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Abstract 

Agricultural production must double by 2050 to meet the world's population food demand. 

Plant diseases are a major threat to global food security and are a major cause of production 

losses and economic losses in the agriculture industry. Early information on disease 

development can improve disease control using suitable management strategies. 

This research aimed to detect downy mildew on grapevine's leaves at early stages of 

development by using thermal imaging technology and to determine the best time along the 

day for image acquisition.  

In a controlled experiment conducted in 2019 and 2020, 1403 thermal images of grapevines 

grown in an experimental greenhouse were acquired before infection and 1, 2, 4, 5, 6, and 7 

days after a controlled infection, around midday. In 2020, a second controlled experiment 

was conducted and images were acquired six days after infection. 575 images of healthy and 

infected leaves were acquired at seven different times along a single day between 7 a.m. 

and 4:30 p.m. 

Leaves were segmented using the active contour algorithm. Thirteen features were derived 

from the leaf mask generated by the algorithm and meteorological measurements. Stepwise 

logistic regression analysis revealed five significant features that were used in five 

classification models (MTD, STD, perc90, Cv, and CWSI2). The models developed to classify 

between infected and healthy leaves included decision tree, logistic regression, naive Bayes, 

support vector machine (SVM), and ensemble. Performance was evaluated using K-folds 

cross-validation. A sensitivity analysis was conducted for different distributions of data to 

explain the different results between the days after infection.  

The best results were achieved by the SVM model with a classification accuracy of 81.6%, F1 

score of 77.5% and AUC of 0.874. Acquiring images in the morning between 10:40 and 11:40 

a.m. resulted in 80.7% accuracy, 80.5% F1 score, and 0.895 AUC. 

 

Keywords: Precision agriculture, Disease detection, Classification  
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1. Introduction 

1.1.  Problem description 

The world population is expected to reach 9.8 billion people by 2050 (Ford et al., 2019). Due 

to the combined effects of a larger population and a richer diet, global food demand is 

projected to increase by 70% (Ford et al., 2019). Since arable land resources are limited, the 

pressure on productive land increases, and the per capita arable land is projected to decline 

from about 0.23 ha to about 0.15 ha (Seelan et al., 2003). To feed this amount of people, 

crop yield and production efficiency should be increased while minimizing inputs. Precision 

agriculture (PA) aims to use information and data processing for optimal management 

decisions for each field unit (Seelan et al., 2003). 

Plant diseases are a major cause of production losses and economic losses in the agriculture 

industry (Savary et al., 2012). Pathogens are responsible for direct yield losses of 20-40% of 

global agricultural productivity (Savary et al., 2012). In order to ensure sustainable 

agriculture, it is essential to monitor plant health to prevent disease spread with as little 

damage to crop production as possible. However, the main challenge is the difficulty in 

determining the physical, chemical and biological changes in plants before symptoms of 

infection appear (Cui et al., 2018). 

Disease detection techniques can be classified into invasive and non-invasive methods. 

Invasive techniques involve destructive leaf sampling followed by chemical treatments after 

direct identification of the pathogen (Sankaran et al., 2010). Non-invasive techniques 

identify plant diseases by detecting the impact of the pathogen on the physiological plant 

response. Currently, the most promising non-invasive disease detection methods are sensors 

that measure temperature, reflectance, or fluorescence (Mahlein, 2016).  

Leaf temperature is a rapid response variable that can reveal crop stresses before visible 

symptoms appear (Khanal et al., 2017). Stressed plants respond with physiologic protection 

mechanisms that lead to changes in leaf surface temperature (Mahlein, 2016). Infrared 

thermography (IRT) enables the evaluation of the plant temperature related to changes in 

water status and transpiration due to infections by pathogens. IRT is a technique based on 

the relationship between leaf stomatal closure or aperture and its surface temperature 

(Mahlein, 2016). Temperature differences within individual leaves, plants, and crops indicate 

the presence of disease in plants (Mahlein, 2016). Compared to optical, multispectral, and 
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hyperspectral sensors, thermal sensors have shown to be more effective at detecting 

disease-induced early modifications (Khanal et al., 2017). 

Plasmopara viticola, also known as oomycete grape downy mildew (DM), is a serious 

pathogen of grapevines that spreads through extremely efficient asexual reproduction cycles 

(Kiefer et al., 2002). Originally from North America, DM was accidentally introduced to 

Europe at the end of the 19th century, where it caused extensive damage to the grape 

industry (Gessler et al., 2011). The optimal environmental conditions for disease spread are 

high humidity and moderate temperatures. At early stages of infection, DM causes an 

increase in transpiration rate and a decrease in leaf temperature. Further DM development 

causes the appearance of chlorotic and necrotic tissue, increased water loss and the inability 

of plant tissue to regulate stomatal opening (Calderón et al., 2014). Thermal imaging has 

been successful in detecting DM (Caro, 2014; Wen et al., 2019). However, IRT is often 

subject to environmental factors such as ambient temperature, sunlight, rainfall, or wind 

speed (Mahlein, 2016). Changes in environmental conditions may affect leaf temperature, 

making it difficult to differentiate it from a change caused by infection or disease (Grant et 

al., 2006). Alchanatis et al. (2010) found that for estimating and mapping water status 

variability of cotton, best results from thermal images were achieved at midday (12:00-

14:00). 

1.2.Objectives 

This study aimed to develop an algorithm for early detection of grapevine downy mildew 

using thermal imaging. The specific objectives were to: 

1. Extract features for classification based on temperature and image processing 

algorithms.  

2. Develop classification models to classify between infected and healthy grapevine leaves. 

3. Determine the best time along the day to acquire thermal images for downy mildew 

detection. 

1.3. Thesis structure  

This thesis begins with a literature review presented in chapter 2. The methodology of the 

research is depicted in chapter 3. In chapter 4, algorithms are described, including the edge 

detection algorithm (4.1) and classification models (4.2). Results and discussion are 

presented in chapter 5 followed by conclusions in chapter 6.   
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2. Literature Review 

The review begins by describing the concept of precision agriculture (2.1). This is followed by 

a review of thermal sensing (2.2) and recent applications of thermal sensing in agriculture 

(2.3). Next, a review of common methods of diseases detection (2.4), followed by 

vegetational thermal behavior (2.5). This is then followed by a review of downy mildew in 

general, as well as a review of grapevine downy mildew and IRTs of it (2.6). The next section 

focuses on improving image capture conditions (2.7). 

2.1.  Precision agriculture 

The world demand for crop production is rising due to three main reasons: human 

population growth, increasing meat and dairy consumption and biofuel consumption (Ray et 

al., 2013). The estimate is that by 2050, global agricultural production demand may increase 

by 60%-110% (Ray et al., 2013). In parallel, 5-10 million hectares of farmland are lost 

annually due to the development of cities and their expansion, soil erosion, loss of efficiency 

as agricultural land, etc. (Farsund et al., 2015). Maintaining food security is one of the main 

global challenges in the 21st century (Farsund et al., 2015). Decades ago, farms were quite 

small and it was easy to detect all within-field variations and take suitable management 

decisions for each field unit. The developments of tractors and commercial fertilizers helped 

farmers to improve field management, increase production and expand their farms. These 

growths raised a problem with the difficulty and complexity of managing such large fields; 

the field holders had less connection and knowledge about specific characteristics of each 

field. Precision agriculture (PA) is designed to enable farmers to manage large fields by 

providing with detailed knowledge about each unit (Pedersen & Lind, 2017).  

Introducing site-specific modern technologies can help to address forthcoming challenges 

and trends in agricultural production that require high precision, and improve crop yield 

significantly. It allows higher accuracy of farm records, and provide information that leads to 

better in-field management decisions. Although technology has a big potential to help to 

deal with the global challenges, an integrated approach is necessary to ensure its use among 

farmers (Seelan et al., 2003). 

Precision agriculture is a cyclic process of collecting data from the field, analyzing it, and 

formatting evaluations that allow the farmer to make better management decisions 

(Pedersen & Lind, 2017). PA includes three major goals. First, increasing the profitability and 
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continuity of agricultural activities by optimizing the utilization of accessible resources. 

Second, reducing environmental footprints. Third, improving the quality of the agricultural 

work environment. Using information and communications technologies such as sensors, 

information systems, and enhanced machinery helps identify the variability of crop and soil 

conditions in the field (Gebbers & Adamchuk, 2010). 

2.2.  Thermal sensing 

An object emits thermal radiation when its temperature is above absolute zero (−273.15◦C). 

The higher the temperature, the larger the amount of thermal radiation emitted (Bulanon et 

al., 2008). The maximum level of radiant power an object emits depends only on its 

temperature (Vollmer & Möllmann, 2017). Infrared (IR) radiation, is a region of the 

electromagnetic (EM) radiation spectrum, which is divided into wavelength regions: visible 

(VIS; wavelength range, 400– 700 nm), near-infrared (NIR; 700– 1,100 nm), and shortwave 

infrared (SWIR; 1,100– 2,500 nm), and the energy emitted in the thermal infrared (TIR; 3 to 

15 μm) (Martinelli et al., 2015). The electromagnetic spectrum provides a classification of 

the entire range of electromagnetic radiation according to their wavelengths, extending 

from the shortest cosmic rays to the longest broadcast band waves (Figure 1). 

IR thermal imaging, also called thermography, is a measurement technique, which enables 

measurement of quantitatively object's surface temperatures. A way to detect emitted 

infrared radiation in the thermal infrared range from 8 to 12 μm is by thermographic and 

infrared cameras and is illustrated in false-color images, where each image pixel contains the 

temperature value of the measured object (Mahlein, Oerke, Steiner, & Dehne, 2012). The 

object emits radiation into the camera's direction, which focuses the IR waves to the 

detector and this is quantitatively measured. Still, this requires the IR radiation to pass 

through the space between the object surface and the camera detector.  

The object's temperature, its material properties, and its surroundings influence the amount 

and distribution of emitted radiation as a function of wavelength (Vollmer & Möllmann, 

2017). First, hot objects and the atmosphere can emit additional radiation to the camera 

lens which may impair the temperature reliability the detector has absorbed. Second, when 

passing through the atmosphere, IR windows or camera optics the radiation level might 

reduce (Vollmer & Möllmann, 2017). Thermal imaging technology enables us to measure 

temperature by non-contact, non-invasive, non-destructive, and high-resolution 
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measurements (Bulanon et al., 2008). Thermographic camera's performance is distinguished 

by three parameters: image resolution (image pixel size, number of image pixels, depth of 

focus), thermal sensitivity (thermal range, measurement precision), and scan speed 

(Mahlein, et al., 2012). 

 

Figure 1. Infrared on the electromagnetic spectrum (Ceramicx, 2011) 

 

2.3.  Thermal sensing in agriculture 

The plant's leaf temperature depends on internal and external physiological factors (Oerke 

et al., 2006). Water is the main source of infrared absorption in plant tissue and 

environmental factors such as solar radiation, air temperature, and relative humidity, 

influence the temperature of plants. Therefore, there is a correlation between water status 

and leaf temperature (Oerke et al., 2006). Thermal sensing enables the imaging of surface 

temperature differences of leaves, plants or crop canopies and can be applied in near or 

remote sensing. By thermographic cameras, it is possible to detect the emitted radiation in 

the thermal infrared (TIR) from 8– 12 μm and present it by image pixels (Mahlein et al., 

2012).  

Thermal sensing can be used in many aspects of crop and soil monitoring in the agricultural 

sector including estimating soil and crop water stress for irrigation scheduling, evaluating 

moisture stress, determining disease and pathogen-infected crops, estimating of residue 

cover, locating tiles in fields, monitoring crop maturity for harvesting, mapping and 

estimating crop yield. The following table (Table 1) surveys the recent applications of 
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thermal imaging and reveals that eight of them used thermal imaging, six used both thermal 

and multispectral imaging, six used both thermal and RGB imaging, three used both thermal 

imaging and sensors, and five used only thermal sensors.  
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Reference Data Analysis Algorithm Features Data Camera Platform Environment Plants Conclusions Goal Sector 

Shafian & 
Maas, 2015 
 

R², RMSE A simple 
linear 
regression, 
ENVI image 
processing, 
MATLAB 

PSMI- 
Perpendicular 
Soil Moisture 
Index, Tmax, 
Tmin, Ts 

soil moisture 
was measured 
in 18 
agricultural 
fields 

Landsat medium-
resolution satellite 
imagery, 60 m for 
Landsat-7 and 100 
m for Landsat-8 and 
was re-sampled to 
30 m and TIRS 

satellite field  Thermal images can 
be used for 
operational 
monitoring of soil 
moisture conditions 
at the field or 
regional scales. This 
means the PSMI is 
more 
straightforward and 
less time-
consuming than 
those that use Ts to 
estimate soil 
moisture content. 

Map the 
spatial 
distribution of 
soil moisture 
conditions 
and monitor 
its change 
over time. 

Soil 
moisture 

Hassan-
Esfahani, 
Torres-Rua, 
Jensen, & 
McKee, 2015 

R², RMSE, MAE, 
coefficient of 
correlation (r), 
coefficient of 
performance (e) 

Artificial 
Neural 
Network 
model, a K-
fold cross 
validation 
when K=5, a 
wrapper 
selection 
method 

red, blue, NIR, 
thermal, 
NDVI, VCI, 
EVI, and field 
capacity 

area of 
approximately 
84 acres  

Optical cameras at 
0.15 m resolution 
and thermal 
camera. The 
wavelength range 
peaks around 420, 
500, 600 and 800 
nm. 
Multispectral 
sensor. 

UAV field alfalfa and 
oats  

The significance of 
thermal imagery as 
the most relevant 
information in 
surface soil 
moisture 
estimations. A 
model with just 
thermal imagery 
can estimate the 
soil moisture values 
with RMSE of 
approximately 3%. 

Estimates of 
surface soil 
moisture for a 
large field 
irrigated by a 
center pivot 
sprinkler 
system. 

Soil 
moisture 

Soliman, Heck, 
Brenning, 
Brown, & 
Miller, 2013 

Pearson’s 
correlation 
coefficients, 
AIC, RMSE, R² 

Multiple 
linear 
regression, 
linear mixed-
effects. 
FLIR analysis 
software, 
statistical 
software R 

Mechanical 
resistance and 
thermal 
inertia (TIc) 

25 plots (4 m², 
each)- the 
model was 
based on 100 
randomly 
sampled 
clusters with 5 
replicates (total 
of 500) 

Thermal camera- 
FLIR model 
ThermaCAM 
SC2000. 
Handheld thermal 
gun with ±1% 
accuracy, TIR 
sensors - 8 to 14 μm 

Airborne, 
handheld 
thermal 
gun  

grass covered 
vineyard 

grapes Coarse resolution 
airborne thermal 
images performed 
better than a 
handheld thermal 
gun 
There is significant 
relationship 
between thermal 
inertia and soil 
moisture and 
mechanical 
resistance. 

Evaluate the 
strength of 
relationships 
between soil 
moisture, 
mechanical 
resistance and 
thermal 
inertia 
calculated 
from the drop 
of surface 
temperature. 

Soil 
moisture 
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Carlson, 2007 RMSE, R² triangle 
method 

Tmin, Tmax, 
∆T =Tir-Tw, 
NDVI 

  satellite   The triangle 
method has the 
capability of 
producing non-
linear solutions for 
surface moisture 
availability and 
surface 
evapotranspiration 
from large image 
data sets. 

An overview 
of the 
‘triangle’ 
method for 
estimating 
soil surface 
wetness and 
evapotranspir
ation fraction.  

Soil surface 
wetness 

Banerjee, 
Krishnan, & 
Mridha, 2018 

R², RMSE, MBE, 
ANOVA, 
confusion or 
error matrix 

support 
vector 
machine 
(SVM), the 
maximum 
likelihood 
method, 
Mahalanobis 
algorithm, 
Minimum 
distance to 
mean, 
Parallelepiped 

LAI Field-77◦12' E 
longitude, 
28◦35' N 
latitude, and an 
altitude of 
228.16 m over 
the mean sea 
level 

Thermal and digital 
handheld camera- 
Testo 890-1 which 
supports a wide-
angle lens of 42x32 
and detector of 
640x480 pixels. Can 
estimate 
temperatures from 
-20 to 100 C. FPA 
type of detector. 

1 m above 
the 
canopy 

field wheat Thermal image 
analysis can be 
applied as a non-
destructive, rapid 
technique to 
characterize the 
temperature of 
crop canopy and 
then to estimate 
the LAI of wheat 
grown under 
moisture stress 
conditions. The 
support vector 
machine method 
gave the best 
result. 

To estimate 
LAI by 
thermal 
imaging of the 
wheat crop 
canopy under 
different 
moisture 
stress 
conditions 
and to 
compare 
these 
estimates 
using thermal 
and digital 
imaging with 
those 
measured 
from a plant 
canopy 
analyzer. 

Moisture 
stress 



17 
 

Reference Data Analysis Algorithm Features Data Camera Platform Environment Plants Conclusions Goal Sector 

Osroosh, Troy 
Peters, 
Campbell, & 
Zhang, 2015 

MAE, RMSE, 
standard 
deviation and 
standard error 
of mean, R² 

linear 
regression, 
CWSI-DT 
algorithm 

CWSI, Tc,  
air 
temperature 
Ta 

orchard - 
coordinates of 
latitude 
46.26°N, 
longitude 
119.74°W, and 
360 m above 
sea level 

Shielded air 
temperature 
sensors- Model 109, 
Campbell Scientific. 
Infrared 
thermometers- 
IRT/c.2: Type J, 
Exergen. 

ground orchard apple The new algorithm 
CWSI-DT better 
than NP. It is 
concluded that the 
crop water stress 
index can become 
more efficient in 
conjunction with a 
well-developed 
control algorithm. 

Developing an 
adaptive 
algorithm 
capable of 
detecting 
erroneous 
irrigation 
signals or 
limiting water 
delivery under 
low 
atmospheric 
demands. 

Crop water 
stress 

Gonzalez-Dugo 
et al., 2013 
 

Kolmogorov–
Smirnov, 
Skewness and 
Kurtosis indices 
with the SPSS 

regression SWP, CWSI, 
Tc-Ta  

42 ha orchard MIRICLE 307, 
Thermoteknix 
Systems- spectral 
region 8–12 μm, 
resolution of 640 x 
480 pixels with a 
field of view of 458 

UAV orchard almond, 
apricot, 
peach, 
lemon 
and 
orange 

Indicators derived 
from thermal 
imagery acquired 
from an UAV over a 
commercial orchard 
have been shown to 
accurately describe 
the spatial 
variability in crop 
water status. 

