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Abstract 

A real-time machine vision system including models that are able to adapt to multiple types of feed 

was developed to predict individual feed intake of dairy cows. Using a Red-Green-Blue-Depth (RGBD) 

camera, images of feed piles of two different feed types (lactating cows' feed and heifers' feed) were 

acquired in a research dairy farm, for a range of feed weights under varied configurations and 

illuminations. Several models were developed to predict individual feed intake: two Transfer Learning 

(TL) models based on Convolutional Neural Networks (CNN), one CNN model trained on both feed 

types, and one Multilayer Perceptron and Convolutional Neural Network (MLP-CNN) model trained 

on both feed types, along with categorical data. We also implemented a statistical method to 

compare these four models using a Linear Mixed Model (LMM) and a Generalized Linear Mixed 

Model (GLMM), revealing that all models performed significantly different. The TL models performed 

best. The best models trained on both feeds with TL methods, achieved Mean Absolute Errors (MAE) 

of 0.12 and 0.13 kg per meal with RMSE of 0.18 and 0.17 kg per meal for the two different feeds, 

when tested on varied data collected manually in a cowshed. Testing the model with actual cows’ 

meals data automatically collected by the system in the cowshed, resulted in an MAE of 0.14 kg per 

meal and RMSE of 0.19 kg per meal. These results suggest the potential of measuring individual feed 

intake of dairy cows in a cowshed using RGBD cameras and Deep Learning (DL) models that can be 

applied and tuned to different types of feed. 

 

Keywords: Individual feed intake, precision livestock farming (PLF), deep learning, RGBD camera, 

transfer learning. 
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1 Introduction 
1.1 Description of the problem 

Individual cow feed intake is a significant factor for dairy management; more than 60% of farm expenses 

are devoted to feed (Bloch et al., 2019; Buza et al., 2014; Halachmi et al., 2016). This major economic 

impact of feed intake in dairy production has motivated genetic studies on moderately heritable traits 

of feed intake and nutrient utilization efficiency (Korver, 1988; Vandehaar, 1998; Pryce et al., 2014). 

Despite this, genetic selection based on individual feed efficiency has not been widely applied, mainly 

due to the high cost and practical limitations of individual feed intake measurements (Berry et al., 2014; 

Seymour et al., 2019). Feed conversion effectiveness can be determined using information about a cow's 

feed intake, and milk production and composition (National Research Council, 2001 and 2007; Volden, 

2011). Hence, monitoring feed intake can improve farm management decisions (Shalloo et al., 2004), 

which is potentially beneficial for farm productivity (Buza et al., 2014; Halachmi et al., 2016; Herd et al., 

2003).  

Different feed intake measurement systems have been developed, including electronic scales in 

the feeding stalls to measure the feed consumed by each cow. These weighing systems have been used 

by several researchers (Bach et al.,2004; Halachmi et al., 1998; Waghorn et al., 2012;). The systems are 

available primarily for research institutions, rather than for commercial cowsheds, because of their high 

cost, additional infrastructure, high maintenance, and frequent cleaning requirements, all of which make 

them impractical for most commercial farms (Stajnko et al., 2010; Wang et al., 2006). 

In order to evaluate the mass of the feed, an imaging algorithm can be utilized. Feed mass 

evaluations based on cameras were performed either by using Structured Light Illumination (SLI) 

methods (Shelley, 2013), by implementing Light Detection and Ranging (LIDAR) sensing methods (Shelley 

et al., 2016), or by using 3D Time-of-Flight camera when protected from the sun (due to infrared light 

contained in sunlight) (Borchersen et al., 2018; Lassen et al., 2018). These methods are impractical on a 

commercial farm mainly due to their sensitivity to sunlight. Bloch et al. (2019) attempted to overcome 

the sunlight issue using a photogrammetry method resulting in estimated errors of 0.483 kg for heaps 

up to 7 kg under laboratory conditions, and 1.32 kg for heaps up to 40 kg in a cowshed. The method 

requires multiple high-quality Red-Green-Blue (RGB) cameras per feed pile measurement along with 

colored markers which make it impractical for a cowshed on a commercial farm. 
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Machine vision (MV) and deep learning methods have made technological advances in recent 

years (Szegedy et al., 2016). Deep learning and specifically convolutional neural networks (CNN) are a 

discipline in the machine learning field and can be used for complicated MV tasks such as regression, 

classification, and detection (Bezen et al., 2020). CNNs are based on non-linear training providing the 

ability to learn millions of parameters. Thus, they require large amount of diverse data (Ros et al., 2016). 

Few studies were conducted in the field of feed intake measurements using neural networks (Bezen et 

al., 2020; Chen et al., 2020; Shen et al., 2021). In a recent study (Bezen et al., 2020), an MV system using 

a Red-Green-Blue-Depth (RGBD) camera was designed, and a CNN was compared with and without RGB 

function (RGBD vs. depth, Bezen et al., 2020). The MAE and RMSE obtained per meal were 0.127 and 

0.184 kg respectively (Bezen et al., 2020). However, the performance of the model was measured using 

images of heaps manually spread and not images of actual cows’ meals. 

1.2 Objectives 

The aim of this study was to develop a new MV system for monitoring individual feed intake in an 

outdoor cowshed: the MV system included a new method and models including a calibration station 

providing the ability to adapt to multiple feeds in commercial conditions. Several learning models were 

compared; the best model was validated on actual cows’ meals. 
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2 Literature review 
This section reviews relevant literature on precision livestock farming (section 2.1), the importance of 

feed intake measurements (section 2.2), individual feed intake measurement systems (section 2.3), data 

collection in a cowshed (section 2.4), computer vision (section 2.5) and deep learning (section 2.6).  

 

2.1 Precision livestock farming 

As agriculture production grows, the production units increase, making it difficult for farmer to closely 

monitor their farm. As a result, animals move from being known and recognized by their farmer to be 

undifferentiated units (Werkheiser, 2018). Precision livestock farming (PLF) can be described as livestock 

production management using the technology and principles of process engineering (Wathes et al., 

2008). The central purpose of PLF is to develop sensors that measure the most crucial process 

parameters of the different livestock production systems more accurately, automatically and 

continuously (Wathes et al., 2008). With that being said, it is important to claim that the goal of these 

tools is not to replace the farmers but to support them in animal management (Berckmans, 2004). PLF 

refers to the use of various technologies for managing individual animals in order to improve farm 

performance and management strategies (Shelley, 2013).  

 

Figure 1: Schematic overview of the basis of PLF for biological processes (Aerts et al. 2003). 

 

The increased use of information technology (IT) products in support of livestock management is what 

originated PLF (Mertens et al., 2011). The main benefit from maintaining PLF systems is ensuring every 

process in a livestock activity is controlled and optimized (Banhazi and Black, 2009). In order to monitor 
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and control livestock production processes, the PLF approach uses modern monitoring and control 

theory. Three conditions must be satisfied in order to achieve favorable monitoring and control of such 

processes (Berckmans, 2004): The first condition is that the animal’s variables (e.g., weight, activity, 

behavior, feed intake, physiological variables etc.) must be measured and analyzed continuously. The 

second condition is that a reliable prediction on how the animal variables will modify or how the animal 

will respond to environmental changes, must be available at all times (Berckmans, 2004). The third and 

last condition is to integrate this prediction together with the on-line measurements in an analyzing 

algorithm in order to monitor and manage the animals automatically and to achieve on-line monitoring 

of animal health, welfare, or take control actions (e.g. climate control and feeding strategies) 

(Berckmans, 2004; Werkheiser, 2018). 

Precision dairy farming technologies are relatively new to the dairy farming industry (Shelley, 2013). In 

the last few years progress has been made towards adoption of precision dairy farming into everyday 

operations including technologies such as computerized milk yield recordings, biometric identification 

and health monitoring systems (Shelley, 2013). This thesis is part of further adoption of precision dairy 

farming technologies providing increased dairy industry production and efficiency. 

2.2 Feed intake measurement importance 

Individual cow productivity is getting much attention in modern dairy farming (González et al., 2008). 

Individual’s feed intake and feed efficiency have a great economic value for farm management as the 

feed holds about 40%-60% of the total cost of milk production. 

As a result, even the smallest improvement in feed efficiency will have a major economic effect for the 

farmer (Buza et al., 2014; Connor et al., 2019; Halachmi et al., 2016; Holtenius et al., 2018; Lassen et al., 

2018; Shelley, 2013; Waghorn et al., 2012). Combining information of feed intake and  milk production 

and composition can help estimating the individual’s cow feed efficiency (Volden, 2011).  

In order to keep up with today’s expected milk production, dairy farmers must rise feed efficiency by 

selecting effective cows and managing cows for increased productivity (VandeHaar et al., 2016). The 

selection requirements are measurements of feed efficiency in order to identify efficient and inefficient 

cows that may be retained or removed from the herd, respectively (Waghorn et al., 2012). 

Farm management decision-making can improve using proper monitoring of feed intake, as the 

productivity of dairy cows and the profitability of the farm can be determined (Shalloo et al., 2004). This 

has the potential to increase the farm’s productivity (Buza et al., 2014; Halachmi et al., 2016; Herd et al., 
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2003; Vandehaar, 1998) and assist in farm budgeting, milk yield calculating and feed nutrition rationing 

(Richter, 2018). Over-Feeding of cows causes a loss of profitability to the dairy farm as money spent on 

extra feed cannot be returned as instead of being utilized by the cow for milk production, the feed goes 

to waste (Shelley, 2013.). 

Studies that took place in the dairy farm of Beit Dagan, Israel, revealed high variance and diversity 

between cows up to 30-40% in feed intake for producing an equal amount of milk (Richter, 2018). The 

economic value of an individual cow to any stage of lactation can be estimated using dry matter intake 

(DMI) and milk yield (Halachmi et al., 2004). DMI is also essential for nutritional reasons, when feed is 

allocated individually through self-feeders that are computer controlled. In robot-milking dairies self-

feeders are a crucial part of the dairy system (Halachmi et al., 2004). 

Additionally, it is important to consider the environmental aspects (Boadi et al., 2004; Knapp et al., 2014): 

when animal efficiency is improved, methane gas (CH4) production per unit of milk is reduced. The 

amount of feed energy related with animal maintenance is around 50% in dairy cows and the remaining 

50% is used for production (Boadi et al., 2004). As productivity increases, methane gas emissions rises 

but methane gas emissions per unit of milk decreases (Boadi et al., 2004; Knapp et al., 2014). Moreover, 

we can state that if we use fewer cows in order to produce the same amount of milk annually (i.e. 

increasing feed efficiency), the total methane (CH4) emission will be decreased (Knapp et al., 2014; 

Montes et al., 2013). 

