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Abstract

Autonomous robots are systems that can perform tasks, make decisions, and act in real-
time without human intervention. They are best fit for applications that require repeatable
accuracies and high yield under stable conditions. However, they lack the capability to
respond to ill-defined, unknown, changing, and unpredicted events such as exist in
unstructured environments, and the current status of autonomous robots still falls short of
implementing solutions to most real-world applications. Furthermore, the problems are
enhanced in applications dealing with natural objects since the objects also have high degrees
of variability, and their positions and orientations are not known and cannot be determined a
priori. This complicates the robotic system and results in a system that is difficult and
expensive to develop. Integrating a human operator into a robotic system can help increase
target recognition rate and reliability, reduce the complexity of the robotic system, and handle
unknown and unpredictable events that autonomous systems are incompetent to deal with.

This work focuses on aspects of collaboration levels of an integrated human-robot system
for target recognition tasks in unstructured environments. We present a methodology to
determine the best collaboration level based on the system, the environment, and the task
parameters, and the evaluation and prediction of its performance.

Four human-robot collaboration levels for target recognition tasks were defined, tested,
and evaluated. The collaboration levels were designed specifically for target recognition tasks
and adjusted to an extensive range of automation, from manual to fully autonomous. The
collaboration level can be custom fitted to the human or the robot to increase system
performance.

An objective function for target recognition in human-robot systems was developed to
allow computation of the expected value of system performance given the human, robot,
environmental and task parameters. The objective function includes operational and time
costs, both of which are important in the evaluation and optimization of system performance.
The objective function quantifies the multitude of influencing parameters through a weighted
sum of performance measures, and enables the prediction of system performance and the
desirable level of collaboration. It can also be applied to help design optimal systems for
specific tasks.

A methodology for determining the best collaboration level based on the human, robot,
task, and environmental variables was developed. Numerical computations of the developed
objective function combined with signal detection theory were applied for the defined

Vil



collaboration levels, and a sensitivity analysis of the influencing variables was performed on
the optimum values. These developments provide the basis for adjusting the combined
human-robot system to each task and environment and aid in effective system design.

This research provides tools to develop an integrated human-robot system for target
recognition in unstructured environments. This will help simplify the robotic system, reduce
its costs and improve its performance and robustness. System designers can use the objective
function to predict the performance of a developed system and to determine the best-fit
collaboration levels a priori. The system can be designed to fit a specific task and

environment.

Methodology
Research developments

The research consists of three interrelated and independent developments related to
human-robot cooperation in target recognition tasks: definition of human-robot collaboration
levels; development of an objective function to evaluate performance; and, a methodology to
determine the best collaboration level.

The first development includes the definition of four human-robot collaboration levels
fitted for target recognition tasks in unstructured environments. The collaboration levels are
based on the four degrees of autonomy from Sheridan’s scale of “action selection and
automation of decision.”" They are compatible with an extensive range of automation, they are
denoted as H, HR, HOR and R from manual to fully autonomous, respectively. The
recognition process is performed in two sequential steps; first the robot detects the targets,
then the human acts on these detections.

The system objective function is designed to enable determination of the expected value
of task performance, given the parameters of the system, the task, and the environment. The
objective function parameters can be divided into four major categories - human, robot,
environment, and task parameters. The objective function includes five parts: correct
detection (hit); false alarm (FA); miss; correct rejection, and operational cost. The operational
cost variable includes costs related to operational time and costs of actions that should be
performed on the detected objects, either hit or false alarm (e.g., picking detected melons,
landmine neutralization).

A methodology was developed to determine the best collaboration level for the design of
a specific system and to use in modeling and simulating the system’s performance. To
describe the relations between the objective function parameters, we utilized a modified

version of signal detection theory (SDT). This reduced the number of independent variables
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by relating human and robot performance measures (e.g., hit and false alarm probabilities) to

their basic characteristics (e.g., sensitivity and cutoff point decisions).

Numerical computations

Numerical computations were implemented on a personal computer with Matlab 7™
software. The numerical analysis examines the influence of the human and robot
characteristics (e.g., sensitivity) and the effect of different human-robot collaboration levels
on the system objective function. It determines the optimal human and robot characteristics
for different task characteristics, and the best collaboration level for different human, robot,
and task characteristics. In addition, a sensitivity analysis was performed on the optimal
characteristics and their influences on the best collaboration level and the system objective

function value.

Experiment
An experimental system was designed to test and examine the influence of different

human-robot collaboration levels in a specific target recognition task. The experimental
system consisted of a simulator using images taken from a melon field by a video camera
mounted on a robotic melon harvester moving along a melon row, and the participants were
asked to identify melons in the images. 120 undergraduate students participated in the
experiment. The participants were divided randomly into 10 groups, 12 students per group,
each of which was assigned one of two objective function weights (parameters), one of two
different robot qualities (high and low), and one of three possible collaboration levels. The
images were viewed by a panel of experts and classified according to three levels of
complexity and arranged in three statistical blocks. During the experiment the human
operator’s activities, the objects marked, and the time signature of each action were recorded.
Performance measures were calculated from the recorded raw data.

A statistical analysis was performed on the data. Analyses examined the influence of the
block, the image complexity, the reward, the level of cooperation, and the robot quality on
both system and human performances. Statistical analyses, including repeated measures
analysis of variance, a Fisher LSD post-hoc comparison, and a general linear model of
univariate tests of significance, were all performed with Statistica™ 7 on a personal

computer.



Results

Numerical analysis

The numerical analysis was executed for several target probability conditions, Ps, human
and robot sensitivities, d'h and d'r, and payoff value ratios, Var. The optimal likelihood ratios,
Br, Pn and P were determined. The system objective function was analyzed for cases
including and excluding the operational cost variable. The objective function excluding the
operational cost serves as the upper boundary of system performance and demonstrates the
effectiveness of the best collaboration level.

In the analysis each collaboration level is represented as a plane in the parameter’s space,
where the Z-axis is the objective function value. The intersection of all collaboration level
planes creates a plane of the highest objective function value for each parameter combination.
The collaboration level that achieved the highest score in each parameter combination is
defined as the best collaboration for those combinations and can be presented in a domination
map.

Sensitivity analysis was performed for the human, robot, and environmental independent
parameters since these can vary during task performance and their precise values are
unknown. The influence of the changes in the optimal values of the parameters on the
objective function score and the best collaboration level were analyzed to reflect cases in
which the human and robot performances were in optimum proximity or in which the
environment parameters diverged slightly from their expected or calculated values. The
parameters analyzed were the human likelihood ratio, Brm and PBn, human sensitivity, d'n, the
robot likelihood ratio, Br, robot sensitivity, d'r, and the target probability, Ps. The payoff ratio,
Var, the time cost, the operational cost, and the hit rewards were not sensitivity analyzed
since the parameters are fixed during the entire task.

The numerical analysis indicates that when target probability increases the system is less
influenced by false alarms, and therefore, the probabilities of hits and false alarms increased,
the likelihood ratios Br, Bn, and Prn decreased, the operational cost increased, and the objective
function score increased. For all collaboration levels the highest objective function score
increases with the increase in human and robot sensitivities. A comparison between the HR
and the HOR collaboration levels showed that the HR collaboration level performs better
when the target probability is low and the robot sensitivity is low for the objective function
that includes operational cost. The H collaboration level is never the best collaboration level
probably due to its high operational cost and low hit rate relative to the other collaboration
levels. Thus, collaboration of human and robot in target recognition tasks will always improve

the optimal performance of a single human detector. This finding indicates that when robot
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sensitivities are higher than human sensitivities the best collaboration level is R. Analysis of
the overall system sensitivity showed that when working in the best collaboration level, the
system likelihood ratio and the system sensitivity both decrease with the increase in the target
probability. Moreover, the system sensitivity never decreases beneath the robot sensitivity.

Elimination of the operational cost from the objective function unites HR and HOR into
one collaboration level, since the only difference between the HR and the HOR collaboration
levels, as expressed in the system objective function, is in the time parameters. When omitting
the operational cost variable from the objective function equation, there is no difference
between these two collaboration levels. The objective function score increased. The best
collaboration level for the objective function excluding the operational cost part will be the
HOR collaboration level for the entire sensitivity space and for all target probabilities. The
combination of both human and robot in the HOR collaboration level increases the sensitivity
in most cases and increases the probability of a hit while reducing the probability of false
alarms.

A sensitivity analysis of the optimal values of the robot and human likelihood ratios, Pr,
Bh, and P, of the best collaboration levels showed that any change in both directions from the
optimal values will decrease the objective function score of the best collaboration level. A
sensitivity analysis of d'r, d'n, and target probability showed that small, positive deviations
from the optimal values will increase the objective function score of the best collaboration
level. Deviations in the optimal value of d'n have no influence on the objective function when
the best collaboration level is R.

The sensitivity analysis showed that small deviations in the optimal values of the
analyzed parameters may shift the best collaboration level from one to another. For each
parameter the behavior of the shift is different. But for deviations in the optimal value of By,

B, Brh, d'r, and d'n, the best collaboration level will never be H and will never shift to H.

Experiment
The experiment results were correspondence with the numerical analyses. Experimental

results indicate that the reward system has a significant effect on the system hit rate, false
alarms, and the system objective function score. The system hit rate of participants who were
rewarded for maximum hits was higher than for the others; likewise, the system false alarms
of participants who were rewarded for minimum FA was lower than for the others. The
reward has no influence on the system time.

It was found that the robot quality has a significant influence on the system hit rate, and

the system objective function score: an increase in the robot quality led to increases in the

Xl



system objective function score of the experiment. Although the increase in robot quality
reduces the number of system false alarms, this finding was insignificant. However, a higher
level of automation (HOR) combined with a 'low quality' robot, significantly increases the
number of false alarms when compared to no automation (HO). For the 'low quality' robot, the
increase in the automation level increases detection time, but for the 'high quality' robot,
increases in the automation level reduce the detection time. This effect was partially
significant. A 'low quality' robot impairs the system hit rate and overall score. As image
complexity increases, the system hit rate decreases, the system false alarms number increases,
and the system time increases — all at significant levels.

Statistical analysis indicates that the reward system has a marginally significant effect on
human hits of robot marks (Pxrm), a significant affect on human hits of the objects the robot
did not mark (Pnh), and the human sensitivity (d's). The human hit rates, Pum and Pun, of
participants were rewarded for maximum hits, were higher than for the participants who were
rewarded for minimum FA; likewise, the human sensitivity of participants who were
rewarded for maximum hits was higher than for those who were rewarded for FA. It appears
that the participants internalize the reward structure, whether it was to minimize the number
of false alarms or to maximize the number of hits, and as such they focus their attention on
the reward.

Robot quality has a significant influence on human hits of the robot marks (Pur), the
human false alarms of the robot marks (Pram), the human false alarms of the objects the robot
did not mark (Pran), and the human sensitivity. Increases in robot quality increased the system
objective function score of the experiment. The increase in robot quality increases the values
of Phm, Pram, Pran, and the human sensitivity. It seems that during the experiment the
participants perceived the robot quality and relied on the robot decisions when its quality was
high.

The image complexity significantly influenced the number of human hits and the false
alarms of objects the robot did not mark (Pxn and Pran). An increase in the image complexity
decreases Pxhand increases Pran.

The collaboration level significantly affects human hits and false alarms of objects the
robot did mark (Pum and Pearm). Increase in the automation level increases Prm and Pearh. It
seems that for high automation levels the participant tends to accept the robot decisions.
Furthermore, the human sensitivity of the participants who had a 'high quality’ robot,
decreased with increase in the automation level. This finding indicates that the increase in

robot quality reduces both human control and sensitivity.
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The block number significantly affected the system false alarm (decreases), the system
time (decreases), the experiment score (increases), and the human false alarms of the objects
the robot did not mark (Pran). The values and the confidence intervals of Pran decreased with

the increase in the block number. This hints at a learning effect during the experiment.

Conclusions

This thesis includes a comprehensive development to evaluate the influence of different
collaboration levels on the performance of an integrated human-robot system for target
recognition tasks in different cases. It includes the development of collaboration levels, an
objective function to measure system performance, and a methodology to determine the best
collaboration level. The objective function was evaluated using numerical and experimental
analyses.

Numerical analysis results indicate that the best system performance, the optimal
performance measures values, and the best collaboration level depend on task, environment,
human, and robot parameters as well as the system characteristics. Since the number of
independent parameters is vast and, in addition, there are interactions between the parameters,
a prediction of system performance and the optimal solution is comprehensive and not
obvious. However, it can be determined by investigating the objective function.

The sensitivity analysis finding can be exploited for the design and operation of an
integrated human-robot system under dynamic and realistic conditions where the true value of
the parameters is unknown and the resolution and accuracy are low, or in cases where the
parameters are dynamic and drifting around their expected values.

Throughout the development, great care was taken to quantify the independent parameters
and the results and to validate the theoretical findings with the experiment. The objective
function was developed in a way to facilitate a comparison of different systems,
environments, and tasks.

The advantage of this method is that it can be conducted off-line and even in the absence
of an actual system, and it allows the comprehensive survey of the influence of various
parameters on the system performance. System designers can use these methodologies to
develop an adjusted, integrated human-robot system for target recognition tasks in
unstructured environments. Furthermore, this methodology can be used to analyze system
performance during the task performance and to recommend the best collaboration and the

human performance on-line.
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Contributions

The main contributions of this research are:

e The definition and evaluation of human-robot collaboration levels for target
recognition tasks. The collaboration levels were based on Sheridan's ten levels of
automation and were designed specifically for target recognition tasks. The
collaboration level can be fitted to the human or robot to increase system performance.
The collaboration levels were mathematically modeled to quantify its influence on
system performance.

e The development of an objective system function for target recognition in human-
robot systems to allow computation of the expected value of system performance
given the human, robot, environmental, and task parameters. The objective function
can be fitted to different tasks and environments, to predict system performance and
desirable level of collaborations, and to help design optimal systems for specific tasks.
The objective function includes operational and time costs that are important both in
evaluation and optimization of system performance.

e A methodology for determining the best collaboration level based on the human,
robot, task, and environment parameters. The methodology consists of a numerical
analysis of the developed objective function combined with signal detection theory.
The methodology makes it possible to improve system performance and to fit the best

collaboration level for each case.

Keywords: collaboration levels, human robot interaction, target recognition,

unstructured environments, objective function
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1 INTRODUCTION

1.1 Problem description
Robots and autonomous systems perform well in industrial environments where working

conditions are constant, structured and predictable (Lopez-Juarez and Howarth, 2002;
Gonzalez-Galvan et al., 2003). Unstructured environments such as agriculture, military,
underwater and space are characterized by rapid changes in time and space (Bechar et al.,
2003). The terrain, vegetation landscape, visibility, illumination, and other atmospheric
conditions are not well defined, continuously vary, have inherent uncertainty, and generate
unpredictable and dynamic situations. In some environments the objects or the targets are also
unstructured and differ in size, hue, orientation, reflection and shape, in contrary to structured
object like cube, pyramid or bolt were the object definitions are fixed and rigid. This results in
a lack of information, due both to inadequate sensor performance as well as the limited ability
of computers to reason and plan in such environments (Everett and Dubey, 1998). Hence, in
unstructured environments operation of an autonomous robot is difficult (Al-Jumaily and
Amin, 2000; Fletcher et al., 2005), and not advisable (Penin et al., 1998). Moreover, "the
current status still falls short of implementing solutions to most real-world applications” (Kim
and Shim, 2003). Furthermore, in such environments there are many situations in which
autonomous robots fail due to the many unexpected events (Steinfeld, 2004). The problems
are enhanced in applications dealing with natural objects (e.g., medical, agriculture
environments) since the objects also have high degrees of variability (in shape, texture, color,
and size) and their positions and orientations are not known and cannot be determined a-
priori. This further complicates the robotic system and results in a system which is difficult
and expensive to develop.

Target recognition is a common task and usually an essential part of a robotic system
(Bicho et al., 2000; Ye and Tsotsos, 1999). However, automatic target recognition in
unstructured environments is characterized by poor performances (Edan, 1999; Ponweizer et
al., 2005) due to the high degree of objective variability and changing and unknown
environmental conditions (Bhanu et al., 2000; Venkataramani et al., 2005).

Humans have superior recognition capabilities (Matthews et al., 1996; Hill et al., 1997;
Ayrulu and Barshan, 2001) and can easily adapt to changing environmental and objective
conditions (Rodriguez and Weisbin, 2003). Peoples’ acute perceptive capabilities enable
humans to deal with a flexible, vague, changing, and wide scope of definitions (Chang, 1998).

However, a human operator is inconsistent, tends to fatigue and suffer from distractions (Van



Erp et al., 2004), and ultimately might reduce the system’s production rate relative to that of a
fully autonomous system in a fixed environment. Human operators, then, can impair smooth
system operation (Parasuraman et al., 2000) and increase errors.

Autonomous systems are most suitable for cases that require repeatable accuracies and
high yields in stable conditions (Holland and Nof, 1999). However, they lack the capability to
respond to ill-defined, unknown, changing, and unpredictable events.

The assumption of this research is that integrating a human operator into a robotic system
can help increase target identification rate and reliability, reduce the complexity of the robotic
system (Kirlik et al., 1993; Sidenbladh et al., 1999; Itoh et al., 2000; Parasuraman et al.,
2000), and handle unknown and unpredictable events that the autonomous systems are
incompetent to deal with (Pook and Ballard, 1996).

Human-robot collaboration research addresses the issue of how the human-robot
association affects automation in aspects of data acquisition, data and information analysis,
decision making, action selection, and action implementation (Parasuraman et al., 2000), in
accordance with specific task or sub-task goals and parameters (Bechar et al., 2004). Types
and levels of automation are evaluated by examining their associated human performance
consequences such as mental workload, situation awareness, complacency, and skill
degradation (Guida and Lamperti, 2000; Steinfeld et al., 2006). Parasuraman et al. (2000)
developed a model for types and levels of automation that provides a framework and supplies
an objective basis for determining the degree of automation for each system. Sheridan (1978)
divides automation into ten levels, from fully autonomous, with no human intervention to
fully manual. Xu et al. (2002) modeled the human-computer strategies through cascade neural
networks for a driving task. Fletcher et al. (2005) developed an on-line driver assistance
system that supports the driver and provides immediate feedback.

Rodriguez and Weishin (2003) indicate that human capabilities of perception, thinking,
and action are still unmatched in environments with anomalies and unforeseen events, and
that human and robot skills are complementary. By taking advantage of human perceptive
faculties and the autonomous systems’ accuracy and consistency, the combined human-
robotic system can be simplified, resulting in improved performance (Parasuraman et al.,
2000).

In target recognition tasks there are several performance measures to evaluate quality of
recognition (Maltz, 2000; Swets et al., 2000; Filippidis et al., 2000; Sun et al. 2004; Pei and
Lai, 2001; Gao and Hinders, 2005) including probability of target detection (hit), probability
of non-target detection (false alarm; Liu and Haralick, 2002), and detection time (Steinfeld et

al., 2006). However, the quality and value of performance measures are task dependent. For
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example, in medical applications, the hit and false alarm probabilities are more important than
the detection time, and therefore maximum hit probability with minimum false alarm
probability is necessary. On the other hand, in real-time systems detection time is critical and
should be minimized. In detecting landmines, however, the goal is a high hit rate while the
false alarm rate and detection times are usually less important. Hence, it is essential to
combine the different performance measures (Rodriguez and Weisbin, 2003) and consider the
task goal when evaluating system performance. The given examples were presented as
extreme cases to indicate the importance of the different weights; they do no necessary
present different industries.

System performance also depends on environmental conditions (e.g., illumination,
visibility, terrain type), human conditions (fatigue, stress, workload), and system parameters
(error, accuracy, reliability). Hence, these must also be considered when evaluating system
performance. For example, environmental conditions such as highly occluded objects,
shading, and changing illumination conditions strongly influence target recognition
performance of both human and automatic systems. Maltz and Shinar (2003) found that
system cueing helps in complex tasks but lowers the performance in simple tasks. A
methodology to determine the appropriate alerting thresholds and quantify the possible
potential benefits through changes in the design of the system shown by Kuchar (1996)
reduced the frequency of false alarms in traffic alert and collision avoidance system. Meyer
and Kuchar (2006) analyzed the effect of an alerting system on signal detection performance
and found that the introduction of an alerting system may actually lower performance if the

operator uses non-optimal weights for the warning information.

1.2 Research objectives
The research objectives include developing:

e Human-robot collaboration levels suitable for target recognition tasks in
unstructured environments.

e An objective function to evaluate performance of an integrated human-robot
system for target recognition tasks, and to compare the performance of
different target recognition systems and cases.

e A tool to determine the best collaboration level based on the system, task, and

environmental parameters.

1.3 Research significance
Target recognition is an important and essential task in most robotic systems. The

development of an autonomous system operating in an unstructured environment is
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problematic, complex, and expensive. This research provides tools to develop an integrated
human-robot system for target recognition in unstructured environments. This will help
simplify the robotic system, reduce its costs and improve its performance and robustness.

Human-robot collaboration levels were developed for target recognition in unstructured
environments. The four collaboration levels defined fit an extensive range of automation,
from manual to fully autonomous. The advent in using four levels of collaboration, of which
only three include a human operator, simplifies the integrated human-robot system, thus
enabling the human to better control each collaboration level, remember the characteristics of
each collaboration level, and increase his awareness when shifting from one collaboration
level to another.

An objective function was developed to evaluate performance of an integrated human-
robot system for target recognition tasks. The objective function is task dependent and
consists of a multitude of performance measures. It includes operational costs and time costs,
which consider the system characteristics involved in the performance evaluation and not
merely the detection quality parameters. It makes it possible to rank and compare different
systems and to analyze the influence of different human, robot, task, and environment
parameters on the system performance.

Additionally, a methodology to determine the best collaboration level based on the
objective function was developed. The methodology can improve system performance when
environmental conditions are known a-priori. Such developments form the basis for effective
system design and enable the easy adaptation of the combined human-robot system to each

new task and environment.

1.4 Research contributions and innovations
Integrating humans into robotic systems can help simplify the systems and improve their

performances. By taking advantage of human capabilities, a more flexible and simpler system
that can deal with more dynamic and complex conditions can be designed.

Human-robot collaboration levels for target recognition tasks were defined, tested, and
evaluated. The collaboration levels were based on Sheridan's (1978) ten levels of automation
and were designed specifically for target recognition tasks. The collaboration level can be
fitted to the human or robot to increase system performance.

A system objective function for target recognition in human-robot systems was developed
to allow computation of the expected value of system performance given the human, robot,
environmental, and task parameters. The objective function quantifies the multitude of
parameters influencing the system through a weighted sum of performance measures. The

weights enable one to adapt the system’s objective function to different tasks and
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environments, to predict system performance and desirable level of collaboration, and to help
design optimal systems for specific tasks. In addition, the objective function developed in this
thesis includes operational and time costs that are important in both evaluation and
optimization of system performance.

A methodology was developed for determining the best collaboration level based on
human, robot, task, and environment variables. Numerical analysis of the objective function
combined with signal detection theory was applied for the defined collaboration levels, and
sensitivity analysis of the influencing variables was performed on the optimum values. The
methodology makes it possible to improve system performance and to fit the best
collaboration level for each case.

System designers can use the objective function to predict the performance of a developed
system and to determine the best-fit collaboration levels a-priori. The system can be designed

to fit a specific task and environment.

1.5 Thesis structure
The dissertation is organized as follows: chapter 2 presents a literature review on

autonomous robots, agricultural robots and human-robot collaboration. The methodology
chapter starts with the description of the problem objective of an integrated human-robot
system for target recognition tasks in unstructured environments, continues with the outline of
the research, definitions of major terms, the research assumptions, the collaboration levels
used in this work and a brief presentation of the system objective function, the numerical
computations conducted on the system objective function and the experiment conducted. The
chapter ends with a description of the performance measures. Chapter 4 deals with
formulation of the system objective function. The theoretical equation is developed and a
signal detection theory (SDT) model is modified to fit the case of a human-robot system in a
target recognition task. The SDT equations are included in the system objective function in
order to simplify it. Chapter 5 begins with numerical computations of the optimal cutoff ratios
(Bs) based on the system objective function to determine the optimal human and robot
parameters for different task parameters and to determine the best collaboration level for
different human, robot, and task parameters (section 5.1). It continues with sensitivity
analyses of the human, the robot, and the independent environmental parameters and the
influence of changes in the optimal values of the parameters on the objective function score
and the best collaboration level to reflect cases in which the human and robot performances
were in the proximity of optimum values or when the environmental parameters diverged
only slightly from their expected or calculated values (section 5.2). Findings are summarized

with conclusions at the end of the chapter (section 5.3). Chapter 6 describes the apparatus and
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design of the melon detection experiment conducted on a simulated human-robot system, the
experimental procedure and results.

A discussion of the results comparing the experiment to the numerical calculations is
presented in chapter 7. The thesis concludes in chapter 8, including conclusion and discussion

of future research.



2 SCIENTIFIC BACKGROUND

The scientific background includes a review of autonomous robots and their limitations,
and the current status of agricultural robots. Human-robot collaboration methods that served

as the basis for the development of the thesis methodologies are also reviewed.

2.1 Autonomous Robots

Autonomous robots are systems that can perform tasks, make decisions, and act in real-
time without human intervention. They are required in fields, which normally demand
reductions in manpower and workload, and are best-suited for applications that require
repeatable accuracies and high yield under stable conditions (Holland and Nof, 1999).
However, they lack the capability to respond to ill-defined, unknown, changing, and
unpredicted events.

Sensing and reasoning are the basic requirements for attaining a reasonable degree of
autonomy (Oriolo et al., 1998). According to Rucci et al. (1999), autonomous robotic systems
must possess a high degree of flexibility to adapt to the continuously changing conditions of
the environment as well as to the information from their own sensors and motors.

In designing autonomous robotic systems, two important challenges are frequently
encountered. The first deals with the nonlinear, real-time response requirements underlying
the sensor-motor control formulation. The second deals with how to model and use the
approach with which a human will address such a problem (Ng and Trivedi, 1998).

In recent years, an increasing amount of robotics research has focused on autonomous
mobile robots in unstructured environments (indoors and outdoors). Comprehensive research
investigated many aspects of this area. The research can be divided into two categories. The
first category deals with the basic elements nessesary for autonomous robots, such as obstacle
avoidance (Chakravarthy and Ghose, 1998; Ku and Tsai, 1999; Carelli and Freire, 2003;
Belkhouche and Belkhouche, 2005), self-localization and map building (Neira et al., 1999;
Mouaddib and Marhic, 2000; Olson, 2000; Ip and Rad, 2004; Se et al., 2005), and navigation
and path planning (Ara’ujo and de Almeida, 1999; Oriolo et al., 1998; Cherif, 1999; Millan
and Floreano, 1999; Tsourveloudis et al., 2001; Garcia and De Santos, 2004;Roy, 2005). The
second category deals with applications such as vehicle dispatching for transportation
(Benyahia and Potvin, 1998; Yamashita, 2001; Lacomme et al., 2005), security,
reconnaissance and exploration (Dollarhide and Agah, 2003; Birk and Kenn, 2002; Flann et
al., 2002; Matthies et al., 2002; Thrun et al., 2004), industry (Klas and Rolf, 1999;
Peungsungwal et al., 2001), agriculture (Torri, 2000; Van Henten et al., 2003), underwater

missions (Kondo and Ura, 2004; Rosenblatt et al., 2002), maintenance and service (Luk et al.,
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2005; Balakirsky et al., 2004; Aracil et al., 2003), and space missions (Arena et al., 2004;
Chirikjian et al., 2002).

Target recognition is a critical element in most robotic systems (Bicho et al., 2000; Ye
and Tsotsos, 1999; Bechar and Edan; 2003; Tan et al., 2005); for example, the detection of
parts in assembly lines, the detection of landmarks in autonomous navigation, the detection of
hand gestures for robot control, or the detection of fruits for robotic harvesters. Target
recognition is a common and important topic in many other research areas such as medical
and brain research (Potts and Tucker, 2001; Bhanu and Fonder, 2004), quality assurance
(Schmitter, 1995), human factors (Aviram and Rotman, 2000; Maltz and Meyer, 2001),
agriculture (Sevila & Baylou, 1991; Dobrusin et al., 1992; Plebe and Grasso, 2001; Bulanon
et al., 2001; Hannan and Burks, 2004; Alchanatis et al., 2005), and remote sensing using
infra-red (Jean et al., 2000; Nelson, 2001), radar (Liang and Palakal, 2002; Banerjee et al.,
1999), visual images (Patnaik and Rajan, 2000), and hyperspectral imagery (Du and Ren,
2002).

Target recognition systems have undergone a variety of changes due to intensive
technological developments. Initial systems exploited signal-processing techniques to detect
ground-based targets based on one-dimensional signals (Gilmore, 1991). Limitations of these
systems eventually led to the development of automated target recognizers that processed
two-dimensional digital images to detect, classify, and identify targets (Gilmore, 1991).
Target recognition can be described as a multilevel process requiring a sequence of algorithms
at low, intermediate, and high levels (Bhanu et al., 2000). Generally, such systems are open
loop with no feedback between levels, and assuring their performance at the given probability
of correct identification and probability of false alarm is a key challenge (Bhanu et al., 2000).
The main limiting parameters in target recognition are the characteristics of unstructured
environments (Venkataramani et al., 2005); thereby restricting the system’s ability to
determine if an object can be classified as a target. The attributes of unstructured
environments also impede the quantification or numericalization of target description criteria,
which are determined by human operators and are implemented by autonomous detection
algorithms.

Automatic target recognition is characterized by poor performances (Edan, 1999;
Ponweizer et al., 2005), and detection is restricted to a certain group of objects with similar
physical characteristics for which the autonomous detection algorithms were developed.
Maltz and Shinar (2003) found that system cueing helps in complex tasks but lowers the
performance in simple tasks. A methodology to determine the appropriate alerting thresholds

and quantify the possible potential benefits through changes in the design of the system
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shown by Kuchar (1996) reduced the false alarms in traffic alert and collision avoidance
system. Meyer and Kuchar (2006) analyzed the effects of an alerting system on signal
detection performance and found that the introduction of an alerting system may actually
lower performance if the operator uses non-optimal weights for the warning information.

Different optimization methods have been developed and implemented for parallel
detection systems, e.g., least squares, weighted least squares, mean square error; Bayesian
weighted least squares, and maximum likelihood estimate (Hall, 1992). On the other hand,
humans have superior recognition capabilities (Matthews et al., 1996, Hill et al., 1997; Ayrulu
and Barshan, 2001) and can easily adapt to changing environmental and objective conditions
(Rodriguez and Weisbin, 2003). Their acute perception capabilities enable humans to deal
with a flexible, vague, changing, and wide scope of definitions (Chang et al., 1998). However,
a human operator is not consistent, tends to fatigue, and suffers from distraction (\Van Erp et
al., 2004).

2.2 Agricultural robots

Agricultural tasks have been an important area of application for different kinds of
technologies to improve crop production and other farming related operations. In the 20th
century, technological progress has reduced the need for the manpower traditionally devoted
to these activities in the developed countries by a ratio of 1/80 (Cereset al., 1998; Pons et al.,
1996). Robots are perceptive machines that can be programmed to perform a variety of
agricultural tasks such as cultivating, transplanting, spraying, and selective harvesting (Edan,
1999). Agricultural robots have the potential to raise the quality of the fresh produce, lower
production costs, and reduce the drudgery of manual labor (Edan, 1995).

Activating a continuously moving robot in the agricultural environment is a difficult task,
as a result of the unpredictable locations of targets that are difficult to locate (due to the
natural variability in size, shape, color, and texture) and since the terrain, the landscape, the
atmospheric conditions, and other environment parameters are unstructured, uneven, and
continuously change. The development of systems that can cope with the variety of
agricultural situations and unknown disturbances encountered is difficult and complicated.

Extensive research has been conducted in applying robots to a variety of agricultural
tasks, and their technical feasibility has been widely demonstrated: picking citrus (Harrell and
Levi, 1988; Harrell et al., 1990; Kawamura et al., 1985; Kawamura et al., 1987; Edan et al.,
1990; Edan et al., 1991; Jiminez et al. 2000; Plebe and Grasso, 2001; Brown, 2002; Hannan
and Burks, 2004; Muscato et al., 2005), picking apples (Grand d'Esnon et al., 1987; Bulanon
et al., 2001), picking tomatoes (Kondo et al., 1996), picking asparagus, cucumbers, and

9



harvesting melons (Edan and Miles, 1993; Benady et al., 1992), harvesting alfalfa (Hoffman
et al., 1996), transplanting (Beam et al., 1991, Ling et al., 1990, Bar et al., 1996), conveying,
and transportation (Gerrish et al., 1986, Kazaz and Gan-Mor, 1993; Edan and Bechar, 1998;
Billingsley, 2000; Thuilot et al.,, 2002; Wei et al., 2005). The main problem in fruit
recognition is due to shading, occlusion, variations in fruit properties, and changing
illumination properties. Several technologies for fruit detection have been explored, including
vision (Sevila & Baylou, 1991), infra-red (Dobrusin et al., 1992), and structured light (Benady
et al., 1992; Yamashita & Kondo, 1992), but with each of these techniques only 85% of the
fruits were identified (Edan, 1999).

Despite the tremendous amount of research in the last decade, the commercial application
of robots in complex agriculture applications is still unavailable. The main limiting factors are
production inefficiencies and a lack of economic justification (Edan, 1999). Production
inefficiency is caused by problems in fruit identification (75-85%), low cycle times of 3-4
seconds per fruit, and the inability to autonomously deal with obstacles.

Introducing a human operator into the operation cycle to interact with the system not just
as a supervisor is a new trend in agricultural research and can help improve performance and
reduce system complexity (Bechar and Edan, 2003). The uncertainties in the fruit locations,
size, shape, and maturity necessitate a sophisticated sensory system combined with a human
operator to raise fruit identification to 95%, and to ensure rapid picking. Also, navigation and
transportation on agricultural terrain must be reinforced by a human operator to solve the
problem of navigating and driving the robot through the field. According to Ceres et al.
(1998) cooperation of an agricultural robot with a human operator will help solve three
difficult problems: (a) driving the robot through the field, from tree to tree and from row to
row; (b) detection and localization of fruits; and (c) grasping and detaching of selected targets.

Khadraoui et al. (1998) developed and tested a neural network-learning model of vision-
based control in driving assistance of agricultural vehicles, in which the model considers the
vehicle properties and kinematics. A multilayer neural network receives information from the
camera and a human driver makes corrections to the course. Ceres et al. (1998) developed
"AGRIBOT", a system that combines human and machine functions harmoniously by
assigning different, non-overlapping, non-redundant tasks to the human operator and to the
robot. The human tasks are the more complex and intellectual parts of the operation, which do
not require physical effort, i.e., detecting the fruits and marking them with a laser beam, and
driving the vehicle. The robot fulfills the physically demanding and more precise tasks,
mainly the localization and harvesting with the manipulator and gripper system. Fruit

detection, the most complicated task, is done solely by the human operator. Agribot detected
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70% of the visible fruits, with 70 — 90% of the detected fruits successfully picked in cycles of
around 4 - 10 seconds (Pons, 1996).

2.3 Human-Robot Collaboration
Unstructured environments are very complex and variable, requiring an adjustable,

adaptable system. The use of an autonomous robotic device, therefore, is not advisable (Penin
et al., 1998). The operation of autonomous robots is difficult (Al-Jumaily and Amin, 2000;
Fletcher et al., 2005), and the promise of automatic and efficient remote operations has fallen
short of expectations (Kim and Shim, 2003; Steinfeld, 2004) due to inadequate sensor
accuracy and the limited ability of computers to reason and plan in such environments
(Everett and Dubey, 1998). Rodriguez and Weisbin (2003) indicate that human capabilities of
perception, thinking, and action are still unmatched in environments with anomalies and
unforeseen events, and that human and robot skills are complementary. By taking advantage
of the human perception skills and the autonomous systems’ accuracy and consistency the
combined human-robotic system can be simplified, resulting in improved performance
(Parasuraman et al., 2000).

Human-Robot Interaction (HRI) is a highly interdisciplinary field where behavioral and
psychological approaches towards understanding the nature of human-—robot interaction
complement robotics and engineering oriented work (Salter et al., 2006)

There is a large and rapidly developing class of technical systems that are dependent on
human contribution for their operation (lvanisevic and Lumelsky, 1997). This class is known
as telecollaboration, and in robotics terminology, telerobotics, telemanipulation, or
teleoperation. Since their first appearance in the 40’s, many teleoperated systems have been
developed and employed for dealing with unstructured environments and in applications
where there is clear and unavoidable danger for the human operator (Sheridan, 1992).

Penin et al., (1998) state five reasons for using telerobotics: i) ability to do and improve
outage-free maintenance in countries with strict regulations regarding the interaction of
humans with energized components; ii) increase the safety and comfort of the workers; iii)
decrease the cost by eliminating the need for the operator to work in a hazardous
environment; iv) ability to work under moderate bad weather conditions; and v) decrease in
labor requirements.

A telemanipulation system consists of a master manipulator, which is operated by a
human operator, and a slave manipulator, which is used for real tasks in a remote site. The
operational force and the environmental force are assigned to each manipulator during a task
(Itoh et al., 2000). Hiragana et al. (1997) classified teleoperation systems into two categories:

1) manipulating objects at a remote site through communication channels, and 2) planning the
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motions of objects in off-line mode on a real world simulator, and then sending the planned
motions to a remote site. According to Sheridan (1989), a telerobotics manipulator is a more
advanced form of teleoperation in which a human operator supervises through a computer
intermediary.

Considerable research has been conducted on master-slave manipulator telerobotics and
guidance/navigation control methods (Kosuge, 1990; Yokokoji et al., 1994; Ogasawara et al.,
1998; Wilson and Neal, 2001; Ethier et al., 2002; Stanczyk and Buss, 2004; Hasegawa et al.,
2004; Al-Mouhamed et al., 2005; Xiao-Gang et al., 2003; Wang and Liu, 2005), system
stability (Raju et al., 1989; Kim et al., 1992; Lam and Leung, 2004; Jee-Hwan et al., 2004;
Hannaford and Jee-Hwan, 2002; Jing, 2005), interfaces and displays (synergy, 2001;
Iwahashi, 2003; Salter et al., 2006; Kofman et al., 2005; Scholtz et al., 2005), communication
and data translation (Oboe and Fiorini, 1998; Sano et al., 1998; Michaud et al., 2001; ), and
architectures (Banerjee et al., 2000; Peshkin et al., 2001; Farahvash and Boucher, 2004;
Speich and Goldfarb, 2005; Gowadia et al., 2005).

Teleoperated systems do not give the human operator the true sensation that he would
have if he were on location with the system, since the information does not reach the
operator’s cognitive system directly, but through sensors with limited resolution, angle of
vision, depth, etc. (Synergy, 2001). Interaction between the user and the teleoperated system
is accomplished by means of an interface (lvanisevic and Lumelsky, 1997). In the user's
mind, however, there is often no difference between the system and the interface. Guida and
Lamperti (2000) state that human-computer interaction is about designing computer systems
that support people, so they can carry out their activities productively and safely. According
to Synergy (2001), the goal of planning an interface for a telerobotic system is to achieve a
state of human operator control that mimics as closely as possible the situation where the
human operator is inside the system and activating it by directly using his senses.

Human-computer interaction depends on user factors, organizational factors,
environmental factors (noise, heating, lighting, etc.), health and safety factors, comfort
factors, task factors, constraints, and productivity factors (Guida and Lamperti, 2000). The
system requirements can be classified into functional requirements, data requirements, and
usability requirements (Guida and Lamperti, 2000) that can be operationally formalized to
learn ability, throughput, flexibility, and attitude. Types and levels of automation are
evaluated by examining their associated human performance consequences such as mental
workload, situation awareness, complacency, and skill degradation.

Human-Computer/robot interfaces draw from the knowledge and methods of several

different disciplines, including computer science, artificial intelligence, knowledge
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engineering, cognitive psychology, social and organizational psychology, ergonomics,
sociology, and anthropology (Guida and Lamperti, 2000). Extensive research has been
conducted in these fields (lvanisevic and Lumelsky, 1997; Radix et al., 1999; St-Amant,
1999; Raghavan et al., 1999; Perzanowski et al., 2001; Iwahashi, 2003; Kofman et al., 2005).
Over the past two decades, researchers have examined a number of different aspects of
human interaction with automated systems. Types and levels of automation are evaluated by
examining their associated human performance consequences, such as mental workload,
situation awareness, complacency, and skill degradation (Guida and Lamperti, 2000; Steinfeld
et al., 2006). Parasuraman et al. (2000) developed a model for types and levels of automation
that provides a framework and supplies an objective basis for determining the degree of
automation for each system. They suggest that automation can be applied to four broad
classes of functions: 1) information acquisition; 2) information analysis; 3) decision and
action selection; and 4) action implementation. Sheridan (1978) divides automation into ten
levels, from fully autonomous, with no human intervention, to fully manual (Table 1). Xu et
al. (2002) modeled human-computer strategies through cascade neural networks for a driving
task, defined performance measures for evaluating the strategy models, and proposed an
iterative optimization algorithm for improving the performance of learned models of human-
computer strategies. Banerjee et al. (2000) described a combination of 3- D graphics systems
and the gradual availability of high bandwidth networks that has made collaborative virtual
reality feasible. Parasuraman et al. (2000) found that automation can have both beneficial and
negative effects on human performance. They showed that automation does not simply
supplant human activity, but rather changes it and poses new coordination demands on the
human operator. They also indicate that high levels of automation may be associated with
potential costs of reduced situation awareness, complacency, and skill degradation. Fletcher et
al. (2005) developed an on-line driver assistance system that supports the driver and provides
immediate feedback. Kidono et al. (2002) developed a human-robot guidance method for
mobile robot navigation Tsuji and Tanaka (2005) investigated a system for a tracking task
where the human and the machine act simultaneously. Bruemmer et al. (2005) and Hughes
and Lewis (2005) developed several automation levels for a human-robot vehicle in an indoor
exploration task. Graves and Czarnecki (2000) describe a scale of five human-robot

interaction levels for a telerobotic system.
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Table 1: Sheridan’s levels of automation of decision and action selection.

HIGH 10. the computer decides everything, acts autonomously, ignoring the human

LOW

(o]

N W s 01O N

informs the human only if it, the computer, decides to
informs the human only if asked to, or

. executes automatically, then necessarily informs the human, and

. allows the human a restricted time to veto before automatic execution, or

. executes that suggestion if the human approves, or

. suggest one alternative

. harrows the selection down to a few, or

. the computer offers a complete set of decision/action alternatives, or

the computer offers no assistance; human must make all decisions and actions
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3 METHODOLOGY

3.1 Problem objective
The study aims to evaluate the performance of an integrated human-robot system for

target recognition tasks in unstructured environments and to determine the collaboration level

that will result in the best performance.

3.2 Outline
The research consists of three interrelated and independent parts that address human robot

cooperation in target recognition tasks:

1. Definition of human robot collaboration levels fitted for target recognition tasks in
unstructured environments. The collaboration levels are compatible with an extensive
range of automation, from manual to fully autonomous (Sheridan, 1978).

2. Development of an objective function to measure the performances of integrated human-
robot systems in target recognition tasks. The objective function considers operational
costs and parameters related to the human, robot, targets, tasks, and environments. The
objective function was evaluated in numerical analyses and in an indoor experiment.

3. Development of a methodology to determine the best collaboration level for the design of
a specific system and to model and simulate its performance. Signal detection theory was

adapted to evaluate the relations between the parameters.

3.3 Definitions
In this research we investigated an integrated human-robot system for target recognition

tasks. Although 'system' and 'robot’ are usually denoted similar connotations, in this work they
do not represent the same concept. The term 'system' includes both the 'human' and 'robot’
subsystems and indicates their overall combined performances and parameters. The ‘human’
subsystem is the human operator and is defined by manual operations; the ‘robot’ subsystem
comprises the autonomous operations defined by automatic programs residing in the robot
computer. The phrases 'human’ and ‘robot' refer to the subsystems and to their specific
performances and parameters. The phrase ‘environment' refers to the surrounding conditions
the 'system' operates in. It includes parameters such as target probability, number of objects,

and other parameters that are not related to the 'system'’ or the 'task'.
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3.4 Assumptions
e Human performance has no influence on robot performance.

e The human, robot, and system performances do not influence the appearance of
target and non-target objects.

e The human, robot, task, and environmental parameters are stable in time.

3.5 Collaboration levels
Four basic levels for human-robot collaboration were defined, tested, and evaluated. The

collaboration levels were based on four degrees of autonomy from Sheridan’s (1978) scale of
“action selection and automation of decision” as follows: i) H: The H detects and marks the
desired target solely; ii) HR: The H marks targets, aided by recommendations from an
automatic detection algorithm, i.e., the targets are automatically marked by a robot detection
algorithm, the human acknowledges the robot’s correct detections, ignores false detections
and marks targets missed by the robot; iii) HOR: targets are identified automatically by the
robot’s detection algorithm; the human's assignment is to unmark false detections and to mark
the targets missed by the robot system; and iv) R: the targets are marked automatically by the
system.

In both the HR and HOR collaboration levels the human has the final decision on each
detection. The difference between the two is that in the HOR collaboration level the human
has to unmark objects he or she thinks are non-targets and were marked by the robot, and in
the HR collaboration level, the human has to remark (approve) objects already marked by the
robot that he or she also considers to be targets (and to ignore non-target objects marked by
the robot).

