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Abstract

Vegetation classification is very important for various applications like autonomous navigation and
agricultural robots. In autonomous navigation, most obstacles detection algorithms are based on geometry
and color analyses. Hence, soft obstacles like stems would be detected as obstacles and the vehicle would
avoid them instead of driving through them, which causes unreasonable navigation. For many agricultural
robotic applications, the vehicle must detect drivable paths in order not to destroy crops and must be able
to distinguish between vegetation and non-vegetation. Usually paths are detected geometrically using laser
sensors and color cameras. However, this is problematic in outdoor environments with changing light
conditions (e.g., direct sun light, clouds ...). The ability to classify the material of the path, and not only

its geometric shape or color can provide a better and more robust way to identify paths.
This research focused on classification between vegetation and non vegetation in outdoor conditions.

A hyperspectral imaging system was used to acquire wavelengths in the range of 500 to 900 nm with 5nm
FWHM (full width half maximum intervals). Different scenes were captured under different light
conditions (direct sunlight, clouds, and different times of the day). The scenes contained several types of
vegetation as well as different objects, like asphalt, soil and building walls. Seven algorithms were
developed and adapted for vegetation and non-vegetation classification and their performances were
compared: 1) the Mahalanobis distance algorithm, compared the Mahalanobis distance of a pixel to a
known vector of vegetation; 2) the Derivative algorithm calculated the difference between each two
consecutive wavelengths and compared it to a known vegetation difference. Instead of using all of the
derivatives, only the most influencing ones were used; they were selected by a “C5.0” decision tree
algorithm; 3) the Spectral Angle Mapper algorithm considered the wavelengths of a pixel as an N
dimensional vector and calculated the angle between the pixel and a known vegetation vector. 4) a
variation of the Spectral Angle Mapper, which instead of using all the data used only the most important
wavelengths. The most important wavelengths were chosen by a decision tree “C5.0” algorithm; 5) the
Normalized Difference Vegetation Index (NDVI) algorithm which used two wavelengths, and calculated
the normalized difference between them. For optimally choosing the parameters, a decision tree “C5.0”
algorithm was used; 6) an extension of the NDVI algorithm: it calculated several NDVT’s, and used a
decision tree for the classification; 7) an adaption of the NDVI algorithm that considered the exposure time

of the hyperspectral system, and searched for the best exposure time for each wavelength.



Developments included:
e Automatic selection of optimal parameters for the algorithms,
e Automatic selection of optimal wavelengths, and

e Three new algorithms (MSAM, NDVI_T and dynamic channel relation) based on existing

algorithms.

The results indicated that the SAM and the NDV1 algorithms were the best out of the seven algorithms,
with a classification accuracy of over 97% and 96% respectively. The two algorithms were not affected by

changes in light, which was one of the basic requirements.

Keywords: hyperspectral imaging, vegetation classification.
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Chapter One: Introduction

1.1 Description of the Problem

Autonomous ground vehicles that use current sensors technologies such as laser scanners, cameras, radars
and ultrasonic sensors often bypass soft obstacles like long leaves and high vegetation. This is mostly due
to the fact that current algorithms are based on geometric and color analyses and encounter problems in
classifying materials (Fogler 2003). The failure to reliably distinguish between vegetation and non-
vegetation is crucial for reasonable driving, to ensure the vehicle stays on the path. In agriculture it is
more important not to drive on the vegetation because the crops are often parts of it.

Current systems for sensing vegetation include 3d laser sensors (Rutzinger et al., 2010), color cameras
(Bradley et al., 2007), and multi and hyperspectral systems (Fogler 2003, Chen et al., 2010). Current
research achievements in outdoor classification are limited to 90% accuracy (Bradley et al., 2007).
Hyperspectral sensing deals with acquiring and processing imaging for tracing materials and phenomenon
on the surface. This imaging is usually comprised of dozens of narrow bands between the UV to the
thermal infrared regions (0.4 to 14 pm). It is assumed that the object’s physical and chemical
characteristics correlate to the radiation that reflects from the object (a different amount is reflected at
each wavelength depending on the material of the object, Landgrebe, 2002). Due to dozens of bands
involved in the process, the problem dimension is very big, thus, sensitive to different kinds of noise that
do not behave the same way in all of the bands. Since the hyperspectral imaging system is passive (it is a
sensor that does not transmit any radiation to the outside world, only absorbs the radiation), the light
source also has strong influence on its performance. When the light source is the sun, the atmosphere
affects the behavior of the light on the ground; moreover, the object can be shaded by clouds or by other
objects, which cause changes to light that hits it.

Utilizing a hyperspectral imaging system in order to classify vegetation can add a very important data

source to an autonomous vehicle in order for it to achieve its goals successfully.

1.2 Objective
The research objective is to develop an algorithm to classify between vegetation and non- vegetation in
changing outdoor light conditions using a hyperspectral sensor without any a-prior knowledge on the

scene. The aim is to increase detection accuracy above 95%.



1.3 Research innovations

This research is based on existing algorithms that have been previously used in hyperspectral imaging.

However, several new approaches have been developed:

The algorithms use only hyperspectral imaging as opposed to other research which employed
additional sensors like laser scanners (Bradley et al., 2007).

Optimal wavelengths were automatically selected. Prior algorithms that dealt with hyperspectral
imaging, selected wavelengths based on information from previous research and known behavior
(Alchanatis et al., 2005). Plotting several pixels on a graph and selecting from there the best ones
(Ye et al.,, 2008), or executing the same algorithm several times, each time with a different
wavelength (Yang et al., 2003). To obtain the optimal wavelengths in this thesis, a decision tree
approach was taken assuming no assumption for a unique statistical behavior (like normal
distribution).

The performance of every algorithm is highly dependent on its parameters. In this research optimal
parameters were derived using a decision tree approach, instead of using a regression method
(Bradley et al., 2007), or choosing them through experiments.

Three new algorithms were developed (MSAM, NDVI_T and dynamic channel relation) by

adapting existing algorithms.



Chapter Two: Literature Review

2.1 Hyperspectral Sensing

Hyperspectral sensing is the ability to acquire information from an area by separating the spectral
dimension of the electromagnetic radiation returning from the area into narrow and continuous bands
(Shaw et al., 2002). Nowadays, due to the improvement of computer power, many applications in various
fields (e.g., agriculture, intelligence and environment monitoring) rely on hyperspectral sensing
(Landgrebe, 2002, Antonucci et al., 2010).

Hypercube

During hyperspectral imaging a hypercube (Figure 1) is acquired. The hypercube is a three dimensional
cube which has two spatial dimensions (x, y) and one spectral dimension (z). The value of each pixel in
the two spatial dimensions is the returned electromagnetic radiation at that pixel. The z axis includes all
the wavelengths images (i.e., an image for each wavelength; in the following example the hypercube
includes 224 images, one image for each wavelength).

EACH SPATIAL ELEMENT HAS A 200,
CONTINUCGUS SPECTRUM THAT o
IS USED TO ANALYZE THE

SURFACE AND ATHMOSPHERE

WL
224 SPECTRAL IMAGES S
TAKEN SIMULTANECUSLY ;_‘l WNOETANH
(Y]
gla
T
b e e
OsRLERE e o

Figure 1 — Hypercube example (Short, 2009)



2.2 Interaction between the sun radiation and an object

When electromagnetic radiation hits an object several actions occur. Some of the radiation is absorbed by
the object, some of it is reflected and some goes thru the object (Van der Meer, 2004). The amount of the
reflected radiation is what affects the sensor. The radiation flux upholds the conservation of energy rule,
as shown in [Formula 1].

[Formulal] ¢, =r,+7,+¢,

where:

r, — The flux transmitted from the object
T, — The flux going thru the object

ay, — The flux absorbed by the object

A — Specific wavelength

An example can be shown in Figure 2, when the atmosphere is the object (an object is not necessary
solid). The radiation comes from the sun (defined as a blackbody) through the atmosphere. The radiation
at the top of the atmosphere is presented in yellow, and the radiation at the bottom of the atmosphere is
presented in red. The red indicates the flux going thru the object (1,), while the difference between them is

the transmitted and absorbed flux (o ).

Solar Radiation Spectrum

25 | 1
uv | Visible | Infrared —»
| |
| |
2+ : 1 Sunlight at Top of the Atmosphere
|
[}
|
1.51 5250°C Blackbody Spectrum

e

Radiation at Sea Level

Absorption Bands
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Figure 2 — Sun radiation at various places (Solar radiation handbook, 2008)



2.2.1 Absorption

Absorption radiation is the radiation that stays in the object, when radiation is transformed to another kind
of energy, usually heat. Each substance is responsible for absorption at a different wavelength. In Figure
2, it is shown that at 750 nm, the atmosphere absorbed a lot of the radiation because of O, and at 830 nm
because of H,0.

2.2.2 Reflectance

Reflectance is defined as the ratio between the received radiation and the returned radiation, as shown in
[Formula 2]. The ratio is influenced by the chemical characteristics of the object, the micro topographical

surface of the object and the incident angle of the light source.

[Formula2] R, = %
In

2.2.3 Transmittance

The transmittance is defined as the amount of energy that goes through an object. Each object

transmittance is depends on the object physical and chemical characteristics.

2.3 Vegetation Spectral Behavior

Each material reflects differently the electromagnetic radiation. This section elaborates the behavior of
vegetation reflectance. For vegetation, there is a known difference between the red spectrum (around 650
nm) and the NIR spectrum (around 750 nm) reflected radiation due to chlorophyll characteristics. This
phenomenon is denoted as “Red Edge” as shown in Figure 3 and Figure 4. Green vegetation will also have
a small edge around 500nm because the vegetation is green (Bradley et al., 2004).
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2.4 General Hyperspectral Algorithms
In hyperspectral research, several algorithms as detailed below have been developed and tested for

material detection by using the massive amount of data available.

2.4.1 PCA Transformation

The PCA transformation (Principal Component Analysis) transforms data received in a multi dimensional
coordinate system to a new orthogonal coordinate system with fewer channels (Xing et al., 2007). The
channels are not correlated and are called principle components. The first component has the most
information about the data; the second one has the second most information and so forth. The analysis can
be performed on a smaller scale of uncorrelated data (there is no obligation to select all components, only
the strongest components can be taken for analysis). Reconstruction of the data from the selected
components can be done by the inverse transformation, although the sample may not be reconstructed
without errors due to the de-selection of all of the components. The reconstructed sample should be quite
close to the original sample. Another element that affects the reconstructed sample is actually the shape of
the original sample: if the original sample is smooth with little changes, the reconstructed sample should
be better (there will be fewer components). The main advantage of the PCA method is its ability to deal
with a small number of uncorrelated variables that allow us to do fast analysis (Xing et al., 2006). The
disadvantages are the poor reconstruction and the fact that the components are mathematical numbers that
do not have any relationship to the physical structure and hence, loose the spectral meaning of the material
(Naganathan, 2008).



2.4.2 Channels relations

A channels relation algorithm is based on a relation between two or more channels from the reflectance
radiation by a certain material (Yuan et al., 2010; Jin et al., 2010; Ye X. et al., 2008). The algorithm that is
mostly used is showed in [Formula 3].

COne _CTWO

[Formula3] Index =
COne +CT

wo
Where:

Cone and Cqy, are two specific channels that are chosen according to the desired material to be detected.
The index values go from -1 to 1; the meaning of the value changes according to the selected specific

channels and material.

The advantages of the algorithm are the ability to:
o find special characteristics that directly relate for a specific material like vegetation.
e reduce the dependency of the light source intensity when one of the selected channels is very low
and the other channel is very high.
The disadvantages of the algorithm are:
e it uses only a small portion of the available data.
e due to noise and changes of micro topology of the material, the channels may slightly differ for the

same material which may lead to miss-classification.

2.4.3 Derivatives

The derivative method is mainly used to enhance geometry features of a spectral sample (Gong et al.,
2001). When the derivative equals zero, the spectral sample has reached a local minimum or maximum
and it changes its direction. Usually, for each material we can isolate several minimum and/or maximum
points in a definite location, so if we encounter a derivative that equals zero in a known place, we can
categorize the sample as the material. The points will not always be in the same location, but they will be
in the vicinity of the expected location. Another usage of the derivative method is to discriminate between
species of the same material. Different species can have a different derivative at a special wavelength. The
derivative formula is shown in [Formula 4].

d_R _ R(ﬁ«)m — R(ﬂ“)i

da A=A

[Formula4] R'(1)=

Where:



R’ — The value of the derivative method.
Ai — The wavelength in the i’th channel.
R(L)i— The intensity in the i’th channel.

