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Abstract 
 

Autonomous robots are systems that can perform tasks, make decisions, and act in real-

time without human intervention. They are best fit for applications that require repeatable 

accuracies and high yield under stable conditions. However, they lack the capability to 

respond to ill-defined, unknown, changing, and unpredicted events such as exist in 

unstructured environments, and the current status of autonomous robots still falls short of 

implementing solutions to most real-world applications. Furthermore, the problems are 

enhanced in applications dealing with natural objects since the objects also have high degrees 

of variability, and their positions and orientations are not known and cannot be determined a 

priori. This complicates the robotic system and results in a system that is difficult and 

expensive to develop. Integrating a human operator into a robotic system can help increase 

target recognition rate and reliability, reduce the complexity of the robotic system, and handle 

unknown and unpredictable events that autonomous systems are incompetent to deal with.  

This work focuses on aspects of collaboration levels of an integrated human-robot system 

for target recognition tasks in unstructured environments. We present a methodology to 

determine the best collaboration level based on the system, the environment, and the task 

parameters, and the evaluation and prediction of its performance.  

Four human-robot collaboration levels for target recognition tasks were defined, tested, 

and evaluated. The collaboration levels were designed specifically for target recognition tasks 

and adjusted to an extensive range of automation, from manual to fully autonomous. The 

collaboration level can be custom fitted to the human or the robot to increase system 

performance.  

An objective function for target recognition in human-robot systems was developed to 

allow computation of the expected value of system performance given the human, robot, 

environmental and task parameters. The objective function includes operational and time 

costs, both of which are important in the evaluation and optimization of system performance. 

The objective function quantifies the multitude of influencing parameters through a weighted 

sum of performance measures, and enables the prediction of system performance and the 

desirable level of collaboration. It can also be applied to help design optimal systems for 

specific tasks. 

A methodology for determining the best collaboration level based on the human, robot, 

task, and environmental variables was developed. Numerical computations of the developed 

objective function combined with signal detection theory were applied for the defined 
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collaboration levels, and a sensitivity analysis of the influencing variables was performed on 

the optimum values. These developments provide the basis for adjusting the combined 

human-robot system to each task and environment and aid in effective system design. 

This research provides tools to develop an integrated human-robot system for target 

recognition in unstructured environments. This will help simplify the robotic system, reduce 

its costs and improve its performance and robustness. System designers can use the objective 

function to predict the performance of a developed system and to determine the best-fit 

collaboration levels a priori. The system can be designed to fit a specific task and 

environment. 

 

Methodology 

Research developments 

The research consists of three interrelated and independent developments related to 

human-robot cooperation in target recognition tasks:  definition of human-robot collaboration 

levels; development of an objective function to evaluate performance; and, a methodology to 

determine the best collaboration level. 

The first development includes the definition of four human-robot collaboration levels 

fitted for target recognition tasks in unstructured environments. The collaboration levels are 

based on the four degrees of autonomy from Sheridan’s scale of “action selection and 

automation of decision." They are compatible with an extensive range of automation, they are 

denoted as H, HR, HOR and R from manual to fully autonomous, respectively. The 

recognition process is performed in two sequential steps; first the robot detects the targets, 

then the human acts on these detections.  

The system objective function is designed to enable determination of the expected value 

of task performance, given the parameters of the system, the task, and the environment. The 

objective function parameters can be divided into four major categories - human, robot, 

environment, and task parameters. The objective function includes five parts: correct 

detection (hit); false alarm (FA); miss; correct rejection, and operational cost. The operational 

cost variable includes costs related to operational time and costs of actions that should be 

performed on the detected objects, either hit or false alarm (e.g., picking detected melons, 

landmine neutralization). 

A methodology was developed to determine the best collaboration level for the design of 

a specific system and to use in modeling and simulating the system’s performance. To 

describe the relations between the objective function parameters, we utilized a modified 

version of signal detection theory (SDT). This reduced the number of independent variables 
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by relating human and robot performance measures (e.g., hit and false alarm probabilities) to 

their basic characteristics (e.g., sensitivity and cutoff point decisions).  

 

Numerical computations 

Numerical computations were implemented on a personal computer with Matlab 7™ 

software. The numerical analysis examines the influence of the human and robot 

characteristics (e.g., sensitivity) and the effect of different human-robot collaboration levels 

on the system objective function. It determines the optimal human and robot characteristics 

for different task characteristics, and the best collaboration level for different human, robot, 

and task characteristics. In addition, a sensitivity analysis was performed on the optimal 

characteristics and their influences on the best collaboration level and the system objective 

function value. 

 

Experiment 

An experimental system was designed to test and examine the influence of different 

human-robot collaboration levels in a specific target recognition task. The experimental 

system consisted of a simulator using images taken from a melon field by a video camera 

mounted on a robotic melon harvester moving along a melon row, and the participants were 

asked to identify melons in the images. 120 undergraduate students participated in the 

experiment. The participants were divided randomly into 10 groups, 12 students per group, 

each of which was assigned one of two objective function weights (parameters), one of two 

different robot qualities (high and low), and one of three possible collaboration levels. The 

images were viewed by a panel of experts and classified according to three levels of 

complexity and arranged in three statistical blocks. During the experiment the human 

operator’s activities, the objects marked, and the time signature of each action were recorded. 

Performance measures were calculated from the recorded raw data. 

A statistical analysis was performed on the data. Analyses examined the influence of the 

block, the image complexity, the reward, the level of cooperation, and the robot quality on 

both system and human performances. Statistical analyses, including repeated measures 

analysis of variance, a Fisher LSD post-hoc comparison, and a general linear model of 

univariate tests of significance, were all performed with Statistica™ 7 on a personal 

computer. 
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Results 

Numerical analysis 

The numerical analysis was executed for several target probability conditions, Ps, human 

and robot sensitivities, d'h and d'r, and payoff value ratios, VAR. The optimal likelihood ratios, 

βr, βh and βrh were determined. The system objective function was analyzed for cases 

including and excluding the operational cost variable. The objective function excluding the 

operational cost serves as the upper boundary of system performance and demonstrates the 

effectiveness of the best collaboration level. 

In the analysis each collaboration level is represented as a plane in the parameter’s space, 

where the Z-axis is the objective function value. The intersection of all collaboration level 

planes creates a plane of the highest objective function value for each parameter combination. 

The collaboration level that achieved the highest score in each parameter combination is 

defined as the best collaboration for those combinations and can be presented in a domination 

map. 

Sensitivity analysis was performed for the human, robot, and environmental independent 

parameters since these can vary during task performance and their precise values are 

unknown. The influence of the changes in the optimal values of the parameters on the 

objective function score and the best collaboration level were analyzed to reflect cases in 

which the human and robot performances were in optimum proximity or in which the 

environment parameters diverged slightly from their expected or calculated values. The 

parameters analyzed were the human likelihood ratio, βrh and βh, human sensitivity, d'h, the 

robot likelihood ratio, βr, robot sensitivity, d'r, and the target probability, Ps. The payoff ratio, 

VAR, the time cost, the operational cost, and the hit rewards were not sensitivity analyzed 

since the parameters are fixed during the entire task. 

The numerical analysis indicates that when target probability increases the system is less 

influenced by false alarms, and therefore, the probabilities of hits and false alarms increased, 

the likelihood ratios βr, βh, and βrh decreased, the operational cost increased, and the objective 

function score increased. For all collaboration levels the highest objective function score 

increases with the increase in human and robot sensitivities. A comparison between the HR 

and the HOR collaboration levels showed that the HR collaboration level performs better 

when the target probability is low and the robot sensitivity is low for the objective function 

that includes operational cost. The H collaboration level is never the best collaboration level 

probably due to its high operational cost and low hit rate relative to the other collaboration 

levels. Thus, collaboration of human and robot in target recognition tasks will always improve 

the optimal performance of a single human detector. This finding indicates that when robot 
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sensitivities are higher than human sensitivities the best collaboration level is R. Analysis of 

the overall system sensitivity showed that when working in the best collaboration level, the 

system likelihood ratio and the system sensitivity both decrease with the increase in the target 

probability. Moreover, the system sensitivity never decreases beneath the robot sensitivity.  

Elimination of the operational cost from the objective function unites HR and HOR into 

one collaboration level, since the only difference between the HR and the HOR collaboration 

levels, as expressed in the system objective function, is in the time parameters. When omitting 

the operational cost variable from the objective function equation, there is no difference 

between these two collaboration levels. The objective function score increased. The best 

collaboration level for the objective function excluding the operational cost part will be the 

HOR collaboration level for the entire sensitivity space and for all target probabilities. The 

combination of both human and robot in the HOR collaboration level increases the sensitivity 

in most cases and increases the probability of a hit while reducing the probability of false 

alarms.  

A sensitivity analysis of the optimal values of the robot and human likelihood ratios, βr, 

βh, and βrh, of the best collaboration levels showed that any change in both directions from the 

optimal values will decrease the objective function score of the best collaboration level. A 

sensitivity analysis of d'r, d'h, and target probability showed that small, positive deviations 

from the optimal values will increase the objective function score of the best collaboration 

level. Deviations in the optimal value of d'h have no influence on the objective function when 

the best collaboration level is R. 

The sensitivity analysis showed that small deviations in the optimal values of the 

analyzed parameters may shift the best collaboration level from one to another. For each 

parameter the behavior of the shift is different. But for deviations in the optimal value of βr, 

βh, βrh, d'r, and d'h, the best collaboration level will never be H and will never shift to H. 

 

Experiment 

The experiment results were correspondence with the numerical analyses. Experimental 

results indicate that the reward system has a significant effect on the system hit rate, false 

alarms, and the system objective function score. The system hit rate of participants who were 

rewarded for maximum hits was higher than for the others; likewise, the system false alarms 

of participants who were rewarded for minimum FA was lower than for the others. The 

reward has no influence on the system time. 

It was found that the robot quality has a significant influence on the system hit rate, and 

the system objective function score: an increase in the robot quality led to increases in the 
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system objective function score of the experiment. Although the increase in robot quality 

reduces the number of system false alarms, this finding was insignificant. However, a higher 

level of automation (HOR) combined with a 'low quality' robot, significantly increases the 

number of false alarms when compared to no automation (HO). For the 'low quality' robot, the 

increase in the automation level increases detection time, but for the 'high quality' robot, 

increases in the automation level reduce the detection time. This effect was partially 

significant. A 'low quality' robot impairs the system hit rate and overall score. As image 

complexity increases, the system hit rate decreases, the system false alarms number increases, 

and the system time increases – all at significant levels. 

Statistical analysis indicates that the reward system has a marginally significant effect on 

human hits of robot marks (PHrh), a significant affect on human hits of the objects the robot 

did not mark (PHh), and the human sensitivity (d'h). The human hit rates, PHrh and PHh, of 

participants were rewarded for maximum hits, were higher than for the participants who were 

rewarded for minimum FA; likewise, the human sensitivity of participants who were 

rewarded for maximum hits was higher than for those who were rewarded for FA. It appears 

that the participants internalize the reward structure, whether it was to minimize the number 

of false alarms or to maximize the number of hits, and as such they focus their attention on 

the reward. 

Robot quality has a significant influence on human hits of the robot marks (PHrh), the 

human false alarms of the robot marks (PFArh), the human false alarms of the objects the robot 

did not mark (PFAh), and the human sensitivity. Increases in robot quality increased the system 

objective function score of the experiment. The increase in robot quality increases the values 

of PHrh, PFArh, PFah, and the human sensitivity. It seems that during the experiment the 

participants perceived the robot quality and relied on the robot decisions when its quality was 

high.  

The image complexity significantly influenced the number of human hits and the false 

alarms of objects the robot did not mark (PHh and PFAh). An increase in the image complexity 

decreases PHh and increases PFAh. 

The collaboration level significantly affects human hits and false alarms of objects the 

robot did mark (PHrh and PFArh). Increase in the automation level increases PHrh and PFArh. It 

seems that for high automation levels the participant tends to accept the robot decisions. 

Furthermore, the human sensitivity of the participants who had a 'high quality' robot, 

decreased with increase in the automation level. This finding indicates that the increase in 

robot quality reduces both human control and sensitivity. 
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The block number significantly affected the system false alarm (decreases), the system 

time (decreases), the experiment score (increases), and the human false alarms of the objects 

the robot did not mark (PFAh). The values and the confidence intervals of PFAh decreased with 

the increase in the block number. This hints at a learning effect during the experiment. 

 

Conclusions 

This thesis includes a comprehensive development to evaluate the influence of different 

collaboration levels on the performance of an integrated human-robot system for target 

recognition tasks in different cases. It includes the development of collaboration levels, an 

objective function to measure system performance, and a methodology to determine the best 

collaboration level. The objective function was evaluated using numerical and experimental 

analyses. 

Numerical analysis results indicate that the best system performance, the optimal 

performance measures values, and the best collaboration level depend on task, environment, 

human, and robot parameters as well as the system characteristics. Since the number of 

independent parameters is vast and, in addition, there are interactions between the parameters, 

a prediction of system performance and the optimal solution is comprehensive and not 

obvious. However, it can be determined by investigating the objective function.  

The sensitivity analysis finding can be exploited for the design and operation of an 

integrated human-robot system under dynamic and realistic conditions where the true value of 

the parameters is unknown and the resolution and accuracy are low, or in cases where the 

parameters are dynamic and drifting around their expected values. 

Throughout the development, great care was taken to quantify the independent parameters 

and the results and to validate the theoretical findings with the experiment. The objective 

function was developed in a way to facilitate a comparison of different systems, 

environments, and tasks. 

The advantage of this method is that it can be conducted off-line and even in the absence 

of an actual system, and it allows the comprehensive survey of the influence of various 

parameters on the system performance. System designers can use these methodologies to 

develop an adjusted, integrated human-robot system for target recognition tasks in 

unstructured environments. Furthermore, this methodology can be used to analyze system 

performance during the task performance and to recommend the best collaboration and the 

human performance on-line.  
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Contributions 

The main contributions of this research are: 

 The definition and evaluation of human-robot collaboration levels for target 

recognition tasks. The collaboration levels were based on Sheridan's ten levels of 

automation and were designed specifically for target recognition tasks. The 

collaboration level can be fitted to the human or robot to increase system performance. 

The collaboration levels were mathematically modeled to quantify its influence on 

system performance. 

 The development of an objective system function for target recognition in human-

robot systems to allow computation of the expected value of system performance 

given the human, robot, environmental, and task parameters. The objective function 

can be fitted to different tasks and environments, to predict system performance and 

desirable level of collaborations, and to help design optimal systems for specific tasks. 

The objective function includes operational and time costs that are important both in 

evaluation and optimization of system performance.  

 A methodology for determining the best collaboration level based on the human, 

robot, task, and environment parameters. The methodology consists of a numerical 

analysis of the developed objective function combined with signal detection theory. 

The methodology makes it possible to improve system performance and to fit the best 

collaboration level for each case. 
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1 INTRODUCTION 

1.1 Problem description 

Robots and autonomous systems perform well in industrial environments where working 

conditions are constant, structured and predictable (Lopez-Juarez and Howarth, 2002; 

Gonzalez-Galvan et al., 2003). Unstructured environments such as agriculture, military, 

underwater and space are characterized by rapid changes in time and space (Bechar et al., 

2003). The terrain, vegetation landscape, visibility, illumination, and other atmospheric 

conditions are not well defined, continuously vary, have inherent uncertainty, and generate 

unpredictable and dynamic situations. In some environments the objects or the targets are also 

unstructured and differ in size, hue, orientation, reflection and shape, in contrary to structured 

object like cube, pyramid or bolt were the object definitions are fixed and rigid. This results in 

a lack of information, due both to inadequate sensor performance as well as the limited ability 

of computers to reason and plan in such environments (Everett and Dubey, 1998). Hence, in 

unstructured environments operation of an autonomous robot is difficult (Al-Jumaily and 

Amin, 2000; Fletcher et al., 2005), and not advisable (Penin et al., 1998). Moreover, "the 

current status still falls short of implementing solutions to most real-world applications" (Kim 

and Shim, 2003). Furthermore, in such environments there are many situations in which 

autonomous robots fail due to the many unexpected events (Steinfeld, 2004). The problems 

are enhanced in applications dealing with natural objects (e.g., medical, agriculture 

environments) since the objects also have high degrees of variability (in shape, texture, color, 

and size) and their positions and orientations are not known and cannot be determined a-

priori. This further complicates the robotic system and results in a system which is difficult 

and expensive to develop.  

Target recognition is a common task and usually an essential part of a robotic system 

(Bicho et al., 2000; Ye and Tsotsos, 1999). However, automatic target recognition in 

unstructured environments is characterized by poor performances (Edan, 1999; Ponweizer et 

al., 2005) due to the high degree of objective variability and changing and unknown 

environmental conditions (Bhanu et al., 2000; Venkataramani et al., 2005).   

Humans have superior recognition capabilities (Matthews et al., 1996; Hill et al., 1997; 

Ayrulu and Barshan, 2001) and can easily adapt to changing environmental and objective 

conditions (Rodriguez and Weisbin, 2003). Peoples’ acute perceptive capabilities enable 

humans to deal with a flexible, vague, changing, and wide scope of definitions (Chang, 1998). 

However, a human operator is inconsistent, tends to fatigue and suffer from distractions (Van 
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Erp et al., 2004), and ultimately might reduce the system’s production rate relative to that of a 

fully autonomous system in a fixed environment. Human operators, then, can impair smooth 

system operation (Parasuraman et al., 2000) and increase errors.  

Autonomous systems are most suitable for cases that require repeatable accuracies and 

high yields in stable conditions (Holland and Nof, 1999). However, they lack the capability to 

respond to ill-defined, unknown, changing, and unpredictable events.  

The assumption of this research is that integrating a human operator into a robotic system 

can help increase target identification rate and reliability, reduce the complexity of the robotic 

system (Kirlik et al., 1993; Sidenbladh et al., 1999; Itoh et al., 2000; Parasuraman et al., 

2000), and handle unknown and unpredictable events that the autonomous systems are 

incompetent to deal with (Pook and Ballard, 1996).  

Human-robot collaboration research addresses the issue of how the human-robot 

association affects automation in aspects of data acquisition, data and information analysis, 

decision making, action selection, and action implementation (Parasuraman et al., 2000), in 

accordance with specific task or sub-task goals and parameters (Bechar et al., 2004). Types 

and levels of automation are evaluated by examining their associated human performance 

consequences such as mental workload, situation awareness, complacency, and skill 

degradation (Guida and Lamperti, 2000; Steinfeld et al., 2006). Parasuraman et al. (2000) 

developed a model for types and levels of automation that provides a framework and supplies 

an objective basis for determining the degree of automation for each system. Sheridan (1978) 

divides automation into ten levels, from fully autonomous, with no human intervention to 

fully manual. Xu et al. (2002) modeled the human-computer strategies through cascade neural 

networks for a driving task. Fletcher et al. (2005) developed an on-line driver assistance 

system that supports the driver and provides immediate feedback.  

Rodriguez and Weisbin (2003) indicate that human capabilities of perception, thinking, 

and action are still unmatched in environments with anomalies and unforeseen events, and 

that human and robot skills are complementary. By taking advantage of human perceptive 

faculties and the autonomous systems’ accuracy and consistency, the combined human-

robotic system can be simplified, resulting in improved performance (Parasuraman et al., 

2000).  

In target recognition tasks there are several performance measures to evaluate quality of 

recognition (Maltz, 2000; Swets et al., 2000; Filippidis et al., 2000; Sun et al. 2004; Pei and 

Lai, 2001; Gao and Hinders, 2005) including probability of target detection (hit), probability 

of non-target detection (false alarm; Liu and Haralick, 2002), and detection time (Steinfeld et 

al., 2006). However, the quality and value of performance measures are task dependent. For 



 3 

example, in medical applications, the hit and false alarm probabilities are more important than 

the detection time, and therefore maximum hit probability with minimum false alarm 

probability is necessary. On the other hand, in real-time systems detection time is critical and 

should be minimized. In detecting landmines, however, the goal is a high hit rate while the 

false alarm rate and detection times are usually less important. Hence, it is essential to 

combine the different performance measures (Rodriguez and Weisbin, 2003) and consider the 

task goal when evaluating system performance. The given examples were presented as 

extreme cases to indicate the importance of the different weights; they do no necessary 

present different industries. 

System performance also depends on environmental conditions (e.g., illumination, 

visibility, terrain type), human conditions (fatigue, stress, workload), and system parameters 

(error, accuracy, reliability). Hence, these must also be considered when evaluating system 

performance. For example, environmental conditions such as highly occluded objects, 

shading, and changing illumination conditions strongly influence target recognition 

performance of both human and automatic systems. Maltz and Shinar (2003) found that 

system cueing helps in complex tasks but lowers the performance in simple tasks. A 

methodology to determine the appropriate alerting thresholds and quantify the possible 

potential benefits through changes in the design of the system shown by Kuchar (1996) 

reduced the frequency of false alarms in traffic alert and collision avoidance system. Meyer 

and Kuchar (2006) analyzed the effect of an alerting system on signal detection performance 

and found that the introduction of an alerting system may actually lower performance if the 

operator uses non-optimal weights for the warning information. 

1.2 Research objectives 

The research objectives include developing: 

 Human-robot collaboration levels suitable for target recognition tasks in 

unstructured environments. 

 An objective function to evaluate performance of an integrated human-robot 

system for target recognition tasks, and to compare the performance of 

different target recognition systems and cases. 

 A tool to determine the best collaboration level based on the system, task, and 

environmental parameters. 

1.3 Research significance 

Target recognition is an important and essential task in most robotic systems. The 

development of an autonomous system operating in an unstructured environment is 
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problematic, complex, and expensive. This research provides tools to develop an integrated 

human-robot system for target recognition in unstructured environments. This will help 

simplify the robotic system, reduce its costs and improve its performance and robustness. 

 Human-robot collaboration levels were developed for target recognition in unstructured 

environments. The four collaboration levels defined fit an extensive range of automation, 

from manual to fully autonomous. The advent in using four levels of collaboration, of which 

only three include a human operator, simplifies the integrated human-robot system, thus 

enabling the human to better control each collaboration level, remember the characteristics of 

each collaboration level, and increase his awareness when shifting from one collaboration 

level to another. 

An objective function was developed to evaluate performance of an integrated human-

robot system for target recognition tasks. The objective function is task dependent and 

consists of a multitude of performance measures. It includes operational costs and time costs, 

which consider the system characteristics involved in the performance evaluation and not 

merely the detection quality parameters. It makes it possible to rank and compare different 

systems and to analyze the influence of different human, robot, task, and environment 

parameters on the system performance.  

Additionally, a methodology to determine the best collaboration level based on the 

objective function was developed. The methodology can improve system performance when 

environmental conditions are known a-priori. Such developments form the basis for effective 

system design and enable the easy adaptation of the combined human-robot system to each 

new task and environment. 

1.4 Research contributions and innovations 

Integrating humans into robotic systems can help simplify the systems and improve their 

performances. By taking advantage of human capabilities, a more flexible and simpler system 

that can deal with more dynamic and complex conditions can be designed.  

 Human-robot collaboration levels for target recognition tasks were defined, tested, and 

evaluated. The collaboration levels were based on Sheridan's (1978) ten levels of automation 

and were designed specifically for target recognition tasks. The collaboration level can be 

fitted to the human or robot to increase system performance.  

A system objective function for target recognition in human-robot systems was developed 

to allow computation of the expected value of system performance given the human, robot, 

environmental, and task parameters. The objective function quantifies the multitude of 

parameters influencing the system through a weighted sum of performance measures. The 

weights enable one to adapt the system’s objective function to different tasks and 
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environments, to predict system performance and desirable level of collaboration, and to help 

design optimal systems for specific tasks. In addition, the objective function developed in this 

thesis includes operational and time costs that are important in both evaluation and 

optimization of system performance.  

A methodology was developed for determining the best collaboration level based on 

human, robot, task, and environment variables. Numerical analysis of the objective function 

combined with signal detection theory was applied for the defined collaboration levels, and 

sensitivity analysis of the influencing variables was performed on the optimum values. The 

methodology makes it possible to improve system performance and to fit the best 

collaboration level for each case. 

System designers can use the objective function to predict the performance of a developed 

system and to determine the best-fit collaboration levels a-priori. The system can be designed 

to fit a specific task and environment. 

1.5 Thesis structure 

The dissertation is organized as follows: chapter 2 presents a literature review on 

autonomous robots, agricultural robots and human-robot collaboration. The methodology 

chapter starts with the description of the problem objective of an integrated human-robot 

system for target recognition tasks in unstructured environments, continues with the outline of 

the research, definitions of major terms, the research assumptions, the collaboration levels 

used in this work and a brief presentation of the system objective function, the numerical 

computations conducted on the system objective function and the experiment conducted. The 

chapter ends with a description of the performance measures. Chapter 4 deals with 

formulation of the system objective function. The theoretical equation is developed and a 

signal detection theory (SDT) model is modified to fit the case of a human-robot system in a 

target recognition task. The SDT equations are included in the system objective function in 

order to simplify it. Chapter 5 begins with numerical computations of the optimal cutoff ratios 

(βs) based on the system objective function to determine the optimal human and robot 

parameters for different task parameters and to determine the best collaboration level for 

different human, robot, and task parameters (section 5.1). It continues with sensitivity 

analyses of the human, the robot, and the independent environmental parameters and the 

influence of changes in the optimal values of the parameters on the objective function score 

and the best collaboration level to reflect cases in which the human and robot performances 

were in the proximity of optimum values or when the environmental parameters diverged 

only slightly from their expected or calculated values (section 5.2). Findings are summarized 

with conclusions at the end of the chapter (section 5.3). Chapter 6 describes the apparatus and 
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design of the melon detection experiment conducted on a simulated human-robot system, the 

experimental procedure and results.  

A discussion of the results comparing the experiment to the numerical calculations is 

presented in chapter 7. The thesis concludes in chapter 8, including conclusion and discussion 

of future research. 
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2 SCIENTIFIC BACKGROUND 
The scientific background includes a review of autonomous robots and their limitations, 

and the current status of agricultural robots. Human-robot collaboration methods that served 

as the basis for the development of the thesis methodologies are also reviewed. 

2.1 Autonomous Robots 

Autonomous robots are systems that can perform tasks, make decisions, and act in real-

time without human intervention. They are required in fields, which normally demand 

reductions in manpower and workload, and are best-suited for applications that require 

repeatable accuracies and high yield under stable conditions (Holland and Nof, 1999). 

However, they lack the capability to respond to ill-defined, unknown, changing, and 

unpredicted events.  

Sensing and reasoning are the basic requirements for attaining a reasonable degree of 

autonomy (Oriolo et al., 1998). According to Rucci et al. (1999), autonomous robotic systems 

must possess a high degree of flexibility to adapt to the continuously changing conditions of 

the environment as well as to the information from their own sensors and motors. 

In designing autonomous robotic systems, two important challenges are frequently 

encountered. The first deals with the nonlinear, real-time response requirements underlying 

the sensor–motor control formulation. The second deals with how to model and use the 

approach with which a human will address such a problem (Ng and Trivedi, 1998). 

In recent years, an increasing amount of robotics research has focused on autonomous 

mobile robots in unstructured environments (indoors and outdoors). Comprehensive research 

investigated many aspects of this area. The research can be divided into two categories. The 

first category deals with the basic elements nessesary for autonomous robots, such as obstacle 

avoidance (Chakravarthy and Ghose, 1998; Ku and Tsai, 1999; Carelli and Freire, 2003; 

Belkhouche and Belkhouche, 2005), self-localization and map building (Neira et al., 1999; 

Mouaddib and Marhic, 2000; Olson, 2000; Ip and Rad, 2004; Se et al., 2005), and navigation 

and path planning (Ara´ujo and de Almeida, 1999; Oriolo et al., 1998; Cherif, 1999; Millan 

and Floreano, 1999; Tsourveloudis et al., 2001; Garcia and De Santos, 2004;Roy, 2005). The 

second category deals with applications such as vehicle dispatching for transportation 

(Benyahia and Potvin, 1998; Yamashita, 2001; Lacomme et al., 2005), security, 

reconnaissance and exploration (Dollarhide and Agah, 2003; Birk and Kenn, 2002; Flann et 

al., 2002; Matthies et al., 2002; Thrun et al., 2004), industry (Klas and Rolf, 1999; 

Peungsungwal et al., 2001), agriculture (Torri, 2000; Van Henten et al., 2003), underwater 

missions (Kondo and Ura, 2004; Rosenblatt et al., 2002), maintenance and service (Luk et al., 
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2005; Balakirsky et al., 2004; Aracil et al., 2003), and space missions (Arena et al., 2004; 

Chirikjian et al., 2002). 

Target recognition is a critical element in most robotic systems (Bicho et al., 2000; Ye 

and Tsotsos, 1999; Bechar and Edan; 2003; Tan et al., 2005); for example, the detection of 

parts in assembly lines, the detection of landmarks in autonomous navigation, the detection of 

hand gestures for robot control, or the detection of fruits for robotic harvesters. Target 

recognition is a common and important topic in many other research areas such as medical 

and brain research (Potts and Tucker, 2001; Bhanu and Fonder, 2004), quality assurance 

(Schmitter, 1995), human factors (Aviram and Rotman, 2000; Maltz and Meyer, 2001), 

agriculture (Sevila & Baylou, 1991; Dobrusin et al., 1992; Plebe and Grasso, 2001; Bulanon 

et al., 2001; Hannan and Burks, 2004; Alchanatis et al., 2005), and remote sensing using 

infra-red (Jean et al., 2000; Nelson, 2001), radar (Liang and Palakal, 2002; Banerjee et al., 

1999), visual images (Patnaik and Rajan, 2000), and hyperspectral imagery (Du and Ren, 

2002).  

Target recognition systems have undergone a variety of changes due to intensive 

technological developments. Initial systems exploited signal-processing techniques to detect 

ground-based targets based on one-dimensional signals (Gilmore, 1991). Limitations of these 

systems eventually led to the development of automated target recognizers that processed 

two-dimensional digital images to detect, classify, and identify targets (Gilmore, 1991). 

Target recognition can be described as a multilevel process requiring a sequence of algorithms 

at low, intermediate, and high levels (Bhanu et al., 2000). Generally, such systems are open 

loop with no feedback between levels, and assuring their performance at the given probability 

of correct identification and probability of false alarm is a key challenge (Bhanu et al., 2000). 

The main limiting parameters in target recognition are the characteristics of unstructured 

environments (Venkataramani et al., 2005); thereby restricting the system’s ability to 

determine if an object can be classified as a target. The attributes of unstructured 

environments also impede the quantification or numericalization of target description criteria, 

which are determined by human operators and are implemented by autonomous detection 

algorithms.  

Automatic target recognition is characterized by poor performances (Edan, 1999; 

Ponweizer et al., 2005), and detection is restricted to a certain group of objects with similar 

physical characteristics for which the autonomous detection algorithms were developed. 

Maltz and Shinar (2003) found that system cueing helps in complex tasks but lowers the 

performance in simple tasks. A methodology to determine the appropriate alerting thresholds 

and quantify the possible potential benefits through changes in the design of the system 
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shown by Kuchar (1996) reduced the false alarms in traffic alert and collision avoidance 

system. Meyer and Kuchar (2006) analyzed the effects of an alerting system on signal 

detection performance and found that the introduction of an alerting system may actually 

lower performance if the operator uses non-optimal weights for the warning information. 

Different optimization methods have been developed and implemented for parallel 

detection systems, e.g., least squares, weighted least squares, mean square error; Bayesian 

weighted least squares, and maximum likelihood estimate (Hall, 1992). On the other hand, 

humans have superior recognition capabilities (Matthews et al., 1996, Hill et al., 1997; Ayrulu 

and Barshan, 2001) and can easily adapt to changing environmental and objective conditions 

(Rodriguez and Weisbin, 2003). Their acute perception capabilities enable humans to deal 

with a flexible, vague, changing, and wide scope of definitions (Chang et al., 1998). However, 

a human operator is not consistent, tends to fatigue, and suffers from distraction (Van Erp et 

al., 2004). 

2.2 Agricultural robots 

Agricultural tasks have been an important area of application for different kinds of 

technologies to improve crop production and other farming related operations. In the 20th 

century, technological progress has reduced the need for the manpower traditionally devoted 

to these activities in the developed countries by a ratio of 1/80 (Cereset al., 1998; Pons et al., 

1996). Robots are perceptive machines that can be programmed to perform a variety of 

agricultural tasks such as cultivating, transplanting, spraying, and selective harvesting (Edan, 

1999). Agricultural robots have the potential to raise the quality of the fresh produce, lower 

production costs, and reduce the drudgery of manual labor (Edan, 1995). 

Activating a continuously moving robot in the agricultural environment is a difficult task, 

as a result of the unpredictable locations of targets that are difficult to locate (due to the 

natural variability in size, shape, color, and texture) and since the terrain, the landscape, the 

atmospheric conditions, and other environment parameters are unstructured, uneven, and 

continuously change. The development of systems that can cope with the variety of 

agricultural situations and unknown disturbances encountered is difficult and complicated.  

Extensive research has been conducted in applying robots to a variety of agricultural 

tasks, and their technical feasibility has been widely demonstrated: picking citrus (Harrell and 

Levi, 1988; Harrell et al., 1990; Kawamura et al., 1985; Kawamura et al., 1987; Edan et al., 

1990; Edan et al., 1991; Jiminez et al. 2000; Plebe and Grasso, 2001; Brown, 2002; Hannan 

and Burks, 2004; Muscato et al., 2005), picking apples (Grand d'Esnon et al., 1987; Bulanon 

et al., 2001), picking tomatoes (Kondo et al., 1996), picking asparagus, cucumbers, and 
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harvesting melons (Edan and Miles, 1993; Benady et al., 1992), harvesting alfalfa (Hoffman 

et al., 1996), transplanting (Beam et al., 1991, Ling et al., 1990, Bar et al., 1996), conveying, 

and transportation (Gerrish et al., 1986, Kazaz and Gan-Mor, 1993; Edan and Bechar, 1998; 

Billingsley, 2000; Thuilot et al., 2002; Wei et al., 2005). The main problem in fruit 

recognition is due to shading, occlusion, variations in fruit properties, and changing 

illumination properties. Several technologies for fruit detection have been explored, including 

vision (Sevila & Baylou, 1991), infra-red (Dobrusin et al., 1992), and structured light (Benady 

et al., 1992; Yamashita & Kondo, 1992), but with each of these techniques only 85% of the 

fruits were identified (Edan, 1999).  

Despite the tremendous amount of research in the last decade, the commercial application 

of robots in complex agriculture applications is still unavailable. The main limiting factors are 

production inefficiencies and a lack of economic justification (Edan, 1999). Production 

inefficiency is caused by problems in fruit identification (75-85%), low cycle times of 3-4 

seconds per fruit, and the inability to autonomously deal with obstacles.  

Introducing a human operator into the operation cycle to interact with the system not just 

as a supervisor is a new trend in agricultural research and can help improve performance and 

reduce system complexity (Bechar and Edan, 2003). The uncertainties in the fruit locations, 

size, shape, and maturity necessitate a sophisticated sensory system combined with a human 

operator to raise fruit identification to 95%, and to ensure rapid picking. Also, navigation and 

transportation on agricultural terrain must be reinforced by a human operator to solve the 

problem of navigating and driving the robot through the field. According to Ceres et al. 

(1998) cooperation of an agricultural robot with a human operator will help solve three 

difficult problems: (a) driving the robot through the field, from tree to tree and from row to 

row; (b) detection and localization of fruits; and (c) grasping and detaching of selected targets.  

Khadraoui et al. (1998) developed and tested a neural network-learning model of vision-

based control in driving assistance of agricultural vehicles, in which the model considers the 

vehicle properties and kinematics. A multilayer neural network receives information from the 

camera and a human driver makes corrections to the course. Ceres et al. (1998) developed 

"AGRIBOT", a system that combines human and machine functions harmoniously by 

assigning different, non-overlapping, non-redundant tasks to the human operator and to the 

robot. The human tasks are the more complex and intellectual parts of the operation, which do 

not require physical effort, i.e., detecting the fruits and marking them with a laser beam, and 

driving the vehicle. The robot fulfills the physically demanding and more precise tasks, 

mainly the localization and harvesting with the manipulator and gripper system. Fruit 

detection, the most complicated task, is done solely by the human operator. Agribot detected 
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70% of the visible fruits, with 70 – 90% of the detected fruits successfully picked in cycles of 

around 4 - 10 seconds (Pons, 1996). 

2.3 Human-Robot Collaboration 

Unstructured environments are very complex and variable, requiring an adjustable, 

adaptable system. The use of an autonomous robotic device, therefore, is not advisable (Penin 

et al., 1998). The operation of autonomous robots is difficult (Al-Jumaily and Amin, 2000; 

Fletcher et al., 2005), and the promise of automatic and efficient remote operations has fallen 

short of expectations (Kim and Shim, 2003; Steinfeld, 2004) due to inadequate sensor 

accuracy and the limited ability of computers to reason and plan in such environments 

(Everett and Dubey, 1998). Rodriguez and Weisbin (2003) indicate that human capabilities of 

perception, thinking, and action are still unmatched in environments with anomalies and 

unforeseen events, and that human and robot skills are complementary. By taking advantage 

of the human perception skills and the autonomous systems’ accuracy and consistency the 

combined human-robotic system can be simplified, resulting in improved performance 

(Parasuraman et al., 2000).  

Human–Robot Interaction (HRI) is a highly interdisciplinary field where behavioral and 

psychological approaches towards understanding the nature of human–robot interaction 

complement robotics and engineering oriented work (Salter et al., 2006) 

There is a large and rapidly developing class of technical systems that are dependent on 

human contribution for their operation (Ivanisevic and Lumelsky, 1997). This class is known 

as telecollaboration, and in robotics terminology, telerobotics, telemanipulation, or 

teleoperation. Since their first appearance in the 40’s, many teleoperated systems have been 

developed and employed for dealing with unstructured environments and in applications 

where there is clear and unavoidable danger for the human operator (Sheridan, 1992). 

Penin et al., (1998) state five reasons for using telerobotics: i) ability to do and improve 

outage-free maintenance in countries with strict regulations regarding the interaction of 

humans with energized components; ii) increase the safety and comfort of the workers; iii) 

decrease the cost by eliminating the need for the operator to work in a hazardous 

environment; iv) ability to work under moderate bad weather conditions; and v) decrease in 

labor requirements. 

A telemanipulation system consists of a master manipulator, which is operated by a 

human operator, and a slave manipulator, which is used for real tasks in a remote site. The 

operational force and the environmental force are assigned to each manipulator during a task 

(Itoh et al., 2000). Hiragana et al. (1997) classified teleoperation systems into two categories: 

1) manipulating objects at a remote site through communication channels, and 2) planning the 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V16-4J2TSNK-1&_coverDate=02%2F28%2F2006&_alid=362332842&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5666&_sort=d&view=c&_acct=C000046439&_version=1&_urlVersion=0&_userid=3935559&md5=d214ac1aa57c16c9d47f5ffa2123c7ca#bio1#bio1
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motions of objects in off-line mode on a real world simulator, and then sending the planned 

motions to a remote site. According to Sheridan (1989), a telerobotics manipulator is a more 

advanced form of teleoperation in which a human operator supervises through a computer 

intermediary.  

Considerable research has been conducted on master-slave manipulator telerobotics and 

guidance/navigation control methods (Kosuge, 1990; Yokokoji et al., 1994; Ogasawara et al., 

1998; Wilson and Neal, 2001; Ethier et al., 2002; Stanczyk and Buss, 2004; Hasegawa et al., 

2004; Al-Mouhamed et al., 2005; Xiao-Gang et al., 2003; Wang and Liu, 2005), system 

stability (Raju et al., 1989; Kim et al., 1992; Lam and Leung, 2004; Jee-Hwan et al., 2004; 

Hannaford and Jee-Hwan, 2002; Jing, 2005), interfaces and displays (synergy, 2001; 

Iwahashi, 2003; Salter et al., 2006; Kofman et al., 2005; Scholtz et al., 2005), communication 

and data translation (Oboe and Fiorini, 1998; Sano et al., 1998; Michaud et al., 2001; ), and 

architectures (Banerjee et al., 2000; Peshkin et al., 2001; Farahvash and Boucher, 2004; 

Speich and Goldfarb, 2005; Gowadia et al., 2005). 

Teleoperated systems do not give the human operator the true sensation that he would 

have if he were on location with the system, since the information does not reach the 

operator’s cognitive system directly, but through sensors with limited resolution, angle of 

vision, depth, etc. (Synergy, 2001). Interaction between the user and the teleoperated system 

is accomplished by means of an interface (Ivanisevic and Lumelsky, 1997). In the user's 

mind, however, there is often no difference between the system and the interface. Guida and 

Lamperti (2000) state that human-computer interaction is about designing computer systems 

that support people, so they can carry out their activities productively and safely. According 

to Synergy (2001), the goal of planning an interface for a telerobotic system is to achieve a 

state of human operator control that mimics as closely as possible the situation where the 

human operator is inside the system and activating it by directly using his senses.  

Human-computer interaction depends on user factors, organizational factors, 

environmental factors (noise, heating, lighting, etc.), health and safety factors, comfort 

factors, task factors, constraints, and productivity factors (Guida and Lamperti, 2000). The 

system requirements can be classified into functional requirements, data requirements, and 

usability requirements (Guida and Lamperti, 2000) that can be operationally formalized to 

learn ability, throughput, flexibility, and attitude. Types and levels of automation are 

evaluated by examining their associated human performance consequences such as mental 

workload, situation awareness, complacency, and skill degradation.  

Human-Computer/robot interfaces draw from the knowledge and methods of several 

different disciplines, including computer science, artificial intelligence, knowledge 
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engineering, cognitive psychology, social and organizational psychology, ergonomics, 

sociology, and anthropology (Guida and Lamperti, 2000). Extensive research has been 

conducted in these fields (Ivanisevic and Lumelsky, 1997; Radix et al., 1999; St-Amant, 

1999; Raghavan et al., 1999; Perzanowski et al., 2001; Iwahashi, 2003; Kofman et al., 2005). 

Over the past two decades, researchers have examined a number of different aspects of 

human interaction with automated systems. Types and levels of automation are evaluated by 

examining their associated human performance consequences, such as mental workload, 

situation awareness, complacency, and skill degradation (Guida and Lamperti, 2000; Steinfeld 

et al., 2006). Parasuraman et al. (2000) developed a model for types and levels of automation 

that provides a framework and supplies an objective basis for determining the degree of 

automation for each system. They suggest that automation can be applied to four broad 

classes of functions: 1) information acquisition; 2) information analysis; 3) decision and 

action selection; and 4) action implementation. Sheridan (1978) divides automation into ten 

levels, from fully autonomous, with no human intervention, to fully manual (Table 1). Xu et 

al. (2002) modeled human-computer strategies through cascade neural networks for a driving 

task, defined performance measures for evaluating the strategy models, and proposed an 

iterative optimization algorithm for improving the performance of learned models of human-

computer strategies. Banerjee et al. (2000) described a combination of 3- D graphics systems 

and the gradual availability of high bandwidth networks that has made collaborative virtual 

reality feasible. Parasuraman et al. (2000) found that automation can have both beneficial and 

negative effects on human performance. They showed that automation does not simply 

supplant human activity, but rather changes it and poses new coordination demands on the 

human operator. They also indicate that high levels of automation may be associated with 

potential costs of reduced situation awareness, complacency, and skill degradation. Fletcher et 

al. (2005) developed an on-line driver assistance system that supports the driver and provides 

immediate feedback. Kidono et al. (2002) developed a human-robot guidance method for 

mobile robot navigation Tsuji and Tanaka (2005) investigated a system for a tracking task 

where the human and the machine act simultaneously. Bruemmer et al. (2005) and Hughes 

and Lewis (2005) developed several automation levels for a human-robot vehicle in an indoor 

exploration task. Graves and Czarnecki (2000) describe a scale of five human-robot 

interaction levels for a telerobotic system. 
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Table 1:  Sheridan’s levels of automation of decision and action selection. 

HIGH 10. the computer decides everything, acts autonomously, ignoring the human 

 9. informs the human only if it, the computer, decides to 

 8. informs the human only if asked to, or 

 7. executes automatically, then necessarily informs the human, and 

 6. allows the human a restricted time to veto before automatic execution, or 

 5. executes that suggestion if the human approves, or  

 4. suggest one alternative 

 3. narrows the selection down to a few, or 

 2. the computer offers a complete set of decision/action alternatives, or 

LOW  1. the computer offers no assistance; human must make all decisions and actions 
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3 METHODOLOGY 

3.1 Problem objective  

The study aims to evaluate the performance of an integrated human-robot system for 

target recognition tasks in unstructured environments and to determine the collaboration level 

that will result in the best performance. 

3.2 Outline 

The research consists of three interrelated and independent parts that address human robot 

cooperation in target recognition tasks:  

1. Definition of human robot collaboration levels fitted for target recognition tasks in 

unstructured environments. The collaboration levels are compatible with an extensive 

range of automation, from manual to fully autonomous (Sheridan, 1978).  

2. Development of an objective function to measure the performances of integrated human-

robot systems in target recognition tasks. The objective function considers operational 

costs and parameters related to the human, robot, targets, tasks, and environments. The 

objective function was evaluated in numerical analyses and in an indoor experiment. 

3. Development of a methodology to determine the best collaboration level for the design of 

a specific system and to model and simulate its performance. Signal detection theory was 

adapted to evaluate the relations between the parameters.  

3.3 Definitions 

In this research we investigated an integrated human-robot system for target recognition 

tasks. Although 'system' and 'robot' are usually denoted similar connotations, in this work they 

do not represent the same concept. The term 'system' includes both the 'human' and 'robot' 

subsystems and indicates their overall combined performances and parameters. The ‘human’ 

subsystem is the human operator and is defined by manual operations; the ‘robot’ subsystem 

comprises the autonomous operations defined by automatic programs residing in the robot 

computer. The phrases 'human' and 'robot' refer to the subsystems and to their specific 

performances and parameters. The phrase 'environment' refers to the surrounding conditions 

the 'system' operates in. It includes parameters such as target probability, number of objects, 

and other parameters that are not related to the 'system' or the 'task'. 
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3.4 Assumptions 

 Human performance has no influence on robot performance. 

 The human, robot, and system performances do not influence the appearance of 

target and non-target objects. 

 The human, robot, task, and environmental parameters are stable in time. 

3.5 Collaboration levels 

Four basic levels for human-robot collaboration were defined, tested, and evaluated. The 

collaboration levels were based on four degrees of autonomy from Sheridan’s (1978) scale of 

“action selection and automation of decision” as follows: i) H: The H detects and marks the 

desired target solely; ii) HR: The H marks targets, aided by recommendations from an 

automatic detection algorithm, i.e., the targets are automatically marked by a robot detection 

algorithm, the human acknowledges the robot’s correct detections, ignores false detections 

and marks targets missed by the robot; iii) HOR: targets are identified automatically by the 

robot’s detection algorithm; the human's assignment is to unmark false detections and to mark 

the targets missed by the robot system;  and iv) R: the targets are marked automatically by the 

system. 

In both the HR and HOR collaboration levels the human has the final decision on each 

detection. The difference between the two is that in the HOR collaboration level the human 

has to unmark objects he or she thinks are non-targets and were marked by the robot, and in 

the HR collaboration level, the human has to remark (approve) objects already marked by the 

robot that he or she also considers to be targets (and to ignore non-target objects marked by 

the robot). 

3.6 System objective function 

The system objective function is designed to enable determination of the expected value 

of task performance, given the parameters of the system, the task, and the environment. The 

objective function parameters can be divided into four major categories - human, robot, 

environmental, and task parameters.  

The objective function includes five parts: correct detection (hit), false alarm, miss, 

correct rejection, and operational cost. The operational cost part includes the costs related to 

operational time and the costs of actions that should be performed on the detected objects, 

whether they are hits or false alarms (e.g., picking detected melons, landmine neutralization). 

To describe the relations between the objective function parameters in a target recognition 

task of a human-robot collaborative system, we applied a modified version of signal detection 

theory (SDT). This reduces the number of independent variables by relating human and robot 
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performance measures (e.g., hit and false alarm probabilities) to their basic characteristics 

(e.g., sensitivity and cutoff point decisions). The weakness in the use of SDT is that simple 

signal and noise distributions are assumed in order to cope with it mathematically. Hits and 

false alarms are computed from the sensitivity and cutoff points. Changes in the hit and false 

alarm values are limited and constrained by the changes of the characteristics. It is difficult to 

obtain the values of all human and robot performance measures in real world cases. 

Furthermore, in a regular analysis of the system objective function, the human and robot 

performance measures are defined and the system objective function is calculated according 

to them. However, when applying SDT, the human and robot characteristics such as 

sensitivity or decision cutoff are defined, the performance measures are then evaluated 

according to them, and the objective function is calculated accordingly. 

For each signal probability and payoff values ratio combination there is a single optimal 

cutoff ratio, β* in the case of a single detector (Swets et al., 2000). This ratio is independent 

of detector sensitivity, d'. For a two detector case, as in human-robot systems, there is a set of 

three β’s and two sensitivities, one for each detector (Robinson and Sorkin, 1985) The 

performance of the first detector (robot) is determined by its sensitivity (d’r) and its cutoff 

ratio (βr). The second detector (human) uses his/her sensitivity (d’h) and two cutoff ratios, one 

for objects already marked by the robot, βrh, and one for the other objects unmarked by the 

robot, βh. Robot and human performance measures and overall system performance were 

described using signal detection theory parameters. 

3.7 Numerical computation 

A numerical computation was implemented on a personal computer with Matlab 7™ 

software  to: i) examine the influence of the human and robot characteristics (e.g., sensitivity) 

and the effects of different human-robot collaboration levels on the system objective function; 

ii) determine the optimal human and robot characteristics for different task characteristics; iii) 

determine the best collaboration level for different human, robot, and task characteristics; and, 

iv) perform a sensitivity analysis on the optimal characteristics and their influence on the best 

collaboration level and the system objective function  value. 

3.8 Experiment 

An experimental system was developed with Matlab 7™ to test and examine the 

influence of different human-robot collaboration levels in a specific target recognition task. 

The experimental system consisted of a simulator, using images taken from a melon field 

by a video camera mounted on a robotic melon harvester moving along a melon row. The 

location of true targets in each image was identified and saved by a panel of experts. The 
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images were manually classified into three complexity levels. During the experiment the 

experimental system recorded the human operator operations, the objects marked, and the 

time signature of each action. Performance measures were calculated from the recorded raw 

data. 

Statistical analyses of the experiment results included descriptive statistics for the human 

performance measures, the system performance measures, and significance tests. The level of 

significance was set to α=0.05.  

A comparison of human sensitivity, the human likelihood ratio of the cutoff points, and 

the best collaboration level based on both the experimental results and the numerical analysis 

was conducted. Notwithstanding, the experiment did not deal with optimal system 

performance since the participants could not determine their required optimal variables during 

the experiment process.  

3.9 Performance measures 

Nine performance measures were grouped into two classes: target identification and time. 

The first class consists of eight performance measures representing the robot and human hit 

and false alarm parameters. The second class includes the time required for the human-robot 

integrated system to fulfill the task. The system objective function combines all mentioned 

performance measures into a single parameter. 
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4 FORMULATION OF AN OBJECTIVE FUNCTION 
This chapter deals with the formulation of the system objective function. The theoretical 

equation is developed and a signal detection theory (SDT) model is modified to fit the case of 

a human-robot system in a target recognition task. The SDT equations are included in the 

system objective function in order to simplify it. 

4.1 General 

Evaluation of a multi-objective decision problem can be performed in several methods; 

two common methods are Pareto optimal sets (Deb et al., 2002) and value function (objective 

function). Pareto sets are used when the solution consists of different objective values that 

cannot be compared and calculates their optimal weights. In target recognition tasks, each of 

the variables has a predefined weight according to the task and system characteristics and 

therefore can be compared or superimposed with other variables to a single objective 

function. System performance is evaluated by the variables and their predefined weights. 

Although target recognition is a multi objective decision problem, the different objectives can 

be compared on a single scale and the objectives’ weights are predetermined, and therefore 

the strength of Pareto set does not manifest itself in this case.  

An objective function to evaluate system performance in integrated human-robot systems 

was developed for target recognition tasks. The objective function includes task, robot, 

human, and environmental parameters and considers operational costs to evaluate the 

expected overall system performance. To simplify the analysis of the system objective 

function the number of parameters was reduced using signal detection theory.  

4.2 Objective function 

The objective function describes the expected value of system performance, given the 

properties of the system, and the task is defined as the combined function of the multitude of 

performance measures. It considers several human and robot parameters that contribute to the 

overall value. The goal is to maximize the objective function. The value of the objective 

function can be translated to a monetary value. The system objective function in a target 

detection task (VIs) is composed of the four responses of the detection process and the system 

operational costs and can be defined as: 

(1)    TsCRsFAsMsHsIs VVVVVV  

where VHs (equation 2( is the system gain for target detection (hit), VFAs (equation 4) is the 

system penalty for false alarms (FA), VMs (equation 3) is the system penalty for missing the 

target (miss), VCRs (equation 5) is the system gain for correct rejection, and VTs (equation 6) is 
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the system operation cost. All gain, penalty and cost values mentioned above have the same 

units (i.e., a common monetary value such as US dollar) which enables us to add them 

together to a single objective function. The gain function for detecting the targets is: 

(2)             HHsSH VpPNV
S

  

where, 

(a) N is the number of objects,  

(b) PS is the probability of an object becoming a target,  

(c) VH is the gain from a single hit, where the units of VH are 'monetary value'. The 

value of VH is target dependent (e.g., the price of one melon for the farmer).  

(d) pHs is the system probability for a hit, composed of the human probability to 

confirm a robot hit and the probability to detect a target that the robot did not 

detect and that neither marked as a false alarm:   HhHrHrhHrHs pp1ppp   

(e) pHr is the robot probability of a hit,  

(f) pHrh is the human probability of confirming a robot hit, and  

(g) pHh is the human probability of detecting a target which the robot did not detect. 

The penalty of missed targets is shown in equation (3): 

(3(     MHsSMMsSMs Vp1PNVpPNV  

where,  

(a) VM is the penalty of a single miss where the units of VM are 'monetary value'. 

The value of VM is target dependent (e.g., the damage created from not detecting 

one landmine can be the destruction of one vehicle). 

(b) pMs is the probability of a system miss, composed of the human probability to 

not confirm a robot hit and the probability to miss a target that the robot did not 

detect and that neither marked as a FA:      HhHrHrhHsMs p1p1p1pp   

The penalty from false alarms is specified in equation (4): 

(4(     FAFAsFAs VFV  

where  

(a) VFA is the damage from a single false alarm, where the units of VFA are 

'monetary value'. The value of VFA is system, environment and non-target object 

dependant (e.g. the damage created by one non-target object to the machine or 

system, if the system will detect and pick a rock instead of a melon it could 

damage the robot or system mechanism). 
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(b) FFAs is the number of system false alarm objects, composed of the robot’s false 

alarms that the human does not correct and the human false alarm: 

    FAhFArFAFArSFAs pp1ppP1NF
rh


 

(c) pFAr is the robot false alarm probability,  

(d) pFArh is the human probability of not correcting the robot false alarm, and  

(e) pFAh is the human false alarm probability. 

The gain from correct rejection is specified in equation (5): 

(5(     CRCRsCRs VFV  

where  

(a) VCR is the gain from a single correct rejection, where the units of VCR are 

'monetary value'.  

(b) FCRs is the correct rejection density function for the system, composed of the 

robot correct rejections that the human does correct and the human correct 

rejection marks: 
        FAhFArFArhFArSCRs p1p1p1pP1NF 

 

The system operational cost includes both costs of time and operation as illustrated in 

equation (6) 

(6(     CFAsHsStSTs VFpPNVtV  

where, 

(a) ts is the system time that is required to perform the task,  

(b) Vt is the cost of one time unit and its units are 'monetary 

value/time', and  

(c) VC is the cost of one object recognition operation (hit or false 

alarm) and its units are 'monetary/operations'. The cost values can 

be determined according to the time costs of the workers and the 

system and system operational costs and maintenance. The value of 

VC is equal for hit and FA since it required the same treatment and 

manipulation for both. 

We assume that the picking times are shorter than the sum of detection times and technical 

times related to the detection process. Therefore, the time terms in the objective function 

express only the detection times and do not consider the related operational time (picking 

times). 
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The system time consists of the time for the human to confirm the robot hits, the time for 

the human to hit additional targets, the time for the human to correct the robot false alarms, 

the time for the human to mark false alarms, and the robot time to process the images and to 

perform hits or false alarms. Also included in ts is the time it takes the human to decide 

whether an object has been correctly rejected (CR) or missed (M). 

(7( 

 

     

     

          rCRhFAhFArSCRrhFArhFArS
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tpp1P1NtppP1N

tpp1PNtppPNt









 

where, 

(a) tHrh is the human time required to confirm a robot hit,  

(b) tHh is the human time required to hit a target which the robot did not 

hit,  

(c) tFArh is the human time needed to correct a robot false alarm,  

(d) tFAh is the human false alarm time,  

(e) tMrh is the human time lost when a robot hit is missed,  

(f) tMh is the human time invested when missing a target which the 

robot did not hit, 

(g) tCRrh is the human time to correctly reject a robot false alarm,  

(h) tCRh is the HO correct rejection time, and  

(i) tr is the robot time.  

We assumed that each of the human time variables represents a superposition of a 

decision time, tD, and a motoric time, tM, in accordance with the collaboration level. 

Explicit operation of the system objective function, VIs (1(, that is suitable for all 

collaboration levels is described in equation (8): 

(8( 

      
          

        
             trtCRhCRFAhFArtCRrhCRFArhFArS

tFAhCFAFAhFArtFArhCFAFArhFArS

tMhMHhHrtMrhMHrhHrS

tHhCHHhHrtHrhCHHrhHrSIs

VtVtVp1p1VtVp1pP1N

VtVVpp1VtVVppP1N

VtVp1p1VtVp1pPN

VtVVpp1VtVVppPNV









  

For the H collaboration level the objective function will be a degenerate form of equation (8), 

will not include the robot variables and therefore results in: 

(9(  
      

        tCRhCRFAhtFAhCFAFAhS

tMhMHhtHhCHHhSIs

VtVp1VtVVpP1N

VtVp1VtVVpPNV
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In the R collaboration level the system objective function, VIs will be a degenerate form of 

equation (8) will not include the human variables: 

(10( 

            trCRFArCFAFArSMHrCHHrSIs VtVp1VVpP1NVp1VVpPNV 
 

 

The time parameters for the H, HR, and HOR collaborations are shown in equations (11), 

(12), and (13), respectively. 
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4.3 Signal Detection Theory 

4.3.1 Background 

In the detection process there are four types of responses: 1) hit – when a detector 

recognizes a target; 2) miss – when a detector does not recognize a target; 3) false alarm (FA) 

– when a detector recognizes a non-target object as a target; and 4) correct rejection (CR) - 
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when a detector does not detect a non-target object as a target. The sum of the probabilities of 

hit and miss equal to 1 and so do the sum of the probabilities of FA and CR (Figure 1). 

Signal detection theory (SDT) is a method of assessing the decision making process for 

binary categorization decisions. Signal detection analyses are based on hit and false alarm 

rates, where a hit is an event when a person correctly identifies a signal, and a false alarm is 

the identification of a noise when it is presented. 

The theory of signal detection evolved from the development of communications and 

radar equipment in the early forties (Forero et al., 2004). It migrated to psychology, initially 

as part of sensation and perception, in the 50's and 60's as an attempt to understand some of 

the features of human behavior when detecting very faint stimuli that were not being 

explained by traditional theories of thresholds (Brown and Davis, 2006). 

There are several advantages in applying SDT to the system objective function: the 

number of target identification parameters (e.g., hit probability) are reduced; SDT is related to 

basic human and robot characteristics such as sensitivity and quality of decision making, 

attributes from which the target identification parameters are calculated; the optimal analysis 

of the system objective function is coherent and reasonable when dealing with the basic 

human and robot characteristics of the SDT rather than directly with the human and robot 

target identification parameters. 

Incorporating SDT into the system objective function requires the following assumptions 

about the human and robot target identification parameters: the targets and non-target objects 

are normally distributed and must have identical variance even though they are independent. 

The observer’s ability to discriminate between noise and a target with noise is limited by 

the distance between the means of the two distributions (Figure 1), defined as the variable d’, 

which is also defined as the observer sensitivity. When d’=0, the two distributions completely 

overlap and it is impossible to distinguish between them. As d’ increases, it becomes easier to 

distinguish between them. The location of the threshold is often defined in terms of the cutoff 

point or the likelihood ratio between the signal-plus-noise and the noise-only probability 

distributions as measured at the threshold position and is denoted as  (Swets et al., 2000). 

Shifts of the threshold will result in changes in the tradeoff between hits and false alarms. 

Shifting the threshold to the left will increase the hit and false alarm probabilities. The 

observer governs threshold placement. In this work we are using the likelihood ratio  as the 

human threshold value instead of the cutoff point.  

The discrimination ability can be also performed using the Receiver Operating 

Characteristic (ROC) curve (Figure 2). ROC curves were developed in the 1950's as a by-

product of research into making sense of radio signals contaminated by noise (Metz, 1978). 
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Today ROC curves are applied intensively in the medical area for discriminating diseases 

cases from normal cases (Metz, 1978; Zweig and Campbell, 1993) and to compare the 

diagnostic performance of different diagnostic tests (Griner et al., 1981). In a ROC curve each 

detector or diagnostic is represents by a single curve on the hit-FA space where the sensitivity 

is influencing the convexity of the curve. The cutoff ratio () is represented by a point along 

the curve, where increasing the value of  will reduce the hit and FA probabilities and the 

point will move on the curve towards the origin of axes. 

