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Abstract 

Vegetation classification is very important for various applications like autonomous navigation and 

agricultural robots. In autonomous navigation, most obstacles detection algorithms are based on geometry 

and color analyses. Hence, soft obstacles like stems would be detected as obstacles and the vehicle would 

avoid them instead of driving through them, which causes unreasonable navigation. For many agricultural 

robotic applications, the vehicle must detect drivable paths in order not to destroy crops and must be able 

to distinguish between vegetation and non-vegetation. Usually paths are detected geometrically using laser 

sensors and color cameras. However, this is problematic in outdoor environments with changing light 

conditions (e.g., direct sun light, clouds …). The ability to classify the material of the path, and not only 

its geometric shape or color can provide a better and more robust way to identify paths.  

This research focused on classification between vegetation and non vegetation in outdoor conditions. 

A hyperspectral imaging system was used to acquire wavelengths in the range of 500 to 900 nm with 5nm 

FWHM (full width half maximum intervals). Different scenes were captured under different light 

conditions (direct sunlight, clouds, and different times of the day). The scenes contained several types of 

vegetation as well as different objects, like asphalt, soil and building walls. Seven algorithms were 

developed and adapted for vegetation and non-vegetation classification and their performances were 

compared: 1) the Mahalanobis distance algorithm, compared the Mahalanobis distance of a pixel to a 

known vector of vegetation; 2) the Derivative algorithm calculated the difference between each two 

consecutive wavelengths and compared it to a known vegetation difference. Instead of using all of the 

derivatives, only the most influencing ones were used; they were selected by a “C5.0” decision tree 

algorithm; 3) the Spectral Angle Mapper algorithm considered the wavelengths of a pixel as an N 

dimensional vector and calculated the angle between the pixel and a known vegetation vector. 4)  a 

variation of the Spectral Angle Mapper, which instead of using all the data used only the most important 

wavelengths. The most important wavelengths were chosen by a decision tree “C5.0” algorithm; 5) the 

Normalized Difference Vegetation Index (NDVI) algorithm which used two wavelengths, and calculated 

the normalized difference between them. For optimally choosing the parameters, a decision tree “C5.0” 

algorithm was used; 6) an extension of the NDVI algorithm: it calculated several NDVI‟s, and used a 

decision tree for the classification; 7) an adaption of the NDVI algorithm that considered the exposure time 

of the hyperspectral system, and searched for the best exposure time for each wavelength. 

 

 



Developments included: 

 Automatic selection of optimal parameters for the algorithms, 

 Automatic selection of optimal wavelengths, and 

 Three new algorithms (MSAM, NDVI_T and dynamic channel relation) based on existing 

algorithms. 

The results indicated that the SAM and the NDVI algorithms were the best out of the seven algorithms, 

with a classification accuracy of over 97% and 96% respectively. The two algorithms were not affected by 

changes in light, which was one of the basic requirements. 

 

Keywords: hyperspectral imaging, vegetation classification. 
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Chapter One: Introduction 

 

1.1 Description of the Problem 

Autonomous ground vehicles that use current sensors technologies such as laser scanners, cameras, radars 

and ultrasonic sensors often bypass soft obstacles like long leaves and high vegetation. This is mostly due 

to the fact that current algorithms are based on geometric and color analyses and encounter problems in 

classifying materials (Fogler 2003). The failure to reliably distinguish between vegetation and non-

vegetation is crucial for reasonable driving, to ensure the vehicle stays on the path. In agriculture it is 

more important not to drive on the vegetation because the crops are often parts of it. 

Current systems for sensing vegetation include 3d laser sensors (Rutzinger et al., 2010), color cameras 

(Bradley et al., 2007), and multi and hyperspectral systems (Fogler 2003, Chen et al., 2010). Current 

research achievements in outdoor classification are limited to 90% accuracy (Bradley et al., 2007).  

Hyperspectral sensing deals with acquiring and processing imaging for tracing materials and phenomenon 

on the surface. This imaging is usually comprised of dozens of narrow bands between the UV to the 

thermal infrared regions (0.4 to 14 µm). It is assumed that the object‟s physical and chemical 

characteristics correlate to the radiation that reflects from the object (a different amount is reflected at 

each wavelength depending on the material of the object, Landgrebe, 2002). Due to dozens of bands 

involved in the process, the problem dimension is very big, thus, sensitive to different kinds of noise that 

do not behave the same way in all of the bands. Since the hyperspectral imaging system is passive (it is a 

sensor that does not transmit any radiation to the outside world, only absorbs the radiation), the light 

source also has strong influence on its performance. When the light source is the sun, the atmosphere 

affects the behavior of the light on the ground; moreover, the object can be shaded by clouds or by other 

objects, which cause changes to light that hits it. 

Utilizing a hyperspectral imaging system in order to classify vegetation can add a very important data 

source to an autonomous vehicle in order for it to achieve its goals successfully. 

    

  

1.2 Objective 

The research objective is to develop an algorithm to classify between vegetation and non- vegetation in 

changing outdoor light conditions using a hyperspectral sensor without any a-prior knowledge on the 

scene. The aim is to increase detection accuracy above 95%.  
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1.3 Research innovations  

This research is based on existing algorithms that have been previously used in hyperspectral imaging. 

However, several new approaches have been developed: 

 The algorithms use only hyperspectral imaging as opposed to other research which employed 

additional sensors like laser scanners (Bradley et al., 2007). 

 Optimal wavelengths were automatically selected. Prior algorithms that dealt with hyperspectral 

imaging, selected wavelengths based on information from previous research and known behavior 

(Alchanatis et al., 2005). Plotting several pixels on a graph and selecting  from there the best ones 

(Ye et al., 2008), or executing the same algorithm several times, each time with a different 

wavelength (Yang et al., 2003). To obtain the optimal wavelengths in this thesis, a decision tree 

approach was taken assuming no assumption for a unique statistical behavior (like normal 

distribution). 

 The performance of every algorithm is highly dependent on its parameters. In this research optimal 

parameters were derived using a decision tree approach, instead of using a regression method 

(Bradley et al., 2007), or choosing them through experiments. 

 Three new algorithms were developed (MSAM, NDVI_T and dynamic channel relation) by 

adapting existing algorithms. 
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Chapter Two: Literature Review 

2.1 Hyperspectral Sensing 

Hyperspectral sensing is the ability to acquire information from an area by separating the spectral 

dimension of the electromagnetic radiation returning from the area into narrow and continuous bands 

(Shaw et al., 2002). Nowadays, due to the improvement of computer power, many applications in various 

fields (e.g., agriculture, intelligence and environment monitoring) rely on hyperspectral sensing 

(Landgrebe, 2002, Antonucci et al., 2010). 

  

Hypercube 

During hyperspectral imaging a hypercube (Figure 1) is acquired. The hypercube is a three dimensional 

cube which has two spatial dimensions (x, y) and one spectral dimension (z). The value of each pixel in 

the two spatial dimensions is the returned electromagnetic radiation at that pixel. The z axis includes all 

the wavelengths images (i.e., an image for each wavelength; in the following example the hypercube 

includes 224 images, one image for each wavelength). 

 

 

Figure 1 – Hypercube example (Short, 2009) 
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2.2 Interaction between the sun radiation and an object 

When electromagnetic radiation hits an object several actions occur. Some of the radiation is absorbed by 

the object, some of it is reflected and some goes thru the object (Van der Meer, 2004). The amount of the 

reflected radiation is what affects the sensor. The radiation flux upholds the conservation of energy rule, 

as shown in [Formula 1]. 

[Formula 1] r         

where: 

rλ – The flux transmitted from the object 

τλ – The flux going thru the object 

αλ – The flux absorbed by the object 

λ – Specific wavelength 

 

An example can be shown in Figure 2, when the atmosphere is the object (an object is not necessary 

solid). The radiation comes from the sun (defined as a blackbody) through the atmosphere. The radiation 

at the top of the atmosphere is presented in yellow, and the radiation at the bottom of the atmosphere is 

presented in red. The red indicates the flux going thru the object (τλ), while the difference between them is 

the transmitted and absorbed flux (αλ+ rλ). 

 

 

Figure 2 – Sun radiation at various places (Solar radiation handbook, 2008) 
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2.2.1 Absorption 

Absorption radiation is the radiation that stays in the object, when radiation is transformed to another kind 

of energy, usually heat. Each substance is responsible for absorption at a different wavelength. In Figure 

2, it is shown that at 750 nm, the atmosphere absorbed a lot of the radiation because of O2, and at 830 nm 

because of H2O. 

 

2.2.2 Reflectance 

Reflectance is defined as the ratio between the received radiation and the returned radiation, as shown in 

[Formula 2]. The ratio is influenced by the chemical characteristics of the object, the micro topographical 

surface of the object and the incident angle of the light source. 

[Formula 2]  Out

In

R




  

2.2.3 Transmittance  

The transmittance is defined as the amount of energy that goes through an object. Each object 

transmittance is depends on the object physical and chemical characteristics. 

 

2.3 Vegetation Spectral Behavior  

Each material reflects differently the electromagnetic radiation. This section elaborates the behavior of 

vegetation reflectance. For vegetation, there is a known difference between the red spectrum (around 650 

nm) and the NIR spectrum (around 750 nm) reflected radiation due to chlorophyll characteristics. This 

phenomenon is denoted as “Red Edge” as shown in Figure 3 and Figure 4. Green vegetation will also have 

a small edge around 500nm because the vegetation is green (Bradley et al., 2004). 
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Figure 3 – Reflectance of a pine tree 

(USGS spectral library) 

 

Figure 4 – Reflectance of a petunia flower 

(USGS spectral library) 

 

2.4 General Hyperspectral Algorithms 

In hyperspectral research, several algorithms as detailed below have been developed and tested for 

material detection by using the massive amount of data available. 

 

2.4.1 PCA Transformation 

The PCA transformation (Principal Component Analysis) transforms data received in a multi dimensional 

coordinate system to a new orthogonal coordinate system with fewer channels (Xing et al., 2007). The 

channels are not correlated and are called principle components. The first component has the most 

information about the data; the second one has the second most information and so forth. The analysis can 

be performed on a smaller scale of uncorrelated data (there is no obligation to select all components, only 

the strongest components can be taken for analysis). Reconstruction of the data from the selected 

components can be done by the inverse transformation, although the sample may not be reconstructed 

without errors due to the de-selection of all of the components. The reconstructed sample should be quite 

close to the original sample. Another element that affects the reconstructed sample is actually the shape of 

the original sample: if the original sample is smooth with little changes, the reconstructed sample should 

be better (there will be fewer components). The main advantage of the PCA method is its ability to deal 

with a small number of uncorrelated variables that allow us to do fast analysis (Xing et al., 2006). The 

disadvantages are the poor reconstruction and the fact that the components are mathematical numbers that 

do not have any relationship to the physical structure and hence, loose the spectral meaning of the material 

(Naganathan, 2008). 
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2.4.2 Channels relations 

A channels relation algorithm is based on a relation between two or more channels from the reflectance 

radiation by a certain material (Yuan et al., 2010; Jin et al., 2010; Ye X. et al., 2008). The algorithm that is 

mostly used is showed in [Formula 3]. 

[Formula 3]  One Two

One Two

C C
Index

C C





 

Where: 

 Cone and CTwo are two specific channels that are chosen according to the desired material to be detected. 

 The index values go from -1 to 1; the meaning of the value changes according to the selected specific 

channels and material. 

 

The advantages of the algorithm are the ability to: 

 find special characteristics that directly relate for a specific material like vegetation.  

  reduce the dependency of the light source intensity when one of the selected channels is very low 

and the other channel is very high. 

The disadvantages of the algorithm are: 

 it uses only a small portion of the available data. 

 due to noise and changes of micro topology of the material, the channels may slightly differ for the 

same material which may lead to miss-classification. 

 

2.4.3 Derivatives 

The derivative method is mainly used to enhance geometry features of a spectral sample (Gong et al., 

2001). When the derivative equals zero, the spectral sample has reached a local minimum or maximum 

and it changes its direction. Usually, for each material we can isolate several minimum and/or maximum 

points in a definite location, so if we encounter a derivative that equals zero in a known place, we can 

categorize the sample as the material. The points will not always be in the same location, but they will be 

in the vicinity of the expected location. Another usage of the derivative method is to discriminate between 

species of the same material. Different species can have a different derivative at a special wavelength. The 

derivative formula is shown in [Formula 4]. 

[Formula 4]  
1

1

( ) ( )
'( ) i i

i i

R RdR
R

d

 


  





 


 

Where: 
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R‟ – The value of the derivative method. 

λi – The wavelength in the i‟th channel. 

R(λ)i – The intensity in the  i‟th channel. 

 

The advantages of the algorithm are the ability to: 

 find special characteristics that directly relate to a specific material like vegetation or asphalt.  

The disadvantages of the algorithm are: 

 due to noise and changes of micro topology of the material, the location of the channels that the 

derivative is strong may slightly differ for the same material which may lead to miss-

classification. 

  

2.4.4 Fourier analysis 

Fourier analysis ([Formula 5] and [Formula 6]) allows us analyze the signal in the frequency domain, by 

transforming it to its cyclic components (cosine and sine, Tomiya et al., 2003). This breakdown occurs 

using a known FFT algorithm to transform the sample to the frequency domain. In the frequency domain, 

only the components with high coefficients are extracted and analyzed.  

