Influence of Human Reaction Time

in Human-Robot Collaborative

Target Recognition Systems

Thesis submitted in partial fulfillment of the requirements of the M.Sc degree

Dror Yashpe

Advisors: Prof. Yael Edan, Dr. Avital Bechar

Ben-Gurion University of the Negev, Faculty of Engineering Sciences
Department of Industrial Engineering and Management

Influence of Human Reaction Time in Human-Robot Collaborative Target Recognition Systems

Thesis submitted in partial fulfillment of the requirements of the M.Sc degree

Dror Yashpe

Advisors: Prof. Yael Edan, Dr. Avital Bechar

Ben-Gurion University of the Negev, Faculty of Engineering Sciences
Department of Industrial Engineering and Management

Author: Dror Yashpe
Advisor: Prof. Yael Edan
Advisor: Dr. Avital Bechar
Chairman of graduate students committee: Prof. Joseph Kreimer

ACKNOWLEDGMENTS

This research would not have been possible without the support of many people.

I wish to express my gratitude to my supervisors, Prof. Yael Edan and Dr. Avital Bechar, who were abundantly helpful and offered invaluable assistance, support and guidance.

Special thanks to my sweetheart, Orit, for countless hours of reviewing and helping edit this paper. During these years, she taught me a lot about human sensitivity and collaboration.

Great thanks, also to my graduate friend, Eyal, for the fascinating discussions about research, academy and life.

Eventually, I wish to express my love and gratitude to my mom, for her understanding, love and support, through the duration of my studies.

Abstract

Autonomous robots show inadequate results in dynamic and unstructured environments. Integrating a human-operator into a robotic system can help improve performance and reduce system complexity. Collaboration between a human-operator and a robot, benefits from both human's perception skills and the robot's accuracy and consistency. Various levels of collaboration can be applied; each level differs by the degree of autonomy of the robot.

This thesis focuses on evaluation of an integrated human-robot system for target recognition tasks. The work is based on previous work developed by Bechar (2006). In his work, four collaboration levels were designed specifically for target recognition and an objective function was developed to quantify the influence of parameters of the robot, human, environment and task, through a weighted sum of performance measures. The model developed by Bechar (2006), enables to determine the optimal level of collaboration based on these parameters.

The human reaction time in target recognition is the time required for the observer to decide whether an object is target or not. Reaction time influences the operational cost of the system. In Bechar's work, the reaction time was constant. This thesis introduces further development of the objective function; considering the fact that reaction time of the human depends on the signal strength of the observed object, which is not constant and equal for all objects. A reaction time model, based on Murdock (1985) is incorporated into Bechar's model and analyzed.

The new model is expected to describe actual systems in a better way by adjusting time parameters to a specific task. The study evaluates the influence of human's reaction time on the performance of an integrated human-robot target recognition system. Particularly, the study focuses on how reaction time affects the level of human-robot collaboration that results in best performance. The thesis presents the mathematical model developed and results of the simulation analysis.

The analysis reveals new collaboration levels that were derived automatically from the defined ones and are preferable when human reaction time cost is high. In these collaboration levels, the human concentrates only on part of the objects and ignores others. Therefore, the system reduces the total human reaction time cost resulting in better performance.

The human ignores objects by setting his cutoff point to an extreme value. The analysis shows how the system type, the human sensitivity, the probability of an object to be a target, and the time cost, all influence the phenomena of extreme cutoff point selection.

When human sensitivity is low, the human badly discriminates between targets and other objects. When the system gives high priority for not causing false alarms, the human prefers an extreme positive cutoff point, resulting in no objects marked as targets, and no false alarms. For systems that give high priority for not missing targets, an extreme negative cutoff point was preferred; resulting in all objects marked as targets and no misses.

The analysis shows that the time costs affect the position of the optimal cutoff point. The phenomenon, introduced above, arises for higher human sensitivities as the time cost is higher. Furthermore, the analysis shows that collaboration with a human is less profitable in cases when the time cost is high.

An extreme cutoff point position decreases the total operation time cost. In the reaction time model, the mean response time reduces as the cutoff point is far from the mean of the distribution; therefore, in the sense of time costs, the extreme cutoff point is always preferred.

The position of the cutoff point influences all other parts of the objective function. An extreme positive cutoff point, for example, causes small probabilities of false alarms and hits; and causes high probabilities of miss and correct rejections. The overall gains and penalties of these outcomes are modified accordingly.

Keywords: Human-robot collaboration, collaboration levels, reaction time, target recognition.

This thesis was presented at the following conferences:
The $2^{\text {nd }}$ Israeli Conference of Robotics. November 19-20, 2008, Herzlia, Israel.
The $20^{\text {th }}$ International Conference on Production Research. August 2-6, 2009, Shanghai, China.

Table of Contents

1 Introduction 1
2 Literature Review 3
2.1 Automation 3
2.2 Human-robot collaboration 3
2.3 Collaboration types and levels 5
2.4 Examples of collaboration levels 7
2.5 Collaboration in target recognition tasks. 8
2.6 Collaborative model for target recognition (Bechar, 2006) 10
2.7 Signal detection theory 13
2.8 Reaction time models 19
3 Methodology 21
3.1 Overview 21
3.2 Reaction time model development 21
3.3 Performance measures 22
3.4 Numerical analysis 22
3.5 Sensitivity analysis 22
4 Model Development 23
4.1 Mean distance model 23
4.2 Reaction time model 33
4.3 Collaboration model 37
5 Numerical Analysis 39
5.1 Model parameters 39
5.2 Graph generator 41
5.3 Cutoff point analysis 43
5.4 Human's dominancy analysis 46
6 Sensitivity Analysis 49
6.1 General description and general conclusions 49
6.2 Type III systems 50
6.3 Type I systems 57
6.4 Type II systems 59
7 Conclusions and Future Research. 61
7.1 Conclusions 61
7.2 Research limitations 62
7.3 Definition of the new collaboration levels 63
7.4 Future research 63
8 References 67
9 APPENDIXES 69
Appendix A - Normal, Standard Normal, Signal and Noise Distributions 70
Appendix B - Expression of Z As a Function of Beta and D' (Bechar, 2006) 73
Appendix C - Validation of Mean Distance Equations 74
Appendix D-Development of Mean Reaction Time 75
Appendix E - Numerical Analysis - Additional Results 82
Appendix F - Paper For The $20^{\text {th }}$ International Conference on Production Research 87
Appendix G - The Numeric Simulation Software 93
Appendix H - The Relation Between Image Complexity and Reaction Time. 107
Appendix I - Raw Data of The Experiment 112

List of Figures

Figure 1: The notions of trading and sharing control between human and computer. L is the load or task, H is the human, and C is the computer (Sheridan, 1992)
Figure 2: Simple four-stage model of human information processing (Parasuraman et al., 2000) 5
Figure 3: Levels of automation for independent functions of: information acquisition, information analysis, decision selection, and action implementation (Parasuraman et al., 2000) 6
Figure 4: Vision analysis for apple fruit detection (Bulanon et al, 2001) (a) CCD image, (b) segmentation of color difference of red, (c) color difference of red histogram 9
Figure 5: Four potential outcomes of the detection process 13
Figure 6: An example of binary decision analyzed with SDT (Bechar, 2006) 14
Figure 7: Outcomes probabilities when a signal is absent (a) or is present (b) 14
Figure 8: Generation of the ROC curve by evaluating hit and false alarm rates at various decision thresholds on x (Brown \& Davis, 2006) 15
Figure 9: An example of ROC curve applet (http://wise.cgu.edu) 16
Figure 10: An example of high sensitivity of the observer (http://wise.cgu.edu) 16
Figure 11: Different criterion values on the same ROC curve (http://wise.cgu.edu): 2.04 (a), 0.82
(b), -0.36 (c) 17
Figure 12: Signal (x) is normally distributed with criterion Xco. Exponential transfer function maps signal strength into latency (t), and the resulting latency distribution $f(t)$ is shown by the dots (Murdock, 1985) 20
Figure 13: Mean x -values and distances in normal distribution 24
Figure 14: Illustration of mean x-values and mean distances 31
Figure 15: Reaction time function 33
Figure 16: Reaction times flow chart 35Figure 17: Graph generator application. The user can choose a system type (a), an objectivefunction (b), two parameters for X and Y axes and a third parameter for the sub graphs(c), and set manually the values of the three other parameters (d). 42

Figure 18: A cutoff point between the distributions' means when the sensetivity is high (a) and extreme cutoff point selection when sensitivity is low (b).43

Figure 19: Optimal cutoff point of the human (a), total penalty of false alarms (b), and system operation time (c) in Type I system at the H collaboration level. The human sensitivity and the time cost are ranged along x and y axes.44

Figure 20: Optimal cutoff point of the human (a), total penalty of misses (b), and system operation time (c) in Type II system at the H collaboration level. Human sensitivity and the time cost are ranged along x and y axes.

Figure 21: Optimal cutoff point of the human (a), total penalty of misses (b), and total penalty of false alarms (c) in Type III system at the H collaboration level. Human sensitivity and the time cost are ranged along x and y axes.45

Figure 22: Human dominance reduces as the time cost increases from graph 'a' to graph 'c'.
\qquad
Figure 23: The response time function (y-axis) for different values of B parameter. $A=1, X_{\infty}=0 \ldots 47$
Figure 24: Human dominance reduces as the response time increases from graph 'a' to graph ' c '.
\qquad
Figure 25: Human dominance reduces as the mean response time increases from graph 'a' to graph
\qquad
Figure 26: Example of Type III system's score in a case where the human is remarkably more sensitive than the robot.
Figure 27: Example of Type III system's score in a case where the human is unremarkably more sensitive than the robot and the probability for a target is high.52
Figure 28: Example of Type III system's score in a case where the human is unremarkably more sensitive than the robot and the probability for a target is low. 52
Figure 29: Example of Type III system's score in a case where the human is unremarkably more sensitive than the robot and the probability for a target is medium. 53
Figure 30: Example of Type III system's score in a case where the human reaction time is expensive and the probability for a target is high. 54
Figure 31: Example of Type III system's score in a case where the human reaction time is expensive and the probability for a target is low. 55
Figure 32: Example of Type III system's score in a case where the human reaction time is expensive and the probability for a target is low. A comparison with constant time parameters ($B=0$) is presented. 56
Figure 33: Comparison between Type I and Type III systems' score in a case where the human is more sensitive than the robot and the probability for a target is high 58
Figure 34: Example of Type I system's score in a case where the probability for a target is low and the difference between the collaboration levels scores is small. 58
Figure 35: Example of Type II system's score in a case where the probability for a target is high and the difference between the collaboration levels scores is small. 59
Figure 36: An example of the graphical user interface of the experiment. 108
List of Tables
Table 1: Scale of Levels of Automation of Decision and Control Action (Sheridan, 1978) 6
Table 2: Gains and penalties for different types of systems 40
Table 3: Model parameters' values 41
Table 4: The experimental groups (Bechar, 2006). 109
Table 5: Summary of the statistical data of the T2mark measure. 110
Table 6: Summary of the statistical data of the T2next measure. 110
Table 7: Results of Single Factor ANOVA tests of the T2mark measure. 111
Table 8: Results of Single Factor ANOVA tests of the T2next measure 111

1 Introduction

Despite intensive R\&D efforts in robotics, autonomous robots can still not perform reliably in "realworld" conditions (Bechar et al., 2009). Current robotic systems are best suited for applications that require accuracy and high yield under well defined and known conditions (Bechar, 2006). They cannot cope with unexpected situations encountered in unstructured and changing environments. A major problem in most robotic systems is target recognition. In detection of natural objects, this is especially problematic since the objects have high degrees of variability in shape, texture, color, size and position (Bechar, 2006). This as well as the limitations of sensor technologies and the changing environmental conditions (e.g., lighting, occlusion) prohibits the use of completely autonomous systems in such environments (Dubey \& Everett, 1998). Humans on the other hand, can easily fit themselves into such changing environments. By taking advantage of the human perception skills and the robot's accuracy and consistency, the combined human-robotic system can be simplified, resulting in improved performance (Bruemmer et al., 2005).

This thesis is based on a previous work (Bechar, 2006) which focused on development of an objective function for human robot collaborative systems for target recognition task. Bechar (2006) developed four levels of collaboration for target recognition: two independent levels, autonomous (R) and manual (H), and two levels that define collaboration between the human operator and the robot. The first one (HR) is a collaboration level where the robot indicates potential targets and the human operator, follows and confirms real targets and adds targets the robot missed. In the second collaboration level (HOR), the human supervises the robot. The robot itself marks targets and the human operator checks its' marks. The human operator cancels false targets and mark targets that the robot missed. In addition, a method to determine the best level of collaboration was developed (Bechar, 2006). The best collaboration level is the level that achieved the highest system performance. The system objective function enabled to determine the expected value of task performance, given the parameters of the system, the task, and the environment. The objective function composed of the four penalties or rewards of the recognition process (i.e., hit, correct detection, false alarm and miss) and the system operational costs. The operational costs partially consist of the cost of time, spent during system operation. The cost of the human decision time, which is the time takes the human to decide whether an object is a target or not, is the main part out of the total operational costs.

The objective function of Bechar's model considered the human decision time as a constant. However, it is known that reaction time in target recognition should take into account factors as the strength of the observed object, which is not constant (Murdock \& Dufty, 1972; Pike, 1973; Murdock, 1985). This thesis introduces further development of the model by incorporating nonconstant reaction times. The new model, proposed in this research, provides a better description of actual systems by adjusting time parameters to a specific task and taking into consideration the fact that reaction time of the human depends on the strength of the observed object. Evaluating the best collaboration level according to the new model, considers the influence of human reaction time on system performance.

This thesis evaluates the influence of human reaction time on the performance of a collaborative target recognition system. Particularly, the study focuses on how reaction time affects the recommended level of human-robot collaboration. The research aims to: (1) adjust a reaction time model to the objective function of a collaborative target recognition system, and (2) perform a thorough numerical analysis of the objective function in order to evaluate the influence of the human reaction time.

The dissertation is organized as follows: chapter 2 presents a literature review on autonomous robots, human-robot collaboration, target recognition and reaction time models. The literature review also includes description of Bechar's model and signal detection theory. The methodology chapter (chapter 3) outlines the research. Chapter 4 presents the development of the reaction time model and show how it is incorporated into Bechar's model. Chapters 5 and 6 show the numerical and sensitivity analyses of the new model. The thesis concludes in chapter 7, which includes research limitations and discussion of future research.

2 Literature Review

The review includes seven main topics: (1) automation, (2) human-robot collaboration, (3) collaboration types and levels, (4) collaboration in target recognition task, (5) introduction of a collaborative model for target recognition, (6) signal detection theory, and (7) reaction time models.

2.1 Automation

"Machines, especially computers, are now capable of carrying out many functions that at one time could only be performed by humans" (Parasuraman et al., 2000).

Parasuraman et al. (2000) defined automation as a device or system that accomplishes (partially or fully) a function that was previously carried out (partially or fully) by a human operator. These functions are often things that humans do not wish to perform, or cannot perform as accurately or reliably as machines.

A teleoperator is a machine that extends a person's sensing and/or manipulating capability to a remote location (Sheridan, 1992). The term Teleoperation refers most commonly to direct and continuous human control of the teleoperator (Sheridan, 1992).

Recently, robots take part of many aspects of our society, from military uses to medicine; from entertainment to home and office laborers; for use on land, sea, air, and space (Bruke et al., 2004). Robot teleoperation, still the primary mode of operation in today's human-robot systems, can be highly successful and irreplaceable, but these systems are also very limited and expensive (Bruke et al., 2004).

2.2 Human-robot collaboration

Autonomous robots are systems that can perform tasks without human intervention. They are best suited for applications that require accuracy and high yield under stable conditions, yet they lack the capability to respond to unknown, changing and unpredicted events (Bechar, 2006). Humans, dissimilarly, can easily fit themselves into changing environment (Bechar, 2006). In general, human and robot skills are complementary (Rodriguez \& Weisbin, 2003). By taking advantage of the human perception skills and the robot's accuracy and consistency, the combined human-robotic system can be simplified, resulting in improved performance (Bechar et al., 2009).

The unstructured nature of the tasks as well as the limitations of the current sensor technologies prohibits the use of completely autonomous systems for remote manipulation (Dubey \& Everett, 1998). Hence, teleoperated systems, in which humans are an integral part of the control, are most often used for performing these tasks (Dubey \& Everett, 1998). Usage of remote mobile robots takes advantages of human intelligence and machine proficiency (Bruemmer et al., 2005).

However, many applications still use robots as a passive tool and the cognitive burden of all decisions are placed on the human operator. Sometimes it is assumed that autonomy (i.e., full independence) is the ultimate goal for remote robotic systems (Bruemmer et al., 2005). Bruemmer et al. (2005) suggested that effective teamwork, where the robot is a peer, is an equally profitable aim. In their experiments, they tried to provide evidence for a form of collaborative control where robots are regarded as peers and effectively used as trusted team members (Bruemmer et al., 2005).

Sheridan (1992) states seven motivations to develop supervisory control:
"(1) to achieve the accuracy and reliability of the machine without sacrificing the cognitive and adaptability of the human; (2) to make control faster and unconstrained by the limited pace of the continuous human sensorimotor capability; (3) to make control easier by letting the operator give instructions in terms of objects to be moved and goals to be met, rather than instruments to be used and control signals to be sent; (4) to eliminate the demand for continuous human attention and reduce the operator's workload; (5) to make control possible even where there are time delays in communication between human and teleoperator; (6) to provide a "fail-soft" capability when failure in operator's direct control would be proved catastrophic; and (7) to save lives and reduce cost by eliminating the need for the operator to be present in hazardous environment, and for life support required to send the operator there." (Sheridan, 1992)

Figure 1: The notions of trading and sharing control between human and computer. L is the load or task, H is the human, and C is the computer (Sheridan, 1992)

Sheridan (1992) explained the difference between sharing and trading control. Sharing control means that the human and the computer control different aspects of the system on the same time. When the computer extends human's capabilities or relieves the human by making her job easier, they are sharing control (Figure 1). Trading control, on the other hand, means that either the human or the computer turns over control to the other. When the computer backs up or replaces the human operator, they are trading control (Sheridan, 1992). Both sharing and trading control are relevant in human-robot collaboration.

A main issue in space exploration is to decide what human or robotic system (or a suitable combination of the two) is most appropriate to use in those exploration tasks (Rodriguez and Weisbin, 2003). Rodriguez and Weisbin (2003) introduced a method to evaluate systematically the relative performance of some optional human-robot systems, in order to decide which type of assets to use in a given situation. First, they decompose the space scenario that needs to be analyzed into a set of major functional operations. For each of the functional operations, they define a set of performance metrics to be used in the evaluation. Then they specify the agents (robot, human or a combination) to be evaluated, together with the resources needed for their implementation. The performance of each agent is then evaluated for each of the functional operations, and a score, which estimates the aptitude of each agent for each operation, is determined. A composite score is then computed for each agent and a comparison between systems' performances is done.

2.3 Collaboration types and levels

As aforementioned, automation refers to the full or partial replacement of a function previously carried out by a human operator (Parasuraman et al., 2000). This means that automation can differ from the lowest level of manual performance through some levels of collaboration between the human and the robot up to the highest level of full autonomy (Parasuraman et al., 2000).

Figure 2: Simple four-stage model of human information processing (Parasuraman et al., 2000)
Parasuraman et al. (2000), in their article: "Types and Levels of Human Interaction with Automation", revealed a four-stage model of human information processing (see Figure 2). The first stage, Sensory Processing, refers to the acquisition and registration of multiple sources of information. The second stage, Perception/Working Memory, involves conscious perception and manipulation of processed and retrieved information in working memory. This stage also includes cognitive operations, but these operations occur prior to the point of decision. The third stage, Decision Making, is where decisions are made based on such cognitive processing. The fourth and final stage, Response Selection, involves the implementation of a response or action consistent with the chosen decision (Parasuraman et al., 2000).

One can divide system functions into four classes that match each of the four stages in human information processing (Parasuraman et al., 2000): (1) information acquisition, (2) information analysis, (3) decision and action selection, and (4) action implementation. Automation can be implemented in each of these functions. A particular system can involve automation of all four
dimensions at different levels as shown in Figure 3 (Parasuraman et al., 2000). Each of these dimensions can be automated in varying levels of automation. The levels of automation of decisionmaking, that will be introduced later, can be applied, with some modifications, also to the other dimensions.

Figure 3: Levels of automation for independent functions of: information acquisition, information analysis, decision selection, and action implementation (Parasuraman et al., 2000)

Sheridan (1978) described ten levels of automation of decision and action selection. Table 1 shows different levels of automation, with higher levels representing increased autonomy of the system. At the low levels, the operator must get involved in order to accomplish an operation. Under level 6 or higher, the system will automatically execute its own resolution unless the operator intervenes (Parasuraman et al., 2000).

Table 1: Scale of Levels of Automation of Decision and Control Action (Sheridan, 1978)

HIGH	10.	The computer decides everything and acts autonomously, ignoring the human.
	9.	Informs the human only if it, the computer, decides to
	8.	Informs the human only if asked, or
	7.	Executes automatically, then necessarily informs the human, and
	6.	Allows the human a restricted time to veto before automatic execution, or
	5.	Executes that suggestion if the human approves, or
	4.	Suggests one alternative, and
	3.	Narrows the selection down to a few, or
	2.	The computer offers a complete set of decision/action alternatives, or
LOW	1.	The computer offers no assistance: the human must take all decisions and actions

2.4 Examples of collaboration levels

Levels of collaboration are sometimes referred to as modes of operation of the given humanrobot system. Following we describe examples of collaboration levels implementations in different applications. All of the examples include fully autonomy and fully manually levels, which consist of a single collaborator without any cooperation. The collaboration levels differ by nature, scale, structure, and number of levels.

Bechar and Edan (2000) evaluated two collaboration levels for agriculture robot guidance through an off-road path. Two different guidance methods were tested: Directional guidance, where the gross direction of advance is being marked and Waypoint guidance, where the system draws the desired course of advancing along the path. Two collaboration levels were examined for each guidance method: HO, where the human-operator marks the desired direction/course solely; and HO-Rr, here the human-operator marks the desired direction/course with recommendations from the robot (Bechar \& Edan, 2000).