2.3 Individual feed intake measurement systems 

Individual feed intake measurement systems research dealt with system design, development or 

validation (Bezen et al., 2019)  (Table 1). The systems were developed with various sensors and 

algorithms (Bach et al., 2004; Bezen et al., 2020; Bloch et al., 2019; Bloch et al., 2021; Chapinal et al., 

2007; Chizzotti et al., 2015; Halachmi et al., 1998; Shelley, 2013; Shelley et al., 2016; ). Besides individual 

feed intake measurement systems, statistical models for daily DMI prediction were developed. These 

models are based on data collected using mechanical weighing systems (Gabler, 2002; Halachmi et al., 

2016; Halachmi et al., 2004; Holtenius et al., 2018; Jensen et al., 2015; NRC, 2001; Volden, 2011). 

Different sensors were used for developing individual feed intake measurement systems: 

Electronic scales 

This sensor is the most straightforward method to measure feed intake in a cowshed. However, 

electronic scales are used almost solely in researchers and not in commercial cowsheds (Bezen, 
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2019)(Halachmi et al., 2019) (Table 1). A scale is located at each feeding station and measures the mass 

of feed intake of each meal from each bin (Figure 2).  

Table 1: Advantages and disadvantages of electronic scales used for measuring feed intake in a cowshed. 

Advantages Disadvantages 

The accuracy and reliability of the weight 
sensor (Bach et al., 2004). 

High price and frequent cleaning required 
(Stajnko et al., 2010; Wang et al., 2006 ). 

Feed type and environmental conditions do 
not affect the measure ability of the sensor 
(Bezen, 2019). 

The mechanical parts often require a great 
deal of maintenance (Bezen, 2019). 

Suitable infrastructure is required (Bezen, 
2019). 

 
Figure 2: An electronic weight system for individual feed intake in dairy farm, Volcani research institute 

((Halachmi et al., 1998)). 

Structured light illumination (SLI) 

The SLI method includes a camera and a light projector (Figure 3). The surface information are generated 

from the deformation of the projected pattern (Bezen, 2019; Geng, 2011) with the Z axis as depth. 

This method can evaluate the volume and surface of the objects in the scene (Bezen, 2019) but it requires 

controlled lighting conditions and indoors conditions in order to work properly (Geng, 2011). Previous 

research (Shelley, 2013) which utilized this system to determine the volume and weight of feed in a bin 

before and after feeding dairy cows, was tested on 272 feed heaps in a laboratory. According to the 

results, there was a high difference between predicted values and actual values. There were only 72% 



  

 13 

of results within four pounds of the difference between the weight measured on the scale and the image 

weight calculated. 

 

Figure 3: Illustration of structured light (Geng, 2011). 

Calibrated stereo cameras  

Photogrammetry (Mikhail et al. 2001) is a method of producing a 3D model of an object surface by taking 

a number of pictures from different angles using Red, Green, Blue (RGB) cameras located at different 

locations. This is possible because RGB pictures are less sensitive to sunlight. The images are processed 

using specialized software. Triangulation is used to locate the coordinates of features (tie points) that 

are common to a number of pictures in the space photographed. An animal feed heap point cloud is 

thereby generated, from which the feed volume is estimated. The feed volume, along with the feed 

density, is then used to estimate the feed mass (Bloch et al., 2019) (Figure 4).  

 
Figure 4: Camera orientation around the cow feed heap (Bloch et al., 2019). 

 

The method was tested (Bloch et al., 2019) in a laboratory and in cowshed conditions, with 125 and 60 

feed heaps respectively. The estimated error for calculating the mass under laboratory conditions was 
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0.483 kg for feed heaps up to 7 kg. The SD for the cowshed experiment was 0.44 kg, resulting in a total 

error of 1.32 kg for heaps up to 40 kg in the cowshed. At least eight images of the feed pile are required 

to calculate the volume, which is a big disadvantage of this system. This system is impractical due to its 

need of at least eight cameras per pile of feed and due to the fact that the coloured markers used for 

the point cloud processing would not be operative in a cowshed on a working farm as dirt may change 

their colours and tractors may move them from their spot. 

RGBD cameras and IR sensors 

RGBD cameras provide a couple of images in four channels: Red, Green, Blue and Depth (Cyganek and 

Siebert, 2011) which provide depth information per-pixel in the RGB image using infrared or near-

infrared projector (Figure 5) (Bezen, 2019). 

Few RGBD feed intake calculation algorithms and methods have been developed through the years in 

different conditions: indoor (Shelley et al., 2016), outdoor (Bezen, 2019; Borchersen, Hansen, Borggaard, 

2018; Lassen et al., 2018), and open cowshed (Bezen, 2019; Lassen et al., 2018).  

 
Figure 5: Images of a feed pile. Left: depth image; right: RGB image (Bezen, 2019). 

 

The depth sensor based on IR or near-IR projector provides a serious advantage for object surface 

assessment. Nevertheless, the IR sensor is sensitive to sunlight and influenced by it (Bezen, 2019).  

In a previous study (Shelley et al., 2016), A minimum error of 0.2 kg for a single heap’s weight was 

achieved using IR sensors in laboratory conditions.  

In order to overcome the sunlight effect on the IR sensor a most recent study for measuring feed intake 

used a RGBD camera (Bezen, 2019) implementing a deep learning algorithm on images acquired in an 

open cowshed. The system directly measured feed intake of a single meal which was in the range of 0-8 

kg of TMR (Total Mix Ration) and resulted in a mean absolute error of 0.127 kg per single meal. Bezen 

(2019) applied a deep convolutional neural network (CNN) model to predict feed intake. In order to 
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extract the features from raw images, convolutional layers were applied. The features included four 

dimensional tensors based on depth and colour images (the tensor contained the results of image 

subtraction of feed piles images before and after the meal). 

 

2.4 Data collection in cowsheds 

Precision dairy farming technologies for animal status monitoring and management continues to raise 

(Gargiulo et al., 2018). Different sensors and sensing techniques for more precise and accurate 

information from animals and animal variables have been developed (Borchers and Bewley, 2015; 

Werkheiser, 2018; Richter, 2018).  

One of the sensors systems worth mentioning is the automatic milking system that includes milk yield 

(MY) and milk components measurements (Richter, 2018) which along with feed consumption 

measurements can indicate a cow’s feed efficiency (Volden, 2011).  Positive relationship between feed 

intake and milk yield and between feed intake and milk components has been noted (Brown et al., 

1977).  

2.5 Computer vision 

Computer vision (CV) is an interdisciplinary scientific field with strong connections to mathematical and 

computer sciences (Andrew, 2001). CV is concerned with multiple tasks aiming to enable computer 

systems to automatically see, identify, understand and represent visual world, imitating the same way 

as human vision does (Feng et al., 2019; Spencer et al., 2019).  

CV methods started to be used during the 1960s. The main efforts in applying the methods were invested 

in extracting shapes information about objects using edges and basic shapes (LG, 1963). With the 

development of diverse representations of image patterns, CV methods began to deal with more 

complex perception problems (Spencer et al., 2019).  

CV focuses on precisely interpreting scenes in pictures and giving a meaning to what is happening in 

them. Machine learning in general and deep neural network algorithms in particular are favorable tools 

to increase the capabilities of CV towards the goal of making the computer draw information from 

images that a human could have concluded (Guo et al., 2016). 

 3D computer vision 

3D computer vision refers to the consolidation of the color channels of an image (RGB) and the depth 

dimension of the object presented in the image (RGBD) in order to better understand the environment 
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(Cyganek and Siebert, 2011). RGBD cameras are sensing systems that are able to capture RGB images 

together with depth information per-pixel (Henry et al., 2012).  

RGBD data has been extensively used for variety of applications in both industry and academic fields 

(Brook et al., 2012; Johnson, 2018; Martin and Thrun, 2002; Orteu, 2009; Preising and Hisa, 1995; Sels et 

al., 2019; Seo et al., 2019; Zhang et al., 2018) and in particular for PLF tasks such as measurements of 

dairy cows’ feed heaps (Bezen et al., 2020; Bloch et al., 2019; Shelley et al., 2016; Shelley, 2013). 

RGBD sensors use two leading approaches: Time of Flight (ToF) and Structured Light (SL). Recently, RGBD 

sensors are increasingly used for 3D modeling due to their low costs (Darwish et al., 2017).  

Intel RealSense depth camera D435 

The camera is suitable for indoor and outdoor environment and includes a dedicated low power vision 

processor for real time depth sensing (Intel, 2018). Besides the vision processor, the camera includes a 

RGB sensor, an infrared (IR) projector and both left and right IR cameras (Intel, 2018). The IR projector 

projects a static IR pattern on the scene in order to boost the texture of low-texture scenes (figure 6). 

The vision processor gets the captured scene from both right and left imagers and calculates the depth 

values for each pixel in the image. The depth frame is generated by the depth pixels values (Carfagni et 

al., 2019). RealSense technology is supported by an open source software developments kit (SDK) which 

ease the support for software developers (Carfagni et al., 2019).  

  
Figure 6: The static IR dot pattern projected on a wall (Carfagni et al., 2019). 

 
2.6 Deep learning 

Deep learning is a subfield of machine learning which aims to learn high level features in data using 

hierarchical architectures (Guo et al., 2016). This approach has been extensively applied in traditional 

artificial intelligence domains and in computer vision specifically. There are three main reasons for the 

popularity of deep learning nowadays: first of all, the growth of computational capabilities of computer 
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Graphics Processing Units (GPUs), secondly, the relatively low cost of computing hardware, and last- the 

great advances in machine learning algorithms (Guo et al., 2016; Tsai et al., 2018). 

Convolutional Neural Networks (CNN) 

CNN is the most common approach used in variety of computer vision tasks and applications. CNNs are 

built from three main neural layers which play different roles: convolutional layers, pooling layers and 

fully connected layers (Guo et al., 2016; Zhang et al., 2018), and trained in a robust way which was found 

highly effective (Guo et al., 2016). 

Training a CNN includes two stages: 1) Forward stage which aims to represent the input image with 

weights and bias in each layer of the network and then output a prediction which is used for calculating 

the loss function using the ground truth labels. 2) Backward stage which is based on the loss cost and 

computes the gradients of each parameter of the network using the chain rule. All of the parameters are 

updated based on the gradients’ calculations (Guo et al., 2016). 