A description of all SDT parameters for a single detector is listed below: 

X – The measurement unit X is the sum of all object features. In classic uni-dimensional 

signal detection theory it is easy to define unit X as a single measurement parameter, such as 

intensity, size, weight, pressure etc. In a target recognition task, unit X is the sum of all target 

features, such as size, shape, color, hue, texture etc. In Figure 1, X is just a theoretic 

illustration of the SDT on target recognition.  

x - a position along coordinate X, represents the cutoff point that separate hit from miss and 

FA from CR, range: - ∞  + ∞ 

N – noise index 

S – signal index 

S,N – signal/noise mean 

S,N – signal/noise standard deviation 

ZS – the distance in standard deviation units between x and S (along coordinate Z). ZS is 

positive where x is bigger than S and negative where x is smaller than S.  
S

S
S

x
Z




  

ZN – the distance in standard deviation units between x and N (along coordinate Z). ZN is 

positive where x is bigger than N and negative where x is smaller than N. 
N

N
N

x
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PS – probability that an object is a signal (target)  

FS(ZS) – the signal density function value at ZS.   
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FN(ZN) – the noise density function value at ZN.  
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d' – the distance between S and N on X coordinate. NS'd   

β - the likelihood ratio of the two distributions at the cutoff point x. 
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β* - optimal β for one detector case. 
MH

FACR
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  (Swet et al., 2000) 

PM – the probability of a miss.     
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PCR – the probability of correct rejection.     
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PFA – the probability of a false alarm.     CR

Z

2

zZ

NNFA P1dZe
2

1
1dZZf1ZP

N
2

N




 






 

VCR – value of each correct rejection, positive values.  

VFA – value of each false alarm, negative values.  

VH – value of each hit, positive values.  

VM – value of each miss, negative values. 

VAR – payoff ratio. 
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Figure 1: An example for a signal-noise (S-N) probability graph. 
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Figure 2: An example for a ROC curve. 

 

SDT for human-robot systems 

Signal detection theory for a human-robot system is similar to a two-detector case 

(Robinson and Sorkin, 1985). In a single detector case there are two distributions, noise and 

signal, one sensitivity parameter, d', and one likelihood ratio parameter, β. In a human-robot 

system, there are two sets of distributions, one for the human and one for the robot. In 

addition there is a set of three β’s and two sensitivities. The performance of the first detector 

(robot) is determined by its sensitivity (d’r) and it cutoff ratio (βr). The second detector 

(human) uses its sensitivity (d’h) and two cutoff ratios, one for objects already marked by the 

robot, βrh, and one for objects unmarked by the robot, βh. 

A description of all SDT parameters for a single detector is listed below: 

ZSr - ZS of the robot. 

ZNr – ZN of the robot. 

ZSrh
* - optimal ZS of human for object marked by the robot. 

ZNrh
* - optimal ZN of human for object marked by the robot. 

ZSh
* - optimal ZS of human for object unmarked by the robot. 

ZNh
* - optimal ZN of human for object unmarked by the robot. 

d'r – sensitivity of the robot.  

d'h - sensitivity of the human. 

βr - the likelihood ratio of the robot (first detector). 

βrh- the likelihood ratio of the human for object marked by the robot. 

βh
* - the likelihood ratio of the human for object unmarked by the robot. 

PHr – the robot probability of a hit. 

PHrh - the human probability of a hit of objects marked by the robot. 
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PHh - the human probability of a hit of objects unmarked by the robot. 

PFAr – the robot probability of a false alarm. 

PFArh – the human probability of a false alarm of objects marked by the robot. 

PFAh – the robot probability of a false alarm of objects unmarked by the robot. 

PMr – the robot probability of a miss. 

PMrh - the human probability of a miss of objects marked by the robot. 

PMh - the human probability of a miss of objects unmarked by the robot. 

PCRr – the robot probability of a correct rejection. 

PCRrh – the human probability of a correct rejection of objects marked by the robot. 

PCRh – the robot probability of a correct rejection of objects unmarked by the robot. 

Figure 3 represents a flowchart diagram of the target recognition process in an integrated 

human-robot system. The system is serial; each object is at first analyzed by the robot and 

then by the human operator. However, the robot analysis is exposed to the human operator. In 

some cases the human response and the system outcome, or the system outcome by itself, can 

influence the robot threshold. To simplify the development and the mathematical expression 

we assume that the signal distribution is bigger than the noise distribution, S>N and 

S=N=1, and define that there is no utility or penalty for correct rejection (VCR = 0) and miss 

(VM = 0). 

 

 

Figure 3: Flowchart of the target recognition process in an integrated human-robot system. 
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4.3.2 Transformation of the probability function from X to Z 

It is important to describe the problem in standard deviation units in order to compare 

different cases and to attain a general solution that will not suit to the specific case examined. 

To describe the problem in standard deviation units rather than in actual units, the probability 

functions are transformed from the actual units, X, to standard deviation units, Z. The entire 

development is shown in Appendix I.  
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4.3.3 Expression of Z as a function of β and d’ 

The standard deviation unit, Z, can be expressed for the signal and noise distributions by 

the likelihood ratio, β, and the distance between the means of the signal and noise 

distributions, which is the sensitivity parameter, d’. The entire equation’s development is 

detailed in Appendix II. 
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4.3.4 Human optimal hit and false alarm probabilities in human-robot systems 

The human optimal hit and false alarm probabilities according to the robot and human 

sensitivities (d'r and d'h) and ZSr, are presented. The entire equation’s development is shown in 

Appendix IV. 

The optimal human hit and false alarm equations for an integrated human-robot system 

are: 
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Where C1 and C2 are auxiliary variables defined as: 
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And the robot hit and false alarm variables are: 
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4.3.5 Development of optimal βs for human-robot systems without operational 

costs 

In human-robot system there are three βs: one robot β (βr) and two human βs, the first for 

the already detected objects by the robot (βrh) and the second for the undetected objects (βh). 

The entire development of the equation is shown in Appendix III. 

The basic description of the likelihood ratio, , as a function of the standard deviation unit 

of the signal distribution (ZS) and noise distribution (ZN) is presented in equation (22): 
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The optimal β for a single detector is given in equation )23): 

(23(    (Swets et al., 2000) 
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Likewise, the optimal human likelihood ratio of objects already marked by the robot, β*
rh is: 
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The human target probability of objects marked by the robot, prh, is expressed in equation 

(25): 
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Combining equations (24) and (25) implies that the optimal human likelihood ratio of 

objects already marked by the robot, β*
rh depends in the optimal likelihood ratio in a single 

detector system (β*), which depends on the payoff values and the hit and false alarm 

probabilities of the robot in a human-robot system case (equation 26). 

(26(           
Hr
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rh
p

p
     

In a similar way, the optimal human likelihood ratio of objects unmarked marked by the 

robot, β*
h is: 
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Where the human target probability of objects marked by the robot, ph, is: 

(28(    
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Combining equations (27) and (28) implies that the optimal human likelihood ratio of 

objects already marked by the robot, β*
h depends on the optimal likelihood ratio in a single 

detector system (β*), which depends on the payoff values and the hit and false alarm 

probabilities of the robot in a human-robot system case (equation 29). 

(29(     
 
 Hr

FAr*

h
p1

p1




        

The hit and false alarm probabilities of the robot are determined by the βr and d’r of the 

robot itself (expressed in Z of the robot). 
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5 NUMERICAL COMPUTATIONS 

Optimal parameters were determined by numerical computations of the objective function 

without the miss and correct rejection (CR) parts. The best collaboration level and the 

objective function score were calculated for each optimal case. Sensitivity analyses of the 

main influencing parameters were performed to investigate the influence of small deviations 

from the optimal values on the objective function score and the best collaboration level. 

This chapter begins with numerical computations of the optimal cutoff ratios (s), based 

on the system objective function, to determine the optimal human and robot parameters for 

different task parameters and to determine the best collaboration level for different human, 

robot, and task parameters (section 5.1). It continues with sensitivity analyses of the human, 

the robot, and the independent environmental parameters and the influence of the changes in 

the optimal values of the parameters on the objective function score and the best collaboration 

level to reflect cases in which the human and robot performances were in the proximity of 

optimum values or when the environmental parameters diverged only slightly from their 

expected or calculated values (section 5.2). At the end of the chapter, the findings are 

summarized and conclusions are derived (section 5.3). 

5.1 Numerical computation of objective function with optimal cutoff 

points 

Numerical computations were performed to determine the optimal human and robot 

parameters for different task parameters and to determine the best collaboration level for 

different human, robot, and task parameters. An in depth analysis of a multitude of human and 

robot parameter ranges for different task parameters was conducted as well and is illustrated 

in Appendix VI. The numerical computations were performed on a PC with Matlab 7™. The 

numerical computations were executed for several target probability conditions, Ps, human 

and robot sensitivities, d'h and d'r, and payoff value ratios, VAR. The optimal likelihood ratios, 

βr, βh, and βrh, were determined in the range between the logarithm of -4 and the logarithm of 

4, in order to cover the available hit and false alarm probabilities. The system objective 

function was analyzed for two cases, one including the operational cost part and one 

excluding the operational cost part. The objective function that excludes operational cost 

functions as the upper boundary of system performance, represents systems without any 

operational cost, and shows its influence on the best collaboration level. 
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The specific values were extracted from a preliminary experiment (appendix V) and were 

set close to real values and consequential to the difference between the various collaboration 

levels. 

The difference between the HR and the HOR collaboration levels is in the time parameters 

and in the operational cost part (as expressed in the system objective function equations). 

Therefore, in cases where the system objective function did not include the operational cost 

part, the task time has no influence on either system performance or on the optimal solution. 

By removing the operational costs from the objective function the difference between these 

two collaboration levels will be eliminated and we will consider them as one collaboration 

level. This is denoted as the HOR collaboration level.  

 

Task parameters 

The independent parameters were arbitrarily determined. The meanings of the gain-

penalty-cost weights are that each hit is rewarded by 50 points. To examine the influence of 

different false alarm to hit ratios the value of VFA was set to different values (0.1, 1, and 10) 

and therefore, each false alarm carried a different penalty (5, 50 or 500 points). This 

influences the task nature by inducing operators to maximize the hits or to reduce the false 

alarms to minimum. The operational cost and time was arbitrarily predetermined so it will not 

succeed 12% of the hit value magnitude in order to limit its influence on the system decisions. 

Hence, each hit or false alarm operation costs 2 points, and, each hour of operation costs 2000 

points. According to the time parameters the system can detect between 514 and 720 objects 

(hits and false alarms). Therefore, the time cost of each detection varied between 2.78 points 

and 3.9 points in addition to the operational costs. The total gain from a hit is between 44.1 

and 45.22 points and the total penalty-cost from a false alarm is between 9.78 and 505.9 

points (according to the false alarm penalty). The actual value of the gain-penalty-cost 

weights was less important in the analysis than the ratio between all weights which determine 

the task nature (e.g., whether it is more important to detect melons, to reduce the number of 

FAs or to finish the task in minimum time). The defined independent parameters are listed in 

Table 2. 

5.1.1 Analysis of Ps for objective function with optimal cutoff points 

In this analysis the payoff ratio was set at VAR=-1 (and therefore VFA=-50). The target 

probability, Ps, represents the fraction of the targets from all objects (targets and non-targets 

objects), it can vary during the task, and it consider to be one of the parameters that determine 

the environment type. 
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Table 2: The defined independent parameters. 

Parameter Value remarks 

N 1000  

VH 50  

VAR -0.1, -1, -10 and therefore VFA=-5, -50 and -500 respectively 

VCR 0  

VM 0  

Ps ranged from 0.1 to 0.9  

VC -2 VC=0 and Vt=0 in analysis of the system 

objective function where the operational cost 

part is excluded 
Vt -2000 hr-1 

decision time, tD 5 s/object  

motoric time, tM 2 s/(detected object)  

robot time, tr 0.01 s/object  

Robot sensitivity, d'r ranged between 0.5 and 3  

Human sensitivity, d'h ranged between 0.5 and 3  

 

5.1.1.1 System objective function score 

Objective function including the operational cost part 

For all collaboration levels, the maximum objective function score increases with the 

increase in the target probability, Ps (Figure 4a and b). At the H and R collaboration levels the 

maximum objective function score increases with the human and robot sensitivities, 

respectively (Figure 4a and b). The largest influence of sensitivity on the objective function 

score appears in the intermediate range of the target probability, though the influence of the 

target probability on the score is bigger in comparison to the influence of the human or robot 

sensitivity. 

In the HR and the HOR collaboration levels, for all target probabilities the score of the 

objective function with optimal cutoff points values, increases with the increase in human and 

robot sensitivities (Figure 4c and d). The maximum score is achieved for a system with high 

robot and human sensitivities. 

 

Objective function excluding the operational cost part 

The system objective function score for all collaboration levels has the same tendency as 

for the case of the objective function including the operational cost although the probability 

values are higher for all sensitivities and target probabilities. 

The location of the maximum objective function score in the R collaboration level is not 

influenced by the operational cost. 
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5.1.1.2 Best Collaboration Level 

Description 

The best collaboration level is that which achieves the highest objective function score for 

a specific case and can be defined as: 

(30(            RV,HRV,HORV,HVMax ISISISIS     

The best collaboration domination zone is an area in a chosen parameter’s space for which 

a specific collaboration level achieves the highest objective function score. For example, 

when the target probability is 0.2 and VAR=-1, each surface represents a different 

collaboration level (Figure 5). The surface created from the intersection of the surfaces of all 

four collaboration levels represents the highest objective function score for each human and 

robot sensitivity combination. Figure 6 shows the objective function score of all four 

collaboration levels in the sensitivity space (d'h and d'r).  

 

The collaboration level that achieved the highest score for each d'h and d'r is defined as the 

best collaboration for those combinations and can be presented in a domination map (Figure 

7). A single collaboration level dominates each colored zone. In the present case, each of the 

three collaboration levels (H, HR and HO-R) achieves its best score in different zones. This 

example indicates that for the same task the best collaboration could be changed from one 

collaboration level to another, and that there are tasks for which the manual collaboration 

level, H, is never the best collaboration level. Different task objectives and different system 

objective function properties will produce different best collaboration maps. 

 

Objective function including operational costs 

Figure 8 shows a best collaboration level map of the optimal objective function score 

cases for different human and robot sensitivities, d'h and d'r and different target probabilities, 

PS. A single collaboration level dominates each zone. This figure presents the collaboration 

level required to achieve the best system performance. 

For all target probabilities related to the sensitivities analyzed, the H collaboration level is 

never the best collaboration level probably due to its high operational cost and relatively low 

hit rate. Thus, human-robot collaboration for target recognition tasks will always surpass the 

optimal performance of a single human detector. 
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Figure 4: System objective function optimal score for different human and robot sensitivities and different target probabilities of the four collaboration levels: a) H, b) R, 

c) HR, and d) HOR. Each of the subfigures contain a family of isobar curves of the objective function score. Each family corresponds to a different collaboration level.
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Figure 5: Objective function score for different human and robot sensitivities of the four collaboration levels.  H 

– blue, HR – cyan, HOR yellow and R – red. 
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Figure 6: Maximum objective function score for different human and robot sensitivities and for all four 

collaboration levels combined. 

 

The R collaboration level is the best collaboration level when robot sensitivity is higher than 

human sensitivity. For instances of extremely high and low target probabilities, R is again the best 

collaboration level for the entire sensitivity space excluding a small area where human sensitivity is 

high and robot sensitivity is low. Compared with other collaboration levels, the R collaboration 

level’s operational cost is relatively low since task time is small and constant. When robot 

sensitivities are high, R achieves higher hit rates and therefore results in higher scores than other 

collaboration levels. In high target probabilities, the system marks large numbers of objects, 
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therefore the operational cost in the H, HR and HOR collaboration levels is high indicating that R is 

the best collaboration level in most of the sensitivity space. Similarly, in low target probabilities the 

operational cost of H, HR and HOR collaboration levels is high due to the large number of false 

alarms and the task times. Only when human sensitivity increases, it reduces the operational cost 

and with the decrease in robot sensitivity the hit rate of the R collaboration level is decreased. This 

causes the R collaboration level to be inferior to the other collaboration levels. 
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Figure 7: Best collaboration level map for different human and robot sensitivities. The colors represent different 

collaboration levels: HR – cyan, HOR - yellow and R – red. 

 

The HR is the best collaboration level only when both target probability and robot sensitivity 

are low and human sensitivity is high, since for low target probabilities the operational cost of the 

HR is lower than that for the HOR collaboration level.  

The HOR is the best collaboration level for the areas not dominated by the R collaboration level 

where the human sensitivity is high and the robot sensitivity is low. 

A comparison between the HR and the HOR collaboration levels indicates that at low target 

probabilities where robot sensitivity is low and human sensitivity is high, the HR collaboration level 

performs better. In these cases the robot produced a relatively high number of false alarms that 

increase the task time needed for the human in time spent unmarking the false alarms in the HOR 

collaboration level. For high target probabilities, the HOR collaboration level shows better 

performance since the robot produced a relatively high number of hits thus increasing the task time 

for remarking them by the human in the HR collaboration level. 
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Figure 8: Best collaboration level map for different Ps,  d'r and d'h values. Each subfigure presents a map for 

different target probability. The colors represent different collaboration levels: HR –cyan, HOR yellow and R – 

red. 

 

Figure 9 describes an "envelope performance" of the given system. The "envelope performance" 

describes the highest achievable objective function score for specific d'h and d'r values and a specific 

target probability value, and acts as an upper boundary for system performance. 

The system objective function behaves in each zone for which a collaboration level is optimal as 

the objective function of the collaboration level in that zone. It increases with the increase in the 

target probability, Ps, for the entire sensitivity space. For all target probabilities the score increases 

with the increase in robot sensitivity. Furthermore, the score increases with increases in human 

sensitivity in the zones where the best collaboration level is HR or HOR. The maximum score is 

achieved for a system with high robot sensitivity. 

The system's overall sensitivity in each zone for which a collaboration level is optimal is the 

sensitivity of the collaboration level that is the best in that zone (Figure 10a). The overall system 

sensitivity is equal to the robot sensitivity whereas the best collaboration is the R collaboration 

level. For areas where the best collaboration level is HR or HOR, system sensitivity decreases with 

the increase in target probability. However, the overall system sensitivity is always higher than the 

robot sensitivity. The system sensitivity in the HOR collaboration level is lower than in the HR 
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collaboration level for the same human and robot sensitivities even for zones where the HOR is the 

best collaboration level. Nevertheless, for these sensitivities the HOR collaboration level achieves 

the highest score. 
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Figure 9: System objective function score of the best collaboration level for different Ps,  d'r and d'h values. Each 

subfigure presents a map for different target probability. The contour lines represent equal score areas. 

 

In each zone for which a collaboration level is optimal, the system likelihood ratio, βs, functions 

as the overall likelihood ratio of the collaboration level which is the best in that zone (Figure 11a). 

The system likelihood ratio is equal to the robot likelihood ratio, βr, whereas the best collaboration 

level is the R collaboration level. The system likelihood ratio decreases with the increase in target 

probability. For the area in the sensitivity space dominated by either the HR or HOR collaboration 

level, the value of the system overall likelihood ratio is always lower than the value of the robot 

likelihood ratio. βs in the HOR collaboration level is lower than in the HR collaboration level for the 

same human and robot sensitivities.  

When the best collaboration level is either HR or HOR, the likelihood ratio’s value is relatively 

close to that of the R collaboration level. It seems that in order to obtain optimal performance in a 

human robot collaboration system, the value of the system likelihood ratio for the HR or HOR 

collaboration level has to be similar to that of the robot likelihood ratio for the R collaboration level. 
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Objective function excluding operational costs  

For the entire sensitivity space and for all target probabilities the HOR collaboration level is the 

best collaboration level for the objective function excluding the operational cost variable. The 

objective function scores of the H and R collaboration levels are equal to each other for matched 

human to robot sensitivities due to the absence of the operational cost. The HOR collaboration level 

combines all three collaboration levels. By increasing the value of the likelihood ratio of the robot, 

βr, it reduces the robot’s involvement in the task, thus making it similar to the H collaboration level. 

By increasing both values of the human likelihood ratio, βrh and βh, it reduces human involvement 

in the task becoming more similar to the R collaboration level. In addition, the combination of both 

human and robot in the HOR collaboration level increases the sensitivity in most cases while 

increasing the probability of a hit and reducing the probability of false alarms. 

The influence of robot sensitivity (d'r) on overall system sensitivity is reduced with the increase 

in the target probability (Figure 10b). Although system sensitivity increases with the increase in 

robot sensitivity for all target probabilities, at low target probabilities an increase in human 

sensitivity has a local minimum phenomenon that occurs when robot sensitivity is low. The overall 

system sensitivity will always be higher than the human sensitivity.  

The overall likelihood ratio, βs, of the system decreases with the increase in the target 

probability and its values are lower than in the case that includes the operational cost (Figure 11b). 

Lower values of βs indicate increases in the hit and false alarm rates. Elimination of the operational 

cost reduces the overall system cost, which enables the system to mark more false alarms and more 

hits, thereby resulting in an increase of the system objective function score. 

 

5.1.2 Analysis of payoff ratio for the optimal system objective function 

Task parameters 

VAR is one of the independent parameters determining the task, different VAR values represent 

different task types.  

 

5.1.2.1 System objective function score 

An increase in the VAR value increases the penalty of each false alarm and reduces the objective 

function value at all collaboration levels. At the H collaboration level an increase in the VAR 

reduces the influence of the human sensitivity parameter on the objective function score. At the R 

collaboration level, with the increase in the VAR the influence of robot sensitivity on the objective 

function score increases. 
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5.1.2.2 Best collaboration level 

How target probability influences the best collaboration level depends on the payoff ratio value. 

For low values of VAR, target probability has no influence on the best collaboration level. The best 

collaboration level for the entire sensitivity space is the R collaboration level for all target 

probabilities. 

For high payoff ratios, the area in the sensitivity space in which the R is the best collaboration 

level decreases with the increase in target probability. The area in which the HOR or the HR is the 

best collaboration level increases with the increase in the target probability. 

For payoff ratios equal to one, R is always the best collaboration level in the areas where the 

robot sensitivity is higher than the human sensitivity. At extremely high and low target 

probabilities, R is the best collaboration level for the entire sensitivity space. The area in which 

HOR or HR is the best collaboration level is reaching maximum size when the target probability 

equals 0.5. 

5.1.3 Analysis of human and robot sensitivities for the optimal objective function 

The human and robot sensitivities, d'h and d'r, respectively, indicate the ability to distinguish 

between true targets (signal) and false targets (noise). An increase in sensitivity will enhance the 

discrimination between true and false targets. An increase in human and robot sensitivities will 

increase the system objective function score for all collaboration levels. The best collaboration will 

shift to R with the increase in the robot sensitivity. The best collaboration will shift to HR or HOR 

with the increase in human sensitivity. R, at which robot sensitivity is higher than the human 

sensitivity, will be the best collaboration level. 
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Figure 10: System sensitivity of the best collaboration levels for different human and robot sensitivities and different target probabilities and for objective function 

including (left) and excluding (right) the operational cost. The contour lines represent equal system sensitivity areas. 
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Figure 11: The system likelihood ratio of the best collaboration levels for different human and robot sensitivities and different target probabilities and for objective 

function including (left) and excluding (right) the operational cost. The contour lines represent equal system likelihood ratio areas.
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5.2 Sensitivity analysis 

Sensitivity analyses were performed for the human, the robot, and the independent 

environmental parameters since the precise values are unknown and they can vary during task 

performance and. The influence of the changes in the optimal values of the parameters on the 

objective function score and the best collaboration level were analyzed to reflect cases in 

which the human and robot performances were in the proximity of optimum values or that the 

environmental parameters diverged only slightly from their expected or calculated values. The 

parameters analyzed were the human likelihood ratios, βrh and βh, human sensitivity, d'h, the 

robot likelihood ratio, βr, the robot sensitivity, d'r, and the target probability, Ps. The payoff 

ratio, VAR, the time cost, the operational cost, and the hit rewards were not sensitivity 

analyzed since the parameters are fixed during the entire task. 

 

5.2.1 Sensitivity analysis of βr, βh, and βrh 

The value of the logarithm of the different robot and human likelihood ratios, βr, βh, and 

βrh, ranged between -4 and +4. A sensitivity analysis was performed on the optimal values of 

βr, βh, and βrh in terms of the best collaboration level. The sensitivity analysis investigated the 

influence of deflections of ±1 in the logarithm of the optimal value of the likelihood ratio (set 

to b equal to one quarter of the entire range).  

For cases in which the best collaboration level was R, the objective function score 

decreases with changes in the optimal robot likelihood ratio, βr. The magnitude of the 

decrease in the score is influenced by target probability; the decrease reaches its maximum 

when the target probability is equal to 0.5. In addition, the magnitude of the score decrease is 

reduced with the increase in the robot and human sensitivities. The maximum decrease in the 

score was achieved when the robot and human sensitivities were equal to 1. The maximum 

decrease reaches 40% for maximum determined deviation and a target probability of 0.5. In 

all cases, the score of the R collaboration level was higher than each of the scores of the other 

collaboration levels. 

The values of the human payoff ratios, βh and βrh, do not influence the objective function 

score of the R collaboration level. Although they do influence the objective function scores of 

all other collaboration levels, their score do not exceed the R collaboration score and the best 

collaboration level does not change. This is true for all human and robot sensitivities; all 

target probabilities, and all payoff ratios. An example is given in Figure 12. 
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Figure 12: An example for the influence of small deviations from the optimal values of (a) βrh, (b) βh and 

(c) βr when R is the best collaboration level on the objective function score and Ps=0.5, d'r=2 and d'h=1. the 

colors represents the different collaboration levels: H – blue, HR – cyan, HOR yellow and R – red. 

 

When the best collaboration level was HR, deviation from the optimal values of βr by up 

to 1 lowers the objective function score by about 30%. The objective function score of the HR 

collaboration level will never decrease beneath the corresponding score of the H and R 

collaboration levels for the same likelihood ratio values within the pre-determined deviation 

boundaries. However, with the increase in the target probability, an increase in the value of βr 

will reduce the HR collaboration level score to a value lower than that of the HOR 

collaboration level, thereby shifting the best collaboration level from HR to HOR (Figure 13).  

A deviation in βrh from the optimal value reduces the objective function score by up to 7% 

within the pre-determined deviation boundaries. The magnitude of the decreased score grows 

with the increase in target probability and the decrease in human sensitivity. Within the pre-

determined deviation boundaries and for the same likelihood ratio values, the score of the HR 

collaboration level will never decrease to values lower than those of the other collaboration 

levels. 

A deviation in βh from the optimal value reduces the objective function score by not more 

than 2% within the pre-determined deviation boundaries.  Likewise, when the score of the HR 

collaboration level is within the pre-determined deviation boundaries it will never decrease to 

a score that is lower than those of the other collaboration levels for the same likelihood ratio 

values. 
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Figure 13: An example for the influence of small deflections in the optimal values of (a) βrh, (b) βh and (c) 

βr when HR is the best collaboration level and it objective function score and Ps=0.2, d'r=1 and d'h=2. The 

colors represent the different collaboration levels: H – blue, HR – cyan, HOR yellow and R – red. 

 

Under conditions in which the best collaboration level is HOR, a deviation from the 

optimal βr values by up to 1 decreases the objective function score by up to 37%. The 

magnitude of this reduction reaches its maximum when the target probability is 0.5, but it will 

decrease with the increase in robot sensitivity. Within the pre-determined deviation 

boundaries and for the same likelihood ratio values, the HOR collaboration level’s objective 

function score will never decrease beneath that of either the H or R collaboration levels. 

However, for target probabilities lower than 0.5, a decrease in the value of βr will lower the 

score of HOR to beneath that of the HR collaboration level, thus shifting the best 

collaboration level from HOR to HR. In some cases this phenomenon occurs within the pre-

determined deviation boundaries (Figure 14). 

Deviations in βrh from the optimal value will decrease the objective function score by up 

to 5% within the pre-determined deviation boundaries. The magnitude of the score decreases 

when target probability, human sensitivity, and robot sensitivity are all increasing. In terms of 

the pre-determined deviation boundaries, the score of the HOR collaboration level will never 

decrease beneath those of the H and HR collaboration levels for the same likelihood ratio 

values.  When the value of βrh exceeds the upper deviation boundary, however, the score of 
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HOR will decrease to values beneath that of HR. When the human and robot sensitivities are 

equal to 2, a deviation in the optimal value of βrh will reduce the HOR score relative to the 

score for R and will shift the best collaboration level from HOR to R. 

 

Figure 14: An example for the influence of small deflections in the optimal values of (a) βrh, (b) βh and (c) 

βr when HOR is the best collaboration level and it objective function score and Ps=0.5, d'r=2 and d'h=2. 

The colors represent the different collaboration levels: H – blue, HR – cyan, HOR yellow and R – red. 

 

Deviations in βh from the optimal value will decrease the objective function score by up to 

4% within the pre-determined deviation boundaries. The magnitude of the decreased score 

grows with increases in the target probability while it shrinks when human and robot 

sensitivities are increasing. In the pre-determined deviation boundaries, the score of the HOR 

collaboration level will never decrease beneath the scores of the H and HR collaboration 

levels for the same likelihood ratio values. When the human and robot sensitivities are equal 

to 2, a deviation of the optimal value of βh will decrease the HOR score to beneath the R score 

and will shift the best collaboration level from HOR to R. 

The sensitivity analysis on the optimal likelihood ratios, βr, βh, and βrh in terms of the best 

collaboration level showed, as expected, that deviations in the optimal values can decrease the 

objective function score of the best collaboration level, and in some cases they can even cause 

a shift from one collaboration level to another. The shift will be to the adjacent level. 

For the cases examined in the sensitivity analysis of d'r and d'h, H collaboration level was 

never the best collaboration level. 
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5.2.2 Sensitivity analysis of d'r and d'h 

The robot and human sensitivities, d'r and d'h, ranged between 0.5 and 3. Sensitivity 

analyses were performed on the optimal values of βr, βh, and βrh in terms of the best 

collaboration level. The sensitivity analyses investigated the influence on the objective 

function score and the best collaboration level of deflections in the sensitivity value of ±0.25 

and ±1. 

The objective function scores of the R, HR, and HOR collaboration levels increase with 

the increase in robot sensitivity. The H collaboration level, however, is not influenced by 

robot sensitivity. 

In instances when R is the best collaboration level, the objective function score did not 

decrease to values lower than the scores of all other collaboration levels for the smallest and 

the largest robot sensitivity values. For intermediate target probability values and robot 

sensitivities equal to human sensitivities, the objective function score of the R collaboration 

level decreases to levels lower than at least one other collaboration level for small decreases 

in the robot sensitivity. In those cases the HOR collaboration level achieves the highest score. 

For low robot sensitivity equal to 1, small changes in robot sensitivity will change the 

objective function score by up to 18%. The highest change in the score occurs for a target 

probability of 0.5. When robot sensitivity is high, i.e., equal to 3, small changes in robot 

sensitivity will change the objective function score by up to 26%. The smallest change in the 

objective function scores, then, is obtained for a target probability of 0.5. 

Under conditions when HR is the best collaboration level  small changes in robot 

sensitivity did not reduce the objective function score to values lower than the scores of all 

other collaboration levels. In some cases, increases in robot sensitivity cause the HOR 

collaboration level score to exceed that of the HR collaboration level, resulting in a shift of 

the best collaboration level to HOR. For small changes in the robot sensitivity, the objective 

function score of the HR collaboration level changes by up to 18%. 

For cases in which the best collaboration level is HOR, its objective function score did not 

decrease to beneath the scores of either the H or HR collaboration levels for small or major 

changes in the robot sensitivity. Increases in the robot sensitivity will decrease the difference 

between the objective function scores of the HOR and the R collaboration levels. 

For major changes in robot sensitivity, the objective function score of the R collaboration 

level exceeds that of the HOR collaboration level for cases where the initial difference 

between the robot and human sensitivities was 1 or less and the best collaboration level will 

shift to R. For small changes in robot sensitivity, the objective function score was changed by 

up to 18%. 
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The sensitivity analysis performed on d'r indicated that changes in robot sensitivity may 

shift the best collaboration level from one to another; the shift is to the adjacent/next 

collaboration level. 

The objective function scores of H, HR, and HOR collaboration levels increase with 

increases in human sensitivity. The R collaboration level is not influenced by the human 

sensitivity. 

For cases in which R is the best collaboration level, the objective function score remains 

above the scores of all other collaboration levels for small and major decreases in human 

sensitivity. For intermediate target probability values and for robot sensitivities equal to 

human sensitivities, the objective function score of the R collaboration level dips below the 

score of at least one other collaboration level for small increases in human sensitivity. In this 

case the collaboration level achieving the highest score is HOR. 

For cases in which the best collaboration level is HR, the objective function scores remain 

above the scores of all other collaboration levels for both  minor and major changes in the 

human sensitivity.  

For cases in which the best collaboration level is HOR, the objective function score stays 

above the scores of both the H and HR collaboration levels for small or major changes in 

human sensitivity. Decreases in the human sensitivity produce corresponding decreases in the 

difference between the objective function scores of the HOR and the R collaboration levels. 

For intermediate target probability values and robot sensitivity equal to human sensitivity, 

the objective function score of the R collaboration level exceeds the score of the HOR 

collaboration level for small decreases in human sensitivity. 

The sensitivity analysis on d'h revealed that changes in the human sensitivity values can 

shift the best collaboration level from one to another; the shift will be between adjacent/next 

collaboration levels. 

For the cases examined in the sensitivity analysis of d'r and d'h, the H collaboration level 

never ranks as the best collaboration level. 

 

5.2.3 Sensitivity analysis of target probability, Ps 

The target probability Ps ranged between 0.1 and 0.9. The sensitivity analysis was 

performed on the optimal values of βr, βh, and βrh and evaluated the influence of ±0.1 

deflections on the objective function score and on the best collaboration level. 

The objective function score of all four collaboration levels increases with the increase in 

target probability. 
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When R is the best collaboration level, the objective function score remains above the 

scores of the H and HR collaboration levels for small changes in the target probability.  

In some cases where the human sensitivity is equal to or higher than the robot sensitivity, 

the objective function score of the R collaboration level decreases beneath the score of the 

HOR collaboration level for small changes in the target probability. In those cases the HOR 

collaboration level achieves the highest score. 

When the best collaboration level is HR, even small decreases in the target probability 

reduce the objective function score of the HR collaboration level to a value below that of the 

H score. A major increase in the target probability, however, reduces the objective function 

score of the HR collaboration level to a value less than that of the HOR score. 

When the best collaboration level is HOR the objective function score remains above the 

score of the R collaboration level for minor and major changes in the robot sensitivity. When 

target probability is low, the objective function score of the HR collaboration level exceeds 

that of the HOR collaboration level for small decreases in the target probability and the best 

collaboration level will then shift to HR. In some cases where the target probability is 

intermediate or high, the objective function score in the HOR collaboration level is reduced to 

a level below the score for H for major decreases in the target probability. 

Sensitivity analysis on target probability shows that changes in the human sensitivity may 

cause shifts in the best collaboration level, although not necessarily between adjacent/next 

collaboration levels. 

 

5.3 Summary and conclusions 

When increases in target probability, the number of targets increased and the number of 

non-target objects decreased, the system is influenced less by false alarms and therefore, the 

probabilities of both hit and of false alarms increase. The likelihood ratios, βr, βh and βrh 

decrease, the operational cost increases, and the objective function score increases. 

For all collaboration levels the highest objective function score increases with the increase 

in human and robot sensitivities. 

When the objective function includes operational costs, HR collaboration performs better 

than HOR when the target probability is low and the robot sensitivity is low. In these cases 

the number of robot false alarms is high relative to the number of robot hits and in the HOR 

collaboration level the human requires more time to correct the robot false alarms than to 

confirm the robot hits. Therefore, in the HOR collaboration level the task time and the 

operational cost increase and the objective function score decreases. 
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The H collaboration level is never the best collaboration level probably due to its high 

operational cost and low hit rate relative to the other collaboration levels. Thus, the 

collaboration of human and robot in target recognition tasks will always improve the optimal 

performance of a single human detector . 

When robot sensitivities are higher than human sensitivities the best collaboration level is 

R. At the best collaboration level, the system likelihood ratio and the system sensitivity both 

decrease while the target probability increases. Moreover, the system sensitivity is never less 

than the robot sensitivity.  

Elimination of operational costs from the objective function will unite the HR and HOR 

into one collaboration level, since the only differences between the HR and the HOR 

collaboration level as expressed in the system objective function are in the time parameters 

and the operational costs. The objective function score increases. The best collaboration level 

for the objective function excluding the operational costs will be the HOR collaboration level 

for the entire sensitivity space and for all target probabilities. The combination of both human 

and robot in the HOR collaboration level increases the sensitivity in most cases and increases 

the probability of a hit while reducing the probability of false alarms. The system sensitivity 

for the objective function excluding the operational costs is lower than in the case of the 

objective function including the operational costs for all target probabilities except for high 

target probability with high human sensitivity and low robot sensitivity. The overall system 

sensitivity will always be higher than the human sensitivity. 

The sensitivity analysis on the optimal values of the robot and human likelihood ratios, βr, 

βh, and βrh, of the best collaboration levels showed that any change in either direction in the 

optimal values will decrease the objective function score of the best collaboration level. In 

some cases, small changes in the optimal values of the likelihood ratios will cause a shift from 

a collaboration level to the one adjacent to it, except in the case of R, which remains the best 

collaboration level even for major changes in the optimal values (i.e., HR  HOR  R). The 

sensitivity analysis of d'r shows that small, positive changes in robot sensitivity will increase 

the objective function score of the best collaboration level and will diminish the differences 

between the best collaboration level and the adjacent and more autonomous collaboration 

level. In some cases changes in robot sensitivity may cause the best collaboration level to shift 

to an adjacent level; however for collaboration levels involving a human, the shift will occur 

only in one direction, to the more autonomous collaboration level  (i.e., HR  HOR  R). 

The sensitivity analysis on d'h reveals that small positive changes in human sensitivity 

increase the objective function score of the best collaboration level unless it is R. In some 

cases, changes in human sensitivity may cause the best collaboration level to shift to an 
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adjacent level; however, this occurs between the two highest autonomous levels only, HOR 

and R (i.e., HR ; HOR  R). 

The best collaboration level is never H and the shift to H will never occur when the 

optimal values of βr, βh, βrh, d'r, and d'h can change. 

A sensitivity analysis on target probability shows that an increase in the target probability 

can increase the objective function score of the best collaboration level. In some cases, 

changes in the target probability may shift the best collaboration level from one definition to 

another; however, the HOR collaboration level can shift directly to the H.  

(i.e.,  HOHR HOR  R). 

 

The sensitivity analysis showed that small changes in the optimal values of the analyzed 

parameters can cause shifts in the best collaboration level from one to another. Changes in the 

different parameters can also have different influence on the system stability. An algorithm 

that will account for system stability and the influence of small changes in the parameters can 

increase the system performance in real cases where the parameters are drifting around the 

optimal values. These findings are beyond the scope of this current framework. 

 



 53 

6 MELON DETECTION EXPERIMENT 
This chapter starts with the description of the apparatus, design and procedure of the 

melon detection experiment that was conducted. It continues with an extensive presentation of 

the findings. 

6.1 General 

An experimental system was developed to test and examine different human-robot 

collaboration levels for a specific target detection task in an agricultural environment. The 

experiment consists of a series of images taken in a standard melon field in which the 

participants were asked to identify melons in the field. The melons were partially covered by 

leaves and had different colors and sizes.  

The goals of the experiment are to determine the hit and false alarm rates of the human 

and the system for different task objectives, collaboration levels, complexity levels, and robot 

hit and false alarm rates.  

The experiment focuses on the detection part; the picking part is not addressed and we do 

not consider its practical aspects. 

 

Experiment assumptions 

Robot detection performance measures are not influenced by the image complexity level, 

the collaboration level, or by the human and system performances, and therefore, remain 

constant during the experiment. 

 

Experiment hypotheses 

1. When dealing with human-robot collaboration, several factors influence human 

performance, including image complexity, collaboration level, objective function payoffs, and 

the robot’s performance. 

2. The factors influencing system performance are image complexity, collaboration level, 

objective function weights, robot performance and human performance. 

3. Collaboration between human and robot can better improve system performance relative 

to human or robot performance measures alone. 

 

6.2 Apparatus and design 

Participants 

120 IEM undergraduate students participated in the experiment. The participants were 

assigned randomly to 10 groups with 12 students in each group. Motivation for high 
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performance was encouraged through the promise of a monetary award (up to 100 NIS) to 

10% of the participants.  

 

Database  

Melon images in the field were taken by a video camera mounted on a robotic melon 

harvester (Figure 15; Edan 1995) moving along a melon row in various illumination 

conditions. Images were shown on the screen as seen from a camera mounted vertically on the 

vehicle, facing the ground in the middle of the row. From the video file, single images were 

manually selected. The images were viewed by a panel of three experts and were classified 

into three levels of complexities: low, intermediate, and high. The image complexity 

represents the difficulty level of detecting targets in the image. The location of true targets in 

each image was identified and saved in a targets database. The image resolution was 640X480 

pixels and each pixel represents an area of 4 mm2.  

 

 

Figure 15: Robotic melon harvester (Edan, 1995). 

 

Design 

The experimental system consists: i) mouse MMI (man-machine interface) in order to run 

the experiment on 15 participants at a time in a computer classroom; ii) PC; iii) a program 

written in Matlab to simulate a working station for target detection in an unstructured 

environment; and, iv) a database of melon images taken in the field. 

In each session participants from all experimental groups (Table 3) were tested, and were 

seated randomly in the classroom. The participants were divided into ten groups, each of 

which was given one of two objective function weights (represented by the reward system), 
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one of two different robot detection performance qualities (high and low), and one of three 

collaboration levels (H, HR, HOR) as shown in Table 3. The objective function weights of 

groups 1,3,4,7,8 were to achieve minimum false alarms, defined as VH=3 corresponding to the 

weight of a single hit and VFA=-7 corresponding to the weight of a single false alarm. The 

objective function weights of groups 2, 5, 6, 9, 10 were to achieve maximum hits, defined as 

VH=7 and VFA=-3. These values of VH and VFA were selected in order for the participant to 

understand the importance of the reward. The ratio was a little higher than 2. If the ratio 

would have been higher, the participants would have tend to disregard the FA influence in the 

maximum hit reward system or disregard the hit influence in the minimum FA reward system. 

The values in two cases of the reward system examined were opposite one to another, to 

create a symmetric response by the participants and the sum of the magnitude of both VH and 

VFA values is 10. 

 There was no time limit for any of the experimental groups and the participants were not 

rewarded for their detection time (Vt=0). The specific values of the robot hit and false alarm 

rates were chosen so as to examine two different robot qualities.  

A target was defined as any yellow or orange melon and the participants' task were to 

mark all the targets in the images, 

 

Table 3: The experimental groups. 

Group 

no. 

Participants ID 

no. Collaboration level Reward system 

Robot 

quality 

  H HOR  HR Minimize FA Maximize Hit high low 

1 10-19,1001,1002 X     x       

2 20-29,2001,2002 x       x     

3 30-39,3001,3002   x   x   x   

4 40-49,4001,4002   x   x     x 

5 50-59,5001,5002   x     x x   

6 60-69,6001,6002   x     x   x 

7 70-79,7001,7002     x x   x   

8 80-89,8001,8002     x x     x 

9 90-99,9001,9002     x   x x   

10 100-111     x   x   x 
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Each group viewed 180 images. The images were divided a-priori into three complexity 

levels: low, intermediate and high, with 60 images in each complexity level. In each image 

the number of targets varied between zero and four.   

The total number of hits and false alarm targets marked by the robot was equal for the low 

and high robot qualities and in all groups. The total number of targets in each experiment was 

235. The 'high quality' robot detected 212 targets (90% hit rate) and 11 false alarms, for a total 

of 223 marks. The 'low quality' robot detected 118 targets (50% hit rate) and 105 false alarms, 

for a total of 223 marks. Therefore, in both conditions participants received 223 indications of 

possible targets. In the experiment, the robot did not perform image processing but the 

computer picked targets and non-target objects (marked as false alarms) from the database, 

simulating the robot operation. 

All participants received written instructions in which they were informed of the task 

objective and the reward system payoffs. The participants were not informed of the differing 

complexity levels or of the robot’s quality. The participants were told that the robot detections 

are not totally reliable. Before the experiment, the participant practiced on a tutorial software 

for 5 images with “unlimited” time. During the experiment the activities of the human 

operator, the objects marked, and the time of each action were automatically recorded. 

Performance measures were calculated from the recorded raw data. The participants received 

feedback on their performance during the experiment after each image.  

The images were arranged in three statistical blocks, numbered 1, 2 and 3, with 60 images 

in each block. The order of the blocks was identical for all groups and participants. The 

images within each block were displayed in random order for each group and each subject. 

The blocks were arrange so in order to examine if there can be a learning effect. 

The controls of the experiment were the H collaboration level groups and the R 

collaboration level. The independent variables within each experimental group were: 

1) image complexity level, defined as low, intermediate, and high.  

2) block order. 

 

The independent variables between the groups were:  

1) The objective function weights (reward system): VH, VFA. The task objective weights are 

constant and fixed within each group during the entire experiment. 

2) Collaboration levels: H, HOR, and HR. The collaboration level is constant and fixed 

within each group during the entire experiment. 

3) Robot quality: high - pHr= 0.9, FFA= 11, low - pHr = 0.5, FFA = 105. The robot quality is 

constant and fixed within each group during the entire experiment. 
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In an integrated human-robot system, such as the one investigated here, the measured and 

calculated variables can be divided into three groups: robot variables, which are part of the 

independent variables in the experiment and were predetermined; the human variables; and, 

the system variables, which are parameters that reflect the system as a whole. Both human 

and system variables are dependant variables in the experiment.  

i. system hit rate (pHs);  

ii. system average false alarms  (pFAs);  

iii. human hit rate of targets that the robot didn’t mark(pHh);  

iv. human average false alarm of objects that the robot did not mark(pFAh);  

v. human hit rate of targets marked by the robot (pHrh);  

vi. human false alarm rate of objects marked by the robot (pFArh);   

vii. average image time; 

viii. system objective function score (point accumulated, VIs). 

 

6.3 Procedure 

The experimental procedure was identical for all participants:  

1) A group of approximately 15 participants from different experiment groups entered the 

room in which the experiment was conducted. Each participant was seated in front of one 

computer. The system was demonstrated and the objective of the experiment, the 

experimental procedure, and the experimental facilities were explained. 

2) A short interview was conducted to collect information on the participant’s background, 

occupation, eyesight, and other relevant data for the experiment.  

3) The participant adjusted the screen and the chair for his or her convenience according to 

his or her physical dimensions.  

4) The experimenter described the experiment to the participants, demonstrated what is 

considered to be a target, a robot hit, and a false alarm, and demonstrated how to work with 

the experimental system.  

5) The participants activated a familiarization program of five images in order to provide 

some practice. The experimenter explained that this is a familiarization program of five 

images and guided and supervised the participant during the trial.  

6) After the familiarization, the experimenter ran the experimental program and did not 

interfere during the experiment. The experiment consisted of 180 images. All system 

parameters and the participant’s actions were automatically recorded during the experiment.  
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An example of the experimental screen is shown in Figure 16. The image was displayed in the 

middle of the screen. Objects in the image could appear in four states: 1) unrecognized and 

therefore unmarked, 2) object is recommended by the robot to be a target denoted by a red 

frame around the object, 3) the object is marked and acquired as a target by the robot or the 

human, denoted by a red frame and a black cross. The human can move the mouse to a spot 

on the image and click on it to: i) acquire a new target, ii) acquire a target already 

recommended by the robot, iii) eliminate a target that was acquired by the robot or by the 

human. When done, in order to continue to the next image in the block, the human clicks on 

the “next” button on the left side of the screen. The participant can only scroll through the 

images.  

 

Figure 16: An example for the display during the experiment. 

 

Between the images, the participants received information about their current performance 

(Figure 17). The information includes the current objective function score (score), the last 

image number of hits (Detections), the last image number of false alarms (False) and the last 

image number of missed targets (Misses). 

7) At the end of the experiment, the computer showed the score the participant achieved 

during the experiment and filled out a questionnaire about the completed experiment. 

8) After the participant left the room the experimenter prepared the experimental system for 

the next participant. 
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Figure 17: Information windows between images. 

 

6.4 Results 

6.4.1 General 

Statistical analysis of the experimental results included: analysis of the system 

performance and analysis of the human performance. System performance analysis includes 

hits, false alarms, time, and score of the objective function. Human performance analysis is 

done on human hits and false alarms of objects already marked by the robot, human hits and 

false alarms of objects that were not marked by the robot, and human sensitivity. Analyses 

examined the influence of the block, the image complexity, the reward, the level of 

cooperation, and the robot quality on the system and human performances. Statistical 

analyses, comprising repeated measures analysis of variance, Fisher LSD post-hoc 

comparison, and general linear model of univariate tests of significance, were all performed 

with Statistica™ 7 on a personal computer. 

The results are arranged as follows: each dependent variable is presented and discussed 

separately, at first the general findings and a table of "the repeated measures analysis of 

variance" is given followed by analyses of the main findings. The first part of the results 

(section 6.4.2) deals with system performance and includes system detection performance 

(section 6.4.2.1), analysis of system hit (pHs, section 6.4.2.1.1), analysis of system false alarm 

(section 6.4.2.1.2), analysis of the system operation time (section 6.4.2.2), points accumulated 

(objective function sore section 6.4.2.2) and conclusions from the system performance part 

(section 6.4.2.4). The second part (section 6.4.3) deals with human performance. It includes 

analysis of: pHrh (section 6.4.3.1), pHh (section 6.4.3.2), pFArh (section 6.4.3.3), human false 
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alarms that the robot did not mark, FFAh (section 6.4.3.4), d'h calculated based on pHrh and 

pFArh (section 6.4.3.5) and conclusions (section 6.4.3.6). in addition in appendix XIII Analysis 

of rh for objects that were marked by the robot are presented.  

 

6.4.2 System efficiency for different levels of automation and different stimulus 

complexities 

6.4.2.1 Detection Performance 

6.4.2.1.1 Analysis of System hit as a function of level of cooperation, block, image 

complexity, robot performance, reward. 

The experiment included two groups of H collaboration levels, one for each reward type, 

and four groups of the HR and HOR collaboration levels, two for the reward types and two 

for the robot quality levels. To perform the statistical analyses for all collaboration levels, the 

robot quality variable and level of cooperation variables were rescaled into one group variable 

with 5 levels (H, HOR-high, HOR-low, HR-high, HR-low) named NewGroup. Analysis of 

each performance measure was executed in two stages, the first, an analysis on the 

NewGroup, the second an analysis of the collaboration levels excluding the H collaboration 

level groups. In this analysis, the collaboration level and the robot quality were independent 

variables. 

 

6.4.2.1.1.1 Analysis with groups as the independent variable (combining all levels of 

cooperation).   

Statistical analysis of the system hits as a function of the reward and the experimental 

group on all images showed that the reward and the NewGroup had significant effects (Table 

4). 

Table 4: The repeated measures analysis of variance results. 

 DoF MS F p 

{1}Rewards 1, 110 0.134 4.63 0.034 

{2}NewGroup 4, 110 0.150 5.18 0.001 

Rewards*NewGroup 4, 100 0.016 0.54 N.S. 

{3}BLOCK 2, 220 0.135 17.22 0.000 

BLOCK*Rewards 2, 220 0.008 0.99 N.S. 

BLOCK*NewGroup 8, 220 0.005 0.66 N.S. 

BLOCK*Rewards*NewGroup 8, 220 0.010 1.27 N.S. 

{4}COMPLEXITY 2, 220 1.564 232.12 0.000 

COMPLEXITY*Rewards 2, 220 0.000 0.01 N.S. 

COMPLEXITY*NewGroup 8, 220 0.013 1.98 0.050 

COMPLEXITY*Rewards*NewGroup 8, 220 0.011 1.60 N.S. 

BLOCK*COMPLEXITY 4, 440 0.069 19.45 0.000 

BLOCK*COMPLEXITY*Rewards 4, 440 0.002 0.52 N.S. 

BLOCK*COMPLEXITY*NewGroup 16, 440 0.005 1.38 N.S. 

3*4*1*2 16, 440 0.003 0.77 N.S. 
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The reward system had a significant effect. Overall the hit probability was smaller (.88) 

when the aim was to minimize false alarms, compared to when the aim was to maximize hits 

(.91). Thus, people seemed to have considered the reward structure and increased their 

tendency to detect targets if they were rewarded for detection.  

The experimental group also had a significant effect. The mean results and the results of 

post-hoc comparisons between the five groups are shown in Table 5 for the system hit values. 

The difference between the control H group and the HOR group with high robot quality was 

marginally significant (p<.1). A significant difference exists in system performance between 

low levels of automation (HO-R) with a 'low quality' robot and the other groups.  

 

Table 5: Post-hoc comparisons between the five Newgroups. 

 HO HOR-high HR-high HOR-low HR-low 

system hit rate 0.898 0.926 0.912 0.897 0.855 

HR-low 0.010 0.000 0.001 0.013  

 

There was a significant effect of the level of complexity. Hit rates were highest when 

stimuli had low complexity (.97), somewhat lower with intermediate complexity (.89) and 

lowest with high complexity stimuli (.83). 

There was a significant difference between the blocks; the hit rates in the first block (.89) 

and the second block (.88) were similar but not significant. The difference between the last 

block (.92) and the prior two blocks was highly significant (p<.001). This can be explained by 

the significant Block*Complexity interaction (Figure 18). Apparently in the high complex 

images the stimuli in block 2 were more difficult, and lead to lower hit rates than the high 

complex stimuli in the other blocks. There was no significant difference between the blocks in 

the low complex stimuli (Table 6), Also, there was no significant difference between blocks 1 

and 2 in the intermediate complex stimuli. 

Complexity interacted with the experimental group. The differences between the groups 

were small and non-significant for low-complexity stimuli and increased for intermediate and 

especially high-complexity stimuli. In the intermediate-complexity stimuli and the high- 

complexity stimuli there was a significant difference between the HR-low experimental group 

and the experimental groups of high robot quality (HOR-high/HR-high). In the high-

complexity stimuli there was significant difference between the HR and HOR collaboration 

levels. The system hit rate in each experimental group was significantly different between the 

three complexity levels of stimuli. In each complex stimulus the HOR collaboration level with 

the high robot quality group achieved the highest system hit rate. The HR collaboration level 

with the low robot quality group achieved the lowest hit rate (Figure 19). 
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Figure 18: Probability of Hit for the blocks as a function of the stimulus complexity. 

 

 

Table 6: Post-hoc comparisons between the Block*Complexity combinations. 

  
Block 1 Block 1 

Block 

1 
Block 2 Block 2 Block 2 Block 3 Block 3 Block 3 

 Complexity low Inter. high low Inter. high low Inter. high 

 System hit 

rate 

0.971 0.881 0.827 0.972 0.868 0.803 0.960 0.916 0.881 

Block 1 Low   0.000 0.000 N.S. 0.000 0.000 N.S. 0.000 0.000 

Block 1 Inter. 0.000   0.000 0.000 0.092 0.000 0.000 0.000 N.S. 

Block 1 High 0.000 0.000   0.000 0.000 0.002 0.000 0.000 0.000 

Block 2 Low N.S. 0.000 0.000   0.000 0.000 0.094 0.000 0.000 

Block 2 Inter. 0.000 0.092 0.000 0.000   0.000 0.000 0.000 N.S. 

Block 2 High 0.000 0.000 0.002 0.000 0.000   0.000 0.000 0.000 

Block 3 Low N.S. 0.000 0.000 0.094 0.000 0.000   0.000 0.000 

Block 3 Inter. 0.000 0.000 0.000 0.000 0.000 0.000 0.000   0.000 

Block 3 High 0.000 N.S. 0.000 0.000 N.S. 0.000 0.000 0.000   
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Figure 19: Probability of a Hit for the five experimental groups as a function of the stimulus complexity. 

 

6.4.2.1.1.2 Analysis with cooperation level and robot performance as independent variables 

for all cooperation levels except H. 

Overall the probability was significantly smaller (.88) when the automation level was 

high (HOR), compared to low automation level, HR, (.91). The central finding here was that 

any level of automation (HOR/HR) with a 'low quality' robot impairs hit performance, 

compared to cases without automation. 

Also the effect of robot quality was highly significant (p<.01). The average system hit 

probability for a system with a 'high quality' robot was .92, almost 5% higher than for a 

system with a 'low quality' robot. 

Table 7 shows the statistical output of the repeated measures analysis of variance 

performed on the experimental results.  

The influence of the Complexity*Robot quality interaction is shown in Figure 20. The 

system hit probability is significantly reduced with the increase of the stimulus complexity, 

for both low and 'high quality' robots (p<.01). In addition, for each complex stimulus, the 

system performance of the 'high quality' robot was higher than for the 'low quality' robot. This 

difference was found to be significant for intermediate and high stimulus complexities 

(p<.05). For low image complexity the system hit probabilities were similar for both low and 

'high quality' robots and no significance was found. 
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Table 7: The repeated measures analysis of variance results. 

 DoF MS F p 

{1}Collaboration 1, 88 0.164 5.03 0.027 

{2}Rewards 1, 88 0.071 2.17 N.S. 

{3}Robot quality 1, 88 0.394 12.06 0.001 

Collaboration*Rewards 1, 88 0.006 0.19 N.S. 

Collaboration*Robot quality 1, 88 0.040 1.23 N.S. 

Rewards*Robot quality 1, 88 0.032 0.98 N.S. 

Collaboration*Rewards*Robot quality 1, 88 0.006 0.17 N.S. 

{4}BLOCK 2, 176 0.097 11.28 0.000 

BLOCK*Collaboration 2, 176 0.003 0.29 N.S. 

BLOCK*Rewards 2, 176 0.004 0.42 N.S. 

BLOCK*Robot quality 2, 176 0.010 1.11 N.S. 

BLOCK*Collaboration*Rewards 2, 176 0.016 1.89 N.S. 

BLOCK*Collaboration*Robot quality 2, 176 0.007 0.81 N.S. 

BLOCK*Rewards*Robot quality 2, 176 0.006 0.72 N.S. 

4*1*2*3 2, 176 0.011 1.27 N.S. 

{5}COMPLEXITY 2, 176 1.207 164.21 0.000 

COMPLEXITY*Collaboration 2, 176 0.014 1.95 N.S. 

COMPLEXITY*Rewards 2, 176 0.003 0.43 N.S. 

COMPLEXITY*Robot quality 2, 176 0.035 4.71 0.010 

COMPLEXITY*Collaboration*Rewards 2, 176 0.003 0.42 N.S. 

COMPLEXITY*Collaboration*Robot 

quality 
2, 176 0.000 0.00 N.S. 

COMPLEXITY*Rewards*Robot quality 2, 176 0.002 0.22 N.S. 

5*1*2*3 2, 176 0.020 2.72 0.068 

BLOCK*COMPLEXITY 4, 352 0.063 17.66 0.000 

BLOCK*COMPLEXITY*Collaboration 4, 352 0.010 2.69 0.031 

BLOCK*COMPLEXITY*Rewards 4, 352 0.002 0.57 N.S. 

BLOCK*COMPLEXITY*Robot quality 4, 352 0.001 0.33 N.S. 

4*5*1*2 4, 352 0.001 0.32 N.S. 

4*5*1*3 4, 352 0.005 1.27 N.S. 

4*5*2*3 4, 352 0.003 0.93 N.S. 

4*5*1*2*3 4, 352 0.004 1.04 N.S. 

 

The mean results and the results of post-hoc comparisons between Complexity and Robot 

quality interaction are shown in Table 8.  

A similar analysis was performed on the influence of the Complexity*collaboration-

level*BLOCK interaction (Figure 21). The system hit probability was found to be 

significantly reduced with the increase of the stimulus complexity for both lower and higher 

automation levels for each block (p<.01). In all the blocks and the stimulus complexities, the 

system hit rate was higher for the high automation level (HOR) than for the low automation 

level (HR), except for block 1 and low stimuli complexities where the hit rates for both 

automation levels were similar. The differences between the lower and higher automation 

levels were found to be insignificant for all complexity stimuli and blocks. 



 65 

low intermediate high

Image complexity

0.75

0.80

0.85

0.90

0.95

1.00

S
y
s
te

m
 h

it
 r

a
te

Robot quality

 high

 low

 
Figure 20: Probability of a hit for the two robot quality levels as a function of the stimulus complexity. 

 
Table 8: post-hoc comparisons between the Complexity*Robot-quality combinations. 

  

high 

robot 

quality 

high 

robot 

quality 

high 

robot 

quality 

low 

robot 

quality 

low 

robot 

quality 

low 

robot 

quality 

 COMPLEXITY low Inter. high low Inter. high 

 system hit rate 0.976 0.910 0.870 0.957 0.864 0.807 

high robot quality low  0.000 0.000 N.S. 0.000 0.000 

high robot quality intermediate 0.000  0.000 0.002 0.034 0.000 

high robot quality high 0.000 0.000  0.000 N.S. 0.004 

low robot quality low N.S. 0.002 0.000  0.000 0.000 

low robot quality intermediate 0.000 0.034 N.S. 0.000  0.000 

low robot quality high 0.000 0.000 0.004 0.000 0.000  
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Figure 21: Probability of a hit for the two automation levels as a function of the stimulus complexity and 

block number. 
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6.4.2.1.2 Analysis of system false alarms as a function of level of cooperation, block, 

image complexity, robot performance, reward. 

System false alarms (FA) are events during which the system marks non-target objects in 

the images. System FA can occur by human marks of non-target objects or robot marks of 

non-target objects that are confirmed by the human. 

6.4.2.1.2.1 Analysis with groups as the independent variable (combining all levels of 

cooperation).   

Table 9 shows the statistical output of the repeated measures analysis of variance 

performed on the experiment results.  

To compare the number of false alarms for different complexity stimuli and blocks, the 

overall number of false alarms (FA) was divided by the number of images with the same 

stimulus and block, and the result was defined as a normalized false alarm. The normalized 

FA was smaller (.0935) when the aim was to minimize false alarms, as compared to when the 

aim was to maximize hits (.107). Although the effect was not statistically significant, people 

seemed to consider the reward structure and increased their attention to reduce the number of 

FA if they were rewarded for minimizing false alarms. 

 

Table 9: The repeated measures analysis of variance results. 

 DoF MS F p 

{1}Rewards 1, 110 0.050 1.1782 N.S. 

{2}NewGroup 1, 110 0.069 1.6205 N.S. 

Rewards*NewGroup 4, 110 0.013 0.3186 N.S. 

{3}BLOCK 2, 220 0.127 9.4873 0.000 

BLOCK*Rewards 2, 220 0.001 0.0881 N.S. 

BLOCK*NewGroup 8, 220 0.006 0.4831 N.S. 

BLOCK*Rewards*NewGroup 8, 220 0.007 0.5531 N.S. 

{4}COMPLEXITY 2, 220 0.254 51.0036 0.000 

COMPLEXITY*Rewards 2, 220 0.004 0.7789 N.S. 

COMPLEXITY*NewGroup 8, 220 0.008 1.5614 N.S. 