3.6 System objective function
The system objective function is designed to enable determination of the expected value

of task performance, given the parameters of the system, the task, and the environment. The
objective function parameters can be divided into four major categories - human, robot,
environmental, and task parameters.

The objective function includes five parts: correct detection (hit), false alarm, miss,
correct rejection, and operational cost. The operational cost part includes the costs related to
operational time and the costs of actions that should be performed on the detected objects,
whether they are hits or false alarms (e.g., picking detected melons, landmine neutralization).

To describe the relations between the objective function parameters in a target recognition
task of a human-robot collaborative system, we applied a modified version of signal detection
theory (SDT). This reduces the number of independent variables by relating human and robot
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performance measures (e.g., hit and false alarm probabilities) to their basic characteristics
(e.g., sensitivity and cutoff point decisions). The weakness in the use of SDT is that simple
signal and noise distributions are assumed in order to cope with it mathematically. Hits and
false alarms are computed from the sensitivity and cutoff points. Changes in the hit and false
alarm values are limited and constrained by the changes of the characteristics. It is difficult to
obtain the values of all human and robot performance measures in real world cases.
Furthermore, in a regular analysis of the system objective function, the human and robot
performance measures are defined and the system objective function is calculated according
to them. However, when applying SDT, the human and robot characteristics such as
sensitivity or decision cutoff are defined, the performance measures are then evaluated
according to them, and the objective function is calculated accordingly.

For each signal probability and payoff values ratio combination there is a single optimal
cutoff ratio, B* in the case of a single detector (Swets et al., 2000). This ratio is independent
of detector sensitivity, d'. For a two detector case, as in human-robot systems, there is a set of
three Bf’s and two sensitivities, one for each detector (Robinson and Sorkin, 1985) The
performance of the first detector (robot) is determined by its sensitivity (d’r) and its cutoff
ratio (Pr). The second detector (human) uses his/her sensitivity (d’n) and two cutoff ratios, one
for objects already marked by the robot, Brn, and one for the other objects unmarked by the
robot, Br. Robot and human performance measures and overall system performance were

described using signal detection theory parameters.

3.7 Numerical computation
A numerical computation was implemented on a personal computer with Matlab 7™

software to: i) examine the influence of the human and robot characteristics (e.g., sensitivity)
and the effects of different human-robot collaboration levels on the system objective function;
ii) determine the optimal human and robot characteristics for different task characteristics; iii)
determine the best collaboration level for different human, robot, and task characteristics; and,
iv) perform a sensitivity analysis on the optimal characteristics and their influence on the best

collaboration level and the system objective function value.

3.8 Experiment
An experimental system was developed with Matlab 7™ to test and examine the

influence of different human-robot collaboration levels in a specific target recognition task.
The experimental system consisted of a simulator, using images taken from a melon field
by a video camera mounted on a robotic melon harvester moving along a melon row. The

location of true targets in each image was identified and saved by a panel of experts. The
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images were manually classified into three complexity levels. During the experiment the
experimental system recorded the human operator operations, the objects marked, and the
time signature of each action. Performance measures were calculated from the recorded raw
data.

Statistical analyses of the experiment results included descriptive statistics for the human
performance measures, the system performance measures, and significance tests. The level of
significance was set to a=0.05.

A comparison of human sensitivity, the human likelihood ratio of the cutoff points, and
the best collaboration level based on both the experimental results and the numerical analysis
was conducted. Notwithstanding, the experiment did not deal with optimal system
performance since the participants could not determine their required optimal variables during

the experiment process.

3.9 Performance measures
Nine performance measures were grouped into two classes: target identification and time.

The first class consists of eight performance measures representing the robot and human hit
and false alarm parameters. The second class includes the time required for the human-robot
integrated system to fulfill the task. The system objective function combines all mentioned

performance measures into a single parameter.
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4 FORMULATION OF AN OBJECTIVE FUNCTION

This chapter deals with the formulation of the system objective function. The theoretical
equation is developed and a signal detection theory (SDT) model is modified to fit the case of
a human-robot system in a target recognition task. The SDT equations are included in the

system objective function in order to simplify it.

4.1 General
Evaluation of a multi-objective decision problem can be performed in several methods;

two common methods are Pareto optimal sets (Deb et al., 2002) and value function (objective
function). Pareto sets are used when the solution consists of different objective values that
cannot be compared and calculates their optimal weights. In target recognition tasks, each of
the variables has a predefined weight according to the task and system characteristics and
therefore can be compared or superimposed with other variables to a single objective
function. System performance is evaluated by the variables and their predefined weights.
Although target recognition is a multi objective decision problem, the different objectives can
be compared on a single scale and the objectives’ weights are predetermined, and therefore
the strength of Pareto set does not manifest itself in this case.

An objective function to evaluate system performance in integrated human-robot systems
was developed for target recognition tasks. The objective function includes task, robot,
human, and environmental parameters and considers operational costs to evaluate the
expected overall system performance. To simplify the analysis of the system objective

function the number of parameters was reduced using signal detection theory.

4.2 Objective function
The objective function describes the expected value of system performance, given the

properties of the system, and the task is defined as the combined function of the multitude of
performance measures. It considers several human and robot parameters that contribute to the
overall value. The goal is to maximize the objective function. The value of the objective
function can be translated to a monetary value. The system objective function in a target
detection task (Vis) is composed of the four responses of the detection process and the system
operational costs and can be defined as:

Ve = Vis + Ve + Vs + Vers + Vo (1)
where Vus (equation 2) is the system gain for target detection (hit), Vras (equation 4) is the
system penalty for false alarms (FA), Vwms (equation 3) is the system penalty for missing the
target (miss), Vcrs (equation 5) is the system gain for correct rejection, and Vs (equation 6) is

19



the system operation cost. All gain, penalty and cost values mentioned above have the same

units (i.e., a common monetary value such as US dollar) which enables us to add them

together to a single objective function. The gain function for detecting the targets is:

where,
(a)
(b)
(c)

(d)

(€)

(f)
(9)

VHS =N-Ps-pys - Vy 2)

N is the number of objects,

Ps is the probability of an object becoming a target,

VH is the gain from a single hit, where the units of V are 'monetary value'. The
value of V4 is target dependent (e.g., the price of one melon for the farmer).

prs IS the system probability for a hit, composed of the human probability to
confirm a robot hit and the probability to detect a target that the robot did not
detect and that neither marked as a false alarm: p,,. =Py, - P + L= Py ) Prn

pHr is the robot probability of a hit,

PpHrh IS the human probability of confirming a robot hit, and

phh IS the human probability of detecting a target which the robot did not detect.

The penalty of missed targets is shown in equation (3):

where,

(@)

(b)

VMs:N'Ps'pMs'VM=N‘Ps'(1_pHs)'VM (3)

Vwm is the penalty of a single miss where the units of VVu are 'monetary value'.
The value of Vwm is target dependent (e.g., the damage created from not detecting
one landmine can be the destruction of one vehicle).

pwms is the probability of a system miss, composed of the human probability to
not confirm a robot hit and the probability to miss a target that the robot did not

detect and that neither marked as a FA: p,,. = Py - (01— Pr )+ =Py )- Q= Py)

The penalty from false alarms is specified in equation (4):

where

(a)

Veas = Feas - Vea 4)

VEa is the damage from a single false alarm, where the units of Vra are
'monetary value'. The value of Va is system, environment and non-target object
dependant (e.g. the damage created by one non-target object to the machine or
system, if the system will detect and pick a rock instead of a melon it could

damage the robot or system mechanism).
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(b) Fras is the number of system false alarm objects, composed of the robot’s false

alarms that the human does not correct and the human false alarm:

Feas =N '(1_ Ps)' [pFAr “Pra, T (1_ pFAr)' pFAh]
(€)  prar is the robot false alarm probability,
(d) pearm is the human probability of not correcting the robot false alarm, and
() pran is the human false alarm probability.
The gain from correct rejection is specified in equation (5):
Vers = Fers - Ver 5)
where
(@ Vcr is the gain from a single correct rejection, where the units of Vcr are
'monetary value'.
(b) Fcrs is the correct rejection density function for the system, composed of the

robot correct rejections that the human does correct and the human correct

rejection marks:
FCRs =N '(1_ Ps)' [pFAr '(1_ Prarm )+ (1_ pFAr)' (l_ Pran )]

The system operational cost includes both costs of time and operation as illustrated in
equation (6)
VTs:ts'vt"'(N'Ps'pHs"'FFAs)'Vc (6)
where,
(@) tsisthe system time that is required to perform the task,
(b) Vi is the cost of one time unit and its units are 'monetary
value/time’, and
() Vc is the cost of one object recognition operation (hit or false
alarm) and its units are 'monetary/operations’. The cost values can
be determined according to the time costs of the workers and the
system and system operational costs and maintenance. The value of
Vc is equal for hit and FA since it required the same treatment and
manipulation for both.
We assume that the picking times are shorter than the sum of detection times and technical
times related to the detection process. Therefore, the time terms in the objective function
express only the detection times and do not consider the related operational time (picking

times).
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The system time consists of the time for the human to confirm the robot hits, the time for
the human to hit additional targets, the time for the human to correct the robot false alarms,
the time for the human to mark false alarms, and the robot time to process the images and to
perform hits or false alarms. Also included in ts is the time it takes the human to decide
whether an object has been correctly rejected (CR) or missed (M).

ts=N-Ps Py P L + N -Ps - (1= Py ) Py Ly +

+N - (L= Ps) Pear *Pean  team + N (1= Ps)- (L= Pea ) Pean  tean +

+ NPy Py - (L= Py )ty + N-Ps- (L= pyy, )- (L= Py ) -ty +

+N-(1-Py) pey - (1- pFArh)'tCRrh +N-([1-Py)-(1- pFAr)'(l_ Pean)- temn + 1,

()

where,
(@)  turn is the human time required to confirm a robot hit,
(b) tun is the human time required to hit a target which the robot did not
hit,
() tram is the human time needed to correct a robot false alarm,
(d) tran is the human false alarm time,
() tmrm is the human time lost when a robot hit is missed,
(f) twmn is the human time invested when missing a target which the
robot did not hit,
(g) tcrem is the human time to correctly reject a robot false alarm,
(h) tcrn is the HO correct rejection time, and
(i) tris the robot time.
We assumed that each of the human time variables represents a superposition of a
decision time, tp, and a motoric time, tv, in accordance with the collaboration level.
Explicit operation of the system objective function, Vis (1), that is suitable for all
collaboration levels is described in equation (8):
8
Vi = NPy [Py - Pr - (Vi + Ve + b - V) + Q=P ) Py - (Vi + Ve + 1, - V)] +
+ NP [P (=P ) (Vg + by - V) + 0= P ) = Piy ) (Vi + - V]+
+ N (0= Pg): [Pear - Pean * (Vea + Ve + tean - Vo) + L= Pea ) Pean * (Vea + Ve + teay - V)]
+N '(1_ Ps)' [pFAr '(1_ pFArh)' (VCR + Lo \/t)+ (1_ pFAr)' (1_ pFAh)'(VCR + Lern 'Vt)]+ t, \/t
For the H collaboration level the objective function will be a degenerate form of equation (8),
will not include the robot variables and therefore results in:
Vie = NPy [pyy - (Vi + Ve + iy - Vo) + (L= Py ) (Vi + gy - VO] +

©)
+N '(1_ Ps)'[pFAh '(VFA +Vc +tFAh 'Vt)"‘(l_ pFAh)'(VCR +tCRh 'Vt)]
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In the R collaboration level the system objective function, Vis will be a degenerate form of
equation (8) will not include the human variables:
(10)

Vls =N- PS '[pHr '(VH +Vc)+(1_ pHr)’VM]+ N '(1_ PS)' [pFAr ‘(VFA +Vc)+(1_ pFAr)’VCR]+tr 'Vt

The time parameters for the H, HR, and HOR collaborations are shown in equations (11),
(12), and (13), respectively.

ty, =t +ty

tean = 1o + 1y (11)
tyn =to

topn = 1o

ty, =1, +1y

ean = tp + 1y

twn = 1o

topn = tp (12)
t, =1 +1y

Leam = tp + 1y

Ly = 1o

torm = tp

° (13)

4.3 Signal Detection Theory

4.3.1 Background
In the detection process there are four types of responses: 1) hit — when a detector
recognizes a target; 2) miss — when a detector does not recognize a target; 3) false alarm (FA)

— when a detector recognizes a non-target object as a target; and 4) correct rejection (CR) -
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when a detector does not detect a non-target object as a target. The sum of the probabilities of
hit and miss equal to 1 and so do the sum of the probabilities of FA and CR (Figure 1).

Signal detection theory (SDT) is a method of assessing the decision making process for
binary categorization decisions. Signal detection analyses are based on hit and false alarm
rates, where a hit is an event when a person correctly identifies a signal, and a false alarm is
the identification of a noise when it is presented.

The theory of signal detection evolved from the development of communications and
radar equipment in the early forties (Forero et al., 2004). It migrated to psychology, initially
as part of sensation and perception, in the 50's and 60's as an attempt to understand some of
the features of human behavior when detecting very faint stimuli that were not being
explained by traditional theories of thresholds (Brown and Davis, 2006).

There are several advantages in applying SDT to the system objective function: the
number of target identification parameters (e.g., hit probability) are reduced; SDT is related to
basic human and robot characteristics such as sensitivity and quality of decision making,
attributes from which the target identification parameters are calculated; the optimal analysis
of the system objective function is coherent and reasonable when dealing with the basic
human and robot characteristics of the SDT rather than directly with the human and robot
target identification parameters.

Incorporating SDT into the system objective function requires the following assumptions
about the human and robot target identification parameters: the targets and non-target objects
are normally distributed and must have identical variance even though they are independent.

The observer’s ability to discriminate between noise and a target with noise is limited by
the distance between the means of the two distributions (Figure 1), defined as the variable d’,
which is also defined as the observer sensitivity. When d’=0, the two distributions completely
overlap and it is impossible to distinguish between them. As d’ increases, it becomes easier to
distinguish between them. The location of the threshold is often defined in terms of the cutoff
point or the likelihood ratio between the signal-plus-noise and the noise-only probability
distributions as measured at the threshold position and is denoted as 3 (Swets et al., 2000).
Shifts of the threshold will result in changes in the tradeoff between hits and false alarms.
Shifting the threshold to the left will increase the hit and false alarm probabilities. The
observer governs threshold placement. In this work we are using the likelihood ratio 3 as the
human threshold value instead of the cutoff point.

The discrimination ability can be also performed using the Receiver Operating
Characteristic (ROC) curve (Figure 2). ROC curves were developed in the 1950's as a by-
product of research into making sense of radio signals contaminated by noise (Metz, 1978).
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Today ROC curves are applied intensively in the medical area for discriminating diseases
cases from normal cases (Metz, 1978; Zweig and Campbell, 1993) and to compare the
diagnostic performance of different diagnostic tests (Griner et al., 1981). In a ROC curve each
detector or diagnostic is represents by a single curve on the hit-FA space where the sensitivity
is influencing the convexity of the curve. The cutoff ratio (B) is represented by a point along
the curve, where increasing the value of § will reduce the hit and FA probabilities and the
point will move on the curve towards the origin of axes.

A description of all SDT parameters for a single detector is listed below:

X — The measurement unit X is the sum of all object features. In classic uni-dimensional
signal detection theory it is easy to define unit X as a single measurement parameter, such as
intensity, size, weight, pressure etc. In a target recognition task, unit X is the sum of all target
features, such as size, shape, color, hue, texture etc. In Figure 1, X is just a theoretic
illustration of the SDT on target recognition.

X - a position along coordinate X, represents the cutoff point that separate hit from miss and
FA from CR, range: - o —> + o

N — noise index

S —signal index

us,N — signal/noise mean

os,N — signal/noise standard deviation

Zs — the distance in standard deviation units between x and us (along coordinate Z). Zs is
X—Hs

Gy

positive where X is bigger than ps and negative where x is smaller than ps. Z¢ =

Zn — the distance in standard deviation units between x and pn (along coordinate Z). Zn is

X—Hy
On

positive where X is bigger than un and negative where x is smaller than pun. Z,, =

Ps — probability that an object is a signal (target)

. . . ez
Fs(Zs) — the signal density function value at Zs. f.(Z¢)=
S( S) \/%
%
Fn(Zn) — the noise density function value at Zn. f,(Z, )=
J2n

d' — the distance between ps and pn on X coordinate. d'=pg —

fs(Zs)

B - the likelihood ratio of the two distributions at the cutoff point x. § = : (Z )
N N
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—Ps Ver = Vea (Swet et al., 2000)

. : .1
" - optimal B for one detector case. B* =
P, V.-V,

Zs 72

Zs
Pw — the probability of a miss. P,,(Z)= jfs(z)jz_ i) .[e 2 dz

Zs Zs 22

P — the probability of a hit. P, (Z;)=1- [f,(Z)}z= 1—T [ezdz=1-p,
Zy -2%
Pcr — the probability of correct rejection. P, (Z If (zWz = \/_ je 2dz
zZy -22
Pea — the probability of a false alarm. P.,(Z,)=1- If (zWz = 1—fj.e 2dZ=1-P,

Vcr — value of each correct rejection, positive values.
Vra — value of each false alarm, negative values.

VH — value of each hit, positive values.

Vm — value of each miss, negative values.

Var — payoff ratio. V ;= —%

H

|

Z

W
AN

X, Measurement units

N Us

Figure 1: An example for a signal-noise (S-N) probability graph.
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Figure 2: An example for a ROC curve.

SDT for human-robot systems

Signal detection theory for a human-robot system is similar to a two-detector case

(Robinson and Sorkin, 1985). In a single detector case there are two distributions, noise and

signal, one sensitivity parameter, d', and one likelihood ratio parameter, 3. In a human-robot

system, there are two sets of distributions, one for the human and one for the robot. In

addition there is a set of three B’s and two sensitivities. The performance of the first detector

(robot) is determined by its sensitivity (d’r) and it cutoff ratio (Br). The second detector

(human) uses its sensitivity (d’n) and two cutoff ratios, one for objects already marked by the

robot, Brh, and one for objects unmarked by the robot, Bn.

A description of all SDT parameters for a single detector is listed below:
Zsr - Zs of the robot.

Znr — Zn of the robot.

Zsrh - optimal Zs of human for object marked by the robot.

Znrh - optimal Zy of human for object marked by the robot.

Zsn - optimal Zs of human for object unmarked by the robot.

Znn - optimal Zy of human for object unmarked by the robot.

d'r — sensitivity of the robot.

d'y - sensitivity of the human.

Br - the likelihood ratio of the robot (first detector).

Brh- the likelihood ratio of the human for object marked by the robot.
Bn - the likelihood ratio of the human for object unmarked by the robot.
Pur — the robot probability of a hit.

PHrh - the human probability of a hit of objects marked by the robot.
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PHh - the human probability of a hit of objects unmarked by the robot.

Pear — the robot probability of a false alarm.

Pearm — the human probability of a false alarm of objects marked by the robot.

Pran — the robot probability of a false alarm of objects unmarked by the robot.

Pwr — the robot probability of a miss.

Pwmrh - the human probability of a miss of objects marked by the robot.

Pwmn - the human probability of a miss of objects unmarked by the robot.

Pcrr — the robot probability of a correct rejection.

Pcrm — the human probability of a correct rejection of objects marked by the robot.

Pcrn — the robot probability of a correct rejection of objects unmarked by the robot.

Figure 3 represents a flowchart diagram of the target recognition process in an integrated

human-robot system. The system is serial; each object is at first analyzed by the robot and

then by the human operator. However, the robot analysis is exposed to the human operator. In

some cases the human response and the system outcome, or the system outcome by itself, can

influence the robot threshold. To simplify the development and the mathematical expression

we assume that the signal distribution is bigger than the noise distribution, pus>un and

os=on=1, and define that there is no utility or penalty for correct rejection (Vcr = 0) and miss

(Vm =0).
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Figure 3: Flowchart of the target recognition process in an integrated human-robot system.
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4.3.2 Transformation of the probability function from X to Z
It is important to describe the problem in standard deviation units in order to compare

different cases and to attain a general solution that will not suit to the specific case examined.
To describe the problem in standard deviation units rather than in actual units, the probability
functions are transformed from the actual units, X, to standard deviation units, Z. The entire
development is shown in Appendix I.

Zs —(z5)

j e 2 dz (14)

Pu(Zs)= 0

4.3.3 Expression of Z as a function of § and d’
The standard deviation unit, Z, can be expressed for the signal and noise distributions by

the likelihood ratio, B, and the distance between the means of the signal and noise
distributions, which is the sensitivity parameter, d’. The entire equation’s development is

detailed in Appendix II.

7. = In§,|3)+_'
. (15)

, () _d¢

d 2

4.3.4 Human optimal hit and false alarm probabilities in human-robot systems
The human optimal hit and false alarm probabilities according to the robot and human

sensitivities (d'r and d'n) and Zs;, are presented. The entire equation’s development is shown in
Appendix IV.
The optimal human hit and false alarm equations for an integrated human-robot system

are:

Pu, =1- = jw e ?dz (16)
el

Pen, =1—% L e 7 dz (17)
(),

Py, :1—ﬁ ) e;;de (18)



d, 2
Pea, zl_ﬁ I e?dz (19)

Where C1 and C; are auxiliary variables defined as:

. (20)
d, 2
And the robot hit and false alarm variables are:
Zs, -7?
1 roZc
pH, =1—FLG 2.dz
(21)

Zg +d', 52

pFA,:l_ﬁ [ e2dz

4.3.5 Development of optimal s for human-robot systems without operational
costs

In human-robot system there are three Bs: one robot  (Br) and two human s, the first for
the already detected objects by the robot (Brn) and the second for the undetected objects (Bn).
The entire development of the equation is shown in Appendix IlI.

The basic description of the likelihood ratio, 3, as a function of the standard deviation unit

of the signal distribution (Zs) and noise distribution (Zn) is presented in equation (22):

1
in(p)=-7 (25~ 2}) (22)
The optimal B for a single detector is given in equation (23):
B = 17Fs ZVea (Swets et al., 2000) (23)
Ps V,

Likewise, the optimal human likelihood ratio of objects already marked by the robot, B is:

* :1_Prh __VFA

24
B rh Prh VH ( )

The human target probability of objects marked by the robot, pm, IS expressed in equation
(25):

Ps - Py
P = (25)
" ps'pHr"'(l_ps)'pFAr
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Combining equations (24) and (25) implies that the optimal human likelihood ratio of
objects already marked by the robot, B*m depends in the optimal likelihood ratio in a single
detector system (B*), which depends on the payoff values and the hit and false alarm
probabilities of the robot in a human-robot system case (equation 26).

By =B O (26)
Hr
In a similar way, the optimal human likelihood ratio of objects unmarked marked by the
robot, B is:

c 1P~ Ve

27
Pr PV, (27)
Where the human target probability of objects marked by the robot, ps, is:

_ pS'(l_pHr) 28
o =Py )+ 0-pe)-Gpoy) 29

Combining equations (27) and (28) implies that the optimal human likelihood ratio of

Py

objects already marked by the robot, B*n depends on the optimal likelihood ratio in a single
detector system (B*), which depends on the payoff values and the hit and false alarm

probabilities of the robot in a human-robot system case (equation 29).

*_ *'(l_pFAr) 29
Pn=P i-p.) (29)

The hit and false alarm probabilities of the robot are determined by the Br and d’r of the

robot itself (expressed in Z of the robot).
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5 NUMERICAL COMPUTATIONS

Optimal parameters were determined by numerical computations of the objective function
without the miss and correct rejection (CR) parts. The best collaboration level and the
objective function score were calculated for each optimal case. Sensitivity analyses of the
main influencing parameters were performed to investigate the influence of small deviations
from the optimal values on the objective function score and the best collaboration level.

This chapter begins with numerical computations of the optimal cutoff ratios (Bs), based
on the system objective function, to determine the optimal human and robot parameters for
different task parameters and to determine the best collaboration level for different human,
robot, and task parameters (section 5.1). It continues with sensitivity analyses of the human,
the robot, and the independent environmental parameters and the influence of the changes in
the optimal values of the parameters on the objective function score and the best collaboration
level to reflect cases in which the human and robot performances were in the proximity of
optimum values or when the environmental parameters diverged only slightly from their
expected or calculated values (section 5.2). At the end of the chapter, the findings are

summarized and conclusions are derived (section 5.3).

5.1 Numerical computation of objective function with optimal cutoff
points

Numerical computations were performed to determine the optimal human and robot
parameters for different task parameters and to determine the best collaboration level for
different human, robot, and task parameters. An in depth analysis of a multitude of human and
robot parameter ranges for different task parameters was conducted as well and is illustrated
in Appendix VI. The numerical computations were performed on a PC with Matlab 7™. The
numerical computations were executed for several target probability conditions, Ps, human
and robot sensitivities, d'h and d'y, and payoff value ratios, Var. The optimal likelihood ratios,
Br, Pn, and B, were determined in the range between the logarithm of -4 and the logarithm of
4, in order to cover the available hit and false alarm probabilities. The system objective
function was analyzed for two cases, one including the operational cost part and one
excluding the operational cost part. The objective function that excludes operational cost
functions as the upper boundary of system performance, represents systems without any

operational cost, and shows its influence on the best collaboration level.
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The specific values were extracted from a preliminary experiment (appendix V) and were
set close to real values and consequential to the difference between the various collaboration
levels.

The difference between the HR and the HOR collaboration levels is in the time parameters
and in the operational cost part (as expressed in the system objective function equations).
Therefore, in cases where the system objective function did not include the operational cost
part, the task time has no influence on either system performance or on the optimal solution.
By removing the operational costs from the objective function the difference between these
two collaboration levels will be eliminated and we will consider them as one collaboration

level. This is denoted as the HOR collaboration level.

Task parameters

The independent parameters were arbitrarily determined. The meanings of the gain-
penalty-cost weights are that each hit is rewarded by 50 points. To examine the influence of
different false alarm to hit ratios the value of Vra was set to different values (0.1, 1, and 10)
and therefore, each false alarm carried a different penalty (5, 50 or 500 points). This
influences the task nature by inducing operators to maximize the hits or to reduce the false
alarms to minimum. The operational cost and time was arbitrarily predetermined so it will not
succeed 12% of the hit value magnitude in order to limit its influence on the system decisions.
Hence, each hit or false alarm operation costs 2 points, and, each hour of operation costs 2000
points. According to the time parameters the system can detect between 514 and 720 objects
(hits and false alarms). Therefore, the time cost of each detection varied between 2.78 points
and 3.9 points in addition to the operational costs. The total gain from a hit is between 44.1
and 45.22 points and the total penalty-cost from a false alarm is between 9.78 and 505.9
points (according to the false alarm penalty). The actual value of the gain-penalty-cost
weights was less important in the analysis than the ratio between all weights which determine
the task nature (e.g., whether it is more important to detect melons, to reduce the number of
FAs or to finish the task in minimum time). The defined independent parameters are listed in
Table 2.

5.1.1 Analysis of Ps for objective function with optimal cutoff points
In this analysis the payoff ratio was set at Var=-1 (and therefore Vra=-50). The target

probability, Ps, represents the fraction of the targets from all objects (targets and non-targets
objects), it can vary during the task, and it consider to be one of the parameters that determine

the environment type.
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Table 2: The defined independent parameters.

Parameter Value remarks

N 1000

VH 50

Var -0.1, -1, -10 and therefore Vra=-5, -50 and -500 respectively

Vcr 0

Vm 0

Ps ranged from 0.1 t0 0.9

Vc -2 Vc=0 and V=0 in analysis of the system

Vi -2000 hrt objective function where the operational cost
part is excluded

decision time, tp 5 s/object

motoric time, tm 2 s/(detected object)

robot time, tr 0.01 s/object

Robot sensitivity, dr | ranged between 0.5 and 3

Human sensitivity, d'» | ranged between 0.5 and 3

5.1.1.1 System objective function score
Obijective function including the operational cost part

For all collaboration levels, the maximum objective function score increases with the
increase in the target probability, Ps (Figure 4a and b). At the H and R collaboration levels the
maximum objective function score increases with the human and robot sensitivities,
respectively (Figure 4a and b). The largest influence of sensitivity on the objective function
score appears in the intermediate range of the target probability, though the influence of the
target probability on the score is bigger in comparison to the influence of the human or robot
sensitivity.

In the HR and the HOR collaboration levels, for all target probabilities the score of the
objective function with optimal cutoff points values, increases with the increase in human and
robot sensitivities (Figure 4c and d). The maximum score is achieved for a system with high

robot and human sensitivities.

Obijective function excluding the operational cost part

The system objective function score for all collaboration levels has the same tendency as
for the case of the objective function including the operational cost although the probability
values are higher for all sensitivities and target probabilities.

The location of the maximum objective function score in the R collaboration level is not

influenced by the operational cost.
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5.1.1.2 Best Collaboration Level
Description
The best collaboration level is that which achieves the highest objective function score for

a specific case and can be defined as:
Max{V,s(H), V,s(HOR), Vs (HR),V,(R)} (30)
The best collaboration domination zone is an area in a chosen parameter’s space for which
a specific collaboration level achieves the highest objective function score. For example,
when the target probability is 0.2 and Var=-1, each surface represents a different
collaboration level (Figure 5). The surface created from the intersection of the surfaces of all
four collaboration levels represents the highest objective function score for each human and
robot sensitivity combination. Figure 6 shows the objective function score of all four

collaboration levels in the sensitivity space (d'n and d").

The collaboration level that achieved the highest score for each d'y and d'r is defined as the
best collaboration for those combinations and can be presented in a domination map (Figure
7). A single collaboration level dominates each colored zone. In the present case, each of the
three collaboration levels (H, HR and HO-R) achieves its best score in different zones. This
example indicates that for the same task the best collaboration could be changed from one
collaboration level to another, and that there are tasks for which the manual collaboration
level, H, is never the best collaboration level. Different task objectives and different system

objective function properties will produce different best collaboration maps.

Obijective function including operational costs

Figure 8 shows a best collaboration level map of the optimal objective function score
cases for different human and robot sensitivities, d'n and d'r and different target probabilities,
Ps. A single collaboration level dominates each zone. This figure presents the collaboration
level required to achieve the best system performance.

For all target probabilities related to the sensitivities analyzed, the H collaboration level is
never the best collaboration level probably due to its high operational cost and relatively low
hit rate. Thus, human-robot collaboration for target recognition tasks will always surpass the

optimal performance of a single human detector.
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Figure 4: System objective function optimal score for different human and robot sensitivities and different target probabilities of the four collaboration levels: a) H, b) R,

¢) HR, and d) HOR. Each of the subfigures contain a family of isobar curves of the objective function score. Each family corresponds to a different collaboration level.
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Figure 5: Objective function score for different human and robot sensitivities of the four collaboration levels. H
— blue, HR - cyan, HOR yellow and R — red.

Vi
s

Figure 6: Maximum objective function score for different human and robot sensitivities and for all four

collaboration levels combined.

The R collaboration level is the best collaboration level when robot sensitivity is higher than
human sensitivity. For instances of extremely high and low target probabilities, R is again the best
collaboration level for the entire sensitivity space excluding a small area where human sensitivity is
high and robot sensitivity is low. Compared with other collaboration levels, the R collaboration
level’s operational cost is relatively low since task time is small and constant. When robot
sensitivities are high, R achieves higher hit rates and therefore results in higher scores than other

collaboration levels. In high target probabilities, the system marks large numbers of objects,
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therefore the operational cost in the H, HR and HOR collaboration levels is high indicating that R is
the best collaboration level in most of the sensitivity space. Similarly, in low target probabilities the
operational cost of H, HR and HOR collaboration levels is high due to the large number of false
alarms and the task times. Only when human sensitivity increases, it reduces the operational cost
and with the decrease in robot sensitivity the hit rate of the R collaboration level is decreased. This

causes the R collaboration level to be inferior to the other collaboration levels.

0'%.5 1 15 2 25 3
dl

r

Figure 7: Best collaboration level map for different human and robot sensitivities. The colors represent different
collaboration levels: HR — cyan, HOR - yellow and R — red.

The HR is the best collaboration level only when both target probability and robot sensitivity
are low and human sensitivity is high, since for low target probabilities the operational cost of the
HR is lower than that for the HOR collaboration level.

The HOR is the best collaboration level for the areas not dominated by the R collaboration level
where the human sensitivity is high and the robot sensitivity is low.

A comparison between the HR and the HOR collaboration levels indicates that at low target
probabilities where robot sensitivity is low and human sensitivity is high, the HR collaboration level
performs better. In these cases the robot produced a relatively high number of false alarms that
increase the task time needed for the human in time spent unmarking the false alarms in the HOR
collaboration level. For high target probabilities, the HOR collaboration level shows better
performance since the robot produced a relatively high number of hits thus increasing the task time

for remarking them by the human in the HR collaboration level.
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Figure 8: Best collaboration level map for different Ps, d'r and d'n values. Each subfigure presents a map for
different target probability. The colors represent different collaboration levels: HR —cyan, HOR yellow and R —

red.

Figure 9 describes an "envelope performance™ of the given system. The "envelope performance”
describes the highest achievable objective function score for specific d'» and d'r values and a specific
target probability value, and acts as an upper boundary for system performance.

The system objective function behaves in each zone for which a collaboration level is optimal as
the objective function of the collaboration level in that zone. It increases with the increase in the
target probability, Ps, for the entire sensitivity space. For all target probabilities the score increases
with the increase in robot sensitivity. Furthermore, the score increases with increases in human
sensitivity in the zones where the best collaboration level is HR or HOR. The maximum score is
achieved for a system with high robot sensitivity.

The system’s overall sensitivity in each zone for which a collaboration level is optimal is the
sensitivity of the collaboration level that is the best in that zone (Figure 10a). The overall system
sensitivity is equal to the robot sensitivity whereas the best collaboration is the R collaboration
level. For areas where the best collaboration level is HR or HOR, system sensitivity decreases with
the increase in target probability. However, the overall system sensitivity is always higher than the

robot sensitivity. The system sensitivity in the HOR collaboration level is lower than in the HR
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collaboration level for the same human and robot sensitivities even for zones where the HOR is the
best collaboration level. Nevertheless, for these sensitivities the HOR collaboration level achieves
the highest score.
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Figure 9: System objective function score of the best collaboration level for different Ps, d'r and d'n values. Each

subfigure presents a map for different target probability. The contour lines represent equal score areas.

In each zone for which a collaboration level is optimal, the system likelihood ratio, s, functions
as the overall likelihood ratio of the collaboration level which is the best in that zone (Figure 11a).
The system likelihood ratio is equal to the robot likelihood ratio, Br, whereas the best collaboration
level is the R collaboration level. The system likelihood ratio decreases with the increase in target
probability. For the area in the sensitivity space dominated by either the HR or HOR collaboration
level, the value of the system overall likelihood ratio is always lower than the value of the robot
likelihood ratio. s in the HOR collaboration level is lower than in the HR collaboration level for the
same human and robot sensitivities.

When the best collaboration level is either HR or HOR, the likelihood ratio’s value is relatively
close to that of the R collaboration level. It seems that in order to obtain optimal performance in a
human robot collaboration system, the value of the system likelihood ratio for the HR or HOR
collaboration level has to be similar to that of the robot likelihood ratio for the R collaboration level.
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Obijective function excluding operational costs

For the entire sensitivity space and for all target probabilities the HOR collaboration level is the
best collaboration level for the objective function excluding the operational cost variable. The
objective function scores of the H and R collaboration levels are equal to each other for matched
human to robot sensitivities due to the absence of the operational cost. The HOR collaboration level
combines all three collaboration levels. By increasing the value of the likelihood ratio of the robot,
Br, it reduces the robot’s involvement in the task, thus making it similar to the H collaboration level.
By increasing both values of the human likelihood ratio, Brh and PBn, it reduces human involvement
in the task becoming more similar to the R collaboration level. In addition, the combination of both
human and robot in the HOR collaboration level increases the sensitivity in most cases while
increasing the probability of a hit and reducing the probability of false alarms.

The influence of robot sensitivity (d'y) on overall system sensitivity is reduced with the increase
in the target probability (Figure 10b). Although system sensitivity increases with the increase in
robot sensitivity for all target probabilities, at low target probabilities an increase in human
sensitivity has a local minimum phenomenon that occurs when robot sensitivity is low. The overall
system sensitivity will always be higher than the human sensitivity.

The overall likelihood ratio, Bs, of the system decreases with the increase in the target
probability and its values are lower than in the case that includes the operational cost (Figure 11b).
Lower values of Bs indicate increases in the hit and false alarm rates. Elimination of the operational
cost reduces the overall system cost, which enables the system to mark more false alarms and more

hits, thereby resulting in an increase of the system objective function score.

5.1.2 Analysis of payoff ratio for the optimal system objective function
Task parameters

Var is one of the independent parameters determining the task, different Var values represent

different task types.

5.1.2.1 System objective function score
An increase in the Var value increases the penalty of each false alarm and reduces the objective

function value at all collaboration levels. At the H collaboration level an increase in the Var
reduces the influence of the human sensitivity parameter on the objective function score. At the R
collaboration level, with the increase in the Var the influence of robot sensitivity on the objective

function score increases.
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5.1.2.2 Best collaboration level
How target probability influences the best collaboration level depends on the payoff ratio value.

For low values of Var, target probability has no influence on the best collaboration level. The best
collaboration level for the entire sensitivity space is the R collaboration level for all target
probabilities.

For high payoff ratios, the area in the sensitivity space in which the R is the best collaboration
level decreases with the increase in target probability. The area in which the HOR or the HR is the
best collaboration level increases with the increase in the target probability.

For payoff ratios equal to one, R is always the best collaboration level in the areas where the
robot sensitivity is higher than the human sensitivity. At extremely high and low target
probabilities, R is the best collaboration level for the entire sensitivity space. The area in which
HOR or HR is the best collaboration level is reaching maximum size when the target probability

equals 0.5.

5.1.3 Analysis of human and robot sensitivities for the optimal objective function
The human and robot sensitivities, d'y and d'r, respectively, indicate the ability to distinguish

between true targets (signal) and false targets (noise). An increase in sensitivity will enhance the
discrimination between true and false targets. An increase in human and robot sensitivities will
increase the system objective function score for all collaboration levels. The best collaboration will
shift to R with the increase in the robot sensitivity. The best collaboration will shift to HR or HOR
with the increase in human sensitivity. R, at which robot sensitivity is higher than the human

sensitivity, will be the best collaboration level.
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5.2 Sensitivity analysis

Sensitivity analyses were performed for the human, the robot, and the independent
environmental parameters since the precise values are unknown and they can vary during task
performance and. The influence of the changes in the optimal values of the parameters on the
objective function score and the best collaboration level were analyzed to reflect cases in
which the human and robot performances were in the proximity of optimum values or that the
environmental parameters diverged only slightly from their expected or calculated values. The
parameters analyzed were the human likelihood ratios, Brh and Bn, human sensitivity, d', the
robot likelihood ratio, Br, the robot sensitivity, d'y, and the target probability, Ps. The payoff
ratio, Var, the time cost, the operational cost, and the hit rewards were not sensitivity
analyzed since the parameters are fixed during the entire task.

5.2.1 Sensitivity analysis of Br, Bn, and Prn
The value of the logarithm of the different robot and human likelihood ratios, Br, Br, and

Brh, ranged between -4 and +4. A sensitivity analysis was performed on the optimal values of
Br, Bn, and P in terms of the best collaboration level. The sensitivity analysis investigated the
influence of deflections of £1 in the logarithm of the optimal value of the likelihood ratio (set
to b equal to one quarter of the entire range).

For cases in which the best collaboration level was R, the objective function score
decreases with changes in the optimal robot likelihood ratio, Br. The magnitude of the
decrease in the score is influenced by target probability; the decrease reaches its maximum
when the target probability is equal to 0.5. In addition, the magnitude of the score decrease is
reduced with the increase in the robot and human sensitivities. The maximum decrease in the
score was achieved when the robot and human sensitivities were equal to 1. The maximum
decrease reaches 40% for maximum determined deviation and a target probability of 0.5. In
all cases, the score of the R collaboration level was higher than each of the scores of the other
collaboration levels.

The values of the human payoff ratios, Bn and Brh, do not influence the objective function
score of the R collaboration level. Although they do influence the objective function scores of
all other collaboration levels, their score do not exceed the R collaboration score and the best
collaboration level does not change. This is true for all human and robot sensitivities; all

target probabilities, and all payoff ratios. An example is given in Figure 12.
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Figure 12: An example for the influence of small deviations from the optimal values of (a) prn, (b) pn and
(¢) Br when R is the best collaboration level on the objective function score and Ps=0.5, d'r=2 and d'n=1. the

colors represents the different collaboration levels: H — blue, HR — cyan, HOR yellow and R — red.

When the best collaboration level was HR, deviation from the optimal values of Br by up
to 1 lowers the objective function score by about 30%. The objective function score of the HR
collaboration level will never decrease beneath the corresponding score of the H and R
collaboration levels for the same likelihood ratio values within the pre-determined deviation
boundaries. However, with the increase in the target probability, an increase in the value of fr
will reduce the HR collaboration level score to a value lower than that of the HOR
collaboration level, thereby shifting the best collaboration level from HR to HOR (Figure 13).

A deviation in By from the optimal value reduces the objective function score by up to 7%
within the pre-determined deviation boundaries. The magnitude of the decreased score grows
with the increase in target probability and the decrease in human sensitivity. Within the pre-
determined deviation boundaries and for the same likelihood ratio values, the score of the HR
collaboration level will never decrease to values lower than those of the other collaboration
levels.

A deviation in Bn from the optimal value reduces the objective function score by not more
than 2% within the pre-determined deviation boundaries. Likewise, when the score of the HR
collaboration level is within the pre-determined deviation boundaries it will never decrease to
a score that is lower than those of the other collaboration levels for the same likelihood ratio

values.
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Figure 13: An example for the influence of small deflections in the optimal values of (a) Brn, (b) pn and (c)
Br when HR is the best collaboration level and it objective function score and Ps=0.2, d'r=1 and d'n=2. The

colors represent the different collaboration levels: H — blue, HR — cyan, HOR yellow and R - red.

Under conditions in which the best collaboration level is HOR, a deviation from the
optimal Br values by up to 1 decreases the objective function score by up to 37%. The
magnitude of this reduction reaches its maximum when the target probability is 0.5, but it will
decrease with the increase in robot sensitivity. Within the pre-determined deviation
boundaries and for the same likelihood ratio values, the HOR collaboration level’s objective
function score will never decrease beneath that of either the H or R collaboration levels.
However, for target probabilities lower than 0.5, a decrease in the value of Br will lower the
score of HOR to beneath that of the HR collaboration level, thus shifting the best
collaboration level from HOR to HR. In some cases this phenomenon occurs within the pre-
determined deviation boundaries (Figure 14).

Deviations in fBrn from the optimal value will decrease the objective function score by up
to 5% within the pre-determined deviation boundaries. The magnitude of the score decreases
when target probability, human sensitivity, and robot sensitivity are all increasing. In terms of
the pre-determined deviation boundaries, the score of the HOR collaboration level will never
decrease beneath those of the H and HR collaboration levels for the same likelihood ratio

values. When the value of B exceeds the upper deviation boundary, however, the score of
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HOR will decrease to values beneath that of HR. When the human and robot sensitivities are
equal to 2, a deviation in the optimal value of Brh Will reduce the HOR score relative to the
score for R and will shift the best collaboration level from HOR to R.
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Figure 14: An example for the influence of small deflections in the optimal values of (a) Brn, (b) pn and (c)
Br when HOR is the best collaboration level and it objective function score and Ps=0.5, d'r=2 and d'n=2.

The colors represent the different collaboration levels: H — blue, HR — cyan, HOR yellow and R — red.

Deviations in pn from the optimal value will decrease the objective function score by up to
4% within the pre-determined deviation boundaries. The magnitude of the decreased score
grows with increases in the target probability while it shrinks when human and robot
sensitivities are increasing. In the pre-determined deviation boundaries, the score of the HOR
collaboration level will never decrease beneath the scores of the H and HR collaboration
levels for the same likelihood ratio values. When the human and robot sensitivities are equal
to 2, a deviation of the optimal value of Bn will decrease the HOR score to beneath the R score
and will shift the best collaboration level from HOR to R.

The sensitivity analysis on the optimal likelihood ratios, Br, Bn, and P in terms of the best
collaboration level showed, as expected, that deviations in the optimal values can decrease the
objective function score of the best collaboration level, and in some cases they can even cause
a shift from one collaboration level to another. The shift will be to the adjacent level.

For the cases examined in the sensitivity analysis of d'r and d'n, H collaboration level was

never the best collaboration level.
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5.2.2 Sensitivity analysis of d'r and d'n
The robot and human sensitivities, d'+ and d', ranged between 0.5 and 3. Sensitivity

analyses were performed on the optimal values of Br, Bn, and Prh in terms of the best
collaboration level. The sensitivity analyses investigated the influence on the objective
function score and the best collaboration level of deflections in the sensitivity value of +£0.25
and £1.

The objective function scores of the R, HR, and HOR collaboration levels increase with
the increase in robot sensitivity. The H collaboration level, however, is not influenced by
robot sensitivity.

In instances when R is the best collaboration level, the objective function score did not
decrease to values lower than the scores of all other collaboration levels for the smallest and
the largest robot sensitivity values. For intermediate target probability values and robot
sensitivities equal to human sensitivities, the objective function score of the R collaboration
level decreases to levels lower than at least one other collaboration level for small decreases
in the robot sensitivity. In those cases the HOR collaboration level achieves the highest score.
For low robot sensitivity equal to 1, small changes in robot sensitivity will change the
objective function score by up to 18%. The highest change in the score occurs for a target
probability of 0.5. When robot sensitivity is high, i.e., equal to 3, small changes in robot
sensitivity will change the objective function score by up to 26%. The smallest change in the
objective function scores, then, is obtained for a target probability of 0.5.