The advantages of the algorithm are the ability to:
o find special characteristics that directly relate to a specific material like vegetation or asphalt.
The disadvantages of the algorithm are:
e due to noise and changes of micro topology of the material, the location of the channels that the
derivative is strong may slightly differ for the same material which may lead to miss-

classification.

2.4.4 Fourier analysis

Fourier analysis ([Formula 5] and [Formula 6]) allows us analyze the signal in the frequency domain, by
transforming it to its cyclic components (cosine and sine, Tomiya et al., 2003). This breakdown occurs
using a known FFT algorithm to transform the sample to the frequency domain. In the frequency domain,

only the components with high coefficients are extracted and analyzed.

oC

[Formulas] X(f)= _[ x(s)e”*"ds

—oC

oc

[Formulas] X(8)= J. x(f)e ! df

Where:
X(f) — The sample in the frequency domain.

X(s) — The sample in the spectral domain.

The advantage of the algorithm is that a small amount of data represents almost all of the data.
The disadvantage of the algorithm is that because of the transformation to the frequency domain, the

perspective of the location in the spectral domain is lost.



2.4.5 Euclidian Distance

A Euclidian distance algorithm is an algorithm that calculates the distance in the Euclidian space between

the obtained sample and the average of previous recorded samples of a known material (Okamoto et al.,

2006) [Formula 7].
[Formula7] d; = ’i(xi—uki)2

Xi — The obtained sample in a specific channel

Where:

N — The number of channels

k — The number of groups that exist (different kinds of materials)

Mki — The average of a previously obtained data on a specific channel.
The advantage of the algorithm is that it uses all of the information.
The disadvantage of the algorithm is that it is sensitive to source intensity, and the pre-recorded materials

must be similar.

2.4.6 Mahalanobis Distance

A Mahalanobis distance algorithm [Formula 8] is an improvement of the Euclidian algorithm by the fact
that it takes into account the correlations of the dataset (DeVries, 2003).

[Formula8]  dy, =+/(x— )" S™(x~ )

Where:

X — The obtained vector sample

k — The number of groups that exist (different kinds of materials)
Mk — The vector from the dataset of a specific material.

S — Covariance matrix of the dataset.

If the channels are not correlated (the covariance matrix is diagonal), the calculation will be as seen in

[Formula9] d,, =\/@
i=1 o

Off course, if the variance is 1, we shall receive the Euclidian distance.

[Formula 9].



The advantages of the algorithm are:

e it uses all of the information

e it uses statistical criteria to get a more precise matching to the dataset.
The disadvantage of the algorithm is that it is sensitive to source intensity.

2.4.7 Spectral Angle Mapper (SAM)

Spectral Angle Mapper is an algorithm that calculates the angle between two vectors (each vector is
essentially all the wavelengths), one is a known vegetation the other is the checked pixel (Park et al.,
2007; Fogler 2003). This calculation is immune to changes in the reflectance from an object caused by
changes in light source intensity and incited angle. The decision if the two materials (the sample and the
one comparing from the dataset) are the same is directly connected to the angle: the closer the angle to

zero, the materials are more similar. The angle calculation is shown in [Formula 10].

_ N _
X. LL. T —
6, =cos™’ 'Zzll i = X al
[Formula 10] Vo o X
X: :
] ; i ;/’llk ]

Where:
N — The number of channels
Xi — The obtained sample in a specific channel
k — The number of groups that exist (different kinds of materials)
Mki — Average of a previously obtained data on a specific channel.
The advantages of the algorithm are:
e It uses all of the information.
e [t’s immune to changes in intensity due to incited angle or source change.

The disadvantage of the algorithm is its sensitivity to noise, it is not equal in all the channels.
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2.4.8 Summary of the algorithms

The algorithms are compared in Table 1 with applications described in Table 2.

Table 1 — Summary of the advantages and disadvantages of the algorithms

Algorithms

Principles

Advantages

Disadvantages

PCA

Transformation

Transforms the problem
dimension into a smaller one,

by keeping most of the data

e Problem dimension is

reduced

e Loses the
perspective of the

spectral domain

Channel Compares between two e Quick - uses two e Uses only small
Relation wavelengths, and check for a wavelengths portion of the data

known difference e Immune to light

changes

Derivative Checks the derivative between e Quick - uses several e Uses only small

several wavelengths wavelengths portion of the data
Fourier Transforms the problem to the e Problem dimensionis | e Loses the perspective
Analysis frequency domain. reduced of the spectral domain
Euclidian Compares the Euclidian e Uses all information e Sensitive to light
Distance distance of the sample to a changes

known Euclidian distance of e The pre-recorded

vegetation vegetation types must

be similar

Mabhalanobis Comparing the Mahalanobis e Uses all information e Sensitive to light
Distance distance of the sample to a o Uses statistical changes

known Mahalanobis distance of criteria for more

vegetation accurate classification
SAM Considers the wavelengths as e Uses all information e Relatively slow

an “N” dimensional vector, and
calculating the angle between
the sample’s and the vegetation

vector.

e Immune to light

changes
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Table 2 — Examples of algorithms in applications

Algorithms Types of materials Environmental Sensors Results
classified Conditions
PCA Detect bruises on Indoor, constant Hyperspectral 97.5%
Transformation | apples light conditions
Beef tenderness Indoor, constant Hyperspectral 96.4%
prediction light conditions
Channel Characterizing Outdoor Hyperspectral Qualitative -
Relation vegetation spectral showed graph
features
Classifying Indoor Multispectral Qualitative —
vegetation, water, showed histograms
rock, minerals
Classifying Outdoor Multispectral 85.7% for 3 classes
ground, vegetation and laser 90.6% for
and obstacles scanner vegetation
classification
Derivative Classify conifer Outdoor Hyperspectral 85.3%
species
Fourier Classifying pines Outdoor — airborne | Hyperspectral ~93%
Analysis acquisition, testing
and training data
from the same
recording
Euclidian Plant classification Outdoor Hyperspectral 60%
Distance
Mabhalanobis Mapping Outdoor - satellite Hyperspectral Qualitative —
Distance rainforest showed image
sub-formations
SAM Two plant species Indoor Hyperspectral Qualitative - graph
Contaminant Indoor Hyperspectral 90%

classification
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Chapter Three: Methodology

3.1 General
A hyperspectral data acquisition system was used to classify between vegetation and non-vegetation in an

outdoor environment. Classification algorithms were developed and adapted.

3.1.1 Assumptions

This study assumes the following:
e Off-line classification is conducted (classification is not in real-time due to sensor limitations).
e During recording of a full dataset (i.e., when sampling all of the wavelengths along approximately
30 seconds), there are no changes in the environment.
e There is no knowledge about the external light conditions (like direct sunlight, clouds and

shadows, indirect light).

3.2 Experimental Setup

The hyperspectral system was composed of commercial components as described in Figure 5 and Figure
6. The spectral component is selected using an acousto-optic tunable filter (AOTF) which acts as an
electronically tuned bandpass filter. The available wavelengths are 500-900 nm with a 5nm FWHM. The
image sampled by the AOTF filter is captured by a black and white CCD cooled camera (COOL-
1300Q/QC by VDS Company) with a pixel resolution of 1280X1024, and 640X512 with 2x2 binning
technology. Binning technology is a special technology in which each 4 adjunct pixels serve as 1 pixel,
resulting in increased light for each pixel. The lens angle was 12° horizontally and 9° vertically. The
control of the AOTF was done by a Direct Digital Synthesizer (DDS) which sends a RF wave to the
AOTF (through an amplifier), and thereby changes the filter characteristics.

Seven hypercubes® were taken in different scenarios, at different hours of the day, in order to test different
light conditions with different types of vegetation (Figure 7). Each hypercube had at least 30% vegetation

in the image.

ta hypercube is a three dimensional cube which has two spatial dimensions (x,y) and one spectral dimension (z). The value of
each pixel in the two spatial dimensions is the returned electromagnetic radiation at that pixel. The z axis includes all the

wavelengths images (i.e., one image for each wavelength).
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3.3 Algorithms

The following algorithms were developed and adapted to classify between vegetation and non vegetation:

Mahalanobis distance

Derivative

Spectral Angle Mapper (SAM)

Minor Spectral Angle Mapper (MSAM)
Channel relation (NDVI)

Channel relations Tree (NDVI_T)

Dynamic Channel relations

N oo g b~ w D oE

Specific new developments in each algorithm are detailed in Chapter Four.

3.4 Performance Measures

Three performance measures were used for evaluation (Table 3): Total Success Rate (number of correct
detections), False Positive Rate and False Negative Rate. The measures were calculated from the
confusion matrix (Table 3) by comparing the result of the algorithms (the out coming classified image) to

a manual classified image and are detailed below.

The manual classified image was created by taking the captured images at a specific wavelength (590nm),
manually marking in green the pixels which were vegetation and in blue the pixels that were on the edges,
and as such could be either vegetation or non-vegetation. All other pixels were considerate non-

vegetation. See Figure 8 for an example. All manually marked figures are detailed in Appendix E.
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a— image at 590nm b — manually classified image

Figure 8 — Example of an image and a manual classified image

Table 3 — Confusion Matrix

Actual state

Vegetation Non-vegetation

Vegetation True Positive False positive

Classifier (Type 1 Error)

Result | Non-vegetation False Negative True Negative
(Type 2 Error)

Total Success Rate
The total success rate is calculated according to [Formula 11]. This measure states the number of correctly

classified pixels relative to all the total number of pixels in the image.

(True Positive + True Negative)
All of the pixels

[Formula11] total successrate =

17



False Positive Rate
The False Positive rate is calculated according to [Formula 12]. This measure states how many non-

vegetation pixels were classified as vegetation from all of the non-vegetation pixels.

False Positive
(False Positive + True Negative)

[Formula12] flase positiverate (&) =

False Negative Rate
False Negative Rate is calculated according to [Formula 12]. This measure states how many vegetation

pixels were classified as non-vegetation from all of the vegetation pixels.

False Negative
(False Negative + True Positive)

[Formula13] flasenegative rate (/) =

3.5 Decision tree

The decision tree is one of the most widely used and practical methods for inference and classification. A
decision tree can be represented as sets of “if-then” rules. In order to choose which of the attribute (inputs)
best discriminates the training data, usually a statistical property known as information gain is used.
Information gain is the expected reduction in entropy (uncertainty) caused by partitioning the examples
(the training data) according to an attribute. This information gain method does not assume any statistical
properties on the data itself (e.g., normal distribution) and such is best suited in this case, when the
statistical distribution is unknown.

When building a decision tree, the over-fitting phenomenon may arise. Over-fitting is, modeling the
training data to well, and as a result, representing a particular case and not the general one. Over-fitting is
represented in the decision tree as a deep tree with many levels. To avoid over-fitting, a simple method
was applied: assuming a minimal number of instances (in our case - pixels) in each leaf, thus not allowing

the tree to grow more and more.
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3.6 Calibration

In sensing, usually there is a need to calibrate each sensor. This is commonly done by using a white paper,
which serves as a reference. However, this requires accurate procedures such as using the same type of
white paper, and applying the same illumination source located in the same position (range and
orientation). Since it is usually very problematic to ensure identical operating conditions (e.g. even if the
light source is from the same type, if it was working for a long time, its behavior is different) this thesis
employed a different approach for calibration. Instead of using the same algorithm and its parameters, and
bringing the new sensor to the old sensor performances, the opposite approach was chosen. For every
sensor, recordings were made, and new parameters were chosen for each specific algorithm (as described in
Chapter Four) to ensure it fits the "old" sensor. While this procedure requires more time to adjust for a new

sensor, it ensures optimal fit to that sensor.