Convolutional layers 

Convolutional layers include multiple feature maps that derive various features from tensors inserted to 

them, each feature map is responsible to recognize a specific feature from an image. Feature maps are 

generated by multiple kernels convolving the whole image and the intermediate feature maps (Figure 

6). Recognizing features from an image is achieved by using a filter for every area of the image (Guo et 

al., 2016; Zhang et al., 2018). 

The convolution operation has three main advantages: (1) Reduced number of parameters by weight 

sharing mechanism in the same feature map; (2) Correlations among nearby pixels is being learned; (3) 

The location of the object isn’t important (Guo et al., 2016). 

Standard convolution layer has a computational cost of ℎ! ∗ 𝑤! ∗ 𝑑! ∗ 𝑑" ∗ 𝑘 ∗ 𝑘 where ℎ! ∗ 𝑤! ∗ 𝑑!  is the 

input tensor (where ℎ!  is for height, 𝑤!  for width, 𝑑!  for depth), 𝑘 is the kernel size and ℎ! ∗ 𝑤! ∗ 𝑑"  is the 

output tensor (where  ℎ"  is for height, 𝑤"  for width, 𝑑"  for depth) (Sandler et al., 2018). 
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Figure 7: The operation of the convolutional layer (Guo et al., 2016). 

 
Depthwise convolutional layers 

Depthwise convolutional layers perform independently over every channel of the input (Kaiser, Gomez, 

Chollet, 2017). 

Depthwise convolution layers empirically work almost as well as standard convolution layers and their 

computational cost is only: ℎ! ∗ 𝑤! ∗ 𝑑! ∗ (𝑑" + 𝑘#) (where ℎ!  is for height, 𝑤!  for width, 𝑑!  and 𝑑"  for 

depths, 𝑘 is the kernel size) (Sandler et al. , 2018). 

Pooling layers 

Pooling layers can be used to reduce the network parameters by reducing the dimensions of feature 

maps in the network. Those layers summarize small areas in the image into a single output. Pooling layers 

are defined by their aggregation functions, usually maximum or average (Guo et al., 2016; Zhang et al., 

2018).  

 

Figure 8: The operation of the max pooling layer (Guo et al., 2016). 
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Fully-connected layers 

Fully-connected layers are placed after the last pooling layer in the network converting the 2D features 

maps into a 1D feature vector with a predefined length. Those layers contain about 90% of the 

parameters in a CNN (Guo et al., 2016). 

 
Figure 9: The operation of the fully-connected layer (Guo et al., 2016). 

 
Dropout and DropConnect 

In order to improve the generalization ability of a network, during each training case the algorithm 

randomly leaves out some of the feature detectors. When training with dropout, a randomly selected 

set of activations are set to zero in each layer. DropConnect is derived from dropout and randomly drops 

weights and not activations (Guo et al., 2016; Wan et al., 2013). 

 

 
Figure 10: A comparison of (a) No-Drop Network, (b) Dropout Network and (c) DropConnect network (Guo et al., 

2016). 

Batch Normalization 

Batch normalization allows us to be less careful about initialization and use higher learning rates by 

normalizing the layers input. The normalization is done by scaling and adjusting the activations and 

shifting the inputs mean and variance to zero and one respectively (Ioffe and Szegedy, 2015). 
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Figure 11:  Batch normalization transform, applied to activation x over a mini-batch  

(Ioffe and Szegedy, 2015). 
 
Activation functions 

Activation functions aim to transform the activation level of a neuron into an output signal (Sibi et al., 

2013). The choice of activation functions in CNN has a significant effect on the task performance 

(Ramachandran et al., 2017). Thanks to non-linear activation functions, stronger learning of networks 

can be achieved. Activation functions are executed after the input vector is multiplied with the weight 

vector (equation 1). 

𝑥[%] = 𝑓(𝑊[%] ∙ 𝑥[%'(])                                                     (1) 

Where 𝑓 is an activation function applied to each of its elements. 

Different nonlinear activation functions can  be  used: 

Sigmoid: 𝑦 = 𝜎(𝑥) = (
()*!"

 (Han and Moraga, 1995)                                       (2) 

ReLu:  𝑦 = 𝑚𝑎𝑥(0, 𝑥) (Nair and Hinton, 2010)                (3) 

Swish: 𝑦 = 𝑥 ∙ 𝜎(𝑥) = 𝑥 ∙ (
()*!"

  (Ramachandran et al., 2017)               (4) 

Skip connections 

Deeper neural networks are more difficult to train, and they have vanishing gradient problems, which 

causes trouble reaching convergence. An optional solution for this problem is to skip connections which 

connect the output of one layer to the input of a prior one (Figure 10). Residual function uses the 

difference between a mapping applied to the input and the original input instead of learning the direct 

mapping applied to the input which makes it easier to optimize the residual function (He et al., 2016). 
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Figure 12: Residual learning (He et al., 2016). 

 

EfficientNets models 

EfficientNets models were designed based on the idea that carefully balancing network depth, width and 

resolution can lead to better performance rather than scaling only one the channels (Tan and Le, 2019). 

EfficientNets' architecture main building block is mobile inverted bottleneck (MBConv). Moreover, it 

uses skip connections for training deeper networks. Each block is composed of convolutional, depthwise 

convolutional and batch normalization layers (Sandler et al., 2018; Tan and Le, 2019). 

EfficientNets achieved better accuracy and efficiency than previous convolutional networks. 

EfficientNet-B7 achieved state-of-the-art accuracy on ImageNet while being 8.4x smaller and 6.1x faster 

on inference than the best existing convolutional networks (Tan and Le, 2019). 

 

 

Figure 13: EfficientNet-B0 baseline network - each row represents a stage i with Li layers, input resolution (Hi 
(height),Wi (width)) and output channels Ci (Tan and Le, 2019). 

 
Training CNN with transfer learning  

Transfer learning (TL) is one of the most popular methods in computer vision research (Huh et al., 2016). 

TL is used when there is enough training data for one learning task, but limited training data for a 
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different task that is similar to the first task but not identical (Wang and Schneider, 2014). By using TL, 

we try to store the knowledge learned in the form of feature extractor, when solving the first (source) 

task in the source domain and then apply it to new problems of interest. The knowledge learned in the 

source domain is applied as a feature extractor in the first layers of the network, those features are 

global and can be used for different tasks, particularly in tasks where the training data is limited (Yosinski 

et al., 2014). Training a CNN from scratch on a small training set is likely to lead to overfitting which is 

the main reason for using TL. Overfitting may be caused due to the large number of parameters to be 

learned in the CNN which is larger than the number of input images (LeCun et al., 2015). A process noted 

as fine-tuning is the process of retraining a network with new data. The weights of the network are 

updated according to the new task. 

Multiple inputs and Mixed data  
When handling different types of data (i.e., images, numerical values, video, text or categorical value) it 

is not available to input all the data to the same single network (Yuan et al., 2020). In their research, 

Yuan et al. (2020) proposed a general hybrid deep neural network architecture to separately handle each 

input with a suitable network in order to perform feature learning.  At the end of the feature learning 

part, the learned features are concatenated into an ensemble feature which contains information from 

diverse inputs, and is fed to subsequent neural network to perform target learning (Yuan et al., 2020). 

As inputs may vary, the neural network used for each data type might be multiple layer perceptron 

(MLP), CNNs, recurrent neural networks etc. (Yuan et al., 2020). 

   

 

 

 

 
 

 

Figure 14: Machine-learning model with multiple inputs. 
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3 Methods 
3.1 Data acquisition and system design 

There were two phases of data collection: manual collection for training, testing and statistically 

comparing several deep learning models, and automatic collection for validation of the best DL model 

obtained. Both manual and automatic data collections were conducted at a research cowshed at the 

Volcani Agricultural Research Organization (Israel); A group of 60 Holstein cows participated in the 

automatic data collection process. 

Two feeds were used in the manual collection phase and a single feed type (eaten by lactating 

cows) was used in the automatic collection phase: 

Feed eaten by lactating cows (feed type A) included the following components: wheat silage (37.7%), 

ground corn grain (18.1%), wheat hay (9.4%), lactose waste (7.8%), gluten feed (7.5%), corn distilled dry 

grain (4.7%), rapeseed meal (3.7%), wheat grain (2.5%), soybean meal (2.5%), barley grain (0.8%) and 

vitamins and micro-elements.  

Feed eaten by heifers (feed type B) included the following components: straw (33.2%), gluten feed 

(12.2%), ground corn grain (11.5%), wheat hay (11.1%), wheat grain (8.8%), cotton seed (8.8%), 

sunflower meal (7%), vitamins and trace minerals (3.9%), lactose waste (3.5%). 

3.1.1 Manual data acquisition for training, testing, and comparing models 

In order to obtain a varied dataset for training, data of two feed types were collected in September 2020, 

over a period of 10 days in 10 different sessions (5 sessions for each feed type). The weights of the piles 

were in the range of 0-45 kg for feed type A, and 0-22 kg for feed type B. To ensure a diverse dataset, 

images of each pile of the same weight were acquired multiple times, in multiple pile arrangements, 

illuminations, and at different time periods during the day (as described in Table 2).  

The acquisition process was as follows: an off-the-shelf Intel RealSense depth camera (D435, 

Intel, USA) was installed on an aluminium rod 130 cm above the feed lane. The camera was connected 

to a computer (equipped with an Intel Core i7-7500U processor) (Figure 15). A Python script (van 

Rossum, 1995) was developed to operate the camera. An electronic scale was used to weigh the feed 

piles using a 1 000 kg loadcell with 0.023% precision (SQB, Keli CEE, Poland). In addition, a 17w led bulb 

was used when collecting data in the dark in order to minimizes the noise in the images and to uniformly 
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scatter the light above the pile. The lighting was empirically derived for this purpose. Each pile was 

manually weighed and then manually spread on the ground before acquiring an image. 

Table 2: Manual data collected at a research cowshed for both feeds 

Session  Feed diet Condition Number of images 

1   
 
 
 
A 

Daylight – morning hours 185 

2  Daylight – afternoon hours 185 

3  Daylight – afternoon hours 170 

4  Dark using 17w led bulb – night hours 159 

5  Direct sun - morning hours 66 

6   
 
 
 
B 
 

Daylight – morning hours 180 

7  Daylight – afternoon hours 170 

8  Daylight – morning hours 186 

9  Dark using 17w led bulb – night hours 170 

10  Direct sun - morning hours 66 

       1,537 
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Figure 15: Manual data acquisition setup. 

