | 0.000316 | 0.00942
X785 1.844798 | 2.756993 | 8.67E-05 | -0.02432 | 1.881525 | 1.276396 | 0.001643 | 0.019477
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X790 1.856021 | 2.776283 0| -0.02475 | 1.23247 | 0.294516 0 | 0.025883
X795 1.856786 | 2.77813 | 0.000745 | -0.02452 | 1.315896 | 0.399196 | 0.004556 | 0.020866
X800 1.864008 | 2.793702 | 0.000558 | -0.02472 | 1.553576 | 0.759327 | 0.001329 | 0.017293
X805 1.864883 | 2.796505 | 0.000173 | -0.02452 | 1.197889 | 0.192213 | 9.46E-05 | 0.019584
X810 1.875889 | 2.815425 | 0.000227 | -0.02503 | 2.485418 | 2.469365 | 0.001973 | 0.001928
X815 1.914057 | 2.886697 | 9.74E-05 | -0.02755 | 2.439736 | 2.653021 | 0.002977 | 0.00691
X820 1.906819 | 2.873503 0 | -0.02677 | 2.190381 | 2.150476 0 | 0.011894
X825 1.90109 | 2.862409 0 | -0.02633 | 1.474982 | 0.955908 0 | 0.013681
X830 1.900043 | 2.862364 0 | -0.02578 | 1.514837 | 0.825933 0 | 0.004922
X835 1.886505 | 2.833011 0| -0.0249 | 2.172912 | 2.119547 | 0.000677 | -0.00129
X840 1.878435 | 2.820839 0| -0.0241 | 1.577185 | 0.958506 | 0.000324 | -0.00216
X845 1.872913 | 2.809685 0 | -0.02352 | 0.251887 | 0.015163 | 0.001353 | 0.003733
X850 1.869715 | 2.796566 0 | -0.02309 | 0.159025 | 0.08455 | 0.001006 | 0.025389
X855 1.868158 | 2.792186 0 | -0.02255 | 0.581983 | 0.13171 | 8.09E-05 | 0.019289
X860 1.862983 | 2.772891 0 | -0.02174 | 0.095999 | 0.216074 0 | 0.023418
X865 1.856437 | 2.74641 | 0.000253 | -0.02092 | 0.385362 | 0.021788 | 0.000163 | 0.017088
X870 1.855119 | 2.737535 | 0.001504 | -0.02074 | 0.823433 | 4.95E-06 | 0.000946 | -0.01482
X875 1.853684 | 2.725281 0 | -0.02129 | 0.455631 | 0.066514 | 0.00011 | -0.01784
X880 1.855272 | 2.724361 | 0.00077 | -0.02189 | 1.215158 | 0.442386 | 0.004275 | -0.01344
X885 1.860959 | 2.74094 | 0.001093 | -0.02235 | 1.604614 | 0.532927 0 | 0.011012
X890 1.860693 | 2.720501 0 | -0.02257 | 1.823153 | 0.559657 0.004 | 0.010975
X895 1.879051 | 2.732262 0 | -0.02409 | 2.097599 | 1.295397 | 0.001164 | 0.008974
X900 1.895184 | 2.759089 0 | -0.02483 | 1.875407 | 1.282008 | 0.00026 | 0.028385
X905 1.890111 | 2.740647 | 8.40E-05 -0.0242 | 2.026629 | 1.292676 | 0.000411 | 0.017408
X910 1.908782 | 2.780369 0 | -0.02543 | 2.238057 | 2.579169 | 0.000728 | -0.00289
X915 1.907661 | 2.768762 | 0.000694 | -0.02597 | 1.976764 | 2.98993 | 0.00014 | -0.01385
X920 1.89752 | 2.746751 | 0.000233 | -0.02566 | 0.20043 | 0.001008 | 0.004159 | -0.02109
X925 1.91811 | 2.801974 0| -0.02672 | 2.23707 | 1.906357 0 | -0.01155
X930 1.975806 | 2.91029 0| -0.03157 | 1.749533 | 1.052802 | 0.000867 | -0.01295
X935 2.040689 | 3.034862 | 6.00E-05 | -0.03877 | 1.237674 | 0.254313 | 0.000249 | 0.00587
X940 2.005154 | 2.911263 | 6.51E-05 | -0.03623 | 2.443831 | 7.86466 | 0.006304 | 0.056108
X945 2.006352 | 2.917166 | 0.000175 -0.0355 | 2.587923 | 8.807992 | 0.015978 | 0.043439
X950 1.985187 | 2.84716 0 | -0.03385 | 4.042657 | 14.21182 | 0.003585 | 0.045762
X955 1.961854 | 2.795748 0| -0.03177 | 2.259052 | 2.909926 | 0.000281 | 0.023245
X960 1.917728 | 2.683304 0 | -0.02791 | 3.050458 | 6.758889 | 0.005748 | 0.022583
X965 1.857263 | 2.523398 | 7.36E-05 | -0.02455 | 2.070064 | 1.790593 | 0.001504 | 0.015211
X970 1.848072 | 2.532303 | 0.000545 | -0.02187 | 2.918671 | 6.049407 | 0.001053 | 0.027918
X975 1.823243 | 2.45712 0 | -0.02094 | 1.920268 | 2.207732 | 0.00216 | -0.00412
X980 1.816126 | 2.448419 | 8.70E-05 | -0.01991 | 1.363941 | 0.798183 | 0.000521 | -0.00078
X985 1.800709 | 2.417918 0 | -0.01815 | 2.070259 | 2.178553 0 | 0.010047
X990 1.780311 | 2.363233 | 9.02E-05 | -0.01708 | 2.55104 | 4.202555 | 0.000298 | 0.006208
X995 1.776913 | 2.364552 | 7.59E-05 | -0.01665 | 1.918713 | 4.151435 0 | 0.012619
X1000 1.781067 | 2.36873 0 | -0.01642 | 3.538966 | 13.05229 | 0.003565 | 0.051343
X1005 1.633176 | 1.869948 | 0.000133 | -0.00194 | 3.934992 | 16.49739 | 0.010242 | 0.062123
X1010 1.633451 | 1.874454 | 0.000846 | -0.00271 | 2.960292 | 13.45959 | 0.001451 | -0.06237
X1015 1.648362 | 1.924358 | 0.000115 | -0.00235 | 2.278189 | 4.563567 | 0.006371 | -0.03746
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X1020 1.64872 | 1.914029 | 0.000196 | -0.00346 | 1.961364 | 1.976421 | 0.000981 -0.0271
X1025 1.654826 | 1.934823 0 | -0.00435 | 1.804916 | 3.409487 | 0.000404 | -0.00917