The 
assessment of 
heterogeneity 
in water 
status in a 
commercial 
orchard, as a 
prerequisite 
for precision 
irrigation 
management. 

Crop water 
stress 

O’Shaughnessy
, Evett, Colaizzi, 
& Howell, 2012 
 

Bonferroni t-
test Statistical 
software was 
SAS 

General 
Linear Models 

NWSB, CWSI, 
CWSI-TT, RDI, 
LWP, Ta 

10 m² area in 
each of the 48 
treatment plots 

infrared 
thermometers 
(IRTs)- Exergen 
model IRt/c.5:1-
Type T 

1.5 m 
above the 
crop 
canopy 

field Sorghum CWSI-TT is an 
effective method 
for irrigation 
scheduling of grain 
sorghum. A 
shortcoming of 
using this method is 
that false-positive 
irrigation triggers 
may be generated 
early in the season, 
which could lead to 
over-irrigation. 

Assessment if 
the CWSI-TT 
method can 
be an 
effective 
trigger for 
automatically 
scheduling 
either full or 
deficit in a 
semi-arid 
region. 

Crop water 
stress 
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S. A. 
O’Shaughnessy 
& Evett, 2010 

SAS Proc Mixed 
models 
 

TTT algorithm SWD, ET, 
WUE, IWUE 

18- row plots, 
10 m² area in 
each plot 

infrared 
thermometer 
sensors (IRTs)- 
Exergen model 
IRt/c.5:1-Type T 

 field cotton The TTT method, 
when applied 
automatically, was 
successful in 
producing yields 
and water use 
efficiencies as good 
as those resulting 
from scientific 
irrigation 
scheduling using 
the neutron probe, 
and better irrigation 
water use 
efficiencies than 
achieved using the 
neutron probe. 

Estimates of 
the 
effectiveness 
of using a TTT 
method for 
automatic 
irrigation 
scheduling of 
cotton 
irrigated with 
LEPA drag 
socks under a 
center pivot 
system. 

Crop water 
stress 

Barbagallo, 
Consoli, & 
Russo, 2009 

R² linear 
transformatio
n 

Ts-Ta, EF, 
CWSI, NDVI, 
Kc 

area about 
18,000 ha 

Landsat Thematic 
Mapper TM5 

satellite orchard orange  Estimation of ET 
within wide spatial 
scales by one-layer 
models and 
integration of 
ground-based 
meteorological data 
with satellite 
observations is a 
useful tool for 
quantifying and 
controlling water 
consumption. 

To estimate 
evapotranspir
ation fluxes 
over a semi-
arid 
agricultural 
area. 

Crop water 
stress 

Testi, 
Goldhamer, 
Iniesta, & 
Salinas, 2008 

R², coefficient 
of variation Cv 
(the ratio of the 
standard 
deviation to the 
mean) 

linear 
regression 

CWSI, NWSB, 
Tc–Ta, VPD 

Two large plots 
of 32 ha each 

4 IRTs- model IRR-P, 
Precision Infra-Red 
Radiometer with 
angular field of view 
is 44°. 

canopy 
top 

orchard pistachio  The CWSI, obtained 
from continuous 
nadir-view 
measurements with 
IRTs, is a good and 
very sensitive 
indicator of water 
stress in pistachio.  

To assess the 
reliability of 
CWSI for 
detecting 
water stress. 

Crop water 
stress 
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Bian et al., 
2019 

R², Pearson’s 
correlation 
coefficient- R 

Canny edge 
detection 
algorithms, 
Expectation–
Maximization 
algorithm 

Tl, Twet, Tdry four irrigation 
treatment plots 

Thermal infrared 
camera- Zenmuse 
XT, FLIR System 
with spatial 
resolution of 640× 
512 pixels, a 
spectral range of 
7.5–13.5 µm and 
multispectral 
sensor u-MCA, 
Tetracam 

UAV field cotton 1. Canny algorithm 
can well eliminate 
soil pixels from UAV 
high resolution 
thermal infrared 
images; 2. CWSIsi 
calculated using 
Twet, Tdry, and Tl is 
simpler and more 
robust than CWSIe, 
CWSIs, NDVI, TCARI, 
OSAVI;  
3. soil volumetric 
water content at 
different depths 
and stomatal 
conductance are 
highly correlated 
with CWSIsi. 

Simplify the 
calculation of 
the crop 
water stress 
index (CWSI) 
and improve 
its diagnostic 
accuracy. 

Crop water 
stress 

García-Tejero 
et al., 2018 

Levene’s test to 
check the 
variance 
homogeneity of 
the studied 
variables 

 TC, ΔT 
canopy-air, 
CWSI, IG, 
Ψleaf, gs 

four 
replications- 
each had 15 
trees (3 rows 
and 5 trees per 
row). 

ThermaCam- Flir 
SC660, Flir 
Systems,7–13 μm, 
640×480 pixels 

Row level 
- 1.5m of 
height. 
tree level- 
Ground 
 

orchard almond 1. CWSI is the most 
appropriate 
thermal index to 
monitor the water 
status.  
2. The row-level 
images were 
enough robust to 
estimate the water 
status. 

Define the 
methodology 
to assess the 
almond water 
status by 
means of 
thermal 
information. 

Crop water 
stress 
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Gutiérrez et al., 
2018  

RMSE, R² regression 
models 

VPD, Ψstem, 
Twet, Tdry, 
CWSI, Ig 

four 
replications, for 
each 25 plants -
15 middle ones 
were the ones 
in which the 
measurements 
were taken. 

FLIR A35, FLIR1 
Systems 

1.2 m of 
distance 
and 1.0 m 
from the 
ground 

vineyard grapevine Using the models 
trained with 
reference 
temperatures 
demonstrated that 
canopy 
temperatures, 
along with Tdry and 
Twet and weather 
parameters, would 
be very suitable for 
the useful 
prediction of the 
vineyard water 
status. 

Develop a 
new system 
involving 
thermal 
imaging and 
machine 
learning to 
assess the 
vineyard 
water status; 
and to 
provide full 
trained, 
robust 
prediction 
models. 

Crop water 
stress 

Zhou et al., 
2018 

ANOVA (‘PROC 
GLM’), ‘PROC 
CORR’ 
procedure with 
‘Pearson’- r 

linear 
regression 

GNDVI, DNi, 
CC, CT, LAI 

Four irrigations 
plots of 80.1 m 
by 12.2 m in 
dimension. 
Each irrigation 
plot was split 
into four tillage 
plots of 18.3 m 
by 12.2 m. 

Multispectral digital 
camera with single 
optical lens- 
NiteCanon ELPH110 
LDP LLC and 
infrared thermal 
camera- Tau 640 
uncooled cores, Flir 
Systems. 

UAS, 
ground 

research farm pinto 
beans 

1. GNDVI, CC and CT 
were able to 
differentiate crops 
with full and deficit 
irrigation 
treatments at each 
of the three growth 
stages.  
2. Performance of 
small UAS- based 
imagery-based 
indicators in crop 
stress monitoring 
and crop yield 
estimation was 
better than or 
comparable to that 
of the ground-
based LAI 
estimates.  

evaluate the 
possibility of 
using small 
unmanned 
aerial system 
(UAS)-based 
remote 
sensing 
technologies 
to monitor 
the crop 
stress 

Crop water 
stress 
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Anderson et 
al., 2013 

Pearson 
correlation 
coefficient, 
Spearman 
nonparametric 
coefficient 

smoothing 
algorithm, 
Atmosphere–
Land 
Exchange 
Inverse 
(ALEXI) model 

SM, ET, VHI, 
SPI 

 TIR-based remote 
sensing 
Atmosphere–Land 
Exchange Inverse 
(ALEXI) model and 
NOAA-AVHRR 
sensor series 

satellite  corn and 
soybean 

Of the remote 
sensing indices 
evaluated, ESI was 
best correlated with 
NLDAS indices and 
with USDM classes. 
Both ESI and 
related remote 
sensing ET index ETI 
outperformed 
anomalies in NLDAS 
daily ET. Both ESI 
and NLDAS SM 
change products 
indicated value in 
providing early 
warning of changing 
drought conditions 
recorded in the 
USDM. 

To compare 
the 
evaporative 
stress index 
(ESI) derived 
within a 
thermal 
remote 
sensing 
energy 
balance 
framework, 
with 
prognostic 
estimates of 
soil moisture 
(SM), ET, and 
runoff 
anomalies 
generated 
with the 
NLDAS. 

Evapotransp
iration (ET) 
and drought 
stress 
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Osroosh, Khot, 
& Peters, 2018  

RMSE, MAE, SE 
of mean, R²  
 

a linear 
regression 

surface 
temperature 

The area was 
approximately 
18 m² 

thermal module 
with shutter (FLIR 
Lepton® 2.5) with 
80X60 pixels, 8–14 
µm, accuracy of 
±5°C. RGB 
Raspberry Pi 
camera module (V2, 
Raspberry 
PiFoundation), with 
3280×2464 pixels 

ground field mint The amended 
image-processing 
algorithm was able 
to successfully 
extract canopy 
surface 
temperature and 
percent canopy 
cover. The current 
design of imager 
allows for creating a 
network of imaging 
units in the field to 
obtain real-time 
surface 
temperature data 
from plant 
canopies. The first 
peak of thermal 
image relative 
frequency 
histogram could be 
a more accurate 
representative of 
sunlit leaf surface 
temperature. 

Develop fully 
automat crop 
monitoring 
for moving 
irrigation 
systems 
based on 
thermal-RGB 
imagery, and 
develop an 
image-
processing 
algorithm to 
extract 
canopy 
surface 
temperature 
and percent 
canopy 
coverage 
from images. 

Monitoring 
crops 

Mahlein et al., 
2012 

 ANN, SVM, 
PCA, SAM 

temperature 
differences 
between leaf 
tissue and air 
temperature, 
MTD, SVI 

     IR Airborne 
thermography is 
highly suitable for 
the detection of 
disease-induced 
modifications in 
plant transpiration 
and water status 
Common 
instruments are 
active sensor 
systems are active 
sensor systems; 
however, they are 
limited by the 
response time. 

Detection, 
identification 
and 
quantification 
of plant 
diseases on 
different 
scales. 

Plant 
disease 
detection 
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Berdugo, Zito, 
Paulus, & 
Mahlein, 2014 

 
general linear 
model, 
Tukey’s test, 
Wilk’s lambda 
test. 
performed 
using SPSS v. 
17.0. 

MTD, NDVI, 
ARI 

Four 
treatments- 10 
plants each, five 
plants for 
optical sensor 
measurement 
and five plants 
for destructive 
analysis. 

IR scanning camera- 
VARIOSCAN 3201. 
Spectral sensitivity 
8-12 μm, a 
geometric 
resolution of 1x5 m 
radians. 
Hyperspectral 
camera- ImSpector 
V10E. 

non-
invasive 
sensors 
 

field or 
greenhouse 

cucumber Successfully 
combine the 
information from 
thermography, 
chlorophyll 
fluorescence and 
spectral reflectance 
for an early 
detection of plant 
diseases. An 
approach with 
different non-
invasive sensors 
provides a more 
comprehensive 
view on plant 
physiology during 
pathogenesis than 
each sensor alone. 

Innovative 
and reliable 
alternatives 
for objective 
and 
reproducible 
detection and 
monitoring of 
plant diseases 
are 
demanded. 

Plant 
disease 
detection 

Calderón, 
Montes-
Borrego, 
Landa, Navas-
Cortés, & 
Zarco-Tejada, 
2014 

ANOVA test general linear 
model, grid 
 

average, 
minimum and 
maximum 
temperatures, 
Tc-Ta, 
R550/R670, 
NDVI 

Two 
experiments 
were conducted 
in two fields (45 
x 20 m), 
approximately 
25 plants per 
m² 

3-band multi-
spectral camera- 
ADC Lite, Tetracam. 
640x480 pixel 
thermal camera - 
MIRICLE 307, 
Thermoteknix with 
14.25 mm f1.3 lens. 

UAV field poppy Results 
demonstrated that 
canopy 
temperature and 
the green/red ratio 
were relate to 
physiological stress 
caused by DM 
infection at high 
NDVI steps. In other 
words, enabled the 
identification of 
infected plants by 
using these indices. 

Explored the 
use of high-
resolution 
thermal and 
multi-spectral 
imagery as an 
indicator of 
DM infection. 

Plant 
disease 
detection 
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Oerke, 
Fröhling, & 
Steiner, 2011 

ANOVA, HSD 
test, Fisher’s 
LSD test, t test 
statistics, 
Pearson’s 
coefficient of 
determination 
(R²) 

distinct leaf 
areas of lower 
temperature 
precede the 
appearance of 
scab 

MTD, 
minimum, 
maximum and 
mean leaf 
temperature, 
standard 
deviation 

 Varioscan 3201 ST. 
spectral sensitivity 
8-12 μm, a 
geometric 
resolution of 1.5 
mrad and a 30°x20° 
field of view lens. 
Digital camera- 
Nikon D50 

ground glasshouse apple Thermographic 
measurements 
revealed 
differences in 
disease severity. 
MTD is robust to 
side-effects from 
abiotic factors. 
Thermal infrared 
imaging has great 
potential as a 
sensor technique 
for precision 
agriculture but the 
technique has to be 
combined with 
other sensors. 

sensing and 
quantifying 
apple scab 

Plant 
disease 
detection 
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Oerke et al., 
2006 

ANOVA, 
Pearson 
coefficient (r), 
F-values, mean 
comparisons 

linear and 
quadratic 
regression 

MTD, air 
temperature, 
humidity, 
water 
content, aga 
of the leaf, 
mean leaf 
temperature, 
variance. 

 Thermal camera - 
VARIOSCAN 3201 
ST- Spectral 
sensitivity 8- 12 μm 
and a geometric 
resolution of 1.5 
mrad. Thermal 
resolution 0.03 K, 
accuracy less than 
+-2 K. Digital 
camera- JD 4100 Z3, 
Jenoptic. 

ground greenhouse cucumber Changes in 
temperature of 
infected leaves 
allowed the 
discrimination 
between healthy 
and infected areas 
in thermograms, 
even before visible 
symptoms of 
downy mildew 
appeared. This 
remote sensing 
technique 
interferes as little 
as possible with the 
plant. There was a 
strong linear 
correlation 
between the 
percentage infected 
leaf area and MTD 
but MTD alone is 
not suitable for the 
quantification of 
downy mildew 
severity in the field. 

1. To evaluate 
the 
relationship 
between 
disease 
severity and 
MTD of 
cucumber 
leaves 
infected. 2. To 
assess the 
impact of 
environmenta
l conditions to 
describe the 
potential for 
the 
assessment 
and 
quantification 
of downy 
mildew in the 
field. 

Plant 
disease 
detection 
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Calderón, 
Navas-Cortés, 
Lucena, & 
Zarco-Tejada, 
2013 

ANOVA, 
Dunnett's two-
tailed test. 

linear model 
(GLM) 
procedure of 
SAS 9.2 

Tc, Ta, G, 
PRI570, PRI, 
crown 
temperature, 
CWSI, B, BG1, 
BR1, FLD3, 
NDVI, PRI515, 
HI, 
chlorophyll 
and 
carotenoid 

Two study sites. 
The first in a 7-
ha orchard; 
trees were 
planted at a 
spacing of 6×4 
m. The second 
in a 10-ha 
orchard; trees 
were planted at 
a spacing of 6×3 
m. 

Thermal camera- 
MIRICLE 307, 
Thermoteknix. 
14.25 mm f1.3 lens, 
spectral range 8-12 
μm. 640 ×480-pixel 
resolution. 6-band 
multispectral 
camera- MCA-6, 
Tetracam. 
Hyperspectral 
imager Micro-
Hyperspect VNIR 
model. 

UAV orchards 
naturally 

olive The results indicate 
that the CWSI 
obtained from high 
spatial resolution 
thermal imagery 
can be used to 
detect the lower 
transpiration rates 
induced by V. 
dahliae infection. 
CWSI values 
estimated were 
significantly lower 
for healthy trees 
than for those 
affected by the 
disease. Also, Tc − 
Ta and G allowed 
identifying trees at 
the early stages of 
disease 
development. 

Explore the 
use of 
thermal 
imagery, 
chlorophyll 
fluorescence, 
structural and 
physiological 
indices 
calculated 
from 
multispectral 
and 
hyperspectral 
imagery as 
early 
indicators of 
water stress 
caused by VW 
infection and 
severity. 

Plant 
disease 
detection 

Stoll, Schultz, 
Baecker, & 
Berkelmann-
Loehnertz, 
2008 

Two Way 
ANOVA, Fisher’s 
test 

 MTD The vineyard 
was planted 
with a vine 
density of 2.0 x 
1.0 m 

TH7102 MX- 
waveband of 8–14 
μm. Geometric 
resolution of 1.58 m 
radians. The 
thermal resolution 
is 0.06°C and the 
accuracy of 
absolute 
temperature 
measurement less 
than ±2°C. 

ground greenhouse 
and field 

vineyards Thermal imagery 
clearly perceived 
the beginning of an 
infection. Using the 
high sensitivity to 
temporal and 
spatial variation in 
leaf temperature, 
ground based 
remote-sensing 
may have important 
applications in 
disease forecast 
models or other 
screening activities 
and technical 
applications. 

To test 
whether 
infrared 
thermography 
can be used 
to distinguish 
between 
infected 
versus non-
infected areas 
upon attack 
by P. viticola 
within single 
grapevine 
leaves under 
varying water 
status. 

Plant 
disease 
detection 
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Chaerle, 
Hagenbeek, De 
Bruyne, Valcke, 
& Van Der 
Straeten, 2004 

  Chlorophyll 
fluorescence, 
PEA 

 thermal camera 
FLIR\Agema 
THV900LW - pixel 
resolution 272×136. 
Video camera- 
Watec colour CCD, 
LCL-217HS. 
Fluorescence 
imaging system 

above the 
same 
plant leaf 
region 

growth-room sugar beet Non-destructive 
imaging techniques, 
chlorophyll 
fluorescence 
imaging and 
thermography were 
able to visualize 
infections at an 
early stage before 
damage appeared. 
However, the early 
phase of the attack 
is not characterized 
by a rise in 
temperature, but 
rather by 
immediate cooling. 

Early 
identification 
of emerging 
biotic stresses 
in crops, 
facilitating the 
containment 
of disease 
outbreaks. 