[Formula 5]  
2( ) ( ) j sX f x s e ds







   

[Formula 6]  
2( ) ( ) j fX s x f e df







   

Where: 

X(f) – The sample in the frequency domain. 

X(s) – The sample in the spectral domain. 

 

The advantage of the algorithm is that a small amount of data represents almost all of the data. 

The disadvantage of the algorithm is that because of the transformation to the frequency domain, the 

perspective of the location in the spectral domain is lost. 
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2.4.5 Euclidian Distance 

A Euclidian distance algorithm is an algorithm that calculates the distance in the Euclidian space between 

the obtained sample and the average of previous recorded samples of a known material (Okamoto et al., 

2006) [Formula 7].   

[Formula 7]  2

1

( )
N

E i ki

i

d x u


   

Where: 

N – The number of channels 

xi – The obtained sample in a specific channel 

k – The number of groups that exist (different kinds of materials) 

µki – The average of a previously obtained data on a specific channel. 

 

The advantage of the algorithm is that it uses all of the information. 

The disadvantage of the algorithm is that it is sensitive to source intensity, and the pre-recorded materials 

must be similar. 

 

2.4.6 Mahalanobis Distance 

A Mahalanobis distance algorithm [Formula 8] is an improvement of the Euclidian algorithm by the fact 

that it takes into account the correlations of the dataset (DeVries, 2003).  

[Formula 8]  
1( ) ( )T

M k kd x S x     

Where: 

x – The obtained vector sample 

k – The number of groups that exist (different kinds of materials) 

µk – The vector from the dataset of a specific material. 

S – Covariance matrix of the dataset. 

 

If the channels are not correlated (the covariance matrix is diagonal), the calculation will be as seen in 

[Formula 9]. 

[Formula 9]  
2

2
1

( )N
i ki

M

i

x u
d




   

Off course, if the variance is 1, we shall receive the Euclidian distance. 
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The advantages of the algorithm are: 

 it uses all of the information 

 it uses statistical criteria to get a more precise matching to the dataset. 

The disadvantage of the algorithm is that it is sensitive to source intensity. 

 

2.4.7 Spectral Angle Mapper (SAM) 

Spectral Angle Mapper is an algorithm that calculates the angle between two vectors (each vector is 

essentially all the wavelengths), one is a known vegetation the other is the checked pixel (Park et al., 

2007; Fogler 2003). This calculation is immune to changes in the reflectance from an object caused by 

changes in light source intensity and incited angle. The decision if the two materials (the sample and the 

one comparing from the dataset) are the same is directly connected to the angle: the closer the angle to 

zero, the materials are more similar. The angle calculation is shown in [Formula 10]. 

[Formula 10]  

1 1

2 2

1 1

cos

N

T
i ik

i k
k

N N
k

i ik

i i

x
x

x
x









 

 

 
 
  
 
 
  



 

 

 

Where: 

N – The number of channels 

xi – The obtained sample in a specific channel 

k – The number of groups that exist (different kinds of materials) 

µki – Average of a previously obtained data on a specific channel. 

The advantages of the algorithm are: 

 It uses all of the information. 

 It‟s immune to changes in intensity due to incited angle or source change. 

The disadvantage of the algorithm is its sensitivity to noise, it is not equal in all the channels. 
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2.4.8 Summary of the algorithms 

The algorithms are compared in Table 1 with applications described in Table 2. 

Table 1 – Summary of the advantages and disadvantages of the algorithms 

Algorithms Principles Advantages Disadvantages 

PCA 

Transformation 

Transforms the problem 

dimension into a smaller one, 

by keeping most of the data 

 Problem dimension is 

reduced 

 Loses the 

perspective of the 

spectral domain 

Channel 

Relation 

Compares between two 

wavelengths, and check for a 

known difference 

 Quick - uses two 

wavelengths 

 Immune to light 

changes 

 Uses only small 

portion of the data 

Derivative Checks the derivative between 

several wavelengths 

 Quick - uses several 

wavelengths 

 Uses only small 

portion of the data 

Fourier 

Analysis 

Transforms the problem to the 

frequency domain. 

 Problem dimension is 

reduced 

 Loses the perspective 

of the spectral domain  

Euclidian 

Distance 

Compares the Euclidian 

distance of the sample to a 

known Euclidian distance of 

vegetation 

 Uses all information  Sensitive to light 

changes 

 The pre-recorded 

vegetation types must 

be similar 

Mahalanobis 

Distance 

Comparing the Mahalanobis 

distance of the sample to a 

known Mahalanobis distance of 

vegetation 

 Uses all information 

 Uses statistical 

criteria for more 

accurate classification 

 Sensitive to light 

changes 

SAM Considers the wavelengths as 

an “N” dimensional vector, and 

calculating the angle between 

the sample‟s and the vegetation 

vector. 

 Uses all information  

 Immune to light 

changes 

 Relatively slow 
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Table 2 – Examples of algorithms in applications 

Algorithms Types of materials 

classified 

Environmental 

Conditions 

Sensors Results 

PCA 

Transformation 

Detect bruises on 

apples 

Indoor, constant 

light conditions 

Hyperspectral 97.5% 

Beef tenderness 

prediction 

Indoor, constant 

light conditions 

Hyperspectral 96.4% 

Channel 

Relation 

Characterizing 

vegetation spectral 

features 

Outdoor Hyperspectral Qualitative  - 

showed graph 

Classifying 

vegetation, water, 

rock, minerals 

Indoor Multispectral Qualitative  – 

showed histograms 

Classifying 

ground, vegetation 

and obstacles 

Outdoor Multispectral 

and laser 

scanner 

85.7% for 3 classes 

90.6% for 

vegetation 

classification 

Derivative Classify conifer 

species 

Outdoor Hyperspectral 85.3% 

Fourier 

Analysis 

Classifying pines Outdoor – airborne 

acquisition, testing 

and training data 

from the same 

recording 

Hyperspectral ~93% 

Euclidian 

Distance 

Plant classification Outdoor Hyperspectral 60% 

Mahalanobis 

Distance 

Mapping  

rainforest         

sub-formations 

Outdoor - satellite Hyperspectral Qualitative  – 

showed image 

SAM Two plant species Indoor Hyperspectral Qualitative  - graph 

Contaminant 

classification 

Indoor Hyperspectral 90% 
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Chapter Three: Methodology 

3.1 General 

A hyperspectral data acquisition system was used to classify between vegetation and non-vegetation in an 

outdoor environment. Classification algorithms were developed and adapted. 

 

3.1.1 Assumptions 

This study assumes the following: 

 Off-line classification is conducted (classification is not in real-time due to sensor limitations). 

 During recording of a full dataset (i.e., when sampling all of the wavelengths along approximately 

30 seconds), there are no changes in the environment. 

 There is no knowledge about the external light conditions (like direct sunlight, clouds and 

shadows, indirect light). 

 

3.2 Experimental Setup 

The hyperspectral system was composed of commercial components as described in Figure 5 and Figure 

6. The spectral component is selected using an acousto-optic tunable filter (AOTF) which acts as an 

electronically tuned bandpass filter. The available wavelengths are 500-900 nm with a 5nm FWHM.  The 

image sampled by the AOTF filter is captured by a black and white CCD cooled camera (COOL-

1300Q/QC by VDS Company) with a pixel resolution of 1280X1024, and 640X512 with 2x2 binning 

technology. Binning technology is a special technology in which each 4 adjunct pixels serve as 1 pixel, 

resulting in increased light for each pixel. The lens angle was 12° horizontally and 9° vertically. The 

control of the AOTF was done by a Direct Digital Synthesizer (DDS) which sends a RF wave to the 

AOTF (through an amplifier), and thereby changes the filter characteristics.  

Seven hypercubes
1
 were taken in different scenarios, at different hours of the day, in order to test different 

light conditions with different types of vegetation (Figure 7). Each hypercube had at least 30% vegetation 

in the image. 

 

                                                 

1
 A hypercube is a three dimensional cube which has two spatial dimensions (x,y) and one spectral dimension (z). The value of 

each pixel in the two spatial dimensions is the returned electromagnetic radiation at that pixel. The z axis includes all the 

wavelengths images (i.e., one image for each wavelength). 
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Figure 5 – Hyperspectral imaging system architecture 

 

 

Figure 6 – Photograph of the hyperspectral imaging system  
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Figure 7 – Different types of environments 
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3.3 Algorithms 

The following algorithms were developed and adapted to classify between vegetation and non vegetation: 

 

1. Mahalanobis distance 

2. Derivative 

3. Spectral Angle Mapper (SAM) 

4. Minor Spectral Angle Mapper (MSAM) 

5. Channel relation (NDVI) 

6. Channel relations Tree (NDVI_T) 

7. Dynamic Channel relations  

 

Specific new developments in each algorithm are detailed in Chapter Four. 

 

3.4 Performance Measures 

Three performance measures were used for evaluation (Table 3): Total Success Rate (number of correct 

detections), False Positive Rate and False Negative Rate. The measures were calculated from the 

confusion matrix (Table 3) by comparing the result of the algorithms (the out coming classified image) to 

a manual classified image and are detailed below. 

  

The manual classified image was created by taking the captured images at a specific wavelength (590nm), 

manually marking in green the pixels which were vegetation and in blue the pixels that were on the edges, 

and as such could be either vegetation or non-vegetation. All other pixels were considerate non-

vegetation. See Figure 8 for an example. All manually marked figures are detailed in Appendix E.  
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a – image at 590nm b – manually classified image 

Figure 8 – Example of an image and a manual classified image 

 

Table 3 – Confusion Matrix 

 Actual state 

Vegetation Non-vegetation 

 

Classifier 

 Result 

Vegetation True Positive False positive                 

(Type 1 Error) 

Non-vegetation False Negative           

(Type 2 Error) 

True Negative 

 

 

Total Success Rate 

The total success rate is calculated according to [Formula 11]. This measure states the number of correctly 

classified pixels relative to all the total number of pixels in the image. 

 

[Formula 11] 

( )True Positive True Negative
total success rate

All of the pixels


  
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False Positive Rate 

The False Positive rate is calculated according to [Formula 12]. This measure states how many non-

vegetation pixels were classified as vegetation from all of the non-vegetation pixels. 

 

[Formula 12] ( )
( )

False Positive
flase positiverate

False Positive True Negative
 


 

 

 

False Negative Rate 

False Negative Rate is calculated according to [Formula 12]. This measure states how many vegetation 

pixels were classified as non-vegetation from all of the vegetation pixels. 

 

[Formula 13] ( )
( )

False Negative
flasenegativerate

False Negative True Positive
 


 

 

 

3.5 Decision tree 

The decision tree is one of the most widely used and practical methods for inference and classification. A 

decision tree can be represented as sets of “if-then” rules. In order to choose which of the attribute (inputs) 

best discriminates the training data, usually a statistical property known as information gain is used. 

Information gain is the expected reduction in entropy (uncertainty) caused by partitioning the examples 

(the training data) according to an attribute. This information gain method does not assume any statistical 

properties on the data itself (e.g., normal distribution) and such is best suited in this case, when the 

statistical distribution is unknown. 

When building a decision tree, the over-fitting phenomenon may arise. Over-fitting is, modeling the 

training data to well, and as a result, representing a particular case and not the general one. Over-fitting is 

represented in the decision tree as a deep tree with many levels. To avoid over-fitting, a simple method 

was applied: assuming a minimal number of instances (in our case - pixels) in each leaf, thus not allowing 

the tree to grow more and more. 
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3.6 Calibration 

In sensing, usually there is a need to calibrate each sensor. This is commonly done by using a white paper, 

which serves as a reference. However, this requires accurate procedures such as using the same type of 

white paper, and applying the same illumination source located in the same position (range and 

orientation). Since it is usually very problematic to ensure identical operating conditions (e.g. even if the 

light source is from the same type, if it was working for a long time, its behavior is different) this thesis 

employed a different approach for calibration. Instead of using the same algorithm and its parameters, and 

bringing the new sensor to the old sensor performances, the opposite approach was chosen. For every 

sensor, recordings were made, and new parameters were chosen for each specific algorithm (as described in 

Chapter Four) to ensure it fits the "old" sensor. While this procedure requires more time to adjust for a new 

sensor, it ensures optimal fit to that sensor. 

 

3.7 Clouds interference 

To check how the clouds affect the transmission of the light coming from the sun, several recordings were 

conducted on a white paper for all the wavelengths. Several recordings were done when the sun was 

without any interference, and the light hit the white paper directly. Other recordings were made when 

there were lots of clouds that blocked the sun completely. To neglect the exposure time, which is different 

for each recording, especially between the direct sun and the clouds, all data was normalized. The 

normalization for each recording was made by subtracting the minimum value from each wavelength, and 

dividing each wavelength by the maximum value, resulting in values between zero and one [Formula 14]. 

Ten different pixels in different areas in the image were taken and the mean was calculated for every 

wavelength. This was repeated for all of the recordings (direct sunlight and clouds).  

[Formula 14] 

min( )

max( ) min( )

i
i

Wave Waves
Wave

Waves Waves





 

Where:  

Wavei – The wavelength to be normalized. 