X1030 1.652242 | 1.919742 | 0.000334 | -0.00378 | 0.684256 | 3.701277 | 0.003326 | -0.00276
X1035 1.645183 | 1.893964 | 0.000155 | -0.00379 | 2.238328 | 3.759576 | 0.004637 | -0.03006
X1040 1.665675 | 1.948946 0| -0.0049 | 2.989644 | 8.441571 | 0.001191 | -0.01536
X1045 1.65473 | 1.920403 | 0.001496 | -0.00373 | 3.390393 | 14.82344 | 0.01744 | 0.043868
X1050 1.648881 | 1.895253 0 | -0.00352 | 0.007814 | 0.469033 | 0.001408 | -0.00185
X1055 1.647564 | 1.887801 | 0.000282 | -0.00364 | 2.465364 | 5.646282 | 0.000289 | -0.01032
X1060 1.662084 | 1.926498 0 | -0.00429 | 3.273536 | 9.642568 | 0.001649 | -0.03775
X1065 1.664416 | 1.928346 0| -0.0045 | 0.810805 | 3.874698 | 0.001594 | 0.026631
X1070 1.658796 | 1.901624 0 | -0.00442 | 0.609037 | 1.838977 | 0.000323 -0.0134
X1075 1.651779 | 1.876462 0 | -0.00437 | 2.704774 | 5.680701 | 0.003148 | -0.0563
X1080 1.669683 | 1.930945 0 | -0.00624 | 1.968952 | 1.496864 0 | -0.00258
X1085 1.658924 | 1.881177 | 0.000118 | -0.00451 | 0.164471 | 1.94438 | 0.01982 | 0.063788
X1090 1.665884 | 1.895348 | 7.65E-05 | -0.00465 | 4.013006 | 12.90058 | 0.005133 | -0.02472
X1095 1.692673 | 1.96001 0 | -0.00635 | 2.265628 | 1.960161 | 0.000808 | 0.00794
X1100 1.697925 | 1.93988 | 0.000849 | -0.00693 | 1.713723 | 0.617909 0 | 0.020125
X1105 1.714841 | 1.968566 0| -0.0074 | 2.165018 | 1.386821 | 0.001427 | 0.009844
X1110 1.733291 | 1.993719 0| -0.0086 | 3.346849 | 7.673845 | 0.002223 | -0.01045
X1115 1.798393 | 2.152824 0| -0.01349 | 2.84707 | 4.91767 | 8.60E-05 | -0.00105
X1120 1.879605 | 2.291891 0 | -0.01937 | 1.458194 | 0.814702 0 | -0.00981
X1125 1.898448 | 2.360207 | 0.001189 | -0.02377 | 0.005187 | 0.006913 | 0.000954 | -0.02634
X1130 1.859186 | 2.217433 0| -0.01756 | 1.152296 | 0.394459 | 0.003422 | -0.00248
X1135 1.79672 | 2.10584 | 8.62E-05 | -0.01503 | 4.093894 | 13.73156 | 0.002545 | 0.033796
X1140 1.763082 | 1.998476 0| -0.00788 | 1.30267 | 2.278333 | 0.000147 | 0.044409
X1145 1.783028 | 2.051116 | 9.05E-05 | -0.01216 | 0.975643 | 0.382875 | 0.001817 | -0.00257
X1150 1.760972 | 2.001166 0| -0.01149 | 3.594381 | 10.56021 | 0.008759 | 0.025203
X1155 1.684948 | 1.811196 0| -0.0071 | 3.169465 | 5.639309 0 | 0.018367
X1160 1.651162 | 1.772455 | 0.000178 | -0.00342 | 2.600663 | 3.336525 | 8.41E-05 | 0.018454
X1165 1.608733 | 1.697721 0 | 0.000175 | 2.462276 | 2.475635 | 0.000549 | 0.023352
X1170 1.588945 | 1.668841 0| 0.003103 | 2.39401 | 3.655031 | 0.001575 | 0.052783
X1175 1.576385 | 1.645108 | 0.001447 | 0.005153 | 0.32175 | 1.288558 | 0.00151 | 0.029241
X1180 1.583888 | 1.681348 0 | 0.004848 | 1.106881 | 0.176138 0 | 0.01494
X1185 1.576508 | 1.663739 | 0.000323 | 0.006217 | 1.03591 | 0.078856 | 0.000306 | -0.01388
X1190 1.581013 | 1.688937 | 0.000106 | 0.005284 | 1.120385 | 0.369915 | 0.003461 | -0.02407
X1195 1.582739 | 1.691898 0 | 0.004082 | 0.041006 | 0.033658 0 | -0.01442
X1200 1.590898 | 1.707154 | 0.001616 | 0.001093 | 0.422659 | 0.204399 | 8.20E-05 | -0.05008
X1205 1.594425 | 1.726461 0 | -0.00111 | 0.424672 | 0.065779 0 | -0.03951
X1210 1.598535 | 1.732678 0 | -0.00152 | 1.049188 | 0.639847 | 0.000212 | -0.01765
X1215 1.597695 | 1.733359 0| -0.0017 | 0.472757 | 0.265887 | 0.001093 -0.0203
X1220 1.592443 | 1.716062 0| -0.00179 | 1.01212 | 2.172508 | 0.003288 | 0.008151
X1225 1.578001 | 1.67015 | 0.000187 | -0.00077 | 0.791522 | 1.617972 | 0.001032 | 0.006154
X1230 1.575233 | 1.658196 | 0.003562 | -0.00034 | 0.339059 | 0.001011 0.0017 | -0.00716
X1235 1.566124 | 1.633505 | 0.000713 | 0.000369 | 0.616246 | 0.060118 | 0.000472 | 0.00438
X1240 1.569443 | 1.638056 0 | 0.000376 | 1.108577 | 0.197451 | 0.004737 | -0.02107
X1245 1.569978 | 1.637707 | 0.000389 | -0.00026 | 1.518825 | 1.632475 0 | -0.03154
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X1250 1.568046 | 1.628281 | 0.000173 | -0.00015 | 1.413485 | 0.560184 | 0.009763 | 0.015089
X1255 1.576005 | 1.643445 0| -0.0005 | 1.957074 | 1.630931 | 0.001672 | 0.004154
X1260 1.578847 | 1.63716 0 | -0.00102 | 0.191558 | 0.654102 | 0.001845 | 0.025472
X1265 1.568001 | 1.592378 0| -0.0004 | 0.207925 | 1.94662 0 | -0.01094
X1270 1.569698 | 1.590618 0 | -0.00086 | 0.491091 | 0.817515 0 | -0.06162
X1275 1.575868 | 1.616211 | 7.48E-05 | -0.00106 | 1.790113 | 7.67421 | 0.000861 | -0.04557