3.7 Clouds interference

To check how the clouds affect the transmission of the light coming from the sun, several recordings were
conducted on a white paper for all the wavelengths. Several recordings were done when the sun was
without any interference, and the light hit the white paper directly. Other recordings were made when
there were lots of clouds that blocked the sun completely. To neglect the exposure time, which is different
for each recording, especially between the direct sun and the clouds, all data was normalized. The
normalization for each recording was made by subtracting the minimum value from each wavelength, and
dividing each wavelength by the maximum value, resulting in values between zero and one [Formula 14].
Ten different pixels in different areas in the image were taken and the mean was calculated for every

wavelength. This was repeated for all of the recordings (direct sunlight and clouds).
Wave, —min(Waves)
max(Waves) — min(Waves)

[Formula 14] Wave; =

Where:
Wave; — The wavelength to be normalized.

Waves — all of the wavelengths.
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3.8 Sensitivity Analysis

Several sensitivity analyses were conducted for each algorithm as detailed below.

3.8.1 Independent evaluation of hypercubes

For each algorithm, each hypercube was tested independently: half of the pixels from each hypercube
were chosen randomly for the training data and the rest were used as the testing data.

Each hypercube behaves differently due to the different conditions in the environment (e.g., light).

3.8.2 Cross Validation

Each of the algorithms was tested on all of the hypercubes. The training data consisted of half of the

hypercubes chosen randomly while the testing data was the remaining data.

3.8.3 Training by different hypercubes

The training data consisted of two hypercubes chosen randomly, while the testing data were the five

remaining hypercubes. This was done twice, each time with different hypercubes serving as training data.

3.8.4 Light conditions

To check the algorithm's robustness to variance in light conditions, each hypercube was checked under
different light conditions. The light conditions were manually categorized into three sections: Strong,
Medium and Low. For three of the hypercubes the medium and low categories were created by
multiplying the hypercubes by a factor of 0.9 and 0.7 accordingly. The other two hypercubes were taken

with smaller exposure times representing low lighting conditions.

3.8.5 Noise

In order to check the robustness to noise, noise was added to each wavelength, for every pixel in the
testing data. The level of the added noise varied from 1% to 10%. The testing data consist of five

hypercubes randomly selected.

3.8.6 The number of hypercubes for training

In order to check the susceptibility of the algorithm to the number of training hypercubes, additional

training sets with four and five hypercubes as training sets were evaluated.
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Chapter Four: Algorithms
4.1 Overview

Seven algorithms were developed and adapted for classifying between vegetation and non vegetation:
Mahalanobis distance, Derivative, SAM, MSAM, NDVI, NDVI_T and dynamic channel relation.
The specific developments included:
e Optimal parameters were found for each algorithm by developing decision trees.
e The specific derivatives for the Derivative algorithm were chosen automatically by a decision tree.
e The MSAM algorithm is a variation of the SAM algorithm; this is a new algorithm developed in
this research in order to check the assumption that most important information is located in only a
few wavelengths. The important wavelengths were chosen automatically by a decision tree in this
algorithm and in the NDV1 algorithm.
e The NDVI_T algorithm is a variation of the NDVI algorithm, is a new algorithm developed in this
research in order to check if multiple NDVI algorithms can improve performance.
e The Dynamic Channel Relation is another variation of the NDVI algorithm, also developed in this
research, in order to check the behavior of the NDVI algorithm, using different exposure time

settings for the two wavelengths.

4.2 Mahalanobis distance

The Mahalanobis distance algorithm requires a reference of the vegetation. To implement the algorithm,
we assumed that none of the channels are correlated, thus enabling us to use [Formula 15].

To determine the vegetation reference, several steps were conducted: first, the mean and the standard
deviation of all vegetation pixels were calculated from the training data. Second, the Mahalanobis
distance was calculated for every pixel in the training data (vegetation and non-vegetation alike). In order

to optimally decide on the correct Mahalanobis distance representing vegetation, a “C5.0” decision tree

N (y —u )2
[Formula 15] d,, :\/Z(Xij
i=1 o

k — The number of groups that exist (different kinds of materials under different lighting conditions).

algorithm was used.

Where:

Xi — The obtained vector sample.

Mki — The vector from the dataset of a specific material.
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o — Standard deviation of a specific channel.

Both vegetation and non-vegetation distances were entered into the decision tree algorithm as inputs; the
output was the actual tree design. To avoid over-fitting, the decision tree was designed so that each of the
leaves of the decision tree contained at least 1/3 of the amount of all the pixels, thus creating a decision
tree with 1 root and two leaves. The optimal distance for deciding if a pixel is vegetation or non-
vegetation is equivalent to the condition to go to the “vegetation” leaf from the root. For the testing set, the
Mahalanobis distance of each pixel was calculated and compared to the optimal vegetation distance
derived from the decision tree. A pixel with a distance greater than the Mahalanobis distance was
classified as non-vegetation; a pixel with a distance smaller or equal to the Mahalanobis distance was

classified as vegetation.

4.3 Derivative algorithm

The derivative algorithm requires calculation of all possible adjacent derivatives. Since there are 81
possible wavelengths, 80 derivatives were calculated between each wavelength and its adjunct
wavelength. To optimally select the most important derivatives, the “C5.0” decision tree algorithm was
used. As inputs, all of the derivatives of every pixel from the training set were entered; the output was the
actual tree design. To avoid over-fitting, the decision tree was designed so that each of the leaves of the
decision tree contained at least 10% of the amount of all the pixels, thus creating a decision tree not to
short (so it can consider several derivatives), but still without the over-fitting problem. The decision tree
that was created is depicted in Figure 9. For the testing set, we calculated only the derivatives that appear

in the decision tree, and just followed the tree from the root to the bottom leaf.

The wavelengths received by the vegetation were between 650 to 735 nm. The fact that the most
important derivative are in this area, also known as the “Red Edge” for vegetation, reinforces the

correctness of the implementation.
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Figure 9 — Derivative, vegetation decision tree

4.4 Spectral Angle Mapper (SAM)

The SAM algorithm requires references from the vegetation to be classified. The vegetation reference was
created by calculating the average of every wavelength, when the data is all of the vegetation pixels in the
training set. All of the wavelengths were taken into consideration. Then, we calculated the angle between
each pixel in the training to the reference according to [Formula 16]. To optimally choose the threshold
that corresponds to vegetation, the “C5.0” decision tree algorithm was used. Both vegetation and non-
vegetation angles were entered into the decision tree algorithm as inputs; the output was the actual tree
design. To avoid over-fitting, the decision tree was designed so that each of the leaves of the decision tree
contained at least 1/3 of the amount of all the pixels, thus creating a decision tree with one root and two
leaves. The optimal angle for deciding if a pixel is vegetation or non-vegetation is equivalent to the
condition to go to the “vegetation” leaf from the root. For the testing set, the angle of each pixel was
calculated (by comparing it to the reference vegetation) and compared to the optimal vegetation angle
derived from the decision tree. A pixel with an angle greater than the optimal angle was classified as non-

vegetation; a pixel with an angle smaller or equal to the optimal angle was classified as vegetation.
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Where:

N — The number of channels.

Xi — The obtained sample in a specific channel.

k — The number of groups that exist (different kinds of materials).

Mki — Average of a previously obtained data on a specific channel.

4.5 Minor Spectral Angle Mapper (MSAM)

The Minor Spectral Angle Mapper algorithm process is done exactly like the SAM algorithm except for
one change: instead of using all of the 81 wavelengths, the algorithm uses only the most five important
wavelengths. To select the most effecting wavelengths, the “C5.0” decision tree algorithm was used. The
inputs to the decision tree were the entire 81 wavelengths; the output was the classification tree (Appendix
C). The upper five wavelengths (the wavelengths that are closer to the root) were chosen, as they are the
most influencing ones. This method of optimally choosing the most important wavelengths and using only
them was specially developed in this thesis in order to obtain performance with a low number of

wavelengths.

4.6 Channel relation (NDVI)

The channel relation algorithm requires selection of three parameters from the channel relation equation
[Formula 3]: Channell, Channel 2 and “Index”. The acquisition system provides 81 channels, so there are
3240 options [Formula 17] for checking all of the possibilities of the “Channell” and “Channel2”. In

addition, it is necessary to determine the “Index” parameter.
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80 X
[Formula17] > i= % =3240
i=1

To optimally select these three parameters, the “C5.0” decision tree algorithm was used. To select the
optimal channels and the threshold, two steps were conducted. First, the entire 81 channels were entered
as inputs to the decision tree. Then, the most important wavelengths were taken from the decision tree by
taking the upper nodes of the tree (in a decision tree — the higher the node, the wavelength is more
important, Appendix C). After receiving only five wavelengths, all of the possible “channel relations”
options were calculated and re-entered to the “C5.0” algorithm by creating a new decision tree. The root
of the new tree is the final “channel relation” and it also contains the required “Index” parameter (Figure
10).

The wavelengths for vegetation were accordingly selected between 665 and 800 nm. The fact that the
most important channel relation is in the area of the known “Red Edge” for vegetation (Fogler 2003),
reinforces the correctness of the implementation part. The channel relation for vegetation is also called
NDVI (Normalized Difference Vegetation Index).
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Figure 10 —Channel relation - vegetation decision tree
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4.7 Channel relations tree (NDVI_T)

This algorithm is an extension of the single channel algorithm which was specially developed in this
thesis. It is calculated exactly the same as the previously channel relation, except for one change: instead
of taking only the root in the second decision tree, the entire tree was considered. This will use several
channel relations, each with different wavelengths.

The final decision tree is depicted in Figure 11:

Level 1
NDVI1(800,665)

K\ N
W “o
Not Level 2
Vegetation NDVI1(775,665)
7 Yo,
L’ . <)
A\’L .“\‘0
Q 4
Q
NOt_ Vegetation
Vegetation

Figure 11 — Multiple channel relation - vegetation decision tree
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4.8 Dynamic Channel relations

The dynamic channel relation is a variation of the “regular” channel relation algorithm specially
developed in this thesis in order to check the effect of exposure time for receiving better results. The
resulting intensity for each wavelength is influenced by several factors such as light source intensity,
atmosphere, filter characteristics, CCD characteristics and exposure time. These factors behave differently
from wavelength to wavelength. Most of the factors cannot be controlled, but the exposure time can be
controlled. Giving a longer exposure time to a specific wavelength is equal to multiplying its current
intensity with a weight. As opposed to the previous NDVI which uses [Formula 3], the dynamic channel
relation uses a different weight for each wavelength, as seen in [Formula 18]. This was implemented in
simulation. From the hypercubes of the training set only the two wavelengths that were found in NDVI
were taken. In each simulation, each wavelength was multiplied by its weight. The weights were changed
between 0.2 - 2, in 0.2 intervals. If the value was greater than the maximum (implying saturation
condition), it was changed to be the maximum. There were a total of 200 simulations to cover all
possibilities. For each simulation, the ‘Index’ was calculated exactly like the NDVI — creating a decision

tree using a C5.0 algorithm, and extracting the Index from the first level of the decision tree.

aCOne B ﬂ CTWO
aCOne + ﬂ CTwo

[Formula 18] Index =
Where:
Cone and Cry, are two specific channels that are chosen according to the desired material to be detected.
a is the weight for Cope,
B is the weight for Crwe.

Index is the criteria to choose if the material is vegetation or not.
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Chapter Five: Results and Discussion
5.1 Mahalanobis distance
5.1.1 Independent evaluation of hypercubes

Result indicated that the algorithm is not good for vegetation classification (Table 4): The average success
rate was 85.7%, the FPR (False Positive rate) was 12.3% and the FNR (False Negative Rate) was 14.3%.
All three measures had high standard deviations (approximately 10%) implying inconsistent results which

are highly dependent on the examined hypercube.

Table 4 — Mahalanobis - Independent evaluation of hypercubes

Total Success Rate False Positive Rate | False Negative Rate
Hypercubel 0.836 0.066 0.208
Hypercube2 0.913 0.084 0.090
Hypercube3 0.758 0.111 0.293
Hypercube4 0.955 0.047 0.044
Hypercube5 0.935 0.012 0.097
Hypercube6 0.679 0.449 0.202
Hypercube7 0.925 0.094 0.064
Average 0.857 0.123 0.143
Std 0.104 0.147 0.092

5.1.2 Cross Validation

The cross validation results (Table 5) indicates low classifications results (only 85% total success with
approximately 14.5% FPR and FNR). This implies that the algorithm has a problem with training data
consisting of various illumination conditions.