The specific weights of each feed diet were empirically derived as the average of 10 different 

measurements as follows: two buckets of 3 and 10 liters were filled up with feed and weighed. The 

weight per liter was calculated by dividing the weight in each bucket by its volume. The average kilogram 

per liter of feed was calculated for each feed diet, resulting in 0.302 and 0.095 kg per liter for feed diets 

A and B respectively. 

3.1.2 Automatic data acquisition  

An automatic system for measuring feed intake was designed, built, and installed for about 4 weeks in 

March 2021. First, in order to fine tune the trained model with data collected under different conditions 

(different surface and diverse illumination conditions caused by the different season), 300 images of 

feed piles of feed type A were manually acquired and labelled. Thereafter, the system operated 

automatically collecting data of feed type A.  

The system included two feeding stations (Figure 16). Each station was equipped with a camera, and 

both cameras were connected to the same computer. In addition, a 17w LED bulb was positioned next 

to each camera and illuminated each feed pile during dark hours. Thus, the feed piles were lit uniformly, 
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and shadows were minimized. A station included a weighing palette alongside the camera was used as 

a calibration station. The weighing palette was attached to an electronic scale built of four loadcells. The 

signal from the load cells was amplified by a load cell amplifier (HX711, SparkFun Electronics, USA) and 

read by an Arduino microcontroller (Mega, Arduino, Italy), which streamed the weight readings to the 

computer.  

 
Figure 16: Illustration of the real-time system consisting of two feeding stations. 

The weighing palette measured 1x1.5 meters, corresponding to the size of a single feeding area at the 

dairy farm in which the study was conducted. In both stations, when a cow entered the feeding station, 

motion was detected with a motion detection algorithm that uses Gaussian blurring and binary 

thresholding (Bezen et al., 2020). Data from the RGBD camera and the weight of the feed pile were 

acquired before and after a cow ate from the feed piles. A total of 2 000 entrances to the calibration 

station were detected, resulting in 2 000 actual meals eaten by cows.  
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Figure 17: A calibration station consisting of a camera facing a weighing palette. 

3.2 Datasets for training and fine-tuning 

The datasets included tensors (i.e., multidimensional arrays) representing single meals. Each tensor was 

assembled by subtracting a lower pile weight image from a higher one (for RGB and depth channels, i.e., 

four channels for each tensor). Moreover, for each tensor, two categorical variables representing the 

type of feed and the period of time during the day in which the image was taken 

(morning/afternoon/night) were created. 

The tensor creation process included the following steps: (a) Assembling meals in the range of 0-6 kg 

fresh weight per a meal. (b). Data augmentation: before subtraction of two images, horizontally and 

vertically flipping augmentations were performed on the minuend image, such that from each 

subtraction of two images, two different meals emerged. Augmentation was randomly performed on 

some of the images (about 30%) to increase the dataset while avoiding creation of a too homogenous 

dataset. (c) Concatenating the subtracted RGB and depth images to create 4-channel tensors. (d) Resizing 

the tensors (160, 120, 4). (e) Coding the categorical variables as follows: the type of feed variable was 

binary coded (1 for feed A and 0 for feed B) and the time period variable was one-hot encoded. The one-

hot encoding technique is one of the most common ways to transform categorical features into 

numerical data which is a suitable format used as input for neural networks (Seger, 2018). 
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 Approximately 30 000 RGBD tensors were created from the manually collected data for each feed 

type. From these tensors, three datasets were created for the training phase: (1) Tensors of feed type A, 

(2) Tensors of feed type B, (3) Tensors of both feed types (50% tensors from each type). All datasets were 

distributed approximately uniformly between the different weights in the range of 0-6 kg. Additional 7 

000 RGBD tensors were created for model fine-tuning, using the 300 images manually collected in March 

2021.  

3.3 Analysis 

The sensitivity of the models to the train and test sets, obtained from the manually collected data, was 

evaluated using 5-fold cross-validation. The overall performance of each model (mean absolute error 

(MAE) and RMSE) was computed by averaging the outcomes of all the five folds. To examine if one of 

the models had significantly better performance compared to the rest, a linear mixed model (LMM) and 

a generalized linear mixed model (GLMM) were used (Laird and Ware, 1982): 𝑦 − 𝑦5 = 𝑚𝑜𝑑𝑒𝑙 +

(1|𝑠𝑎𝑚𝑝𝑙𝑒	𝑖𝑑) and (𝑦 − 𝑦5)# = 𝑚𝑜𝑑𝑒𝑙 + (1|𝑠𝑎𝑚𝑝𝑙𝑒	𝑖𝑑) respectively. The LMM examined each model’s 

bias, and the GLMM determined which model resulted in the lowest squared residual. All analyses were 

performed using the R statistical package at the 0.05 significance level. 
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4 Learning models 
4.1 Overview  

Several models were developed trained, tested, and compared. Models (1) and (2) use the CNN 

architecture detailed in section 4.2. The third model uses the MLP-CNN architecture detailed in section 

4.3 (Appendix B). 

(1) Combined model: training using tensors of both feed types. The model was trained using a data 

set of 40 000 tensors where 50% of the data was from each of the feed types. This was done 

without indicating to the model which feed type was captured in each tensor 

(2) Transfer learning: (a) A CNN model was trained using 30 000 tensors of feed type A, and finetuned 

to adjust this model to predict weights of feed type B, using a dataset of 22 670 tensors of feed 

type B. (b) A CNN model was trained using 30 000 tensors of feed type B, and finetuned to adjust 

this model to predict weights of feed type A, using a dataset of 24 000 tensors of feed type A. 

The sizes of the datasets for fine-tuning were randomly selected. 

(3) Multilayer Perceptron and Convolutional Neural Network (MLP-CNN) model using multiple inputs 

of mixed data: This model was trained using the same dataset as model (1), with two additional 

categorical variables in the model’s input, representing the feed diet in each tensor and the 

period time of the day the image was taken at. 

4.2 CNN  

A CNN architecture inspired by the EfficientNet B0 baseline model (Tan and Le, 2019) was developed 

during this study (Figure 18, Appendix G). The architecture was composed of six inverted residual blocks. 

Each block included a batch normalization layer, a convolutional layer, and a depth-wise convolutional 

layer which greatly reduces the number of parameters learned by the model. Each block was followed 

by another batch normalization layer, an activation layer, and a max pooling layer. The blocks had 

different numbers of filters and different inputs dimensions. In addition, learning rate annealing 

technique was used such that the starting learning rate was relatively high, and it was gradually lowered 

during training (Table 3). Furthermore, to avoid overfitting on the training set, an early stopping method 

was used to stop the training process when the model’s performance stopped improving. in addition, a 

dropout layer was used to help avoiding overfitting. Finally, the loss function was mean squared error 

(MSE), and the optimizer was root mean square propagation (RMSprop). 
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Figure 18: CNN developed: the network developed was inspired by EfficientNet B0 baseline model. 

Table 3: CNN models’ hyperparameters values. 
Hyperparameter Value 

Learning Rate (maximum) 0.001 
Learning Rate (minimum) 6.25 10!" 

Batch size 16 
Dropout rate 0.25 
Regularizers L2 0.01 

 
4.3 MLP-CNN  

A MLP-CNN architecture was developed during this study (Figure 19, Appendix G) for mixed-data 

and multiple inputs (categorical and image data). The MLP network was used to handle the categorical 

data (i.e., type of feed and time period) and the CNN was used to extract features from the tensors. The 

MLP network was composed of multiple Fully Connected (FC) layers. The CNN was similar to the one 

used in models (1) and (2) besides the final output layer which was removed. 

Finally, the outputs of both networks were concatenated and inserted as the input of multiple FC layers, 

in order to make the final prediction of the weight of each meal.The CNN model was trained, evaluated 
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and tested on 40,000 RGBD tensors in which each one of them included 4 channels of data: RGB and 

depth metrics, each with 120x160 pixels. The MLP model was trained, evaluated and tested on two 

categorical variables which represent the feed diet captured in each image and the period time of the 

day the images were taken at.  

The outputs of the models were continuous values (feed intake per meal in kg). The dataset of each 

model was split into training and test sets. Twenty percent of the data were randomly selected and used 

to test the model, and the remaining 80% of the data were used for training. All the models were trained 

on NVIDIA GeForce GTX 1080ti GPU, Intel Core™ i7-8700, 64-bit six-core 3.2GHz CPU, 32 GB memory 

running on Microsoft Windows 10 system. 

 

Figure 19: MLP-CNN developed: combining CNN and MLP together where the MLP addition allows us to insert 
categorical data to the network. 
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5 Results and discussion 

5.1 Results 

5.1.1 Manual data acquisition 

The minimum average error rate using 5-fold cross-validation was 0.12 kg MAE and 0.18 kg RMSE per 

meal for feed type A, and 0.13 kg MAE and 0.17 kg RMSE per meal for feed type B, for an average meal 

weight of 2.92 kg (model 2a, Table 4). (Appendix D, Appendix E). 

Table 4: Average performance (kg per meal) of the different models on five different datasets created from the 
manually collected data; 

MAE =
1
n'|y# − y$+|

%

#&'

	 ; 	RMSE = 0
1
n'(y# − y$+)(

%

#&'

 

Learning Model MAE RMSE SD 

Model 1 - Combined 0.18 0.26 0.26 

Model 2a - TL     

    Feed diet A 

    Fine-tune to feed diet B 

0.12 

0.13 

0.18 

0.17 

0.18 

0.17 

Model 2b - TL     

    Feed diet B 

    Fine-tune to feed diet A 

0.1 

0.16 

0.14 

0.22 

0.13 

0.21 

Model 3 - MLP-CNN  0.17 0.25 0.25 

MAE = mean absolute error; TL = transfer learning; MLP-CNN = Multilayer Perceptron and Convolutional Neural 
Network. 
Model 1 – tensors of both feeds; Model 2a,2b – TL from one feed to the other; Model 3 - tensors of both feeds 
in addition to two categorical variables. 

5.1.2 Statistical analysis 

Post hoc analysis revealed significant differences between the learning models (Table 5). Model 2a 

resulted in the lowest bias when predicting the error, and it underestimated the weights of the predicted 

meals based on the LMM analysis (Table 6). Both models 2a and 2b resulted in the smallest residual in 

predicting the squared error based on the GLMM analysis (Table 6) (Appendix F). 
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Table 5: Pairwise comparisons between the models using Tukey method. 