Waves – all of the wavelengths. 
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3.8 Sensitivity Analysis 

Several sensitivity analyses were conducted for each algorithm as detailed below. 

3.8.1 Independent evaluation of hypercubes 

For each algorithm, each hypercube was tested independently: half of the pixels from each hypercube 

were chosen randomly for the training data and the rest were used as the testing data.  

Each hypercube behaves differently due to the different conditions in the environment (e.g., light). 

 

3.8.2 Cross Validation 

Each of the algorithms was tested on all of the hypercubes. The training data consisted of half of the 

hypercubes chosen randomly while the testing data was the remaining data. 

 

3.8.3 Training by different hypercubes 

The training data consisted of two hypercubes chosen randomly, while the testing data were the five 

remaining hypercubes. This was done twice, each time with different hypercubes serving as training data. 

 

3.8.4 Light conditions 

To check the algorithm's robustness to variance in light conditions, each hypercube was checked under 

different light conditions. The light conditions were manually categorized into three sections: Strong, 

Medium and Low. For three of the hypercubes the medium and low categories were created by 

multiplying the hypercubes by a factor of 0.9 and 0.7 accordingly. The other two hypercubes were taken 

with smaller exposure times representing low lighting conditions. 

 

3.8.5 Noise 

In order to check the robustness to noise, noise was added to each wavelength, for every pixel in the 

testing data. The level of the added noise varied from 1% to 10%. The testing data consist of five 

hypercubes randomly selected. 

 

3.8.6 The number of hypercubes for training  

In order to check the susceptibility of the algorithm to the number of training hypercubes, additional 

training sets with four and five hypercubes as training sets were evaluated.  
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Chapter Four: Algorithms  

4.1 Overview 

Seven algorithms were developed and adapted for classifying between vegetation and non vegetation: 

Mahalanobis distance, Derivative, SAM, MSAM, NDVI, NDVI_T and dynamic channel relation. 

The specific developments included: 

 Optimal parameters were found for each algorithm by developing decision trees.   

 The specific derivatives for the Derivative algorithm were chosen automatically by a decision tree. 

 The MSAM algorithm is a variation of the SAM algorithm; this is a new algorithm developed in 

this research in order to check the assumption that most important information is located in only a 

few wavelengths. The important wavelengths were chosen automatically by a decision tree in this 

algorithm and in the NDV1 algorithm. 

 The NDVI_T algorithm is a variation of the NDVI algorithm, is a new algorithm developed in this 

research in order to check if multiple NDVI algorithms can improve performance. 

 The Dynamic Channel Relation is another variation of the NDVI algorithm, also developed in this 

research, in order to check the behavior of the NDVI algorithm, using different exposure time 

settings for the two wavelengths. 

 

4.2 Mahalanobis distance 

The Mahalanobis distance algorithm requires a reference of the vegetation. To implement the algorithm, 

we assumed that none of the channels are correlated, thus enabling us to use [Formula 15]. 

To determine the vegetation reference, several steps were conducted: first, the mean and the standard 

deviation of all vegetation pixels were calculated from the training data. Second, the Mahalanobis 

distance was calculated for every pixel in the training data (vegetation and non-vegetation alike). In order 

to optimally decide on the correct Mahalanobis distance representing vegetation, a “C5.0” decision tree 

algorithm was used. 

[Formula 15]  
2

2
1

( )N
i ki

M

i

x u
d




   

Where: 

xi – The obtained vector sample. 

k – The number of groups that exist (different kinds of materials under different lighting conditions). 

µki – The vector from the dataset of a specific material. 
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σ – Standard deviation of a specific channel.  

 

Both vegetation and non-vegetation distances were entered into the decision tree algorithm as inputs; the 

output was the actual tree design. To avoid over-fitting, the decision tree was designed so that each of the 

leaves of the decision tree contained at least 1/3 of the amount of all the pixels, thus creating a decision 

tree with 1 root and two leaves. The optimal distance for deciding if a pixel is vegetation or non-

vegetation is equivalent to the condition to go to the “vegetation” leaf from the root. For the testing set, the 

Mahalanobis distance of each pixel was calculated and compared to the optimal vegetation distance 

derived from the decision tree. A pixel with a distance greater than the Mahalanobis distance was 

classified as non-vegetation; a pixel with a distance smaller or equal to the Mahalanobis distance was 

classified as vegetation. 

 

 

4.3 Derivative algorithm 

The derivative algorithm requires calculation of all possible adjacent derivatives. Since there are 81 

possible wavelengths, 80 derivatives were calculated between each wavelength and its adjunct 

wavelength. To optimally select the most important derivatives, the “C5.0” decision tree algorithm was 

used. As inputs, all of the derivatives of every pixel from the training set were entered; the output was the 

actual tree design. To avoid over-fitting, the decision tree was designed so that each of the leaves of the 

decision tree contained at least 10% of the amount of all the pixels, thus creating a decision tree not to 

short (so it can consider several derivatives), but still without the over-fitting problem. The decision tree 

that was created is depicted in Figure 9. For the testing set, we calculated only the derivatives that appear 

in the decision tree, and just followed the tree from the root to the bottom leaf. 

  

The wavelengths received by the vegetation were between 650 to 735 nm. The fact that the most 

important derivative are in this area, also known as the “Red Edge” for vegetation, reinforces the 

correctness of the implementation. 
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Figure 9 – Derivative, vegetation decision tree 

 

 

4.4 Spectral Angle Mapper (SAM) 

The SAM algorithm requires references from the vegetation to be classified. The vegetation reference was 

created by calculating the average of every wavelength, when the data is all of the vegetation pixels in the 

training set. All of the wavelengths were taken into consideration. Then, we calculated the angle between 

each pixel in the training to the reference according to [Formula 16]. To optimally choose the threshold 

that corresponds to vegetation, the “C5.0” decision tree algorithm was used. Both vegetation and non-

vegetation angles were entered into the decision tree algorithm as inputs; the output was the actual tree 

design. To avoid over-fitting, the decision tree was designed so that each of the leaves of the decision tree 

contained at least 1/3 of the amount of all the pixels, thus creating a decision tree with one root and two 

leaves. The optimal angle for deciding if a pixel is vegetation or non-vegetation is equivalent to the 

condition to go to the “vegetation” leaf from the root. For the testing set, the angle of each pixel was 

calculated (by comparing it to the reference vegetation) and compared to the optimal vegetation angle 

derived from the decision tree. A pixel with an angle greater than the optimal angle was classified as non-

vegetation; a pixel with an angle smaller or equal to the optimal angle was classified as vegetation. 
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[Formula 16]  
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 

 

 

 

Where: 

N – The number of channels. 

xi – The obtained sample in a specific channel. 

k – The number of groups that exist (different kinds of materials). 

µki – Average of a previously obtained data on a specific channel. 

 

4.5 Minor Spectral Angle Mapper (MSAM) 

The Minor Spectral Angle Mapper algorithm process is done exactly like the SAM algorithm except for 

one change: instead of using all of the 81 wavelengths, the algorithm uses only the most five important 

wavelengths. To select the most effecting wavelengths, the “C5.0” decision tree algorithm was used. The 

inputs to the decision tree were the entire 81 wavelengths; the output was the classification tree (Appendix 

C). The upper five wavelengths (the wavelengths that are closer to the root) were chosen, as they are the 

most influencing ones. This method of optimally choosing the most important wavelengths and using only 

them was specially developed in this thesis in order to obtain performance with a low number of 

wavelengths.  

 

 

4.6 Channel relation (NDVI) 

The channel relation algorithm requires selection of three parameters from the channel relation equation 

[Formula 3]: Channel1, Channel 2 and “Index”. The acquisition system provides 81 channels, so there are 

3240 options [Formula 17] for checking all of the possibilities of the “Channel1” and “Channel2”. In 

addition, it is necessary to determine the “Index” parameter. 
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[Formula 17]   
80

1

80 81
3240

2i

i



   

To optimally select these three parameters, the “C5.0” decision tree algorithm was used. To select the 

optimal channels and the threshold, two steps were conducted. First, the entire 81 channels were entered 

as inputs to the decision tree. Then, the most important wavelengths were taken from the decision tree by 

taking the upper nodes of the tree (in a decision tree – the higher the node, the wavelength is more 

important, Appendix C). After receiving only five wavelengths, all of the possible “channel relations” 

options were calculated and re-entered to the “C5.0” algorithm by creating a new decision tree. The root 

of the new tree is the final “channel relation” and it also contains the required “Index” parameter (Figure 

10). 

The wavelengths for vegetation were accordingly selected between 665 and 800 nm. The fact that the 

most important channel relation is in the area of the known “Red Edge” for vegetation (Fogler 2003), 

reinforces the correctness of the implementation part. The channel relation for vegetation is also called 

NDVI (Normalized Difference Vegetation Index). 

 

 
Figure 10 –Channel relation - vegetation decision tree 
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4.7 Channel relations tree (NDVI_T) 

This algorithm is an extension of the single channel algorithm which was specially developed in this 

thesis. It is calculated exactly the same as the previously channel relation, except for one change: instead 

of taking only the root in the second decision tree, the entire tree was considered. This will use several 

channel relations, each with different wavelengths.  

 

The final decision tree is depicted in Figure 11:  

 

  
Figure 11 – Multiple channel relation - vegetation decision tree 
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4.8 Dynamic Channel relations  

The dynamic channel relation is a variation of the “regular” channel relation algorithm specially 

developed in this thesis in order to check the effect of exposure time for receiving better results. The 

resulting intensity for each wavelength is influenced by several factors such as light source intensity, 

atmosphere, filter characteristics, CCD characteristics and exposure time. These factors behave differently 

from wavelength to wavelength. Most of the factors cannot be controlled, but the exposure time can be 

controlled. Giving a longer exposure time to a specific wavelength is equal to multiplying its current 

intensity with a weight. As opposed to the previous NDVI which uses [Formula 3], the dynamic channel 

relation uses a different weight for each wavelength, as seen in  [Formula 18]. This was implemented in 

simulation. From the hypercubes of the training set only the two wavelengths that were found in NDVI 

were taken. In each simulation, each wavelength was multiplied by its weight. The weights were changed 

between 0.2 - 2, in 0.2 intervals. If the value was greater than the maximum (implying saturation 

condition), it was changed to be the maximum. There were a total of 200 simulations to cover all 

possibilities. For each simulation, the „Index‟ was calculated exactly like the NDVI – creating a decision 

tree using a C5.0 algorithm, and extracting the Index from the first level of the decision tree. 

 

 [Formula 18]  One Two

One Two

C C
Index

C C

 

 





 

 

Where: 

COne and CTwo are two specific channels that are chosen according to the desired material to be detected. 

α is the weight for COne.  

β is the weight for CTwo.  

Index is the criteria to choose if the material is vegetation or not. 
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Chapter Five: Results and Discussion 

5.1 Mahalanobis distance 

5.1.1 Independent evaluation of hypercubes 

Result indicated that the algorithm is not good for vegetation classification (Table 4): The average success 

rate was 85.7%, the FPR (False Positive rate) was 12.3% and the FNR (False Negative Rate) was 14.3%. 

All three measures had high standard deviations (approximately 10%) implying inconsistent results which 

are highly dependent on the examined hypercube. 

  

Table 4 – Mahalanobis - Independent evaluation of hypercubes 

  Total Success Rate False Positive Rate False Negative Rate 

Hypercube1 0.836 0.066 0.208 

Hypercube2 0.913 0.084 0.090 

Hypercube3 0.758 0.111 0.293 

Hypercube4 0.955 0.047 0.044 

Hypercube5 0.935 0.012 0.097 

Hypercube6 0.679 0.449 0.202 

Hypercube7 0.925 0.094 0.064 

Average 0.857 0.123 0.143 

Std 0.104 0.147 0.092 

 

5.1.2 Cross Validation 

The cross validation results (Table 5) indicates low classifications results (only 85% total success with 

approximately 14.5% FPR and FNR). This implies that the algorithm has a problem with training data 

consisting of various illumination conditions. 

Table 5 – Mahalanobis – Cross Validation 

Total Success Rate False Positive Rate False Negative Rate 

0.857 0.152 0.140 

5.1.3 Training by two hypercubes 

Two hypercubes were used as the training data and the other five hypercubes were the testing data (Table 

6). The difference in the total success for the two training sets, suggests that the algorithm is very sensitive 
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to the training set. Even in the better training set, best performance yielded only 86% success, with a FNR 

of 10.6% and a very high FPR (42%) implying poor classification.  

  

Table 6 – Mahalanobis – Training by two hypercubes 

  Total Success Rate False Positive Rate False Negative Rate 

Training Set 1 0.860 0.421 0.106 

Training Set 2 0.543 0.752 0.008 

Average 0.701 0.586 0.057 

Std 0.224 0.234 0.070 

 

 

 

  

a – real image b – classified image 

Figure 12 – Example of Mahalanobis distance classification 
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5.1.4 Different light conditions 

Results (Table 7) indicate that the Mahalanobis distance algorithm behaves the same under different light 

conditions, but still performs poorly with average success of 87.4% and a FPR of 38.9% and FNR of 

10.8%. 