COMPLEXITY*Rewards*NewGroup 8, 220 0.006 1.1827 N.S. 

BLOCK*COMPLEXITY 4, 440 0.110 26.0176 0.000 

BLOCK*COMPLEXITY*Rewards 4, 440 0.004 1.0455 N.S. 

BLOCK*COMPLEXITY*NewGroup 16, 440 0.005 1.2404 N.S. 

3*4*1*2 16, 440 0.003 0.6850 N.S. 

 

In the NewGroup*Complexity interaction, post-hoc comparison analysis showed that the 

difference between the low complexity and the other two complexities was highly significant 

(p<.01). There was no significance difference between the intermediate and high complexity 

stimuli. 
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There was a significant difference between the blocks. The highest value of the 

normalized FA was in the first block (.116), and the lowest value was in the last block 

(.0794), implying that there can be a learning effect. 

The difference between the block interactions with the image complexity stimuli was 

highly significant (p<.001). For the low image complexity the normalized FA value was the 

lowest for all blocks while the highest was achieved for the high complexity stimuli in the 

first block. The normalized FA rate reduced between block 1 and block 3 for low and high 

complex stimuli (Figure 22). The normalized FA rate of the intermediate complexity stimuli 

was similar but the standard deviation was reduced, which indicates that the subjects were 

more uniform and clear about their FA selections. 
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Figure 22: Normalized false alarm rate for the three blocks as a function of the stimulus complexity. 

 

6.4.2.1.2.2 Analysis with cooperation level and robot performance as independent variables 

for all cooperation levels except H. 

Table 10 shows the statistical output of the repeated measures analysis of variance performed 

on the experiment results. The system FA was significantly different for the different blocks 

and different image complexities levels. The block*complexity interaction was had a 

significant effect as well. The complexity*robot quality interaction had a marginally 

significant effect (p=.052). 
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Table 10: The repeated measures analysis of variance results. 

 DoF MS F p 

{1}Collaboration 1, 88 0.085 1.6607 N.S. 

{2}Rewards 1, 88 0.028 0.5576 N.S. 

{3}Robot quality 1, 88 0.119 2.3311 N.S. 

Collaboration*Rewards 1, 88 0.029 0.5661 N.S. 

Collaboration*Robot quality 1, 88 0.033 0.6404 N.S. 

Rewards*Robot quality 1, 88 0.004 0.0716 N.S. 

Collaboration*Rewards*Robot 

quality 
1, 88 0.017 0.3248 N.S. 

{4}BLOCK 2, 176 0.115 7.2756 0.001 

BLOCK*Collaboration 2, 176 0.007 0.4295 N.S. 

BLOCK*Rewards 2, 176 0.001 0.0446 N.S. 

BLOCK*Robot quality 2, 176 0.010 0.6071 N.S. 

BLOCK*Collaboration*Rewards 2, 176 0.006 0.4014 N.S. 

BLOCK*Collaboration*Robot 

quality 
2, 176 0.006 0.3509 N.S. 

BLOCK*Rewards*Robot quality 2, 176 0.007 0.4149 N.S. 

4*1*2*3 2, 176 0.016 1.0085 N.S. 

{5}CMPLEXIT 2, 176 0.235 42.0155 0.000 

CMPLEXIT*Collaboration 2, 176 0.004 0.6613 N.S. 

CMPLEXIT*Rewards 2, 176 0.007 1.1749 N.S. 

CMPLEXIT*Robot quality 2, 176 0.017 3.0049 0.052 

CMPLEXIT*Collaboration*Rewards 2, 176 0.010 1.8173 N.S. 

CMPLEXIT*Collaboration*Robot 

quality 
2, 176 0.003 0.5501 N.S. 

CMPLEXIT*Rewards*Robot quality 2, 176 0.007 1.2056 N.S. 

5*1*2*3 2, 176 0.003 0.6036 N.S. 

BLOCK*CMPLEXIT 4, 352 0.071 15.1587 0.000 

BLOCK*CMPLEXIT*Collaboration 4, 352 0.004 0.8647 N.S. 

BLOCK*CMPLEXIT*Rewards 4, 352 0.004 0.7872 N.S. 

BLOCK*CMPLEXIT*Robot quality 4, 352 0.006 1.2169 N.S. 

4*5*1*2 4, 352 0.008 1.6577 N.S. 

4*5*1*3 4, 352 0.004 0.8733 N.S. 

4*5*2*3 4, 352 0.001 0.2588 N.S. 

4*5*1*2*3 4, 352 0.001 0.1484 N.S. 

 

6.4.2.2 Operation Time: Mean time for stimuli with a given level of complexity as a 

function of cooperation level, block, complexity, robot performance, and reward 

6.4.2.2.1 Analysis with groups as an independent variable. 

Table 11 shows the statistical output of the repeated measures analysis of variance 

performed on the experiment results.  

The rewards system had no significant effect on the image mean time. The block system 

had a highly significant effect (p<.001) on the image mean time. The overall image mean time 

was 6.60 s for block 1, which was reduced by 75% in block 3. The block*NewGroup 

interaction was found to be significant and indicated that low robot performances increased 
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the image mean time in all blocks (Figure 23). The longest image mean time accepted was for 

the high automation level with low robot quality (HOR-low) in all the blocks. For blocks 2 

and 3, it seems that for high robot quality it is better to use the high automation level (HOR), 

while for low robot quality the low automation level (HR) accomplished a shorter image time. 

The image mean time for the H experimental group was a value between the two automation 

levels with high robot quality. For all experimental groups the image mean time decreased 

with the increase in block number. 

 

Table 11: The repeated measures analysis of variance results. 

 DoF MS F p 

{1}Rewards 1, 110 0.890 0.063 N.S. 

{2}NewGroup 4, 110 22.596 1.608 N.S. 

Rewards*NewGroup 4, 110 4.717 0.336 N.S. 

{3}BLOCK 2, 220 816.861 302.595 0.000 

BLOCK*Rewards 2, 220 0.235 0.087 N.S. 

BLOCK*NewGroup 8, 220 5.646 2.091 0.038 

BLOCK*Rewards*NewGroup 8, 220 2.038 0.755 N.S. 

{4}COMPLEXITY 2, 220 11.787 17.545 0.000 

COMPLEXITY*Rewards 2, 220 0.229 0.341 N.S. 

COMPLEXITY*NewGroup 8, 220 2.412 3.590 0.001 

COMPLEXITY*Rewards*NewGroup 8, 220 0.572 0.851 N.S. 

BLOCK*COMPLEXITY 4, 440 11.454 27.964 0.000 

BLOCK*COMPLEXITY*Rewards 4, 440 0.393 0.959 N.S. 

BLOCK*COMPLEXITY*NewGroup 16, 440 0.434 1.059 N.S. 

3*4*1*2 16, 440 0.555 1.356 N.S. 

 

The image mean time increases significantly with increasing stimulus complexity. The 

overall image mean time for high complexity stimuli (5.05 s) is significantly longer by almost 

8% than for the low complexity stimuli (4.69 s). The complexity*NewGroup interaction was 

found to be significant and showed that low robot performances increased the image mean 

time for all complexity stimuli and both collaboration levels. The complexity*block 

interaction was found to be significant and indicated that the image mean time decreased with 

the increase in the block number, implying the existence of a learning effect (Figure 24). The 

image mean time increased with the increase in the level of complexity stimuli for blocks 1 

and 3. In block 2 the average image time for all three complexity stimuli were similar. A post 

hoc comparison indicated that the difference between the average image times of all 

complexity stimuli was significant for block 1. For blocks 2 and 3 there was no significant 

difference between the intermediate and high-complexity stimuli. 
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Figure 23: Image mean time for the five experimental groups as a function of the blocks. 
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Figure 24: Image mean time for the three blocks as a function of the stimulus complexity. 
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6.4.2.2.2 Analysis with cooperation level and robot performance as independent variables 

for all cooperation levels except H. 

Table 12 shows the statistical output of the repeated measures analysis of variance 

performed on the experiment results.  

Robot quality levels significantly affected image mean time. The overall average time per 

image was shorter for the 'high quality' robot (4.67s) than for the 'low quality' robot (5.22 s). 

The interaction between the complex stimuli and the automation level produced 

significant differences. The average time per image for both automation levels increased with 

increasing image complexity (table 13), but the complexity influenced the HOR automation 

level more strongly. The difference between the two automation levels was insignificant for 

the same stimulus complexity (table 13). The difference between low-complexity stimuli and 

high-complexity stimuli was significant for the same automation level. 

Table 12: The repeated measures analysis of variance results. 

 DoF MS F p 

{1}Collaboration 1, 88 2.995 0.217 N.S. 

{2}Rewards 1, 88 0.341 0.025 N.S. 

{3}Robot quality 1, 88 63.995 4.636 0.034 

Collaboration*Rewards 1, 88 0.057 0.004 N.S. 

Collaboration*Robot quality 1, 88 12.456 0.902 N.S. 

Rewards*Robot quality 1, 88 18.468 1.338 N.S. 

Collaboration*Rewards*Robot quality 1, 88 0.002 0.000 N.S. 

{4}BLOCK 2, 176 694.953 271.543 0.000 

BLOCK*Collaboration 2, 176 10.031 3.919 0.022 

BLOCK*Rewards 2, 176 0.378 0.148 N.S. 

BLOCK*Robot quality 2, 176 2.383 0.931 N.S. 

BLOCK*Collaboration*Rewards 2, 176 1.224 0.478 N.S. 

BLOCK*Collaboration*Robot quality 2, 176 6.222 2.431 0.091 

BLOCK*Rewards*Robot quality 2, 176 5.585 2.182 N.S. 

4*1*2*3 2, 176 1.151 0.450 N.S. 

{5}COMPLEXITY 2, 176 14.697 22.504 0.000 

COMPLEXITY*Collaboration 2, 176 4.157 6.365 0.002 

COMPLEXITY*Rewards 2, 176 0.029 0.044 N.S. 

COMPLEXITY*Robot quality 2, 176 1.526 2.336 0.100 

COMPLEXITY*Collaboration*Rewards 2, 176 0.477 0.731 N.S. 

COMPLEXITY*Collaboration*Robot 

quality 
2, 176 1.001 1.532 N.S. 

COMPLEXITY*Rewards*Robot quality 2, 176 0.956 1.465 N.S. 

5*1*2*3 2, 176 0.505 0.773 N.S. 

BLOCK*COMPLEXITY 4, 352 8.966 22.597 0.000 

BLOCK*COMPLEXITY*Collaboration 4, 352 0.209 0.527 N.S. 

BLOCK*COMPLEXITY*Rewards 4, 352 0.220 0.555 N.S. 

BLOCK*COMPLEXITY*Robot quality 4, 352 0.511 1.288 N.S. 

4*5*1*2 4, 352 0.149 0.376 N.S. 

4*5*1*3 4, 352 0.545 1.374 N.S. 

4*5*2*3 4, 352 0.885 2.231 0.065 

4*5*1*2*3 4, 352 0.515 1.297 N.S. 
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Table 13: Post-hoc comparisons between the Complexity*Automation-level combinations. 

  HOR HOR HOR HR HR HR 

 COMPLEXITY low inter. high low inter. high 

 image time [s] 4.63 5.07 5.31 4.77 4.90 4.98 

HOR low  0.000 0.000 N.S. N.S. N.S. 

HOR inter. 0.000  0.010 N.S. N.S. N.S. 

HOR high 0.000 0.010  0.044 N.S. N.S. 

HR low N.S. N.S. 0.044  N.S. 0.028 

HR inter. N.S. N.S. N.S. N.S.  N.S. 

HR high N.S. N.S. N.S. 0.028 N.S.  

 

6.4.2.3 Points accumulated: Number of points as a function of block, level of 

cooperation, robot performance, and reward.  

6.4.2.3.1 Analysis with groups as an independent variable. 

Table 14 shows the statistical output of the repeated measures analysis of variance 

performed on the experiment results.  

Figure 25 shows the Block*Reward interaction. The score levels of the minimizing FA 

reward are significantly lower (p<.001) than the score levels of the maximizing hit reward. 

Thus, the reward system describes the task orientation, and as such, presents different score 

scales. When minimizing the FA reward, the score in the last block was significantly higher, 

by 51% (p<.001), than the score in the first block. When maximizing the Hit reward the score 

in last block was significantly higher, by 36% (p<.001), than the score in the first block. 

 
Table 14: The repeated measures analysis of variance results. 

 DoF MS F p 

Rewards 1, 110 8130629 5367.62 0.000 

NewGroup 4, 110 8277 5.46 0.000 

Rewards*NewGroup 4, 110 141 0.09 N.S. 

BLOCK 2, 220 454443 1081.47 0.000 

BLOCK*Rewards 2, 220 54073 128.68 0.000 

BLOCK*NewGroup 8, 220 244 0.58 N.S. 

BLOCK*Rewards*NewGroup 8, 220 203 0.48 N.S. 

 

The experimental group exhibited a highly significant effect (p<.001). The automation 

levels with low robot quality achieved significantly lower scores than the automation levels 

with high robot quality and the control H group (Figure 26). There was no significance 

difference between the automation levels with high robot quality and the control H group, but 

both of them had higher scores than the H group. The high automation level (HOR) yielded 

higher scores than the low automation level (HR).  
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Figure 25: Block score for the three blocks as a function of the reward system. 
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Figure 26: Block score for the five experimental groups. 

 

6.4.2.3.2 Analysis with cooperation level and robot performance as independent variables 

for all cooperation levels except H. 

Table 15 shows the statistical output of the repeated measures analysis of variance 

performed on the experiment results.  
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Table 15: The repeated measures analysis of variance results. 

 DoF MS F p 

{1}Collaboration 1, 88 1176 0.64 N.S. 

{2}Rewards 1, 88 6507028 3568.49 0.000 

{3}Robot quality 1, 88 28600 15.68 0.000 

Collaboration*Rewards 1, 88 17 0.01 N.S. 

Collaboration*Robot quality 1, 88 703 0.39 N.S. 

Rewards*Robot quality 1, 88 261 0.14 N.S. 

Collaboration*Rewards*Robot 

quality 
1, 88 284 0.16 N.S. 

{4}BLOCK 2, 176 365182 784.55 0.000 

BLOCK*Collaboration 2, 176 229 0.49 N.S. 

BLOCK*Rewards 2, 176 43408 93.26 0.000 

BLOCK*Robot quality 2, 176 39 0.08 N.S. 

BLOCK*Collaboration*Rewards 2, 176 121 0.26 N.S. 

BLOCK*Collaboration*Robot 

quality 
2, 176 547 1.18 N.S. 

BLOCK*Rewards*Robot quality 2, 176 564 1.21 N.S. 

4*1*2*3 2, 176 43 0.09 N.S. 

 

 The difference between the low and high robot qualities was significant (p<.001). The 

overall average score of the low robot quality was 302 points. Improving the robot quality 

increased the system performance by 15%. 

 

6.4.2.4 Conclusions regarding system performance 

To represent different task types the reward values were fixed and could not be changed 

during the task performance. Results indicate that the reward system has a significant effect 

on the system hit rate, false alarms, and the system objective function score. The system hit 

rate of participants who were rewarded for maximum hits was higher than for the others; 

likewise, the system false alarms of participants who were rewarded for minimum FA was 

lower than for the others. The reward has no influence on the system performance time. 

Robot quality has a significant influence on the system hit rate and the system objective 

function score, which increases with increasing robot quality. Although the increase in robot 

quality reduces the number of system false alarms, this finding was insignificant. A higher 

level of automation (HO-R) combined with low robot quality, however, significantly 

increases the number of false alarms, as compared to no automation (HO). For low robot 

quality, the increase in the automation level increases detection time, whereas for the 'high 

quality' robot, the increase in the automation level reduces the detection time. This effect was 

partially significant. Low robot quality impairs system hit rate and score. When robot quality 

is low it is better to use no automation at all. As image complexity is increased, however, the 
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system hit rate decreases, the system false alarms number grows, and the system time 

increased – all at significant levels. 

The block number causes a significant decrease on the system false alarm, a 75% decrease in 

the system time, and an increase in the experiment score. These results suggest the occurrence 

of a learning effect during the experiment. 

 

6.4.3 Use of the cues from the robotic system 

6.4.3.1 Analysis of pHrh 

6.4.3.1.1 Comparison of probability of a human hit (pHrh) for all levels of cooperation 

when the robot marked a target as a function of robot performance and rewards 

(combined over all levels of complexity and blocks).  

  Table 16 shows the statistical output of the repeated measures analysis of variance 

performed on the experiment results.  

 
Table 16: The repeated measures analysis of variance results. 

 DoF MS F p 

Collaboration 1, 88 0.015 4.39 0.039 

Rewards 1, 88 0.010 3.01 0.086 

Robot quality 1, 88 0.033 9.80 0.002 

Collaboration*Rewards 1, 88 0.000 0.09 N.S. 

Collaboration*Robot quality 1, 88 0.004 1.23 N.S. 

Rewards*Robot quality 1, 88 0.006 1.77 N.S. 

Collaboration*Rewards*Robot 

quality 
1, 88 0.001 0.35 N.S. 

 

The automation level exhibited a significant effect on the probability of a hit, which 

increased with the increase in automation level from .901 for the HR automation level to .926 

for the HOR automation level (Figure 27). 

Although the reward effect is marginally significant (p<.09), people seemed to consider 

the reward structure and increased their attention to increase the hit probability if they were 

rewarded for maximum hits (Figure 28). 

Robot quality significantly influenced the probability of a hit. The hit probability for high 

robot quality (.932) exceeded by almost 4% that for the 'low quality' robot (.895). It seems 

that the participants noticed when robot quality was high and as such they trusted the robot 

decisions more than when quality was low.  
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Figure 27: Probability of a human hit of targets marked by the robot as a function of the automation level. 
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Figure 28: Probability of a human hit of targets marked by the robot as a function of the reward system. 

 

6.4.3.2 Analysis of pHh 

6.4.3.2.1 Comparison of probability of a human hit (pHh) for all levels of cooperation when 

the robot did not mark a target as a function of robot performance and rewards 

(combined over all levels of complexity and blocks).  

6.4.3.2.1.1 Analysis with groups as an independent variable 

Table 17 shows the statistical output of the repeated measures analysis of variance 

performed on the experiment results.  
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Table 17: The repeated measures analysis of variance results. 

 DoF MS F p 

Rewards 1, 110 0.023 5.74 0.018 

NewGroup 4, 110 0.009 2.32 0.061 

Rewards*NewGroup 4, 110 0.000 0.06 N.S. 

 

The reward system had a significant effect on the probability of a hit. The human 

probability for a hit was higher by 3% in the maximum hit reward system (.913) in 

comparison to the minimum FA reward system (.885). 

The experimental group had a marginally significant effect on the probability of a hit. The 

human hit probability for the low automation level (HR) with low robot quality was 

significantly lower than the high automation level (HOR) with low robot quality, the high 

automation level with high robot quality, and the H controlled group. It was also lower with 

marginal significance (p<.06) relative to the low automation level with high robot quality 

(Figure 29).  
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Figure 29: Human hit probability of unmarked targets for the experimental groups. 

 

6.4.3.2.1.2 Analysis with cooperation level and robot performance as independent variables 

for all cooperation levels except H. 

 

Table 18 shows the statistical output of the repeated measures analysis of variance 

performed on the experiment results.  
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Table 18: The repeated measures analysis of variance results. 

 DoF MS F p 

Collaboration 1, 88 0.017 3.46 0.066 

Rewards 1, 88 0.018 3.67 0.059 

Robot quality 1, 88 0.013 2.62 N.S. 

Collaboration*Rewards 1, 88 0.001 0.13 N.S. 

Collaboration*Robot quality 1, 88 0.004 0.79 N.S. 

Rewards*Robot quality 1, 88 0.000 0.01 N.S. 

Collaboration*Rewards*Robot 

quality 
1, 88 0.000 0.06 N.S. 

 

Figure 30 shows the human probability of a hit for the different automation levels. Results 

indicate that increases in the automation level increase the human probability of a hit (p<.07). 
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Figure 30: Human hit probability of unmarked targets for the different automation levels. 

 

6.4.3.2.2 Comparison of probabilities of a human hit (pHh) for all levels of cooperation 

when the robot did not mark a target as a function of robot performance, 

complexity, block, and rewards.  

6.4.3.2.2.1 Analysis with groups as an independent variable 

When robot quality is high, the number of unmarked targets by the robot is low and 

therefore, the resolution of the human probability of a hit of a target that was not marked by 

the robot is very low. Low resolution of the probability of a hit can distort the results and as a 



 79 

result, the groups with high robot quality were not counted. Table 19 shows the statistical 

output of the repeated measures analysis of variance performed on the experiment results.  

The reward system had a significant effect on the probability of a hit. The overall 

probability of a hit was lower when the aim was to minimize FA (.86) than when the aim was 

to maximize the hit (.90). 

The difference between the experimental groups was also found to be significant. The 

probability of a hit for the human when part of the low automation level setup and the 'low 

quality' robot group (HR-low) was significantly lower (.85) than that for the high automation 

level (HOR-low) and the control group H (.89, Figure 31). 

 
Table 19: The repeated measures analysis of variance results. 

 DoF MS F p 

{1}Rewards 1, 66 0.158 5.47 0.022 

{2}NewGroup 2, 66 0.120 4.15 0.020 

Rewards*NewGroup 2, 66 0.007 0.24 N.S. 

{3}BLOCK 2, 132 0.194 19.11 0.000 

BLOCK*Rewards 2, 132 0.018 1.79 N.S. 

BLOCK*NewGroup 4, 132 0.007 0.66 N.S. 

BLOCK*Rewards*NewGroup 4, 132 0.026 2.57 0.041 

{4}COMPLEXITY 2, 132 1.196 159.88 0.000 

COMPLEXITY*Rewards 2, 132 0.005 0.67 N.S. 

COMPLEXITY*NewGroup 4, 132 0.006 0.75 N.S. 

COMPLEXITY*Rewards*NewGroup 4, 132 0.017 2.25 0.067 

BLOCK*COMPLEXITY 4, 264 0.127 20.73 0.000 

BLOCK*COMPLEXITY*Rewards 4, 264 0.004 0.64 N.S. 

BLOCK*COMPLEXITY*NewGroup 8, 264 0.012 1.95 0.053 

3*4*1*2 8, 264 0.006 0.96 N.S. 
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Figure 31: Human hit probability of unmarked targets for the experimental groups. 
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Image complexity had a strong influence on the human hit probability. Increases in the 

image complexity decrease the human hit rate (Figure 32). The probability for a human hit in 

low complexity images was higher by 18% (0.96) than that in the high complexity images 

(0.81). This effect was found to be highly significant (p<.001).  
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Figure 32: Human hit probability as a function of the image complexity. 

 

6.4.3.3 Analysis of pFArh 

6.4.3.3.1 Probability of robot FA that the human approved (pFArh) as a function of the level 

of cooperation (all, except HO), robot performance, and rewards (combined over 

all levels of complexity and blocks). 

  Table 20 shows the statistical output of the repeated measures analysis of variance 

performed on the experiment results.  

 
Table 20: The repeated measures analysis of variance results. 

 DoF MS F p 

Collaboration 1, 88 0.207 11.747 0.001 

Rewards 1, 88 0.045 2.560 N.S. 

Robot quality 1, 88 0.121 6.865 0.010 

Collaboration*Rewards 1, 88 0.000 0.007 N.S. 

Collaboration*Robot quality 1, 88 0.032 1.831 N.S. 

Rewards*Robot quality 1, 88 0.065 3.660 0.059 

Collaboration*Rewards*Robot 

quality 
1, 88 0.001 0.071 N.S. 
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The automation level had a highly significant effect (p<.001) on the human FA 

probability for objects that were already marked by the robot. The FA probability increased 

with the increase in the automation level (Figure 33) such that the probability of FA was more 

than 70% higher for the HOR automation level (.225) in comparison to the HR automation 

level (.132). It seems that when the system was more automatic the participants tend to 

approve its decisions regarding FA. 
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Figure 33: The probability of FA of objects already marked by the robot as a function of the automation 

level. 

 

 

Figure 34 shows that the increase in robot quality increases the probability of FA of 

objects already marked by the robot. This finding fits the behavior of the number of FA of 

objects unmarked by the robot and could be explained by examining the number of robot hits 

and FA marks. A 'low quality' robot marks many objects as FA and forces the human to check 

each one since the number of FA is illogical. In addition, we assumed earlier that the 

participants recognized the robot quality during the experiment and knew that they cannot 

rely on the robot marks. The 'high quality' robot marks very few FA, the human trusts the 

robot decisions, and therefore, does not correct the FA marks of the 'high quality' robot at the 

same rate as for the 'low quality' robot.  
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Figure 34: The probability of FA of objects already marked by the robot as a function of the robot quality. 

 

6.4.3.4 Analysis of human FA that the robot did not mark (FFAh) 

6.4.3.4.1 Comparison of human FA that the robot did not mark for all levels of 

cooperation as a function of robot performance, complexity, block, and rewards.  

6.4.3.4.1.1 Analysis with groups as an independent variable 

Table 21 shows the statistical output of the repeated measures analysis of variance 

performed on the experiment results.  

 
Table 21: The repeated measures analysis of variance results. 

 DoF MS F p 

{1}Rewards 1, 110 0.059 2.383 N.S. 

{2}NewGroup 4, 110 0.147 5.967 0.000 

Rewards*NewGroup 4, 110 0.013 0.508 N.S. 

{3}BLOCK 2, 220 0.086 9.174 0.000 

BLOCK*Rewards 2, 220 0.003 0.367 N.S. 

BLOCK*NewGroup 8, 220 0.006 0.632 N.S. 

BLOCK*Rewards*NewGroup 8, 220 0.006 0.646 N.S. 

{4}COMPLEXITY 2, 220 0.082 24.402 0.000 

COMPLEXITY*Rewards 2, 220 0.000 0.080 N.S. 

COMPLEXITY*NewGroup 8, 220 0.015 4.496 0.000 

COMPLEXITY*Rewards*NewGroup 8, 220 0.003 0.818 N.S. 

BLOCK*COMPLEXITY 4, 440 0.081 33.008 0.000 

BLOCK*COMPLEXITY*Rewards 4, 440 0.003 1.155 N.S. 

BLOCK*COMPLEXITY*NewGroup 16, 440 0.011 4.617 0.000 

3*4*1*2 16, 440 0.003 1.039 N.S. 
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Although the reward had no significant effect (p=.12), it seems that the participant’s 

awareness of the reward increased their tendency to detect targets when they were rewarded 

for detection. The number of false alarms that were not marked by the robot and were marked 

by the human was 26.7% smaller when the reward was to minimize FA (.056) as compared to 

when they were rewarded for maximum hits (.071). The effect of the experimental group was 

highly significant (p<.001). The control H group attained the highest normalized FA value 

(Figure 35).  

Figure 36 shows the average normalized FA for the different blocks. The normalized FA 

declined significantly with each block (p<.001), indicating the possible existence of a learning 

effect. The confidence intervals were also reduced with each block, which could also indicate 

that the human decisions became progressively more uniform. Image complexity also had a 

highly significant effect as evidenced by the increase in the number of normalized FA that 

corresponded with the increase in image complexity (Figure 37).  
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Figure 35: Human normalized false alarm as a function of the experimental group. 
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Figure 36: Human normalized false alarm as a function of the block number. 
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Figure 37: Human normalized false alarm as a function of image complexity. 

 

6.4.3.4.1.2 Analysis with cooperation level and robot performance as independent variables 

for all cooperation levels except H. 

 

Table 22 shows the statistical output of the repeated measures analysis of variance 

performed on the experiment results.  
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Table 22: The repeated measures analysis of variance results. 

 DoF MS F p 

{1}Collaboration 1, 88 0.000 0.000 N.S. 

{2}Rewards 1, 88 0.036 1.248 N.S. 

{3}Robot quality 1, 88 0.415 14.339 0.000 

Collaboration*Rewards 1, 88 0.022 0.759 N.S. 

Collaboration*Robot quality 1, 88 0.000 0.001 N.S. 

Rewards*Robot quality 1, 88 0.016 0.544 N.S. 

Collaboration*Rewards*Robot quality 1, 88 0.009 0.304 N.S. 

{4}BLOCK 2, 176 0.075 6.979 0.001 

BLOCK*Collaboration 2, 176 0.002 0.140 N.S. 

BLOCK*Rewards 2, 176 0.002 0.213 N.S. 

BLOCK*Robot quality 2, 176 0.011 1.052 N.S. 

BLOCK*Collaboration*Rewards 2, 176 0.002 0.233 N.S. 

BLOCK*Collaboration*Robot quality 2, 176 0.006 0.515 N.S. 

BLOCK*Rewards*Robot quality 2, 176 0.006 0.518 N.S. 

4*1*2*3 2, 176 0.016 1.486 N.S. 

{5}COMPLEXITY 2, 176 0.063 17.577 0.000 

COMPLEXITY*Collaboration 2, 176 0.002 0.500 N.S. 

COMPLEXITY*Rewards 2, 176 0.001 0.257 N.S. 

COMPLEXITY*Robot quality 2, 176 0.051 14.187 0.000 

COMPLEXITY*Collaboration*Rewards 2, 176 0.009 2.505 0.085 

COMPLEXITY*Collaboration*Robot 

quality 
2, 176 0.001 0.173 N.S. 

COMPLEXITY*Rewards*Robot quality 2, 176 0.000 0.057 N.S. 

5*1*2*3 2, 176 0.001 0.167 N.S. 

BLOCK*COMPLEXITY 4, 352 0.046 18.905 0.000 

BLOCK*COMPLEXITY*Collaboration 4, 352 0.001 0.585 N.S. 

BLOCK*COMPLEXITY*Rewards 4, 352 0.002 0.818 N.S. 

BLOCK*COMPLEXITY*Robot quality 4, 352 0.031 12.790 0.000 

4*5*1*2 4, 352 0.007 2.836 0.024 

4*5*1*3 4, 352 0.001 0.350 N.S. 

4*5*2*3 4, 352 0.000 0.144 N.S. 

4*5*1*2*3 4, 352 0.001 0.426 N.S. 

 

The graph (Figure 38) indicates that increase in robot quality led to a corresponding 119% 

increase in the number of normalized FA, a result that was found to be highly significant. One 

possible explanation for this phenomenon could be that the 'low quality' robot marks large 

numbers of false alarms, leaving very few false alarm objects for the human.  

There was no significant difference between automation levels (HOR vs. HR). It appears 

that the automation level did not influence the number of normalized human false alarms that 

were not marked by the robot, and the difference in the number of normalized FA between the 

two automation levels was less than 0.4%. 
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The interaction between image complexity and robot quality produced a significant effect 

(Figure 39), as evidenced by the gradually increasing number of false alarms by the 'high 

quality' robot corresponding with the increasing image complexity. 

High Low

Robot quality

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

H
u
m

a
n
 F

A
 (

p
F

A
h
) 

/ 
im

a
g
e

 
Figure 38: Normalized human FA as a function of the robot quality. 
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Figure 39: Human normalized FA for the two robot qualities as a function of the image complexity. 

 

6.4.3.5 Analysis of d’h 

6.4.3.5.1 Analysis of d’ for objects that were marked by the robot. Here we can compute 

pHit and pFA for the human, and accordingly compute d’. The independent 

variables will be level of cooperation (all, except HO), robot performance, and 

rewards (combined over all levels of complexity and blocks). 
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The sensitivity parameter d' is a function of the hit and false alarm probabilities (chapter 

4). The probabilities are transferred into distribution standard deviation values (Z). When the 

FA probability is zero, its theoretical Z value is -∞ and the value of d' is ∞. In the experiment, 

only a few participants avoided marking any robot false alarms, resulting in a FA probability 

of 0. Since these results were achieved due to the finite number of robot FA and it is 

impossible to statistically analyze results with infinite values, for those few cases we 

determine the Z value to be -4 (in standard deviation units). The calculated FA probability for 

that value is 0.0000317, which can be regarded as zero for our purposes. The analysis was 

also performed to calculate the FA probability of Z values equal to -3 and -6 and showed 

similar results. 

The human sensitivity (d'h) in this section was calculated based on the results of the 

measured human hit and FA probability for objects that were already marked by the robot 

(pHrh and pFArh respectively). 

Table 23 shows the statistical output of the univariate tests of significance performed on 

the experiment results.  

Table 23: The univariate tests of significance results. 

 DoF MS F p 

Collaboration 1, 88 4.109 4.834 0.031 

Rewards 1, 88 7.176 8.443 0.005 

Robot quality 1, 88 5.241 6.166 0.015 

Collaboration*Rewards 1, 88 0.848 0.997 N.S. 

Collaboration*Robot quality 1, 88 3.647 4.291 0.041 

Rewards*Robot quality 1, 88 3.288 3.869 0.052 

Collaboration*Rewards*Robot 

quality 
1, 88 1.271 1.496 N.S. 

 

The sensitivity (d') decreased with the increase in the automation level (Figure 40). The 

sensitivity for the low automation level (HR; 2.9) was 17% higher than the sensitivity of the 

high automation level (HOR; 2.48). Both the probability of a human hit and false alarm of 

objects marked by the robot decreased with the increase in the automation level, but the 

probability of false alarm decreased more drastically. These results could indicate that the 

participants were more sensitive and paid more attention to the task and the robot marks in the 

low automation level (HR). 

The reward system had a significant effect on participant sensitivity (d'), as evidenced by 

the participant’s higher sensitivity under the maximum hit reward system relative to the 

minimum FA reward system (Figure 41). It could be that the participants were simply better 

able to confirm the robot hits as opposed to eliminate its false alarms. In a similar fashion, an 
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increase in participant sensitivity was noticed when aiming for target detection than for false 

alarm elimination. 
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Figure 40: The human sensitivity for objects marked by the robot as a function of the automation level. 
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Figure 41: The human sensitivity for objects marked by the robot as a function of the reward system. 

 

Figure 42 shows the influence of robot quality on human sensitivity. The human 

sensitivity for objects marked by the robot increases with the increase in robot quality. The 

human sensitivity for high robot quality was significantly increased by 19% (2.92) in 

comparison to the human sensitivity for low robot quality (2.45). The increase in robot quality 
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could be presented as an increase in robot sensitivity that, in turn, can increase human 

sensitivity. 
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Figure 42: The human sensitivity for objects marked by the robot as a function of robot quality. 

 

Table 24: Post-hoc comparisons between the automation level*rewards combinations. 

  HOR HOR HR HR 

  min FA max Hit min FA max Hit 

 human sensitivity 2.30 2.66 2.53 3.26 

HR Reward: max Hit 0.001 0.026 0.007  

 

Human sensitivity for both reward systems was higher at the low automation level (Figure 43) 

but human sensitivity in the maximum hit reward system was more influenced by the 

automation level than in the minimum FA reward system. 

A significant effect was produced by the interaction between automation level and robot 

quality. Figure 44 shows that for the 'high quality' robot human sensitivity is reduced with 

increasing automation level. Human sensitivity for the low automation level (3.2) and the 

high automation level (2.52) show a 32% reduction. Automation levels of the 'low quality' 

robot have no influence on human sensitivity (2.45). The results of post-hoc comparisons 

between the two automation levels and the two robot qualities show that there are significant 

differences between the automation levels of the 'high quality' robot (Table 25) and no 

significant differences between the automation levels of the 'low quality' robot. 

The effect of robot quality-reward system interaction (Figure 45) was marginally 

significant (p<.055). In the maximum hit reward system human sensitivity increased with the 



 90 

increase in robot quality. In the minimum FA reward system robot quality had no effect on 

human sensitivity. 
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Figure 43: The human sensitivity for objects marked by the robot as a function of the automation level 

and reward system. 

 
Table 25: Post-hoc comparisons between the automation level*robot quality combinations. 

  HOR HOR HR HR 

 Robot quality high low high low 

 Human sensitivity 2.52 2.44 3.32 2.47 

HOR High  N.S. 0.003 N.S. 

HOR Low N.S.  0.001 N.S. 

HR High 0.003 0.001  0.002 

HR Low N.S. N.S. 0.002  
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Figure 44: The human sensitivity for objects marked by the robot as a function of the automation level 

and robot quality. 
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Figure 45: The human sensitivity for objects marked by the robot as a function of the reward system and 

robot quality. 

 

6.4.3.6 Conclusions regarding cues from the robotic system 

Conclusions of the analysis of the human performances focus on the influences of level of 

cooperation, stimulus difficulty, learning, and strategy changes due to different rewards. 

The statistical analysis showed that the reward system has a marginally significant effect 

on the human hits of the robot marks (PHrh), a significant affect on the human hits of the 
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objects the robot did not mark (PHh), and the human sensitivity (d'h). The human hit rates, PHrh 

and PHh, of participants who were rewarded for maximum hits were higher than for the 

participants who were rewarded for minimum FA; likewise, the human sensitivity of 

participants who were rewarded for maximum hits was higher than for those who were 

rewarded for FA. It appears that the participants internalize the reward structure, whether it 

was to minimize the number of false alarms or to maximize the number of hits, and they focus 

their attention according to the reward. 

Robot quality has a significant influence on the human hits of the robot marks (PHrh), the 

human false alarms of the robot marks (PFArh), the human false alarms of the objects the robot 

did not mark (PFAh), and the human sensitivity. Increasing robot quality increased the system 

objective function score of the experiment. Increase in robot quality increases the values of 

PHrh, PFArh, PFAh and human sensitivity. It seems that during the experiment the participants 

perceived the robot quality and relied on the robot decisions when its quality was high. 

Additionally, although robot quality did not significantly effect the human hits of the objects 

the robot did not mark (PHh), at the low automation level (HR) a decrease in robot quality 

reduces PHh and the HOR collaboration level achieves the highest values of PHh. 

Image complexity significantly influenced the human hits and false alarms of the objects 

the robot did not mark (PHh and PFAh). Increases in the image complexity decrease PHh and 

increase PFAh. 

The automation level had a significant effect on the human hits and on the false alarms of 

the objects the robot marked (PHrh and PFArh). Increasing the automation level increases PHrh 

and PFArh. It seems that for the high automation levels the participant tends to accept the robot 

decisions. Furthermore, the human sensitivity of the participants who had the 'high quality' 

robot decreased with the increase in the automation level. This finding indicates that the 

increase in robot quality reduces both human control and human sensitivity. 

The block number had a significant effect on the number of human false alarms for 

objects the robot did not mark (PFAh). The values and the confidence intervals of PFAh 

decreased with the increase in block number. This suggests a learning effect. 
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7 DISCUSSION  
In this thesis, four collaboration levels based on Sheridan's levels of automation (1978) 

were defined in this thesis for a target recognition task of an integrated human-robot system. 

Though specific collaboration levels were defined for different types of human-robot systems 

and tasks in other studies, to the best of our knowledge no previous research dealt with 

collaboration levels for target recognition. Tsuji and Tanaka (2005) investigated a tracking 

task where the human and the machine act simultaneously. Bruemmer et al. (2005) and 

Hughes and Lewis (2005) developed different automation levels for a human-robot vehicle in 

an indoor exploration task. Graves and Czarnecki (2000) described a scale of five human-

robot interaction levels for a telerobotic behavior based system. Between these applications 

each collaboration level differs by nature, scale, structure, and number of levels, and it is unfit 

for and inapplicable to the present research. Only the manual and fully autonomous levels 

have similar characteristics since they consist of a single collaborator, and there is no 

cooperative activity. Furthermore, specific collaboration levels for the task and the specific 

type of integrated human-robot system investigated in this work were never structured or 

presented. Since physical platforms and sensors vary significantly from system to system 

(Edan and Nof, 2000) and also the task and the environment can differ for different cases, the 

collaboration levels must be well matched to the specific task and system in order to achieve 

good system performance.  

In addition, to the best of our knowledge, mathematical modeling of the collaboration 

levels and quantification of its influence on system performance has not yet been conducted. 

Graves and Czarnecki (2000) defined a general logical expression related to system behavior, 

but they did not define an explicit expression and hence, could not evaluate the influence of 

different collaboration levels on system performance. To investigate the different 

collaboration levels and their influence on system performance, an objective function was 

developed and a numerical analysis performed. The mathematical analysis indicated that the 

difference between the investigated collaboration levels that include both human and robot 

(defined as HR and HOR in this research) is expressed only in the human operational 

parameters related to time (tHh, tFAh, tHrh and tFArh). Hence, the only difference between the HR 

and the HOR collaboration levels is structured in their operational cost. Although it was 

defined that the required human decision time for target or non-target objects is equal in all 

cases, for the HR collaboration level the motoric time is added to the human decision time 

required to confirm a robot hit (tHrh) and in the HOR collaboration it is added to the human 

decision time required to reject a robot false alarm (tFArh). Since the time parameters only 
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appear in the operational cost part of the objective function expression (equations 10-11), 

when omitting the operational cost there is no difference between the HR and HOR 

collaboration levels – they become one collaboration level in the objective function. Although 

the actual operations in the HR and HOR collaboration levels are different, final system 

performance will be the same. This results from the objective function definitions and 

indicates the significance of the operational costs. 

The objective function integrates the system’s operational costs and detection 

performance measures, thereby resulting in a better estimation of system performance. Since 

the operational cost of each system is unique, different systems will result in different 

performances for the same task. Thus, the objective function must be fitted for a specific 

system to ensure evaluation accuracy.  

The objective function enables to rank and compare different systems. The influence of 

different human, robot, task, and environment parameters on system performance can be 

evaluated. However, in many cases some of the parameters are unknown a priori, such as 

target probability or human and robot sensitivities. These could be estimated according to 

previous data collected from similar environments, human and robot performances, or 

through calibration between withered forms of the objective function of an experiment. This 

is achievable by equalizing experimental results to the objective function score and extracting 

the unknown parameters according to the collaboration level and other known parameters. 

In this thesis a methodology to determine the best collaboration level was developed. It 

makes it possible to improve system performance when environmental conditions are known 

a priori by determining the optimal human and robot parameters and the best collaboration 

level. These developments enable adaptation of an integrated human-robot system to a 

specific task and environment.  

Extensive research was conducted in selecting the best performance measures and the 

best sensors in autonomous mobile robot systems. Different methods have been developed 

and implemented for binary parallel detection systems to optimize detection (Hall, 1992). 

Performance evaluation of sensory algorithms is usually based on either experiments in real 

environments or theoretical analysis (Brooks and Iyengar, 1998; HoseinNezhad et al., 2002; 

Luo and Kay, 1989; Ribo and Pinz, 2001). The first approach is problematic in unstructured 

and dynamic environments, since it is impossible to repeat experiments under identical 

conditions (Cohen, 2005). The second approach requires explicit assumptions concerning the 

nature of sensory information, a hard concept to implement since it is usually difficult to 

characterize sensory performance in unstructured environments (Cohen, 2005).  
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In our research we encountered similar questions concerning evaluation and optimization 

of human-robot system performance. We can optimize system performance by using the 

appropriate collaboration level, which influences the significance of the performance 

measures. For the H collaboration level, the robot performance measures are uncounted and 

vise versa in the R collaboration level. Each of the HR and HOR collaboration levels assign a 

different influence to the operational cost. Likewise, system performance and the best-fit 

collaboration level were evaluated by numerical and experimental analysis. 

Assigning the quantified task and environmental parameters and the defined human and 

robot sensitivity ranges to the objective function and the best collaboration level methodology 

enables effective and optimal system design, development of a simple robotic subsystem, 

reduction of system operational costs, and improved robustness and system performance. The 

methodology enables system designers to predict the performance of a developed system and 

to determine the best-fit collaboration levels a priori. 

Both the objective function and the methodology were developed assuming that all 

parameters are constant and do not change during task execution. This assumption is 

unrealistic since many of the parameters are expected to change with time and should be 

influenced by learning or fatigue effects. During the learning process the human must adjust 

to the environment, the task, and the system, his sensitivity and decision quality of the cutoff 

point will be relatively low resulting in poor performance. Likewise, fatigue or tediousness 

will also reduce human performance. The parameters can also change according to other 

parameters such as human modes or problems with robotic subsystem calibration. These 

phenomena are not considered in the current objective function and methodology. 

Investigation of these behaviors and expression of the objective function parameters as time 

dependant variables could result in a more accurate evaluation.  

Changing from one collaboration level to another, based on changes in the human, robot 

and environment parameters will enable the system to deal with more dynamic and complex 

conditions and to keep the system performance. However, dealing with this extension, 

requires consideration of all changing parameters. 

In addition, we assumed that there is no direct influence of the robot performance 

measures on the human performance measures and vise versa. In other words, low robot hit 

rate does not necessary cause low or high human hit rate. However, in realistic conditions 

where the robot actions are visible to the human, the robot performance (e.g., quality and 

reliability) can be evaluated by the human and influence his performance (Maltz and Shinar, 

2003). Our experimental results indicated that when the human estimates that robot 

performance is high, he will rely on the robot and will less question the robot decisions. 
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Due to the vast number of independent parameters and the interactions between the 

parameters, prediction of system performance and the best collaboration level is 

comprehensive and not obvious. In the presented research we demonstrated the use of the 

objective function and the methodology to determine the best collaboration level for a specific 

environment, task and system parameters through numerical analysis. This methodology 

could be expanded for other environments, tasks and systems and will result in different 

solutions. Changes in values of several parameters that interact such as probability of robot 

hit, probability of human hit of robot marks, target probability, payoff ratio, time and 

additional parameters will influence system performance and the best collaboration level in an 

unexpected manner. Hence, it is important to perform a numerical analysis of the objective 

function on the desired parameters to estimate system performance.  

Application of modified signal detection theory enabled to reduce the number of 

parameters and to enhance the researchers' control on the human and robot basic 

characteristics such as sensitivity and cutoff point (decision) on behalf of loosing control on 

each detection performance measures individually. For example, a change in the human 

sensitivity will change both human hit and false alarm rates. An increase of the robot cutoff 

point value will decrease the robot hit and false alarm rates and the ratio between them. 

Sensitivity analysis on the human, robot, environment and task parameters indicates that 

small changes in the optimal values can shift the best collaboration level from one to another. 

In dynamic realistic conditions, the control and sensors resolution and accuracy are low and 

the optimal values of the objective function parameters are unknown precisely and cannot be 

retained durably. This could cause a difference between the actual values and the expected 

values and change the actual system performances. In such cases a different collaboration 

level other than the best collaboration level determined by the optimal values can obtain better 

system performance. Since the actual values are unstable and distributed in the vicinity of the 

expected optimal values, an algorithm that will take into account the distribution of the value 

combined with the objective function and the methodology to determine the best collaboration 

could achieve better system performance for realistic cases. Instead of placing the expected 

optimal value in the objective function and the methodology, the mean of the actual values or 

the distribution of the actual values could be placed to achieve higher system performance. 

The objective function and the methodology must be modified in order to be able to account 

for data such as distribution or biased values. For instance if we find that the values of a 

specific parameter has a Gaussian distribution around its theoretical optimal value, and since 

the influence on the system performance is not symmetric, placing the specific distribution 
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will yield more accurate evaluation of the system performance and the best collaboration 

level. 

Experimental results indicated that although the participants’ performances were not 

optimal, they significantly reacted to the different robot, task and environmental parameters. 

Experimental results were consistent with the numerical analysis results. Both in the 

experiment and the numerical analysis an increase in robot quality, (i.e., increase in robot 

sensitivity), increased system performance (the final score) for all collaboration levels that 

included a robot, and increase in the payoff ratio reduced system performance for all 

collaboration levels. Similar results were obtained for the best collaboration level. Numerical 

analysis of the objective function excluding the operational cost showed that the integrated 

HR/HOR is the best collaboration level. In the experiment the best collaboration levels were 

found to be HOR and HR. In conclusion, the experimental results support qualitatively the 

objective function numerical analysis; the objective function and the methodology can predict 

system performance and the best collaboration level. 

The unstructured environment is characterized by environmental disturbances and fuzzy 

definitions of targets. This causes problems in quantification of the number of non-target 

objects or target probability in the experiment. Performance measures such as the probability 

of false alarms cannot be calculated. Hence, only part of the human and robot performance 

measures and the environmental parameters could be evaluated and compared to the 

numerical analysis. A method that can estimate the number of non-target objects or the target 

probability could enable full comparison between the numerical analysis of the objective 

function and experimental results and could pave the way for a system that could control 

robot performance. Moreover, this could provide the human with on-line feedback to reach 

optimal system performance. Development of advanced pattern recognition algorithms to 

determine the number of objects in unstructured environments is beyond the objective of this 

work. 
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8 CONCLUSIONS and FUTURE WORK 

8.1 Conclusions 

A comprehensive process was designed and undertaken to evaluate the influence of 

different collaboration levels on the performance of an integrated human-robot system for 

target recognition tasks in different cases. It includes the development of collaboration levels 

and an objective function to measure system performance. The objective function was 

evaluated using numerical and experimental analyses. 

The collaboration levels were designed for target recognition tasks in unstructured 

environments, and they were based on Sheridan’s (1978) ten levels of automation. Although 

the collaboration levels were adjusted for the specific system type and task, they were similar 

to other scale levels used in other systems and for other tasks (Bruemmer et al., 2005; Hughes 

and Lewis, 2005; Graves and Czarnecki, 2000). The collaboration levels enable the human 

operator to collaborate with the robot at four different levels, from manual to fully 

autonomous. This enables the operation by a human operator in accordance with the robot’s 

design to achieve optimal performance. It was found that the difference between the 

collaboration levels that include both human and robot (in this research these were defined as 

HR and HOR) is expressed only in the time parameters of the objective function. Therefore, 

omitting the operational cost from the objective function unites HR and HOR into one 

collaboration level. 

The objective function enables the determination of the expected value of system 

performance, given the characteristics of the human, the robot, the task, and the environment. 

It was defined as the weighted sum of the performance measures. The performance measures 

used in this research were similar to those used in other studies and included hit and false 

alarm rates (Maltz, 2000; Swet et al., 2000; Filippidis et al., 2000; Sun et al. 2004; Pei and 

Lai, 2001; Gao and Hinders, 2005; Liu and Haralick, 2002) and detection time (Steinfeld et 

al., 2006). The weights allow for the objective function to be adapted to different systems, 

tasks, and environments, to rank and compare different systems, and to analyze the influence 

of human, robot, task, and environment parameters, and different collaboration levels on 

system performance. A modified version of signal detection theory for a human-robot 

integrated system was applied to simplify and describe the objective function parameters 

through the human and robot basic characteristics (sensitivity and decision of cutoff point).  

The numerical analysis investigated the influence of the human and robot basic 

characteristics, the task and environment parameters, and different human-robot collaboration 

levels on the system objective function. Furthermore, it enabled determination of the optimal 
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human and robot basic characteristics and the best collaboration level for different task and 

environment parameters.  

Numerical analysis results indicate that the best system performance, the optimal 

performance measures values, and the best collaboration level depend on the task, the 

environment, human and robot parameters, and the system characteristics. Since the number 

of independent parameters is vast and, in addition, there are interactions between the 

parameters, the prediction of the system performance and the optimal solution is 

comprehensive and not obvious. However, it can be determined through investigation of the 

objective function. The findings indicate that for the tested cases H is never the best 

collaboration level for the optimal solution, probably due to its high operational cost and low 

hit rate relative to the other collaboration levels. Thus, collaboration of human and robot in 

target recognition tasks will always improve the optimal performance of a single human 

detector. In addition, for the optimal solution of the objective function including operational 

cost, the best collaboration level is R when robot sensitivity is higher than human sensitivity. 

Moreover, the overall system sensitivity never decreases beneath the robot sensitivity.  

The sensitivity analyses illustrate the influence of small variations, in the human and 

robot optimal values and in the environmental parameters, on the objective function and on 

the best collaboration level. Results indicate that small changes in the optimal values can 

cause shifts in the best collaboration levels from one to another but the shift is always to an 

adjacent level. A sensitivity analysis of the environmental target probability parameter 

showed that small changes in the optimal value can shift the best collaboration level from one 

to another and in some cases that shift leads directly to H. This finding can be exploited for 

the design and operation of integrated human-robot systems under dynamic and realistic 

conditions where the true value of the parameters is unknown and the resolution and accuracy 

are low, or in cases where the parameters are dynamic and drifting around their expected 

values. 

The experiments included a thorough investigation of the objective function via the 

different weights for the performance measures, the different collaboration levels, the various 

robot qualities, and assorted environments. Statistical analyses highlighted the importance of 

robot quality, collaboration level, and environment on the system performance, and the 

significance of the weighted human, robot, environmental, and performance measures on the 

best collaboration level. 

Experimental results indicated that although the participants` performances were not 

optimal, they reacted significantly to the different robot task and environment parameters, and 

their results are consistent with the results of the numerical analysis of the objective function 
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excluding the operational cost. Due to the unknown number of total objects, targets and non-

targets, only part of the human and robot performance measures and the environmental 

parameters could be evaluated and compared to the numerical analysis. 

Throughout the development, great care was taken to quantify the independent parameters 

and the results and to validate the theoretical findings with the experiment. The objective 

function was developed in such a way as to facilitate a comparison of different systems, 

environments, and tasks. 

The methodology developed can help analyze a priori the performance of an integrated 

human-robot system for target recognition tasks and for determining the best collaboration 

level for optimal performance. In addition, the research investigated the influence of different 

collaboration levels under various tasks, different human and robot parameters, and changing 

environmental conditions. The system performance can be simulated and adjusted to the task 

and the environment. The advantage of this method is that it can be conducted off-line and 

even in the absence of an actual system, and it allows the comprehensive survey of the 

influence of various parameters on system performance. System designers can use these 

methodologies to develop a well adapted, integrated human-robot system for target 

recognition tasks in unstructured environments. Furthermore, this methodology can be used to 

analyze system performance during the task performance, and to recommend the best 

collaboration and the human performance on-line.  

The limitations of the research are due to two factors. The first factor is the requirement for 

the human, robot, and environment parameters to be known a priori in order to achieve 

accurate estimation. In the absence of a priori data, prediction accuracy depends on the 

estimation quality of the parameters. The second factor is that in order to simplify the 

development of the objective function with signal detection theory, we assumed that the target 

and non-target objects are normal and with identical distributions. The variables that are 

influenced by the distribution type are the human and robot different hit and false alarm 

probabilities (equations 1, 3-8) and the value of the optimal s. When the S and N 

distributions are not normal, the probabilities will have to be recalculated according to the 

new distributions and equations 1, 3-8 will have to be modified to fit the new distributions 

instead of the normal distribution. However, the collaboration levels, the objective function 

formation, the methodology to determine the best collaboration level are not influenced by the 

S or N distribution type.  
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8.2 Future research 

Many research areas remain open for the future expansion of this work.  

Objective function 

The currently analyzed objective function consists of hit, false alarm, and 

operational cost elements. We propose the following points for future work on the 

objective function to fit it to more realistic cases: 

 Modeling of the various human decision times in the operational cost 

part according to signal detection theory. We assume that the time to 

detect depends on the cutoff point and the distance between the specific 

object distribution value and the cutoff point. The closer the object 

distribution value is to the cutoff point, the time to detect it will be 

longer. 

 Assimilating signal detection theory with different target and non-target 

distributions into the objective function. The target and non-target 

distributions should be fitted to the real distribution in realistic and 

specific unstructured environments. 

 Include time dependency of the objective function parameters to 

emulate learning and fatigue phenomena or other time dependant 

influences. The basic human characteristics will be described as time 

dependent variables based on the results of learning and fatigue 

experiments. The basic robot characteristics will be described as time 

dependant variables according to the mean time between calibrations 

and setup of the specific robotic subsystem.  

 Investigate the combined influence of small changes in the independent 

parameters. For example, the combined influence of small changes in 

both human and robot sensitivities.  

 

Methodology 

Currently the methodology determines the best collaboration level based on static 

conditions. We suggest:  

 Develop an algorithm that will consider the influence of small changes 

in the parameter values that was found in the sensitivity analysis 

according to a distribution function of the variation. Each parameter 

probably has its unique distribution function that is influenced by the 
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environment and the task. The distribution function of the parameters 

variation can be determined through experiments. 

 The methodology and the objective function parameters must be known 

a priori to accurately predict system performance and the best 

collaboration level. Hence, it is important to develop a model that 

predicts the environment parameters according to the statistical data of 

different tasks and environments. 

 Develop a methodology that will include dynamic shifting between 

collaboration levels to maintain maximum system performance despite 

changes in the parameter values during the task performance and a 

rule-based algorithm to shift between collaboration levels based on 

human, robot, task, and environmental parameters and limitations. 

 

Experiments 

In future research additional and comprehensive experiments are suggested: 

 Conducting an experiment to examine the learning and fatigue effects on both 

human and system performance. 

 Conducting an experimental research to asses all time variables. 

 An experiment for investigating the effect of shifting between collaboration 

levels should be conducted. Many questions can be asked concerning the shift 

manner: who decides on the shift, human, robot, or is it a collaborative 

decision? How many levels can be shifted at one time, what parameters should 

be considered in the shift and what should the frequencies of the shift be? 
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Appendix I: Transformation of the probability function 

from X to Z 
 

In order to describe the problem in standard deviation units rather than in the actual units that 

suits just the specific case, the probability functions are transformed from the actual units, X, 

to standard deviation units, Z. 
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Appendix II: Expression of Z as a function of β and d’ 
The standard deviation unit, Z, can be expressed by the likelihood ratio, β, between the signal 

and noise density functions in the cut off point x, and the distance between the means of the 

signal and noise distributions, which is the sensitivity parameter, d’. 
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Appendix III: Development of optimal βs for human-robot 

systems without operational costs 
 

In human-robot systems there are three βs: one β of the robot (βr) and two βs of the human, 

the first β for the already detected object by the robot (βrh) and the second for the undetected 

objects (βh). 
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The human optimal βs for human robot systems are functions of the optimal β of a single 

detector system (which depends on the payoff values) and the hit and false alarm probabilities 

of the robot in a human-robot system case. The hit and false alarm probabilities of the robot 

are determined by the β and d’ of the robot itself (expressed in Z of the robot). 
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Appendix IV: Human optimal hit and false alarm in 

human-robot systems 
 

Description of the optimal hit and false alarm probabilities of the human according to ZSr of 

the robot. 
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Appendix V: PAPER: Human-robot collaboration for 

improved target recognition of agricultural 

robots 
By 

 

Avital Bechar and Yael Edan 

 

ABSTRACT 

Automatic target recognition in agricultural harvesting robots is characterized by low 

detection rates and high false alarm rates due to the unstructured nature of both the 

environment and the objects.  To improve detection human-robot collaboration levels were 

defined and implemented. The collaboration level is defined as the level of system autonomy 

or the level at which the human operator (HO) interacts with the system. Experimental results 

on images taken in the field indicate that collaboration of HO and robot increases detection 

and reduces the time required for detection. 

 

1. INTRODUCTION 

 The advent of agricultural robots is the potential of raising the quality of the fresh 

produce, lowering production costs and reducing the drudgery of manual labor (Edan, 1999). 

Despite the tremendous amount of robotic applications in industry, very few robots are 

operational in agriculture production. 

 Robots perform well in industrial environments where working conditions are 

somehow constant, structured and predictable. Unstructured environments such as agriculture 

are characterized by rapid changes in time and space. The terrain, soil, vegetation landscape, 

visibility, illumination and other atmospheric conditions vary in rates of seconds to months in 

time and by meters in space. Developing a robot for the agricultural environment is a difficult 

task because of the unpredictable location of targets that are difficult to locate (due to the 

natural variability in size, shape, color and texture) and since the terrain, the landscape, the 

atmospheric conditions and other environment parameters are unstructured, uneven and 

continuously change.  

Although technological feasibility of many agricultural robots has been proven, 

commercial application of robots in complex agriculture applications is still unavailable. The 

main limiting factors are production inefficiencies and lack of economic justification (Edan, 

1999). Production inefficiency is caused by problems in fruit identification (75-85%), low 

cycle times of 3-4 seconds per fruit and the inability to autonomously deal with obstacles. To 

overcome the complex agricultural environment, the robotic system must be complex and 

robust resulting in a costly system. 

  The main problem in fruit recognition is due to shading, occlusion and variations in 

the fruit properties and changing illuminations properties. Several technologies for fruit 

detection have been explored, including vision (Sevila & Baylou, 1991), infra-red (Dobrusin 

et al., 1992), and structured light (Benady et al., 1992; Yamashita and Kondo, 1992), but with 

each of these techniques only 85% of the fruits were identified (Edan, 1999). Introducing a 

Human-Operator (HO) into the system can help improve its performance and simplify the 

robotic system (Kirlik et al., 1993; Ceres et al., 1998; Khadraoui et al., 1998; Sidenbladh et 

al., 1999; Itoh et al., 2000).  

 The objective of the research was to define and implement human-robot collaboration 

levels for target recognition in agricultural environments. The collaboration level is defined as 

the level of system autonomy or the level at which the human operator (HO) interacts with the 

system. To evaluate the proposed collaboration levels an experiment was performed on 

images taken by a robotic melon harvester.  
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2. HUMAN-ROBOT COLLABORATION LEVELS 

  Four basic levels for HO-Robot collaboration were defined, implemented, 

tested and evaluated. The collaboration levels were defined corresponding to the four major 

degrees of autonomy in multi-target recognition tasks developed by Sheridan’s (1978) scale 

of “action selection and automation of decision”: i) HO: The HO detects and marks the 

desired target solely, compatible to level 1 in Sheridan’s scale; ii) HO-Rr: The HO marks 

targets, aided by recommendations from an automatic detection algorithm, i.e., the targets are 

automatically marked by a robot detection algorithm, the HO acknowledges the robot true 

detections, ignores the false detections and marks the targets missed by the robot, this level is 

compatible to levels 3-4 in Sheridan’s scale; iii) HO-R: targets are identified automatically by 

the robot detection algorithm; the HO assignment is to cancel the false detections and mark 

the targets missed by the robot system, compatible to levels 5-7 in Sheridan scale;  and iv) R: 

the targets are marked automatically by the system, compatible to level 10 in Sheridan’s scale. 

 

3. METHODOLOGY 

3.1 Experimental Design 

 The experimental setup consisted of a Pentium-III computer, Philips 15” touch screen 

and Matlab 5.2 software for image processing, simulation of the HO-Robot system and data 

acquisition. The experiment consisted of three sets corresponding to the different HO-Robot 

collaboration levels, HO, HO-Rr and HO-R. Eleven engineers (males and females) aged 26-

33 participated in the experiment. Each subject, in each set was explained and trained on three 

images before tested. Each set was initiated by five additional randomly selected images. The 

training images and these five images were not considered in the data analysis. For each set, 

the sequence of images was determined randomly and displayed for all the subjects in the 

same random order. The sequence of the sets was determined randomly for each subject.  