Learning Models compared P 

Model 1 – Model 2a <0.0001 *** 

Model 1 – Model 2b <0.0001 *** 

Model 1 – Model 3 <0.0001 *** 

Model 2a – Model 2b  <0.0001 *** 

Model 2a – Model 3 <0.0001 *** 

Model 2b – Model 3 <0.0001 *** 

 

Table 6: Estimated marginal means of the linear mixed model and generalized linear mixed model indicate the 

model with the lowest deviation when predicting the error, and the models with the smallest residuals when 

predicting the squared errors, respectively. 

Model Estimated marginal means 

LMM GLMM 

Model 1  0.02 0.04 

Model 2a  -0.004 0.02 

Model 2b  -0.02 0.02 

Model 3  0.006 0.04 

* The lowest bias when predicting error is in bold, and the models with the smallest residuals when predicting 

squared errors are in italics. 

 

5.1.3 Automatic data acquisition 

Using model 2a with the automatic collected data resulted in an MAE of 0.14 kg per meal, and an RMSE 

of 0.19 kg per meal for an average meal weight of 2.75 kg. Correlation between the actual values and 

the model predictions can be seen (Figure 20). 
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Figure 20: Predicted values vs. actual values. X and Y axes are the weight in kg. 
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5.2 Discussion 

The minimum error (MAE of 0.14 and RMSE of 0.19 kg per meal) reported in this study, when tested on 

data collected automatically by the MV automatic system in an outdoor cowshed, was lower than that 

achieved in earlier studies (Shelly et al., 2016; Bloch et al., 2019). The minimum error was close to the 

error reported in a previous study (Bezen et al., 2020). However, Bezen’s et al. (2020) system was tested 

on feed piles manually brought from the farm. In Bezen et al. (2020) there were no actual cows below 

the camera, only simulated cows’ meals that were manually picked from the feed piles. In the current 

study an automatic system was developed to acquire images of actual cows’ meals in the dairy farm; 

during both day and night; under shade, direct sunlight, and lamplight. In their study, Bloch et al. (2021) 

reported 120g accuracy and concluded that it is sufficient for cow ranking. The current study obtained a 

bit higher error (MAE of 0.14 and RMSE of 0.19 kg per meal), but this error was achieved with an MV 

system and not a mechanical weighing system as used by Bloch et al. (2021).  

Training a model with data of feed type A, followed by fine tuning the model with data of feed 

type B, was superior to the rest of the models. In further research or commercial application, we would 

advise the same method in applying and utilizing feed intake models for different feeds or different 

conditions (i.e., different animals, locations). Results suggest that our model’s error was higher 

(MAE=0.23, RMSE=0.27 kg) for data collected in the afternoon comparing to the rest of the day 

(MAE=0.14, RMSE=0.19 kg for data collected in the morning-noon hours and MAE=0.12, RMSE=0.16 kg 

for data collected in the evening-night hours). Further research may consider other illumination aspects.    

One of the advantages of the MV system is that it requires a single calibration station which 

enables to dynamically adjust the model to changes in the feed mix. Tuning the model to changes in the 

feed mix requires less data and less training time than training a new model from scratch. Future study 

may examine the response time between changing the feed mix and updating the model. Another 

advantage of this system is that a single computer can run multiple cameras simultaneously, collecting 

data from multiple feeding stations to estimate feed intake of various of cows.  

However, a few caveats may be noted. First, the feed in a commercial cowshed is distributed as 

a single unseparated long pile along the feeding lane where there is no separation between the feeding 

stations and therefore, the system is unable to cope with cows that eat from each other’s station at the 

same time. Another disadvantage is the need of a single camera per feeding station. Additional research 

is necessary to address this issue, to decrease the total system costs (299$ per camera) by utilizing a 
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single camera in multiple feeding stations. A programmatic separation between the stations could 

handle this issue. Another drawback of the developed MV system is that it does not include a cow 

detection ability. However, this feature can be added and coupled with the feed intake system to 

determine how much feed each individual cow consumes. 
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6 Conclusions and future work 
Measuring cows’ individual feed intake was conducted in an outdoor cowshed, at various times during 

the day, using newly developed machine vision and deep learning models. The selected model achieved 

an MAE of 0.14 kg per meal, and an RMSE of 0.19 kg per meal, for actual cows’ meals automatically 

collected by the automatic system installed at a research dairy farm. These results suggest the potential 

of measuring individual feed intake of dairy cows in a cowshed using RGBD cameras and deep learning 

models that can be applied and tuned to different types of feed.  

Both models trained and tested using TL methods were revealed to be superior to the other 

models, according to the LMM and GLMM analysis (Table 5). Additionally, the TL models were more 

stable (i.e., had a smaller variance) when evaluating their sensitivity using 5-fold cross-validation (Table 

3). The MLP-CNN model achieved a lower error than the combined model (Table 3). This demonstrates 

the advisability of using categorical variables representing the type of feed and the image acquisition 

time as additional inputs to the model.  

Future studies should focus on adding an automatic calibration system and validating the system 

with a larger number of cameras in a commercial farm. Future work should focus on development of 

individual cow detection, the use of one camera for few feeding stations and development of a software 

to handle the division of the feed lane into separate feeding stations. Moreover, the model performance 

can improve using more inputs to the network such as eating time and exact hour of eating. The MV 

system and models may be adapted to estimate feed intake of other animals such as beef cattle, small 

ruminants, and pigs.  
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Abstract 

Data on individual feed intake of dairy cows, an important variable for farm management, is currently 

unavailable in commercial dairies. A real-time machine vision system including models that are able to 

adapt to multiple types of feed was developed to predict individual feed intake of dairy cows. Using a 

Red-Green-Blue-Depth (RGBD) camera, images of feed piles of two different feed types (lactating cows' 

feed and heifers' feed) were acquired in a research dairy farm, for a range of feed weights under varied 

configurations and illuminations. Several models were developed to predict individual feed intake: two 

Transfer Learning (TL) models based on Convolutional Neural Networks (CNN), one CNN model trained 

on both feed types, and one Multilayer Perceptron and Convolutional Neural Network model trained on 

both feed types, along with categorical data. We also implemented a statistical method to compare these 

four models using a Linear Mixed Model and a Generalized Linear Mixed Model, showing that all models 

are significantly different. The TL models performed best and were trained on both feeds with TL 

methods. These models achieved Mean Absolute Errors (MAE) of 0.12 and 0.13 kg per meal with RMSE 

of 0.18 and 0.17 kg per meal for the two different feeds, when tested on varied data collected manually in 

a cowshed. Testing the model with actual cows’ meals data automatically collected by the system in the 

cowshed, resulted in an MAE of 0.14 kg per meal and RMSE of 0.19 kg per meal. These results suggest 

the potential of measuring individual feed intake of dairy cows in a cowshed using RGBD cameras and 

Deep Learning models that can be applied and tuned to different types of feed. 

 

Keywords: individual feed intake, precision livestock farming, deep learning, transfer learning, Red-

Green-Blue-Depth camera. 



  

 47 

Implications 

Data on individual feed intake of dairy cows, an 

important variable for farm management, is 

currently unavailable in commercial dairies. We 

developed a system utilizing a Red-Green-Blue-

Depth camera for measuring an individual cow's 

feed intake in a cowshed, and a Convolutional 

Neural Network with transfer learning methods, 

enabling adaptation to different feeds. In an 

experiment conducted in a research cowshed, the 

system error was found to be sufficiently low. This 

system can be utilized to identify individual eating 

behavior, and efficient and inefficient cows. 

Adapting to different feeds is an important feature 

for dairy farms. 

Introduction 

Individual cow feed intake is a significant factor for 

dairy management; more than 60% of farm 

expenses are devoted to feed (Bloch et al., 2019; 

Buza et al., 2014; Halachmi et al., 2016). This 

major economic impact of feed intake in dairy 

production has motivated genetic studies on 

moderately heritable traits of feed intake and 

nutrient utilization efficiency (Korver, 1988; 

Vandehaar, 1998; Berry et al., 2014). Despite this, 

genetic selection based on individual feed 

efficiency has not been widely applied, mainly due 

to the high cost and practical limitations of 

individual feed intake measurements (Berry et al., 

2014; Seymour et al., 2019). Feed conversion 

effectiveness can be determined using information 

about a cow's feed intake, and milk production and 

composition (National Research Council, 2001 and 

2007; Volden, 2011). Hence, monitoring feed 

intake can improve farm management decisions 

(Shalloo et al., 2004), which is potentially 

beneficial for farm productivity (Buza et al., 2014; 

Halachmi et al., 2016; Herd et al., 2003).  

Different feed intake measurement systems 

have been developed, including electronic scales in 

the feeding stalls to measure the feed consumed by 

each cow. These weighing systems have been used 

by several researchers (Bach et al.,2004; Halachmi 

et al., 1998; Chapinal et al., 2007). Both self-

designed weighing systems and commercial 

systems are available primarily for research 

institutions, rather than for commercial cowsheds, 

due to their high cost, additional infrastructure, 

high maintenance, and frequent cleaning 

requirements, all of which make them impractical 

for most commercial farms (Stajnko et al., 2010; 

Wang et al., 2006). 

In order to evaluate the mass of the feed, an 

image processing algorithm can be utilized. Feed 

mass evaluations based on cameras were performed 

by using structured light illumination methods 

(Shelley, 2013), by implementing light detection 

and Ranging sensing methods (Shelley et al., 2016), 

and by using 3D Time-of-Flight camera when 

protected from the sun (due to infrared light 

contained in sunlight) (Borchersen et al., 2018; 
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Lassen et al., 2018). Those methods are impractical 

on a commercial farm mainly due to their 

sensitivity to sunlight. Bloch et al. (2019) attempted 

to overcome the sunlight issue using a 

photogrammetry method resulting in estimated 

errors of 0.483 kg for heaps up to 7 kg under 

laboratory conditions, and 1.32 kg for heaps up to 

40 kg in a cowshed. However, this method requires 

multiple high-quality Red-Green-Blue (RGB) 

cameras per feed pile measurement along with 

colored markers; hence it is impractical for a 

cowshed on a commercial farm. 

Machine vision (MV) and deep learning methods 

have made technological advances in recent 

years (Szegedy et al., 2016). Deep learning and 

specifically convolutional neural networks (CNN) 

are a discipline in the machine learning field and 

can be used for complicated MV tasks such as 

classification, detection, and recognition (Bezen et 

al., 2020). CNNs are based on non-linear, end-to-

end training which requires the learning of many 

parameters. Thus, they require large amount of 

diverse data (Ros et al., 2016). Few studies have 

been conducted in the field of feed intake 

measurements using neural networks (Bezen et al., 

2020; Chen et al., 2020; Shen et al., 2021). In a 

recent study (Bezen et al., 2020), an MV system 

using a Red-Green-Blue-Depth (RGBD) camera 

was designed, and a CNN was compared with and 

without RGB function. The MAE and RMSE 

obtained per meal were 0.127 and 0.184 kg 

respectively. However, the performance of the 

model was measured using images of heaps spread 

manually and not images of actual cows’ meals. 