Plant 
disease 
detection 

Sullivan et al., 
2004 

ANOVA, PCA stepwise 
linear 
regression, 
general linear 
model (GLM) 

Emitted 
energy, 
reflected 
energy 
(indirect) 

Two 
experiments in 
two fields (45 x 
20 m). The 
seeds were 
sown at a 
spacing of 80 
mm x 0.50 m, 
approximately 
25 plants per 
m². 

Sensors- GER 1500 
Spectroradiometer, 
Airborne Terrestrial 
Applications,  
and digital camera 

handheld 
or 
airborne 

Laboratory Wheat Airborne thermal IR 
imagery can be 
used for crop 
residue variability 
assessment. VIS and 
NIR ATLAS datasets 
more clearly 
differentiated 
among treatments 
compared with 
handheld 
spectroradiometer 
data. High spectral 
resolution TIR 
imagery more 
accurately 
delineated 
treatment 
differences 
compared with VIS 
and NIR spectra. 

The objective 
of this study 
was to 
evaluate high 
spectral 
resolution 
remote 
sensing (RS) 
data for rapid 
quantification 
of residue 
cover. 

Residue 
cover and 
tillage 
mapping 
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Linke, Beuche, 
Geyer, & 
Hellebrand, 
2000 

  temperature 
difference, 
transpiration 
resistance 
values, 
surface 
temperatures 

 IR detector, type 
MCT- spectral range 
8-12 μm 
Temperature 
resolution <0.1 K. 
Measurement 
ranges between -
40°C and +1,200°C 
and for object 
distances as of 25 
cm. 

Ground laboratory different 
kinds 

Thermal imaging 
could be used for- 
analysis of pre-
harvest conditions, 
evaluation of post-
harvest climate, 
microbial 
infestation, 
freshness status of 
produce. 

Examine of 
employing 
thermography 
for the non-
destructive 
determination 
of produce 
characteristics 
and the 
thereby 
resulting 
measures of 
quality 
maintenance 
and to fix the 
limits of its 
use. 

Crop 
maturity 
mapping 

Bulanon et al., 
2008 

 
segmentation 
approach 
using the 
histogram tail 
method, 
cluster 
separation 
algorithm-
based 
thresholding 
 

Surface 
temperature 
of the fruit, 
ambient 
temperature 
and relative 
humidity (RH) 

 Thermal camera- 
ThermaCAM P65HS 
with 320x240 
pixels, spectral 
range 7.5-13 μm, 
resolution of 0.05C 
and accuracy of +-
2%. Temperature 
ranges -40 to 120 C. 
Digital color camera 
D-490ZOOM, 
Olympus. 

Ground orchard orange The fruits were 
successfully 
segmented in the 
thermal images 
using image 
processing 
techniques during 
the time range of 
the largest 
temperature 
difference, which 
suggest potential 
application of 
thermal imaging for 
improved detection 
for harvesting. 

Demonstrate 
the potential 
of using 
thermal 
imaging 
information 
to segment 
orange fruits 
from the 
canopy as aid 
to robotic 
fruit 
harvesting. 

Crop yield 
mapping 
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Stajnko, 
Lakota, & 
Hočevar, 2004 

Correlation 
coefficients R² 

a fruit 
detection 
algorithm 

Temperature 
gradient 
between 
fruits and 
their 
background, 
average 
temperature, 
NDI 

A thermal 
camera 
captured 
images of apple 
trees five times 
during the 
vegetation 
period. Each 
time 120 
images of 
twenty apple 
trees. 

Thermal camera 
AGEMA 570, Flir 
SystemsTM 

Ground orchard apple The measuring 
technique based on 
thermal imaging 
and analysis can be 
employed to 
provide an 
objective and easy 
counting of apples 
and measurement 
of their diameters. 
The system was 
used successfully all 
cases when only a 
small part of the 
apple was detected. 
However, it was not 
always able to 
distinguish between 
fruits and leaves 
growing deep in the 
tree-crown. 

Estimating the 
number of 
apple fruits 
and 
measuring 
their diameter 
for calculating 
the current 
yield 

Crop yield 
mapping 

Fernandez-
Gallego et al., 
2019 

R² Linear 
regression 

Temperature 
differential 
between the 
ears and the 
rest of the 
canopy. 

72 plots per 
trial (3 
replicates × 24 
genotypes) The 
genotypes were 
evaluated in 9 
m², 6 rows, 0.25 
m apart and a 
planting density 
of 250 seeds 
per m². 

MIDAS 320L IR 
camera, DIAS IR 
GmbH with a −20C 
to 120◦C 
temperature range, 
8–14 µm spectral 
range in one 
channel, 320×240 
radiometric 
detector. 
RGB images- Sony 
QX1-ILCE camera. 

Handheld, 
above the 
canopy 

field wheat The algorithm did 
demonstrate high 
correlations with 
various manual 
image-based ear 
counts. There 
should be a 
difference of at 
least 2 ◦C between 
the ear and leaf 
temperatures for 
this thermal ear 
counting algorithm 
to work. 

Propose an 
automatic 
wheat ear 
counting 
system using 
thermal 
images. 
 
 
 
  

Crop yield 
counting 

Table 1. Applications of thermal imaging in the agriculture sector
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2.4.   Disease detection 

Diseases in plants are caused by is biophysical and biochemical changes in host plants due to 

fungal or fungal-like organisms, bacteria, viruses, and viroid. They affect the quality of fruits, 

vegetables, grains, legumes, and can lead to mortality in plants (Berdugo et al., 2014; 

Golhani, Balasundram, Vadamalai, & Pradhan, 2018). These diseases become a major threat 

to global food security and lead to significant production and economic losses in the 

agricultural industry (Golhani et al., 2018). Each year 10%–16% of losses in the global harvest 

of crops causes by plant diseases and costing an estimated by US$220 billion. Therefore, it is 

critical for sustainable agriculture to monitor plant health to prevent disease spread with the 

least damage to crop production and to develop effective early disease detection 

techniques. Early information on disease development and the quantity of the disease can 

enable disease control using suitable management strategies such as pesticides according to 

crop protection applications, fungicide applications, and disease-specific chemical 

applications (Sankaran et al., 2010). However, the main challenge is the difficulty in 

determining the physical, chemical, and biological changes in plants early, before there are 

symptoms of an infection. The extent of pathogen development in a plant is not always 

correlated positively with disease intensity, since the amount of pathogen biomass is not 

necessarily proportional to the extent of visible disease symptoms. Another challenge is the 

costs and time associated with these monitoring techniques that must be continuously 

executed (Cui et al., 2018). 

Prevalent methods for the diagnosis and detection of plant diseases include visual plant 

disease estimation by human raters, microscopic evaluation of morphology features to 

identify pathogens, as well as molecular, serological, and microbiological diagnostic 

techniques (Mahlein, 2016). Disease detection techniques can be classified into invasive and 

non-invasive methods (Sankaran et al., 2010). Invasive techniques are used after the onset 

of plant disease symptoms and involve destructive leaf sampling followed by chemical 

treatments (Sankaran et al., 2010). Techniques such as Western blotting, Enzyme-Linked 

Immuno-Sorbent Assay (ELISA), Reverse Transcription Polymerase Chain Reaction (RT-PCR), 

and microarrays. These techniques are speedy and accurate in disease detection. Still, they 

pose inconsistency and insensitivity due to different reasons, including host-pathogen 

interaction and quantify disease concentration (Golhani et al., 2018). 
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Non-invasive techniques identify plant diseases by detecting the impact of the pathogen on 

the physiological plant response and not through direct identification of the pathogen. 

Techniques such as fluorescence spectroscopy, Visible/Near-Infrared (VNIR) spectroscopy, 

fluorescence imaging, and hyperspectral imaging, detect morphological changes, 

transpiration rate changes, and volatile organic compounds (VOCs) profiles (Cui et al., 2018). 

They are reliable at early (asymptomatic) stages and rapid. However, some modifications 

and improvements are still needed (Cui et al., 2018). 

2.5.   Vegetational thermal behavior 

Plant temperature is determined by loss of water through specialized pores in the leaves, 

called stomatal transpiration (Oerke et al., 2006). When leaf transpires, water is lost through 

stomata and leaf temperature decreases. However, if stomatal transpiration stops, leaf 

temperature increases as no heat dissipation occurs. Also, significant modifications in leaf 

temperature are caused by a pathogenic organism's influence on the conductance of plant 

tissue. Visible symptoms of diseases often appear only after latent settlement in the plant 

tissue; therefore, those organisms may be detected only by their effect on plant tissue. As 

leaf temperature is directly related to the rate of water evapotranspiration, infrared sensing 

has the potential for early disease detection, since leaf temperature enables the quantitative 

analysis of spatial and dynamic physiological information on the plant status without 

interfering with plants. A useful parameter for the differentiation of infected and non-

infected tissue is the maximum temperature difference (MTD) within a leaf (Oerke et al., 

2006). 

Vegetation spectral signature is based on non-visible wavelengths that are reflected or 

absorbed (Vollmer & Möllmann, 2017). The spectral signature is influenced by the leaf 

pigments, cell structure, and water content. Healthy plants absorb properly the radiation in 

the visible region and reflect properly the radiation in the NIR region. Plants that are 

stressed or infected can be identified by their spectral signatures that are different from the 

signature of healthy, unstressed vegetation (Ashourloo et al., 2014). A plant that is in 

stressed conditions reacts with protection mechanisms that cause changes in variables such 

as surface temperature, or chlorophyll content that allows the plant to produce food for 

itself from a combination of water, carbon dioxide, and sunlight. At the early stages, when 

visual symptomless to the existence of a pathogen, plants react with physiological protection 
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mechanisms such as the reduction of the photosynthesis rate, which induces an increase of 

heat emission and fluorescence (the emission of light). At a later stage, pathogens cause a 

reduction of chlorophyll content that increases reflectance in the VIS and causes a shift of 

the red- edge position (the region of rapid change in reflectance of vegetation in the NIR 

range of the electromagnetic spectrum). Finally, these changes lead to suboptimal growth, 

change the thermal properties which in turn influence the radiation emitted in the TIR 

domain of the spectrum and producing a different spectral signature (Martinelli et al., 2015). 

2.6.  Downy mildew 

Downy mildew (DM) is a devastating disease caused by the biotrophic obligate Oomycete 

Peronospora (Calderón et al., 2014). Oomycetes are a diverse group of organisms widely 

distributed in very diverse environments. Most oomycete species are parasites of plants. 

Evolution processes that occurred in different lineages of the oomycote have resulted in 

obligate biotrophic pathogens such as downy mildew. All species of downy mildew are 

obligate parasites with limited host range and low tissue damage of the infected plants 

(Caro, 2014). The severity of Peronospora attacks strongly depends on the duration of 

optimal environmental conditions for disease development. High relative humidity and 

moderate temperature conditions are favored disease spread (Calderón et al., 2014). DM 

pathogens can cause local or systemic infections in plants, especially in the colonized plant 

tissue. Such infections result in changes in the metabolic processes of plant tissues including 

shifts in respiration, photosynthesis, and transpiration (Oerke et al., 2006). Peronospora can 

generate germ tubes and invade the leaves by a direct mode making use of appressoria and 

by an indirect mode through the stomata on the abaxial surface (Caro, 2014). Destruction of 

leaf cuticle, increased permeability of leaf cell membranes, or inhibition of stomatal closure 

can increase water loss from infected leaf areas. Stomatal closure, obstruction of xylem 

elements and stomata, and defoliation may cause a reduction of transpiration (Oerke et al., 

2006). The first symptoms are small, chlorotic to light-yellow leaf lesions on the upper 

surface without loss of vitality in plant cells (Calderón et al., 2014). These symptoms can 

evolve to a second stage in which affected tissues are curled, thickened, and become 

deformed and necrotic as the disease develops (Oerke et al., 2006). Lesions expand in size 

with time and often coalesce, eventually giving rise to large necrotic and brown areas in 

leaves. Further development of lesions may result in the death of the entire leaf (Calderón et 
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al., 2014). Downy mildew caused by Peronospora is one of the most destructive and 

economically restrictive diseases worldwide, observed to produce asymptomatic infections 

and therefore difficult to control (Caro, 2014). 

2.6.1. Grapevine downy mildew 

Grapevine is susceptible to many pathogens (Aziz et al., 2003). Oomycete Peronospora 

viticola is the causal agent of grapevine downy mildew (Aziz et al., 2003). Peronospora 

viticola was first observed in the southeastern United States. Shortly after this first 

observation, the pathogen was introduced to European countries and since then has posed a 

major problem in vineyards all over the world (Kiefer et al., 2002). For example, in 1915, 70% 

of the French grape crop was lost because of P. viticola. In 1930, 20 million hl of wine were 

lost in France. From 1907 to 1916, downy mildew was responsible for a 33% reduction in the 

total vine-growing area in the Baden province of Germany. Significant damage was also 

reported in Italy (Gessler et al., 2011). Because of numbers and results like these, downy 

mildew has been considered the most devastating disease to affect European vineyards. At 

optimal environmental conditions, it can infect large areas within a short period of time and 

causes huge losses in yield by affecting leaves and young grapes (Kiefer et al., 2002). Using a 

calendar-based schedule of uniform fungicide spraying of vineyards in grape-growing areas 

is an efficient way to control this disease. Considering that primary infections occur in 

discrete foci rather than uniformly disseminating, it would be advantageous to detect those 

initial infection foci and operate targeted treatments instead of the current homogenous 

and unselective spraying (Oberti et al., 2014). The disease will first appear on the upper leaf 

surface as yellow spots referred to as oil spots (Figure 2). Its germination is most abundant in 

the early spring (Gessler et al., 2011). 

 

Figure 2. Lesions from downy mildew on the grapevine leaf surface (Gessler et al., 2011) 
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2.6.2. Leaf temperature and downy mildew 

The temperature of healthy leaves varies with leaf transpiration and, therefore, is a function 

of stomatal conductance (Lindenthal et al., 2005). One of the effects on stomatal 

conductance is by foliar pathogens which infect plants (Lindenthal et al., 2005). DM 

development causes the appearance of chlorotic and necrotic tissue, increased water loss, 

and the inability of plant tissue to regulate stomatal opening (Calderón et al., 2014). IR 

thermography was evaluated as a non-invasive method for detecting the infection (Caro, 

2014). Studies using digital infrared thermography reported an increase in the highest 

temperature difference within a leaf with the formation of necrotic tissue.  They found that 

this was related to disease severity and that it could be used to discriminate between 

healthy and infected areas in thermograms, even before the appearance of visible DM 

symptoms (Calderón et al., 2014). IRT was used to detect spread of rose downy mildew 

infections one or two days before the appearance of visible symptoms (Caro, 2014) and 

cucumber downy mildew before visual symptoms as well (Wen et al., 2019). The initial signs 

of infection in the thermal images were observed as early as 4 days after infection. 

2.7. Image capture conditions 

Several factors affect the characteristics of the images, such as the time of day, the position 

of the sun in relation to the leaf, and the amount of overcast (Barbedo, 2016). In addition, 

when monitoring plants over time, if environmental conditions change, then leaf 

temperature may also change. When leaf temperature changes due to increased stress (or 

the onset of stress), it can be difficult to differentiate it from a change resulting from 

increasing air temperature or other environmental changes. Moreover, the differences 

between the different infrared variables (e.g., Tleaf, CWSI) vary with date, making it difficult 

to determine which variable is most sensitive to plant stress (Grant et al., 2006). According 

to Jones (1999), the sensitivity of different variables using leaf temperature can be very 

different depending on a leaf's stomatal conductance. Ideally, all images should be captured 

under the same conditions. In practice, this can only be achieved in controlled conditions, 

such as laboratories. However, the use of algorithms for automatic disease identification is 

more efficient if it can be applied in the field, where the condition can be controlled 

partially, if at all. In this regard, a more realistic approach would be to study the impact of 

the main factors affecting segmentation and then design experiments accordingly (Barbedo, 
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2016). According to the study of Fuchs (1990), near solar noon, the highest temperatures 

and the greatest canopy temperature differences were recorded. Alchanatis et al. (2010) 

found that for estimating and mapping water status variability of cotton, best results from 

thermal images were achieved at midday (12:00-14:00). This might be also the best time to 

detect temperature differences between infected and healthy leaves. Under field 

measurements, however, even healthy plants may close their stomata before solar noon, 

particularly in hot, sunny conditions (Correia et al., 1990). 

  



36 
 

3. Methods 

3.1. Overview 

Two experiments were conducted on controlled greenhouse plants with leaves that were 

healthy or at various stages of the disease. The leaves were infected in a controlled manner 

and images were acquired using a thermal camera. The research involved several steps as 

described in Figure 3. 

Experiment A (section 3.2.1) involved six campaigns acquiring images at day 0 (healthy 

leaves) and one, two, four, five, six, and seven days after infection (infected leaves). 

Experiment B (section 3.2.2) involved acquiring images at seven different times along the 

day of leaves at six days after infection to determine the best time for image acquisition 

The best model to classify between healthy and infected leaves was determined through 

several steps. The thermal images were segmented using the 'Chan Vese' active contour 

algorithm. Features were extracted from the segmented leaves based on temperature 

measurements in the resulting mask. Additional features were extracted from 

meteorological measurements from data obtained from a meteorological station. Feature 

selection for classification was conducted using Pearson’s correlation coefficient and 

stepwise logistic regression analysis. Five classification models were developed and 

compared. The best model and time for image acquisition were selected based on accuracy, 

F1 score, and AUC. 
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3.2.  Experimental design 

3.2.1. Experiment A 

Controlled experiments were conducted in six campaigns between the end of December 

2019 and the end of October 2020 on 169 grapevine plants grown in experimental 

greenhouses in Evogene, Israel (31°47' 20.472'' N, 35°12' 3.888'' E). Each campaign lasted 12 

days and included different imaging days (healthy leaves and 1, 2, 4, 5, 6, and 7 days after 

infection) in which around 30 plants were tested as detailed in Appendix C. Plants received 

two daily doses of water. Each of the six campaigns included the following stages: 

1. The leaves that were selected to be infected were marked by color clips or aluminum 

foil. 

2. On the first day of the campaign, images of the healthy leaves were acquired.  

3. 2-6 leaves in each plant were infected with downy mildew and were inserted in a high 

humidity chamber which allowed optimal conditions for the disease to develop.  

Figure 3. Flowchart of the research steps 

 

Leaf edge detection 

Feature selection 

Images acquisition 

Classification models 

Features extraction 

Select best model 

Determine best acquisition time 
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4. Images of each infected leaf were acquired on 1, 2, 4, 5, 6 and 7 days after infection. 

5. After the last imaging day (day number 7), the leaves were placed in Petri dishes to 

evaluate the disease severity. 