 

3.2 Experimental Setup 

 Real images were taken in the field from a video camera mounted on a robotic melon 

harvester (Edan et al., 1996) moving along a melon row. Singulated melon images on the 

screen as seen from a camera mounted vertically on the vehicle, facing the ground in the 

middle of the row were manually selected. The following criteria were defined for target 

selection: i) melon color is yellow to orange in the majority of the visible area; and, ii) no 

visual damage is observed on the melon. Ninety images were manually classified by a panel 

of two into three complexity levels and saved into a database. Complexity was defined based 

on the visibility, contrast, and number of objects in each image. The panel also determined the 

total number of melons in each image and this served as the reference for the actual number of 

melons. For each complexity level the images were randomly divided into the three sets, 

resulting in thirty images for each set with ten images for each complexity level. The number 

of melons in each set was approximately 50. The automatic detection algorithm for melon 

detection (corresponding to the R collaboration level) was based on an algorithm developed 

by Bechar et al. (2000).  

 Images (Fig. 1) were displayed on the screen in a random order. In the first three sets 

(the HO strategies) the images were displayed on the screen and the HO detected and marked 

melons suitable for harvest. The HO marked the melons and scrolled to the next image using 

a touch screen by pressing the melon location or buttons on the screen. In the R strategy, all 

90 images were analyzed by the image processing algorithm solely.  
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Figure A-46: Screen display in the HO-Rr experiment as viewed by the HO (original image in color). 1 - 

signed with Rr, 2 – signed with HO cross. 

 

3.3 Performance Measurements 

 The following parameters were automatically measured and acquired during the 

experiment: the number of true melons in each image, the number of melons detected / the 

number of false detections by the HO and the robot, the time and coordinates of each HO 

operation and the type of operation (e.g., marking melons, unmarking melons, next image). 

 The performance measures calculated for each collaboration level included the 

number of true and false detections of the HO and the robot, and time per image. 

 Comparison between the collaboration levels was calculated separately for each 

performance measure using the statistical t-test for a significance of =0.1.  

 

4. RESULTS AND DISSCUSSION 

 The average time per set for the HO and the HO-Rr strategies was 179 and 180 

seconds respectively (Fig. 2) with no significant statistical difference.  

The average time for the HO-R strategy was 20% shorter with significant statistical 

difference (=0.1). 

 The automatic detection algorithm (R) yielded 80% true detections (Fig. 3) with 8% 

false detections of the total number of melons (Fig. 4). Highest detection was achieved for the 

HO-Rr strategy (94.1% with S.D of 4%). The HO collaboration level resulted in the lowest 

detection percentage (90.6  3.9%). Collaboration between HO and robot significantly 

increases detection percentages of the HO by almost 4% (HO-R), (=0.1). 

 

 

1 

1 
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Figure A-47: Average time per set for the three HO collaboration levels (30 images with a total number of 

50 melons). The different letters represent different populations according to 90% significance of 

difference. 
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Figure A-48: True and false detection percentages. The error bars represent the standard deviation. The 

different letters represent different populations according to 90% significance of difference. 
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Figure A-49: True and false detection percentages. The error bars represent the standard deviation. The 

different letters represent different populations according to 90% significance of difference. 

 

 Best detection results for the easy and medium complexity levels were achieved by the 

HO-Rr strategy (Fig. 5: 100% and 97.5% respectively). Best detection results for the difficult 

complexity level were achieved in the HO-R strategy (87.5%). Detection percentage reduces 

as the complexity of the image increases. However, this decrease is much more rapid in the 

HO collaboration level (from 95.7% in the easy level to 80.7% in the difficult level). When 

the HO assists with the robot, detection percentage is improved by 4.5% - 7% as compare to 

the HO alone and by 8% - 20% as compared to the robot alone. 

 

 

5. CONCLUSIONS AND SUMMARY 

 Four different human-robot collaboration levels were proposed and developed for a 

target recognition task. Collaboration of HO and robot increases detection by 4% when 

compared to a human operator alone (HO) and by 14% when compared to a fully autonomous 

system. This results in high detection rates (average of 94% and up to 100%) and can help 

overcome the limitations of full autonomous systems, in which detection success is relatively 

lower (75-85% on average).  

 In addition, when compared to the HO alone, detection times of integrated systems are 

reduced by 20%. Typical robotic harvesting rates are assumed to be 2s/fruit. Although this is 

better than manual picking rates (assumed to be around 10s/fruit) economic analysis indicates 

that even if the cost of manual labor increases by 50% the development cost will just break 

even (Edan, 1999). However, by harvesting with a robot the quality of the fruit harvested is 

improved as compared to manual picking  (Edan, 1999). In addition, if due to technological 

developments the picking and production efficiencies increase, agricultural robots might be 

the harvesting machines of the future. Integration of a human operator that works together 

with the robot harvester is one way to achieve this in parallel to decreasing system complexity 

thereby further enhancing economic feasibility. 
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 The best collaboration method depends on image complexity and the human operator 

performance. Future underway research is aimed at developing an algorithm to automatically 

select the best collaboration level (Bechar, 2002) since environmental conditions, visibility 

parameters and human performance continuously change.  However, the adjustment required 

from the human operator to switch to a new collaboration level must also be considered. The 

exact switching time (to be determined automatically by the algorithm) must therefore aim to 

provide optimal performance of the whole system including transitions. 
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Figure A-50: Melon detection percentages for different complexity levels. The error bars represent the 

standard deviation. 
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Appendix VI: Analysis of Non Optimal Cases 
 

Analysis of the objective function, VIs, was performed for i) the robot likelihood ratio, βr, ii) 

the human likelihood ratio of targets the robot already detected, βrh, and iii) human likelihood 

ratio of targets the robot did not detect, βh. The analysis was performed on different target 

probability conditions, Ps, different human and robot sensitivities, d'h and d'r respectively and 

different payoff value ratio, VAR. 

 

10.1.1 Analysis of βh and βrh 

The parameters in the analysis were determined to be: N=1000 objects; VH=50; VAR=-1 (and 

therefore VFA=-50); VC=-2 and Vt=-2000 hr-1. The human sensitivity was set to d'h=2 and the 

robot sensitivity was set to d'r=2. The target probability was set to Ps=0.5. The decision time 

for all human time parameters was determined to be tD=5 s/object and the human motoric time 

was set to tM=2 s/(detected object). The robot time was set to tr=0.01 s/object. The logarithm 

of the robot likelihood ratio, βr, was set to -2. 

 

HO collaboration level 

Figure A-51 shows the HO hit probability for different human sensitivities (d'h) and human 

cutoff points (βh). The results indicate that the probability for hit increase with increase in the 

human sensitivity and with decrease in the human likelihood ratio. 
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Figure A-51: Human hit probability. 

 

The task time, ts, of the HO collaboration level is increased with the decrease in the logarithm 

of the likelihood ratio, βh. The task time is increased with the increase in the human sensitivity 
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when βh is negative and increased with the decease in the human sensitivity when βh is 

positive. When βh is equal to zero the human sensitivity has no influence on the task time 

(Figure A-52). 
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Figure A-52: HO task time.  

 

Figure A-53 shows the Objective function for HO collaboration level versus the likelihood 

ratio, βh, and the human sensitivity, d'h. For the entire range the system objective function 

score in increased with the increase in the human sensitivity. The maximum objective 

function score achieved for positive and small βh values. 
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Figure A-53: Objective function for HO collaboration level. 
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The value of the robot likelihood ratio, βr, have no influence of the system performance, the 

task time, the probability of hit and the objective function score in the HO collaboration level. 

 

HO-Rr collaboration level 

Figure A-54 shows the hit probability for different human likelihood ratio of targets the robot 

already detected, βrh, and human likelihood ratio of targets the robot did not detect, βh. The 

results indicate that the probability for hit increase with decrease of βrh, nevertheless the value 

of βh have only little influence on the probability of hit. 
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Figure A-54: Hit probability for HO-Rr collaboration level. 

 

The task time, ts, of the HO-Rr collaboration level is increased with the decrease in the 

likelihood ratio, βh and βrh. However, positive values of the logarithm of βh have small effect 

on the task time (Figure A-55). This occurs since for high βh values the influence of the 

human is reduced, the number of marked objects is reduced and therefore the time reduces. 

This phenomenon does not happen for the βrh since this parameter is linked to the robot 

likelihood ratio, βr, which in this case it logarithm is negative. 

Figure A-56 show the objective function score for different βh, and βrh values. The objective 

function score increase with the increase in the βh values. Although, for positive values of the 

logarithm of βh the effect on the objective function score is small. Analysis of the βh 

parameter indicates that the maximum objective function score achieved for positive small βrh 

values. The global maximum of the system objective function for this case exist for the 

highest value of βh and positive small βrh values. 
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Figure A-55: HO-Rr task time. 
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Figure A-56: Objective function for HO-Rr collaboration level. 

 

HO-R collaboration level 

The difference between the HO-Rr and the HO-R collaboration levels appear in the 

operational cost part, therefore the probability of hit will be identical to the HO-Rr 

collaboration level as shown in Figure A-54. The task time, ts, of the HO-R collaboration 

level is increased with the decrease in the likelihood ratio, βh and the increase in βrh. However, 

positive values of the logarithm of βh have little effect on the task time (Figure A-57). This 
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occurs since for high βh values the influence of the human is reduced, the number of marked 

objects is reduced and therefore the task time reduces. This phenomenon does not happen for 

the βrh since this parameter is linked to the robot likelihood ratio, βr, which in this case its 

logarithm, is negative and it influence is significant. There is an opposite influence of the βrh 

on the task time for the HO-Rr and HO-R collaboration levels due to the nature of the 

collaboration level. In the HO-Rr collaboration level the human mark each robot target he 

identify as a target and therefore the task time increase with the increase in the βrh. In the HO-

R collaboration level the human mark each robot target he identify as a false target and 

therefore the task time increase with the decrease in the βrh. 
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Figure A-57: HO-R task time. 

 

Figure A-58 shows the objective function score for different βh, and βrh values. The objective 

function score increase with the increase in the βh values. Although, for positive values of the 

logarithm of βh the effect on the objective function score is small. Analysis of the βh 

parameter indicates that the maximum objective function score achieved for positive small βrh 

values. The global maximum of the system objective function for this case exist for the 

highest value of βh and positive small βrh values. 
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Figure A-58: Objective function for HO-R collaboration level. 

 

Best Collaboration Level 

 

Figure A-59 shows the objective function score of all four collaboration levels. Each surface 

represents different collaboration level. The surface created from the intersection of all four 

collaboration level surfaces represents the maximum objective function score for each βh and 

βrh combination (Figure A-59 and Figure A-60). The R collaboration level surface is normal 

to the z axis since this collaboration level is not influence by βh or βrh. The HO collaboration 

level is not influenced by βrh and there for it surface changed only as a function of βh. 
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Figure A-59: the objective function for the four collaboration levels. HO – blue, HO-Rr – green, HO-R 

yellow and R – red. 
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Figure A-60: Maximum objective function score. 

 

 

The collaboration level which achieved the highest score in the system objective function, for 

each βh and βrh is the best collaboration value for those combinations. Figure A-61 shows a 

best collaboration level map for different βh and βrh. Each zone is dominated by a single 

collaboration level.  

In the given case, each of the four collaboration levels achieves best results in different zone. 

There are coordinates which the best collaboration level changes from R to HO and vise versa 

without transferring through the intermediate HO-R or HO-Rr collaboration levels. This 

example shows us that there are cases that the best collaboration level could be solely manual 

or autonomous. Different task objectives and different system objective function properties 

will produce different best collaboration maps. 
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Figure A-61: Best collaboration level map for different βh and βrh values. HO – blue, HO-Rr – green, HO-

R yellow and R – red. 
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Figure A-62 shows the maximum objective function score for different βh, and βrh values as a 

combination of all four collaboration levels. The highest score achieved in the HO-R 

collaboration level for high βh and βrh value of small negative. 
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Figure A-62: System objective function score for best collaboration level. 

 

10.1.2 Analysis of βr 

The parameters in the analysis were determined to be: N=1000 objects; VH=50; VAR=-1 (and 

therefore VFA=-50); VC=-2 and Vt=-2000 hr-1. The human sensitivity was set to d'h=2 and the 

robot sensitivity was set to d'r=2. The target probability was set to Ps=0.5. The decision time 

for all human time parameters was determined to be tD=5 s/object and the human motorial 

time was set to tM=2 s/(detected object). The robot time was set to tr=0.01 s/object.  

 

R collaboration level 

Figure A-63 shows the R objective function score for different robot sensitivities (d'r) and 

robot cutoff points (βr). The results indicate that the objective function score increase with 

increase in the robot sensitivity. The maximum score for each robot sensitivity appears for a 

very small positive value of the logarithm of βr. 
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Figure A-63: Objective function for R collaboration level. 

 

HO-Rr collaboration level 

Figure A-64 shows the probability of hit in the HO-Rr collaboration level. For very small 

values of the logarithm of βr there is no influence of the βh on the hit probability which 

increase with the decrease in the value of the logarithm of βrh. With the increase in the value 

of βr the influence of βh increase and the influence of βrh decrease on the probability of hit. 

The increase in the value of the logarithm of βr reduces the "weight" of the robot in the system 

and reduces the robot probability for hit and therefore the influence of βrh on the probability 

on hit, which depands on βr, reduced. 

 

Figure A-65 shows the task time in the HO-Rr collaboration level. For very small values of 

the logarithm of βr there is little influence of the βh on the task time. The task time increases 

with the decrease in the value of the logarithm of βrh. With the increase in the value of βr the 

influence of βh increase and the influence of βrh decrease on the task time. 

 

Figure A-66 shows the system objective function score in the HO-Rr collaboration level. For 

very small values of the logarithm of βr, the objective function score increase with the 

increase in the value of βh. The maximum objective function score achieved for negative 

small values of the logarithm of βrh and the influence of βh is more dominant than of βrh. For 

high values of the logarithm of βr, the objective function score increase with the decrease in 

the value of βrh. The maximum objective function score achieved for positive small values of 

the logarithm of βh and the influence of βrh is more dominant than of βrh. the objective 

function score achieve its global maximum for value of the logarithm of βr which is positive 

and close to zero. 
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Figure A-64: Probability of hit for HO-Rr collaboration level. 
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Figure A-65: HO-Rr task time. 
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Figure A-66: Objective function for HO-Rr collaboration level. 
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HO-R collaboration level 

Figure A-67 shows the task time in the HO-R collaboration level. For very small values of the 

logarithm of βr there is little influence of the βh on the task time. The task time increases with 

the increase in the value of the logarithm of βrh. With the increase in the value of βr the 

influence of βh increase and the influence of βrh decrease on the task time, and the task time 

increase with the decrease in the value of βh. The increase in the value of the logarithm of βr 

reduces the "weight" of the robot in the system and reduces the number of marked objects by 

the robot and therefore the influence of βrh on the task time, which depends on βr, reduced. 

 

 

Figure A-68 shows the system objective function score in the HO-R collaboration level. For 

very small values of the logarithm of βr, the objective function score increase with the 

increase in the value of βh. The maximum objective function score achieved for negative 

small values of the logarithm of βrh and the influence of βh is more dominant than of βrh. For 

high values of the logarithm of βr, the objective function score increase with the decrease in 

the value of βrh. The maximum objective function score achieved for positive small values of 

the logarithm of βh and the influence of βrh is more dominant than of βrh. The objective 

function score achieve its global maximum for value of the logarithm of βr which is negative 

and close to zero. 
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Figure A-67: HO-R collaboration level task time. 
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Figure A-68: Objective function for HO-R collaboration level. 
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Best Collaboration Level 

 

The collaboration level which achieved the highest score in the system objective function, for 

each βh and βrh is the best collaboration value for those combinations. Figure A-69 shows a 

best collaboration level map for different βh and βrh and for different βr. Each zone is 

dominated by a single collaboration level. The R collaboration level is dominant in most of 

the area when the value of the logarithm of βr is around zero. The HO-R collaboration level is 

dominant in part of the area that the value of the logarithm of βrh is negative in negative and 

positive values of the logarithm of βr. The HO-Rr collaboration level is dominant in small part 

of the area that the value of the logarithm of βrh is positive in negative and positive values of 

the logarithm of βr. The HO collaboration level is dominant in part of the area that the value 

of the logarithm of βh is around zero in negative and positive values of the logarithm of βr. 

 

Figure A-70 shows the maximum objective function score for different βh, βrh and βr values as 

a combination of all four collaboration levels. Each value of βr creates different pattern which 

depends on the best collaboration level map.  
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Figure A-69: Best collaboration level. 
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Figure A-70: Objective function. 
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Conclusions 

In the HO collaboration level in order to increase the probability of hit the value of the 

likelihood ratio βh has to be decreased and the human sensitivity has to be increased. The 

objective function score increase with the increase in the human sensitivity but for each 

human sensitivity there is an optimal βh of the maximum objective function score. 

In the R collaboration level in order to increase the probability of hit the value of the 

likelihood ratio βr has to be decreased and the robot sensitivity has to be increased. The 

objective function score increase with the increase in the robot sensitivity but for each robot 

sensitivity there is an optimal βr of the maximum objective function score. 

The probability of hit is the same for the HO-Rr and HO-R collaboration levels. The increase 

in βr will increase influence of βrh and reduce the influence of βh on the probability of hit and 

the task time for both HO-Rr and HO-R collaboration levels. For the objective function score, 

the increase in the value of βr will reduce the optimal value of βh and βrh. 

The best collaboration level for βr of around zero is the R collaboration level and it is 

dominating most of the area. An Increase or decrease in βr will decrease the zone in which the 

R collaboration level is the best collaboration level and the dominating zone of all other 

collaboration levels will increase. For high values of βr, which represents small involvement 

of the robot in the detection process, the best collaboration level in most of the area is the HO-

R. 

 

10.1.3 Analysis of Ps 

The target probability, Ps, represent the environment and sensors characteristics. High target 

probability represents environments with high number of objects that can be observed by the 

system sensors. Low target probability represents environments with low number of objects 

that can be observed by the system sensors. The parameters in the analysis were determined to 

be: N=1000 objects; VH=50; VAR=-1 (and therefore VFA=-50); VC=-2 and Vt=-2000 hr-1. The 

human sensitivity was set to d'h=2 and the robot sensitivity was set to d'r=2. The decision time 

for all human time parameters was determined to be tD=5 s/object and the human motoric time 

was set to tM=2 s/(detected object). The robot time was set to tr=0.01 s/object. 

HO collaboration level 

The HO probability of hit is not influence by the target probability, Ps, and it is identical to the 

probability of hit that shown in Figure A-51. 

Figure A-71 shows the task time as a function of the human sensitivity and human likelihood 

ratios, βh, for different target probabilities (Ps = 0.2, 0.5, 0.8). For all target probability values 

the task time increase with the decrease in the value of the logarithm of βh due to the increase 

in the hit and false alarms marks. For each target probability, there is a specific value of the 

logarithm of βh were above it the task time is increasing with the increase in the human 

sensitivity and beneath it the task time is decreasing with the increase in the human 

sensitivity. This specific value is decreasing with the increase in the target probability. At the 

proximity of the specific value, the influence of the human sensitivity on the task time is 

minor. The specific value of the logarithm of βh is zero for target probability of 0.5. For target 

probabilities lower than 0.5, the task time is decreasing rapidly with the increase in βh until βh 

reaches the specific value. After passing the specific value the task time decrease moderate. 

For target probabilities higher than 0.5, the task time is decreasing moderate with the increase 

in βh until βh reaches the specific value. After passing the specific value the task time decrease 

sharply. 
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Figure A-71: Task time. 
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Figure A-72 shows the objective function score as a function of the human sensitivity and 

human likelihood ratios, βh, for different target probabilities (Ps = 0.2, 0.5, 0.8). The objective 

function score increase with the increase in the target probability since the number of targets 

increase. For all target probability values, the objective function score increase with the 

increase in the human sensitivity. The value of βh of the objective function maximum score is 

decreasing with the increase in the target probability for all human sensitivities. 
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Figure A-72: Objective function. 
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R collaboration level 

The same phenomena that were found for the objective function behavior in the HO 

collaboration level are shown in the R collaboration level. 

The objective function score increase with the increase in the target probability (Figure A-73). 

For all target probability values, the objective function score increase with the increase in the 

robot sensitivity. The value of βr of the objective function maximum score is decreasing with 

the increase in the target probability for all robot sensitivities. 
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Figure A-73: objective function. 

 

HO-Rr collaboration level 

The task time of the HO-Rr collaboration level decrease with the increase in the values of the 

logarithm of βh and βrh (Figure A-74). The increase in the value of the logarithm of βr reduces 

the influence of the values of βrh on the task time since the increase in βr reduces the number 

of object marked by the robot and therefore the number of object that were confirmed by the 

human. The increase in the target probability will increase the number of objects marked by 

the system and therefore increase the task time. In addition high target probability magnify 

the influence of the above parameters and the changes of the above   

 

Increase in target probability will increase the objective function score due to the increase in 

the number of marked objects by the entire system (Figure A-75). The values of βh and βrh of 

the maximum objective function score is reduced with reduce in the target probability. For 

low βr values the increase of the target probability will have stronger effect on the value of βrh 

than βh and vise versa for high values of βr. High values of βr have less weight on the 

objective function score and therefore βrh which is linked to βr is less influenced. 
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Figure A-74: Task time. 
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Figure A-75: Objective function. 
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HO-R collaboration level 

 

The same effects that were observed in the HO-Rr collaboration level are appears in the HO-R 

collaboration level. 

The task time of the HO-R collaboration level decrease with the increase in the values of the 

logarithm of βh and βrh (Figure A-76). The increase in the value of the logarithm of βr reduces 

the influence of the values of βrh on the task time since the increase in βr reduces the number 

of object marked by the robot and therefore the number of object that were confirmed by the 

human. The increase in the target probability will increase the number of objects marked by 

the system and therefore increase the task time. In addition high target probability magnify 

the influence of the above parameters and the changes of the above   

 

Increase in target probability will increase the objective function score due to the increase in 

the number of marked objects by the entire system (Figure A-77). The values of βh and βrh of 

the maximum objective function score is reduced with reduce in the target probability. For 

low βr values the increase of the target probability will have stronger effect on the value of βrh 

than βh and vise versa for high values of βr. High values of βr have less weight on the 

objective function score and therefore βrh which is linked to βr is less influenced. 

 

 

Best Collaboration Level 

Figure A-78 shows a best collaboration level map for different βh, βrh, for βr equal -2 (left 

column), 0 (middle column) and +2 (right column) and for target probability equal to 0.2 

(upper row), 0.5 (middle row) and 0.8 (lower row).  

In most cases the increase in target probability will not drastically change the domination 

zones of the different collaboration levels, and the highest objective function score will be 

achieved by the same collaboration level. However, the values of βh and βrh of the maximum 

score will become smaller. A change in the domination zone of the collaboration levels and in 

the collaboration level which achieve the highest score will occur in cases that the objective 

function score of several collaboration levels are similar and the changes in the objective 

function score resulting by the change in the target probability can drastically change the ratio 

between them. 

Figure A-79 shows the maximum objective function score as a combination of all four 

collaboration levels for different βh, βrh for βr equal -2 (left column), 0 (middle column) and 

+2 (right column) and for target probability equal to 0.2 (upper row), 0.5 (middle row) and 0.8 

(lower row).  

Each value of βr creates different pattern which depends on the best collaboration level map. 

The objective function score increase with the increase in target probability. 
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Figure A-76: Task time. 
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Conclusions 

The probability of hit is not influence by the target probability, Ps. In the HO and R 

collaboration level, the value of the critical βh that the human or robot sensitivity has no 

influence on the task time is decreased with the increase in the target probability. The 

objective function score increase with the increase in the target probability and the optimal βh 

and βr of the maximum score, decrease with the increase in target probability. 

For HO-Rr and HO-R collaboration levels the target probability has similar influence on the 

task time and the objective function score. The task time increase with the increase of the 

target probability and it became more affected by the value of βrh and less affected by the 

value of βh. the objective function score increase with the increase in the target probability 

and the optimal βh and βh of the maximum score decreased with the increase in the target 

probability. 

 

10.1.4 Analysis of d'r 

The robot sensitivity, d'r, indicates the robot ability to distinguish between true targets (signal) 

and false targets (noise). The parameters in the analysis were determined to be: N=1000 

objects; VH=50; VAR=-1 (and therefore VFA=-50); VC=-2 and Vt=-2000 hr-1. The human 

sensitivity was set to d'h=2. The target probability was set to Ps=0.5. The decision time for all 

human time parameters was determined to be tD=5 s/object and the human motoric time was 

set to tM=2 s/(detected object). The robot time was set to tr=0.01 s/object.  

Since in the HO collaboration the robot is not involved in the task execution, the robot 

sensitivity has no influence on the human performance. 

The robot sensitivity influence the objective function score in the R collaboration level is 

shown in chapter 3.2.1 and figure 30 

HO-Rr collaboration level 

Figure A-80 shows system probability for hit for different βh, βrh, for βr equal -2 (left column), 

0 (middle column) and +2 (right column) and for robot sensitivity equal to 1 (upper row), 2 

(middle row) and 3 (lower row). The robot sensitivity has little influence on the system 

probability of hit for low values of βr since in low βr values the robot probability of hit is close 

to 1 for all robot sensitivities. For high values of βr the low robot sensitivity yield low robot 

hit probability thus, βrh has less effect on the system performance, however the high robot 

sensitivity yield high robot hit probability, most of the targets are marked by the robot and 

therefore βrh has grate effect on the system performance and βh has less influence of the 

system probability of hit. 

Although the task time is effected from the human performance, it is also influenced by the 

robot sensitivity since it affects the human performance. The task time increase with the 

decrease in βh and βrh. For low βr values, the influence of βh increase with increase in robot 

sensitivity (Figure A-81). For high βr values, the influence of βrh increase with increase in 

robot sensitivity. 

Figure A-82 shows the objective function score for different robot sensitivities. The system 

objective function score increase with the increase in the robot sensitivity. For low βr values, 

the βrh value of the maximum score reduces with the increase of the robot sensitivity. For high 

βr values, the βh value of the maximum score reduces with the increase of the robot 

sensitivity.  
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Figure A-80: Probability of hit. 
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Figure A-81: Task time. 
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Figure A-82: Objective function. 
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HO-R collaboration level 

Although the task time is effected from the human performance, it is also influenced from the 

robot sensitivity since it affects the human performance. In the HO-R collaboration level the 

task time increase with the decrease in βh and the increase in βrh. For low βr values, the 

influence of βh increase with increase in robot sensitivity (Figure A-83). For high βr values, 

the influence of βrh increase with increase in robot sensitivity. 

Figure A-84 shows the objective function score for different robot sensitivities. The system 

objective function score increase with the increase in the robot sensitivity. For low βr values, 

the βrh value of the maximum score reduces with the increase of the robot sensitivity. For high 

βr values, the βh value of the maximum score increases with the increase of the robot 

sensitivity.  

 

 

Best Collaboration Level 

Figure A-85 shows a best collaboration level map for different βh, βrh, for βr equal -2 (left 

column), 0 (middle column) and +2 (right column) and for robot sensitivity equal to 1 (upper 

row), 2 (middle row) and 3 (lower row).  

The increase in the robot sensitivity has no influence on the objective function score of the 

HO collaboration level, small incensement on the score of the HO-Rr and HO-R collaboration 

levels and high influence on the score of the R collaboration level. Therefore the increase in 

the robot sensitivity will increase the zone dominated by the R collaboration level until the 

best collaboration level for the entire area will be the R collaboration level.  

Figure A-86 shows the maximum objective function score as a combination of all four 

collaboration levels for different βh, βrh for βr equal -2 (left column), 0 (middle column) and 

+2 (right column) and for robot sensitivity equal to 1 (upper row), 2 (middle row) and 3 

(lower row).  The increase in the robot sensitivity will increase the objective function score on 

the entire area and will increase the value of the maximum score. The βh and βrh values of the 

maximum score will not change a lot with the increase in the robot sensitivity up to a certain 

sensitivity in which the R collaboration level will be the best collaboration level for the entire 

area and the maximum score will be identical for the entire area. 
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Figure A-83: Task time. 
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Figure A-84: Objective function. 
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Figure A-85: Best collaboration level. 
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Figure A-86: Max objective function. 
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Conclusions 

The robot sensitivity indicates the robot ability to distinguish between true targets (signal) and 

false targets (noise) and improves the performance of the robot in a human-robot system.  

In the R collaboration level the increase in the robot sensitivity will increase the probability of 

hit and the objective function score. 

In the HO-Rr and HO-R collaboration level the robot sensitivity have negligible influence on 

the system probability of hit for low βr values. For normal and high values of βr the system 

probability of hit and the objective function score can even decrease with the increase in the 

robot sensitivity in cases that the human detection of objects marked by the robot is low and 

the human detection of objects that the robot didn’t detect is high. The maximum score of the 

objective function increase with the increase in the robot sensitivity. 

The domination zone of the R collaboration level is increased with the increase in the robot 

sensitivity although the maximum score achieved in the R collaboration level only when it is 

dominating the entire area. 

 

10.1.5 Analysis of d'h 

The human sensitivity, d'h, indicates the human ability to distinguish between true targets 

(signal) and false targets (noise). The parameters in the analysis were determined to be: 

N=1000 objects; VH=50; VAR=-1 (and therefore VFA=-50); VC=-2 and Vt=-2000 hr-1. The 

robot sensitivity was set to d'r=2. The target probability was set to Ps=0.5. The decision time 

for all human time parameters was determined to be tD=5 s/object and the human motoric time 

was set to tM=2 s/(detected object). The robot time was set to tr=0.01 s/object.  

Since in the R collaboration the human is not involved in the task execution, the human 

sensitivity has no influence on the robot performance. 

The human sensitivity influence the objective function score in the HO collaboration level is 

shown in chapter 3.2.1. 

 

HO-Rr collaboration level 

Figure A-87 shows system probability for hit for different βh, βrh, for βr equal -2 (left column), 

0 (middle column) and +2 (right column) and for human sensitivity equal to 1 (upper row), 2 

(middle row) and 3 (lower row). For low values of βr the increase in human sensitivity 

increase the system probability of hit, though, βh has little influence on the system probability 

of hit for any human sensitivity since in low βr values the robot probability of hit is close to 1 

for all human sensitivities which leaves very few objects that are unmarked by the robot and 

therefore βr influence is minimal. For high values of βr the increase in human sensitivity 

increase the system probability of hit. There is an equal effect of βh and βrh on the probability 

of hit. 

The human sensitivity influence directly the human performance and by that the task time. 

The task time increase with the decrease in βh and βrh. For low βr values, the influence of βh 

decrease with increase in human sensitivity (Figure A-88). For high βr values, the influence of 

βrh decrease with increase in human sensitivity. 

Figure A-89 shows the objective function score for different human sensitivities. The system 

objective function score increase with the increase in the human sensitivity. The βh and βrh 

values of the maximum objective function score are not changing with the increase in human 

sensitivity. The pattern of the objective function for different βh and βrh is not changed and it 

seems as an enlargement of the area of the maximum score. 
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Figure A-87: Probability of hit. 
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Figure A-88: Task time. 
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Figure A-89: Objective function. 
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HO-R collaboration level 

 

The probability of hit will be identical to the HO-Rr collaboration level as shown in figure 40. 

In the HO-R collaboration level the task time increase with the decrease in βh and the increase 

in βrh. For low βr values, the influence of βh on the task time decrease and the influence of βrh 

increase with increase in human sensitivity (Figure A-90). For high βr values, the influence of 

βrh decrease and the influence of βh increase with increase in human sensitivity. 

Figure A-91 shows the objective function score for different human sensitivities. The system 

objective function score increase with the increase in the human sensitivity. The βh and βrh 

values of the maximum objective function score are not changing with the increase in human 

sensitivity. The pattern of the objective function for different βh and βrh is not changed and it 

seems as an enlargement of the area of the maximum score. 

 

 

Best Collaboration Level 

Figure A-92 shows a best collaboration level map for different βh, βrh, for βr equal -2 (left 

column), 0 (middle column) and +2 (right column) and for human sensitivity equal to 1 

(upper row), 2 (middle row) and 3 (lower row).  

The increase in the human sensitivity has no influence on the objective function score of the R 

collaboration level, small increase on the score of the HO-Rr and HO-R collaboration levels 

and high influence on the score of the HO collaboration level. Therefore increase in human 

sensitivity increase the zone dominated by the HO, HO-Rr and HO-R collaboration levels and 

reduce the zone dominated by the R collaboration level. For human sensitivities that are lower 

than the robot sensitivity, the best collaboration level for the entire area will be the R 

collaboration level. 

Figure A-93 shows the maximum objective function score as a combination of all four 

collaboration levels for different βh, βrh for βr equal -2 (left column), 0 (middle column) and 

+2 (right column) and for human sensitivity equal to 1 (upper row), 2 (middle row) and 3 

(lower row).  The increase in the human sensitivity will increase the objective function score 

on the entire area and will increase the value of the maximum score. The βh and βrh values of 

the maximum score will not change a lot with the increase in the human sensitivity except for 

cases were the R collaboration level is the best collaboration level for the entire area and the 

entire area will have the maximum score. 
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Figure A-90: Task time. 
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Figure A-91: Objective function. 
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Figure A-92: best collaboration level domination map. 
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Figure A-93: Maximum objective function score. 
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Conclusions 

The human sensitivity indicates the human ability to distinguish between true targets (signal) 

and false targets (noise) and improves the performance of the human in a human-robot 

system.  

In the HO collaboration level the increase in the human sensitivity will increase the 

probability of hit and the objective function score. 

The human sensitivity influence directly the human performance and by that the task time. In 

the HO-Rr and HO-R collaboration level the human sensitivity have negligible influence on 

the system probability of hit, for low βr values. For normal and high values of βr the system 

probability of hit increases with the increase in the human sensitivity. The task time reduces 

with the increase in the human sensitivity and the objective function score increase with the 

increase in the human sensitivity. The maximum score of the objective function increase with 

the increase in the robot sensitivity. The optimal values of βh and βrh do not changed with the 

increase in the human sensitivity. 

Increase in human sensitivity increase the best collaboration level zone dominated by the HO, 

HO-Rr and HO-R collaboration levels and reduce the zone dominated by the R collaboration 

level. 

 

10.1.6 Analysis of VAR 

The payoff ratio, VAR, represent the type of the task through the value ratio of VFA and VH. 

High payoff ratio corresponds to high false alarm cost and low hit reward. Low payoff ratio 

corresponds to low false alarm cost and high hit reward. Task with high payoff ratios will 

have less tolerance for false alarms and less rewarding for hits. Task with low payoff ratios 

will be very rewarding for hits and tolerance for false alarms. The parameters in the analysis 

were determined to be: N=1000 objects; the target probability was set to Ps=0.5; VH=50; VC=-

2 and Vt=-2000 hr-1. The human sensitivity was set to d'h=2 and the robot sensitivity was set 

to d'r=2. The decision time for all human time parameters was determined to be tD=5 s/object 

and the human motoric time was set to tM=2 s/(detected object). The robot time was set to 

tr=0.01 s/object.  

The payoff ratio influence only the false alarm cost and the objective function score, hence 

the HO probability of hit and the task time are not effected by the payoff ratio value. The 

probability of hit and the task time are identical to those shown earlier. 

 

 

HO collaboration level 

Figure A-94 shows the objective function score as a function of the human sensitivity and 

human likelihood ratios, βh, for different payoff ratio values (VAR = 0.1, 1, 10). The objective 

function score decrease with the increase in the payoff ratio since the cost of the false alarms 

is reduced. For all payoff ratio values, the objective function score increase with the increase 

in the human sensitivity. The βh value of the objective function maximum score is increasing 

with the increase in the payoff ratio for all human sensitivities. 
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Figure A-94: Objective function score. 

 

R collaboration level 

The same phenomena that were found for the objective function behavior in the HO 

collaboration level are shown in the R collaboration level (Figure A-95). 

The objective function score decrease with the increase in the payoff ratio since the cost of the 

false alarms is reduced. For all payoff ratio values, the objective function score increase with 

the increase in the human sensitivity. The βh value of the objective function maximum score is 

increasing with the increase in the payoff ratio for all human sensitivities. 

 

 

HO-Rr collaboration level 

Figure A-96 shows the system objective function for different βh, βrh, for βr equal -2 (left 

column), 0 (middle column) and +2 (right column) and for payoff ratio equal to 0.1 (upper 

row), 1 (middle row) and 10 (lower row).  

Increase in payoff ratio will decrease the objective function score due to the increase in the 

false alarm cost (Figure A-96). The values of βh and βrh of the maximum objective function 

score is increased with increase in the payoff ratio in order to decrease the number of marked 

objects and thus reduce the false alarm cost. 

For low βr values the increase in the value of βrh is faster than the increase in the value of βh. 

This could be explained by the small number of objects marked by the human (of objects that 

were not marked by the robot before) in comparison to the number of objects marked by the 

robot and there for the influence of βrh on the objective function score is grater than βh and the 
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number of objects already marked by the robot must be reduced more than the number of 

objects that were marked firstly by the human. 

For high βr values the increase in the value of βh is faster than the increase in the value of βrh 

since the number of objects marked by the robot is few and the influence of βrh is little. 
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Figure A-95: Objective function score. 
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Figure A-96: Objective function score.
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HO-Rr collaboration level 

Figure A-97 shows the system objective function for different βh, βrh, for βr equal -2 (left 

column), 0 (middle column) and +2 (right column) and for payoff ratio equal to 0.1 (upper 

row), 1 (middle row) and 10 (lower row).  

Increase in payoff ratio will decrease the objective function score due to the increase in the 

false alarm cost (Figure A-97). The values of βh and βrh of the maximum objective function 

score is increased with increase in the payoff ratio in order to decrease the number of marked 

objects and thus reduce the false alarm cost. 

For low βr values the increase in the value of βrh is faster than the increase in the value of βh. 

This could be explained by the small number of objects marked by the human (of objects that 

were not marked by the robot before) in comparison to the number of objects marked by the 

robot and there for the influence of βrh on the objective function score is grater than βh and the 

number of objects already marked by the robot must be reduced more than the number of 

objects that were marked firstly by the human. 

For high βr values the increase in the value of βh is faster than the increase in the value of βrh 

since the number of objects marked by the robot is few and the influence of βrh is little. 

 

 

Best Collaboration Level 

Figure A-98 shows the system objective function for different βh, βrh, for βr equal -2 (left 

column), 0 (middle column) and +2 (right column) and for payoff ratio equal to 0.1 (upper 

row), 1 (middle row) and 10 (lower row).  

The increases in the payoff ratio is reducing the objective function score for all four 

collaboration levels and change the domination zones of each collaboration level. For low βr 

values the domination zone of R collaboration level is decreased with the increase in the 

payoff ratio and the domination zones of HO and HO-Rr collaboration levels increase. For 

high βr values the domination zone of R collaboration level is increase with the increase in the 

payoff ratio and the domination zones of HO and HO-R collaboration levels decrease. The 

HO-Rr collaboration level is not appearing as best collaboration level for high βr values. 

Figure A-99 shows the maximum objective function score as a combination of all four 

collaboration levels for different βh, βrh for βr equal -2 (left column), 0 (middle column) and 

+2 (right column) and for payoff ratio equal to 0.1 (upper row), 1 (middle row) and 10 (lower 

row). The increase in the human sensitivity decreases the objective function score on the 

entire area and decrease the value of the maximum score. The values of βh and βrh of the 

maximum objective function score is increased with increase in the payoff ratio in order to 

decrease the number of marked objects and thus reduce the false alarm cost. 
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Figure A-97: Objective function score. 
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Figure A-98: Best collaboration level. 



 178 

V
AR

=0.1 ; LN(beta
r
)= -2

b
e
ta

h

0 0.5 1
0

0.2

0.4

0.6

0.8

1

V
AR

=0.1 ; LN(beta
r
)= 0

0 0.5 1
0

0.2

0.4

0.6

0.8

1
12000

1300014000

150001600017000

18000

18000

V
AR

=0.1 ; LN(beta
r
)= 2

-4 -2 0 2 4
-4

-2

0

2

4

11000

11000

12000

1
2

0
0

0

1
2

0
0

0

1
3
0
0
0

1
4
0
0
0

b
e
ta

h

-4 -2 0 2 4
-4

-2

0

2

4

16080

-4 -2 0 2 4
-4

-2

0

2

4

12000

12000

130001400015000

-4 -2 0 2 4
-4

-2

0

2

4

-100000
-80000

-60000

-40000
-20000

0

beta
rh

b
e
ta

h

-4 -2 0 2 4
-4

-2

0

2

4

-15000-10000-5000
0

5000

beta
rh

-4 -2 0 2 4
-4

-2

0

2

4

70008
000

beta
rh

-4 -2 0 2 4
-4

-2

0

2

4

 
Figure A-99: Maximum objective function score. 
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Conclusions 

The payoff ratio, VAR, represent the type of the task through the value ratio of VFA and VH. 

High payoff ratio corresponds to high false alarm cost and low hit reward. Low payoff ratio 

corresponds to low false alarm cost and high hit reward. Task with high payoff ratios will 

have less tolerance for false alarms and less rewarding for hits. Task with low payoff ratios 

will be very rewarding for hits and tolerance for false alarms.  

For all collaboration levels the objective function score decrease with the increase in the 

payoff ratio since the cost of the false alarms is reduced. The optimal βh value of the objective 

function maximum score is increasing with the increase in the payoff ratio. 

The optimal βh and βrh values of the maximum objective function score is increased with 

increase in the payoff ratio in order to decrease the number of marked objects and thus reduce 

the false alarm cost. 

 

10.1.7 Analysis of VH and VFA 

The reward of a single hit, VH, is representing the type and quality of identified target. Since 

the cost of a single false alarm, VFA, is related to VH through the payoff ratio the increase in 

VH, will increase VFA and therefore the objective function will increase although not is the 

same proportion. 

10.1.8 Analysis of VC and Vt 

The operational cost of one of object recognition (hit or false alarm), VC, is representing the 

cost required to perform a single detection. Increase in VC, will increase the operational cost 

value and decrease the objective function score in proportion to the number of objects 

recognized for all collaboration levels.  

The time cost, Vt, represent the time expenses in target recognition task. Increase in Vt, will 

increase the operational cost value and decrease the objective function score.  

10.1.9 Analysis of tD and tM 

Increase in the decision time, tD, will increase the operational cost value and decrease the 

objective function score in proportion to the number of objects equally for the HO, HO-Rr 

and HO-R collaboration level. On the R collaboration level the decision time have no 

influence. Increase in the motoric time, tM, will increase the operational cost value and 

decrease the objective function score in proportion to the number of human marks or 

cancellation of the robot marks, depends if the collaboration level is HO, HO-Rr or HO-R. 

The motoric time have no influence on the R collaboration level. 
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Appendix VII: The experimental simulator program  
 

HOmarkalone2.m: The main program for the HO collaboration level 

 
% in this program the HO mark by himself without the aid of the robot. 
clear 
clc 
close all 
  
sn=input('subject s/n=  '); 
%sn=2 
add=input('add=  '); 
sub=input('sub=  '); 
% Call for the tutorial 
exptutorial 
  
exlearningHO 
 
scrsz = get(0,'ScreenSize'); 
A=figure('Position',[1 1 scrsz(3) scrsz(4)]) 
  
tic 
t2=[cputime,toc,0,0,0,0,0]; 
HOlogger=[]; 
allimagesdb=[]; 
scorestr='SCORE:  0'; 
ttstr=['Detection:  0']; 
tfstr=['False:  0']; 
ftstr=['Missed:  0']; 
corner=55 
score=0; 
  
% imgorder=[11 38 71 90 112 25 8 65 5 40 68 7 33 67 10 61 104 74 95 91 109 44 82 23 14 22 49 92 29 81 30 

56 64 60 88]; 
  
% Block - the list of all images (about 60 images per block) 
load Block 
  
tcross=zeros(21); 
tcross(1:21,10:12)=1; 
tcross(10:12,1:21)=1; 
  
% Generating 3 blocks with random image order for each subject 
% at the end the image order vector called imglist 
for j=1:3 
    temp_Block=Block(j,:); 
    Block_L=length(temp_Block); 
    for k=1:Block_L 
        temp_size=length(temp_Block); 
        randimgplace=floor(rand*temp_size)+1; 
        imgorder((j-1)*Block_L+k)=temp_Block(randimgplace); 
        if randimgplace==1 
            temp_Block=temp_Block(2:temp_size); 
        elseif randimgplace==temp_size 
            temp_Block=temp_Block(1:temp_size-1); 
        else 
            temp_Block=[temp_Block(1:randimgplace-1),temp_Block(randimgplace+1:temp_size)]; 
        end 
    end 
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end 
         
imgorder_L=length(imgorder) 
  
%reading the images directory 
ImageDirs=['C:\My Documents\Matlab\Experiments2000\Melons\IMAGES\'] 
%ImageDirs=['f:\matlab\work\Experiments2000\melons\images\'] 
  
load melondatabase 
  
% the format of t2 is: [cputime,time,x,y,fn,command type,stage] 
% in command type: 0 - no command, 1 - inserting to database allready marked melon, 
% 2 - detecting and inserting to dartabase, 3 - deleting detected melon, 4 - unknown yet. 
t2=[t2;cputime,toc,0,0,0,0,1]; 
signs(1:21,1:3)=1; 
  
%Do the following loop for all directories that contain images 
for dr=1:1 
   % Get filenames of images 
%   d=dir(ImageDirs(dr,:)); 
%   [NumberOfFiles,Dummy]=size(d); 
%   NumberOfFiles 
    
   for i=1:imgorder_L 
       A2=[]; 
         imagenumber=imgorder(i); 
         mdn=(find(melondatabase(:,4)==imagenumber)); % the lines in the melon DB of the current image 
         true_no=length(mdn); %number of true targets 
         imgnumbstr=num2str(imagenumber); 
         fn=['melon day ',imgnumbstr,'.jpg']; 
          
t2=[t2;cputime,toc,0,0,imagenumber,0,2]; 
% A=original image          
         A=imread(fn,'jpg'); 
         r=double(A(:,:,1))./255; 
         g=double(A(:,:,2))./255; 
         b=double(A(:,:,3))./255; 
         imagesize=size(r); 
         imgsize=[0 0 imagesize]; 
         rnew=r; 
         gnew=g; 
         bnew=b; 
         A2(:,:,1)=rnew; 
         A2(:,:,2)=gnew; 
         A2(:,:,3)=bnew; 
          
t2=[t2;cputime,toc,0,0,imagenumber,0,3]; 
  
% Call for subroutine which mark the true melons 
%Show_targets          
  
t2=[t2;cputime,toc,0,0,imagenumber,0,4]; 
  
         figure(2) 
         imshow(A2) 
         set (A,'Position',[1 1 scrsz(3) scrsz(4)]) 
%     imshow(rnew,gnew,bnew) 
         h = uicontrol('Style', 'pushbutton', 'String', 'NEXT','FontWeight','bold','Position',[2,92,90,400]); 
%         h2=uicontrol('Style', 'text', 

'String',scorestr,'FontWeight','bold','HorizontalAlignment','left','Position',[135,10,90,45]); 
%         h3=uicontrol('Style', 'text', 'String',ttstr,'FontWeight','bold','Position',[255,10,90,45]); 
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%         h6=uicontrol('Style', 'text', 'String',tfstr,'FontWeight','bold','Position',[380,10,90,45]); 
%         h7=uicontrol('Style', 'text', 'String',ftstr,'FontWeight','bold','Position',[505,10,90,45]); 
%         h8=uicontrol('Style', 'text', 'String','Maximum:  1170','FontWeight','bold','Position',[10,10,90,45]); 
          
t2=[t2;cputime,toc,0,0,imagenumber,0,5]; 
  
% Subrotine in which the HO select and deselect the melon marks 
            HOdetectalone2 
                              
%      end 
   end 
end 
  
t2=[t2;cputime,toc,0,0,0,0,99]; 
  
snstr=num2str(sn); 
eval(['save Mmarkalonsubject' snstr ' t2 HOlogger allimagesdb score']) 
  
% call for subroutine expfinal 
expfinal 
  

 

HOdetectalone2.m: interface subroutine which display the human actions in the HO 

collaboration level. Called from HOmarkalone2.m 

 
clear imagedatabase 
clear paralelimagedb 
  
% the format of paralelimagedb is: x and y coordination of the mark done by the robot (without inserting  
% to the DB), the image number, time it was issued (0 for detected by the robot), and the status. 
  
% imagedatabase is the melon inserted by the HO. 
% the format of imagedatabase is: x and y coordination of the mark, the image number,  
% time it was issued (0 for detected by the robot), and the status (0 for detected by the robot, 
% 1 for detected by the robot and inserted to the DB by the HO, 2 for detected by the HO and 3  
% for deleted by the HO. 
imagedatabase=[]; 
  
%gx=999; 
gy=999; 
while gy>0 
   [gy gx]=ginput(1) 
    
t2=[t2;cputime,toc,gx,gy,imagenumber,4,11]; 
  
% the format of HOlogger is: the image number, x and y coordination of the mark, and  
% the time it was issued 
   HOlogger=[HOlogger;imagenumber,gx,gy,toc]; 
    
   if gx>=0 & gy>=0 & gx<imagesize(1) & gy<imagesize(2) 
      x=round(gx) 
      y=round(gy) 
      closetarget=[]; 
       
% Check if the HO inserted points and if the new mark close to them       
      if sum(size(imagedatabase))>0 
         dxy=[abs(x-imagedatabase(:,1)),abs(y-imagedatabase(:,2))] 
         sumline=sum((dxy<55)'); 
         closetarget=find(sumline==2); 
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         imagedbdim=size(imagedatabase); 
      end 
           
% this part delete the target and line from DB       
      if sum(closetarget)>0 
         x=imagedatabase(closetarget(1),1); 
         y=imagedatabase(closetarget(1),2); 
          
% reorgenizing the DB of imagedatabase          
         if imagedbdim(1)==closetarget(1) 
            imagedatabase=imagedatabase(1:closetarget(1)-1,:); 
         else 
            imagedatabase(closetarget(1):imagedbdim(1)-1,:)=imagedatabase(closetarget(1)+1:imagedbdim(1),:); 
            imagedatabase=imagedatabase(1:imagedbdim(1)-1,:); 
         end 
                            
         t2=[t2;cputime,toc,x,y,imagenumber,3,11];  
% subrotine which unmark the melon detected                
            unmarksign 
         A2(:,:,1)=rnew; 
         A2(:,:,2)=gnew; 
         A2(:,:,3)=bnew; 
         imshow(A2) 
             set (l,'Position',[1 1 scrsz(3) scrsz(4)]) 
%     imshow(rnew,gnew,bnew) 
         h = uicontrol('Style', 'pushbutton', 'String', 'NEXT','FontWeight','bold','Position',[2,92,90,400]); 
%         h2=uicontrol('Style', 'text', 

'String',scorestr,'FontWeight','bold','HorizontalAlignment','left','Position',[135,10,90,45]); 
%         h3=uicontrol('Style', 'text', 'String',ttstr,'FontWeight','bold','Position',[255,10,90,45]); 
%         h6=uicontrol('Style', 'text', 'String',tfstr,'FontWeight','bold','Position',[380,10,90,45]); 
%         h7=uicontrol('Style', 'text', 'String',ftstr,'FontWeight','bold','Position',[505,10,90,45]); 
%         h8=uicontrol('Style', 'text', 'String','Maximum:  1170','FontWeight','bold','Position',[10,10,90,45]); 
  

          
% this part mark and insert new melon by the HO          
        else 
         imagedatabase=[imagedatabase;x,y,imagenumber,toc,2]; 
         t2=[t2;cputime,toc,x,y,imagenumber,2,11];         
% subrotine wich mark the melon detected                
        MARKSIGN 
         A2(:,:,1)=rnew; 
         A2(:,:,2)=gnew; 
         A2(:,:,3)=bnew; 
         imshow(A2) 
                      set (l,'Position',[1 1 scrsz(3) scrsz(4)]) 
%     imshow(rnew,gnew,bnew) 
         h = uicontrol('Style', 'pushbutton', 'String', 'NEXT','FontWeight','bold','Position',[2,92,90,400]); 
%         h2=uicontrol('Style', 'text', 

'String',scorestr,'FontWeight','bold','HorizontalAlignment','left','Position',[135,10,90,45]); 
%         h3=uicontrol('Style', 'text', 'String',ttstr,'FontWeight','bold','Position',[255,10,90,45]); 
%         h6=uicontrol('Style', 'text', 'String',tfstr,'FontWeight','bold','Position',[380,10,90,45]); 
%         h7=uicontrol('Style', 'text', 'String',ftstr,'FontWeight','bold','Position',[505,10,90,45]); 
%         h8=uicontrol('Style', 'text', 'String','Maximum:  1170','FontWeight','bold','Position',[10,10,90,45]); 
  
      end 
  
   end 
     
end 
  
t2=[t2;cputime,toc,0,0,imagenumber,3,31];  
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% call for subrotine which calculate the image score 
imagescore 
  
t2=[t2;cputime,toc,0,0,imagenumber,3,32];  
% call for display score figure 
scorefigure 
  
t2=[t2;cputime,toc,0,0,imagenumber,3,33];  
  
allimagesdb=[allimagesdb;imagedatabase]; 
  
t2=[t2;cputime,toc,0,0,imagenumber,3,34];  
 

 

HOmark2.m: The main program for the HO-Rr collaboration level 

 
% HO-Rr collaboration level 
  
clear 
clc 
close all 
load FAdatabase 
  
sn=input('subject s/n=  '); 
add=input('add=  '); 
sub=input('sub=  '); 
robothit=input('robot  hit=  '); 
 robotfalse=0; 
if robothit==0.9 
       robotfalse=12; 
   end 
   if robothit==0.5 
       robotfalse=106; 
   end 
% Call for the tutorial 
exptutorial 
exlearningHORr 
  

  
%robothit=0.8 % Robot hit rate 
robot_all_tar=[] 
HOlogger=[]; 
allimagesdb=[]; 
scorestr='SCORE:  0'; 
ttstr=['Detection:  0']; 
tfstr=['False:  0']; 
ftstr=['Missed:  0']; 
corner=55 
score=0; 
  
scrsz = get(0,'ScreenSize'); 
K=figure('Position',[1 1 scrsz(3) scrsz(4)]) 
  
tic 
t2=[cputime,toc,0,0,0,0,0]; 
  
%imgorder=[11 38 71 90 77 57 79 97 27 2 4 9 34 31 58 19 46 99 17 42 72 16 83 110 21 24 39 43 47 50 101 105 

96 102 6 69 75 89 36]; 
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% Block - the list of all images (about 60 images per block) 
load Block 
  
tcross=zeros(21); 
tcross(1:21,10:12)=1; 
tcross(10:12,1:21)=1; 
  
% Generating 3 blocks with random image order for each subject 
% at the end the image order vector called imglist 
for j=1:3 
    temp_Block=Block(j,:); 
    Block_L=length(temp_Block); 
    for k=1:Block_L 
        temp_size=length(temp_Block); 
        randimgplace=floor(rand*temp_size)+1; 
        imgorder((j-1)*Block_L+k)=temp_Block(randimgplace); 
        if randimgplace==1 
            temp_Block=temp_Block(2:temp_size); 
        elseif randimgplace==temp_size 
            temp_Block=temp_Block(1:temp_size-1); 
        else 
            temp_Block=[temp_Block(1:randimgplace-1),temp_Block(randimgplace+1:temp_size)]; 
        end 
    end 
end 
      % random 
  
imgorder_L=length(imgorder) 
  
%reading the images directory 
ImageDirs=['C:\My Documents\Matlab\Experiments2000\Melons\IMAGES\'] 
%ImageDirs=['D:\users\avital\phd\Experiments2000\melons\images\'] 
%ImageDirs=['f:\matlab\work\Experiments2000\melons\images\'] 
  
load melondatabase 
  
% the format of t2 is: [cputime,time,x,y,fn,command type,stage] 
% in command type: 0 - no command, 1 - inserting to database allready marked melon, 
% 2 - detecting and inserting to dartabase, 3 - deleting detected melon, 4 - unknown yet. 
t2=[t2;cputime,toc,0,0,0,0,1]; 
signs(1:21,1:3)=1; 
  
 f_targets=[]; % vector that contains the numbers of all the false images found by the robot in all the images 
temp_f_targets=[];  %a vector that contains the numbers of all the images in Block 
st=0; 
f_index=0; 
       f=1+(118-1)*rand; 
    f_num=round(f); 
     
   while st==0 
        if length(temp_f_targets)==robotfalse 
             st=1; 
        end 
        if st==0 
            fnd=0; 
            temp_f_targets_L=length(temp_f_targets); 
            for i=1: temp_f_targets_L %search for num in vector temp 
                if temp_f_targets(i)==f_num 
                    fnd=1; 
                end 
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            end 
              
            if fnd==1 
                  f=1+(118-1)*rand; 
             f_num=round(f); 
             else 
                temp_f_targets=[temp_f_targets;f_num]; 
            end 
    end %  if stop==0     
end  %   while stop==0 
temp_f_targets_L=length(temp_f_targets); 
 for i=1: temp_f_targets_L 
     f_index=temp_f_targets(i); 
     f_targets=[f_targets;FAdatabase(f_index,1:4)]; 
 end 
  

  
f_targets_L=length(f_targets); 
%Do the following loop for all directories that contain images 
for dr=1:1 
   % Get filenames of images 
%   d=dir(ImageDirs(dr,:)); 
%   [NumberOfFiles,Dummy]=size(d); 
%   NumberOfFiles 
    
   for i=1:imgorder_L 
       A2=[]; 
%          paralelimagedb=[]; 
         imagenumber=imgorder(i); 
         mdn=(find(melondatabase(:,4)==imagenumber)); % the lines in the melon DB of the current image 
         fdn=(find(f_targets(:,4)==imagenumber)); % the lines in the melon DB of the current image 
         true_no=length(mdn); %number of true targets 
         Img_R_hit=rand(1,true_no); % the robot hit rate for each melon in the image 
                 
         imgnumbstr=num2str(imagenumber); 
         fn=['melon day ',imgnumbstr,'.jpg']; 
          
        t2=[t2;cputime,toc,0,0,imagenumber,0,2]; 
        % A=original image          
         A=imread(fn,'jpg'); 
         r=double(A(:,:,1))./255; 
         g=double(A(:,:,2))./255; 
         b=double(A(:,:,3))./255; 
         imagesize=size(r); 
         imgsize=[0 0 imagesize]; 
         rnew=r; 
         gnew=g; 
         bnew=b; 
          
        t2=[t2;cputime,toc,0,0,imagenumber,0,3]; 
          
         robot_target_n=[]; 
            robot_f_target_n=[]; 
         if true_no>0 
             robot_target_n=find(Img_R_hit<robothit); % The melons in the image whom succeed the robot hit rate 
             robot_all_tar=[robot_all_tar;melondatabase(mdn(robot_target_n),:)]; 
             for j=1:length(robot_target_n) 
               x=melondatabase(mdn(robot_target_n(j)),2); 
               y=melondatabase(mdn(robot_target_n(j)),3); 
  
% subrotine which mark the melon detected                
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               framesign 
            end 
         end 
  
          for w=1:length(fdn) 
                    x=f_targets(fdn(w),2); 
                    y=f_targets(fdn(w),3); 
% subrotine which mark the false alarms                 
                  framesign 
             end 
%         robot_FA=find(robot_false(:,1)==imgorder(i); % robot_false - the list of all robot false alarms in all the 

images 
%         if robot_FA>0 
%             img_robot_FA=find(rand(1)<1-robothit-0.05); % The false alarms in the image whom succeed the 

robot hit rate 
%             robot_all_FA=[robot_all_FA;robot_false(robot_FA,:)]; 
%             for j=1:length(robot_target_n) 
%               x=robot_false(robot_FA(j),2); 
%               y=robot_false(robot_FA(j),3); 
% 
% subrotine which mark the false alarms detected       
 %              marksign 
 %           end 
 %         end 
  
 t2=[t2;cputime,toc,0,0,imagenumber,0,4]; 
  
        A2(:,:,1)=rnew; 
        A2(:,:,2)=gnew; 
        A2(:,:,3)=bnew;      
  
    %   figure(2) 
         imshow(A2) 
    set (K,'Position',[1 1 scrsz(3) scrsz(4)]) 
%     imshow(rnew,gnew,bnew) 
         h = uicontrol('Style', 'pushbutton', 'String', 'NEXT','FontWeight','bold','Position',[2,92,90,400]); 
%         h2=uicontrol('Style', 'text', 

'String',scorestr,'FontWeight','bold','HorizontalAlignment','left','Position',[135,10,90,45]); 
%         h3=uicontrol('Style', 'text', 'String',ttstr,'FontWeight','bold','Position',[255,10,90,45]); 
%         h6=uicontrol('Style', 'text', 'String',tfstr,'FontWeight','bold','Position',[380,10,90,45]); 
%         h7=uicontrol('Style', 'text', 'String',ftstr,'FontWeight','bold','Position',[505,10,90,45]); 
%         h8=uicontrol('Style', 'text', 'String','Maximum:  1170','FontWeight','bold','Position',[10,10,90,45]); 
          
t2=[t2;cputime,toc,0,0,imagenumber,0,5]; 
  
% Subrotine in which the HO select and deselect the melon marks 
            HOdetect2 
                          
%      end 
   end 
end 
  
t2=[t2;cputime,toc,0,0,0,0,99]; 
  
snstr=num2str(sn); 
eval(['save Mmarksubject' snstr ' t2 HOlogger allimagesdb robot_all_tar score f_targets']) 
  
% call for subroutine expfinal 
expfinal 
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HOdetect2.m: interface subroutine which display the human actions in the HO-Rr 

collaboration level. Called from HOmark2.m 

 
clear imagedatabase 
clear paralelimagedb 
  
% the format of paralelimagedb is: x and y coordination of the mark done by the robot (without inserting  
% to the DB), the image number, time it was issued (0 for detected by the robot), and the status. 
paralelimagedb=[]; 
  
if ~isempty(robot_target_n) %inserting true targets the robot detected 
   paralelimagedb=[paralelimagedb;melondatabase(mdn(robot_target_n),2:4)];  
   paralelimagedb(:,4:5)=0; 
end 
if ~isempty(fdn) % inserting false alarms the robot detected 
    for w2=1:length(fdn) 
        paralelimagedb=[paralelimagedb;f_targets(fdn(w2),2:4),0 0]; 
    end 
%    paralelimagedb(:,4:5)=0; 
end 
%if ~isempty(img_robot_FA) 
%    imagedatabase=[imagedatabase;robot_false(robot_FA,2:4)]; 
%    imagedatabase(:,4:5)=0; 
%end 
  