 

Table 7 – Mahalanobis – Different light conditions 

  Total Success Rate False Positive Rate False Negative Rate 

Strong 0.860 0.421 0.106 

Medium 0.880 0.284 0.105 

Low 0.881 0.462 0.112 

Average 0.874 0.389 0.108 

Std 0.012 0.093 0.004 

 

 

5.1.5 Noise 

Results indicate that noise up to 10% does not affect the algorithm‟s performances (Table 8). There is 

slight increase in FNR and decrease in FPR for 10% noise as compared to 8% noise which has no effect. 

 

Table 8 – Mahalanobis – Noise 

Noise Level Total Success Rate False Positive Rate False Negative Rate 

1% 0.859 0.417 0.112 

2% 0.860 0.415 0.113 

5% 0.863 0.404 0.120 

7% 0.869 0.386 0.126 

8% 0.869 0.360 0.141 

10% 0.853 0.275 0.167 
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5.1.6 Training by different number of hypercubes  

Results indicate a drastic decrease in performance with an average of 56.9% when using four and five 

hypercubes as training sets. The FPR and FNR are also higher with a 55.8% and 20.9% respectfully. This 

result is expected due to the fact that the Mahalanobis distance algorithm calculates the normalized 

distances in the variance, and when there are lots of vegetation pixels taken under different light 

conditions, the variance for each wavelength is  big, and the difference between the distance that represent 

vegetation and the distance that represent non-vegetation is very small. 

 

Table 9 – Mahalanobis – Training by different number of hypercubes 

  Total Success Rate False Positive Rate False Negative Rate 

4 Hypercubes 0.630 0.488 0.166 

5 Hypercubes 0.508 0.558 0.209 

Average 0.569 0.523 0.187 

Std 0.086 0.049 0.031 

 

 

 

5.2 Derivative 

5.2.1 Independent evaluation of hypercubes 

Almost all of the hypercubes received more than 94% total success (Table 10) except for one hypercube 

which resulted in a low total success (Hypercube6). The average success rate was 94.9%, the FPR was 7% 

and the FNR was 3.7%. The high success rate implies that the algorithm is good for classifying under 

similar light conditions. All three measures had low standard deviations (approximately 3%) which 

implies consistency of the algorithm. 
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Table 10 – Derivative - Independent evaluation of hypercubes 

  Total Success Rate False Positive Rate False Negative Rate 

Hypercube1 0.948 0.065 0.041 

Hypercube2 0.945 0.064 0.047 

Hypercube3 0.958 0.046 0.039 

Hypercube4 0.974 0.036 0.019 

Hypercube5 0.971 0.050 0.012 

Hypercube6 0.886 0.173 0.077 

Hypercube7 0.962 0.059 0.026 

Average 0.949 0.070 0.037 

Std 0.030 0.046 0.022 

 

5.2.2 Cross Validation 

The cross validation results (Table 11) indicates very good classifications results (total success of 94% 

with FPR of 12.6% and FNR of 2.9%). This implies that the algorithm can classify well, when the training 

and testing data are with the same lighting conditions. 

 

Table 11 – Derivative – Cross Validation 

Total Success Rate False Positive Rate False Negative Rate 

0.941 0.126 0.029 

 

5.2.3 Training by two hypercubes 

Two hypercubes were used as the training data and the other five hypercubes were the testing data (Table 

12). In this case the algorithm tends to have a problem with classifying correctly other vegetations in 

different light conditions with a total success of 86% (for both training sets). The FPR is very high in this 

case, because pixels were classified as vegetation when there was a change from shadow to light. In both 

training sets, the FPR and FNR are approximately the same (with low standard deviations). 
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Table 12 – Derivative – Training by two hypercubes 

  Total Success Rate False Positive Rate False Negative Rate 

Training Set 1 0.863 0.494 0.017 

Training Set 2 0.879 0.427 0.047 

Average 0.871 0.460 0.032 

Std 0.012 0.047 0.021 

 

 

 

 

  

a – real image b – classified image 

Figure 13 – Example of Derivative classification 

 

5.2.4 Different light conditions 

The results (Table 13) show that the Derivative algorithm maintained medium performances, when the 

light conditions changes with average success of 87.3% and a FPR of 46.6% and FNR of 1.6%. 

.  

Table 13 – Derivative – Different light conditions 

  Total Success Rate False Positive Rate False Negative Rate 

Strong 0.863 0.494 0.017 

Medium 0.867 0.481 0.015 

Low 0.889 0.424 0.016 

Average 0.873 0.466 0.016 

Std 0.014 0.037 0.001 
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5.2.5 Noise 

Results indicate that noise affects the performances even with low noise of 1% (Table 14). The total 

success is lower (83.2 vs. 87.3), the FPR is higher (53.7 vs. 46.6) and the FNR is slightly higher (2 vs. 

1.6). 

  

Table 14 – Derivative – Noise 

Noise Level Total Success Rate False Positive Rate False Negative Rate 

1% 0.832 0.537 0.020 

2% 0.800 0.577 0.030 

5% 0.764 0.611 0.056 

7% 0.756 0.617 0.078 

8% 0.756 0.617 0.080 

10% 0.757 0.616 0.080 

 

 

 

 

5.2.6 Training by different number of hypercubes  

It shows a drastic increase in performances when using four hypercubes as training sets (92% total 

success, 15% FPR and 1.2% FNR), however, performance decreases when using five hypercubes. The 

reason for this is that the hypercubes are taken in different light conditions, and hence, behaves differently. 

  

Table 15 – Derivative – Training by different number of hypercubes 

  Total Success Rate False Positive Rate False Negative Rate 

4 Hypercubes 0.920 0.152 0.012 

5 Hypercubes 0.825 0.135 0.183 

Average 0.872 0.144 0.098 

Std 0.067 0.011 0.121 
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5.3 Spectral Angle Mapper (SAM) 

5.3.1 Independent evaluation of hypercubes 

The SAM algorithm was tested on each hypercube on its own (Table 16). Almost all of the hypercubes 

received more than 92% total success except for one hypercube which resulted in a low total success of 

only 80% total success and 23% of FNR (Hypercube6). The average success rate was 93.9%, with a FPR 

of 4.8% and of FNR 5.8%. The high success rate implies the algorithm is good for vegetation 

classification under the same lighting conditions. The high standard deviation (8.1%) of the FNR is due to 

hepercube6, and without it, it is much lower (3.1%). 

Table 16 – SAM - Independent evaluation of hypercubes 

  Total Success Rate False Positive Rate False Negative Rate 

Hypercube1 0.949 0.073 0.033 

Hypercube2 0.970 0.054 0.005 

Hypercube3 0.957 0.051 0.036 

Hypercube4 0.986 0.019 0.010 

Hypercube5 0.985 0.026 0.006 

Hypercube6 0.804 0.061 0.230 

Hypercube7 0.924 0.052 0.087 

Average 0.939 0.048 0.058 

Std 0.064 0.019 0.081 

 

5.3.2 Cross Validation 

The cross validation results (Table 17) indicates very good classifications results (high total success) and 

low FPR and FNR. This implies that the algorithm can classify well, when the training and testing data are 

with the same lighting conditions. 

Table 17 – SAM – Cross Validation 

Total Success Rate False Positive Rate False Negative Rate 

0.955 0.077 0.032 

 

 



36 

5.3.3 Training by two hypercubes 

The high total success criteria (Table 18) shows that even when hypercubes are taken in different 

scenarios with different light conditions, there is a common element between all of the hypercubes. Both 

the FPR and the FNR are approximately the same (low standard deviation) which implies that the  

algorithm robustness.  

 

Table 18 – SAM – Training by two hypercubes 

  Total Success Rate False Positive Rate False Negative Rate 

Training Set 1 0.972 0.071 0.019 

Training Set 2 0.974 0.047 0.027 

Average 0.973 0.059 0.023 

Std 0.001 0.017 0.005 

 

 

 

  

a – real image b – classified image 

Figure 14 – Example of SAM classification 
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5.3.4 Different light conditions 

The results (Table 19) indicate that the SAM algorithm behaves the same under different light conditions, 

as expected with average success of 97.2% and a FPR of 6.5% and FNR of 1.9%. 

 

 

Table 19 – SAM – Different light conditions 

  Total Success Rate False Positive Rate False Negative Rate 

Strong 0.972 0.071 0.019 

Medium 0.972 0.065 0.019 

Low 0.972 0.060 0.020 

Average 0.972 0.065 0.019 

Std 0.000 0.006 0.000 

 

5.3.5 Noise 

It shows that noise until 2% does not affect performance (Table 20). There is a small decrease in 

performances with noises up to 8% (although the FPR is lower, the FNR is higher). For noises above 8% 

performance greatly decreases with higher FNR (11.7 vs. 7.6) and lower total success (90.4 vs. 93.6). 

 

Table 20 – SAM – Noise 

Noise Level Total Success Rate False Positive Rate False Negative Rate 

1% 0.972 0.071 0.020 

2% 0.972 0.068 0.021 

5% 0.965 0.058 0.034 

7% 0.947 0.055 0.062 

8% 0.936 0.057 0.076 

10% 0.904 0.058 0.117 
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5.3.6 Training by different number of hypercubes  

It shows a drastic decrease in performances when using four and five hypercubes as training sets (Table 

21). The total success reduces from 97% to 67%, the FPR increased to 40% from 6.5% and the FNR 

increased to 29.8% from 1.9%. This is expected due to the fact that the SAM algorithm calculates the angle 

between a known vegetation vector to the pixel vector, and when we are using multiple training sets that 

were acquired in different light conditions, the known vegetation vector (calculated by the average of the 

vegetation in the training set) behaves differently than real vegetation. 

 

Table 21 – SAM – Training by different number of hypercubes 

  Total Success Rate False Positive Rate False Negative Rate 

4 Hypercubes 0.674 0.441 0.257 

5 Hypercubes 0.671 0.361 0.338 

Average 0.672 0.401 0.298 

Std 0.002 0.056 0.057 

 

 

5.4 Minor Spectral Angle Mapper (MSAM) 

5.4.1 Independent evaluation of hypercubes 

Almost all of the hypercubes received more than 91% total success except for two hypercubes which 

resulted in low total success of 75% and high FPRs and FNRs (10 and 38.6%; 26.8 and 13.6% 

respectively for Hypercube6 and Hypercube7, Table 22). The average success rate was 89.8%, with 8.7% 

FPR and 9.8% FNR. The high success rate means the algorithm is good for vegetation classification under 

the same lighting conditions in most environments. The high standard deviation in all three measures is 

because of hypercubes 6 and 7 results. 
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Table 22 – MSAM - Independent evaluation of hypercubes 

  Total Success Rate False Positive Rate False Negative Rate 

Hypercube1 0.910 0.035 0.124 

Hypercube2 0.968 0.047 0.017 

Hypercube3 0.947 0.015 0.080 

Hypercube4 0.973 0.012 0.037 

Hypercube5 0.979 0.015 0.026 

Hypercube6 0.759 0.102 0.268 

Hypercube7 0.750 0.386 0.136 

Average 0.898 0.087 0.098 

Std 0.101 0.135 0.088 

 

 

5.4.2 Cross Validation 

The cross validation results (Table 23) indicates very good classifications results (high total success and 

low FPR and FNR), although lower than the results obtained by the SAM algorithm. This implies that the 

algorithm can classify well, when the training and testing data are with the same lighting conditions. 

 

 

Table 23 – MSAM – Cross Validation 

Total Success Rate False Positive Rate False Negative Rate 

0.933 0.132 0.039 
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5.4.3 Training by two hypercubes 

Two hypercubes were used as the training data and the other five hypercubes were the testing data (Table 

24). The high total success criteria show that most of the information that distinct the vegetation from the 

non-vegetation is found in the five wavelengths. The FPR is lower than the FNR in the first training set, 

and the opposite occurs in the second training set; this implies that performance depends on the training 

sets much more than the SAM algorithm. 

 

Table 24 – MSAM – Training by two hypercubes 

  Total Success Rate False Positive Rate False Negative Rate 

Training Set 1 0.941 0.062 0.073 

Training Set 2 0.957 0.198 0.040 

Average 0.949 0.130 0.057 

Std 0.011 0.096 0.023 

 

 

 

  

a – real image b – classified image 

Figure 15 – Example of MSAM classification 
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5.4.4 Different light conditions 

The results (Table 25) show that the MSAM algorithm behaves the same under different light conditions, 

as expected with 94.1% average success and a FPR of 6.8% and FNR of 7.3%. 

 

Table 25 – MSAM – Different light conditions 

  Total Success Rate False Positive Rate False Negative Rate 

Strong 0.941 0.062 0.073 

Medium 0.941 0.073 0.073 

Low 0.942 0.068 0.073 

Average 0.941 0.068 0.073 

Std 0.000 0.006 0.000 

 

 

 

5.4.5 Noise 

It shows that noise until 2% does not affect performance. Beyond 2% noise, total success decreases (from 

93.5 to 92.1), with higher FPR (21.1 vs. 13.3) and higher FNR (8.6 vs. 7.5) 

 

Table 26 – MSAM – Noise 

Noise Level Total Success Rate False Positive Rate False Negative Rate 

1% 0.941 0.082 0.073 

2% 0.935 0.133 0.075 

5% 0.921 0.212 0.086 

7% 0.907 0.234 0.102 

8% 0.902 0.237 0.108 

10% 0.887 0.242 0.126 
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5.4.6 Training by different number of hypercubes  

As in the SAM algorithm, it shows a drastic decrease in performances when using four and five 

hypercubes as training sets. The total success reduces from 94% to 72%, the FPR increased to 36.9% from 

6.8% and the FNR increased to 25.4% from 7.3%. This is expected due to the fact that the MSAM 

algorithm behaves exactly like the SAM algorithm with just fewer wavelengths. 