X1280 1.585659 | 1.65049 | 0.000364 | -0.00167 | 1.395503 | 4.299919 | 0.000439 | -0.03608
X1285 1.593936 | 1.672208 0 | -0.00186 | 4.126288 | 10.56426 0 | -0.04303
X1290 1.598335 | 1.672853 | 0.001656 | -0.00221 | 1.743698 | 0.647661 | 0.003091 | 0.015877
X1295 1.606687 | 1.690891 0| -0.0029 | 2.086987 | 4.199487 | 0.002675 | -0.01502
X1300 1.619145 | 1.716929 0 | -0.00397 | 0.074136 | 0.568701 | 0.000829 | 0.020448
X1305 1.617352 | 1.697369 | 8.13E-05 -0.0042 | 0.221585 | 0.340523 0 | 0.012909
X1310 1.624099 | 1.702035 | 9.56E-05 | -0.00432 | 0.88706 | 0.067981 | 0.000172 | 0.011169
X1315 1.628421 | 1.699369 | 0.000821 | -0.00492 | 0.321437 | 0.51184 | 0.000319 | 0.001493
X1320 1.627537 | 1.691383 | 5.18E-05 | -0.00629 | 0.276873 | 0.021276 | 0.001271 | 0.012594
X1325 1.644093 | 1.723174 0 | -0.00722 | 0.935069 | 0.109402 | 0.000578 | 0.00598
X1330 1.663478 | 1.742716 0 | -0.00984 | 0.938754 | 0.161371 | 0.001352 | -0.0082
X1335 1.675215 | 1.763149 0 | -0.01066 | 0.978228 | 0.984952 0 | 0.006229
X1340 1.665849 | 1.725916 | 0.000101 | -0.01106 | 0.575587 | 0.013106 | 0.001405 | 0.036784
X1345 1.712793 | 1.850986 0| -0.01391 | 1.741342 | 3.116734 0 | 0.008543
X1415 1.496145 | 1.319229 | 0.001914 | -0.01584 | 1.610213 | 4.584212 | 0.005504 | -0.01472
X1420 1.563224 | 1.638187 | 0.000776 | -0.06705 | 1.846105 | 3.396312 | 0.000338 | 0.005531
X1425 1.491551 | 1.180055 | 0.000769 | -0.03301 | 1.087851 | 1.887091 | 0.001373 | 0.062376
X1430 1.32031 | 0.824404 | 0.000809 | -0.02481 | 0.862686 | 0.525954 0 | 0.007021
X1435 1.452116 | 1.160427 | 0.002237 | -0.02729 | 1.789426 | 1.350327 | 0.002605 | 0.040316
X1440 1.178059 | 0.672287 | 0.002245 | -0.01587 | 2.398801 | 4.681259 0.0009 | 0.015153
X1445 1.24741 | 0.738993 0| -0.01635 | 0.34993 | 0.023347 | 0.000149 | 0.024026
X1450 1.228792 | 0.708683 | 0.00056 | -0.00889 | 0.828206 | 1.267147 | 0.001208 | 0.045898
X1455 1.155829 | 0.582456 | 5.04E-05 -0.0025 | 3.261748 | 6.762893 | 0.003384 | 0.053152
X1460 1.150124 | 0.592568 0 | 0.003337 | 1.543535 | 2.312345 | 0.001307 | 0.012353
X1465 1.196163 | 0.658599 0 | 0.002683 | 1.779817 | 2.006377 | 9.58E-05 | -0.00766
X1470 1.207199 | 0.662709 0 | -0.00418 | 0.976455 | 0.159747 0 | -0.00638
X1475 1.199402 0.6485 0 | 0.002928 | 0.02183 | 0.000723 | 0.002872 | 0.016698
X1480 1.146666 | 0.581857 | 0.001111 | 0.004936 | 0.787235 | 0.482976 | 0.001562 | -0.00058
X1485 1.193347 | 0.661824 | 0.000107 | 0.004527 | 0.760612 | 0.198346 | 0.004888 | 0.018942
X1490 1.118782 | 0.544158 0 | 0.011456 | 0.358773 | 0.180537 | 0.001447 | 0.020004
X1495 1.123258 | 0.570271 0 | 0.011923 | 0.822306 | 0.655997 | 0.004893 | 0.002114
X1500 1.11289 | 0.557713 0 | 0.014399 | 1.207605 | 1.092021 | 0.002655 | 0.00781
X1505 1.122337 | 0.585741 | 0.005533 | 0.01551 | 1.392621 | 1.399124 0 | 0.002846
X1510 1.133876 | 0.600135 | 0.002198 | 0.015873 | 1.365509 | 1.105406 0 | -0.00158
X1515 1.139431 | 0.61461 | 0.000817 | 0.015609 | 1.35894 | 1.464258 0 | -0.00229
X1520 1.144122 | 0.630774 | 0.000121 | 0.015767 | 1.480779 | 1.767582 | 0.001848 | 0.002397
X1525 1.159977 | 0.66146 0 | 0.016285 | 1.542797 | 1.650052 | 0.000927 | 0.002221
X1530 1.16402 | 0.669335 0 | 0.016502 | 1.294627 | 1.012923 | 0.000746 | 0.003759
X1535 1.167409 | 0.67614 0 | 0.017222 | 1.448721 | 1.495048 0 | -0.00115
X1540 1.176636 | 0.696882 | 0.005429 | 0.016817 | 1.757671 | 2.453972 | 0.001591 | -0.01094
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X1545 1.19443 | 0.732379 0 | 0.016043 | 1.916236 | 2.790356 | 0.000742 | -0.00206
X1550 1.199596 | 0.73885 | 0.001726 | 0.016527 | 1.429059 | 1.18071 | 0.000237 | 0.007186
X1555 1.208971 | 0.757731 | 5.46E-05 | 0.01692 | 2.005161 | 3.143496 | 0.000394 | -0.00525
X1560 1.225338 | 0.786852 0 | 0.016262 | 2.093703 | 3.329327 0 | -0.00726
X1565 1.238887 | 0.812305 | 0.00026 | 0.015785 | 2.021144 | 2.920933 | 0.000249 | 0.000392
X1570 1.247308 | 0.828865 0 | 0.015292 | 1.738168 | 2.557654 | 0.000121 | -0.01948
X1575 1.257378 | 0.852336 0 | 0.014616 | 2.10927 | 3.453674 0 | -0.00954
X1580 1.264619 | 0.861944 0 | 0.015288 | 1.098491 | 0.541446 | 0.000822 | 0.009768
X1585 1.263799 | 0.864136 | 0.001417 | 0.015792 | 2.390349 | 6.803728 | 0.005165 | -0.03129
X1590 1.292466 | 0.92853 0| 0.01437 | 2.385963 | 5.675395 0.0001 | -0.02411