To allow optimal photosynthesis of the plants, imaging was conducted outside of the 

greenhouse. The plants were taken out of the controlled greenhouse and placed outdoors 

for at least one hour before imaging to allow them to adjust to the environmental conditions 

that were different from greenhouse conditions. The images were acquired between 10 a.m. 

and 3 p.m. to ensure high solar radiation that allowed plants to conduct photosynthesis. 

Images were only acquired on sunny days without clouds.  

Meteorological conditions were continuously monitored and included measurements of air 

temperature (°C), relative humidity, solar radiation (W/m^2), wind speed (m/sec), and wind 

direction.  

An image of each leaf was acquired by two cameras - a thermal camera and an RGB camera. 

For each leaf, the thermal camera acquired a half-minute video and the RGB camera 

acquired two images. One image from each video was selected for classification. The image 

was manually selected by visually estimating the maximal leaf surface exposed to the 

camera. 

An example of an acquisition is provided in (Figure 4), acquired in the first campaign, one 

day after infection. The marked leaf is one of three infected leaves in this plant and its plant 

stem marked with aluminum foil (appears like a black spot). 

 

Figure 4. Thermal image from first-round experiment 
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3.2.2. Experiment B 

A controlled experiment involving 15 grapevine plants was conducted throughout a single 

day in an experimental greenhouse at Evogene, Israel (31° 47' 20.472'' N, 35° 12' 3.888'' E) in 

October 2020. Images were acquired outside of the greenhouse at seven different times 

(rounds) between 7 a.m. and 4:30 p.m. Each round lasted about one and a half hours. In 

each plant, six leaves were acquired, of which three were infected with downy mildew six 

days after infection, and three were healthy. Each plant received two daily doses of water: 

one before the first round and one before the fourth round. Meteorological conditions were 

continuously acquired. 

3.3.  Equipment 

Thermal images were acquired using a FLIR SC655 infrared camera (FLIR SC655, FLIR 

Systems, Melville, NY, USA). It uses an uncooled microbolometer detector with resolution 

640 × 480 pixels, sensitive in the spectral range of 7.5–13 μm and possesses an accuracy of 

±2°C or ±2% of the reading. The object temperature range is from -20 to +150 °C.  

In addition, digital images were acquired with an RGB camera (Canon EOS6D, Canon Inc., 

Taby, Sweden) for documentation purposes. 

3.4.  Databases 

3.4.1. Classification of healthy and infected leaves 

The full database included 1403 records (599 healthy leaves and 804 infected leaves). The 

records included thermographic measurements from thermal imaging of the leaves, 

meteorological measurements collected simultaneously, calculated features from raw data, 

and manual evaluation of disease severity. 

To determine the earliest day that a model can detect a disease, a subset was created from 

the full database, which included records with actual disease severity of 5 or higher. This set 

included 1097 records (599 healthy leaves and 498 infected leaves). Outliers were removed 

from the new set, which resulted in 1012 records (571 healthy leaves and 441 infected 

leaves). The three data sets (the full dataset, severity of 5 or higher and after outliers' 

removal) are available in Appendix D. 

Examples of thermal and RGB images acquired at different days of infection are depicted in 

Figure 5. Compared with the digital images, the changes in the color of the typical thermal 

images were more noticeable compared to the visual observations. 
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Figure 5. Examples of RGB images (top row) and thermal images (bottom row) of leaves from 
different infected days 

 

3.4.2. Best acquisition time 

The database contained 575 records (280 healthy leaves and 295 infected leaves). Most of 

the rounds included about 87 samples (Table 2). The data set is available in Appendix E. 

Examples of thermal images from infected and healthy leaves acquired at different times of 

the day are depicted in Figure 6. The displayed images have the same scale (23.6°C - 34.6°C). 

 

 

 

 

 

 

 

 

Table 2. Hours of rounds and number of samples in each round 

Round number Acquisition Time Number of samples 

1 7:15-8:25 88 

2 9:00-9:45 88 

3 10:40-11:30 88 

4 12:25-13:15 87 

5 14:15-15:05 86 

6 15:20-16:00 86 

7 16:00-16:30 52 

Healthy 
1 day after 

infection 

2 days after 

infection 

4 days after 

infection 

7 days after 

infection 

5 days after 

infection 

6 days after 

infection 
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3.5.  Segmentation algorithm 

Leaves were segmented using edge detection with the active contour algorithm (also 

denoted as the snakes algorithm, Kass, Witkin, & Terzopoulos, 1988). This algorithm is 

influenced by image forces that pull it toward features such as lines and edges. The concept 

of the active contour is to deform splines to the object contour in the image by minimizing 

an energy functional. They lock onto nearby edges and localize them accurately. This energy 

is classically composed of two terms, an internal and external energy term. The purpose of 

the internal energy term is to control the deformations made to the snake considering the 

regularity and smoothness of the desired contour. The purpose of the external energy term 

is to control the fitting of the contour onto the image, based on the intensity gradient 

(Cerutti et al., 2013).  

The 'Chan-Vese' active contour algorithm was used (Chan & Vese, 2001). This method 

ensures an unbiased contour enabling to either shrink or expand based on the image 

features. The inputs for the algorithm were a thermal image and an initial mask; the outputs 

were an image with the leaf contour and a final mask. 

 

 

 

Figure 6. Thermal images from infected and healthy leaves acquired at different times of the day 
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3.6.  Features  

The features were calculated from the leaf mask. A description with a detailed explanation 

of the variables can be found in Table 3. All features expressing temperature were 

normalized by T - Tair. 

Variable 
Name 

Description Type Range Symbol Calculation 

Minimum 
temperature 

The minimum temperature in the leaf, 
minus the air temperature measured at 
the same time 

Continuous -6.3-10.7 Tmin Tmin-Tair 

Maximum 
temperature 

The maximum temperature in the leaf, 
minus the air temperature measured at 
the same time 

Continuous -4.2-14.6 Tmax Tmax-Tair 

Average 
temperature 

The average of the leaf temperatures 
values, minus the air temperature 
measured at the same time 

Continuous -5.11-12.98 Tavg Tavg-Tair 

Median 
temperature 

The median of the leaf temperatures 
values, minus the air temperature 
measured at the same time 

Continuous -5.06-13.11 median median-Tair 

Maximum 
Temperature 
Difference 

The difference between the maximum 
and minimum temperature in the leaf 

Continuous 0.5-7.1 MTD Tmax-Tmin 

Standard 
deviation 

The standard deviation value of the leaf 
temperature values 

Continuous 0.1-1.73 STD std 

Interquartile 
range 

Interquartile Range (IQR), also called the 
midspread, is a measure of statistical 
dispersion and equal to the difference 
between 75th and 25th percentiles 

Continuous 0.17-3.28 IQR T0.75- T0.25 

Median 
Absolute 
Deviation 

A robust measure of the variability. 
Defined as the median of the absolute 
deviations from the median of the data 

Continuous 0.1-1.53 MAD median 
{|Ti- T0.5|}  

Coefficient of 
variation 

A standardized measure of the 
dispersion of a probability distribution or 
frequency distribution. 

Continuous 0.004-0.061 Cv STD/ Tavg 

Percentile 10 The percentile is a score at or below 
which a given percentage fall, minus the 
air temperature measured 

Continuous -5.9-11.9 perc10 T0.1-Tair 

Percentile 90 Continuous -4.8-13.9 perc90 T0.9-Tair 

Crop water 
stress index 2 

A means of irrigation scheduling and crop 
water stress quantification based on leaf 
temperature measurements and 
prevailing meteorological conditions 
(Jones, 1999) 

Continuous 0.37-1.53 CWSI2 𝑇𝑙 − 𝑇𝑤𝑒𝑡

𝑇𝑑𝑟𝑦 − 𝑇𝑤𝑒𝑡
 

Crop water 
stress index 4 

Continuous 0.51-30.56 CWSI4 𝑇𝑑𝑟𝑦 − 𝑇𝑙

𝑇𝑙 − 𝑇𝑤𝑒𝑡
 

Table 3. Feature description 
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3.7.  Analysis 

First, histograms and box-plots were plotted for each variable to represent the distribution 

and depict the groups graphically (displot and catplot, seaborn, Python). Second, outliers 

were removed (Python). In this research, an outlier was defined as a data point that is 1.5 

times the interquartile range above the upper quartile and below the lower quartile (Q1-

1.5*IQR or Q3+1.5*IQR). Third, the correlation between the predictors was examined by 

Pearson’s correlation coefficient (corr, pandas, Python). To avoid misleading information, 

the partial correlation coefficient between the predictors was also calculated (pcorr, 

pingouin, Python). Using a correlation coefficient to determine whether there is a numerical 

relationship between two variables of interest will produce misleading results if there is 

another, confounding variable numerically related to them both. Therefore, the partial 

correlation coefficient controlling the confounding variable was used (Frank, 2000). The 

correlation between the predictors to the response variable was examined by point-biserial 

correlation (biserial.cor, ltm, RStudio). 

To create the supervised learning model, the significance of the variables on the response 

variable was evaluated by stepwise logistic regression (step, stats, RStudio). The stepwise 

method was "both"- a combination between "forward" and "backward" regression. Since 

there is no common method for feature selection, the features selected by the stepwise 

logistic regression were used in all models. Pearson’s correlation coefficient examined the 

correlation between the derived features. 

To give equal importance to each feature and improve the model's accuracy, quality, and 

learning rate, the data were normalized using the Z-score (Dhaka et al., 2021). A zero 

centering of data was performed by subtracting the mean value from each attribute value, 

then dividing each dimension by its standard deviation. A Min-Max normalization was also 

used, but it did not significantly improve the results (Appendix F). Normalization and 

standardization were conducted with MATLAB. 

In order to evaluate the statistical validity of the best model, statistical tests were conducted 

between the best model and the second-best model. An F-test was used to test the null 

hypothesis that the variances of both models are equal. A T-test was used to test the null 

hypothesis that both models have equal means. 

A sensitivity analysis was conducted for different distributions of data to explain the 

different classification results between the days after infection. 
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3.8. Classification models 

Different forms of supervised learning were selected so the algorithm learns to map the 

inputs to the outputs by using the available input-output pairs. In other words, the aim was 

to ensure the mapping function should be able to estimate well the values of new input data 

to predict output values. Five machine learning (ML) algorithms were trained to classify 

infected and healthy leaves: logistic regression (LR), support vector machine (SVM), decision 

tree (DT), Ensemble, and Naive Bayes (NB). MathWorks MATLAB version R2019b 

(MathWorks Inc., Natick, MA, USA) was used to implement the ML algorithms. 

• Decision tree- one of the most widely used and practical methods for inference and 

classification. It has a fast prediction speed and is easy to interpret. This information 

gain method does not assume any statistical properties of the data itself (e.g., normal 

distribution) and as such, it is best suited to this case where the statistical distribution is 

unknown. When building a decision tree, overfitting may arise which is represented in 

the decision tree as a deep tree with many levels. To avoid over-fitting the maximum 

number of splits was limited. 

• Logistic regression- a statistical model that uses a logistic function to model 

a binary dependent variable; this was suitable in this case where there are two classes 

(healthy and infected). 

• Naive bayes - a statistical classification technique based on Bayes Theorem. A simple 

supervised learning algorithm which provides a fast and accurate classification. The 

classifier assumes that the effect of a particular feature in a class is independent of 

other features. However, the algorithm still appears to work well when the 

independence assumption is not valid. 

• Support vector machine- robust prediction models with very high accuracy of disease 

detection. An SVM training algorithm builds a model that assigns new examples to one 

category, making it a non-probabilistic binary linear classifier. 

• Ensemble- the technique combines predictions from multiple machine-learning 

algorithms. In this work, the decision tree ensemble algorithm using the Boosting 

method was used. Boosting refers to a group of algorithms that trains weak learners 

sequentially, each trying to correct its predecessor. 
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3.9.  Performance measures 

The classification performance was quantified using the accuracy, precision, recall, F1 score 

and AUC (Area under the ROC Curve).  

The class set contained two labels: positive (infected) and negative (healthy). Given a 

classifier and an instance, the four possible outcomes are (Table 4): 

• True positive (TP): the leaf is infected, and it is classified as infected.  

• False-negative (FN): the leaf is infected, and it is classified as healthy.  

• True negative (TN): the leaf is healthy, and it is classified as healthy.  

• False-positive (FP): the leaf is healthy, and it is classified as infected. 

 
Predicted outcome 

Infected Healthy 

Actual value 

Infected True positive (TP) 
False negative (FN) 

Error type 2 

Healthy 
False positive (FP) 

Error type 1 
True negative (TN) 

Table 4. Confusion matrix 

The accuracy determines the number of correct predictions from all the predictions. While 

the higher the number the better in the case of an approximately equal number of samples 

in all classes, accuracy alone often leads to an error in the classification of the minor class in 

imbalanced datasets. Accuracy is computed as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
                                (1) 

 
The precision is the positive predictive value and is computed as: 
 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                   (2) 

 
The recall is also referred to as the true positive (TPR) rate and is computed as: 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                     (3) 

 
The F1 score is the harmonic mean of the precision and recall and is computed as: 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                     (4) 

 



46 
 

A ROC curve (receiver operating characteristic curve) is a graph showing the performance of 

a classification model at all classification thresholds displaying two parameters: 

• Recall (also TPR) 

• False Positive Rate (FPR) 

 

False Positive Rate is defined as follows: 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
                                                               (5) 

 

A ROC curve plots TPR vs. FPR at different classification thresholds. Lowering the 

classification threshold classifies more items as positive, thus increasing both False Positives 

and True Positives. 

AUC stands for "Area under the ROC Curve". The AUC measures the entire two-dimensional 

area underneath the entire ROC curve.  



47 
 

4. Algorithms 

4.1. Edge detection 

The 'Chan-Vese' active contour algorithm was applied for leaf detection. The software was 

implemented using MATLAB (Appendix G) version R2019b (MathWorks Inc., Natick, MA, 

USA) with additional functions (Shawn Lankton, 2007). 

First, the thermal image was converted to grayscale. Second, the range of pixel values was 

changed by cutting the histogram edges (Figure 7) to clear the color contrast. This change 

was made for visualization purposes only. 

Third, the active contour algorithm was activated on the image. The process is depicted 

(Figure 8). Initial mask position and size were manually set for each leaf. Image and initial 

mask were the algorithm inputs (Fig. 8 A(a), 8 A(b)). The algorithm performed iterations to 

find the contours of the leaf (Fig. 8 A(c)) with a Lambda parameter of 0.3. Lambda is the 

weight of the smoothing term (a higher value reaches a smoother term). After a maximum 

of 200 iterations (Appendix H) a final mask was obtained (Fig. 8 A(d)). The output was an 

image of the leaf contour (final mask, Fig. 8 B). The returned final mask was a matrix where 

pixels inside the mask were set to leaf temperature and pixels outside the mask were set to 

zero. Visualizations of all images after the active contour algorithm are displayed in 

Appendix I. 

 

 

Figure 7. Prevalence of pixels of the entire image 
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Figure 8. The output of the active contour algorithm. Includes image, initial and final mask 
(A) and image with final mask (B) 

 

4.2. Classification models 

Classification was performed by K-fold cross-validation (K=5) for each of the five models. The 

parameters for each model were optimized using MATLAB version R2019b (Appendix J). The 

optimal parameters obtained for each model were: 

• Decision Tree: 17 maximum splits, Maximum deviance reduction split criterion 

• Logistic Regression: Threshold 0.5 

• Naive Bayes: Gaussian kernel 

• SVM: Cubic Kernel, box constraint level of 1 

• Ensemble: LogitBoost method, 14 maximum splits, a learning rate of 0.348 
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5. Results and Discussion 

5.1. Classification of healthy and infected leaves 

5.1.1. Histograms and boxplots 

Histograms and boxplots of healthy (false) and infected leaves (true) were created for each 

variable for data visualization (Software code is detailed in Appendix K). Figure 9 presents 

the following variables: MTD (Fig. 9a), STD (Fig. 9b), IQR (Fig. 9c), MAD (Fig. 9d), Tavg (Fig. 

9e), Tmin (Fig. 9f), Tmax (Fig. 9g), median (Fig 9h), perc10 (Fig. 9i), perc90 (Fig. 9j), CWSI2 

(Fig. 9k), CWSI4 (Fig. 9l), and Cv (Fig. 9m). The boxplots below indicate that the predictors 

Tavg, Tmin, Tmax, median, perc10, and perc90 are different for infected and healthy leaves 

as their median line of the box-plot lies outside of the box of comparison box plot (higher for 

infected leaves). The histograms reveal that most predictors follow a normal distribution. 

Also, the histograms reveal that there is more scatter in the infected leaves and with a 

stronger mean signal. 

Feature CWSI was calculated in two ways, representing the same variable. The histogram of 

CWSI4 is right-skewed with a long tail. Therefore, it was decided to select CWSI2 for the 

feature selection model.  

 

  

  

(a) 

(b) 
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(l) 
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Figure 9. Histograms (left) and boxplots (right) for each variable (a-m) 

 

5.1.2. Outliers  

When reviewing the box-plots of all features (Figure 10) of 1097 records, it can be seen that 

there are several data points located outside the whiskers of the box plot. 

After removing the outliers that were 1.5 times the interquartile range above the upper 

quartile and below the lower quartile (boxplot of features in Figure 11), 1012 records were 

left. Software code is detailed Appendix K. 

 

Figure 10. All features box-plots 

 

Figure 11. All features box-plots without outliers 

(m) 
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5.1.3. Correlation analysis 

5.1.3.1. Pearson correlation  

The displayed Pearson correlation matrix (Figure 12) shows that some of the variables are 

highly correlated with each other. Thus, there is multicollinearity between the predictors. 

However, this result was expected due to the variable construction method. The high 

correlations shown in the lower right dark square originate from the fact that they are all 

temperature-related. The high correlations in the higher left square originate from the fact 

that these predictors are related to the dispersion of the data. Also, there are low 

correlations between these two groups. 

 

Figure 12. Heatmap of Pearson Correlation Coefficient Matrix 

 

5.1.3.2. Pearson Partial correlation 

The partial correlation (Figure 13) measures the degree of association between two random 

variables, with the effect of a set of controlling random variables removed. Comparing the 

partial correlations with the correlations presented above reveals the following differences. 

Firstly, the partial correlations between predictors and the dependent variable (Y) are much 

lower as compared to the biserial correlations. Also, when removing all other predictors 
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effects – MTD, perc90, and CWSI2 have the highest correlation with the outcome variable. 