Bruemmer et al. (2005) defined four control modes of a remote mobile robot in an in-door search and exploration task. (1) Tele Mode is a fully manually mode of operation, in which the operator controls all robot movements. (2) Safe Mode is similar to Tele Mode. However, in Safe Mode the robot is equipped with a level of initiative that prevents the operator from colliding with obstacles. (3) Shared Mode, the robot can relieve the operator from the burden of direct control, using reactive navigation to find a path based on perception of the environment. The robot accepts operator intervention and supports dialogue using a finite number of scripted suggestions (e.g., "Path blocked! Continue left or right?"), that appear in a text box within the graphical interface. (4) Autonomous Mode consists of series of high-level tasks such as patrol, search region or follow path. In this mode, the only user intervention occurs on the tasking level; the robot itself manages all decision-making and navigation (Bruemmer et al., 2005).

Bechar (2006) developed four collaboration levels for target recognition: Fully autonomous level (R), in which the robot fulfills the task all by itself; and fully manually level (H), where the human-operator does not use any help of the robot. Two more levels define collaboration between the human operator and the robot. The first one (HR) is a collaboration level where the robot indicates potential targets and the human operator at the following stage needs to mark the targets he thinks are real and to add marks of targets the robot did not indicate. In the second collaboration level (HOR), the human supervises the robot. The robot itself marks targets and the human operator checks its' marks. The human operator unmarks targets that are not real and mark targets that the robot missed (Bechar, 2006).

Hughes and Lewis (2005) designed a remote robotic system for a search and exploration task. In order to control the robot, one or two cameras feed the human operator with live video from the remote environment. Hughes and Lewis used two different levels of control on the cameras. At the first one, Sensor-Driven Orientation, the operator supervises the camera while a guided-orientation system recommends it where to look. Whenever the operator wants to, she can take control over the camera, overriding system's recommendations. The other level, User-Controlled Orientation, the camera is all the time under operator's control.

Czarnecki and Graves (2000) described a scale of five human-robot interaction levels for a telerobotic behavior based system.

Most of these applications determine the best collaboration level for specific system and mission conditions. Experiments were conducted in order to compare performance under different levels of collaboration. Generally, the main conclusion was that systems perform better, in different aspects, when human and robot collaborate. Moreover, the level of autonomy should not be arbitrary and the user should be able to set robot's level of autonomy according to environment or task constraints (Steinfeld, 2004). Team members (humans and robots) must recognize changing situations and adapt the best collaboration level to ensure that the mission is done successfully (Bruke et al., 2004). An expansion of Bechar's research (2006) will follow in the next section.

2.5 Collaboration in target recognition tasks

Target recognition is a common and critical element in most robotic systems (Bechar, 2006). For example, the detection of parts in assembly lines, the detection of landmarks in autonomous navigation, or the detection of fruits for robotic harvesters. Target recognition is a common and important topic in many other research areas such as medical and brain research, quality assurance, human factors, agriculture and remote sensing (Bechar, 2006). Automatic target recognition in agriculture environment is characterized by low detection rates and high false alarm rates due to the unstructured nature of both the environment and the objects (Bechar \& Edan, 2003).

Target recognition is a mission in which the system needs to mark objects as targets (Bechar, 2006). Typical systems for target recognition use a sequence of algorithms that operate in different stages in order to achieve recognition (Bhanu et al., 2000). A vision analysis based algorithm is used in order to decide whether an object is a target or not (Bulanon et al, 2001). For example, Bulanon et al. (2001) made use of color difference of red histogram in order to recognize apple fruits in images of CCD camera (Figure 4). Bhanu et al. (2000) went farther and proposed a learning-based target recognition system that is capable of automatically adjusting its procedural parameters in order to achieve adaptive target recognition process.

Figure 4: Vision analysis for apple fruit detection (Bulanon et al, 2001)
(a) CCD image, (b) segmentation of color difference of red, (c) color difference of red histogram

Bechar, in his Ph.D. thesis (2006), examined human-robot collaboration for target recognition. Four collaboration levels were defined and a method to determine the best collaboration level was evaluated. To measure system performance under different collaboration levels an objective function has been developed (Bechar, 2006). The objective function includes five parts: hit (correct detection), false alarm, miss, correct rejection, and operational cost. Each of the first four parts represents penalties or rewards of the recognition process. For instance, when a correct detection occurs, meaning a real target was detected by the system, a reward is summed to the objective function. Likewise, a penalty is taken into account when a target is missed or when the system makes false alarm, marking a non-target as a target (Bechar, 2006).

Bechar (2006) found that the H collaboration level is never the best collaboration level probably due to its high operational cost and low hit rate relative to the other collaboration levels. Thus, collaboration of human and robot in target recognition tasks will always improve the optimal performance. The combination of both human and robot in the HOR collaboration level increases the system sensitivity in most cases and increases the probability of a hit while reducing the probability of false alarms. In addition, findings indicated that when robot sensitivities are higher than human sensitivities the best collaboration level is R (Bechar, 2006).

Oren, in his B.Sc final project (2007), continued Bechar's work and performed sensitivity analyses of the objective function in order to understand how changes in different parameters (human, robot, task, and environment) influence performance of the integrated human-robot system.

Oren et al. (2008) found that an increase in human and/or robot sensitivity causes an increase in the objective function score and in fact, increases system's performance. Superior sensitivity means better capability to discriminate between a signal (target) and a noise (no target) and therefore, more hits and fewer false alarms occur (Oren et al., 2008). In addition, a sensitivity analysis of the thresholds (see interpretation in Signal Detection Theory subchapter, 2.7) exposed that in some cases, a small deviation from the optimal value causes shifts in the best collaboration level.

2.6 Collaborative model for target recognition (Bechar, 2006)

This chapter details the objective function of the collaborative model developed by Bechar (2006) for target recognition tasks.

The objective function describes the expected value of system performance, given the properties of the environment and the system. The goal is to maximize the objective function. The value of the objective function can be translated into a monetary value. The objective function composed of the four responses of the target detection process and the system operational costs:

$$
V_{I s}=V_{H s}+V_{M s}+V_{F A s}+V_{C R s}+V_{T s}
$$

Where $V_{H s}$ is the gain for target detections (hit), $V_{F A s}$ is the penalty for false alarms (FA), $V_{M s}$ is the system penalty for missing targets (miss), $V_{C R s}$ is the gain for correct rejections (CR), and $V_{T s}$ is the system operation cost. All gain, penalty and cost values have the same units, which enable us to add them together to a single value, expressed in the objective function.

The gain and penalty functions are:

$$
\begin{aligned}
& V_{H s}=N \cdot P_{S} \cdot P_{H s} \cdot V_{H} \\
& V_{M s}=N \cdot P_{S} \cdot P_{M s} \cdot V_{M} \\
& V_{F A s}=N \cdot\left(1-P_{S}\right) \cdot P_{F A s} \cdot V_{F A} \\
& V_{C R s}=N \cdot\left(1-P_{S}\right) \cdot P_{C R s} \cdot V_{C R}
\end{aligned}
$$

Where, N is the number of objects in the observed image and P_{S} is the probability of an object becoming a target. The third parameter in the equations, $P_{X s}$, is the system probability for one of the outcomes: hit, miss, false alarm or correct rejection (X can be $H, M, F A, C R$). The fourth parameter, V_{X}, is the system gain or penalty from the expected outcome.

The system's probability of a certain outcome is influenced from the serial structure of the model and is composed of the robot and the human probabilities:

$$
\begin{aligned}
& P_{H s}=P_{H r} \cdot P_{H r h}+\left(1-P_{H r}\right) \cdot P_{H h} \\
& P_{M s}=P_{M r} \cdot P_{M h}+\left(1-P_{M r}\right) \cdot P_{M r h} \\
& P_{F A s}=P_{F A r} \cdot P_{F A r h}+\left(1-P_{F A r}\right) \cdot P_{F A h} \\
& P_{C R s}=P_{C R r} \cdot P_{C R h}+\left(1-P_{C R r}\right) \cdot P_{C R r h}
\end{aligned}
$$

Where,
(1) $P_{H r}$ is the robot probability of a hit,
(2) $P_{H r h}$ is the human probability of confirming a robot hit,
(3) $P_{H h}$ is the human probability of detecting a target that the robot did not detect,
(4) $P_{M r}$ is the robot miss probability,
(5) $P_{M r h}$ is the human probability of un-confirming a robot hit,
(6) $P_{M h}$ is the human probability of missing a target the robot missed,
(7) $P_{F A r}$ is the robot false alarm probability,
(8) $P_{\text {FArh }}$ is the human probability of not correcting a robot false alarm,
(9) $P_{F A h}$ is the human probability of a false alarm on targets the robot correctly rejected,
(10) $P_{C R r}$ is the robot probability of a correct rejection,
(11) $P_{\text {CRrh }}$ is the human probability of correcting a robot false alarm, and
(12) $P_{\text {CRh }}$ is the human probability of a correct rejection on targets the robot correctly rejected.

The sum of hit and miss probabilities (of the same type) equals one, so does the sum of false alarm and correct rejection probabilities.

The system's operation cost is:

$$
V_{T s}=t_{S} \cdot V_{t}+\left[N \cdot P_{S} \cdot P_{H s}+N \cdot\left(1-P_{S}\right) \cdot P_{F A s}\right] \cdot V_{C}
$$

Where, t_{S} is the time required by the system to perform a task, V_{t} is the cost of one time unit, and V_{C} is the operation cost of one object recognition (hit or false alarm).

The system time consists of the time it takes the human to decide whether to confirm or reject robot detections; and the time it takes the human to decide whether objects not detected by the robot are targets or not. The robot operation time, t_{r}, of processing the images and performing hits or false alarms, is also included.

$$
\begin{aligned}
& t_{S}=N \cdot P_{S} \cdot P_{H r} \cdot P_{H r h} \cdot t_{H r h}+N \cdot P_{S} \cdot\left(1-P_{H r}\right) \cdot P_{H h} \cdot t_{H h}+ \\
& +N \cdot P_{S} \cdot P_{H r} \cdot\left(1-P_{H r h}\right) \cdot t_{M r h}+N \cdot P_{S} \cdot\left(1-P_{H r}\right) \cdot\left(1-P_{H h}\right) \cdot t_{M h}+ \\
& +N \cdot\left(1-P_{S}\right) \cdot P_{F A r} \cdot P_{F A t h} \cdot t_{F A r h}+N \cdot\left(1-P_{S}\right) \cdot\left(1-P_{F A r}\right) \cdot P_{F A h} \cdot t_{F A h}+ \\
& +N \cdot\left(1-P_{S}\right) \cdot P_{F A r} \cdot\left(1-P_{F A r h}\right) \cdot t_{C R r h}+N \cdot\left(1-P_{S}\right) \cdot\left(1-P_{F A r}\right) \cdot\left(1-P_{F A h}\right) \cdot t_{C R h}+N \cdot t_{r}
\end{aligned}
$$

Where,
(1) $t_{H r h}$ is the human time required to confirm a robot hit,
(2) $t_{H h}$ is the human time required to hit a target that the robot did not hit,
(3) $t_{M r h}$ is the human time lost when a robot hit is missed,
(4) $t_{M h}$ is the human time invested when missing a target that the robot did not hit,
(5) $t_{F A r h}$ is the human time needed not to correct a robot false alarm,
(6) $t_{F A h}$ is the human false alarm time,
(7) $t_{\text {CRrh }}$ is the human time to correctly reject a robot false alarm,
(8) $t_{C R h}$ is the human correct rejection time, and (9) t_{r} is the robot operation time.

Explicit expression of the system objective function, $V_{I s}$, suitable for all collaboration levels, is:

$$
\begin{aligned}
& V_{I s}=N \cdot P_{S} \cdot\left[P_{H r} \cdot P_{H r h} \cdot\left(V_{H}+V_{C}+t_{H r h} \cdot V_{t}\right)+\left(1-P_{H r}\right) \cdot P_{H h} \cdot\left(V_{H}+V_{C}+t_{H h} \cdot V_{t}\right)\right]+ \\
& +N \cdot P_{S} \cdot\left[P_{H r} \cdot\left(1-P_{H r h}\right) \cdot\left(V_{M}+t_{\text {Mrh }} \cdot V_{t}\right)+\left(1-P_{H r}\right) \cdot\left(1-P_{H h}\right) \cdot\left(V_{M}+t_{M h} \cdot V_{t}\right)\right]+ \\
& +N \cdot\left(1-P_{S}\right) \cdot\left[P_{F A r} \cdot P_{F A t h} \cdot\left(V_{F A}+V_{C}+t_{F A r h} \cdot V_{t}\right)+\left(1-P_{F A r}\right) \cdot P_{F A h} \cdot\left(V_{F A}+V_{C}+t_{F A h} \cdot V_{t}\right)\right]+ \\
& +N \cdot\left(1-P_{S}\right) \cdot\left[P_{F A r} \cdot\left(1-P_{F A t h}\right) \cdot\left(V_{C R}+t_{C R r h} \cdot V_{t}\right)+\left(1-P_{F A r}\right) \cdot\left(1-P_{F A h}\right) \cdot\left(V_{C R}+t_{C R h} \cdot V_{t}\right)\right]+N \cdot t_{r} \cdot V_{t}
\end{aligned}
$$

For the H collaboration level, the system objective function will be a degenerate form of the full objective function, and will not include the robot variables:

$$
\begin{aligned}
V_{I s} & =N \cdot P_{S} \cdot\left[P_{H h} \cdot\left(V_{H}+V_{C}+t_{H h} \cdot V_{t}\right)+\left(1-P_{H h}\right) \cdot\left(V_{M}+t_{M h} \cdot V_{t}\right)\right]+ \\
& +N \cdot\left(1-P_{S}\right) \cdot\left[P_{F A h} \cdot\left(V_{F A}+V_{C}+t_{F A h} \cdot V_{t}\right)+\left(1-P_{F A h}\right) \cdot\left(V_{C R}+t_{C R h} \cdot V_{t}\right)\right]
\end{aligned}
$$

In the R collaboration level, the system objective function will be a degenerate form of the full objective function, and will not include the human variables:

$$
\begin{aligned}
V_{I s} & =N \cdot P_{S} \cdot\left[P_{H r} \cdot\left(V_{H}+V_{C}\right)+\left(1-P_{H r}\right) \cdot V_{M}\right]+ \\
& +N \cdot\left(1-P_{S}\right) \cdot\left[P_{F A r} \cdot\left(V_{F A}+V_{C}\right)+\left(1-P_{F A r}\right) \cdot V_{C R}\right]+N \cdot t_{r} \cdot V_{t}
\end{aligned}
$$

2.7 Signal detection theory

This section gives a tutorial for the signal detection theory.
"Reading in a coffee shop, you see someone who looks familiar. Have you met him before? Should you go and talk to him at the risk of embarrassment when you realize he is a stranger? On the other hand, should you pretend to ignore him at the risk of offending your friend? Both paths of action have potential costs and benefits and the correct decision is not clear. Furthermore, the decision you make might be biased by your own previous experience. For example, if in the past you accidentally waved 'hello' to a strange, then you might be less likely to wave to the person who looks familiar" (http://wise.cgu.edu).

This is an example of detection process. A common dimension of these situations is that there is doubt whether a signal is present or not (Sheridan, 1992). Signal detection theory provides a general framework to describe and study decisions that are made in ambiguous situations (Wickens, 2002). This decision theory tries to estimate decision-making processes for binary categorization decisions, i.e., Yes/No or True/False. It is specifically concerned with how these choices are, or should be made under uncertain conditions (Brown \& Davis, 2006).

Four potential types of outcomes are possible in a binary detection process (see Figure 5). An outcome is dependent on the decision-maker decision and on the actual circumstances, i.e., was there a signal or not. Decisions rely on a detector, which must notice a signal (S) when it occurs without being diverted by a noise (N). When a detector indicates a signal, only one of the two must be true: signal is present (hit) or is absent (false alarm, FA). When a detector does not indicate a signal, either it missed (miss) the signal, or there is no signal (correct rejection, CR) (Wickens, 2002). These responses are also often called: correct positive (CP), incorrect positive (IP), incorrect negative (IN), and correct negative (CN); or true positive (TP, TT), false positive (FP, FT), false negative (FN, FF), and true negative (TN, TF), respectively (Brown \& Davis, 2006).

	Reference		
	Signal	Noise	
Decision	Signal	Hit (CP, TP, TT)	False Alarm (IP, TN, FT)
	Noise	Miss (IN, FN, FF)	Correct Rejection (CN, TN, TF)

Figure 5: Four potential outcomes of the detection process
In target recognition, the recognition system aims to detect targets. The system gets a set of objects and needs to mark the objects it thinks are targets (Bechar, 2006). The outcomes of the recognition process are specified as follows. Hit - when the system marks a real target; Miss - when
the system misses a target; False Alarm - when the system marks a non-target as a target; and Correct Rejection - when a non-target is not marked (Bechar, 2006).

The decision-maker needs to detect signals while background noise exists all the time. A continuous variable X (e.g., temperature, concentration, density, probability) represents the stimulus of the process (see Figure 6). The specific value of X can be either signal or noise. Two distributions, one of noise-only (N) and one of signal-plus-noise $(\mathrm{S}+\mathrm{N})$, represent the probability of such a stimulus to be a signal (Bechar, 2006).

Figure 6: An example of binary decision analyzed with SDT (Bechar, 2006)
The decision whether a stimulus is a signal or not, leans on a criterion value of X (denoted as x), called also a cutoff point (Cohen \& Ferrell, 1969) or a threshold (Brown \& Davis, 2006). If the detector notices a stimulus higher than the criterion, the decision will be that a signal is in presence, otherwise, there is no signal. When a signal is present, the detector can either detect it or not, resulting in a sum of probabilities of hit and miss equaling one (see Figure 7). The same rule applies to the sum of probabilities of false alarm and correct rejection when a signal is absent (Bechar, 2006).

Figure 7: Outcomes probabilities when a signal is absent (a) or is present (b)
The distance between the means of the two distributions (denoted as d^{\prime} in Figure 6) defines the detector's ability to discriminate between a signal and a noise. The discrimination ability influenced both by the capability of the measured variable to distinguish between signal and noise (Brown \& Davis, 2006), and by the observer's sensitivity (Bechar, 2006). When $d^{\prime}=0$, the two
distributions completely overlap and it is impossible to distinguish between them. As d^{\prime} increases, it becomes easier to distinguish between signal and noise (Bechar, 2006).

The Receiver Operating Characteristic (ROC) curve was introduced in World War II for military radar operations as a means to characterize the operators' ability to identify correctly friendly or hostile aircraft based on a radar signal (Brown \& Davis, 2006; http://wise.cgu.edu). A cross plot of hit and false alarm rates can be generated by moving the cutoff point over the range of X (see different t_{i} in Figure 8). The curve produced is the ROC curve.

Figure 8: Generation of the ROC curve by evaluating hit and false alarm rates at various decision thresholds on x (Brown \& Davis, 2006)

The curve always passes through points $(1,1)$ and $(0,0)$. When the criterion is positioned at t_{1} (Figure 8), the detector considers all stimulus as signals, therefore, hit and false alarm rates equal one. On the other hand, when positioned in t_{5}, no stimulus would be considered signal and the rates equals zero (Brown \& Davis, 2006). Other properties of the curve will be discussed later.

Common measurements of goodness of the decision process are the classification and likelihood rates (Brown \& Davis, 2006). Classification rate is defined as the proportion of correct decisions (hit and correct rejection) to total decisions. The performance of a decision-maker in a given set of circumstances is fully described by the frequencies of the various possible outcomes (Cohen \& Ferrell, 1969). Therefore, the likelihood ratio (denoted as β in Figure 7), which is the proportion of hit rate to false alarm rate at the cutoff point, is another way to measure performance (Bechar, 2006). Good performance achieves high hit rate and low false alarm rate. Hence high likelihood ratio suits system that performs well (Brown \& Davis, 2006). An advantage of likelihood ratios is that they do not depend on the signal rate (Brown \& Davis, 2006).

With the purpose of achieving the highest likelihood rate, one would like to operate at the upper left corner of Figure 8 (indicated by a star in the figure), but cannot because of the overlap of the two distributions (Sheridan, 1992). It is possible that hit rate equals one while false alarm rate equals zero only when the two distributions do not overlap (see example, Figure 10) and $d^{\prime} \rightarrow \infty$
(Sheridan, 1992). In order to get best performances under given distributions of noise and signal, there is a need to find criterion value x adjusted to the optimal likelihood ratio β. In applying this theory it is of interest to see if human decision makers are optimal and select $x=\beta$, or if they consistently are biased toward lower left (risk-averse behavior) or the upper right (risk-prone behavior) corners (Sheridan, 1992).

The next section illustrates some interesting situations that help understand the theory introduced above. The following figures were produced using a web applet that demonstrates ROC curves (http://wise.cgu.edu). The two distributions of N and $\mathrm{S}+\mathrm{N}$ are shown in the left graph (Figure 9). The right distribution of signal-plus-noise can be moved horizontally by dragging d^{\prime}. Likewise, the criterion value can be modified. The right graph is the ROC curve which is generated automatically corresponding to chosen d^{\prime} and criterion. Another way to produce the curve is to determine hit and false alarm rates at the lower part of the applet. Doing so, both graphs will change automatically to fit the input data.

Figure 9: An example of ROC curve applet (http://wise.cgu.edu)
As shown in Figure 9 one distribution is almost totally overlapping the other. Compatibly, d^{\prime} is small. In this situation, the observer's sensitivity is low and only a small hit rate is possible. When the sensitivity is higher (Figure 10), the criterion efficiently discriminates between signal and noise, high hit rate and low false alarm rate are achieved and the ROC curve passes close to the upper left corner of the graph.

Figure 10: An example of high sensitivity of the observer (http://wise.cgu.edu)

Figure 11 illustrates different locations of the criterion value. Actually, the ROC curve is a cross plot of false alarm and hit rates. The dot on the curve is moving respectively with the criterion's movement. Hit and false alarm rates monotonically increase as the criterion moves from right to left and hit rate is always greater than false alarm rate (Brown \& Davis, 2006). The goal is to find the criterion value that gives the highest proportion of hit rate to false alarm rate, the optimal likelihood ratio.
(a)

(b)

(c)

Figure 11: Different criterion values on the same ROC curve (http://wise.cgu.edu): 2.04 (a), 0.82 (b), -0.36 (c).

2.8 Reaction time models

Signal detection theory, which was introduced above, provides a general framework to describe decisions and how they should be made under uncertain conditions (Brown \& Davis, 2006). Signal detection theory models provide an account of accuracy only, and are not concerned with the time it takes the observer to make the decision ${ }^{1}$ (Ratcliff \& Smith, 2004).
"Reaction time, that is the time from the onset of a stimulus or signal to the initiation of response, has been recognized as a potentially powerful means of relating mental events to physical measures. ... More recent developments have enhanced the value of reaction time as a measure rather than diminished it (Welford, 1980)".