 

Table 27 – MSAM – Training by different number of hypercubes 

  Total Success Rate False Positive Rate False Negative Rate 

4 Hypercubes 0.797 0.264 0.168 

5 Hypercubes 0.650 0.475 0.339 

Average 0.723 0.369 0.254 

Std 0.104 0.149 0.121 

 

5.5 Channel relation (NDVI) 

5.5.1 Independent evaluation of hypercubes 

Almost all of the hypercubes received more than 92% total success except for one hypercube which 

resulted in a low total success of 72% (Hypercube7, Table 28). The average success rate was 93.1%, with 

7.2% FPR and 6.4% FNR. The high success rate implies that the algorithm is good for vegetation 

classification under the same lighting conditions. The high standard deviation in the three measures is due 

to hypercube7, without it, results are much lower. 

Table 28 – NDVI - Independent evaluation of hypercubes 

  Total Success Rate False Positive Rate False Negative Rate 

Hypercube1 0.965 0.043 0.028 

Hypercube2 0.969 0.047 0.015 

Hypercube3 0.975 0.031 0.020 

Hypercube4 0.976 0.010 0.034 

Hypercube5 0.979 0.016 0.025 

Hypercube6 0.929 0.042 0.122 

Hypercube7 0.725 0.314 0.203 

Average 0.931 0.072 0.064 

Std 0.092 0.108 0.072 
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5.5.2 Cross Validation 

The cross validation results (Table 29) indicates very good classifications results (high total success of 

95.9% and low FPR and FNR of 4% and 4.1% respectfully). This implies that the algorithm can classify 

well, when the training and testing data are with the same lighting conditions. 

Table 29 – NDVI – Cross Validation 

Total Success Rate False Positive Rate False Negative Rate 

0.959 0.040 0.041 

 

5.5.3 Training by two hypercubes 

The high total success criteria shows that even when hypercubes are taken in different scenarios with 

different light conditions, there is a common element between all of the hypercubes (Table 30). All of the 

measures (total success, FPR and the FNR) are approximately the same (low standard deviation) which 

implies that the algorithm is robust to the training set.  

 

Table 30 – NDVI – Training by two hypercubes 

  Total Success Rate False Positive Rate False Negative Rate 

Training Set 1 0.968 0.077 0.029 

Training Set 2 0.967 0.062 0.037 

Average 0.968 0.069 0.033 

Std 0.001 0.011 0.006 

 

  

a – real image b – classified image 

Figure 16 – Example of NDVI classification 
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5.5.4 Different light conditions 

The results (Table 31) indicate that the NDVI algorithm behaves the same under different light conditions, 

as expected with average success of 96.8%, 7.6% FPR and 2.9% FNR. 

 

Table 31 – NDVI – Different light conditions 

  Total Success Rate False Positive Rate False Negative Rate 

Strong 0.968 0.077 0.029 

Medium 0.968 0.081 0.029 

Low 0.969 0.071 0.029 

Average 0.968 0.076 0.029 

Std 0.000 0.005 0.000 

 

 

5.5.5 Noise 

It shows that noise until 2% does not affect performance. There is a small decrease in performances with 

noises up to 5%, resulting in higher FPR (28.6 vs. 20.5) and FNR (3.4 vs. 3.1) and lower total success 

(94.6 vs. 95.9). Performance greatly decreases with noise above 5% (Table 32).  

 

Table 32 – NDVI – Noise 

Noise Level Total Success Rate False Positive Rate False Negative Rate 

1% 0.965 0.126 0.030 

2% 0.959 0.205 0.031 

5% 0.946 0.286 0.034 

7% 0.936 0.323 0.038 

8% 0.934 0.329 0.039 

10% 0.927 0.344 0.044 
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5.5.6 Training by different number of hypercubes  

Results indicate only small decrease in performance when using four and five hypercubes as training sets.   

The total success reduces from 96.8% to 94.2%, the FPR decreased to 4.4% from 7.6% and the FNR 

increased to 5.7% from 2.9%. This suggests that adding hypercubes to the training data decreases the 

overall performances, but only moderately. 

 

Table 33 – NDVI – Training by different number of hypercubes 

  Total Success Rate False Positive Rate False Negative Rate 

4 Hypercubes 0.954 0.042 0.042 

5 Hypercubes 0.931 0.044 0.071 

Average 0.942 0.043 0.057 

Std 0.016 0.001 0.020 

 

 

 

5.6 Channel Relations Tree (NDVI_T) 

5.6.1 Independent evaluation of hypercubes 

Almost all of the hypercubes resulted in more than 92% total success except for one hypercube which 

resulted in a low total success of 80.4% (Hypercube7) with high FPR and FNR of 22.4% and 14.4% 

respectively (Table 34). 

The average success rate was 94.9%, 6.4% FPR and 3.5% FNR. The high success rate implies the 

algorithm is good for vegetation classification under the same lighting conditions. The high standard 

deviation in the three measures is due to hypercube7, without it, the standard deviation is much lower. 
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Table 34 – NDVI_T - Independent evaluation of hypercubes 

  Total Success Rate False Positive Rate False Negative Rate 

Hypercube1 0.968 0.052 0.015 

Hypercube2 0.972 0.050 0.006 

Hypercube3 0.977 0.033 0.014 

Hypercube4 0.978 0.019 0.023 

Hypercube5 0.989 0.020 0.004 

Hypercube6 0.955 0.050 0.036 

Hypercube7 0.804 0.224 0.144 

Average 0.949 0.064 0.035 

Std 0.065 0.072 0.049 

 

5.6.2 Cross Validation 

The cross validation results (Table 35) indicate very good classifications results (high total success of 

96.5% and low FPR and FNR of 7.8% and 1.7% respectfully). This implies that the algorithm can classify 

well, when the training and testing data are with the same lighting conditions.  

Table 35 – NDVI_T – Cross Validation 

Total Success Rate False Positive Rate False Negative Rate 

0.965 0.078 0.017 
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5.6.3 Training by two hypercubes 

The algorithm has good classification results (Table 36). There is a big difference between the two 

training sets in the total success and FPR while the FNR shows approximately the same results. This 

suggests that the algorithm is very sensitive to different types of training sets 

 

 

Table 36 – NDVI_T – Training by two hypercubes 

  Total Success Rate False Positive Rate False Negative Rate 

Training Set 1 0.920 0.362 0.024 

Training Set 2 0.968 0.064 0.030 

Average 0.944 0.213 0.027 

Std 0.034 0.211 0.004 

 

 

 

 

  

a – real image b – classified image 

Figure 17 – Example of NDVI_T classification 
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5.6.4 Different light conditions 

The results (Table 37) indicate that the NDVI_T algorithm behaves the same under different light 

conditions, as expected with average success of 92.2% and a FPR of 35.7% and FNR of 2.3%. 

 

Table 37 – NDVI_T – Different light conditions 

  Total Success Rate False Positive Rate False Negative Rate 

Strong 0.920 0.362 0.024 

Medium 0.921 0.357 0.023 

Low 0.925 0.351 0.023 

Average 0.922 0.357 0.023 

Std 0.003 0.005 0.001 

 

 

5.6.5 Noise 

It shows that noise until 2% does not affect performance and results in 92% total success. There is a small 

decrease in performances with noises over 5% (Table 20) resulting in 90.9% success and a small increase 

in the FPR (to 39%) and in the FNR (to 3.3%). 

 

Table 38 – NDVI_T – Noise 

Noise Level Total Success Rate False Positive Rate False Negative Rate 

1% 0.920 0.363 0.025 

2% 0.921 0.364 0.026 

5% 0.915 0.379 0.029 

7% 0.909 0.391 0.033 

8% 0.907 0.395 0.034 

10% 0.902 0.404 0.038 
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5.6.6 Training by different number of hypercubes  

The performances with five and four hypercubes are compared to the average of the two hypercubes. The 

total success reduces from 94.4% to 92.7%, the FPR decreased to 10.6% from 21.3% and the FNR 

increased to 2.9% from 2.7%. 

 

 

Table 39 – NDVI_T – Training by different number of hypercubes 

  Total Success Rate False Positive Rate False Negative Rate 

4 Hypercubes 0.923 0.121 0.019 

5 Hypercubes 0.931 0.090 0.039 

Average 0.927 0.106 0.029 

Std 0.005 0.022 0.014 

 

 

5.7 Dynamic channel relation  

For NDVI, the two wavelengths that were chosen (from the regular channel relation) were 800 and 665 

nm. Figure 18 presents the total success of the entire 200 simulations (all of the possibilities of the two 

weights). In relation to  [Formula 18], α is the weight of the 800 nm and β is the weight of the 665 nm. It 

can be seen that when α = β in the ranges of 0.2-1, the “total success” is the same, as expected due to the 

fact that the weights cancel each other [Formula 19]. The reason that this phenomena is not continuous 

when α and β is greater than 1 is that the intensity reaches saturation, and then the intensity equals the 

saturation level and does not reach the actual multiplication level. It can be seen that best success is 

obtained for equal α and β with small values. This fact provides the information that when capturing both 

images (665 and 800 nm), the exposure times must be identical and small enough so as to ensure the 

image is not saturated (especially the 800 nm image). 

[Formula 19]  One Two One Two One Two

One Two One Two One Two

C C C C C C
Index

C C C C C C

   

   

  
  

  
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Figure 18 – Total success in dynamic channel relation algorithm 

 

 

The False Positive Rate and False Negative Rate (Figure 19 and Figure 20), are connected, and choosing a 

low level of one of them, implies that the other shall be high. When α and β are equal and are less or equal 

to 1, the sum of False Positive Rate and type 2 errors are the smallest (this also supports the total success). 
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Figure 19 - False positive rate in dynamic 

channel relation algorithm 

 

Figure 20 - False negative rate in 

dynamic channel relation algorithm 
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5.8 Cloud interference 

The difference between the normalized pixels with the direct sunlight and the ones with the clouds are 

shown in Figure 21. It shows that the differences are not big (maximum difference is 0.055), but still, 

some wavelengths are better to use in respect to equality toward sunlight and clouds, because they behave 

the same. For example, the wavelength in 680 nm has a difference value of 0, while the wavelength in 665 

nm has a difference value of 0.033. 
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Figure 21 – Normalized difference between direct sunlight and clouds 
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5.9 Discussion 

 

Seven algorithms have been evaluated for classifying between vegetation and non-vegetation (Table 40). 

All of the algorithms had a slight decrease in performance when the data had low noises (up to 5%). The 

MSAM algorithm provided very close performances as compared to the SAM algorithm, which implies that 

most of the important behavior of vegetation lies in a few wavelengths, while the remaining wavelengths 

add little information. The NDVI_T surprisingly had lower performances than the NDVI; this may be 

because the decision tree had over-fitting to a special kind of vegetation. When changing the training data, 

the decision tree received similar performances to the NDVI algorithm. The MSAM which uses five 

wavelengths had lower performance as compared to the NDVI which uses only two wavelengths; this 

implies that the number of wavelengths does not directly influence performance. The SAM and the NDVI 

algorithms were robust for different training sets with only two hypercubes used in training. The FPR is 

higher than the FNR due to the fact that there were more pixels of non-vegetation in the training data than 

vegetation pixels. If the FPR is more important than the FNR, then weights can be added to the vegetation 

pixels in the training stage while constructing the decision tree. All of the wavelengths behave 

approximately the same under clouds and direct sunlight, but still, some wavelengths are without any 

difference at all. 

 

Table 40 – Comparison between the different algorithms 

Algorithm Type Total Success False Positive 

Rate 

False 

Negative 

Rate 

Number of 

wavelengths used 

Mahalanobis 

distance 0.701 0.586 0.057 81 

Derivative  0.871 0.460 0.032 9 

SAM  0.973 0.059 0.023 81 

MSAM 0.949 0.130 0.057 5 

Channel Relation 

(NDVI) 0.968 0.069 0.033 

 

2 

Channel Relation  

Tree(NDVI_T) 0.943 0.212 0.030 3 
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Chapter Six: Conclusions and future work 

6.1 Conclusions 

In this thesis different algorithms were developed and tested for vegetation classification in outdoor 

conditions with unknown light conditions. Seven algorithms were evaluated (including variations of 

known algorithms). The algorithm‟s parameters were selected by a known decision tree algorithm.  

 

The best algorithms that were found for the vegetation classification problem were SAM and NDVI. The 

reason that the NDVI algorithm was considered better is that it uses only two wavelengths. The SAM 

algorithm has slightly better results but used 80 wavelengths. For near real-time application, the SAM 

algorithm is preferable. The NDVI algorithm is best fit for real-time operation. 

 

6.2 Future work 

The algorithms presented in this work can be employed in real-time on a mobile robot for navigation in 

outdoor surroundings. However, there are several areas that remain open for future work. 

 

Spatial Dimension 

In this research, all of the algorithms evaluated each pixel by itself. Since the hypercube data comes from 

the real world, there is a likely connection between adjunction pixels. A better classification algorithm can 

be developed by using this connection in order to increase performance. 