CWSI2 was ranked in the penultimate place at biserial correlations and in the Partial 

correlation, it is third. The lowest partial correlations obtained with the outcome variable are 

perc10 and Tmin. Here, too, perc10 is rated relatively high in the biserial correlations and is 

now rated among the latter. Moreover, the partial correlations between the predictors are 

also lower than the previously obtained correlations (Pearson). Not only that the absolute 

size of the correlations dropped when removing the other predictors effects but that also 

the direction of some correlations changed. An example is given by the correlation between 

perc10 and perc90, which is almost perfectly correlated in the full Pearson correlation (r = 

0.98), and in the partial correlation is much lower and changes its direction (rp = -0.039). 

 

Figure 13. Pearson's partial correlations 

 

5.1.3.3. Point-biserial correlation 

The point-biserial correlation was used to check correlations between the predictors and the 

dependent variable (Table 5); the coefficients of correlation ranged from rCv = 0.2086 to rTmax 

= 0.3689, where Tmax had the highest correlation and Cv the lowest. 
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Variable Biserial correlation 
Tmax 0.3689 

perc90 0.3546 
Tavg 0.3279 

Median 0.3270 
perc10 0.3001 
MAD 0.2887 
MTD 0.2863 
IQR 0.2854 
STD 0.2823 

Tmin 0.2746 
CWSI2 0.2582 

Cv 0.2086 
Table 5. Point-biserial correlations 

The code for determining the correlations is detailed in Appendix K. 

5.1.4. Model analysis 

5.1.4.1. Feature selection 

The feature selection conducted by stepwise logistic regression (Appendix L) resulted in 

seven significant variables: MTD, STD, Cv, Tavg, median, perc90, CWSI2. This result was 

unexpected because Pearson's partial correlation matrix showed that Tavg and median were 

in a high positive linear correlation (r=0.97), which led to the expectation that the model 

would not include both. Another unexpected result was the estimate of Tavg (β=-9.53) which 

had the opposite sign of the median (β=3.696). A possible reason for these results is that the 

selected method for stepwise logistic regression ("both") begins with the full model. When 

the two variables (Tavg and median) are together in the model and have high 

multicollinearity and opposite sign, they cancel each other out and stay in the model instead 

of removing both. Therefore, both variables were removed from the model manually. This 

led to a higher AIC, resulting with a better model. Finally, to train the classification models 

the five remained significant variables were selected: MTD, STD, Cv, perc90, CWSI2. 

5.1.4.2. Classification analysis 

The accuracy, precision, recall, F1 score and AUC (confusion matrix and ROC curve, Appendix 

M) of all constructed models (Table 6) reveal that the best results were achieved by the SVM 

model with major differences between the performance measures of the other models.  

The results of the F-test (Appendix N) between the best model (SVM) and the second-best 

model (NB) using the F1 scores of each of the five folds (cross-validation) revealed that the 
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variances of both models were equal (F (=3.27) < F Critical one-tail (=6.39)) implying that the 

null hypothesis was not rejected. 

The two-tail T-test assuming equal variances (Appendix N) revealed that the null hypothesis 

was rejected (t Stat (=-5.56) < t Critical two-tail (=-2.31)). The observed difference between 

the sample means (0.77 - 0.67) suggests a significant difference between the models. SVM 

was chosen to be the best model. 

To determine the earliest day for downy mildew detection, the results in the following table 

(Table 7) obtained by the SVM were detailed according to each of the 'days after infection'. 

The results revealed that later days after infection produced lower results than earlier ones, 

contrary to expectations (since the disease develops over time and should be easier to 

detect as time passes). To determine the cause of this, a series of analyses as described in 

Figure 14, were conducted based on different explanations that may have led to these 

results.  

 

           Model 

Measure 

Decision 

Tree 

Logistic 

Regression 

NB SVM Ensemble 

F1 score 60.5% 64.9% 66.8% 77.5% 63.8% 

Precision 70.5% 70.8% 69.7% 83.1% 70.9% 

Recall 53.1% 59.9% 64.2% 71.6% 58% 

AUC 0.728 0.762 0.783 0.874 0.776 

Accuracy 69.9% 71.7% 72.2% 81.6% 71.3% 

Table 6. All results from all models based on all data 

 

 

 

 

 

 

 

 

 
 

Days after infection Number of samples Number of misses Accuracy 

0 571 65 88.6% 

1 19 2 89.5% 

2 61 3 95.1% 

4 180 55 69.4% 

5 39 4 89.7% 

6 44 17 61.4% 

7 98 40 59.2% 

Table 7. Results by day after infection 
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Figure 14. Diagram representing the logical flow of the different analyses 

 
1. To avoid bias, the dataset was balanced.  

a. By removing records from the healthy leaves, the samples number between the 

diseased and healthy leaves was balanced (Table 8). The accuracy achieved with 

these balance results was 79.1%, the F1 score was 77.9%, and the AUC was 0.86. The 

model's accuracy of the later days after infection improved. In order to further 

improve the results, a new feature selection was performed on the balanced data 

resulting in an accuracy of 79.2%, an F1 score of 77.8%, and an AUC of 0.86. The 

results were pretty similar. 
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Table 8. Results after balancing healthy and infected samples (top), and with 
this balanced sample after selecting new features (bottom) (Exp1a) 

 

b. Besides taking similar numbers of samples from healthy and infected leaves, the 

number of samples taken each day after infection was also balanced (Table 9). The 

accuracy achieved was 73.8%, the F1 score was 71%, and the AUC was 0.756. This did 

not yield improvement in the model's results, but the accuracy of the later days after 

infection improved greatly. The accuracy achieved after a new feature selection was 

70.2%, the F1 score was 67.1%, and the AUC was 0.734. The previous features 

performed better. 

  

Days after infection Number of samples Number of misses Accuracy 

0 441 68 84.6% 

1 19 1 94.7% 

2 61 5 91.8% 

4 180 55 69.4% 

5 39 5 87.2% 

6 44 14 68.2% 

7 98 36 63.3% 

New features- MTD, SVM, perc10, perc90, Cv, CWSI2 

0 441 63 85.7% 

1 19 2 89.5% 

2 61 3 95.1% 

4 180 56 68.9% 

5 39 6 84.6% 

6 44 15 65.9% 

7 98 38 61.2% 
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Table 9. Results after balancing between the infected days (top), and with 
this balanced data after selecting new features (bottom) (Exp1b) 

 

2. To examine the effects of different climatic conditions on the results, the data was 

divided into different training and test sets. 

a. As the climatic conditions differed between imaging days, it was difficult to classify 

the data. Each imaging day's data was split in two: 80% from the data for the training 

set and 20% from the data for the test set (Table 10). The accuracy of the training set 

was 82.5%, with an F1 score of 78.3% and an AUC of 0.886. The test set accuracy was 

76.5%, with an F1 score of 70.8% and an AUC of 0.827. Some days' results improved, 

while others did not. The model's performance did not improve. 

 

 

 

 

 

 

Table 10. Results of the test set (Exp2a) 

Days after infection Number of samples Number of misses Accuracy 

0 84 14 83.3% 

1 14 7 50% 

2 14 4 71.4% 

4 14 10 28.6% 

5 14 3 78.6% 

6 14 4 71.4% 

7 14 2 85.7% 

New features- MAD, perc90, Cv, CWSI2 

0 84 17 79.8% 

1 14 6 57.1% 

2 14 4 71.4% 

4 14 11 21.4% 

5 14 5 64.3% 

6 14 7 50% 

7 14 0 100% 

Days after infection Number of samples Number of misses Accuracy 

0 112 16 85.7% 

1 5 1 80% 

2 12 0 100% 

4 36 16 55.6% 

5 8 0 100% 

6 8 6 25% 

7 19 8 57.9% 
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b. The test set included one specific experiment (No. 10446), and the training set 

included the rest. Experiment 10446 included the days 0,4,5,6,7 after infection. Days 

5,6 were not included in any other experiments, so they appear only in the test set 

(Table 11). The accuracy of the training set was 86.4%, the F1 score was 82% and the 

AUC was 0.892. The test set accuracy was 57.8%, with an F1 score of 48.9% and an 

AUC of 0.593. The training and test sets were very different in their results. Even on 

the days that appear in the training set (0,4,7), the results are poor. According to this 

analysis, it is not possible to classify healthy and downy mildew infected from images 

acquired on an imaging day that is not included in the training set. 

 
 

 

 

 

 

Table 11. Results of the test set (experiment No. 10446) (Exp2b) 

 

3. Considering that the accuracy on days 1 and 2 after infection was greater than that of 

the other days, it was tested whether these days affect the prediction. 

a. The following hypothesis was tested: whether with a dataset of leaves from healthy 

and 1 and 2 days after infection, the accuracy of the prediction for these days still 

remains high (Table 12). The data for this analysis was balanced. The accuracy 

achieved was 91.9%, the F1 score was 92.1%, and the AUC was 0.961. The results 

showed that even without the later days, the early days' predictions held true very 

well. In order to further improve the results, a new feature selection was performed 

on the data. The accuracy achieved was 92.9%, the F1 score was 92.8%, and the AUC 

was 0.969. The new features improved the results. 

 

 

 

Days after infection Number of samples Number of misses Accuracy 

0 171 43 74.8% 

4 43 24 44.2% 

5 39 19 51.3% 

6 44 28 36.4% 

7 44 30 31.8% 
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Table 12. Results of a dataset with days 0,1,2 after infection (top), and the 
results of this same dataset with new features (bottom) (Exp3a) 

 

b. The same was done by using a dataset of days 0,4,5,6,7 after infection (Table 13). 

Here also the data was balanced. The accuracy achieved was 79.1%, the F1 score was 

78.4%, and the AUC was 0.856. The results showed that when days 1 and 2 after 

infection were removed, the classification results of the later days improved. The 

accuracy achieved after a new feature selection was 76.7%, the F1 score was 75.7%, 

and the AUC was 0.833. The previous features performed better. 

 

 

 

 

 

 

 

 

Table 13. Results of a dataset with days 0,4,5,6,7 after infection (top), and 
the results of this same dataset with new features (bottom) (Exp3b) 

 

4. Since the results of the other approaches varied each day after infection, an analysis 

was performed to examine if the response variable should be ordinal instead of binary. 

The assumption was that disease development increased every day, suggesting some 

kind of order as imaging days progressed. Therefore, an ordinal regression was 

Days after infection Number of samples Number of misses Accuracy 

0 99 10 89.9% 

1 21 1 95.2% 

2 78 5 93.6% 

New features- STD, median, perc10, perc90, Cv, CWSI2 

0 99 5 94.9% 

1 21 4 80.9% 

2 78 5 93.6% 

Days after infection Number of samples Number of misses Accuracy 

0 399 72 81.9% 

4 197 54 72.6% 

5 45 5 88.9% 

6 45 9 80% 

7 112 27 75.9% 

New features- MTD, median, perc10, perc90, Cv 

0 399 77 80.7% 

4 197 72 63.4% 

5 45 6 86.7% 

6 45 11 75.5% 

7 112 20 82.1% 



62 
 

performed on the imbalanced data. A new feature selection was conducted to 

accommodate for the new response variable and resulted in the following features: 

MTD, IQR, MAD, median, perc10, perc90, and CV. The accuracy of the ordinal 

classification was 65.4% with many observations classified as healthy even though they 

were infected (and were not classified as infected on another day, Figure 15). 

Since it does not matter which day after infection was classified, but whether the leaf 

was healthy or infected, the results were converted to binary so all days that were not 

classified as 0 (healthy) were deemed infected (Table 14). This classification of the 

converted response variable resulted in an accuracy of 74.9%. The binary response 

variable performed better than both the ordinal response variable and the converted 

response variable and hence was selected. 

 

 

Figure 15. Confusion matrix of ordinal regression 

 

 
 

 

 

 

 

 

Table 14. Results of ordinary regression (Exp4)  

Days after infection Number of samples Number of misses Accuracy 

0 571 61 89.3% 

1 19 10 47.4% 

2 61 12 80.3% 

4 180 86 52.2% 

5 39 13 66.7% 

6 44 23 47.7% 

7 98 49 50% 
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5.1.5. Misclassifications 

In the different datasets, some images were repeatedly classified incorrectly. For each 

infection day, one example of correct and incorrect classification is displayed (Figure 16). 

There is no apparent reason for the differences in the classification. 

 

 

 

 

 

 

Figure 16. The first two rows of images have been correctly classified. The first row shows the masks 
of the Active Contour algorithm, resulting from the image in the second row. The same is true for 

rows three and four, but these are examples of incorrect classification. 
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5.1.6. Summary 

Out of the five developed models the SVM model produced best results. Seven different 

approaches were used to explain the large differences in disease detection between days 

after infection (Table 15). Although the best results were with an SVM model using a dataset 

with healthy and infected leaves from only 1 and 2 days after infection, this dataset itself is 

not selected since it included only the two first days after infection without the remaining 

days. These good results were probably due to the fact that the plants were disturbed by the 

controlled infection which was what was probably actually detected.  

Additionally, in each approach, the new selected features were very similar to the first 

selection, with performance differing by only +-3%. These results indicated that the first 

feature selection was indeed suitable for the different datasets. 

The best relevant results were obtained from a SVM model using a balanced dataset of 

healthy leaves and infected leaves.  

A possible explanation for the differences in disease detection between days after infection 

might be that infrared thermography measurements are influenced by many other factors 

that affect leaf temperature, including ambient temperature, humidity, sunlight, and wind 

(Granum et al., 2015). The images were acquired at different dates, times of day, and under 

different environmental conditions, which may have affected the characteristics of the 

images or even the plants. Although each variable related to temperature has been 

normalized (T-Tair), this might not be sufficient to accommodate environmental changes.  

The classification results of days one and two after infection, which were better than those 

of the other days, was probably not because the downy mildew was detected early; It is 

more likely that the infection itself, which was manually induced, may have affected the 

leaves locally and caused a strong physiological reaction to the leaves. As the virus 

penetrated the plant, the local effect diminished. 

Despite many different approaches and analyses conducted, we could not provide an 

explanation for the inconsistent results between the days (days 4-7 after infection).  

Since each of the models (the model with data of days 0,1,2 and the model with data of days 

0,4,5,6,7) provided good results, future research should consider dividing the data into 3 

groups: healthy, infected at first days, and infected at late days. 
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Table 15. A summary of all approaches and their results 

 

5.2.Best acquisition time 

5.2.1. Histograms 

Histograms were plotted for each variable revealing differences between the different 

sampling times along the day (Figure 17). The histograms are numbered from round number 

1 (left, 1.5 hours after dawn) to round number 7 (right, late afternoon). 

5.2.2. Model analysis 

Table 16 presents accuracy, F1 score and AUC obtained by SVM model for all rounds. Best 

results were obtained when data were collected 10:40-11:30 (round 3) with accuracy 

differences of about 6% and 23% from the next best and worst rounds respectively. These 

results are different from results of Alchanatis et al. (2010), who found that midday (12:00-

14:00) was the best time to map and estimate water status variability using thermal imaging. 

Although these are two different problems, they are similar in expectance to see 

temperature differences within the leaves. 

The results of the F-test (Appendix O) between the best round (3) and the second-best 

round (1) using the accuracy of each of the five folds from cross-validation (since the data 

Approach F1 score AUC Accuracy New 

features 

F1 score 

New 

features 

AUC 

New 

features 

accuracy 

SVM- all data 77.5% 0.874 81.6%  

Balance between healthy 

and infected (Exp1a) 
77.9% 0.86 79.1% 77.8% 0.86 79.2% 

Balance between the 

infected days (Exp1b) 
71% 0.756 73.8% 67.1% 0.734 70.2% 

Each imaging day's data- 

80% training set and 20% 

test set (Exp2a) 

70.8% 0.827 76.5%  

Experiment 10446 as test 

(Exp2b) 
48.9% 0.593 57.8%  

Days 0,1,2 (Exp3a) 92.1% 0.961 91.9% 92.8% 0.969 92.9% 

Days 0,4,5,6,7 (Exp3b) 78.4% 0.856 79.1% 75.7% 0.833 76.7% 

As ordinal instead of binary 

(Exp4) 
 74.9% 
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was balanced) revealed that the null hypothesis was not rejected (F (=4.08) < F Critical one-

tail (=6.39)), implying that the variances of both rounds were equal.  

The two-tail T-test assuming equal variances (Appendix O) revealed that the null hypothesis 

was not rejected (-t Critical two-tail (=-2.31) < t Stat (=-1.12) < t Critical two-tail (=2.31)). The 

observed difference between the sample means (0.807 - 0.751) is not convincing enough to 

say that the results differ significantly.  

Although the 3rd round was not statistically better, records from these hours were analyzed 

to generalize the findings since best results were obtained at this acquisition time. A special 

new dataset of 239 records (95 healthy and 144 infected) was created using only 

observations that were acquired 10:40 and 11:30 a.m. from the classification model (dataset 

described in section 3.4.1). This dataset was used to create a new model; the results are 

detailed in Table 17. To improve the results, a new feature selection was performed. The 

selected features were: MTD, Tavg, Tmin, perc10, perc90, and Cv. The new features 

improved the results and the model produced good results (Table 17).  

As compared with the model that used all the data, the model from the best hours included 

fewer observations, but the results were quite similar. This model would likely perform even 

better if it were trained on a larger dataset. Therefore, it is worth considering acquiring 

images at similar times along the day, even if they are acquired on different days. Further 

research is needed on this topic. 

Though, even when the acquisition occurred during the best hours, results are strongly 

affected by the environmental conditions, which may change day by day, and impact the 

results. 
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Figure 17. Histograms of each selected variable:  
(a) MTD, (b) STD, (c) perc90, (d) CWSI2, (e) Cv 

 
                                  Measure 

Round No./Time 
Accuracy F1 score AUC 

(1) 7:15-8:25 75% 75.6% 0.774 

(2) 9:00-9:45 72.7% 72.7% 0.794 

(3) 10:40-11:30 80.7% 80.5% 0.895 

(4) 12:25-13:15 59.8% 61.5% 0.676 

(5) 14:15-15:05 65.1% 67.4% 0.691 

(6) 15:20-16:00 58.1% 61.7% 0.644 

(7) 16:00-16:30 57.7% 59.3% 0.557 

Table 16. Performance for each round of the diurnal measurements 

 

Table 17. Results of a dataset from 10:40 to 11:30 and after a new feature selection 

Model Number of samples F1 score AUC Accuracy 

Hours 10:40-11:30 239 72.7% 0.764 67.4% 

New features 239 80.8% 0.826 76.6% 

(a) 

(b) 

(c) 

(d) 

(e) 
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6. Conclusions 

The best model for classifying between healthy and infected leaves was a SVM model with 

the following features: MTD, STD, perc90, Cv and CWSI2. The model resulted in 10% higher 

performance than all other models tested (81.6% accuracy, 77.5% F1 score and 0.874 AUC). 