The relation between response time and accuracy is not constant; it varies according to whether speed or accuracy of performance is emphasized and according to whether one response or another is more probable or weighted more heavily (Ratcliff \& Rouder, 1998). Therefore, previous models have dealt with only one measure, accuracy or response time (Ratcliff \& Rouder, 1998).

Various models were proposed to account for reaction time and accuracy. Ratcliff and Rounder (1998) introduced the diffusion model which is a sequential-sampling model and can explain the relationship between correct and error responses while at the same time fitting all the other response time and response probability aspects of the data. Sequential sampling models are unique in providing a way to understand both the speed and accuracy of performance within a common theoretical framework (Ratcliff \& Smith, 2004).

Ratcliff, Mckoon and Zandt (1999) also claim that the main difficulty in recent modeling is that two dependent variables, reaction time and the probability of responses, must to be modeled in the same integrated framework. They introduced connectionist models that explain how cognitive tasks are learned. Learning is the result of many individual trials with stimuli, each trial with feedback about whether the model's response was correct or not (Ratcliff et al., 1999).

Pike (1973) suggested that latency in response is some inverse function of distance from the criteria, and that latency decreases with the distance. According to Pike (1973), successful description of response latency is necessary for verification of the detection model.

[^0]Murdock (1985) analyzed the strength-latency relationship and introduced a generic reaction time model based on the distance-from-criteria of the observed object. He suggested that an exponential function is the most reasonable to use in order to transfer the object's strength, i.e., distance-from-criteria, into latency (Figure 12). Exponential functions can describe symmetrical descendent of latency on both sides of the yes/no criterion (Murdock, 1985).

Figure 12: Signal (x) is normally distributed with criterion Xco. Exponential transfer function maps signal strength into latency (t), and the resulting latency distribution $\mathrm{f}(\mathrm{t})$ is shown by the dots (Murdock, 1985).

3 Methodology

3.1 Overview

This thesis continues a previous work of Bechar (2006) which focused on developing a human-robot collaboration model for target recognition task. The objective function of the model describes the system score for a given collaboration level and determines the best collaboration level for a given set of parameters. This thesis expands the objective function of the model by incorporating a function for human reaction time instead of a constant value. In this thesis, we check the influence of the reaction time on the objective function score and the best collaboration level.

A reaction time model is developed and integrated into the collaboration model. Numerical and sensitivity analysis of the new model is conducted using simulated data.

3.2 Reaction time model development

The objective function of the model developed by Bechar (2006), takes into account the costs related to the time it takes a human-robot system to perform a target detection task. Implementing a detection procedure by the human consist of two stages. First, the human must decide whether an object is target or not. The action on the second stage depends on the human decision and on the collaboration level as follows. In some cases, the human needs to make a motoric action in order to mark or unmark an object (e.g., confirming a robot recommendation in the HR collaboration level, or canceling a wrong robot's mark in the HOR collaboration level). In other cases, the human does not have to perform a motoric action (i.e., when the robot's recommendation is not a real target in the HR collaboration level, or when the robot decided correct in the HOR collaboration level). The time the first stage takes is the reaction time of the human.

Previous work (Bechar, 2006) considered a constant value for the reaction time. This research introduces further development of the model taking into consideration the fact that the reaction time of the human depends on the strength of the observed object (i.e., the distance of the observed object from the cutoff point). In this research, we incorporate a reaction time model, based on Murdock (1985), into Bechar's model.

Furthermore, a mathematical development of a mean distance model is introduced. The model is based on the signal detection theory model, and calculates the mean distance between the cutoff point and objects of the same category (e.g., mean distance of all objects that were 'missed').

3.3 Performance measures

This research uses the nine performance measures defined by Bechar (2006). Eight performance measures represent the target identification possible outcomes. Four of them stand for objects the robot marked as targets (i.e., hit, miss, false alarm and correct rejection) and the other four stands for objects the robot did not mark. The ninth performance measure is the time required for the human-robot integrated system to fulfill the task. The system objective function combines all performance measures into a single parameter.

3.4 Numerical analysis

A numerical analysis is implemented on a personal computer with Matlab 7^{TM}, and detailed in chapter 5 . The objective is to determine the best collaboration levels for different human, robot, and task characteristics, and to examine the influence of the time component.

The analysis is focused on three different system types. The first two types, introduced by Oren (2007), give high emphasis of not causing one of the two possible errors in target recognition: missing targets or making false alarms. The third type gives the same importance for all possible outcomes.

3.5 Sensitivity analysis

The numerical analysis is conducted only for the cases in which the human and the robot perform optimally, i.e., optimal cutoff points of the human and the robot. The target detection process of the robot is computerized and it is possible to adjust its cutoff point during the task according to changes in the environment. On the other hand, an optimal cutoff point of the human is less obvious and it is much more difficult to be manipulated. Therefore, the work includes an indepth sensitivity analysis of the human and robot cutoff points. The analysis shows how small changes in the cutoff point position, influence the objective function score and the best collaboration level.

4 Model Development

In this research, we incorporate a reaction time model, based on Murdock (1985), into Bechar's collaboration model (2006). According to Murdock (1985), reaction time depends on the strength of the observed object. The strength of an object is relative to the distance of the observed object's value from the criteria. The distance of an object can be measured by the same units of the measured object or by standard deviation units. Normalizing the signal and noise distributions helps us to describe the problem in standard deviation units. It benefits in generalizing the problem rather than using the actual units that fit only to a specific case. The cutoff point gets a different interpretation for each normalized distribution. We denote the cutoff points as z_{S} and z_{N} for the signal and the noise distributions, respectively.

$$
z_{S}=\frac{x_{c o}-\mu_{S}}{\sigma_{S}} \quad ; \quad z_{N}=\frac{x_{c o}-\mu_{N}}{\sigma_{N}}
$$

A short review of the Normal and the Standard Normal distributions, as well as definitions of signal and noise distributions is included in Appendix A.

For a matter of simplicity, all equations of the model will be defined first as functions of the parameters z_{S} and z_{N}, and later on, for the numerical analysis, they will be expressed by the likelihood ratio, β, between the signal and noise density functions in the cutoff point, $x_{c o}$, and the distance between the means of the signal and noise distributions, d^{\prime}. See chapter 2.6 for details. All expressions are included in Appendix B.

In this section, we introduce a development of a mean distance of all objects of the same category (miss, hit, correct rejection, and false alarm). Then, we formulate the reaction time model and incorporate it into the human-robot collaboration model.

4.1 Mean distance model

4.1.1 Mean x-values and distances in a normal distribution

In the recognition process, the system marks an object as a target if the object's value is higher than the cutoff point value (denoted as $x_{c o}$ in Figure 13). We use the term 'Positive Response' to describe objects that the system marks. Positive response can be either a hit, if the object is a target; or a false alarm if it is not. The term 'Negative Response' describes objects with a value lower than the cutoff point value, which the system does not mark as targets. A negative response can be either a miss, if the object is a target; or a correct rejection if it is not. The mean xvalue of all negative responses is denoted as μ_{-}, and the mean x-value of all positive responses is denoted as μ_{+}.

Suppose X is normally distributed with a mean of μ and a variance of σ^{2}. In order to find the mean x-value, one must calculate the weighted average of all x-values of the same response, where the weight is the frequency of x . The mean x -value depends on the cutoff point value, $x_{c o}$.

Figure 13: Mean x-values and distances in normal distribution
The mean x -value equations for negative $\left(\mu_{-}\right)$and positive $\left(\mu_{+}\right)$responses are:

$$
\begin{aligned}
& \mu_{-}\left(x_{c o}\right)=\frac{\int_{-\infty}^{x_{c o}} x \cdot f(x) d x}{\int_{x_{c o}} f(x) d x}=\ldots=\mu-\sigma \cdot \frac{\varphi\left(z_{c o}\right)}{\Phi\left(z_{c o}\right)} \\
& \mu_{+}\left(x_{c o}\right)=\frac{\int_{-\infty}^{\infty} x \cdot f(x) d x}{\int_{x_{c o}}^{\infty} f(x) d x}=\ldots=\mu+\sigma \cdot \frac{\varphi\left(z_{c o}\right)}{1-\Phi\left(z_{c o}\right)}
\end{aligned}
$$

where

$$
\begin{array}{ll}
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} \quad ; \quad z_{c o}=\frac{x_{c o}-\mu}{\sigma} \\
\varphi(z)=\frac{1}{\sqrt{2 \pi}} \cdot e^{\frac{-z^{2}}{2}} \quad ; \quad \Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} \cdot e^{\frac{-z^{2}}{2}} d z
\end{array}
$$

From the equations, it is obvious that μ_{-}is lower and μ_{+}is higher than the mean of the distribution μ, also supported by Figure 13. Fully detailed development of the equations is included in subchapters 4.1.2 and 4.1.3. Validation of the equations is presented in Appendix C.

The distance of an object from the cutoff point is the absolute difference $\left|x_{c o}-x\right|$. We use the mean x -values to find the mean distances of negative and positive responses (denoted as d_{-}, d_{+} respectively in Figure 13). By definition and as shown in Figure 13, $\mu_{-} \leq x_{c o} \leq \mu_{+}$. For that reason, we define the distances as a difference between the cutoff point and the appropriate mean x -value where both distances get positive values: $d_{-}\left(x_{c o}\right)=x_{c o}-\mu_{-}, d_{+}\left(x_{c o}\right)=\mu_{+}-x_{c o}$

The mean distance equations for negative and positive responses are:

$$
\begin{aligned}
& d_{-}\left(x_{c o}\right)=x_{c o}-\mu_{-}=x_{c o}-\left(\mu-\sigma \cdot \frac{\varphi\left(z_{c o}\right)}{\Phi\left(z_{c o}\right)}\right)=\left(x_{c o}-\mu\right)+\sigma \cdot \frac{\varphi\left(z_{c o}\right)}{\Phi\left(z_{c o}\right)} \\
& d_{+}\left(x_{c o}\right)=\mu_{+}-x_{c o}=\left(\mu+\sigma \cdot \frac{\varphi\left(z_{c o}\right)}{1-\Phi\left(z_{c o}\right)}\right)-x_{c o}=-\left(x_{c o}-\mu\right)+\sigma \cdot \frac{\varphi\left(z_{c o}\right)}{1-\Phi\left(z_{c o}\right)}
\end{aligned}
$$

where

$$
\begin{aligned}
& z_{c o}=\frac{x_{c o}-\mu}{\sigma} \\
& \varphi(z)=\frac{1}{\sqrt{2 \pi}} \cdot e^{\frac{-z^{2}}{2}} \quad ; \quad \Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} \cdot e^{\frac{-z^{2}}{2}} d z
\end{aligned}
$$

In order to describe the problem by standard deviation units rather than by actual units, which suit just a specific case, we define normalized distances based on the previous defined distances. We divide each distance by the standard deviation σ.

The mean normalized distance equations for negative and positive responses are:

$$
\begin{aligned}
& d_{-}\left(x_{c o}\right) / \sigma=\left(\left(x_{c o}-\mu\right)+\sigma \cdot \frac{\varphi\left(z_{c o}\right)}{\Phi\left(z_{c o}\right)}\right) / \sigma=\left(\frac{x_{c o}-\mu}{\sigma}\right)+\frac{\varphi\left(z_{c o}\right)}{\Phi\left(z_{c o}\right)}=z_{c o}+\frac{\varphi\left(z_{c o}\right)}{\Phi\left(z_{c o}\right)} \\
& d_{+}\left(x_{c o}\right) / \sigma=\left(-\left(x_{c o}-\mu\right)+\sigma \cdot \frac{\varphi\left(z_{c o}\right)}{1-\Phi\left(z_{c o}\right)}\right) / \sigma=-\left(\frac{x_{c o}-\mu}{\sigma}\right)+\frac{\varphi\left(z_{c o}\right)}{1-\Phi\left(z_{c o}\right)}=-z_{c o}+\frac{\varphi\left(z_{c o}\right)}{1-\Phi\left(z_{c o}\right)} \\
& \text { where } \\
& z_{c o}=\frac{x_{c o}-\mu}{\sigma} \\
& \varphi(z)=\frac{1}{\sqrt{2 \pi}} \cdot e^{\frac{-z^{2}}{2}} \quad ; \quad \Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} \cdot e^{\frac{-z^{2}}{2}} d z
\end{aligned}
$$

If we use the equations of the mean distance for standard normal distribution ($\mu=0, \sigma=1$) with the appropriate cutoff point, $Z_{c o}$, we get the same equations of the normalized distance.

To simplify the equations, we use the following symmetric rules of the standard normal distribution:

$$
\begin{aligned}
& \varphi(z)=\varphi(-z) \\
& \Phi(z)=1-\Phi(-z) \\
& \Phi(-z)=1-\Phi(z)
\end{aligned}
$$

where

$$
\varphi(z)=\frac{1}{\sqrt{2 \pi}} \cdot e^{\frac{-z^{2}}{2}} \quad ; \quad \Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} \cdot e^{\frac{-z^{2}}{2}} d z
$$

We define the function $\Theta(z)$:

$$
\Theta(z)=\frac{\varphi(z)}{\Phi(z)}
$$

Due to the symmetric rules, the function holds:

$$
\Theta(-z)=\frac{\varphi(-z)}{\Phi(-z)}=\frac{\varphi(z)}{1-\Phi(z)}
$$

We use $\Theta(z)$ to define again the normalized distances as:

$$
\begin{aligned}
& d_{-}\left(x_{c o}\right) / \sigma=z_{c o}+\frac{\varphi\left(z_{c o}\right)}{\Phi\left(z_{c o}\right)}=z_{c o}+\Theta\left(z_{c o}\right) \\
& d_{+}\left(x_{c o}\right) / \sigma=-z_{S}+\frac{\varphi\left(z_{c o}\right)}{1-\Phi\left(z_{c o}\right)}=-z_{c o}+\Theta\left(-z_{c o}\right)
\end{aligned}
$$

4.1.2 Mathematical development of Mean x-value of negative responses

In order to find the mean x-value, one must calculate the weighted average of all x-values of the same response, where the weight is the frequency of x .

$$
\mu_{-}\left(x_{c o}\right)=\frac{\int_{-\infty}^{x_{c o}} x \cdot f(x) d x}{\int_{-\infty}^{x_{c o}} f(x) d x}=\frac{\int_{-\infty}^{x_{c o}} x \cdot \frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} d x}{\int_{-\infty}^{x_{\infty \infty}} \frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} d x}=
$$

Changing the domain of integration:

$$
\begin{aligned}
& z=\frac{x-\mu}{\sigma} \Rightarrow x=\mu+\sigma z \\
& \frac{d x}{d z}=\frac{d(\mu+\sigma z)}{d z}=\sigma \Rightarrow d x=\sigma d z \\
& x=-\infty \Rightarrow z=\frac{-\infty-\mu}{\sigma}=-\infty \\
& x=x_{c o} \Rightarrow z=\frac{x_{c o}-\mu}{\sigma}=z_{c o}
\end{aligned}
$$

$=\frac{\int_{-\infty}^{z_{\infty}}(\mu+\sigma z) \cdot \frac{1}{\varnothing \sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} \phi d z}{\int_{-\infty}^{z_{\infty}} \frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} \sigma d z}=\frac{\int_{-\infty}^{z_{\infty}}(\mu+\sigma z) \cdot \frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} d z}{\int_{-\infty}^{z_{\infty}} \frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} d z}=$
$=\frac{\int_{-\infty}^{z_{\infty}} \mu \frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} d z+\int_{-\infty}^{z_{\infty}} \sigma z \cdot \frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} d z}{\int_{-\infty}^{z_{\infty}} \frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} d z}=\mu \cdot \frac{\int_{-\infty}^{z_{\infty}} \frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} d z}{\int_{-\infty}^{z_{\infty}} \frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} d z}+\sigma \cdot \frac{\int_{-\infty}^{z_{\infty}} z \cdot \frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} d z}{\int_{-\infty}^{z_{\infty}} \frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} d z}=$

From the standard normal distribution :
$\int_{-\infty}^{z_{c o}} \frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} d z=\Phi\left(z_{c o}\right)$
$=\mu \cdot \frac{\Phi\left(z_{c o}\right)}{\Phi\left(z_{c o}\right)}+\sigma \cdot \frac{\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z_{\infty}} z \cdot e^{\frac{-z^{2}}{2}} d z}{\Phi\left(z_{c o}\right)}=$

Solving the integral:

$$
\int u^{n-1} \cdot e^{\frac{-u^{n}}{n}} d u=-e^{\frac{-u^{n}}{n}}
$$

Confirmation by derivng the answer:
$\frac{\partial\left(-e^{\frac{-u^{n}}{n}}\right)}{\partial u}=-e^{\frac{-u^{n}}{n}} \cdot \frac{-n \cdot u^{n-1}}{n}=u^{n-1} \cdot e^{\frac{-u^{n}}{u}}$
$=\mu+\sigma \cdot \frac{\left.\frac{1}{\sqrt{2 \pi}}\left(-e^{\frac{-z^{2}}{2}}\right)\right|_{-\infty} ^{z_{\infty}}}{\Phi\left(z_{c o}\right)}=\mu+\sigma \cdot \frac{\frac{1}{\sqrt{2 \pi}}\left[\left(-e^{\frac{-z_{c o}{ }^{2}}{2}}\right)-\left(-e^{\frac{-(-\infty)^{2}}{2}}\right)\right]}{\Phi\left(z_{c o}\right)}=$
$=\mu+\sigma \cdot \frac{\frac{1}{\sqrt{2 \pi}}\left[\left(-e^{\frac{-z_{c}{ }^{2}}{2}}\right)-(0)\right]}{\Phi\left(z_{c o}\right)}=\mu-\sigma \cdot \frac{\frac{1}{\sqrt{2 \pi}} e^{\frac{-z_{c o}{ }^{2}}{2}}}{\Phi\left(z_{c o}\right)}=$

From the standard normal distribution

$$
\frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} d z=\varphi(z)
$$

$=\mu-\sigma \cdot \frac{\varphi\left(z_{c o}\right)}{\Phi\left(z_{c o}\right)}$

$$
\begin{aligned}
& \mu_{-}\left(x_{c o}\right)=\mu-\sigma \cdot \frac{\varphi\left(z_{c o}\right)}{\Phi\left(z_{c o}\right)} \\
& \text { where } \\
& z_{c o}=\frac{x_{c o}-\mu}{\sigma} \\
& \varphi(z)=\frac{1}{\sqrt{2 \pi}} \cdot e^{\frac{-z^{2}}{2}} \quad ; \quad \Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{\frac{-z^{2}}{2}} d z
\end{aligned}
$$

4.1.3 Mathematical development of Mean x-value of positive responses

In order to find the mean x-value, one must calculate the weighted average of all x-values of the same response, where the weight is the frequency of x .

$$
\mu_{+}\left(x_{c o}\right)=\frac{\int_{x_{c o}}^{\infty} x \cdot f(x) d x}{\int_{x_{c o}}^{\infty} f(x) d x}=\frac{\int_{x_{c o}}^{\infty} x \cdot \frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} d x}{\int_{x_{c o}}^{\infty} \frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} d x}=
$$

Changing the domain of integration:
$z=\frac{x-\mu}{\sigma} \Rightarrow x=\mu+\sigma z$
$\frac{d x}{d z}=\frac{d(\mu+\sigma z)}{d z}=\sigma \Rightarrow d x=\sigma d z$
$x=x_{c o} \Rightarrow z=\frac{x_{c o}-\mu}{\sigma}=z_{c o}$
$x=\infty \Rightarrow z=\frac{\infty-\mu}{\sigma}=\infty$
$=\frac{\int_{z_{c o}}^{\infty}(\mu+\sigma z) \cdot \frac{1}{\varnothing \sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} \sigma d z}{\int_{z_{c o}}^{\infty} \frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} \sigma d z}=\frac{\int_{z_{c o}}^{\infty}(\mu+\sigma z) \cdot \frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} d z}{\int_{z_{c o}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} d z}=$
$=\frac{\int_{z_{c o}}^{\infty} \mu \cdot \frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} d z+\int_{z_{c o}}^{\infty} \sigma z \cdot \frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} d z}{\int_{z_{c o}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} d z}=\mu \cdot \frac{\int_{z_{c o}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} d z}{\int_{z_{c o}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} d z}+\sigma \cdot \frac{\int_{z_{c o}}^{\infty} z \cdot \frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} d z}{\int_{z_{c o}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} d z}=$

$$
\begin{aligned}
& \text { From the standard normal distribution: } \\
& \int_{-\infty}^{z_{c o}} \frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} d z=1-\Phi\left(z_{c o}\right)
\end{aligned}
$$

$=\mu \cdot \frac{1-\Phi\left(z_{c o}\right)}{\frac{1-\Phi\left(z_{c o}\right)}{1}}+\sigma \cdot \frac{\frac{1}{\sqrt{2 \pi}} \int_{z_{c o}}^{\infty} z \cdot e^{\frac{-z^{2}}{2}} d z}{1-\Phi\left(z_{c o}\right)}=$

> Solving the integral:
> $\int u^{n-1} \cdot e^{\frac{-u^{n}}{n}} d u=-e^{\frac{-u^{n}}{n}}$
> Confirmation by derivng the answer :
> $\frac{\partial\left(-e^{\frac{-u^{n}}{n}}\right)}{\partial u}=-e^{\frac{-u^{n}}{n}} \cdot \frac{-n \cdot u^{n-1}}{n}=u^{n-1} \cdot e^{\frac{-u^{n}}{u}}$
$=\mu+\sigma \cdot \frac{\left.\frac{1}{\sqrt{2 \pi}}\left(-e^{\frac{-z^{2}}{2}}\right)\right|_{z_{00}} ^{\infty}}{1-\Phi\left(z_{c o}\right)}=\mu+\sigma \cdot \frac{\frac{1}{\sqrt{2 \pi}}\left[\left(-e^{\frac{-x^{2}}{2}}\right)-\left(-e^{\frac{-z_{c o}{ }^{2}}{2}}\right)\right]}{1-\Phi\left(z_{c o}\right)}=$
$=\mu+\sigma \cdot \frac{\frac{1}{\sqrt{2 \pi}}\left[(0)-\left(-e^{\frac{-z_{c o}{ }^{2}}{2}}\right)\right]}{1-\Phi\left(z_{c o}\right)}=\mu+\sigma \cdot \frac{\frac{1}{\sqrt{2 \pi}} e^{\frac{-z_{c o}{ }^{2}}{2}}}{1-\Phi\left(z_{c o}\right)}=$
From the standard normal distribution
$\frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}} d z=\varphi(z)$
$=\mu+\sigma \cdot \frac{\varphi\left(z_{c o}\right)}{1-\Phi\left(z_{c o}\right)}$
$\mu_{+}\left(x_{c o}\right)=\mu+\sigma \cdot \frac{\varphi\left(z_{c o}\right)}{1-\Phi\left(z_{c o}\right)}$
where
$z_{c o}=\frac{x_{c o}-\mu}{\sigma}$
$\varphi(z)=\frac{1}{\sqrt{2 \pi}} \cdot e^{\frac{-z^{2}}{2}} \quad ; \quad \Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{\frac{-z^{2}}{2}} d z$

4.1.4 Mean x-values and distances for signal and noise distributions

The equations that were developed for the normal distribution are adjusted to the signal and noise distributions. The means and standard deviations of the signal and noise distributions are respectively μ_{S}, σ_{S} and μ_{N}, σ_{N}. Short reviews of Normal and Standard Normal distributions, as well as definitions of signal and noise distributions are included in Appendix A.