Under conditions when HR is the best collaboration level small changes in robot
sensitivity did not reduce the objective function score to values lower than the scores of all
other collaboration levels. In some cases, increases in robot sensitivity cause the HOR
collaboration level score to exceed that of the HR collaboration level, resulting in a shift of
the best collaboration level to HOR. For small changes in the robot sensitivity, the objective
function score of the HR collaboration level changes by up to 18%.

For cases in which the best collaboration level is HOR, its objective function score did not
decrease to beneath the scores of either the H or HR collaboration levels for small or major
changes in the robot sensitivity. Increases in the robot sensitivity will decrease the difference
between the objective function scores of the HOR and the R collaboration levels.

For major changes in robot sensitivity, the objective function score of the R collaboration
level exceeds that of the HOR collaboration level for cases where the initial difference
between the robot and human sensitivities was 1 or less and the best collaboration level will
shift to R. For small changes in robot sensitivity, the objective function score was changed by
up to 18%.
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The sensitivity analysis performed on d'r indicated that changes in robot sensitivity may
shift the best collaboration level from one to another; the shift is to the adjacent/next
collaboration level.

The objective function scores of H, HR, and HOR collaboration levels increase with
increases in human sensitivity. The R collaboration level is not influenced by the human
sensitivity.

For cases in which R is the best collaboration level, the objective function score remains
above the scores of all other collaboration levels for small and major decreases in human
sensitivity. For intermediate target probability values and for robot sensitivities equal to
human sensitivities, the objective function score of the R collaboration level dips below the
score of at least one other collaboration level for small increases in human sensitivity. In this
case the collaboration level achieving the highest score is HOR.

For cases in which the best collaboration level is HR, the objective function scores remain
above the scores of all other collaboration levels for both minor and major changes in the
human sensitivity.

For cases in which the best collaboration level is HOR, the objective function score stays
above the scores of both the H and HR collaboration levels for small or major changes in
human sensitivity. Decreases in the human sensitivity produce corresponding decreases in the
difference between the objective function scores of the HOR and the R collaboration levels.

For intermediate target probability values and robot sensitivity equal to human sensitivity,
the objective function score of the R collaboration level exceeds the score of the HOR
collaboration level for small decreases in human sensitivity.

The sensitivity analysis on d'n revealed that changes in the human sensitivity values can
shift the best collaboration level from one to another; the shift will be between adjacent/next
collaboration levels.

For the cases examined in the sensitivity analysis of d'r and d', the H collaboration level

never ranks as the best collaboration level.

5.2.3 Sensitivity analysis of target probability, Ps
The target probability Ps ranged between 0.1 and 0.9. The sensitivity analysis was

performed on the optimal values of Br, Bn, and B and evaluated the influence of +0.1
deflections on the objective function score and on the best collaboration level.
The objective function score of all four collaboration levels increases with the increase in

target probability.
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When R is the best collaboration level, the objective function score remains above the
scores of the H and HR collaboration levels for small changes in the target probability.

In some cases where the human sensitivity is equal to or higher than the robot sensitivity,
the objective function score of the R collaboration level decreases beneath the score of the
HOR collaboration level for small changes in the target probability. In those cases the HOR
collaboration level achieves the highest score.

When the best collaboration level is HR, even small decreases in the target probability
reduce the objective function score of the HR collaboration level to a value below that of the
H score. A major increase in the target probability, however, reduces the objective function
score of the HR collaboration level to a value less than that of the HOR score.

When the best collaboration level is HOR the objective function score remains above the
score of the R collaboration level for minor and major changes in the robot sensitivity. When
target probability is low, the objective function score of the HR collaboration level exceeds
that of the HOR collaboration level for small decreases in the target probability and the best
collaboration level will then shift to HR. In some cases where the target probability is
intermediate or high, the objective function score in the HOR collaboration level is reduced to
a level below the score for H for major decreases in the target probability.

Sensitivity analysis on target probability shows that changes in the human sensitivity may
cause shifts in the best collaboration level, although not necessarily between adjacent/next

collaboration levels.

5.3 Summary and conclusions

When increases in target probability, the number of targets increased and the number of
non-target objects decreased, the system is influenced less by false alarms and therefore, the
probabilities of both hit and of false alarms increase. The likelihood ratios, Br, Bn and P
decrease, the operational cost increases, and the objective function score increases.

For all collaboration levels the highest objective function score increases with the increase
in human and robot sensitivities.

When the objective function includes operational costs, HR collaboration performs better
than HOR when the target probability is low and the robot sensitivity is low. In these cases
the number of robot false alarms is high relative to the number of robot hits and in the HOR
collaboration level the human requires more time to correct the robot false alarms than to
confirm the robot hits. Therefore, in the HOR collaboration level the task time and the

operational cost increase and the objective function score decreases.
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The H collaboration level is never the best collaboration level probably due to its high
operational cost and low hit rate relative to the other collaboration levels. Thus, the
collaboration of human and robot in target recognition tasks will always improve the optimal
performance of a single human detector .

When robot sensitivities are higher than human sensitivities the best collaboration level is
R. At the best collaboration level, the system likelihood ratio and the system sensitivity both
decrease while the target probability increases. Moreover, the system sensitivity is never less
than the robot sensitivity.

Elimination of operational costs from the objective function will unite the HR and HOR
into one collaboration level, since the only differences between the HR and the HOR
collaboration level as expressed in the system objective function are in the time parameters
and the operational costs. The objective function score increases. The best collaboration level
for the objective function excluding the operational costs will be the HOR collaboration level
for the entire sensitivity space and for all target probabilities. The combination of both human
and robot in the HOR collaboration level increases the sensitivity in most cases and increases
the probability of a hit while reducing the probability of false alarms. The system sensitivity
for the objective function excluding the operational costs is lower than in the case of the
objective function including the operational costs for all target probabilities except for high
target probability with high human sensitivity and low robot sensitivity. The overall system
sensitivity will always be higher than the human sensitivity.

The sensitivity analysis on the optimal values of the robot and human likelihood ratios, p,
Bn, and B, Of the best collaboration levels showed that any change in either direction in the
optimal values will decrease the objective function score of the best collaboration level. In
some cases, small changes in the optimal values of the likelihood ratios will cause a shift from
a collaboration level to the one adjacent to it, except in the case of R, which remains the best
collaboration level even for major changes in the optimal values (i.e., HR «<» HOR — R). The
sensitivity analysis of d'r shows that small, positive changes in robot sensitivity will increase
the objective function score of the best collaboration level and will diminish the differences
between the best collaboration level and the adjacent and more autonomous collaboration
level. In some cases changes in robot sensitivity may cause the best collaboration level to shift
to an adjacent level; however for collaboration levels involving a human, the shift will occur
only in one direction, to the more autonomous collaboration level (i.e., HR - HOR < R).

The sensitivity analysis on d'n reveals that small positive changes in human sensitivity
increase the objective function score of the best collaboration level unless it is R. In some

cases, changes in human sensitivity may cause the best collaboration level to shift to an
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adjacent level; however, this occurs between the two highest autonomous levels only, HOR
and R (i.e., HR ; HOR < R).

The best collaboration level is never H and the shift to H will never occur when the
optimal values of B, Bn, Prn, d'r, and d'x can change.

A sensitivity analysis on target probability shows that an increase in the target probability
can increase the objective function score of the best collaboration level. In some cases,
changes in the target probability may shift the best collaboration level from one definition to
another; however, the HOR collaboration level can shift directly to the H.

(i.e., HO<~HR <<>HOR « R).
|

The sensitivity analysis showed that small changes in the optimal values of the analyzed
parameters can cause shifts in the best collaboration level from one to another. Changes in the
different parameters can also have different influence on the system stability. An algorithm
that will account for system stability and the influence of small changes in the parameters can
increase the system performance in real cases where the parameters are drifting around the

optimal values. These findings are beyond the scope of this current framework.
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6 MELON DETECTION EXPERIMENT

This chapter starts with the description of the apparatus, design and procedure of the
melon detection experiment that was conducted. It continues with an extensive presentation of

the findings.

6.1 General

An experimental system was developed to test and examine different human-robot
collaboration levels for a specific target detection task in an agricultural environment. The
experiment consists of a series of images taken in a standard melon field in which the
participants were asked to identify melons in the field. The melons were partially covered by
leaves and had different colors and sizes.

The goals of the experiment are to determine the hit and false alarm rates of the human
and the system for different task objectives, collaboration levels, complexity levels, and robot
hit and false alarm rates.

The experiment focuses on the detection part; the picking part is not addressed and we do

not consider its practical aspects.

Experiment assumptions

Robot detection performance measures are not influenced by the image complexity level,
the collaboration level, or by the human and system performances, and therefore, remain

constant during the experiment.

Experiment hypotheses

1. When dealing with human-robot collaboration, several factors influence human
performance, including image complexity, collaboration level, objective function payoffs, and
the robot’s performance.

2. The factors influencing system performance are image complexity, collaboration level,
objective function weights, robot performance and human performance.

3. Collaboration between human and robot can better improve system performance relative

to human or robot performance measures alone.

6.2 Apparatus and design
Participants
120 IEM undergraduate students participated in the experiment. The participants were
assigned randomly to 10 groups with 12 students in each group. Motivation for high
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performance was encouraged through the promise of a monetary award (up to 100 NIS) to

10% of the participants.

Database

Melon images in the field were taken by a video camera mounted on a robotic melon
harvester (Figure 15; Edan 1995) moving along a melon row in various illumination
conditions. Images were shown on the screen as seen from a camera mounted vertically on the
vehicle, facing the ground in the middle of the row. From the video file, single images were
manually selected. The images were viewed by a panel of three experts and were classified
into three levels of complexities: low, intermediate, and high. The image complexity
represents the difficulty level of detecting targets in the image. The location of true targets in
each image was identified and saved in a targets database. The image resolution was 640X480

pixels and each pixel represents an area of 4 mm?2,

o >
s - L

Figure 15: Robotic melon harvester (Edan, 1995).

Design
The experimental system consists: i) mouse MMI (man-machine interface) in order to run

the experiment on 15 participants at a time in a computer classroom; ii) PC; iii) a program
written in Matlab to simulate a working station for target detection in an unstructured
environment; and, iv) a database of melon images taken in the field.

In each session participants from all experimental groups (Table 3) were tested, and were
seated randomly in the classroom. The participants were divided into ten groups, each of
which was given one of two objective function weights (represented by the reward system),
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one of two different robot detection performance qualities (high and low), and one of three
collaboration levels (H, HR, HOR) as shown in Table 3. The objective function weights of
groups 1,3,4,7,8 were to achieve minimum false alarms, defined as Vy=3 corresponding to the
weight of a single hit and Vea=-7 corresponding to the weight of a single false alarm. The
objective function weights of groups 2, 5, 6, 9, 10 were to achieve maximum hits, defined as
Vu=7 and Vra=-3. These values of Vi and Vra were selected in order for the participant to
understand the importance of the reward. The ratio was a little higher than 2. If the ratio
would have been higher, the participants would have tend to disregard the FA influence in the
maximum hit reward system or disregard the hit influence in the minimum FA reward system.
The values in two cases of the reward system examined were opposite one to another, to
create a symmetric response by the participants and the sum of the magnitude of both V4 and
VEa values is 10.

There was no time limit for any of the experimental groups and the participants were not
rewarded for their detection time (V=0). The specific values of the robot hit and false alarm
rates were chosen so as to examine two different robot qualities.

A target was defined as any yellow or orange melon and the participants' task were to

mark all the targets in the images,

Table 3: The experimental groups.

Participants 1D Robot

Group no. Collaboration level Reward system quality

o H | HOR HR Minimize FA | Maximize Hit | high | low

1 10-19,1001,1002 X X

2 20-29,2001,2002 X X

3 30-39,3001,3002 X X X

4 40-49,4001,4002 X X X

5 50-59,5001,5002 X X X

6 60-69,6001,6002 X X X

7 70-79,7001,7002 X X X

8 80-89,8001,8002 X X X

9 90-99,9001,9002 X X X

10 100-111 X X X
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Each group viewed 180 images. The images were divided a-priori into three complexity
levels: low, intermediate and high, with 60 images in each complexity level. In each image
the number of targets varied between zero and four.

The total number of hits and false alarm targets marked by the robot was equal for the low
and high robot qualities and in all groups. The total number of targets in each experiment was
235. The 'high quality' robot detected 212 targets (90% hit rate) and 11 false alarms, for a total
of 223 marks. The 'low quality' robot detected 118 targets (50% hit rate) and 105 false alarms,
for a total of 223 marks. Therefore, in both conditions participants received 223 indications of
possible targets. In the experiment, the robot did not perform image processing but the
computer picked targets and non-target objects (marked as false alarms) from the database,
simulating the robot operation.

All participants received written instructions in which they were informed of the task
objective and the reward system payoffs. The participants were not informed of the differing
complexity levels or of the robot’s quality. The participants were told that the robot detections
are not totally reliable. Before the experiment, the participant practiced on a tutorial software
for 5 images with “unlimited” time. During the experiment the activities of the human
operator, the objects marked, and the time of each action were automatically recorded.
Performance measures were calculated from the recorded raw data. The participants received
feedback on their performance during the experiment after each image.

The images were arranged in three statistical blocks, numbered 1, 2 and 3, with 60 images
in each block. The order of the blocks was identical for all groups and participants. The
images within each block were displayed in random order for each group and each subject.
The blocks were arrange so in order to examine if there can be a learning effect.

The controls of the experiment were the H collaboration level groups and the R
collaboration level. The independent variables within each experimental group were:

1) image complexity level, defined as low, intermediate, and high.
2) block order.

The independent variables between the groups were:

1) The objective function weights (reward system): Vu, Vra. The task objective weights are
constant and fixed within each group during the entire experiment.

2) Collaboration levels: H, HOR, and HR. The collaboration level is constant and fixed
within each group during the entire experiment.

3) Robot quality: high - prr= 0.9, Fra= 11, low - pur = 0.5, Fra = 105. The robot quality is
constant and fixed within each group during the entire experiment.
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In an integrated human-robot system, such as the one investigated here, the measured and
calculated variables can be divided into three groups: robot variables, which are part of the
independent variables in the experiment and were predetermined; the human variables; and,
the system variables, which are parameters that reflect the system as a whole. Both human
and system variables are dependant variables in the experiment.

i.  system hit rate (ps);

Ii.  system average false alarms (pFAS);

iii.  human hit rate of targets that the robot didn’t mark(pHh);

iv. human average false alarm of objects that the robot did not mark(pFAh);

v.  human hit rate of targets marked by the robot (pHrh);

vi. human false alarm rate of objects marked by the robot (pFArh);

vii. average image time;

viii. system objective function score (point accumulated, VIs).

6.3 Procedure

The experimental procedure was identical for all participants:

1) A group of approximately 15 participants from different experiment groups entered the
room in which the experiment was conducted. Each participant was seated in front of one
computer. The system was demonstrated and the objective of the experiment, the
experimental procedure, and the experimental facilities were explained.

2) A short interview was conducted to collect information on the participant’s background,
occupation, eyesight, and other relevant data for the experiment.

3) The participant adjusted the screen and the chair for his or her convenience according to
his or her physical dimensions.

4) The experimenter described the experiment to the participants, demonstrated what is
considered to be a target, a robot hit, and a false alarm, and demonstrated how to work with
the experimental system.

5) The participants activated a familiarization program of five images in order to provide
some practice. The experimenter explained that this is a familiarization program of five
images and guided and supervised the participant during the trial.

6) After the familiarization, the experimenter ran the experimental program and did not
interfere during the experiment. The experiment consisted of 180 images. All system

parameters and the participant’s actions were automatically recorded during the experiment.
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An example of the experimental screen is shown in Figure 16. The image was displayed in the
middle of the screen. Objects in the image could appear in four states: 1) unrecognized and
therefore unmarked, 2) object is recommended by the robot to be a target denoted by a red
frame around the object, 3) the object is marked and acquired as a target by the robot or the
human, denoted by a red frame and a black cross. The human can move the mouse to a spot
on the image and click on it to: i) acquire a new target, ii) acquire a target already
recommended by the robot, iii) eliminate a target that was acquired by the robot or by the
human. When done, in order to continue to the next image in the block, the human clicks on
the “next” button on the left side of the screen. The participant can only scroll through the

images.

<) Figure No. 2 _]_l- jm] 5'

File Edit Y¥iew Insert Tools Window Help

NEXT

Figure 16: An example for the display during the experiment.

Between the images, the participants received information about their current performance
(Figure 17). The information includes the current objective function score (score), the last
image number of hits (Detections), the last image number of false alarms (False) and the last
image number of missed targets (Misses).

7) At the end of the experiment, the computer showed the score the participant achieved
during the experiment and filled out a questionnaire about the completed experiment.
8) After the participant left the room the experimenter prepared the experimental system for

the next participant.
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Figure 17: Information windows between images.

6.4 Results

6.4.1 General
Statistical analysis of the experimental results included: analysis of the system

performance and analysis of the human performance. System performance analysis includes
hits, false alarms, time, and score of the objective function. Human performance analysis is
done on human hits and false alarms of objects already marked by the robot, human hits and
false alarms of objects that were not marked by the robot, and human sensitivity. Analyses
examined the influence of the block, the image complexity, the reward, the level of
cooperation, and the robot quality on the system and human performances. Statistical
analyses, comprising repeated measures analysis of variance, Fisher LSD post-hoc
comparison, and general linear model of univariate tests of significance, were all performed
with Statistica™ 7 on a personal computer.

The results are arranged as follows: each dependent variable is presented and discussed
separately, at first the general findings and a table of “the repeated measures analysis of
variance" is given followed by analyses of the main findings. The first part of the results
(section 6.4.2) deals with system performance and includes system detection performance
(section 6.4.2.1), analysis of system hit (pns, section 6.4.2.1.1), analysis of system false alarm
(section 6.4.2.1.2), analysis of the system operation time (section 6.4.2.2), points accumulated
(objective function sore section 6.4.2.2) and conclusions from the system performance part
(section 6.4.2.4). The second part (section 6.4.3) deals with human performance. It includes
analysis of: prm (section 6.4.3.1), pun (section 6.4.3.2), prarh (Section 6.4.3.3), human false
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alarms that the robot did not mark, Fran (section 6.4.3.4), d'h calculated based on pnrh and
Prarh (Section 6.4.3.5) and conclusions (section 6.4.3.6). in addition in appendix XI1I Analysis

of B for objects that were marked by the robot are presented.

6.4.2 System efficiency for different levels of automation and different stimulus
complexities

6.4.2.1 Detection Performance

6.4.2.1.1 Analysis of System hit as a function of level of cooperation, block, image
complexity, robot performance, reward.

The experiment included two groups of H collaboration levels, one for each reward type,
and four groups of the HR and HOR collaboration levels, two for the reward types and two
for the robot quality levels. To perform the statistical analyses for all collaboration levels, the
robot quality variable and level of cooperation variables were rescaled into one group variable
with 5 levels (H, HOR-high, HOR-low, HR-high, HR-low) named NewGroup. Analysis of
each performance measure was executed in two stages, the first, an analysis on the
NewGroup, the second an analysis of the collaboration levels excluding the H collaboration
level groups. In this analysis, the collaboration level and the robot quality were independent

variables.

6.4.2.1.1.1 Analysis with groups as the independent variable (combining all levels of
cooperation).

Statistical analysis of the system hits as a function of the reward and the experimental

group on all images showed that the reward and the NewGroup had significant effects (Table

4).
Table 4: The repeated measures analysis of variance results.
DoF MS F p

{1}Rewards 1,110 0.134 4.63 0.034
{2}NewGroup 4,110 0.150 5.18 0.001
Rewards*NewGroup 4,100 0.016 0.54 N.S.
{3}BLOCK 2,220 0.135 17.22 0.000
BLOCK*Rewards 2,220 0.008 0.99 N.S.
BLOCK*NewGroup 8, 220 0.005 0.66 N.S.
BLOCK*Rewards*NewGroup 8,220 0.010 1.27 N.S.
{4}COMPLEXITY 2,220 1.564 232.12 0.000
COMPLEXITY*Rewards 2,220 0.000 0.01 N.S.
COMPLEXITY*NewGroup 8, 220 0.013 1.98 0.050
COMPLEXITY*Rewards*NewGroup 8, 220 0.011 1.60 N.S.
BLOCK*COMPLEXITY 4,440 0.069 19.45 0.000
BLOCK*COMPLEXITY*Rewards 4,440 0.002 0.52 N.S.
BLOCK*COMPLEXITY*NewGroup 16, 440 0.005 1.38 N.S.
3*4*1*2 16, 440 0.003 0.77 N.S.
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The reward system had a significant effect. Overall the hit probability was smaller (.88)
when the aim was to minimize false alarms, compared to when the aim was to maximize hits
(.91). Thus, people seemed to have considered the reward structure and increased their
tendency to detect targets if they were rewarded for detection.

The experimental group also had a significant effect. The mean results and the results of
post-hoc comparisons between the five groups are shown in Table 5 for the system hit values.
The difference between the control H group and the HOR group with high robot quality was
marginally significant (p<.1). A significant difference exists in system performance between

low levels of automation (HO-R) with a 'low quality’ robot and the other groups.

Table 5: Post-hoc comparisons between the five Newgroups.

HO HOR-high HR-high HOR-low HR-low
system hit rate 0.898 0.926 0.912 0.897 0.855
HR-low 0.010 0.000 0.001 0.013

There was a significant effect of the level of complexity. Hit rates were highest when
stimuli had low complexity (.97), somewhat lower with intermediate complexity (.89) and
lowest with high complexity stimuli (.83).

There was a significant difference between the blocks; the hit rates in the first block (.89)
and the second block (.88) were similar but not significant. The difference between the last
block (.92) and the prior two blocks was highly significant (p<.001). This can be explained by
the significant Block*Complexity interaction (Figure 18). Apparently in the high complex
images the stimuli in block 2 were more difficult, and lead to lower hit rates than the high
complex stimuli in the other blocks. There was no significant difference between the blocks in
the low complex stimuli (Table 6), Also, there was no significant difference between blocks 1
and 2 in the intermediate complex stimuli.

Complexity interacted with the experimental group. The differences between the groups
were small and non-significant for low-complexity stimuli and increased for intermediate and
especially high-complexity stimuli. In the intermediate-complexity stimuli and the high-
complexity stimuli there was a significant difference between the HR-low experimental group
and the experimental groups of high robot quality (HOR-high/HR-high). In the high-
complexity stimuli there was significant difference between the HR and HOR collaboration
levels. The system hit rate in each experimental group was significantly different between the
three complexity levels of stimuli. In each complex stimulus the HOR collaboration level with
the high robot quality group achieved the highest system hit rate. The HR collaboration level

with the low robot quality group achieved the lowest hit rate (Figure 19).
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Figure 18: Probability of Hit for the blocks as a function of the stimulus complexity.

Table 6: Post-hoc comparisons between the Block*Complexity combinations.

Block 1 Block 1 Bklmk Block2 Block2 Block2 Block3 Block3 Block3
Complexity low Inter. high low Inter. high low Inter. high
System hit 0.971 0.881 0.827 0.972 0.868 0.803 0.960 0.916 0.881
rate

Block 1 Low 0.000 0.000 N.S. 0.000 0.000 N.S. 0.000 0.000
Block 1 Inter. 0.000 0.000 0.000 0.092 0.000 0.000 0.000 N.S.
Block 1 High 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000
Block 2 Low N.S. 0.000 0.000 0.000 0.000 0.094 0.000 0.000
Block 2 Inter. 0.000 0.092 0.000 0.000 0.000 0.000 0.000 N.S.
Block 2 High 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000
Block 3 Low N.S. 0.000 0.000 0.094 0.000 0.000 0.000 0.000
Block 3 Inter. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Block 3 High 0.000 N.S. 0.000 0.000 N.S. 0.000 0.000 0.000
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Figure 19: Probability of a Hit for the five experimental groups as a function of the stimulus complexity.

6.4.2.1.1.2 Analysis with cooperation level and robot performance as independent variables

for all cooperation levels except H.

Overall the probability was significantly smaller (.88) when the automation level was
high (HOR), compared to low automation level, HR, (.91). The central finding here was that
any level of automation (HOR/HR) with a 'low quality’ robot impairs hit performance,
compared to cases without automation.

Also the effect of robot quality was highly significant (p<.01). The average system hit
probability for a system with a 'high quality’ robot was .92, almost 5% higher than for a
system with a 'low quality’ robot.

Table 7 shows the statistical output of the repeated measures analysis of variance
performed on the experimental results.

The influence of the Complexity*Robot quality interaction is shown in Figure 20. The
system hit probability is significantly reduced with the increase of the stimulus complexity,
for both low and 'high quality' robots (p<.01). In addition, for each complex stimulus, the
system performance of the 'high quality' robot was higher than for the ‘low quality' robot. This
difference was found to be significant for intermediate and high stimulus complexities
(p<.05). For low image complexity the system hit probabilities were similar for both low and

‘high quality' robots and no significance was found.
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Table 7: The repeated measures analysis of variance results.

DoF MS F p
{1}Collaboration 1,88 0.164 5.03 0.027
{2}Rewards 1,88 0.071 2.17 N.S.
{3}Robot quality 1,88 0.394 12.06 0.001
Collaboration*Rewards 1,88 0.006 0.19 N.S.
Collaboration*Robot quality 1,88 0.040 1.23 N.S.
Rewards*Robot quality 1,88 0.032 0.98 N.S.
Collaboration*Rewards*Robot quality 1,88 0.006 0.17 N.S.
{4}BLOCK 2,176 0.097 11.28 0.000
BLOCK*Collaboration 2,176 0.003 0.29 N.S.
BLOCK*Rewards 2,176 0.004 0.42 N.S.
BLOCK*Robot quality 2,176 0.010 1.11 N.S.
BLOCK*Collaboration*Rewards 2,176 0.016 1.89 N.S.
BLOCK*Collaboration*Robot quality 2,176 0.007 0.81 N.S.
BLOCK*Rewards*Robot quality 2,176 0.006 0.72 N.S.
4%1%2*3 2,176 0.011 1.27 N.S.
{5}COMPLEXITY 2,176 1.207 164.21 0.000
COMPLEXITY*Collaboration 2,176 0.014 1.95 N.S.
COMPLEXITY*Rewards 2,176 0.003 0.43 N.S.
COMPLEXITY*Robot quality 2,176 0.035 471 0.010
COMPLEXITY*Collaboration*Rewards 2,176 0.003 0.42 N.S.
qCL(J?SIII\i/![)F;LEXITY*CoIIabora’uon*Robot 2,176 0.000 0.00 NS,
COMPLEXITY*Rewards*Robot quality 2,176 0.002 0.22 N.S.
5*1%2*3 2,176 0.020 2.72 0.068
BLOCK*COMPLEXITY 4,352 0.063 17.66 0.000
BLOCK*COMPLEXITY*Collaboration 4,352 0.010 2.69 0.031
BLOCK*COMPLEXITY*Rewards 4,352 0.002 0.57 N.S.
BLOCK*COMPLEXITY*Robot quality 4,352 0.001 0.33 N.S.
4*5%1*2 4,352 0.001 0.32 N.S.
4*5%1*3 4,352 0.005 1.27 N.S.
4*5%2*3 4,352 0.003 0.93 N.S.
4*5*1%2*3 4,352 0.004 1.04 N.S.

The mean results and the results of post-hoc comparisons between Complexity and Robot
quality interaction are shown in Table 8.

A similar analysis was performed on the influence of the Complexity*collaboration-
level*BLOCK interaction (Figure 21). The system hit probability was found to be
significantly reduced with the increase of the stimulus complexity for both lower and higher
automation levels for each block (p<.01). In all the blocks and the stimulus complexities, the
system hit rate was higher for the high automation level (HOR) than for the low automation
level (HR), except for block 1 and low stimuli complexities where the hit rates for both
automation levels were similar. The differences between the lower and higher automation

levels were found to be insignificant for all complexity stimuli and blocks.
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Table 8: post-hoc comparisons between the Complexity*Robot-quality combinations.

high high high low low low
robot robot robot robot robot robot
quality quality quality quality | quality | quality
COMPLEXITY low Inter. high low Inter. high
system hit rate 0.976 0.910 0.870 0.957 0.864 0.807
high robot quality low 0.000 0.000 N.S. 0.000 0.000
high robot quality intermediate 0.000 0.000 0.002 0.034 0.000
high robot quality high 0.000 0.000 0.000 N.S. 0.004
low robot quality low N.S. 0.002 0.000 0.000 0.000
low robot quality intermediate 0.000 0.034 N.S. 0.000 0.000
low robot quality high 0.000 0.000 0.004 0.000 0.000
1.00
0.95
o
g 0.90
2
5
5 0.85
2
n
0.80
=<~ HOR
-3- HR
0'75. . . .. - .. . .. - .. . .. -
23 5 © 23 & © 23 & B
5~ & = - E < - E =
s = s
IS IS S
(@] ] (@]
O ) O]
Block 1 Block 2 Block 3

Figure 21: Probability of a hit for the two automation levels as a function of the stimulus complexity and

block number.
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6.4.2.1.2 Analysis of system false alarms as a function of level of cooperation, block,

image complexity, robot performance, reward.

System false alarms (FA) are events during which the system marks non-target objects in
the images. System FA can occur by human marks of non-target objects or robot marks of
non-target objects that are confirmed by the human.

6.4.2.1.2.1 Analysis with groups as the independent variable (combining all levels of

cooperation).

Table 9 shows the statistical output of the repeated measures analysis of variance
performed on the experiment results.

To compare the number of false alarms for different complexity stimuli and blocks, the
overall number of false alarms (FA) was divided by the number of images with the same
stimulus and block, and the result was defined as a normalized false alarm. The normalized
FA was smaller (.0935) when the aim was to minimize false alarms, as compared to when the
aim was to maximize hits (.107). Although the effect was not statistically significant, people
seemed to consider the reward structure and increased their attention to reduce the number of

FA if they were rewarded for minimizing false alarms.

Table 9: The repeated measures analysis of variance results.

DoF MS F p
{1}Rewards 1,110 0.050 1.1782 N.S.
{2}NewGroup 1,110 0.069 1.6205 N.S.
Rewards*NewGroup 4,110 0.013 0.3186 N.S.
{3}BLOCK 2,220 0.127 9.4873 0.000
BLOCK*Rewards 2,220 0.001 0.0881 N.S.
BLOCK*NewGroup 8, 220 0.006 0.4831 N.S.
BLOCK*Rewards*NewGroup 8, 220 0.007 0.5531 N.S.
{4}COMPLEXITY 2,220 0.254 51.0036 0.000
COMPLEXITY*Rewards 2,220 0.004 0.7789 N.S.
COMPLEXITY*NewGroup 8, 220 0.008 1.5614 N.S.
COMPLEXITY*Rewards*NewGroup 8, 220 0.006 1.1827 N.S.
BLOCK*COMPLEXITY 4, 440 0.110 26.0176 0.000
BLOCK*COMPLEXITY*Rewards 4,440 0.004 1.0455 N.S.
BLOCK*COMPLEXITY*NewGroup 16, 440 0.005 1.2404 N.S.
3*4*1*2 16, 440 0.003 0.6850 N.S.

In the NewGroup*Complexity interaction, post-hoc comparison analysis showed that the
difference between the low complexity and the other two complexities was highly significant
(p<.01). There was no significance difference between the intermediate and high complexity

stimuli.
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There was a significant difference between the blocks. The highest value of the
normalized FA was in the first block (.116), and the lowest value was in the last block
(.0794), implying that there can be a learning effect.

The difference between the block interactions with the image complexity stimuli was
highly significant (p<.001). For the low image complexity the normalized FA value was the
lowest for all blocks while the highest was achieved for the high complexity stimuli in the
first block. The normalized FA rate reduced between block 1 and block 3 for low and high
complex stimuli (Figure 22). The normalized FA rate of the intermediate complexity stimuli
was similar but the standard deviation was reduced, which indicates that the subjects were

more uniform and clear about their FA selections.
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Figure 22: Normalized false alarm rate for the three blocks as a function of the stimulus complexity.

6.4.2.1.2.2 Analysis with cooperation level and robot performance as independent variables
for all cooperation levels except H.

Table 10 shows the statistical output of the repeated measures analysis of variance performed

on the experiment results. The system FA was significantly different for the different blocks

and different image complexities levels. The block*complexity interaction was had a

significant effect as well. The complexity*robot quality interaction had a marginally

significant effect (p=.052).
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Table 10: The repeated measures analysis of variance results.

DoF MS F p
{1}Collaboration 1,88 0.085 1.6607 N.S.
{2}Rewards 1,88 0.028 0.5576 N.S.
{3}Robot quality 1,88 0.119 2.3311 N.S.
Collaboration*Rewards 1,88 0.029 0.5661 N.S.
Collaboration*Robot quality 1,88 0.033 0.6404 N.S.
Rewards*Robot quality 1,88 0.004 0.0716 N.S.
C(]:ltj)r:lllf;\tt;oratlon*Rewards*Robot 1,88 0.017 0.3248 NS,
{4}BLOCK 2,176 0.115 7.2756 0.001
BLOCK*Collaboration 2,176 0.007 0.4295 N.S.
BLOCK*Rewards 2,176 0.001 0.0446 N.S.
BLOCK*Robot quality 2,176 0.010 0.6071 N.S.
BLOCK*Collaboration*Rewards 2,176 0.006 0.4014 N.S.
CI?llj_&fi)ig/K*ColIaboratlon*Robot 2,176 0.006 0.3509 NS,
BLOCK*Rewards*Robot quality 2,176 0.007 0.4149 N.S.
4*1*2*3 2,176 0.016 1.0085 N.S.
{5}CMPLEXIT 2,176 0.235 42.0155 0.000
CMPLEXIT*Collaboration 2,176 0.004 0.6613 N.S.
CMPLEXIT*Rewards 2,176 0.007 1.1749 N.S.
CMPLEXIT*Robot quality 2,176 0.017 3.0049 0.052
CMPLEXIT*Collaboration*Rewards 2,176 0.010 1.8173 N.S.
gllj\gllEtI;ExIT*CoIIaboratlon*Robot 2,176 0.003 0.5501 NS,
CMPLEXIT*Rewards*Robot quality 2,176 0.007 1.2056 N.S.
5%1*2*3 2,176 0.003 0.6036 N.S.
BLOCK*CMPLEXIT 4,352 0.071 15.1587 0.000
BLOCK*CMPLEXIT*Collaboration 4,352 0.004 0.8647 N.S.
BLOCK*CMPLEXIT*Rewards 4,352 0.004 0.7872 N.S.
BLOCK*CMPLEXIT*Robot quality 4,352 0.006 1.2169 N.S.
4*5%1%2 4,352 0.008 1.6577 N.S.
4*5%1*3 4,352 0.004 0.8733 N.S.
4*5%2*3 4,352 0.001 0.2588 N.S.
4*5*1*2*3 4,352 0.001 0.1484 N.S.

6.4.2.2 Operation Time: Mean time for stimuli with a given level of complexity as a
function of cooperation level, block, complexity, robot performance, and reward

6.4.2.2.1 Analysis with groups as an independent variable.

Table 11 shows the statistical output of the repeated measures analysis of variance
performed on the experiment results.

The rewards system had no significant effect on the image mean time. The block system
had a highly significant effect (p<.001) on the image mean time. The overall image mean time
was 6.60 s for block 1, which was reduced by 75% in block 3. The block*NewGroup

interaction was found to be significant and indicated that low robot performances increased
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the image mean time in all blocks (Figure 23). The longest image mean time accepted was for
the high automation level with low robot quality (HOR-low) in all the blocks. For blocks 2
and 3, it seems that for high robot quality it is better to use the high automation level (HOR),
while for low robot quality the low automation level (HR) accomplished a shorter image time.
The image mean time for the H experimental group was a value between the two automation

levels with high robot quality. For all experimental groups the image mean time decreased

with the increase in block number.

Table 11: The repeated measures analysis of variance results.

DoF MS F p
{1}Rewards 1,110 0.890 0.063 N.S.
{2}NewGroup 4,110 22.596 1.608 N.S.
Rewards*NewGroup 4,110 4.717 0.336 N.S.
{3}BLOCK 2,220 816.861 302.595 0.000
BLOCK*Rewards 2,220 0.235 0.087 N.S.
BLOCK*NewGroup 8, 220 5.646 2.091 0.038
BLOCK*Rewards*NewGroup 8, 220 2.038 0.755 N.S.
{4}COMPLEXITY 2,220 11.787 17.545 0.000
COMPLEXITY*Rewards 2,220 0.229 0.341 N.S.
COMPLEXITY*NewGroup 8, 220 2.412 3.590 0.001
COMPLEXITY*Rewards*NewGroup 8, 220 0.572 0.851 N.S.
BLOCK*COMPLEXITY 4,440 11.454 27.964 0.000
BLOCK*COMPLEXITY*Rewards 4,440 0.393 0.959 N.S.
BLOCK*COMPLEXITY*NewGroup 16, 440 0.434 1.059 N.S.
3%4*1*2 16, 440 0.555 1.356 N.S.

The image mean time increases significantly with increasing stimulus complexity. The
overall image mean time for high complexity stimuli (5.05 s) is significantly longer by almost
8% than for the low complexity stimuli (4.69 s). The complexity*NewGroup interaction was
found to be significant and showed that low robot performances increased the image mean
time for all complexity stimuli and both collaboration levels. The complexity*block
interaction was found to be significant and indicated that the image mean time decreased with
the increase in the block number, implying the existence of a learning effect (Figure 24). The
image mean time increased with the increase in the level of complexity stimuli for blocks 1
and 3. In block 2 the average image time for all three complexity stimuli were similar. A post
hoc comparison indicated that the difference between the average image times of all
complexity stimuli was significant for block 1. For blocks 2 and 3 there was no significant

difference between the intermediate and high-complexity stimuli.
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Figure 24: Image mean time for the three blocks as a function of the stimulus complexity.
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6.4.2.2.2 Analysis with cooperation level and robot performance as independent variables
for all cooperation levels except H.

Table 12 shows the statistical output of the repeated measures analysis of variance
performed on the experiment results.

Robot quality levels significantly affected image mean time. The overall average time per
image was shorter for the 'high quality' robot (4.67s) than for the 'low quality' robot (5.22 s).

The interaction between the complex stimuli and the automation level produced
significant differences. The average time per image for both automation levels increased with
increasing image complexity (table 13), but the complexity influenced the HOR automation
level more strongly. The difference between the two automation levels was insignificant for
the same stimulus complexity (table 13). The difference between low-complexity stimuli and

high-complexity stimuli was significant for the same automation level.

Table 12: The repeated measures analysis of variance results.

DoF MS F p
{1}Collaboration 1,88 2.995 0.217 N.S.
{2}Rewards 1,88 0.341 0.025 N.S.
{3}Robot quality 1,88 63.995 4.636 0.034
Collaboration*Rewards 1,88 0.057 0.004 N.S.
Collaboration*Robot quality 1,88 12.456 0.902 N.S.
Rewards*Robot quality 1, 88 18.468 1.338 N.S.
Collaboration*Rewards*Robot quality 1, 88 0.002 0.000 N.S.
{4}BLOCK 2,176 694.953 271.543 0.000
BLOCK*Collaboration 2,176 10.031 3.919 0.022
BLOCK*Rewards 2,176 0.378 0.148 N.S.
BLOCK*Robot quality 2,176 2.383 0.931 N.S.
BLOCK*Collaboration*Rewards 2,176 1.224 0.478 N.S.
BLOCK*Collaboration*Robot quality 2,176 6.222 2431 0.091
BLOCK*Rewards*Robot quality 2,176 5.585 2.182 N.S.
4*1%2*3 2,176 1.151 0.450 N.S.
{5}COMPLEXITY 2,176 14.697 22.504 0.000
COMPLEXITY*Collaboration 2,176 4.157 6.365 0.002
COMPLEXITY*Rewards 2,176 0.029 0.044 N.S.
COMPLEXITY*Robot quality 2,176 1.526 2.336 0.100
COMPLEXITY*Collaboration*Rewards 2,176 0.477 0.731 N.S.
glzll\illtsLEXITY*CoIIaboratlon*Robot 2,176 1.001 1532 NS,
COMPLEXITY*Rewards*Robot quality 2,176 0.956 1.465 N.S.
5*1*2*3 2,176 0.505 0.773 N.S.
BLOCK*COMPLEXITY 4, 352 8.966 22.597 0.000
BLOCK*COMPLEXITY*Collaboration 4,352 0.209 0.527 N.S.
BLOCK*COMPLEXITY*Rewards 4,352 0.220 0.555 N.S.
BLOCK*COMPLEXITY*Robot quality 4,352 0.511 1.288 N.S.
4*5*1*2 4,352 0.149 0.376 N.S.
4*5*1*3 4,352 0.545 1.374 N.S.
4*5*2*3 4,352 0.885 2.231 0.065
4*5*1*2*3 4,352 0.515 1.297 N.S.
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Table 13: Post-hoc comparisons between the Complexity*Automation-level combinations.

HOR HOR HOR HR HR HR

COMPLEXITY | low inter. high low inter. high

image time [s] 4.63 5.07 5.31 4.77 4.90 4.98

HOR low 0.000 0.000 N.S. N.S. N.S.

HOR inter. 0.000 0.010 N.S. N.S. N.S.

HOR high 0.000 0.010 0.044 N.S. N.S.

HR low N.S. N.S. 0.044 N.S. 0.028

HR inter. N.S. N.S. N.S. N.S. N.S.
HR high N.S. N.S. N.S. 0.028 N.S.

6.4.2.3 Points accumulated: Number of points as a function of block, level of
cooperation, robot performance, and reward.

6.4.2.3.1 Analysis with groups as an independent variable.

Table 14 shows the statistical output of the repeated measures analysis of variance
performed on the experiment results.

Figure 25 shows the Block*Reward interaction. The score levels of the minimizing FA
reward are significantly lower (p<.001) than the score levels of the maximizing hit reward.
Thus, the reward system describes the task orientation, and as such, presents different score
scales. When minimizing the FA reward, the score in the last block was significantly higher,
by 51% (p<.001), than the score in the first block. When maximizing the Hit reward the score
in last block was significantly higher, by 36% (p<.001), than the score in the first block.

Table 14: The repeated measures analysis of variance results.

DoF MS F p
Rewards 1,110 8130629 5367.62 0.000
NewGroup 4,110 8277 5.46 0.000
Rewards*NewGroup 4,110 141 0.09 N.S.
BLOCK 2,220 454443 1081.47 0.000
BLOCK*Rewards 2,220 54073 128.68 0.000
BLOCK*NewGroup 8, 220 244 0.58 N.S.
BLOCK*Rewards*NewGroup 8, 220 203 0.48 N.S.

The experimental group exhibited a highly significant effect (p<.001). The automation
levels with low robot quality achieved significantly lower scores than the automation levels
with high robot quality and the control H group (Figure 26). There was no significance
difference between the automation levels with high robot quality and the control H group, but
both of them had higher scores than the H group. The high automation level (HOR) yielded

higher scores than the low automation level (HR).
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6.4.2.3.2 Analysis with cooperation level and robot performance as independent variables

for all cooperation levels except H.

Table 15 shows the statistical output of the repeated measures analysis of variance

performed on the experiment results.
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Table 15: The repeated measures analysis of variance results.

DoF MS F p

{1}Collaboration 1,88 1176 0.64 N.S.
{2}Rewards 1,88 6507028 3568.49 0.000
{3}Robot quality 1,88 28600 15.68 0.000
Collaboration*Rewards 1,88 17 0.01 N.S.
Collaboration*Robot quality 1,88 703 0.39 N.S.
Rewards*Robot quality 1,88 261 0.14 N.S.
ColIgboration*Rewards*Robot 1,88 284 0.16 NS,
guality

{4}BLOCK 2,176 365182 784.55 0.000
BLOCK*Collaboration 2,176 229 0.49 N.S.
BLOCK*Rewards 2,176 43408 93.26 0.000
BLOCK*Robot quality 2,176 39 0.08 N.S.
BLOCK*Collaboration*Rewards 2,176 121 0.26 N.S.
BLQCK*CoIIaboration*Robot 2,176 547 118 NS,
quality

BLOCK*Rewards*Robot quality 2,176 564 121 N.S.
4*1*2*3 2,176 43 0.09 N.S.

The difference between the low and high robot qualities was significant (p<.001). The
overall average score of the low robot quality was 302 points. Improving the robot quality

increased the system performance by 15%.

6.4.2.4 Conclusions regarding system performance

To represent different task types the reward values were fixed and could not be changed
during the task performance. Results indicate that the reward system has a significant effect
on the system hit rate, false alarms, and the system objective function score. The system hit
rate of participants who were rewarded for maximum hits was higher than for the others;
likewise, the system false alarms of participants who were rewarded for minimum FA was
lower than for the others. The reward has no influence on the system performance time.

Robot quality has a significant influence on the system hit rate and the system objective
function score, which increases with increasing robot quality. Although the increase in robot
quality reduces the number of system false alarms, this finding was insignificant. A higher
level of automation (HO-R) combined with low robot quality, however, significantly
increases the number of false alarms, as compared to no automation (HO). For low robot
quality, the increase in the automation level increases detection time, whereas for the 'high
quality' robot, the increase in the automation level reduces the detection time. This effect was
partially significant. Low robot quality impairs system hit rate and score. When robot quality

is low it is better to use no automation at all. As image complexity is increased, however, the
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system hit rate decreases, the system false alarms number grows, and the system time
increased — all at significant levels.