The aim of this study was to develop a new MV 

system for monitoring individual feed intake in an 

outdoor cowshed. Several new learning models 

were developed, trained, and compared; the best 

model was validated on actual cows’ meals in a real 

environment. 

Material and methods  

Data collection 

There were two phases of data collection: manual 

collection for training, testing and statistically 

comparing several deep learning models, and 

automatic collection for validation of the best deep 

learning model obtained. Both manual and 

automatic data collections were conducted at a 

research cowshed at the Volcani Agricultural 

Research Organization (Israel). A group of 60 

Holstein cows participated in the automatic data 

collection process. 

Two feeds were used in the manual 

collection phase and a single feed type (eaten by 

lactating cows) was used in the automatic 

collection phase: 

Feed eaten by lactating cows (feed type A) included 

the following components: wheat silage (37.7%), 

ground corn grain (18.1%), wheat hay (9.4%), 

lactose waste (7.8%), gluten feed (7.5%), corn 

distilled dry grain (4.7%), rapeseed meal (3.7%), 

wheat grain (2.5%), soybean meal (2.5%), barley 

grain (0.8%) and vitamins and micro-elements.  
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Feed eaten by heifers (feed type B) included the 

following components: straw (33.2%), gluten feed 

(12.2%), ground corn grain (11.5%), wheat hay 

(11.1%), wheat grain (8.8%), cotton seed (8.8%), 

sunflower meal (7%), vitamins and trace minerals 

(3.9%), lactose waste (3.5%). 

Manual data collection for training, testing, and 

comparing models 

In order to obtain a varied dataset for training, data 

of two feed types were collected in September 

2020, over a period of 10 days in 10 different 

sessions (5 sessions for each feed type). The 

weights of the piles were in the range of 0-45 kg for 

feed type A, and 0-22 kg for feed type B. To ensure 

a diverse dataset, images of each pile of the same 

weight were acquired multiple times, in multiple 

pile arrangements, illuminations, and at different 

time periods during the day (as described in Table 

1).  

 The acquisition process was as follows: an 

off-the-shelf Intel RealSense depth camera (D435, 

Intel, USA) was installed on an aluminium rod 130 

cm above the feed lane. The camera was connected 

to a computer (equipped with an Intel Core i7-

7500U processor). A Python script (van Rossum, 

1995) was developed to operate the camera. An 

electronic scale was used to weigh the feed piles 

using a 1 000 kg loadcell with 0.023% precision 

(SQB, Keli CEE, Poland). Each pile was manually 

weighed and then manually spread on the ground 

before acquiring an image. 

Automatic data collection for validation  

An automatic system for measuring feed intake was 

designed, built, and installed for about 4 weeks in 

March 2021 in the research cowshed. First, in order 

to fine-tune the trained model with data collected 

under different conditions (different surface and 

diverse illumination conditions caused by the 

different seasons and times along the day), 300 

images of feed piles of feed type A were manually 

acquired and labelled. Thereafter, the system 

operated automatically collecting data of feed type 

A.  

The system included two feeding stations 

(Fig. 1). Each station was equipped with a camera, 

and both cameras were connected to the same 

computer. In addition, a 17w LED bulb was 

positioned next to each camera and illuminated 

each feed pile during dark hours. Thus, the feed 

piles were lit uniformly, and shadows were 

minimized. A station including a weighing palette 

alongside the camera was used as a calibration 

station. The weighing palette was attached to an 

electronic scale built of four loadcells. The signal 

from the load cells was amplified by a load cell 

amplifier (HX711, SparkFun Electronics, USA) 

and read by an Arduino microcontroller (Mega, 

Arduino, Italy), which streamed the weight 

readings to the computer. The weighing palette 

measured 1x1.5 meters, corresponding to the size 

of a single feeding area at the dairy farm in which 

the study was conducted. In both stations, when a 

cow entered the feeding station, motion was 
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detected with a motion detection algorithm that 

uses Gaussian blurring and binary thresholding 

(Bezen et al., 2020). Data from the RGBD camera 

and the weight of the feed pile were acquired before 

and after a cow ate from the feed piles. A total of   

2 000 entrances to the calibration station were 

detected, resulting in 2 000 actual meals eaten by 

cows. 

 

 

Table 1 

Manual data collected at a research cowshed for both feeds. 

Session Feed type Condition Number of images 

1  
 
 
A 

Daylight – morning hours 185 

2 Daylight – afternoon hours 185 

3 Daylight – afternoon hours 170 

4 Dark using 17w led bulb – night hours 159 

5 Direct sun - morning hours 66 

6  
 
 
B 
 

Daylight – morning hours 180 

7 Daylight – afternoon hours 170 

8 Daylight – morning hours 186 

9 Dark using 17w led bulb – night hours 170 

10 Direct sun - morning hours 66 

   1 537 
Abbreviations: A = lactating cows’ feed; B = heifers’ feed. 
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Fig. 1. Illustration of the automatic system installed in the cowshed consisting of two feeding stations, 

cameras, computer, weighing palette, LED lights. 

 

Datasets for training and fine-tuning 

The datasets included tensors (i.e., 

multidimensional arrays) representing single 

meals. Each tensor was assembled by subtracting a 

lower pile weight image from a higher one (for 

RGB and depth channels, i.e., four channels for 

each tensor). Moreover, for each tensor, two 

categorical variables representing the type of feed 

and the period of time during the day in which the 

image was taken (morning/afternoon/night) were 

created. 

The tensor creation process included the 

following steps: (a) Assembling meals in the range 

of 0-6 kg fresh weight per meal (i.e., ‘as fed’, not 

DM). (b). Data augmentation: before subtraction of 

two images, horizontally and vertically flipping 

augmentations were performed on the original 

image, such that from each subtraction of two 

images, two different meals emerged. 

Augmentation was randomly performed on some 

of the images (about 30%) to increase the dataset 

while avoiding creation of a too homogenous 

dataset. (c) Concatenating the subtracted RGB and 

depth images to create 4-channels tensors. (d) 

Resizing the tensors (160, 120, 4). (e) Coding the 

categorical variables as follows: the type of feed 

variable was binary coded (1 for feed A and 0 for 

feed B) and the time period variable was one-hot 

encoded. The one-hot encoding technique is one of 

the most common ways to transform categorical 

features into numerical data which is a suitable 

format used as input for neural networks (Seger, 

2018). 

 Approximately 30 000 RGBD tensors were 

created from the manually collected data for each 

feed type. From these tensors, three datasets were 

created for the training phase: (1) Tensors of feed 

type A, (2) Tensors of feed type B, (3) Tensors of 

both feed types (50% tensors from each type). All 
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datasets were distributed approximately uniformly 

between the different weights in the range of 0-6 

kg. An additional 7 000 RGBD tensors were 

created for model fine-tuning, using the 300 

images manually collected in March 2021.  

Developing learning models to adapt to different 

feed types  

The following models were developed, trained, 

tested, and compared: 

(1) Combined model: trained using tensors of both 

feed types. 

The model was trained using a data set of 40 000 

tensors where 50% of the data was from each of the 

feed types. This was done without indicating to the 

model which feed type was captured in each tensor. 

(2) Transfer Learning (TL): (a) A CNN model was 

trained using 30 000 tensors of feed type A, and 

fine-tuned to adjust this model to predict weights 

of feed type B, using a dataset of 22 670 tensors of 

feed type B. (b) A CNN model was trained using 

30 000 tensors of feed type B, and fine-tuned to 

adjust this model to predict weights of feed type A, 

using a dataset of 24 000 tensors of feed type A.  

(3) Multilayer Perceptron and Convolutional 

Neural Network (MLP-CNN) model using 

multiple inputs of mixed data: this model was 

trained using the same dataset as model (1), with 

two additional categorical variables in the model’s 

input, representing the type of feed in each tensor 

and the time period at which the image was taken. 

Models (1) and (2a, 2b) used an 

architecture which was developed during this study 

(Fig. 2a, Table 2) and inspired by the EfficientNet 

B0 baseline model (Tan and Le, 2019). The 

architecture was composed of six inverted residual 

blocks. Each block included a batch normalization 

layer, a convolutional layer, and a depth-wise 

convolutional layer. To avoid overfitting on the 

training set, an early stopping method was used to 

stop the training process when the model’s 

performance stopped improving. Finally, the loss 

function was mean squared error, and the optimizer 

was root mean square propagation. 

Model (3) used an MLP-CNN architecture 

for mixed data (categorical and images data) which 

was developed during this study (Fig. 2b). The 

MLP network was used to handle the categorical 

data (i.e., type of feed and time period) and the 

CNN was used to extract features from the tensors. 

The MLP network was composed of multiple Fully 

Connected (FC) layers. The CNN was similar to 

the one used in models (1) and (2) besides the final 

output layer which was removed. Finally, the 

outputs of both networks were concatenated and 

inserted as the input of multiple FC layers, in order 

to make the final prediction of the weight of each 

meal.  

The outputs of the models were continuous 

values (feed intake per meal in kg). The dataset of 

each model was split into training and test sets. 

Twenty percent of the data were randomly selected 

and used to test the model, and the remaining 80% 
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of the data were used for training. All the models 

were trained on NVIDIA GeForce GTX 1080ti 

GPU, Intel Core™ i7-8700, 64-bit six-core 3.2GHz 

CPU, 32 GB memory running on Microsoft 

Windows 10 system.

 

(a) 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

Fig. 2. Development of Convolutional Neural Network (CNN) (a): the network developed was inspired 

by EfficientNet B0 baseline model. Development of Multilayer Perceptron and Convolutional Neural 

Network (MLP-CNN) (b): combining CNN and MLP together where the MLP addition allows us to insert 

categorical data to the network. 
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Table 2 

CNN models’ hyperparameters values. 

Hyperparameter Value 

Learning Rate (maximum) 0.001 

Learning Rate (minimum) 6.25 10!" 

Batch size 16 

Dropout rate 0.25 

Regularizer 0.01 

Abbreviation: CNN = Convolutional Neural Network. 