Figure 14: Illustration of mean x -values and mean distances
The mean x -values and the mean distances are denoted as:
μ_{M} - Mean x-value of undetected signals (miss)
μ_{H} - Mean x-value of detected signals (hit)
$\mu_{C R}$ - Mean x-value of ignored noises (correct rejection)
$\mu_{F A}$ - Mean x-value of mistakenly detected noises (false alarm)
d_{M} - Distance from the cutoff point to mean x-value of undetected signals (miss)
d_{H} - Distance from the cutoff point to mean x -value of detected signals (hit)
$d_{C R}$ - Distance from the cutoff point to mean x-value of ignored noises (correct rejection)
$d_{F A}$ - Distance from the cutoff to mean x -value of mistakenly detected noises (false alarm)
Hit and miss are the possible outcomes of observing an object from the signal distribution (i.e., the object is a target). False alarm and correct rejection are the possible outcomes of observing an object from the noise distribution (i.e., the object is not a target). Hits and false alarms are positive responses; misses and correct rejections are negative responses.

In order to define equations for mean x-values, mean distances and normalized mean distances of all four possible outcomes (miss, hit, correct rejection and false alarm), we used the appropriate equations (for positive or negative responses) and parameters (mean and standard deviation of signal or noise distributions):

$$
\begin{aligned}
& \mu_{M}\left(x_{c o}\right)=\mu_{S}-\sigma_{S} \cdot \frac{\varphi\left(z_{S}\right)}{\Phi\left(z_{S}\right)} \\
& \mu_{H}\left(x_{c o}\right)=\mu_{S}+\sigma_{S} \cdot \frac{\varphi\left(z_{S}\right)}{1-\Phi\left(z_{S}\right)} \\
& \mu_{C R}\left(x_{c o}\right)=\mu_{N}-\sigma_{N} \cdot \frac{\varphi\left(z_{N}\right)}{\Phi\left(z_{N}\right)} \\
& \mu_{F A}\left(x_{c o}\right)=\mu_{N}+\sigma_{N} \cdot \frac{\varphi\left(z_{N}\right)}{1-\Phi\left(z_{N}\right)} \\
& d_{M}\left(x_{c o}\right)=\left(x_{c o}-\mu_{S}\right)+\sigma_{S} \cdot \frac{\varphi\left(z_{S}\right)}{\Phi\left(z_{S}\right)} \\
& d_{H}\left(x_{c o}\right)=-\left(x_{c o}-\mu_{S}\right)+\sigma_{S} \cdot \frac{\varphi\left(z_{S}\right)}{1-\Phi\left(z_{S}\right)} \\
& d_{C R}\left(x_{c o}\right)=\left(x_{c o}-\mu_{N}\right)+\sigma_{N} \cdot \frac{\varphi\left(z_{N}\right)}{\Phi\left(z_{N}\right)} \\
& d_{F A}\left(x_{c o}\right)=-\left(x_{c o}-\mu_{N}\right)+\sigma_{N} \cdot \frac{\varphi\left(z_{N}\right)}{1-\Phi\left(z_{N}\right)} \\
& d_{M}\left(x_{c o}\right) / \sigma_{S}=z_{S}+\frac{\varphi\left(z_{S}\right)}{\Phi\left(z_{S}\right)} \\
& d_{H}\left(x_{c o}\right) / \sigma_{S}=-z_{S}+\frac{\varphi\left(z_{S}\right)}{1-\Phi\left(z_{S}\right)} \\
& d_{C R}\left(x_{c o}\right) / \sigma_{N}=z_{N}+\frac{\varphi\left(z_{N}\right)}{\Phi\left(z_{N}\right)} \\
& d_{F A}\left(x_{c o}\right) / \sigma_{N}=-z_{N}+\frac{\varphi\left(z_{N}\right)}{1-\Phi\left(z_{N}\right)}
\end{aligned}
$$

where

$$
\begin{array}{ll}
z_{S}=\frac{x_{c o}-\mu_{S}}{\sigma_{S}} \quad ; \quad z_{N}=\frac{x_{c o}-\mu_{N}}{\sigma_{N}} \\
\varphi(z)=\frac{1}{\sqrt{2 \pi}} \cdot e^{\frac{-z^{2}}{2}} \quad ; \quad \Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} \cdot e^{\frac{-z^{2}}{2}} d z
\end{array}
$$

4.2 Reaction time model

Murdock (1985) suggests an exponential function to transfer the object's strength, i.e., distance-from-criteria, into latency. An exponential function can describe symmetrical descendent of latency on both sides of the yes/no criterion (Murdock, 1985).

For negative responses, the distance and the reaction time functions are:

$$
\begin{aligned}
& d(x)=x_{c o}-x \\
& t(x)=A \cdot e^{-B\left(x_{c o}-x\right)}
\end{aligned}
$$

For positive responses, the distance and the reaction time functions are:

$$
\begin{aligned}
& d(x)=x-x_{c o} \\
& t(x)=A \cdot e^{-B\left(x-x_{c o}\right)}
\end{aligned}
$$

Both functions are presented in Figure 15 and can be conjoined:

$$
t(x)= \begin{cases}A \cdot e^{-B \cdot\left(x_{c o}-x\right)} & ; \text { when } x \leq x_{c o} \\ A \cdot e^{-B\left(x-x_{c o l}\right)} & ; \text { otherwise }\end{cases}
$$

Figure 15: Reaction time function
In order to fit these functions to real data, the parameters A and B must be adjusted. Different parameters values lead to different reaction time functions. One can define different values for negative and positive responses.

Suppose X is normally distributed with a mean of μ and a variance of σ^{2} $X \sim \quad\left(\mu, \sigma^{2}\right)$. In order to find the mean reaction time, one must calculate weighted average of all reaction times (results from x-values) of the same response. The weights are the frequencies of x . The mean reaction time depends on the cutoff point value and denoted as $T_{-}\left(x_{c o}\right), T_{+}\left(x_{c o}\right)$ for negative and positive responses, respectively.

The mean reaction time equations for negative and positive responses are (Murdock, 1985):

$$
\begin{aligned}
& T_{-}\left(x_{c o}\right)=\frac{\int_{-\infty}^{x_{c o}} t(x) \cdot f(x) d x}{\int_{-\infty}^{x_{c o}} f(x) d x}=\frac{\int_{-\infty}^{x_{c o}} A \cdot e^{-B\left(x_{c o}-x\right)} \cdot f(x) d x}{\int_{-\infty}^{x_{c o}} f(x) d x}=\ldots=A \cdot e^{-B \cdot \sigma \cdot z_{c o}+\frac{B^{2} \cdot \sigma^{2}}{2}} \cdot \frac{\Phi\left(z_{c o}-B \cdot \sigma\right)}{\Phi\left(z_{c o}\right)} \\
& T_{+}\left(x_{c o}\right)=\frac{\int_{x_{c o}}^{\infty} t(x) \cdot f(x) d x}{\int_{x_{c o}}^{\infty} f(x) d x}=\frac{\int_{x_{c o}}^{\infty} A \cdot e^{-B\left(x-x_{c o}\right)} \cdot f(x) d x}{\int_{x_{c o}}^{\infty} f(x) d x}=\ldots=A \cdot e^{B \cdot \sigma \cdot z_{c o}+\frac{B^{2} \cdot \sigma^{2}}{2}} \cdot \frac{1-\Phi\left(z_{c o}+B \cdot \sigma\right)}{1-\Phi\left(z_{c o}\right)}
\end{aligned}
$$

where

$$
\begin{aligned}
& f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} \\
& z_{c o}=\frac{x_{c o}-\mu}{\sigma} ; \quad \Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{\frac{-z^{2}}{2}} d z
\end{aligned}
$$

A fully detailed development of the equations is included in Appendix D.

When $\sigma=1$, the equations are:

$$
\begin{aligned}
& T_{-}\left(x_{c o}\right)=A \cdot e^{-B \cdot z_{c o}+\frac{B^{2}}{2}} \cdot \frac{\Phi\left(z_{c o}-B\right)}{\Phi\left(z_{c o}\right)} \\
& T_{+}\left(x_{c o}\right)=A \cdot e^{B \cdot z_{c o}+\frac{B^{2}}{2}} \cdot \frac{1-\Phi\left(z_{c o}+B\right)}{1-\Phi\left(z_{c o}\right)}
\end{aligned}
$$

The distance functions and the reaction time functions both depend on the value of the cutoff point $x_{c o}$. In our collaborative system, the robot observes the objects first followed by the human operator. Accordingly, the human decides about two different types of objects: objects that the robot already marked as targets; and objects the robot did not mark (Figure 16). The human uses two different cutoff points, for the two types of objects. Therefore, two different reaction time functions must be implemented.

Figure 16: Reaction times flow chart

The means of reaction time are denoted as:
T_{M} - Mean reaction time of undetected signals (miss)
T_{H} - Mean reaction time of detected signals (hit)
$T_{C R}$ - Mean reaction time of ignored noises (correct rejection)
$T_{F A}$ - Mean reaction time of mistakenly detected noises (false alarm)

Same denotations with the index $r h$ and h (for instance, $T_{C R h}, T_{H r h}$ etc.), will represent reaction times for objects the robot marked as targets and for those it did not, respectively (see human decisions in Figure 16).

The equations that were developed for the normal distribution are adjusted to the signal and noise distributions. The means and standard deviations of the signal and noise distributions are respectively μ_{S}, σ_{S} and μ_{N}, σ_{N}. We used the appropriate equations (for positive or negative responses) and parameters (mean and standard deviation of signal or noise distributions) to define equations for mean reaction time of all four possible outcomes (miss, hit, correct rejection and false alarm):

$$
\begin{aligned}
& T_{M}=A \cdot e^{-B \cdot \sigma_{S} \cdot z_{S}+\frac{B^{2} \cdot \sigma_{S}^{2}}{2}} \cdot \frac{\Phi\left(z_{S}-B \cdot \sigma_{S}\right)}{\Phi\left(z_{S}\right)} \\
& T_{H}=A \cdot e^{B \cdot \sigma_{S} \cdot z_{S}+\frac{B^{2} \cdot \sigma_{S}^{2}}{2}} \cdot \frac{1-\Phi\left(z_{S}+B \cdot \sigma_{S}\right)}{1-\Phi\left(z_{S}\right)} \\
& T_{C R}=A \cdot e^{-B \cdot \sigma_{N} \cdot z_{N}+\frac{B^{2} \cdot \sigma_{N}{ }^{2}}{2}} \cdot \frac{\Phi\left(z_{N}-B \cdot \sigma_{N}\right)}{\Phi\left(z_{N}\right)} \\
& T_{F A}=A \cdot e^{B \cdot \sigma_{N} \cdot z_{N}+\frac{B^{2} \cdot \sigma_{N}{ }^{2}}{2}} \cdot \frac{1-\Phi\left(z_{N}+B \cdot \sigma_{N}\right)}{1-\Phi\left(z_{N}\right)}
\end{aligned}
$$

where

$$
\begin{aligned}
& z_{S}=\frac{x_{c o}-\mu_{S}}{\sigma_{S}} ; \quad z_{N}=\frac{x_{c o}-\mu_{N}}{\sigma_{N}} \\
& \Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{\frac{-z^{2}}{2}} d z
\end{aligned}
$$

When $\sigma_{S}=\sigma_{N}=1$, the equations are:

$$
\begin{aligned}
& T_{M}=A \cdot e^{-B \cdot z_{S}+\frac{B^{2}}{2}} \cdot \frac{\Phi\left(z_{S}-B\right)}{\Phi\left(z_{S}\right)} \\
& T_{H}=A \cdot e^{B \cdot z_{S}+\frac{B^{2}}{2}} \cdot \frac{1-\Phi\left(z_{S}+B\right)}{1-\Phi\left(z_{S}\right)} \\
& T_{C R}=A \cdot e^{-B \cdot z_{N}+\frac{B^{2}}{2}} \cdot \frac{\Phi\left(z_{N}-B\right)}{\Phi\left(z_{N}\right)} \\
& T_{F A}=A \cdot e^{B \cdot z_{N}+\frac{B^{2}}{2}} \cdot \frac{1-\Phi\left(z_{N}+B\right)}{1-\Phi\left(z_{N}\right)}
\end{aligned}
$$

4.3 Collaboration model

The basis of the expanded model developed in this thesis are the four collaboration levels between a human operator and a robot (see subchapter 0), and the objective function that describes the expected value of system performance (see subchapter 2.6), as developed by Bechar (2006).

The objective function of the model as described by Bechar (2006) is:

$$
\begin{aligned}
& V_{I s}=N \cdot P_{S} \cdot\left[P_{H r} \cdot P_{H r h} \cdot\left(V_{H}+V_{C}+\underline{t_{H r h}} \cdot V_{t}\right)+\left(1-P_{H r}\right) \cdot P_{H h} \cdot\left(V_{H}+V_{C}+\underline{t_{H h}} \cdot V_{t}\right)\right]+ \\
& +N \cdot P_{S} \cdot\left[P_{H r} \cdot\left(1-P_{H r h}\right) \cdot\left(V_{M}+\underline{t_{M r h}} \cdot V_{t}\right)+\left(1-P_{H r}\right) \cdot\left(1-P_{H h}\right) \cdot\left(V_{M}+\underline{t_{M h}} \cdot V_{t}\right)\right]+ \\
& +N \cdot\left(1-P_{S}\right) \cdot\left[P_{F A r} \cdot P_{F A r h} \cdot\left(V_{F A}+V_{C}+\underline{t_{F A r h}} \cdot V_{t}\right)+\left(1-P_{F A r}\right) \cdot P_{F A h} \cdot\left(V_{F A}+V_{C}+\underline{t_{F A h}} \cdot V_{t}\right)\right]+ \\
& +N \cdot\left(1-P_{S}\right) \cdot\left[P_{F A r} \cdot\left(1-P_{F A r h}\right) \cdot\left(V_{C R}+\underline{t_{C R r h}} \cdot V_{t}\right)+\left(1-P_{F A r}\right) \cdot\left(1-P_{F A h}\right) \cdot\left(V_{C R}+\underline{t_{C R h}} \cdot V_{t}\right)\right]+t_{r} \cdot V_{t}
\end{aligned}
$$

Each of the human time variables (denoted as $t_{X r h}$ or $t_{X h}$) represents a superposition of a decision time and a motoric time (denoted as t_{M}), in accordance with the collaboration level. The decision times, previously considered as constants, are replaced with the mean reaction times functions introduced in the previous page.

When the system operates at the R collaboration level, the robot fulfills the task all by itself and all human time variables equal zero (there is no human intervening).

In the H collaboration level, the human does not use robot's help and the time variables are:

$$
\begin{aligned}
t_{M h} & =T_{M h} \\
t_{H h} & =T_{H h}+t_{M} \\
t_{C R h} & =T_{C R h} \\
t_{F A h} & =T_{F A h}+t_{M}
\end{aligned}
$$

In the HR collaboration level, the robot recommends the human by indicating potential targets. Then, the human confirms targets he thinks are real and marks extra targets the robot did not indicate. The human does a motoric action (marking) if he thinks the robot recommended well. The time variables are:

$$
\begin{aligned}
t_{M h} & =T_{M h} \\
t_{H h} & =T_{H h}+t_{M} \\
t_{C R h} & =T_{\text {CRh }} \\
t_{F A h} & =T_{F A h}+t_{M} \\
t_{M r h} & =T_{M r h} \\
t_{\text {Hrh }} & =T_{H r h}+t_{M} \\
t_{\text {CRrh }} & =T_{\text {CRrh }} \\
t_{\text {FArh }} & =T_{\text {FArh }}+t_{M}
\end{aligned}
$$

In the HOR collaboration level, the human supervises the robot. The robot marks targets and the human checks those marks. The human unmarks targets that are not real and marks extra targets that the robot missed. In this case, the human does a motoric action (unmarking) only if he thinks the robot made a mistake. The time variables are:

$$
\begin{aligned}
& t_{M h}=T_{M h} \\
& t_{H h}=T_{H h}+t_{M} \\
& t_{\text {CRh }}=T_{\text {CRh }} \\
& t_{F A h}=T_{F A h}+t_{M} \\
& t_{M r h}=T_{M r h}+t_{M} \\
& t_{H r h}=T_{H r h} \\
& t_{\text {CRrh }}=T_{\text {CRrh }}+t_{M} \\
& t_{\text {FArh }}=T_{\text {FArh }}
\end{aligned}
$$

The (motoric) time it takes to physically mark or unmark an object depends on the system interface and the environment conditions. Therefore, it should not vary between one object to another and it is considered as constant.

5 Numerical Analysis

A numerical analysis of the model was conducted using MatLab 7.1 (Appendix G details the script code). The optimal cutoff points for the human and the robot were determined by numerical computation. At the first stage, the objective function was calculated for a range of possible cutoff points. Then, the cutoff points that yielded the highest objective function score were determined as optimal cutoff points. The analysis of the model was performed for systems that work at the optimal cutoff points. The objective function score was calculated for each possible combination of parameters and variables, for each collaboration level. The best collaboration level is the level that yields the highest objective function score for a given set of parameters' value.

5.1 Model parameters

The objective function of the model consists of groups of parameters that describe the task, the environment and the observers. Table 3 introduces the parameters and their values.

5.1.1 Task types and parameters

In some systems, as mines detection or medical examinations, not to miss a target is much more important than the cost of making false alarms. In other systems, false alarms have high cost and the system accept to hit fewer targets in order to cause fewer false alarms. The independent parameters of the task were determined to describe different types of tasks and systems. Raising the gain from a hit, for example, induces the observer to make more hits at the expense of more false alarms. The value of costs can be easily changed into any monetary values.

Analysis was focused on three types of systems: Type I system gives high priority for not causing errors of the first type, i.e., detecting a target when a target does not exist (false alarm); Type II system gives high priority for not causing errors of the second type, i.e., missing a target. These two types were introduced by Oren et al. (2008). The different types of systems are characterized by the gains and penalties for each outcome ($V_{H}, V_{M}, V_{F A}, V_{C R}$). For example, a high penalty for false alarms, relatively to the other values, reduces the false alarm ratio. Similarly, relatively high gain for hits reduces the cases of missing a target. System of Type III does not prefer one type of error on another; therefore the values for all four possible outcomes are the same $\left(V_{H}=-V_{M}=-V_{F A}=V_{C R}\right)$.Table 2 details the values for each type of system.

The time cost $\left(V_{T}\right)$ is the cost of one time unit of system operation. It includes the cost of the human operator and the robot. In order to analyze the influence of time cost regardless of the system type, it was set relatively to the gain for a hit ($V_{T}=V_{H} \cdot V_{T} 2 V_{H}$). The ratio between the time cost and the gain for a hit, $V_{T} 2 V_{H}$, was set to the values: $-80,-40,-20\left(\right.$ hour $^{-1}$). For example, when V_{H} equals

5 points, V_{T} obtained the values: $-400,-200,-100$ points for an hour. The operational cost $\left(V_{C}\right)$ is the cost of the action conducted when the system detects a target, either if it is a hit or a false alarm. For all analyses, this cost was set to 2 points.

The operational and time costs were arbitrarily predetermined in order to limit its influence on the system decisions. The actual value of the gain-penalty-cost weights was less important in the analysis than the ratio between all weights, which determine the task nature (e.g., whether it is more important to detect melons, to reduce the number of false alarms or to finish the task in minimum time). The parameters' values are consistent with the work of Bechar (2006) and Oren (2007) in order to enable comparison.

Table 2: Gains and penalties for different types of systems

	Type I	Type II	Type III
V_{H}	5	50	10
V_{M}	-10	-10	-10
$V_{F A}$	-50	-5	-10
$V_{C R}$	10	10	10

5.1.2 Environmental parameters

The parameters N and P_{S} determine the environmental condition. The objective function was calculated for 1,000 objects (targets, N). The target probability $\left(P_{S}\right)$ represents the fraction of targets from all objects. Analysis was conducted for different probability values between 0.1 and 0.9. The mean of the noise distribution was set to zero. The mean of the signal distribution was a positive number, which results from the value of the observer's sensitivity (d^{\prime}), as can be seen in Figure 18. The standard deviation of the distributions assumed to be one and other noise and signal distribution should be normalized in order to fit the model.

5.1.3 Human parameters

The sensitivity represents the ability of the observer to distinguish between real targets and the other objects. The sensitivity of the human $\left(d^{\prime}{ }_{h}\right)$ was varied between 0.5 and 3 .

The human motoric time (tMotor) of executing an action (i.e., marking an object as a target or unmarking a robot's mark) was set to 2 seconds. The decision time was calculated according to the mean reaction time model (see chapter 4.2). The reaction time model is based on an exponential function, $t(x)=A \cdot e^{-B\left(x_{c o s}-x\right)}$, that includes two parameters. Parameter A, which represents the longest detection time, was set to 2,5 or 10 seconds. Parameter B was set to $0,0.5,1,1.5$ or 2 .

These values represent variety of possible exponential functions (see Figure 23). When B receives a zero value, the mean time is A.

5.1.4 Robot parameters

The sensitivity of the robot $\left(d^{\prime}{ }_{r}\right)$ was varied, same as human sensitivity, between 0.5 and 3 . The robot decision time $\left(t_{r}\right)$ is negligible relatively to the other times and was set to 0.01 seconds on average for one object.