X1595 1.288362 | 0.919493 | 7.23E-05 | 0.014733 | 1.518835 | 1.94372 | 0.000107 | 0.006979
X1600 1.298595 | 0.94398 | 0.000501 | 0.01535 | 0.856608 | 0.331954 | 7.28E-05 | 0.004224
X1605 1.290747 | 0.923954 | 7.77E-05 | 0.016313 | 1.660738 | 2.542888 | 0.000894 | -0.00511
X1610 1.309405 | 0.972443 0| 0.017372 | 1.151017 | 1.984797 | 0.000278 | -0.00219
X1615 1.305463 | 0.969426 | 0.001894 | 0.019191 | 0.272267 | 0.037415 | 0.000478 | 0.002265
X1620 1.28534 | 0.93094 0| 0.02053 | 0.330974 | 0.127789 | 0.000416 | -0.00676
X1625 1.285001 | 0.930306 | 6.71E-05 | 0.021299 | 0.007945 | 0.00647 | 7.61E-05 | -0.00228
X1630 1.266571 | 0.894483 | 0.000464 | 0.023952 | 0.019313 | 1.52E-05 0 | 9.84E-05
X1635 1.272934 | 0.910204 0 | 0.024549 | 1.145473 | 0.669051 | 7.35E-05 | -0.01106
X1640 1.229043 | 0.840042 0| 0.027777 | 2.679842 | 5.125338 | 0.000975 | 0.025353
X1645 1.170197 | 0.741595 | 8.87E-05 | 0.031694 | 2.752669 | 6.481872 | 0.001215 | 0.012916
X1650 1.118155 | 0.669126 | 7.56E-05 | 0.035718 | 1.772281 | 2.56882 0 | -0.01176
X1655 1.065253 | 0.577881 | 0.003171 | 0.036124 | 3.197445 | 9.46694 | 0.001122 | -0.00355
X1660 0.950115 | 0.450475 | 0.000117 | 0.037508 | 3.506012 | 11.36468 | 0.000801 | -0.02105
X1665 0.685673 | 0.153097 | 0.000422 | 0.043983 | 4.419173 | 27.66274 | 0.015093 | 0.028275
X1670 0.685601 | 0.148963 | 0.000154 | 0.048425 | 4.844629 | 27.67574 | 0.007151 | -0.04962
X1675 0.919156 | 0.392502 0| 0.03768 | 4.36003 | 24.64212 | 0.002268 | -0.02615
X1680 0.979254 | 0.486224 | 8.42E-05 | 0.034849 | 0.349942 | 0.464368 | 0.001436 | 0.016605
X1685 0.971213 | 0.471222 | 0.000307 | 0.035924 | 0.629506 | 1.142356 | 0.004459 | -0.02049
X1690 1.045259 | 0.601676 0 | 0.028524 | 1.740061 | 3.801076 | 0.002466 | -0.00585
X1695 1.098627 | 0.687324 | 7.99E-05 | 0.027764 | 1.517458 | 2.198815 0 | 0.012454
X1700 1.153827 | 0.777419 0 | 0.026384 | 3.407051 | 14.69137 | 0.002568 | -0.01819
X1705 1.233793 | 0.951971 0 | 0.019233 | 3.310144 | 10.97008 | 0.00671 | -0.01884
X1710 1.313669 | 1.090566 | 0.000393 | 0.015931 | 1.900889 | 1.86555 0.0007 | 0.017141
X1715 1.285611 | 1.023263 0 | 0.017425 | 0.765447 | 1.046584 | 0.000924 | 0.012336
X1720 1.338496 | 1.157163 | 0.000916 0.0133 | 0.116054 | 0.083606 | 0.001524 | -0.00864
X1725 1.327933 | 1.124888 0 | 0.014798 | 0.554256 | 0.081493 0 | -0.04936
X1730 1.314397 | 1.109256 | 0.001193 | 0.01547 | 2.339988 | 3.867666 | 0.007872 | 0.017247
X1735 1.298959 | 1.087955 0| 0.01364 | 0.717386 | 2.676303 0 | 0.02889
X1740 1.288327 | 1.015746 0 | 0.014402 | 1.48516 | 0.312319 | 0.001957 | 0.005051
X1745 1.337029 | 1.111855 0 | 0.012066 | 3.054132 | 7.956321 | 0.004882 | -0.03839
X1750 1.377677 | 1.188174 0 | 0.008108 | 0.424013 | 1.520978 0 | 0.023043
X1755 1.321036 | 1.045957 | 0.000159 | 0.012472 | 3.079931 | 11.68213 | 0.002032 | 0.029706
X1760 1.311689 | 1.024617 | 8.06E-05 | 0.008657 | 0.92482 | 1.235381 | 0.000141 | 0.010844
X1765 1.328411 | 1.052763 | 0.000254 | 0.010429 | 1.192166 | 0.87654 | 9.85E-05 | 0.021298
X1770 1.346543 | 1.088549 0 | 0.010972 | 0.211309 | 0.157028 | 0.001174 | -0.00696
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X1775 1.342274 | 1.057839 | 6.47E-05 | 0.005535 | 0.749039 | 0.481406 | 0.000453 | -0.00578
X1780 1.362758 | 1.08803 | 9.07E-05 | 0.003562 | 0.21074 | 0.744945 | 0.004211 | 0.020844
X1785 1.335724 | 1.010969 0 | 0.00199 | 0.743489 | 0.001497 | 0.000733 | -0.04772
X1790 1.40014 | 1.140732 0 | 0.00038 | 2.812899 | 6.965308 | 0.002035 | -0.02409
X1795 1.471852 | 1.222139 | 7.77E-05 | -0.00725 | 0.746328 | 0.51115 0 | -0.00769
X1955 2.76118 | 5.056534 | 0.005369 | -0.06954 | 0.288428 | 0.486749 | 0.007191 | -0.03159
X1960 2.389354 | 3.28082 | 0.000688 | -0.08882 | 3.192071 | 8.526071 | 0.014523 | 0.025024
X1965 1.931303 | 1.708664 0 | -0.01754 | 2.975005 | 5.341935 | 0.002566 | 0.037168
X1970 1.676576 | 1.223967 | 0.000881 | -0.01891 | 2.314297 | 3.13171 | 0.001904 | -0.0052
X1975 1.492391 | 0.915008 | 0.000403 | 0.000167 | 2.89872 | 5.494158 | 0.00065 | 0.014783
X1980 1.366696 | 0.760413 | 0.001358 | -0.00848 | 0.232254 | 0.084838 0 | -0.05166
X1985 1.339921 | 0.71306 | 0.004001 | -0.00616 | 0.451458 | 1.303792 | 0.000646 | 0.021428
X1990 1.280008 | 0.607505 | 0.003866 | 0.000296 | 0.337003 | 0.00276 | 0.004318 | -0.02057