 

Analysis 

The sensitivity of the models to the training and test 

sets, obtained from the manually collected data, 

was evaluated using 5-fold cross-validation. The 

tensors of each fold were randomly selected after 

the tensors’ creation process. The overall 

performance of each model (mean absolute error 

(MAE) and RMSE) was computed by averaging 

the outcomes of all the five folds. To examine if 

one of the models had significantly better 

performance compared to the rest, a linear mixed  

model (LMM) and a generalized linear mixed 

model (GLMM) were used (Laird and Ware, 

1982): 𝑦 − 𝑦5 = 𝑚𝑜𝑑𝑒𝑙 + (1|𝑠𝑎𝑚𝑝𝑙𝑒	𝑖𝑑) and 

(𝑦 − 𝑦5)# = 𝑚𝑜𝑑𝑒𝑙 +

(1|𝑠𝑎𝑚𝑝𝑙𝑒	𝑖𝑑) respectively. The LMM examined 

each model’s bias, and the GLMM determined 

which model resulted in the lowest squared 

residual. Moreover, post hoc pairwise comparisons 

were conducted using Tukey method to determine 

whether the models were significantly different. 

All analyses were performed using the R statistical 

package at the 0.05 significance level. 

Results 

Manual data collection 

The minimum average error rate using 5-fold 

cross-validation was 0.12 kg MAE and 0.18 kg 

RMSE per meal for feed type A, and 0.13 kg MAE 

and 0.17 kg RMSE per meal for feed type B, for an 

average meal weight of 2.92 kg (model 2a, Table 

3). Post hoc analysis revealed significant 

differences between the learning models 

(P<0.0001***). Model 2a resulted in the lowest 

bias when predicting the error, and it 

underestimated the weights of the predicted meals 

based on the LMM analysis (Table 4). Both models 

2a and 2b resulted in the smallest residual in 

predicting the squared error based on the GLMM 

analysis (Table 4).  

Automatic data collection 

Using model 2a with the automatically collected 

data resulted in an MAE of 0.14 kg per meal, and 
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an RMSE of 0.19 kg per meal for an average meal 

weight of 2.75 kg. Correlation between the actual 

values and the model predictions is presented in 

Fig. 3. 

 

Table 3 

Average performance (kg per meal) of the models utilizing five different datasets created from the 

manually collected data. 

Learning Model MAE RMSE SD 
Model 1 - Combined 0.18 0.26 0.26 
Model 2a - TL     
   Feed type A 
   Fine-tune to feed type B 

0.12 
0.13 

0.18 
0.17 

0.18 
0.17 

Model 2b - TL     
   Feed type B 
   Fine-tune to feed type A 

0.1 
0.16 

0.14 
0.22 

0.13 
0.21 

Model 3 - MLP-CNN  0.17 0.25 0.25 

MAE =
1
nC|y+ − y,E|

-

+.(

	 ; 	RMSE = I
1
nC(y+ − y,E)#

-

+.(

 

Abbreviations: MAE = mean absolute error; TL = transfer learning; MLP-CNN = Multilayer Perceptron 

and Convolutional Neural Network; A = lactating cows’ feed intake; B = heifers’ feed intake. 

Model 1 – tensors of both feeds; Models 2a,2b – TL from one feed to the other; Model 3 - tensors of both 

feeds in addition to two categorical variables. 

Table 4 

LMM and GLMM analysis. 

Model (Table 3) Estimated marginal means 

LMM GLMM 

Model 1  0.02 0.04 

Model 2a  -0.004 0.02 

Model 2b  -0.02 0.02 

Model 3  0.006 0.04 

Abbreviations: LMM = linear mixed model; GLMM = generalized linear mixed model. 
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Fig. 3. Lactating cows’ feed intake predicted values vs. actual values. X and Y axes are the weight in kg. 

 

Discussion 

The minimum error (MAE of 0.14 and RMSE of 

0.19 kg per meal) reported in this study, when 

tested on data collected automatically by the MV 

system in an outdoor cowshed, was lower than that 

achieved in earlier studies (Shelly et al., 2016; 

Bloch et al., 2019). The minimum error was close 

to the error reported in a previous study (Bezen et 

al., 2020). However, the system of Bezen et al. 

(2020) was tested on feed piles that were created 

manually without using actual piles created by 

cows. In the current study the images for validation 

were automatically acquired from actual cows’ 

meals in a dairy farm with a variety of lighting 

conditions: during both day and night; under shade, 

direct sunlight, and lamplight. Bloch et al. (2021) 

reported 120g accuracy and concluded that it was 

sufficient for cow ranking under commercial 

conditions. The current study obtained a higher 

error (MAE of 0.14 and RMSE of 0.19 kg per 

meal), but this error was achieved with an MV 

system and not a mechanical weighing system as 

used by Bloch et al. (2021).  

Training a model with data of feed type A, 

followed by fine-tuning the model with data of feed 

type B, was superior to the rest of the models 



  

 57 

(Table 3, Table 4). In further research or 

commercial application, we would advise the same 

method in applying and utilizing feed intake 

models for different feeds or different conditions 

(i.e., different illuminations, housing, species). 

Results suggest that our model’s error was higher 

(MAE=0.23, RMSE=0.27 kg) for data collected in 

the afternoon comparing to the rest of the day 

(MAE=0.14, RMSE=0.19 kg for data collected in 

the morning-noon hours and MAE=0.12, 

RMSE=0.16 kg for data collected in the evening-

night hours). Further research may consider other 

illumination aspects.    

One of the advantages of the developed 

MV system is that it requires a single calibration 

station which enables dynamic adjustment of the 

model to changes in the feed mix. Tuning the 

model to changes in the feed mix requires less data 

and less training time than training a new model 

from scratch. Future study may examine the 

response time required to update the model once 

the feed mix is changed. Another advantage of this 

system is that a single computer can run multiple 

cameras simultaneously, collecting data from 

multiple feeding stations to estimate feed intake of 

various of cows.  

However, a few caveats may be noted. 

First, the feed in a commercial cowshed is 

distributed as a single unseparated long pile along 

the feeding lane where there is no separation 

between the feeding stations and therefore, the 

system is unable to cope with cows that eat from 

each other’s station at the same time. Another 

disadvantage is the need of a single camera per 

feeding station. Additional research is necessary to 

address this issue, to decrease the total system costs 

(299$ per camera) by utilizing a single camera in 

multiple feeding stations. A programmatic 

separation between the stations could handle this 

issue. Another drawback of the developed MV 

system is that it does not include automatic cow 

detection. However, this feature can be added and 

coupled with the feed intake system to determine 

how much feed each individual cow consumes. 

Conclusions 

Measuring cows’ individual feed intake was 

conducted in an outdoor cowshed for multiple 

types of feed, at various times during the day, using 

newly developed machine vision and deep learning 

models. The selected model achieved an MAE of 

0.14 kg per meal, and an RMSE of 0.19 kg per 

meal, for actual cows’ meals automatically 

collected by the system installed at a research dairy 

farm. These results suggest the potential of 

measuring individual feed intake of dairy cows in 

a cowshed using RGBD cameras and deep learning 

models that can be applied and tuned to different 

types of feed.  

Both models trained and tested using TL 

methods were revealed to be superior to the other 

models, according to the LMM and GLMM 

analysis (Table 4). Additionally, the TL models 

were more stable (i.e., had a smaller variance) 
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when evaluating their sensitivity using 5-fold 

cross-validation (Table 3). The MLP-CNN model 

achieved a lower error than the combined model 

(Table 3). This demonstrates the importance of 

including categorical variables representing the 

type of feed and the image acquisition time as 

additional inputs to the model. Future studies 

should focus on adding an automatic calibration 

system. The system should be validated with a 

larger number of cameras in a commercial farm 

and include individual cow detection, the use of 

one camera for few feeding stations and 

development of software to handle the division of 

the feed lane into separate feeding stations. 
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8.2 Appendix B – Code 
• CNN models:  

 

• CNN train and test: 

 

• MLP-CNN models:  

 

• MLP-CNN train and test: 

 

• General functions: 

 
• Data preparation: 

 

• Data collection (manually): 

 

• Data collection (Real-time system): 

 

 

  

Final_model_builder.
py

Final_estimator_reg.p
y

Final_model_builder_
MLP_CNN.py

Final_estimator_reg_
MLP_CNN.py

custom.py Final_general_functio
ns.py

Final_general_functio
ns.py

2types_image_prep_s
ub_npz.py

Final_weightLable_G
UI.py

Final_weightLabel_M
otionDetection.py

Final_collectData_ca
mera.py
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8.3 Appendix C – Data 

 

http://res-

sharepoint/plf_lab/cattle/_layouts/15/start.aspx#/Shared%20Documents/Forms/AllItems.aspx?Ro

otFolder=%2Fplf%5Flab%2Fcattle%2FShared%20Documents%2FMay%20Saar%20%2D%20Thesis%2

FData&FolderCTID=0x012000324B591A09BBB5418F7EF05286F6B85E&View=%7B54FC2795%2DE5

5A%2D4613%2DB1F7%2D0D93E145203D%7D 

 

If needed, contact Ilan Halachmi for access: halachmi@volcani.agri.gov.il.  
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8.4 Appendix D – Graphs of ground truth compared to each model’s predictions on the 

test sets (results of fold 1 are shown as an example). 

Weight predictions of data collected manually in the cowshed during preliminary collection. 

Correlation between the actual values and the model predictions can be seen. The observations are 

arranged in ascending order on the X-axis, according to the actual value; the Y-axis is the weight in 

kg. 

 

Model 1 – Combined: 
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Model 2a – TL: Feed diet A; Fine tune to feed diet B 

A: 

 

B: 
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Model 2b – TL: Feed diet B; Fine tune to feed diet A 

B: 

 

A: 
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Model 3 – MLP-CNN: 
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8.5 Appendix E – 5-fold cross validation of each model tested on preliminary data. 