Table 3: Model parameters' values

	Description	Range	Constants	Type dependent		
				Type I	Type II	Type III
V_{H}	The gain from a hit			5	50	10
V_{M}	The penalty from a miss			-10	-10	-10
$V_{F A}$	The penalty from a false alarm			-50	-5	-10
$V_{C R}$	The gain from a correct rejection			10	10	10
V_{C}	The operational cost		-2			
V_{T}	The time cost	[-80,-40,-20]				
P_{S}	The probability of an object to be target	[0.1,0.2,0.5,0.8,0.9]				
N	Number of objects		1000			
tMotor	The motoric time of the human		2			
A	Parameter of the response time function	[2,5,10]				
B	Parameter of the response time function	[0,0.5, 1, 1.5,2]				
$d^{\prime}{ }^{\prime}$	The human's sensitivity	[0.5:0.5:3]				
$d^{\prime}{ }_{r}$	The robot's sensitivity	[0.5:0.5:3]				
$t \times$	The robot's decision time		0.01			

5.2 Graph generator

The data included three types of systems. A record was saved for every combination of values of the six parameters that were not constant (see Table 3). To analyze the influence of parameters on different components of the objective function, a graph generator was developed in MatLab (Appendix G). The application that was developed, allows to select the system type, two parameters (X, Y) and a function (one of the components of the overall objective function), and spreads subgraphs for every value of third parameter. The remained three more parameters are set manually into one of their possible values. This graph generator enabled an easy comprehensive data analysis.

Figure 17 illustrates an example of graph selection. The example describes type II system and the function that is shown is the optimal objective function (opt_VIs). The sensitivities of the human $\left(d^{\prime}{ }_{h}\right)$ and the robot $\left(d^{\prime}{ }_{r}\right)$ are varied along X and Y axes. A sub-graph is shown for every value of the target probability $\left(P_{S}\right)$. The other three parameters $(B, A, v T 2 v H)$ are set manually.

Figure 17: Graph generator application.
The user can choose a system type (a), an objective function (b), two parameters for X and Y axes and a third parameter for the sub graphs (c), and set manually the values of the three other parameters (d).

5.3 Cutoff point analysis

When the sensitivity of the human operator is high, the human operator can distinguish between targets. The optimal cutoff point is between the means of the noise and signal distribution (Figure 18, a). When the sensitivity is low, the ability to distinguish reduces and it becomes more effective not to examine the objects and decide the same for all of them. The optimal cutoff point, therefore, goes to the extreme. When the system gives high priority to not causing false alarms (Type I), the cutoff point will be set to infinity, and none of the objects will be marked as targets (Figure 18, b). When there is high priority of not missing a target (Type II), the cutoff point will be set to minus infinity.

Figure 18: A cutoff point between the distributions' means when the sensetivity is high (a) and extreme cutoff point selection when sensitivity is low (b).

This influence finds expression in the analysis, regardless of the response time costs of the observer. The time costs amplify this phenomenon. The mean response time reduces as the cutoff point is far from the mean of the distribution; therefore, in the sense of time costs, extreme ${ }^{2}$ cutoff point is always preferred.

In the analysis, the mean of the noise distribution is set to zero. Therefore, the sensitivity of the observer, that represents the distance between the noise and the signal distributions, is also the mean of the signal distribution.

In the following part, the optimal cutoff point for the human, in the H collaboration level, is presented for each of the three types of systems. The influence of the cutoff point position on other parts of the objective function is demonstrated. The graphs in this part exhibit relevant functions against the human sensitivity $\left(d^{\prime}{ }_{h}\right)$ and the cost of time unit ($v T 2 v H$). The analysis was conducted for $P s=0.5, A=2, B=0.5, d r=0.5$.

Results for other probabilities for target ($P s$) as well as the influence of the time cost $(v T 2 v H)$ and the time parameter A are detailed in Appendix E.

[^1]
5.3.1 Human optimal cutoff point influence in Type I systems

Type I systems give high priority for not causing false alarms. When the human has low sensitivity, it is expected to get the highest value possible for the optimal cutoff point. Figure 19(a) shows the optimal cutoff point of the human. When the sensitivity of the human $\left(d^{\prime}{ }_{h}\right)$ is low, the optimal cutoff point value rises to six (the highest value possible).

Furthermore, the analysis shows that the total penalty for false alarms grows (in negative values) as the sensitivity of the observer decreases (Figure 19, b). This phenomenon exists up to the point where the sensitivity is too small. Then, an extreme positive cutoff point is preferred and the human marks less objects as targets. Therefore, the total penalty for false alarms decreases as was expected in Type I systems.

Extreme cutoff point results in redundancy of system operation time. As the cutoff point is drawn away from the means of the distribution (see Figure 18, b), the distance of the objects from the cutoff point increases; and the mean response time, correspondingly, decreases. Figure 19(c) shows the redundancy of the system operation time for low human sensitivity.

Figure 19: Optimal cutoff point of the human (a), total penalty of false alarms (b), and system operation time (c) in Type I system at the H collaboration level. The human sensitivity and the time cost are ranged along x and y axes.

5.3.2 Human optimal cutoff point influence in Type II systems

Type II systems give high priority for not missing targets. When the human has low sensitivity, it is expected to get the lowest value possible for the optimal cutoff point. Figure 20(a) shows the optimal cutoff point of the human. When the sensitivity of the human $\left(d^{\prime}{ }_{h}\right)$ is low, the optimal cutoff point value is minus three (the lowest value possible).

The analysis shows that the total penalty for misses grows (in negative values) as the sensitivity of the observer decreases (Figure 20, b). This phenomenon exists up to the point where the observer sensitivity is too small. Then, an extreme negative cutoff point is preferred and the human marks more objects as targets. Therefore, the total penalty for miss decreases as was expected in Type II systems.

As was explained for type I, extreme cutoff point results in redundancy of system operation time. Figure 20(c) shows the redundancy of the system operation time when the sensitivity of the human decreases and an extreme cutoff point is preferred.

Figure 20: Optimal cutoff point of the human (a), total penalty of misses (b), and system operation time (c) in Type II system at the H collaboration level. Human sensitivity and the time cost are ranged along x and y axes.

5.3.3 Human optimal cutoff point influence in Type III systems

In type III systems, the gains and penalties are equal for all outcomes, there is no preferable error and the cutoff point remains between the means of the distributions even when the sensitivity of the observer is low. Figure 21(a) shows the optimal cutoff point of the human. The optimal cutoff point gets values that are approximately half of the sensitivity (e.g., when $d^{\prime}{ }_{h}=3$, the cutoff point is 1.6). The sensitivity is the distance between the distributions and it shows that the cutoff point is approximately in the middle of the distributions.

As was explained before, the total penalty for misses and the total penalty for false alarms grow, as the sensitivity of the observer decreases. In systems of type III, as was introduced above, the optimal cutoff point is between the distributions and no extreme cutoff point is preferred. Therefore, the total penalties for misses and false alarms continue to decrease for low sensitivities as shown in Figure 21(b,c).

Figure 21: Optimal cutoff point of the human (a), total penalty of misses (b), and total penalty of false alarms (c) in Type III system at the H collaboration level. Human sensitivity and the time cost are ranged along x and y axes.

5.4 Human's dominancy analysis

In the H collaboration level, the human operator operates solely. The human becomes less dominant as the level of autonomy of the robot increases. In the R collaboration level, when the robot is fully autonomous, the human has no influence.

The human operations cause an increase in operation time and costs. The human response time and motoric time are significantly higher than the robot decision time. Therefore, in the sense of time costs, it is reasonable that evolving a human in the recognition process will be less profitable when the time cost is high.

The following graphs present decrease in human dominance, as the response time of the human and the time cost increase. In the graphs, a single collaboration level dominates each zone (each color represents different operating level: H- blue, HR- cyan, HOR- yellow and R- red). The graphs present the collaboration level required to achieve the best system performance. The sensitivities of the human $\left(d^{\prime}{ }_{h}\right)$ and the robot $\left(d^{\prime}{ }_{r}\right)$ are ranged along X and Y axes.

Figure 22(a-c) shows how human dominance reduces as the time cost increases. The time cost increases from graph 'a' ($v T 2 v H=-0.0055$) to graph 'c' $(v T 2 v H=-0.0222)$. Accordingly, the area of the HR (cyan) and HOR (yellow) collaboration levels diminished. In this specific case, the area decreases from 92% in graph 'a' to 60% in graph 'c'. In other cases, the area decreases in a different rate.

Figure 22: Human dominance reduces as the time cost increases from graph 'a' to graph 'c'.

$$
A=10, B=0.5, P s=0.2
$$

The reaction time model is based on an exponential function, $t(x)=A \cdot e^{-B\left(x_{c o}-x\right)}$, that includes two parameters: parameter A, that determines the height of the function at the cutoff point, and parameter B. The reaction time increases, as A increases and B decreases (see Figure 23).

Figure 23: The response time function (y-axis) for different values of B parameter.

$$
A=1, \quad X_{c o}=0
$$

Figure 24(a-c) shows how human dominance reduces as the time parameter A increases. The time parameter increases from graph 'a' $(A=2)$ to graph 'c' $(A=10)$. Accordingly, the area of the HR (cyan) and HOR (yellow) collaboration levels diminished. Figure 25(a-e) shows how human dominance reduces as the time parameter B increases. The time parameter decreases from graph ' a ' ($B=2$) to graph 'e' $(B=0)$. Accordingly, the area of the HR and HOR collaboration levels diminished. In this specific case, the area decreases from 94% in graph 'a' to 6% in graph 'e'. In other cases, the area decreases in a different rate. Analysis shows that in some cases the collaboration with a human is not profitable in most of the combinations of human and robot sensitivities. In these cases, the use of a simpler system without an option for collaboration should be considered.

Figure 24: Human dominance reduces as the response time increases from graph 'a' to graph 'c'. $v T 2 v H=-0.022, B=0.5, P s=0.2$

Figure 25: Human dominance reduces as the mean response time increases from graph 'a' to graph 'e'. $v T 2 v H=-0.022, A=10, P s=0.2$

6 Sensitivity Analysis

The numerical analysis of the collaboration model was conducted for optimal cutoff points. Sensitivity analysis of human and robot's cutoff points was performed in order to show how small deviation from the optimal values influences the system's objective function score and the optimal collaboration level. Specifically, we focused on the cases where small deviations from the human optimal cutoff point cause a shift in the optimal collaboration level.

The analysis was conducted for all three cutoff points: cutoff point of the robot ($\mathrm{X}_{\mathrm{COr}}$) and two cutoff points of the human for targets the robot already marked and for targets it did not mark ($\mathrm{X}_{\text {Corh }}$ and $\mathrm{X}_{\mathrm{COh}}$ respectively). In each case analyzed, only one cutoff point was changed.

In the analysis, the signal and noise distributions are normalized. The mean of the noise distribution is zero and the maximum sensitivity $\left(d^{\prime}{ }_{r}\right.$ or $\left.d^{\prime}{ }_{h}\right)$, which is also the position of the signal distribution mean, is three. Therefore, in order to show all possible positions, the cutoff points' value ranged from minus three to six (i.e., three standard deviation units from the means of the distributions).

6.1 General description and general conclusions

This section gives general description of the figures, which are shown ahead, and introduces some common phenomena. Figure 26 is used as an example.

Each of the following figures represents a single optimal case for a given set of parameters. One can notice that in Figure 26 there is one graph for each of the three cutoff points ($\mathrm{X}_{\mathrm{COh}}, \mathrm{X}_{\mathrm{COrh}}$ and $\mathrm{X}_{\mathrm{COr}}$ from left to right). The y -axe represents the system's objective function score. In each graph, four lines illustrate how the objective function value varies according to the change of the cutoff point value. Each line represents one of the four collaboration levels (H-blue, HR-cyan, HOR-yellow and R-red). A black circle marks the optimal cutoff point value on the best collaboration level line (the highest point). In this specific case, the objective function score is 7268 and the optimal cutoff point values are $\mathrm{X}_{\mathrm{COh}}=1.2, \mathrm{X}_{\mathrm{COrh}}=0.8$ and $\mathrm{X}_{\mathrm{COr}}=-1.6$. The other parameter's values $(d r, d h, P s, A, B, v T 2 v H)$ are shown in the header of the figure.

One can see that only the cutoff point of the robot affects the score of the R collaboration level (notice straight red line in the left and middle graphs in Figure 26). Similarly, only the cutoff point of the human, $\mathrm{X}_{\mathrm{COh}}$, affects the score of the H collaboration level (straight blue line in the middle and right graphs). The scores of the HR and HOR collaboration levels are affected from all three cutoff points.

In some cases, small deviation from the optimal cutoff point makes only a slight different in the objective function value (notice almost straight yellow line in left graph in Figure 26). In other
cases, small deviation from the optimum causes a dramatic decrease of the objective function value. If the score of the best collaboration level decreases beneath other collaboration level score, the second level becomes the current best collaboration level (e.g., the yellow line in the middle graph in Figure 26 decreases beneath the blue line). We denote this: a 'shift' in the best collaboration level.

In many of the analyzed cases, the optimal level yields a score that is only slightly better than another collaboration level score. Particularly, the HR and HOR levels yield almost the same score at the optimal cutoff points (see all following figures at this chapter).

6.2 Type III systems

6.2.1 Cutoff points analysis

6.2.1.1 Analysis of the optimal cutoff point of the robot

In all cases, a change in the value of the robot's cutoff point makes more influence on the score of the R collaboration level than on the other levels' score. Therefore, when R is the best collaboration level, a smaller deviation from the optimal $\mathrm{X}_{\mathrm{COr}}$ may cause best level shifting (i.e., smaller than deviations from $\mathrm{X}_{\mathrm{COr}}$ when R is not the best collaboration level).

When the best collaboration level is HR or HOR, small deviations from the optimal $\mathrm{X}_{\text {Cor }}$ usually reduce the objective function score symmetrically in both directions.

6.2.1.2 Cases where the robot is more sensitive than the human operator

In most of the cases when the robot is more sensitive than the human $\left(d^{\prime}{ }_{r}>d^{\prime}{ }_{h}\right), \mathrm{R}$ is the best collaboration level. In other cases, HOR is the best collaboration level but it usually has only slightly higher score then R. For all cases, a small deviation from the optimal cutoff point does not cause a shift in the best collaboration level.

6.2.1.3 Cases where the human operator is remarkably more sensitive than the robot

In this work, we assumed that collaboration is beneficial because the human performs better than the robot in unstructured environments. Therefore, most of the analysis was focused on cases where the human is more sensitive than the robot. The sensitivities of the human $\left(d^{\prime}{ }_{h}\right)$ and the robot $\left(d^{\prime}{ }_{r}\right)$ were varied between 0 and 3 . We denote that the human is remarkably more sensitive than the robot in cases where $1.5<d^{\prime}{ }_{h}-d^{\prime}{ }_{r}$. In cases where $0<d^{\prime}{ }_{h}-d^{\prime}{ }_{r}<1.5$ we denote that, the human is unremarkably more sensitive than the robot.

In most of the cases, when the human is remarkably more sensitive than the robot, the best collaboration level is HR or HOR. The difference between their score, near the optimal cutoff point, is relatively small. A small deviation from the optimal cutoff point of the human, $\mathrm{X}_{\mathrm{COh}}$, does not
cause a shift in the best collaboration level. However, a small deviation from the optimal $\mathrm{X}_{\text {Corh }}$ enforces best level shifting to H (Figure 26).

Figure 26: Example of Type III system's score in a case where the human is remarkably more sensitive than the robot.

6.2.1.4 Cases where the human operator is unremarkably more sensitive than the robot

In most of the cases, when the human is unremarkably more sensitive than the robot ($0<d^{\prime}{ }_{h}-d^{\prime}{ }_{r}<1.5$), the best collaboration level is HR or HOR. The analysis reveals different results for high, medium and low probabilities for an object to be a target ($P s$).

Figure 27 shows one of these cases where the probability for an object to be a target is high $(P s=0.9)$. A small deviation from the optimal cutoff point of the human, $\mathrm{X}_{\mathrm{COh}}$, reduces the system score and may cause a level shifting to R. A change from the optimal value of the second cutoff point, $\mathrm{X}_{\text {Corh }}$, may change the best collaboration level only if the deviation is in the positive direction. A deviation in the negative direction slightly reduces the system score but does not cause a shift in the best collaboration level.

Figure 28 shows a case where the probability for an object to be a target is low $(P s=0.1)$. In this case, a small deviation from the optimal $\mathrm{X}_{\mathrm{COh}}$, may change the best collaboration level only if the deviation is in the negative direction. A deviation in the positive direction slightly reduces the system score but does not cause a shift in the best collaboration level. A change from the optimal value $\mathrm{X}_{\text {Corh }}$, reduces the system score and may cause level shifting.

Figure 29 shows a case where the probability for an object to be a target is medium ($P s=0.5$). A small deviation from optimal $\mathrm{X}_{\mathrm{COh}}$, in the negative direction may change the best collaboration level. On the other hand, a small deviation in the positive direction reduces the system
score but does not cause a shift in the best collaboration level. Deviations from the optimal value $\mathrm{X}_{\text {Corb }}$, behave the opposite way.

Figure 27: Example of Type III system's score in a case where the human is unremarkably more sensitive than the robot and the probability for a target is high.

Figure 28: Example of Type III system's score in a case where the human is unremarkably more sensitive than the robot and the probability for a target is low.

Figure 29: Example of Type III system's score in a case where the human is unremarkably more sensitive than the robot and the probability for a target is medium.

6.2.2 Influence of the probability for an object to be a target (Ps)

Generally, for all system types and in all collaboration levels, the system objective function's score reduces more sharp when the deviation from the optimal cutoff point is in one direction than when is in the other direction. The direction depends on the probability for an object to be a target. For a matter of simplicity, we assume in the following discussion that all system's gains and penalties of the four possible outcomes are equal.

In signal detection theory, when the cutoff point moves from the optimal point in the positive direction, the score reduces because more false alarms occur (also, fewer targets are missed, but it affects the score less). When the cutoff point moves from the optimal point in the negative direction, the score reduces because more targets are missed (also, fewer false alarms occur, but it affects the score less). See Figure 6 and Figure 7.

If more objects are targets ($P s=0.9$), then usually the probability for miss is more than the probability for false alarm. Therefore, the score reduces more sharp if the deviation from the optimal cutoff point is in the negative direction (see Figure 30 for example). When less objects are targets ($P s=0.1$), the probability for false alarm is usually more than the probability for miss. In this case, the score reduces sharper if the deviation from the optimal cutoff point is in the positive direction (see Figure 31 for example).

6.2.3 Influence of the time parameters

In the following part, we analyze cases where human reaction time is expensive and long. It occurs when the time parameters values are: $A=10, B=0.5, v T 2 v H=-0.022$. The human reaction time in our model depends on the distance of objects value from the cutoff point value. When the cutoff point is far from an object, it takes less time to decide whether it is a target or not.

6.2.3.1 New collaboration levels

The analysis reveals new collaboration levels, which are derived from the original levels HOR and $H R$ and preferred when the reaction time of the human is expensive. The analysis reveals different results for high and low probabilities for an object to be a $\operatorname{target}(P s)$.

Figure 30 shows a case where the probability for a target is high ($P s=0.9$) and HOR is the best collaboration level. In practice, the way of collaboration is different from HOR. One can see that the cutoff point of the human for targets that the robot already marked, $\mathrm{X}_{\text {COrh }}$, is set to the lowest value possible in the data set (-3). It means that the human keeps all the marks on targets that the robot detected, without spending time on rechecking them. The human concentrates only on detecting targets that the robot did not mark.

In addition, a small deviation from the optimal cutoff point of the human, $\mathrm{X}_{\mathrm{COh}}$, enforces best level shifting to R. Although the human is much more sensitive, if he does not operate according to the optimal cutoff point, the system operates better without collaboration with the human. This is probably because of the high cost of human time.

Figure 30: Example of Type III system's score in a case where the human reaction time is expensive and the probability for a target is high.

Figure 31 shows a case where the probability for a target is low ($P s=0.1$) and HR is the best collaboration level. In this case, the collaboration is also different. One can see that the cutoff point of the human for targets that the robot did not marked, $\mathrm{X}_{\mathrm{COh}}$, is set to the highest value possible in the data set (6). This implies that the human concentrates only on rechecking the robot's recommendations for targets. The human does not spend time trying to detect other targets that the robot did not recommend.

Figure 31: Example of Type III system's score in a case where the human reaction time is expensive and the probability for a target is low.

In both cases, due to high human time costs, the best way to collaborate is that the human will concentrate only on one type of objects. When many objects are targets ($P s=0.9$) the human observes only objects that the robot did not mark. The human does not need to remark the objects that the robot already marked because this is an inherent property of the HOR collaboration level. When only few of the objects are targets ($P s=0.1$), the human observes only objects that the robot already marked.

Practically the system created new collaboration levels that are derived from the HR and HOR collaboration levels. By ignoring one type of objects by the human, the system reduces the total human reaction time cost and can achieve better performance.

6.2.3.2 The system is more sensitive to changes when the time cost is high

As human's reaction time costs increases (and takes longer), the score of the collaboration levels, which include the human, reduces. The score of the R collaboration level is not affected by
the reaction time cost. Therefore, the difference between the scores of the best collaboration level and the R level reduces. Hence, in many cases when the time cost is high, the system becomes more sensitive to changes in human cutoff points' values. The case when the best level shifts to R , becomes more common.

6.2.3.3 Constant time parameters

Previous work (Bechar, 2006) assumed that the decision time of the human is equal for all objects. In this work, we introduce a reaction time model that unties this assumption. In the data set, when $B=0$ the time parameters are constant for all objects (as in previous work).

As long as the total cost of human reaction time is not expensive (relatively to other costs of the system), the question whether the time parameters are constant or not, does not make much difference neither in system's objective function value, nor in the best collaboration level. However, when human reaction time becomes relatively expensive, constant time parameters leads to quite different results. The lower part of Figure 32 shows the case of Figure 31 and the upper part shows the same case but with parameter B equals zero. One can see that the scores of the collaboration levels that include the human are lower when $B=0$ and the best collaboration level is R . In this specific case, the score reduced in 1642 points, which are 24%. In other cases, the score reduces in a different rate.

Figure 32: Example of Type III system's score in a case where the human reaction time is expensive and the probability for a target is low. A comparison with constant time parameters $(B=0)$ is presented.

6.3 Type I systems

Systems of type I give high priority for not causing errors of the first type, i.e., detecting a target when a target does not exist (false alarm).

In type III system, R is the best collaboration level in most cases where the robot is more sensitive than the human. In type I system, R is the best collaboration level only if the robot is remarkably more sensitive $\left(1<d^{\prime}{ }_{r}-d^{\prime}{ }_{h}\right)$. If the robot is unremarkably more sensitive than the human, then HR or HOR are the best collaboration level.