The block number causes a significant decrease on the system false alarm, a 75% decrease in
the system time, and an increase in the experiment score. These results suggest the occurrence

of a learning effect during the experiment.

6.4.3 Use of the cues from the robotic system
6.4.3.1 Analysis of pHrh

6.4.3.1.1 Comparison of probability of a human hit (pnrm) for all levels of cooperation
when the robot marked a target as a function of robot performance and rewards
(combined over all levels of complexity and blocks).
Table 16 shows the statistical output of the repeated measures analysis of variance

performed on the experiment results.

Table 16: The repeated measures analysis of variance results.

DoF MS F p
Collaboration 1,88 0.015 4.39 0.039
Rewards 1,88 0.010 3.01 0.086
Robot quality 1,88 0.033 9.80 0.002
Collaboration*Rewards 1,88 0.000 0.09 N.S.
Collaboration*Robot quality 1,88 0.004 1.23 N.S.
Rewards*Robot quality 1,88 0.006 1.77 N.S.
C(i‘,ltj)(:lll?tl;oratlon*Rewards*Robot 1 88 0.001 0.35 NS,

The automation level exhibited a significant effect on the probability of a hit, which
increased with the increase in automation level from .901 for the HR automation level to .926
for the HOR automation level (Figure 27).

Although the reward effect is marginally significant (p<.09), people seemed to consider
the reward structure and increased their attention to increase the hit probability if they were
rewarded for maximum hits (Figure 28).

Robot quality significantly influenced the probability of a hit. The hit probability for high
robot quality (.932) exceeded by almost 4% that for the 'low quality' robot (.895). It seems
that the participants noticed when robot quality was high and as such they trusted the robot

decisions more than when quality was low.
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Figure 27: Probability of a human hit of targets marked by the robot as a function of the automation level.

0.95

o
®
I
I

0.93

o
8
|
|

o
©
s

Human hit rate of robot unmarks (pHrh)
o
©
o

IS4
©
©

0.88

minimize FA maximize Hit
Reward

Figure 28: Probability of a human hit of targets marked by the robot as a function of the reward system.

6.4.3.2 Analysis of pxh

6.4.3.2.1 Comparison of probability of a human hit (pnn) for all levels of cooperation when
the robot did not mark a target as a function of robot performance and rewards
(combined over all levels of complexity and blocks).

6.4.3.2.1.1 Analysis with groups as an independent variable
Table 17 shows the statistical output of the repeated measures analysis of variance

performed on the experiment results.
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Table 17: The repeated measures analysis of variance results.

DoF MS F p
Rewards 1,110 0.023 5.74 0.018
NewGroup 4,110 0.009 2.32 0.061
Rewards*NewGroup 4,110 0.000 0.06 N.S.

The reward system had a significant effect on the probability of a hit. The human
probability for a hit was higher by 3% in the maximum hit reward system (.913) in
comparison to the minimum FA reward system (.885).

The experimental group had a marginally significant effect on the probability of a hit. The
human hit probability for the low automation level (HR) with low robot quality was
significantly lower than the high automation level (HOR) with low robot quality, the high
automation level with high robot quality, and the H controlled group. It was also lower with
marginal significance (p<.06) relative to the low automation level with high robot quality

(Figure 29).
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Figure 29: Human hit probability of unmarked targets for the experimental groups.

6.4.3.2.1.2 Analysis with cooperation level and robot performance as independent variables

for all cooperation levels except H.

Table 18 shows the statistical output of the repeated measures analysis of variance

performed on the experiment results.
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Table 18: The repeated measures analysis of variance results.

DoF MS F p
Collaboration 1,88 0.017 3.46 0.066
Rewards 1,88 0.018 3.67 0.059
Robot quality 1,88 0.013 2.62 N.S.
Collaboration*Rewards 1,88 0.001 0.13 N.S.
Collaboration*Robot quality 1,88 0.004 0.79 N.S.
Rewards*Robot quality 1,88 0.000 0.01 N.S.
((q:ltj);ll?tt;oratlon*Rewards*Robot 1,88 0.000 0.06 NS,

Figure 30 shows the human probability of a hit for the different automation levels. Results

indicate that increases in the automation level increase the human probability of a hit (p<.07).

0.93 —

0.92 ¢

0.91 ¢

0.90 ¢

0.89 ¢ 4

HO hit rate (pyn)

0.88 ¢

0.87

0.86

HOR HR
Automation level

Figure 30: Human hit probability of unmarked targets for the different automation levels.

6.4.3.2.2 Comparison of probabilities of a human hit (pnn) for all levels of cooperation
when the robot did not mark a target as a function of robot performance,
complexity, block, and rewards.

6.4.3.2.2.1 Analysis with groups as an independent variable

When robot quality is high, the number of unmarked targets by the robot is low and
therefore, the resolution of the human probability of a hit of a target that was not marked by
the robot is very low. Low resolution of the probability of a hit can distort the results and as a
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result, the groups with high robot quality were not counted. Table 19 shows the statistical
output of the repeated measures analysis of variance performed on the experiment results.

The reward system had a significant effect on the probability of a hit. The overall
probability of a hit was lower when the aim was to minimize FA (.86) than when the aim was
to maximize the hit (.90).

The difference between the experimental groups was also found to be significant. The
probability of a hit for the human when part of the low automation level setup and the 'low
quality' robot group (HR-low) was significantly lower (.85) than that for the high automation
level (HOR-low) and the control group H (.89, Figure 31).

Table 19: The repeated measures analysis of variance results.

DoF MS F p
{1}Rewards 1, 66 0.158 5.47 0.022
{2}NewGroup 2, 66 0.120 4.15 0.020
Rewards*NewGroup 2, 66 0.007 0.24 N.S.
{3}BLOCK 2,132 0.194 19.11 0.000
BLOCK*Rewards 2,132 0.018 1.79 N.S.
BLOCK*NewGroup 4,132 0.007 0.66 N.S.
BLOCK*Rewards*NewGroup 4,132 0.026 257 0.041
{4}COMPLEXITY 2,132 1.196 159.88 0.000
COMPLEXITY*Rewards 2,132 0.005 0.67 N.S.
COMPLEXITY*NewGroup 4,132 0.006 0.75 N.S.
COMPLEXITY*Rewards*NewGroup 4,132 0.017 2.25 0.067
BLOCK*COMPLEXITY 4, 264 0.127 20.73 0.000
BLOCK*COMPLEXITY*Rewards 4, 264 0.004 0.64 N.S.
BLOCK*COMPLEXITY*NewGroup 8, 264 0.012 1.95 0.053
3*4*1*2 8, 264 0.006 0.96 N.S.
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Figure 31: Human hit probability of unmarked targets for the experimental groups.
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Image complexity had a strong influence on the human hit probability. Increases in the
image complexity decrease the human hit rate (Figure 32). The probability for a human hit in
low complexity images was higher by 18% (0.96) than that in the high complexity images
(0.81). This effect was found to be highly significant (p<.001).
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Figure 32: Human hit probability as a function of the image complexity.

6.4.3.3 Analysis of prarh

6.4.3.3.1 Probability of robot FA that the human approved (prarh) as a function of the level
of cooperation (all, except HO), robot performance, and rewards (combined over
all levels of complexity and blocks).
Table 20 shows the statistical output of the repeated measures analysis of variance

performed on the experiment results.

Table 20: The repeated measures analysis of variance results.

DoF MS F p
Collaboration 1,88 0.207 11.747 0.001
Rewards 1,88 0.045 2.560 N.S.
Robot quality 1,88 0.121 6.865 0.010
Collaboration*Rewards 1,88 0.000 0.007 N.S.
Collaboration*Robot quality 1,88 0.032 1.831 N.S.
Rewards*Robot quality 1,88 0.065 3.660 0.059
gg;ll?tt;oratlon*Rewards*Robot 1,88 0.001 0.071 NS,
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The automation level had a highly significant effect (p<.001) on the human FA
probability for objects that were already marked by the robot. The FA probability increased
with the increase in the automation level (Figure 33) such that the probability of FA was more
than 70% higher for the HOR automation level (.225) in comparison to the HR automation
level (.132). It seems that when the system was more automatic the participants tend to

approve its decisions regarding FA.
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Figure 33: The probability of FA of objects already marked by the robot as a function of the automation
level.

Figure 34 shows that the increase in robot quality increases the probability of FA of
objects already marked by the robot. This finding fits the behavior of the number of FA of
objects unmarked by the robot and could be explained by examining the number of robot hits
and FA marks. A 'low quality' robot marks many objects as FA and forces the human to check
each one since the number of FA is illogical. In addition, we assumed earlier that the
participants recognized the robot quality during the experiment and knew that they cannot
rely on the robot marks. The 'high quality' robot marks very few FA, the human trusts the
robot decisions, and therefore, does not correct the FA marks of the ‘high quality' robot at the
same rate as for the 'low quality' robot.
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6.4.3.4 Analysis of human FA that the robot did not mark (Fran)

6.4.3.4.1 Comparison of human FA that the robot did not mark for all levels of

cooperation as a function of robot performance, complexity, block, and rewards.

6.4.3.4.1.1 Analysis with groups as an independent variable

Table 21 shows the statistical output of the repeated measures analysis of variance

performed on the experiment results.

Table 21: The repeated measures analysis of variance results.

DoF MS F p
{1}Rewards 1,110 0.059 2.383 N.S.
{2}NewGroup 4,110 0.147 5.967 0.000
Rewards*NewGroup 4,110 0.013 0.508 N.S.
{3}BLOCK 2,220 0.086 9.174 0.000
BLOCK*Rewards 2,220 0.003 0.367 N.S.
BLOCK*NewGroup 8, 220 0.006 0.632 N.S.
BLOCK*Rewards*NewGroup 8, 220 0.006 0.646 N.S.
{4}COMPLEXITY 2,220 0.082 24.402 0.000
COMPLEXITY*Rewards 2,220 0.000 0.080 N.S.
COMPLEXITY*NewGroup 8, 220 0.015 4.496 0.000
COMPLEXITY*Rewards*NewGroup 8, 220 0.003 0.818 N.S.
BLOCK*COMPLEXITY 4, 440 0.081 33.008 0.000
BLOCK*COMPLEXITY*Rewards 4, 440 0.003 1.155 N.S.
BLOCK*COMPLEXITY*NewGroup 16, 440 0.011 4.617 0.000
3*4*1*2 16, 440 0.003 1.039 N.S.
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Although the reward had no significant effect (p=.12), it seems that the participant’s
awareness of the reward increased their tendency to detect targets when they were rewarded
for detection. The number of false alarms that were not marked by the robot and were marked
by the human was 26.7% smaller when the reward was to minimize FA (.056) as compared to
when they were rewarded for maximum hits (.071). The effect of the experimental group was
highly significant (p<.001). The control H group attained the highest normalized FA value
(Figure 35).

Figure 36 shows the average normalized FA for the different blocks. The normalized FA
declined significantly with each block (p<.001), indicating the possible existence of a learning
effect. The confidence intervals were also reduced with each block, which could also indicate
that the human decisions became progressively more uniform. Image complexity also had a
highly significant effect as evidenced by the increase in the number of normalized FA that

corresponded with the increase in image complexity (Figure 37).
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Figure 35: Human normalized false alarm as a function of the experimental group.
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Figure 36: Human normalized false alarm as a function of the block number.
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Figure 37: Human normalized false alarm as a function of image complexity.

6.4.3.4.1.2 Analysis with cooperation level and robot performance as independent variables

for all cooperation levels except H.

Table 22 shows the statistical output of the repeated measures analysis of variance

performed on the experiment results.
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Table 22: The repeated measures analysis of variance results.

DoF MS F p
{1}Collaboration 1,88 0.000 0.000 N.S.
{2}Rewards 1,88 0.036 1.248 N.S.
{3}Robot quality 1,88 0.415 14.339 0.000
Collaboration*Rewards 1,88 0.022 0.759 N.S.
Collaboration*Robot quality 1,88 0.000 0.001 N.S.
Rewards*Robot quality 1,88 0.016 0.544 N.S.
Collaboration*Rewards*Robot quality 1,88 0.009 0.304 N.S.
{4}BLOCK 2,176 0.075 6.979 0.001
BLOCK*Collaboration 2,176 0.002 0.140 N.S.
BLOCK*Rewards 2,176 0.002 0.213 N.S.
BLOCK*Robot quality 2,176 0.011 1.052 N.S.
BLOCK*Collaboration*Rewards 2,176 0.002 0.233 N.S.
BLOCK*Collaboration*Robot quality 2,176 0.006 0.515 N.S.
BLOCK*Rewards*Robot quality 2,176 0.006 0.518 N.S.
4*1%2*3 2,176 0.016 1.486 N.S.
{5}COMPLEXITY 2,176 0.063 17.577 0.000
COMPLEXITY*Collaboration 2,176 0.002 0.500 N.S.
COMPLEXITY*Rewards 2,176 0.001 0.257 N.S.
COMPLEXITY*Robot quality 2,176 0.051 14.187 0.000
COMPLEXITY*Collaboration*Rewards 2,176 0.009 2.505 0.085
C(i‘,lglll\illtsLEXITY*CoIIaboratlon*Robot 2,176 0.001 0173 NS,
COMPLEXITY*Rewards*Robot quality 2,176 0.000 0.057 N.S.
5*1*2*3 2,176 0.001 0.167 N.S.
BLOCK*COMPLEXITY 4,352 0.046 18.905 0.000
BLOCK*COMPLEXITY*Collaboration 4,352 0.001 0.585 N.S.
BLOCK*COMPLEXITY*Rewards 4,352 0.002 0.818 N.S.
BLOCK*COMPLEXITY*Robot quality 4,352 0.031 12.790 0.000
4*5%1*2 4,352 0.007 2.836 0.024
4*5*1*3 4, 352 0.001 0.350 N.S.
4*5%2*3 4, 352 0.000 0.144 N.S.
4*5*1*2*3 4,352 0.001 0.426 N.S.

The graph (Figure 38) indicates that increase in robot quality led to a corresponding 119%
increase in the number of normalized FA, a result that was found to be highly significant. One
possible explanation for this phenomenon could be that the 'low quality' robot marks large
numbers of false alarms, leaving very few false alarm objects for the human.

There was no significant difference between automation levels (HOR vs. HR). It appears
that the automation level did not influence the number of normalized human false alarms that

were not marked by the robot, and the difference in the number of normalized FA between the

two automation levels was less than 0.4%.
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The interaction between image complexity and robot quality produced a significant effect

(Figure 39), as evidenced by the gradually increasing number of false alarms by the 'high

quality' robot corresponding with the increasing image complexity.
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Figure 38: Normalized human FA as a function of the robot quality.
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Figure 39: Human normalized FA for the two robot qualities as a function of the image complexity.

6.4.3.5 Analysis of d’n

6.4.3.5.1 Analysis of d’ for objects that were marked by the robot. Here we can compute

prit and pra for the human, and accordingly compute d’. The independent

variables will be level of cooperation (all, except HO), robot performance, and

rewards (combined over all levels of complexity and blocks).
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The sensitivity parameter d' is a function of the hit and false alarm probabilities (chapter
4). The probabilities are transferred into distribution standard deviation values (Z). When the
FA probability is zero, its theoretical Z value is -oo and the value of d' is co. In the experiment,
only a few participants avoided marking any robot false alarms, resulting in a FA probability
of 0. Since these results were achieved due to the finite number of robot FA and it is
impossible to statistically analyze results with infinite values, for those few cases we
determine the Z value to be -4 (in standard deviation units). The calculated FA probability for
that value is 0.0000317, which can be regarded as zero for our purposes. The analysis was
also performed to calculate the FA probability of Z values equal to -3 and -6 and showed
similar results.

The human sensitivity (d') in this section was calculated based on the results of the
measured human hit and FA probability for objects that were already marked by the robot
(pHrh and prarm respectively).

Table 23 shows the statistical output of the univariate tests of significance performed on

the experiment results.

Table 23: The univariate tests of significance results.

DoF MS F p

Collaboration 1,88 4.109 4.834 0.031
Rewards 1,88 7.176 8.443 0.005
Robot quality 1,88 5.241 6.166 0.015
Collaboration*Rewards 1,88 0.848 0.997 N.S.
Collaboration*Robot quality 1,88 3.647 4.291 0.041
Rewards*Robot quality 1,88 3.288 3.869 0.052
CoIIgboratlon*Rewards*Robot 1,88 1971 1496 NS,
quality

The sensitivity (d') decreased with the increase in the automation level (Figure 40). The
sensitivity for the low automation level (HR; 2.9) was 17% higher than the sensitivity of the
high automation level (HOR; 2.48). Both the probability of a human hit and false alarm of
objects marked by the robot decreased with the increase in the automation level, but the
probability of false alarm decreased more drastically. These results could indicate that the
participants were more sensitive and paid more attention to the task and the robot marks in the
low automation level (HR).

The reward system had a significant effect on participant sensitivity (d'), as evidenced by
the participant’s higher sensitivity under the maximum hit reward system relative to the
minimum FA reward system (Figure 41). It could be that the participants were simply better

able to confirm the robot hits as opposed to eliminate its false alarms. In a similar fashion, an
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increase in participant sensitivity was noticed when aiming for target detection than for false

alarm elimination.
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Figure 40: The human sensitivity for objects marked by the robot as a function of the automation level.
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Figure 41: The human sensitivity for objects marked by the robot as a function of the reward system.

Figure 42 shows the influence of robot quality on human sensitivity. The human
sensitivity for objects marked by the robot increases with the increase in robot quality. The
human sensitivity for high robot quality was significantly increased by 19% (2.92) in

comparison to the human sensitivity for low robot quality (2.45). The increase in robot quality
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could be presented as an increase in robot sensitivity that, in turn, can increase human

sensitivity.
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Figure 42: The human sensitivity for objects marked by the robot as a function of robot quality.

Table 24: Post-hoc comparisons between the automation level*rewards combinations.

HOR HOR HR HR
min FA [ max Hit | min FA | max Hit
human sensitivity 2.30 2.66 2.53 3.26
HR | Reward: max Hit 0.001 0.026 0.007

Human sensitivity for both reward systems was higher at the low automation level (Figure 43)
but human sensitivity in the maximum hit reward system was more influenced by the
automation level than in the minimum FA reward system.

A significant effect was produced by the interaction between automation level and robot
quality. Figure 44 shows that for the 'high quality' robot human sensitivity is reduced with
increasing automation level. Human sensitivity for the low automation level (3.2) and the
high automation level (2.52) show a 32% reduction. Automation levels of the ‘low quality’
robot have no influence on human sensitivity (2.45). The results of post-hoc comparisons
between the two automation levels and the two robot qualities show that there are significant
differences between the automation levels of the ‘high quality’ robot (Table 25) and no
significant differences between the automation levels of the 'low quality' robot.

The effect of robot quality-reward system interaction (Figure 45) was marginally

significant (p<.055). In the maximum hit reward system human sensitivity increased with the
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increase in robot quality. In the minimum FA reward system robot quality had no effect on

human sensitivity.
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Figure 43: The human sensitivity for objects marked by the robot as a function of the automation level

and reward system.

Table 25: Post-hoc comparisons between the automation level*robot quality combinations.

HOR HOR HR HR

Robot quality high low high low

Human Sensitivity 2.52 2.44 3.32 2.47

HOR High N.S. 0.003 N.S.

HOR Low N.S. 0.001 N.S.

HR High 0.003 | 0.001 0.002
HR Low N.S. N.S. 0.002
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Figure 45: The human sensitivity for objects marked by the robot as a function of the reward system and

robot quality.

6.4.3.6 Conclusions regarding cues from the robotic system

Conclusions of the analysis of the human performances focus on the influences of level of
cooperation, stimulus difficulty, learning, and strategy changes due to different rewards.
The statistical analysis showed that the reward system has a marginally significant effect

on the human hits of the robot marks (Pum), a significant affect on the human hits of the
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objects the robot did not mark (Pnn), and the human sensitivity (d'n). The human hit rates, Prm
and Pwn, of participants who were rewarded for maximum hits were higher than for the
participants who were rewarded for minimum FA; likewise, the human sensitivity of
participants who were rewarded for maximum hits was higher than for those who were
rewarded for FA. It appears that the participants internalize the reward structure, whether it
was to minimize the number of false alarms or to maximize the number of hits, and they focus
their attention according to the reward.

Robot quality has a significant influence on the human hits of the robot marks (Pwm), the
human false alarms of the robot marks (Pram), the human false alarms of the objects the robot
did not mark (Pran), and the human sensitivity. Increasing robot quality increased the system
objective function score of the experiment. Increase in robot quality increases the values of
Phrh, Pram, Pranh and human sensitivity. It seems that during the experiment the participants
perceived the robot quality and relied on the robot decisions when its quality was high.
Additionally, although robot quality did not significantly effect the human hits of the objects
the robot did not mark (Pun), at the low automation level (HR) a decrease in robot quality
reduces Pnh and the HOR collaboration level achieves the highest values of Pp.

Image complexity significantly influenced the human hits and false alarms of the objects
the robot did not mark (Pnwn and Pran). Increases in the image complexity decrease Pxh and
increase Pran.

The automation level had a significant effect on the human hits and on the false alarms of
the objects the robot marked (Prm and Prar). Increasing the automation level increases Purm
and Pram. It seems that for the high automation levels the participant tends to accept the robot
decisions. Furthermore, the human sensitivity of the participants who had the ‘high quality’
robot decreased with the increase in the automation level. This finding indicates that the
increase in robot quality reduces both human control and human sensitivity.

The block number had a significant effect on the number of human false alarms for
objects the robot did not mark (Pran). The values and the confidence intervals of Pran

decreased with the increase in block number. This suggests a learning effect.
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7 DISCUSSION

In this thesis, four collaboration levels based on Sheridan's levels of automation (1978)
were defined in this thesis for a target recognition task of an integrated human-robot system.
Though specific collaboration levels were defined for different types of human-robot systems
and tasks in other studies, to the best of our knowledge no previous research dealt with
collaboration levels for target recognition. Tsuji and Tanaka (2005) investigated a tracking
task where the human and the machine act simultaneously. Bruemmer et al. (2005) and
Hughes and Lewis (2005) developed different automation levels for a human-robot vehicle in
an indoor exploration task. Graves and Czarnecki (2000) described a scale of five human-
robot interaction levels for a telerobotic behavior based system. Between these applications
each collaboration level differs by nature, scale, structure, and number of levels, and it is unfit
for and inapplicable to the present research. Only the manual and fully autonomous levels
have similar characteristics since they consist of a single collaborator, and there is no
cooperative activity. Furthermore, specific collaboration levels for the task and the specific
type of integrated human-robot system investigated in this work were never structured or
presented. Since physical platforms and sensors vary significantly from system to system
(Edan and Nof, 2000) and also the task and the environment can differ for different cases, the
collaboration levels must be well matched to the specific task and system in order to achieve
good system performance.

In addition, to the best of our knowledge, mathematical modeling of the collaboration
levels and quantification of its influence on system performance has not yet been conducted.
Graves and Czarnecki (2000) defined a general logical expression related to system behavior,
but they did not define an explicit expression and hence, could not evaluate the influence of
different collaboration levels on system performance. To investigate the different
collaboration levels and their influence on system performance, an objective function was
developed and a numerical analysis performed. The mathematical analysis indicated that the
difference between the investigated collaboration levels that include both human and robot
(defined as HR and HOR in this research) is expressed only in the human operational
parameters related to time (tun, tran, thrh and tram). Hence, the only difference between the HR
and the HOR collaboration levels is structured in their operational cost. Although it was
defined that the required human decision time for target or non-target objects is equal in all
cases, for the HR collaboration level the motoric time is added to the human decision time
required to confirm a robot hit (tnn) and in the HOR collaboration it is added to the human

decision time required to reject a robot false alarm (trar). Since the time parameters only
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appear in the operational cost part of the objective function expression (equations 10-11),
when omitting the operational cost there is no difference between the HR and HOR
collaboration levels — they become one collaboration level in the objective function. Although
the actual operations in the HR and HOR collaboration levels are different, final system
performance will be the same. This results from the objective function definitions and
indicates the significance of the operational costs.

The objective function integrates the system’s operational costs and detection
performance measures, thereby resulting in a better estimation of system performance. Since
the operational cost of each system is unique, different systems will result in different
performances for the same task. Thus, the objective function must be fitted for a specific
system to ensure evaluation accuracy.

The objective function enables to rank and compare different systems. The influence of
different human, robot, task, and environment parameters on system performance can be
evaluated. However, in many cases some of the parameters are unknown a priori, such as
target probability or human and robot sensitivities. These could be estimated according to
previous data collected from similar environments, human and robot performances, or
through calibration between withered forms of the objective function of an experiment. This
is achievable by equalizing experimental results to the objective function score and extracting
the unknown parameters according to the collaboration level and other known parameters.

In this thesis a methodology to determine the best collaboration level was developed. It
makes it possible to improve system performance when environmental conditions are known
a priori by determining the optimal human and robot parameters and the best collaboration
level. These developments enable adaptation of an integrated human-robot system to a
specific task and environment.

Extensive research was conducted in selecting the best performance measures and the
best sensors in autonomous mobile robot systems. Different methods have been developed
and implemented for binary parallel detection systems to optimize detection (Hall, 1992).
Performance evaluation of sensory algorithms is usually based on either experiments in real
environments or theoretical analysis (Brooks and lyengar, 1998; HoseinNezhad et al., 2002;
Luo and Kay, 1989; Ribo and Pinz, 2001). The first approach is problematic in unstructured
and dynamic environments, since it is impossible to repeat experiments under identical
conditions (Cohen, 2005). The second approach requires explicit assumptions concerning the
nature of sensory information, a hard concept to implement since it is usually difficult to

characterize sensory performance in unstructured environments (Cohen, 2005).
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In our research we encountered similar questions concerning evaluation and optimization
of human-robot system performance. We can optimize system performance by using the
appropriate collaboration level, which influences the significance of the performance
measures. For the H collaboration level, the robot performance measures are uncounted and
vise versa in the R collaboration level. Each of the HR and HOR collaboration levels assign a
different influence to the operational cost. Likewise, system performance and the best-fit
collaboration level were evaluated by numerical and experimental analysis.

Assigning the quantified task and environmental parameters and the defined human and
robot sensitivity ranges to the objective function and the best collaboration level methodology
enables effective and optimal system design, development of a simple robotic subsystem,
reduction of system operational costs, and improved robustness and system performance. The
methodology enables system designers to predict the performance of a developed system and
to determine the best-fit collaboration levels a priori.

Both the objective function and the methodology were developed assuming that all
parameters are constant and do not change during task execution. This assumption is
unrealistic since many of the parameters are expected to change with time and should be
influenced by learning or fatigue effects. During the learning process the human must adjust
to the environment, the task, and the system, his sensitivity and decision quality of the cutoff
point will be relatively low resulting in poor performance. Likewise, fatigue or tediousness
will also reduce human performance. The parameters can also change according to other
parameters such as human modes or problems with robotic subsystem calibration. These
phenomena are not considered in the current objective function and methodology.
Investigation of these behaviors and expression of the objective function parameters as time
dependant variables could result in a more accurate evaluation.

Changing from one collaboration level to another, based on changes in the human, robot
and environment parameters will enable the system to deal with more dynamic and complex
conditions and to keep the system performance. However, dealing with this extension,
requires consideration of all changing parameters.

In addition, we assumed that there is no direct influence of the robot performance
measures on the human performance measures and vise versa. In other words, low robot hit
rate does not necessary cause low or high human hit rate. However, in realistic conditions
where the robot actions are visible to the human, the robot performance (e.g., quality and
reliability) can be evaluated by the human and influence his performance (Maltz and Shinar,
2003). Our experimental results indicated that when the human estimates that robot

performance is high, he will rely on the robot and will less question the robot decisions.
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Due to the vast number of independent parameters and the interactions between the
parameters, prediction of system performance and the best collaboration level is
comprehensive and not obvious. In the presented research we demonstrated the use of the
objective function and the methodology to determine the best collaboration level for a specific
environment, task and system parameters through numerical analysis. This methodology
could be expanded for other environments, tasks and systems and will result in different
solutions. Changes in values of several parameters that interact such as probability of robot
hit, probability of human hit of robot marks, target probability, payoff ratio, time and
additional parameters will influence system performance and the best collaboration level in an
unexpected manner. Hence, it is important to perform a numerical analysis of the objective
function on the desired parameters to estimate system performance.

Application of modified signal detection theory enabled to reduce the number of
parameters and to enhance the researchers’ control on the human and robot basic
characteristics such as sensitivity and cutoff point (decision) on behalf of loosing control on
each detection performance measures individually. For example, a change in the human
sensitivity will change both human hit and false alarm rates. An increase of the robot cutoff
point value will decrease the robot hit and false alarm rates and the ratio between them.

Sensitivity analysis on the human, robot, environment and task parameters indicates that
small changes in the optimal values can shift the best collaboration level from one to another.
In dynamic realistic conditions, the control and sensors resolution and accuracy are low and
the optimal values of the objective function parameters are unknown precisely and cannot be
retained durably. This could cause a difference between the actual values and the expected
values and change the actual system performances. In such cases a different collaboration
level other than the best collaboration level determined by the optimal values can obtain better
system performance. Since the actual values are unstable and distributed in the vicinity of the
expected optimal values, an algorithm that will take into account the distribution of the value
combined with the objective function and the methodology to determine the best collaboration
could achieve better system performance for realistic cases. Instead of placing the expected
optimal value in the objective function and the methodology, the mean of the actual values or
the distribution of the actual values could be placed to achieve higher system performance.
The objective function and the methodology must be modified in order to be able to account
for data such as distribution or biased values. For instance if we find that the values of a
specific parameter has a Gaussian distribution around its theoretical optimal value, and since

the influence on the system performance is not symmetric, placing the specific distribution
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will yield more accurate evaluation of the system performance and the best collaboration
level.

Experimental results indicated that although the participants’ performances were not
optimal, they significantly reacted to the different robot, task and environmental parameters.
Experimental results were consistent with the numerical analysis results. Both in the
experiment and the numerical analysis an increase in robot quality, (i.e., increase in robot
sensitivity), increased system performance (the final score) for all collaboration levels that
included a robot, and increase in the payoff ratio reduced system performance for all
collaboration levels. Similar results were obtained for the best collaboration level. Numerical
analysis of the objective function excluding the operational cost showed that the integrated
HR/HOR is the best collaboration level. In the experiment the best collaboration levels were
found to be HOR and HR. In conclusion, the experimental results support qualitatively the
objective function numerical analysis; the objective function and the methodology can predict
system performance and the best collaboration level.

The unstructured environment is characterized by environmental disturbances and fuzzy
definitions of targets. This causes problems in quantification of the number of non-target
objects or target probability in the experiment. Performance measures such as the probability
of false alarms cannot be calculated. Hence, only part of the human and robot performance
measures and the environmental parameters could be evaluated and compared to the
numerical analysis. A method that can estimate the number of non-target objects or the target
probability could enable full comparison between the numerical analysis of the objective
function and experimental results and could pave the way for a system that could control
robot performance. Moreover, this could provide the human with on-line feedback to reach
optimal system performance. Development of advanced pattern recognition algorithms to
determine the number of objects in unstructured environments is beyond the objective of this

work.
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8 CONCLUSIONS and FUTURE WORK

8.1 Conclusions
A comprehensive process was designed and undertaken to evaluate the influence of

different collaboration levels on the performance of an integrated human-robot system for
target recognition tasks in different cases. It includes the development of collaboration levels
and an objective function to measure system performance. The objective function was
evaluated using numerical and experimental analyses.

The collaboration levels were designed for target recognition tasks in unstructured
environments, and they were based on Sheridan’s (1978) ten levels of automation. Although
the collaboration levels were adjusted for the specific system type and task, they were similar
to other scale levels used in other systems and for other tasks (Bruemmer et al., 2005; Hughes
and Lewis, 2005; Graves and Czarnecki, 2000). The collaboration levels enable the human
operator to collaborate with the robot at four different levels, from manual to fully
autonomous. This enables the operation by a human operator in accordance with the robot’s
design to achieve optimal performance. It was found that the difference between the
collaboration levels that include both human and robot (in this research these were defined as
HR and HOR) is expressed only in the time parameters of the objective function. Therefore,
omitting the operational cost from the objective function unites HR and HOR into one
collaboration level.

The objective function enables the determination of the expected value of system
performance, given the characteristics of the human, the robot, the task, and the environment.
It was defined as the weighted sum of the performance measures. The performance measures
used in this research were similar to those used in other studies and included hit and false
alarm rates (Maltz, 2000; Swet et al., 2000; Filippidis et al., 2000; Sun et al. 2004; Pei and
Lai, 2001; Gao and Hinders, 2005; Liu and Haralick, 2002) and detection time (Steinfeld et
al., 2006). The weights allow for the objective function to be adapted to different systems,
tasks, and environments, to rank and compare different systems, and to analyze the influence
of human, robot, task, and environment parameters, and different collaboration levels on
system performance. A modified version of signal detection theory for a human-robot
integrated system was applied to simplify and describe the objective function parameters
through the human and robot basic characteristics (sensitivity and decision of cutoff point).

The numerical analysis investigated the influence of the human and robot basic
characteristics, the task and environment parameters, and different human-robot collaboration
levels on the system objective function. Furthermore, it enabled determination of the optimal
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human and robot basic characteristics and the best collaboration level for different task and
environment parameters.

Numerical analysis results indicate that the best system performance, the optimal
performance measures values, and the best collaboration level depend on the task, the
environment, human and robot parameters, and the system characteristics. Since the number
of independent parameters is vast and, in addition, there are interactions between the
parameters, the prediction of the system performance and the optimal solution is
comprehensive and not obvious. However, it can be determined through investigation of the
objective function. The findings indicate that for the tested cases H is never the best
collaboration level for the optimal solution, probably due to its high operational cost and low
hit rate relative to the other collaboration levels. Thus, collaboration of human and robot in
target recognition tasks will always improve the optimal performance of a single human
detector. In addition, for the optimal solution of the objective function including operational
cost, the best collaboration level is R when robot sensitivity is higher than human sensitivity.
Moreover, the overall system sensitivity never decreases beneath the robot sensitivity.

The sensitivity analyses illustrate the influence of small variations, in the human and
robot optimal values and in the environmental parameters, on the objective function and on
the best collaboration level. Results indicate that small changes in the optimal values can
cause shifts in the best collaboration levels from one to another but the shift is always to an
adjacent level. A sensitivity analysis of the environmental target probability parameter
showed that small changes in the optimal value can shift the best collaboration level from one
to another and in some cases that shift leads directly to H. This finding can be exploited for
the design and operation of integrated human-robot systems under dynamic and realistic
conditions where the true value of the parameters is unknown and the resolution and accuracy
are low, or in cases where the parameters are dynamic and drifting around their expected
values.

The experiments included a thorough investigation of the objective function via the
different weights for the performance measures, the different collaboration levels, the various
robot qualities, and assorted environments. Statistical analyses highlighted the importance of
robot quality, collaboration level, and environment on the system performance, and the
significance of the weighted human, robot, environmental, and performance measures on the
best collaboration level.

Experimental results indicated that although the participants’ performances were not
optimal, they reacted significantly to the different robot task and environment parameters, and

their results are consistent with the results of the numerical analysis of the objective function
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excluding the operational cost. Due to the unknown number of total objects, targets and non-
targets, only part of the human and robot performance measures and the environmental
parameters could be evaluated and compared to the numerical analysis.

Throughout the development, great care was taken to quantify the independent parameters
and the results and to validate the theoretical findings with the experiment. The objective
function was developed in such a way as to facilitate a comparison of different systems,
environments, and tasks.

The methodology developed can help analyze a priori the performance of an integrated
human-robot system for target recognition tasks and for determining the best collaboration
level for optimal performance. In addition, the research investigated the influence of different
collaboration levels under various tasks, different human and robot parameters, and changing
environmental conditions. The system performance can be simulated and adjusted to the task
and the environment. The advantage of this method is that it can be conducted off-line and
even in the absence of an actual system, and it allows the comprehensive survey of the
influence of various parameters on system performance. System designers can use these
methodologies to develop a well adapted, integrated human-robot system for target
recognition tasks in unstructured environments. Furthermore, this methodology can be used to
analyze system performance during the task performance, and to recommend the best
collaboration and the human performance on-line.

The limitations of the research are due to two factors. The first factor is the requirement for
the human, robot, and environment parameters to be known a priori in order to achieve
accurate estimation. In the absence of a priori data, prediction accuracy depends on the
estimation quality of the parameters. The second factor is that in order to simplify the
development of the objective function with signal detection theory, we assumed that the target
and non-target objects are normal and with identical distributions. The variables that are
influenced by the distribution type are the human and robot different hit and false alarm
probabilities (equations 1, 3-8) and the value of the optimal s. When the S and N
distributions are not normal, the probabilities will have to be recalculated according to the
new distributions and equations 1, 3-8 will have to be modified to fit the new distributions
instead of the normal distribution. However, the collaboration levels, the objective function
formation, the methodology to determine the best collaboration level are not influenced by the

S or N distribution type.
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8.2 Future research
Many research areas remain open for the future expansion of this work.

Obijective function

The currently analyzed objective function consists of hit, false alarm, and
operational cost elements. We propose the following points for future work on the
objective function to fit it to more realistic cases:

e Modeling of the various human decision times in the operational cost
part according to signal detection theory. We assume that the time to
detect depends on the cutoff point and the distance between the specific
object distribution value and the cutoff point. The closer the object
distribution value is to the cutoff point, the time to detect it will be
longer.

e Assimilating signal detection theory with different target and non-target
distributions into the objective function. The target and non-target
distributions should be fitted to the real distribution in realistic and
specific unstructured environments.

e Include time dependency of the objective function parameters to
emulate learning and fatigue phenomena or other time dependant
influences. The basic human characteristics will be described as time
dependent variables based on the results of learning and fatigue
experiments. The basic robot characteristics will be described as time
dependant variables according to the mean time between calibrations
and setup of the specific robotic subsystem.

¢ Investigate the combined influence of small changes in the independent
parameters. For example, the combined influence of small changes in

both human and robot sensitivities.

Methodology
Currently the methodology determines the best collaboration level based on static

conditions. We suggest:
e Develop an algorithm that will consider the influence of small changes
in the parameter values that was found in the sensitivity analysis
according to a distribution function of the variation. Each parameter

probably has its unique distribution function that is influenced by the
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environment and the task. The distribution function of the parameters
variation can be determined through experiments.

e The methodology and the objective function parameters must be known
a priori to accurately predict system performance and the best
collaboration level. Hence, it is important to develop a model that
predicts the environment parameters according to the statistical data of
different tasks and environments.

e Develop a methodology that will include dynamic shifting between
collaboration levels to maintain maximum system performance despite
changes in the parameter values during the task performance and a
rule-based algorithm to shift between collaboration levels based on

human, robot, task, and environmental parameters and limitations.

Experiments
In future research additional and comprehensive experiments are suggested:

Conducting an experiment to examine the learning and fatigue effects on both
human and system performance.

Conducting an experimental research to asses all time variables.

An experiment for investigating the effect of shifting between collaboration
levels should be conducted. Many questions can be asked concerning the shift
manner: who decides on the shift, human, robot, or is it a collaborative
decision? How many levels can be shifted at one time, what parameters should
be considered in the shift and what should the frequencies of the shift be?
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Appendix I: Transformation of the probability function
from Xto Z

In order to describe the problem in standard deviation units rather than in the actual units that
suits just the specific case, the probability functions are transformed from the actual units, X,
to standard deviation units, Z.
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Appendix I1: Expression of Z as a function of § and d’

The standard deviation unit, Z, can be expressed by the likelihood ratio, 3, between the signal
and noise density functions in the cut off point X, and the distance between the means of the
signal and noise distributions, which is the sensitivity parameter, d’.
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Appendix I11:  Development of optimal s for human-robot

systems without operational costs

In human-robot systems there are three Bs: one f of the robot (Br) and two Bs of the human,
the first B for the already detected object by the robot (Brn) and the second for the undetected

objects (Bn).
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The human optimal Bs for human robot systems are functions of the optimal  of a single
detector system (which depends on the payoff values) and the hit and false alarm probabilities
of the robot in a human-robot system case. The hit and false alarm probabilities of the robot
are determined by the f and d’ of the robot itself (expressed in Z of the robot).
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Appendix IV:  Human optimal hit and false alarm in
human-robot systems

Description of the optimal hit and false alarm probabilities of the human according to Zs; of
the robot.

Pea
In| g~
L. ;) d n(ﬁ pHrJ dy @), lpes) Me) o,

e _Zh - _“h
Sth dlh 2 dlh 2 dlh dlh dlh 2
definition : ¢, =P du
d, 2
In(pm,}
= Z; = P, +C,
rh dlh
« Pra Pea
In B -’J |r{r]
Z, )y U P dy (), AP ) dy
rh d'h 2 d|h 2 d|h d'h 2
definition : szln(ﬁ +2h
d, 2
. pFA,J
= ZLm— P, +C,

O _dh _dy
o, 2 d, 2 d, d', d', 2
In(ll_pFAj
Z, = P +C,
h dlh
1- 1-
'”[B*'l pFA] '”(1 pFA}
7 i), o, —py, +d_h:In(B)+ P ) dy
o, 2 d', 2 d, d, 2
In[]:-l-_pFA,)
= Z, = Ph) e,
h dlh

117



118



Appendix V: PAPER: Human-robot collaboration for
iImproved target recognition of agricultural
robots

By

Avital Bechar and Yael Edan

ABSTRACT

Automatic target recognition in agricultural harvesting robots is characterized by low
detection rates and high false alarm rates due to the unstructured nature of both the
environment and the objects. To improve detection human-robot collaboration levels were
defined and implemented. The collaboration level is defined as the level of system autonomy
or the level at which the human operator (HO) interacts with the system. Experimental results
on images taken in the field indicate that collaboration of HO and robot increases detection
and reduces the time required for detection.

1. INTRODUCTION

The advent of agricultural robots is the potential of raising the quality of the fresh
produce, lowering production costs and reducing the drudgery of manual labor (Edan, 1999).
Despite the tremendous amount of robotic applications in industry, very few robots are
operational in agriculture production.

Robots perform well in industrial environments where working conditions are
somehow constant, structured and predictable. Unstructured environments such as agriculture
are characterized by rapid changes in time and space. The terrain, soil, vegetation landscape,
visibility, illumination and other atmospheric conditions vary in rates of seconds to months in
time and by meters in space. Developing a robot for the agricultural environment is a difficult
task because of the unpredictable location of targets that are difficult to locate (due to the
natural variability in size, shape, color and texture) and since the terrain, the landscape, the
atmospheric conditions and other environment parameters are unstructured, uneven and
continuously change.

Although technological feasibility of many agricultural robots has been proven,
commercial application of robots in complex agriculture applications is still unavailable. The
main limiting factors are production inefficiencies and lack of economic justification (Edan,
1999). Production inefficiency is caused by problems in fruit identification (75-85%), low
cycle times of 3-4 seconds per fruit and the inability to autonomously deal with obstacles. To
overcome the complex agricultural environment, the robotic system must be complex and
robust resulting in a costly system.

The main problem in fruit recognition is due to shading, occlusion and variations in
the fruit properties and changing illuminations properties. Several technologies for fruit
detection have been explored, including vision (Sevila & Baylou, 1991), infra-red (Dobrusin
et al., 1992), and structured light (Benady et al., 1992; Yamashita and Kondo, 1992), but with
each of these techniques only 85% of the fruits were identified (Edan, 1999). Introducing a
Human-Operator (HO) into the system can help improve its performance and simplify the
robotic system (Kirlik et al., 1993; Ceres et al., 1998; Khadraoui et al., 1998; Sidenbladh et
al., 1999; Itoh et al., 2000).

The objective of the research was to define and implement human-robot collaboration
levels for target recognition in agricultural environments. The collaboration level is defined as
the level of system autonomy or the level at which the human operator (HO) interacts with the
system. To evaluate the proposed collaboration levels an experiment was performed on
images taken by a robotic melon harvester.
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2. HUMAN-ROBOT COLLABORATION LEVELS

Four basic levels for HO-Robot collaboration were defined, implemented,
tested and evaluated. The collaboration levels were defined corresponding to the four major
degrees of autonomy in multi-target recognition tasks developed by Sheridan’s (1978) scale
of “action selection and automation of decision”: i) HO: The HO detects and marks the
desired target solely, compatible to level 1 in Sheridan’s scale; ii) HO-Rr: The HO marks
targets, aided by recommendations from an automatic detection algorithm, i.e., the targets are
automatically marked by a robot detection algorithm, the HO acknowledges the robot true
detections, ignores the false detections and marks the targets missed by the robot, this level is
compatible to levels 3-4 in Sheridan’s scale; iii) HO-R: targets are identified automatically by
the robot detection algorithm; the HO assignment is to cancel the false detections and mark
the targets missed by the robot system, compatible to levels 5-7 in Sheridan scale; and iv) R:
the targets are marked automatically by the system, compatible to level 10 in Sheridan’s scale.

3. METHODOLOGY
3.1 Experimental Design
The experimental setup consisted of a Pentium-III computer, Philips 15” touch screen

and Matlab 5.2 software for image processing, simulation of the HO-Robot system and data
acquisition. The experiment consisted of three sets corresponding to the different HO-Robot
collaboration levels, HO, HO-Rr and HO-R. Eleven engineers (males and females) aged 26-
33 participated in the experiment. Each subject, in each set was explained and trained on three
images before tested. Each set was initiated by five additional randomly selected images. The
training images and these five images were not considered in the data analysis. For each set,
the sequence of images was determined randomly and displayed for all the subjects in the
same random order. The sequence of the sets was determined randomly for each subject.