 

Performance measures 

Other performance measures can be defined, in order to take into considerations the spatial aspect of the 

hypercube instead of looking at each pixel only. In this research, each performance measure was 

considered separately, however, a unified measure can be developed by combining TS, FNR and FPR 

using weights. 

 

Other materials 

To enable autonomous robots to perform in real world environment, improved environment recognition is 

necessary.  This can be achieved by classifying additional materials like asphalt, water, mud with the 

methodology presented in this work. 
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Appendices 

Appendix A Software 

There were several Matlab scripts and functions written in this thesis. 

Some of the functions and scripts are written below. 

 

Export 2clementine – Load data from images and create txt file for Clementine 

Check algorithm – displays a classified image according to a chosen algorithm 

Mahalanobis algorithm – Perform the Mahalanobis algorithm 

Derivative algorithm – Perform the Derivative algorithm 

SAM algorithm – Perform the SAM algorithm 

MSAM algorithm – Perform the MSAM algorithm 

NDVI algorithm – Perform the NDVI algorithm 

NDVI_T algorithm – Perform the NDVI_T algorithm 
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Export 2clementine 

%Script Name: Export 2clementine 
%loads data and export it to a txt file for clementine to read 

  
%%Load the data 

  
[FileName,PathName] = uigetfile('*.txt','Choose the file'); 
eval(['load ',PathName,FileName,';']) 
eval(['handles.ExposerTime=',FileName(1,1:end-4),';']) 
eval(['clear ', FileName(1,1:end-4),';']) 
handles.PathName=PathName; 
handles.FileName=FileName; 
% 

  
% Find how many images exist 
WaveLength=find(handles.ExposerTime>0)+499; 
WaveLength=WaveLength'; 
handles.WaveLength=WaveLength; 
% 

  
% finding the name of the images 
LocationTemp=find(FileName=='_'); 
l=length(LocationTemp); 
for i=2:l  %identifing the end position of the images name 
    if (LocationTemp(i)-LocationTemp(i-1))==1 
        Location=LocationTemp(i); 
        break 
    end 
end 
clear l LocationTemp 
handles.NameLocation=Location; 
ImagesName=FileName(1:Location); 
% 

  
% load all the images 
clear handles.Images 
l=length(WaveLength); 
for i=1:l 
    

eval(['handles.Images.Image1__',num2str(WaveLength(1,i)),'=','imread(''',PathName,Ima

gesName,num2str(WaveLength(1,i)),'.jpg'');'])     
end   
% 
eval(['VegImage=imread(''',PathName,ImagesName,'000.jpg'') ;']) 
[m,n]=size(VegImage); 
DistricVegImage=zeros(m,n/3,'uint16')+1000; 
temp=find(VegImage(:,:,1)<100 & VegImage(:,:,2)>200 & VegImage(:,:,3)<100); 
DistricVegImage(temp)=1001; % 1001=Vegetation 
temp=find(VegImage(:,:,1)<100 & VegImage(:,:,2)<100 & VegImage(:,:,3)>200); 
DistricVegImage(temp)=1002; % 1002=Not Declared 

  

  
%% Write to File 

  
eval(['cd ',PathName]) 
% fid=fopen('SelfData.txt','w'); 
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fid=fopen('temp.txt','w'); 

  
% Write The header 
tic 
fprintf(fid,'material '); 
for i=1:length(handles.WaveLength) 
    fprintf(fid,'%d ',handles.WaveLength(i)); 
%     fprintf(fid, ','); 
end 
status = fseek(fid,-1,'cof'); 
fprintf(fid,'\n'); 
toc 

  
% Making The Data 
[m,n]=size(DistricVegImage); 

  
devide=1; 
Mat=zeros(m*n/devide/devide,length(handles.WaveLength)+1,'uint16'); 
m1=1:devide:m; 
n1=1:devide:n; 
tempDistric=DistricVegImage(m1,n1); 
Mat(:,1)=reshape(tempDistric,[],1); 

  
temp=min(handles.WaveLength):5:max(handles.WaveLength); 
tic 
for k=1:1:length(temp) 
    eval(['temp1=handles.Images.Image1__',num2str(temp(k)),';']) 
    temp1=temp1(m1,n1); 
    Mat(:,k+1)=reshape(temp1,[],1); 

     
end 
toc 

  
PrintToFile='%d '; 
for i=1:length(temp) 
    PrintToFile=[PrintToFile '%d ']; 
end 
PrintToFile=PrintToFile(1:end-1); 
Mat=Mat'; 

  
temp=find(Mat(1,:)==1000 | Mat(1,:)==1001); 
NewMat=Mat(:,temp); 
 tic 
eval(['fprintf(fid,''',PrintToFile,'\n'',NewMat);']) 
toc 

  
fclose(fid); 

Check algorithm 

 

 
%Script name: Check algorithm 
% This script display classfied image according to the user choice of 
% hypercube 

  
%%Load the data 
load VegData.mat 
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[FileName,PathName] = uigetfile('*.txt','Choose the file'); 
eval(['load ',PathName,FileName,';']) 
eval(['handles.ExposerTime=',FileName(1,1:end-4),';']) 
eval(['clear ', FileName(1,1:end-4),';']) 
handles.PathName=PathName; 
handles.FileName=FileName; 
% 

  
% Find how many images exist 
WaveLength=find(handles.ExposerTime>0)+499; 
WaveLength=WaveLength'; 
handles.WaveLength=WaveLength; 
% 

  
% finding the name of the images 
LocationTemp=find(FileName=='_'); 
l=length(LocationTemp); 
for i=2:l  %identifing the end position of the images name 
    if (LocationTemp(i)-LocationTemp(i-1))==1 
        Location=LocationTemp(i); 
        break 
    end 
end 
clear l LocationTemp 
handles.NameLocation=Location; 
ImagesName=FileName(1:Location); 
% 

  
% load all the images 
clear handles.Images 
l=length(WaveLength); 
for i=1:l 
    

eval(['handles.Images.Image1__',num2str(WaveLength(1,i)),'=','imread(''',PathName,Ima

gesName,num2str(WaveLength(1,i)),'.jpg'');'])     
end   
% 
eval(['VegImage=imread(''',PathName,ImagesName,'000.jpg'') ;']) 
[m,n]=size(VegImage); 
DistricVegImage=zeros(m,n/3,'uint16')+1000; 
temp=find(VegImage(:,:,1)<100 & VegImage(:,:,2)>200 & VegImage(:,:,3)<100); 
DistricVegImage(temp)=1001; % 1001=Vegetation 
temp=find(VegImage(:,:,1)<100 & VegImage(:,:,2)<100 & VegImage(:,:,3)>200); 
DistricVegImage(temp)=1002; % 1002=Not Declared 

  

  
%% ReArrange the data 

  

  

  

  
% Making The Data 
% [m,n]=size(DistricVegImage); 
[m,n]=size(handles.Images.Image1__560); 
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Mat=zeros(m*n,length(handles.WaveLength)+1,'uint16'); 

  
Mat(:,1)=reshape(DistricVegImage,[],1); 

  
temp=min(handles.WaveLength):5:max(handles.WaveLength); 

  
for k=1:1:length(temp) 
    eval(['temp1=handles.Images.Image1__',num2str(temp(k)),';']) 

     
    Mat(:,k+1)=reshape(temp1,[],1);         
end 

  

  
VegType=menu('Choose The Training Picture/s','14 & 15','16 & 

09','14','15','16','01','09','22','25'); 
switch VegType 
    case 1 
        VegMean=VegMean1415; 
        VegStd=VegStd1415; 
        VegStdMinorIndex=VegStdMinorIndex1415; 

  
    case 2 
        VegMean=VegMean1609; 
        VegStd=VegStd1609; 
        VegStdMinorIndex=VegStdMinorIndex1609; 

  
    case 3 
        VegMean=VegMean14; 
        VegStd=VegStd14; 
        VegStdMinorIndex=VegStdMinorIndex14;         

  
    case 4 
        VegMean=VegMean15; 
        VegStd=VegStd15; 
        VegStdMinorIndex=VegStdMinorIndex15; 

  
    case 5 
        VegMean=VegMean16; 
        VegStd=VegStd16; 
        VegStdMinorIndex=VegStdMinorIndex16; 

  
    case 6 
        VegMean=VegMean01; 
        VegStd=VegStd01; 
        VegStdMinorIndex=VegStdMinorIndex01; 

  
    case 7 
        VegMean=VegMean09; 
        VegStd=VegStd09; 
        VegStdMinorIndex=VegStdMinorIndex09; 

  
    case 8 
        VegMean=VegMean22; 
        VegStd=VegStd22; 
        VegStdMinorIndex=VegStdMinorIndex22; 
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    case 9 
        VegMean=VegMean25; 
        VegStd=VegStd25; 
        VegStdMinorIndex=VegStdMinorIndex25;         

         
end 
VegStd=VegStd+1; 

  

  
LightValue=menu('Choose The Light Intensity Factor','1 - normal','0.9 - Medium','0.7 

- low'); 
if LightValue >1 
    switch LightValue 
        case 1 
            LightValue=1; 
        case 2 
            LightValue = 0.9; 
        case 3 
            LightValue = 0.7; 
    end 
    Mat(:,2:end)=Mat(:,2:end)*LightValue; 
end 

  

  
NoiseValue=menu('Choose The Noise Intensity Value','None','1% - 2','2% - 5','5% - 

12','7% - 18','8% - 20','10% - 25'); 
if NoiseValue>1 
    switch NoiseValue 
        case 2 
            NoiseValue=2; 
        case 3 
            NoiseValue = 5; 
        case 4 
            NoiseValue = 12; 
        case 5 
            NoiseValue = 18;         
        case 6 
            NoiseValue = 20;         
        case 7 
            NoiseValue = 25;         
    end 
    RandMat1=int8(ceil(rand(300000,size(Mat,2)-1)-0.5)); 
    RandMat2=int8(ceil(rand(size(Mat,1)-300000,size(Mat,2)-1)-0.5)); 
    RandMat=[RandMat1;RandMat2]; 
    clear RandMat1 RandMat2 
    RandMat(RandMat==0)=-1;  
    tempM=Mat(:,2:end); 

     
    tt=find(tempM>(255-NoiseValue) ); 
    RandMat(tt)=-1; 
    tt=find(tempM<(NoiseValue) ); 
    RandMat(tt)=1;   
    RandMat=int8(RandMat*NoiseValue);    

     
    tempM=int16(tempM) + int16(RandMat); 
    tempM(tempM>255)=255; 
    tempM(tempM<0)=0; 
    Mat(:,2:end)=uint16(tempM); 
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    clear RandMat tempM tt 
end 

  

  

  
eval(['ImageToPresent1=imread(''',PathName,ImagesName,'590.jpg'') ;']) 
ImageToPresent(:,:,1)=ImageToPresent1; 
ImageToPresent(:,:,2)=ImageToPresent1; 
ImageToPresent(:,:,3)=ImageToPresent1; 
Image11=zeros(m*n,1,'uint16')+100; 
tic 
for x=1:m*n 
if mod(x,1000)==0 
    sss=waitbar(x/(m*n)); 
end 
        flag=DT2_2ndvi(Mat(x,2:end),VegType); 
%         flag=DT3_1ndvi(Mat(x,2:end),VegType); 
%         flag=DT4_Derivative(Mat(x,2:end),VegType); 
%         flag=DT5_Mahalanobis(Mat(x,2:end),VegMean,VegStd,VegType);  
%         flag=DT6_SAM(Mat(x,2:end),VegMean,VegType);  
%         flag=DT7_SAM_Minor(Mat(x,2:end),VegMean,VegStdMinorIndex,VegType); 
        if flag==1 
            x1=mod(x,m); 
            if x1==0 
                x1=m; 
            end 
            y1=ceil(x/m); 
           ImageToPresent(x1,y1,1)=0; 
           ImageToPresent(x1,y1,2)=255; 
           ImageToPresent(x1,y1,3)=0; 
        end 
end 
toc 
close (sss) 
figure(1) 
subplot(1,2,1) 
imshow(ImageToPresent) 
title('green is the Vegetation') 
figure, 
subplot(1,2,2) 
imshow(ImageToPresent1) 
title('Real Picture') 

 

 

  

 

 
Mahalanobis algorithm 

 

%Function Name: Mahalanobis algorithm 
% Perform the Mahalanobis algorithm 
function [ output ] = DT5_Mahalanobis(SpectralVector,VegMean,VegStd,VegType) 

  

  
Distance = sum(((double(SpectralVector)-VegMean)./(VegStd)).^2)  ; 

  
if VegType==1 
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    if Distance<= 77.426 
        output=1; 
    end 
    if Distance> 77.426 
        output=0; 
    end 
end 

  
if VegType==2 
    if Distance<= 2517.488 
        output=1; 
    end 
    if Distance> 2517.488 
        output=0; 
    end 
end 

  
end 
  

 

Derivative algorithm 

 