X1995 1.260992 0.5396 | 0.000411 | 0.000823 | 1.869539 | 1.99818 | 0.001123 | 0.005432
X2000 1.447384 | 0.884587 | 0.004487 | -0.00225 | 2.539441 | 3.989223 | 0.004832 | -0.00095
X2005 1.735543 | 1.332621 | 0.002974 | -0.01744 | 1.578755 | 0.68329 | 0.000781 | -0.02804
X2010 1.709575 | 1.344817 | 0.000117 | -0.02513 | 0.617863 | 0.675758 | 0.000244 | -0.0151
X2015 1.59317 | 1.035591 0 | -0.00728 | 2.328139 | 4.427902 | 0.001043 | 0.055275
X2020 1.543999 | 1.037355 | 0.000787 | -0.01073 | 2.263908 | 2.264037 | 0.000195 | 0.025305
X2025 1.317 | 0.695068 | 0.003734 | 0.012073 | 2.256819 | 2.827239 | 0.001742 | 0.004402
X2030 1.244916 | 0.629251 | 0.000153 | 0.008513 | 2.930444 | 6.948491 | 0.012967 | 0.036282
X2035 1.116311 | 0.443528 | 5.89E-05 | 0.027469 | 0.004405 | 0.045381 | 0.003525 | 0.00863
X2040 1.163511 | 0.519597 0 | 0.018267 | 1.190637 | 0.586503 | 0.002021 | 0.001895
X2045 1.125192 | 0.450251 | 0.001878 | 0.026302 | 0.927522 | 1.914745 | 0.000186 | 0.022481
X2050 1.020153 | 0.29147 | 0.012218 | 0.026492 | 1.857896 | 0.857525 | 0.000208 | -0.00427
X2055 1.226979 | 0.525352 | 0.005579 | 0.024095 | 3.485751 | 13.05889 | 0.000914 | 0.01577
X2060 1.344762 | 0.791798 | 0.001299 | 0.022499 | 0.931122 | 1.766504 | 0.00462 | -0.02503
X2065 1.194205 | 0.571098 | 8.55E-05 | 0.021808 | 1.985928 | 3.594337 0 | 0.018938
X2070 1.217094 | 0.622192 0| 0.025114 | 1.277859 | 1.724369 | 7.61E-05 | -0.04549
X2075 1.21198 | 0.609738 | 0.00171 | 0.019495 | 1.256329 | 0.981966 | 6.03E-05 | 0.04449
X2080 1.139079 | 0.526518 0 | 0.035021 | 1.047772 | 0.692685 | 0.001998 | 0.044659
X2085 1.118821 | 0.515209 | 0.00145 | 0.02956 | 0.339038 | 0.129993 0 | 0.000851
X2090 1.079672 | 0.453288 | 0.001615 | 0.033995 | 1.889006 | 2.349124 | 0.001762 | -0.00743
X2095 1.19652 | 0.631073 | 0.001239 | 0.026424 | 1.214468 | 0.710758 | 0.001681 | -0.02491
X2100 1.098701 | 0.461907 | 0.001548 | 0.036028 | 2.108011 | 5.479173 | 0.007423 | 0.063929
X2105 1.064519 | 0.439468 | 0.000768 | 0.037722 | 2.103057 | 6.062727 | 0.004877 | -0.03577
X2110 1.131062 | 0.539592 | 0.002747 | 0.036082 | 0.732749 | 0.078908 | 0.000336 | 0.003537
X2115 1.125333 | 0.49852 0 | 0.037522 | 0.413578 | 0.01567 0 | -0.01581
X2120 1.048563 | 0.433958 | 0.000172 | 0.039744 | 1.725143 | 2.263987 | 0.000667 | -0.00843
X2125 0.869628 | 0.223868 | 0.000988 | 0.036487 | 0.55703 | 1.061052 | 0.000242 | -0.01346
X2130 0.909955 | 0.218799 | 0.000751 | 0.042785 | 1.180583 | 0.964693 | 0.001404 | 0.006524
X2135 0.949431 | 0.309963 0.0027 | 0.026317 | 0.653079 | 0.502764 | 0.000821 | 0.006566
X2140 0.916548 | 0.277057 | 0.000136 | 0.031804 | 1.560137 | 2.426378 | 0.000627 | -0.02625
X2145 1.050236 | 0.357282 0| 0.04099 | 1.035371 | 0.813794 | 0.002108 | -0.00623
X2150 0.886768 | 0.289133 | 0.000923 | 0.028792 | 1.329979 | 1.191874 | 0.001007 | -0.01946
X2155 0.638273 | 0.070997 | 0.002706 | 0.029988 | 0.228712 | 0.001216 0 | -0.00799
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X2160 0.911018 | 0.226272 | 0.000171 | 0.029803 | 1.393935 | 0.887808 0 | 0.040248
X2165 0.970269 | 0.30468 | 0.002247 | 0.039185 | 0.867623 | 2.645982 | 0.001637 | -0.0389
X2170 1.310374 | 0.893579 | 0.006423 | 0.005551 | 0.119208 | 0.00052 | 0.004386 | -0.00939
X2175 0.986573 | 0.369415 | 0.001535 | 0.025288 | 1.393143 | 0.303821 0 | 0.016607
X2180 1.172792 | 0.726923 | 0.001397 | 0.015902 | 3.042038 | 12.28852 | 0.000835 | -0.02973
X2185 1.237095 | 0.825314 | 0.000228 | 0.005708 | 1.651819 | 5.086292 | 0.002015 | 0.054057
X2190 1.015363 | 0.380159 | 0.000197 | 0.021592 | 0.066579 | 0.004407 | 0.001982 | 0.016897
X2195 1.21233 | 0.757106 | 0.001162 | 0.024617 | 0.834367 | 1.020553 | 0.003158 | 0.028101
X2200 1.183909 | 0.639426 | 0.000227 | 0.029807 | 0.859266 | 0.318054 | 0.001757 | -0.02656
X2205 1.211226 | 0.729675 0 | 0.019486 | 0.975421 | 0.823218 | 0.000975 | 0.029873
X2210 1.146882 | 0.576934 | 0.001324 | 0.029406 | 0.036038 | 0.210823 | 0.001077 | 0.048613
X2215 1.15918 | 0.588348 0 | 0.035365 | 0.647934 | 1.043403 | 0.00053 | -0.01696
X2220 1.268506 0.8222 0 | 0.019342 | 1.607858 | 3.163358 | 0.019905 | -0.08454
X2225 1.174298 | 0.657165 | 0.004439 | 0.015438 | 1.474376 | 0.986746 | 0.000943 | -0.00754