Table 5 — Mahalanobis — Cross Validation

Total Success Rate False Positive Rate | False Negative Rate

0.857 0.152 0.140

5.1.3 Training by two hypercubes

Two hypercubes were used as the training data and the other five hypercubes were the testing data (Table

6). The difference in the total success for the two training sets, suggests that the algorithm is very sensitive
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to the training set. Even in the better training set, best performance yielded only 86% success, with a FNR

of 10.6% and a very high FPR (42%) implying poor classification.

Table 6 — Mahalanobis — Training by two hypercubes

Total Success Rate False Positive Rate | False Negative Rate
Training Set 1 0.860 0.421 0.106
Training Set 2 0.543 0.752 0.008
Average 0.701 0.586 0.057
Std 0.224 0.234 0.070

a — real image

b — classified image

Figure 12 — Example of Mahalanobis distance classification
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5.1.4 Different light conditions

Results (Table 7) indicate that the Mahalanobis distance algorithm behaves the same under different light
conditions, but still performs poorly with average success of 87.4% and a FPR of 38.9% and FNR of
10.8%.

Table 7 — Mahalanobis — Different light conditions

Total Success Rate False Positive Rate | False Negative Rate
Strong 0.860 0.421 0.106
Medium 0.880 0.284 0.105
Low 0.881 0.462 0.112
Average 0.874 0.389 0.108
Std 0.012 0.093 0.004

5.1.5 Noise

Results indicate that noise up to 10% does not affect the algorithm’s performances (Table 8). There is

slight increase in FNR and decrease in FPR for 10% noise as compared to 8% noise which has no effect.

Table 8 — Mahalanobis — Noise

Noise Level Total Success Rate False Positive Rate | False Negative Rate
1% 0.859 0.417 0.112
2% 0.860 0.415 0.113
5% 0.863 0.404 0.120
7% 0.869 0.386 0.126
8% 0.869 0.360 0.141
10% 0.853 0.275 0.167
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5.1.6 Training by different number of hypercubes

Results indicate a drastic decrease in performance with an average of 56.9% when using four and five
hypercubes as training sets. The FPR and FNR are also higher with a 55.8% and 20.9% respectfully. This
result is expected due to the fact that the Mahalanobis distance algorithm calculates the normalized
distances in the variance, and when there are lots of vegetation pixels taken under different light
conditions, the variance for each wavelength is big, and the difference between the distance that represent

vegetation and the distance that represent non-vegetation is very small.

Table 9 — Mahalanobis — Training by different number of hypercubes

Total Success Rate False Positive Rate | False Negative Rate
4 Hypercubes 0.630 0.488 0.166
5 Hypercubes 0.508 0.558 0.209
Average 0.569 0.523 0.187
Std 0.086 0.049 0.031

5.2 Derivative
5.2.1 Independent evaluation of hypercubes

Almost all of the hypercubes received more than 94% total success (Table 10) except for one hypercube
which resulted in a low total success (Hypercube6). The average success rate was 94.9%, the FPR was 7%
and the FNR was 3.7%. The high success rate implies that the algorithm is good for classifying under
similar light conditions. All three measures had low standard deviations (approximately 3%) which
implies consistency of the algorithm.
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Table 10 — Derivative - Independent evaluation of hypercubes

Total Success Rate False Positive Rate | False Negative Rate
Hypercubel 0.948 0.065 0.041
Hypercube2 0.945 0.064 0.047
Hypercube3 0.958 0.046 0.039
Hypercube4 0.974 0.036 0.019
Hypercube5 0.971 0.050 0.012
Hypercube6 0.886 0.173 0.077
Hypercube?7 0.962 0.059 0.026
Average 0.949 0.070 0.037
Std 0.030 0.046 0.022

5.2.2 Cross Validatio

n

The cross validation results (Table 11) indicates very good classifications results (total success of 94%
with FPR of 12.6% and FNR of 2.9%). This implies that the algorithm can classify well, when the training

and testing data are with the same lighting conditions.

Table 11 — Derivative — Cross Validation

Total Success Rate

False Positive Rate

False Negative Rate

0.941

0.126

0.029

5.2.3 Training by two hypercubes

Two hypercubes were used as the training data and the other five hypercubes were the testing data (Table

12). In this case the algorithm tends to have a problem with classifying correctly other vegetations in

different light conditions with a total success of 86% (for both training sets). The FPR is very high in this

case, because pixels were classified as vegetation when there was a change from shadow to light. In both

training sets, the FPR and FNR are approximately the same (with low standard deviations).
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Table 12 — Derivative — Training by two hypercubes

Total Success Rate False Positive Rate | False Negative Rate
Training Set 1 0.863 0.494 0.017
Training Set 2 0.879 0.427 0.047
Average 0.871 0.460 0.032
Std 0.012 0.047 0.021

a — real image b — classified image

Figure 13 — Example of Derivative classification

5.2.4 Different light conditions

The results (Table 13) show that the Derivative algorithm maintained medium performances, when the
light conditions changes with average success of 87.3% and a FPR of 46.6% and FNR of 1.6%.

Table 13 — Derivative — Different light conditions

Total Success Rate False Positive Rate | False Negative Rate
Strong 0.863 0.494 0.017
Medium 0.867 0.481 0.015
Low 0.889 0.424 0.016
Average 0.873 0.466 0.016
Std 0.014 0.037 0.001
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5.2.5 Noise

Results indicate that noise affects the performances even with low noise of 1% (Table 14). The total
success is lower (83.2 vs. 87.3), the FPR is higher (53.7 vs. 46.6) and the FNR is slightly higher (2 vs.
1.6).

Table 14 — Derivative — Noise

Noise Level Total Success Rate False Positive Rate | False Negative Rate
1% 0.832 0.537 0.020
2% 0.800 0.577 0.030
5% 0.764 0.611 0.056
7% 0.756 0.617 0.078
8% 0.756 0.617 0.080
10% 0.757 0.616 0.080

5.2.6 Training by different number of hypercubes

It shows a drastic increase in performances when using four hypercubes as training sets (92% total
success, 15% FPR and 1.2% FNR), however, performance decreases when using five hypercubes. The

reason for this is that the hypercubes are taken in different light conditions, and hence, behaves differently.

Table 15 — Derivative — Training by different number of hypercubes

Total Success Rate False Positive Rate | False Negative Rate
4 Hypercubes 0.920 0.152 0.012
5 Hypercubes 0.825 0.135 0.183
Average 0.872 0.144 0.098
Std 0.067 0.011 0.121
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5.3 Spectral Angle Mapper (SAM)

5.3.1 Independent evaluation of hypercubes

The SAM algorithm was tested on each hypercube on its own (Table 16). Almost all of the hypercubes

received more than 92% total success except for one hypercube which resulted in a low total success of

only 80% total success and 23% of FNR (Hypercube6). The average success rate was 93.9%, with a FPR

of 4.8% and of FNR 5.8%. The high success rate implies the algorithm is good for vegetation

classification under the same lighting conditions. The high standard deviation (8.1%) of the FNR is due to

hepercube6, and without it, it is much lower (3.1%).

Table 16 — SAM - Independent evaluation of hypercubes

Total Success Rate False Positive Rate | False Negative Rate
Hypercubel 0.949 0.073 0.033
Hypercube?2 0.970 0.054 0.005
Hypercube3 0.957 0.051 0.036
Hypercube4 0.986 0.019 0.010
Hypercube5 0.985 0.026 0.006
Hypercube6 0.804 0.061 0.230
Hypercube?7 0.924 0.052 0.087
Average 0.939 0.048 0.058
Std 0.064 0.019 0.081

5.3.2 Cross Validatio

n

The cross validation results (Table 17) indicates very good classifications results (high total success) and

low FPR and FNR. This implies that the algorithm can classify well, when the training and testing data are

with the same lighting conditions.

Table 17 — SAM — Cross Validation

Total Success Rate

False Positive Rate

False Negative Rate

0.955

0.077

0.032
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5.3.3 Training by two hypercubes

The high total success criteria (Table 18) shows that even when hypercubes are taken in different
scenarios with different light conditions, there is a common element between all of the hypercubes. Both
the FPR and the FNR are approximately the same (low standard deviation) which implies that the

algorithm robustness.

Table 18 — SAM — Training by two hypercubes

Total Success Rate False Positive Rate | False Negative Rate
Training Set 1 0.972 0.071 0.019
Training Set 2 0.974 0.047 0.027
Average 0.973 0.059 0.023
Std 0.001 0.017 0.005

a—real image b — classified image

Figure 14 — Example of SAM classification
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5.3.4 Different light conditions

The results (Table 19) indicate that the SAM algorithm behaves the same under different light conditions,
as expected with average success of 97.2% and a FPR of 6.5% and FNR of 1.9%.

Table 19 — SAM - Different light conditions

Total Success Rate False Positive Rate | False Negative Rate
Strong 0.972 0.071 0.019
Medium 0.972 0.065 0.019
Low 0.972 0.060 0.020
Average 0.972 0.065 0.019
Std 0.000 0.006 0.000

5.3.5 Noise

It shows that noise until 2% does not affect performance (Table 20). There is a small decrease in

performances with noises up to 8% (although the FPR is lower, the FNR is higher). For noises above 8%

performance greatly decreases with higher FNR (11.7 vs. 7.6) and lower total success (90.4 vs. 93.6).

Table 20 — SAM — Noise

Noise Level Total Success Rate False Positive Rate | False Negative Rate
1% 0.972 0.071 0.020
2% 0.972 0.068 0.021
5% 0.965 0.058 0.034
7% 0.947 0.055 0.062
8% 0.936 0.057 0.076
10% 0.904 0.058 0.117
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5.3.6 Training by different number of hypercubes

It shows a drastic decrease in performances when using four and five hypercubes as training sets (Table
21). The total success reduces from 97% to 67%, the FPR increased to 40% from 6.5% and the FNR
increased to 29.8% from 1.9%. This is expected due to the fact that the SAM algorithm calculates the angle
between a known vegetation vector to the pixel vector, and when we are using multiple training sets that
were acquired in different light conditions, the known vegetation vector (calculated by the average of the

vegetation in the training set) behaves differently than real vegetation.

Table 21 — SAM — Training by different number of hypercubes

Total Success Rate False Positive Rate | False Negative Rate
4 Hypercubes 0.674 0.441 0.257
5 Hypercubes 0.671 0.361 0.338
Average 0.672 0.401 0.298
Std 0.002 0.056 0.057

5.4 Minor Spectral Angle Mapper (MSAM)
5.4.1 Independent evaluation of hypercubes

Almost all of the hypercubes received more than 91% total success except for two hypercubes which
resulted in low total success of 75% and high FPRs and FNRs (10 and 38.6%; 26.8 and 13.6%
respectively for Hypercube6 and Hypercube7, Table 22). The average success rate was 89.8%, with 8.7%
FPR and 9.8% FNR. The high success rate means the algorithm is good for vegetation classification under
the same lighting conditions in most environments. The high standard deviation in all three measures is
because of hypercubes 6 and 7 results.

38



Table 22 — MSAM - Independent evaluation of hypercubes

Total Success Rate False Positive Rate | False Negative Rate
Hypercubel 0.910 0.035 0.124
Hypercube2 0.968 0.047 0.017
Hypercube3 0.947 0.015 0.080
Hypercube4d 0.973 0.012 0.037
Hypercube5 0.979 0.015 0.026
Hypercube6 0.759 0.102 0.268
Hypercube?7 0.750 0.386 0.136
Average 0.898 0.087 0.098
Std 0.101 0.135 0.088

5.4.2 Cross Validatio

n

The cross validation results (Table 23) indicates very good classifications results (high total success and
low FPR and FNR), although lower than the results obtained by the SAM algorithm. This implies that the

algorithm can classify well, when the training and testing data are with the same lighting conditions.