% imagedatabase is the melon inserted by the HO. 
% the format of imagedatabase is: x and y coordination of the mark, the image number,  
% time it was issued (0 for detected by the robot), and the status (0 for detected by the robot, 
% 1 for detected by the robot and inserted to the DB by the HO, 2 for detected by the HO and 3  
% for deleted by the HO. 
imagedatabase=[]; 
  
%gx=999; 
gy=999; 
while gy>0 
   [gy gx]=ginput(1); 
    
t2=[t2;cputime,toc,gx,gy,imagenumber,4,11]; 
  
% the format of HOlogger is: the image number, x and y coordination of the mark, and  
% the time it was issued 
   HOlogger=[HOlogger;imagenumber,gx,gy,toc]; 
    
   if gx>=0 & gy>=0 & gx<imagesize(1) & gy<imagesize(2) 
      x=round(gx); 
      y=round(gy); 
      closetarget=[]; 
      closetomark=[]; 
       
% Check if the HO inserted points and if the new mark close to them       
      if sum(size(imagedatabase))>0 
         dxy=[abs(x-imagedatabase(:,1)),abs(y-imagedatabase(:,2))]; 
         sumline=sum((dxy<55)'); 
         closetarget=find(sumline==2); 
         imagedbdim=size(imagedatabase); 
      end 
       
% Check if the new mark close to the marks made by the computer       
      if sum(size(paralelimagedb))>0 
         fdxy=[abs(x-paralelimagedb(:,1)),abs(y-paralelimagedb(:,2))]; 
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         fsumline=sum((fdxy<55)'); 
         closetomark=find(fsumline==2); 
         fimagedbdim=size(paralelimagedb); 
      end 
       
% this part delete the target and line from DB       
      if sum(closetarget)>0 
         x=imagedatabase(closetarget(1),1); 
         y=imagedatabase(closetarget(1),2); 
          
% reorgenizing the DB of imagedatabase          
         if imagedbdim(1)==closetarget(1) 
            imagedatabase=imagedatabase(1:closetarget(1)-1,:); 
         else 
            imagedatabase(closetarget(1):imagedbdim(1)-1,:)=imagedatabase(closetarget(1)+1:imagedbdim(1),:); 
            imagedatabase=imagedatabase(1:imagedbdim(1)-1,:); 
         end 
          
         % reorgenizing the DB of paralelimagedb 
         if sum(closetomark)>0 
            if fimagedbdim(1)==closetomark(1) 
               paralelimagedb=paralelimagedb(1:closetomark(1)-1,:); 
            else 
               paralelimagedb(closetomark(1):fimagedbdim(1)-

1,:)=paralelimagedb(closetomark(1)+1:fimagedbdim(1),:); 
               paralelimagedb=paralelimagedb(1:fimagedbdim(1)-1,:); 
            end 
         end 
                   
         t2=[t2;cputime,toc,x,y,imagenumber,3,11];  
% subrotine which unmark the melon detected                
            unmarksign 
         imshow(rnew,gnew,bnew) 
           set (K,'Position',[1 1 scrsz(3) scrsz(4)]) 
         h = uicontrol('Style', 'pushbutton', 'String', 'NEXT','FontWeight','bold','Position',[2,92,90,400]); 
          
% this part marking the cross sight and inserting it to the database          
      elseif sum(closetomark)>0 
         x=paralelimagedb(closetomark(1),1); 
         y=paralelimagedb(closetomark(1),2); 
         t2=[t2;cputime,toc,x,y,imagenumber,1,11];         
         imagedatabase=[imagedatabase;x,y,imagenumber,toc,1]; 
% subrotine wich mark cross on the melon detected                
            crosssign 
         imshow(rnew,gnew,bnew) 
         set (K,'Position',[1 1 scrsz(3) scrsz(4)]) 
         h = uicontrol('Style', 'pushbutton', 'String', 'NEXT','FontWeight','bold','Position',[2,92,90,400]); 
  
% this part mark and insert new melon by the HO          
        else 
         imagedatabase=[imagedatabase;x,y,imagenumber,toc,2]; 
         t2=[t2;cputime,toc,x,y,imagenumber,2,11];         
% subrotine wich mark the melon detected                
            marksign 
         imshow(rnew,gnew,bnew) 
          set (K,'Position',[1 1 scrsz(3) scrsz(4)]) 
         h = uicontrol('Style', 'pushbutton', 'String', 'NEXT','FontWeight','bold','Position',[2,92,90,400]); 
      end 
  
   end 
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end 
  
t2=[t2;cputime,toc,0,0,imagenumber,3,31];  
% call for subrotine which calculate the image score 
imagescore 
  
t2=[t2;cputime,toc,0,0,imagenumber,3,32];  
% call for display score figure 
scorefigure 
  
t2=[t2;cputime,toc,0,0,imagenumber,3,33];  
  
allimagesdb=[allimagesdb;imagedatabase]; 
  
t2=[t2;cputime,toc,0,0,imagenumber,3,34];  
 

 

 

 

HOmarkandinsert2.m: The main program for the HO-R collaboration level 

 
% HO-R collaboration level 
  
clear 
clc 
close all 
load FAdatabase 
sn=input('subject s/n=  '); 
  
add=input('add=  '); 
sub=input('sub=  '); 
robothit=input('robot  hit=  '); 
% Call for the tutorial 
exptutorial 
exlearningHOR 
  

  
if robothit==0.9 
       robotfalse=12; 
   end 
   if robothit==0.5 
       robotfalse=106; 
   end 
  
%robothit=0.8 % Robot hit rate 
robot_all_tar=[] 
HOlogger=[]; 
allimagesdb=[]; 
scorestr='SCORE:  0'; 
ttstr=['Detection:  0']; 
tfstr=['False:  0']; 
ftstr=['Missed:  0']; 
corner=55 
score=0; 
  
scrsz = get(0,'ScreenSize'); 
l=figure('Position',[1 1 scrsz(3) scrsz(4)]) 
  
tic 
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t2=[cputime,toc,0,0,0,0,0]; 
  
%imgorder=[11 38 71 90 26 32 66 86 106 20 28 53 3 35 63 45 73 94 12 76 108 15 84 62 52 13 48 54 98 18 51 

78 59 41 107 70 80 103 93]; 
%imgorder=[91 10 43 101 89 106 73 12 26 32 66 86 106 20 28 53 3 35 63 45 73 94 12 76 108 15 84 62 52 13 

48 54 98 18 51 78 59 41 107 70 80 103 93]; 
  
% Block - the list of all images (about 60 images per block) 
load Block 
  
tcross=zeros(21); 
tcross(1:21,10:12)=1; 
tcross(10:12,1:21)=1; 
  
% Generating 3 blocks with random image order for each subject 
% at the end the image order vector called imglist 
for j=1:3 
   temp_Block=Block(j,:); 
  Block_L=length(temp_Block); 
  for k=1:Block_L 
     temp_size=length(temp_Block); 
   randimgplace=floor(rand*temp_size)+1; 
   imgorder((j-1)*Block_L+k)=temp_Block(randimgplace); 
  if randimgplace==1 
          temp_Block=temp_Block(2:temp_size); 
        elseif randimgplace==temp_size 
           temp_Block=temp_Block(1:temp_size-1); 
    else 
          temp_Block=[temp_Block(1:randimgplace-1),temp_Block(randimgplace+1:temp_size)]; 
        end 
         end 
        end 
       % random 
      

  
imgorder_L=length(imgorder) 
  
%reading the images directory 
ImageDirs=['C:\My Documents\Matlab\Experiments2000\Melons\IMAGES\'] 
%ImageDirs=['D:\users\avital\phd\Experiments2000\melons\images\'] 
%ImageDirs=['f:\matlab\work\Experiments2000\melons\images\'] 
  
load melondatabase 
  
% the format of t1 is: [cputime,time,x,y,fn,command type,stage] 
% in command type: 0 - no command, 1 - inserting to database allready marked melon, 
% 2 - detecting and inserting to dartabase, 3 - deleting detected melon, 4 - unknown yet. 
t2=[t2;cputime,toc,0,0,0,0,1]; 
signs(1:21,1:3)=1; 
  
f_targets=[]; % vector that contains the numbers of all the false images 
temp_f_targets=[];  %a vector that contains the numbers of all the images in Block 
st=0; 
f_index=0; 
     f=1+(118-1)*rand; 
    f_num=round(f); 
     
   while st==0 
        if length(temp_f_targets)==robotfalse 
             st=1; 
        end 
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        if st==0 
            fnd=0; 
            temp_f_targets_L=length(temp_f_targets); 
            for i=1: temp_f_targets_L %search for num in vector temp 
                if temp_f_targets(i)==f_num 
                    fnd=1; 
                end 
            end 
              
            if fnd==1 
              f=1+(118-1)*rand; 
             f_num=round(f); 
             else 
                temp_f_targets=[temp_f_targets;f_num]; 
            end 
    end %  if stop==0     
end  %   while stop==0 
temp_f_targets_L=length(temp_f_targets); 
 for i=1: temp_f_targets_L 
     f_index=temp_f_targets(i); 
     f_targets=[f_targets;FAdatabase(f_index,1:4)]; 
 end 
  
f_targets_L=length(f_targets); 
  
%Do the following loop for all directories that contain images 
for dr=1:1 
   % Get filenames of images 
%   d=dir(ImageDirs(dr,:)); 
%   [NumberOfFiles,Dummy]=size(d); 
%   NumberOfFiles 
    
%imgorder(2)=405;%DELETE this line after inspaction 
%imgorder(1)=405;%DELETE this line after inspaction 
  
   for i=1:imgorder_L 
       A2=[]; 
      
         imagenumber=imgorder(i); 
         mdn=(find(melondatabase(:,4)==imagenumber)); % the lines in the melon DB of the current image 
         fdn=(find(f_targets(:,4)==imagenumber)); % the lines in the melon DB of the current image 
         true_no=length(mdn); %number of true targets 
         Img_R_hit=rand(1,true_no); % the robot hit rate for each melon in the image 
         imgnumbstr=num2str(imagenumber); 
         fn=['melon day ',imgnumbstr,'.jpg']; 
          
        t2=[t2;cputime,toc,0,0,imagenumber,0,2]; 
        % A=original image          
         A=imread(fn,'jpg'); 
         r=double(A(:,:,1))./255; 
         g=double(A(:,:,2))./255; 
         b=double(A(:,:,3))./255; 
         imagesize=size(r); 
         imgsize=[0 0 imagesize]; 
         rnew=r; 
         gnew=g; 
         bnew=b; 
  
        t2=[t2;cputime,toc,0,0,imagenumber,0,3]; 
          
         robot_target_n=[]; 
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         robot_f_target_n=[]; 
         if true_no>0 
             robot_target_n=find(Img_R_hit<robothit); % The melons in the image whom succeed the robot hit rate 
             robot_all_tar=[robot_all_tar;melondatabase(mdn(robot_target_n),:)]; 
             for j=1:length(robot_target_n) 
                 x=melondatabase(mdn(robot_target_n(j)),2); 
                 y=melondatabase(mdn(robot_target_n(j)),3); 
  
% subrotine which mark the melon detected       
               marksign 
            end 
         end 
          
          for w=1:length(fdn) 
                    x=f_targets(fdn(w),2); 
                    y=f_targets(fdn(w),3); 
% subrotine which mark the false alarms                 
                  marksign 
             end 
          

          
%         robot_FA=find(robot_false(:,1)==imgorder(i); % robot_false - the list of all robot false alarms in all the 

images 
%         if robot_FA>0 
%             img_robot_FA=find(rand(1)<1-robothit-0.05); % The false alarms in the image whom succeed the 

robot hit rate 
%             robot_all_FA=[robot_all_FA;robot_false(robot_FA,:)]; 
%             for j=1:length(robot_target_n) 
%               x=robot_false(robot_FA(j),2); 
%               y=robot_false(robot_FA(j),3); 
% 
% subrotine which mark the false alarms detected       
 %              marksign 
 %           end 
 %         end 
  
         t2=[t2;cputime,toc,0,0,imagenumber,0,4]; 
  
        A2(:,:,1)=rnew; 
        A2(:,:,2)=gnew; 
        A2(:,:,3)=bnew;      
  
       %  figure(2) 
         imshow(A2) 
          set (l,'Position',[1 1 scrsz(3) scrsz(4)]) 
%     imshow(rnew,gnew,bnew) 
         h = uicontrol('Style', 'pushbutton', 'String', 'NEXT','FontWeight','bold','Position',[2,92,90,400]); 
%         h2=uicontrol('Style', 'text', 

'String',scorestr,'FontWeight','bold','HorizontalAlignment','left','Position',[135,10,90,45]); 
%         h3=uicontrol('Style', 'text', 'String',ttstr,'FontWeight','bold','Position',[255,10,90,45]); 
%         h6=uicontrol('Style', 'text', 'String',tfstr,'FontWeight','bold','Position',[380,10,90,45]); 
%         h7=uicontrol('Style', 'text', 'String',ftstr,'FontWeight','bold','Position',[505,10,90,45]); 
%         h8=uicontrol('Style', 'text', 'String','Maximum:  1170','FontWeight','bold','Position',[10,10,90,45]); 
          
        t2=[t2;cputime,toc,0,0,imagenumber,0,5]; 
  
% Subrotine in which the HO select and deselect the melon marks 
            HOdetectandinsert2 
                              
%      end 
   end 
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end 
  
t2=[t2;cputime,toc,0,0,0,0,99]; 
  
snstr=num2str(sn); 
eval(['save Mmarkninssubject' snstr ' t2 HOlogger allimagesdb robot_all_tar score f_targets']) 
  
% call for subroutine expfinal 
expfinal 
  

 

 

 

HOdetectandinsert2.m: interface subroutine which display the human actions in the 

HO-R collaboration level. Called from HOmarkandinsert2.m 

 
clear imagedatabase 
clear robotdatabase 
  
% the format of imagedatabase is: x and y coordination of the mark, the image number,  
% time it was issued (0 for detected by the robot), and the status (0 for detected by the robot, 
% 2 for detected by the HO and 3 for deleted by the HO. 
%imagedatabase=melondatabase(mdn,2:4); 
%imagedatabase(:,4:5)=0; 
imagedatabase=[]; 
if ~isempty(robot_target_n) 
    imagedatabase=[imagedatabase;melondatabase(mdn(robot_target_n),2:4)]; 
    imagedatabase(:,4:5)=0; 
end 
  
if ~isempty(fdn) % inserting false alarms the robot detected 
    for w2=1:length(fdn) 
        imagedatabase=[imagedatabase;f_targets(fdn(w2),2:4),0 0]; 
    end 
%    paralelimagedb(:,4:5)=0; 
end 
  
%if ~isempty(img_robot_FA) 
%    imagedatabase=[imagedatabase;robot_false(robot_FA,2:4)]; 
%    imagedatabase(:,4:5)=0; 
%end 
  
%gx=999; 
gy=999; 
while gy>0 
   [gy gx]=ginput(1) 
    
t2=[t2;cputime,toc,gx,gy,imagenumber,4,11]; 
  
% the format of HOlogger is: the image number, x and y coordination of the mark, and  
% the time it was issued 
   HOlogger=[HOlogger;imagenumber,gx,gy,toc]; 
    
   if gx>=0 & gy>=0 & gx<imagesize(1) & gy<imagesize(2) 
      x=round(gx); 
      y=round(gy); 
      closetarget=[]; 
       
      if ~isempty(imagedatabase) 
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          dxy=[abs(x-imagedatabase(:,1)),abs(y-imagedatabase(:,2))]; 
          sumline=sum((dxy<55)'); 
          closetarget=find(sumline==2); 
          imagedbdim=size(imagedatabase); 
      end 
  
      % this part delete the target and line from DB       
      if sum(closetarget)==0 
         imagedatabase=[imagedatabase;x,y,imagenumber,toc,2]; 
         t2=[t2;cputime,toc,x,y,imagenumber,2,11];         
% subrotine wich mark the melon detected                
            marksign 
        A2(:,:,1)=rnew; 
        A2(:,:,2)=gnew; 
        A2(:,:,3)=bnew;      
         imshow(A2) 
         set (l,'Position',[1 1 scrsz(3) scrsz(4)]) 
         h = uicontrol('Style', 'pushbutton', 'String', 'NEXT','FontWeight','bold','Position',[2,92,90,400]); 
          
      else 
         x=imagedatabase(closetarget(1),1); 
         y=imagedatabase(closetarget(1),2); 
         if imagedbdim(1)==closetarget(1) 
            imagedatabase=imagedatabase(1:closetarget(1)-1,:); 
         else 
            imagedatabase(closetarget(1):imagedbdim(1)-1,:)=imagedatabase(closetarget(1)+1:imagedbdim(1),:); 
            imagedatabase=imagedatabase(1:imagedbdim(1)-1,:); 
         end 
          
         t2=[t2;cputime,toc,x,y,imagenumber,3,11];  
% subrotine wich unmark the melon detected                
            unmarksign 
        A2(:,:,1)=rnew; 
        A2(:,:,2)=gnew; 
        A2(:,:,3)=bnew;      
         imshow(A2) 
         set (l,'Position',[1 1 scrsz(3) scrsz(4)]) 
         h = uicontrol('Style', 'pushbutton', 'String', 'NEXT','FontWeight','bold','Position',[2,92,90,400]); 
          
        end 
  
   end 
     
end 
  
t2=[t2;cputime,toc,0,0,imagenumber,3,31];  
% call for subrotine which calculate the image score 
imagescore 
  
t2=[t2;cputime,toc,0,0,imagenumber,3,32];  
% call for display score figure 
scorefigure 
  
t2=[t2;cputime,toc,0,0,imagenumber,3,33];  
  
allimagesdb=[allimagesdb;imagedatabase]; 
  
t2=[t2;cputime,toc,0,0,imagenumber,3,34];  
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 exptutorial.m: Experiment tutorial subroutine. This subroutine explain the subject about the 

experiment procedures. Called from the main programs 

 
% Subroutine which explain the experiment 
  
ImageDir=['C:\My Documents\Matlab\Experiments2003\Tutorial\'] 
  
for t1=1:5 
    scrsz = get(0,'ScreenSize'); 
    h=figure('Position',[1 1 scrsz(3) scrsz(4)]) 
if t1<5 
    tstr=num2str(t1); 
    tut_img_no=['tutor',tstr,'.jpg']; 
    T=imread(tut_img_no,'jpg'); 
else 
    if add==7 
        T=imread('max.jpg'); 
    end 
    if add==3 
               T=imread('min.jpg'); 
           end 
       end 
    imshow(T) 
    set(h,'Position',[1 1 scrsz(3) scrsz(4)]) 
    h2= uicontrol('Style', 'pushbutton', 'String', 'ENTER','FontWeight','bold','Position',[2,92,90,400]);    
     [gy gx]=ginput(1)  
                                    while (gy>-170 | gx<150 | gx>570)  
                                     [gy gx]=ginput(1)    
                                    end   
  % pause 
end 
   
close all 
     

     

 

 

exlearningHO.m: Experiment practice for HO collaboration level. called from the main 

program, HOmarkalone2.m 

 
% Subroutine which explain the experiment for HO level 
clear 
clc 
close all 
clear Limagedatabase 
ImageDir=['C:\My Documents\Matlab\Experiments2003\learning'] 
  
 Limgorder=[10 669 669 669]; 
 Limagedatabase=[]; 
 corner=55 
 A2=[]; 
 detect=0; 
 t1=0; 
 stop=0; 
 signed=0; 
 deleted=0; 
 err=0; 
 closetarget=0; 
 targetd=0; 
 scrsz = get(0,'ScreenSize'); 
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 %set (h,'Position',[1 1 scrsz(3) scrsz(4)])  
  for t1=1:4 
      h=figure('Position',[1 1 scrsz(3) scrsz(4)])      
      if t1<4  
            lstr=num2str(t1); 
            learn_img_no=['learn',lstr,'.jpg']; 
            L=imread(learn_img_no,'jpg'); 
            imshow(L) 
            set (h,'Position',[1 1 scrsz(3) scrsz(4)]) 
             pause 
     end     
      if targetd==1 & t1==2 
            A=imread('melon day 10.jpg'); 
            imshow(A) 
      else 
                if targetd==1 & t1==4 
                        if err==0 
                             A=imread('melon day 10.jpg'); 
                             imshow(A) 
                         else 
                              A=imread('melon day 666.jpg'); 
                              imshow(A) 
                          end 
                 else 
                          if closetarget==1& t1==4 & err==1 
                                A=imread('melon day 664.jpg'); 
                                 imshow(A) 
                          end 
                           if closetarget==1& t1==4 & err==0 
                                 A=imread('melon day 333.jpg'); 
                                 imshow(A) 
                             end      
                  end 
        end 
         if  t1<4 
                showimage 
         end 
         gy=999; 
         gx=999; 
         detect=0; 
         go=0; 
         stop=0; 
         err=0; 
         closetarget=0; 
         targetd=0; 
         flag==0; 
          while detect==0 
                       if gy<0 & flag==1 
                            detect=1; 
                       else  
                            gy=999; 
                      end 
                       while gy>0 & go==0  
                                    [gy gx]=ginput(1)  
                                    while (gx<0) & flag==0 
                                     [gy gx]=ginput(1)    
                                    end   
                                    if gx>=0 & gy>=0 & gx<imagesize(1) & gy<imagesize(2) & (stop==0) 
                                           x=round(gx) 
                                           y=round(gy) 
      % Check if the HO inserted points and if the new mark close to them       
                                            if (t1==2 & detect==0) | (t1==3 & detect==0) | (t1==4 & detect==0) 
                                                  dxy=[abs(x-293),abs(y-196)] 
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                                                  sumline=sum((dxy<55)'); 
                                                  targetd=find(sumline==2); 
                                            end 
                                            if (t1==1 & detect==0) | (t1==3 & detect==0)  | (t1==4 & detect==0) 
                                                  dxy=[abs(x-133),abs(y-336)] 
                                                  sumline=sum((dxy<55)'); 
                                                  closetarget=find(sumline==2); 
                                            end                      
              % reorgenizing the DB of imagedatabase                  
                                            if sum(closetarget)>0 & signed==0 
                                                  if detect==0  
                                                        MARKSIGN 
                                                        A2(:,:,1)=rnew; 
                                                        A2(:,:,2)=gnew; 
                                                        A2(:,:,3)=bnew; 
                                                  end 
                                                  if t1==1 
                                                        imshow(A2) 
                                                  end 
                                                  if t1==3  
                                                        A=imread('melon day 333.jpg'); 
                                                        imshow(A) 
                                                  end 
                                                  if t1==4  
                                                        A=imread('melon day 444.jpg'); 
                                                        imshow(A) 
                                                  end 
                                                   h1= uicontrol('Style', 'pushbutton', 'String', 

'NEXT','FontWeight','bold','Position',[2,92,90,400]);    
                                                   flag=1; 
                                                   detect=1; 
                                                   if t1==3  
                                                        go=1; 
                                                        signed=1; 
                                                   end 
                                            else % sum(closetarget)>0   
                                                     if  sum(targetd)>0  & deleted==0 
                                                            if (t1<4) | (t1==4 & closetarget==1) 
                                                                  A=imread('melon day 10.jpg'); 
                                                                  imshow(A) 
                                                            else 
                                                                       A=imread('melon day 444.jpg'); 
                                                                       imshow(A) 
                                                            end 
                                                            h1= uicontrol('Style', 'pushbutton', 'String', 

'NEXT','FontWeight','bold','Position',[2,92,90,400]); 
                                                            flag=1; 
                                                            if (detect==0 & t1==1) | (detect==0 & t1==2) 
                                                                  [gy gx]=ginput(1)              
                                                            end 
                                                            h1= uicontrol('Style', 'pushbutton', 'String', 

'NEXT','FontWeight','bold','Position',[2,92,90,400]); 
                                                            detect=1; 
                                                            stop=1; 
                                                            if t1==3  
                                                                  go=1; 
                                                                  deleted=1; 
                                                            end 
                                                     else  
                                                              estr=num2str(t1); 
                                                              error_img_no=['error',lstr,'.jpg']; 
                                                              R=imread(error_img_no,'jpg'); 
                                                              err=1; 
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                                                              imshow(R) 
                                                              pause 
                                                              if t1==1 & err==1 
                                                                    B=imread('melon day 666.jpg'); 
                                                                    imshow(B) 
                                                              end 
                                                              if t1==2 & err==1 
                                                                    B=imread('melon day 667.jpg'); 
                                                                    imshow(B)  
                                                               end 
                                                            if t1==3 & err==1 
                                                                  B=imread('melon day 665.jpg'); 
                                                                  imshow(B) 
                                                            end 
                                                            if t1==4 & err==1 
                                                                  if deleted==0 
                                                                        B=imread('melon day 664.jpg'); 
                                                                        imshow(B) 
                                                                  else 
                                                                           B=imread('melon day 666.jpg'); 
                                                                           imshow(B) 
                                                                  end 
                                                            end 
                                                      end          
                                                  end  %closetarget==0) & (dtarget==0) 
                                             end 
               
                                    end %if gx>=0 & gy>=0 & gx<imagesize(1) & gy<imagesize(2) 
                                    flag=0; 
                            end %while gy>0 
                            close all 
  
          end %while detect==0 
          if t1<4 
                close all 
          end 
end %    for t1=1:2 
 T=imread('finish.jpg'); 
 imshow(T) 
 pause 
 close all 
  
 

 

 

exlearningHOR.m: Experiment practice for HO-R collaboration level. Called from the main 

program, HOmarkandinsert2.m 
 

% Subroutine which explain the experiment for HO-R level 
clear 
clc 
close all 
clear Limagedatabase 
ImageDir=['C:\My Documents\Matlab\Experiments2003\learning'] 
  
  Limgorder=[10 669 669]; 
  Limagedatabase=[]; 
  corner=55 
  A2=[]; 
  detect=0; 
  t1=0; 
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  stop=0; 
  signed=0; 
  deleted=0; 
  err=0; 
  closetarget=0; 
  targetd=0; 
  scrsz = get(0,'ScreenSize'); 
      
 for t1=1:3 
       h=figure('Position',[1 1 scrsz(3) scrsz(4)])      
      lstr=num2str(t1); 
      learn_img_no=['HORlearn',lstr,'.jpg']; 
      L=imread(learn_img_no,'jpg'); 
      imshow(L) 
      set (h,'Position',[1 1 scrsz(3) scrsz(4)]) 
      pause 
      if targetd==1 & t1==2 
            A=imread('melon day 10.jpg'); 
            imshow(A) 
      end 
      if  t1<3 
             showimage 
      else 
              A=imread('melon day 333.jpg'); 
              imshow(A) 
      end 
      gy=999; 
      gx=999; 
      detect=0; 
      go=0; 
      stop=0; 
      err=0; 
      closetarget=0; 
      targetd=0; 
      flag=0; 
      while detect==0 
                         if gy<0 & flag==1 
                               detect=1; 
                         else  
                                gy=999; 
                         end 
            while gy>0 & go==0 
                         [gy gx]=ginput(1)    
                         while (gx<0) & flag==0 
                                      [gy gx]=ginput(1)    
                         end   
                         if gx>=0 & gy>=0 & gx<imagesize(1) & gy<imagesize(2) & (stop==0) 
                               x=round(gx) 
                               y=round(gy) 
                               % Check if the HO inserted points and if the new mark close to them       
                               if (t1==2 & detect==0) | (t1==3 & detect==0)  
                                    dxy=[abs(x-293),abs(y-196)] 
                                    sumline=sum((dxy<55)'); 
                                    targetd=find(sumline==2); 
                               end 
                               if (t1==1 & detect==0) | (t1==3 & detect==0)  
                                     dxy=[abs(x-133),abs(y-336)] 
                                     sumline=sum((dxy<55)'); 
                                     closetarget=find(sumline==2); 
                               end                      
                               % reorgenizing the DB of imagedatabase                  
                               if sum(closetarget)>0 & signed==0  
                                    if detect==0  
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                                          MARKSIGN 
                                          A2(:,:,1)=rnew; 
                                          A2(:,:,2)=gnew; 
                                          A2(:,:,3)=bnew; 
                                    end 
                                    if t1==1 
                                          imshow(A2) 
                                          h1= uicontrol('Style', 'pushbutton', 'String', 

'NEXT','FontWeight','bold','Position',[2,92,90,400]);    
                                          flag=1; 
                                    end 
                                    if (t1<3) 
                                          detect=1; 
                                          signed=1; 
                                          stop=1; 
                                    end 
                               else % sum(closetarget)>0   
                                          if  sum(targetd)>0  & deleted==0 
                                                 if (t1==2) 
                                                       A=imread('melon day 10.jpg'); 
                                                 end 
                                                 if (t1==3) 
                                                        A=imread('melon day 444.jpg'); 
                                                 end 
                                                 imshow(A) 
                                                 h1= uicontrol('Style', 'pushbutton', 'String', 

'NEXT','FontWeight','bold','Position',[2,92,90,400]); 
                                                 flag=1; 
                                                 if (detect==0 & t1==1) | (detect==0 & t1==2) 
                                                        [gy gx]=ginput(1)              
                                                 end 
                                                 h1= uicontrol('Style', 'pushbutton', 'String', 

'NEXT','FontWeight','bold','Position',[2,92,90,400]); 
                                                 flag=1; 
                                                detect=1; 
                                                stop=1; 
                                                if t1==3  
                                                      go=1; 
                                                      deleted=1; 
                                                end 
                                          else  
                                                      err=1; 
                                                      if (t1<3) 
                                                            estr=num2str(t1); 
                                                            error_img_no=['error',lstr,'.jpg']; 
                                                             R=imread(error_img_no,'jpg'); 
                                                             imshow(R) 
                                                              pause 
                                                      end 
                                                      if t1==1 
                                                            E=imread('melon day 666.jpg'); 
                                                           imshow(E) 
                                                      end 
                                                      if t1==2  
                                                            E=imread('melon day 667.jpg'); 
                                                            imshow(E) 
                                                      end 
                                                      if t1==3  
                                                            if closetarget==1 
                                                                  E=imread('HORerr.jpg'); 
                                                                  imshow(E) 
                                                                  pause 
                                                                  closetarget=0; 
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                                                                  B=imread('melon day 664.jpg'); 
                                                                  imshow(B) 
                                                            else 
                                                                  estr=num2str(t1); 
                                                                  error_img_no=['error',lstr,'.jpg']; 
                                                                  R=imread(error_img_no,'jpg'); 
                                                                  imshow(R) 
                                                                  pause 
                                                                  C=imread('melon day 664.jpg'); 
                                                                  imshow(C) 
                                                            end 
                                                      end 
                                          end                                     
                               end  %closetarget==0) & (dtarget==0) 
                    end % while gy>0 & go==0 
            end %if gx>=0 & gy>=0 & gx<imagesize(1) & gy<imagesize(2) 
            flag=0; 
        end %while gy>0 
        close all 
    end %while detect==0 
    if t1<4 
          close all 
    end 
end %    for t1=1:2 
T=imread('finish.jpg'); 
imshow(T) 
pause 
 close all 
  

     

 

 

exlearningHORr.m: Experiment practice for HO-Rr collaboration level. Called from the 

main program, HOmark2.m 
 

% Subroutine which explain the experiment for HO-Rr level 
clear 
clc 
close all 
clear Limagedatabase 
ImageDir=['C:\My Documents\Matlab\Experiments2003\learning'] 
 Limgorder=[10 10 777]; 
 Limagedatabase=[]; 
 corner=55 
 A2=[]; 
 detect=0; 
 t1=0; 
 stop=0; 
 signed=0; 
 deleted=0; 
 scrsz = get(0,'ScreenSize'); 
     
  for t1=1:3 
           h=figure('Position',[1 1 scrsz(3) scrsz(4)])       
           lstr=num2str(t1); 
           learn_img_no=['HORrlearn',lstr,'.jpg']; 
           L=imread(learn_img_no,'jpg'); 
           imshow(L) 
           set (h,'Position',[1 1 scrsz(3) scrsz(4)]) 
            pause 
            closetarget=0; 
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            targetd=0; 
            err=0; 
            showimage 
            if targetd==1 
                  A=imread('melon day 10.jpg'); 
                  imshow(A) 
            end 
            gy=999; 
             gx=999; 
             detect=0; 
             go=0; 
             stop=0; 
             flag=0; 
             while detect==0 
                          if gy<0 & flag==1 
                                detect=1; 
                          else  
                                   gy=999; 
                          end 
                          while gy>0 & go==0 
                                        if (t1==2 & detect==0 & err==0) 
                                               A=imread('melon day 669.jpg'); 
                                                imshow(A) 
                                        end  
                                        [gy gx]=ginput(1)   
                                        while (gx<0) & flag==0 
                                                    [gy gx]=ginput(1)    
                                        end   
                                         if gx>=0 & gy>=0 & gx<imagesize(1) & gy<imagesize(2) & (stop==0) 
                                                x=round(gx) 
                                                y=round(gy) 
                                                if (t1==2 & detect==0) | (t1==3 & detect==0) & (stop==0) 
                                                      dxy=[abs(x-293),abs(y-196)] 
                                                      sumline=sum((dxy<55)'); 
                                                      targetd=find(sumline==2); 
                                                end 
                                                if (t1==1 & detect==0) | (t1==3 & detect==0) & (stop==0) 
                                                      dxy=[abs(x-133),abs(y-336)] 
                                                      sumline=sum((dxy<55)'); 
                                                      closetarget=find(sumline==2); 
                                                end                      
                                                if sum(closetarget)>0 & signed==0 
                                                      if detect==0 & t1==1  
                                                            MARKSIGN 
                                                            A2(:,:,1)=rnew; 
                                                            A2(:,:,2)=gnew; 
                                                            A2(:,:,3)=bnew; 
                                                       end 
                                                     if detect==0 & t1==3  
                                                           crosssign 
                                                           A2(:,:,1)=rnew; 
                                                           A2(:,:,2)=gnew; 
                                                           A2(:,:,3)=bnew; 
                                                     end 
                                                     if t1<3 
                                                           imshow(A2) 
                                                     else 
                                                              A=imread('melon day 888.jpg'); 
                                                              imshow(A) 
                                                     end 
                                                      h1= uicontrol('Style', 'pushbutton', 'String', 

'NEXT','FontWeight','bold','Position',[2,92,90,400]);    
                                                      flag=1; 
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                                                      detect=1; 
                                                       if t1==3 
                                                             stop=1; 
                                                             signed=1; 
                                                       end 
                                                 else % sum(closetarget)>0   
                                                            if  sum(targetd)>0  & deleted==0 & t1==2 
                                                                   A=imread('melon day 10.jpg'); 
                                                                   imshow(A) 
                                                                   h1= uicontrol('Style', 'pushbutton', 'String', 

'NEXT','FontWeight','bold','Position',[2,92,90,400]); 
                                                                   flag=1; 
                                                                   detect=1; 
                                                                   stop=1; 
                                                                   if t1==3 
                                                                         deleted=1; 
                                                                   end 
                                                            else  
                                                                     err=1; 
                                                                     if t1<3 
                                                                          estr=num2str(t1); 
                                                                          error_img_no=['error',lstr,'.jpg']; 
                                                                          R=imread(error_img_no,'jpg'); 
                                                                         imshow(R) 
                                                                         pause 
                                                                    end 
                                                                    if t1==1  
                                                                          E=imread('melon day 666.jpg'); 
                                                                          imshow(E) 
                                                                    end 
                                                                    if t1==2 
                                                                          E=imread('melon day 667.jpg'); 
                                                                          imshow(E) 
                                                                    end 
                                                                    if t1==3 %& err==1 
                                                                          if targetd==1 
                                                                                E=imread('HORrerr.jpg'); 
                                                                                imshow(E) 
                                                                                pause 
                                                                                targetd=0; 
                                                                                B=imread('melon day 668.jpg'); 
                                                                                imshow(B) 
                                                                           else 
                                                                                    estr=num2str(t1); 
                                                                                    error_img_no=['error',lstr,'.jpg']; 
                                                                                     R=imread(error_img_no,'jpg'); 
                                                                                     imshow(R) 
                                                                                     pause 
                                                                                     C=imread('melon day 668.jpg'); 
                                                                                     imshow(C) 
                                                                            end 
                 
                                                                    end         
                

                  

                        
                                                         end  %closetarget==0) & (dtarget==0) 
                                       end 
               
                          end %if gx>=0 & gy>=0 & gx<imagesize(1) & gy<imagesize(2) 
flag=0; 
end %while gy>0 
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end %while detect==0 
if t1<4 
close all 
end 
end%    for t1=1:2 
 T=imread('finish.jpg'); 
  imshow(T) 
  pause 
 close all 
  

     

 

Unmarksign.m: subroutine which unmark previous selection of an object by human or robot. 

Called from the interface subroutine. 

 
% unmarksign subrotine 
  
frameleft=corner; 
frameright=corner; 
frameup=corner; 
framedown=corner; 
  
if x<=corner 
   frameup=x-1; 
end 
if imagesize(1)-x<=corner 
   framedown=imagesize(1)-x-1; 
end 
if y<=corner 
   frameleft=y-1; 
end 
if imagesize(2)-y<=corner 
   frameright=imagesize(2)-y-1; 
end 
  
rnew(x-frameup:x+framedown,y-frameleft:y+frameright)=r(x-frameup:x+framedown,y-frameleft:y+frameright); 
gnew(x-frameup:x+framedown,y-frameleft:y+frameright)=g(x-frameup:x+framedown,y-

frameleft:y+frameright); 
bnew(x-frameup:x+framedown,y-frameleft:y+frameright)=b(x-frameup:x+framedown,y-

frameleft:y+frameright); 
  

  

 

 

 

marksign.m: subroutine which mark an object. Called from the main program or interface 

subroutine. 

 
% marksign subroutine compound from the cross sign and the frame sign 

  
% the crosssign subrotine call 
crosssign 
  
% the framesign subrotine call 
framesign 
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crosssign.m: subroutine which draw a black cross on the marked object. Called from 

marksign.m subroutine. 
  

% The crosssign subrotine 
  
if x>=11 & y>=11 & imagesize(1)-x>=11 & imagesize(2)-y>=11 
    rnew(x-10:x+10,y-1:y+1)=0; 
    gnew(x-10:x+10,y-1:y+1)=0; 
    bnew(x-10:x+10,y-1:y+1)=0; 
    rnew(x-1:x+1,y-10:y+10)=0; 
    gnew(x-1:x+1,y-10:y+10)=0; 
    bnew(x-1:x+1,y-10:y+10)=0; 
else 
    crosscoor=[10-x,10-y,x+10,y+10] 
    limits=imgsize-crosscoor 
    overlimit=find(limits<=0) 
    crosscoor=[x-10,y-10,x+10,y+10]; 
    crosscoor(overlimit)=imgsize(overlimit) 
    deltacross=abs(crosscoor-[x y x y])-[1 1 1 1] 
    coornewcroos=abs([11 11 -11 -11]-deltacross) 
    newcross=tcross(coornewcroos(1):coornewcroos(3),coornewcroos(2):coornewcroos(4)); 
    [tcx tcy]=find(newcross==1); 
    cx=tcx+x-deltacross(1)-1; 
    cy=tcy+y-deltacross(2)-1; 
    for c1=1:length(cx) 
        rnew(cx(c1),cy(c1))=0; 
        gnew(cx(c1),cy(c1))=0; 
        bnew(cx(c1),cy(c1))=0;              
    end 
end 
     

         

 

 

 

framesign.m: subroutine which draws a red frame around the marked object. Called from 

marksign.m subroutine. 
 

% the framesign subrotine 
  
frameleft=corner; 
frameright=corner; 
frameup=corner; 
framedown=corner; 
  
if x<=corner 
   frameup=x-1; 
end 
if imagesize(1)-x<=corner 
   framedown=imagesize(1)-x-1; 
end 
if y<=corner 
   frameleft=y-1; 
end 
if imagesize(2)-y<=corner 
   frameright=imagesize(2)-y-1; 
end 
  
rnew(x-frameup:x-frameup+20,y-frameleft:y-frameleft+2)=1; 
rnew(x-frameup:x-frameup+20,y+frameright-2:y+frameright)=1; 
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rnew(x+framedown-20:x+framedown,y-frameleft:y-frameleft+2)=1; 
rnew(x+framedown-20:x+framedown,y+frameright-2:y+frameright)=1; 
rnew(x-frameup:x-frameup+2,y-frameleft:y-frameleft+20)=1; 
rnew(x-frameup:x-frameup+2,y+frameright-20:y+frameright)=1; 
rnew(x+framedown-2:x+framedown,y-frameleft:y-frameleft+20)=1; 
rnew(x+framedown-2:x+framedown,y+frameright-20:y+frameright)=1; 
  
gnew(x-frameup:x-frameup+20,y-frameleft:y-frameleft+2)=0; 
gnew(x-frameup:x-frameup+20,y+frameright-2:y+frameright)=0; 
gnew(x+framedown-20:x+framedown,y-frameleft:y-frameleft+2)=0; 
gnew(x+framedown-20:x+framedown,y+frameright-2:y+frameright)=0; 
gnew(x-frameup:x-frameup+2,y-frameleft:y-frameleft+20)=0; 
gnew(x-frameup:x-frameup+2,y+frameright-20:y+frameright)=0; 
gnew(x+framedown-2:x+framedown,y-frameleft:y-frameleft+20)=0; 
gnew(x+framedown-2:x+framedown,y+frameright-20:y+frameright)=0; 
  
bnew(x-frameup:x-frameup+20,y-frameleft:y-frameleft+2)=0; 
bnew(x-frameup:x-frameup+20,y+frameright-2:y+frameright)=0; 
bnew(x+framedown-20:x+framedown,y-frameleft:y-frameleft+2)=0; 
bnew(x+framedown-20:x+framedown,y+frameright-2:y+frameright)=0; 
bnew(x-frameup:x-frameup+2,y-frameleft:y-frameleft+20)=0; 
bnew(x-frameup:x-frameup+2,y+frameright-20:y+frameright)=0; 
bnew(x+framedown-2:x+framedown,y-frameleft:y-frameleft+20)=0; 
bnew(x+framedown-2:x+framedown,y+frameright-20:y+frameright)=0; 
 

 

 

 

imgscore.m: subroutine which calculate the score of each image. Called from the interface 

subroutines. 

 
% Subroutine which calculate the image score 
  
img_tt=0; 
img_tf=0; 
clear delta  
sys_target=[]; 
  
true_target=melondatabase(mdn,2:3); 
if ~isempty(imagedatabase) 
    sys_detect=imagedatabase(:,1:2); 
    n_sys_detect=length(sys_detect(:,1)); 
    if true_no==0 
        img_tt=0; 
        img_tf=n_sys_detect; 
        img_ft=0; 
    else 
        for t=1:n_sys_detect 
            for r1=1:true_no 
                sys_target(r1,:)=sys_detect(t,:); 
            end 
            delta=abs(true_target-sys_target) 
            radius=((delta(:,1).^2+delta(:,2).^2).^0.5) 
            current_tt=find(radius<=50); 
            n_ctt=length(current_tt); 
            if n_ctt>=1 
                img_tt=img_tt+1; 
            else 
                img_tf=img_tf+1; 
            end 
        end 
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        img_ft=true_no-img_tt; 
    end 
else 
    n_sys_detect=0; 
    img_tt=0; 
    img_tf=0; 
    img_ft=true_no; 
end 
  
    score=score+img_tt*add-img_tf*sub; 
    scorestr=['SCORE:  ',num2str(score)]; 
    ttstr=['Detection:  ',num2str(img_tt)]; 
    tfstr=['False:  ',num2str(img_tf)]; 
    ftstr=['Missed:  ',num2str(img_ft)]; 
  

 

 

scorefigure.m: subroutine which display the score after each image. Called from the interface 

subroutines. 
 

% Subroutine which shows the scores on a different figure 
  
%close figure no 2 
fig2pos=get(1,'position'); 
fignum=figure('position',fig2pos); 
h2=uicontrol('Style', 'text', 'String','SCORE: 

','FontWeight','bold','fontsize',24,'fontname','ariel','backgroundcolor',[0.8 0.8 

0.8],'HorizontalAlignment','left','Position',[300,450,200,50]); 
h21=uicontrol('Style', 'text', 'String',score,'FontWeight','bold','fontsize',24,'fontname','ariel','foregroundcolor',[1 0 

0],'HorizontalAlignment','left','Position',[440,450,100,50]); 
  
h3=uicontrol('Style', 'text', 

'String','Detections','FontWeight','bold','fontsize',16,'fontname','ariel','backgroundcolor',[0.8 0.8 

0.8],'HorizontalAlignment','center','Position',[125,300,200,30]); 
h31=uicontrol('Style', 'text', 'String',img_tt,'FontWeight','bold','fontsize',16,'fontname','ariel','foregroundcolor',[1 

0 0],'HorizontalAlignment','center','Position',[175,270,100,30]); 
  
h6=uicontrol('Style', 'text', 'String','False','FontWeight','bold','fontsize',16,'fontname','ariel','backgroundcolor',[0.8 

0.8 0.8],'HorizontalAlignment','center','Position',[300,300,200,30]); 
h61=uicontrol('Style', 'text', 'String',img_tf,'FontWeight','bold','fontsize',16,'fontname','ariel','foregroundcolor',[1 

0 0],'HorizontalAlignment','center','Position',[350,270,100,30]); 
  

  
h7=uicontrol('Style', 'text', 

'String','Misses','FontWeight','bold','fontsize',16,'fontname','ariel','backgroundcolor',[0.8 0.8 

0.8],'HorizontalAlignment','center','Position',[475,300,200,30]); 
h71=uicontrol('Style', 'text', 'String',img_ft,'FontWeight','bold','fontsize',16,'fontname','ariel','foregroundcolor',[1 

0 0],'HorizontalAlignment','center','Position',[525,270,100,30]); 
  

  
%h3=uicontrol('Style', 'text', 'String',ttstr,'FontWeight','bold','Position',[255,10,90,45]); 
%h6=uicontrol('Style', 'text', 'String',tfstr,'FontWeight','bold','Position',[380,10,90,45]); 
%h7=uicontrol('Style', 'text', 'String',ftstr,'FontWeight','bold','Position',[505,10,90,45]); 
  
pause(2) 
close (fignum) 



 

 209 

exp_input.m: Assigning subject number and determination of robot quality 

 
sn=input('subject s/n=  '); 
add=input('add=  '); 
sub=input('sub=  '); 
robothit=input('robot  hit=  '); 
 robotfalse=0; 
if robothit==0.9 
       robotfalse=12; 
   end 
   if robothit==0.5 
       robotfalse=106; 
   end 
 

 

 

 

Expfinal.m: subroutine which end the experiment. Called from all main programs 

 
% This subroutine end the experiment 
  
fig2pos=get(1,'position'); 
fignum=figure('position',fig2pos); 
  
h9=uicontrol('Style', 'text', 'String','Thank you for your cooperation 

','FontWeight','bold','fontsize',24,'fontname','ariel','backgroundcolor',[0.8 0.8 

0.8],'HorizontalAlignment','left','Position',[100,450,550,50]); 
  
h91=uicontrol('Style', 'text', 'String','Your final score: 

','FontWeight','bold','fontsize',24,'fontname','ariel','backgroundcolor',[0.8 0.8 

0.8],'HorizontalAlignment','left','Position',[300,350,280,50]); 
h92=uicontrol('Style', 'text', 'String',score,'FontWeight','bold','fontsize',24,'fontname','ariel','foregroundcolor',[1 0 

0],'HorizontalAlignment','left','Position',[570,350,100,50]); 
  
% pause(10) 
% close (fignum) 
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Appendix VIII: Example for subjects' raw data 
 

HOlogger.mat: this database contains the image coordinates, the image number and the time 

of the human marks. 
 

Image 

no. mark coordinates 

Time 

 

 x y  

35 269 364 2.86 

35 269 362 4.06 

35 279 -80 8.44 

408 37 496 16.39 

408 36 495 21.00 

408 318 -63 23.08 

105 288 -87 35.08 

49 284 -107 42.84 

59 223 264 48.70 

59 274 -96 53.37 

231 221 278 60.90 

231 277 -60 65.14 

37 320 377 70.79 

37 293 -84 76.82 

102 204 256 82.35 

102 294 -89 87.28 

319 323 389 94.85 

319 195 186 100.32 

319 276 -92 102.18 

329 262 -73 113.01 

97 284 -87 120.73 

308 306 -78 128.18 

92 307 -109 134.41 

216 92 368 139.80 

216 242 283 142.21 

216 264 -90 144.52 

321 31 272 151.37 

321 251 -102 154.83 

228 263 -67 160.91 

98 282 -75 168.00 

75 231 170 173.77 

75 287 -84 177.80 

22 281 -77 186.46 

401 290 -90 192.97 

202 83 314 198.24 

202 251 -56 202.00 

111 200 171 206.88 

111 34 180 208.97 

111 250 -95 211.75 

225 287 -77 217.55 

107 265 -84 222.97 

313 222 363 230.08 

313 273 -69 231.58 

405 243 -57 241.22 

402 268 -70 248.23 

74 301 -99 253.48 

96 295 -101 261.04 

58 274 340 267.75 

58 285 396 271.26 

58 291 -93 273.50 

12 305 -80 279.64 

222 297 -99 285.59 

51 300 -115 291.39 

62 33 367 298.20 

62 263 -88 300.28 

57 229 205 307.76 

57 263 -83 309.54 

411 304 -85 315.92 

323 303 -92 321.09 

68 302 -94 325.79 

327 283 172 332.49 

327 284 -85 335.73 

204 270 -71 341.07 

315 163 379 346.57 

315 249 -90 348.65 

214 271 -57 358.51 

16 285 -85 365.01 

29 289 -96 369.74 

52 328 352 375.01 

52 301 -96 377.44 

46 299 -92 381.68 

110 297 -99 388.33 

209 292 -62 395.71 

88 295 -96 401.93 

309 298 -57 407.38 

301 289 -79 415.91 

27 293 -106 421.75 

306 216 -84 430.53 

82 267 -80 435.50 

227 257 -68 440.24 

85 417 298 445.97 

85 310 -73 447.66 

63 306 -89 452.17 

71 296 -112 458.51 

210 293 -73 463.72 

2 103 437 468.59 

2 241 -50 471.06 

54 238 -93 474.98 

86 202 364 479.86 

86 268 -100 481.69 

320 272 -93 486.15 

112 191 139 490.26 

112 147 362 492.26 
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112 257 -83 494.22 

317 286 419 501.75 

317 290 -84 503.51 

17 159 28 509.12 

17 273 -77 511.32 

206 250 -49 516.31 

9 285 609 522.54 

9 296 -60 525.01 

21 305 -68 530.57 

64 299 -91 535.02 

229 408 238 540.79 

229 311 -52 543.68 

1 301 -66 549.49 

53 259 389 556.32 

53 310 -85 558.45 

7 275 -57 566.23 

230 263 -74 570.52 

217 314 202 577.69 

217 279 -58 579.27 

6 283 -52 584.62 

34 263 186 589.26 

34 280 -93 591.30 

223 258 205 598.99 

223 242 202 600.57 

223 297 -57 602.76 

10 288 473 609.63 

10 416 350 611.91 

10 411 350 614.74 

10 294 -58 617.50 

326 296 -82 623.21 

69 297 -79 628.28 

4 298 -57 633.66 

76 335 176 638.46 

76 342 -89 640.27 

302 349 299 648.14 

302 322 -57 650.44 

72 316 -77 654.88 

38 313 -84 660.31 

324 310 -89 665.13 

65 310 -100 670.42 

205 70 307 675.30 

205 232 -46 677.61 

218 200 235 681.83 

218 276 -80 683.65 

103 274 -81 689.28 

94 273 -97 693.98 

314 272 -97 699.40 

409 460 349 705.61 

409 460 350 708.97 

409 470 349 710.92 

409 292 -55 714.34 

89 257 -115 718.61 

406 295 -55 722.68 

307 294 -76 727.47 

13 315 42 732.53 

13 164 606 735.67 

13 240 322 737.82 

13 275 -64 739.53 

42 262 -95 744.46 

5 161 540 750.15 

5 274 -80 752.31 

3 377 209 756.77 

3 295 -50 758.82 

47 291 -91 762.99 

61 290 -88 767.82 

220 291 -68 772.55 

311 289 -63 778.35 

212 337 251 783.26 

212 299 -70 786.70 

303 301 -92 791.85 

77 80 534 796.46 

77 278 -101 798.59 

232 190 489 803.41 

232 259 -63 805.13 

24 256 -91 809.52 

15 280 -82 814.01 

41 275 -118 818.18 

106 219 -87 823.04 

403 188 296 827.74 

403 188 297 832.60 

403 290 -61 834.27 

412 259 -68 838.94 

18 260 -51 843.33 

109 265 -106 848.22 

31 264 -95 852.42 

203 269 -96 858.30 

36 268 -120 863.21 

19 312 -81 868.27 

66 230 473 875.64 

66 290 -90 878.47 

104 309 -89 883.22 

310 49 99 890.58 

310 264 -51 892.31 

70 280 -101 897.22 

78 280 -97 901.95 

25 281 -87 906.86 

40 280 -94 911.64 

55 280 -95 916.47 

404 437 486 921.62 

404 288 -60 923.98 

14 310 -66 928.29 

208 319 -60 932.56 

33 325 -104 936.58 

219 326 -85 941.37 

30 325 -110 946.01 

224 239 340 951.82 

224 294 -66 953.67 

410 255 -67 958.89 

44 261 -118 963.03 

87 260 -116 968.21 
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20 256 -46 974.34 

325 264 -91 979.27 

322 268 -98 983.85 

90 100 325 988.88 

90 270 -83 990.20 

28 285 -83 994.91 

39 285 -85 999.09 

80 290 -99 1003.10 

101 274 134 1007.80 

101 299 -83 1009.80 

211 315 -75 1014.30 

67 314 -101 1018.40 

32 174 264 1025.70 

32 292 -140 1027.00 

201 300 -54 1032.50 

11 301 -73 1037.10 

100 299 -98 1042.30 

213 296 -67 1049.50 

48 306 -99 1055.10 

304 299 -76 1059.50 

312 298 -53 1064.40 

226 228 400 1068.40 

226 271 -66 1070.10 

215 284 -60 1074.50 

23 286 -95 1078.90 

305 146 525 1083.80 

305 286 -62 1085.30 

316 265 -86 1092.30 

221 267 -56 1096.90 

318 269 -88 1101.30 

407 274 -53 1105.70 

73 299 -96 1110.80 

45 298 -88 1117.30 

56 285 -105 1121.30 

328 285 -101 1126.00 

84 283 -92 1130.00 

108 285 -112 1135.70 

60 283 -102 1141.60 

50 281 -107 1145.60 

91 287 -110 1150.90 

95 280 -111 1155.90 

83 222 304 1160.10 

83 247 -84 1161.40 

43 119 285 1165.70 

43 262 -91 1167.70 

26 279 -90 1171.70 

207 283 -49 1176.20 

 

 

 

 

Allimgdb.mat: list of all melons/targets inserted by the human. 

The status number indicates: 0 - detected by the robot, 1 - detected by the robot and inserted 

to the database by the human, 2 - detected by the human and 3 - deleted by the human. 

 

image coordinates 
Image 

 no. 
time status 

x y    

269 362 35 4.06 2 

136 435 105 0.00 0 

290 168 49 0.00 0 

204 303 49 0.00 0 

83 333 59 0.00 0 

223 264 59 48.70 2 

190 338 37 0.00 0 

320 377 37 70.79 2 

165 332 329 0.00 0 

125 65 97 0.00 0 

412 313 308 0.00 0 

207 178 92 0.00 0 

92 368 216 139.80 2 

242 283 216 142.21 2 

250 417 321 0.00 0 

138 180 98 0.00 0 

323 301 98 0.00 0 

441 317 75 0.00 0 

231 170 75 173.77 2 

87 264 22 0.00 0 

384 146 22 0.00 0 

369 297 22 0.00 0 

307 141 401 0.00 0 

83 314 202 198.24 2 

200 171 111 206.88 2 

34 180 111 208.97 2 

78 387 402 0.00 0 

356 140 74 0.00 0 

204 370 74 0.00 0 

161 216 96 0.00 0 

285 396 58 271.26 2 

161 22 12 0.00 0 

313 246 12 0.00 0 

225 542 12 0.00 0 

304 304 222 0.00 0 

124 483 222 0.00 0 

340 358 51 0.00 0 

77 244 51 0.00 0 

196 322 62 0.00 0 

85 300 57 0.00 0 

229 205 57 307.76 2 

357 158 411 0.00 0 
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278 315 323 0.00 0 

112 140 323 0.00 0 

303 218 68 0.00 0 

312 372 327 0.00 0 

77 384 204 0.00 0 

289 336 315 0.00 0 

163 379 315 346.57 2 

52 291 214 0.00 0 

354 387 214 0.00 0 

233 218 16 0.00 0 

263 136 29 0.00 0 

148 198 29 0.00 0 

41 267 52 0.00 0 

328 352 52 375.01 2 

281 297 46 0.00 0 

131 365 209 0.00 0 

211 440 88 0.00 0 

217 203 309 0.00 0 

201 410 27 0.00 0 

203 412 306 0.00 0 

170 444 82 0.00 0 

232 481 227 0.00 0 

173 227 85 0.00 0 

417 298 85 445.97 2 

181 488 63 0.00 0 

192 351 71 0.00 0 

68 302 71 0.00 0 

412 419 210 0.00 0 

399 327 2 0.00 0 

103 437 2 468.59 2 

255 313 54 0.00 0 

202 364 86 479.86 2 

295 371 320 0.00 0 

191 139 112 490.26 2 

147 362 112 492.26 2 

206 288 317 0.00 0 

319 271 17 0.00 0 

159 28 17 509.12 2 

212 420 206 0.00 0 

402 367 9 0.00 0 

129 336 9 0.00 0 

378 153 21 0.00 0 

371 304 21 0.00 0 

81 265 21 0.00 0 

161 410 64 0.00 0 

25 288 229 0.00 0 

262 368 229 0.00 0 

85 314 1 0.00 0 

377 206 1 0.00 0 

42 382 53 0.00 0 

166 332 7 0.00 0 

229 192 230 0.00 0 

172 330 6 0.00 0 

263 186 34 589.26 2 

242 202 223 600.57 2 

130 346 10 0.00 0 

266 607 10 0.00 0 

411 350 10 614.74 2 

164 374 326 0.00 0 

417 503 326 0.00 0 

199 260 69 0.00 0 

332 96 4 0.00 0 

387 463 4 0.00 0 

98 574 4 0.00 0 

335 176 76 638.46 2 

210 36 302 0.00 0 

68 296 302 0.00 0 

349 299 302 648.14 2 

345 351 72 0.00 0 

257 183 324 0.00 0 

182 218 65 0.00 0 

70 307 205 675.30 2 

200 235 218 681.83 2 

418 85 94 0.00 0 

165 220 94 0.00 0 

264 124 409 0.00 0 

470 349 409 710.92 2 

200 238 406 0.00 0 

239 430 307 0.00 0 

315 42 13 732.53 2 

240 322 13 737.82 2 

295 165 42 0.00 0 

386 72 5 0.00 0 

96 180 5 0.00 0 

161 540 5 750.15 2 

84 313 3 0.00 0 

377 209 3 756.77 2 

239 226 47 0.00 0 

287 183 61 0.00 0 

373 391 220 0.00 0 

305 521 212 0.00 0 

337 251 212 783.26 2 

203 334 303 0.00 0 

80 534 77 796.46 2 

190 489 232 803.41 2 

246 216 15 0.00 0 

255 158 41 0.00 0 

362 401 403 0.00 0 

86 327 412 0.00 0 

377 438 412 0.00 0 

139 273 18 0.00 0 

294 529 18 0.00 0 

196 191 109 0.00 0 

406 592 203 0.00 0 

71 583 203 0.00 0 

297 232 36 0.00 0 

149 275 36 0.00 0 

169 262 19 0.00 0 

223 295 66 0.00 0 

25 318 66 0.00 0 
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199 162 104 0.00 0 

242 444 310 0.00 0 

187 146 70 0.00 0 

282 274 78 0.00 0 

113 443 78 0.00 0 

42 135 25 0.00 0 

66 299 25 0.00 0 

235 202 40 0.00 0 

107 169 40 0.00 0 

86 347 40 0.00 0 

265 183 55 0.00 0 

61 218 55 0.00 0 

437 486 404 921.62 2 

232 214 14 0.00 0 

263 271 208 0.00 0 

158 244 33 0.00 0 

202 161 219 0.00 0 

194 219 30 0.00 0 

35 180 30 0.00 0 

239 340 224 951.82 2 

121 147 410 0.00 0 

87 447 410 0.00 0 

362 455 410 0.00 0 

275 273 44 0.00 0 

127 223 44 0.00 0 

199 132 87 0.00 0 

381 169 20 0.00 0 

77 286 20 0.00 0 

154 629 20 0.00 0 

267 150 325 0.00 0 

337 408 322 0.00 0 

139 234 322 0.00 0 

292 275 90 0.00 0 

100 325 90 988.88 2 

231 188 80 0.00 0 

220 375 101 0.00 0 

32 346 101 0.00 0 

274 134 101 1007.80 2 

320 441 211 0.00 0 

102 287 67 0.00 0 

81 372 32 0.00 0 

171 399 32 0.00 0 

299 365 32 0.00 0 

174 264 32 1025.70 2 

37 504 201 0.00 0 

147 126 11 0.00 0 

302 373 11 0.00 0 

432 145 11 0.00 0 

176 141 100 0.00 0 

115 345 100 0.00 0 

338 341 100 0.00 0 

221 134 48 0.00 0 

348 153 304 0.00 0 

289 163 312 0.00 0 

228 400 226 1068.40 2 

127 224 215 0.00 0 

411 170 215 0.00 0 

43 130 23 0.00 0 

68 298 23 0.00 0 

298 269 305 0.00 0 

146 525 305 1083.80 2 

454 450 316 0.00 0 

368 297 316 0.00 0 

198 322 316 0.00 0 

360 203 221 0.00 0 

78 159 73 0.00 0 

262 397 73 0.00 0 

188 157 45 0.00 0 

53 166 45 0.00 0 

118 207 56 0.00 0 

375 152 56 0.00 0 

346 412 328 0.00 0 

155 288 328 0.00 0 

148 184 60 0.00 0 

291 272 60 0.00 0 

248 239 50 0.00 0 

170 389 50 0.00 0 

242 336 91 0.00 0 

23 263 91 0.00 0 

144 298 95 0.00 0 

347 367 95 0.00 0 

222 304 83 1160.10 2 

285 268 43 0.00 0 

22 140 43 0.00 0 

119 285 43 1165.70 2 

142 179 26 0.00 0 

387 102 26 0.00 0 

214 461 207 0.00 0 
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f_targets.mat: list of non-target objects marked. 

 
sequential 

no. mark coordinates 

image 

no. 

 x y  

1 387 102 26 

1 347 367 95 

1 406 238 229 

1 139 234 322 

1 229 470 66 

1 33 366 62 

1 322 388 319 

1 274 340 58 

1 51 99 310 

1 284 171 327 

1 83 333 59 

1 287 472 10 

 

 

 

f_targets.mat: list of non-target objects marked. 