X2230 1.175082 | 0.709316 0 | 0.020442 | 0.951972 | 0.974686 | 0.004853 | -0.01429
X2235 1.18347 | 0.701511 | 0.000963 | 0.016688 | 0.262745 | 0.053531 0 | -0.00874
X2240 1.121304 | 0.588565 0 | 0.014619 | 0.527122 | 0.421196 | 0.002537 | 0.032627
X2245 1.135828 | 0.633393 0 | 0.024709 | 0.851524 | 1.119424 | 0.000512 | -0.0007
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8.6 MULTISPECTRAL FEATURES TUNING RANDOM FOREST

n_estimators | max_features | max_depth | error AUC Accuracy
50 15 6 59 0.794032 | 0.823353
65 30 5 62 0.78995 | 0.814371
70 15 6 61 0.789225 | 0.817365
50 10 7 60 0.7885 0.820359
70 30 5 62 0.788385 | 0.814371
45 15 6 61 0.78766 | 0.817365
25 35 5 62 0.786821 | 0.814371
45 10 6 61 0.786096 | 0.817365
40 35 7 63 0.785981 | 0.811377
50 30 5 62 0.785256 | 0.814371
30 35 7 64 0.785142 | 0.808383
30 15 4 62 0.783692 | 0.814371
40 10 5 62 0.783692 | 0.814371
45 15 5 62 0.783692 | 0.814371
65 20 5 64 0.783578 | 0.808383
70 20 5 64 0.783578 | 0.808383
50 35 7 64 0.783578 | 0.808383
70 35 7 64 0.783578 | 0.808383
65 10 6 63 0.782853 | 0.811377
50 25 7 63 0.782853 | 0.811377
30 20 4 63 0.782853 | 0.811377
35 15 5 63 0.782853 | 0.811377
40 30 6 63 0.782853 | 0.811377
65 10 7 62 0.782128 | 0.814371
70 10 7 62 0.782128 | 0.814371
45 30 6 64 0.782013 | 0.808383
70 20 6 64 0.782013 | 0.808383
50 15 5 63 0.781288 | 0.811377
50 10 6 63 0.781288 | 0.811377
35 10 5 63 0.781288 | 0.811377
40 15 5 63 0.781288 | 0.811377
65 35 7 65 0.781174 | 0.805389
40 25 7 64 0.780449 | 0.808383
45 35 7 64 0.780449 | 0.808383
65 25 5 64 0.780449 | 0.808383
70 25 5 64 0.780449 | 0.808383
70 25 7 64 0.780449 | 0.808383
70 15 5 63 0.779724 | 0.811377
40 35 5 63 0.779724 | 0.811377
20 35 5 65 0.779609 | 0.805389
65 25 7 64 0.778884 | 0.808383
35 30 5 64 0.778884 | 0.808383
30 35 5 64 0.778884 | 0.808383
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40 15 6 64 0.778884 | 0.808383
35 35 7 66 0.77877 | 0.802395
35 35 5 63 0.778159 | 0.811377
45 5 6 63 0.778159 | 0.811377
45 10 7 63 0.778159 | 0.811377
50 10 5 63 0.778159 | 0.811377
65 15 5 63 0.778159 | 0.811377
30 15 5 65 0.778045 | 0.805389
40 25 6 65 0.778045 | 0.805389
40 35 6 65 0.778045 | 0.805389
50 30 6 65 0.778045 | 0.805389
70 10 6 64 0.77732 | 0.808383
65 15 6 64 0.77732 | 0.808383
25 30 4 64 0.77732 | 0.808383
50 20 5 66 0.777205 | 0.802395
65 25 6 66 0.777205 | 0.802395
70 30 6 66 0.777205 | 0.802395
45 25 5 66 0.777205 | 0.802395
35 30 6 65 0.77648 | 0.805389
40 15 7 65 0.77648 | 0.805389
70 30 7 67 0.776366 | 0.799401
45 35 5 64 0.775755 | 0.808383
40 10 7 64 0.775755 | 0.808383
40 25 5 66 0.775641 | 0.802395
25 30 5 66 0.775641 | 0.802395
25 30 6 66 0.775641 | 0.802395
30 15 7 66 0.775641 | 0.802395
45 25 7 66 0.775641 | 0.802395
65 30 6 66 0.775641 | 0.802395
70 35 6 66 0.775641 | 0.802395
50 35 6 65 0.774916 | 0.805389
70 25 6 67 0.774802 | 0.799401
45 20 6 66 0.774077 | 0.802395
25 35 6 66 0.774077 | 0.802395
30 35 6 66 0.774077 | 0.802395
35 35 6 66 0.774077 | 0.802395
35 15 7 66 0.774077 | 0.802395
45 15 7 66 0.774077 | 0.802395
50 20 6 66 0.774077 | 0.802395
65 15 7 66 0.774077 | 0.802395
65 30 7 68 0.773962 | 0.796407
25 15 4 65 0.773352 | 0.805389
45 10 5 65 0.773352 | 0.805389
50 25 5 67 0.773237 | 0.799401
65 20 6 67 0.773237 | 0.799401
45 30 5 67 0.773237 | 0.799401
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30 30 6 67 0.773237 | 0.799401
25 15 7 67 0.773237 | 0.799401
45 30 7 67 0.773237 | 0.799401
65 35 5 66 0.772512 | 0.802395
30 30 5 66 0.772512 | 0.802395
25 10 6 66 0.772512 | 0.802395
35 15 6 66 0.772512 | 0.802395
35 25 6 66 0.772512 | 0.802395
45 35 6 66 0.772512 | 0.802395
30 10 7 66 0.772512 | 0.802395
50 30 7 68 0.772398 | 0.796407
30 30 3 65 0.771787 | 0.805389
35 10 7 65 0.771787 | 0.805389
65 10 5 65 0.771787 | 0.805389
50 35 5 65 0.771787 | 0.805389
40 30 5 67 0.771673 | 0.799401
40 20 6 67 0.771673 | 0.799401
30 25 6 67 0.771673 | 0.799401
45 25 6 67 0.771673 | 0.799401
50 15 7 67 0.771673 | 0.799401
35 10 6 66 0.770948 | 0.802395
30 35 4 67 0.770108 | 0.799401
30 10 6 67 0.770108 | 0.799401
35 20 6 67 0.770108 | 0.799401
70 35 5 66 0.769383 | 0.802395
50 5 7 66 0.769383 | 0.802395
10 15 7 66 0.769383 | 0.802395
35 25 5 68 0.769269 | 0.796407
25 35 7 68 0.769269 | 0.796407
65 35 6 68 0.769269 | 0.796407