When the human is more sensitive than the robot and the probability for an object to be a target is high ($P s=0.9$), the system score is more sensitive to deviations from the optimal values (relatively to type III system). A small deviation from the optimal cutoff point, $\mathrm{X}_{\mathrm{COh}}$, reduces the system score and may cause a level shifting to R only if the deviation is in the negative direction. A change from the optimal value of the second cutoff point, $\mathrm{X}_{\text {Corb }}$, may change the best collaboration level if the deviation is in the positive direction. A deviation in the negative direction reduces the system score but does not cause a shift in the best collaboration level. Figure 33 shows a comparison between type I and type III systems in the case that is introduced above.

When the probability for an object to be a target is low ($P s=0.1$), the difference between the collaboration levels scores is very small. A small deviation from the optimal cutoff points' values may cause a best level shifting but the score remains almost the same. This is true even if the human is much more sensitive than the robot (see Figure 34). When the probability for an object to be a target is medium ($P s=0.5$), the results are similar to those of type III system.

Analysis of type III system revealed new collaboration level in cases where human reaction time is expensive. In type I system this phenomena occurs less often. It occurs only when the probability for an object to be a target is low ($P s=0.1$), or when the human is no more sensitive than the robot.

Figure 33: Comparison between Type I and Type III systems' score in a case where the human is more sensitive than the robot and the probability for a target is high.

Figure 34: Example of Type I system's score in a case where the probability for a target is low and the difference between the collaboration levels scores is small.

6.4 Type II systems

Systems of type II give high priority for not causing errors of the second type, i.e., missing a target. Systems of type III do not prefer one type of error on another. In type II system, R is the best collaboration level in most cases where the robot is more sensitive than the human is, as in type III.

When the human is more sensitive than the robot and the probability for an object to be a target is high ($P s=0.9$), the difference between the collaboration levels scores is very small. A small deviation from the optimal cutoff points' values may cause a best level shifting but the score remains almost the same. This is true even if the human is much more sensitive than the robot (see Figure 35). When the probability for an object to be a target is low or medium (Ps equals 0.1 or 0.5), the results are similar to those of type III system.

Same new collaboration levels come out in type II system in cases where human reaction time is expensive. However, it occurs for relatively lower cost of human reaction time than in type III. The reason for that is probably the fact that the time cost is set relatively to the reward of one hit. The reward for a hit in type II system is five times more than the reward in type III system and therefore the comparison is not reliable.

Figure 35: Example of Type II system's score in a case where the probability for a target is high and the difference between the collaboration levels scores is small.

7 Conclusions and Future Research

7.1 Conclusions

Bechar (2006) developed a model for evaluating performance of human-robot collaborative target recognition systems. This work introduces further development of the model by incorporating non-constant reaction times. The new model, proposed in this research, might describe actual systems in a better way by adjusting time parameters to a specific task and taking into consideration the fact that reaction time of the human depends on the strength of the observed object. Evaluating the best collaboration level according to the new model, considers the influence of human reaction time on system performance.

The analysis revealed additional collaboration levels, which are derived from the HR and HOR collaboration levels defined in Bechar's work (Bechar, 2006), and are the best collaboration level when human time costs are high. In these collaboration levels, the human concentrates only on one type of objects. When many objects are targets, the human observes only objects that the robot did not mark and does not check objects that the robot marked (based on the HOR collaboration level). When only few of the objects are targets, the human observes only objects that the robot recommended and does not try to detect other targets (based on the HR collaboration level). Since the human ignores one type of objects, the system reduces the total human reaction time cost and can achieve better performance.

The human ignores objects by setting his/her cutoff point to an extreme value. When the cutoff point is the highest positive value possible, none of the objects is higher than the cutoff point so none of them is marked as a target. Similarly, when the cutoff point value is the lowest possible, all the objects are marked as targets. The analysis shows how the system type, the human sensitivity, the probability of an object to be a target, and the time cost all influence the phenomena of extreme cutoff point selection.

When the human sensitivity is low, the human badly discriminates between targets and other objects. If the system gives high priority for not causing false alarms (type I systems), the human prefers an extreme positive cutoff point, resulting in no objects that are marked as targets, and no false alarms. For systems that give high priority for not missing targets (type II systems), an extreme negative cutoff point was preferred, resulting in all objects marked as targets and no misses.

The probability of an object to be a target ($P s$) influences this phenomenon. In type II systems, when there are many targets among the objects (i.e., Ps is high), the system prefers extreme cutoff point for higher sensitivities of the human (relatively to low sensitivities in cases
where $P s$ is not high and an extreme cutoff point is preferred). In a similar manner, when most of the objects are not targets (i.e., Ps is low), in type I systems, an extreme cutoff point is preferred for higher sensitivities of the human. A reasonable explanation for this influence is the potential of misses or false alarms to occur. When there are many targets, the potential of missing a target is higher; and when there are few targets, the potential of false alarms is high.

The analysis shows that mean reaction time and time costs affect the position of the optimal cutoff point. The phenomenon, introduced above, arises for higher human sensitivities as the mean time and/or the time cost are higher. Furthermore, the analysis shows that collaboration with a human is less profitable in cases when the time cost is high. In these cases, the R collaboration level, that does not include a human, is the optimal collaboration level.

An extreme cutoff point position decreases the total operation time cost. The mean response time reduces as the cutoff point is far from the mean of the distribution; therefore, in the sense of time costs, the extreme cutoff point is always preferred.

The position of the cutoff point influences all other parts of the objective function. An extreme positive cutoff point, for example, causes small probabilities of false alarms and hits; and causes high probabilities of miss and correct rejections. The overall gains and penalties of these outcomes are modified accordingly.

7.2 Research limitations

It must be noted that although this research includes an in-depth analysis of the new objective function, it was impossible to analyze and investigate all possible variables' combinations due to the multitude of variables that are involved. Hence, the thesis presents the most common trends and the conclusions are limited to the analyzed cases.

Furthermore, the results are strongly linked to the analyzed cases because of the high dependency on the many parameters. Therefore, we presented only trends and did not detail quantitative results, which are specific and highly depend on the chosen parameters.

This work focused only on the optimal collaboration level. In some cases, the optimal level yields a score that is only slightly better than another collaboration level score. In addition, switching the level of operation during the task is related to some operational costs. Hence, it might not always be worthy to operate at the best level. The analysis and conclusions are therefore limited also in this aspect.

7.3 Definition of the new collaboration levels

The research discovered a phenomenon, in which the human ignores objects by setting his cutoff point to an extreme value. An in-depth analysis of this phenomenon revealed two new collaboration levels, which are derived from the HR and the HOR collaboration levels defined in Bechar's work (Bechar, 2006), and are the best collaboration level when the human time cost is high. In each of the new collaboration levels, the human observes only one type of objects and ignores another. The new collaboration levels can be defined as follows.

HR2: The human operator observes only objects that the robot recommended to mark as targets. The human acknowledges the robot's correct detections and ignores recommendations that are false alarms. The human operator cannot mark other targets, which the robot did not recommend.

HOR2: Targets are identified and marked automatically by the robot's detection algorithm and the human operator cannot change these marks. The human operator assignment is to detect and mark the targets missed by the robot.

7.4 Future research

The following directions are worthy future investigation:

7.4.1 Determination of the Reaction time type: constant versus variable

This research analyzes the influence of human reaction time in human robot collaborative systems. Different aspects of the influence were discussed, but one question remained unanswered: When is it essential to regard reaction time as a variable, while designing or analyzing a system, and when can it be considered as constant? One of the three terms should occur in order to determine reaction time as a constant: 1) when the contribution of the reaction time part to the objective function is small relative to the other parts; 2) the difference between the objective function scores when using reaction time as a variable or a constant is small; and 3) when the involvement of the human operation is small. In some cases, considering constant time parameters will most likely produce a good estimation of system performance. However, in other cases, e.g., when the cost of system operation time is high, modeling reaction time is probably essential. Future research should answer this question and differentiate between those cases.

7.4.2 New/additional collaboration levels

The analysis revealed two new collaboration levels and future research should investigate these further. These collaboration levels are derived from the HR and HOR collaboration levels by adjusting one of the human cutoff points to extreme positive or negative value. In practice, although the optimal cutoff point should make the human concentrate only on one type of objects, the human might not operate optimally and therefore, might spend time and efforts on the other type of objects. Systems that officially include these two new collaboration levels as part of other levels may perform better. Future research should investigate in what cases these collaboration levels are the best collaboration level.

7.4.3 Experiment of human reaction time influence

This work included a preliminary analysis of human reaction time based on data acquired in an experiment conducted by Bechar (2006). Bechar (2006) conducted an experiment simulating melon detection in order to examine the influence of different human-robot collaboration levels in a target recognition task. During the experiment, all human operations were recorded. In this work, we analyzed experimental data, focusing on the human reaction time and regarding them as variables. We showed the relation between image complexity and decision time of the human operator (see Appendix H). However, since this work was very limited in scope it is included only as an Appendix.

An experiment of target recognition, specially designed to examine human reaction time, should check how time pressure on the subjects influences their performance. It can also discover how well the reaction time model of Murdock (1985) and other models, describe reaction time.

7.4.4 Examination of different reaction time models

This research used a reaction time model based on Murdock (1985). Other models describe reaction time differently. Future research can examine other models and validate them with experiments. The examination can discover how the influence of human reaction time depends on the reaction time model; and what phenomena do not depend on the models.

7.4.5 Analytical development of an optimal cutoff point

The new model, proposed in this research, includes a reaction time function that depends on the cutoff point position. Signal detection theory does not apply to this time function, and therefore, the optimal cutoff point that the theory supply must be adjusted. A further study may provide analytical development of the new optimal cutoff point. One must calculate a derivative of the objective function in order to find the cutoff point results in the maximum value.

7.4.6 Use of mean distances to evaluate mean reaction times

This study includes analytical development of the mean distance model, which calculates the mean distance between the cutoff point and objects of the same category (e.g., mean distance of all objects that were 'missed'). Future research can investigate the use of the mean distance model to evaluate mean time.

7.4.7 Collaboration level switching

This work focused only on the optimal collaboration level. Future research should apply full system optimization, which should consider the cost of switching between levels (Takach, 2008) and not only the cost of operating at the best collaboration level.

7.4.8 Collaboration in other stages of human information processing

Parasuraman et al. (2000) introduce a four-stage model of human information processing (see subchapter 0). The four stages in the model are: (1) information acquisition, (2) information analysis, (3) decision and action selection, and (4) action implementation. In this thesis, we introduce a collaboration model only for the decision and action selection stage. Future work should investigate levels of collaboration for the other stages.

7.4.9 Additional analysis

Due to the multitude variables in the model, there are numerous combinations and cases to analyze. This thesis presents the most common trends and additional analyses are required.

8 References

Bechar, A., J. Meyer and Y. Edan (2009). An Objective Function to Evaluate Performance of Human-Robot Collaboration in Target Recognition Tasks. IEEE Transactions on Systems, Man and Cybernetics, Part C (In press).
Bechar A. (2006). Human-Robot Collaboration Methods for Target Recognition in Unstructured Environments. Ph.D. dissertation, Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Bechar A. \& Edan Y. (2003). Human-Robot Collaboration for Improved Target Recognition of Agricultural Robots. Industrial Robot 30(5): 432-436.

Bechar A. \& Edan Y. (2000). Human-Robot Collaboration for Agricultural Robot Guidance. ASAE Paper No. 00-3135. ASAE, St. Joseph, MI.

Bhanu B., Jones G., Lin Y.Q. \& Peng J. (2000). Adaptive Target Recognition. Machine Vision and Applications 11(6): 289-299.

Brown C.D. \& Davis H.T. (2006). Receiver Operating Characteristics Curves and Related Decision Measures: A Tutorial. Chemometrics and Intelligent Laboratory Systems 80(1): 24-38.

Bruemmer D.J., Boring R.A., Few D. A., Marble J.A., Nielsen C.W. and Walton M.C. (2005). Shared Understanding for Collaborative Control. IEEE Transactions on Systems, Man and Cybernetics: Part A, vol. 35, no. 4, pp. 494-504.

Bulanon D.M., Hiroma T., Kataoka T., Ota, Y. and Zhang S. (2001). Optimal Thresholding for the Automatic Recognition of Apple Fruits. ASAE Paper No. 01-3133. ASAE, St. Joseph, MI.

Burke J. L., Lumelsky V. J., Murphy R. R., Rogers E. and Scholtz J. (2004). Final Report for the DARPA/NSF Interdisciplinary Study on Human-Robot Interaction. IEEE Transactions on Systems, Man and Cybernetics: Part C, vol. 34, no. 2, pp. 103-112.

Cohen H. \& Ferrell W. R. (1969). Human Operator Decision-Making in Manual Control. IEEE Transactions on Man-Machine Systems. Vol. MMS-10, no. 2, pp. 41-53.

Czarnecki C. \& Graves A.R. (2000). Design Patterns for Behavior-Based Robotics. IEEE Transactions on Systems, Man and Cybernetics: Part A, vol. 30, no. 1, pp. 36-41.

Dubey R. \& Everett S. (1998). Human-Machine Cooperative Telerobotics Using Uncertain Sensor and Model Data. Proceedings of the IEEE International Conference on Robotics and Automation. Leuven, Belgium. pp. 1615-1622.

Hughes S.B. \& Lewis M. (2005). Task-Driven Camera Operations for Robotic Exploration. IEEE Transactions on Systems, Man and Cybernetics: Part A, vol. 35, no. 4, pp. 513-522.
http://wise.cgu.edu. Signal Detection Theory Tutorial. Retrieved November 2007, from World Wide Web: http://wise.cgu.edu/sdtmod/index.asp

Murdock B. B. \& Dufty P. O. (1972). Strength Theory and Recognition Memory. Journal of Experimental Psychology, vol. 94, No. 3, pp. 284-290.

Murdock B. B. (1985). An analysis of the strength-latency relationship. Memory and Cognition, 13 (6), 511-521.

Obuchowski N.A. (2003). Receiver Operating Characteristic Curves and Their Use in Radiology. Radiology 229 3-8.
Oren Y. (2007). Performance Analysis of Human-Robot Collaboration in Target Recognition Tasks. B.Sc dissertation, Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Oren Y., Bechar A., Joachim M., Edan Y. (2008). Performance Analysis of Human-Robot Collaboration in Target Recognition Tasks. IEEE International Conference on Distributed Human-Machine Systems. Athens, Greece.
Parasuraman R., Sheridan T.B. and Wickens C.D. (2000). A Model for Types and Levels of Human Interaction with Automation. IEEE Transactions on Systems, Man and Cybernetics: part A, vol. 30, no. 3, pp. 286-197.

Pike R. (1973). Response Latency Models for Signal Detection. Psychological Review, vol. 80, No. 1, pp. 53-68.

Ratcliff R. \& Rouder J. F. (1998). Modeling Response Times for Two Choice Decisions. Psychological Science, vol. 9, No. 5, pp. 347-356.

Ratcliff R., Mckoon G., and Zandt T. V. (1999). Connectionist and Diffusion Models of Reaction Time. Psychological Review, vol. 106, No. 2, pp. 261-300.

Ratcliff R. \& Smith P. L. (2004). A Comparison of Sequential Sampling Models for Two-Choice Reaction Time. Psychological Review, vol. 111, No. 2, pp. 333-367.

Rodriguez G. \& Weisbin C.R. (2003). A New Method to Evaluate Human-Robot System Performance. Autonomous Robots 14: 165-178.

Sheridan T.B. \& Verplank W.L. (1978). Human and Computer Control of Undersea Teleoperators. MIT Man-Machine Systems Laboratory. Cambridge, MA, Tech. Rep.

Sheridan T.B. (1992). Telerobotics, Automation and Supervisory Control. Cambridge, MA. MIT.
Steinfeld A. (2004). Interface Lessons for Fully and Semi-Autonomous Mobile Robots. Proceedings of the IEEE International Conference on Robotics and Automation, 3.

Takach I. (2008). Switching between collaboration levels in target recognition tasks. M.Sc. dissertation, Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Welford A. T. (1980). Reaction Times. London, Academic Press.
Wickens T. D. (2002). Elementary Signal Detection Theory. New York, Oxford University. Press.

9 Appendixes

Appendix A - Normal, Standard Normal, Signal and Noise Distributions 70

1. Normal distribution 70
2. Standard normal distribution 70
3. The relation between normal and standard normal distributions 71
4. Signal distribution 72
5. Noise distribution 72
Appendix B - Expression of Z As a Function of Beta and D' (Bechar, 2006) 73
Appendix C-Validation of Mean Distance Equations 74
Appendix D - Development of Mean Reaction Time 75
6. Mean reaction time of negative responses 76
7. Mean reaction time of positive responses 79
Appendix E - Numerical Analysis - Additional Results 82
8. Type I analysis 82
9. Type II analysis 82
10. Type III analysis 82
11. Time influence on the optimal cutoff point position 86
Appendix F - Paper For The $20{ }^{\text {TH }}$ International Conference on Production Research 87
Appendix G - The Numeric Simulation Software 93
. 1 The experiment program code 93
12. The data base creator code 94
13. The graph generator code 100
14. The mean time function 105
Appendix H - The Relation Between Image Complexity and Reaction Time 107
15. Melon detection experiment 107
16. Data preparation 108
17. Results 109
Appendix I - Raw Data of The Experiment 112

Appendix A - Normal, Standard Normal, Signal and Noise Distributions

1. Normal distribution

Here is a short review of the Normal distribution, also called Gaussian distribution.
If X is normally distributed with mean μ_{X} and variance $\sigma_{X}{ }^{2}$ we denote:

$$
X \sim \quad\left(\mu_{X}, \sigma_{X}{ }^{2}\right)
$$

The probability density function (PDF) is:

$$
f_{X}(x)=\frac{1}{\sigma_{X} \sqrt{2 \pi}} \cdot e^{-\frac{\left(x-\mu_{X}\right)^{2}}{2 \sigma_{X}^{2}}}
$$

The cumulative density function (CDF) is:

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(x) d x=\frac{1}{\sigma_{X} \sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{\left(x-\mu_{X}\right)^{2}}{2 \sigma_{X}^{2}}} d x
$$

2. Standard normal distribution

The standard normal distribution is a normal distribution with a mean of zero and a variance of one. If X is normally distributed with mean μ_{X} and variance $\sigma_{X}{ }^{2}$, we can normalize X by defining new random variable Z :

$$
\begin{aligned}
& z=\frac{x-\mu_{X}}{\sigma_{X}} \Rightarrow \mu_{Z}=0, \sigma_{Z}^{2}=1 \\
& Z \sim \quad(0,1)
\end{aligned}
$$

The PDF of the standard normal distribution is:

$$
f_{Z}(z)=\varphi(z)=\frac{1}{\sigma_{Z} \sqrt{2 \pi}} \cdot e^{-\frac{\left(z-\mu_{Z}\right)^{2}}{2 \sigma_{Z}^{2}}}=\frac{1}{1 \cdot \sqrt{2 \pi}} \cdot e^{-\frac{(z-0)^{2}}{2 \cdot 1^{2}}}=\frac{1}{\sqrt{2 \pi}} \cdot e^{-\frac{z^{2}}{2}}
$$

The CDF of the standard normal distribution is:

$$
\begin{aligned}
& F_{Z}(z)=\Phi(z)=\int_{-\infty}^{z} f_{Z}(z) d z=\frac{1}{\sigma_{Z} \sqrt{2 \pi}} \int_{-\infty}^{z} e^{-\frac{\left(z-\mu_{Z}\right)^{2}}{2 \sigma_{Z}^{2}}} d z=\frac{1}{1 \cdot \sqrt{2 \pi}} \int_{-\infty}^{z} e^{-\frac{(z-0)^{2}}{2 \cdot 1^{2}}} d z=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-\frac{z^{2}}{2}} d z \\
& 1-\Phi(z)=1-\int_{-\infty}^{z} f_{Z}(z) d z=\int_{z}^{\infty} f_{Z}(z) d z=\frac{1}{\sqrt{2 \pi}} \int_{z}^{\infty} e^{-\frac{z^{2}}{2}} d z
\end{aligned}
$$

3. The relation between normal and standard normal distributions

Here is an interpretation of the link between the normal distribution and the standard normal distribution. If X is normally distributed, then for a specific value $x_{c o}$ we can define $z_{c o}$, a specific value of the random variable Z which is standard normal distributed.

$$
z_{c o}=\frac{x_{c o}-\mu_{X}}{\sigma_{X}}
$$

The PDF of X can be defined, using the PDF of Z :

$$
\begin{aligned}
& f_{X}\left(x_{c o}\right)=\frac{1}{\sigma_{X} \sqrt{2 \pi}} \cdot e^{\frac{-\left(x_{c o}-\mu_{X}\right)^{2}}{2 \sigma_{X}}}=\frac{1}{\sigma_{X}} \cdot \frac{1}{\sqrt{2 \pi}} \cdot e^{\frac{-z_{c o}^{2}}{2}}=\frac{1}{\sigma_{X}} \cdot \varphi\left(z_{c o}\right) \\
& f_{X}\left(x_{c o}\right)=\frac{1}{\sigma_{X}} \cdot \varphi\left(z_{c o}\right)
\end{aligned}
$$

The CDF of X can be defined, using the CDF of Z :

$$
F_{X}\left(x_{c o}\right)=\int_{-\infty}^{x_{c o}} f_{X}(x) d x=\frac{1}{\sigma_{X} \sqrt{2 \pi}} \int_{-\infty}^{x_{c o}} e^{-\frac{1}{2}\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}} d x=
$$

Changing the domain of integration :

$$
\begin{aligned}
& z=\frac{x-\mu_{X}}{\sigma_{X}} \Rightarrow x=\mu_{X}+\sigma_{X} z \\
& \frac{d x}{d z}=\frac{d\left(\mu_{X}+\sigma_{X} z\right)}{d z}=\sigma_{X} \Rightarrow d x=\sigma_{X} d z \\
& x=-\infty \Rightarrow z=\frac{-\infty-\mu_{X}}{\sigma_{X}}=-\infty \\
& x=x_{c o} \Rightarrow z=\frac{x_{c o}-\mu_{X}}{\sigma_{X}}=z_{c o}
\end{aligned}
$$

$$
=\frac{1}{\not \subset /} \sqrt{2 \pi} \int_{-\infty}^{z_{c o}} e^{\frac{-z^{2}}{2}} \mathscr{C}_{X} d z=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z_{c \infty}} e^{\frac{-z^{2}}{2}} d z=\Phi\left(z_{c o}\right)
$$

$$
F_{X}\left(x_{c o}\right)=\Phi\left(z_{c o}\right)
$$

4. Signal distribution

Here are definitions of distribution, PDF and CDF of X_{S} which represents the value of targets the observer need to detect.