Table 23 — MSAM — Cross Validation

Total Success Rate

False Positive Rate

False Negative Rate

0.933

0.132

0.039
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5.4.3 Training by two hypercubes

Two hypercubes were used as the training data and the other five hypercubes were the testing data (Table
24). The high total success criteria show that most of the information that distinct the vegetation from the
non-vegetation is found in the five wavelengths. The FPR is lower than the FNR in the first training set,
and the opposite occurs in the second training set; this implies that performance depends on the training

sets much more than the SAM algorithm.

Table 24 — MSAM - Training by two hypercubes

Total Success Rate False Positive Rate | False Negative Rate
Training Set 1 0.941 0.062 0.073
Training Set 2 0.957 0.198 0.040
Average 0.949 0.130 0.057
Std 0.011 0.096 0.023

a—real image b — classified image

Figure 15 — Example of MSAM classification
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5.4.4 Different light conditions

The results (Table 25) show that the MSAM algorithm behaves the same under different light conditions,
as expected with 94.1% average success and a FPR of 6.8% and FNR of 7.3%.

Table 25 — MSAM - Different light conditions

Total Success Rate False Positive Rate | False Negative Rate
Strong 0.941 0.062 0.073
Medium 0.941 0.073 0.073
Low 0.942 0.068 0.073
Average 0.941 0.068 0.073
Std 0.000 0.006 0.000

5.4.5 Noise

It shows that noise until 2% does not affect performance. Beyond 2% noise, total success decreases (from
93.5t0 92.1), with higher FPR (21.1 vs. 13.3) and higher FNR (8.6 vs. 7.5)

Table 26 — MSAM — Noise

Noise Level Total Success Rate False Positive Rate | False Negative Rate
1% 0.941 0.082 0.073
2% 0.935 0.133 0.075
5% 0.921 0.212 0.086
7% 0.907 0.234 0.102
8% 0.902 0.237 0.108
10% 0.887 0.242 0.126
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5.4.6 Training by different number of hypercubes

As in the SAM algorithm, it shows a drastic decrease in performances when using four and five
hypercubes as training sets. The total success reduces from 94% to 72%, the FPR increased to 36.9% from
6.8% and the FNR increased to 25.4% from 7.3%. This is expected due to the fact that the MSAM
algorithm behaves exactly like the SAM algorithm with just fewer wavelengths.

Table 27 — MSAM - Training by different number of hypercubes

Total Success Rate False Positive Rate | False Negative Rate
4 Hypercubes 0.797 0.264 0.168
5 Hypercubes 0.650 0.475 0.339
Average 0.723 0.369 0.254
Std 0.104 0.149 0.121

5.5 Channel relation (NDVI)
5.5.1 Independent evaluation of hypercubes

Almost all of the hypercubes received more than 92% total success except for one hypercube which
resulted in a low total success of 72% (Hypercube7, Table 28). The average success rate was 93.1%, with
7.2% FPR and 6.4% FNR. The high success rate implies that the algorithm is good for vegetation
classification under the same lighting conditions. The high standard deviation in the three measures is due
to hypercube?7, without it, results are much lower.

Table 28 — NDVI - Independent evaluation of hypercubes

Total Success Rate False Positive Rate | False Negative Rate
Hypercubel 0.965 0.043 0.028
Hypercube2 0.969 0.047 0.015
Hypercube3 0.975 0.031 0.020
Hypercube4 0.976 0.010 0.034
Hypercube5 0.979 0.016 0.025
Hypercube6 0.929 0.042 0.122
Hypercube?7 0.725 0.314 0.203
Average 0.931 0.072 0.064
Std 0.092 0.108 0.072
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5.5.2 Cross Validation

The cross validation results (Table 29) indicates very good classifications results (high total success of
95.9% and low FPR and FNR of 4% and 4.1% respectfully). This implies that the algorithm can classify
well, when the training and testing data are with the same lighting conditions.
Table 29 — NDVI — Cross Validation

Total Success Rate False Positive Rate

False Negative Rate

0.959

0.040

0.041

5.5.3 Training by two hypercubes

The high total success criteria shows that even when hypercubes are taken in different scenarios with

different light conditions, there is a common element between all of the hypercubes (Table 30). All of the

measures (total success, FPR and the FNR) are approximately the same (low standard deviation) which

implies that the algorithm is robust to the training set.

Table 30 — NDVI — Training by two hypercubes

Total Success Rate False Positive Rate | False Negative Rate
Training Set 1 0.968 0.077 0.029
Training Set 2 0.967 0.062 0.037
Average 0.968 0.069 0.033
Std 0.001 0.011 0.006

o s s SRt

A S e

a— real image

b — classified image

Figure 16 — Example of NDVI classification
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5.5.4 Different light conditions

The results (Table 31) indicate that the NDVI algorithm behaves the same under different light conditions,
as expected with average success of 96.8%, 7.6% FPR and 2.9% FNR.

Table 31 — NDVI — Different light conditions

Total Success Rate False Positive Rate | False Negative Rate
Strong 0.968 0.077 0.029
Medium 0.968 0.081 0.029
Low 0.969 0.071 0.029
Average 0.968 0.076 0.029
Std 0.000 0.005 0.000

5.5.5 Noise

It shows that noise until 2% does not affect performance. There is a small decrease in performances with
noises up to 5%, resulting in higher FPR (28.6 vs. 20.5) and FNR (3.4 vs. 3.1) and lower total success

(94.6 vs. 95.9). Performance greatly decreases with noise above 5% (Table 32).

Table 32 — NDVI — Noise

Noise Level Total Success Rate False Positive Rate | False Negative Rate
1% 0.965 0.126 0.030
2% 0.959 0.205 0.031
5% 0.946 0.286 0.034
7% 0.936 0.323 0.038
8% 0.934 0.329 0.039
10% 0.927 0.344 0.044
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5.5.6 Training by different number of hypercubes

Results indicate only small decrease in performance when using four and five hypercubes as training sets.
The total success reduces from 96.8% to 94.2%, the FPR decreased to 4.4% from 7.6% and the FNR
increased to 5.7% from 2.9%. This suggests that adding hypercubes to the training data decreases the
overall performances, but only moderately.

Table 33 — NDVI — Training by different number of hypercubes

Total Success Rate False Positive Rate | False Negative Rate
4 Hypercubes 0.954 0.042 0.042
5 Hypercubes 0.931 0.044 0.071
Average 0.942 0.043 0.057
Std 0.016 0.001 0.020

5.6 Channel Relations Tree (NDVI_T)
5.6.1 Independent evaluation of hypercubes

Almost all of the hypercubes resulted in more than 92% total success except for one hypercube which
resulted in a low total success of 80.4% (Hypercube7) with high FPR and FNR of 22.4% and 14.4%
respectively (Table 34).

The average success rate was 94.9%, 6.4% FPR and 3.5% FNR. The high success rate implies the
algorithm is good for vegetation classification under the same lighting conditions. The high standard
deviation in the three measures is due to hypercube7, without it, the standard deviation is much lower.
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Table 34 — NDVI_T - Independent evaluation of hypercubes

Total Success Rate False Positive Rate | False Negative Rate
Hypercubel 0.968 0.052 0.015
Hypercube?2 0.972 0.050 0.006
Hypercube3 0.977 0.033 0.014
Hypercube4d 0.978 0.019 0.023
Hypercube5 0.989 0.020 0.004
Hypercube6 0.955 0.050 0.036
Hypercube?7 0.804 0.224 0.144
Average 0.949 0.064 0.035
Std 0.065 0.072 0.049

5.6.2 Cross Validation

The cross validation results (Table 35) indicate very good classifications results (high total success of
96.5% and low FPR and FNR of 7.8% and 1.7% respectfully). This implies that the algorithm can classify
well, when the training and testing data are with the same lighting conditions.

Table 35 - NDVI_T — Cross Validation

Total Success Rate False Positive Rate | False Negative Rate

0.965 0.078 0.017
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5.6.3 Training by two hypercubes

The algorithm has good classification results (Table 36). There is a big difference between the two
training sets in the total success and FPR while the FNR shows approximately the same results. This

suggests that the algorithm is very sensitive to different types of training sets

Table 36 — NDVI_T — Training by two hypercubes

Total Success Rate False Positive Rate | False Negative Rate
Training Set 1 0.920 0.362 0.024
Training Set 2 0.968 0.064 0.030
Average 0.944 0.213 0.027
Std 0.034 0.211 0.004

a—real image

b — classified image

Figure 17 — Example of NDVI_T classification
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5.6.4 Different light conditions

The results (Table 37) indicate that the NDVI_T algorithm behaves the same under different light
conditions, as expected with average success of 92.2% and a FPR of 35.7% and FNR of 2.3%.

Table 37 — NDVI_T — Different light conditions

Total Success Rate False Positive Rate | False Negative Rate
Strong 0.920 0.362 0.024
Medium 0.921 0.357 0.023
Low 0.925 0.351 0.023
Average 0.922 0.357 0.023
Std 0.003 0.005 0.001

5.6.5 Noise

It shows that noise until 2% does not affect performance and results in 92% total success. There is a small
decrease in performances with noises over 5% (Table 20) resulting in 90.9% success and a small increase
in the FPR (to 39%) and in the FNR (to 3.3%).

Table 38 — NDVI_T — Noise

Noise Level Total Success Rate False Positive Rate | False Negative Rate
1% 0.920 0.363 0.025
2% 0.921 0.364 0.026
5% 0.915 0.379 0.029
7% 0.909 0.391 0.033
8% 0.907 0.395 0.034
10% 0.902 0.404 0.038
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5.6.6 Training by different number of hypercubes

The performances with five and four hypercubes are compared to the average of the two hypercubes. The
total success reduces from 94.4% to 92.7%, the FPR decreased to 10.6% from 21.3% and the FNR
increased to 2.9% from 2.7%.

Table 39 — NDVI_T — Training by different number of hypercubes

Total Success Rate False Positive Rate | False Negative Rate
4 Hypercubes 0.923 0.121 0.019
5 Hypercubes 0.931 0.090 0.039
Average 0.927 0.106 0.029
Std 0.005 0.022 0.014

5.7 Dynamic channel relation

For NDVI, the two wavelengths that were chosen (from the regular channel relation) were 800 and 665
nm. Figure 18 presents the total success of the entire 200 simulations (all of the possibilities of the two
weights). In relation to [Formula 18], a is the weight of the 800 nm and B is the weight of the 665 nm. It
can be seen that when o = [ in the ranges of 0.2-1, the “total success” is the same, as expected due to the
fact that the weights cancel each other [Formula 19]. The reason that this phenomena is not continuous
when a and B is greater than 1 is that the intensity reaches saturation, and then the intensity equals the
saturation level and does not reach the actual multiplication level. It can be seen that best success is
obtained for equal o and B with small values. This fact provides the information that when capturing both
images (665 and 800 nm), the exposure times must be identical and small enough so as to ensure the

image is not saturated (especially the 800 nm image).

[Formula 19] Index = Com ~ BCruo _ %Cone = Cruo _ Cone = Cruo
Cone +C

aCOne + ﬂCTwo aCOne + CXC

Two Two
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Total Success

Success percantage

800 nm coefficient o
665 nm coefficient

Figure 18 — Total success in dynamic channel relation algorithm

The False Positive Rate and False Negative Rate (Figure 19 and Figure 20), are connected, and choosing a
low level of one of them, implies that the other shall be high. When a and B are equal and are less or equal

to 1, the sum of False Positive Rate and type 2 errors are the smallest (this also supports the total success).