%Function Name: Derivative algorithm 
% Perform the Derivative algorithm 
function [ output ] = DT4_Derivative(SpectralVector,VegType) 

  
der=SpectralVector(2:end)-SpectralVector(1:end-1); 
der=double(der)./5; 
Step=5; 
Start=500; 

  
if VegType==1 
    if der(((695-Start)/Step) +1)<=0 
        if der(((730-Start)/Step) +1)<=1 
            if der(((715-Start)/Step) +1)<=3 
                if der(((710-Start)/Step) +1)<=4 
                    if der(((730-Start)/Step) +1)<=0 
                        output=0; 
                    end 
                    if der(((730-Start)/Step) +1)>0 
                        if der(((605-Start)/Step) +1)<=1 
                            if der(((765-Start)/Step) +1)<=1 
                                output=0; 
                            end 
                            if der(((765-Start)/Step) +1)>1 
                                output=1; 
                            end 
                        end 
                        if der(((605-Start)/Step) +1)>1 
                            output=0; 
                        end 
                    end 
                end 
                if der(((710-Start)/Step) +1)>4 
                    output=1; 
                end 
            end 
            if der(((715-Start)/Step) +1)>3 
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                output=1; 
            end 
        end 
        if der(((730-Start)/Step) +1)>1 
            if der(((655-Start)/Step) +1)<=3 
                output=1; 
            end 
            if der(((655-Start)/Step) +1)>3 
                output=0; 
            end 
        end 
    end 
    if der(((695-Start)/Step) +1)>0 
        output=1; 
    end 
end 

  
if VegType==2 
    if der(((695-Start)/Step) +1)<=0 
        if der(((730-Start)/Step) +1)<=1 
            if der(((690-Start)/Step) +1)<=0 
                if der(((560-Start)/Step) +1)<=0 
                    if der(((730-Start)/Step) +1)<=0 
                        output=0; 
                    end 
                    if der(((730-Start)/Step) +1)>0 
                        output=1;                            
                    end 
                end 
                if der(((560-Start)/Step) +1)>0 
                    output=0; 
                end 
            end 
            if der(((690-Start)/Step) +1)>0 
                output=1; 
            end 
        end 
        if der(((730-Start)/Step) +1)>1 
            if der(((560-Start)/Step) +1)<=1 
                output=1; 
            end 
            if der(((560-Start)/Step) +1)>1 
                output=0; 
            end 
        end 
    end 
    if der(((695-Start)/Step) +1)>0 
        if der(((645-Start)/Step) +1)<=2 
            output=1; 
        end 
        if der(((645-Start)/Step) +1)>2 
            output=0; 
        end 
    end 
end 

  
end 
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SAM algorithm 

 

%Function Name: SAM algorithm 
% Perform the SAM algorithm 
function [ output ] = DT6_SAM(SpectralVector,VegMean,VegType) 

  
Distance = 

(double(SpectralVector)*VegMean')/(norm(double(SpectralVector))*norm(VegMean))  ; 

  
if VegType==1 
    if Distance<= 0.972 
        output=0; 
    end 
    if Distance> 0.972 
        output=1; 
    end 
end 

  
if VegType==2 
    if Distance<= 0.965 
        output=0; 
    end 
    if Distance> 0.965 
        output=1; 
    end 
end 

  
end 

 

 

MSAM algorithm 

 

%Function Name: SAM Minor algorithm 
% Perform the MSAM algorithm 

  
function [ output ] = DT7_SAM_Minor(SpectralVector,VegMean,VegStdIndex,VegType) 

  
Distance = 

(double(SpectralVector(VegStdIndex))*VegMean(VegStdIndex)')/(norm(double(SpectralVect

or(VegStdIndex)))*norm(VegMean(VegStdIndex)))  ; 

  
if VegType==1 
    if Distance<= 0.984 
        output=0; 
    end 
    if Distance> 0.984 
        output=1; 
    end 
end 

  
if VegType==2 
    if Distance<= 0.976 
        output=0; 
    end 
    if Distance> 0.976 
        output=1; 
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    end 
end 

  
end 

  

  
NDVI algorithm 

 
%Function Name: NDVI algorithm 
% Perform the NDVI algorithm 

  
function [ output ] = DT3_1ndvi(SpectralVector,VegType) 

  
if VegType == 1 
    n665_800= single((SpectralVector(61) - SpectralVector(34)))/ 

single((SpectralVector(61) + SpectralVector(34))); 

  

  
    if n665_800 <= 0 
        output=0; 
    end 

  
    if n665_800 > 0 
        output=1; 
    end 
end 

  

  
if VegType == 2 
    n800_665= single((SpectralVector(61) - SpectralVector(34)))/ 

single((SpectralVector(61) + SpectralVector(34))); 

  

  
    if n800_665 <= 0.004 
        output=0; 
    end 

  
    if n800_665 > 0.004 
        output=1; 
    end 
end 

  
end 

  

 
  

 

 

 

 

 

 

NDVI_T algorithm 

%Function Name: NDVI_T algorithm 
% Perform the NDVI_T algorithm 
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function [ output ] = DT2_2ndvi(SpectralVector,VegType) 

  
if VegType==1 
    n665_740= single((SpectralVector(49) - SpectralVector(34)))/ 

single((SpectralVector(49) + SpectralVector(34))); 
    n665_775= single((SpectralVector(56) - SpectralVector(34)))/ 

single((SpectralVector(56) + SpectralVector(34))); 

  

  
    if n665_740 <= 0 
        output=0; 
    end 
    if n665_740 > 0 
        if n665_775 <= -0.024 
            if n665_775 <= -0.101 
                output=0; 
            end 
            if n665_775 > -0.101 
                output=1; 
            end 
        end 
        if n665_775 > -0.024 
            output=1; 
        end 
    end 
end 

  
if VegType==2 
    n800_665 = single((SpectralVector(61) - SpectralVector(34)))/ 

single((SpectralVector(61) + SpectralVector(34))); 
    n815_665 = single((SpectralVector(64) - SpectralVector(34)))/ 

single((SpectralVector(64) + SpectralVector(34))); 
    n740_665 = single((SpectralVector(49) - SpectralVector(34)))/ 

single((SpectralVector(49) + SpectralVector(34))); 

  

  
    if n800_665 <= 0.004 
        output=0; 
    end 
    if n800_665 > 0.004 
        if n815_665 <= -0.234 
            if n740_665 <= 0.088 
                output=0; 
            end 
            if n740_665 > 0.088 
                output=1; 
            end 
        end 
        if n815_665 > -0.234 
            output=1; 
        end 
    end 
end 

  
end 
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Appendix B Statistical Analysis 

 

1% Noise  

Hypercube Algorithm Total Success False Positive Rate False Negative Rate 

1 Mahalanobis 0.725 0.346 0.190 

1 SAM 0.956 0.089 0.002 

1 NDVI 0.966 0.065 0.007 

1 Derivative 0.724 0.383 0.006 

1 NDVI_T 0.951 0.095 0.004 

1 MSAM 0.894 0.053 0.138 

2 Mahalanobis 0.889 0.014 0.140 

2 SAM 0.979 0.031 0.016 

2 NDVI 0.981 0.036 0.011 

2 Derivative 0.869 0.272 0.014 

2 NDVI_T 0.982 0.038 0.007 

2 MSAM 0.927 0.028 0.090 

5 Mahalanobis 0.832 0.029 0.201 

5 SAM 0.954 0.031 0.054 

5 NDVI 0.906 0.035 0.117 

5 Derivative 0.826 0.305 0.064 

5 NDVI_T 0.912 0.032 0.109 

5 MSAM 0.905 0.023 0.122 

6 Mahalanobis 0.929 0.707 0.010 

6 SAM 0.977 0.099 0.022 

6 NDVI 0.985 0.151 0.011 

6 Derivative 0.884 0.785 0.005 

6 NDVI_T 0.897 0.750 0.000 

6 MSAM 0.987 0.092 0.011 

7 Mahalanobis 0.920 0.987 0.021 

7 SAM 0.994 0.104 0.004 

7 NDVI 0.987 0.341 0.006 

7 Derivative 0.856 0.940 0.014 
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Hypercube Algorithm Total Success False Positive Rate False Negative Rate 

7 NDVI_T 0.854 0.901 0.006 

7 MSAM 0.989 0.214 0.007 

 

2% Noise  

Hypercube Algorithm Total Success False Positive Rate False Negative Rate 

1 Mahalanobis 0.729 0.341 0.189 

1 SAM 0.958 0.084 0.003 

1 NDVI 0.960 0.076 0.008 

1 Derivative 0.663 0.431 0.017 

1 NDVI_T 0.944 0.108 0.005 

1 MSAM 0.894 0.054 0.137 

2 Mahalanobis 0.887 0.014 0.143 

2 SAM 0.977 0.030 0.019 

2 NDVI 0.979 0.040 0.011 

2 Derivative 0.787 0.381 0.031 

2 NDVI_T 0.981 0.043 0.007 

2 MSAM 0.918 0.049 0.095 

5 Mahalanobis 0.831 0.029 0.203 

5 SAM 0.952 0.031 0.056 

5 NDVI 0.902 0.043 0.119 

5 Derivative 0.775 0.372 0.081 

5 NDVI_T 0.908 0.038 0.113 

5 MSAM 0.893 0.061 0.125 

6 Mahalanobis 0.931 0.704 0.011 

6 SAM 0.977 0.095 0.023 

6 NDVI 0.979 0.301 0.011 

6 Derivative 0.896 0.777 0.008 

6 NDVI_T 0.904 0.738 0.001 

6 MSAM 0.985 0.139 0.011 

7 Mahalanobis 0.922 0.986 0.021 

7 SAM 0.994 0.099 0.005 

7 NDVI 0.976 0.566 0.006 
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Hypercube Algorithm Total Success False Positive Rate False Negative Rate 

7 Derivative 0.878 0.923 0.012 

7 NDVI_T 0.869 0.892 0.006 

7 MSAM 0.985 0.360 0.008 

 

5% Noise  

Hypercube Algorithm Total Success False Positive Rate False Negative Rate 

1 Mahalanobis 0.752 0.305 0.192 

1 SAM 0.961 0.068 0.014 

1 NDVI 0.941 0.108 0.012 

1 Derivative 0.602 0.472 0.110 

1 NDVI_T 0.919 0.149 0.008 

1 MSAM 0.886 0.063 0.145 

2 Mahalanobis 0.873 0.013 0.158 

2 SAM 0.959 0.016 0.053 

2 NDVI 0.974 0.052 0.013 

2 Derivative 0.727 0.444 0.039 

2 NDVI_T 0.975 0.056 0.009 

2 MSAM 0.894 0.063 0.122 

5 Mahalanobis 0.820 0.024 0.215 

5 SAM 0.943 0.029 0.069 

5 NDVI 0.891 0.057 0.128 

5 Derivative 0.738 0.410 0.110 

5 NDVI_T 0.897 0.059 0.120 

5 MSAM 0.867 0.121 0.138 

6 Mahalanobis 0.941 0.693 0.016 

6 SAM 0.973 0.093 0.026 

6 NDVI 0.966 0.497 0.013 

6 Derivative 0.882 0.804 0.009 

6 NDVI_T 0.904 0.742 0.002 

6 MSAM 0.977 0.298 0.015 

7 Mahalanobis 0.930 0.986 0.020 

7 SAM 0.991 0.082 0.008 
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Hypercube Algorithm Total Success False Positive Rate False Negative Rate 

7 NDVI 0.960 0.716 0.007 

7 Derivative 0.871 0.923 0.012 

7 NDVI_T 0.881 0.888 0.007 

7 MSAM 0.979 0.514 0.008 

 

7% Noise  

Hypercube Algorithm Total Success False Positive Rate False Negative Rate 

1 Mahalanobis 0.810 0.022 0.224 

1 SAM 0.916 0.026 0.107 

1 NDVI 0.883 0.066 0.135 

1 Derivative 0.731 0.417 0.119 

1 NDVI_T 0.888 0.076 0.127 

1 MSAM 0.852 0.120 0.158 

2 Mahalanobis 0.785 0.242 0.193 

2 SAM 0.950 0.057 0.045 

2 NDVI 0.920 0.141 0.019 

2 Derivative 0.577 0.486 0.208 

2 NDVI_T 0.905 0.168 0.014 

2 MSAM 0.866 0.074 0.168 

5 Mahalanobis 0.859 0.013 0.173 

5 SAM 0.910 0.016 0.115 

5 NDVI 0.969 0.060 0.015 

5 Derivative 0.726 0.446 0.040 

5 NDVI_T 0.969 0.069 0.011 

5 MSAM 0.867 0.064 0.154 

6 Mahalanobis 0.951 0.668 0.021 

6 SAM 0.970 0.097 0.029 

6 NDVI 0.955 0.595 0.013 

6 Derivative 0.879 0.809 0.009 

6 NDVI_T 0.903 0.750 0.004 

6 MSAM 0.971 0.392 0.019 

7 Mahalanobis 0.942 0.985 0.020 
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Hypercube Algorithm Total Success False Positive Rate False Negative Rate 

7 SAM 0.987 0.079 0.013 

7 NDVI 0.955 0.753 0.008 

7 Derivative 0.869 0.926 0.012 

7 NDVI_T 0.881 0.894 0.008 

7 MSAM 0.979 0.518 0.009 

 