 

sequencial no. mark coordinates 

Image 

no. 

 x y  

1 268 364 35 

1 136 435 105 

1 290 168 49 

2 204 303 49 

1 220 277 231 

1 190 338 37 

1 205 255 102 

1 195 187 319 

1 165 332 329 

1 125 65 97 

1 412 313 308 

1 207 178 92 

1 250 417 321 

2 30 272 321 

1 138 180 98 

2 323 301 98 

2 441 317 75 

1 87 264 22 

2 384 146 22 

3 369 297 22 

1 307 141 401 

1 221 363 313 

1 78 387 402 

1 356 140 74 

2 204 370 74 

1 161 216 96 

1 161 22 12 

2 313 246 12 

3 225 542 12 

1 304 304 222 

2 124 483 222 

1 340 358 51 

2 77 244 51 

1 196 322 62 

1 85 300 57 

1 357 158 411 

1 278 315 323 

2 112 140 323 

1 303 218 68 

1 312 372 327 

1 77 384 204 

1 289 336 315 

1 52 291 214 

2 354 387 214 

1 233 218 16 

1 263 136 29 

2 148 198 29 

2 41 267 52 

1 281 297 46 

1 131 365 209 

1 211 440 88 

1 217 203 309 

1 201 410 27 

1 203 412 306 

1 170 444 82 

1 232 481 227 

1 173 227 85 

1 181 488 63 

1 192 351 71 

2 68 302 71 

1 412 419 210 

1 399 327 2 

1 255 313 54 
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1 295 371 320 

1 206 288 317 

2 285 419 317 

2 319 271 17 

1 212 420 206 

1 402 367 9 

2 129 336 9 

3 285 608 9 

1 378 153 21 

2 371 304 21 

3 81 265 21 

1 161 410 64 

1 25 288 229 

2 262 368 229 

1 85 314 1 

2 377 206 1 

1 42 382 53 

2 259 387 53 

1 166 332 7 

1 229 192 230 

1 314 203 217 

1 172 330 6 

1 259 205 223 

1 130 346 10 

2 266 607 10 

3 415 349 10 

1 164 374 326 

2 417 503 326 

1 199 260 69 

1 332 96 4 

2 387 463 4 

3 98 574 4 

2 210 36 302 

3 68 296 302 

1 345 351 72 

1 257 183 324 

1 182 218 65 

1 418 85 94 

2 165 220 94 

1 264 124 409 

1 200 238 406 

1 239 430 307 

1 164 605 13 

1 295 165 42 

1 386 72 5 

2 96 180 5 

2 84 313 3 

1 239 226 47 

1 287 183 61 

1 373 391 220 

1 305 521 212 

1 203 334 303 

1 246 216 15 

1 255 158 41 

1 362 401 403 

1 86 327 412 

2 377 438 412 

1 139 273 18 

2 294 529 18 

1 196 191 109 

1 406 592 203 

2 71 583 203 

1 297 232 36 

2 149 275 36 

1 169 262 19 

1 223 295 66 

2 25 318 66 

1 199 162 104 

1 242 444 310 

1 187 146 70 

1 282 274 78 

2 113 443 78 

1 42 135 25 

2 66 299 25 

1 235 202 40 

2 107 169 40 

3 86 347 40 

1 265 183 55 

2 61 218 55 

1 232 214 14 

1 263 271 208 

1 158 244 33 

1 202 161 219 

1 194 219 30 

2 35 180 30 

1 121 147 410 

2 87 447 410 

3 362 455 410 

1 275 273 44 

2 127 223 44 

1 199 132 87 

1 381 169 20 

2 77 286 20 

3 154 629 20 

1 267 150 325 

1 337 408 322 

1 292 275 90 

1 231 188 80 

1 220 375 101 

2 32 346 101 

1 320 441 211 

1 102 287 67 

2 81 372 32 

3 171 399 32 

4 299 365 32 

1 37 504 201 

1 147 126 11 

2 302 373 11 

3 432 145 11 

1 176 141 100 



 

 217 

2 115 345 100 

3 338 341 100 

1 221 134 48 

1 348 153 304 

1 289 163 312 

1 127 224 215 

2 411 170 215 

1 43 130 23 

2 68 298 23 

1 298 269 305 

1 454 450 316 

2 368 297 316 

3 198 322 316 

1 360 203 221 

1 78 159 73 

2 262 397 73 

1 188 157 45 

2 53 166 45 

1 118 207 56 

2 375 152 56 

1 346 412 328 

2 155 288 328 

1 148 184 60 

2 291 272 60 

1 248 239 50 

2 170 389 50 

1 242 336 91 

2 23 263 91 

1 144 298 95 

1 285 268 43 

3 22 140 43 

1 142 179 26 

1 214 461 207 
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t2.mat: database of all simulation records. 

The command type indicates: 0 - no command, 1 – inserting into database allready marked 

object, 2 - marking and inserting object into dartabase, 3 - deleting detected object, 4 - 

unknown yet. 

The program stage indicates the location of the simulation along the codes. 

 
cpu time time mark coordinates image no, command 

type 

program 

stage 

  x y    

1883.7 0 0 0 0 0 0 

1883.8 0.063 0 0 0 0 1 

1883.8 0.078 0 0 35 0 2 

1883.9 0.203 0 0 35 0 3 

1883.9 0.219 0 0 35 0 4 

1884.2 0.469 0 0 35 0 5 

1886.6 2.859 269.28 364.19 35 4 11 

1886.6 2.859 268 364 35 3 11 

1887.8 4.062 269.28 362.49 35 4 11 

1887.8 4.062 269 362 35 2 11 

1892.1 8.437 278.6 -80.257 35 4 11 

1892.1 8.437 0 0 35 3 31 

1892.2 8.468 0 0 35 3 32 

1894.4 10.656 0 0 35 3 33 

1894.4 10.656 0 0 35 3 34 

1894.4 10.656 0 0 408 0 2 

1894.5 10.812 0 0 408 0 3 

1894.5 10.812 0 0 408 0 4 

1894.8 11.062 0 0 408 0 5 

1900.1 16.39 37.325 496.16 408 4 11 

1900.1 16.39 37 496 408 2 11 

1904.7 20.999 36.479 495.31 408 4 11 

1904.7 20.999 37 496 408 3 11 

1906.8 23.077 318.38 -62.569 408 4 11 

1906.8 23.077 0 0 408 3 31 

1906.8 23.077 0 0 408 3 32 

1908.9 25.217 0 0 408 3 33 

1908.9 25.217 0 0 408 3 34 

1908.9 25.217 0 0 105 0 2 

1909 25.327 0 0 105 0 3 

1909.1 25.342 0 0 105 0 4 

1909.3 25.608 0 0 105 0 5 

1918.8 35.076 287.91 -87.029 105 4 11 

1918.8 35.076 0 0 105 3 31 

1918.8 35.076 0 0 105 3 32 

1921 37.263 0 0 105 3 33 

1921 37.263 0 0 105 3 34 

1921 37.263 0 0 49 0 2 

1921.1 37.357 0 0 49 0 3 

1921.1 37.373 0 0 49 0 4 

1921.3 37.623 0 0 49 0 5 

1926.5 42.841 283.67 -107.35 49 4 11 

1926.5 42.841 0 0 49 3 31 

1926.5 42.841 0 0 49 3 32 

1928.8 45.044 0 0 49 3 33 

1928.8 45.044 0 0 49 3 34 

1928.8 45.044 0 0 59 0 2 

1928.8 45.138 0 0 59 0 3 

1928.9 45.169 0 0 59 0 4 
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1929.1 45.419 0 0 59 0 5 

1932.4 48.7 222.72 264.29 59 4 11 

1932.4 48.7 223 264 59 2 11 

1937.1 53.371 274.36 -96.341 59 4 11 

1937.1 53.371 0 0 59 3 31 

1937.1 53.371 0 0 59 3 32 

1939.3 55.559 0 0 59 3 33 

1939.3 55.559 0 0 59 3 34 

1939.3 55.559 0 0 231 0 2 

1939.4 55.684 0 0 231 0 3 

1939.4 55.699 0 0 231 0 4 

1939.7 55.981 0 0 231 0 5 

1944.6 60.902 221.03 277.75 231 4 11 

1944.6 60.902 220 277 231 3 11 

1948.8 65.136 276.9 -60.029 231 4 11 

1948.8 65.136 0 0 231 3 31 

1948.8 65.136 0 0 231 3 32 

1951 67.339 0 0 231 3 33 

1951 67.339 0 0 231 3 34 

1951 67.339 0 0 37 0 2 

1951.1 67.433 0 0 37 0 3 

1951.2 67.449 0 0 37 0 4 

1951.4 67.714 0 0 37 0 5 

1954.5 70.792 320.08 376.89 37 4 11 

1954.5 70.792 320 377 37 2 11 

1960.5 76.823 292.99 -84.489 37 4 11 

1960.5 76.823 0 0 37 3 31 

1960.5 76.823 0 0 37 3 32 

1962.7 79.01 0 0 37 3 33 

1962.7 79.01 0 0 37 3 34 

1962.7 79.01 0 0 102 0 2 

1962.8 79.104 0 0 102 0 3 

1962.8 79.12 0 0 102 0 4 

1963.1 79.37 0 0 102 0 5 

1966.1 82.354 204.1 255.83 102 4 11 

1966.1 82.354 205 255 102 3 11 

1971 87.275 293.83 -88.722 102 4 11 

1971 87.275 0 0 102 3 31 

1971 87.275 0 0 102 3 32 

1973.2 89.463 0 0 102 3 33 

1973.2 89.463 0 0 102 3 34 

1973.2 89.463 0 0 319 0 2 

1973.3 89.572 0 0 319 0 3 

1973.3 89.588 0 0 319 0 4 

1973.5 89.838 0 0 319 0 5 

1978.6 94.853 323.46 388.74 319 4 11 

1978.6 94.853 322 388 319 3 11 

1984 100.32 194.79 186.41 319 4 11 

1984 100.32 195 187 319 3 11 

1985.9 102.18 276.06 -92.108 319 4 11 

1985.9 102.18 0 0 319 3 31 

1985.9 102.18 0 0 319 3 32 

1988 104.31 0 0 319 3 33 

1988 104.31 0 0 319 3 34 

1988 104.31 0 0 329 0 2 

1988.1 104.43 0 0 329 0 3 

1988.2 104.45 0 0 329 0 4 

1988.4 104.73 0 0 329 0 5 
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1996.7 113.01 261.66 -72.728 329 4 11 

1996.7 113.01 0 0 329 3 31 

1996.7 113.01 0 0 329 3 32 

1999 115.26 0 0 329 3 33 

1999 115.26 0 0 329 3 34 

1999 115.26 0 0 97 0 2 

1999.1 115.37 0 0 97 0 3 

1999.1 115.38 0 0 97 0 4 

1999.3 115.62 0 0 97 0 5 

2004.4 120.73 283.67 -87.029 97 4 11 

2004.4 120.73 0 0 97 3 31 

2004.4 120.73 0 0 97 3 32 

2006.6 122.85 0 0 97 3 33 

2006.6 122.85 0 0 97 3 34 

2006.6 122.85 0 0 308 0 2 

2006.7 122.96 0 0 308 0 3 

2006.7 122.99 0 0 308 0 4 

2007 123.26 0 0 308 0 5 

2011.9 128.18 305.69 -77.807 308 4 11 

2011.9 128.18 0 0 308 3 31 

2011.9 128.19 0 0 308 3 32 

2014 130.32 0 0 308 3 33 

2014 130.32 0 0 308 3 34 

2014 130.32 0 0 92 0 2 

2014.1 130.41 0 0 92 0 3 

2014.2 130.44 0 0 92 0 4 

2014.4 130.68 0 0 92 0 5 

2018.1 134.41 307.38 -109.04 92 4 11 

2018.1 134.41 0 0 92 3 31 

2018.1 134.41 0 0 92 3 32 

2020.3 136.6 0 0 92 3 33 

2020.3 136.6 0 0 92 3 34 

2020.3 136.6 0 0 216 0 2 

2020.4 136.71 0 0 216 0 3 

2020.4 136.71 0 0 216 0 4 

2020.7 136.96 0 0 216 0 5 

2023.5 139.8 91.505 368.33 216 4 11 

2023.5 139.8 92 368 216 2 11 

2025.9 142.21 242.19 282.83 216 4 11 

2025.9 142.21 242 283 216 2 11 

2028.2 144.52 264.2 -89.659 216 4 11 

2028.2 144.52 0 0 216 3 31 

2028.2 144.52 0 0 216 3 32 

2030.4 146.66 0 0 216 3 33 

2030.4 146.66 0 0 216 3 34 

2030.4 146.66 0 0 321 0 2 

2030.5 146.76 0 0 321 0 3 

2030.5 146.79 0 0 321 0 4 

2030.7 147.01 0 0 321 0 5 

2035.1 151.37 30.553 271.91 321 4 11 

2035.1 151.37 30 272 321 3 11 

2038.5 154.83 250.66 -102.27 321 4 11 

2038.5 154.83 0 0 321 3 31 

2038.5 154.83 0 0 321 3 32 

2040.7 156.94 0 0 321 3 33 

2040.7 156.94 0 0 321 3 34 

2040.7 156.94 0 0 228 0 2 

2040.7 157.04 0 0 228 0 3 
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2040.7 157.04 0 0 228 0 4 

2041 157.29 0 0 228 0 5 

2044.6 160.91 263.36 -66.802 228 4 11 

2044.6 160.91 0 0 228 3 31 

2044.6 160.91 0 0 228 3 32 

2046.8 163.11 0 0 228 3 33 

2046.8 163.11 0 0 228 3 34 

2046.8 163.11 0 0 98 0 2 

2046.9 163.21 0 0 98 0 3 

2046.9 163.22 0 0 98 0 4 

2047.2 163.46 0 0 98 0 5 

2051.7 168 281.98 -75.177 98 4 11 

2051.7 168 0 0 98 3 31 

2051.7 168 0 0 98 3 32 

2053.9 170.15 0 0 98 3 33 

2053.9 170.15 0 0 98 3 34 

2053.9 170.15 0 0 75 0 2 

2053.9 170.24 0 0 75 0 3 

2054 170.27 0 0 75 0 4 

2054.2 170.5 0 0 75 0 5 

2057.5 173.77 231.19 170.33 75 4 11 

2057.5 173.77 231 170 75 2 11 

2061.5 177.8 287.06 -84.489 75 4 11 

2061.5 177.8 0 0 75 3 31 

2061.5 177.8 0 0 75 3 32 

2063.6 179.94 0 0 75 3 33 

2063.6 179.94 0 0 75 3 34 

2063.6 179.94 0 0 22 0 2 

2063.8 180.07 0 0 22 0 3 

2063.8 180.1 0 0 22 0 4 

2064.1 180.36 0 0 22 0 5 

2070.2 186.46 281.13 -76.96 22 4 11 

2070.2 186.46 0 0 22 3 31 

2070.2 186.46 0 0 22 3 32 

2072.3 188.58 0 0 22 3 33 

2072.3 188.58 0 0 22 3 34 

2072.3 188.58 0 0 401 0 2 

2072.4 188.67 0 0 401 0 3 

2072.4 188.69 0 0 401 0 4 

2072.6 188.92 0 0 401 0 5 

2076.7 192.97 289.6 -89.569 401 4 11 

2076.7 192.97 0 0 401 3 31 

2076.7 192.97 0 0 401 3 32 

2078.8 195.1 0 0 401 3 33 

2078.8 195.1 0 0 401 3 34 

2078.8 195.1 0 0 202 0 2 

2078.9 195.24 0 0 202 0 3 

2078.9 195.24 0 0 202 0 4 

2079.2 195.49 0 0 202 0 5 

2081.9 198.24 83.04 314.15 202 4 11 

2081.9 198.24 83 314 202 2 11 

2085.7 202 250.66 -55.796 202 4 11 

2085.7 202 0 0 202 3 31 

2085.7 202 0 0 202 3 32 

2087.8 204.11 0 0 202 3 33 

2087.8 204.11 0 0 202 3 34 

2087.8 204.11 0 0 111 0 2 

2087.9 204.2 0 0 111 0 3 
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2087.9 204.2 0 0 111 0 4 

2088.1 204.44 0 0 111 0 5 

2090.6 206.88 199.87 171.17 111 4 11 

2090.6 206.88 200 171 111 2 11 

2092.7 208.97 33.939 179.64 111 4 11 

2092.7 208.97 34 180 111 2 11 

2095.5 211.75 249.81 -95.495 111 4 11 

2095.5 211.75 0 0 111 3 31 

2095.5 211.75 0 0 111 3 32 

2097.6 213.86 0 0 111 3 33 

2097.6 213.86 0 0 111 3 34 

2097.6 213.86 0 0 225 0 2 

2097.7 213.97 0 0 225 0 3 

2097.7 213.97 0 0 225 0 4 

2097.9 214.22 0 0 225 0 5 

2101.3 217.55 287.06 -76.96 225 4 11 

2101.3 217.55 0 0 225 3 31 

2101.3 217.55 0 0 225 3 32 

2103.4 219.67 0 0 225 3 33 

2103.4 219.67 0 0 225 3 34 

2103.4 219.67 0 0 107 0 2 

2103.5 219.75 0 0 107 0 3 

2103.5 219.75 0 0 107 0 4 

2103.7 219.97 0 0 107 0 5 

2106.7 222.97 265.05 -83.643 107 4 11 

2106.7 222.97 0 0 107 3 31 

2106.7 222.97 0 0 107 3 32 

2108.8 225.09 0 0 107 3 33 

2108.8 225.09 0 0 107 3 34 

2108.8 225.09 0 0 313 0 2 

2108.9 225.19 0 0 313 0 3 

2108.9 225.22 0 0 313 0 4 

2109.2 225.48 0 0 313 0 5 

2113.8 230.08 221.88 363.25 313 4 11 

2113.8 230.08 221 363 313 3 11 

2115.3 231.58 272.67 -69.341 313 4 11 

2115.3 231.58 0 0 313 3 31 

2115.3 231.58 0 0 313 3 32 

2117.4 233.7 0 0 313 3 33 

2117.4 233.7 0 0 313 3 34 

2117.4 233.7 0 0 405 0 2 

2117.6 233.84 0 0 405 0 3 

2117.6 233.84 0 0 405 0 4 

2117.8 234.08 0 0 405 0 5 

2124.9 241.22 243.04 -57.489 405 4 11 

2124.9 241.22 0 0 405 3 31 

2124.9 241.22 0 0 405 3 32 

2127.1 243.36 0 0 405 3 33 

2127.1 243.36 0 0 405 3 34 

2127.1 243.36 0 0 402 0 2 

2127.2 243.5 0 0 402 0 3 

2127.2 243.51 0 0 402 0 4 

2127.5 243.78 0 0 402 0 5 

2131.9 248.23 268.44 -70.188 402 4 11 

2131.9 248.23 0 0 402 3 31 

2131.9 248.23 0 0 402 3 32 

2134.1 250.36 0 0 402 3 33 

2134.1 250.36 0 0 402 3 34 
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2134.1 250.36 0 0 74 0 2 

2134.2 250.45 0 0 74 0 3 

2134.2 250.48 0 0 74 0 4 

2134.4 250.69 0 0 74 0 5 

2137.2 253.48 301.45 -98.881 74 4 11 

2137.2 253.48 0 0 74 3 31 

2137.2 253.5 0 0 74 3 32 

2139.3 255.62 0 0 74 3 33 

2139.3 255.62 0 0 74 3 34 

2139.3 255.62 0 0 96 0 2 

2139.4 255.73 0 0 96 0 3 

2139.5 255.75 0 0 96 0 4 

2139.7 255.97 0 0 96 0 5 

2144.8 261.04 294.68 -100.57 96 4 11 

2144.8 261.04 0 0 96 3 31 

2144.8 261.04 0 0 96 3 32 

2146.9 263.2 0 0 96 3 33 

2146.9 263.2 0 0 96 3 34 

2146.9 263.2 0 0 58 0 2 

2147 263.29 0 0 58 0 3 

2147 263.31 0 0 58 0 4 

2147.2 263.53 0 0 58 0 5 

2151.5 267.75 274.36 340.48 58 4 11 

2151.5 267.75 274 340 58 3 11 

2155 271.26 284.52 396.36 58 4 11 

2155 271.26 285 396 58 2 11 

2157.2 273.5 291.29 -92.955 58 4 11 

2157.2 273.5 0 0 58 3 31 

2157.2 273.51 0 0 58 3 32 

2159.4 275.73 0 0 58 3 33 

2159.4 275.73 0 0 58 3 34 

2159.4 275.73 0 0 12 0 2 

2159.6 275.87 0 0 12 0 3 

2159.6 275.9 0 0 12 0 4 

2160 276.29 0 0 12 0 5 

2163.3 279.64 304.84 -79.5 12 4 11 

2163.3 279.64 0 0 12 3 31 

2163.3 279.64 0 0 12 3 32 

2165.5 281.82 0 0 12 3 33 

2165.5 281.82 0 0 12 3 34 

2165.5 281.82 0 0 222 0 2 

2165.6 281.93 0 0 222 0 3 

2165.7 281.97 0 0 222 0 4 

2165.9 282.18 0 0 222 0 5 

2169.3 285.57 297.22 -98.971 222 4 11 

2169.3 285.59 0 0 222 3 31 

2169.3 285.59 0 0 222 3 32 

2171.4 287.73 0 0 222 3 33 

2171.4 287.73 0 0 222 3 34 

2171.4 287.73 0 0 51 0 2 

2171.5 287.82 0 0 51 0 3 

2171.5 287.84 0 0 51 0 4 

2171.8 288.06 0 0 51 0 5 

2175.1 291.39 299.76 -114.97 51 4 11 

2175.1 291.39 0 0 51 3 31 

2175.1 291.39 0 0 51 3 32 

2177.2 293.51 0 0 51 3 33 

2177.2 293.51 0 0 51 3 34 
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2177.2 293.51 0 0 62 0 2 

2177.3 293.61 0 0 62 0 3 

2177.3 293.64 0 0 62 0 4 

2177.5 293.84 0 0 62 0 5 

2181.9 298.2 33.093 366.73 62 4 11 

2181.9 298.2 33 366 62 3 11 

2184 300.28 262.51 -87.876 62 4 11 

2184 300.28 0 0 62 3 31 

2184 300.28 0 0 62 3 32 

2186.1 302.42 0 0 62 3 33 

2186.1 302.42 0 0 62 3 34 

2186.1 302.42 0 0 57 0 2 

2186.2 302.5 0 0 57 0 3 

2186.2 302.53 0 0 57 0 4 

2186.4 302.73 0 0 57 0 5 

2191.5 307.76 229.49 205.03 57 4 11 

2191.5 307.76 229 205 57 2 11 

2193.2 309.52 262.51 -82.796 57 4 11 

2193.2 309.54 0 0 57 3 31 

2193.2 309.54 0 0 57 3 32 

2195.4 311.67 0 0 57 3 33 

2195.4 311.67 0 0 57 3 34 

2195.4 311.67 0 0 411 0 2 

2195.5 311.79 0 0 411 0 3 

2195.5 311.82 0 0 411 0 4 

2195.8 312.07 0 0 411 0 5 

2199.6 315.92 303.99 -85.426 411 4 11 

2199.6 315.92 0 0 411 3 31 

2199.6 315.92 0 0 411 3 32 

2201.8 318.12 0 0 411 3 33 

2201.8 318.12 0 0 411 3 34 

2201.8 318.12 0 0 323 0 2 

2201.9 318.21 0 0 323 0 3 

2201.9 318.23 0 0 323 0 4 

2202.2 318.45 0 0 323 0 5 

2204.8 321.09 303.15 -92.108 323 4 11 

2204.8 321.09 0 0 323 3 31 

2204.8 321.09 0 0 323 3 32 

2207 323.27 0 0 323 3 33 

2207 323.27 0 0 323 3 34 

2207 323.27 0 0 68 0 2 

2207.1 323.37 0 0 68 0 3 

2207.1 323.4 0 0 68 0 4 

2207.3 323.6 0 0 68 0 5 

2209.5 325.79 302.3 -93.802 68 4 11 

2209.5 325.79 0 0 68 3 31 

2209.5 325.79 0 0 68 3 32 

2211.7 327.98 0 0 68 3 33 

2211.7 327.98 0 0 68 3 34 

2211.7 327.98 0 0 327 0 2 

2211.8 328.07 0 0 327 0 3 

2211.8 328.1 0 0 327 0 4 

2212 328.31 0 0 327 0 5 

2216.2 332.49 282.83 172.02 327 4 11 

2216.2 332.49 284 171 327 3 11 

2219.4 335.73 283.67 -85.336 327 4 11 

2219.4 335.73 0 0 327 3 31 

2219.4 335.73 0 0 327 3 32 
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2221.6 337.87 0 0 327 3 33 

2221.6 337.87 0 0 327 3 34 

2221.6 337.87 0 0 204 0 2 

2221.7 338.02 0 0 204 0 3 

2221.7 338.04 0 0 204 0 4 

2222 338.29 0 0 204 0 5 

2224.8 341.07 270.13 -71.034 204 4 11 

2224.8 341.07 0 0 204 3 31 

2224.8 341.07 0 0 204 3 32 

2226.9 343.18 0 0 204 3 33 

2226.9 343.18 0 0 204 3 34 

2226.9 343.18 0 0 315 0 2 

2227 343.27 0 0 315 0 3 

2227 343.29 0 0 315 0 4 

2227.2 343.49 0 0 315 0 5 

2230.3 346.57 163.46 378.58 315 4 11 

2230.3 346.57 163 379 315 2 11 

2232.4 348.65 248.97 -89.569 315 4 11 

2232.4 348.65 0 0 315 3 31 

2232.4 348.66 0 0 315 3 32 

2234.5 350.77 0 0 315 3 33 

2234.5 350.77 0 0 315 3 34 

2234.5 350.77 0 0 214 0 2 

2234.6 350.88 0 0 214 0 3 

2234.6 350.91 0 0 214 0 4 

2234.9 351.15 0 0 214 0 5 

2242.2 358.51 270.98 -57.489 214 4 11 

2242.2 358.51 0 0 214 3 31 

2242.2 358.51 0 0 214 3 32 

2244.4 360.66 0 0 214 3 33 

2244.4 360.66 0 0 214 3 34 

2244.4 360.66 0 0 16 0 2 

2244.5 360.8 0 0 16 0 3 

2244.5 360.83 0 0 16 0 4 

2244.8 361.08 0 0 16 0 5 

2248.7 365.01 284.52 -84.579 16 4 11 

2248.7 365.01 0 0 16 3 31 

2248.7 365.01 0 0 16 3 32 

2250.8 367.12 0 0 16 3 33 

2250.8 367.12 0 0 16 3 34 

2250.8 367.12 0 0 29 0 2 

2250.9 367.21 0 0 29 0 3 

2250.9 367.24 0 0 29 0 4 

2251.2 367.44 0 0 29 0 5 

2253.4 369.74 288.75 -96.341 29 4 11 

2253.4 369.74 0 0 29 3 31 

2253.4 369.74 0 0 29 3 32 

2255.6 371.87 0 0 29 3 33 

2255.6 371.87 0 0 29 3 34 

2255.6 371.87 0 0 52 0 2 

2255.7 371.96 0 0 52 0 3 

2255.7 371.97 0 0 52 0 4 

2255.9 372.19 0 0 52 0 5 

2258.7 375.01 327.7 352.34 52 4 11 

2258.7 375.01 328 352 52 2 11 

2261.2 377.44 301.45 -96.341 52 4 11 

2261.2 377.44 0 0 52 3 31 

2261.2 377.44 0 0 52 3 32 
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2263.4 379.64 0 0 52 3 33 

2263.4 379.64 0 0 52 3 34 

2263.4 379.64 0 0 46 0 2 

2263.4 379.74 0 0 46 0 3 

2263.5 379.77 0 0 46 0 4 

2263.7 379.99 0 0 46 0 5 

2265.4 381.68 298.91 -92.108 46 4 11 

2265.4 381.68 0 0 46 3 31 

2265.4 381.68 0 0 46 3 32 

2267.5 383.79 0 0 46 3 33 

2267.5 383.79 0 0 46 3 34 

2267.5 383.79 0 0 110 0 2 

2267.6 383.88 0 0 110 0 3 

2267.6 383.88 0 0 110 0 4 

2267.8 384.08 0 0 110 0 5 

2272 388.33 297.22 -98.881 110 4 11 

2272 388.33 0 0 110 3 31 

2272 388.33 0 0 110 3 32 

2274.2 390.46 0 0 110 3 33 

2274.2 390.46 0 0 110 3 34 

2274.2 390.46 0 0 209 0 2 

2274.3 390.6 0 0 209 0 3 

2274.3 390.61 0 0 209 0 4 

2274.6 390.86 0 0 209 0 5 

2279.4 395.71 292.14 -61.722 209 4 11 

2279.4 395.71 0 0 209 3 31 

2279.4 395.71 0 0 209 3 32 

2281.6 397.89 0 0 209 3 33 

2281.6 397.89 0 0 209 3 34 

2281.6 397.89 0 0 88 0 2 

2281.7 397.99 0 0 88 0 3 

2281.7 398.02 0 0 88 0 4 

2281.9 398.22 0 0 88 0 5 

2285.6 401.93 294.68 -96.341 88 4 11 

2285.6 401.93 0 0 88 3 31 

2285.6 401.93 0 0 88 3 32 

2287.8 404.07 0 0 88 3 33 

2287.8 404.07 0 0 88 3 34 

2287.8 404.07 0 0 309 0 2 

2287.9 404.18 0 0 309 0 3 

2287.9 404.19 0 0 309 0 4 

2288.1 404.44 0 0 309 0 5 

2291.1 407.38 298.07 -56.643 309 4 11 

2291.1 407.38 0 0 309 3 31 

2291.1 407.38 0 0 309 3 32 

2293.2 409.53 0 0 309 3 33 

2293.2 409.53 0 0 309 3 34 

2293.2 409.53 0 0 301 0 2 

2293.4 409.64 0 0 301 0 3 

2293.4 409.64 0 0 301 0 4 

2293.6 409.86 0 0 301 0 5 

2299.6 415.91 288.75 -78.563 301 4 11 

2299.6 415.91 0 0 301 3 31 

2299.6 415.91 0 0 301 3 32 

2301.8 418.1 0 0 301 3 33 

2301.8 418.1 0 0 301 3 34 

2301.8 418.1 0 0 27 0 2 

2301.9 418.19 0 0 27 0 3 
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2301.9 418.2 0 0 27 0 4 

2302.1 418.42 0 0 27 0 5 

2305.5 421.75 292.99 -105.65 27 4 11 

2305.5 421.75 0 0 27 3 31 

2305.5 421.75 0 0 27 3 32 

2307.6 423.88 0 0 27 3 33 

2307.6 423.88 0 0 27 3 34 

2307.6 423.88 0 0 306 0 2 

2307.7 423.97 0 0 306 0 3 

2307.7 423.99 0 0 306 0 4 

2307.9 424.2 0 0 306 0 5 

2314.2 430.53 215.95 -84.489 306 4 11 

2314.2 430.53 0 0 306 3 31 

2314.2 430.53 0 0 306 3 32 

2316.4 432.66 0 0 306 3 33 

2316.4 432.66 0 0 306 3 34 

2316.4 432.66 0 0 82 0 2 

2316.5 432.77 0 0 82 0 3 

2316.5 432.78 0 0 82 0 4 

2316.7 433 0 0 82 0 5 

2319.2 435.5 266.74 -80.257 82 4 11 

2319.2 435.5 0 0 82 3 31 

2319.2 435.5 0 0 82 3 32 

2321.3 437.63 0 0 82 3 33 

2321.3 437.63 0 0 82 3 34 

2321.3 437.63 0 0 227 0 2 

2321.4 437.74 0 0 227 0 3 

2321.5 437.75 0 0 227 0 4 

2321.7 438.02 0 0 227 0 5 

2323.9 440.24 257.43 -67.648 227 4 11 

2323.9 440.24 0 0 227 3 31 

2323.9 440.24 0 0 227 3 32 

2326.1 442.38 0 0 227 3 33 

2326.1 442.38 0 0 227 3 34 

2326.1 442.38 0 0 85 0 2 

2326.2 442.47 0 0 85 0 3 

2326.2 442.5 0 0 85 0 4 

2326.4 442.7 0 0 85 0 5 

2329.7 445.97 416.58 298.16 85 4 11 

2329.7 445.97 417 298 85 2 11 

2331.4 447.66 309.92 -73.484 85 4 11 

2331.4 447.66 0 0 85 3 31 

2331.4 447.66 0 0 85 3 32 

2333.5 449.78 0 0 85 3 33 

2333.5 449.78 0 0 85 3 34 

2333.5 449.78 0 0 63 0 2 

2333.6 449.88 0 0 63 0 3 

2333.6 449.91 0 0 63 0 4 

2333.8 450.11 0 0 63 0 5 

2335.9 452.17 305.69 -88.722 63 4 11 

2335.9 452.17 0 0 63 3 31 

2335.9 452.17 0 0 63 3 32 

2338 454.31 0 0 63 3 33 

2338 454.31 0 0 63 3 34 

2338 454.31 0 0 71 0 2 

2338.1 454.41 0 0 71 0 3 

2338.1 454.42 0 0 71 0 4 

2338.3 454.64 0 0 71 0 5 
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2342.2 458.51 296.37 -112.43 71 4 11 

2342.2 458.51 0 0 71 3 31 

2342.2 458.51 0 0 71 3 32 

2344.4 460.65 0 0 71 3 33 

2344.4 460.65 0 0 71 3 34 

2344.4 460.65 0 0 210 0 2 

2344.5 460.8 0 0 210 0 3 

2344.5 460.83 0 0 210 0 4 

2344.8 461.08 0 0 210 0 5 

2347.4 463.72 292.99 -72.728 210 4 11 

2347.4 463.72 0 0 210 3 31 

2347.4 463.73 0 0 210 3 32 

2349.6 465.84 0 0 210 3 33 

2349.6 465.84 0 0 210 3 34 

2349.6 465.84 0 0 2 0 2 

2349.7 465.95 0 0 2 0 3 

2349.7 465.98 0 0 2 0 4 

2349.9 466.23 0 0 2 0 5 

2352.3 468.59 102.51 436.9 2 4 11 

2352.3 468.59 103 437 2 2 11 

2354.8 471.06 241.35 -49.87 2 4 11 

2354.8 471.06 0 0 2 3 31 

2354.8 471.06 0 0 2 3 32 

2356.9 473.2 0 0 2 3 33 

2356.9 473.2 0 0 2 3 34 

2356.9 473.2 0 0 54 0 2 

2357 473.3 0 0 54 0 3 

2357 473.33 0 0 54 0 4 

2357.2 473.53 0 0 54 0 5 

2358.7 474.98 237.96 -92.955 54 4 11 

2358.7 474.98 0 0 54 3 31 

2358.7 474.98 0 0 54 3 32 

2360.8 477.12 0 0 54 3 33 

2360.8 477.12 0 0 54 3 34 

2360.8 477.12 0 0 86 0 2 

2360.9 477.22 0 0 86 0 3 

2360.9 477.22 0 0 86 0 4 

2361.1 477.42 0 0 86 0 5 

2363.6 479.86 202.4 364.19 86 4 11 

2363.6 479.86 202 364 86 2 11 

2365.4 481.69 268.44 -99.728 86 4 11 

2365.4 481.69 0 0 86 3 31 

2365.4 481.69 0 0 86 3 32 

2367.6 483.86 0 0 86 3 33 

2367.6 483.86 0 0 86 3 34 

2367.6 483.86 0 0 320 0 2 

2367.6 483.94 0 0 320 0 3 

2367.7 483.97 0 0 320 0 4 

2367.9 484.19 0 0 320 0 5 

2369.9 486.15 271.82 -92.955 320 4 11 

2369.9 486.15 0 0 320 3 31 

2369.9 486.15 0 0 320 3 32 

2372 488.28 0 0 320 3 33 

2372 488.28 0 0 320 3 34 

2372 488.28 0 0 112 0 2 

2372.1 488.37 0 0 112 0 3 

2372.1 488.37 0 0 112 0 4 

2372.3 488.57 0 0 112 0 5 



 

 229 

2374 490.26 190.55 139 112 4 11 

2374 490.26 191 139 112 2 11 

2376 492.26 147.38 361.65 112 4 11 

2376 492.26 147 362 112 2 11 

2377.9 494.22 256.58 -82.796 112 4 11 

2377.9 494.22 0 0 112 3 31 

2377.9 494.22 0 0 112 3 32 

2380.1 496.4 0 0 112 3 33 

2380.1 496.4 0 0 112 3 34 

2380.1 496.4 0 0 317 0 2 

2380.2 496.53 0 0 317 0 3 

2380.3 496.54 0 0 317 0 4 

2380.5 496.75 0 0 317 0 5 

2385.5 501.75 286.21 419.21 317 4 11 

2385.5 501.75 285 419 317 3 11 

2387.2 503.51 289.6 -83.643 317 4 11 

2387.2 503.51 0 0 317 3 31 

2387.2 503.51 0 0 317 3 32 

2389.4 505.68 0 0 317 3 33 

2389.4 505.68 0 0 317 3 34 

2389.4 505.68 0 0 17 0 2 

2389.5 505.81 0 0 17 0 3 

2389.5 505.84 0 0 17 0 4 

2389.8 506.09 0 0 17 0 5 

2392.8 509.12 159.23 28.013 17 4 11 

2392.8 509.12 159 28 17 2 11 

2395 511.32 272.67 -76.96 17 4 11 

2395 511.32 0 0 17 3 31 

2395 511.32 0 0 17 3 32 

2397.2 513.45 0 0 17 3 33 

2397.2 513.45 0 0 17 3 34 

2397.2 513.45 0 0 206 0 2 

2397.3 513.57 0 0 206 0 3 

2397.3 513.61 0 0 206 0 4 

2397.6 513.86 0 0 206 0 5 

2400 516.31 249.81 -49.024 206 4 11 

2400 516.31 0 0 206 3 31 

2400 516.32 0 0 206 3 32 

2402.2 518.45 0 0 206 3 33 

2402.2 518.45 0 0 206 3 34 

2402.2 518.45 0 0 9 0 2 

2402.3 518.57 0 0 9 0 3 

2402.3 518.6 0 0 9 0 4 

2402.5 518.84 0 0 9 0 5 

2406.2 522.54 284.52 608.75 9 4 11 

2406.2 522.54 285 608 9 3 11 

2408.7 525.01 295.53 -60.029 9 4 11 

2408.7 525.01 0 0 9 3 31 

2408.7 525.01 0 0 9 3 32 

2410.8 527.13 0 0 9 3 33 

2410.8 527.13 0 0 9 3 34 

2410.8 527.13 0 0 21 0 2 

2411 527.28 0 0 21 0 3 

2411 527.29 0 0 21 0 4 

2411.2 527.54 0 0 21 0 5 

2414.3 530.57 304.84 -68.495 21 4 11 

2414.3 530.57 0 0 21 3 31 

2414.3 530.57 0 0 21 3 32 
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2416.5 532.77 0 0 21 3 33 

2416.5 532.77 0 0 21 3 34 

2416.5 532.77 0 0 64 0 2 

2416.6 532.87 0 0 64 0 3 

2416.6 532.88 0 0 64 0 4 

2416.8 533.1 0 0 64 0 5 

2418.7 535.02 298.91 -91.262 64 4 11 

2418.7 535.02 0 0 64 3 31 

2418.7 535.02 0 0 64 3 32 

2420.9 537.15 0 0 64 3 33 

2420.9 537.15 0 0 64 3 34 

2420.9 537.15 0 0 229 0 2 

2421 537.26 0 0 229 0 3 

2421 537.29 0 0 229 0 4 

2421.2 537.52 0 0 229 0 5 

2424.5 540.79 408.12 237.96 229 4 11 

2424.5 540.79 406 238 229 3 11 

2427.4 543.68 310.76 -52.41 229 4 11 

2427.4 543.68 0 0 229 3 31 

2427.4 543.68 0 0 229 3 32 

2429.5 545.82 0 0 229 3 33 

2429.5 545.82 0 0 229 3 34 

2429.5 545.82 0 0 1 0 2 

2429.7 545.95 0 0 1 0 3 

2429.7 545.98 0 0 1 0 4 

2430 546.24 0 0 1 0 5 

2433.2 549.49 301.45 -65.955 1 4 11 

2433.2 549.49 0 0 1 3 31 

2433.2 549.49 0 0 1 3 32 

2435.4 551.66 0 0 1 3 33 

2435.4 551.66 0 0 1 3 34 

2435.4 551.66 0 0 53 0 2 

2435.5 551.76 0 0 53 0 3 

2435.5 551.79 0 0 53 0 4 

2435.7 551.99 0 0 53 0 5 

2440 556.32 259.12 388.74 53 4 11 

2440 556.32 259 387 53 3 11 

2442.2 558.45 309.92 -85.336 53 4 11 

2442.2 558.45 0 0 53 3 31 

2442.2 558.45 0 0 53 3 32 

2444.4 560.66 0 0 53 3 33 

2444.4 560.66 0 0 53 3 34 

2444.4 560.66 0 0 7 0 2 

2444.5 560.81 0 0 7 0 3 

2444.5 560.84 0 0 7 0 4 

2444.8 561.09 0 0 7 0 5 

2449.9 566.23 275.21 -57.489 7 4 11 

2449.9 566.23 0 0 7 3 31 

2449.9 566.24 0 0 7 3 32 

2452.1 568.41 0 0 7 3 33 

2452.1 568.41 0 0 7 3 34 

2452.1 568.41 0 0 230 0 2 

2452.2 568.51 0 0 230 0 3 

2452.2 568.54 0 0 230 0 4 

2452.5 568.77 0 0 230 0 5 

2454.2 570.52 262.51 -74.421 230 4 11 

2454.2 570.52 0 0 230 3 31 

2454.2 570.52 0 0 230 3 32 
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2456.4 572.66 0 0 230 3 33 

2456.4 572.66 0 0 230 3 34 

2456.4 572.66 0 0 217 0 2 

2456.5 572.79 0 0 217 0 3 

2456.5 572.8 0 0 217 0 4 

2456.8 573.07 0 0 217 0 5 

2461.4 577.69 314.15 202.4 217 4 11 

2461.4 577.69 314 203 217 3 11 

2463 579.27 278.6 -58.336 217 4 11 

2463 579.27 0 0 217 3 31 

2463 579.27 0 0 217 3 32 

2465.1 581.43 0 0 217 3 33 

2465.1 581.43 0 0 217 3 34 

2465.1 581.43 0 0 6 0 2 

2465.3 581.57 0 0 6 0 3 

2465.3 581.6 0 0 6 0 4 

2465.6 581.85 0 0 6 0 5 

2468.3 584.62 282.83 -51.563 6 4 11 

2468.3 584.62 0 0 6 3 31 

2468.3 584.62 0 0 6 3 32 

2470.5 586.76 0 0 6 3 33 

2470.5 586.76 0 0 6 3 34 

2470.5 586.76 0 0 34 0 2 

2470.6 586.87 0 0 34 0 3 

2470.6 586.87 0 0 34 0 4 

2470.8 587.07 0 0 34 0 5 

2473 589.26 262.51 186.41 34 4 11 

2473 589.26 263 186 34 2 11 

2475 591.3 280.29 -92.955 34 4 11 

2475 591.3 0 0 34 3 31 

2475 591.3 0 0 34 3 32 

2477.2 593.44 0 0 34 3 33 

2477.2 593.44 0 0 34 3 34 

2477.2 593.44 0 0 223 0 2 

2477.3 593.55 0 0 223 0 3 

2477.3 593.58 0 0 223 0 4 

2477.5 593.82 0 0 223 0 5 

2482.7 598.99 258.28 204.94 223 4 11 

2482.7 598.99 259 205 223 3 11 

2484.3 600.57 242.19 201.56 223 4 11 

2484.3 600.57 242 202 223 2 11 

2486.5 602.76 297.22 -57.489 223 4 11 

2486.5 602.76 0 0 223 3 31 

2486.5 602.76 0 0 223 3 32 

2488.6 604.88 0 0 223 3 33 

2488.6 604.88 0 0 223 3 34 

2488.6 604.88 0 0 10 0 2 

2488.7 604.99 0 0 10 0 3 

2488.7 605.02 0 0 10 0 4 

2489 605.27 0 0 10 0 5 

2493.3 609.63 287.91 473.3 10 4 11 

2493.3 609.63 287 472 10 3 11 

2495.6 611.91 415.74 349.71 10 4 11 

2495.6 611.91 415 349 10 3 11 

2498.4 614.74 410.66 349.71 10 4 11 

2498.4 614.74 411 350 10 2 11 

2501.2 617.5 293.83 -58.336 10 4 11 

2501.2 617.5 0 0 10 3 31 
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2501.2 617.5 0 0 10 3 32 

2503.4 619.64 0 0 10 3 33 

2503.4 619.64 0 0 10 3 34 

2503.4 619.64 0 0 326 0 2 

2503.4 619.74 0 0 326 0 3 

2503.5 619.77 0 0 326 0 4 

2503.7 619.99 0 0 326 0 5 

2506.9 623.21 296.37 -81.95 326 4 11 

2506.9 623.21 0 0 326 3 31 

2506.9 623.21 0 0 326 3 32 

2509.1 625.35 0 0 326 3 33 

2509.1 625.35 0 0 326 3 34 

2509.1 625.35 0 0 69 0 2 

2509.1 625.44 0 0 69 0 3 

2509.2 625.47 0 0 69 0 4 

2509.4 625.67 0 0 69 0 5 

2512 628.28 297.22 -79.41 69 4 11 

2512 628.28 0 0 69 3 31 

2512 628.28 0 0 69 3 32 

2514.1 630.42 0 0 69 3 33 

2514.1 630.42 0 0 69 3 34 

2514.1 630.42 0 0 4 0 2 

2514.3 630.57 0 0 4 0 3 

2514.3 630.58 0 0 4 0 4 

2514.5 630.83 0 0 4 0 5 

2517.4 633.66 298.07 -57.489 4 4 11 

2517.4 633.66 0 0 4 3 31 

2517.4 633.66 0 0 4 3 32 

2519.6 635.86 0 0 4 3 33 

2519.6 635.86 0 0 4 3 34 

2519.6 635.86 0 0 76 0 2 

2519.7 635.96 0 0 76 0 3 

2519.7 635.96 0 0 76 0 4 

2519.9 636.17 0 0 76 0 5 

2522.2 638.46 335.31 176.25 76 4 11 

2522.2 638.46 335 176 76 2 11 

2524 640.27 342.09 -88.722 76 4 11 

2524 640.27 0 0 76 3 31 

2524 640.27 0 0 76 3 32 

2526.1 642.41 0 0 76 3 33 

2526.1 642.41 0 0 76 3 34 

2526.1 642.41 0 0 302 0 2 

2526.2 642.5 0 0 302 0 3 

2526.2 642.53 0 0 302 0 4 

2526.5 642.78 0 0 302 0 5 

2531.8 648.13 348.86 298.91 302 4 11 

2531.8 648.14 349 299 302 2 11 

2534.1 650.44 321.77 -56.643 302 4 11 

2534.1 650.44 0 0 302 3 31 

2534.1 650.44 0 0 302 3 32 

2536.3 652.58 0 0 302 3 33 

2536.3 652.58 0 0 302 3 34 

2536.3 652.58 0 0 72 0 2 

2536.4 652.67 0 0 72 0 3 

2536.4 652.69 0 0 72 0 4 

2536.6 652.92 0 0 72 0 5 

2538.6 654.86 315.84 -76.87 72 4 11 

2538.6 654.88 0 0 72 3 31 
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2538.6 654.88 0 0 72 3 32 

2540.7 657 0 0 72 3 33 

2540.7 657 0 0 72 3 34 

2540.7 657 0 0 38 0 2 

2540.8 657.1 0 0 38 0 3 

2540.8 657.1 0 0 38 0 4 

2541 657.31 0 0 38 0 5 

2544 660.31 313.3 -84.489 38 4 11 

2544 660.31 0 0 38 3 31 

2544 660.31 0 0 38 3 32 

2546.1 662.44 0 0 38 3 33 

2546.1 662.44 0 0 38 3 34 

2546.1 662.44 0 0 324 0 2 

2546.2 662.52 0 0 324 0 3 

2546.3 662.55 0 0 324 0 4 

2546.5 662.75 0 0 324 0 5 

2548.8 665.13 309.92 -88.722 324 4 11 

2548.8 665.13 0 0 324 3 31 

2548.8 665.13 0 0 324 3 32 

2551 667.25 0 0 324 3 33 

2551 667.25 0 0 324 3 34 

2551 667.25 0 0 65 0 2 

2551.1 667.34 0 0 65 0 3 

2551.1 667.38 0 0 65 0 4 

2551.3 667.59 0 0 65 0 5 

2554.1 670.41 309.92 -99.728 65 4 11 

2554.1 670.42 0 0 65 3 31 

2554.1 670.42 0 0 65 3 32 

2556.3 672.61 0 0 65 3 33 

2556.3 672.61 0 0 65 3 34 

2556.3 672.61 0 0 205 0 2 

2556.5 672.75 0 0 205 0 3 

2556.5 672.75 0 0 205 0 4 

2556.7 672.97 0 0 205 0 5 

2559 675.3 70.341 307.38 205 4 11 

2559 675.3 70 307 205 2 11 

2561.3 677.61 232.03 -46.484 205 4 11 

2561.3 677.61 0 0 205 3 31 

2561.3 677.61 0 0 205 3 32 

2563.5 679.78 0 0 205 3 33 

2563.5 679.78 0 0 205 3 34 

2563.5 679.78 0 0 218 0 2 

2563.6 679.9 0 0 218 0 3 

2563.6 679.9 0 0 218 0 4 

2563.8 680.14 0 0 218 0 5 

2565.5 681.83 199.87 234.57 218 4 11 

2565.5 681.83 200 235 218 2 11 

2567.4 683.65 276.06 -79.5 218 4 11 

2567.4 683.65 0 0 218 3 31 

2567.4 683.65 0 0 218 3 32 

2569.5 685.78 0 0 218 3 33 

2569.5 685.78 0 0 218 3 34 

2569.5 685.78 0 0 103 0 2 

2569.6 685.87 0 0 103 0 3 

2569.6 685.87 0 0 103 0 4 

2569.8 686.08 0 0 103 0 5 

2573 689.28 273.52 -81.103 103 4 11 

2573 689.28 0 0 103 3 31 
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2573 689.28 0 0 103 3 32 

2575.1 691.42 0 0 103 3 33 

2575.1 691.42 0 0 103 3 34 

2575.1 691.42 0 0 94 0 2 

2575.2 691.5 0 0 94 0 3 

2575.2 691.53 0 0 94 0 4 

2575.5 691.75 0 0 94 0 5 

2577.7 693.98 272.67 -97.188 94 4 11 

2577.7 693.98 0 0 94 3 31 

2577.7 693.98 0 0 94 3 32 

2579.8 696.09 0 0 94 3 33 

2579.8 696.09 0 0 94 3 34 

2579.8 696.09 0 0 314 0 2 

2579.9 696.19 0 0 314 0 3 

2579.9 696.19 0 0 314 0 4 

2580.1 696.4 0 0 314 0 5 

2583.1 699.4 271.82 -97.188 314 4 11 

2583.1 699.4 0 0 314 3 31 

2583.1 699.4 0 0 314 3 32 

2585.3 701.56 0 0 314 3 33 

2585.3 701.56 0 0 314 3 34 

2585.3 701.56 0 0 409 0 2 

2585.4 701.72 0 0 409 0 3 

2585.4 701.73 0 0 409 0 4 

2585.7 701.98 0 0 409 0 5 

2589.3 705.61 459.76 348.86 409 4 11 

2589.3 705.61 460 349 409 2 11 

2592.7 708.97 459.76 349.71 409 4 11 

2592.7 708.97 460 349 409 3 11 

2594.6 710.92 469.92 348.86 409 4 11 

2594.6 710.92 470 349 409 2 11 

2598 714.34 292.14 -54.95 409 4 11 

2598 714.34 0 0 409 3 31 

2598.1 714.36 0 0 409 3 32 

2600.2 716.48 0 0 409 3 33 

2600.2 716.48 0 0 409 3 34 

2600.2 716.48 0 0 89 0 2 

2600.3 716.61 0 0 89 0 3 

2600.3 716.61 0 0 89 0 4 

2600.5 716.83 0 0 89 0 5 

2602.3 718.61 257.43 -114.97 89 4 11 

2602.3 718.61 0 0 89 3 31 

2602.3 718.61 0 0 89 3 32 

2604.5 720.75 0 0 89 3 33 

2604.5 720.75 0 0 89 3 34 

2604.5 720.75 0 0 406 0 2 

2604.5 720.84 0 0 406 0 3 

2604.6 720.87 0 0 406 0 4 

2604.8 721.12 0 0 406 0 5 

2606.4 722.68 294.68 -54.95 406 4 11 

2606.4 722.68 0 0 406 3 31 

2606.4 722.68 0 0 406 3 32 

2608.5 724.84 0 0 406 3 33 

2608.5 724.84 0 0 406 3 34 

2608.5 724.84 0 0 307 0 2 

2608.7 724.95 0 0 307 0 3 

2608.7 724.97 0 0 307 0 4 

2608.9 725.22 0 0 307 0 5 
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2611.2 727.47 293.83 -76.114 307 4 11 

2611.2 727.47 0 0 307 3 31 

2611.2 727.47 0 0 307 3 32 

2613.3 729.59 0 0 307 3 33 

2613.3 729.59 0 0 307 3 34 

2613.3 729.59 0 0 13 0 2 

2613.4 729.73 0 0 13 0 3 

2613.5 729.75 0 0 13 0 4 

2613.7 730.01 0 0 13 0 5 

2616.2 732.53 315 42.405 13 4 11 

2616.2 732.53 315 42 13 2 11 

2619.4 735.67 164.31 606.21 13 4 11 

2619.4 735.67 164 605 13 3 11 

2621.5 737.82 239.65 321.77 13 4 11 

2621.5 737.82 240 322 13 2 11 

2623.2 739.51 275.21 -64.262 13 4 11 

2623.2 739.53 0 0 13 3 31 

2623.2 739.53 0 0 13 3 32 

2625.3 741.64 0 0 13 3 33 

2625.3 741.64 0 0 13 3 34 

2625.3 741.64 0 0 42 0 2 

2625.4 741.73 0 0 42 0 3 

2625.5 741.75 0 0 42 0 4 

2625.7 741.96 0 0 42 0 5 

2628.2 744.46 261.66 -94.648 42 4 11 

2628.2 744.46 0 0 42 3 31 

2628.2 744.46 0 0 42 3 32 

2630.3 746.59 0 0 42 3 33 

2630.3 746.59 0 0 42 3 34 

2630.3 746.59 0 0 5 0 2 

2630.4 746.71 0 0 5 0 3 

2630.5 746.75 0 0 5 0 4 

2630.7 746.98 0 0 5 0 5 

2633.9 750.15 160.92 540.18 5 4 11 

2633.9 750.15 161 540 5 2 11 

2636 752.31 273.52 -80.347 5 4 11 

2636 752.31 0 0 5 3 31 

2636 752.32 0 0 5 3 32 

2638.2 754.52 0 0 5 3 33 

2638.2 754.52 0 0 5 3 34 

2638.2 754.52 0 0 3 0 2 

2638.3 754.62 0 0 3 0 3 

2638.4 754.65 0 0 3 0 4 

2638.6 754.9 0 0 3 0 5 

2640.5 756.77 376.8 209.18 3 4 11 

2640.5 756.77 377 209 3 2 11 

2642.5 758.82 294.68 -49.87 3 4 11 

2642.5 758.82 0 0 3 3 31 

2642.5 758.82 0 0 3 3 32 

2644.6 760.93 0 0 3 3 33 

2644.6 760.93 0 0 3 3 34 

2644.6 760.93 0 0 47 0 2 

2644.7 761.01 0 0 47 0 3 

2644.7 761.04 0 0 47 0 4 

2645 761.24 0 0 47 0 5 

2646.7 762.99 291.29 -91.262 47 4 11 

2646.7 762.99 0 0 47 3 31 

2646.7 762.99 0 0 47 3 32 
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2648.9 765.15 0 0 47 3 33 

2648.9 765.15 0 0 47 3 34 

2648.9 765.15 0 0 61 0 2 

2648.9 765.23 0 0 61 0 3 

2649 765.26 0 0 61 0 4 

2649.2 765.48 0 0 61 0 5 

2651.5 767.82 290.45 -87.876 61 4 11 

2651.5 767.82 0 0 61 3 31 

2651.5 767.82 0 0 61 3 32 

2653.7 769.96 0 0 61 3 33 

2653.7 769.96 0 0 61 3 34 

2653.7 769.96 0 0 220 0 2 

2653.8 770.07 0 0 220 0 3 

2653.8 770.1 0 0 220 0 4 

2654.1 770.35 0 0 220 0 5 

2656.3 772.55 291.29 -68.495 220 4 11 

2656.3 772.55 0 0 220 3 31 

2656.3 772.55 0 0 220 3 32 

2658.4 774.68 0 0 220 3 33 

2658.4 774.68 0 0 220 3 34 

2658.4 774.68 0 0 311 0 2 

2658.5 774.79 0 0 311 0 3 

2658.5 774.79 0 0 311 0 4 

2658.7 775.02 0 0 311 0 5 

2662.1 778.35 288.75 -62.569 311 4 11 

2662.1 778.35 0 0 311 3 31 

2662.1 778.35 0 0 311 3 32 

2664.2 780.48 0 0 311 3 33 

2664.2 780.48 0 0 311 3 34 

2664.2 780.48 0 0 212 0 2 

2664.3 780.6 0 0 212 0 3 

2664.3 780.63 0 0 212 0 4 

2664.6 780.9 0 0 212 0 5 

2667 783.26 337.01 250.66 212 4 11 

2667 783.26 337 251 212 2 11 

2670.4 786.7 298.91 -70.188 212 4 11 

2670.4 786.7 0 0 212 3 31 

2670.4 786.71 0 0 212 3 32 

2672.6 788.91 0 0 212 3 33 

2672.6 788.91 0 0 212 3 34 

2672.6 788.91 0 0 303 0 2 

2672.7 789.01 0 0 303 0 3 

2672.7 789.04 0 0 303 0 4 

2673 789.26 0 0 303 0 5 

2675.6 791.85 301.45 -92.108 303 4 11 

2675.6 791.85 0 0 303 3 31 

2675.6 791.85 0 0 303 3 32 

2677.7 794.01 0 0 303 3 33 

2677.7 794.01 0 0 303 3 34 

2677.7 794.01 0 0 77 0 2 

2677.8 794.1 0 0 77 0 3 

2677.8 794.1 0 0 77 0 4 

2678 794.3 0 0 77 0 5 

2680.2 796.46 79.653 534.35 77 4 11 

2680.2 796.46 80 534 77 2 11 

2682.3 798.59 277.75 -101.42 77 4 11 

2682.3 798.59 0 0 77 3 31 

2682.3 798.59 0 0 77 3 32 



 

 237 

2684.5 800.77 0 0 77 3 33 

2684.5 800.77 0 0 77 3 34 

2684.5 800.77 0 0 232 0 2 

2684.6 800.87 0 0 232 0 3 

2684.6 800.87 0 0 232 0 4 

2684.8 801.12 0 0 232 0 5 

2687.1 803.41 189.71 489.39 232 4 11 

2687.1 803.41 190 489 232 2 11 

2688.8 805.13 259.12 -62.569 232 4 11 

2688.8 805.13 0 0 232 3 31 

2688.8 805.13 0 0 232 3 32 

2691 807.27 0 0 232 3 33 

2691 807.27 0 0 232 3 34 

2691 807.27 0 0 24 0 2 

2691.1 807.38 0 0 24 0 3 

2691.1 807.38 0 0 24 0 4 

2691.3 807.58 0 0 24 0 5 

2693.2 809.52 255.74 -91.262 24 4 11 

2693.2 809.52 0 0 24 3 31 

2693.2 809.52 0 0 24 3 32 

2695.4 811.65 0 0 24 3 33 

2695.4 811.65 0 0 24 3 34 

2695.4 811.65 0 0 15 0 2 

2695.5 811.77 0 0 15 0 3 

2695.5 811.8 0 0 15 0 4 

2695.8 812.05 0 0 15 0 5 

2697.7 814.01 280.29 -82.04 15 4 11 

2697.7 814.01 0 0 15 3 31 

2697.7 814.01 0 0 15 3 32 

2699.9 816.15 0 0 15 3 33 

2699.9 816.15 0 0 15 3 34 

2699.9 816.15 0 0 41 0 2 

2699.9 816.24 0 0 41 0 3 

2700 816.26 0 0 41 0 4 

2700.2 816.47 0 0 41 0 5 

2701.9 818.18 275.21 -118.35 41 4 11 

2701.9 818.18 0 0 41 3 31 

2701.9 818.18 0 0 41 3 32 

2704 820.29 0 0 41 3 33 

2704 820.29 0 0 41 3 34 

2704 820.29 0 0 106 0 2 

2704.1 820.38 0 0 106 0 3 

2704.1 820.38 0 0 106 0 4 

2704.3 820.6 0 0 106 0 5 

2706.7 823.04 219.34 -87.029 106 4 11 

2706.7 823.04 0 0 106 3 31 

2706.7 823.04 0 0 106 3 32 

2708.9 825.18 0 0 106 3 33 

2708.9 825.18 0 0 106 3 34 

2708.9 825.18 0 0 403 0 2 

2709 825.33 0 0 403 0 3 

2709.1 825.35 0 0 403 0 4 

2709.3 825.6 0 0 403 0 5 

2711.4 827.74 188.01 295.53 403 4 11 

2711.4 827.74 188 296 403 2 11 

2716.3 832.6 188.01 297.22 403 4 11 

2716.3 832.6 188 296 403 3 11 

2718 834.27 289.6 -60.876 403 4 11 
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2718 834.27 0 0 403 3 31 