First Error Second Error

First Error percantage

Second Error percantage
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665 nm coefficient

800 nm coefficient

665 nm coefficient

Figure 19 - False positive rate in dynamic Figure 20 - False negative rate in

channel relation algorithm dynamic channel relation algorithm
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5.8 Cloud interference

The difference between the normalized pixels with the direct sunlight and the ones with the clouds are

shown in Figure 21. It shows that the differences are not big (maximum difference is 0.055), but still,

some wavelengths are better to use in respect to equality toward sunlight and clouds, because they behave

the same. For example, the wavelength in 680 nm has a difference value of 0, while the wavelength in 665

nm has a difference value of 0.033.
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Figure 21 — Normalized difference between direct sunlight and clouds
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5.9 Discussion

Seven algorithms have been evaluated for classifying between vegetation and non-vegetation (Table 40).
All of the algorithms had a slight decrease in performance when the data had low noises (up to 5%). The
MSAM algorithm provided very close performances as compared to the SAM algorithm, which implies that
most of the important behavior of vegetation lies in a few wavelengths, while the remaining wavelengths
add little information. The NDVI_T surprisingly had lower performances than the NDVI; this may be
because the decision tree had over-fitting to a special kind of vegetation. When changing the training data,
the decision tree received similar performances to the NDVI algorithm. The MSAM which uses five
wavelengths had lower performance as compared to the NDVI which uses only two wavelengths; this
implies that the number of wavelengths does not directly influence performance. The SAM and the NDVI
algorithms were robust for different training sets with only two hypercubes used in training. The FPR is
higher than the FNR due to the fact that there were more pixels of non-vegetation in the training data than
vegetation pixels. If the FPR is more important than the FNR, then weights can be added to the vegetation
pixels in the training stage while constructing the decision tree. All of the wavelengths behave
approximately the same under clouds and direct sunlight, but still, some wavelengths are without any
difference at all.

Table 40 — Comparison between the different algorithms

Algorithm Type Total Success | False Positive False Number of
Rate Negative | wavelengths used
Rate

Mahalanobis

distance 0.701 0.586 0.057 81
Derivative 0.871 0.460 0.032 9
SAM 0.973 0.059 0.023 81
MSAM 0.949 0.130 0.057 5
Channel Relation

(NDVI) 0.968 0.069 0.033 2
Channel Relation

Tree(NDVI_T) 0.943 0.212 0.030 3
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Chapter Six: Conclusions and future work

6.1 Conclusions
In this thesis different algorithms were developed and tested for vegetation classification in outdoor
conditions with unknown light conditions. Seven algorithms were evaluated (including variations of

known algorithms). The algorithm’s parameters were selected by a known decision tree algorithm.

The best algorithms that were found for the vegetation classification problem were SAM and NDVI. The
reason that the NDVI algorithm was considered better is that it uses only two wavelengths. The SAM
algorithm has slightly better results but used 80 wavelengths. For near real-time application, the SAM
algorithm is preferable. The NDVI algorithm is best fit for real-time operation.

6.2 Future work
The algorithms presented in this work can be employed in real-time on a mobile robot for navigation in

outdoor surroundings. However, there are several areas that remain open for future work.

Spatial Dimension
In this research, all of the algorithms evaluated each pixel by itself. Since the hypercube data comes from

the real world, there is a likely connection between adjunction pixels. A better classification algorithm can

be developed by using this connection in order to increase performance.

Performance measures
Other performance measures can be defined, in order to take into considerations the spatial aspect of the

hypercube instead of looking at each pixel only. In this research, each performance measure was
considered separately, however, a unified measure can be developed by combining TS, FNR and FPR

using weights.

Other materials
To enable autonomous robots to perform in real world environment, improved environment recognition is

necessary. This can be achieved by classifying additional materials like asphalt, water, mud with the

methodology presented in this work.
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Appendices
Appendix A Software
There were several Matlab scripts and functions written in this thesis.

Some of the functions and scripts are written below.

Export 2clementine — Load data from images and create txt file for Clementine
Check algorithm — displays a classified image according to a chosen algorithm
Mahalanobis algorithm — Perform the Mahalanobis algorithm

Derivative algorithm — Perform the Derivative algorithm

SAM algorithm — Perform the SAM algorithm

MSAM algorithm — Perform the MSAM algorithm

NDVI algorithm — Perform the NDV/I algorithm

NDVI_T algorithm — Perform the NDVI_T algorithm
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Export 2clementine

%Script Name: Export 2clementine
%loads data and export it to a txt file for clementine to read

%$%$Load the data

[FileName, PathName] = uigetfile('*.txt', 'Choose the file');
eval (['load ',PathName,FileName, ';"'])

eval ([ 'handles.ExposerTime="',FileName (1l,1:end-4),"';"'])
eval(['clear ', FileName(l,l:end-4),"';"'])
handles.PathName=PathName;

handles.FileName=FileName;

o)

°

o)

% Find how many images exist
WaveLength=find (handles.ExposerTime>0)+499;
WavelLength=WaveLength';
handles.WavelLength=Wavelength;

o

°

[

% finding the name of the images
LocationTemp=find (FileName=="_");
l=length (LocationTemp) ;
for i=2:1 S$identifing the end position of the images name
if (LocationTemp (i)-LocationTemp (i-1))==
Location=LocationTemp (1) ;
break
end
end
clear 1 LocationTemp
handles.NameLocation=Location;
ImagesName=FileName (1:Location) ;

o

°

o)

% load all the images
clear handles.Images
l=length (WavelLength) ;
for i=1:1

eval ([ 'handles.Images.Imagel ',num2str (WaveLength(l,1i)),'=", "imread('"'',PathName,Ima

gesName, num2str (WaveLength(1l,1i)),'.Jpg"");'1)
end

o

eval ([ 'VegImage=imread (
[m,n]=size (VegImage) ;
DistricVegImage=zeros (m,n/3,'uint16')+1000;
temp=find (VegImage (:,

DistricVegImage (temp)=1001; % 1001=Vegetation

, PathName, ImagesName, '000.3pg'") ;')

temp=find (VegImage(:,:,1)<100 & VegImage(:,:,2)<100 & VegImage(:,

DistricVegImage (temp)=1002; % 1002=Not Declared

%% Write to File

eval (['cd ',PathName])
% fid=fopen('SelfData.txt','w');

:,1)<100 & VegImage(:,:,2)>200 & VeglImage(:,

:,3)<100) ;

:,3)>200);
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fid=fopen('temp.txt','w');

% Write The header
tic
fprintf (fid, 'material '");
for i=l:length (handles.WaveLength)
fprintf (fid, '$d ',handles.WaveLength(i));

% fprintf (£id, ',"');

end

status = fseek(fid, -1, 'cof');
fprintf (fid, "\n");

toc

% Making The Data
[m,n]=size (DistricVegImage) ;

devide=1;

Mat=zeros (m*n/devide/devide, length (handles.WaveLength)+1, 'uintl6');
ml=1:devide:m;

nl=1:devide:n;

tempDistric=DistricVegImage (ml,nl) ;

Mat (:,1)=reshape (tempDistric, [],1);

temp=min (handles.WaveLength) : 5:max (handles.Wavelength) ;

tic

for k=1:1:1length (temp)
eval (['templ=handles.Images.Imagel ', num2str(temp(k)),"';"])
templ=templ (ml,nl);
Mat (:, k+1l)=reshape (templ, [],1);

end
toc

PrintToFile='%d ';
for i=1l:length (temp)
PrintToFile=[PrintToFile '%d '];

end
PrintToFile=PrintToFile (1l:end-1);
Mat=Mat';
temp=find (Mat (1, :)==1000 | Mat(l,:)==1001);
NewMat=Mat (:, temp) ;
tic
eval (['fprintf (fid, ''',PrintToFile, "\n'',NewMat);"'])
toc

fclose (fid) ;
Check algorithm

%Script name: Check algorithm
This script display classfied image according to the user choice of
hypercube

o\°

oe

3%Load the data
load VegData.mat
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[FileName, PathName] = uigetfile('*.txt', 'Choose the file');
eval(['load ',PathName,FileName, ';"'])

eval ([ 'handles.ExposerTime="',FileName (1l,1l:end-4),"';"'])

eval (['clear ', FileName (1l,l:end-4),"';"'])
handles.PathName=PathName;

handles.FileName=FileName;

o)

°

o)

% Find how many images exist
WaveLength=find (handles.ExposerTime>0)+499;
WavelLength=WaveLength';
handles.WaveLength=WavelLength;

o

°

o)

% finding the name of the images
LocationTemp=find (FileName=="_");
l=length (LocationTemp) ;
for i=2:1 S$identifing the end position of the images name
if (LocationTemp (i)-LocationTemp (i-1))==
Location=LocationTemp (1) ;
break
end
end
clear 1 LocationTemp
handles.NameLocation=Location;
ImagesName=FileName (1:Location) ;

o

°

[

% load all the images
clear handles.Images
l=length (WaveLength) ;
for i=1:1

eval (['handles.Images.Imagel ',num2str (WaveLength(l,1i)),'=", "imread('"'',PathName, Ima

gesName, num2str (WaveLength (1,1i)), '.jpg"");"'])
end

o

eval ([ 'VegImage=imread ('"'
[m,n]=size (VegImage) ;

DistricVegImage=zeros (m,n/3,'uintl16"')+1000;

, PathName, ImagesName, '000.3pg'") ;')

temp=find (VegImage (:,:,1)<100 & VegImage(:,:,2)>200 & VegImage(:,

DistricVegImage (temp)=1001; % 1001=Vegetation

temp=find (VegImage(:,:,1)<100 & VegImage(:,:,2)<100 & VegImage(:,

DistricVegImage (temp)=1002; % 1002=Not Declared
%% ReArrange the data
% Making The Data

% [m,n]=size (DistricVegImage) ;
[m,n]=size (handles.Images.Imagel 560);

:,3)<100) ;

:,3)>200);
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Mat=zeros (m*n, length (handles.WaveLength)+1, 'uintl6');
Mat (:,1l)=reshape (DistricVegImage, [],1);
temp=min (handles.WaveLength) :5:max (handles.WaveLength) ;

for k=1l:1:1length (temp)
eval (['templ=handles.Images.Imagel ', num2str(temp(k)),';"])

Mat (:, k+1)=reshape (templ, [],1);
end

VegType=menu ('Choose The Training Picture/s','1l4 & 15','16 &
0o9','14','15','16"','01"','09",'22",'25");
switch VegType
case 1
VegMean=VegMeanl41l5;
VegStd=VegStdl41l5;
VegStdMinorIndex=VegStdMinorIndex1415;

case 2
VegMean=VegMeanl609;
VegStd=VegStdle609;
VegStdMinorIndex=VegStdMinorIndex1609;

case 3
VegMean=VegMeanl4;
VegStd=VegStdl4;
VegStdMinorIndex=VegStdMinorIndex1l4;

case 4
VegMean=VegMeanl5;
VegStd=VegStdl5;
VegStdMinorIndex=VegStdMinorIndexl5;

case 5
VegMean=VegMeanl6;
VegStd=VegStdlé6;
VegStdMinorIndex=VegStdMinorIndexl6;

case 6
VegMean=VegMean01;
VegStd=VegStdOl;
VegStdMinorIndex=VegStdMinorIndex01l;

case 7
VegMean=VegMean09;
VegStd=VegStd09;
VegStdMinorIndex=VegStdMinorIndex09;

case 8
VegMean=VegMean22;
VegStd=VegStd22;
VegStdMinorIndex=VegStdMinorIndex22;



case 9
VegMean=VegMean25;
VegStd=VegStd25;

VegStdMinorIndex=VegStdMinorIndex25;

end
VegStd=VegStd+1;

LightValue=menu('Choose The Light Intensity Factor','l - normal','0.9
- low');
if LightValue >1
switch LightValue
case 1
LightValue=1;
case 2
LightvValue = 0.9;
case 3
LightvValue = 0.7;
end
Mat (:,2:end)=Mat (:,2:end) *LightValue;
end
NoiseValue=menu ('Choose The Noise Intensity Value', 'None','1l% - 2','2
12','7% - 18','8% - 20','10% - 25");
if NoiseValue>1
switch NoiseValue
case 2
NoiseValue=2;
case 3
NoiseValue = 5;
case 4
NoiseValue = 12;
case 5
NoiseValue = 18;
case 6
NoiseValue = 20;
case 7
NoiseValue = 25;
end
RandMatl=int8 (ceil (rand (300000,size (Mat,2)-1)-0.5));

RandMat2=int8 (ceil (rand(size (Mat, 1)
RandMat=[RandMatl;RandMat2];

clear RandMatl RandMat?2

RandMat (RandMat==0)=-1

tempM=Mat (:,2:end) ;

tt=find
RandMat
tt=find tempM<(N01seValue)
RandMat (tt)=1;

RandMat=int8 (RandMat*NoiseValue) ;

tempM>(255 NoiseValue) );

)7

—~ o~~~

tempM=int16 (tempM)
tempM (tempM>255) =255;

tempM (tempM<0)=0;

Mat (:,2:end)=uintl6 (tempM) ;

+ intlo6 (RandMat) ;

-300000,size (Mat, 2)

-1)

=-0.5));

- Medium', '0.