3.2 Experimental Setup

Real images were taken in the field from a video camera mounted on a robotic melon
harvester (Edan et al., 1996) moving along a melon row. Singulated melon images on the
screen as seen from a camera mounted vertically on the vehicle, facing the ground in the
middle of the row were manually selected. The following criteria were defined for target
selection: 1) melon color is yellow to orange in the majority of the visible area; and, ii) no
visual damage is observed on the melon. Ninety images were manually classified by a panel
of two into three complexity levels and saved into a database. Complexity was defined based
on the visibility, contrast, and number of objects in each image. The panel also determined the
total number of melons in each image and this served as the reference for the actual number of
melons. For each complexity level the images were randomly divided into the three sets,
resulting in thirty images for each set with ten images for each complexity level. The number
of melons in each set was approximately 50. The automatic detection algorithm for melon
detection (corresponding to the R collaboration level) was based on an algorithm developed
by Bechar et al. (2000).

Images (Fig. 1) were displayed on the screen in a random order. In the first three sets
(the HO strategies) the images were displayed on the screen and the HO detected and marked
melons suitable for harvest. The HO marked the melons and scrolled to the next image using
a touch screen by pressing the melon location or buttons on the screen. In the R strategy, all
90 images were analyzed by the image processing algorithm solely.
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Figure A-46: Screen display in the HO-Rr experiment as viewed by the HO (original image in color). 1 -

signed with Rr, 2 — signed with HO cross.

3.3 Performance Measurements

The following parameters were automatically measured and acquired during the
experiment: the number of true melons in each image, the number of melons detected / the
number of false detections by the HO and the robot, the time and coordinates of each HO
operation and the type of operation (e.g., marking melons, unmarking melons, next image).

The performance measures calculated for each collaboration level included the
number of true and false detections of the HO and the robot, and time per image.

Comparison between the collaboration levels was calculated separately for each
performance measure using the statistical t-test for a significance of o=0.1.

4. RESULTS AND DISSCUSSION

The average time per set for the HO and the HO-Rr strategies was 179 and 180
seconds respectively (Fig. 2) with no significant statistical difference.

The average time for the HO-R strategy was 20% shorter with significant statistical
difference (a=0.1).

The automatic detection algorithm (R) yielded 80% true detections (Fig. 3) with 8%
false detections of the total number of melons (Fig. 4). Highest detection was achieved for the
HO-Rr strategy (94.1% with S.D of 4%). The HO collaboration level resulted in the lowest
detection percentage (90.6 + 3.9%). Collaboration between HO and robot significantly
increases detection percentages of the HO by almost 4% (HO-R), (a=0.1).
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Figure A-47: Average time per set for the three HO collaboration levels (30 images with a total number of
50 melons). The different letters represent different populations according to 90% significance of
difference.
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Figure A-48: True and false detection percentages. The error bars represent the standard deviation. The
different letters represent different populations according to 90% significance of difference.
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Best detection results for the easy and medium complexity levels were achieved by the
HO-Rr strategy (Fig. 5: 100% and 97.5% respectively). Best detection results for the difficult
complexity level were achieved in the HO-R strategy (87.5%). Detection percentage reduces
as the complexity of the image increases. However, this decrease is much more rapid in the
HO collaboration level (from 95.7% in the easy level to 80.7% in the difficult level). When
the HO assists with the robot, detection percentage is improved by 4.5% - 7% as compare to
the HO alone and by 8% - 20% as compared to the robot alone.

5. CONCLUSIONS AND SUMMARY

Four different human-robot collaboration levels were proposed and developed for a
target recognition task. Collaboration of HO and robot increases detection by 4% when
compared to a human operator alone (HO) and by 14% when compared to a fully autonomous
system. This results in high detection rates (average of 94% and up to 100%) and can help
overcome the limitations of full autonomous systems, in which detection success is relatively
lower (75-85% on average).

In addition, when compared to the HO alone, detection times of integrated systems are
reduced by 20%. Typical robotic harvesting rates are assumed to be 2s/fruit. Although this is
better than manual picking rates (assumed to be around 10s/fruit) economic analysis indicates
that even if the cost of manual labor increases by 50% the development cost will just break
even (Edan, 1999). However, by harvesting with a robot the quality of the fruit harvested is
improved as compared to manual picking (Edan, 1999). In addition, if due to technological
developments the picking and production efficiencies increase, agricultural robots might be
the harvesting machines of the future. Integration of a human operator that works together
with the robot harvester is one way to achieve this in parallel to decreasing system complexity
thereby further enhancing economic feasibility.
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The best collaboration method depends on image complexity and the human operator
performance. Future underway research is aimed at developing an algorithm to automatically
select the best collaboration level (Bechar, 2002) since environmental conditions, visibility
parameters and human performance continuously change. However, the adjustment required
from the human operator to switch to a new collaboration level must also be considered. The
exact switching time (to be determined automatically by the algorithm) must therefore aim to
provide optimal performance of the whole system including transitions.
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Figure A-50: Melon detection percentages for different complexity levels. The error bars represent the
standard deviation.
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Appendix VI:  Analysis of Non Optimal Cases

Analysis of the objective function, Vs, was performed for i) the robot likelihood ratio, Br, ii)
the human likelihood ratio of targets the robot already detected, B, and iii) human likelihood
ratio of targets the robot did not detect, Pn. The analysis was performed on different target
probability conditions, Ps, different human and robot sensitivities, d'n and d'r respectively and
different payoff value ratio, Var.

10.1.1 Analysis of Bn and Brn

The parameters in the analysis were determined to be: N=1000 objects; V1=50; Var=-1 (and
therefore Vea=-50); Vc=-2 and Vi=-2000 hr. The human sensitivity was set to d',=2 and the
robot sensitivity was set to d'v=2. The target probability was set to Ps=0.5. The decision time
for all human time parameters was determined to be tp=5 s/object and the human motoric time
was set to tm=2 s/(detected object). The robot time was set to t,=0.01 s/object. The logarithm
of the robot likelihood ratio, Br, was set to -2.

HO collaboration level

Figure A-51 shows the HO hit probability for different human sensitivities (d'n) and human
cutoff points (Bn). The results indicate that the probability for hit increase with increase in the
human sensitivity and with decrease in the human likelihood ratio.
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Figure A-51: Human hit probability.

The task time, ts, of the HO collaboration level is increased with the decrease in the logarithm
of the likelihood ratio, Bn. The task time is increased with the increase in the human sensitivity

126



when Bn is negative and increased with the decease in the human sensitivity when B is
positive. When Bn is equal to zero the human sensitivity has no influence on the task time
(Figure A-52).
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Figure A-53 shows the Objective function for HO collaboration level versus the likelihood
ratio, Pn, and the human sensitivity, d'n. For the entire range the system objective function
score in increased with the increase in the human sensitivity. The maximum objective
function score achieved for positive and small pn values.
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Figure A-53: Objective function for HO collaboration level.
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The value of the robot likelihood ratio, Br, have no influence of the system performance, the
task time, the probability of hit and the objective function score in the HO collaboration level.

HO-Rr collaboration level

Figure A-54 shows the hit probability for different human likelihood ratio of targets the robot
already detected, Prn, and human likelihood ratio of targets the robot did not detect, Bn. The
results indicate that the probability for hit increase with decrease of Brh, nevertheless the value
of Bn have only little influence on the probability of hit.
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Figure A-54: Hit probability for HO-Rr collaboration level.

The task time, ts, of the HO-Rr collaboration level is increased with the decrease in the
likelihood ratio, Bn and Brh. However, positive values of the logarithm of pn have small effect
on the task time (Figure A-55). This occurs since for high Bn values the influence of the
human is reduced, the number of marked objects is reduced and therefore the time reduces.
This phenomenon does not happen for the P since this parameter is linked to the robot
likelihood ratio, Br, which in this case it logarithm is negative.

Figure A-56 show the objective function score for different Bn, and Brn values. The objective
function score increase with the increase in the Bn values. Although, for positive values of the
logarithm of PBn the effect on the objective function score is small. Analysis of the Bn
parameter indicates that the maximum objective function score achieved for positive small B
values. The global maximum of the system objective function for this case exist for the
highest value of Bn and positive small Brh Values.
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Figure A-56: Objective function for HO-Rr collaboration level.

HO-R collaboration level

The difference between the HO-Rr and the HO-R collaboration levels appear in the
operational cost part, therefore the probability of hit will be identical to the HO-Rr
collaboration level as shown in Figure A-54. The task time, ts, of the HO-R collaboration
level is increased with the decrease in the likelihood ratio, Bn and the increase in Brh. However,
positive values of the logarithm of Bn have little effect on the task time (Figure A-57). This
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occurs since for high Bn values the influence of the human is reduced, the number of marked
objects is reduced and therefore the task time reduces. This phenomenon does not happen for
the P since this parameter is linked to the robot likelihood ratio, Br, which in this case its
logarithm, is negative and it influence is significant. There is an opposite influence of the B
on the task time for the HO-Rr and HO-R collaboration levels due to the nature of the
collaboration level. In the HO-Rr collaboration level the human mark each robot target he
identify as a target and therefore the task time increase with the increase in the Br. In the HO-
R collaboration level the human mark each robot target he identify as a false target and
therefore the task time increase with the decrease in the Brh.
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Figure A-57: HO-R task time.

Figure A-58 shows the objective function score for different pBn, and P values. The objective
function score increase with the increase in the Bn values. Although, for positive values of the
logarithm of PBn the effect on the objective function score is small. Analysis of the Pn
parameter indicates that the maximum objective function score achieved for positive small B
values. The global maximum of the system objective function for this case exist for the
highest value of Bn and positive small B values.
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represents different collaboration level. The surface created from the intersection of all four

collaboration level surfaces represents the maximum objective function score for each n and
to the z axis since this collaboration level is not influence by Bn or Brh. The HO collaboration

Brh combination (Figure A-59 and Figure A-60). The R collaboration level surface is normal
level is not influenced by B and there for it surface changed only as a function of Bh.

Figure A-59 shows the objective function score of all four collaboration levels. Each surface

Figure A-58: Objective function for HO-R collaboration level.

Best Collaboration Level
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Figure A-59: the objective function for the four collaboration levels. HO — blue, HO-Rr — green, HO-R

yellow and R — red.
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Figure A-60: Maximum objective function score.

The collaboration level which achieved the highest score in the system objective function, for
each PBn and P is the best collaboration value for those combinations. Figure A-61 shows a
best collaboration level map for different Bn and Brh. Each zone is dominated by a single
collaboration level.

In the given case, each of the four collaboration levels achieves best results in different zone.
There are coordinates which the best collaboration level changes from R to HO and vise versa
without transferring through the intermediate HO-R or HO-Rr collaboration levels. This
example shows us that there are cases that the best collaboration level could be solely manual
or autonomous. Different task objectives and different system objective function properties
will produce different best collaboration maps.
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Figure A-61: Best collaboration level map for different n and Brn values. HO — blue, HO-Rr — green, HO-
R yellow and R - red.
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Figure A-62 shows the maximum objective function score for different fn, and P values as a
combination of all four collaboration levels. The highest score achieved in the HO-R
collaboration level for high pn and B value of small negative.
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Figure A-62: System objective function score for best collaboration level.

10.1.2 Analysis of pr

The parameters in the analysis were determined to be: N=1000 objects; V1=50; Var=-1 (and
therefore Vea=-50); Vc=-2 and Vi=-2000 hr. The human sensitivity was set to d',=2 and the
robot sensitivity was set to d'v=2. The target probability was set to Ps=0.5. The decision time
for all human time parameters was determined to be tp=5 s/object and the human motorial
time was set to tm=2 s/(detected object). The robot time was set to t,=0.01 s/object.

R collaboration level

Figure A-63 shows the R objective function score for different robot sensitivities (d'r) and
robot cutoff points (Br). The results indicate that the objective function score increase with
increase in the robot sensitivity. The maximum score for each robot sensitivity appears for a
very small positive value of the logarithm of f.
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Figure A-63: Objective function for R collaboration level.

HO-Rr collaboration level

Figure A-64 shows the probability of hit in the HO-Rr collaboration level. For very small
values of the logarithm of Br there is no influence of the Bn on the hit probability which
increase with the decrease in the value of the logarithm of Bm. With the increase in the value
of Br the influence of PBn increase and the influence of Brn decrease on the probability of hit.
The increase in the value of the logarithm of fr reduces the "weight" of the robot in the system
and reduces the robot probability for hit and therefore the influence of B on the probability
on hit, which depands on P, reduced.

Figure A-65 shows the task time in the HO-Rr collaboration level. For very small values of
the logarithm of P there is little influence of the Bn on the task time. The task time increases
with the decrease in the value of the logarithm of Bm. With the increase in the value of Br the
influence of B increase and the influence of By decrease on the task time.

Figure A-66 shows the system objective function score in the HO-Rr collaboration level. For
very small values of the logarithm of B, the objective function score increase with the
increase in the value of Bn. The maximum objective function score achieved for negative
small values of the logarithm of B and the influence of Bn is more dominant than of Pm. For
high values of the logarithm of B, the objective function score increase with the decrease in
the value of Brh. The maximum objective function score achieved for positive small values of
the logarithm of Pn and the influence of PBrh is more dominant than of Br. the objective
function score achieve its global maximum for value of the logarithm of Br which is positive
and close to zero.
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Figure A-64: Probability of hit for HO-Rr collaboration level.
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Figure A-66: Objective function for HO-Rr collaboration level.
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HO-R collaboration level

Figure A-67 shows the task time in the HO-R collaboration level. For very small values of the
logarithm of B there is little influence of the Bn on the task time. The task time increases with
the increase in the value of the logarithm of B. With the increase in the value of Br the
influence of Pn increase and the influence of Brn decrease on the task time, and the task time
increase with the decrease in the value of Bn. The increase in the value of the logarithm of B¢
reduces the "weight" of the robot in the system and reduces the number of marked objects by
the robot and therefore the influence of Brh On the task time, which depends on By, reduced.

Figure A-68 shows the system objective function score in the HO-R collaboration level. For
very small values of the logarithm of B, the objective function score increase with the
increase in the value of Bn. The maximum objective function score achieved for negative
small values of the logarithm of Brh and the influence of B is more dominant than of Bm. For
high values of the logarithm of B, the objective function score increase with the decrease in
the value of Brn. The maximum objective function score achieved for positive small values of
the logarithm of PBn and the influence of Prh is more dominant than of Bm. The objective
function score achieve its global maximum for value of the logarithm of B which is negative
and close to zero.
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Figure A-67: HO-R collaboration level task time.
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Best Collaboration Level

The collaboration level which achieved the highest score in the system objective function, for
each Bn and PBrh is the best collaboration value for those combinations. Figure A-69 shows a
best collaboration level map for different Bn and P and for different Br. Each zone is
dominated by a single collaboration level. The R collaboration level is dominant in most of
the area when the value of the logarithm of Br is around zero. The HO-R collaboration level is
dominant in part of the area that the value of the logarithm of B iS negative in negative and
positive values of the logarithm of Br. The HO-Rr collaboration level is dominant in small part
of the area that the value of the logarithm of B iS positive in negative and positive values of
the logarithm of fBr. The HO collaboration level is dominant in part of the area that the value
of the logarithm of P is around zero in negative and positive values of the logarithm of f.

Figure A-70 shows the maximum objective function score for different fn, B and PBr values as

a combination of all four collaboration levels. Each value of Br creates different pattern which
depends on the best collaboration level map.

LN(beta )=-4 LN(beta )=-2 LN(beta )=0

o o
[d] [0}
Q Q
\
\
|
4 -2 0 2 4 -4 2 0 2 4 -4 2 0 2
betarh betarh betarh
LN(betar)z 2 LN(betar)z 4
o o
3 3
4 2 0 2 4 42 0 2 4
beta beta
rh rh
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Conclusions

In the HO collaboration level in order to increase the probability of hit the value of the
likelihood ratio PBn has to be decreased and the human sensitivity has to be increased. The
objective function score increase with the increase in the human sensitivity but for each
human sensitivity there is an optimal B of the maximum objective function score.

In the R collaboration level in order to increase the probability of hit the value of the
likelihood ratio Pr has to be decreased and the robot sensitivity has to be increased. The
objective function score increase with the increase in the robot sensitivity but for each robot
sensitivity there is an optimal fr of the maximum objective function score.

The probability of hit is the same for the HO-Rr and HO-R collaboration levels. The increase
in Br will increase influence of P and reduce the influence of Bn on the probability of hit and
the task time for both HO-Rr and HO-R collaboration levels. For the objective function score,
the increase in the value of Br will reduce the optimal value of Bn and Brh.

The best collaboration level for Br of around zero is the R collaboration level and it is
dominating most of the area. An Increase or decrease in Br will decrease the zone in which the
R collaboration level is the best collaboration level and the dominating zone of all other
collaboration levels will increase. For high values of Br, which represents small involvement
of the robot in the detection process, the best collaboration level in most of the area is the HO-
R.

10.1.3 Analysis of Ps

The target probability, Ps, represent the environment and sensors characteristics. High target
probability represents environments with high number of objects that can be observed by the
system sensors. Low target probability represents environments with low number of objects
that can be observed by the system sensors. The parameters in the analysis were determined to
be: N=1000 objects; V1=50; Var=-1 (and therefore Vra=-50); Vc=-2 and V=-2000 hr. The
human sensitivity was set to d'n=2 and the robot sensitivity was set to d'*=2. The decision time
for all human time parameters was determined to be tp=5 s/object and the human motoric time
was set to tm=2 s/(detected object). The robot time was set to t,=0.01 s/object.

HO collaboration level

The HO probability of hit is not influence by the target probability, Ps, and it is identical to the
probability of hit that shown in Figure A-51.

Figure A-71 shows the task time as a function of the human sensitivity and human likelihood
ratios, Pn, for different target probabilities (Ps = 0.2, 0.5, 0.8). For all target probability values
the task time increase with the decrease in the value of the logarithm of Bn due to the increase
in the hit and false alarms marks. For each target probability, there is a specific value of the
logarithm of Bn were above it the task time is increasing with the increase in the human
sensitivity and beneath it the task time is decreasing with the increase in the human
sensitivity. This specific value is decreasing with the increase in the target probability. At the
proximity of the specific value, the influence of the human sensitivity on the task time is
minor. The specific value of the logarithm of By is zero for target probability of 0.5. For target
probabilities lower than 0.5, the task time is decreasing rapidly with the increase in Bh until Bh
reaches the specific value. After passing the specific value the task time decrease moderate.
For target probabilities higher than 0.5, the task time is decreasing moderate with the increase
in Bn until Pn reaches the specific value. After passing the specific value the task time decrease
sharply.
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Figure A-72 shows the objective function score as a function of the human sensitivity and
human likelihood ratios, Bn, for different target probabilities (Ps = 0.2, 0.5, 0.8). The objective
function score increase with the increase in the target probability since the number of targets
increase. For all target probability values, the objective function score increase with the
increase in the human sensitivity. The value of Bn of the objective function maximum score is
decreasing with the increase in the target probability for all human sensitivities.
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R collaboration level

The same phenomena that were found for the objective function behavior in the HO
collaboration level are shown in the R collaboration level.

The objective function score increase with the increase in the target probability (Figure A-73).
For all target probability values, the objective function score increase with the increase in the
robot sensitivity. The value of B of the objective function maximum score is decreasing with
the increase in the target probability for all robot sensitivities.
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Figure A-73: objective function.

HO-Rr collaboration level

The task time of the HO-Rr collaboration level decrease with the increase in the values of the
logarithm of Bn and B (Figure A-74). The increase in the value of the logarithm of fr reduces
the influence of the values of B on the task time since the increase in B reduces the number
of object marked by the robot and therefore the number of object that were confirmed by the
human. The increase in the target probability will increase the number of objects marked by
the system and therefore increase the task time. In addition high target probability magnify
the influence of the above parameters and the changes of the above

Increase in target probability will increase the objective function score due to the increase in
the number of marked objects by the entire system (Figure A-75). The values of Bn and Brn Of
the maximum objective function score is reduced with reduce in the target probability. For
low Br values the increase of the target probability will have stronger effect on the value of Brh
than Bn and vise versa for high values of fBr. High values of Br have less weight on the
objective function score and therefore Brh which is linked to By is less influenced.
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HO-R collaboration level

The same effects that were observed in the HO-Rr collaboration level are appears in the HO-R
collaboration level.

The task time of the HO-R collaboration level decrease with the increase in the values of the
logarithm of Bn and B (Figure A-76). The increase in the value of the logarithm of fr reduces
the influence of the values of B on the task time since the increase in r reduces the number
of object marked by the robot and therefore the number of object that were confirmed by the
human. The increase in the target probability will increase the number of objects marked by
the system and therefore increase the task time. In addition high target probability magnify
the influence of the above parameters and the changes of the above

Increase in target probability will increase the objective function score due to the increase in
the number of marked objects by the entire system (Figure A-77). The values of Bn and Brh of
the maximum objective function score is reduced with reduce in the target probability. For
low Br values the increase of the target probability will have stronger effect on the value of B
than Bn and vise versa for high values of Br. High values of Br have less weight on the
objective function score and therefore Brh which is linked to By is less influenced.

Best Collaboration Level

Figure A-78 shows a best collaboration level map for different Bn, Bm, for Br equal -2 (left
column), 0 (middle column) and +2 (right column) and for target probability equal to 0.2
(upper row), 0.5 (middle row) and 0.8 (lower row).

In most cases the increase in target probability will not drastically change the domination
zones of the different collaboration levels, and the highest objective function score will be
achieved by the same collaboration level. However, the values of fn and B of the maximum
score will become smaller. A change in the domination zone of the collaboration levels and in
the collaboration level which achieve the highest score will occur in cases that the objective
function score of several collaboration levels are similar and the changes in the objective
function score resulting by the change in the target probability can drastically change the ratio
between them.

Figure A-79 shows the maximum objective function score as a combination of all four
collaboration levels for different Bn, Brh for Br equal -2 (left column), 0 (middle column) and
+2 (right column) and for target probability equal to 0.2 (upper row), 0.5 (middle row) and 0.8
(lower row).

Each value of Br creates different pattern which depends on the best collaboration level map.
The objective function score increase with the increase in target probability.
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Conclusions

The probability of hit is not influence by the target probability, Ps. In the HO and R
collaboration level, the value of the critical pn that the human or robot sensitivity has no
influence on the task time is decreased with the increase in the target probability. The
objective function score increase with the increase in the target probability and the optimal Bn
and PBr of the maximum score, decrease with the increase in target probability.

For HO-Rr and HO-R collaboration levels the target probability has similar influence on the
task time and the objective function score. The task time increase with the increase of the
target probability and it became more affected by the value of Bm and less affected by the
value of Bn. the objective function score increase with the increase in the target probability
and the optimal Pn and Bn of the maximum score decreased with the increase in the target
probability.

10.1.4 Analysis of d'r

The robot sensitivity, d'r, indicates the robot ability to distinguish between true targets (signal)
and false targets (noise). The parameters in the analysis were determined to be: N=1000
objects; V1=50; Var=-1 (and therefore Vea=-50); Vc=-2 and Vi=-2000 hr!. The human
sensitivity was set to d'n=2. The target probability was set to Ps=0.5. The decision time for all
human time parameters was determined to be tp=5 s/object and the human motoric time was
set to tm=2 s/(detected object). The robot time was set to t,=0.01 s/object.

Since in the HO collaboration the robot is not involved in the task execution, the robot
sensitivity has no influence on the human performance.

The robot sensitivity influence the objective function score in the R collaboration level is
shown in chapter 3.2.1 and figure 30

HO-Rr collaboration level

Figure A-80 shows system probability for hit for different Bn, B, for Br equal -2 (left column),
0 (middle column) and +2 (right column) and for robot sensitivity equal to 1 (upper row), 2
(middle row) and 3 (lower row). The robot sensitivity has little influence on the system
probability of hit for low values of Br since in low Br values the robot probability of hit is close
to 1 for all robot sensitivities. For high values of Br the low robot sensitivity yield low robot
hit probability thus, B has less effect on the system performance, however the high robot
sensitivity yield high robot hit probability, most of the targets are marked by the robot and
therefore Prm has grate effect on the system performance and Bn has less influence of the
system probability of hit.

Although the task time is effected from the human performance, it is also influenced by the
robot sensitivity since it affects the human performance. The task time increase with the
decrease in Pn and PBrh. For low Br values, the influence of Pn increase with increase in robot
sensitivity (Figure A-81). For high Br values, the influence of B increase with increase in
robot sensitivity.

Figure A-82 shows the objective function score for different robot sensitivities. The system
objective function score increase with the increase in the robot sensitivity. For low Br values,
the B value of the maximum score reduces with the increase of the robot sensitivity. For high
Br values, the PBn value of the maximum score reduces with the increase of the robot
sensitivity.
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Figure A-80: Probability of hit.
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HO-R collaboration level

Although the task time is effected from the human performance, it is also influenced from the
robot sensitivity since it affects the human performance. In the HO-R collaboration level the
task time increase with the decrease in PBn and the increase in PBrh. For low Br values, the
influence of PBn increase with increase in robot sensitivity (Figure A-83). For high Br values,
the influence of Brh increase with increase in robot sensitivity.

Figure A-84 shows the objective function score for different robot sensitivities. The system
objective function score increase with the increase in the robot sensitivity. For low Br values,
the B value of the maximum score reduces with the increase of the robot sensitivity. For high
Br values, the Bn value of the maximum score increases with the increase of the robot
sensitivity.

Best Collaboration Level

Figure A-85 shows a best collaboration level map for different Bn, Bm, for Br equal -2 (left
column), 0 (middle column) and +2 (right column) and for robot sensitivity equal to 1 (upper
row), 2 (middle row) and 3 (lower row).

The increase in the robot sensitivity has no influence on the objective function score of the
HO collaboration level, small incensement on the score of the HO-Rr and HO-R collaboration
levels and high influence on the score of the R collaboration level. Therefore the increase in
the robot sensitivity will increase the zone dominated by the R collaboration level until the
best collaboration level for the entire area will be the R collaboration level.

Figure A-86 shows the maximum objective function score as a combination of all four
collaboration levels for different B, Brh for Br equal -2 (left column), O (middle column) and
+2 (right column) and for robot sensitivity equal to 1 (upper row), 2 (middle row) and 3
(lower row). The increase in the robot sensitivity will increase the objective function score on
the entire area and will increase the value of the maximum score. The Bn and B values of the
maximum score will not change a lot with the increase in the robot sensitivity up to a certain
sensitivity in which the R collaboration level will be the best collaboration level for the entire
area and the maximum score will be identical for the entire area.
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Conclusions

The robot sensitivity indicates the robot ability to distinguish between true targets (signal) and
false targets (noise) and improves the performance of the robot in a human-robot system.

In the R collaboration level the increase in the robot sensitivity will increase the probability of
hit and the objective function score.

In the HO-Rr and HO-R collaboration level the robot sensitivity have negligible influence on
the system probability of hit for low Br values. For normal and high values of Br the system
probability of hit and the objective function score can even decrease with the increase in the
robot sensitivity in cases that the human detection of objects marked by the robot is low and
the human detection of objects that the robot didn’t detect is high. The maximum score of the
objective function increase with the increase in the robot sensitivity.

The domination zone of the R collaboration level is increased with the increase in the robot
sensitivity although the maximum score achieved in the R collaboration level only when it is
dominating the entire area.

10.1.5 Analysis of d'n

The human sensitivity, d', indicates the human ability to distinguish between true targets
(signal) and false targets (noise). The parameters in the analysis were determined to be:
N=1000 objects; Vi=50; Var=-1 (and therefore Vra=-50); Vc=-2 and V=-2000 hr. The
robot sensitivity was set to d'r=2. The target probability was set to Ps=0.5. The decision time
for all human time parameters was determined to be tp=5 s/object and the human motoric time
was set to tm=2 s/(detected object). The robot time was set to t,=0.01 s/object.

Since in the R collaboration the human is not involved in the task execution, the human
sensitivity has no influence on the robot performance.

The human sensitivity influence the objective function score in the HO collaboration level is
shown in chapter 3.2.1.

HO-Rr collaboration level

Figure A-87 shows system probability for hit for different Bn, B, for Br equal -2 (left column),
0 (middle column) and +2 (right column) and for human sensitivity equal to 1 (upper row), 2
(middle row) and 3 (lower row). For low values of Br the increase in human sensitivity
increase the system probability of hit, though, Bn has little influence on the system probability
of hit for any human sensitivity since in low Pr values the robot probability of hit is close to 1
for all human sensitivities which leaves very few objects that are unmarked by the robot and
therefore Pr influence is minimal. For high values of Br the increase in human sensitivity
increase the system probability of hit. There is an equal effect of Bn and P on the probability
of hit.

The human sensitivity influence directly the human performance and by that the task time.
The task time increase with the decrease in Bn and Prm. For low Br values, the influence of P
decrease with increase in human sensitivity (Figure A-88). For high Br values, the influence of
Brh decrease with increase in human sensitivity.

Figure A-89 shows the objective function score for different human sensitivities. The system
objective function score increase with the increase in the human sensitivity. The Bn and B
values of the maximum objective function score are not changing with the increase in human
sensitivity. The pattern of the objective function for different Bn and B is not changed and it
seems as an enlargement of the area of the maximum score.
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HO-R collaboration level

The probability of hit will be identical to the HO-Rr collaboration level as shown in figure 40.
In the HO-R collaboration level the task time increase with the decrease in Bn and the increase
in Brh. For low Br values, the influence of Bn on the task time decrease and the influence of Prn
increase with increase in human sensitivity (Figure A-90). For high B values, the influence of
Brh decrease and the influence of Pn increase with increase in human sensitivity.

Figure A-91 shows the objective function score for different human sensitivities. The system
objective function score increase with the increase in the human sensitivity. The Bn and P
values of the maximum objective function score are not changing with the increase in human
sensitivity. The pattern of the objective function for different fn and B IS not changed and it
seems as an enlargement of the area of the maximum score.

Best Collaboration Level

Figure A-92 shows a best collaboration level map for different Bn, Bm, for Br equal -2 (left
column), 0 (middle column) and +2 (right column) and for human sensitivity equal to 1
(upper row), 2 (middle row) and 3 (lower row).

The increase in the human sensitivity has no influence on the objective function score of the R
collaboration level, small increase on the score of the HO-Rr and HO-R collaboration levels
and high influence on the score of the HO collaboration level. Therefore increase in human
sensitivity increase the zone dominated by the HO, HO-Rr and HO-R collaboration levels and
reduce the zone dominated by the R collaboration level. For human sensitivities that are lower
than the robot sensitivity, the best collaboration level for the entire area will be the R
collaboration level.

Figure A-93 shows the maximum objective function score as a combination of all four
collaboration levels for different Bn, B for Br equal -2 (left column), 0 (middle column) and
+2 (right column) and for human sensitivity equal to 1 (upper row), 2 (middle row) and 3
(lower row). The increase in the human sensitivity will increase the objective function score
on the entire area and will increase the value of the maximum score. The Bn and By values of
the maximum score will not change a lot with the increase in the human sensitivity except for
cases were the R collaboration level is the best collaboration level for the entire area and the
entire area will have the maximum score.
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Conclusions

The human sensitivity indicates the human ability to distinguish between true targets (signal)
and false targets (noise) and improves the performance of the human in a human-robot
system.

In the HO collaboration level the increase in the human sensitivity will increase the
probability of hit and the objective function score.

The human sensitivity influence directly the human performance and by that the task time. In
the HO-Rr and HO-R collaboration level the human sensitivity have negligible influence on
the system probability of hit, for low Br values. For normal and high values of r the system
probability of hit increases with the increase in the human sensitivity. The task time reduces
with the increase in the human sensitivity and the objective function score increase with the
increase in the human sensitivity. The maximum score of the objective function increase with
the increase in the robot sensitivity. The optimal values of Bn and B do not changed with the
increase in the human sensitivity.

Increase in human sensitivity increase the best collaboration level zone dominated by the HO,
HO-Rr and HO-R collaboration levels and reduce the zone dominated by the R collaboration
level.

10.1.6 Analysis of Var

The payoff ratio, Var, represent the type of the task through the value ratio of Vra and V.
High payoff ratio corresponds to high false alarm cost and low hit reward. Low payoff ratio
corresponds to low false alarm cost and high hit reward. Task with high payoff ratios will
have less tolerance for false alarms and less rewarding for hits. Task with low payoff ratios
will be very rewarding for hits and tolerance for false alarms. The parameters in the analysis
were determined to be: N=1000 objects; the target probability was set to Ps=0.5; Vx=50; Vc=-
2 and V=-2000 hrt. The human sensitivity was set to d'y=2 and the robot sensitivity was set
to d'v=2. The decision time for all human time parameters was determined to be tp=5 s/object
and the human motoric time was set to tm=2 s/(detected object). The robot time was set to
t=0.01 s/object.

The payoff ratio influence only the false alarm cost and the objective function score, hence
the HO probability of hit and the task time are not effected by the payoff ratio value. The
probability of hit and the task time are identical to those shown earlier.

HO collaboration level

Figure A-94 shows the objective function score as a function of the human sensitivity and
human likelihood ratios, Bn, for different payoff ratio values (Var = 0.1, 1, 10). The objective
function score decrease with the increase in the payoff ratio since the cost of the false alarms
is reduced. For all payoff ratio values, the objective function score increase with the increase
in the human sensitivity. The Bn value of the objective function maximum score is increasing
with the increase in the payoff ratio for all human sensitivities.
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Figure A-94: Objective function score.

R collaboration level

The same phenomena that were found for the objective function behavior in the HO
collaboration level are shown in the R collaboration level (Figure A-95).

The objective function score decrease with the increase in the payoff ratio since the cost of the
false alarms is reduced. For all payoff ratio values, the objective function score increase with
the increase in the human sensitivity. The pn value of the objective function maximum score is
increasing with the increase in the payoff ratio for all human sensitivities.

HO-Rr collaboration level

Figure A-96 shows the system objective function for different Pn, Bm, for Br equal -2 (left
column), 0 (middle column) and +2 (right column) and for payoff ratio equal to 0.1 (upper
row), 1 (middle row) and 10 (lower row).

Increase in payoff ratio will decrease the objective function score due to the increase in the
false alarm cost (Figure A-96). The values of Bn and B of the maximum objective function
score is increased with increase in the payoff ratio in order to decrease the number of marked
objects and thus reduce the false alarm cost.

For low Br values the increase in the value of Brh is faster than the increase in the value of B.
This could be explained by the small number of objects marked by the human (of objects that
were not marked by the robot before) in comparison to the number of objects marked by the
robot and there for the influence of B on the objective function score is grater than By and the
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number of objects already marked by the robot must be reduced more than the number of
objects that were marked firstly by the human.

For high Br values the increase in the value of B is faster than the increase in the value of Prn
since the number of objects marked by the robot is few and the influence of B is little.
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174



HO-Rr collaboration level

Figure A-97 shows the system objective function for different Bn, Brh, for Br equal -2 (left
column), 0 (middle column) and +2 (right column) and for payoff ratio equal to 0.1 (upper
row), 1 (middle row) and 10 (lower row).

Increase in payoff ratio will decrease the objective function score due to the increase in the
false alarm cost (Figure A-97). The values of pn and fBrn of the maximum objective function
score is increased with increase in the payoff ratio in order to decrease the number of marked
objects and thus reduce the false alarm cost.

For low Br values the increase in the value of Brh is faster than the increase in the value of B.
This could be explained by the small number of objects marked by the human (of objects that
were not marked by the robot before) in comparison to the number of objects marked by the
robot and there for the influence of B on the objective function score is grater than n and the
number of objects already marked by the robot must be reduced more than the number of
objects that were marked firstly by the human.

For high Br values the increase in the value of By is faster than the increase in the value of Brm
since the number of objects marked by the robot is few and the influence of B is little.

Best Collaboration Level

Figure A-98 shows the system objective function for different Pn, Brh, for Br equal -2 (left
column), 0 (middle column) and +2 (right column) and for payoff ratio equal to 0.1 (upper
row), 1 (middle row) and 10 (lower row).

The increases in the payoff ratio is reducing the objective function score for all four
collaboration levels and change the domination zones of each collaboration level. For low Br
values the domination zone of R collaboration level is decreased with the increase in the
payoff ratio and the domination zones of HO and HO-Rr collaboration levels increase. For
high Br values the domination zone of R collaboration level is increase with the increase in the
payoff ratio and the domination zones of HO and HO-R collaboration levels decrease. The
HO-Rr collaboration level is not appearing as best collaboration level for high Br values.
Figure A-99 shows the maximum objective function score as a combination of all four
collaboration levels for different Bn, Brh for Br equal -2 (left column), O (middle column) and
+2 (right column) and for payoff ratio equal to 0.1 (upper row), 1 (middle row) and 10 (lower
row). The increase in the human sensitivity decreases the objective function score on the
entire area and decrease the value of the maximum score. The values of Bn and P Of the
maximum objective function score is increased with increase in the payoff ratio in order to
decrease the number of marked objects and thus reduce the false alarm cost.
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Conclusions

The payoff ratio, Var, represent the type of the task through the value ratio of Vra and V.
High payoff ratio corresponds to high false alarm cost and low hit reward. Low payoff ratio
corresponds to low false alarm cost and high hit reward. Task with high payoff ratios will
have less tolerance for false alarms and less rewarding for hits. Task with low payoff ratios
will be very rewarding for hits and tolerance for false alarms.

For all collaboration levels the objective function score decrease with the increase in the
payoff ratio since the cost of the false alarms is reduced. The optimal Bn value of the objective
function maximum score is increasing with the increase in the payoff ratio.

The optimal Pn and PBrn values of the maximum objective function score is increased with
increase in the payoff ratio in order to decrease the number of marked objects and thus reduce
the false alarm cost.

10.1.7 Analysis of Vi and VFa

The reward of a single hit, V, is representing the type and quality of identified target. Since
the cost of a single false alarm, Vea, is related to Vy through the payoff ratio the increase in
VH, will increase Vra and therefore the objective function will increase although not is the
same proportion.

10.1.8 Analysis of Vc and Vi

The operational cost of one of object recognition (hit or false alarm), V¢, is representing the
cost required to perform a single detection. Increase in V¢, will increase the operational cost
value and decrease the objective function score in proportion to the number of objects
recognized for all collaboration levels.

The time cost, V4, represent the time expenses in target recognition task. Increase in V¢, will
increase the operational cost value and decrease the objective function score.

10.1.9 Analysis of to and twm

Increase in the decision time, tp, will increase the operational cost value and decrease the
objective function score in proportion to the number of objects equally for the HO, HO-Rr
and HO-R collaboration level. On the R collaboration level the decision time have no
influence. Increase in the motoric time, tm, will increase the operational cost value and
decrease the objective function score in proportion to the number of human marks or
cancellation of the robot marks, depends if the collaboration level is HO, HO-Rr or HO-R.
The motoric time have no influence on the R collaboration level.
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Appendix VII: The experimental simulator program

HOmarkalone2.m: The main program for the HO collaboration level

% in this program the HO mark by himself without the aid of the robot.
clear

clc

close all

sn=input('subject s/n=");
%sn=2
add=input(‘add=");
sub=input(‘sub=");

% Call for the tutorial
exptutorial

exlearningHO

scrsz = get(0,'ScreenSize);
A=figure('Position’,[1 1 scrsz(3) scrsz(4)])

tic
t2=[cputime,toc,0,0,0,0,0];
HOlogger=[];
allimagesdb=[];
scorestr='"SCORE: 0/
ttstr=['Detection: 07;
tfstr=['False: 07;
ftstr=['Missed: 07;
corner=55

score=0;

% imgorder=[11 38 71 90 112 258 65540 68 7 33 67 10 61 104 74 95 91 109 44 82 23 14 22 49 92 29 81 30
56 64 60 88];

% Block - the list of all images (about 60 images per block)
load Block

tcross=zeros(21);
tcross(1:21,10:12)=1;
tcross(10:12,1:21)=1;

% Generating 3 blocks with random image order for each subject
% at the end the image order vector called imglist
for j=1:3
temp_Block=Block(j,:);
Block_L=length(temp_Block);
for k=1:Block_L
temp_size=length(temp_Block);
randimgplace=floor(rand*temp_size)+1;
imgorder((j-1)*Block_L+k)=temp_Block(randimgplace);
if randimgplace==1
temp_Block=temp_Block(2:temp_size);
elseif randimgplace==temp_size
temp_Block=temp_Block(1:temp_size-1);
else
temp_Block=[temp_Block(1:randimgplace-1),temp_Block(randimgplace+1:temp_size)];
end
end
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end
imgorder_L=length(imgorder)

%reading the images directory
ImageDirs=['C:\My Documents\Matlab\Experiments2000\Melons\IMAGES\]
%ImageDirs=['f:\matlab\work\Experiments2000\melons\images\']

load melondatabase

% the format of t2 is: [cputime,time,x,y,fn,command type,stage]

% in command type: 0 - no command, 1 - inserting to database allready marked melon,
% 2 - detecting and inserting to dartabase, 3 - deleting detected melon, 4 - unknown yet.
t2=[t2;cputime,toc,0,0,0,0,1];

signs(1:21,1:3)=1,;

%Do the following loop for all directories that contain images
for dr=1:1
% Get filenames of images
% d=dir(ImageDirs(dr,:));
% [NumberOfFiles,Dummy]=size(d);
% NumberOfFiles

for i=1:imgorder_L
A2=];
imagenumber=imgorder(i);
mdn=(find(melondatabase(:,4)==imagenumber)); % the lines in the melon DB of the current image
true_no=length(mdn); %number of true targets
imgnumbstr=num2str(imagenumber);
fn=['melon day ',imgnumbstr,".jpg;

t2=[t2;cputime,toc,0,0,imagenumber,0,2];
% A=original image
A=imread(fn,'jpg");
r=double(A(:,:,1))./255;
g=double(A(:,:,2))./255;
b=double(A(:,:,3))./255;
imagesize=size(r);
imgsize=[0 0 imagesize];
rnew=r;
gnew=g;
bnew=Db;
A2(:,:,1)=rnew;
A2(:,:,2)=gnew;
A2(:,:,3)=bnew;

t2=[t2;cputime,toc,0,0,imagenumber,0,3];

% Call for subroutine which mark the true melons
%Show_targets

t2=[t2;cputime,toc,0,0,imagenumber,0,4];

figure(2)
imshow(A2)
set (A,'Position',[1 1 scrsz(3) scrsz(4)])
%  imshow(rnew,gnew,bnew)
h = uicontrol('Style', '‘pushbutton’, 'String’, 'NEXT','FontWeight','bold','Position’,[2,92,90,400]);
% h2=uicontrol('Style', 'text’,
'String',scorestr,'FontWeight','bold’,'Horizontal Alignment','left','Position’,[ 135,10,90,45]);
% h3=uicontrol('Style', 'text’, 'String' ttstr,'FontWeight','bold’,'Position’,[255,10,90,45]);
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% h6=uicontrol('Style', 'text', 'String',tfstr,'FontWeight','bold','Position’,[380,10,90,45]);

% h7=uicontrol('Style', 'text’, 'String',ftstr,'FontWeight','bold','Position’,[505,10,90,45]);

% h8=uicontrol('Style’, 'text’, 'String’,’Maximum: 1170','FontWeight','bold’,'Position’,[10,10,90,45]);
t2=[t2;cputime,toc,0,0,imagenumber,0,5];

% Subrotine in which the HO select and deselect the melon marks

HOdetectalone2
% end
end
end

t2=[t2;cputime,toc,0,0,0,0,99];

snstr=numa2str(sn);
eval(['save Mmarkalonsubject' snstr ' t2 HOlogger allimagesdb score'])

% call for subroutine expfinal

expfinal

HOdetectalone2.m: interface subroutine which display the human actions in the HO
collaboration level. Called from HOmarkalone2.m

clear imagedatabase
clear paralelimagedb

% the format of paralelimagedb is: x and y coordination of the mark done by the robot (without inserting
% to the DB), the image number, time it was issued (0 for detected by the robot), and the status.

% imagedatabase is the melon inserted by the HO.