2718 834.27 0 0 403 3 32 

2720.1 836.41 0 0 403 3 33 

2720.1 836.41 0 0 403 3 34 

2720.1 836.41 0 0 412 0 2 

2720.2 836.5 0 0 412 0 3 

2720.2 836.53 0 0 412 0 4 

2720.5 836.78 0 0 412 0 5 

2722.6 838.94 259.12 -68.495 412 4 11 

2722.6 838.94 0 0 412 3 31 

2722.6 838.94 0 0 412 3 32 

2724.9 841.14 0 0 412 3 33 

2724.9 841.14 0 0 412 3 34 

2724.9 841.14 0 0 18 0 2 

2725 841.28 0 0 18 0 3 

2725 841.3 0 0 18 0 4 

2725.3 841.55 0 0 18 0 5 

2727 843.33 259.97 -50.717 18 4 11 

2727 843.33 0 0 18 3 31 

2727.1 843.35 0 0 18 3 32 

2729.2 845.46 0 0 18 3 33 

2729.2 845.46 0 0 18 3 34 

2729.2 845.46 0 0 109 0 2 

2729.3 845.55 0 0 109 0 3 

2729.3 845.57 0 0 109 0 4 

2729.5 845.78 0 0 109 0 5 

2731.9 848.22 265.05 -105.65 109 4 11 

2731.9 848.22 0 0 109 3 31 

2731.9 848.22 0 0 109 3 32 

2734.1 850.35 0 0 109 3 33 

2734.1 850.35 0 0 109 3 34 

2734.1 850.35 0 0 31 0 2 

2734.1 850.44 0 0 31 0 3 

2734.1 850.44 0 0 31 0 4 

2734.4 850.66 0 0 31 0 5 

2736.1 852.42 264.2 -94.648 31 4 11 

2736.1 852.42 0 0 31 3 31 

2736.1 852.42 0 0 31 3 32 

2738.3 854.57 0 0 31 3 33 

2738.3 854.57 0 0 31 3 34 

2738.3 854.57 0 0 203 0 2 

2738.4 854.69 0 0 203 0 3 

2738.4 854.72 0 0 203 0 4 

2738.7 854.97 0 0 203 0 5 

2742 858.3 269.28 -95.585 203 4 11 

2742 858.3 0 0 203 3 31 

2742 858.3 0 0 203 3 32 

2744.1 860.42 0 0 203 3 33 

2744.1 860.42 0 0 203 3 34 

2744.1 860.42 0 0 36 0 2 

2744.2 860.52 0 0 36 0 3 

2744.3 860.55 0 0 36 0 4 

2744.5 860.75 0 0 36 0 5 

2746.9 863.21 267.59 -120.04 36 4 11 

2746.9 863.21 0 0 36 3 31 

2746.9 863.21 0 0 36 3 32 

2749 865.33 0 0 36 3 33 

2749 865.33 0 0 36 3 34 
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2749 865.33 0 0 19 0 2 

2749.2 865.47 0 0 19 0 3 

2749.2 865.49 0 0 19 0 4 

2749.5 865.75 0 0 19 0 5 

2752 868.27 312.46 -81.193 19 4 11 

2752 868.27 0 0 19 3 31 

2752 868.27 0 0 19 3 32 

2754.1 870.41 0 0 19 3 33 

2754.1 870.41 0 0 19 3 34 

2754.1 870.41 0 0 66 0 2 

2754.2 870.5 0 0 66 0 3 

2754.2 870.53 0 0 66 0 4 

2754.4 870.74 0 0 66 0 5 

2759.3 875.64 230.34 473.39 66 4 11 

2759.3 875.64 229 470 66 3 11 

2762.2 878.47 289.6 -90.415 66 4 11 

2762.2 878.47 0 0 66 3 31 

2762.2 878.49 0 0 66 3 32 

2764.4 880.74 0 0 66 3 33 

2764.4 880.74 0 0 66 3 34 

2764.4 880.74 0 0 104 0 2 

2764.6 880.84 0 0 104 0 3 

2764.6 880.86 0 0 104 0 4 

2764.8 881.09 0 0 104 0 5 

2766.9 883.22 309.07 -88.722 104 4 11 

2766.9 883.22 0 0 104 3 31 

2766.9 883.22 0 0 104 3 32 

2769.1 885.34 0 0 104 3 33 

2769.1 885.34 0 0 104 3 34 

2769.1 885.34 0 0 310 0 2 

2769.2 885.45 0 0 310 0 3 

2769.2 885.49 0 0 310 0 4 

2769.4 885.74 0 0 310 0 5 

2774.3 890.58 49.177 99.124 310 4 11 

2774.3 890.58 51 99 310 3 11 

2776 892.31 264.2 -50.717 310 4 11 

2776 892.31 0 0 310 3 31 

2776 892.31 0 0 310 3 32 

2778.2 894.5 0 0 310 3 33 

2778.2 894.5 0 0 310 3 34 

2778.2 894.5 0 0 70 0 2 

2778.3 894.61 0 0 70 0 3 

2778.3 894.63 0 0 70 0 4 

2778.6 894.84 0 0 70 0 5 

2780.9 897.22 280.29 -100.57 70 4 11 

2780.9 897.22 0 0 70 3 31 

2780.9 897.22 0 0 70 3 32 

2783.1 899.37 0 0 70 3 33 

2783.1 899.37 0 0 70 3 34 

2783.1 899.37 0 0 78 0 2 

2783.2 899.48 0 0 78 0 3 

2783.2 899.5 0 0 78 0 4 

2783.4 899.7 0 0 78 0 5 

2785.7 901.95 280.29 -97.188 78 4 11 

2785.7 901.95 0 0 78 3 31 

2785.7 901.97 0 0 78 3 32 

2787.8 904.12 0 0 78 3 33 

2787.8 904.12 0 0 78 3 34 
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2787.8 904.12 0 0 25 0 2 

2787.9 904.2 0 0 25 0 3 

2787.9 904.23 0 0 25 0 4 

2788.2 904.45 0 0 25 0 5 

2790.6 906.86 281.13 -87.029 25 4 11 

2790.6 906.86 0 0 25 3 31 

2790.6 906.87 0 0 25 3 32 

2792.7 909 0 0 25 3 33 

2792.7 909 0 0 25 3 34 

2792.7 909 0 0 40 0 2 

2792.8 909.09 0 0 40 0 3 

2792.8 909.12 0 0 40 0 4 

2793.1 909.34 0 0 40 0 5 

2795.3 911.64 280.29 -93.802 40 4 11 

2795.3 911.64 0 0 40 3 31 

2795.3 911.64 0 0 40 3 32 

2797.5 913.75 0 0 40 3 33 

2797.5 913.75 0 0 40 3 34 

2797.5 913.75 0 0 55 0 2 

2797.6 913.84 0 0 55 0 3 

2797.6 913.86 0 0 55 0 4 

2797.8 914.09 0 0 55 0 5 

2800.2 916.47 280.29 -95.495 55 4 11 

2800.2 916.47 0 0 55 3 31 

2800.2 916.47 0 0 55 3 32 

2802.4 918.65 0 0 55 3 33 

2802.4 918.65 0 0 55 3 34 

2802.4 918.65 0 0 404 0 2 

2802.5 918.79 0 0 404 0 3 

2802.5 918.79 0 0 404 0 4 

2802.7 919.01 0 0 404 0 5 

2805.3 921.62 436.9 486 404 4 11 

2805.3 921.62 437 486 404 2 11 

2807.7 923.98 287.91 -60.029 404 4 11 

2807.7 923.98 0 0 404 3 31 

2807.7 923.98 0 0 404 3 32 

2809.8 926.11 0 0 404 3 33 

2809.8 926.11 0 0 404 3 34 

2809.8 926.11 0 0 14 0 2 

2810 926.25 0 0 14 0 3 

2810 926.26 0 0 14 0 4 

2810.2 926.53 0 0 14 0 5 

2812 928.29 309.92 -65.955 14 4 11 

2812 928.29 0 0 14 3 31 

2812 928.31 0 0 14 3 32 

2814.2 930.47 0 0 14 3 33 

2814.2 930.47 0 0 14 3 34 

2814.2 930.47 0 0 208 0 2 

2814.3 930.61 0 0 208 0 3 

2814.3 930.62 0 0 208 0 4 

2814.6 930.86 0 0 208 0 5 

2816.3 932.56 319.23 -60.029 208 4 11 

2816.3 932.56 0 0 208 3 31 

2816.3 932.56 0 0 208 3 32 

2818.4 934.7 0 0 208 3 33 

2818.4 934.7 0 0 208 3 34 

2818.4 934.7 0 0 33 0 2 

2818.5 934.81 0 0 33 0 3 
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2818.5 934.84 0 0 33 0 4 

2818.8 935.04 0 0 33 0 5 

2820.3 936.58 325.16 -103.96 33 4 11 

2820.3 936.58 0 0 33 3 31 

2820.3 936.58 0 0 33 3 32 

2822.5 938.76 0 0 33 3 33 

2822.5 938.76 0 0 33 3 34 

2822.5 938.76 0 0 219 0 2 

2822.6 938.87 0 0 219 0 3 

2822.6 938.9 0 0 219 0 4 

2822.8 939.14 0 0 219 0 5 

2825.1 941.37 326 -85.426 219 4 11 

2825.1 941.37 0 0 219 3 31 

2825.1 941.37 0 0 219 3 32 

2827.2 943.5 0 0 219 3 33 

2827.2 943.5 0 0 219 3 34 

2827.2 943.5 0 0 30 0 2 

2827.3 943.59 0 0 30 0 3 

2827.3 943.62 0 0 30 0 4 

2827.5 943.82 0 0 30 0 5 

2829.7 946.01 325.16 -109.89 30 4 11 

2829.7 946.01 0 0 30 3 31 

2829.7 946.01 0 0 30 3 32 

2831.9 948.18 0 0 30 3 33 

2831.9 948.18 0 0 30 3 34 

2831.9 948.18 0 0 224 0 2 

2832 948.29 0 0 224 0 3 

2832 948.29 0 0 224 0 4 

2832.2 948.51 0 0 224 0 5 

2835.5 951.82 238.81 340.39 224 4 11 

2835.5 951.82 239 340 224 2 11 

2837.4 953.67 293.83 -65.955 224 4 11 

2837.4 953.67 0 0 224 3 31 

2837.4 953.67 0 0 224 3 32 

2839.6 955.86 0 0 224 3 33 

2839.6 955.86 0 0 224 3 34 

2839.6 955.86 0 0 410 0 2 

2839.7 956 0 0 410 0 3 

2839.7 956.01 0 0 410 0 4 

2840 956.28 0 0 410 0 5 

2842.6 958.89 254.89 -66.802 410 4 11 

2842.6 958.89 0 0 410 3 31 

2842.6 958.89 0 0 410 3 32 

2844.7 961.03 0 0 410 3 33 

2844.7 961.03 0 0 410 3 34 

2844.7 961.03 0 0 44 0 2 

2844.8 961.12 0 0 44 0 3 

2844.8 961.14 0 0 44 0 4 

2845.1 961.35 0 0 44 0 5 

2846.7 963.03 260.82 -117.51 44 4 11 

2846.7 963.03 0 0 44 3 31 

2846.8 963.06 0 0 44 3 32 

2848.9 965.17 0 0 44 3 33 

2848.9 965.17 0 0 44 3 34 

2848.9 965.17 0 0 87 0 2 

2849 965.26 0 0 87 0 3 

2849 965.29 0 0 87 0 4 

2849.2 965.5 0 0 87 0 5 
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2851.9 968.21 259.97 -115.81 87 4 11 

2851.9 968.21 0 0 87 3 31 

2851.9 968.21 0 0 87 3 32 

2854.1 970.35 0 0 87 3 33 

2854.1 970.35 0 0 87 3 34 

2854.1 970.35 0 0 20 0 2 

2854.2 970.48 0 0 20 0 3 

2854.2 970.51 0 0 20 0 4 

2854.5 970.76 0 0 20 0 5 

2858 974.34 255.74 -46.484 20 4 11 

2858 974.34 0 0 20 3 31 

2858 974.34 0 0 20 3 32 

2860.2 976.46 0 0 20 3 33 

2860.2 976.46 0 0 20 3 34 

2860.2 976.46 0 0 325 0 2 

2860.3 976.62 0 0 325 0 3 

2860.3 976.63 0 0 325 0 4 

2860.6 976.85 0 0 325 0 5 

2863 979.27 264.2 -91.262 325 4 11 

2863 979.27 0 0 325 3 31 

2863 979.27 0 0 325 3 32 

2865.1 981.43 0 0 325 3 33 

2865.1 981.43 0 0 325 3 34 

2865.1 981.43 0 0 322 0 2 

2865.2 981.51 0 0 322 0 3 

2865.2 981.54 0 0 322 0 4 

2865.5 981.74 0 0 322 0 5 

2867.6 983.85 268.44 -98.034 322 4 11 

2867.6 983.85 0 0 322 3 31 

2867.6 983.85 0 0 322 3 32 

2869.7 985.99 0 0 322 3 33 

2869.7 985.99 0 0 322 3 34 

2869.7 985.99 0 0 90 0 2 

2869.8 986.09 0 0 90 0 3 

2869.8 986.1 0 0 90 0 4 

2870 986.32 0 0 90 0 5 

2872.6 988.88 99.971 325.25 90 4 11 

2872.6 988.88 100 325 90 2 11 

2873.9 990.2 270.13 -82.796 90 4 11 

2873.9 990.2 0 0 90 3 31 

2873.9 990.2 0 0 90 3 32 

2876 992.34 0 0 90 3 33 

2876 992.34 0 0 90 3 34 

2876 992.34 0 0 28 0 2 

2876.1 992.43 0 0 28 0 3 

2876.1 992.43 0 0 28 0 4 

2876.4 992.65 0 0 28 0 5 

2878.6 994.91 284.52 -82.796 28 4 11 

2878.6 994.91 0 0 28 3 31 

2878.6 994.91 0 0 28 3 32 

2880.8 997.07 0 0 28 3 33 

2880.8 997.07 0 0 28 3 34 

2880.8 997.07 0 0 39 0 2 

2880.9 997.16 0 0 39 0 3 

2880.9 997.16 0 0 39 0 4 

2881.1 997.38 0 0 39 0 5 

2882.8 999.09 285.37 -85.336 39 4 11 

2882.8 999.09 0 0 39 3 31 
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2882.8 999.1 0 0 39 3 32 

2884.9 1001.2 0 0 39 3 33 

2884.9 1001.2 0 0 39 3 34 

2884.9 1001.2 0 0 80 0 2 

2885 1001.3 0 0 80 0 3 

2885 1001.3 0 0 80 0 4 

2885.3 1001.6 0 0 80 0 5 

2886.8 1003.1 289.6 -98.881 80 4 11 

2886.8 1003.1 0 0 80 3 31 

2886.8 1003.1 0 0 80 3 32 

2889 1005.3 0 0 80 3 33 

2889 1005.3 0 0 80 3 34 

2889 1005.3 0 0 101 0 2 

2889.1 1005.4 0 0 101 0 3 

2889.1 1005.4 0 0 101 0 4 

2889.3 1005.6 0 0 101 0 5 

2891.5 1007.8 274.36 133.92 101 4 11 

2891.5 1007.8 274 134 101 2 11 

2893.5 1009.8 298.91 -82.796 101 4 11 

2893.5 1009.8 0 0 101 3 31 

2893.5 1009.8 0 0 101 3 32 

2895.6 1011.9 0 0 101 3 33 

2895.6 1011.9 0 0 101 3 34 

2895.6 1011.9 0 0 211 0 2 

2895.7 1012 0 0 211 0 3 

2895.8 1012.1 0 0 211 0 4 

2896 1012.3 0 0 211 0 5 

2898 1014.3 315 -75.267 211 4 11 

2898 1014.3 0 0 211 3 31 

2898 1014.3 0 0 211 3 32 

2900.1 1016.4 0 0 211 3 33 

2900.1 1016.4 0 0 211 3 34 

2900.1 1016.4 0 0 67 0 2 

2900.2 1016.5 0 0 67 0 3 

2900.2 1016.5 0 0 67 0 4 

2900.4 1016.7 0 0 67 0 5 

2902.1 1018.4 314.15 -101.42 67 4 11 

2902.1 1018.4 0 0 67 3 31 

2902.1 1018.4 0 0 67 3 32 

2904.3 1020.6 0 0 67 3 33 

2904.3 1020.6 0 0 67 3 34 

2904.3 1020.6 0 0 32 0 2 

2904.4 1020.6 0 0 32 0 3 

2904.4 1020.7 0 0 32 0 4 

2904.6 1020.9 0 0 32 0 5 

2909.4 1025.7 174.47 264.29 32 4 11 

2909.4 1025.7 174 264 32 2 11 

2910.7 1027 292.14 -139.52 32 4 11 

2910.7 1027 0 0 32 3 31 

2910.7 1027 0 0 32 3 32 

2912.8 1029.1 0 0 32 3 33 

2912.8 1029.1 0 0 32 3 34 

2912.8 1029.1 0 0 201 0 2 

2913 1029.3 0 0 201 0 3 

2913 1029.3 0 0 201 0 4 

2913.2 1029.5 0 0 201 0 5 

2916.2 1032.5 299.76 -54.103 201 4 11 

2916.2 1032.5 0 0 201 3 31 
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2916.2 1032.5 0 0 201 3 32 

2918.3 1034.6 0 0 201 3 33 

2918.3 1034.6 0 0 201 3 34 

2918.3 1034.6 0 0 11 0 2 

2918.4 1034.7 0 0 11 0 3 

2918.5 1034.8 0 0 11 0 4 

2918.7 1035 0 0 11 0 5 

2920.8 1037.1 301.45 -72.728 11 4 11 

2920.8 1037.1 0 0 11 3 31 

2920.8 1037.1 0 0 11 3 32 

2923 1039.3 0 0 11 3 33 

2923 1039.3 0 0 11 3 34 

2923 1039.3 0 0 100 0 2 

2923.1 1039.3 0 0 100 0 3 

2923.1 1039.4 0 0 100 0 4 

2923.3 1039.6 0 0 100 0 5 

2926.1 1042.3 298.91 -98.034 100 4 11 

2926.1 1042.3 0 0 100 3 31 

2926.1 1042.3 0 0 100 3 32 

2928.2 1044.5 0 0 100 3 33 

2928.2 1044.5 0 0 100 3 34 

2928.2 1044.5 0 0 213 0 2 

2928.3 1044.6 0 0 213 0 3 

2928.3 1044.6 0 0 213 0 4 

2928.5 1044.8 0 0 213 0 5 

2933.2 1049.5 296.37 -66.802 213 4 11 

2933.2 1049.5 0 0 213 3 31 

2933.2 1049.5 0 0 213 3 32 

2935.4 1051.6 0 0 213 3 33 

2935.4 1051.6 0 0 213 3 34 

2935.4 1051.6 0 0 48 0 2 

2935.4 1051.7 0 0 48 0 3 

2935.5 1051.8 0 0 48 0 4 

2935.7 1052 0 0 48 0 5 

2938.8 1055.1 305.69 -98.881 48 4 11 

2938.8 1055.1 0 0 48 3 31 

2938.8 1055.1 0 0 48 3 32 

2941 1057.3 0 0 48 3 33 

2941 1057.3 0 0 48 3 34 

2941 1057.3 0 0 304 0 2 

2941.1 1057.3 0 0 304 0 3 

2941.1 1057.4 0 0 304 0 4 

2941.3 1057.6 0 0 304 0 5 

2943.2 1059.5 298.91 -76.024 304 4 11 

2943.2 1059.5 0 0 304 3 31 

2943.2 1059.5 0 0 304 3 32 

2945.3 1061.6 0 0 304 3 33 

2945.3 1061.6 0 0 304 3 34 

2945.3 1061.6 0 0 312 0 2 

2945.4 1061.7 0 0 312 0 3 

2945.4 1061.7 0 0 312 0 4 

2945.7 1062 0 0 312 0 5 

2948.1 1064.4 298.07 -53.257 312 4 11 

2948.1 1064.4 0 0 312 3 31 

2948.1 1064.4 0 0 312 3 32 

2950.3 1066.6 0 0 312 3 33 

2950.3 1066.6 0 0 312 3 34 

2950.3 1066.6 0 0 226 0 2 
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2950.4 1066.7 0 0 226 0 3 

2950.4 1066.7 0 0 226 0 4 

2950.6 1066.9 0 0 226 0 5 

2952.1 1068.4 227.8 399.65 226 4 11 

2952.1 1068.4 228 400 226 2 11 

2953.8 1070.1 270.98 -65.955 226 4 11 

2953.8 1070.1 0 0 226 3 31 

2953.8 1070.1 0 0 226 3 32 

2955.9 1072.2 0 0 226 3 33 

2955.9 1072.2 0 0 226 3 34 

2955.9 1072.2 0 0 215 0 2 

2956.1 1072.3 0 0 215 0 3 

2956.1 1072.4 0 0 215 0 4 

2956.3 1072.6 0 0 215 0 5 

2958.2 1074.5 283.67 -60.029 215 4 11 

2958.2 1074.5 0 0 215 3 31 

2958.2 1074.5 0 0 215 3 32 

2960.3 1076.6 0 0 215 3 33 

2960.3 1076.6 0 0 215 3 34 

2960.3 1076.6 0 0 23 0 2 

2960.4 1076.7 0 0 23 0 3 

2960.4 1076.7 0 0 23 0 4 

2960.6 1076.9 0 0 23 0 5 

2962.6 1078.9 286.21 -95.495 23 4 11 

2962.6 1078.9 0 0 23 3 31 

2962.6 1078.9 0 0 23 3 32 

2964.7 1081 0 0 23 3 33 

2964.7 1081 0 0 23 3 34 

2964.7 1081 0 0 305 0 2 

2964.8 1081.1 0 0 305 0 3 

2964.8 1081.1 0 0 305 0 4 

2965.1 1081.4 0 0 305 0 5 

2967.5 1083.8 145.69 524.94 305 4 11 

2967.5 1083.8 146 525 305 2 11 

2969 1085.3 286.21 -61.722 305 4 11 

2969 1085.3 0 0 305 3 31 

2969 1085.3 0 0 305 3 32 

2971.1 1087.4 0 0 305 3 33 

2971.1 1087.4 0 0 305 3 34 

2971.1 1087.4 0 0 316 0 2 

2971.2 1087.5 0 0 316 0 3 

2971.2 1087.5 0 0 316 0 4 

2971.5 1087.8 0 0 316 0 5 

2976.1 1092.3 265.05 -86.183 316 4 11 

2976.1 1092.3 0 0 316 3 31 

2976.1 1092.3 0 0 316 3 32 

2978.2 1094.5 0 0 316 3 33 

2978.2 1094.5 0 0 316 3 34 

2978.2 1094.5 0 0 221 0 2 

2978.3 1094.6 0 0 221 0 3 

2978.3 1094.6 0 0 221 0 4 

2978.6 1094.9 0 0 221 0 5 

2980.6 1096.9 266.74 -55.796 221 4 11 

2980.6 1096.9 0 0 221 3 31 

2980.6 1096.9 0 0 221 3 32 

2982.8 1099.1 0 0 221 3 33 

2982.8 1099.1 0 0 221 3 34 

2982.8 1099.1 0 0 318 0 2 
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2983 1099.3 0 0 318 0 3 

2983 1099.3 0 0 318 0 4 

2983.2 1099.5 0 0 318 0 5 

2985.1 1101.3 269.28 -87.876 318 4 11 

2985.1 1101.3 0 0 318 3 31 

2985.1 1101.3 0 0 318 3 32 

2987.2 1103.5 0 0 318 3 33 

2987.2 1103.5 0 0 318 3 34 

2987.2 1103.5 0 0 407 0 2 

2987.3 1103.6 0 0 407 0 3 

2987.3 1103.6 0 0 407 0 4 

2987.6 1103.9 0 0 407 0 5 

2989.4 1105.7 274.36 -53.257 407 4 11 

2989.4 1105.7 0 0 407 3 31 

2989.4 1105.7 0 0 407 3 32 

2991.6 1107.8 0 0 407 3 33 

2991.6 1107.8 0 0 407 3 34 

2991.6 1107.8 0 0 73 0 2 

2991.6 1107.9 0 0 73 0 3 

2991.7 1108 0 0 73 0 4 

2991.9 1108.2 0 0 73 0 5 

2994.5 1110.8 298.91 -96.341 73 4 11 

2994.5 1110.8 0 0 73 3 31 

2994.6 1110.8 0 0 73 3 32 

2996.7 1113 0 0 73 3 33 

2996.7 1113 0 0 73 3 34 

2996.7 1113 0 0 45 0 2 

2996.8 1113 0 0 45 0 3 

2996.8 1113.1 0 0 45 0 4 

2997 1113.3 0 0 45 0 5 

3001 1117.3 298.07 -87.876 45 4 11 

3001 1117.3 0 0 45 3 31 

3001 1117.3 0 0 45 3 32 

3003.1 1119.4 0 0 45 3 33 

3003.1 1119.4 0 0 45 3 34 

3003.1 1119.4 0 0 56 0 2 

3003.2 1119.5 0 0 56 0 3 

3003.2 1119.5 0 0 56 0 4 

3003.4 1119.7 0 0 56 0 5 

3005 1121.3 284.52 -104.81 56 4 11 

3005 1121.3 0 0 56 3 31 

3005 1121.3 0 0 56 3 32 

3007.2 1123.5 0 0 56 3 33 

3007.2 1123.5 0 0 56 3 34 

3007.2 1123.5 0 0 328 0 2 

3007.3 1123.6 0 0 328 0 3 

3007.3 1123.6 0 0 328 0 4 

3007.5 1123.8 0 0 328 0 5 

3009.7 1126 284.52 -101.42 328 4 11 

3009.7 1126 0 0 328 3 31 

3009.7 1126 0 0 328 3 32 

3011.9 1128.2 0 0 328 3 33 

3011.9 1128.2 0 0 328 3 34 

3011.9 1128.2 0 0 84 0 2 

3012 1128.3 0 0 84 0 3 

3012 1128.3 0 0 84 0 4 

3012.2 1128.5 0 0 84 0 5 

3013.7 1130 282.83 -92.108 84 4 11 
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3013.7 1130 0 0 84 3 31 

3013.7 1130 0 0 84 3 32 

3015.8 1132.1 0 0 84 3 33 

3015.8 1132.1 0 0 84 3 34 

3015.8 1132.1 0 0 108 0 2 

3015.9 1132.2 0 0 108 0 3 

3015.9 1132.2 0 0 108 0 4 

3016.1 1132.4 0 0 108 0 5 

3019.4 1135.7 285.37 -111.58 108 4 11 

3019.4 1135.7 0 0 108 3 31 

3019.4 1135.7 0 0 108 3 32 

3021.5 1137.8 0 0 108 3 33 

3021.5 1137.8 0 0 108 3 34 

3021.5 1137.8 0 0 60 0 2 

3021.6 1137.9 0 0 60 0 3 

3021.6 1137.9 0 0 60 0 4 

3021.9 1138.2 0 0 60 0 5 

3025.3 1141.6 282.83 -102.27 60 4 11 

3025.3 1141.6 0 0 60 3 31 

3025.3 1141.6 0 0 60 3 32 

3027.5 1143.8 0 0 60 3 33 

3027.5 1143.8 0 0 60 3 34 

3027.5 1143.8 0 0 50 0 2 

3027.6 1143.9 0 0 50 0 3 

3027.6 1143.9 0 0 50 0 4 

3027.8 1144.1 0 0 50 0 5 

3029.3 1145.6 281.13 -106.5 50 4 11 

3029.3 1145.6 0 0 50 3 31 

3029.3 1145.6 0 0 50 3 32 

3031.4 1147.7 0 0 50 3 33 

3031.4 1147.7 0 0 50 3 34 

3031.4 1147.7 0 0 91 0 2 

3031.5 1147.8 0 0 91 0 3 

3031.5 1147.8 0 0 91 0 4 

3031.8 1148.1 0 0 91 0 5 

3034.6 1150.9 287.06 -109.89 91 4 11 

3034.6 1150.9 0 0 91 3 31 

3034.6 1150.9 0 0 91 3 32 

3036.8 1153.1 0 0 91 3 33 

3036.8 1153.1 0 0 91 3 34 

3036.8 1153.1 0 0 95 0 2 

3036.9 1153.2 0 0 95 0 3 

3036.9 1153.2 0 0 95 0 4 

3037.1 1153.4 0 0 95 0 5 

3039.6 1155.9 280.29 -110.73 95 4 11 

3039.6 1155.9 0 0 95 3 31 

3039.6 1155.9 0 0 95 3 32 

3041.7 1158 0 0 95 3 33 

3041.7 1158 0 0 95 3 34 

3041.7 1158 0 0 83 0 2 

3041.8 1158.1 0 0 83 0 3 

3041.8 1158.1 0 0 83 0 4 

3042 1158.3 0 0 83 0 5 

3043.8 1160.1 221.88 304.08 83 4 11 

3043.8 1160.1 222 304 83 2 11 

3045.1 1161.4 247.27 -83.643 83 4 11 

3045.1 1161.4 0 0 83 3 31 

3045.1 1161.4 0 0 83 3 32 
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3047.3 1163.6 0 0 83 3 33 

3047.3 1163.6 0 0 83 3 34 

3047.3 1163.6 0 0 43 0 2 

3047.4 1163.7 0 0 43 0 3 

3047.4 1163.7 0 0 43 0 4 

3047.6 1163.9 0 0 43 0 5 

3049.4 1165.7 118.6 284.61 43 4 11 

3049.4 1165.7 119 285 43 2 11 

3051.4 1167.7 261.66 -91.262 43 4 11 

3051.4 1167.7 0 0 43 3 31 

3051.4 1167.7 0 0 43 3 32 

3053.5 1169.8 0 0 43 3 33 

3053.5 1169.8 0 0 43 3 34 

3053.5 1169.8 0 0 26 0 2 

3053.6 1169.9 0 0 26 0 3 

3053.6 1169.9 0 0 26 0 4 

3053.9 1170.2 0 0 26 0 5 

3055.4 1171.7 279.44 -89.569 26 4 11 

3055.4 1171.7 0 0 26 3 31 

3055.4 1171.7 0 0 26 3 32 

3057.5 1173.8 0 0 26 3 33 

3057.5 1173.8 0 0 26 3 34 

3057.5 1173.8 0 0 207 0 2 

3057.7 1173.9 0 0 207 0 3 

3057.7 1174 0 0 207 0 4 

3057.9 1174.2 0 0 207 0 5 

3059.9 1176.2 282.83 -49.024 207 4 11 

3059.9 1176.2 0 0 207 3 31 

3059.9 1176.2 0 0 207 3 32 

3062 1178.3 0 0 207 3 33 

3062 1178.3 0 0 207 3 34 

3062 1178.3 0 0 0 0 99 
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Appendix IX: Algorithm for extracting the subjects' 

performance measures from the raw data 

recorded in the experiment. 
 

% calculating the subject performances 
clear 
clc 
  
tic 
for d=1:3 
    for set=1:3 
        tmpname=['dssum',num2str(d),num2str(set)]; 
        eval([tmpname,'=[]']); 
    end 
end 
         
load melondatabase % matrix of all the melons in all images: melon's number, x, y, image number 
load image_levels % includes 3 vectors that includes all the image's numbers by complexity: easy, medium, 

difficult 
load GROUPS % the matrix of students according to groups, each line is a group 
  
ImageDirs=['C:\Documents and Settings\user\My Documents\phd\exp2003\'] 
  
%Do the following loop for all directories that contain images 
dr=1 
% Get filenames of images 
dname=dir(ImageDirs(dr,:)); 
[NumberOfFiles,Dummy]=size(dname); 
NumberOfFiles 
  
for i=1:NumberOfFiles 
    if ~dname(i).isdir  
        fn=[dname(i).name]; 
        lfn=length(fn); 
        if lfn>7 & fn(1:7)=='student' 
            robot_all_tar=[]; 
            robothit=[]; 
            robotFA=[]; 
            sdnstr=fn(8:lfn-4); 
            sdnum=str2num(sdnstr); 
            t1=[]; 
            t2=[]; 
            t3=[]; 
            eval(['load ' fn(1:lfn-4)]) 
            [stgroup locy]=find(GROUPS==sdnum); 
          
%load student100 
  
% finding the image order of the experiment 
imgord=HOlogger(1,1); 
for j=2:length(HOlogger(:,1)) 
    if HOlogger(j,1)~=imgord(length(imgord)) 
        imgord=[imgord,HOlogger(j,1)]; 
    end 
end 
  
%finding the start point and end point of each image 
if ~isempty(t1) 
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    imgstartmark=find(t1(:,7)==5); 
    imgendmark=find(t1(:,7)==31); 
    imgstart=t1(imgstartmark,2)'; 
    imgend=t1(imgendmark,2)'; 
end 
if ~isempty(t2) 
    imgstartmark=find(t2(:,7)==5)'; 
    imgendmark=find(t2(:,7)==31)'; 
    imgstart=t2(imgstartmark,2)'; 
    imgend=t2(imgendmark,2)'; 
end 
if ~isempty(t3) 
    imgstartmark=find(t3(:,7)==5); 
    imgendmark=find(t3(:,7)==31); 
    imgstart=t3(imgstartmark,2)'; 
    imgend=t3(imgendmark,2)'; 
end 
deltaimgtime=imgend-imgstart; 
  
block=[imgord(1:60);imgord(61:120);imgord(121:180)]; % setting the images into 3 sets 
deltaimgtimeblock=[deltaimgtime(1:60);deltaimgtime(61:120);deltaimgtime(121:180)]; % setting the image 

time into 3 sets 
blocktime=sum(deltaimgtimeblock'); 
compblock=zeros(3,60); 
  
% finding the image complexities of each experiment in 3 sets block 
for b=1:3 
    for k=1:60 
        tmpeasy=find(easy==block(b,k)); 
        tmpmed=find(medium==block(b,k)); 
        tmpdiff=find(difficult==block(b,k)); 
        if ~isempty(tmpeasy) 
            compblock(b,k)=1; 
        elseif ~isempty(tmpmed) 
            compblock(b,k)=2; 
        elseif ~isempty(tmpdiff) 
            compblock(b,k)=3; 
        end 
    end 
end 
%toc 
  
imgdata=[]; 
  
for d=1:3 
    for set=1:3 
        comploc=find(compblock(set,:)==d); %location of each d complexity images in the block 
        tmpcomp=block(set,comploc); % the images no. in that block and complexity 
         
        tmpdeltatime=deltaimgtimeblock(set,comploc); % the images time in that block and complexity 
        grossdtaverage(d,set)=mean(tmpdeltatime); % average time of all images in that block and complexity 
        grossdtstd(d,set)=std(tmpdeltatime); % std time of all images in that block and complexity 
        grossdsettime(d,set)=sum(tmpdeltatime); 
        netdtimage=find(tmpcomp~=13 & tmpcomp~=112 & tmpcomp~=212); 
        tmpnetdeltatime=tmpdeltatime(netdtimage); % list of images times w/o the time of the problematic images 
        netdtaverage(d,set)=mean(tmpnetdeltatime);% average time of all GOOD images in that block and 

complexity 
        netdtstd(d,set)=std(tmpnetdeltatime); % std time of all GOOD images in that block and complexity 
        netdsettime(d,set)=sum(tmpnetdeltatime); 
         
        trueobjno=0; 
        numberofimages=length(tmpcomp); 
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        problemgroup=find(tmpcomp==13); 
        if ~isempty(problemgroup) 
            numberofimages=numberofimages-1; 
        end 
        problemgroup=find(tmpcomp==112); 
        if ~isempty(problemgroup) 
            numberofimages=numberofimages-1; 
        end 
        problemgroup=find(tmpcomp==212); 
        if ~isempty(problemgroup) 
            numberofimages=numberofimages-1; 
        end 
  
        numofimg(d,set)=numberofimages; 
  
        for imgno=1:length(tmpcomp) 
             
            if tmpcomp(imgno)~=13 & tmpcomp(imgno)~=112 & tmpcomp(imgno)~=212 % removing the 

problematic images from the statistics ******** 
                trueobjline=find(melondatabase(:,4)==tmpcomp(imgno)); % the number of true targets in each image 
                trueobjno=trueobjno+length(trueobjline); % the number of true targets in each set and complexity 
                sysmarkline=find(allimagesdb(:,3)==tmpcomp(imgno)); % the number of marked targets by the 

system in each image 
                if ~isempty(robot_all_tar) 
                    robothit=find(robot_all_tar(:,4)==tmpcomp(imgno)); % the number of robot hits in each image 
                    robotFA=find(f_targets(:,4)==tmpcomp(imgno)); % the number of robot false alarms in each image 
                end 
                imghit=0; 
                imgfalse=0; 
                RHhit=0; 
                RFA=0; 
                 
                if ~isempty(sysmarkline) 
                    imgfalse=length(sysmarkline); % the number of false alarm by the system for each image 
                    if ~isempty(robot_all_tar) 
                        for v=1:length(sysmarkline) 
                            dxyRFA=[abs(allimagesdb(sysmarkline(v),1)-

f_targets(robotFA,2)),abs(allimagesdb(sysmarkline(v),2)-f_targets(robotFA,3))]; % distance between robot hit 

and HO mark 
                            sumlineRFA=sum((dxyRFA'<55)); 
                            closenumRFA=find(sumlineRFA==2); 
                            if ~isempty(closenumRFA) 
                                RFA=RFA+1; % HO mark of Robot false alarm for each image 
                            end 
                        end 
                    end 
                    if ~isempty(trueobjline) 
                        imgfalse=0; 
                        RFA=0; 
                        for v=1:length(sysmarkline) 
                            dxy=[abs(allimagesdb(sysmarkline(v),1)-

melondatabase(trueobjline,2)),abs(allimagesdb(sysmarkline(v),2)-melondatabase(trueobjline,3))]; % distance 

between true target and marked one 
                            sumline=sum((dxy'<55)); 
                            closenum=find(sumline==2); 
                            if ~isempty(closenum) 
                                imghit=imghit+1; % system hit for each image 
                                if ~isempty(robot_all_tar) 
                                    dxyRH=[abs(allimagesdb(sysmarkline(v),1)-

robot_all_tar(robothit,2)),abs(allimagesdb(sysmarkline(v),2)-robot_all_tar(robothit,3))]; % distance between 

robot hit and HO mark 
                                    sumlineRH=sum((dxyRH'<55)); 



 

 252 

                                    closenumRH=find(sumlineRH==2); 
                                    if ~isempty(closenumRH) 
                                        RHhit=RHhit+1; % HO mark of Robot hit for each image 
                                    end 
                                end 
                            else 
                                imgfalse=imgfalse+1; % system false alarm for each image 
                                if ~isempty(robot_all_tar) 
                                    dxyRFA=[abs(allimagesdb(sysmarkline(v),1)-

f_targets(robotFA,2)),abs(allimagesdb(sysmarkline(v),2)-f_targets(robotFA,3))]; % distance between robot hit 

and HO mark 
                                    sumlineRFA=sum((dxyRFA'<55)); 
                                    closenumRFA=find(sumlineRFA==2); 
                                    if ~isempty(closenumRFA) 
                                        RFA=RFA+1; % HO mark of Robot false alarm for each image 
                                    end 
                                end 
                            end 
                        end 
                    end 
                end 
                HOhit=imghit-RHhit; 
                HOFA=imgfalse-RFA; 
                

imgdata=[imgdata;tmpcomp(imgno),d,set,length(trueobjline),length(sysmarkline),imghit,imgfalse,HOhit,HOFA,

length(robothit),length(robotFA),RHhit,RFA]; 
            end 
        end 
    end 
end 
%toc 
  
dssumtitle='group#,     student#,    complexity,    set,   true objects,    system marks,   sys hit,    sys FA,     HO hit 

of unmarked,     HO FA of unmarked,      robot hit,      robot FA,       HO mark of robot hit,       HO mark of robot 

FA,    sys hit rate,   HO hit rate,    robot hit rate, PHrh,   PFArh,   SysFA/img,  HO unmarked FA/img, Robot 

FA/img,   HO marked FA/img, blocktime, grossdtaverage,   grossdtstd, grossdsettime, netdtaverage,  netdtstd, 

netdsettime'; 
rewards=[3 -7;7 -3;3 -7;3 -7;7 -3;7 -3;3 -7; 3 -7; 7 -3;7 -3];     
  
for d=1:3 
    for set=1:3 
        dsloc=find(imgdata(:,2)==d & imgdata(:,3)==set); 
        dssumtmp=sum(imgdata(dsloc,4:13)); 
        rates=[dssumtmp(3)/dssumtmp(1),dssumtmp(5)/(dssumtmp(1)-

dssumtmp(7)),dssumtmp(7)/dssumtmp(1),dssumtmp(9)/dssumtmp(7),dssumtmp(10)/dssumtmp(8)]; 
        

FA2img=[dssumtmp(4)/numofimg(d,set),dssumtmp(6)/numofimg(d,set),dssumtmp(8)/numofimg(d,set),dssumtm

p(10)/numofimg(d,set)]; 
        timeparameters=[blocktime(set), grossdtaverage(d,set), 

grossdtstd(d,set),grossdsettime(d,set),netdtaverage(d,set),netdtstd(d,set),netdsettime(d,set)]; 
        sysscores=dssumtmp(3)*rewards(stgroup,1)+dssumtmp(4)*rewards(stgroup,2); 
        dssum=[stgroup,sdnum,d,set,dssumtmp,rates,FA2img,timeparameters,sysscores]; 
        tmpname=['dssum',num2str(d),num2str(set)]; 
       % eval([tmpname,'=dssum']); 
        eval([tmpname,'=[',tmpname,';dssum];']);         
    end 
end 
toc 
                
        end 
    end 
end 
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toc 
blockscore1=dssum11(:,31)+dssum21(:,31)+dssum31(:,31); 
blockscore2=dssum12(:,31)+dssum22(:,31)+dssum32(:,31); 
blockscore3=dssum13(:,31)+dssum23(:,31)+dssum33(:,31); 
blockscore=[dssum11(:,1:2),blockscore1,blockscore2,blockscore3]; 
save blockscore blockscore 
save blockscore.csv blockscore -ascii -tabs 
  
save dssumALL dssum11 dssum12 dssum13 dssum21 dssum22 dssum23 dssum31 dssum32 dssum33 
save dssumtitle dssumtitle 
save dssumtitle.csv dssumtitle -ascii -tabs 
  
for d=1:3 
    for set=1:3 
        tmpname=['dssum',num2str(d),num2str(set)]; 
        eval(['save ',tmpname,'.csv ',tmpname,' -ascii -tabs']);         
    end 
end 
  
save numofimg numofimg 
resperset1=dssum11+dssum21+dssum31; 
resperset2=dssum12+dssum22+dssum32; 
resperset3=dssum13+dssum23+dssum33; 
setimgno=sum(numofimg); 
allimgno=sum(sum(numofimg)); 
  
exptime=dssum11(:,28).*numofimg(1,1)+dssum21(:,28).*numofimg(2,1)+dssum31(:,28).*numofimg(3,1)+dssu

m12(:,28).*numofimg(1,2)+dssum22(:,28).*numofimg(2,2)+dssum32(:,28).*numofimg(3,2)+dssum13(:,28).*nu

mofimg(1,3)+dssum23(:,28).*numofimg(2,3)+dssum33(:,28).*numofimg(3,3); 
expaveragetime=exptime./allimgno; 
resallsets=resperset1+resperset2+resperset3; 
set1=[dssum11(:,1),dssum11(:,2),dssum11(:,4),resperset1(:,7)./resperset1(:,5),resperset1(:,8)./setimgno(1),resper

set1(:,9)./(resperset1(:,5)-

resperset1(:,11)),resperset1(:,10)./setimgno(1),resperset1(:,13)./resperset1(:,11),resperset1(:,14)./resperset1(:,12)]

; 
set2=[dssum22(:,1),dssum22(:,2),dssum22(:,4),resperset2(:,7)./resperset2(:,5),resperset2(:,8)./setimgno(2),resper

set2(:,9)./(resperset2(:,5)-

resperset2(:,11)),resperset2(:,10)./setimgno(2),resperset2(:,13)./resperset2(:,11),resperset2(:,14)./resperset2(:,12)]

; 
set3=[dssum33(:,1),dssum33(:,2),dssum33(:,4),resperset3(:,7)./resperset3(:,5),resperset3(:,8)./setimgno(3),resper

set3(:,9)./(resperset3(:,5)-

resperset3(:,11)),resperset3(:,10)./setimgno(3),resperset3(:,13)./resperset3(:,11),resperset3(:,14)./resperset3(:,12)]

; 
allsets=[dssum11(:,1),dssum11(:,2),dssum11(:,4),resallsets(:,7)./resallsets(:,5),resallsets(:,8)./allimgno,resallsets(

:,9)./(resallsets(:,5)-

resallsets(:,11)),resallsets(:,10)./allimgno,resallsets(:,13)./resallsets(:,11),resallsets(:,14)./resallsets(:,12),expavera

getime]; 
  
save allsets set1 set2 set3 allsets 
save allsets.csv allsets -ascii -tabs 
save set1.csv set1 -ascii -tabs 
save set2.csv set2 -ascii -tabs 
save set3.csv set3 -ascii -tabs 
save allsetstimes exptime expaveragetime 
allsetstimes=[dssum11(:,1),dssum11(:,2),dssum11(:,4),exptime expaveragetime]; 
save allsetstimes.csv allsetstimes -ascii -tabs 
  
% calling for subroutine subper2 for preperation of a mat file for the 
% anovan function 
%subper2c 
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Appendix X: Statistica data sheets 
 
Collaboration Rewards RobPerf Group NewGroup No S1C1SyH S1C1SyF S1C1HoH S1C1HoF S1C1pHh S1C1pHfa 

1 1 0 1 1 10 1 1 1.00 1   

1 1 0 1 1 1001 1 0 1.00 0   

1 1 0 1 1 1002 1 1 1.00 1   

1 1 0 1 1 11 1 1 1.00 1   

1 1 0 1 1 12 1 1 1.00 1   

1 1 0 1 1 13 0.92 1 0.92 1   

1 1 0 1 1 14 1 2 1.00 2   

1 1 0 1 1 15 0.92 2 0.92 2   

1 1 0 1 1 16 0.92 3 0.92 3   

1 1 0 1 1 17 0.88 1 0.88 1   

1 1 0 1 1 18 1 2 1.00 2   

1 1 0 1 1 19 1 2 1.00 2   

1 2 0 2 1 20 1 4 1.00 4   

1 2 0 2 1 2001 1 2 1.00 2   

1 2 0 2 1 2002 1 2 1.00 2   

1 2 0 2 1 21 0.88 0 0.88 0   

1 2 0 2 1 22 1 4 1.00 4   

1 2 0 2 1 23 1 4 1.00 4   

1 2 0 2 1 24 0.96 2 0.96 2   

1 2 0 2 1 25 1 2 1.00 2   

1 2 0 2 1 26 1 1 1.00 1   

1 2 0 2 1 27 1 1 1.00 1   

1 2 0 2 1 28 0.92 2 0.92 2   

1 2 0 2 1 29 0.92 0 0.92 0   

2 1 1 3 2 30 1 2  2 1.000 0.00 

2 1 1 3 2 3001 0.84 1 1.00 1 0.818  

2 1 1 3 2 3002 0.52 1 1.00 1 0.455  

2 1 1 3 2 31 1 1 1.00 1 1.000  

2 1 1 3 2 32 1 5 1.00 5 1.000  

2 1 1 3 2 33 1 0 1.00 0 1.000  

2 1 1 3 2 34 1 1 1.00 1 1.000  

2 1 1 3 2 35 1 2 1.00 2 1.000  

2 1 1 3 2 36 1 0 1.00 0 1.000  

2 1 1 3 2 37 0.96 2 0.50 2 1.000 0.00 

2 1 1 3 2 38 0.92 0 1.00 0 0.909  

2 1 1 3 2 39 1 2 1.00 2 1.000 0.00 

2 1 2 4 4 40 1 2 1.00 0 1.000 0.29 

2 1 2 4 4 4001 1 0 1.00 0 1.000 0.00 

2 1 2 4 4 4002 0.92 2 0.86 0 0.944 0.25 

2 1 2 4 4 41 0.96 2 1.00 1 0.933 0.14 

2 1 2 4 4 42 1 3 1.00 1 1.000 0.29 

2 1 2 4 4 43 0.92 2 1.00 0 0.867 0.29 

2 1 2 4 4 44 1 3 1.00 1 1.000 0.29 

2 1 2 4 4 45 1 2 1.00 0 1.000 0.29 

2 1 2 4 4 46 0.84 1 0.90 0 0.800 0.14 

2 1 2 4 4 47 1 4 1.00 2 1.000 0.29 

2 1 2 4 4 48 1 2 1.00 0 1.000 0.29 

2 1 2 4 4 49 1 1 1.00 0 1.000 0.14 

2 2 1 5 2 50 0.96 0 1.00 0 0.955  

2 2 1 5 2 5001 1 3 1.00 3 1.000  
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2 2 1 5 2 5002 1 2 1.00 2 1.000 0.00 

2 2 1 5 2 51 1 2 1.00 2 1.000  

2 2 1 5 2 52 1 0 1.00 0 1.000  

2 2 1 5 2 53 1 0 1.00 0 1.000  

2 2 1 5 2 54 1 2 1.00 2 1.000  

2 2 1 5 2 55 1 6 1.00 6 1.000  

2 2 1 5 2 56 1 0 1.00 0 1.000  

2 2 1 5 2 57 0.92 0 1.00 0 0.905 0.00 

2 2 1 5 2 58 0.96 0 1.00 0 0.957 0.00 

2 2 1 5 2 59 1 0 1.00 0 1.000  

2 2 2 6 4 60 0.96 2 1.00 1 0.933 0.14 

2 2 2 6 4 6001 1 2 1.00 1 1.000 0.14 

2 2 2 6 4 6002 1 5 1.00 2 1.000 0.43 

2 2 2 6 4 61 0.92 1 1.00 1 0.867 0.00 

2 2 2 6 4 62 1 0 1.00 0 1.000 0.00 

2 2 2 6 4 63 1 4 1.00 2 1.000 0.29 

2 2 2 6 4 64 1 6 1.00 2 1.000 0.57 

2 2 2 6 4 65 0.92 1 0.90 0 0.933 0.14 

2 2 2 6 4 66 1 2 1.00 0 1.000 0.29 

2 2 2 6 4 67 1 1 1.00 0 1.000 0.14 

2 2 2 6 4 68 1 3 1.00 1 1.000 0.29 

2 2 2 6 4 69 1 0 1.00 0 1.000 0.00 

3 1 1 7 3 70 1 0 1.00 0 1.000 0.00 

3 1 1 7 3 7001 1 2 1.00 2 1.000  

3 1 1 7 3 7002 1 0 1.00 0 1.000 0.00 

3 1 1 7 3 71 1 0 1.00 0 1.000  

3 1 1 7 3 72 0.88 2 1.00 2 0.864  

3 1 1 7 3 73 0.96 0 1.00 0 0.955  

3 1 1 7 3 74 1 2 1.00 2 1.000  

3 1 1 7 3 75 1 1 1.00 1 1.000  

3 1 1 7 3 76 0.96 1 1.00 1 0.955  

3 1 1 7 3 77 1 0 1.00 0 1.000 0.00 

3 1 1 7 3 78 0.96 0 1.00 0 0.955  

3 1 1 7 3 79 1 2 1.00 2 1.000  

3 1 2 8 5 80 0.84 3 0.50 2 0.905 0.14 

3 1 2 8 5 8001 0.96 7 1.00 4 0.944 0.43 

3 1 2 8 5 8002 1 4 1.00 1 1.000 0.43 

3 1 2 8 5 81 1 2 1.00 1 1.000 0.14 

3 1 2 8 5 82 1 0 1.00 0 1.000 0.00 

3 1 2 8 5 83 0.88 0 1.00 0 0.800 0.00 

3 1 2 8 5 84 1 1 1.00 0 1.000 0.14 

3 1 2 8 5 85 0.68 1 0.80 1 0.600 0.00 

3 1 2 8 5 86 0.96 1 1.00 1 0.933 0.00 

3 1 2 8 5 87 1 0 1.00 0 1.000 0.00 

3 1 2 8 5 882 1 1 1.00 0 1.000 0.14 

3 1 2 8 5 89 1 2 1.00 0 1.000 0.29 

3 2 1 9 3 90 0.92 1 0.67 1 0.955  

3 2 1 9 3 9001 1 15 1.00 15 1.000  

3 2 1 9 3 9002 1 2 1.00 2 1.000  

3 2 1 9 3 91 1 2 1.00 2 1.000  

3 2 1 9 3 92 1 0 1.00 0 1.000  

3 2 1 9 3 93 1 1 1.00 1 1.000  

3 2 1 9 3 94 1 1 1.00 1 1.000  

3 2 1 9 3 95 0.92 1 1.00 1 0.917 0.00 

3 2 1 9 3 96 1 0 1.00 0 1.000  
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3 2 1 9 3 97 1 2 1.00 2 1.000 0.00 

3 2 1 9 3 98 1 3 1.00 3 1.000 0.00 

3 2 1 9 3 99 1 0 1.00 0 1.000  

3 2 2 10 5 100 0.96 3 0.75 1 1.000 0.29 

3 2 2 10 5 101 1 0 1.00 0 1.000 0.00 

3 2 2 10 5 102 1 1 1.00 1 1.000 0.00 

3 2 2 10 5 103 1 0 1.00 0 1.000 0.00 

3 2 2 10 5 104 1 1 1.00 0 1.000 0.14 

3 2 2 10 5 105 1 3 1.00 2 1.000 0.14 

3 2 2 10 5 106 1 1 1.00 0 1.000 0.13 

3 2 2 10 5 107 0.96 1 1.00 0 0.933 0.14 

3 2 2 10 5 108 0.88 3 1.00 1 0.833 0.29 

3 2 2 10 5 109 1 3 1.00 1 1.000 0.29 

3 2 2 10 5 110 1 1 1.00 0 1.000 0.14 

3 2 2 10 5 111 0.92 4 0.86 0 0.944 0.57 
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Appendix XI: Numerical analysis programs 
 

operationalcost5c.m 
% This program calculates the hit and false alarm probabilities and the 
% value of the operational cost according to betas and dtags 
% all betas are given and the optimal betas for each case are chacked. 
% In this case all decision time parameters are CONSTANTS!!!!!!!!!! 
% This version will show the objective fbction values for all collaboration 
% levels and for all betas combinatios. 
% with more resolusion of d'r, d'h and Ps 
  
clear  
clc 
close all 
  
tic 
N=1000; % # of objects 
Nstr=num2str(N); 
  
%VFA2H=[0.1 0.333 1 3 10];  %[0.05:0.05:1,1:0.1:10,10:1:100]; %VFA/VH aspect ratio range 
VFA2H=10;  %[0.05:0.05:1,1:0.1:10,10:1:100]; %VFA/VH aspect ratio range 
for VAR=1:length(VFA2H) 
VARstr=num2str(VFA2H(VAR)*10); 
if VFA2H(VAR)==0.333 
    VARstr=num2str(3); 
end 
     
%Psvector=[0.2 0.5 0.8]; %probability for object to be target 
Psvector=[0.1,0.2,0.5,0.8,0.9]; %probability for object to be target 
  
for Pscount=1:length(Psvector) 
Ps=Psvector(Pscount); 
Psstr=num2str(Ps*100); 
  
dhvector=[-0.5:-0.25:-3]; 
drvector=[-0.5:-0.25:-3]; 
  
for dh=1:11 
dtag=dhvector(dh) %[-0.1:-0.1:-4]; % the range of d' for human (second detector) 
Dh=num2str(-dtag*100); 
  
for dr=1:11 
dtagR=drvector(dr) %[-0.1:-0.1:-4]%-2 
Dr=num2str(-dtagR*100); 
%lnbetar=1 %[-3:0.1:3] 
  
VH=50; 
VM=0; 
VCR=0; 
VHstr=num2str(VH); 
VFA=-VH.*VFA2H(VAR); 
Vc=-2; 
VCstr=num2str(-Vc); 
Vt=-2000/3600; 
Vtstr=num2str(-Vt*3600); 
  
tr=10; 
  
c3=0; 
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for lnbetar=-4:0.2:4 
    c3=c3+1; 
    c2=0; 
    for lnbetah=-4:0.2:4 
        c2=c2+1; 
        c1=0; 
        for lnbetarh=-4:0.2:4 
    c1=c1+1; 
     
    % the probabilities of the robot 
    Zsr(c1,c2,c3)=(-2.*lnbetar+dtagR.^2)./(2.*dtagR); 
    Znr(c1,c2,c3)=(-2.*lnbetar-dtagR.^2)./(2.*dtagR); 
    phr(c1,c2,c3)=1-normcdf(Zsr(c1,c2,c3)); 
    pfar(c1,c2,c3)=1-normcdf(Znr(c1,c2,c3)); 
    ratio1=pfar(c1,c2,c3)./phr(c1,c2,c3); 
    ratio2=(1-pfar(c1,c2,c3))./(1-phr(c1,c2,c3)); 
    
    if lnbetar==0 & lnbetah==0 & lnbetarh==0 
            Zsrtest=(-2.*lnbetar+dtagR.^2)./(2.*dtagR); 
    Znrtest=(-2.*lnbetar-dtagR.^2)./(2.*dtagR); 
    phrtest=1-normcdf(Zsr(c1,c2,c3)); 
    pfartest=1-normcdf(Znr(c1,c2,c3)); 
    ratio1=pfar(c1,c2,c3)./phr(c1,c2,c3); 
    ratio2=(1-pfar(c1,c2,c3))./(1-phr(c1,c2,c3)); 
  
    end 
  
    %the optimal parameters of the robot if he was a single detector 
    betastar(c1,c2,c3)=((1-Ps)./Ps).*VFA2H(VAR); % calculating Beta* 
    ZsRstar(c1,c2,c3)=(-2.*log(betastar(c1,c2,c3))+dtagR.^2)./(2.*dtagR); 
    ZnRstar(c1,c2,c3)=(-2.*log(betastar(c1,c2,c3))-dtagR.^2)./(2.*dtagR); 
    phrstar(c1,c2,c3)=1-normcdf(ZsRstar(c1,c2,c3)); 
    pfarstar(c1,c2,c3)=1-normcdf(ZnRstar(c1,c2,c3)); 
  
    %the probabilities of the HO (second detector) for object that the 
    %robot didn't detect 
    ZsH(c1,c2,c3)=(-2.*lnbetah+dtag.^2)./(2.*dtag); 
    ZnH(c1,c2,c3)=(-2.*lnbetah-dtag.^2)./(2.*dtag); 
    phh(c1,c2,c3)=1-normcdf(ZsH(c1,c2,c3)); 
    pfah(c1,c2,c3)=1-normcdf(ZnH(c1,c2,c3)); 
  
 %the probabilities of the HO (second detector) for object that the robot 
 %already detected 
    ZsRH(c1,c2,c3)=(-2.*lnbetarh+dtag.^2)./(2.*dtag); 
    ZnRH(c1,c2,c3)=(-2.*lnbetarh-dtag.^2)./(2.*dtag); 
    phrh(c1,c2,c3)=1-normcdf(ZsRH(c1,c2,c3)); 
    pfarh(c1,c2,c3)=1-normcdf(ZnRH(c1,c2,c3)); 
     
    % the time parameters 
     
    tHh(c1,c2,c3)=5; 
    tFAh(c1,c2,c3)=5; 
    tHrh(c1,c2,c3)=5; 
    tFArh(c1,c2,c3)=5; 
      
    tMh(c1,c2,c3)=5; 
    tCRh(c1,c2,c3)=5; 
    tMrh(c1,c2,c3)=5; 
    tCRrh(c1,c2,c3)=5; 
    tmotor=2; 
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    PHs(c1,c2,c3)=phr(c1,c2,c3).*phrh(c1,c2,c3)+(1-phr(c1,c2,c3)).*phh(c1,c2,c3); 
    VHs(c1,c2,c3)=N.*Ps.*PHs(c1,c2,c3).*VH; 
    PMs(c1,c2,c3)=phr(c1,c2,c3).*(1-phrh(c1,c2,c3))+(1-phr(c1,c2,c3)).*(1-phh(c1,c2,c3)); 
    VMs(c1,c2,c3)=N.*Ps.*PMs(c1,c2,c3).*VM; 
    FFAs(c1,c2,c3)=N.*(1-Ps).*pfar(c1,c2,c3).*pfarh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*pfah(c1,c2,c3); 
    VFAs(c1,c2,c3)=FFAs(c1,c2,c3).*VFA; 
    FCRs(c1,c2,c3)=N.*(1-Ps).*pfar(c1,c2,c3).*(1-pfarh(c1,c2,c3))+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*(1-

pfah(c1,c2,c3)); 
    VCRs(c1,c2,c3)=FCRs(c1,c2,c3).*VCR; 
     
    ts(c1,c2,c3)=N.*Ps.*phr(c1,c2,c3).*phrh(c1,c2,c3).*tHrh(c1,c2,c3)+N.*Ps.*(1-

phr(c1,c2,c3)).*phh(c1,c2,c3).*tHh(c1,c2,c3)+N.*(1-

Ps).*pfar(c1,c2,c3).*pfarh(c1,c2,c3).*tFArh(c1,c2,c3)+N.*(1-Ps).*(1-

pfar(c1,c2,c3)).*pfah(c1,c2,c3).*tFAh(c1,c2,c3)... 
        +N.*Ps.*phr(c1,c2,c3).*(1-phrh(c1,c2,c3)).*tMrh(c1,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*(1-

phh(c1,c2,c3)).*tMh(c1,c2,c3)+N.*(1-Ps).*pfar(c1,c2,c3).*(1-pfarh(c1,c2,c3)).*tCRrh(c1,c2,c3)+N.*(1-Ps).*(1-

pfar(c1,c2,c3)).*(1-pfah(c1,c2,c3)).*tCRh(c1,c2,c3)+tr; 
     
    tsHORr(c1,c2,c3)=N.*Ps.*phr(c1,c2,c3).*phrh(c1,c2,c3).*(tHrh(c1,c2,c3)+tmotor)+N.*Ps.*(1-

phr(c1,c2,c3)).*phh(c1,c2,c3).*(tHh(c1,c2,c3)+tmotor)+N.*(1-

Ps).*pfar(c1,c2,c3).*pfarh(c1,c2,c3).*(tFArh(c1,c2,c3)+tmotor)+N.*(1-Ps).*(1-

pfar(c1,c2,c3)).*pfah(c1,c2,c3).*(tFAh(c1,c2,c3)+tmotor)... 
        +N.*Ps.*phr(c1,c2,c3).*(1-phrh(c1,c2,c3)).*tMrh(c1,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*(1-

phh(c1,c2,c3)).*tMh(c1,c2,c3)+N.*(1-Ps).*pfar(c1,c2,c3).*(1-pfarh(c1,c2,c3)).*tCRrh(c1,c2,c3)+N.*(1-Ps).*(1-

pfar(c1,c2,c3)).*(1-pfah(c1,c2,c3)).*tCRh(c1,c2,c3)+tr; 
  
    tsHOR(c1,c2,c3)=N.*Ps.*phr(c1,c2,c3).*phrh(c1,c2,c3).*tHrh(c1,c2,c3)+N.*Ps.*(1-

phr(c1,c2,c3)).*phh(c1,c2,c3).*(tHh(c1,c2,c3)+tmotor)+N.*(1-

Ps).*pfar(c1,c2,c3).*pfarh(c1,c2,c3).*tFArh(c1,c2,c3)+N.*(1-Ps).*(1-

pfar(c1,c2,c3)).*pfah(c1,c2,c3).*(tFAh(c1,c2,c3)+tmotor)... 
        +N.*Ps.*phr(c1,c2,c3).*(1-phrh(c1,c2,c3)).*(tMrh(c1,c2,c3)+tmotor)+N.*Ps.*(1-phr(c1,c2,c3)).*(1-

phh(c1,c2,c3)).*tMh(c1,c2,c3)+N.*(1-Ps).*pfar(c1,c2,c3).*(1-

pfarh(c1,c2,c3)).*(tCRrh(c1,c2,c3)+tmotor)+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*(1-

pfah(c1,c2,c3)).*tCRh(c1,c2,c3)+tr; 
         