70 15 7 68 0.769269 | 0.796407
30 15 6 67 0.768544 | 0.799401
35 20 5 69 0.768429 | 0.793413
40 20 5 69 0.768429 | 0.793413
10 15 4 66 0.767819 | 0.802395
65 5 6 66 0.767819 | 0.802395
25 20 6 68 0.767705 | 0.796407
30 20 6 68 0.767705 | 0.796407
15 35 7 70 0.76759 | 0.790419
30 30 4 67 0.76698 | 0.799401
45 20 5 69 0.766865 | 0.793413
25 15 6 69 0.766865 | 0.793413
30 25 4 68 0.76614 | 0.796407
15 35 4 68 0.76614 | 0.796407
25 30 7 70 0.766026 | 0.790419
35 30 7 70 0.766026 | 0.790419
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20 15 4 67 0.765415 | 0.799401
15 35 5 69 0.765301 | 0.793413
25 20 4 68 0.764576 | 0.796407
25 35 4 68 0.764576 | 0.796407
40 10 6 68 0.764576 | 0.796407
25 25 6 70 0.764461 | 0.790419
25 30 3 67 0.763851 | 0.799401
25 25 4 69 0.763736 | 0.793413
20 35 4 69 0.763736 | 0.793413
25 15 5 69 0.763736 | 0.793413
20 30 6 69 0.763736 | 0.793413
40 30 7 71 0.763622 | 0.787425
70 10 5 68 0.763011 | 0.796407
50 5 6 68 0.763011 | 0.796407
50 25 6 70 0.762897 | 0.790419
70 20 7 70 0.762897 | 0.790419
20 15 5 70 0.762897 | 0.790419
30 25 5 70 0.762897 | 0.790419
20 35 6 70 0.762897 | 0.790419
25 10 7 70 0.762897 | 0.790419
35 25 7 70 0.762897 | 0.790419
15 20 5 71 0.762057 | 0.787425
20 35 7 71 0.762057 | 0.787425
30 10 4 68 0.761447 | 0.796407
15 15 4 68 0.761447 | 0.796407
45 20 7 70 0.761332 | 0.790419
65 20 7 70 0.761332 | 0.790419
30 30 7 72 0.761218 | 0.784431
30 35 3 69 0.760607 | 0.793413
25 20 5 71 0.760493 | 0.787425
30 25 7 71 0.760493 | 0.787425
20 20 5 72 0.759654 | 0.784431
25 25 7 72 0.759654 | 0.784431
70 5 7 69 0.759043 | 0.793413
25 25 3 69 0.759043 | 0.793413
10 35 4 69 0.759043 | 0.793413
30 10 5 69 0.759043 | 0.793413
20 10 6 69 0.759043 | 0.793413
20 20 4 71 0.758929 | 0.787425
20 25 5 71 0.758929 | 0.787425
25 25 5 71 0.758929 | 0.787425
10 15 6 71 0.758929 | 0.787425
15 30 6 72 0.758089 | 0.784431
70 5 6 69 0.757479 | 0.793413
15 20 6 73 0.75725 | 0.781437
25 10 3 68 0.756754 | 0.796407
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20 30 4 70 0.756639 | 0.790419
20 15 7 72 0.756525 | 0.784431
35 20 7 72 0.756525 | 0.784431
40 20 7 72 0.756525 | 0.784431
30 20 5 73 0.755685 | 0.781437
15 15 6 73 0.755685 | 0.781437
15 30 4 70 0.755075 | 0.790419
45 5 7 70 0.755075 | 0.790419
50 20 7 72 0.75496 | 0.784431
30 5 6 72 0.75496 | 0.784431
10 20 3 71 0.754235 | 0.787425
15 30 5 72 0.753396 | 0.784431
25 20 7 72 0.753396 | 0.784431
45 5 5 69 0.752785 | 0.793413
65 5 7 71 0.752671 | 0.787425
20 20 3 71 0.752671 | 0.787425
15 35 3 71 0.752671 | 0.787425
20 35 3 71 0.752671 | 0.787425
40 5 6 71 0.752671 | 0.787425
10 15 5 73 0.752556 | 0.781437
20 30 3 70 0.751946 | 0.790419
30 5 4 70 0.751946 | 0.790419
70 5 5 71 0.751107 | 0.787425
15 30 3 71 0.751107 | 0.787425
15 20 4 73 0.750992 | 0.781437
30 20 7 73 0.750992 | 0.781437
20 25 7 75 0.750878 | 0.775449
20 5 4 70 0.750382 | 0.790419
50 5 5 70 0.750382 | 0.790419
20 30 5 74 0.750153 | 0.778443
15 30 7 76 0.750038 | 0.772455
10 20 4 73 0.749428 | 0.781437
20 10 7 73 0.749428 | 0.781437
10 20 5 75 0.749313 | 0.775449
20 15 6 75 0.749313 | 0.775449
20 20 6 75 0.749313 | 0.775449
30 10 3 70 0.748817 | 0.790419
20 10 4 72 0.748703 | 0.784431
25 10 5 72 0.748703 | 0.784431
10 35 5 72 0.748703 | 0.784431
40 5 7 72 0.748703 | 0.784431
20 25 4 74 0.748588 | 0.778443
10 30 7 76 0.748474 | 0.772455
10 35 7 76 0.748474 | 0.772455
30 25 3 73 0.747863 | 0.781437
25 35 3 73 0.747863 | 0.781437
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15 35 6 75 0.747749 | 0.775449
65 5 5 72 0.747138 | 0.784431
25 20 3 72 0.747138 | 0.784431
10 30 4 72 0.747138 | 0.784431
15 15 5 76 0.746909 | 0.772455
15 25 7 76 0.746909 | 0.772455
25 5 4 71 0.746413 | 0.787425
30 20 3 73 0.746299 | 0.781437
15 25 5 76 0.745345 | 0.772455
10 10 3 71 0.744849 | 0.787425
10 30 6 75 0.74462 | 0.775449
15 15 7 75 0.74462 | 0.775449
20 25 6 77 0.744505 | 0.769461
30 15 3 72 0.744009 | 0.784431
15 20 3 74 0.743895 | 0.778443
10 20 6 78 0.743666 | 0.766467
20 30 7 78 0.743666 | 0.766467
15 10 3 71 0.743284 | 0.787425
20 10 3 71 0.743284 | 0.787425
25 10 4 73 0.74317 | 0.781437
35 5 5 73 0.74317 | 0.781437
40 5 5 74 0.742331 | 0.778443
20 5 6 74 0.742331 | 0.778443
35 5 7 74 0.742331 | 0.778443
25 5 6 76 0.742216 | 0.772455