7
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clear RandMat tempM tt
end

eval ([ 'ImageToPresentl=imread('"'"', PathName, ImagesName, '590.9pg"'") ;'])
ImageToPresent (:, :,1)=ImageToPresentl;
ImageToPresent (:, :,2)=ImageToPresentl;
ImageToPresent (:, :,3)=ImageToPresentl;
Imagell=zeros (m*n,1l, 'uintl6')+100;
tic
for x=1:m*n
if mod(x,1000)==

sss=waitbar (x/ (m*n)) ;

end
flag=DT2 2ndvi (Mat (x,2:end),VegType);
% flag=DT3 1ndvi (Mat (x,2:end),VegType) ;
% flag=DT4 Derivative (Mat (x,2:end),VegType) ;
% flag=DT5 Mahalanobis (Mat (x,2:end),VegMean,VegStd, VegType) ;
% flag=DT6 SAM (Mat (x,2:end),VegMean, VegType) ;
% flag=DT7 SAM Minor (Mat (x,2:end),VegMean, VegStdMinorIndex, VegType) ;
if flag==
x1=mod (x,m) ;
if x1==
x1=m;
end
yl=ceil (x/m) ;
ImageToPresent (x1,yl,1)=0;
ImageToPresent (x1,yl,2)=255;
ImageToPresent (x1,yl,3)=0;
end
end
toc
close (sss)
figure (1)

subplot(1l,2,1)

imshow (ImageToPresent)
title('green is the Vegetation')
figure,

subplot(1,2,2)

imshow (ImageToPresentl)
title('Real Picture')

Mahalanobis algorithm

$Function Name: Mahalanobis algorithm

o)

% Perform the Mahalanobis algorithm
function [ output ] = DTS5 Mahalanobis (SpectralVector,VegMean,VegStd, VegType)

Distance = sum( ((double (SpectralVector)-VegMean) ./ (VegStd)) ."2) ;

if VegType==



if Distance<= 77.426

output=1l;
end
if Distance> 77.426
output=0;
end
end
if VegType==
if Distance<= 2517.488
output=1;
end
if Distance> 2517.488
output=0;
end
end
end

Derivative algorithm

$Function Name: Derivative algorithm

% Perform the Derivative algorithm
function [ output ] = DT4 Derivative (SpectralVector,VegType)

der=SpectralVector (2:end) -SpectralVector (l:end-1);
der=double (der) ./5;

Step=5;

Start=500;

if VegType==
if der (((695-Start)/Step) +1)<=0
if der(((730-Start)/Step) +1)<=1
if der(((715-Start)/Step) +1)<=3
if der (((710-Start)/Step) +1)<=4

if der (((730-Start)/Step) +1)<=0
output=0;

end

if der(((730-Start)/Step) +1)>0
if der (((605-Start)/Step) +1)<=1

if der (((765-Start)/Step) +1)<=1

output=0;
end
if der(((765-Start)/Step) +1)>1
output=1;
end
end
if der(((605-Start)/Step) +1)>1
output=0;
end
end
end
if der(((710-Start)/Step) +1)>4
output=1l;
end

end
if der (((715-Start)/Step) +1)>3
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output=1l;
end
end
if der (((730-Start)/Step) +1)>1
if der (((655-Start)/Step) +1)<

output=1l;
end
if der (((655-Start)/Step) +1)>
output=0;
end
end
end
if der (((695-Start)/Step) +1)>0
output=1;
end
end
if VegType==

if der (((695-Start)/Step) +1)<=0
if der (((730-Start)/Step) +1)<=1
if der (((690-Start)/Step) +1)<
if der (((560-Start)/Step)

if der (((730-Start) /St
output=0;
end
if der (((730-Start) /St
output=1l;
end
end
if der (((560-Start)/Step)
output=0;
end
end
if der (((690-Start)/Step) +1)>
output=1;
end

end
if der (((730-Start)/Step) +1)>1
if der(((560-Start)/Step) +1)<
output=1;
end
if der (((560-Start)/Step) +1)>
output=0;
end
end
end
if der(((695-Start)/Step) +1)>0
if der (((645-Start)/Step) +1)<=2

output=1;
end
if der(((645-Start)/Step) +1)>2
output=0;
end
end
end
end

=3

3

=0
+1) <=0
ep) t1)<=

ep) +1)>0

+1)>0

0

=1

1

0
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SAM algorithm

$Function Name: SAM algorithm
% Perform the SAM algorithm
function [ output ] = DT6_ SAM(SpectralVector,VegMean,VegType)

Distance =

(double (SpectralVector) *VegMean') / (norm (double (SpectralVector) ) *norm (VegMean) )

if VegType==
if Distance<= 0.972
output=0;
end
if Distance> 0.972
output=1;
end
end
if VegType==
if Distance<= 0.965
output=0;
end
if Distance> 0.965
output=1;
end
end
end

MSAM algorithm

$Function Name: SAM Minor algorithm
% Perform the MSAM algorithm

function [ output ] = DT7_ SAM Minor (SpectralVector,VegMean,VegStdIndex, VegType)

Distance =

(double (SpectralVector (VegStdIndex) ) *VegMean (VegStdIndex) ') / (norm (double (SpectralVect

or (VegStdIndex) ) ) *norm(VegMean (VegStdIndex)))

if VegType==
if Distance<= 0.984
output=0;
end
if Distance> 0.984
output=1;
end
end

if VegType==
if Distance<= 0.976
output=0;
end
if Distance> 0.976
output=1;
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end
end

end

NDVI algorithm

$Function Name: NDVI algorithm
% Perform the NDVI algorithm

function [ output ] = DT3 1lndvi (SpectralVector,VegType)
if VegType ==
n665 800= single((SpectralVector (61) - SpectralVector(34)))/

single ((SpectralVector (61) + SpectralVector(34)));

if n665 800 <= 0
output=0;
end

if n665 800 > O

output=1;
end
end
if VegType ==
n800 665= single((SpectralVector (61) - SpectralVector (34)))/

single ((SpectralVector (61) + SpectralVector(34)));

if n800 665 <= 0.004
output=0;
end

if n800 665 > 0.004
output=1;
end
end

end

NDVI T algorithm
$Function Name: NDVI T algorithm
% Perform the NDVI T algorithm
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function [ output ] = DT2 2ndvi (SpectralVector,VegType)

if VegType==
n665 740= single ((SpectralVector (49)

- SpectralVector (34)))/

single ((SpectralVector (49) + SpectralVector(34)));

n665 775= single ((SpectralVector (56)

- SpectralVector (34)))/

single ( (SpectralVector (56) + SpectralVector(34)));

if n665 740 <= 0
output=0;
end
if n665 740 > O
if n665 775 <= -0.024
if n665 775 <= -0.101

output=0;
end
if n665 775 > -0.101
output=1;
end
end
if n665 775 > -0.024
output=1;
end
end
end
if VegType==

n800 665 = single((SpectralVector (61)
single ( (SpectralVector (

n8l5 665 = single((SpectralVector (64)
single ( (SpectralVector (6

n740 665 = single((
single ( (SpectralVector (

SpectralVector (49)

if n800 665 <= 0.004
output=0;
end
if n800 665 > 0.004
if n815 665 <= -0.234
if n740 665 <= 0.088

output=0;
end
if n740 665 > 0.088
output=1;
end
end
if n815 665 > -0.234
output=1;
end
end
end
end

- SpectralVector(34)))/

- SpectralVector (34)))/

61) + SpectralVector(34)));
4

) + SpectralVector (34)));

- SpectralVector(34)))/

49) + SpectralVector (34)));
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Appendix B

Statistical Analysis

1% Noise
Hypercube Algorithm Total Success False Positive Rate False Negative Rate
1 Mahalanobis 0.725 0.346 0.190
1 SAM 0.956 0.089 0.002
1 NDVI 0.966 0.065 0.007
1 Derivative 0.724 0.383 0.006
1 NDVI_T 0.951 0.095 0.004
1 MSAM 0.894 0.053 0.138
2 Mabhalanobis 0.889 0.014 0.140
2 SAM 0.979 0.031 0.016
2 NDVI 0.981 0.036 0.011
2 Derivative 0.869 0.272 0.014
2 NDVI_T 0.982 0.038 0.007
2 MSAM 0.927 0.028 0.090
5 Mahalanobis 0.832 0.029 0.201
5 SAM 0.954 0.031 0.054
5 NDVI 0.906 0.035 0.117
5 Derivative 0.826 0.305 0.064
5 NDVI_T 0.912 0.032 0.109
5 MSAM 0.905 0.023 0.122
6 Mabhalanobis 0.929 0.707 0.010
6 SAM 0.977 0.099 0.022
6 NDVI 0.985 0.151 0.011
6 Derivative 0.884 0.785 0.005
6 NDVI_T 0.897 0.750 0.000
6 MSAM 0.987 0.092 0.011
7 Mahalanobis 0.920 0.987 0.021
7 SAM 0.994 0.104 0.004
7 NDVI 0.987 0.341 0.006
7 Derivative 0.856 0.940 0.014
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Hypercube Algorithm Total Success False Positive Rate False Negative Rate
7 NDVI_T 0.854 0.901 0.006
7 MSAM 0.989 0.214 0.007

2% Noise

Hypercube Algorithm Total Success False Positive Rate False Negative Rate
1 Mahalanobis 0.729 0.341 0.189
1 SAM 0.958 0.084 0.003
1 NDVI 0.960 0.076 0.008
1 Derivative 0.663 0.431 0.017
1 NDVI_T 0.944 0.108 0.005
1 MSAM 0.894 0.054 0.137
2 Mabhalanobis 0.887 0.014 0.143
2 SAM 0.977 0.030 0.019
2 NDVI 0.979 0.040 0.011
2 Derivative 0.787 0.381 0.031
2 NDVI_T 0.981 0.043 0.007
2 MSAM 0.918 0.049 0.095
5 Mahalanobis 0.831 0.029 0.203
5 SAM 0.952 0.031 0.056
5 NDVI 0.902 0.043 0.119
5 Derivative 0.775 0.372 0.081
5 NDVI_T 0.908 0.038 0.113
5 MSAM 0.893 0.061 0.125
6 Mabhalanobis 0.931 0.704 0.011
6 SAM 0.977 0.095 0.023
6 NDVI 0.979 0.301 0.011
6 Derivative 0.896 0.777 0.008
6 NDVI_T 0.904 0.738 0.001
6 MSAM 0.985 0.139 0.011
7 Mahalanobis 0.922 0.986 0.021
7 SAM 0.994 0.099 0.005
7 NDVI 0.976 0.566 0.006
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Hypercube Algorithm Total Success False Positive Rate False Negative Rate
7 Derivative 0.878 0.923 0.012
7 NDVI_T 0.869 0.892 0.006
7 MSAM 0.985 0.360 0.008

5% Noise

Hypercube Algorithm Total Success False Positive Rate False Negative Rate
1 Mahalanobis 0.752 0.305 0.192
1 SAM 0.961 0.068 0.014
1 NDVI 0.941 0.108 0.012
1 Derivative 0.602 0.472 0.110
1 NDVI_T 0.919 0.149 0.008
1 MSAM 0.886 0.063 0.145
2 Mahalanobis 0.873 0.013 0.158
2 SAM 0.959 0.016 0.053
2 NDVI 0.974 0.052 0.013
2 Derivative 0.727 0.444 0.039
2 NDVI_T 0.975 0.056 0.009
2 MSAM 0.894 0.063 0.122
5 Mabhalanobis 0.820 0.024 0.215
5 SAM 0.943 0.029 0.069
5 NDVI 0.891 0.057 0.128
5 Derivative 0.738 0.410 0.110
5 NDVI_T 0.897 0.059 0.120
5 MSAM 0.867 0.121 0.138
6 Mahalanobis 0.941 0.693 0.016
6 SAM 0.973 0.093 0.026
6 NDVI 0.966 0.497 0.013
6 Derivative 0.882 0.804 0.009
6 NDVI_T 0.904 0.742 0.002
6 MSAM 0.977 0.298 0.015
7 Mabhalanobis 0.930 0.986 0.020
7 SAM 0.991 0.082 0.008
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Hypercube Algorithm Total Success False Positive Rate False Negative Rate
7 NDVI 0.960 0.716 0.007
7 Derivative 0.871 0.923 0.012
7 NDVI_T 0.881 0.888 0.007
7 MSAM 0.979 0.514 0.008