    Ndetect(c1,c2,c3)=(N.*Ps.*phr(c1,c2,c3).*phrh(c1,c2,c3)+N.*Ps.*(1-phr(c1,c2,c3)).*phh(c1,c2,c3)+N.*(1-

Ps).*pfar(c1,c2,c3).*pfarh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*pfah(c1,c2,c3)); 
    VTs(c1,c2,c3)=ts(c1,c2,c3).*Vt+(N.*Ps.*phr(c1,c2,c3).*phrh(c1,c2,c3)+N.*Ps.*(1-

phr(c1,c2,c3)).*phh(c1,c2,c3)+N.*(1-Ps).*pfar(c1,c2,c3).*pfarh(c1,c2,c3)+N.*(1-Ps).*(1-

pfar(c1,c2,c3)).*pfah(c1,c2,c3)).*Vc; 
    VTsHORr(c1,c2,c3)=tsHORr(c1,c2,c3).*Vt+(N.*Ps.*phr(c1,c2,c3).*phrh(c1,c2,c3)+N.*Ps.*(1-

phr(c1,c2,c3)).*phh(c1,c2,c3)+N.*(1-Ps).*pfar(c1,c2,c3).*pfarh(c1,c2,c3)+N.*(1-Ps).*(1-

pfar(c1,c2,c3)).*pfah(c1,c2,c3)).*Vc; 
    VTsHOR(c1,c2,c3)=tsHOR(c1,c2,c3).*Vt+(N.*Ps.*phr(c1,c2,c3).*phrh(c1,c2,c3)+N.*Ps.*(1-

phr(c1,c2,c3)).*phh(c1,c2,c3)+N.*(1-Ps).*pfar(c1,c2,c3).*pfarh(c1,c2,c3)+N.*(1-Ps).*(1-

pfar(c1,c2,c3)).*pfah(c1,c2,c3)).*Vc; 
    VIs(c1,c2,c3)=VHs(c1,c2,c3)+VMs(c1,c2,c3)+VFAs(c1,c2,c3)+VCRs(c1,c2,c3)+VTs(c1,c2,c3); 
    VIsHORr(c1,c2,c3)=VHs(c1,c2,c3)+VMs(c1,c2,c3)+VFAs(c1,c2,c3)+VCRs(c1,c2,c3)+VTsHORr(c1,c2,c3); 
    VIsHOR(c1,c2,c3)=VHs(c1,c2,c3)+VMs(c1,c2,c3)+VFAs(c1,c2,c3)+VCRs(c1,c2,c3)+VTsHOR(c1,c2,c3); 
     
   PHsR(c1,c2,c3)=phr(c1,c2,c3); 
   VHsR(c1,c2,c3)=N.*Ps.*PHsR(c1,c2,c3).*VH; 
   FFAsR(c1,c2,c3)=N.*(1-Ps).*pfar(c1,c2,c3); 
   VFAsR(c1,c2,c3)=FFAsR(c1,c2,c3).*VFA; 
   tsR(c1,c2,c3)=tr; 
   VTsR(c1,c2,c3)=tsR(c1,c2,c3).*Vt+(N.*Ps.*phr(c1,c2,c3)+N.*(1-Ps).*pfar(c1,c2,c3)).*Vc; 
   VIsR(c1,c2,c3)=VHsR(c1,c2,c3)+VFAsR(c1,c2,c3)+VTsR(c1,c2,c3); 
    
   % the probabilities of teh HO collaboration level were take from the 
   % robot probabilities and the different between the HO and the R 
   % cllaboration levels is just on the times parameters. 
   PHsHO(c1,c2,c3)=phr(c1,c2,c3); 
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   VHsHO(c1,c2,c3)=N.*Ps.*PHsHO(c1,c2,c3).*VH; 
   FFAsHO(c1,c2,c3)=N.*(1-Ps).*pfar(c1,c2,c3); 
   VFAsHO(c1,c2,c3)=FFAsHO(c1,c2,c3).*VFA; 
   

tsHO(c1,c2,c3)=N.*Ps.*PHsHO(c1,c2,c3).*(tHh(c1,c2,c3)+tmotor)+FFAsHO(c1,c2,c3).*(tFAh(c1,c2,c3)+tmot

or)... 
       +N.*Ps.*(1-PHsHO(c1,c2,c3)).*tMh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*tCRh(c1,c2,c3); 
   VTsHO(c1,c2,c3)=tsHO(c1,c2,c3).*Vt+(N.*Ps.*phr(c1,c2,c3)+N.*(1-Ps).*pfar(c1,c2,c3)).*Vc; 
   VIsHO(c1,c2,c3)=VHsHO(c1,c2,c3)+VFAsHO(c1,c2,c3)+VTsHO(c1,c2,c3); 
    

    
    Nsyshit(c1,c2,c3)=VHs(c1,c2,c3)./VH; % number of system hits 
    NsysFA(c1,c2,c3)=VFAs(c1,c2,c3)./VFA; % number of system FA 
    phs(c1,c2,c3)=Nsyshit(c1,c2,c3)./(N.*Ps); % same as PHs 
    pfas(c1,c2,c3)=NsysFA(c1,c2,c3)./(N.*(1-Ps)); % probability of system FA 
    Zss(c1,c2,c3)=norminv(phs(c1,c2,c3)); 
    Zns(c1,c2,c3)=norminv(pfas(c1,c2,c3)); 
    dtagsys(c1,c2,c3)=Zns(c1,c2,c3)-Zss(c1,c2,c3); % drtag of the overall system 
    lnbetasys(c1,c2,c3)=-0.5.*(Zss(c1,c2,c3).^2-Zns(c1,c2,c3).^2); 
    betasys(c1,c2,c3)=exp(lnbetasys(c1,c2,c3)); % the system beta 
        end     % c1 
    end     % c2 
    c3 
    VAR 
    [dhvector(dh),drvector(dr)] 
end     % c3 
  
toc 
lnbetar_graph=-3:0.2:3; 
  
lnbetar=-4:0.2:4; 
lnbetah=-4:0.2:4; 
lnbetarh=-4:0.2:4; 
  
fn=['OF1dh',Dh,'dr',Dr,'_',VARstr,'_',VHstr,'_',VCstr,'_',Vtstr,'_Ps',Psstr] 
allvariables=[' N  VFA2H VAR Ps dtag dtagR lnbetar lnbetah lnbetarh VH VFA Vc Vt Zsr Znr ZsH ZnH ZsRH 

ZnRH ZsRstar ZnRstar betastar phr pfar phh pfah phrh pfarh phrstar pfarstar tmotor tHh tHrh tFAh tFArh tMh 

tMrh tCRh tCRrh tr PHs VHs PMs VMs FCRs VCRs FFAs VFAs ts tsHORr tsHOR Ndetect VTs VTsHORr 

VTsHOR VIs VIsHORr VIsHOR Nsyshit NsysFA phs pfas Zss Zns dtagsys lnbetasys betasys PHsR VHsR  

FFAsR VFAsR tsR VTsR VIsR PHsHO VHsHO  FFAsHO VFAsHO tsHO VTsHO VIsHO'] 
  
eval(['save ',fn allvariables]) 
%save OC1dh3dr3_3_3_1_1000 N  VFA2H VAR Ps dtag dtagR lnbetar lnbetah lnbetarh VH VFA Vc Vt ... 
%    Zsr Znr ZsH ZnH ZsRH ZnRH ZsRstar ZnRstar betastar phr pfar phh pfah phrh pfarh phrstar pfarstar ... 
  %  myuHh myuFAh myuHrh myuFArh tHh tHrh tFAh tFArh tr PHs VHs FFAs VFAs ts Ndetect VTs VIs 

Nsyshit NsysFA phs pfas ... 
   % Zss Zns dtagsys lnbetasys betasys  
  
end    %dr 
end    % dh 
end    % PScount 
end   % VAR 
  
toc 
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OFoptPS1.m: 

 
% This program compare the different files prodced with operationalcost5c 
% and calculate the parameters maps for all collaboration levels. 
  
clear 
clc 
close all 
pause(1) 
  
tic 
  
allvariables=[' N  VFA2H VAR Ps dtag dtagR lnbetar lnbetah lnbetarh VH VFA Vc Vt Zsr Znr ZsH ZnH ZsRH 

ZnRH ZsRstar ZnRstar betastar phr pfar phh pfah phrh pfarh phrstar pfarstar tmotor tHh tHrh tFAh tFArh tMh 

tMrh tCRh tCRrh tr PHs VHs PMs VMs FCRs VCRs FFAs VFAs ts tsHORr tsHOR Ndetect VTs VTsHORr 

VTsHOR VIs VIsHORr VIsHOR Nsyshit NsysFA phs pfas Zss Zns dtagsys lnbetasys betasys PHsR VHsR  

FFAsR VFAsR tsR VTsR VIsR PHsHO VHsHO  FFAsHO VFAsHO tsHO VTsHO VIsHO']; 
     
dhvector=[-0.5:-0.25:-3]; 
drvector=[-0.5:-0.25:-3]; 
  

  
VFA2H=10; % VFA2H=[0.1 1 10];  %[0.05:0.05:1,1:0.1:10,10:1:100]; %VFA/VH aspect ratio range 
for VARcall=1:length(VFA2H) 
    VARstr=num2str(VFA2H(VARcall)*10); 
    if VFA2H(VARcall)==0.333 
        VARstr=num2str(3); 
    end 
  
%Ps=0.1; %probability for object to be target 
%Psstr=num2str(Ps*100); 
VH=50; 
VM=0; 
VCR=0; 
VHstr=num2str(VH); 
VFA=-VH.*VFA2H(VARcall); 
Vc=-2; 
VCstr=num2str(-Vc); 
Vt=-2000/3600; 
Vtstr=num2str(-Vt*3600); 
tr=10; 
bestbetarh=zeros(11,11); 
bestbetah=zeros(11,11); 
bestbetar=zeros(11,11); 
  
Ps=[0.1,0.2,0.5,0.8,0.9] %probability for object to be target 
for P=1:length(Ps) 
Ps=[0.1,0.2,0.5,0.8,0.9] %probability for object to be target 
Psstr=num2str(Ps(P)*100) 
     
for dh=1:11 
    dtag=dhvector(dh) %[-0.1:-0.1:-4]; % the range of d' for human (second detector) 
    Dh=num2str(-dtag*100); 
     
    for dr=1:11 
        dtagR=drvector(dr) %[-0.1:-0.1:-4]%-2 
        Dr=num2str(-dtagR*100); 
  
            fn=['OF1dh',Dh,'dr',Dr,'_',VARstr,'_',VHstr,'_',VCstr,'_',Vtstr,'_Ps',Psstr] 
            eval(['load ',fn allvariables]) 
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                HOVIs(dh,dr,P)=max(max(max(VIsHO))); % the dh, dr coordinates are oposit since it is that way in 

the databases 
                [x y]=find(VIsHO==HOVIs(dh,dr,P)); 
                brhs_VIsHO(dh,dr,P)=x(1); 
                bhs_VIsHO(dh,dr,P)=ceil(y(1)./41); 
                brs_VIsHO(dh,dr,P)=y(1)-41*(bhs_VIsHO(dh,dr,P)-1); 
                 
                HOPHs(dh,dr,P)=PHsHO(brhs_VIsHO(dh,dr,P),brs_VIsHO(dh,dr,P),bhs_VIsHO(dh,dr,P));                
                HOts(dh,dr,P)=tsHO(brhs_VIsHO(dh,dr,P),brs_VIsHO(dh,dr,P),bhs_VIsHO(dh,dr,P)); 
                HOVTs(dh,dr,P)=VTsHO(brhs_VIsHO(dh,dr,P),brs_VIsHO(dh,dr,P),bhs_VIsHO(dh,dr,P)); 
                HOPfa(dh,dr,P)=pfar(brhs_VIsHO(dh,dr,P),brs_VIsHO(dh,dr,P),bhs_VIsHO(dh,dr,P));                
  
                RVIs(dr,dh,P)=max(max(max(VIsR))); 
                [x y]=find(VIsR==RVIs(dr,dh,P)); 
                brhs_VIsR(dr,dh,P)=x(1); 
                brs_VIsR(dr,dh,P)=ceil(y(1)./41); 
                bhs_VIsR(dr,dh,P)=y(1)-41*(brs_VIsR(dr,dh,P)-1); 
                 
                RPHs(dr,dh,P)=PHsR(brhs_VIsR(dr,dh,P),bhs_VIsR(dr,dh,P),brs_VIsR(dr,dh,P));                                
                Rts(dr,dh,P)=tsR(brhs_VIsR(dr,dh,P),bhs_VIsR(dr,dh,P),brs_VIsR(dr,dh,P)); 
                RVTs(dr,dh,P)=VTsR(brhs_VIsR(dr,dh,P),bhs_VIsR(dr,dh,P),brs_VIsR(dr,dh,P)); 
                RPfa(dr,dh,P)=pfar(brhs_VIsR(dr,dh,P),brs_VIsR(dr,dh,P),bhs_VIsR(dr,dh,P));                
   

                 
                HORVIs(dr,dh,P)=max(max(max(VIsHOR))); 
                [x y]=find(VIsHOR==HORVIs(dr,dh,P)); 
                brhs_VIsHOR(dr,dh,P)=x(1); 
                bhs_VIsHOR(dr,dh,P)=ceil(y(1)./41); 
                brs_VIsHOR(dr,dh,P)=y(1)-41*(bhs_VIsHOR(dr,dh,P)-1); 
  
                HORPHs(dr,dh,P)=PHs(brhs_VIsHOR(dr,dh,P),bhs_VIsHOR(dr,dh,P),brs_VIsHOR(dr,dh,P));                                
                HORts(dr,dh,P)=tsHOR(brhs_VIsHOR(dr,dh,P),bhs_VIsHOR(dr,dh,P),brs_VIsHOR(dr,dh,P)); 
                HORVTs(dr,dh,P)=VTsHOR(brhs_VIsHOR(dr,dh,P),bhs_VIsHOR(dr,dh,P),brs_VIsHOR(dr,dh,P)); 
                HORPfa(dr,dh,P)=pfas(brhs_VIsHOR(dr,dh,P),brs_VIsHOR(dr,dh,P),bhs_VIsHOR(dr,dh,P));                
                

  
                HORrVIs(dr,dh,P)=max(max(max(VIsHORr))); 
                [x y]=find(VIsHORr==HORrVIs(dr,dh,P)); 
                brhs_VIsHORr(dr,dh,P)=x(1); 
                bhs_VIsHORr(dr,dh,P)=ceil(y(1)./41); 
                brs_VIsHORr(dr,dh,P)=y(1)-41*(bhs_VIsHORr(dr,dh,P)-1); 
  
                HORrPHs(dr,dh,P)=PHs(brhs_VIsHORr(dr,dh,P),bhs_VIsHORr(dr,dh,P),brs_VIsHORr(dr,dh,P));                                
                HORrts(dr,dh,P)=tsHORr(brhs_VIsHORr(dr,dh,P),bhs_VIsHORr(dr,dh,P),brs_VIsHORr(dr,dh,P)); 
                

HORrVTs(dr,dh,P)=VTsHORr(brhs_VIsHORr(dr,dh,P),bhs_VIsHORr(dr,dh,P),brs_VIsHORr(dr,dh,P)); 
                HORrPfa(dr,dh,P)=pfas(brhs_VIsHORr(dr,dh,P),brs_VIsHORr(dr,dh,P),bhs_VIsHORr(dr,dh,P));                
                 
                        Vi_Temp=[HOVIs(dr,dh,P),HORrVIs(dr,dh,P),HORVIs(dr,dh,P),RVIs(dr,dh,P)]; 
                        Vi_max(dr,dh,P)=max(Vi_Temp); 
                        Temp_CL=find(Vi_Temp==Vi_max(dr,dh,P)); 
                        BestCL(dr,dh,P)=Temp_CL(1); 
                         
                        PH_Temp=[HOPHs(dh,dr,P),HORrPHs(dr,dh,P),HORPHs(dr,dh,P),RPHs(dr,dh,P)]; 
                        PFA_Temp=[HOPfa(dh,dr,P),HORrPfa(dr,dh,P),HORPfa(dr,dh,P),RPfa(dr,dh,P)];     
                        
                        BestZss(dr,dh,P)=norminv(PH_Temp(Temp_CL(1))); 
                        BestZns(dr,dh,P)=norminv(PFA_Temp(Temp_CL(1))); 
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                        Bestdtagsys(dr,dh,P)=BestZns(dr,dh,P)-BestZss(dr,dh,P); % drtag of the overall system                             
                        Bestlnbetasys(dr,dh,P)=-0.5.*(BestZss(dr,dh,P).^2-BestZns(dr,dh,P).^2); 
                        if Temp_CL(1)==4 
                            Bestdtagsys(dr,dh,P)=drvector(dr); 
                            Bestlnbetasys(dr,dh,P)=-4+(brs_VIsR(dr,dh,P)-1).*0.2; 
                        end 
                         
        end     % dr 
    end         % dh 
    toc 
    beep 
end             % P 
  
                HOVIs2ts=HOVIs./HOts; 
                HOVIs2VTs=HOVIs./HOVTs; 
                RVIs2ts=RVIs./Rts; 
                RVIs2VTs=RVIs./RVTs; 
                HORVIs2ts=HORVIs./HORts; 
                HORVIs2VTs=HORVIs./HORVTs; 
                HORrVIs2ts=HORrVIs./HORrts; 
                HORrVIs2VTs=HORrVIs./HORrVTs; 
  
    toc    
  
    beta_rhHO=-4+(brhs_VIsHO-1).*0.2; 
    beta_rhR=-4+(brhs_VIsR-1).*0.2; 
    beta_rhHORr=-4+(brhs_VIsHORr-1).*0.2; 
    beta_rhHOR=-4+(brhs_VIsHOR-1).*0.2; 
             
    beta_hHO=-4+(bhs_VIsHO-1).*0.2; 
    beta_hR=-4+(bhs_VIsR-1).*0.2; 
    beta_hHORr=-4+(bhs_VIsHORr-1).*0.2; 
    beta_hHOR=-4+(bhs_VIsHOR-1).*0.2; 
  
    beta_rHO=-4+(brs_VIsHO-1).*0.2; 
    beta_rR=-4+(brs_VIsR-1).*0.2; 
    beta_rHORr=-4+(brs_VIsHORr-1).*0.2; 
    beta_rHOR=-4+(brs_VIsHOR-1).*0.2; 
     
        save OFoptPs_data1 
     
    Allbeta_rh(:,:,:,1)=beta_rhHO; 
    Allbeta_rh(:,:,:,2)=beta_rhHORr; 
    Allbeta_rh(:,:,:,3)=beta_rhHOR; 
    Allbeta_rh(:,:,:,4)=beta_rhR; 
     
    Allbeta_h(:,:,:,1)=beta_hHO; 
    Allbeta_h(:,:,:,2)=beta_hHORr; 
    Allbeta_h(:,:,:,3)=beta_hHOR; 
    Allbeta_h(:,:,:,4)=beta_hR; 
  
    Allbeta_r(:,:,:,1)=beta_rHO; 
    Allbeta_r(:,:,:,2)=beta_rHORr; 
    Allbeta_r(:,:,:,3)=beta_rHOR; 
    Allbeta_r(:,:,:,4)=beta_rR; 
  
            save OFoptPs_data2 
            pause 
     
end         % VAR 
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Appendix XII: Sensitivity analysis programs 
 

sensPs1a.m: 
% sensitivity analysis of beta 
  
clear 
clc 
close all 
pause(1) 
  
tic 
  
allvariables=[' N  VFA2H VAR Ps dtag dtagR lnbetar lnbetah lnbetarh VH VFA Vc Vt Zsr Znr ZsH ZnH ZsRH 

ZnRH ZsRstar ZnRstar betastar phr pfar phh pfah phrh pfarh phrstar pfarstar tmotor tHh tHrh tFAh tFArh tMh 

tMrh tCRh tCRrh tr PHs VHs PMs VMs FCRs VCRs FFAs VFAs ts tsHORr tsHOR Ndetect VTs VTsHORr 

VTsHOR VIs VIsHORr VIsHOR Nsyshit NsysFA phs pfas Zss Zns dtagsys lnbetasys betasys PHsR VHsR  

FFAsR VFAsR tsR VTsR VIsR PHsHO VHsHO  FFAsHO VFAsHO tsHO VTsHO VIsHO']; 
     
dhvector=[-1:-1:-3]; 
drvector=[-1:-1:-3]; 
  

  
VFA2H=1; % VFA2H=[0.1 1 10];  %[0.05:0.05:1,1:0.1:10,10:1:100]; %VFA/VH aspect ratio range 
for VARcall=1:length(VFA2H) 
    VARstr=num2str(VFA2H(VARcall)*10); 
    if VFA2H(VARcall)==0.333 
        VARstr=num2str(3); 
    end 
  
%Ps=0.1; %probability for object to be target 
%Psstr=num2str(Ps*100); 
VH=50; 
VM=0; 
VCR=0; 
VHstr=num2str(VH); 
VFA=-VH.*VFA2H(VARcall); 
Vc=-2; 
VCstr=num2str(-Vc); 
Vt=-2000/3600; 
Vtstr=num2str(-Vt*3600); 
tr=10; 
  
Ps=[0.1:0.1:0.9] %probability for object to be target 
for P=1:length(Ps) 
Ps=[0.1:0.1:0.9] %probability for object to be target 
Psstr=num2str(Ps(P)*100) 
     
for dh=1:3 
    dtag=dhvector(dh) %[-0.1:-0.1:-4]; % the range of d' for human (second detector) 
    Dh=num2str(-dtag*100); 
     
    for dr=1:3 
        dtagR=drvector(dr) %[-0.1:-0.1:-4]%-2 
        Dr=num2str(-dtagR*100); 
  
            fn=['OF1dh',Dh,'dr',Dr,'_',VARstr,'_',VHstr,'_',VCstr,'_',Vtstr,'_Ps',Psstr] 
            eval(['load ',fn allvariables]) 
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                RVIs(dr,dh,P)=max(max(max(VIsR))); 
                RVIsmin(dr,dh,P)=min(min(min(VIsR))); 
                [x y]=find(VIsR==RVIs(dr,dh,P)); 
                brhs_VIsR(dr,dh,P)=x(1); 
                brs_VIsR(dr,dh,P)=ceil(y(1)./41); 
                bhs_VIsR(dr,dh,P)=y(1)-41*(brs_VIsR(dr,dh,P)-1); 
                 
                HORVIs(dr,dh,P)=max(max(max(VIsHOR))); 
                HORVIsmin(dr,dh,P)=min(min(min(VIsHOR))); 
                [x y]=find(VIsHOR==HORVIs(dr,dh,P)); 
                brhs_VIsHOR(dr,dh,P)=x(1); 
                brs_VIsHOR(dr,dh,P)=ceil(y(1)./41); 
                bhs_VIsHOR(dr,dh,P)=y(1)-41*(brs_VIsHOR(dr,dh,P)-1); 
  
                HORrVIs(dr,dh,P)=max(max(max(VIsHORr))); 
                HORrVIsmin(dr,dh,P)=min(min(min(VIsHORr))); 
                [x y]=find(VIsHORr==HORrVIs(dr,dh,P)); 
                brhs_VIsHORr(dr,dh,P)=x(1); 
                brs_VIsHORr(dr,dh,P)=ceil(y(1)./41); 
                bhs_VIsHORr(dr,dh,P)=y(1)-41*(brs_VIsHORr(dr,dh,P)-1); 
                 
            fn=['OF1dh',Dr,'dr',Dh,'_',VARstr,'_',VHstr,'_',VCstr,'_',Vtstr,'_Ps',Psstr] 
            eval(['load ',fn allvariables])                 
                 
                HOVIs(dh,dr,P)=max(max(max(VIsHO))); % the dh, dr coordinates are oposit since it is that way in 

the databases 
                HOVIsmin(dh,dr,P)=min(min(min(VIsHO))); % the dh, dr coordinates are oposit since it is that way in 

the databases 
                [x y]=find(VIsHO==HOVIs(dh,dr,P)); 
                brhs_VIsHO(dh,dr,P)=x(1); 
                bhs_VIsHO(dh,dr,P)=ceil(y(1)./41); 
                brs_VIsHO(dh,dr,P)=y(1)-41*(bhs_VIsHO(dh,dr,P)-1); 
                 

  
        end     % dr 
    end         % dh 
end             % P 
  
Ps=[0.1:0.1:0.9] %probability for object to be target 
for P=1:length(Ps) 
Ps=[0.1:0.1:0.9] %probability for object to be target 
Psstr=num2str(Ps(P)*100) 
     
for dh=1:3 
    dtag=dhvector(dh) %[-0.1:-0.1:-4]; % the range of d' for human (second detector) 
    Dh=num2str(-dtag*100); 
     
    for dr=1:3 
        dtagR=drvector(dr) %[-0.1:-0.1:-4]%-2 
        Dr=num2str(-dtagR*100); 
  
                        Vi_Temp=[HOVIs(dr,dh,P),HORrVIs(dr,dh,P),HORVIs(dr,dh,P),RVIs(dr,dh,P)]; 
                        

Vimin_Temp=[HOVIsmin(dr,dh,P),HORrVIsmin(dr,dh,P),HORVIsmin(dr,dh,P),RVIsmin(dr,dh,P)]; 
                        Vi_max(dr,dh,P)=max(Vi_Temp); 
                        Temp_CL=find(Vi_Temp==Vi_max(dr,dh,P)); 
                        BestCL(dr,dh,P)=Temp_CL(1); 
                        Vimin(dr,dh,P)=Vimin_Temp(Temp_CL); 
                        deltaVi(dr,dh,P)=Vi_max(dr,dh,P)-Vimin(dr,dh,P); 
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        end     % dr 
    end         % dh 
end             % P        
         
    toc    
  
    beta_rhHO=-4+(brhs_VIsHO-1).*0.2; 
    beta_rhR=-4+(brhs_VIsR-1).*0.2; 
    beta_rhHORr=-4+(brhs_VIsHORr-1).*0.2; 
    beta_rhHOR=-4+(brhs_VIsHOR-1).*0.2; 
             
    beta_hHO=-4+(bhs_VIsHO-1).*0.2; 
    beta_hR=-4+(bhs_VIsR-1).*0.2; 
    beta_hHORr=-4+(bhs_VIsHORr-1).*0.2; 
    beta_hHOR=-4+(bhs_VIsHOR-1).*0.2; 
  
    beta_rHO=-4+(brs_VIsHO-1).*0.2; 
    beta_rR=-4+(brs_VIsR-1).*0.2; 
    beta_rHORr=-4+(brs_VIsHORr-1).*0.2; 
    beta_rHOR=-4+(brs_VIsHOR-1).*0.2; 
     
        save sensiPs1 
     
    Allbeta_rh(:,:,:,1)=beta_rhHO; 
    Allbeta_rh(:,:,:,2)=beta_rhHORr; 
    Allbeta_rh(:,:,:,3)=beta_rhHOR; 
    Allbeta_rh(:,:,:,4)=beta_rhR; 
     
    Allbeta_h(:,:,:,1)=beta_hHO; 
    Allbeta_h(:,:,:,2)=beta_hHORr; 
    Allbeta_h(:,:,:,3)=beta_hHOR; 
    Allbeta_h(:,:,:,4)=beta_hR; 
  
    Allbeta_r(:,:,:,1)=beta_rHO; 
    Allbeta_r(:,:,:,2)=beta_rHORr; 
    Allbeta_r(:,:,:,3)=beta_rHOR; 
    Allbeta_r(:,:,:,4)=beta_rR; 
  
            save sensiPs2    
             
end         % VAR 
 

 

 

 

sensPs2a.m: 

 
% ploting the objective function for different betas sensitivity analysis 
  
clear 
clc 
close all 
pause(1) 
  
tic 
load sensibeta2 
  



 

 267 

allvariables=[' N  VFA2H VAR Ps dtag dtagR lnbetar lnbetah lnbetarh VH VFA Vc Vt Zsr Znr ZsH ZnH ZsRH 

ZnRH ZsRstar ZnRstar betastar phr pfar phh pfah phrh pfarh phrstar pfarstar tmotor tHh tHrh tFAh tFArh tMh 

tMrh tCRh tCRrh tr PHs VHs PMs VMs FCRs VCRs FFAs VFAs ts tsHORr tsHOR Ndetect VTs VTsHORr 

VTsHOR VIs VIsHORr VIsHOR Nsyshit NsysFA phs pfas Zss Zns dtagsys lnbetasys betasys PHsR VHsR  

FFAsR VFAsR tsR VTsR VIsR PHsHO VHsHO  FFAsHO VFAsHO tsHO VTsHO VIsHO']; 
     
dhvector=[-1:-1:-3]; 
drvector=[-1:-1:-3]; 
  

  
VFA2H=1; % VFA2H=[0.1 1 10];  %[0.05:0.05:1,1:0.1:10,10:1:100]; %VFA/VH aspect ratio range 
for VARcall=1:length(VFA2H) 
    VARstr=num2str(VFA2H(VARcall)*10); 
    if VFA2H(VARcall)==0.333 
        VARstr=num2str(3); 
    end 
  
%Ps=0.1; %probability for object to be target 
%Psstr=num2str(Ps*100); 
VH=50; 
VM=0; 
VCR=0; 
VHstr=num2str(VH); 
VFA=-VH.*VFA2H(VARcall); 
Vc=-2; 
VCstr=num2str(-Vc); 
Vt=-2000/3600; 
Vtstr=num2str(-Vt*3600); 
tr=10; 
  
Ps=[0.1:0.1:0.9] %probability for object to be target 
for P=1:length(Ps) 
Ps=[0.1:0.1:0.9] %probability for object to be target 
Psstr=num2str(Ps(P)*100) 
     

  
for dh=1:3 
    dtag=dhvector(dh) %[-0.1:-0.1:-4]; % the range of d' for human (second detector) 
    Dh=num2str(-dtag*100); 
     
    for dr=1:3 
        dtagR=drvector(dr) %[-0.1:-0.1:-4]%-2 
        Dr=num2str(-dtagR*100); 
  
            fn=['OF1dh',Dh,'dr',Dr,'_',VARstr,'_',VHstr,'_',VCstr,'_',Vtstr,'_Ps',Psstr] 
            eval(['load ',fn allvariables]) 
             
            ViAll(:,:,:,2)=VIsHORr; 
            ViAll(:,:,:,3)=VIsHOR; 
            ViAll(:,:,:,4)=VIsR; 
             
            fn=['OF1dh',Dr,'dr',Dh,'_',VARstr,'_',VHstr,'_',VCstr,'_',Vtstr,'_Ps',Psstr] 
            eval(['load ',fn allvariables]) 
            ViAll(:,:,:,1)=VIsHO;      
             
            fn=['OF1dh',Dh,'dr',Dr,'_',VARstr,'_',VHstr,'_',VCstr,'_',Vtstr,'_Ps',Psstr] 
            eval(['load ',fn allvariables])             
             
            curr_CL=BestCL(dr,dh,P) 
            curr_maxVi= Vi_max(dr,dh,P) 
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            Brh=Allbeta_rh(dr,dh,P,curr_CL) 
            Bh=Allbeta_h(dr,dh,P,curr_CL) 
            Br=Allbeta_r(dr,dh,P,curr_CL) 
             
            Brh_pos=round(((Brh+4)./0.2)+1) 
            Bh_pos=round(((Bh+4)./0.2)+1) 
            Br_pos=round(((Br+4)./0.2)+1) 
             
            brh_HORr=Brh_pos; 
            brh_HOR=Brh_pos; 
            brh_HO=Brh_pos; 
             
            bh_HORr=Bh_pos; 
            bh_HOR=Bh_pos; 
            bh_HO=Bh_pos; 
  
            br_HORr=Br_pos; 
            br_HOR=Br_pos; 
            br_HO=Br_pos; 
            
            if curr_CL==4 
                maxHORr=max(max(VIsHORr(:,:,Br_pos))); 
                [x y]=find(VIsHORr(:,:,Br_pos)==maxHORr); 
                brh_HORr=x(1); 
                bh_HORr=y(1); 
  
                maxHOR=max(max(VIsHOR(:,:,Br_pos))); 
                [x y]=find(VIsHOR(:,:,Br_pos)==maxHOR); 
                brh_HOR=x(1); 
                bh_HOR=y(1); 
                 
                fn=['OF1dh',Dr,'dr',Dh,'_',VARstr,'_',VHstr,'_',VCstr,'_',Vtstr,'_Ps',Psstr] 
                eval(['load ',fn allvariables]) 
                 
                for m=1:41 
                    tmp_VIsHO(m)=VIsHO(1,1,m); 
                end 
                 
                maxHO=max(tmp_VIsHO); 
                y=find(tmp_VIsHO==maxHO); 
                brh_HO=1; 
                bh_HO=y(1); 
            end 
  
            for Psens=1:9 
                Psens_str=num2str(Psens*10); 
                fn=['OF1dh',Dh,'dr',Dr,'_',VARstr,'_',VHstr,'_',VCstr,'_',Vtstr,'_Ps',Psens_str] 
                eval(['load ',fn allvariables]) 
                 
                AllCL(2,Psens)=VIsHORr(brh_HORr,bh_HORr,Br_pos); 
                AllCL(3,Psens)=VIsHOR(brh_HOR,bh_HOR,Br_pos); 
                AllCL(4,Psens)=VIsR(Brh_pos,Bh_pos,Br_pos); 
             
                fn=['OF1dh',Dr,'dr',Dh,'_',VARstr,'_',VHstr,'_',VCstr,'_',Vtstr,'_Ps',Psens_str] 
                eval(['load ',fn allvariables]) 
                AllCL(1,Psens)=VIsHO(brh_HO,Br_pos,bh_HO); 
            end 
                 

                         
           Ps=[0.1:0.1:0.9];  %probability for object to be target 
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            figure(P) 
            subplot(3,3,dr+(dh-

1).*3);plot(Ps,AllCL(1,:),'b',Ps,AllCL(2,:),'c',Ps,AllCL(3,:),'g',Ps,AllCL(4,:),'r',Ps(P),curr_maxVi,'ok') 
            titleline=['V_I_s   P_s= ',num2str(Ps(P)),' d_r=',Dr,' d_h=',Dh];             
            title(titleline) 
            grid on 
  
            pause(1) 
                        
            end     % dr 
    end         % dh 
    toc 
end             % P 
  
end         % VAR 
  
save sensiPs3 
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Appendix XIII: Analysis of rh 
 

Analysis of rh for objects that were marked by the robot. Here we can compute pHit and pFA 

for the human, and accordingly compute rh. The independent variables will be level of 

cooperation (all, except HO), robot performance, and rewards (combined over all levels of 

complexity and blocks). 

The likelihood ratio parameter rh is a function of the hit and false alarm probabilities 

(chapter 4). The probabilities are transferred into distribution standard deviation values (Z). 

When the FA probability is zero, its theoretical Z value is -∞. In the experiment, only a few 

participants avoided marking any robot false alarms, resulting in a FA probability of 0. Since 

these results were achieved due to the finite number of robot FA and it is impossible to 

statistically analyze results with infinite values, for those few cases we determine the Z value 

to be -4 (in standard deviation units). The calculated FA probability for that value is 

0.0000317, which can be regarded as zero for our purposes. 

When Ln() = 0 (or  = 1) the participant consider to be an ideal observer (Cheng et al., 

2001), for positive Ln() the participant consider to be conservative and for negative Ln() 

the participant consider to be liberal. 

Table A-26 shows the statistical output of the univariate tests of significance performed 

on the experiment results.  

 
Table A-26: The univariate tests of significance results. 

 DoF MS F p 

Collaboration 1, 88 40.104 9.235 0.003 

Rewards 1, 88 21.615 4.978 0.028 

Robot quality 1, 88 13.895 3.200 N.S. 

Collaboration*Rewards 1, 88 4.608 1.061 N.S. 

Collaboration*Robot quality 1, 88 11.793 2.716 N.S. 

Rewards*Robot quality 1, 88 37.417 8.617 0.004 

Collaboration*Rewards*Robot quality 1, 88 2.290 0.527 N.S. 

 

The logarithm of the likelihood ratio, rh, decreased with the increase in the automation 

level (Figure A-100). Both the probability of a human hit and false alarm of objects marked 

by the robot decreased with the increase in the automation level, but the probability of false 

alarm decreased more drastically. It seems that the human operators reduced their intervention 

when the system automation level was high (HO-R), and that their behavior was liberal. For 

low automation level the human operators performance is consider to be conservative. 
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Figure A-100: The human likelihood ratio for objects marked by the robot as a function of the automation 

level. 

 

The reward system had a significant effect on participant decision, ln(rh). The values of 

the logarithm of the likelihood ratio were higher in the maximized hit reward system than in 

the minimized FA reward system (Figure A-101). It could be that the participants were simply 

better able to confirm the robot hits as opposed to eliminate its false alarms. In a similar 

fashion, an increase in participant sensitivity was noticed when aiming for target detection 

than for false alarm elimination. The participants behavior were liberal for the minimized FA 

reward system and conservative for the maximized hit reward system. 
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Figure A-101: The human likelihood ratio for objects marked by the robot as a function of the reward 

system. 

 

Figure A-102 shows the influence of robot quality on human likelihood ratio. The human 

likelihood ratio for objects marked by the robot increases with the increase in robot quality. 

Although it was found to be marginally significant (p<.1), it seems that the participant’s 

awareness of the robot quality influence the likelihood ratio value due to their reliance on the 
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robotic system. The participants behavior were conservative for low robot quality and liberal 

for nigh robot quality. 
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Figure A-102: The human likelihood ratio for objects marked by the robot as a function of robot quality. 

 

The effect of robot quality-reward system interaction (Figure A-103) was significant. In 

the maximum hit reward system human likelihood ratio increased with the increase in robot 

quality. In the minimum FA reward system, robot quality had a little effect on human 

likelihood ratio. 
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Figure A-103: The human likelihood ratio for objects marked by the robot as a function of the reward 

system and robot quality. 

 



 

 



 

 

 תקציר
 

רובוטים אוטונומיים הינם מערכות המבצעות משימות, מקבלות החלטות ופועלות ללא התערבות אדם. 

הדורשים דיוק לאורך זמן ותפוקה גבוהה בתנאים סטטיים ומוגדרים היטב. אך  םהן יעילות ביותר ביישומי

שאינם  םמערכות אלו חסרות יכולת לפעול בסביבות בלתי מובנות. סביבות לא מובנות מאופיינות באירועי

ובלתי צפויים. במצב הנוכחי המערכות האוטונומיות עדיין לא  םמוגדרים כהלכה, אינם ידועים, דינאמיי

נות פתרון מעשי לרוב היישומים ב"עולם האמיתי". בנוסף לכך, הבעיות הינן קשות יותר ביישומים נות

הכוללים אובייקטים טבעיים בשל השונות הרבה בין האובייקטים ומאחר ומיקומם אינו ידוע מראש. כל אלו 

במערכת רובוטית  מכבידים על המערכת הרובוטית והופכים אותה לקשה ויקרה לפיתוח. שילוב מפעיל אנושי

 םושיעור זיהוי המטרות, להפחית את מורכבותה ולאפשר למערכת לטפל באירועי היכול להגביר את מהימנות

 בלתי ידועים ובלתי צפויים שמערכות אוטונומיות אינן כשירות להם.

רובוט למשימת זיהוי -עבודה זו מתמקדת בהיבטים של רמות שיתוף הפעולה במערכות משולבות אדם

ות בסביבות בלתי מובנות. אנו מציגים שיטה לקביעת רמת שיתוף הפעולה המיטבית על פי משתני מטר

 המערכת, הסביבה והמשימה ואת חיזוי והערכת ביצועי המערכת.

ארבע רמות שונות לשיתוף פעולה בין אדם לרובוט למשימות זיהוי מטרות הוגדרו, נבדקו והוערכו. 

מות זיהוי מטרה והותאמו לרמות אוטומציה שונות מידני לחלוטין ועד הרמות השונות יועדו במיוחד למשי

 אוטונומי. רמות שיתוף הפעולה ניתנות להתאמה לאדם או לרובוט בכדי לשפר את ביצועי המערכת.

רובוט המאפשרת את חישוב הערך המצופה של -פותחה פונקצית מטרה לזיהוי מטרות במערכות אדם

אדם, הרובוט, הסביבה והמשימה. פונקצית המטרה כוללת עלויות זמן  ותפעול ביצועי המערכת בהינתן ערכי ה

אשר חשובים להערכה ואופטימיזציה של ביצועי המערכת. פונקצית המטרה מכמתת מספר רב של משתנים 

באמצעות סיכום משוקלל של מדדי הביצוע ומאפשרת לחזות את ביצועי המערכת ורמת שיתוף הפעולה ולעזור 

 .תלמשימה ייעודי תרכת אופטימאליבתכנון מע

פותחה שיטה לקביעת רמת שיתוף הפעולה המיטבית בהתאם למשתני האדם, הרובוט, המשימה 

והסביבה. יושמה אנליזה נומרית של פונקצית המטרה בשילוב עם תאוריית זיהוי אותות, לרמות שיתוף 

ל המשתנים החשובים. פיתוחים אלו הפעולה שהוגדרו, ובוצעו ניתוחי רגישות על הערכים האופטימלים ש

 רובוט למשימה ולפיתוח יעיל של מערכת דומה.-מספקים את הבסיס להתאמה של מערכת משולבת אדם

רובוט לזיהוי מטרות בסביבות בילתי -המחקר הנוכחי מספק כלים לפיתוח של מערכת משולבת אדם

שפרו את חוסנה וביצועיה. מפתחי מערכות מובנות אשר יפשטו את המערכת הרובוטית, יקטינו את העלויות, וי

יכולים לבצע שימוש בפונקצית המטרה בכדי לנבא את ביצועי המערכת שבפיתוח ולקבוע את רמות שיתוף 

 הפעולה המיטביות מלכתחילה. ניתן גם לפתח את המערכת כך שתותאם למשימות או סביבות ייעודיות.

 

 שיטות

 נושאי המחקר שפותחו

פיתוחים עצמאיים ובעלי זיקה הדדית הקשורים לשיתוף פעולה בין אדם לרובוט המחקר מכיל שלושה 

במשימות זיהוי מטרות: רמות שיתוף פעולה בין אדם לרובוט, פונקציית מטרה להערכת ביצועי המערכת 

 ושיטה לקביעת רמת שיתוף הפעולה המיטבית.

לרובוט המותאמות למשימות הפיתוח הראשון כולל הגדרה של ארבע רמות שיתוף פעולה בין אדם  

ומתאימות לטווח רחב של  Sheridanזיהוי מטרה. רמות שיתוף הפעולה מבוססות על סולם האוטונומיות של 

מידני ועד אוטונומי לחלוטין בהתאמה. תהליך זיהוי  R -ו H ,HR ,HOR -רמות אוטומציה. הן הוגדרו כ



 

 

רות ובהמשך האדם פועל לפי החלטות הזיהוי המטרות מתבצע בשני שלבים: תחילה הרובוט מזהה את המט

 של הרובוט.

פונקציית המטרה מתוכננת לאפשר קביעה של הערכים המצופים של ביצוע המשימה, בהינתן משתני  

המערכת, המשימה והסביבה. ניתן לסווג את פרמטרי פונקציית המטרה לארבע קבוצות: אדם, רובוט, סביבה 

(, כישלון false alarm(, זיהוי מוטעה )hitמישה חלקים: זיהוי נכון )ומשימה. פונקציית המטרה כוללת ח

(miss ,)correct rejection (false-false ועלויות התפעול. חלק עלויות התפעול כולל עלויות הקשורות לזמן )

 הביצוע ועלויות הקשורות לפעולות הנובעות מעצם הזיהוי.

ת למערכת ייעודית, למידול ולסימולציה של פותחה שיטה לקביעת רמת שיתוף הפעולה המיטבי

ביצועיה. על מנת לתאר את הקשר בין המשתנים השונים בפונקצית המטרה בוצעה התאמה של תאוריית גילוי 

אותות, אשר הקטינה את מספר המשתנים הבילתי תלויים על ידי שיוך מדדי הביצוע של האדם והרובוט )כגון 

 ם )כגון רגישות ואיכות קביעת ערך סף(.שיעורי זיהוי( למאפיינים הבסיסיי

 

 אנליזה נומרית

. האנליזה הנומרית בחנה ™Matlab 7תוכנת  תבאמצעו PCהאנליזה הנומרית מומשה על מחשב אישי 

את השפעת המאפיינים הבסיסיים של האדם והרובוט ורמות שיתוף הפעולה בפונקצית המטרה. היא קבעה את 

והרובוט עבור משתני משימה שונים, ואת רמת שיתוף הפעולה המיטבית  המאפיינים האופטימליים של האדם

עבור משתני אדם, רובוט ומשימה שונים. בנוסף בוצעו ניתוחי רגישות על הערכים האופטימליים ונמדדה 

 השפעתם על רמת שיתוף הפעולה המיטבית וביצועי המערכת.

 

 ניסוי

ימת זיהוי מטרות ייעודית. הניסוי כלל בוצע ניסוי להערכת השפעת רמות שיתוף הפעולה במש

אשר הציג תמונות של מלונים בשדה אשר צולמו במצלמת וידאו המותקנת על רובוט לקטיף  רסימולאטו

סטודנטים ללימודי הסמכה השתתפו בניסוי. הסטודנטים הוקצו באופן  120מלונים תוך כדי מעבר בשדה. 

בכל קבוצה הוגדרו אחד משני סוגי משקולות פונקציית  סטודנטים.  12קבוצות, בכל קבוצה  10 -אקראי ל

המטרה, אחת משתי רמות איכות של הרובוט ואחת משלוש רמות שיתוף הפעולה בהן מעורב אדם. התמונות 

סווגו לשלוש קבוצות מורכבות על ידי פנל מומחים. התמונות חולקו לשלושה בלוקים כאשר בכל בלוק לכל 

ה אקראי. הסטודנטים נתבקשו לזהות את המלונים שבתמונות. במהלך משתתף סדר הופעת התמונות הי

רשמה את פעולות האדם, האובייקטים שסומנו, וחתימת הזמן של כל אירוע.  רהניסוי מערכת הסימולאטו

 מדדי הביצוע חושבו מהנתונים הגולמיים שנרשמו.

הפעולה, איכות הרובוט  ניתוחים סטטיסטיים בחנו את השפעת הבלוק, מורכבות התמונה, רמת שיתוף

ומשקולות פונקציית המטרה על ביצועי המערכת והאדם. הניתוחים הסטטיסטיים בוצעו בתוכנת 

Statistica™ 7   :וכללוrepeated measures analysis of variance ,Fisher LSD post-hoc 

comparisonו ,- general linear model of univariate tests of significance. 

 



 

 

 תוצאות

 אנליזה נומרית

אובייקט שונים, רגישויות אדם ורובוט, ויחסי תגמול שונים -האנליזה הנומרית בוצעה עבור יחסי מטרה

( חושבו. פונקצית  h, βrβ,rhβ ) םהמתבטאים במשקולות השונים בפונקצית המטרה. ערכי הסף האופטימאליי

פעול ועבור מקרים ללא חלק זה. פונקצית המטרה המטרה נותחה עבור מקרים הכוללים את חלק עלויות הת

ללא חלק עלויות התפעול מהווה סף עליון של ביצועי המערכת ומייצגת מקרים בהם עלויות התפעול אינן 

 קיימות והשפעתן על רמת שיתוף הפעולה המיטבית.

נו ערכי הי  Zבאנליזה הנומרית כל רמת שיתוף פעולה מיוצגת כמשטח במרחב הפרמטרים, כאשר ציר 

פונקצית המטרה. חיתוך כל המשטחים יוצר את משטח הערכים המקסימליים של פונקצית המטרה עבור כל 

שילוב של פרמטרים. רמת שיתוף הפעולה המשיגה את הערך הגבוה ביותר בשילוב מסוים מוגדרת כרמת 

 שיתוף הפעולה המיטבית עבור השילוב המסוים.

דם, הרובוט והסביבה מאחר והם יכולים להשתנות במהלך ביצוע ניתוחי הרגישות בוצעו על משתני הא

המשימה וערכם המדויק אינו ידוע. השפעת השינוי בערכים האופטימלים של הפרמטרים על ערך פונקציית 

המטרה ורמת השיתוף המיטבית נותחה על מנת לשקף מקרים בהם ערכי האדם, הרובוט או הסביבה סטו 

 .םמערכיהם האופטימאליי

אובייקט גדל, המערכת פחות מושפעת מזיהויים -ליזה הנומרית מראה כי כאשר היחס מטרההאנ

מוטעים ולכן שיעורי הזיהוי האמיתי והמוטעה עולים, ערכי הסף יורדים, עלויות התפעול וערך פונקציית 

דם המטרה עולים. נמצא כי בכל רמות שיתוף הפעולה ערכי פונקציית המטרה עלו עם עלייה ברגישות הא

אובייקט -מראות כי ביצועי המערכת עבור ערכי יחס מטרה HR -ו HORוהרובוט. השוואה בין רמות השיתוף 

לעולם אינה רמת השיתוף המיטבית  H. רמת שיתוף מסוג HRנמוכים ורגישות רובוט נמוכה, טובים יותר עבור 

ת ביחס לרמות שיתוף פעולה במקרים האופטימלים. כתוצאה משיעורי זיהוי נמוכים ועלויות תפעול גבוהו

אחרות, שיתוף בין אדם לרובוט במשימות זיהוי מטרות ישפר תמיד את ביצועי המערכת בהשוואה לעבודה 

( במקרים אופטימלים. הממצאים מראים כי כאשר רגישות הרובוט גבוהה משל האדם רמת Hבצורה ידנית )

המיטבית, הרגישות וערך הסף של המערכת  . כאשר עובדים ברמת שיתוף הפעולהRהשיתוף המיטבית הינה 

אובייקט. בנוסף, נמצא כי רגישות המערכת הכוללת אינה קטנה מזו של -עם הגדלת יחס מטרה םהכוללת קטני

 הרובוט.

לרמת שיתוף אחת מאחר וההבדל  HR -ו HORהסרה של עלויות התפעול מפונקציית המטרה יאחד את 

ציית המטרה אשר נמצאים בחלק עלויות התפעול. בנוסף, ערך פונקצית מבוטא במשתני הזמן של פונק ןביניה

 אובייקט.-המטרה יעלה ורמת השיתוף המיטבית תהיה הרמה המשותפת לכל מרחב הרגישויות ויחסי מטרה

עבור רמת השיתוף המיטבית במקרים האופטימליים  - rhβ -ו,h, βrβ בניתוח הרגישויות של ערכי הסף 

אובייקט -ערכי הסף מקטין את ערך פונקציית המטרה. ניתוח רגישויות על יחס מטרהנמצא כי כל שינוי ב

ורגישויות האדם והרובוט הראה סטיות חיוביות קטנות מהערכים האופטימליים המגדילים את ערך פונקציית 

 המטרה עבור רמת השיתוף המיטבית.

שנות את רמת שיתוף הפעולה ניתוחי הרגישויות הראו כי סטיות מהערכים האופטימליים עלולים ל

המיטבית מאחת לאחרת. לכל משתנה שנבדק קיימת חוקיות שונה במעבר מרמה לרמה אך הסטיות בערכי 

 .Hרגישויות האדם והרובוט וערכי הסף לעולם יגרמו לרמת השיתוף המיטבית להיות 

 

 ניסוי



 

 

עה מובהקת על שיעורי תוצאות הניסוי מראות כי לשיטת התגמול )משקלי פונקציית המטרה( יש השפ

הזיהוי האמיתי והזיהוי המוטעה של המערכת הכוללת וערך פונקציית המטרה. שיעור הזיהוי האמיתי למערכת 

עבור משתתפים אשר תוגמלו על זיהוי נכון היה גבוה בהשוואה למשתתפים שתוגמלו עבור שיעור נמוך של 

עבור נבחנים שתוגמלו עבור שיעור זיהוי נמוך, היה זיהוי מוטעה. באופן דומה שיעור הזיהוי המוטעה למערכת 

 נמוך משל האחרים. שיטת התגמול לא השפיעה על זמן ביצוע המשימה.

לאיכות ביצועי הרובוט היתה השפעה מובהקת על שיעור הזיהוי האמיתי של המערכת ועל ערך פונקציית 

נה את שיעור הזיהוי המוטעה של המטרה. הגדלת איכות הרובוט הגדילה את ערך פונקציית המטרה והקטי

יחד עם איכות רובוט נמוכה הגדילה באופן  HORהמערכת. אולם, רמת אוטונומיה גבוהה שברמת שיתוף 

. עבור איכות רובוט נמוכה שינוי רמת HOמובהק את מספר הזיהויים המוטעים בהשוואה לרמה הידנית 

, תופעה הפוכה התקבלה עבור איכות רובוט גבוהה. שיתוף הפעולה לאוטונומית יותר גרמה להגדלת זמן הזיהוי

עלייה במורכבות התמונה הביאה לירידה בשיעור הזיהוי האמיתי של המערכת ולעליה במספר הזיהויים 

 המוטעים וזמן הזיהוי.

נמדדה גם השפעה של שיטת התגמול על מדדי ביצוע של האדם. רמות הזיהוי האמיתי של האדם עבור 

על ידי הרובוט ואובייקטים שלא סומנו היו גבוהות עבור משתתפים שתוגמלו על זיהוי נכון שסומנו  םאובייקטי

מאשר לאחרים. מסתמן כי המשתתפים הפנימו את שיטת התגמול והיפנו את תשומת ליבם במשימה בהתאם 

דם לכך. באופן דומה נמצא כי לאיכות הרובוט יש השפעה ניכרת על רמות הזיהוי האמיתי והמוטעה של הא

והמשתתפים הבחינו באיכות הרובוט במהלך הניסוי והסתמכו על החלטות הרובוט כאשר איכותו היתה 

 גבוהה.

למורכבות התמונה היתה השפעה מובהקת על ביצועי האדם באובייקטים שלא סומנו על ידי הרובוט. 

א סומנו על ידי עלייה במורכבות התמונה הקטינה את שיעור הזיהוי האמיתי של האדם על אובייקטים של

 הרובוט והגדילה את מספר הזיהויים המוטעים.

נמצאה השפעה מובהקת של רמות שתוף הפעולה הכוללות אדם ורובוט לבין ביצועי האדם על 

( הגדילה את שיעור HOR -ל HR -אובייקטים שסומנו על ידי הרובוט. הגדלת רמת האוטומציה )מעבר מ

ובייקטים אשר סומנו על ידי הרובוט. ניראה כי עבור רמות הזיהוי האמיתי והמוטעה של האדם על א

ברמת האוטומציה עבור  האוטומציה גבוהות האדם נוטה לקבל את החלטות הרובוט. בנוסף נמצא כי העליי

משתתפים עם רובוט באיכות גבוהה, הקטינה את רגישות האדם. ממצא זה יכול להצביע על כך שהעלייה 

 שליטת האדם ורגישותו.ברמת האוטומציה מקטינה את 

נמצא כי עלייה במספר הבלוקים בניסוי שיפרה באופן מובהק את ביצועי האדם והמערכת הכוללת. 

מאחר וביצועי הרובוט היו קבועים לאורך כל הניסוי בכל הקבוצות, ניראה כי התקיים אפקט למידה במהלך 

 הניסוי.

 

 סיכום

מות שיתוף פעולה שונות על ביצועיה של מערכת בוצעה עבודה מקיפה לניתוח והערכת ההשפעה של ר

רובוט למשימות זיהוי מטרה. העבודה כללה פיתוח של רמות שיתוף ייעודיות, פונקציית מטרה -משותפת אדם

רמת שיתוף הפעולה המיטבית. פונקציית המטרה נחקרה  תלכימות ביצועי המערכת הכוללת ושיטה לקביע

 באמצעות אנליזה נומרית וניסוי.

אות האנליזה הנומרית מצביעות על כך כי רמת שיתוף הפעולה המיטבית, הערכים האופטימליים תוצ

של מדדי הביצוע וביצועי המערכת המיטביים תלויים במשתני המשימה, האדם, הרובוט והסביבה ובמאפייני 



 

 

יצועי המערכת. מאחר ומספר המשתנים רב, ובנוסף קיימת אינטראקציה בין המשתנים השונים, חיזוי ב

 המערכת והפיתרון האופטימלי אינו ברור, אך ניתן להעריכו באמצעות חקירת פונקציית המטרה.

את ממצאי ניתוחי הרגישות ניתן לנצל לפיתוח והפעלה של מערכות רובוטיות משולבות אדם בתנאים 

 .םם דינאמייומציאותיים בהם הערכים של המשתנים אינם ידועים, הדיוק נמוך או במצב שהמשתני םדינאמיי

במהלך הפיתוח הוקדשה חשיבה רבה לכימות המשתנים הבלתי תלויים והתוצאות ולתיקוף הממצאים 

התיאורטיים באמצעות ניסוי. פונקציית המטרה פותחה כך שתאפשר השוואה של מערכות, סביבות, ומשימות 

 שונות.

י המערכת באופן לא מקוון יתרונות השיטה היא ביכולת לחקור את השפעת המשתנים השונים על ביצוע

ואפילו בהעדר מערכת ממשית. מפתחי מערכות יכולים לאמץ שיטות אלו לפיתוח והתאמה של מערכות 

בילתי מובנות. בנוסף, השיטה יכולה לשמש לניתוח  תרובוטיות משולבות אדם למשימות זיהוי מטרות בסביבו

 ביצועי המערכת והאדם באופן מקוון.

 

 תרומה מדעית

 העיקריות של מחקר זה הן: התרומות

  הגדרה והערכה של רמות שיתוף פעולה בין אדם לרובוט למשימת זיהוי מטרות. רמות השיתוף

אשר הותאמו במיוחד למשימות זיהוי מטרות. רמת  Sheridanמבוססות על סולם עשר הדרגות של 

ות שיתוף הפעולה השיתוף ניתנת להתאמה לאדם או לרובוט לשם שיפור ביצועי המערכת הכוללת. רמ

 מודלו מתמטית וכומתה השפעתן על פונקציית המטרה.

  פונקציית מטרה למערכת רובוטית משולבת אדם למשימת זיהוי מטרות מאפשרת חישוב ביצועי

המערכת בהינתן משתני האדם, הרובוט המשימה והסביבה. ניתן להתאים את פונקציית המטרה 

צועי המערכת ואת רמת שיתוף הפעולה הרצויה. פונקציית למשימות או סביבות שונות ולחזות את בי

 המטרה כוללת עלויות זמן ועלויות תפעול אשר חשובים לאופטימיזציה של ביצועי המערכת.

  .פותחה שיטה לקביעת רמת השיתוף המיטבית על פי משתני האדם, הרובוט, הסביבה והמשימה

גילוי אותות. השיטה מאפשרת  תעם תיאוריהשיטה כוללת אנליזה נומרית של פונקציית המטרה יחד 

 את שיפור ביצועי המערכת והתאמת רמת שיתוף הפעולה הטובה ביותר לכל מקרה.



 

 



 

 

 

 

 

 

 

 

 

 העבודה נעשתה בהדרכתם של פרופ' יעל אידן ופרופ' יואכים מאיר

 

 

 

 

 המחלקה להנדסת תעשיה וניהול

 

 

 הפקולטה למדעי ההנדסה



 

 



 

 

 

 

זיהוי מטרות רובוט ל –שיתוף פעולה אדם 

 בסביבות בילתי מובנות

 

 

 

 מחקר לשם מילוי חלקי של הדרישות לקבלת

 "דוקטורט לפילוסופיה"

 

 

 

 מאת

 אביטל  בכר

 

 גוריון בנגב-הוגש לסינאט אוניברסיטת בן

 

 

 __________________ אישור מנחה      פרופ' יעל אידן

 __________________ אישור מנחה      פרופ' יואכים מאיר

 __________________  אישור דיקן בית הספר ללימודי מחקר מתקדמים

 

 2006 תשס"ו 

 

 שבע-באר



 

 



 

 

 

 

רובוט לזיהוי מטרות  –שיתוף פעולה אדם 

 בסביבות בילתי מובנות

 

 

 

 

 מחקר לשם מילוי חלקי של הדרישות לקבלת

 "דוקטורט לפילוסופיה"

 

 

 

 מאת

 אביטל בכר

 

 בנגב גוריון-הוגש לסנאט אוניברסיטת בן

 

 

 

 

 2006 תשס"ו 

 

 

 שבע-באר