8% Noise  

Hypercube Algorithm Total Success False Positive Rate False Negative Rate 

1 Mahalanobis 0.792 0.019 0.241 

1 SAM 0.896 0.025 0.131 

1 NDVI 0.880 0.071 0.138 

1 Derivative 0.731 0.417 0.121 

1 NDVI_T 0.885 0.082 0.128 

1 MSAM 0.845 0.119 0.167 

2 Mahalanobis 0.798 0.179 0.216 

2 SAM 0.941 0.052 0.065 

2 NDVI 0.914 0.149 0.022 

2 Derivative 0.576 0.488 0.218 

2 NDVI_T 0.901 0.173 0.017 

2 MSAM 0.858 0.077 0.178 

5 Mahalanobis 0.834 0.012 0.199 

5 SAM 0.889 0.016 0.140 

5 NDVI 0.968 0.063 0.016 

5 Derivative 0.727 0.445 0.041 

5 NDVI_T 0.967 0.072 0.012 

5 MSAM 0.857 0.066 0.165 

6 Mahalanobis 0.961 0.606 0.027 

6 SAM 0.969 0.105 0.030 

6 NDVI 0.953 0.608 0.013 

6 Derivative 0.879 0.809 0.009 

6 NDVI_T 0.903 0.751 0.004 

6 MSAM 0.970 0.413 0.021 
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Hypercube Algorithm Total Success False Positive Rate False Negative Rate 

7 Mahalanobis 0.959 0.982 0.020 

7 SAM 0.985 0.084 0.014 

7 NDVI 0.954 0.757 0.008 

7 Derivative 0.869 0.926 0.012 

7 NDVI_T 0.881 0.895 0.008 

7 MSAM 0.980 0.508 0.009 

 

10% Noise  

Hypercube Algorithm Total Success False Positive Rate False Negative Rate 

1 Mahalanobis 0.774 0.110 0.271 

1 SAM 0.890 0.040 0.150 

1 NDVI 0.900 0.164 0.034 

1 Derivative 0.578 0.486 0.216 

1 NDVI_T 0.889 0.185 0.029 

1 MSAM 0.829 0.087 0.212 

2 Mahalanobis 0.788 0.012 0.241 

2 SAM 0.839 0.017 0.193 

2 NDVI 0.962 0.074 0.018 

2 Derivative 0.729 0.442 0.041 

2 NDVI_T 0.960 0.085 0.015 

2 MSAM 0.832 0.076 0.191 

5 Mahalanobis 0.761 0.014 0.269 

5 SAM 0.844 0.022 0.191 

5 NDVI 0.871 0.086 0.145 

5 Derivative 0.732 0.415 0.121 

5 NDVI_T 0.877 0.097 0.134 

5 MSAM 0.827 0.110 0.191 

6 Mahalanobis 0.967 0.273 0.032 

6 SAM 0.968 0.116 0.032 

6 NDVI 0.950 0.630 0.014 

6 Derivative 0.879 0.809 0.009 

6 NDVI_T 0.902 0.757 0.005 
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Hypercube Algorithm Total Success False Positive Rate False Negative Rate 

6 MSAM 0.967 0.457 0.023 

7 Mahalanobis 0.977 0.964 0.020 

7 SAM 0.982 0.093 0.018 

7 NDVI 0.952 0.766 0.008 

7 Derivative 0.868 0.927 0.012 

7 NDVI_T 0.881 0.896 0.008 

7 MSAM 0.981 0.483 0.010 

 

High Lighting Conditions 

Hypercube Algorithm Total Success False Positive Rate False Negative Rate 

1 Mahalanobis 0.721 0.354 0.184 

1 SAM 0.955 0.090 0.002 

1 NDVI 0.968 0.061 0.006 

1 Derivative 0.788 0.323 0.003 

1 NDVI_T 0.957 0.086 0.004 

1 MSAM 0.893 0.054 0.139 

2 Mahalanobis 0.897 0.015 0.131 

2 SAM 0.979 0.032 0.015 

2 NDVI 0.984 0.028 0.010 

2 Derivative 0.927 0.170 0.009 

2 NDVI_T 0.985 0.032 0.007 

2 MSAM 0.927 0.028 0.090 

5 Mahalanobis 0.843 0.032 0.190 

5 SAM 0.954 0.031 0.053 

5 NDVI 0.911 0.024 0.114 

5 Derivative 0.863 0.247 0.057 

5 NDVI_T 0.919 0.026 0.104 

5 MSAM 0.906 0.023 0.120 

6 Mahalanobis 0.922 0.719 0.007 

6 SAM 0.977 0.098 0.022 

6 NDVI 0.987 0.106 0.011 

6 Derivative 0.881 0.788 0.004 
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Hypercube Algorithm Total Success False Positive Rate False Negative Rate 

6 NDVI_T 0.888 0.764 0.000 

6 MSAM 0.988 0.075 0.011 

7 Mahalanobis 0.917 0.986 0.021 

7 SAM 0.994 0.105 0.004 

7 NDVI 0.992 0.165 0.006 

7 Derivative 0.856 0.940 0.014 

7 NDVI_T 0.850 0.901 0.005 

7 MSAM 0.991 0.132 0.007 

 

Medium Lighting Conditions 

Hypercube Algorithm Total Success False Positive Rate False Negative Rate 

1 Mahalanobis 0.721 0.354 0.184 

1 SAM 0.955 0.091 0.002 

1 NDVI 0.968 0.061 0.006 

1 Derivative 0.788 0.323 0.003 

1 NDVI_T 0.957 0.086 0.004 

1 MSAM 0.893 0.054 0.139 

2 Mahalanobis 0.897 0.015 0.131 

2 SAM 0.979 0.032 0.015 

2 NDVI 0.984 0.028 0.010 

2 Derivative 0.927 0.170 0.009 

2 NDVI_T 0.985 0.032 0.007 

2 MSAM 0.927 0.028 0.090 

5 Mahalanobis 0.843 0.032 0.190 

5 SAM 0.954 0.031 0.053 

5 NDVI 0.911 0.024 0.114 

5 Derivative 0.863 0.247 0.057 

5 NDVI_T 0.919 0.026 0.104 

5 MSAM 0.906 0.023 0.120 

6 Mahalanobis 0.955 0.621 0.019 

6 SAM 0.975 0.076 0.024 

6 NDVI 0.985 0.141 0.011 
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Hypercube Algorithm Total Success False Positive Rate False Negative Rate 

6 Derivative 0.880 0.790 0.004 

6 NDVI_T 0.893 0.757 0.000 

6 MSAM 0.986 0.128 0.011 

7 Mahalanobis 0.986 0.398 0.001 

7 SAM 0.996 0.095 0.002 

7 NDVI 0.994 0.151 0.003 

7 Derivative 0.880 0.875 0.004 

7 NDVI_T 0.851 0.883 0.001 

7 MSAM 0.994 0.134 0.003 

 

Low Lighting Conditions 

Hypercube Algorithm Total Success False Positive Rate False Negative Rate 

1 Mahalanobis 0.721 0.354 0.184 

1 SAM 0.955 0.090 0.002 

1 NDVI 0.968 0.061 0.006 

1 Derivative 0.788 0.323 0.003 

1 NDVI_T 0.957 0.086 0.004 

1 MSAM 0.893 0.054 0.139 

2 Mahalanobis 0.897 0.015 0.131 

2 SAM 0.979 0.032 0.015 

2 NDVI 0.984 0.028 0.010 

2 Derivative 0.927 0.170 0.009 

2 NDVI_T 0.985 0.032 0.007 

2 MSAM 0.927 0.029 0.090 

5 Mahalanobis 0.843 0.032 0.190 

5 SAM 0.954 0.031 0.053 

5 NDVI 0.911 0.024 0.114 

5 Derivative 0.863 0.247 0.057 

5 NDVI_T 0.919 0.026 0.104 

5 MSAM 0.906 0.023 0.120 

6 Mahalanobis 0.963 0.910 0.034 

6 SAM 0.975 0.055 0.025 
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Hypercube Algorithm Total Success False Positive Rate False Negative Rate 

6 NDVI 0.987 0.077 0.012 

6 Derivative 0.898 0.788 0.011 

6 NDVI_T 0.900 0.744 0.000 

6 MSAM 0.987 0.070 0.011 

7 Mahalanobis 0.980 1.000 0.020 

7 SAM 0.996 0.092 0.003 

7 NDVI 0.994 0.162 0.003 

7 Derivative 0.971 0.594 0.000 

7 NDVI_T 0.868 0.869 0.000 

7 MSAM 0.994 0.165 0.003 
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Appendix C Decision Trees 

Wavelength Selection 

The basic decision tree for wavelength selection is very big, so only the first four levels are displayed 

here. The first number is the wavelength, and the second number is the intensity level at this specific 

wavelength. 
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The full decision tree (all the levels) will look like: 
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Appendix D Raw Data 

Exists on the disk in the raw data library 

 

Appendix E manually classified imaged 

 

  

  

  

a – image at 590nm b – manually classified image 
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a – image at 590nm b – manually classified image 
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 תקציר
 

הנושא חשוב עבור ניווט . יישומים כגון ניווט אוטונומי ורובוטים חקלאיים מגווןסיווג של צמחייה היא נושא חשוב ב

מכשולים רכים כגון גבעולים יזוהו כמכשולים לכל . צבעיםאוטונומי כיוון שרוב המכשולים מזוהים בעזרת גיאומטריה ו

עבור ישומי . דבר אשר יגרום לנסיעה לא הגיונית, דבר וכל הרכב יאלץ לעקוף אותם במקום לנסוע ישירות דרכם

ולכן צריך , להרוס גידולים חקלאייםעל מנת לא , הרכב צריך לזהות נתיבים שאפשר לנסוע עליהם, רובוטיקה חקלאית

על ידי חיישני לייזר ומצלמות  תלרוב שבילים מזוהים בצורה גיאומטרי. צמחייה-לדעת להבחין בין צמחייה ללא

בשל ההשפעה על ...( עננים, לדוגמא אור שמש ישיר)זיהוי זה בעייתי בסביבה פתוחה עם תנאי תאורה משתנים . צבעוניות

כולת לסווג את החומר שמהווה הדרך ולא רק את הצורה הגיאומטרית שלו והצבע שלו מהווה הי. המצלמה הצבעונית

צמחייה בתנאי חוץ עם תנאי תאורה לא -מחקר זה מתמקד בסיווג בין צמחייה ללא. יכולת עמידה יותר לזיהוי שבילים

. ידועים

 900עד  500ות באורכי גל של נעשה שימוש במערכת הדמיה היפרספקטראלית אשר רוכשת תמונ, לצורך מחקר זה

, תאורת שמש ישירה)אזורים שונים צולמו תחת תנאי תאורה שונים . ננומטר 5-עם רוחב חצי מקסימום של כ, ננומטר

אדמה וקירות , האזורים שצולמו מכילים סוגים שונים של צמחייה וחומרים אחרים כגון אספלט(. שעה שונה ביום, עננים

אשר מחשב את  Mahalanobis Distance (1. צמחייה-עבור סיווג של צמחייה ולא פותחותמים שבעה אלגורי .של בניינים

Mahalanobis Distance  ל של פיקסל ומשווה אותוMahalanobis Distance נגזרות (2. של צמחייה שחושב מראש-   

מודים של צמחייה אשר נמצאו אשר חישב את הנגזרת בין שני אורכי גל צמודים והשווה אותם לנגזרות של אורכי גל צ

והם נמצא על ידי עץ החלטות , רק הנגזרות החשובות ביותר השוו, במקום להשתמש בגל הנגזרות האפשריות. מראש

, אשר מתחשב בכל אורכי הגל של פיקסל מסוים כווקטור ממימד כל שהוא  -מיפוי זווית ספקטראלית( C ."3 5.0"מסוג 

אשר במקום   -וריאציה של האלגוריתם השלישי (4. ור של צמחייה אשר ידוע מראשומחשב את הזווית בינו לבין וקט

אורכי הגל . הוא משתמש בוקטור קטן בהרבה אשר מכיל רק את אורכי הגל החשובים ביותר, להשתמש בכל אורכי הגל

אשר משתמש בשני   -אינדקס הפרשי מנורמל של צמחייה (C ."5 5.0"החשובים ביותר נמצאו על ידי עץ החלטות מסוג 

על מנת לבחור בצורה אופטימאלת את הפרמטרים של האלגוריתם ואת . אורכי גל ומחשב את ההפרש המנורמל בינהם

כאשר הוא מחשב   -הרחבה של האלגוריתם החמישי (C ."6 5.0"נעשה שימוש בעץ החלטות מסוג , אורכי הגל הספציפיים

אדפטציה של  (7. ל שונים ומשתמש בעץ החלטות בשביל הסיווגשנוצרו על ידי אורכי ג, מספר אינדקסים שונים

באלגוריתם זה נבדק מהו . הוא מתחשב בזמן החשיפה של המערכת ההיפרספקטראליתכאשר  –האלגוריתם החמישי 

. זמן החשיפה האופטימאלי עבור כל אורך גל

הביאו את " ורמל של צמחייהאינדקס הפרשי מנ"ו " מיפוי זווית ספקטראלית"התוצאות מראות שהאלגוריתמים 

שני האלגוריתמים . בהתאמה 96%ו 97%כאשר דיוק הסיווג היה , התוצאות הטובות ביותר מבין שבעת האלגוריתמים

. תנאי אשר היה הכרחי ובסיסי, לא הושפעו על ידי תנאי תאורה שונים
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