% the format of imagedatabase is: x and y coordination of the mark, the image number,

% time it was issued (0 for detected by the robot), and the status (0 for detected by the robot,

% 1 for detected by the robot and inserted to the DB by the HO, 2 for detected by the HO and 3
% for deleted by the HO.

imagedatabase=[];

%gx=999;
gy=999;
while gy>0
[9y gx]=ginput(1)

t2=[t2;cputime,toc,gx,gy,imagenumber,4,11];

% the format of HOlogger is: the image number, x and y coordination of the mark, and
% the time it was issued
HOlogger=[HOlogger;imagenumber,gx,gy,toc];

if gx>=0 & gy>=0 & gx<imagesize(1) & gy<imagesize(2)
x=round(gx)
y=round(gy)
closetarget=[];

% Check if the HO inserted points and if the new mark close to them
if sum(size(imagedatabase))>0
dxy=[abs(x-imagedatabase(:,1)),abs(y-imagedatabase(:,2))]
sumline=sum((dxy<55)");
closetarget=find(sumline==2);
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imagedbdim=size(imagedatabase);
end

% this part delete the target and line from DB
if sum(closetarget)>0
x=imagedatabase(closetarget(1),1);
y=imagedatabase(closetarget(1),2);

% reorgenizing the DB of imagedatabase
if imagedbdim(1)==closetarget(1)
imagedatabase=imagedatabase(1:closetarget(1)-1,:);
else
imagedatabase(closetarget(1):imagedbdim(1)-1,:)=imagedatabase(closetarget(1)+1:imagedbdim(1),:);
imagedatabase=imagedatabase(1:imagedbdim(1)-1,:);
end

t2=[t2;cputime,toc,X,y,imagenumber,3,11];
% subrotine which unmark the melon detected
unmarksign
A2(:,:,1)=rnew;
A2(:,:,2)=gnew;
A2(:,:,3)=bnew;
imshow(A2)
set (I,'Position’,[1 1 scrsz(3) scrsz(4)])
%  imshow(rnew,gnew,bnew)
h = uicontrol('Style', 'pushbutton’, 'String', 'NEXT','FontWeight','bold','Position’,[2,92,90,400]);
% h2=uicontrol('Style’, ‘text’,
'String',scorestr,'FontWeight','bold','Horizontal Alignment','left','Position’,[135,10,90,45]);
% h3=uicontrol('Style', 'text', 'String' ttstr,'FontWeight','bold','Position’,[255,10,90,45]);
% h6=uicontrol('Style', 'text’, 'String',tfstr,'FontWeight','bold','Position’,[380,10,90,45]);
% h7=uicontrol('Style', 'text', 'String', ftstr,'FontWeight','bold','Position’,[505,10,90,45]);
% h8=uicontrol('Style', 'text', 'String','Maximum: 1170','FontWeight','bold','Position’,[10,10,90,45]);

% this part mark and insert new melon by the HO
else
imagedatabase=[imagedatabase;x,y,imagenumber,toc,2];
t2=[t2;cputime,toc,X,y,imagenumber,2,11];
% subrotine wich mark the melon detected
MARKSIGN
A2(:,:,1)=rnew;
A2(:,:,2)=gnew;
A2(:,:,3)=bnew;
imshow(A2)
set (I,'Position’,[1 1 scrsz(3) scrsz(4)])
%  imshow(rnew,gnew,bnew)
h = uicontrol('Style', ‘pushbutton’, 'String', 'NEXT','FontWeight','bold','Position’,[2,92,90,400]);
% h2=uicontrol('Style', 'text’,
'String',scorestr,'FontWeight','bold','Horizontal Alignment','left','Position’,[135,10,90,45]);
% h3=uicontrol('Style', 'text', 'String',ttstr,"FontWeight','bold’,'Position',[255,10,90,45]);
% h6=uicontrol('Style', 'text', 'String',tfstr,'FontWeight','bold','Position’,[380,10,90,45]);
% h7=uicontrol('Style', 'text', 'String', ftstr,'FontWeight','bold','Position’,[505,10,90,45]);
% h8=uicontrol('Style', 'text', 'String','Maximum: 1170','FontWeight','bold’,'Position’,[10,10,90,45]);

end
end
end

t2=[t2;cputime,toc,0,0,imagenumber,3,31];
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% call for subrotine which calculate the image score
imagescore

t2=[t2;cputime,toc,0,0,imagenumber,3,32];
% call for display score figure
scorefigure

t2=[t2;cputime,toc,0,0,imagenumber,3,33];
allimagesdb=[allimagesdb;imagedatabase];

t2=[t2;cputime,toc,0,0,imagenumber,3,34];

HOmark2.m: The main program for the HO-Rr collaboration level

% HO-Rr collaboration level

clear

clc

close all

load FAdatabase

sn=input('subject s/n=");
add=input(‘add=");
sub=input('sub=");
robothit=input(‘robot hit=");
robotfalse=0;
if robothit==0.9
robotfalse=12;
end
if robothit==0.5
robotfalse=106;
end
% Call for the tutorial
exptutorial
exlearningHORr

%robothit=0.8 % Robot hit rate
robot_all_tar=[]

HOlogger=[];

allimagesdb=[];
scorestr="SCORE: 0/
ttstr=['Detection: 0';
tfstr=['False: 07;
ftstr=['Missed: 07;

corner=55

score=0;

scrsz = get(0,'ScreenSize");
K=figure('Position’,[1 1 scrsz(3) scrsz(4)])

tic
t2=[cputime,toc,0,0,0,0,0];

%imgorder=[11 38 7190 7757 7997 2724934315819 46 99 17 42 72 16 83 110 21 24 39 43 47 50 101 105
96 102 6 69 75 89 361;

184



% Block - the list of all images (about 60 images per block)
load Block

tcross=zeros(21);
tcross(1:21,10:12)=1;
tcross(10:12,1:21)=1;

% Generating 3 blocks with random image order for each subject
% at the end the image order vector called imglist
for j=1:3
temp_Block=Block(j,:);
Block L=length(temp_Block);
for k=1:Block_L
temp_size=length(temp_Block);
randimgplace=floor(rand*temp_size)+1;
imgorder((j-1)*Block_L+k)=temp_Block(randimgplace);
if randimgplace==1
temp_Block=temp_Block(2:temp_size);
elseif randimgplace==temp_size
temp_Block=temp_Block(1:temp_size-1);
else
temp_Block=[temp_Block(1:randimgplace-1),temp_Block(randimgplace+1:temp_size)];
end
end
end
% random

imgorder_L=length(imgorder)

%reading the images directory

ImageDirs=['C:\My Documents\Matlab\Experiments2000\Melons\IMAGES\]
%ImageDirs=['D:\users\avital\phd\Experiments2000\melons\images\']
%ImageDirs=['f:\matlab\work\Experiments2000\melons\images\']

load melondatabase

% the format of t2 is: [cputime,time,X,y,fn,command type,stage]

% in command type: 0 - no command, 1 - inserting to database allready marked melon,
% 2 - detecting and inserting to dartabase, 3 - deleting detected melon, 4 - unknown yet.
t2=[t2;cputime,toc,0,0,0,0,1];

signs(1:21,1:3)=1,;

f_targets=[]; % vector that contains the numbers of all the false images found by the robot in all the images
temp_f_targets=[]; %a vector that contains the numbers of all the images in Block
st=0;
f_index=0;
f=1+(118-1)*rand,;
f_num=round(f);

while st==0
if length(temp_f_targets)==robotfalse
st=1,
end
if st==0
fnd=0;
temp_f targets_L=length(temp_f targets);
for i=1: temp_f targets_L %search for num in vector temp
if temp_f _targets(i)==f_num
fnd=1;
end
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end

if fnd==1
f=1+(118-1)*rand;
f_num=round(f);
else
temp_f_targets=[temp_f_targets;f_num];
end
end % if stop==0
end % while stop==
temp_f targets L=length(temp_f targets);
for i=1: temp_f targets L
f_index=temp_f _targets(i);
f_targets=[f_targets;FAdatabase(f_index,1:4)];
end

f_targets_L=length(f_targets);
%Do the following loop for all directories that contain images
for dr=1:1
% Get filenames of images
% d=dir(ImageDirs(dr,:));
% [NumberOfFiles,Dummy]=size(d);
% NumberOfFiles

for i=1:imgorder_L
A2=];
% paralelimagedb=[];
imagenumber=imgorder(i);
mdn=(find(melondatabase(:,4)==imagenumber)); % the lines in the melon DB of the current image
fdn=(find(f_targets(:,4)==imagenumber)); % the lines in the melon DB of the current image
true_no=length(mdn); %number of true targets
Img_R_hit=rand(1,true_no); % the robot hit rate for each melon in the image

imgnumbstr=num2str(imagenumber);
fn=['melon day ',imgnumbstr,".jpg'];

t2=[t2;cputime,toc,0,0,imagenumber,0,2];
% A=original image
A=imread(fn,'jpg’);
r=double(A(:,:,1))./255;
g=double(A(:,:,2))./255;
b=double(A(:,:,3))./255;
imagesize=size(r);
imgsize=[0 0 imagesize];
rnew=r;

gnew=g;

bnew=Db;

t2=[t2;cputime,toc,0,0,imagenumber,0,3];

robot_target n=[];
robot_f target n=[];
if true_no>0
robot_target_n=find(Img_R_hit<robothit); % The melons in the image whom succeed the robot hit rate
robot_all_tar=[robot_all_tar;melondatabase(mdn(robot_target_n),:)];
for j=1:length(robot_target_n)
x=melondatabase(mdn(robot_target_n(j)),2);
y=melondatabase(mdn(robot_target_n(j)),3);

% subrotine which mark the melon detected
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framesign
end
end

for w=1:length(fdn)
x=f_targets(fdn(w),2);
y=f_targets(fdn(w),3);
% subrotine which mark the false alarms

framesign

end
% robot_FA=find(robot_false(:,1)==imgorder(i); % robot_false - the list of all robot false alarms in all the
images
% if robot_FA>0
% img_robot_FA=find(rand(1)<1-robothit-0.05); % The false alarms in the image whom succeed the
robot hit rate
% robot_all_FA=[robot_all FA;robot_false(robot_FA,)];
% for j=1:length(robot_target_n)
% x=robot_false(robot_FA(j),2);
% y=robot_false(robot_FA(j),3);
%
% subrotine which mark the false alarms detected
% marksign
% end
% end

t2=[t2;cputime,toc,0,0,imagenumber,0,4];

A2(:,:,1)=rnew;
A2(:,:,2)=gnew;
A2(:,:,3)=bnew;

% figure(2)
imshow(A2)
set (K,'Position’,[1 1 scrsz(3) scrsz(4)])
%  imshow(rnew,gnew,bnew)
h = uicontrol('Style', ‘pushbutton’, 'String', 'NEXT','FontWeight','bold','Position’,[2,92,90,400]);
% h2=uicontrol('Style', 'text',
'String',scorestr,'FontWeight','bold','Horizontal Alignment','left','Position’,[135,10,90,45]);
% h3=uicontrol('Style', 'text', 'String' ttstr,'FontWeight','bold’,'Position’,[255,10,90,45]);
% h6=uicontrol('Style', 'text’, 'String',tfstr,'FontWeight','bold','Position’,[380,10,90,45]);
% h7=uicontrol('Style', 'text’, 'String',ftstr,'FontWeight','bold','Position’,[505,10,90,45]);
% h8=uicontrol('Style', 'text’, 'String','Maximum: 1170','FontWeight','bold','Position’,[10,10,90,45]);

t2=[t2;cputime,toc,0,0,imagenumber,0,5];

% Subrotine in which the HO select and deselect the melon marks

HOdetect2
% end
end
end

t2=[t2;cputime,toc,0,0,0,0,99];

snstr=numa2str(sn);
eval(['save Mmarksubject’ snstr ' t2 HOlogger allimagesdb robot_all_tar score f_targets'])

% call for subroutine expfinal
expfinal
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HOdetect2.m: interface subroutine which display the human actions in the HO-Rr
collaboration level. Called from HOmark2.m

clear imagedatabase
clear paralelimagedb

% the format of paralelimagedb is: x and y coordination of the mark done by the robot (without inserting
% to the DB), the image number, time it was issued (O for detected by the robot), and the status.
paralelimagedb=[];

if ~isempty(robot_target_n) %inserting true targets the robot detected
paralelimagedb=[paralelimagedb;melondatabase(mdn(robot_target_n),2:4)];
paralelimagedb(:,4:5)=0;

end

if ~isempty(fdn) % inserting false alarms the robot detected
for w2=1:length(fdn)

paralelimagedb=[paralelimagedb;f_targets(fdn(w2),2:4),0 0];

end

% paralelimagedb(:,4:5)=0;

end

%if ~isempty(img_robot_FA)

% imagedatabase=[imagedatabase;robot_false(robot FA,2:4)];

% imagedatabase(:,4:5)=0;

%end

% imagedatabase is the melon inserted by the HO.

% the format of imagedatabase is: x and y coordination of the mark, the image number,

% time it was issued (0 for detected by the robot), and the status (0 for detected by the robot,

% 1 for detected by the robot and inserted to the DB by the HO, 2 for detected by the HO and 3
% for deleted by the HO.

imagedatabase=[];

%gx=999;
gy=999;
while gy>0
[gy gx]=ginput(1);

t2=[t2;cputime,toc,gx,gy,imagenumber,4,11];

% the format of HOlogger is: the image number, x and y coordination of the mark, and
% the time it was issued
HOlogger=[HOlogger;imagenumber,gx,gy,toc];

if gx>=0 & gy>=0 & gx<imagesize(1l) & gy<imagesize(2)
x=round(gx);
y=round(gy);
closetarget=[];
closetomark=[];

% Check if the HO inserted points and if the new mark close to them
if sum(size(imagedatabase))>0
dxy=[abs(x-imagedatabase(:,1)),abs(y-imagedatabase(:,2))];
sumline=sum((dxy<55)");
closetarget=find(sumline==2);
imagedbdim=size(imagedatabase);
end

% Check if the new mark close to the marks made by the computer
if sum(size(paralelimagedb))>0
fdxy=[abs(x-paralelimagedb(:,1)),abs(y-paralelimagedb(:,2))];
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fsumline=sum((fdxy<55)");

closetomark=find(fsumline==2);

fimagedbdim=size(paralelimagedb);
end

% this part delete the target and line from DB
if sum(closetarget)>0
x=imagedatabase(closetarget(1),1);
y=imagedatabase(closetarget(1),2);

% reorgenizing the DB of imagedatabase
if imagedbdim(1)==closetarget(1)
imagedatabase=imagedatabase(1:closetarget(1)-1,:);
else
imagedatabase(closetarget(1):imagedbdim(1)-1,:)=imagedatabase(closetarget(1)+1:imagedbdim(1),:);
imagedatabase=imagedatabase(1:imagedbdim(1)-1,:);
end

% reorgenizing the DB of paralelimagedb
if sum(closetomark)>0
if fimagedbdim(1)==closetomark(1)
paralelimagedb=paralelimagedb(1:closetomark(1)-1,:);
else
paralelimagedb(closetomark(1):fimagedbdim(1)-
1,:)=paralelimagedb(closetomark(1)+1:fimagedbdim(1),:);
paralelimagedb=paralelimagedb(1:fimagedbdim(1)-1,:);
end
end

t2=[t2;cputime,toc,x,y,imagenumber,3,11];
% subrotine which unmark the melon detected
unmarksign
imshow(rnew,gnew,bnew)
set (K,'Position',[1 1 scrsz(3) scrsz(4)])
h = uicontrol('Style', ‘pushbutton’, 'String', 'NEXT','FontWeight','bold','Position’,[2,92,90,400]);

% this part marking the cross sight and inserting it to the database
elseif sum(closetomark)>0

x=paralelimagedb(closetomark(1),1);
y=paralelimagedb(closetomark(1),2);
t2=[t2;cputime,toc,X,y,imagenumber,1,11];
imagedatabase=[imagedatabase;x,y,imagenumber,toc,1];

% subrotine wich mark cross on the melon detected

crosssign

imshow(rnew,gnew,bnew)
set (K,'Position’,[1 1 scrsz(3) scrsz(4)])
h = uicontrol('Style', ‘pushbutton’, 'String', 'NEXT','FontWeight','bold','Position’,[2,92,90,400]);

% this part mark and insert new melon by the HO
else
imagedatabase=[imagedatabase;x,y,imagenumber,toc,2];
t2=[t2;cputime,toc,X,y,imagenumber,2,11];
% subrotine wich mark the melon detected
marksign
imshow(rnew,gnew,bnew)
set (K,'Position’,[1 1 scrsz(3) scrsz(4)])
h = uicontrol('Style', ‘pushbutton’, 'String’, 'NEXT','FontWeight','bold','Position’,[2,92,90,400]);
end

end
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end

t2=[t2;cputime,toc,0,0,imagenumber,3,31];
% call for subrotine which calculate the image score
imagescore

t2=[t2;cputime,toc,0,0,imagenumber,3,32];
% call for display score figure
scorefigure

t2=[t2;cputime,toc,0,0,imagenumber,3,33];
allimagesdb=[allimagesdb;imagedatabase];

t2=[t2;cputime,toc,0,0,imagenumber,3,34];

HOmarkandinsert2.m: The main program for the HO-R collaboration level

% HO-R collaboration level

clear

clc

close all

load FAdatabase
sn=input('subject s/n=");

add=input(‘add=");
sub=input('sub=");
robothit=input(‘robot hit=");
% Call for the tutorial
exptutorial

exlearningHOR

if robothit==0.9
robotfalse=12;
end
if robothit==0.5
robotfalse=106;
end

%robothit=0.8 % Robot hit rate
robot_all_tar=[]

HOlogger=[];

allimagesdb=[];
scorestr="SCORE: 0/
ttstr=['Detection: 0'7;
tfstr=['False: 07;
ftstr=['Missed: 07;

corner=55

score=0;

scrsz = get(0,'ScreenSize");
I=figure('Position’,[1 1 scrsz(3) scrsz(4)])

tic

190



t2=[cputime,toc,0,0,0,0,0];

%imgorder=[11 38 71 90 26 32 66 86 106 20 28 53 3 3563 45 7394 12 76 108 15 84 62 52 13 48 54 98 18 51
7859 41 107 70 80 103 93];

%imgorder=[91 10 43 101 89 106 73 12 26 32 66 86 106 20 28 53 3 3563 457394 12 76 108 15 84 62 52 13
48 54 98 18 51 78 59 41 107 70 80 103 93];

% Block - the list of all images (about 60 images per block)
load Block

tcross=zeros(21);
tcross(1:21,10:12)=1;
tcross(10:12,1:21)=1;

% Generating 3 blocks with random image order for each subject
% at the end the image order vector called imglist
for j=1:3
temp_Block=Block(j,:);
Block_L=length(temp_Block);
for k=1:Block_L
temp_size=length(temp_Block);
randimgplace=floor(rand*temp_size)+1;
imgorder((j-1)*Block_L+k)=temp_Block(randimgplace);
if randimgplace==1
temp_Block=temp_Block(2:temp_size);
elseif randimgplace==temp_size
temp_Block=temp_Block(1:temp_size-1);
else
temp_Block=[temp_Block(1:randimgplace-1),temp_Block(randimgplace+1:temp_size)];
end
end
end
% random

imgorder_L=length(imgorder)

%reading the images directory

ImageDirs=['C:\My Documents\Matlab\Experiments2000\Melons\IMAGES\]
%ImageDirs=['D:\users\avital\phd\Experiments2000\melons\images\']
%ImageDirs=['f:\matlab\work\Experiments2000\melons\images\']

load melondatabase

% the format of t1 is: [cputime,time,x,y,fn,command type,stage]

% in command type: 0 - no command, 1 - inserting to database allready marked melon,
% 2 - detecting and inserting to dartabase, 3 - deleting detected melon, 4 - unknown yet.
t2=[t2;cputime,toc,0,0,0,0,1];

signs(1:21,1:3)=1;

f_targets=[]; % vector that contains the numbers of all the false images
temp_f_targets=[]; %a vector that contains the numbers of all the images in Block
st=0;
f_index=0;

f=1+(118-1)*rand;

f_num=round(f);

while st==
if length(temp_f_targets)==robotfalse
st=1,
end
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if st==0
fnd=0;
temp_f targets_L=length(temp_f targets);
for i=1: temp_f targets_L %search for num in vector temp
if temp_f _targets(i)==f_num
fnd=1;
end
end

if fnd==1
f=1+(118-1)*rand;
f_num=round(f);
else
temp_f_targets=[temp_f_targets;f_num];
end
end % if stop==0
end % while stop==
temp_f targets L=length(temp_f targets);
for i=1: temp_f targets L
f_index=temp_f _targets(i);
f_targets=[f_targets;FAdatabase(f_index,1:4)];
end

f_targets_L=length(f_targets);

%Do the following loop for all directories that contain images
for dr=1:1
% Get filenames of images
% d=dir(ImageDirs(dr,:));
% [NumberOfFiles,Dummy]=size(d);
% NumberOfFiles

%imgorder(2)=405;%DELETE this line after inspaction
%imgorder(1)=405;%DELETE this line after inspaction

for i=1:imgorder_L
A2=[];

imagenumber=imgorder(i);

mdn=(find(melondatabase(:,4)==imagenumber)); % the lines in the melon DB of the current image
fdn=(find(f_targets(:,4)==imagenumber)); % the lines in the melon DB of the current image
true_no=Ilength(mdn); %number of true targets

Img_R_hit=rand(1,true_no); % the robot hit rate for each melon in the image
imgnumbstr=num2str(imagenumber);

fn=['melon day ',imgnumbstr,".jpg;

t2=[t2;cputime,toc,0,0,imagenumber,0,2];
% A=original image
A=imread(fn,'jpg");
r=double(A(:,:,1))./255;
g=double(A(:,:,2))./255;
b=double(A(:,:,3))./255;
imagesize=size(r);
imgsize=[0 0 imagesize];
rNew=r;

gnew=g;

bnew=b;

t2=[t2;cputime,toc,0,0,imagenumber,0,3];

robot_target_n=[];
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robot_f target_n=[];
if true_no>0
robot_target_n=find(Img_R_hit<robothit); % The melons in the image whom succeed the robot hit rate
robot_all_tar=[robot_all_tar;melondatabase(mdn(robot_target n),:)];
for j=1:length(robot_target n)
x=melondatabase(mdn(robot_target_n(j)),2);
y=melondatabase(mdn(robot_target_n(j)),3);

% subrotine which mark the melon detected
marksign
end
end

for w=1:length(fdn)
x=f_targets(fdn(w),2);
y=f_targets(fdn(w),3);
% subrotine which mark the false alarms

marksign

end
% robot_FA=find(robot_false(:,1)==imgorder(i); % robot_false - the list of all robot false alarms in all the
images
% if robot_ FA>0
% img_robot_FA=find(rand(1)<1-robothit-0.05); % The false alarms in the image whom succeed the
robot hit rate
% robot_all_FA=[robot_all_FA;robot_false(robot_FA,)];
% for j=1:length(robot_target n)
% x=robot_false(robot_FA(j),2);
% y=robot_false(robot_FA(j),3);
%
% subrotine which mark the false alarms detected
% marksign
% end
% end

t2=[t2;cputime,toc,0,0,imagenumber,0,4];

A2(:,:;,1)=rnew;
A2(:,:,2)=gnew;
A2(:,:,3)=bnew;

% figure(2)

imshow(A2)

set (I,'Position’,[1 1 scrsz(3) scrsz(4)])
%  imshow(rnew,gnew,bnew)

h = uicontrol('Style', '‘pushbutton’, 'String’, 'NEXT','FontWeight','bold','Position’,[2,92,90,400]);
% h2=uicontrol('Style', 'text’,
'String',scorestr,'FontWeight','bold','Horizontal Alignment','left','Position’,[135,10,90,45]);
% h3=uicontrol('Style', 'text', 'String',ttstr,'FontWeight','bold’,'Position’,[255,10,90,45]);
% h6=uicontrol('Style', 'text’, 'String',tfstr,'FontWeight','bold','Position’,[380,10,90,45]);
% h7=uicontrol('Style', 'text', 'String',ftstr,'FontWeight','bold",'Position’,[505,10,90,45]);
% h8=uicontrol('Style', 'text’, 'String','Maximum: 1170','FontWeight','bold','Position’,[10,10,90,45]);

t2=[t2;cputime,toc,0,0,imagenumber,0,5];

% Subrotine in which the HO select and deselect the melon marks
HOdetectandinsert2

% end
end
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end
t2=[t2;cputime,toc,0,0,0,0,99];

snstr=numa2str(sn);
eval(['save Mmarkninssubject' snstr ' t2 HOlogger allimagesdb robot_all_tar score f_targets'])

% call for subroutine expfinal
expfinal

HOdetectandinsert2.m: interface subroutine which display the human actions in the
HO-R collaboration level. Called from HOmarkandinsert2.m

clear imagedatabase
clear robotdatabase

% the format of imagedatabase is: x and y coordination of the mark, the image number,

% time it was issued (0 for detected by the robot), and the status (0 for detected by the robot,

% 2 for detected by the HO and 3 for deleted by the HO.

%imagedatabase=melondatabase(mdn,2:4);

%imagedatabase(:,4:5)=0;

imagedatabase=[];

if ~isempty(robot_target_n)
imagedatabase=[imagedatabase;melondatabase(mdn(robot_target n),2:4)];
imagedatabase(:,4:5)=0;

end

if ~isempty(fdn) % inserting false alarms the robot detected
for w2=1:length(fdn)
imagedatabase=[imagedatabase;f_targets(fdn(w2),2:4),0 0];
end
% paralelimagedb(:,4:5)=0;
end

%if ~isempty(img_robot_FA)

% imagedatabase=[imagedatabase;robot_false(robot FA,2:4)];
% imagedatabase(:,4:5)=0;

%end

%gx=999;
gy=999;
while gy>0
[gy gx]=ginput(1)

t2=[t2;cputime,toc,gx,gy,imagenumber,4,11];

% the format of HOlogger is: the image number, x and y coordination of the mark, and
% the time it was issued
HOlogger=[HOlogger;imagenumber,gx,gy,toc];

if gx>=0 & gy>=0 & gx<imagesize(1l) & gy<imagesize(2)
x=round(gx);
y=round(gy);
closetarget=[];

if ~isempty(imagedatabase)
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dxy=[abs(x-imagedatabase(;,1)),abs(y-imagedatabase(;,2))];
sumline=sum((dxy<55)");
closetarget=find(sumline==2);
imagedbdim=size(imagedatabase);

end

% this part delete the target and line from DB

if sum(closetarget)==0
imagedatabase=[imagedatabase;x,y,imagenumber,toc,2];
t2=[t2;cputime,toc,X,y,imagenumber,2,11];

% subrotine wich mark the melon detected
marksign

A2(:,:;,1)=rnew;
A2(:,:,2)=gnew;
A2(:,:,3)=bnew;
imshow(A2)
set (I,'Position’,[1 1 scrsz(3) scrsz(4)])
h = uicontrol('Style', ‘pushbutton’, 'String', 'NEXT','FontWeight','bold','Position’,[2,92,90,400]);

else

x=imagedatabase(closetarget(1),1);

y=imagedatabase(closetarget(1),2);

if imagedbdim(1)==closetarget(1)
imagedatabase=imagedatabase(1:closetarget(1)-1,:);

else
imagedatabase(closetarget(1):imagedbdim(1)-1,:)=imagedatabase(closetarget(1)+1:imagedbdim(1),:);
imagedatabase=imagedatabase(1:imagedbdim(1)-1,:);

end

t2=[t2;cputime,toc,X,y,imagenumber,3,11];
% subrotine wich unmark the melon detected
unmarksign
A2(:,:,1)=rnew;
A2(:,:,2)=gnew;
A2(:,:,3)=bnew;
imshow(A2)
set (I,'Position’,[1 1 scrsz(3) scrsz(4)])
h = uicontrol('Style', '‘pushbutton’, 'String’, ‘'NEXT",'FontWeight','bold’,'Position’,[2,92,90,400]);

end

end
end
t2=[t2;cputime,toc,0,0,imagenumber,3,31];
% call for subrotine which calculate the image score
imagescore
t2=[t2;cputime,toc,0,0,imagenumber,3,32];
% call for display score figure
scorefigure
t2=[t2;cputime,toc,0,0,imagenumber,3,33];

allimagesdb=[allimagesdb;imagedatabase];

t2=[t2;cputime,toc,0,0,imagenumber,3,34];
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exptutorial.m: Experiment tutorial subroutine. This subroutine explain the subject about the
experiment procedures. Called from the main programs

% Subroutine which explain the experiment
ImageDir=['C:\My Documents\Matlab\Experiments2003\Tutorial\']

for t1=1:5
scrsz = get(0,'ScreenSize");
h=figure('Position’,[1 1 scrsz(3) scrsz(4)])
if t1<5
tstr=num2str(t1);
tut_img_no=["tutor"tstr,".jpg'l;
T=imread(tut_img_no,'jpg");
else
if add==7
T=imread('max.jpg");
end
if add==3
T=imread('min.jpg");
end
end
imshow(T)
set(h,'Position’,[1 1 scrsz(3) scrsz(4)])
h2= uicontrol('Style', 'pushbutton’, 'String’, 'ENTER','FontWeight','bold’,'Position’,[2,92,90,400]);
[9y 9x]=ginput(1)
while (gy>-170 | gx<150 | gx>570)
[9y 9x]=ginput(1)
end
% pause
end

close all

exlearningHO.m: Experiment practice for HO collaboration level. called from the main
program, HOmarkalone2.m

% Subroutine which explain the experiment for HO level

clear

cle

close all

clear Limagedatabase

ImageDir=['C:\My Documents\Matlab\Experiments2003\learning’]

Limgorder=[10 669 669 669];
Limagedatabase=[];
corner=55

A2=[];

detect=0;

t1=0;

stop=0;

signed=0;

deleted=0;

err=0;

closetarget=0;

targetd=0;

scrsz = get(0,'ScreenSize");
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%set (h,'Position’,[1 1 scrsz(3) scrsz(4)])
for t1=1:4
h=figure('Position’,[1 1 scrsz(3) scrsz(4)])
iftl<4
Istr=num2str(t1);
learn_img_no=['learn’,Istr,".jpg"];
L=imread(learn_img_no,'jpg’);
imshow(L)
set (h,'Position’,[1 1 scrsz(3) scrsz(4)])
pause
end
if targetd==1 & t1==2
A=imread('melon day 10.jpg");
imshow(A)
else
if targetd==1 & t1==4
if err==
A=imread('melon day 10.jpg");
imshow(A)
else
A=imread('melon day 666.jpg');
imshow(A)
end
else
if closetarget==1& t1==4 & err==1
A=imread('melon day 664.jpg");
imshow(A)
end
if closetarget==1& t1==4 & err==0
A=imread('melon day 333.jpg");
imshow(A)
end
end
end
if t1<4
showimage
end
gy=999;
gx=999;
detect=0;
go=0;
stop=0;
err=0;
closetarget=0;
targetd=0;
flag==0;
while detect==0
if gy<0 & flag==1
detect=1,;
else
gy=999;
end
while gy>0 & go==
[gy gx]=ginput(1)
while (gx<0) & flag==0
[gy gx]=ginput(1)
end
if gx>=0 & gy>=0 & gx<imagesize(1l) & gy<imagesize(2) & (stop==0)
x=round(gx)
y=round(gy)
% Check if the HO inserted points and if the new mark close to them
if (t1==2 & detect==0) | (t1==3 & detect==0) | (t1==4 & detect==0)
dxy=[abs(x-293),abs(y-196)]
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sumline=sum((dxy<55)";
targetd=find(sumline==2);
end
if (t1==1 & detect==0) | (t1==3 & detect==0) | (t1==4 & detect==0)
dxy=[abs(x-133),abs(y-336)]
sumline=sum((dxy<55)");
closetarget=find(sumline==2);
end
% reorgenizing the DB of imagedatabase
if sum(closetarget)>0 & sighed==0
if detect==0
MARKSIGN
A2(:,:;,1)=rnew;
A2(:,:,2)=gnew;
A2(:,:,3)=bnew;
end
if t1==1
imshow(A2)
end
if t1==3
A=imread('melon day 333.jpg’");
imshow(A)
end
if tl==
A=imread('melon day 444.jpg");
imshow(A)
end
h1= uicontrol('Style', 'pushbutton’, 'String’,
'NEXT','FontWeight','bold’,'Position’,[2,92,90,400]);
flag=1,;
detect=1;
if t1==3
go=1;
signed=1;
end
else % sum(closetarget)>0
if sum(targetd)>0 & deleted==0
if (t1<4) | (t1==4 & closetarget==1)
A=imread('melon day 10.jpg");

imshow(A)
else
A=imread('melon day 444.jpg");
imshow(A)
end

h1= uicontrol('Style', 'pushbutton’, 'String’,
'NEXT','FontWeight','bold','Position’,[2,92,90,400]);
flag=1,;
if (detect==0 & t1==1) | (detect==0 & t1==2)
[y gx]=ginput(1)
end
h1= uicontrol('Style', 'pushbutton’, 'String’,
‘NEXT','FontWeight','bold','Position’,[2,92,90,400]);
detect=1;
stop=1,;
if t1==3
go=1;
deleted=1;
end
else
estr=numa2str(t1);
error_img_no=["error',Istr,".jpg'];
R=imread(error_img_no,'jpg";
err=1;
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imshow(R)
pause
iftl==1 & err==1
B=imread('melon day 666.jpg’);
imshow(B)
end
iftl==2 & err==1
B=imread('melon day 667.jpg");
imshow(B)
end
ift1==3 & err==1
B=imread('melon day 665.jpg");
imshow(B)
end
if tl==4 & err==1
if deleted==0
B=imread('melon day 664.jpg’);
imshow(B)
else
B=imread('melon day 666.jpg");
imshow(B)
end
end
end
end %closetarget==0) & (dtarget==0)
end

end %if gx>=0 & gy>=0 & gx<imagesize(1) & gy<imagesize(2)
flag=0;

end %while gy>0

close all

end %while detect==0
if tl<4
close all

end
end % for t1=1:2
T=imread('finish.jpg?;
imshow(T)
pause
close all

exlearningHOR.m: Experiment practice for HO-R collaboration level. Called from the main
program, HOmarkandinsert2.m

% Subroutine which explain the experiment for HO-R level
clear

clc

close all

clear Limagedatabase
ImageDir=['C:\My Documents\Matlab\Experiments2003\learning']

Limgorder=[10 669 669];
Limagedatabase=[];
corner=55

A2=[];

detect=0;

t1=0;
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stop=0;
signed=0;

deleted=0;

err=0;

closetarget=0;
targetd=0;

scrsz = get(0,'ScreenSize');

for t1=1:3

h=figure('Position’,[1 1 scrsz(3) scrsz(4)])
Istr=num2str(t1);
learn_img_no=['HORIlearn',lIstr,".jpg'];
L=imread(learn_img_no,'jpg";
imshow(L)
set (h,'Position’,[1 1 scrsz(3) scrsz(4)])
pause
if targetd==1 & t1==2
A=imread('melon day 10.jpg’);
imshow(A)
end
if t1<3
showimage
else
A=imread('melon day 333.jpg’);
imshow(A)
end
gy=999;
0x=999;
detect=0;
go=0;
stop=0;
err=0;
closetarget=0;
targetd=0;
flag=0;
while detect==0
if gy<0 & flag==
detect=1;
else
gy=999;
end
while gy>0 & go==0
[gy gx]=ginput(1)
while (gx<0) & flag==0
[y gx]=ginput(1)
end

if gx>=0 & gy>=0 & gx<imagesize(1) & gy<imagesize(2) & (stop==0)

x=round(gx)
y=round(gy)

% Check if the HO inserted points and if the new mark close to them

if (t1==2 & detect==0) | (t1==3 & detect==0)
dxy=[abs(x-293),abs(y-196)]
sumline=sum((dxy<55)";
targetd=find(sumline==2);

end

if (t1==1 & detect==0) | (t1==3 & detect==0)
dxy=[abs(x-133),abs(y-336)]
sumline=sum((dxy<55)");
closetarget=find(sumline==2);

end

% reorgenizing the DB of imagedatabase

if sum(closetarget)>0 & signed==
if detect==
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MARKSIGN
A2(:,:;,1)=rnew;
A2(:,:,2)=gnew;
A2(:,:,3)=bnew;
end
if t1==1
imshow(A2)
h1=uicontrol('Style', 'pushbutton’, 'String’,
'NEXT','FontWeight','bold','Position’,[2,92,90,400]);
flag=1;
end
if (t1<3)
detect=1;
signed=1;
stop=1;
end
else % sum(closetarget)>0
if sum(targetd)>0 & deleted==0
if (t1==2)
A=imread('melon day 10.jpg’);
end
if (t1==3)
A=imread('melon day 444.jpg’");
end
imshow(A)
h1= uicontrol('Style', 'pushbutton’, 'String’,
'NEXT','FontWeight','bold’,'Position’,[2,92,90,400]);
flag=1,;
if (detect==0 & t1==1) | (detect==0 & t1==2)
[y gx]=ginput(1)
end
h1= uicontrol('Style', 'pushbutton’, 'String’,
'‘NEXT','FontWeight','bold','Position’,[2,92,90,400]);
flag=1,;
detect=1;
stop=1;
if t1==3
go=1;
deleted=1;
end
else
err=1;
if (t1<3)
estr=numa2str(t1);
error_img_no=['error',Istr,".jpg'];
R=imread(error_img_no,'jpg");
imshow(R)
pause
end
if t1==1
E=imread('melon day 666.jpg’);
imshow(E)
end
if tl==
E=imread('melon day 667.jpg");
imshow(E)
end
if tl==
if closetarget==1
E=imread('HORerr.jpg");
imshow(E)
pause
closetarget=0;
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B=imread('melon day 664.jpg");
imshow(B)
else
estr=num2str(t1);
error_img_no=['errorlstr,".jpg;
R=imread(error_img_no,'jpg);
imshow(R)
pause
C=imread('melon day 664.jpg");
imshow(C)
end
end
end
end %closetarget==0) & (dtarget==0)
end % while gy>0 & go==0
end %if gx>=0 & gy>=0 & gx<imagesize(1) & gy<imagesize(2)
flag=0;
end %while gy>0
close all
end %while detect==0
if tl<4
close all
end
end % fortl=1:2
T=imread('finish.jpg");
imshow(T)
pause
close all

exlearningHORr.m: Experiment practice for HO-Rr collaboration level. Called from the
main program, HOmark2.m

% Subroutine which explain the experiment for HO-Rr level
clear

cle

close all

clear Limagedatabase

ImageDir=['C:\My Documents\Matlab\Experiments2003\learning’]
Limgorder=[10 10 777];

Limagedatabase=[];

corner=55

A2=[];

detect=0;

t1=0;

stop=0;

signed=0;

deleted=0;

scrsz = get(0,'ScreenSize");

for t1=1:3
h=figure('Position’,[1 1 scrsz(3) scrsz(4)])
Istr=num2str(t1);
learn_img_no=['HORrlearn',Istr,".jpg;
L=imread(learn_img_no,'jpg");
imshow(L)
set (h,'Position’,[1 1 scrsz(3) scrsz(4)])
pause
closetarget=0;
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targetd=0;
err=0;
showimage
if targetd==1
A=imread('melon day 10.jpg");
imshow(A)
end
gy=999;
0x=999;
detect=0;
go=0;
stop=0;
flag=0;
while detect==0
if gy<0 & flag==1
detect=1;
else
gy=999;
end
while gy>0 & go==
if (t1==2 & detect==0 & err==0)
A=imread('melon day 669.jpg’);
imshow(A)
end
[9y 9x]=ginput(1)
while (gx<0) & flag==0
[9y 9x]=ginput(1)
end
if gx>=0 & gy>=0 & gx<imagesize(1) & gy<imagesize(2) & (stop==0)
x=round(gx)
y=round(gy)
if (t1==2 & detect==0) | (t1==3 & detect==0) & (stop==0)
dxy=[abs(x-293),abs(y-196)]
sumline=sum((dxy<55)";
targetd=find(sumline==2);
end
if (t1==1 & detect==0) | (t1==3 & detect==0) & (stop==0)
dxy=[abs(x-133),abs(y-336)]
sumline=sum((dxy<55)";
closetarget=find(sumline==2);
end
if sum(closetarget)>0 & signed==0
if detect==0 & t1==1
MARKSIGN
A2(:,:,1)=rnew;
A2(:,:,2)=gnew;
A2(:,:,3)=bnew;
end
if detect==0 & t1==3
crosssign
A2(:,;,1)=rnew;
A2(:,:,2)=gnew;
A2(:,:,3)=bnew;
end
if t1<3
imshow(A2)
else
A=imread('melon day 888.jpg");
imshow(A)
end
h1= uicontrol('Style', 'pushbutton’, 'String’,
'NEXT','FontWeight','bold','Position’,[2,92,90,400]);
flag=1;
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detect=1;
if t1==3
stop=1;
signed=1;
end
else % sum(closetarget)>0
if sum(targetd)>0 & deleted==0 & t1==2
A=imread('melon day 10.jpg");
imshow(A)
h1= uicontrol('Style', 'pushbutton’, 'String’,
'NEXT','FontWeight','bold','Position’,[2,92,90,400]);
flag=1;
detect=1;
stop=1;
if t1==3
deleted=1,;
end
else
err=1;
if t1<3
estr=numa2str(t1);
error_img_no=['error'lstr,"jpg;
R=imread(error_img_no,'jpg");
imshow(R)
pause
end
if t1==1
E=imread('melon day 666.jpg’);
imshow(E)
end
if t1==2
E=imread('melon day 667.jpg");
imshow(E)
end
if t1==3 %& err==1
if targetd==1
E=imread('HORrerr.jpg");
imshow(E)
pause
targetd=0;
B=imread(‘'melon day 668.jpg");
imshow(B)
else
estr=numa2str(t1);
error_img_no=['error',Istr,".jpg'];
R=imread(error_img_no,'jpg);
imshow(R)
pause
C=imread('melon day 668.jpg");
imshow(C)
end

end

end %closetarget==0) & (dtarget==0)
end

end %if gx>=0 & gy>=0 & gx<imagesize(1) & gy<imagesize(2)
flag=0;
end %while gy>0
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end %while detect==0
if tl<4
close all
end
end% for t1=1:2
T=imread('finish.jpg");
imshow(T)
pause
close all

Unmarksign.m: subroutine which unmark previous selection of an object by human or robot.
Called from the interface subroutine.

% unmarksign subrotine

frameleft=corner;
frameright=corner;
frameup=corner;
framedown=corner;

if x<=corner
frameup=x-1;
end
if imagesize(1)-x<=corner
framedown=imagesize(1)-x-1;
end
if y<=corner
frameleft=y-1;
end
if imagesize(2)-y<=corner
frameright=imagesize(2)-y-1,;
end

rnew(x-frameup:x+framedown,y-frameleft:y+frameright)=r(x-frameup:x+framedown,y-frameleft:y+frameright);
gnew(x-frameup:x+framedown,y-frameleft:y+frameright)=g(x-frameup:x+framedown,y-
frameleft:y+frameright);
bnew(x-frameup:x+framedown,y-frameleft:y+frameright)=b(x-frameup:x+framedown,y-
frameleft:y+frameright);

marksign.m: subroutine which mark an object. Called from the main program or interface
subroutine.

% marksign subroutine compound from the cross sign and the frame sign

% the crosssign subrotine call
crosssign

% the framesign subrotine call
framesign
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crosssign.m: subroutine which draw a black cross on the marked object. Called from
marksign.m subroutine.

% The crosssign subrotine

if x>=11 & y>=11 & imagesize(1)-x>=11 & imagesize(2)-y>=11
rnew(x-10:x+10,y-1:y+1)=0;
gnew(x-10:x+10,y-1:y+1)=0;
bnew(x-10:x+10,y-1:y+1)=0;
rnew(x-1:x+1,y-10:y+10)=0;
gnew(x-1:x+1,y-10:y+10)=0;
bnew(x-1:x+1,y-10:y+10)=0;
else
crosscoor=[10-x,10-y,x+10,y+10]
limits=imgsize-crosscoor
overlimit=find(limits<=0)
crosscoor=[x-10,y-10,x+10,y+10];
crosscoor(overlimit)=imgsize(overlimit)
deltacross=abs(crosscoor-[x y x y])-[1 1 1 1]
coornewcroos=abs([11 11 -11 -11]-deltacross)
newcross=tcross(coornewcroos(1):coornewcroos(3),coornewcroos(2):coornewcroos(4));
[tex tey]=find(newcross==1);
cx=tcx+x-deltacross(1)-1;
cy=tcy+y-deltacross(2)-1;
for c1=1:length(cx)
rnew(cx(cl),cy(cl))=0;
gnew(cx(cl),cy(c1))=0;
bnew(cx(cl),cy(c1))=0;
end
end

framesign.m: subroutine which draws a red frame around the marked object. Called from
marksign.m subroutine.

% the framesign subrotine

frameleft=corner;
frameright=corner;
frameup=corner;
framedown=corner;

if x<=corner
frameup=x-1,
end
if imagesize(1)-x<=corner
framedown=imagesize(1)-x-1;
end
if y<=corner
frameleft=y-1;
end
if imagesize(2)-y<=corner
frameright=imagesize(2)-y-1;
end

rnew(x-frameup:x-frameup+20,y-frameleft:y-frameleft+2)=1;
rnew(x-frameup:x-frameup+20,y+frameright-2:y+frameright)=1;
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rnew(x+framedown-20:x+framedown,y-frameleft:y-frameleft+2)=1;
rnew(x+framedown-20:x+framedown,y+frameright-2:y+frameright)=1;
rnew(x-frameup:x-frameup+2,y-frameleft:y-frameleft+20)=1;
rnew(x-frameup:x-frameup+2,y+frameright-20:y+frameright)=1;
rnew(x+framedown-2:x+framedown,y-frameleft:y-frameleft+20)=1;
rnew(x+framedown-2:x+framedown,y+frameright-20:y+frameright)=1;

gnew(x-frameup:x-frameup+20,y-frameleft:y-frameleft+2)=0;
gnew(x-frameup:x-frameup+20,y+frameright-2:y+frameright)=0;
gnew(x+framedown-20:x+framedown,y-frameleft:y-frameleft+2)=0;
gnew(x+framedown-20:x+framedown,y+frameright-2:y+frameright)=0;
gnew(x-frameup:x-frameup+2,y-frameleft:y-frameleft+20)=0;
gnew(x-frameup:x-frameup+2,y+frameright-20:y+frameright)=0;
gnew(x+framedown-2:x+framedown,y-frameleft:y-frameleft+20)=0;
gnew(x+framedown-2:x+framedown,y+frameright-20:y+frameright)=0;

bnew(x-frameup:x-frameup+20,y-frameleft.y-frameleft+2)=0;
bnew(x-frameup:x-frameup+20,y+frameright-2:y+frameright)=0;
bnew(x+framedown-20:x+framedown,y-frameleft:y-frameleft+2)=0;
bnew(x+framedown-20:x+framedown,y+frameright-2:y+frameright)=0;
bnew(x-frameup:x-frameup+2,y-frameleft:y-frameleft+20)=0;
bnew(x-frameup:x-frameup+2,y+frameright-20:y+frameright)=0;
bnew(x+framedown-2:x+framedown,y-frameleft:y-frameleft+20)=0;
bnew(x+framedown-2:x+framedown,y+frameright-20:y+frameright)=0;

imgscore.m: subroutine which calculate the score of each image. Called from the interface
subroutines.