5 30 7 80 0.740423 | 0.760479
25 15 3 73 0.740041 | 0.781437
10 30 3 75 0.738362 | 0.775449
10 35 3 75 0.738362 | 0.775449
15 20 7 77 0.738248 | 0.769461
20 20 7 77 0.738248 | 0.769461
10 25 5 79 0.738133 | 0.763473
10 15 3 74 0.737637 | 0.778443
10 25 3 76 0.737523 | 0.772455
15 10 6 76 0.737523 | 0.772455
10 35 6 78 0.737408 | 0.766467
5 35 7 82 0.737179 | 0.754491
15 10 5 75 0.736798 | 0.775449
20 10 5 75 0.736798 | 0.775449
10 25 4 77 0.736683 | 0.769461
15 25 4 77 0.736683 | 0.769461
10 10 6 77 0.736683 | 0.769461
15 10 7 77 0.736683 | 0.769461
15 25 3 76 0.735958 | 0.772455
5 35 3 76 0.735958 | 0.772455
35 5 6 76 0.735958 | 0.772455

106




30 5 5 75 0.735234 | 0.775449
20 5 7 77 0.735119 | 0.769461
15 5 6 76 0.734394 | 0.772455
25 5 7 76 0.734394 | 0.772455
30 5 7 76 0.734394 | 0.772455
10 30 5 78 0.73428 | 0.766467
5 15 4 81 0.733326 | 0.757485
20 15 3 76 0.73283 | 0.772455
30 30 2 77 0.73199 | 0.769461
20 25 3 77 0.73199 | 0.769461
25 30 2 76 0.731265 | 0.772455
5 30 5 80 0.731036 | 0.760479
25 25 2 77 0.730426 | 0.769461
25 5 5 78 0.729586 | 0.766467
10 25 6 81 0.728632 | 0.757485
10 10 5 79 0.727183 | 0.763473
15 25 6 81 0.727068 | 0.757485
5 15 5 83 0.726954 | 0.751497
5 35 5 82 0.726229 | 0.754491
25 5 3 75 0.725847 | 0.775449
5 20 3 79 0.725618 | 0.763473
15 15 3 78 0.724893 | 0.766467
10 10 4 78 0.724893 | 0.766467
5 30 4 80 0.724779 | 0.760479
15 5 7 80 0.724779 | 0.760479
5 20 4 82 0.724664 | 0.754491
10 25 7 83 0.723825 | 0.751497
30 20 2 80 0.723214 | 0.760479
10 20 7 82 0.7231 0.754491
15 5 4 79 0.722489 | 0.763473
20 30 2 78 0.721764 | 0.766467
30 25 2 80 0.72165 | 0.760479
25 35 2 80 0.72165 | 0.760479
15 10 4 80 0.72165 | 0.760479
20 25 2 81 0.72081 | 0.757485
5 10 6 83 0.720696 | 0.751497
20 5 3 78 0.7202 0.766467
25 15 2 80 0.720085 | 0.760479
5 25 7 87 0.717338 | 0.739521
15 5 3 78 0.717071 | 0.766467
30 5 3 78 0.717071 | 0.766467
10 5 6 83 0.716003 | 0.751497
30 35 2 82 0.715278 | 0.754491
5 35 4 84 0.715163 | 0.748503
10 10 7 84 0.715163 | 0.748503
30 15 2 81 0.714553 | 0.757485
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15 5 5 82 0.713713 | 0.754491
20 5 5 82 0.713713 | 0.754491
5 35 6 88 0.71337 | 0.736527
5 15 7 87 0.712645 | 0.739521
15 25 2 83 0.71131 | 0.751497
5 30 3 85 0.711195 | 0.745509
5 10 3 82 0.710585 | 0.754491
5 10 4 85 0.709631 | 0.745509
20 20 2 84 0.708906 | 0.748503
20 35 2 84 0.708906 | 0.748503
15 35 2 83 0.708181 | 0.751497
10 5 7 87 0.707952 | 0.739521
5 30 6 89 0.707837 | 0.733533
5 10 7 89 0.707837 | 0.733533
15 20 2 84 0.707341 | 0.748503
5 25 5 89 0.706273 | 0.733533
5 20 5 90 0.705433 | 0.730539
15 30 2 83 0.705052 | 0.751497
20 15 2 84 0.704212 | 0.748503
10 20 2 84 0.704212 | 0.748503
10 5 4 84 0.704212 | 0.748503
25 20 2 86 0.702534 | 0.742515
5 20 6 93 0.701351 | 0.721557
10 30 2 84 0.701084 | 0.748503
5 5 6 93 0.698222 | 0.721557
10 25 2 87 0.697001 | 0.739521
10 35 2 87 0.695437 | 0.739521
5 15 3 87 0.695437 | 0.739521
5 25 4 93 0.695093 | 0.721557
5 25 2 88 0.694597 | 0.736527
5 20 7 93 0.693529 | 0.721557
5 15 6 93 0.691964 | 0.721557
5 35 2 90 0.688225 | 0.730539
5 25 3 92 0.686546 | 0.724551
5 10 5 95 0.685592 | 0.715569
5 25 6 97 0.685478 | 0.709581
10 15 2 89 0.684371 | 0.733533
10 5 3 88 0.682082 | 0.736527
30 10 2 86 0.679067 | 0.742515
25 10 2 86 0.677503 | 0.742515
5 5 7 98 0.675252 | 0.706587
10 5 5 93 0.673191 | 0.721557
5 20 2 95 0.671513 | 0.715569
5 5 4 97 0.669834 | 0.709581
15 15 2 93 0.668498 | 0.721557
5 30 2 95 0.668384 | 0.715569
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30 5 2 92 0.652129 | 0.724551
5 5 5 107 0.648924 | 0.679641
10 10 2 93 0.648161 | 0.721557
20 10 2 94 0.644193 | 0.718563
15 10 2 96 0.639385 | 0.712575
5 5 3 101 0.636752 | 0.697605
25 5 2 97 0.635417 | 0.709581
5 15 2 105 0.625572 | 0.685629
15 5 2 101 0.61485 | 0.697605
10 5 2 102 0.614011 | 0.694611
20 5 2 102 0.607753 | 0.694611
5 10 2 108 0.599588 | 0.676647
5 5 2 113 0.586004 | 0.661677
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8.7 LINKTO RAW DATA
https://drive.google.com/drive/folders/1SqiH22jXSoXbkM2066yyRf7GxMtMRmMx?usp=sharing
8.8 LINKTO CODE

https://drive.google.com/drive/folders/1QUBAvVBVfV3GPvQS8EnjJpRYCXz-d3s2rg?usp=sharing
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