$$
\begin{aligned}
& X_{S} \sim\left(\mu_{S}, \sigma_{S}^{2}\right) \\
& f_{S}(x)=\frac{1}{\sigma_{S} \sqrt{2 \pi}} \cdot e^{\frac{-\left(x-\mu_{S}\right)^{2}}{2 \sigma_{S}}} \\
& F_{S}(x)=\int_{-\infty}^{x} f_{S}(x) d x=\frac{1}{\sigma_{S} \sqrt{2 \pi}} \int_{-\infty}^{x} e^{\frac{-\left(x-\mu_{S}\right)^{2}}{2 \sigma_{S}^{2}}} d x \\
& 1-F_{S}(x)=1-\int_{-\infty}^{x} f_{S}(x) d x=\int_{x}^{\infty} f_{S}(x) d x=\frac{1}{\sigma_{S} \sqrt{2 \pi}} \int_{x}^{\infty} e^{\frac{-\left(x-\mu_{S}\right)^{2}}{2 \sigma_{S}^{2}}} d x
\end{aligned}
$$

When a cutoff point $x_{c o}$ is set, we can define the probabilities of miss and hit:

$$
P_{M i s s}\left(x_{c o}\right)=F_{S}\left(x_{c o}\right) ; P_{H i t}\left(x_{c o}\right)=1-F_{S}\left(x_{c o}\right)
$$

5. Noise distribution

Here are definitions of distribution, PDF and CDF of X_{N} which represents the value of noises.

$$
\begin{aligned}
& X_{N} \sim\left(\mu_{N}, \sigma_{N}^{2}\right) \\
& f_{N}(x)=\frac{1}{\sigma_{N} \sqrt{2 \pi}} \cdot e^{\frac{-\left(x-\mu_{N}\right)^{2}}{2 \sigma_{N}}} \\
& F(x)=\int_{-\infty}^{x} f_{S}(x) d x=\frac{1}{\sigma_{N} \sqrt{2 \pi}} \int_{-\infty}^{x} e^{\frac{-\left(x-\mu_{N}\right)^{2}}{2 \sigma_{N}}} d x \\
& 1-F_{N}(x)=1-\int_{-\infty}^{x} f_{N}(x) d x=\int_{x}^{\infty} f_{N}(x) d x=\frac{1}{\sigma_{N} \sqrt{2 \pi}} \int_{x}^{\infty} e^{\frac{-\left(x-\mu_{N}\right)^{2}}{2 \sigma_{N}^{2}}} d x
\end{aligned}
$$

When a cutoff point $x_{c o}$ is set, we can define the probabilities of correct rejection and false alarm:

$$
P_{C R}\left(x_{c o}\right)=F_{N}\left(x_{c o}\right) ; P_{F A}\left(x_{c o}\right)=1-F_{N}\left(x_{c o}\right)
$$

Appendix B - Expression of Z As a Function of Beta and D' (Bechar, 2006)

As developed by Bechar (2006). Normalizing the signal and noise distributions is beneficially in generalizing the problem rather than using the actual units that fit only to a specific case. The cutoff point, $x_{c o}$, gets different interpretation in each normalized distribution. The cutoff points, denote as z_{S} and z_{N} for the signal and the noise distributions, respectively, can be expressed by the likelihood ratio, β, between the signal and noise density functions in the cutoff point, $x_{c o}$, and the distance between the means of the signal and noise distributions, d^{\prime} (see chapter 2.6 for details). For the expressions, the standard deviations σ_{S}, σ_{N} were assumed to be equal one (Bechar, 2006).

$$
\begin{aligned}
& Z_{S}=\frac{x_{c o}-\mu_{S}}{\sigma_{S}}=x_{c o}-\mu_{S} \\
& Z_{N}=\frac{x_{c o}-\mu_{N}}{\sigma_{N}}=x_{c o}-\mu_{N} \\
& d^{\prime}=\mu_{S}-\mu_{N}=\left(x_{c o}-Z_{S}\right)-\left(x_{c o}-Z_{N}\right)=x_{c o}-Z_{S}-x_{c o}+Z_{N}=Z_{N}-Z_{S} \\
& \beta=\frac{f_{Z}\left(Z_{S}\right)}{f_{Z}\left(Z_{N}\right)}=\frac{\frac{1}{\sqrt{2 \pi}} \cdot e^{\frac{-Z_{S}}{2}}}{\frac{1}{\sqrt{2 \pi}} \cdot e^{\frac{-Z_{N}}{2}}=e^{-\frac{Z_{S}}{2}+\frac{Z_{N}}{2}}=e^{-\frac{1}{2}\left(Z_{S}^{2}-Z_{N}{ }^{2}\right)}} \\
& \ln (\beta)=-\frac{1}{2}\left(Z_{S}^{2}-Z_{N}^{2}\right) \\
& \text { i) } d^{\prime}=Z_{N}-Z_{S}
\end{aligned}
$$

ii) $\ln (\beta)=-\frac{1}{2}\left(Z_{S}{ }^{2}-Z_{N}{ }^{2}\right)$
i) \Rightarrow iii) $Z_{S}=Z_{N}-d^{\prime}$
$i i+i i i) \Rightarrow \ln (\beta)=-\frac{1}{2}\left(\left(Z_{N}-d^{\prime}\right)^{2}-Z_{N}{ }^{2}\right)=-\frac{1}{2}\left(Z_{N}{ }^{2}-2 Z_{N} d^{\prime}+d^{\prime 2}-Z_{N}{ }^{2}\right)=Z_{N} d^{\prime}-\frac{d^{\prime 2}}{2}$
$Z_{N} d^{\prime}=\ln (\beta)+\frac{d^{\prime 2}}{2}$
$Z_{N}=\frac{\ln (\beta)}{d^{\prime}}+\frac{d^{\prime}}{2}$
i) \Rightarrow iv) $Z_{N}=Z_{S}+d^{\prime}$
$i i+i v) \Rightarrow \ln (\beta)=-\frac{1}{2}\left(Z_{S}{ }^{2}-\left(Z_{S}+d^{\prime}\right)^{2}\right)=-\frac{1}{2}\left(Z_{S}{ }^{2}-Z_{S}{ }^{2}-2 Z_{S} d^{\prime}-d^{\prime 2}\right)=Z_{S} d^{\prime}+\frac{d^{\prime 2}}{2}$
$Z_{S} d^{\prime}=\ln (\beta)-\frac{d^{\prime 2}}{2}$
$Z_{S}=\frac{\ln (\beta)}{d^{\prime}}-\frac{d^{\prime}}{2}$

Appendix C - Validation of Mean Distance Equations

The development of the mean distances equations is presented in chapter 4.1. This appendix validates them. The equations for mean distance of negative and positive responses are:

$$
\begin{aligned}
& d_{-}=\left(x_{c o}-\mu\right)+\sigma \cdot \frac{\varphi\left(z_{c o}\right)}{\Phi\left(z_{c o}\right)} \\
& d_{+}=-\left(x_{c o}-\mu\right)+\sigma \cdot \frac{\varphi\left(z_{c o}\right)}{1-\Phi\left(z_{c o}\right)}
\end{aligned}
$$

For a standard normal distribution with a mean of zero and a standard deviation of one, the mean distances received from the equations for variable values of the cutoff point, $x_{c o}$ were plotted (solid line in Figure A1).

In addition, 1000 random numbers from the same distribution were used to calculate the mean distance of all positive responses (i.e., objects that are higher from the cutoff point) for each value of the cutoff point. Similarly, the mean distance of all negative responses was calculated (i.e., objects that are lower from the cutoff point). The experiment was repeated 30 times and the mean results between all experiments were plotted (x marks in Figure A1). One can see in Figure A1 that the mean distances gotten from the experiment are exactly the means calculated using the equations. These results validate the equations.

Figure A1: A validation of equation for mean distances

Appendix D - Development of Mean Reaction Time

The development of mean reaction time is based on Murdock (1985). Different denotations for the parameters of the exponential function (A, B) and for the cutoff point $\left(x_{c o}\right)$ is the only difference from Murdock's model. An exponential function is used in order to transfer the strength of an object into the reaction time of the observer. Strength of an object is its distance from the cutoff point.

For negative responses, the distance and the reaction time functions are:

$$
\begin{aligned}
& d(x)=x_{c o}-x \\
& t(x)=A \cdot e^{-B\left(x_{c o}-x\right)}
\end{aligned}
$$

For positive responses the distance and the reaction time functions are:

$$
\begin{aligned}
& d(x)=x-x_{c o} \\
& t(x)=A \cdot e^{-B\left(x-x_{c o}\right)}
\end{aligned}
$$

Mean reaction times of negative and positive responses depend on the cutoff point and are denoted respectively as $T_{-}\left(x_{c o}\right), T_{+}\left(x_{c o}\right)$.

1. Mean reaction time of negative responses

In order to find the mean reaction time of negative responses, one must calculate weighted average of all reaction times (results from x-values) of objects with a value lower than the cutoff point. The weights are the frequencies of x.

$$
\begin{aligned}
& T_{-}\left(x_{c o}\right)=\frac{\int_{-\infty}^{x_{c o}} t(x) \cdot f(x) d x}{\int_{-\infty}^{x_{c o}} f(x) d x}= \\
& =\frac{\int_{-\infty}^{x_{c o}} A \cdot e^{-B\left(x_{c o}-x\right)} \cdot f(x) d x}{\int_{-\infty}^{x_{c \infty}} f(x) d x}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { From the normal distribution: } \\
& f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} \\
& \int_{-\infty}^{x_{c o}} f(x) d x=F\left(x_{c o}\right)
\end{aligned}
$$

$$
=\frac{\int_{-\infty}^{x_{c o}} A \cdot e^{-B\left(x_{c o}-x\right)} \cdot \frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} d x}{F\left(x_{c o}\right)}=
$$

$$
=\frac{\int_{-\infty}^{x_{c o}} A \cdot e^{-B \cdot x_{c o}} \cdot e^{B \cdot x} \cdot \frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} d x}{F\left(x_{c o}\right)}=
$$

$$
=A \cdot e^{-B \cdot x_{c o c}} \cdot \frac{\int_{-\infty}^{x_{c o}} e^{B \cdot x} \cdot \frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} d x}{F\left(x_{c o}\right)}=
$$

$$
=A \cdot e^{-B \cdot x_{c o}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{-\infty}^{x_{c o}} e^{B \cdot x-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x}{F\left(x_{c o}\right)}=
$$

$$
\begin{aligned}
& =A \cdot e^{-B \cdot x_{c o}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{-\infty}^{x_{c o}} e^{-\frac{1}{2}\left(-2 B \cdot x+\frac{(x-\mu)^{2}}{\sigma^{2}}\right)} d x}{F\left(x_{c o}\right)}= \\
& =A \cdot e^{-B \cdot x_{c o}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{-\infty}^{x_{c o}} e^{-\frac{1}{2} \cdot \frac{-2 B \cdot x \cdot \sigma^{2}+(x-\mu)^{2}}{\sigma^{2}}} d x}{F\left(x_{c o}\right)}= \\
& =A \cdot e^{-B \cdot x_{c o}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{-\infty}^{x_{c o}} e^{-\frac{-2 B \cdot x \cdot \sigma^{2}+x^{2}-2 x \cdot \mu+\mu^{2}}{2 \sigma^{2}}} d x}{F\left(x_{c o}\right)}= \\
& =A \cdot e^{-B \cdot x_{c o}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{-\infty}^{x_{c o}} e^{\frac{-\mu^{2}}{2 \sigma^{2}}} \cdot e^{-\frac{-2 B \cdot x \cdot \sigma^{2}+x^{2}-2 x \cdot \mu}{2 \sigma^{2}}} d x}{F\left(x_{c o}\right)}= \\
& =A \cdot e^{-B \cdot x_{c o}} \cdot e^{\frac{-\mu^{2}}{2 \sigma^{2}}} \cdot \frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{-\infty}^{x_{c o}} e^{-\frac{x^{2}-2 x \cdot\left(\mu+B \cdot \sigma^{2}\right)}{2 \sigma^{2}}} d x \\
& F\left(x_{c o}\right)
\end{aligned}=
$$

$$
=A \cdot e^{-B \cdot x_{c o}-\frac{\mu^{2}}{2 \sigma^{2}}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{-\infty}^{x_{c o}} e^{-\frac{x^{2}-2 x \cdot\left(\mu+B \cdot \sigma^{2}\right)+\left(\mu+B \cdot \sigma^{2}\right)^{2}-\left(\mu+B \cdot \sigma^{2}\right)^{2}}{2 \sigma^{2}}} d x}{F\left(x_{c o}\right)}=
$$

$$
=A \cdot e^{-B \cdot x_{c o}-\frac{\mu^{2}}{2 \sigma^{2}}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{-\infty}^{x_{c o}} e^{\frac{-\left(\mu+B \cdot \sigma^{2}\right)^{2}}{-2 \sigma^{2}}} \cdot e^{-\frac{x^{2}-2 x \cdot\left(\mu+B \cdot \sigma^{2}\right)+\left(\mu+B \cdot \sigma^{2}\right)^{2}}{2 \sigma^{2}}} d x}{F\left(x_{c o}\right)}=
$$

$$
=A \cdot e^{-B \cdot x_{c o}-\frac{\mu^{2}}{2 \sigma^{2}}} \cdot e^{\frac{\left(\mu+B \cdot \sigma^{2}\right)^{2}}{2 \sigma^{2}}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{-\infty}^{x_{c o}} e^{-\frac{x^{2}-2 x \cdot\left(\mu+B \cdot \sigma^{2}\right)+\left(\mu+B \cdot \sigma^{2}\right)^{2}}{2 \sigma^{2}}} d x}{F\left(x_{c o}\right)}=
$$

$$
=A \cdot e^{-B \cdot x_{c o}-\frac{\mu^{2}}{2 \sigma^{2}} \frac{\left(\mu+B \cdot \sigma^{2}\right)^{2}}{2 \sigma^{2}}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{-\infty}^{x_{c o}} e^{\frac{-\left(x-\left(\mu+B \cdot \sigma^{2}\right)\right)^{2}}{2 \sigma^{2}}} d x}{F\left(x_{c o}\right)}=
$$

$$
=A \cdot e^{-B \cdot x_{c o}-\frac{\mu^{2}}{2 \sigma^{2}} \frac{\mu^{2}+2 \mu \cdot B \cdot \sigma^{2}+B^{2} \cdot \sigma^{4}}{2 \sigma^{2}}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{-\infty}^{x_{c o}} e^{\frac{-\left(x-\left(\mu+B \cdot \sigma^{2}\right)\right)^{2}}{2 \sigma^{2}}} d x}{F\left(x_{c o}\right)}=
$$

$$
=A \cdot e^{-B \cdot \cdot x_{c o}+\frac{-\mu^{2}+\mu^{2}}{2 \sigma^{2}}+\frac{\not \mu \mu \cdot \cdot \cdot \sigma^{\alpha^{2}}}{\not \theta^{2}}+\frac{B^{2} \cdot \sigma^{2} \cdot \sigma^{2}}{2 \sigma^{2}}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{-\infty}^{x_{c o}} e^{\frac{-\left(x-\left(\mu+B \cdot \sigma^{2}\right)\right)^{2}}{2 \sigma^{2}}} d x}{F\left(x_{c o}\right)}=
$$

$=A \cdot e^{-B \cdot x_{c o}+\mu \cdot B+\frac{B^{2} \cdot \sigma^{2}}{2}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{-\infty}^{x_{c o}} e^{\frac{-\left(x-\left(\mu+B \cdot \sigma^{2}\right)\right)^{2}}{2 \sigma^{2}}} d x}{F\left(x_{c o}\right)}=$
$=A \cdot e^{-B \cdot\left(x_{c o}-\mu\right)+\frac{B^{2} \cdot \sigma^{2}}{2}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{-\infty}^{x_{c o}} e^{-\frac{1}{2}\left(\frac{x-\left(\mu+B \cdot \sigma^{2}\right)}{\sigma}\right)^{2}} d x}{F\left(x_{c o}\right)}=$
Changing the domain of integration:

$$
\begin{aligned}
& u=\frac{x-\left(\mu+B \cdot \sigma^{2}\right)}{\sigma} \Rightarrow x=\mu+B \cdot \sigma^{2}+\sigma u \\
& \frac{d x}{d u}=\frac{d\left(\mu+B \cdot \sigma^{2}+\sigma u\right)}{d u}=\sigma \Rightarrow d x=\sigma d u \\
& x=-\infty \Rightarrow u=\frac{-\infty-\left(\mu+B \cdot \sigma^{2}\right)}{\sigma}=-\infty \\
& x=x_{c o} \Rightarrow u=\frac{x_{c o}-\left(\mu+B \cdot \sigma^{2}\right)}{\sigma}=u_{c o}
\end{aligned}
$$

$=A \cdot e^{-B \cdot\left(x_{c o}-\mu\right)+\frac{B^{2} \cdot \sigma^{2}}{2}} \cdot \frac{\frac{1}{\not \emptyset \sqrt{2 \pi}} \cdot \int_{-\infty}^{u_{c o}} e^{\frac{-u^{2}}{2}} \not \partial d u}{F\left(x_{c o}\right)}=$
From the standard normal distribution:
$\frac{1}{\sqrt{2 \pi}} \cdot \int_{-\infty}^{u_{c o}} e^{\frac{-u^{2}}{2}} d u=\Phi\left(u_{c o}\right)=\Phi\left(\frac{x_{c o}-\left(\mu+B \cdot \sigma^{2}\right)}{\sigma}\right)$
$=A \cdot e^{-B \cdot\left(x_{c o}-\mu\right)+\frac{B^{2} \cdot \sigma^{2}}{2}} \cdot \frac{\Phi\left(\frac{x_{c o}-\left(\mu+B \cdot \sigma^{2}\right)}{\sigma}\right)}{F\left(x_{c o}\right)}=$
$=A \cdot e^{-B \cdot \sigma \cdot \frac{x_{c o o}-\mu}{\sigma}+\frac{B^{2} \cdot \sigma^{2}}{2}} \cdot \frac{\Phi\left(\frac{x_{c o}-\mu}{\sigma}-\frac{B \cdot \sigma^{\not ㇒}}{\not \sigma^{\prime}}\right)}{F\left(x_{c o}\right)}=$
From the standard normal distribution:
$\frac{x_{c o}-\mu}{\sigma}=z_{c o} \quad ; \quad F\left(x_{c o}\right)=\Phi\left(\frac{x_{c o}-\mu}{\sigma}\right)=\Phi\left(z_{c o}\right)$
$=A \cdot e^{-B \cdot \sigma \cdot z_{c o}+\frac{B^{2} \cdot \sigma^{2}}{2}} \cdot \frac{\Phi\left(z_{c o}-B \cdot \sigma\right)}{\Phi\left(z_{c o}\right)}$

$$
T_{-}\left(x_{c o}\right)=A \cdot e^{-B \cdot \sigma \cdot z_{c o}+\frac{B^{2} \cdot \sigma^{2}}{2}} \cdot \frac{\Phi\left(z_{c o}-B \cdot \sigma\right)}{\Phi\left(z_{c o}\right)}
$$

where
$z_{c o}=\frac{x_{c o}-\mu}{\sigma}$
$\Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{\frac{-z^{2}}{2}} d z$
if $\sigma=1$ then
$T_{-}\left(x_{c o}\right)=A \cdot e^{-B \cdot z_{c o}+\frac{B^{2}}{2}} \cdot \frac{\Phi\left(z_{c o}-B\right)}{\Phi\left(z_{c o}\right)}$

2. Mean reaction time of positive responses

In order to find the mean reaction time of positive responses, one must calculate weighted average of all reaction times (results from x-values) of objects with a value higher than the cutoff point. The weights are the frequencies of x.