The inconsistent results between the days (days 4-7 after infection) could not be explained. 

The best time of day for acquiring images for downy mildew detection was between 10:40 

and 11:30 resulting in 80.7% accuracy, 80.5% F1 score, and 0.895 AUC.  

The results indicate that thermograms can detect downy mildew infection, even before any 

visible symptoms appear. Using images from the best hours can improve performance, even 

if the images are not from the same days. 

However, even when the image acquisition is conducted at the best time, variations in 

illumination cannot be avoided, which results in reduced performance. There is a trade-off 

between using a large and wide database (acquired along many dates) and detecting the 

disease (the fewer dates, the easier).  
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Appendices 

Appendix A – Journal submitted paper 

 

Early detection of grapevine downy mildew and 

diurnal variations using thermal imaging 

 
 

Bar Cohen1,2, Yael Edan2, Asher Levi1, Victor Alchanatis1 
 

 

Abstract 

The agricultural industry is facing a serious threat from plant diseases that cause production 

losses and economic losses. Early information on disease development can improve disease 

control using suitable management strategies. This study sought to detect downy mildew on 

grapevine leaves at early stages of development using thermal imaging technology and to 

determine the best time along the day for image acquisition. In controlled experiments, 1587 

thermal images of grapevines grown in a greenhouse were acquired before infection, 1, 2, 4, 

5, 6, and 7 days after a controlled infection, around midday. Also, images of healthy and 

infected leaves were acquired at seven different times along the day between 7 a.m. and 4:30 

p.m.  

Leaves were segmented using the active contour algorithm. Twelve features were derived 

from leaf mask and meteorological measurements. Stepwise logistic regression revealed five 

significant features used in five classification models. Performance was evaluated using K-

folds cross-validation. The support vector machine model produced the best classification 

accuracy of 81.6%, F1 score of 77.5% and AUC of 0.874. Acquiring images in the morning 
between 10:40 and 11:30 a.m., resulted in 80.7% accuracy, 80.5% F1 score, and 0.895 AUC. 

 

 

Keywords: Precision agriculture, Disease detection, Classification 

 

 

Introduction 

Plant diseases are a major cause of production losses and economic losses in the agriculture 

industry (Savary et al., 2012). Pathogens are responsible for direct yield losses of 20-40% of 

global agricultural productivity (Savary et al., 2012). In order to ensure sustainable 

agriculture, it is essential to monitor plant health to prevent disease spread with as little 

damage to crop production as possible. However, the main challenge is the difficulty in 

determining the physical, chemical and biological changes in plants before symptoms of 

infection appear (Cui et al., 2018).  

Disease detection techniques can be classified into invasive and non-invasive methods. 

Invasive techniques involve destructive leaf sampling followed by chemical treatments after 

direct identification of the pathogen (Sankaran et al., 2010). Non-invasive techniques identify 

plant diseases by detecting the impact of the pathogen on the physiological plant response. 

Currently, the most promising non-invasive disease detection methods are sensors that 

measure temperature, reflectance, or fluorescence (Mahlein, 2016).  
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Leaf temperature is a rapid response variable that can reveal crop stresses before visible 

symptoms appear (Khanal et al., 2017). Stressed plants respond with physiologic protection 

mechanisms that lead to changes in leaf surface temperature (Mahlein, 2016). Infrared 

thermography (IRT) enables the evaluation of the plant temperature related to changes in 

water status and transpiration due to infections by pathogens. Temperature differences within 

individual leaves, plants, and crops indicate the presence of disease in plants (Mahlein, 2016). 

Compared to optical, multispectral, and hyperspectral sensors, thermal sensors have shown to 

be more effective at detecting disease-induced early modifications (Khanal et al., 2017).  

Plasmopara viticola, also known as oomycete grape downy mildew (DM), is a serious 

pathogen of grapevines that spreads through extremely efficient asexual reproduction cycles 

(Kiefer et al., 2002). Originally from North America, DM was accidentally introduced to 

Europe at the end of the 19th century, where it caused extensive damage to the grape industry 

(Gessler et al., 2011). The optimal environmental conditions for disease spread are high 

humidity and moderate temperatures. At early stages of infection, DM causes an increase in 

transpiration rate and a decrease in leaf temperature. Further DM development causes the 

appearance of chlorotic and necrotic tissue, increased water loss and the inability of plant 

tissue to regulate stomatal opening (Calderón et al., 2014). IRT was used to detect spread of 

rose downy mildew infections one or two days before the appearance of visible symptoms 

(Caro, 2014) and cucumber downy mildew before visual symptoms as well (Wen et al., 

2019). The initial signs of infection in the thermal images were observed as early as 4 days 

after infection.  

However, IRT is often subject to environmental factors such as ambient temperature, sunlight, 

rainfall, or wind speed (Mahlein, 2016). Changes in environmental conditions may affect leaf 

temperature, making it difficult to differentiate it from a change caused by infection or disease 

(Grant et al., 2006). Alchanatis et al. (2010) found that for estimating and mapping water 

status variability of cotton, best results from thermal images were achieved at midday (12:00-

14:00). 

A previous study showed the feasibility of detecting grapevine downy mildew by SVM on a 

limited set of data (Cohen et al., 2021). Looking at a small number of infection intervals, 

downy mildew was detected with an accuracy of 69.2% and F1 score of 74.9%  

This study aimed to develop an algorithm for early detection of grapevine downy mildew 

using thermal imaging. The specific objectives were to: (i) extract features for classification 

based on temperature and image processing algorithms; (ii) develop classification models to 

classify between infected and healthy grapevine leaves; (iii) determine the best time along the 

day to acquire thermal images for downy mildew detection. 

 

 

Materials and methods 

Plant material and experimental design 

Controlled experiments were conducted in six campaigns between the end of December 2019 

and the end of October 2020 on 169 grapevine plants grown in experimental greenhouses in 

Evogene, Israel (31°47' 20.472'' N, 35°12' 3.888'' E). Each campaign lasted 12 days and 

included different imaging days (healthy leaves and 1, 2, 4, 5, 6, and 7 days after infection) in 

which around 30 plants were tested each day. Plants received two daily doses of water. Each 

of the six campaigns included the following stages: 

1. The leaves that were selected to be infected were marked by color clips or aluminum foil. 

2. On the first day of the campaign, images of the healthy leaves were acquired.  

3. 2-6 leaves in each plant were infected with downy mildew and were inserted in a high 

humidity chamber which allowed optimal conditions for the disease to develop.  
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4. Images of each infected leaf were acquired on 1, 2, 4, 5, 6 and 7 days after infection. 

5. After the last imaging day (day number 7), the leaves were placed in Petri dishes to 

evaluate the disease severity. 

The diurnal response of leaf temperature was measured on October 27th. Images were 

acquired all day along at seven different times (rounds) between 7 a.m. and 4:30 p.m. (Table 

1). Each round lasted about one and a half hours and included about 87 samples. In each 

plant, six leaves were acquired, of which three were infected with downy mildew six days 

after infection, and three were healthy. Each plant received two daily doses of water: one 

before the first round and one before the fourth round. 

 
Table 1 Hours of rounds and number of samples in each round 

 

 

 

 

 

 

 

 

 

Thermal and RGB image acquisition 

To allow optimal photosynthesis of the plants, imaging was conducted outside of the 

greenhouse. The plants were taken out of the controlled greenhouse and placed outdoors for at 

least one hour before imaging to allow them to adjust to the environmental conditions that 

were different from greenhouse conditions. The images were acquired between 10 a.m. and 3 

p.m. to ensure high solar radiation that allowed plants to conduct photosynthesis. Images were 

only acquired on sunny days without clouds.   Meteorological conditions were continuously 

monitored and included measurements of air temperature (°C), relative humidity, solar 

radiation (W/m^2), wind speed (m/sec), and wind direction. An image of each leaf was 

acquired by two cameras - a thermal camera (FLIR SC655, FLIR Systems, Melville, NY, 

USA) and an RGB camera (Canon EOS6D, Canon Inc., Taby, Sweden) that was used for 

documentation purposes. The infrared camera uses an uncooled microbolometer detector with 

resolution 640 × 480 pixels, sensitive in the spectral range of 7.5–13 μm and possesses an 

accuracy of ±2°C or ±2% of the reading. For each leaf, the thermal camera acquired a half-

minute video and the RGB camera acquired two images. One image from each video was 

selected for classification. The image was manually selected by visually estimating the 

maximal leaf surface exposed to the camera. 

 

Datasets 

The classification dataset included 1403 records (599 healthy leaves and 804 infected leaves). 

The records included thermographic measurements from thermal imaging of the leaves, 

meteorological measurements collected simultaneously, calculated features from raw data, 

and manual evaluation of disease severity. 

To determine the earliest day that a model can detect the disease, a subset was created from 

this dataset, which included records with actual disease severity of 5 or higher. This set 

Round number Acquisition Time Number of samples 

1 7:15-8:25 88 

2 9:00-9:45 88 

3 10:40-11:30 88 

4 12:25-13:15 87 

5 14:15-15:05 86 

6 15:20-16:00 86 

7 16:00-16:30 52 

file:///C:/Users/Bar/Desktop/Thesis.docx%23_Table_4._Hours
file:///C:/Users/Bar/Desktop/Thesis.docx%23_Table_4._Hours
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included 1097 records (599 healthy leaves and 498 infected leaves). Outliers were removed 

from the new set, which resulted in 1012 records (571 healthy leaves and 441 infected 

leaves). 

The dataset for determining the best acquisition time contained 575 records (280 healthy 

leaves and 295 infected leaves).  

 

Algorithm for leaves delineation  

Leaves were segmented using edge detection with the 'Chan-Vese' active contour algorithm 

(Chan & Vese, 2001). This method ensures an unbiased contour enabling to either shrink or 

expand based on the image features. The software was implemented using MATLAB version 

R2019b (MathWorks Inc., Natick, MA, USA) with additional functions (Shawn Lankton, 

2007). The inputs for the algorithm were a thermal image converted to grayscale and an initial 

mask; the outputs were an image with the leaf contour and a final mask. For each leaf, the 

position and size of the initial mask were set manually. The active contour algorithm was run 

on the mask for a maximum of 100 iterations with a smoothing term of 0.3 (Lambda). 

 

Feature extraction 

The following features were calculated from the leaf's mask: maximum temperature, 

minimum temperature, average temperature, median temperature, maximum temperature 

difference (MTD), standard deviation (STD), interquartile range (IQR), mean absolute 

deviation (MAD), Coefficient of variation (Cv), percentile 10, percentile 90 and Crop water 

stress index (CWSI).  

All features expressing temperature were normalized by T - Tair.  

 

Analysis 

Outliers defined in this research as a data point that is 1.5 times the interquartile range above 

the upper quartile and below the lower quartile (Q1-1.5*IQR or Q3+1.5*IQR) were removed.  

The correlation between the predictors was examined by Pearson’s correlation coefficient. To 

avoid misleading information, the partial correlation coefficient between the predictors was 

also calculated. Using a correlation coefficient to determine whether there is a numerical 

relationship between two variables of interest will produce misleading results if there is 

another, confounding variable numerically related to them both. Therefore, the partial 

correlation coefficient controlling the confounding variable was used (Frank, 2000). The 

correlation between the predictors to the response variable was examined by point-biserial 

correlation. 

To create the supervised learning model, the significance of the variables on the response 

variable was evaluated by stepwise logistic regression. The stepwise method combined 

"forward" and "backward" regression. The features selected by the stepwise logistic 

regression were used in all models. Pearson’s correlation coefficient examined the correlation 

between the derived features. 

To give equal importance to each feature and improve the model's accuracy, quality, and 

learning rate, the data were normalized using the Z-score (Dhaka et al., 2021). A zero 

centering of data was performed by subtracting the mean value from each attribute value, then 

dividing each dimension by its standard deviation. A Min-Max normalization was also used, 

but it did not significantly improve the results. Normalization and standardization were 

conducted with MATLAB. 

In order to evaluate the statistical validity of the best model, statistical tests were conducted 

between the best model and the second-best model. An F-test was used to test the null 

hypothesis that the variances of both models are equal. A T-test was used to test the null 

hypothesis that both models have equal means. 
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A sensitivity analysis was conducted for different distributions of data to explain the different 

classification results between the days after infection. 

 

Classification models 

Five classification models were trained to classify infected and healthy leaves using 

MATLAB version R2019b (MathWorks Inc., Natick, MA, USA): 

• Decision tree- one of the most widely used and practical methods for inference and 

classification. It has a fast prediction speed and is easy to interpret. This information gain 

method does not assume any statistical properties of the data itself (e.g., normal 

distribution) and as such, it is best suited to this case where the statistical distribution is 

unknown. When building a decision tree, overfitting may arise which is represented in the 

decision tree as a deep tree with many levels. To avoid over-fitting the maximum number 

of splits has been limited. 

• Logistic regression- a statistical model that uses a logistic function to model 

a binary dependent variable and suitable in this case where there are two classes. 

• Naïve bayes (NB)- a statistical classification technique based on Bayes Theorem. A 

simple supervised learning algorithm which provides fast and accurate classification. The 

classifier assumes that the effect of a particular feature in a class is independent of other 

features. However, the algorithm still appears to work well when the independence 

assumption is not valid. 

• Support vector machine (SVM)- robust prediction models with very high accuracy of 

disease detection. An SVM training algorithm builds a model that assigns new examples 

to one category, making it a non-probabilistic binary linear classifier. 

• Ensemble- The technique combines predictions from multiple machine-learning 

algorithms. In this work, the decision tree ensemble algorithm using the Boosting method 

was used. Boosting refers to a group of algorithms that trains weak learners sequentially, 

each trying to correct its predecessor. 

K-fold cross-validation (K=5) was used for each model. 

 

Performance measures 

The classification performance was quantified using the accuracy, precision, recall, F1 score 

and AUC (Area under the ROC Curve).  

The class set contained two labels: positive (infected) and negative (healthy). Given a 

classifier and an instance, there were four possible outcomes: 

• True positive (TP): the leaf was infected and it was classified as infected.  

• False-negative (FN): the leaf was infected, but it was classified as healthy.  

• True negative (TN): the leaf was healthy and it was classified as healthy.  

• False-positive (FP): the leaf was healthy, but it was classified as infected. 

Accuracy is defined as the probability of correctly classifying a test instance: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
                                (1) 

 

Precision is called positive predictive value and computed as: 
 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                   (2) 

 

Recall is also referred to true positive rate (TPR) and computed as: 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                     (3) 

 

The F1 score is the harmonic mean of the precision and recall and computed as: 
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                     (4) 

 

A ROC curve (receiver operating characteristic curve) is a graph showing the performance of 

a classification model at all classification thresholds displaying two parameters: 

• Recall (also TPR) 

• False Positive Rate (FPR) 

False Positive Rate is defined as follows: 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
                                                         (5) 

 

A ROC curve plots TPR vs. FPR at different classification thresholds. Lowering the 

classification threshold classifies more items as positive, thus increasing both False Positives 

and True Positives. 

AUC stands for "Area under the ROC Curve". The AUC measures the entire two-dimensional 

area underneath the entire ROC curve. 

 

 

Results and Discussion 

Edge detection 

First, the thermal image was converted to grayscale. Second, the range of pixel values was 

changed by cutting the histogram edges to clear the color contrast. This change was made for 

visualization purposes only. Then, the active contour algorithm was activated on the image. 

Fig. 1 depicts the active contour process. Image and initial mask were the algorithm inputs 

(Fig. 1A(a), 1A(b)). The algorithm performed iterations to find the contours of the leaf (Fig. 

1A(c)). After a maximum of 100 iterations a final mask was obtained (Fig.  1A(d)). An image 

of the leaf with contour was returned (Fig. 1B). The returned final mask was a matrix where 

pixels inside the mask were set to leaf temperature and pixels outside the mask were set to 

zero. 
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Classification of healthy and infected leaves 

 

Fig. 2 depicts examples of thermal and RGB images acquired at different days of infection. 

Compared with the digital images, the changes in the color of the typical thermal images were 

more noticeable compared to the visual observations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feature selection 

The feature selection conducted by stepwise logistic regression (Table 2) resulted in seven 

significant variables: MTD, STD, Cv, Tavg, median temperature, percentile 90, CWSI. This 

result was unexpected because Pearson's partial correlation matrix showed that Tavg and 

median temperature were in a high positive linear correlation (r=0.97), which led to the 

expectation that the model would not include both. Another unexpected result was the 

estimate of Tavg (β=-9.53) which had the opposite sign of the median temperature (β=3.696). 

A possible reason for these results is that the selected method for stepwise logistic regression 

("both") begins with the full model. When the two variables (Tavg and median temperature) 

are together in the model and have high multicollinearity and opposite sign, they cancel each 

other out and stay in the model instead of removing both. Therefore, both variables were 

Fig. 1 The output of the active contour algorithm. Includes image, initial and final mask (A) and 

image with final mask (B) 

Healthy 

 

1 day after 

infection 

 

2 days after 

infection 

 

4 days after 

infection 

 

7 days after 

infection 

 

5 days after 

infection 

 

6 days after 

infection 

 

Fig. 2 Examples of RGB images (top row) and thermal images (bottom row) of leaves from 

different infected days 
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removed from the model manually. This led to a higher AIC, resulting with a better model. 

Finally, to train the classification models the five remained significant variables were 

selected: MTD, STD, Cv, percentile 90, CWSI. 

 
Table 2 Stepwise regression- estimated coefficients, standard errors and p-value 

Variable Estimated coefficients Standard errors P-value 

MTD 0.6543 0.1782 0.00024 

STD -2.4373 1.1323 0.03136 

Cv 79.2226 24.7641 0.00138 

percentile 90 0.2709 0.0388 3.06e-12 

CWSI 1.6405 0.4575 0.00034 

 

Classification analysis 

The parameters for each model were optimized using MATLAB version R2019b. The optimal 

parameters obtained for each model were: 

• Decision Tree: 17 maximum splits, Maximum deviance reduction split criterion 

• Logistic Regression: Threshold 0.5 

• Naive Bayes: Gaussian kernel 

• SVM: Cubic Kernel, box constraint level of 1 

• Ensemble: LogitBoost method, 14 maximum splits, a learning rate of 0.348 

 

The accuracy, precision, recall, F1 score and AUC of all constructed models (Table 3) reveal 

that the best results were achieved by the SVM model with major differences between the 

performance measures of the other models.  