7% Noise

Hypercube Algorithm Total Success False Positive Rate False Negative Rate
1 Mahalanobis 0.810 0.022 0.224
1 SAM 0.916 0.026 0.107
1 NDVI 0.883 0.066 0.135
1 Derivative 0.731 0.417 0.119
1 NDVI_T 0.888 0.076 0.127
1 MSAM 0.852 0.120 0.158
2 Mabhalanobis 0.785 0.242 0.193
2 SAM 0.950 0.057 0.045
2 NDVI 0.920 0.141 0.019
2 Derivative 0.577 0.486 0.208
2 NDVI_T 0.905 0.168 0.014
2 MSAM 0.866 0.074 0.168
5 Mahalanobis 0.859 0.013 0.173
5 SAM 0.910 0.016 0.115
5 NDVI 0.969 0.060 0.015
5 Derivative 0.726 0.446 0.040
5 NDVI_T 0.969 0.069 0.011
5 MSAM 0.867 0.064 0.154
6 Mabhalanobis 0.951 0.668 0.021
6 SAM 0.970 0.097 0.029
6 NDVI 0.955 0.595 0.013
6 Derivative 0.879 0.809 0.009
6 NDVI_T 0.903 0.750 0.004
6 MSAM 0.971 0.392 0.019
7 Mahalanobis 0.942 0.985 0.020
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Hypercube Algorithm Total Success False Positive Rate False Negative Rate
7 SAM 0.987 0.079 0.013
7 NDVI 0.955 0.753 0.008
7 Derivative 0.869 0.926 0.012
7 NDVI_T 0.881 0.894 0.008
7 MSAM 0.979 0.518 0.009

8% Noise

Hypercube Algorithm Total Success False Positive Rate False Negative Rate
1 Mahalanobis 0.792 0.019 0.241
1 SAM 0.896 0.025 0.131
1 NDVI 0.880 0.071 0.138
1 Derivative 0.731 0.417 0.121
1 NDVI_T 0.885 0.082 0.128
1 MSAM 0.845 0.119 0.167
2 Mahalanobis 0.798 0.179 0.216
2 SAM 0.941 0.052 0.065
2 NDVI 0.914 0.149 0.022
2 Derivative 0.576 0.488 0.218
2 NDVI_T 0.901 0.173 0.017
2 MSAM 0.858 0.077 0.178
5 Mabhalanobis 0.834 0.012 0.199
5 SAM 0.889 0.016 0.140
5 NDVI 0.968 0.063 0.016
5 Derivative 0.727 0.445 0.041
5 NDVI_T 0.967 0.072 0.012
5 MSAM 0.857 0.066 0.165
6 Mahalanobis 0.961 0.606 0.027
6 SAM 0.969 0.105 0.030
6 NDVI 0.953 0.608 0.013
6 Derivative 0.879 0.809 0.009
6 NDVI_T 0.903 0.751 0.004
6 MSAM 0.970 0.413 0.021
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Hypercube Algorithm Total Success False Positive Rate False Negative Rate
7 Mahalanobis 0.959 0.982 0.020
7 SAM 0.985 0.084 0.014
7 NDVI 0.954 0.757 0.008
7 Derivative 0.869 0.926 0.012
7 NDVI_T 0.881 0.895 0.008
7 MSAM 0.980 0.508 0.009

10% Noise

Hypercube Algorithm Total Success False Positive Rate False Negative Rate
1 Mabhalanobis 0.774 0.110 0.271
1 SAM 0.890 0.040 0.150
1 NDVI 0.900 0.164 0.034
1 Derivative 0.578 0.486 0.216
1 NDVI_T 0.889 0.185 0.029
1 MSAM 0.829 0.087 0.212
2 Mahalanobis 0.788 0.012 0.241
2 SAM 0.839 0.017 0.193
2 NDVI 0.962 0.074 0.018
2 Derivative 0.729 0.442 0.041
2 NDVI_T 0.960 0.085 0.015
2 MSAM 0.832 0.076 0.191
5 Mabhalanobis 0.761 0.014 0.269
5 SAM 0.844 0.022 0.191
5 NDVI 0.871 0.086 0.145
5 Derivative 0.732 0.415 0.121
5 NDVI_T 0.877 0.097 0.134
5 MSAM 0.827 0.110 0.191
6 Mahalanobis 0.967 0.273 0.032
6 SAM 0.968 0.116 0.032
6 NDVI 0.950 0.630 0.014
6 Derivative 0.879 0.809 0.009
6 NDVI_T 0.902 0.757 0.005
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Hypercube Algorithm Total Success False Positive Rate False Negative Rate
6 MSAM 0.967 0.457 0.023
7 Mahalanobis 0.977 0.964 0.020
7 SAM 0.982 0.093 0.018
7 NDVI 0.952 0.766 0.008
7 Derivative 0.868 0.927 0.012
7 NDVI_T 0.881 0.896 0.008
7 MSAM 0.981 0.483 0.010

High Lighting Conditions

Hypercube Algorithm Total Success False Positive Rate False Negative Rate
1 Mahalanobis 0.721 0.354 0.184
1 SAM 0.955 0.090 0.002
1 NDVI 0.968 0.061 0.006
1 Derivative 0.788 0.323 0.003
1 NDVI_T 0.957 0.086 0.004
1 MSAM 0.893 0.054 0.139
2 Mabhalanobis 0.897 0.015 0.131
2 SAM 0.979 0.032 0.015
2 NDVI 0.984 0.028 0.010
2 Derivative 0.927 0.170 0.009
2 NDVI_T 0.985 0.032 0.007
2 MSAM 0.927 0.028 0.090
5 Mahalanobis 0.843 0.032 0.190
5 SAM 0.954 0.031 0.053
5 NDVI 0.911 0.024 0.114
5 Derivative 0.863 0.247 0.057
5 NDVI_T 0.919 0.026 0.104
5 MSAM 0.906 0.023 0.120
6 Mahalanobis 0.922 0.719 0.007
6 SAM 0.977 0.098 0.022
6 NDVI 0.987 0.106 0.011
6 Derivative 0.881 0.788 0.004
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Hypercube Algorithm Total Success False Positive Rate False Negative Rate
6 NDVI_T 0.888 0.764 0.000
6 MSAM 0.988 0.075 0.011
7 Mahalanobis 0.917 0.986 0.021
7 SAM 0.994 0.105 0.004
7 NDVI 0.992 0.165 0.006
7 Derivative 0.856 0.940 0.014
7 NDVI_T 0.850 0.901 0.005
7 MSAM 0.991 0.132 0.007

Medium Lighting Conditions

Hypercube Algorithm Total Success False Positive Rate False Negative Rate
1 Mabhalanobis 0.721 0.354 0.184
1 SAM 0.955 0.091 0.002
1 NDVI 0.968 0.061 0.006
1 Derivative 0.788 0.323 0.003
1 NDVI_T 0.957 0.086 0.004
1 MSAM 0.893 0.054 0.139
2 Mahalanobis 0.897 0.015 0.131
2 SAM 0.979 0.032 0.015
2 NDVI 0.984 0.028 0.010
2 Derivative 0.927 0.170 0.009
2 NDVI_T 0.985 0.032 0.007
2 MSAM 0.927 0.028 0.090
5 Mabhalanobis 0.843 0.032 0.190
5 SAM 0.954 0.031 0.053
5 NDVI 0.911 0.024 0.114
5 Derivative 0.863 0.247 0.057
5 NDVI_T 0.919 0.026 0.104
5 MSAM 0.906 0.023 0.120
6 Mahalanobis 0.955 0.621 0.019
6 SAM 0.975 0.076 0.024
6 NDVI 0.985 0.141 0.011
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Hypercube Algorithm Total Success False Positive Rate False Negative Rate
6 Derivative 0.880 0.790 0.004
6 NDVI_T 0.893 0.757 0.000
6 MSAM 0.986 0.128 0.011
7 Mahalanobis 0.986 0.398 0.001
7 SAM 0.996 0.095 0.002
7 NDVI 0.994 0.151 0.003
7 Derivative 0.880 0.875 0.004
7 NDVI_T 0.851 0.883 0.001
7 MSAM 0.994 0.134 0.003

Low Lighting Conditions

Hypercube Algorithm Total Success False Positive Rate False Negative Rate
1 Mahalanobis 0.721 0.354 0.184
1 SAM 0.955 0.090 0.002
1 NDVI 0.968 0.061 0.006
1 Derivative 0.788 0.323 0.003
1 NDVI_T 0.957 0.086 0.004
1 MSAM 0.893 0.054 0.139
2 Mabhalanobis 0.897 0.015 0.131
2 SAM 0.979 0.032 0.015
2 NDVI 0.984 0.028 0.010
2 Derivative 0.927 0.170 0.009
2 NDVI_T 0.985 0.032 0.007
2 MSAM 0.927 0.029 0.090
5 Mahalanobis 0.843 0.032 0.190
5 SAM 0.954 0.031 0.053
5 NDVI 0.911 0.024 0.114
5 Derivative 0.863 0.247 0.057
5 NDVI_T 0.919 0.026 0.104
5 MSAM 0.906 0.023 0.120
6 Mahalanobis 0.963 0.910 0.034
6 SAM 0.975 0.055 0.025

76



Hypercube Algorithm Total Success False Positive Rate False Negative Rate
6 NDVI 0.987 0.077 0.012
6 Derivative 0.898 0.788 0.011
6 NDVI_T 0.900 0.744 0.000
6 MSAM 0.987 0.070 0.011
7 Mahalanobis 0.980 1.000 0.020
7 SAM 0.996 0.092 0.003
7 NDVI 0.994 0.162 0.003
7 Derivative 0.971 0.594 0.000
7 NDVI_T 0.868 0.869 0.000
7 MSAM 0.994 0.165 0.003
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Appendix C Decision Trees

Wavelength Selection

The basic decision tree for wavelength selection is very big, so only the first four levels are displayed

here. The first number is the wavelength, and the second number is the intensity level at this specific

wavelength.

B70 == 193 [Mode: Veq ]
= 200 == 123 [Mode: Mot_Veq ]
b B15 == 43 [Mode: Vey ]
- [ T80 ==8 [Mode: Not_Veg]
. [ T80=8 [Mode: Veq)
b 615 = 43 [Mode: Not_Yeg]
B+ B6S == 93 [Mode: Mot_Veq]
- GBS = 93 [Mode: Mot_Weg ]
=k 800 =123 [Mode: Veg |
=k 800 == 160 [Mode: Veq ]
- [ BG5S == 130 [Mode: Veq]
: - GBS =130 [Mode: Mot_Veq]
= 800 = 160 [Mode: Ved ]
- 780 == 86 [Mode: Not_Veg]
- 7RO = 86 [Mode: Veq]
B¥0 =183 [Mode: Mot_Wed]
= BE0 == 194 [Mode: Mot_Ven |
El 800 == 195 [Mode: Mot_Wed |
' g0 ==172 [Mode: Mot_Wen |
: - 800 =172 [Mode: Mot_Veq]
Eh 800 =195 [Mode: Vey]
810 ==164 [Mode: Mot_Ven |
F- 810 = 164 [Mode: Veg]
= 680 = 194 [Mode: Mot_Wed |
El B10 == 194 [Mode: Mot_Wed ]
- B 800 == 231 [Mode: Not_veq|

- B 800=231 [Mode: ey ]

= B10= 194 [Mode: Mot Yed)
G- 900 == 83 [Mode: Mot_Veq ]
- 900 = 83 [Mode: Mat_Veq |
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The full decision tree (all the levels) will look like:
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Appendix D Raw Data

Exists on the disk in the raw data library

Appendix E manually classified imaged

a— image at 590nm b — manually classified image
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a— image at 590nm

b — manually classified image
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