 
Model 1 – Combined: both feed diets 

 

Fold 

1 

Fold 

2 

Fold 

3 

Fold 

4 

Fold 

5 
Mean Standard deviation Minimum Maximum 

MAE 0.16 0.18 0.2 0.18 0.22 0.188 0.0204 0.16 0.22 

RMSE 0.23 0.25 0.28 0.25 0.31 0.264 0.028 0.23 0.31 

Maximum Error 1.7 1.5 1.6 2.1 2.3 1.84 0.307 1.5 2.3 

Std 0.23 0.25 0.28 0.25 0.3 0.262 0.0248 0.23 0.3 

 

 
Model 2a – TL: feed diet A 

 

Fold 

1 

Fold 

2 

Fold 

3 

Fold 

4 

Fold 

5 
Mean Standard deviation Minimum Maximum 

MAE 0.1 0.11 0.13 0.12 0.17 0.126 0.0241 0.1 0.17 

RMSE 0.14 0.18 0.19 0.17 0.24 0.184 0.0326 0.14 0.24 

Maximum Error 0.8 1.2 1.16 0.94 1.5 1.12 0.2396 0.8 1.5 

Std 0.14 0.18 0.19 0.16 0.23 0.18 0.0303 0.14 0.23 

 
Model 2a – TL: feed diet B 

 

Fold 

1 

Fold 

2 

Fold 

3 

Fold 

4 

Fold 

5 
Mean Standard deviation Minimum Maximum 

MAE 0.12 0.14 0.13 0.14 0.14 0.134 0.008 0.12 0.14 

RMSE 0.15 0.18 0.17 0.18 0.18 0.172 0.0116 0.15 0.18 

Maximum Error 0.8 0.75 0.75 0.84 0.8 0.788 0.0343 0.75 0.84 

Std 0.15 0.18 0.17 0.18 0.18 0.172 0.0116 0.15 0.18 
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Model 2b – TL: feed diet B 

 

Fold 

1 

Fold 

2 

Fold 

3 

Fold 

4 

Fold 

5 
Mean Standard deviation Minimum Maximum 

MAE 0.09 0.11 0.13 0.1 0.1 0.106 0.01356 0.09 0.13 

RMSE 0.12 0.15 0.17 0.13 0.13 0.14 0.0179 0.12 0.17 

Maximum Error 0.5 0.9 0.7 0.5 0.7 0.66 0.1496 0.5 0.9 

Std 0.11 0.14 0.17 0.13 0.13 0.136 0.0196 0.11 0.17 

 
Model 2b – TL: feed diet A 

 

Fold 

1 

Fold 

2 

Fold 

3 

Fold 

4 

Fold 

5 
Mean Standard deviation Minimum Maximum 

MAE 0.17 0.17 0.15 0.17 0.16 0.164 0.008 0.15 0.17 

RMSE 0.22 0.23 0.21 0.24 0.23 0.226 0.0102 0.21 0.24 

Maximum Error 1.3 1.5 1.3 1.6 1.3 1.4 0.1265 1.3 1.6 

Std 0.21 0.22 0.2 0.23 0.22 0.216 0.0102 0.2 0.23 

 

 
Model 3 – MLP-CNN: both diet types 

 

Fold 

1 

Fold 

2 

Fold 

3 

Fold 

4 

Fold 

5 
Mean Standard deviation Minimum Maximum 

MAE 0.14 0.18 0.19 0.18 0.2 0.178 0.0204 0.14 0.2 

RMSE 0.2 0.25 0.28 0.26 0.29 0.256 0.03137 0.2 0.29 

Maximum Error 1.6 1.8 1.73 1.9 2.3 1.866 0.238 1.6 2.3 

Std 0.2 0.25 0.28 0.27 0.29 0.258 0.0319 0.2 0.29 
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8.6 Appendix F – Statistical tests 

Code: 

 
Results – feed intake weight estimation (all models, all conditions, both fed diets):  

 
 

LMM: 	𝒚 − 𝒚& = 𝒎𝒐𝒅𝒆𝒍 + (𝟏|𝒔𝒂𝒎𝒑𝒍𝒆	𝒊𝒅)			 

Anova: 

 

 

 

 

 

Estimated marginal means: 

 

 

Post-hoc contrasts pairwise comparisons: 

 
 

final_StatisticalTests.
R

final_Cholvot_Eglot_C
ombined_CNNMLP.csv
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GLMM: (𝒚 − 𝒚&)𝟐 = 𝒎𝒐𝒅𝒆𝒍 + (𝟏|𝒔𝒂𝒎𝒑𝒍𝒆	𝒊𝒅) 

Anova: 

 

 

Estimated marginal means: 

 

 

Post-hoc contrasts pairwise comparisons: 
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8.7 Appendix G – Models hyper-parameters 

Model 1 - Combined 

Optimizer: RMSProp ; Loss Function: MSE ; Maximum Learning rate: 0.001 ; Minimum Learning rate: 

0.0000625 ; Number of epochs: 100 ; Batch size: 16 ; Dropout rate: 0.25 ; Number of Tensors: 40k ; Input 

size: (160,120) 

 

Model 2 - TL 

Base model 

Optimizer: RMSProp ; Loss Function: MSE ; Maximum Learning rate: 0.001 ; Minimum Learning rate: 

0.0000625 ; Number of epochs: 50 ; Batch size: 16 ; Dropout rate: 0.25 ; Number of Tensors: 30k ; 

Input size: (160,120) 

Fine-tuning 

Optimizer: RMSProp ; Loss Function: MSE ; Learning rate: 0.00005 ; Number of epochs: 30 ; Batch 

size: 16 ; Dropout rate: 0.25 ; Number of Tensors: 23k ; Input size: (160,120) 

 

Model 3 - MLP-CNN 

Optimizer: RMSProp ; Loss Function: MSE ; Maximum Learning rate: 0.001 ; Minimum Learning rate: 

0.0000625 ; Number of epochs: 190 ; Batch size: 16 ; Dropout rate: 0.25 ; Number of Tensors: 40k ; Input 

size: (160,120) 

 

  



  

 12 

ריצקת  

 תוזחל תנמ לע החתופ םינוש ןוזמ ילילב רפסמ םע דדומתהל םילגוסמה םילדומ תללוכה תבשחוממ הייאר תכרעמ

 לש ןוזמ תומירע לש תונומת ומלוצ ,קמועו עבצ יצורע תללוכה המלצמ תועצמאב .תפרב הרפ לש תינטרפ ןוזמ תכירצ

 תחת יטמוטואו ינדי ןפואב תירקחמ בלח תפרב ומלוצ תונומתה .)תובלוח לילבו תולגע לילב( םינוש םילילב יגוס ינש

.םילקשמ ןווגמב תומירע וללכו תועובש 4-כ ךשמב תונוש תורואתו םינוש םירודיס  

 הדימל תרבעה יססובמ םילדומ ינש :תפרב הרפ לש תינטרפה ןוזמה תכירצ תא תוזחל הרטמב וחתופ םינוש םילדומ

 ןוזמה ילילב ינש לע ןמוא רשא תינויצולובנוק םינוריונ תשר גוסמ דחא לדומ ,תינויצולובנוק םינוריונ תשר לע םיססובמה

 ףוריצב תינמז-וב ןוזמה ילילב ינש לע ןמואש תינויצולובנוק םינוריונ תשרו יתבכש-בר ןטלוק גוסמ דחא לדומו ,תינמז-וב

.םיירוגטק םינותנ  

 ברועמ ללכומ יראניל לדומו ברועמ יראניל לדומ תועצמאב וללה םילדומה 4 תאוושהל תיטסיטטס הטיש ונחתיפ ,ףסונב

 תא ובינה הדימל תרבעה תועצמאב ונמוא רשא םילדומה .הזמ הז קהבומ ןפואב םינוש םילדומה לכ יכ התארה רשא

.רתויב םיבוטה םיעוציבה  

 האיגש וגישה ,הדימל תרבעה תוטיש תועצמאב ונמוא רשא )רתויב הכומנה האיגשה ילעב( רתויב םיבוטה םילדומה

 םרגוליק 0.17 -ו 180. לש תעצוממ תיעוביר האיגש שרוש םע החוראל םרגוליק 0.13 -ו 0.12 לש תטלחומ תעצוממ

 םינותנ לע לדומה תניחב .תפרב ינדי ןפואב ףסאנש ןווגמ םינותנ רגאמ לע ונחבנ רשאכ ןוזמה ילילב ינש רובע החוראל

 שרושו החוראל םרגוליק 0.14 לש תטלחומ תעצוממ האיגש הבינה ,תפרב תכרעמה ידי לע יטמוטוא ןפואב ופסאנש

 תועצמאב ונמואש םילדומהש ךכ לע תועיבצמ ולא תואצות .החוראל םרגוליק 0.19 לש תעצוממ תיעוביר האיגש

 רובע תפרב הרפ לש תינטרפ ןוזמ תכירצ תכרעהל םיישעמ תויהל םייושע רקחמה תרגסמב הדימלה תרבעה תוטיש

.םינוש ןוזמ ילילב  

.הדימל תרבעה ,עבצו קמוע תמלצמ ,הקומע הדימל ,קשמ תויחב תקיידמ תואלקח ,תינטרפ ןוזמ תכירצ :חתפמ תולימ  

  



  

 13 

תטיסרבינוא ןב  - ןוירוג בגנב   
הטלוקפה יעדמל  הסדנהה   

הקלחמה תסדנהל  היישעת  לוהינו   
 
 

 
 תפרב תינטרפ ןוזמ תכירצ תדידמל םילדומו תבשחוממ הייאר תכרעמ

םינוש ןוזמ יגוס רובע  
 
 
 

רוביח הז  הווהמ  קלח  תושירדהמ  תלבקל  ראות  רטסיגמ  יעדמב  הסדנהה   
 
 
 
 

תאמ : רעס יאמ   
:תייחנהב פורפ   ' לעי 'פורפו ןדיא  ןליא  ימחלה   

 
 
 

תמיתח 14.9.2021 :ךיראת                                                ............................:רבחמה   

רושיא 14.9.2021 :ךיראת                                                ..............................:החנמה   

רושיא 14.9.2021 :ךיראת                                                ..............................:החנמה   

רושיא וי  תדעו ר" ראות  ינש  .........................:ךיראת                     .........................:יתקלחמ   

 

 
 

 
 

לולא ב"פשת ,  
רבמטפס ,  2021  
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תטיסרבינוא ןב  - ןוירוג בגנב   
הטלוקפה יעדמל  הסדנהה   

הקלחמה תסדנהל  היישעת  לוהינו   
 
 

 
 תפרב תינטרפ ןוזמ תכירצ תדידמל םילדומו תבשחוממ הייאר תכרעמ

םינוש ןוזמ יגוס רובע  
 
 
 

רוביח הז  הווהמ  קלח  תושירדהמ  תלבקל  ראות  רטסיגמ  יעדמב  הסדנהה   
 
 
 
 

תאמ : רעס יאמ   
:תייחנהב פורפ   ' לעי 'פורפו ןדיא  ןליא  ימחלה   

 
 
 

 
 
 
 

 
 

לולא ב"פשת ,  
רבמטפס ,  2021  

 

 

 