 

The results of the F-test between the best model (SVM) and the second-best model (NB) 

using the F1 scores of each of the five folds (cross-validation) revealed that the variances of 

both models were equal (F (=3.27) < F Critical one-tail (=6.39)) implying that the null 

hypothesis was not rejected).  

The two-tail T-test assuming equal variances revealed that the null hypothesis was rejected (t 

Stat (=-5.56) < t Critical two-tail (=-2.31)). The observed difference between the sample 

means (0.77 - 0.67) suggests a significant difference between the models. SVM was chosen to 

be the best model. 

To determine the earliest day for downy mildew detection, the results in the following table 

(Table 4) obtained by the SVM were detailed according to each of the 'days after infection'. 

 

 
Table 3 All results from all models based on all data 

                 Model 
 

Measure 

Decision 

Tree 

Logistic 

Regression 

NB SVM Ensemble 

F1 score 60.5% 64.9% 66.8% 77.5% 63.8% 

Precision 70.5% 70.8% 69.7% 83.1% 70.9% 

Recall 53.1% 59.9% 64.2% 71.6% 58% 

AUC 0.728 0.762 0.783 0.874 0.776 

Accuracy 69.9% 71.7% 72.2% 81.6% 71.3% 
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Table 4 Results by day after infection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 3 Diagram representing the logical flow of the different analyses 

The results revealed that later days after infection produced lower results than earlier ones, 

contrary to expectations (since the disease develops over time and should be easier to detect 

as time passes). To determine the cause of this, a series of analyses as described in Fig. 3, 

were conducted based on different explanations that may have led to these results. 

 

1. To avoid bias, the dataset was balanced.  

a. By removing records from the healthy leaves, the samples number between the 

diseased and healthy leaves was balanced. The accuracy achieved with these balance 

results was 79.1%, the F1 score was 77.9%, and the AUC was 0.86. The model's 

accuracy of the later days after infection improved (Table 5).  

 

 

 

Days after infection Number of samples Number of misses Accuracy 

0 571 65 88.6% 

1 19 2 89.5% 

2 61 3 95.1% 

4 180 55 69.4% 

5 39 4 89.7% 

6 44 17 61.4% 

7 98 40 59.2% 

Model   81.6% 
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Table 5 Results after balancing healthy and infected samples (Exp1a) 

 

 

b. Besides taking similar numbers of samples from healthy and infected leaves, the 

number of samples taken each day after infection was also balanced. The accuracy 

achieved was 73.8%, the F1 score was 71%, and the AUC was 0.756. This did not 

yield improvement in the model's results, but the accuracy of the later days after 

infection improved greatly. 

2. To examine the effects of different climatic conditions on the results, the data was divided 

into different training and test sets. 

a. As the climatic conditions differed between imaging days, it was difficult to classify 

the data. Each imaging day's data was split in two: 80% from the data for the training 

set and 20% from the data for the test set. The accuracy of the training set was 82.5%, 

with an F1 score of 78.3% and an AUC of 0.886. The test set accuracy was 76.5%, 

with an F1 score of 70.8% and an AUC of 0.827. Some days' results improved, while 

others did not. The model's performance did not improve. 

b. The test set included one specific experiment (No. 10446), and the training set 

included the rest. Experiment 10446 included the days 0,4,5,6,7 after infection. Days 

5,6 were not included in any other experiments, so they appear only in the test set. The 

accuracy of the training set was 86.4%, the F1 score was 82%, and the AUC was 

0.892. The test set accuracy was 57.8%, with an F1 score of 48.9% and an AUC of 

0.593. The training and test sets were very different in their accuracy. Even on the 

days that appear in the training set (0,4,7), the results are poor. According to this 

analysis, it is not possible to classify healthy and downy mildew infected from images 

acquired on an imaging day that is not included in the training set. 

3. Considering that the accuracy on days 1 and 2 after infection was greater than that of the 

other days, it was tested whether these days affect the prediction. 

a. The following hypothesis was tested: whether with a dataset of leaves from healthy 

and 1 and 2 days after infection, the accuracy of the prediction for these days still 

remains high (Table 6). The data for this analysis was balanced. The accuracy 

achieved was 91.9%, the F1 score was 92.1%, and the AUC was 0.961. The results 

showed that even without the later days, the early days' predictions held true very well. 

 

 

 

Days after infection Number of samples Number of misses Accuracy 

0 441 68 84.6% 

1 19 1 94.7% 

2 61 5 91.8% 

4 180 55 69.4% 

5 39 5 87.2% 

6 44 14 68.2% 

7 98 36 63.3% 

Model   79.1% 
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Table 6 Results of a dataset with days 0,1,2 after infection (Exp3a) 

 

 

 

 

 

b. The same was done by using a dataset of days 0,4,5,6,7 after infection. Here also the 

data was balanced (Table 7). The accuracy achieved was 79.1%, the F1 score was 

78.4%, and the AUC was 0.856. The results showed that when days 1 and 2 after 

infection were removed, the classification results of the later days improved. 

Table 7 Results of a dataset with days 0,4,5,6,7 after infection (Exp3b) 

 

 

 

 

 

 

4. Since the results of the other approaches varied each day after infection, an analysis was 

performed to examine if the response variable should be ordinal instead of binary. The 

assumption was that disease development increased every day, suggesting some kind of 

order as imaging days progressed. Therefore, an ordinal regression was performed on the 

imbalanced data. A new feature selection was conducted to accommodate for the new 

response variable and resulted in the following features: MTD, IQR, MAD, median, 

perc10, perc90, and CV. The accuracy of the ordinal classification was 65.4% with many 

observations classified as healthy even though they were infected (and were not classified 

as infected on another day, Fig. 4). Since it does not matter which day after infection was 

classified, but whether the leaf was healthy or infected, the results were converted to binary 

so all days that were not classified as 0 (healthy) were deemed infected. This classification 

of the converted response variable resulted in an accuracy of 74.9%. The binary response 

variable performed better than both the ordinal response variable and the converted 

response variable and hence was selected. 

Days after infection Number of samples Number of misses Accuracy 

0 99 10 89.9% 

1 21 1 95.2% 

2 78 5 93.6% 

Model   91.9% 

Days after infection Number of samples Number of misses Accuracy 

0 399 72 81.9% 

4 197 54 72.6% 

5 45 5 88.9% 

6 45 9 80% 

7 112 27 75.9% 

Model   79.1% 
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Figure 4 Confusion matrix of ordinal regression 

 

All approaches were also evaluated after a new feature selection process was performed 

(except for Exp4, which anyway included a new feature selection). The purpose of this was to 

examine whether the results and features selected were different. In each approach, the new 

selected features were very similar to the first selection, with performance differing by only 

+-3%. These results indicated that the first feature selection was indeed suitable for the 

different datasets. 

Table 8 summarizes the results of the different approaches used to explain the differences in 

disease detection between days after infection. Although the best results were with an SVM 

model using a dataset with healthy and infected leaves from only 1 and 2 days after infection, 

this dataset itself is not selected since it included only the two first days after infection 

without the remaining days. These good results were probably due to the fact that the plants 

were disturbed by the controlled infection which was what was probably actually detected.  

The best relevant results were obtained from a SVM model using a balanced dataset of 

healthy leaves and infected leaves. 

 

A possible explanation for the differences in disease detection between days after infection 

might be that infrared thermography measurements are influenced by many other factors that 

affect leaf temperature, including ambient temperature, humidity, sunlight, and wind (Granum 

et al., 2015). The images were acquired at different dates, times of day, and under different 

environmental conditions, which may have affected the characteristics of the images or even 

the plants. Although each variable related to temperature has been normalized (T-Tair), this 

might not be sufficient to accommodate environmental changes.  

The classification results of days one and two after infection, which were better than those of 

the other days, was probably not because the downy mildew was detected early; It is more 

likely that the infection itself, which was manually induced, may have affected the leaves 

locally and caused a strong physiological reaction to the leaves. As the virus penetrated the 

plant, the local effect diminished. 

Despite many different approaches and analyses conducted, we could not provide an 

explanation for the inconsistent results between the days (days 4-7 after infection).  

Since each of the models (the model with data of days 0,1,2 and the model with data of days 

0,4,5,6,7) provided good results, future research should consider dividing the data into 3 

groups: healthy, infected at first days, and infected at late days. 
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Table 8 A summary of all approaches and their results 

 

 

Best acquisition time 

 

Examples of thermal images from infected and healthy leaves acquired at different times of 

the day are depicted in Fig. 4. The displayed images have the same scale (23.6°C - 34.6°C). 

 

Table 9 presents accuracy, F1 score and AUC obtained by SVM model for all rounds. Best 

results were obtained when data were collected 10:40-11:30 (round 3) with accuracy 

differences of about 6% and 23% from the next best and worst rounds respectively. These 

results are different from results of Alchanatis et al. (2010), who found that midday (12:00-

14:00) was the best time to map and estimate water status variability using thermal imaging. 

Although these are two different problems, they are similar in expectance to see temperature 

differences within the leaves. 

 

The results of the F-test between the best round (3) and the second-best round (1) using the 

accuracy of each of the five folds from cross-validation (since the data was balanced) revealed 

that the null hypothesis was not rejected (F (=4.08) < F Critical one-tail (=6.39)), implying 

that the variances of both rounds were equal.  

The two-tail T-test assuming equal variances revealed that the null hypothesis was not 

rejected (-t Critical two-tail (=-2.31) < t Stat (=-1.12) < t Critical two-tail (=2.31)). The 

observed difference between the sample means (0.807 - 0.751) is not convincing enough to 

say that the results differ significantly.  

Although the 3rd round was not statistically better, records from these hours were analyzed to 

generalize the findings since best results were obtained at this acquisition time. A special new 

dataset of 239 records (95 healthy and 144 infected) was created using only observations that 

were acquired 10:40 and 11:30 a.m. from the classification model (the complete dataset). This 

dataset was used to create a new model; the results are detailed in Table 10. To improve the 

results, a new feature selection was performed. The selected features were: MTD, Tavg, 

Tmin, perc10, perc90, and Cv. The new features improved the results and the model produced 

good results (Table 10).  

 

 

 

Approach F1 score AUC Accuracy 

SVM- all data 77.5% 0.874 81.6% 

Balance between healthy and infected (Exp1a) 77.9% 0.86 79.1% 

Balance between the infected days (Exp1b) 71% 0.756 73.8% 

Each imaging day's data- 80% training set and 20% 

test set (Exp2a) 
70.8% 0.827 76.5% 

Experiment 10446 as test (Exp2b) 48.9% 0.593 57.8% 

Days 0,1,2 (Exp3a) 92.1% 0.961 91.9% 

Days 0,4,5,6,7 (Exp3b) 78.4% 0.856 79.1% 

As ordinal instead of binary (Exp4)   74.9% 

file:///C:/Users/Bar/Desktop/Thesis.docx%23_Figure_7._Thermal
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Fig. 4 Thermal images from infected and healthy leaves acquired at different times of the day 
 

 
Table 9 Performance for each round of the diurnal measurements 

                                Measure 

Round No./Time 
Accuracy F1 score AUC 

(1) 7:15-8:25 75% 75.6% 0.774 

(2) 9:00-9:45 72.7% 72.7% 0.794 

(3) 10:40-11:30 80.7% 80.5% 0.895 

(4) 12:25-13:15 59.8% 61.5% 0.676 

(5) 14:15-15:05 65.1% 67.4% 0.691 

(6) 15:20-16:00 58.1% 61.7% 0.644 

(7) 16:00-16:30 57.7% 59.3% 0.557 

 

 Table 10 Results of a dataset from 10:40 to 11:30 and after a new feature selection 

 

 

 

 

 

 

As compared with the model that used all the data, the model from the best hours included 

fewer observations, but the results were quite similar. This model would likely perform even 

better if it were trained on a larger dataset. Therefore, it is worth considering acquiring images 

at similar times along the day, even if they are acquired on different days. Further research is 

needed on this topic. 

Though, even when the acquisition occurred during the best hours, results are strongly 

affected by the environmental conditions, which may change day by day, and impact the 

results. 

 

 

Conclusions 
 

The best model for classifying between healthy and infected leaves was a SVM model built 

on a balanced dataset with the following features: MTD, STD, percentile 90, Cv and CWSI. 

The model resulted in 10% higher performance than all other models tested (81.6% accuracy, 

Model Number of samples F1 score AUC Accuracy 

Hours 10:40-11:30 239 72.7% 0.764 67.4% 

New features 239 80.8% 0.826 76.6% 
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77.5% F1 score and 0.874 AUC). The inconsistent results between the days (days 4-7 after 

infection) could not be explained. 

The best time of day for acquiring images for downy mildew detection was between 10:40 

and 11:30 resulting in 80.7% accuracy, 80.5% F1 score, and 0.895 AUC.  

The results indicate that thermograms can detect downy mildew infection, even before any 

visible symptoms appear. Using images from the best hours can improve performance, even if 

the images are not from the same days. 

However, even when the image acquisition is conducted at the best time, variations in 

illumination cannot be avoided, which results in reduced performance. There is a trade-off 

between using a large and wide database (acquired along many dates) and detecting the 

disease (the fewer dates, the easier). 
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Abstract 

 

The objective of this research was to detect downy mildew in grapevine leaves at early stages 

of development using thermal imaging technology based on the assumption that plant disease 

causes significant modifications in leaf temperature. Infected and healthy leaves of grapevine 

grown in a controlled greenhouse experiment were classified using thermal images that were 

acquired 1, 2 ,4 and 7 days from infection. Leaves were detected using the active contour 

algorithm for edge detection. The resulting leaf mask was used to calculate 14 features. 

Stepwise regression analysis revealed four significant features that were consequently used in 

prediction models. Five models were developed to classify between infected and healthy 

leaves. The best results were obtained by the support vector machine model using cross-

validation on all data with a classification accuracy of 69.2% and an F1 score of 74.9%. 

Identifying downy mildew 4 and 7 days after infection resulted in an accuracy of 66.4% and 

83.1% respectively. 

 

Keywords: Thermal imaging, Downy mildew, Grapevine, Disease detection 

 

Introduction 

 

Plant diseases are a significant factor causing production and economic losses in the 

agriculture industry (Savary et al., 2012). Direct yield losses of 20-40% of global agricultural 

productivity are caused by pathogens (Savary et al., 2012). Therefore, it is critical for 

sustainable agriculture to monitor plant health to prevent disease spread with the least damage 

to crop production. However, the main challenge is the difficulty in determining the physical, 

chemical and biological changes in plants, before there are symptoms of an infection (Cui et 

al., 2018).  

Disease detection techniques can be classified into invasive and non-invasive methods. 

Invasive techniques involve destructive leaf sampling followed by chemical treatments after 

direct identification of the pathogen (Sankaran et al., 2010). Non-invasive techniques identify 

plant diseases by detecting the impact of the pathogen on the physiological plant response. 

Currently, the most promising non-invasive disease detection techniques are sensors that 

measure temperature, reflectance or fluorescence (Mahlein, 2016).  

A rapid response variable that can indicate crop stresses before visual symptoms appear is leaf 

temperature (Khanal et al., 2017). A plant that is in stressed conditions reacts with 

physiological protection mechanisms leading to changes in leaf surface temperature  (A.-K. 

Mahlein, 2016).  Infrared thermography (IRT) enables to evaluate plant temperature that is 

related to plant water status and changes in transpiration as a result of infections by plant 

pathogens. The temperature difference within single leaves, plants and crop stands is a strong 

indicator of the appearance of plant disease (Mahlein, 2016). Thermal sensors have shown to 
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be more effective in detecting disease-induced early modifications compared to optical, multi 

and hyperspectral sensors (Khanal et al., 2017).  

The oomycete Plasmopara viticola, called also oomycete grape downy mildew (DM), is a 

serious pathogen of grapevine and spreads by extremely efficient cycles of asexual 

propagation (Kiefer et al., 2002). DM is native to North America and was accidentally 

introduced into Europe at the end of the 19th century, where it caused widespread damage to 

the grape industry (Gessler et al., 2011). The optimal environmental conditions for disease 

spread are high humidity and moderate temperatures. Infection by DM causes an increase in 

transpiration rate and a decrease in leaf temperature at early stages of infection. Further DM 

development causes the appearance of chlorotic and necrotic tissue, increased water loss and 

the inability of plant tissue to regulate stomatal opening (Calderón et al., 2014). Caro (2014) 

showed that IRT confirmed the spread of rose downy mildew infections. This technique 

detected the disease on roses one or two days before the appearance of visible symptoms. 

Wen et al. (2019) found that thermal infrared imaging could identify cucumber downy 

mildew before visual symptoms. The initial signs of infection in the thermal images were 

observed as early as 4 days after infection.  

This study aimed to develop an algorithm for early detection of grapevine downy mildew 

using thermal imaging. The specific objectives were to develop: (i) an image processing 

algorithm to derive the leaf outline and determine temperature parameters; (ii) a model to 

classify between infected and healthy grapevine leaves. 

 

Materials and methods 

Plant material 

Controlled experiments including treatments and imaging were undertaken in five campaigns 

and included 154 grapevine plants. The experiments took place from the end of December 

2019 to early April 2020 in experimental greenhouses of Evogene, Israel (31° 47' 20.472'' N, 

35° 12' 3.888'' E). Each campaign lasted 12 days and included 5 imaging days (healthy leaves 

and 1, 2, 4 and 7 days after infection) in which around 30 plants were tested each day. Each 

plant received two daily doses of water. In each of the five campaigns, the following stages 

were carried out: 

6. The leaves that were selected to be infected were tagged by color clips. 

7. On the first day of the campaign, images of the healthy leaves were acquired.  

8. 2-6 leaves in each plant were infected with downy mildew and were inserted in a high 

humidity chamber which allowed optimal conditions for the disease to develop.  

9. Imaging of each infected leaf on 1, 2, 4 and 7 days after infection. 

 

Thermal and RGB image acquisition 

To allow the plants to photosynthesize optimally, imaging was conducted outside of the 

greenhouse. The plants were placed outside at least one hour before imaging to adjust to the 

environmental conditions that were different from greenhouse conditions. The images were 

acquired between 10 a.m. and 3 p.m. to ensure high solar radiation that allowed plants to 

photosynthesize. Images were acquired only on sunny days with no clouds. Meteorological 

conditions were continuously acquired and included measurements of air temperature (°C), 

relative humidity, solar radiation (W/m^2), wind speed (m/sec) and wind direction. An image 

of each leaf was acquired by two cameras - a thermal camera (FLIR SC655, FLIR Systems, 

Melville, NY, USA) and an RGB camera (Canon EOS6D, Canon Inc., Taby, Sweden) that 

was used for documentation purposes. The infrared camera uses an uncooled microbolometer 

detector with resolution 640 × 480 pixels, sensitive in the spectral range of 7.5–13 μm and 

possesses an accuracy of ±2°C or ±2% of the reading. For each leaf, the thermal camera 

acquired a half-minute video and the RGB camera acquired two images. One image from each 
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video was selected for classification. The image was manually selected by visually estimating 

the maximal leaf surface. 