% Subroutine which calculate the image score

img_tt=0;
img_tf=0;
clear delta
sys_target=[];

true_target=melondatabase(mdn,2:3);
if ~isempty(imagedatabase)
sys_detect=imagedatabase(:,1:2);
n_sys_detect=length(sys_detect(:,1));
if true_no==
img_tt=0;
img_tf=n_sys_detect;
img_ft=0;
else
for t=1:n_sys_detect
for r1=1:true_no
sys_target(rl,:)=sys_detect(t,:);
end
delta=abs(true_target-sys_target)
radius=((delta(:,1).~2+delta(:,2).72).”0.5)
current_tt=find(radius<=50);
n_ctt=length(current _tt);
if n_ctt>=1
img_tt=img_tt+1;
else
img_tf=img_tf+1;
end
end
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img_ft=true_no-img_tt;

end

else
n_sys_detect=0;
img_tt=0;
img_tf=0;
img_ft=true_no;

end

score=score+img_tt*add-img_tf*sub;
scorestr=['SCORE: ',num2str(score)];
ttstr=['Detection: ',num2str(img_tt)];
tfstr=['False: ',num2str(img_tf];
ftstr=['Missed: ',num2str(img_ft)];

scorefigure.m: subroutine which display the score after each image. Called from the interface
subroutines.

% Subroutine which shows the scores on a different figure

%close figure no 2

fig2pos=get(1,'position’);

fignum=figure('position’,fig2pos);

h2=uicontrol('Style', 'text’, 'String','SCORE:

','FontWeight','bold','fontsize’,24,'fontname’, "ariel','backgroundcolor’,[0.8 0.8

0.8],'Horizontal Alignment','left','Position’,[300,450,200,50]);

h21=uicontrol('Style', 'text', 'String',score, FontWeight','bold’, fontsize',24, fontname', ariel’,'foregroundcolor',[1 O
0],'Horizontal Alignment','left','Position’,[440,450,100,50]);

h3=uicontrol('Style’, ‘text’,
'String','Detections','FontWeight','bold', fontsize',16, fontname', 'ariel’,'backgroundcolor',[0.8 0.8

0.8],'Horizontal Alignment','center’,'Position’,[125,300,200,30]);

h31=uicontrol('Style', 'text', 'String',img_tt,'FontWeight','bold’,'fontsize',16, fontname',"ariel’,' foregroundcolor’,[1
0 0],'Horizontal Alignment','center’,'Position’,[175,270,100,30]);

h6=uicontrol('Style', 'text’, 'String','False','FontWeight','bold’, 'fontsize',16, fontname', ariel','backgroundcolor’,[0.8
0.8 0.8],'Horizontal Alignment','center’,'Position’,[300,300,200,30]);

h61=uicontrol('Style', 'text', 'String',img_tf,'FontWeight','bold’, fontsize',16, fontname', ariel','foregroundcolor',[1
0 0],'Horizontal Alignment','center’,'Position’,[350,270,100,30]);

h7=uicontrol('Style’, 'text’,
'String','Misses','FontWeight','bold', fontsize',16, fontname', ariel’,'backgroundcolor',[0.8 0.8

0.8],'Horizontal Alignment','center’,'Position’,[475,300,200,30]);

h71=uicontrol('Style', 'text', 'String',img_ft,'FontWeight','bold','fontsize',16, fontname','ariel', foregroundcolor',[1
0 0],'Horizontal Alignment','center’,'Position’,[525,270,100,30]);

%h3=uicontrol('Style', 'text', 'String',ttstr,'FontWeight','bold','Position’,[255,10,90,45]);
%h6=uicontrol('Style’, 'text’, 'String',tfstr,'FontWeight','bold’,'Position’,[380,10,90,45]);
%h7=uicontrol('Style’, 'text’, 'String',ftstr,'FontWeight','bold’,'Position’,[505,10,90,45]);

pause(2)
close (fignum)
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exp_input.m: Assigning subject number and determination of robot quality

sn=input('subject s/n=");

add=input('add=");

sub=input('sub=");

robothit=input(‘'robot hit=");

robotfalse=0;

if robothit==0.9
robotfalse=12;

end

if robothit==0.5
robotfalse=106;

end

Expfinal.m: subroutine which end the experiment. Called from all main programs
% This subroutine end the experiment

fig2pos=get(1, position’);
fignum=figure('position’,fig2pos);

h9=uicontrol('Style', 'text', 'String', Thank you for your cooperation
','FontWeight','bold','fontsize’,24,'fontname’, ariel','backgroundcolor',[0.8 0.8
0.8],'Horizontal Alignment','left’,'Position’,[100,450,550,50]);

h91=uicontrol('Style', 'text', 'String',"Your final score:

",'FontWeight','bold', fontsize',24,'fontname’, "ariel','backgroundcolor’,[0.8 0.8

0.8],'Horizontal Alignment','left','Position’,[300,350,280,50]);

h92=uicontrol('Style', 'text', 'String',score,'FontWeight','bold', fontsize',24, fontname', ‘ariel', foregroundcolor',[1 O
0],'Horizontal Alignment','left','Position’,[570,350,100,50]);

% pause(10)
% close (fignum)
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Appendix VIII: Example for subjects’ raw data

HOlogger.mat: this database contains the image coordinates, the image number and the time
of the human marks.

Image Time 74 301 -99 253.48
no. mark coordinates 96 205 -101 261.04

X y 58 274 340 267.75
35 269 364 2.86 58 285 396 271.26
35 269 362 4.06 58 291 -93 273.50
35 279 -80 8.44 12 305 -80 279.64
408 37 496 16.39 222 297 -99 285.59
408 36 495 21.00 51 300 -115 291.39
408 318 -63 23.08 62 33 367 208.20
105 288 -87 35.08 62 263 -88 300.28
49 284 -107 42.84 57 229 205 307.76
59 223 264 48.70 57 263 -83 309.54
59 274 -96 53.37 411 304 -85 315.92
231 221 278 60.90 323 303 -92 321.09
231 277 -60 65.14 68 302 -94 325.79
37 320 377 70.79 327 283 172 332.49
37 293 -84 76.82 327 284 -85 335.73
102 204 256 82.35 204 270 71 341.07
102 294 -89 87.28 315 163 379 346.57
319 323 389 94.85 315 249 -90 348.65
319 195 186 100.32 214 271 57 35851
319 276 92 102.18 16 285 -85 365.01
329 262 -73 113.01 29 289 -96 369.74
97 284 -87 120.73 52 328 352 375.01
308 306 -78 128.18 52 301 96 377.44
92 307 -109 134.41 46 299 .92 381.68
216 92 368 139.80 110 297 -99 388.33
216 242 283 142.21 209 292 -62 395.71
216 264 -90 144,52 88 205 -96 401.93
321 31 272 151.37 309 208 57 407.38
321 251 -102 154.83 301 289 -79 415.91
228 263 -67 160.91 27 293 106 421.75
98 282 -75 168.00 306 216 -84 430.53
75 231 170 173.77 82 267 -80 435.50
75 287 -84 177.80 227 257 -68 440.24
22 281 -7 186.46 85 417 298 445.97
401 290 -90 192.97 85 310 -73 447 .66
202 83 314 198.24 63 306 -89 452 .17
202 251 -56 202.00 71 296 -112 458.51
111 200 171 206.88 210 293 -73 463.72
111 34 180 208.97 2 103 437 468.59
111 250 -95 211.75 2 241 50 471.06
225 287 77 21755 54 238 .93 474.98
107 265 -84 222.97 86 202 364 479.86
313 222 363 230.08 86 268 -100 481.69
313 273 -69 231.58 320 272 -93 486.15
405 243 -57 241.22 112 191 139 490.26
402 268 -70 248.23 112 147 362 492.26
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112
317
317
17
17
206

21
64
229
229

53
53

230
217
217

34
34
223
223
223
10
10
10
10
326
69

76
76
302
302
72
38
324
65
205
205
218
218
103
94
314
409
409
409
409
89
406
307
13

257
286
290
159
273
250
285
296
305
299
408
311
301
259
310
275
263
314
279
283
263
280
258
242
297
288
416
411
294
296
297
298
335
342
349
322
316
313
310
310
70

232
200
276
274
273
272
460
460
470
292
257
295
294
315

494.22
501.75
503.51
509.12
511.32
516.31
522.54
525.01
530.57
535.02
540.79
543.68
549.49
556.32
558.45
566.23
570.52
577.69
579.27
584.62
589.26
591.30
598.99
600.57
602.76
609.63
611.91
614.74
617.50
623.21
628.28
633.66
638.46
640.27
648.14
650.44
654.88
660.31
665.13
670.42
675.30
677.61
681.83
683.65
689.28
693.98
699.40
705.61
708.97
710.92
714.34
718.61
722.68
727.47
732.53
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13
13
13
42

w o

47
61
220
311
212
212
303
77
77
232
232
24
15
4
106
403
403
403
412
18
109
31
203
36
19
66
66
104
310
310
70
78
25
40
55
404
404
14
208
33
219
30
224
224
410
44
87

164
240
275
262
161
274
377
295
291
290
291
289
337
299
301
80

278
190
259
256
280
275
219
188
188
290
259
260
265
264
269
268
312
230
290
309
49

264
280
280
281
280
280
437
288
310
319
325
326
325
239
294
255
261
260

534
-101
489
-63
-91
-82
-118
-87
296
297
-61
-68
-51
-106
-95
-96
-120
-81
473
-90
-89
99

-101
-97
-87
-94
-95
486
-60
-66
-60
-104
-85
-110
340
-66
-67
-118
-116

735.67
737.82
739.53
744.46
750.15
752.31
756.77
758.82
762.99
767.82
772.55
778.35
783.26
786.70
791.85
796.46
798.59
803.41
805.13
809.52
814.01
818.18
823.04
827.74
832.60
834.27
838.94
843.33
848.22
852.42
858.30
863.21
868.27
875.64
878.47
883.22
890.58
892.31
897.22
901.95
906.86
911.64
916.47
921.62
923.98
928.29
932.56
936.58
941.37
946.01
951.82
953.67
958.89
963.03
968.21



20 256 -46 974.34 23 286 -95 1078.90

325 264 -91 979.27 305 146 525 1083.80
322 268 -98 983.85 305 286 -62 1085.30
90 100 325 988.88 316 265 -86 1092.30
90 270 -83 990.20 221 267 -56 1096.90
28 285 -83 994.91 318 269 -88 1101.30
39 285 -85 999.09 407 274 -53 1105.70
80 290 -99 1003.10 73 299 -96 1110.80
101 274 134 1007.80 45 298 -88 1117.30
101 299 -83 1009.80 56 285 -105 1121.30
211 315 -75 1014.30 328 285 -101 1126.00
67 314 -101 1018.40 84 283 -92 1130.00
32 174 264 1025.70 108 285 -112 1135.70
32 292 -140 1027.00 60 283 -102 1141.60
201 300 -54 1032.50 50 281 -107 1145.60
11 301 -73 1037.10 91 287 -110 1150.90
100 299 -98 1042.30 95 280 -111 1155.90
213 296 -67 1049.50 83 222 304 1160.10
48 306 -99 1055.10 83 247 -84 1161.40
304 299 -76 1059.50 43 119 285 1165.70
312 298 -53 1064.40 43 262 -91 1167.70
226 228 400 1068.40 26 279 -90 1171.70
226 271 -66 1070.10 207 283 -49 1176.20
215 284 -60 1074.50

Allimgdb.mat: list of all melons/targets inserted by the human.
The status number indicates: 0 - detected by the robot, 1 - detected by the robot and inserted
to the database by the human, 2 - detected by the human and 3 - deleted by the human.

image coordinates Image time status 384 146 22 0.00 0

no. 369 297 22 0.00 0
X y 307 141 401 0.00 0
269 362 35 4.06 2 83 314 202 19824 2
136 435 105 0.00 0 200 171 111 206.88 2
290 168 49 0.00 0 34 180 111 208.97 2
204 303 49 0.00 0 78 387 402 0.00 0
83 333 59 0.00 0 356 140 74 0.00 0
223 264 59 4870 2 204 370 74 0.00 0
190 338 37 0.00 0 161 216 9 0.00 0
320 377 37 7079 2 285 396 58 27126 2
165 332 329 0.00 0 161 22 12 0.00 0
125 65 97 0.00 0 313 246 12 0.00 0
412 313 308 0.00 0 205 542 12 0.00 0
207 178 92 0.00 0 304 304 222 0.00 0
92 368 216 139.80 2 124 483 299 0.00 0
242 283 216 14221 2 340 358 51 0.00 0
250 417 321 0.00 0 77 244 51 0.00 0
138 180 98 0.00 0 196 322 62 0.00 0
323 301 98 0.00 0 85 300 57 0.00 0
441 317 75 0.00 0 229 205 57 307.76 2
231 170 75 173.77 2 357 158 111 0.00 0
87 264 22 0.00 0
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278
112
303
312
77

289
163
52

354
233
263
148
41

328
281
131
211
217
201
203
170
232
173
417
181
192
68

412
399
103
255
202
295
191
147
206
319
159
212
402
129
378
371
81

161
25

262
85

377
42

166
229
172
263
242

315
140
218
372
384
336
379
201
387
218
136
198
267
352
297
365
440
203
410
412
444
481
227
208
488
351
302
419
327
437
313
364
371
139
362
288
271
28

420
367
336
153
304
265
410
288
368
314
206
382
332
192
330
186
202

323
323
68
327
204
315
315
214
214
16
29
29
52
52
46
209
88
309
27
306
82
227
85
85
63
71
71
210

54
86
320
112
112
317
17
17
206

21
21
21
64
229
229

53

230

34
223

0.00
0.00
0.00
0.00
0.00
0.00
346.57
0.00
0.00
0.00
0.00
0.00
0.00
375.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
445.97
0.00
0.00
0.00
0.00
0.00
468.59
0.00
479.86
0.00
490.26
492.26
0.00
0.00
509.12
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
589.26
600.57
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130
266
411
164
417
199
332
387
98

335
210
68

349
345
257
182
70

200
418
165
264
470
200
239
315
240
295
386
96

161
84

377
239
287
373
305
337
203
80

190
246
255
362
86

377
139
294
196
406
71

297
149
169
223
25

346
607
350
374
503
260
96

463
574
176
36

296
299
351
183
218
307
235
85

220
124
349
238
430
42

322
165
72

180
540
313
209
226
183
391
521
251
334
534
489
216
158
401
327
438
273
529
191
592
583
232
275
262
295
318

10
10
10
326
326
69

SN

76
302
302
302
72
324
65
205
218

403
412
412
18
18
109
203
203
36
36
19
66
66

0.00
0.00
614.74
0.00
0.00
0.00
0.00
0.00
0.00
638.46
0.00
0.00
648.14
0.00
0.00
0.00
675.30
681.83
0.00
0.00
0.00
710.92
0.00
0.00
732.53
737.82
0.00
0.00
0.00
750.15
0.00
756.77
0.00
0.00
0.00
0.00
783.26
0.00
796.46
803.41
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
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199
242
187
282
113
42

66

235
107
86

265
61

437
232
263
158
202
194
35

239
121
87

362
275
127
199
381
77

154
267
337
139
292
100
231
220
32

274
320
102
81

171
299
174

162
444
146
274
443
135
299
202
169
347
183
218
486
214
271
244
161
219
180
340
147
447
455
273
223
132
169
286
629
150
408
234
275
325
188
375
346
134
441
287
372
399
365
264

104
310
70
78
78
25
25
40
40
40
55
55
404
14
208
33
219
30
30
224
410
410
410
44
44
87
20
20
20
325
322
322
90
90
80
101
101
101
211
67
32
32
32
32

0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
92162 2
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
951.82 2
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
988.88 2
0.00 0
0.00 0
0.00 0
1007.80 2
0.00 0
0.00 0
0.00 0
0.00 0
0.00 0
1025.70 2

214

37

147
302
432
176
115
338
221
348
289
228
127
411
43

68

298
146
454
368
198
360
78

262
188
53

118
375
346
155
148
291
248
170
242
23

144
347
222
285
22

119
142
387
214

504
126
373
145
141
345
341
134
153
163
400
224
170
130
298
269
525
450
297
322
203
159
397
157
166
207
152
412
288
184
272
239
389
336
263
298
367
304
268
140
285
179
102
461

201
11
11
11
100
100
100
48
304
312
226
215
215
23
23
305
305
316
316
316
221
73
73
45
45
56
56
328
328
60
60
50
50
91
91
95
95
83
43
43
43
26
26
207

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1068.40
0.00
0.00
0.00
0.00
0.00
1083.80
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1160.10
0.00
0.00
1165.70
0.00
0.00
0.00
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f_targets.mat: list of non-target objects marked.

sequential
no.

e i

mark coordinates

X
387
347
406
139
229
33
322
274
51
284
83
287

y
102

367
238
234
470
366
388
340
99

171
333
472

image

no.

26
95
229
322
66
62
319
58
310
327
59
10

f_targets.mat: list of non-target objects marked.

sequencial no.

P WNRPRPNRRPRPRPONRPNNRPNRRPRPRPRPRPRPRPEPRERNRERR

mark coordinates

X
268
136
290
204
220
190
205
195
165
125
412
207
250
30
138
323
441
87
384
369
307
221
78
356
204
161
161
313
225
304

y
364

435
168
303
277
338
255
187
332
65

313
178
417
272
180
301
317
264
146
297
141
363
387
140
370
216
22

246
542
304

Image
no.

35
105
49
49
231
37
102
319
329
97
308
92
321
321
98
98
75
22
22
22
401
313
402
74
74
96
12
12
12
222

215

P PP NRPRPRPRPRPPRPRPRPRPRPRPNNRPRPEPNRPRRPRPRPRPNNRPRPRELENEDN

124
340
77

196
85

357
278
112
303
312
77

289
52

354
233
263
148
41

281
131
211
217
201
203
170
232
173
181
192
68

412
399
255

483
358
244
322
300
158
315
140
218
372
384
336
291
387
218
136
198
267
297
365
440
203
410
412
444
481
227
488
351
302
419
327
313

222
51
51
62
57
411
323
323
68
327
204
315
214
214
16
29
29
52
46
209
88
309
27
306
82
227
85
63
71
71
210

54



412
412
18
18

327
438
273
529

86

320
317
317
17

206

371
288
419
271
420
367
336
608

295
206
285
319
212
402

377

139
294

109
203
203
36

191
592
583
232
275
262

196
406
71

129
285
378
371
81

297

36

149
169
223
25

21

153
304
265
410
288
368

19
66
66

21

295
318

21

64

161
25

104
310
70
78
78
25
25
40
40
40
55
55

162

444

199
242

229
229

262
85

146
274
443

187
282

314
206
382
387
332

377
42

113
42

53
53

135
299
202

259

66

166
229

235

230
217

192
203

169
347

107
86

314
172
259

330
205
346
607
349

183
218

265
61

223
10
10
10

130
266
415

214 14

271

232
263

208
33

244
161
219

158
202

326
326
69

374

503

164
417

219
30
30

194
35

260
96

199
332
387
98

180
147
447
455
273
223

410
410
410
44
44
87

121
87

463

574
36

362
275

302
302
72

210
68

296
351

127
199
381
77

345
257

132
169
286
629

324
65

183
218
85

20
20
20

182
418

94
94

154
267
337
292
231
220
32

220
124
238
430
605

165
264
200
239

325
322
90
80

150
408
275

409
406
307
13
42

188
375
346
441
287
372
399
365

164
295
386
96
84

101
101
211
67

165
72

320

180
313
226

102
81

32

47

239
287
373
305
203
246
255
362

32

171
299
37

61

183
391
521

32

220
212
303
15
41

201
11
11
11

504
126
373

147
302
432

334
216

145
141

158
401

100

176

403

216



100
100
48

345
341

115
338
221
348
289

134
153
163
224
170
130
298
269
450
297
322
203

304
312
215
215
23
23
305
316
316
316
221
73
73
45

127
411
43

68

298
454
368

198
360
78

159
397

262

157
166
207

188
53

45

56
56
328
328
60
60
50
50
91

118
375
346

152
412
288

155
148
291
248

184
272
239
389
336
263
298
268

170
242
23

91

95

144
285
22

43

43

140
179
461

26
207

142
214

217



t2.mat: database of all simulation records.

The command type indicates: 0 - no command, 1 — inserting into database allready marked
object, 2 - marking and inserting object into dartabase, 3 - deleting detected object, 4 -
unknown yet.

The program stage indicates the location of the simulation along the codes.

cputime time mark coordinates image no, command program
type stage
X y

1883.7 0 0 0 0 0 0
1883.8 0.063 0 0 0 0 1
1883.8 0.078 0 0 35 0 2
1883.9 0.203 0 0 35 0 3
1883.9 0.219 0 0 35 0 4
1884.2 0.469 0 0 35 0 5
1886.6 2.859 269.28 364.19 35 4 11
1886.6 2.859 268 364 35 3 11
1887.8 4.062 269.28 362.49 35 4 11
1887.8 4.062 269 362 35 2 11
1892.1 8.437 278.6 -80.257 35 4 11
1892.1 8.437 0 0 35 3 31
1892.2 8.468 0 0 35 3 32
1894.4 10.656 0 0 35 3 33
1894.4 10.656 0 0 35 3 34
1894.4 10.656 0 0 408 0 2
1894.5 10.812 0 0 408 0 3
1894.5 10.812 0 0 408 0 4
1894.8 11.062 0 0 408 0 5
1900.1 16.39 37.325 496.16 408 4 11
1900.1 16.39 37 496 408 2 11
1904.7 20.999 36.479 495.31 408 4 11
1904.7 20.999 37 496 408 3 11
1906.8 23.077 318.38 -62.569 408 4 11
1906.8 23.077 0 0 408 3 31
1906.8 23.077 0 0 408 3 32
1908.9 25.217 0 0 408 3 33
1908.9 25.217 0 0 408 3 34
1908.9 25.217 0 0 105 0 2
1909 25.327 0 0 105 0 3
1909.1 25.342 0 0 105 0 4
1909.3 25.608 0 0 105 0 5
1918.8 35.076 287.91 -87.029 105 4 11
1918.8 35.076 0 0 105 3 31
1918.8 35.076 0 0 105 3 32
1921 37.263 0 0 105 3 33
1921 37.263 0 0 105 3 34
1921 37.263 0 0 49 0 2
1921.1 37.357 0 0 49 0 3
1921.1 37.373 0 0 49 0 4
1921.3 37.623 0 0 49 0 5
1926.5 42.841 283.67 -107.35 49 4 11
1926.5 42.841 0 0 49 3 31
1926.5 42.841 0 0 49 3 32
1928.8 45.044 0 0 49 3 33
1928.8 45.044 0 0 49 3 34
1928.8 45.044 0 0 59 0 2
1928.8 45,138 0 0 59 0 3
1928.9 45.169 0 0 59 0 4

218



1929.1
19324
1932.4
1937.1
1937.1
1937.1
1939.3
1939.3
1939.3
1939.4
1939.4
1939.7
1944.6
1944.6
1948.8
1948.8
1948.8
1951

1951

1951

1951.1
1951.2
1951.4
1954.5
1954.5
1960.5
1960.5
1960.5
1962.7
1962.7
1962.7
1962.8
1962.8
1963.1
1966.1
1966.1
1971

1971

1971

1973.2
1973.2
1973.2
1973.3
1973.3
19735
1978.6
1978.6
1984

1984

1985.9
1985.9
1985.9
1988

1988

1988

1988.1
1988.2
1988.4

45.419
48.7
48.7
53.371
53.371
53.371
55.559
55.559
55.559
55.684
55.699
55.981
60.902
60.902
65.136
65.136
65.136
67.339
67.339
67.339
67.433
67.449
67.714
70.792
70.792
76.823
76.823
76.823
79.01
79.01
79.01
79.104
79.12
79.37
82.354
82.354
87.275
87.275
87.275
89.463
89.463
89.463
89.572
89.588
89.838
94.853
94.853
100.32
100.32
102.18
102.18
102.18
104.31
104.31
104.31
104.43
104.45
104.73

0
222.72
223
274.36

O OO OO oo

221.03
220
276.9

O OO OO oo

320.08
320
292.99

O OO OO oo

204.1
205
293.83

OO OO OoOOoOOoOOo

323.46
322
194.79
195
276.06

O OO OO oo

0
264.29
264
-96.341

O OO O OoOOoOOo

277.75
277
-60.029

O OO O OoOOoOOo

376.89
377
-84.489

O OO OoOoOOoOo

255.83
255
-88.722

O O OO oOOoOo

0
388.74
388
186.41
187
-92.108

O OO OO OoOOoOOo

59
59
59
59
59
59
59
59
231
231
231
231
231
231
231
231
231
231
231
37
37
37
37
37
37
37
37
37
37
37
102
102
102
102
102
102
102
102
102
102
102
319
319
319
319
319
319
319
319
319
319
319
319
319
329
329
329
329

219
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1996.7
1996.7
1996.7
1999

1999

1999

1999.1
1999.1
1999.3
2004.4
2004.4
2004.4
2006.6
2006.6
2006.6
2006.7
2006.7
2007

2011.9
2011.9
2011.9
2014

2014

2014

2014.1
2014.2
20144
2018.1
2018.1
2018.1
2020.3
2020.3
2020.3
2020.4
2020.4
2020.7
2023.5
2023.5
2025.9
2025.9
2028.2
2028.2
2028.2
2030.4
2030.4
2030.4
2030.5
2030.5
2030.7
2035.1
2035.1
2038.5
2038.5
2038.5
2040.7
2040.7
2040.7
2040.7

113.01
113.01
113.01
115.26
115.26
115.26
115.37
115.38
115.62
120.73
120.73
120.73
122.85
122.85
122.85
122.96
122.99
123.26
128.18
128.18
128.19
130.32
130.32
130.32
130.41
130.44
130.68
134.41
134.41
134.41
136.6

136.6

136.6

136.71
136.71
136.96
139.8

139.8

14221
142.21
144.52
144.52
144.52
146.66
146.66
146.66
146.76
146.79
147.01
151.37
151.37
154.83
154.83
154.83
156.94
156.94
156.94
157.04

261.66

WOOOOOOOONOOOOOOOO
a1 @
o o
© ~

O OO OO O0OoOo

-72.728

OO0 Y),0000O0O0 00
i~ B
o) o
S ]
~ ©

O OO OO OoOoOo

368.33
368
282.83
283
-89.659

O OO O oOoOOoOo

271.91
272
-102.27

O OO oOooOo

329
329
329
329
329
97
97
97
97
97
97
97
97
97
308
308
308
308
308
308
308
308
308
92
92
92
92
92
92
92
92
92
216
216
216
216
216
216
216
216
216
216
216
216
216
321
321
321
321
321
321
321
321
321
321
321
228
228

220

OO WWWWPArRWPARODODODOWWWWPEARNAENPOOOOWWWWNMNROOODODWWWWPAMROOOOWWWWNMNOOODOWWWWN



2040.7
2041

2044.6
2044.6
2044.6
2046.8
2046.8
2046.8
2046.9
2046.9
2047.2
2051.7
2051.7
2051.7
2053.9
2053.9
2053.9
2053.9
2054

2054.2
2057.5
2057.5
2061.5
2061.5
2061.5
2063.6
2063.6
2063.6
2063.8
2063.8
2064.1
2070.2
2070.2
2070.2
2072.3
2072.3
2072.3
2072.4
2072.4
2072.6
2076.7
2076.7
2076.7
2078.8
2078.8
2078.8
2078.9
2078.9
2079.2
2081.9
2081.9
2085.7
2085.7
2085.7
2087.8
2087.8
2087.8
2087.9

157.04
157.29
160.91
160.91
160.91
163.11
163.11
163.11
163.21
163.22
163.46
168
168
168
170.15
170.15
170.15
170.24
170.27
170.5
173.77
173.77
177.8
177.8
177.8
179.94
179.94
179.94
180.07
180.1
180.36
186.46
186.46
186.46
188.58
188.58
188.58
188.67
188.69
188.92
192.97
192.97
192.97
195.1
195.1
195.1
195.24
195.24
195.49
198.24
198.24
202
202
202
204.11
204.11
204.11
204.2

63.36

NOOoOoooooonmooOo
=
©
©

OO OO OoOOoOoOo

231.19
231
287.06

QOOOOOOOOBOOOOOOOO
© =
o)) =

w

0O OO O0OO0OOoOoOo

3.04

250.66

O OO oOoOoOo

-66.802

QOOOOOOOO
o1
-
~
~

OO OO OoOOoOOoOo

170.33
170
-84.489

L JjOo0oo0oo0oo0co0oo
o
©
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228
228
228
228
228
228
228
98
98
98
98
98
98
98
98
98
75
75
75
75
75
75
75
75
75
75
75
22
22
22
22
22
22
22
22
22
401
401
401
401
401
401
401
401
401
202
202
202
202
202
202
202
202
202
202
202
111
111
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2087.9
2088.1
2090.6
2090.6
2092.7
2092.7
2095.5
2095.5
2095.5
2097.6
2097.6
2097.6
2097.7
2097.7
2097.9
2101.3
2101.3
2101.3
2103.4
2103.4
2103.4
2103.5
2103.5
2103.7
2106.7
2106.7
2106.7
2108.8
2108.8
2108.8
2108.9
2108.9
2109.2
2113.8
2113.8
21153
2115.3
2115.3
21174
21174
21174
2117.6
2117.6
2117.8
2124.9
21249
2124.9
2127.1
2127.1
2127.1
2127.2
2127.2
21275
2131.9
21319
2131.9
2134.1
2134.1

204.2

204.44
206.88
206.88
208.97
208.97
211.75
211.75
211.75
213.86
213.86
213.86
213.97
213.97
214.22
217.55
217.55
217.55
219.67
219.67
219.67
219.75
219.75
219.97
222.97
222.97
222.97
225.09
225.09
225.09
225.19
225.22
225.48
230.08
230.08
231.58
231.58
231.58
233.7

233.7

233.7

233.84
233.84
234.08
241.22
241.22
241.22
243.36
243.36
243.36
243.5

24351
243.78
248.23
248.23
248.23
250.36
250.36

0

0
199.87
200
33.939
34
249.81

OO OO OoOO0oOOoOo

Y
©
N
o
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65.05
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221.88
221
272.67

OO OO OoOOoOoOo

N
B
w
o
B

68.44

O O O0OONOODODOOOOoOOo

0

0
171.17
171
179.64
180
-95.495

Jj©Oo0oo0oo0ooocoocoo
o
©
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©

OO OO OoOoOooo

-70.188

o
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111
111
111
111
111
111
111
111
111
111
111
225
225
225
225
225
225
225
225
225
107
107
107
107
107
107
107
107
107
313
313
313
313
313
313
313
313
313
313
313
405
405
405
405
405
405
405
405
405
402
402
402
402
402
402
402
402
402
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2134.1
2134.2
2134.2
2134.4
2137.2
2137.2
2137.2
2139.3
2139.3
2139.3
21394
2139.5
2139.7
21448
2144.8
21448
2146.9
2146.9
2146.9
2147

2147

21472
2151.5
21515
2155

2155

2157.2
2157.2
2157.2
2159.4
21594
2159.4
2159.6
2159.6
2160

2163.3
2163.3
2163.3
2165.5
21655
2165.5
2165.6
2165.7
2165.9
2169.3
2169.3
2169.3
21714
21714
21714
21715
21715
2171.8
2175.1
2175.1
2175.1
2177.2
2177.2

250.36
250.45
250.48
250.69
253.48
253.48
253.5

255.62
255.62
255.62
255.73
255.75
255.97
261.04
261.04
261.04
263.2

263.2

263.2

263.29
263.31
263.53
267.75
267.75
271.26
271.26
273.5

2735

273.51
275.73
275.73
275.73
275.87
275.9

276.29
279.64
279.64
279.64
281.82
281.82
281.82
281.93
281.97
282.18
285.57
285.59
285.59
287.73
287.73
287.73
287.82
287.84
288.06
291.39
291.39
291.39
293.51
293.51

goooooooogoooooooo
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N B
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299.76
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o O o
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340.48
340
396.36
396
-92.955
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OO OO OoOoOooo

-114.97

o

o O o

74
74
74
74
74
74
74
74
74
96
96
96
96
96
96
96
96
96
58
58
58
58
58
58
58
58
58
58
58
58
58
12
12
12
12
12
12
12
12
12
222
222
222
222
222
222
222
222
222
51
51
51
51
51
51
51
51
51
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2177.2
2177.3
2177.3
2177.5
2181.9
2181.9
2184

2184

2184

2186.1
2186.1
2186.1
2186.2
2186.2
2186.4
21915
21915
2193.2
2193.2
2193.2
2195.4
21954
2195.4
21955
2195.5
2195.8
2199.6
2199.6
2199.6
2201.8
2201.8
2201.8
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Appendix IX:  Algorithm for extracting the subjects'
performance measures from the raw data
recorded in the experiment.

% calculating the subject performances
clear
clc

tic
for d=1:3
for set=1:3
tmpname=['dssum',numz2str(d),num2str(set)];
eval([tmpname,'=[]1);
end
end

load melondatabase % matrix of all the melons in all images: melon's number, X, y, image number

load image_levels % includes 3 vectors that includes all the image's numbers by complexity: easy, medium,
difficult

load GROUPS % the matrix of students according to groups, each line is a group

ImageDirs=['C:\Documents and Settings\user\My Documents\phd\exp2003\']

%Do the following loop for all directories that contain images
dr=1

% Get filenames of images

dname=dir(ImageDirs(dr,:));
[NumberOfFiles,Dummy]=size(dname);

NumberOfFiles

for i=1:NumberOfFiles
if ~dname(i).isdir
fn=[dname(i).name];
Ifn=length(fn);
if Ifn>7 & fn(1:7)=="student’
robot_all_tar=[];
robothit=[];
robotFA=[];
sdnstr=fn(8:1fn-4);
sdnum=str2num(sdnstr);
t1=[];
t2=[];
t3=[1;
eval(['load ' fn(1:1fn-4)])
[stgroup locy]=find(GROUPS==sdnum);

%load student100

% finding the image order of the experiment
imgord=HOlogger(1,1);
for j=2:length(HOlogger(:,1))
if HOlogger(j,1)~=imgord(length(imgord))
imgord=[imgord,HOlogger(j,1)];
end
end

%finding the start point and end point of each image
if ~isempty(t1)
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imgstartmark=find(t1(:,7)==5);
imgendmark=find(t1(:,7)==31);
imgstart=t1(imgstartmark,2)";
imgend=t1(imgendmark,2)’;
end
if ~isempty(t2)
imgstartmark=find(t2(:,7)==5)";

imgendmark=find(t2(:,7)==31);

imgstart=t2(imgstartmark,2)’;
imgend=t2(imgendmark,2)";
end
if ~isempty(t3)
imgstartmark=find(t3(:,7)==5);
imgendmark=find(t3(:,7)==31);
imgstart=t3(imgstartmark,2)";
imgend=t3(imgendmark,2)’;
end
deltaimgtime=imgend-imgstart;

block=[imgord(1:60);imgord(61:120);imgord(121:180)]; % setting the images into 3 sets
deltaimgtimeblock=[deltaimgtime(1:60);deltaimgtime(61:120);deltaimgtime(121:180)]; % setting the image

time into 3 sets

blocktime=sum(deltaimgtimeblock’);

compblock=zeros(3,60);

% finding the image complexities of each experiment in 3 sets block

for b=1:3
for k=1:60

tmpeasy=find(easy==block(b,k));
tmpmed=find(medium==block(b,k));
tmpdiff=find(difficult==block(b,k));

if ~isempty(tmpeasy)
compblock(b,k)=1;
elseif ~isempty(tmpmed)
compblock(b,k)=2;
elseif ~isempty(tmpdiff)
compblock(b,k)=3;
end
end
end
%toc

imgdata=[];

for d=1:3
for set=1:3

comploc=find(compblock(set,:)==d); %location of each d complexity images in the block
tmpcomp=block(set,comploc); % the images no. in that block and complexity

tmpdeltatime=deltaimgtimeblock(set,comploc); % the images time in that block and complexity
grossdtaverage(d,set)=mean(tmpdeltatime); % average time of all images in that block and complexity
grossdtstd(d,set)=std(tmpdeltatime); % std time of all images in that block and complexity

grossdsettime(d,set)=sum(tmpdeltatime);

netdtimage=find(tmpcomp~=13 & tmpcomp~=112 & tmpcomp~=212);
tmpnetdeltatime=tmpdeltatime(netdtimage); % list of images times w/o the time of the problematic images
netdtaverage(d,set)=mean(tmpnetdeltatime);% average time of all GOOD images in that block and

complexity

netdtstd(d,set)=std(tmpnetdeltatime); % std time of all GOOD images in that block and complexity

netdsettime(d,set)=sum(tmpnetdeltatime);

trueobjno=0;

numberofimages=length(tmpcomp);
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problemgroup=find(tmpcomp==13);

if ~isempty(problemgroup)
numberofimages=numberofimages-1;

end

problemgroup=find(tmpcomp==112);

if ~isempty(problemgroup)
numberofimages=numberofimages-1;

end

problemgroup=find(tmpcomp==212);

if ~isempty(problemgroup)
numberofimages=numberofimages-1;

end

numofimg(d,set)=numberofimages;
for imgno=1:length(tmpcomp)

if tmpcomp(imgno)~=13 & tmpcomp(imgno)~=112 & tmpcomp(imgno)~=212 % removing the
problematic images from the statistics ********
trueobjline=find(melondatabase(:,4)==tmpcomp(imgno)); % the number of true targets in each image
trueobjno=trueobjno+length(trueobjline); % the number of true targets in each set and complexity
sysmarkline=find(allimagesdb(:,3)==tmpcomp(imgno)); % the number of marked targets by the
system in each image
if ~isempty(robot_all_tar)
robothit=find(robot_all_tar(:,4)==tmpcomp(imgno)); % the number of robot hits in each image
robotFA=find(f_targets(:,4)==tmpcomp(imgno)); % the number of robot false alarms in each image
end
imghit=0;
imgfalse=0;
RHhit=0;
RFA=0;

if ~isempty(sysmarkline)
imgfalse=length(sysmarkline); % the number of false alarm by the system for each image
if ~isempty(robot_all_tar)
for v=1:length(sysmarkline)
dxyRFA=[abs(allimagesdb(sysmarkline(v),1)-
f_targets(robotFA,2)),abs(allimagesdb(sysmarkline(v),2)-f_targets(robotFA,3))]; % distance between robot hit
and HO mark
sumlineRFA=sum((dxyRFA'<55));
closenumRFA=find(sumlineRFA==2);
if ~isempty(closenumRFA)
RFA=RFA+1; % HO mark of Robot false alarm for each image
end
end
end
if ~isempty(trueobjline)
imgfalse=0;
RFA=0;
for v=1:length(sysmarkline)
dxy=[abs(allimagesdb(sysmarkline(v),1)-
melondatabase(trueobjline,2)),abs(allimagesdb(sysmarkline(v),2)-melondatabase(trueobjline,3))]; % distance
between true target and marked one
sumline=sum((dxy'<55));
closenum=find(sumline==2);
if ~isempty(closenum)
imghit=imghit+1; % system hit for each image
if ~isempty(robot_all_tar)
dxyRH=[abs(allimagesdb(sysmarkline(v),1)-
robot_all_tar(robothit,2)),abs(allimagesdb(sysmarkline(v),2)-robot_all_tar(robothit,3))]; % distance between
robot hit and HO mark
sumlineRH=sum((dxyRH'<55));
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closenumRH=find(sumlineRH==2);
if ~isempty(closenumRH)
RHhit=RHhit+1; % HO mark of Robot hit for each image
end
end
else
imgfalse=imgfalse+1; % system false alarm for each image
if ~isempty(robot_all_tar)
dxyRFA=[abs(allimagesdb(sysmarkline(v),1)-
f_targets(robotFA,2)),abs(allimagesdb(sysmarkline(v),2)-f_targets(robotFA,3))]; % distance between robot hit
and HO mark
sumlineRFA=sum((dxyRFA'<55));
closenumRFA=find(sumlineRFA==2);
if ~isempty(closenumRFA)
RFA=RFA+1; % HO mark of Robot false alarm for each image
end
end
end
end
end
end
HOhit=imghit-RHhit;
HOFA=imgfalse-RFA;

imgdata=[imgdata;tmpcomp(imgno),d,set,length(trueobjline),length(sysmarkline),imghit,imgfalse,HOhit, HOFA,
length(robothit),length(robotFA),RHhit,RFA];
end
end
end
end
%toc

dssumtitle="group#, student#, complexity, set, true objects, system marks, syshit, sysFA, HO hit
of unmarked, HO FA of unmarked, robot hit,  robot FA, HO mark of robot hit, HO mark of robot
FA, syshitrate, HO hitrate, robot hitrate, PHrh, PFArh, SysFA/img, HO unmarked FA/img, Robot
FA/img, HO marked FA/img, blocktime, grossdtaverage, grossdtstd, grossdsettime, netdtaverage, netdtstd,
netdsettime’;

rewards=[3 -7;7 -3;3 -7;3 -7;7 -3;7 -3;3-7; 3 -7; 7 -3;7 -3];

for d=1:3
for set=1:3
dsloc=find(imgdata(:,2)==d & imgdata(:,3)==set);
dssumtmp=sum(imgdata(dsloc,4:13));
rates=[dssumtmp(3)/dssumtmp(1),dssumtmp(5)/(dssumtmp(1)-
dssumtmp(7)),dssumtmp(7)/dssumtmp(1),dssumtmp(9)/dssumtmp(7),dssumtmp(10)/dssumtmp(8)];

FA2img=[dssumtmp(4)/numofimg(d,set),dssumtmp(6)/numofimg(d,set),dssumtmp(8)/numofimg(d,set),dssumtm
p(10)/numofimg(d,set)];
timeparameters=[blocktime(set), grossdtaverage(d,set),
grossdtstd(d,set),grossdsettime(d,set),netdtaverage(d,set),netdtstd(d,set),netdsettime(d,set)];
sysscores=dssumtmp(3)*rewards(stgroup,1)+dssumtmp(4)*rewards(stgroup,2);
dssum=[stgroup,sdnum,d,set,dssumtmp,rates,FA2img,timeparameters,sysscores];
tmpname=['dssum’,numz2str(d),numz2str(set)];
% eval([tmpname,'=dssum');
eval([tmpname,'=[',tmpname,";dssum];);
end
end
toc

end
end
end
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toc

blockscorel=dssum11(;,31)+dssum21(:,31)+dssum31(:,31);
blockscore2=dssum12(;,31)+dssum22(:,31)+dssum32(:,31);
blockscore3=dssum13(;,31)+dssum23(:,31)+dssum33(:,31);
blockscore=[dssum11(:,1:2),blockscorel,blockscore2,blockscore3];
save blockscore blockscore

save blockscore.csv blockscore -ascii -tabs

save dssumALL dssum1l dssum12 dssum13 dssum21 dssum22 dssum23 dssum31 dssum32 dssum33
save dssumtitle dssumtitle
save dssumtitle.csv dssumtitle -ascii -tabs

for d=1:3
for set=1:3
tmpname=['dssum’,num2str(d),numz2str(set)];
eval(['save ',tmpname,'.csv 'tmpname," -ascii -tabs');
end
end

save numofimg numofimg
respersetl=dssuml11+dssum21+dssum31;
resperset2=dssum12+dssum22+dssum32;
resperset3=dssum13+dssum23+dssum33;
setimgno=sum(numofimg);
allimgno=sum(sum(numofimg));

exptime=dssum11(:,28).*numofimg(1,1)+dssum21(:,28).*numofimg(2,1)+dssum31(:,28).*numofimg(3,1)+dssu
m12(:,28).*numofimg(1,2)+dssum22(:,28).*numofimg(2,2)+dssum32(:,28).*numofimg(3,2)+dssum13(:,28).*nu
mofimg(1,3)+dssum23(:,28).*numofimg(2,3)+dssum33(:,28).*numofimg(3,3);
expaveragetime=exptime./allimgno;

resallsets=respersetl+resperset2+resperset3;
setl=[dssum11(:,1),dssum11(;,2),dssum11(:,4),respersetl(:,7)./respersetl(:,5),respersetl(:,8)./setimgno(1),resper
set1(:,9)./(respersetl(:,5)-
resperset1(:,11)),resperset1(:,10)./setimgno(1),respersetl(:,13)./respersetl(:,11),respersetl(:,14)./respersetl(:,12)]

,set2:[dssum22(:,1),dssum22(: ,2),dssum22(:,4),resperset2(:,7)./resperset2(:,5),resperset2(:,8)./setimgno(2),resper
set2(:,9)./(resperset2(:,5)-
resperset2(:,11)),resperset2(:,10)./setimgno(2),resperset2(:,13)./resperset2(:,11),resperset2(:,14)./resperset2(:,12)]

,set3=[dssum33(:,1),dssum33(: ,2),dssum33(:,4),resperset3(:,7)./resperset3(:,5),resperset3(:,8)./setimgno(3),resper
set3(:,9)./(resperset3(:,5)-
resperset3(:,11)),resperset3(:,10)./setimgno(3),resperset3(:,13)./resperset3(:,11),resperset3(:,14)./resperset3(:,12)]

allsets=[dssum11(:,1),dssum11(:,2),dssum11(:,4),resallsets(:,7)./resallsets(:,5),resallsets(:,8)./allimgno,resallsets(
5,9)./(resallsets(:,5)-
resallsets(;,11)),resallsets(:,10)./allimgno,resallsets(;,13)./resallsets(;,11),resallsets(:,14)./resallsets(:,12),expavera
getime];

save allsets setl set? set3 allsets

save allsets.csv allsets -ascii -tabs

save setl.csv setl -ascii -tabs

save set2.csv set2 -ascii -tabs

save set3.csv set3 -ascii -tabs

save allsetstimes exptime expaveragetime
allsetstimes=[dssum11(:,1),dssum11(:,2),dssum11(:,4),exptime expaveragetime];
save allsetstimes.csv allsetstimes -ascii -tabs

% calling for subroutine subper2 for preperation of a mat file for the
% anovan function
%subper2c
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Appendix X:

Collaboration
1
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Appendix XI:  Numerical analysis programs

operationalcost5c.m

% This program calculates the hit and false alarm probabilities and the
% value of the operational cost according to betas and dtags

% all betas are given and the optimal betas for each case are chacked.