 

Database 

The database included 1065 records (425 healthy leaves and 640 infected leaves). The records 

included thermographic measurements from the thermal imaging of the leaves and 

environmental measurements from the meteorological station that were acquired 

simultaneously.  

To determine the earliest day a model can detect the disease, the data were divided into sets 

where each set contained different days of infected leaves: 

• Set 1- 1065 records; 640 leaves from 1,2,4,7 days after infection and 425 healthy leaves. 

• Set 2- 994 records; 569 leaves from 2,4,7 days after infection and 425 healthy leaves. 

• Set 3- 826 records; 401 leaves from 4,7 days after infection and 425 healthy leaves. 

 

Algorithm for leaves delineation  

Leaves were detected using edge detection with the 'Chan-Vese' active contour algorithm 

(Chan & Vese, 2001). This method ensures an unbiased contour enabling to either shrink or 

expand based on the image features. The software was implemented using MATLAB version 

R2019b (MathWorks Inc., Natick, MA, USA) with additional functions (Shawn Lankton, 

2007). The inputs for the algorithm were a thermal image converted to grayscale and an initial 

mask; the outputs were an image with the leaf contour and a final mask. For each leaf, the 

position and size of the initial mask were set manually. The active contour algorithm was run 

on the mask for a maximum of 200 iterations with a Lambda parameter (the smoothing term) 

of 0.3. 

 

Feature extraction and selection 

The following features were calculated from the leaf's mask: maximum temperature, 

minimum temperature, average temperature, maximum temperature difference (MTD), 

standard deviation (STD), median, percentile 2, 10, 25, 75, 90, 98, interquartile range (IQR) 

and mean absolute deviation (MAD). All features expressing temperature were normalized by 

T - Tair and replaced the non-normalized features.  

To create a supervised learning model, the significance of the variables on the response 

variable was evaluated by stepwise regression (stepwisefit, Statistics and Machine Learning 

Toolbox, MATLAB  ( . A variable with a low significance (p > 0.1) was removed until the 

most significant variables were obtained. Since there is no common method for feature 

selection, the features selected by stepwise regression were used in all models. Pearson’s 

correlation coefficient examined the correlation between the derived features.  

 

Classification models 

Five classification models were trained to classify infected and healthy leaves using 

MATLAB version R2019b (MathWorks Inc., Natick, MA, USA): 

• Decision tree- one of the most widely used and practical methods for inference and 

classification. It has a fast prediction speed and is easy to interpret. This information gain 

method does not assume any statistical properties of the data itself (e.g., normal 

distribution) and as such, it is best suited to this case where the statistical distribution is 

unknown. When building a decision tree, overfitting may arise which is represented in the 

decision tree as a deep tree with many levels. To avoid over-fitting the maximum number 

of splits has been limited. 

• Logistic regression- a statistical model that uses a logistic function to model 

a binary dependent variable and suitable in this case where there are two classes. 

https://localhost:31515/static/help/stats/index.html?s_tid=CRUX_lftnav
https://localhost:31515/static/help/stats/index.html?s_tid=CRUX_lftnav


88 
 

• Naïve bayes (NB)- a statistical classification technique based on Bayes Theorem. It is one 

of the simplest supervised learning algorithms. NB classifier is a fast, accurate and 

reliable algorithm. The classifier assumes that the effect of a particular feature in a class is 

independent of other features. However, the algorithm still appears to work well when the 

independence assumption is not valid. 

• Support vector machine (SVM)- robust prediction models with very high accuracy of 

disease detection. An SVM training algorithm builds a model that assigns new examples 

to one category, making it a non-probabilistic binary linear classifier. 

• Ensemble- The technique combines predictions from multiple machine-learning 

algorithms. In this work, the decision tree ensemble algorithm using the Boosting method 

was used. Boosting refers to a group of algorithms that trains weak learners sequentially, 

each trying to correct its predecessor. 

The classification was performed by K-fold cross-validation (K=10) to avoid model 

overfitting. 

 

Performance measures 

The performance of classification was quantified using accuracy, precision, recall and F1 

score. The class set contained two labels: positive (infected) and negative (healthy). Given a 

classifier and an instance, there were four possible outcomes: 

• True positive (TP): the leaf was infected and it was classified as infected.  

• False-negative (FN): the leaf was infected, but it was classified as healthy.  

• True negative (TN): the leaf was healthy and it was classified as healthy.  

• False-positive (FP): the leaf was healthy, but it was classified as infected. 

 

Accuracy is defined as the probability of correctly classifying a test instance: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
                                (1) 

 

Precision is called positive predictive value and computed as: 
 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                   (2) 

 

Recall is also referred to true positive rate and computed as: 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                     (3) 

 

The F1 score is the harmonic mean of the precision and recall and computed as: 
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                     (4) 

 

 

Results and Discussion 

 

Figure 1 depicts examples of thermal and RGB images acquired at different days of infection. 

More hot-spots appear in the thermal image of the leaf as more days have passed since the 

infection date.  
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Figure 2. The output of the active contour algorithm. Includes image, initial and final mask (A) 

and image with final mask (B) 

A B 
(d) 

(a) 

(c) 

(b) 

Healthy 

1 day after 

infection 

2 days after 

infection 

4 days after 

infection 

7 days after 

infection 

     

     
Figure 1. Examples of RGB images (top row) and thermal images (bottom row) of leaves from 

different infected days 

 

Figure 2 depicts the active contour process. Image and initial mask were the algorithm inputs 

(Fig. 2A(a), 2A(b)), the algorithm performed iterations to find the contours of the leaf (Fig. 

2A(c)), after a maximum of 200 iterations a final mask was obtained (Fig.  2A(d)). An image 

of the leaf with contour was returned (Fig. 2B). The returned final mask is a matrix where 

pixels inside the mask were set to leaf temperature and pixels outside the mask were set to 

zero. 

Feature selection 

The feature selection was conducted by stepwise regression (Table 1) resulting in the four 

significant variables that were selected: MTD, MAD, percentile 25 and 98. There is a high 

correlation between the percentiles (r=0.98) based on the Pearson analysis. However, this 

result was expected due to the nature of the variable's construction (both related to 

temperature from the same leaf). Therefore, these 4 variables were selected to train the 

classification models. 
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Table 1. Stepwise regression- estimated coefficients, standard errors and p-value 

Variable Estimated coefficients Standard errors P-value 

Perc-98 0.2569 0.0495 2.4678e-07 

Perc-25 -0.2405 0.0497 1.5278e-06 

MAD -0.5341 0.1632 0.0011 

MTD 0.0342 0.0183 0.0615  

Perc-10 -0.0890 0.1093 0.4153 

Perc-75 -0.1017 0.1351 0.4519 

IQR -0.0950 0.1362 0.4857 

Tavg -0.1058 0.2131 0.6196 

Perc-2 -0.0273 0.0551 0.6204 

Perc-90 0.0548 0.1402 0.6958 

median -0.0474 0.1315 0.7186 

Tmin -0.0154 0.0441 0.7275 

Tmax -0.0154 0.0441 0.7275 

STD -0.0528 0.3084 0.8640 

 

Classification models 

Each of the five models was optimized to determine the parameters for using the model. The 

optimal parameters obtained for each model were: 

• Decision Tree: 20 maximum splits, Gini's diversity index split criterion 

• Logistic Regression: Threshold 0.5 

• Naive Bayes: Gaussian Kernel 

• SVM: Gaussian Kernel using a scale of 2.6, box constraint level of 1 

• Ensemble: Decision Tree learner type, Boosted Trees using LogitBoost method, 20 

maximum splits, 30 learners using a learning rate of 0.1 

 

Table 2 presents the accuracy, F1 score precision and recall of the constructed models using 

the different data sets as described above. All models performed rather well with small 

differences between the models. When considering the three sets, the highest results were 

achieved by the SVM model with small differences between the performance measures of the 

different sets. 

To determine the earliest day for downy mildew detection, the accuracy was tested for images 

that were acquired 4 and 7 days after infection (Table 3). To avoid bias, these data sets were 

balanced. The results showed a difference of about 17% between the accuracy of the 4th day 

and the 7th day after infection. A possible reason why the accuracy results are not as high as 

expected is that the label whether the leaf was infected or healthy was set according to 

whether downy mildew application was applied or not (on leaves marked a priori) and not 

according to the actual development of the disease. The treatment dosages were different 

between the campaigns, which could have led to different levels of disease development. 

Therefore, this should be considered in further research. 
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Table 2. Results of all models on all data sets 

Model Performance 

measures [%] 

0,1,2,4,7 days 

after infection 

0,2,4,7 days 

after infection 

0,4,7 days 

after infection 

Decision 

Tree 

Accuracy    F1 
score 

   65.8         70.4 
   73.4         67.7 

   68.5         72.6 
   72.3         72.9 

   69.3         64.1 
   73.9         56.6 

Precision      Recall 

Logistic 

Regression 

Accuracy    F1 

score 

   60.6         71.0 

   63.6         80.5 

   62.9         69.7 

   65.4         74.5 

   65.4         62.2 

   66.2         58.6 

Precision      Recall 

NB Accuracy    F1 

score 

   66.4         70.7 

   74.3         67.3 

   70.0         72.4 

   76.5         68.7 

   69.6         66.9 

   70.1         63.3 

Precision      Recall 

SVM Accuracy    F1 

score 

   69.2         74.9 

   73.5         76.3 

   71.1         74.9 

   74.6         75.2 

   70.9         67.6 

   73.8         62.3 

Precision      Recall 

Ensemble Accuracy    F1 
score 

   65.9         71.2 
   72.3         70.2 

   69.8         72.9 
   75.1         70.8 

   70.0         66.4 
   72.7         61.1 

Precision      Recall 

 
Table 3. SVM classification results from balanced data sets 

Model Performance 

measures [%] 

0,4 days after infection 

256 infected, 256 

healthy 

0,7 days after infection 

145 infected, 145 healthy 

SVM Accuracy    F1 score    66.4                64.6 

   68.3                61.3 

   83.1                83.0 

   83.3                82.8 Precision      Recall 

 

In summary, the best model to classify healthy and infected leaves for all data was SVM, 

resulting in 69.2% accuracy and 74.9% F1 score in the cross-validation process. The accuracy 

was higher by 2.8% from the next best model which was Naïve Bayes and the F1 score was 

higher by 4.2%. The model used the following selected features MTD, MAD, percentile 25 

and 98 which were selected by stepwise regression.  

The highest accuracy was obtained from the set of 7 days after infection with an accuracy of 

83.1% and an F1 score of 83%. However, also a specialist pathologist can detect that the leaf 

is infected 7 days after infection. The SVM model can detect infections also 4 days after 

infection with an accuracy of 66.4% and an F1 score of 64.6% when a specialist pathologist 

cannot detect that the leaf is infected. 

 

Conclusions 

 

The results indicate the feasibility of detecting infected leaves in thermograms, even before 

visible symptoms of downy mildew appear. 

Ongoing research is focused on analyzing also actual disease severity. Additionally, due to 

the large difference between the results of days 4 and 7, new acquisitions will include also 5 

and 6 days after infection to determine the earliest day for grapevine downy mildew detection 

and to expand the database. 
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Appendix C - Experiment map and schedule  

Exp. 
Number 

Start date 

Fungi 
Application 
& Incubation 

O. N 

TP1 TP2 TP3 TP4 TP5 Number of plants 

9848 24/12/2019 29/12/2019 26/12/2019 
30/12/2019 + 

healthy 
31/12/2019 02/01/2020 05/01/2020 34+2 

10081 07/01/2020 12/01/2020 12/01/2020 13/01/2020 14/01/2020 16/01/2020 19/01/2020 30 

10082 14/01/2020 19/01/2020 19/01/2020 20/01/2020 21/01/2020 23/01/2020 26/01/2020 27 

10085 25/02/2020 01/03/2020 25/02/2020 02/03/2020 
03/03/2020 + 

healthy 
05/03/2020 08/03/2020 27+7 

10088 24/03/2020 29/03/2020 26/03/2020 30/03/2020 31/03/2020 02/04/2020 05/04/2020 27 

10446 15/10/2020 21/10/2020 - 25/10/2020 26/10/2020 27/10/2020 28/10/2020 15 

 
 

Green cells- executed imaging days 
Blue cells- canceled days due to weather conditions 
Red cells- canceled days by Evogene because of technical conditions
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Appendix D - Data sets 

Link: https://github.com/BarCohenBGU/database.git 

'All data new'- the full database included 1403 records 

'normalized_by_severity'- included 1097 records with actual disease severity of 5 or higher 

'features_without_outlires'- included 1012 records after removing outlier 

  

https://github.com/BarCohenBGU/database.git
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Appendix E - Daily data set 

Link: https://github.com/BarCohenBGU/daily-dataset.git 

Name of file: 'Data_27_10_2020_daily' 

  

https://github.com/BarCohenBGU/daily-dataset.git
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Appendix F – Normalization and Standardization 

The accuracy of the SVM model with different methods of normalization. 

 

 

 

 

  

Dataset Z-score normalization Min–Max normalization 

All data 0.8103 0.8172 

Balanced data 0.805 0.7914 
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Appendix G – Active contour algorithm  

Link: https://github.com/BarCohenBGU/active-contour-algorithm.git 

Included functions: main, active contours, get curvature, minimize energy, re initialization, 

read points, xlscol 

  

https://github.com/BarCohenBGU/active-contour-algorithm.git
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Appendix H – Active contour iterations  
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Appendix I – Images after edge detection algorithm 

Healthy 

1 day after infection 
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2 days after infection 

 

4 days after infection 
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5 days after infection 

 

6 days after infection 
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7 days after infection 

  



107 
 

Appendix J – Models 

Link: https://github.com/BarCohenBGU/classification-models.git 

Included functions: classification, classification daily, DecisionTree, NB, SVM, 

LogisticRegression, Ensemble 

  

https://github.com/BarCohenBGU/classification-models.git
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Appendix K – Statistics 

Included Histograms and boxplots, Outliers, Correlation 

Link: https://github.com/BarCohenBGU/statistics.git 

Name of file: 'statistics' 

  

https://github.com/BarCohenBGU/statistics.git
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Appendix L - Stepwise logistic regression 

Stepwise with method "both":  

 

After removing median and Tavg 
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Code: 

Link: https://github.com/BarCohenBGU/feature-selection.git 

Included function: grapevine 

  

https://github.com/BarCohenBGU/feature-selection.git
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Appendix M – Confusion matrixes and ROC curves 

True= infected 

False= healthy 

Decision tree 

 

Logistic Regression 
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Naive Base 

 

SVM 

 

Ensemble 

 

  



113 
 

Appendix N – F-test and T-test for classification 

 

 

F-test 

 

t-test 
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Appendix O – F-test and T-test for best time acquisition 

 

 

F-test 

 

t-test 
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 תקציר

 תאוכלוסיישל כלל  מזוןכדי לענות על הביקוש לב 2050עד שנת  הלהכפיל את עצמ תחייב תחקלאי תוצרת

חקלאות מדייקת מטרתה לתת את הטיפול האופטימלי עבור היחידה הקטנה ביותר בשדה או עולם. ה

הפחתה בכמות מרכזי לה הינן הגורם ;המזון העולמימחלות צמחים מהוות איום גדול על ביטחון בחממה. 

על כן, מעקב וזיהוי מוקדם אחר מחלות בצמחים באופן מהיר הפסדים כלכליים בענף החקלאות. התוצרת ול

ולא הרסני הוא קריטי. כיום, קיים שימוש נרחב בזיהוי מחלות בעזרת ניטור פיזיולוגי של צמחים, אך הוא יקר, 

באמצעות  הןשליטה בה שפר אתיכול ל ותמידע מוקדם על התפתחות מחל ח זמן רב.כרוך בעבודה רבה ולוק

 אסטרטגיות ניהול מתאימות.

גפן בשלבי התפתחות מוקדמים באמצעות טכנולוגיית הדמיה בעלי  כשותית זהותלן ת מחקר זה הומטר

 .תמונותה צילוםלקבוע את השעה האופטימלית ביום לותרמית 

 1403בוצע ניסוי מבוקר בחממה שבה גודלו צמחי גפן עם עלים נגועים ובריאים.  2019-2020בשנים 

 נוסףניסוי מבוקר בוצע  2020בשנת . מבוקרת דבקהלאחר הימים  7-ו  6, 5, 4, 2, 1 צולמותרמיות תמונות 

נים זמ הבשבע צולמותמונות של עלים בריאים ונגועים  575הדבקה. לאחר ימים  6 ותמונות צולמועל צמחים 

  .16:30 -ל 7:00שונים בין השעות 

מהאלגוריתם ומדדים נוספים  עלים זוהו באמצעות אלגוריתם המתאר הפעיל. מסכת העלים שנוצרהקצוות ה

 תחמשזוהו  בצעדים,רגרסיה לוגיסטית באמצעות תכונות.  13לחישוב  ושימש מהתחנה המטאורולוגית

 (.CWSI2 -ו MTD, STD, perc90, Cv)במודל חיזוי ביותר לזיהוי המחלה  תכונות משמעותיותה

, סיווג בייסיאני נאיביפותחו לסיווג בין עלים נגועים ובריאים: עץ החלטות, רגרסיה לוגיסטית,  מודליםחמישה 

 בוצע. קבוצות( K) . הביצועים הוערכו באמצעות אימות צולבת עצים(, והרכבSVM) ומכיםת יםמכונת וקטור

 הימים בין השונות התוצאות את להסביר על מנת נתונים באמצעות חלוקות שונות של רגישות ניתוח

 77.5%של  F1, ציון 81.6%עם דיוק של  SVMהתוצאות הטובות ביותר הושגו על ידי מודל ההדבקה.  שלאחר

דיוק  עם 11:30-ל  10:40 השעות בין היה זיהוי כשותיתתמונות ל צילוםהאופטימלי ל זמןה .0.874של  AUC-ו

 .0.895של  AUC-ו 80.5%של  F1ציון , 80.7%של 

 

 , סיווגחקלאות מדייקת, זיהוי מחלות מילות מפתח:
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