% This version will show the objective fbction values for all collaboration
% levels and for all betas combinatios.
% with more resolusion of d'r, d'h and Ps

clear
clc
close all

tic
N=1000; % # of objects
Nstr=num2str(N);

%VFA2H=[0.1 0.333 1 3 10]; %[0.05:0.05:1,1:0.1:10,10:1:100]; %VFA/VH aspect ratio range
VFA2H=10; %][0.05:0.05:1,1:0.1:10,10:1:100]; %VFA/VH aspect ratio range
for VAR=1:length(VFA2H)
VARstr=num2str(VFA2H(VAR)*10);
if VFA2H(VAR)==0.333
VARstr=num2str(3);
end

%Psvector=[0.2 0.5 0.8]; %probability for object to be target
Psvector=[0.1,0.2,0.5,0.8,0.9]; %probability for object to be target

for Pscount=1:length(Psvector)
Ps=Psvector(Pscount);
Psstr=num2str(Ps*100);

dhvector=[-0.5:-0.25:-3];
drvector=[-0.5:-0.25:-3];

for dh=1:11
dtag=dhvector(dh) %][-0.1:-0.1:-4]; % the range of d' for human (second detector)
Dh=num2str(-dtag*100);

for dr=1:11

dtagR=drvector(dr) %[-0.1:-0.1:-4]%-2
Dr=num2str(-dtagR*100);

%Inbetar=1 %[-3:0.1:3]

VH=50;

VM=0;

VCR=0;
VHstr=num2str(VH);
VFA=-VH.*VFA2H(VAR);
Vc=-2,
VCstr=num2str(-Vc);
Vt=-2000/3600;
Vistr=num2str(-Vt*3600);

tr=10;

¢3=0;
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for Inbetar=-4:0.2:4
c3=c3+1;
c2=0;
for Inbetah=-4:0.2:4
c2=Cc2+1;
c1=0;
for Inbetarh=-4:0.2:4
cl=cl+1;

% the probabilities of the robot
Zsr(cl,c2,c3)=(-2.*Inbetar+dtagR."2)./(2.*dtagR);
Znr(cl,c2,c3)=(-2.*Inbetar-dtagR."2)./(2.*dtagR);
phr(c1,c2,c3)=1-normcdf(Zsr(c1,c2,c3));
pfar(c1,c2,c3)=1-normcdf(Znr(c1,c2,c3));
ratiol=pfar(cl,c2,c3)./phr(cl,c2,c3);
ratio2=(1-pfar(c1,c2,c3))./(1-phr(cl,c2,c3));

if Inbetar==0 & Inbetah==0 & Inbetarh==0
Zsrtest=(-2.*Inbetar+dtagR."2)./(2.*dtagR);
Znrtest=(-2.*Inbetar-dtagR."2)./(2.*dtagR);
phrtest=1-normcdf(Zsr(c1,c2,c3));
pfartest=1-normcdf(Znr(c1,c2,c3));
ratiol=pfar(cl,c2,c3)./phr(cl,c2,c3);
ratio2=(1-pfar(c1,c2,c3))./(1-phr(cl,c2,c3));

end

%the optimal parameters of the robot if he was a single detector
betastar(c1,c2,c3)=((1-Ps)./Ps).*VFA2H(VAR); % calculating Beta*
ZsRstar(c1,c2,c3)=(-2.*log(betastar(c1,c2,c3))+dtagR."2)./(2.*dtagR);
ZnRstar(c1,c2,c3)=(-2.*log(betastar(c1,c2,c3))-dtagR.”2)./(2.*dtagR);
phrstar(c1,c2,c3)=1-normcdf(ZsRstar(c1,c2,c3));
pfarstar(c1,c2,c3)=1-normcdf(ZnRstar(c1,c2,c3));

%the probabilities of the HO (second detector) for object that the
%robot didn't detect
ZsH(c1,c2,c3)=(-2.*Inbetah+dtag."2)./(2.*dtag);
ZnH(c1,c2,c3)=(-2.*Inbetah-dtag.”2)./(2.*dtag);
phh(c1,c2,c3)=1-normcdf(ZsH(c1,c2,c3));
pfah(cl,c2,c3)=1-normcdf(zZnH(c1,c2,c3));

%the probabilities of the HO (second detector) for object that the robot
%already detected
ZsRH(c1,c2,c3)=(-2.*Inbetarh+dtag."2)./(2.*dtag);
ZnRH(c1,c2,c3)=(-2.*Inbetarh-dtag."2)./(2.*dtag);
phrh(c1,c2,c3)=1-normcdf(ZsRH(c1,c2,c3));
pfarh(cl,c2,c3)=1-normcdf(ZnRH(c1,c2,c3));

% the time parameters

tHh(c1,c2,c3)=5;
tFAh(c1,c2,c3)=5;
tHrh(c1,c2,c3)=5;
tFArh(cl,c2,c3)=5;

tMh(c1,c2,c3)=5;
tCRh(c1,c2,c3)=5;
tMrh(c1,c2,c3)=5;
tCRrh(c1,c2,c3)=5;
tmotor=2;
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PHs(c1,c2,c3)=phr(c1,c2,c3).*phrh(c1,c2,c3)+(1-phr(cl,c2,c3)).*phh(cl,c2,c3);
VHs(c1,c2,c3)=N.*Ps.*PHs(c1,c2,c3).*VH;
PMs(c1,c2,c3)=phr(c1,c2,c3).*(1-phrh(cl,c2,c3))+(1-phr(cl,c2,c3)).*(1-phh(cl,c2,c3));
VMs(cl,c2,c3)=N.*Ps.*PMs(c1,c2,c3).*VM,;
FFAs(c1,c2,c3)=N.*(1-Ps).*pfar(cl,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*pfah(cl,c2,c3);
VFAs(cl,c2,c3)=FFAs(cl1,c2,c3).*VFA;
FCRs(c1,c2,c3)=N.*(1-Ps).*pfar(c1,c2,c3).*(1-pfarh(cl,c2,c3))+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*(1-
pfah(cl,c2,c3));
VCRs(c1,c2,c3)=FCRs(c1,c2,c3).*VCR;

ts(cl,c2,c3)=N.*Ps.*phr(cl,c2,c3).*phrh(cl,c2,c3).*tHrh(c1,c2,c3)+N.*Ps.*(1-
phr(c1,c2,c3)).*phh(c1,c2,c3).*tHh(c1,c2,c3)+N.*(1-
Ps).*pfar(c1,c2,c3).*pfarh(cl,c2,c3).*tFArh(c1,c2,c3)+N.*(1-Ps).*(1-
pfar(cl,c2,c3)).*pfah(cl,c2,c3).*tFAh(cl,c2,c3)...
+N.*Ps.*phr(c1,c2,c3).*(1-phrh(cl,c2,c3)).*tMrh(c1,c2,c3)+N.*Ps.*(1-phr(cl,c2,c3)).*(1-
phh(c1,c2,c3)).*tMh(c1,c2,c3)+N.*(1-Ps).*pfar(cl,c2,c3).*(1-pfarh(cl,c2,c3)).*tCRrh(c1,c2,c3)+N.*(1-Ps).*(1-
pfar(cl,c2,c3)).*(1-pfah(cl,c2,c3)).*tCRh(c1,c2,c3)+tr;

tsHORr(c1,c2,c3)=N.*Ps.*phr(c1,c2,c3).*phrh(cl,c2,c3).*(tHrh(c1,c2,c3)+tmotor)+N.*Ps.*(1-
phr(cl,c2,c3)).*phh(cl,c2,c3).*(tHh(cl,c2,c3)+tmotor)+N.*(1-
Ps).*pfar(cl,c2,c3).*pfarh(cl,c2,c3).*(tFArh(cl,c2,c3)+tmotor)+N.*(1-Ps).*(1-
pfar(cl,c2,c3)).*pfah(cl,c2,c3).*(tFAh(cl,c2,c3)+tmotor)...
+N.*Ps.*phr(c1,c2,c3).*(1-phrh(cl,c2,c3)).*tMrh(c1,c2,c3)+N.*Ps.*(1-phr(cl,c2,c3)).*(1-
phh(c1,c2,c3)).*tMh(c1,c2,c3)+N.*(1-Ps).*pfar(cl,c2,c3).*(1-pfarh(cl,c2,c3)).*tCRrh(c1,c2,c3)+N.*(1-Ps).*(1-
pfar(cl,c2,c3)).*(1-pfah(cl,c2,c3)).*tCRh(c1,c2,c3)+tr;

tsHOR(c1,c2,c3)=N.*Ps.*phr(c1,c2,c3).*phrh(cl,c2,c3).*tHrh(c1,c2,c3)+N.*Ps.*(1-
phr(cl,c2,c3)).*phh(cl,c2,c3).*(tHh(c1,c2,c3)+tmotor)+N.*(1-
Ps).*pfar(cl,c2,c3).*pfarh(cl,c2,c3).*tFArh(c1,c2,c3)+N.*(1-Ps).*(1-
pfar(c1,c2,c3)).*pfah(cl,c2,c3).*(tFAh(cl,c2,c3)+tmotor)...

+N.*Ps.*phr(c1,c2,c3).*(1-phrh(cl,c2,c3)).*(tMrh(c1,c2,c3)+tmotor)+N.*Ps.*(1-phr(c1,c2,c3)).*(1-

phh(cl,c2,c3)).*tMh(c1,c2,c3)+N.*(1-Ps).*pfar(cl,c2,c3).*(1-
pfarh(cl,c2,c3)).*(tCRrh(c1,c2,c3)+tmotor)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*(1-
pfah(cl,c2,c3)).*tCRh(c1,c2,c3)+tr;

Ndetect(c1,c2,c3)=(N.*Ps.*phr(cl,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-phr(cl,c2,c3)).*phh(cl,c2,c3)+N.*(1-
Ps).*pfar(cl,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-pfar(c1,c2,c3)).*pfah(cl,c2,c3));
VTs(cl,c2,c3)=ts(cl,c2,c3).*Vt+(N.*Ps.*phr(cl,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-
phr(cl,c2,c3)).*phh(cl,c2,c3)+N.*(1-Ps).*pfar(cl,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-
pfar(cl,c2,c3)).*pfah(cl,c2,c3)).*Vc;
VTsHORr(c1,c2,c3)=tsHORr(c1,c2,c3).*Vt+(N.*Ps.*phr(c1,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-
phr(cl,c2,c3)).*phh(cl,c2,c3)+N.*(1-Ps).*pfar(cl,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-
pfar(c1,c2,c3)).*pfah(cl,c2,c3)).*Vc;
VTsHOR(c1,c2,c3)=tsHOR(c1,c2,c3).*Vi+(N.*Ps.*phr(cl,c2,c3).*phrh(cl,c2,c3)+N.*Ps.*(1-
phr(cl,c2,c3)).*phh(cl,c2,c3)+N.*(1-Ps).*pfar(cl,c2,c3).*pfarh(cl,c2,c3)+N.*(1-Ps).*(1-
pfar(c1,c2,c3)).*pfah(cl,c2,c3)).*Vc;
Vls(cl,c2,c3)=VHs(cl,c2,c3)+VMs(cl,c2,c3)+VFAs(cl,c2,c3)+VCRs(cl,c2,c3)+VTs(cl,c2,c3);
VIsHORr(c1,c2,c3)=VHs(cl,c2,c3)+VMs(cl,c2,c3)+VFAs(cl,c2,c3)+VCRs(cl,c2,c3)+VTsHORr(cl,c2,c3);
VIsHOR(c1,c2,c3)=VHs(c1,c2,c3)+VMs(cl,c2,c3)+VFAs(cl,c2,c3)+VCRs(cl,c2,c3)+VTsHOR(c1,c2,c3);

PHsR(c1,c2,c3)=phr(cl,c2,c3);

VHsR(c1,c2,c3)=N.*Ps.*PHsR(c1,c2,c3).*VH;
FFAsR(c1,c2,c3)=N.*(1-Ps).*pfar(cl,c2,c3);

VFAsR(cl,c2,c3)=FFAsR(c1,c2,c3).*VFA,;

tsR(c1,c2,c3)=tr;
VTsR(c1,c2,c3)=tsR(c1,c2,c3).*Vt+(N.*Ps.*phr(c1,c2,c3)+N.*(1-Ps).*pfar(cl,c2,c3)).*Vc;
VIsR(c1,c2,c3)=VHsR(c1,c2,c3)+VFAsR(c1,c2,c3)+VTsR(cl,c2,c3);

% the probabilities of teh HO collaboration level were take from the
% robot probabilities and the different between the HO and the R

% cllaboration levels is just on the times parameters.
PHsHO(c1,c2,c3)=phr(cl,c2,c3);
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VHsHO(c1,c2,c3)=N.*Ps.*PHsHO(c1,c2,c3).*VH;
FFAsHO(c1,c2,c3)=N.*(1-Ps).*pfar(c1,c2,c3);
VFAsHO(c1,c2,c3)=FFAsHO(c1,c2,c3).*VFA;

tsHO(c1,¢2,c3)=N.*Ps.*PHsHO(c1,c2,c3).*(tHh(c1,c2,c3)+tmotor)+FFAsHO(c1,c2,c3).*(tFAh(cl,c2,c3)+tmot
on...
+N.*Ps.*(1-PHsHO(c1,c2,c3)).*tMh(c1,c2,c3)+N.*(1-Ps).*(1-pfar(cl,c2,c3)).*tCRh(c1,c2,c3);
VTsHO(c1,c2,c3)=tsHO(c1,c2,c3).*Vt+(N.*Ps.*phr(cl,c2,c3)+N.*(1-Ps).*pfar(cl,c2,c3)).*Vc;
VIsHO(c1,c2,c3)=VHsHO(c1,c2,c3)+VFAsHO(c1,c2,c3)+VTsHO(c1,c2,c3);

Nsyshit(c1,c2,c3)=VHs(c1,c2,c3)./\VH; % number of system hits
NsysFA(c1,c2,c3)=VFAs(cl1,c2,c3)./VFA; % number of system FA
phs(cl,c2,c3)=Nsyshit(cl,c2,c3)./(N.*Ps); % same as PHs
pfas(cl,c2,c3)=NsysFA(cl,c2,c3)./(N.*(1-Ps)); % probability of system FA
Zss(cl1,c2,c3)=norminv(phs(cl,c2,c3));
Zns(cl,c2,c3)=norminv(pfas(cl,c2,c3));
dtagsys(cl,c2,c3)=2Zns(cl,c2,c3)-Zss(cl,c2,c3); % drtag of the overall system
Inbetasys(c1,c2,c3)=-0.5.*(Zss(c1,c2,c3).*2-Zns(c1,c2,c3)."2);
betasys(c1,c2,c3)=exp(Inbetasys(cl,c2,c3)); % the system beta
end %cl

end %c2
c3
VAR
[dhvector(dh),drvector(dr)]

end %c3

toc
Inbetar_graph=-3:0.2:3;

Inbetar=-4:0.2:4;
Inbetah=-4:0.2:4;
Inbetarh=-4:0.2:4;

fn=['OF1dh',Dh,'dr',Dr,” "VARstr," '"VHstr,' 'VCstr,' " Vtstr," Ps'Psstr]

allvariables=[' N VFA2H VAR Ps dtag dtagR Inbetar Inbetah Inbetarh VH VFA Vc¢ Vt Zsr Znr ZsH ZnH ZsRH
ZnRH ZsRstar ZnRstar betastar phr pfar phh pfah phrh pfarh phrstar pfarstar tmotor tHh tHrh tFAh tFArh tMh
tMrh tCRh tCRrh tr PHs VHs PMs VMs FCRs VCRs FFAs VFAs ts tsHORr tsHOR Ndetect VTs VTsHORr
VTsHOR VIs VISHORr VISHOR Nsyshit NsysFA phs pfas Zss Zns dtagsys Inbetasys betasys PHsR VHsR
FFAsSR VFASR tsR VTsR VIsR PHsHO VHsSHO FFAsHO VFAsSHO tsHO VTsHO VIsHO']

eval(['save ',fn allvariables])

%save OC1dh3dr3_3 3 1 1000 N VFA2H VAR Ps dtag dtagR Inbetar Inbetah Inbetarh VH VFA Vc Vt ...
% Zsr Znr ZsH ZnH ZsRH ZnRH ZsRstar ZnRstar betastar phr pfar phh pfah phrh pfarh phrstar pfarstar ...
% myuHh myuFAh myuHrh myuFArh tHh tHrh tFAh tFArh tr PHs VHs FFAs VFAS ts Ndetect VTs Vs

Nsyshit NsysFA phs pfas ...

% Zss Zns dtagsys Inbetasys betasys

end %dr

end % dh

end % PScount
end % VAR

toc
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OFoptPS1.m:

% This program compare the different files prodced with operationalcost5c
% and calculate the parameters maps for all collaboration levels.

clear

clc
close all
pause(1)

tic

allvariables=[' N VFA2H VAR Ps dtag dtagR Inbetar Inbetah Inbetarh VH VFA V¢ Vt Zsr Znr ZsH ZnH ZsRH
ZnRH ZsRstar ZnRstar betastar phr pfar phh pfah phrh pfarh phrstar pfarstar tmotor tHh tHrh tFAh tFArh tMh
tMrh tCRh tCRrh tr PHs VHs PMs VMs FCRs VCRs FFAs VFAs ts tsHORr tsHOR Ndetect VTs VTsHORr
VTsHOR VIs VISHORr VISHOR Nsyshit NsysFA phs pfas Zss Zns dtagsys Inbetasys betasys PHsR VHsR
FFAsSR VFASR tsR VTsR VIsR PHsHO VHsSHO FFAsHO VFAsSHO tsHO VTsHO VIsHO';

dhvector=[-0.5:-0.25:-3];
drvector=[-0.5:-0.25:-3];

VFA2H=10; % VFA2H=[0.1 1 10]; %[0.05:0.05:1,1:0.1:10,10:1:100]; %VFA/VH aspect ratio range
for VARcall=1:length(VFA2H)
VARstr=num2str(VFA2H(VARcall)*10);
if VFA2H(VARcall)==0.333
VARstr=num2str(3);
end

%Ps=0.1; %probability for object to be target
%Psstr=num2str(Ps*100);
VH=50;

VM=0;

VCR=0;

VHstr=num2str(VH);
VFA=-VH.*VFA2H(VARcall);
Ve=-2;

VCstr=num2str(-\/c);
Vt=-2000/3600;
Vistr=num2str(-Vt*3600);
tr=10;

bestbetarh=zeros(11,11);
bestbetah=zeros(11,11);
bestbetar=zeros(11,11);

Ps=[0.1,0.2,0.5,0.8,0.9] %probability for object to be target
for P=1:length(Ps)

Ps=[0.1,0.2,0.5,0.8,0.9] %probability for object to be target
Psstr=num2str(Ps(P)*100)

for dh=1:11
dtag=dhvector(dh) %[-0.1:-0.1:-4]; % the range of d' for human (second detector)
Dh=num2str(-dtag*100);

fordr=1:11
dtagR=drvector(dr) %[-0.1:-0.1:-4]%-2
Dr=num2str(-dtagR*100);

fn=['OF1dh',Dh,'dr',Dr," '"VARstr," VHstr,' 'VCstr," '\Vtstr,' Ps'Psstr]
eval(['load ',fn allvariables])
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HOVIs(dh,dr,P)=max(max(max(VIsHO))); % the dh, dr coordinates are oposit since it is that way in
the databases

[x y]=find(VISHO==HOVIs(dh,dr,P));

brhs_VIsHO(dh,dr,P)=x(1);

bhs_VIsHO(dh,dr,P)=ceil(y(1)./41);

brs_VIsHO(dh,dr,P)=y(1)-41*(bhs_VIsHO(dh,dr,P)-1);

HOPHSs(dh,dr,P)=PHsHO(brhs_VIsHO(dh,dr,P),brs_VIsHO(dh,dr,P),bhs_VIsHO(dh,dr,P));
HOts(dh,dr,P)=tsHO(brhs_VIsHO(dh,dr,P),brs_VIsHO(dh,dr,P),bhs_VIsHO(dh,dr,P));
HOVTs(dh,dr,P)=VTsHO(brhs_VIsHO(dh,dr,P),brs_VIsHO(dh,dr,P),bhs_VIsHO(dh,dr,P));
HOPfa(dh,dr,P)=pfar(brhs_VIsHO(dh,dr,P),brs_VIsHO(dh,dr,P),bhs_VIsHO(dh,dr,P));

RVIs(dr,dh,P)=max(max(max(VIsR)));

[x yl=find(VIsSR==RVIs(dr,dh,P));
brhs_VIsR(dr,dh,P)=x(1);
brs_VIsR(dr,dh,P)=ceil(y(1)./41);
bhs_VIsR(dr,dh,P)=y(1)-41*(brs_VIsR(dr,dh,P)-1);

RPHs(dr,dh,P)=PHsR(brhs_VIsR(dr,dh,P),bhs_VIsR(dr,dh,P),brs_VIsR(dr,dh,P));
Rts(dr,dh,P)=tsR(brhs_VIsR(dr,dh,P),bhs_VIsR(dr,dh,P),brs_VIsR(dr,dh,P));
RVTs(dr,dh,P)=VTsR(brhs_VIsR(dr,dh,P),bhs_VIsR(dr,dh,P),brs_VIsR(dr,dh,P));
RPfa(dr,dh,P)=pfar(brhs_VIsR(dr,dh,P),brs_VIsR(dr,dh,P),bhs_VIsR(dr,dh,P));

HORVIs(dr,dh,P)=max(max(max(VIsSHORY)));

[x y]=find(VISHOR==HORVIs(dr,dh,P));
brhs_VISHOR(dr,dh,P)=x(1);
bhs_VISHOR(dr,dh,P)=ceil(y(1)./41);
brs_VISHOR(dr,dh,P)=y(1)-41*(bhs_VIsHOR(dr,dh,P)-1);

HORPHSs(dr,dh,P)=PHs(brhs_VIsHOR(dr,dh,P),bhs_VIsHOR(dr,dh,P),brs_VIsHOR(dr,dh,P));
HORts(dr,dh,P)=tsHOR(brhs_VIsHOR(dr,dh,P),bhs_VIsHOR(dr,dh,P),brs_VIsHOR(dr,dh,P));
HORVTs(dr,dh,P)=VTsHOR(brhs_VIsHOR(dr,dh,P),bhs_VIsHOR(dr,dh,P),brs_VIsSHOR(dr,dh,P));
HORPfa(dr,dh,P)=pfas(brhs_VIsHOR(dr,dh,P),brs_VIsHOR(dr,dh,P),bhs_VIsHOR(dr,dh,P));

HORrVIs(dr,dh,P)=max(max(max(VISHORYr)));

[x y]=find(VISHORr==HORrVIs(dr,dh,P));
brhs_VIsHORr(dr,dh,P)=x(1);
bhs_VIsHORr(dr,dh,P)=ceil(y(1)./41);
brs_VIsHORr(dr,dh,P)=y(1)-41*(bhs_VIsHORr(dr,dh,P)-1);

HORrPHs(dr,dh,P)=PHs(brhs_VIsHORr(dr,dh,P),bhs_VIsHORr(dr,dh,P),brs_VIsHORr(dr,dh,P));
HORrts(dr,dh,P)=tsHORr(brhs_VIsSHORr(dr,dh,P),bhs_VIsHORr(dr,dh,P),brs_VIsSHORr(dr,dh,P));

HORrVTs(dr,dh,P)=VTsHORr(brhs_VIsHORr(dr,dh,P),bhs_VIsHORr(dr,dh,P),brs_VISHORr(dr,dh,P));
HORrPfa(dr,dh,P)=pfas(brhs_VIsHORr(dr,dh,P),brs_VIsSHORr(dr,dh,P),bhs_VIsHORr(dr,dh,P));

Vi_Temp=[HOVIs(dr,dh,P),HORrVIs(dr,dh,P),HORVIs(dr,dh,P),RVIs(dr,dh,P)];
Vi_max(dr,dh,P)=max(Vi_Temp);
Temp_CL=find(Vi_Temp==Vi_max(dr,dh,P));

BestCL (dr,dh,P)=Temp_CL(1);

PH_Temp=[HOPHSs(dh,dr,P),HORrPHs(dr,dh,P),HORPHSs(dr,dh,P),RPHs(dr,dh,P)];
PFA_Temp=[HOPfa(dh,dr,P),HORrPfa(dr,dh,P),HORPfa(dr,dh,P),RPfa(dr,dh,P)];

BestZss(dr,dh,P)=norminv(PH_Temp(Temp_CL(1)));
BestZns(dr,dh,P)=norminv(PFA_Temp(Temp_CL(1)));
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Bestdtagsys(dr,dh,P)=BestZns(dr,dh,P)-BestZss(dr,dh,P); % drtag of the overall system
Bestlnbetasys(dr,dh,P)=-0.5.*(BestZss(dr,dh,P)."2-BestZns(dr,dh,P).*2);
if Temp_CL(1)==4
Bestdtagsys(dr,dh,P)=drvector(dr);
BestInbetasys(dr,dh,P)=-4+(brs_VIsR(dr,dh,P)-1).*0.2;
end

end %dr
end % dh
toc
beep
end % P

HOVIs2ts=HOVIs./HOts;
HOVIs2VTs=HOVIs./HOVTs;
RVIs2ts=RVIs./Rts;
RVIs2VTs=RVIs./RVTs;
HORVIs2ts=HORVIs./HORs;
HORVIs2VTs=HORVIs./HORVTS;
HORrVIs2ts=HORrVIs./HORtts;
HORrVIs2VTs=HORrVIs./HORrVTs;

toc

beta_rhHO=-4+(brhs_VIsSHO-1).*0.2;
beta_rhR=-4+(brhs_VIsR-1).*0.2;
beta_rhHORr=-4+(brhs_VISHORr-1).*0.2;
beta_rhHOR=-4+(brhs_VIsSHOR-1).*0.2;

beta_hHO=-4+(bhs_VIsHO-1).*0.2;
beta_hR=-4+(bhs_VIsR-1).*0.2;
beta_hHORr=-4+(bhs_VISHORr-1).*0.2;
beta_hHOR=-4+(bhs_VISHOR-1).*0.2;

beta_rHO=-4+(brs_VIsHO-1).*0.2;
beta_rR=-4+(brs_VIsR-1).*0.2;
beta_rHORr=-4+(brs_VISHORr-1).*0.2;
beta_rHOR=-4+(brs_VISHOR-1).*0.2;

save OFoptPs_datal

Allbeta_rh(:,:,:,1)=beta_rhHO;
Allbeta_rh(:,:,:,2)=beta_rhHORT;
Allbeta_rh(:,:,:,3)=beta_rhHOR;
Allbeta_rh(:,:,:,4)=beta_rhR;

Allbeta_h(:,:,:,1)=beta_hHO;
Allbeta_h(:,:,:,2)=beta_hHORt;
Allbeta_h(:,:,:,3)=beta_hHOR;
Allbeta_h(:,:,:,4)=beta_hR;

Allbeta_r(:,:,:,1)=beta_rHO;
Allbeta_r(:,:,:,2)=beta_rHORY;
Allbeta_r(:,:,:,3)=beta_rHOR,;
Allbeta_r(:,:,:,4)=beta_rR;

save OFoptPs_data2
pause

end % VAR
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Appendix XII:

sensPsla.m:
% sensitivity analysis of beta

clear

clc
close all
pause(1)

tic

Sensitivity analysis programs

allvariables=[' N VFA2H VAR Ps dtag dtagR Inbetar Inbetah Inbetarh VH VFA V¢ Vt Zsr Znr ZsH ZnH ZsRH
ZnRH ZsRstar ZnRstar betastar phr pfar phh pfah phrh pfarh phrstar pfarstar tmotor tHh tHrh tFAh tFArh tMh
tMrh tCRh tCRrh tr PHs VHs PMs VMs FCRs VCRs FFAs VFAs ts tsHORr tsHOR Ndetect VTs VTsHORr
VTSHOR VIs VISHORr VISHOR Nsyshit NsysFA phs pfas Zss Zns dtagsys Inbetasys betasys PHSR VHsSR
FFASR VFASR tsR VTsR VISR PHsSHO VHsSHO FFAsHO VFAsHO tsHO VTsHO VIsHO';

dhvector=[-1:-1:-3];
drvector=[-1:-1:-3];

VFA2H=1; % VFA2H=[0.1 1 10]; %[0.05:0.05:1,1:0.1:10,10:1:100]; %VFA/VH aspect ratio range

for VARcall=1:length(VFA2H)
VARstr=num2str(VFA2H(VVARcall)*10);
if VFA2H(VARcall)==0.333
VARSstr=num2str(3);
end

%Ps=0.1; %probability for object to be target
%Psstr=num2str(Ps*100);
VH=50;

VM=0;

VCR=0;

VHstr=num2str(VH);
VFA=-VH.*VFA2H(VARcall);
Vc=-2,

VCstr=num2str(-Vc);
Vt=-2000/3600;
Vistr=num2str(-Vt*3600);
tr=10;

Ps=[0.1:0.1:0.9] %probability for object to be target
for P=1:length(Ps)

Ps=[0.1:0.1:0.9] %probability for object to be target
Psstr=num2str(Ps(P)*100)

for dh=1:3
dtag=dhvector(dh) %[-0.1:-0.1:-4]; % the range of d' for human (second detector)
Dh=num2str(-dtag*100);

for dr=1:3
dtagR=drvector(dr) %[-0.1:-0.1:-4]%-2
Dr=num2str(-dtagR*100);

fn=['OF1dh',Dh,'dr',Dr," '"VARstr," VHstr,' '\VCstr," '\Vtstr,' Ps'Psstr]
eval(['load ',fn allvariables])
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RVIs(dr,dh,P)=max(max(max(VIsR)));
RVIsmin(dr,dh,P)=min(min(min(VIsR)));

[x y]=find(VIsSR==RVIs(dr,dh,P));
brhs_VIsR(dr,dh,P)=x(1);
brs_VIsR(dr,dh,P)=ceil(y(1)./41);
bhs_VIsR(dr,dh,P)=y(1)-41*(brs_VIsR(dr,dh,P)-1);

HORVIs(dr,dh,P)=max(max(max(VIsSHORY)));
HORVIsmin(dr,dh,P)=min(min(min(VIsSHOR)));

[x y]=find(VISHOR==HORVIs(dr,dh,P));
brhs_VISHOR(dr,dh,P)=x(1);
brs_VIsHOR(dr,dh,P)=ceil(y(1)./41);
bhs_VISHOR(dr,dh,P)=y(1)-41*(brs_VIsHOR(dr,dh,P)-1);

HORrVIs(dr,dh,P)=max(max(max(VISHORYr)));
HORrVIsmin(dr,dh,P)=min(min(min(VISHORY)));

[x y]=find(VISHORr==HORrVIs(dr,dh,P));
brhs_VIsSHORr(dr,dh,P)=x(1);
brs_VIsSHORr(dr,dh,P)=ceil(y(1)./41);
bhs_VIsHORr(dr,dh,P)=y(1)-41*(brs_VIsHORr(dr,dh,P)-1);

fn=['OF1dh",Dr,'dr',Dh, ' VARstr,' 'VHstr,' 'VCstr, ' Vtstr, Ps'Psstr]
eval(['load ',fn allvariables])

HOVIs(dh,dr,P)=max(max(max(VIsHO))); % the dh, dr coordinates are oposit since it is that way in
the databases

HOVIsmin(dh,dr,P)=min(min(min(VIsHQ))); % the dh, dr coordinates are oposit since it is that way in
the databases

[x y]=find(VISHO==HOVIs(dh,dr,P));

brhs_VIsHO(dh,dr,P)=x(1);

bhs_VIsHO(dh,dr,P)=ceil(y(1)./41);

brs_VIsHO(dh,dr,P)=y(1)-41*(bhs_VIsHO(dh,dr,P)-1);

end % dr
end % dh
end % P

Ps=[0.1:0.1:0.9] %probability for object to be target
for P=1:length(Ps)

Ps=[0.1:0.1:0.9] %probability for object to be target
Psstr=num2str(Ps(P)*100)

for dh=1:3
dtag=dhvector(dh) %][-0.1:-0.1:-4]; % the range of d' for human (second detector)
Dh=num2str(-dtag*100);

for dr=1:3
dtagR=drvector(dr) %[-0.1:-0.1:-4]%-2
Dr=num2str(-dtagR*100);

Vi_Temp=[HOVIs(dr,dh,P),HORrVIs(dr,dh,P),HORVIs(dr,dh,P),RVIs(dr,dh,P)];

Vimin_Temp=[HOVIsmin(dr,dh,P),HORrVIsmin(dr,dh,P),HORVIsmin(dr,dh,P),RVIsmin(dr,dh,P)];
Vi_max(dr,dh,P)=max(Vi_Temp);
Temp_CL=find(Vi_Temp==Vi_max(dr,dh,P));
BestCL(dr,dh,P)=Temp_CL(1);
Vimin(dr,dh,P)=Vimin_Temp(Temp_CL);
deltaVi(dr,dh,P)=Vi_max(dr,dh,P)-Vimin(dr,dh,P);
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end % dr

end % dh
end % P
toc

beta_rhHO=-4+(brhs_VIsHO-1).*0.2;
beta_rhR=-4+(brhs_VIsR-1).*0.2;
beta_rhHORr=-4+(brhs_VIsHORr-1).*0.2;
beta_ rhHOR=-4+(brhs_VISHOR-1).*0.2;

beta_hHO=-4+(bhs_VIsHO-1).*0.2;
beta_hR=-4+(bhs_VIsR-1).*0.2;
beta_hHORr=-4+(bhs_VISHORr-1).*0.2;
beta_hHOR=-4+(bhs_VISHOR-1).*0.2;

beta_rHO=-4+(brs_VIsHO-1).*0.2;
beta_rR=-4+(brs_VIsR-1).*0.2;
beta_rHORr=-4+(brs_VISHORr-1).*0.2;
beta_rHOR=-4+(brs_VISHOR-1).*0.2;

save sensiPsl

Allbeta_rh(:,:,:,1)=beta_rhHO;
Allbeta_rh(:,:,:,2)=beta_rhHORt;
Allbeta_rh(:,:,:,3)=beta_rhHOR;
Allbeta_rh(:,:,:,4)=beta_rhR;

Allbeta_h(:,:,:,1)=beta_hHO;
Allbeta_h(:,:,:,2)=beta_hHORt;
Allbeta_h(:,:,:,3)=beta_hHOR;
Allbeta_h(:,:,:,4)=beta_hR;

Allbeta_r(:,:,:,1)=beta_rHO;
Allbeta_r(:,:,:,2)=beta_rHORY;
Allbeta_r(:,:,:,3)=beta_rHOR,;
Allbeta_r(:,:,:,4)=beta_rR;

save sensiPs2

end % VAR

sensPs2a.m:
% ploting the objective function for different betas sensitivity analysis

clear

clc
close all
pause(1)

tic
load sensibeta?
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allvariables=[' N VFA2H VAR Ps dtag dtagR Inbetar Inbetah Inbetarh VH VFA Vc Vt Zsr Znr ZsH ZnH ZsRH
ZnRH ZsRstar ZnRstar betastar phr pfar phh pfah phrh pfarh phrstar pfarstar tmotor tHh tHrh tFAh tFArh tMh
tMrh tCRh tCRrh tr PHs VHs PMs VMs FCRs VCRs FFAs VFAs ts tsHORr tsHOR Ndetect VTs VTsHORr
VTsHOR VIs VISHORr VISHOR Nsyshit NsysFA phs pfas Zss Zns dtagsys Inbetasys betasys PHsSR VHsR
FFAsSR VFASR tsR VTsR VIsR PHsHO VHsSHO FFAsHO VFAsSHO tsHO VTsHO VIsHO';

dhvector=[-1:-1:-3];
drvector=[-1:-1:-3];

VFA2H=1; % VFA2H=[0.1 1 10]; %[0.05:0.05:1,1:0.1:10,10:1:100]; %VFA/VH aspect ratio range
for VARcall=1:length(VFA2H)
VARstr=num2str(VFA2H(VARcall)*10);
if VFA2H(VARcall)==0.333
VARstr=num2str(3);
end

%Ps=0.1; %probability for object to be target
%Psstr=num2str(Ps*100);
VH=50;

VM=0;

VCR=0;

VHstr=num2str(VH);
VFA=-VH.*VFA2H(VARcall);
Ve=-2;

VCstr=num2str(-\/c);
Vt=-2000/3600;
Vistr=num2str(-Vt*3600);
tr=10;

Ps=[0.1:0.1:0.9] %probability for object to be target
for P=1:length(Ps)

Ps=[0.1:0.1:0.9] %probability for object to be target
Psstr=num2str(Ps(P)*100)

for dh=1:3
dtag=dhvector(dh) %[-0.1:-0.1:-4]; % the range of d' for human (second detector)
Dh=num2str(-dtag*100);

for dr=1:3
dtagR=drvector(dr) %[-0.1:-0.1:-4]1%-2
Dr=num2str(-dtagR*100);

fn=['OF1dh’,Dh,'dr',Dr, 'VARstr," 'VHstr,' ' VCstr,' ' Vtstr,' Ps'Psstr]
eval(['load ',fn allvariables])

ViAll(:,:,:,2)=VISHORr;
ViAll(:,:,:,3)=VISHOR;
ViAll(:,:,:,4)=VIsR;

fn=['OF1dh',Dr,'dr',Dh," " "VARstr," 'VHstr," '\VCstr," '\Vtstr,' Ps'Psstr]
eval(['load ',fn allvariables])
ViAll(:,:,:,1)=VIsHO;

fn=['OF1dh',Dh,'dr',Dr," ""VARstr," 'VHstr," '"VCstr," '\Vtstr," Ps'Psstr]
eval(['load ',fn allvariables])

curr_CL=BestCL(dr,dh,P)
curr_maxVi= Vi_max(dr,dh,P)
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Brh=Allbeta_rh(dr,dh,P,curr_CL)
Bh=Allbeta_h(dr,dh,P,curr_CL)
Br=Allbeta_r(dr,dh,P,curr_CL)

Brh_pos=round(((Brh+4)./0.2)+1)
Bh_pos=round(((Bh+4)./0.2)+1)
Br_pos=round(((Br+4)./0.2)+1)

brh_HORr=Brh_pos;
brh_HOR=Brh_pos;
brh_HO=Brh_pos;

bh_HORr=Bh_pos;
bh_HOR=Bh_pos;
bh_HO=Bh_pos;

br_HORr=Br_pos;
br_ HOR=Br_pos;
br_HO=Br_pos;

if curr_CL==4
maxHORr=max(max(VIsHORr(:,:,Br_pos)));
[x y]=find(VISHORr(:,:,Br_pos)==maxHORY);
brh_ HORr=x(1);
bh_HORr=y(1);

maxHOR=max(max(VISHOR(:,:,Br_pos)));
[x y]=find(VISHOR(:,:,Br_pos)==maxHOR);
brh_HOR=x(1);

bh_HOR=y(1);

fn=['OF1dh",Dr,'dr',Dh, ' VARSstr, 'VHstr, 'VCstr,' ' Vtstr,' Ps'Psstr]
eval(['load ',fn allvariables])

for m=1:41
tmp_VISHO(m)=VIsHO(1,1,m);
end

maxHO=max(tmp_VIsHO);
y=find(tmp_VIsHO==maxHO);
brh_HO=1;
bh_HO=y(1);

end

for Psens=1:9
Psens_str=num2str(Psens*10);
fn=['OF1dh',Dh,'dr',Dr," '\VARstr," ' VHstr," " \VCstr,' "\Vistr,' Ps',Psens_str]
eval(['load ',fn allvariables])

AIICL(2,Psens)=VIsHORr(brh_HORr,bh_HORr,Br_pos);
AIICL(3,Psens)=VIsSHOR(brh_HOR,bh_HOR,Br_pos);
AIICL(4,Psens)=VIsR(Brh_pos,Bh_pos,Br_pos);

fn=['OF1dh',Dr,'dr',Dh," '"VARstr," 'VHstr," '"VCstr,' " \Vtstr,' Ps',Psens_str]
eval(['load ',fn allvariables])
AIICL(1,Psens)=VIsHO(brh_HO,Br_pos,bh_HO);

end

Ps=[0.1:0.1:0.9]; %probability for object to be target
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figure(P)

subplot(3,3,dr+(dh-
1).*3);plot(Ps,AlICL(1,:),'b",Ps,AlICL(2,:),'c',Ps,AlICL(3,:),'d",Ps,AlICL(4,:),'r",Ps(P),curr_maxVi,'ok")

titleline=['V_Il_s P_s=",num2str(Ps(P))," d_r="Dr," d_h=",Dh];

title(titleline)

grid on

pause(1)

end %dr
end % dh
toc
end % P

end % VAR

save sensiPs3
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Appendix XI11: Analysis of Brh

Analysis of B for objects that were marked by the robot. Here we can compute prit and pra
for the human, and accordingly compute fr. The independent variables will be level of
cooperation (all, except HO), robot performance, and rewards (combined over all levels of
complexity and blocks).

The likelihood ratio parameter B is a function of the hit and false alarm probabilities
(chapter 4). The probabilities are transferred into distribution standard deviation values (2).
When the FA probability is zero, its theoretical Z value is -oo. In the experiment, only a few
participants avoided marking any robot false alarms, resulting in a FA probability of 0. Since
these results were achieved due to the finite number of robot FA and it is impossible to
statistically analyze results with infinite values, for those few cases we determine the Z value
to be -4 (in standard deviation units). The calculated FA probability for that value is
0.0000317, which can be regarded as zero for our purposes.

When Ln(B) = 0 (or B = 1) the participant consider to be an ideal observer (Cheng et al.,
2001), for positive Ln(p) the participant consider to be conservative and for negative Ln(j3)
the participant consider to be liberal.

Table A-26 shows the statistical output of the univariate tests of significance performed

on the experiment results.

Table A-26: The univariate tests of significance results.

DoF MS F p
Collaboration 1,88 40.104 9.235 0.003
Rewards 1, 88 21.615 4.978 0.028
Robot quality 1,88 13.895 3.200 N.S.
Collaboration*Rewards 1,88 4.608 1.061 N.S.
Collaboration*Robot quality 1,88 11.793 2.716 N.S.
Rewards*Robot quality 1,88 37.417 8.617 0.004
Collaboration*Rewards*Robot quality 1,88 2.290 0.527 N.S.

The logarithm of the likelihood ratio, Bm, decreased with the increase in the automation
level (Figure A-100). Both the probability of a human hit and false alarm of objects marked
by the robot decreased with the increase in the automation level, but the probability of false
alarm decreased more drastically. It seems that the human operators reduced their intervention
when the system automation level was high (HO-R), and that their behavior was liberal. For

low automation level the human operators performance is consider to be conservative.
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Figure A-100: The human likelihood ratio for objects marked by the robot as a function of the automation
level.

The reward system had a significant effect on participant decision, In(Bm). The values of
the logarithm of the likelihood ratio were higher in the maximized hit reward system than in
the minimized FA reward system (Figure A-101). It could be that the participants were simply
better able to confirm the robot hits as opposed to eliminate its false alarms. In a similar
fashion, an increase in participant sensitivity was noticed when aiming for target detection
than for false alarm elimination. The participants behavior were liberal for the minimized FA

reward system and conservative for the maximized hit reward system.
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Figure A-101: The human likelihood ratio for objects marked by the robot as a function of the reward

system.

Figure A-102 shows the influence of robot quality on human likelihood ratio. The human
likelihood ratio for objects marked by the robot increases with the increase in robot quality.
Although it was found to be marginally significant (p<.1), it seems that the participant’s

awareness of the robot quality influence the likelihood ratio value due to their reliance on the
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robotic system. The participants behavior were conservative for low robot quality and liberal

for nigh robot quality.
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Figure A-102: The human likelihood ratio for objects marked by the robot as a function of robot quality.
The effect of robot quality-reward system interaction (Figure A-103) was significant. In
the maximum hit reward system human likelihood ratio increased with the increase in robot

quality. In the minimum FA reward system, robot quality had a little effect on human

likelihood ratio.
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Figure A-103: The human likelihood ratio for objects marked by the robot as a function of the reward

system and robot quality.
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