$$
\begin{aligned}
& T_{+}\left(x_{c o}\right)=\frac{\int_{x_{c o}}^{\infty} t(x) \cdot f(x) d x}{\int_{x_{c o}}^{\infty} f(x) d x}= \\
& =\frac{\left.\int_{x_{c o}}^{\infty} A \cdot e^{-B \cdot\left(x-x_{c o}\right.}\right) \cdot f(x) d x}{\int_{x_{c o}}^{\infty} f(x) d x}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { From the normal distribution: } \\
& f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} \\
& \int_{x_{c o}}^{\infty} f(x) d x=1-F\left(x_{c o}\right)
\end{aligned}
$$

$$
=\frac{\int_{x_{c o}}^{\infty} A \cdot e^{B \cdot\left(x_{c o}-x\right)} \cdot \frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} d x}{1-F\left(x_{c o}\right)}=
$$

$$
=\frac{\int_{x_{c o}}^{\infty} A \cdot e^{B \cdot x_{c o}} \cdot e^{-B \cdot x} \cdot \frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} d x}{1-F\left(x_{c o}\right)}=
$$

$$
=A \cdot e^{B \cdot x_{c o}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{x_{c o}}^{\infty} e^{-B \cdot x} \cdot e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} d x}{1-F\left(x_{c o}\right)}=
$$

$$
=A \cdot e^{B \cdot x_{c o}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{x_{c o}}^{\infty} e^{-B \cdot x-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x}{1-F\left(x_{c o}\right)}=
$$

$$
\begin{aligned}
& =A \cdot e^{B \cdot x_{c o}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{x_{c o}}^{\infty} e^{-\frac{1}{2}\left(2 B \cdot x+\frac{(x-\mu)^{2}}{\sigma^{2}}\right)} d x}{1-F\left(x_{c o}\right)}= \\
& =A \cdot e^{B \cdot x_{c o}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{x_{c o}}^{\infty} e^{-\frac{1}{2} \cdot \frac{2 B \cdot x \cdot \sigma^{2}+(x-\mu)^{2}}{\sigma^{2}}} d x}{1-F\left(x_{c o}\right)}= \\
& =A \cdot e^{B \cdot x_{c o}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{x_{c o}}^{\infty} e^{-\frac{2 B \cdot x \cdot \sigma^{2}+x^{2}-2 x \cdot \mu+\mu^{2}}{2 \sigma^{2}}} d x}{1-F\left(x_{c o}\right)}= \\
& =A \cdot e^{B \cdot x_{c o}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{x_{c o}}^{\infty} e^{\frac{-\mu^{2}}{2 \sigma^{2}}} \cdot e^{-\frac{2 B \cdot x \cdot \sigma^{2}+x^{2}-2 x \cdot \mu}{2 \sigma^{2}}} d x}{1-F\left(x_{c o}\right)}= \\
& =A \cdot e^{B \cdot x_{c o}} \cdot e^{\frac{-\mu^{2}}{2 \sigma^{2}} \cdot \frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{x_{c o}}^{\infty} e^{-\frac{x^{2}-2 x \cdot\left(\mu-B \cdot \sigma^{2}\right)}{2 \sigma_{s}^{2}}} d x} 1-F\left(x_{c o}\right)
\end{aligned}=
$$

$$
=A \cdot e^{B \cdot x_{c o} \frac{\mu^{2}}{2 \sigma^{2}}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{x_{c o}}^{\infty} e^{-\frac{x^{2}-2 x \cdot\left(\mu-B \cdot \sigma^{2}\right)+\left(\mu-B \cdot \sigma^{2}\right)^{2}-\left(\mu-B \cdot \sigma^{2}\right)^{2}}{2 \sigma^{2}}} d x}{1-F\left(x_{c o}\right)}=
$$

$$
=A \cdot e^{B \cdot x_{c o} \frac{\mu^{2}}{2 \sigma^{2}}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{x_{c o}}^{\infty} e^{\frac{-\left(\mu-B \cdot \sigma^{2}\right)^{2}}{-2 \sigma^{2}}} \cdot e^{-\frac{x^{2}-2 x \cdot\left(\mu-B \cdot \sigma^{2}\right)+\left(\mu-B \cdot \sigma^{2}\right)^{2}}{2 \sigma^{2}}} d x}{1-F\left(x_{c o}\right)}=
$$

$$
=A \cdot e^{B \cdot x_{c o}-\frac{\mu^{2}}{2 \sigma^{2}}} \cdot e^{\frac{\left(\mu-B \cdot \sigma^{2}\right)^{2}}{2 \sigma^{2}}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{x_{c o}}^{\infty} e^{-\frac{x^{2}-2 x \cdot\left(\mu-B \cdot \sigma^{2}\right)+\left(\mu-B \cdot \sigma^{2}\right)^{2}}{2 \sigma^{2}}} d x}{1-F\left(x_{c o}\right)}=
$$

$$
=A \cdot e^{B \cdot x_{c o} \frac{\mu^{2}}{2 \sigma^{2}}+\frac{\left(\mu-B \cdot \sigma^{2}\right)^{2}}{2 \sigma^{2}}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{x_{c o}}^{\infty} e^{\frac{-\left(x-\left(\mu-B \cdot \sigma^{2}\right)\right)^{2}}{2 \sigma^{2}}} d x}{1-F\left(x_{c o}\right)}=
$$

$$
=A \cdot e^{B \cdot x_{c o}-\frac{\mu^{2}}{2 \sigma^{2}}+\frac{\mu^{2}-2 \mu \cdot \cdot \cdot \sigma^{2}+B^{2} \cdot \sigma^{4}}{2 \sigma^{2}}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{x_{c o}}^{\infty} e^{\frac{-\left(x-\left(\mu-B \cdot \sigma^{2}\right)\right)^{2}}{2 \sigma^{2}}} d x}{1-F\left(x_{c o}\right)}=
$$

$$
=A \cdot e^{B \cdot x_{c o t}+\frac{-\mu^{2}+\mu^{2}}{2 \sigma^{2}}+\frac{-\not \mu \mu \cdot B \cdot \sigma^{z^{2}}}{\not \sigma^{2}}+\frac{B^{2} \cdot \sigma^{2} \cdot \sigma^{2}}{2 \sigma^{2}}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{x_{c o}}^{\infty} e^{\frac{-\left(x-\left(\mu-B \cdot \sigma^{2}\right)\right)^{2}}{2 \sigma^{2}}} d x}{1-F\left(x_{c o}\right)}=
$$

$=A \cdot e^{B \cdot x_{c o}-\mu \cdot B+\frac{B^{2} \cdot \sigma^{2}}{2}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{x_{c o}}^{\infty} e^{\frac{-\left(x-\left(\mu-B \cdot \sigma^{2}\right)\right)^{2}}{2 \sigma}} d x}{1-F\left(x_{c o}\right)}=$
$=A \cdot e^{B \cdot\left(x_{c o}-\mu\right)+\frac{B^{2} \cdot \sigma^{2}}{2}} \cdot \frac{\frac{1}{\sigma \sqrt{2 \pi}} \cdot \int_{x_{c o}}^{\infty} e^{-\frac{1}{2}\left(\frac{x-\left(\mu-B \cdot \sigma^{2}\right)}{\sigma}\right)^{2}} d x}{1-F\left(x_{c o}\right)}=$
Changing the domain of integration:

$$
\begin{aligned}
& u=\frac{x-\left(\mu-B \cdot \sigma^{2}\right)}{\sigma} \Rightarrow x=\mu-B \cdot \sigma^{2}+\sigma u \\
& \frac{d x}{d u}=\frac{d\left(\mu-B \cdot \sigma^{2}+\sigma u\right)}{d u}=\sigma \Rightarrow d x=\sigma d u \\
& x=x_{c o} \Rightarrow u=\frac{x_{c o}-\left(\mu-B \cdot \sigma^{2}\right)}{\sigma}=u_{c o} \\
& x=\infty \Rightarrow u=\frac{\infty-\left(\mu-B \cdot \sigma^{2}\right)}{\sigma}=\infty
\end{aligned}
$$

$=A \cdot e^{B \cdot\left(x_{c o}-\mu\right)+\frac{B^{2} \cdot \sigma^{2}}{2}} \cdot \frac{\frac{1}{\not \sigma \sqrt{2 \pi}} \cdot \int_{u_{c o}}^{\infty} e^{-\frac{1}{2} u^{2}} \not \not \emptyset d u}{1-F\left(x_{c o}\right)}=$
From the standard normal distribution :
$\frac{1}{\sqrt{2 \pi}} \cdot \int_{u_{c o}}^{\infty} e^{\frac{-u^{2}}{2}} d u=1-\Phi\left(u_{c o}\right)=1-\Phi\left(\frac{x_{c o}-\left(\mu-B \cdot \sigma^{2}\right)}{\sigma}\right)$
$=A \cdot e^{B \cdot\left(x_{c o}-\mu\right)+\frac{B^{2} \cdot \sigma^{2}}{2}} \cdot \frac{1-\Phi\left(\frac{x_{c o}-\left(\mu-B \cdot \sigma^{2}\right)}{\sigma}\right)}{1-F\left(x_{c o}\right)}=$
$=A \cdot e^{B \cdot \sigma \cdot \frac{\left(x_{c o}-\mu\right)}{\sigma}+\frac{B^{2} \cdot \sigma^{2}}{2}} \cdot \frac{1-\Phi\left(\frac{x_{c o}-\mu}{\sigma}+\frac{B \cdot \sigma^{\not}}{\sigma}\right)}{1-F\left(x_{c o}\right)}=$
From the standard normal distribution:

$$
\frac{x_{c o}-\mu}{\sigma}=z_{c o} ; F\left(x_{c o}\right)=\Phi\left(\frac{x_{c o}-\mu}{\sigma}\right)=\Phi\left(z_{c o}\right)
$$

$=A \cdot e^{B \cdot \sigma \cdot z_{c o}+\frac{B^{2} \cdot \sigma^{2}}{2}} \cdot \frac{1-\Phi\left(z_{c o}+B \cdot \sigma\right)}{1-\Phi\left(z_{c o}\right)}$

$$
\begin{aligned}
& T_{+}\left(x_{c o}\right)=A \cdot e^{B \cdot \sigma \cdot z_{c o}+\frac{B^{2} \cdot \sigma^{2}}{2}} \cdot \frac{1-\Phi\left(z_{c o}+B \cdot \sigma\right)}{1-\Phi\left(z_{c o}\right)} \\
& \text { where } \\
& z_{c o}=\frac{x_{c o}-\mu}{\sigma} \\
& \Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{\frac{-z^{2}}{2}} d z
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } \sigma=1 \text { then } \\
& T_{+}\left(x_{c o}\right)=A \cdot e^{B \cdot z_{c o}+\frac{B^{2}}{2}} \cdot \frac{1-\Phi\left(z_{c o}+B\right)}{1-\Phi\left(z_{c o}\right)}
\end{aligned}
$$

Appendix E - Numerical Analysis - Additional Results

In the following part, the optimal cutoff point of the human in the H collaboration level is analyzed for each of the three types of systems. The graphs in this part exhibit the cutoff point against the human sensitivity $\left(d^{\prime}{ }_{h}\right)$ and the cost of time unit $(v T 2 v H)$, for each value of the time parameter (A). The analysis was conducted for $B=0.5, d r=0.5$.

Figure A2 - Figure A4 show the graphs for systems of type I - III, respectively. Each figure shows graphs for different probabilities of object to be target ($P s=0.1,0.2,0.5,0.8,0.9$)

1. Type I analysis

Type I systems give high priority for not causing false alarms. Figure A2 shows the optimal cutoff point (z-axis) of the human for different probabilities of targets (Ps). When Ps is 0.1 (Figure A2-a), an extreme positive cutoff point is preferred for relatively high sensitivities $\left(d^{\prime} h \approx 1.5\right)$. As $P s$ increases to 0.5 (Figure A2-c), i.e., half of the objects are targets, the system prefers an extreme cutoff point only for lower sensitivities ($d^{\prime} h \approx 0.5$). As $P s$ increases further to 0.8, 0.9 (Figure A2-d,e), i.e., most of the objects are targets, the system does not prefer an extreme cutoff point.

2. Type II analysis

Type II systems give high priority for not missing targets. Figure A3 shows the optimal cutoff point (z-axis) of the human for different probabilities of targets ($P s$). When $P s$ is high, 0.9 (Figure A3-e), an extreme negative cutoff point is preferred for relatively high sensitivities ($d^{\prime}{ }_{h} \approx 2.5$). As $P s$ decreases to 0.5 (Figure A3-c), the system prefers an extreme cutoff point only for lower sensitivities $\left(d^{\prime}{ }_{h} \approx 1\right)$. As Ps decreases further to 0.2, 0.1 (Figure A3-b,a), i.e., most of the objects are not targets, the system prefers an extreme positive cutoff point for low sensitivities ($d^{\prime}{ }_{h} \approx 1$).

3. Type III analysis

Type III systems do not prefer one type of error on the other. Figure A4 shows the optimal cutoff point (z-axis) of the human for different probabilities of targets (Ps). When Ps is 0.5 , (Figure A4-c), the optimal cutoff point value is approximately half of the human sensitivity, which represents the distance between the means of the distributions (i.e., the cutoff point is between the means of the distributions). When Ps decreases to 0.2, 0.1 (Figure A4-a,b), the system prefers an extreme positive cutoff point for low sensitivities ($d^{\prime}{ }_{h} \approx 0.5-1.5$). When Ps increases to $0.8,0.9$ (Figure A4-d,e), the system prefers an extreme negative cutoff point for low sensitivities ($d^{\prime}{ }_{h} \approx 0.5-1$).

Figure A2: The optimal cutoff point of the human (z-axis) in the H collaboration level in a Type I system. (a) $P s=0.1$, (b) $P s=0.2$, (c) $P s=0.5$, (d) $P s=0.8$, (e) $P s=0.9 . B=0.5, d r=0.5$.

Figure A3: The optimal cutoff point of the human (z-axis) in the H collaboration level in a Type II system.
(a) $P s=0.1$, (b) $P s=0.2$, (c) $P s=0.5$, (d) $P s=0.8$, (e) $P s=0.9 . B=0.5, d r=0.5$.

Figure A4: The optimal cutoff point of the human (z-axis) in the H collaboration level in a Type III system.
(a) $P s=0.1$, (b) $P s=0.2$, (c) $P s=0.5$, (d) $P s=0.8$, (e) $P s=0.9 . B=0.5, d r=0.5$.

4. Time influence on the optimal cutoff point position

An extreme cutoff point position decreases the total operation time cost. The mean reaction time reduces as the cutoff point is far from the mean of the distribution; therefore, in the sense of time costs, extreme cutoff point is always preferred.

In all the graphs (Figure A2 - Figure A4), the cutoff point varies with the change of the time cost $(v T 2 v H)$ along X-axis. When the time cost is high, an extreme cutoff point is preferred for higher human sensitivities. For example, see the left graph in Figure A4-a. When the time cost is high ($v T 2 v H=-0.03$), an extreme cutoff point (z value is 6) is preferred for human sensitivities that are less than two $\left(d^{\prime}{ }_{h}<=2\right)$. However, when the time cost is low ($v T 2 v H=-0.01$), an extreme cutoff point (6) is preferred only for human sensitivities that are less than one ($d^{\prime}{ }_{h}<=1$).

Parameter A is coordinated with mean reaction time of the human (i.e., high mean reaction time is expected when A holds high values) and has the same influence. Parameter A equals two on the left graphs and increases to ten on the right graphs. An extreme cutoff point is preferred for higher human sensitivities as parameter A increases. For example, see Figure A4-a. In the left graph $A=2$ and an extreme cutoff point (6) is preferred only for human sensitivities that are less than one ($d^{\prime}{ }_{h}<=1$). As parameter A increases to 5 or 10 (in the other two graphs), an extreme cutoff point (6) is preferred also for higher human sensitivities.

To conclude, the analysis shows that parameter A and time cost affect the position of the optimal cutoff point. The phenomenon, of extreme cutoff point position, arises for higher human sensitivities as parameter A and/or the time cost are higher.

Appendix F-Paper For The $20{ }^{\text {Th }}$ International Conference on Production Research INFLUENCE OF HUMAN REACTION TIME ON PERFORMANCE OF HUMAN-ROBOT TARGET RECOGNITION SYSTEMS

D. Yashpe ${ }^{1}$, A. Bechar ${ }^{2}$ and Y. Edan ${ }^{1}$
${ }^{1}$ Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel
${ }^{2}$ Institute of Agricultural Engineering, Agricultural Research Organization - Volcani Center, Bet-Dagan, Israel

Abstract

This study aims to evaluate the influence of human's reaction time on performance of integrated humanrobot target recognition. Particularly, the study presents a model to evaluate the effect of reaction time on the human-robot collaboration level. The model's objective function quantifies the influence of robot, human, environment and task parameters, through a weighted sum of performance measures. Simulation analysis considered reaction time that depended on the signal strength of the observed object. Results reveal an extreme threshold selection, in two cases: when human sensitivity reduces, and when the cost of time increases. An extreme threshold selection decreases the total operational time costs.

Keywords:

Human-robot collaboration, collaboration levels, reaction time, target recognition.

1 INTRODUCTION

Autonomous robots are systems that can perform tasks without human intervention. They are best suited for applications that require accuracy and high yield under stable conditions, yet they lack the capability to respond to unknown, changing and unpredicted events [1]. Humans, dissimilarly, can easily fit themselves into changing unstructured environment and undefined targets [1]. By taking advantage of the human perception skills and the robot's accuracy and consistency, the combined humanrobotic system can be simplified, resulting in improved performance [1].
In human-robot collaborative systems, types of collaboration levels differ by nature, scale, structure, and number of levels. Sheridan [2] describes ten levels of automation of decision and action selection. Bechar and Edan [3] evaluate two collaboration levels for agriculture robot guidance through an off-road path. Bruemmer et al. [4] determine four modes of control of a remote mobile robot in an in-door search and exploration task. Hughes and Lewis [5] use two different levels of control on robot's cameras in order to control it in a remote environment. Czarnecki and Graves [6] describe a scale of five humanrobot interaction levels for a telerobotic behavior based system.
Target recognition is a critical element in most robotic systems [1] including industrial and service applications, quality assurance, medical, agriculture and remote sensing [1]. Automatic target recognition in unstructured outdoor environments is characterized by low detection rates and high false alarm rates [7].
Reaction time is the cognitive time required for the observer to decide whether an object is a target or not Accuracy in target recognition measures the ability of the observer to detect targets correctly. The relation between reaction time and accuracy varies according to whether speed or accuracy of performance is emphasized; and according to whether one response or another is more probable or weighted more heavily [8]. Murdock [9] analyses the strength-latency relationship and introduces a generic reaction time model based on the distance-from-
criteria of the observed object. He suggests that an exponential function is the most reasonable to use in order to transfer the object's strength, i.e., distance-from-criteria, into latency. In this research, a reaction time model, based on Murdock [9], is incorporated into Bechar's [1] collaboration model.

The study aims to evaluate the influence of human's reaction time on the performance of an integrated humanrobot system, designated for target recognition tasks. Particularly, the study focuses on how reaction time affects the level of human- robot collaboration that results in best performance.

2 METHODOLOGY

2.1 Collaboration levels

Four collaboration levels for target recognition were designed based on [1]: i) H - the Human, unaided, detects and marks the desired target; ii) HR - the Human marks targets, aided by recommendations from an automatic detection algorithm, i.e., the targets are automatically marked by a Robot detection algorithm, the human acknowledges the robot's correct detections, ignores false detections and marks targets missed by the robot; iii) HOR

- the Human Operators' assignment is to cancel false detections and to mark the targets missed by an automatic Robot detection algorithm; and iv) R - the targets are marked automatically by the system (Robot).

2.2 Collaboration model

The collaboration model was based on a model defined in [1]. An objective function describes the expected value of system performance, given the properties of the environment and the system. The goal is to maximize the objective function. The objective function ($V_{I S}$, equation 1) is composed of the four responses of the target detection process and the system operational costs:
$V_{I s}=V_{H s}+V_{M s}+V_{F A s}+V_{C R s}+V_{T s}$
Where $V_{H s}$ is the gain for target detections (hits), $V_{F A s}$ is the penalty for false alarms, $V_{M s}$ is the system penalty for missing targets, $V_{C R s}$ is the gain for correct rejections, and $V_{T s}$ is the system operation cost. All gain, penalty and cost values have the same units, which enable us to add them
together to a single value, expressed in the objective function. The gain and penalty functions are:
$V_{H s}=N \cdot P_{S} \cdot P_{H s} \cdot V_{H}$
$V_{M s}=N \cdot P_{S} \cdot P_{M s} \cdot V_{M}$
$V_{F A s}=N \cdot\left(1-P_{S}\right) \cdot P_{F A s} \cdot V_{F A}$
$V_{C R s}=N \cdot\left(1-P_{S}\right) \cdot P_{C R s} \cdot V_{C R}$
Where, N is the number of objects in the observed image and P_{S} is the probability of an object becoming a target. The third parameter in the equations, $P_{X_{s}}$, is the system probability for one of the outcomes: hit, miss, false alarm or correct rejection (x can be $H_{, ~ M, ~ F A ~ a n d ~}^{C R}$). The fourth parameter, V_{X}, is the system gain or penalty from an expected outcome.
The system's probability of a certain outcome is influenced by the serial structure of the model and is composed of the robot and the human probabilities:

$$
\begin{align*}
& P_{H s}=P_{H r} \cdot P_{H r h}+\left(1-P_{H r}\right) \cdot P_{H h} \tag{6}\\
& P_{M s}=P_{M r} \cdot P_{M h}+\left(1-P_{M r}\right) \cdot P_{M r h} \tag{7}\\
& P_{F A s}=P_{F A r} \cdot P_{F A r h}+\left(1-P_{F A r}\right) \cdot P_{F A h} \tag{8}\\
& P_{C R s}=P_{C R r} \cdot P_{C R h}+\left(1-P_{C R r}\right) \cdot P_{C R r h}
\end{align*}
$$

Where:
$P_{H r}$ is the robot probability of a hit, $P_{H r h}$ is the probability of confirming a robot hit and $P_{H h}$ is the human probability of detecting a target that the robot did not detect;
$P_{M r}$ is the robot miss probability, $P_{M r h}$ is the human probability of not confirming a robot hit and $P_{M h}$ is the human probability of missing a target the robot missed. $P_{\text {FAr }}$ is the robot false alarm probability, $P_{\text {FArh }}$ is the human probability of not avoiding a robot false alarm and $P_{F A h}$ is the human probability of a false alarm on targets the robot correctly rejected;
$P_{C R r}$ is the robot probability of a correct rejection, $P_{C R r h}$ is the human probability of correcting a robot false alarm and $P_{C R h}$ is the human probability of a correct rejection on targets the robot correctly rejected.
The sum of hit and miss probabilities (of the same type) and the sum of false alarm and correct rejection probabilities equals one.
The system's operation cost is:
$V_{T s}=t_{S} \cdot V_{t}+\left[N \cdot P_{S} \cdot P_{H s}+N \cdot\left(1-P_{S}\right) \cdot P_{F A s}\right] \cdot V_{C}$
Where, t_{s} is the time required by the system to perform a task, V_{t} is the cost of one time unit, and V_{C} is the operation cost of one object recognition (hit or false alarm).
The system time consists of the time it takes the human to decide whether to confirm or reject robot detections; and the time it takes the human to decide whether objects not detected by the robot are targets or not. The robot operation time of processing the images and performing hits or false alarms, is also included.

$$
\begin{align*}
t_{S} & =N \cdot P_{S} \cdot P_{H r} \cdot P_{H r r} \cdot t_{H r h}+ \\
& +N \cdot P_{S} \cdot\left(1-P_{H r}\right) \cdot P_{H h} \cdot t_{H h}+ \\
& +N \cdot P_{S} \cdot P_{H r} \cdot\left(1-P_{H r r}\right) \cdot t_{M r h}+ \\
& +N \cdot P_{S} \cdot\left(1-P_{H r}\right) \cdot\left(1-P_{H h}\right) \cdot t_{M h}+ \tag{11}\\
& +N \cdot\left(1-P_{S}\right) \cdot P_{F A r} \cdot P_{F A r h} \cdot t_{F A r h}+ \\
& +N \cdot\left(1-P_{S}\right) \cdot\left(1-P_{F A r}\right) \cdot P_{F A h} \cdot t_{F A h}+ \\
& +N \cdot\left(1-P_{S}\right) \cdot P_{F A r} \cdot\left(1-P_{F A r h}\right) \cdot t_{C R r h}+ \\
& +N \cdot\left(1-P_{S}\right) \cdot\left(1-P_{F A r}\right) \cdot\left(1-P_{F A h}\right) \cdot t_{C R h}+N \cdot t_{r}
\end{align*}
$$

Where:
$t_{\text {Hrr }}$ is the human time required to confirm a robot hit and $t_{H h}$ is the human time required to hit a target that the robot did not hit;
$t_{\text {Mrh }}$ is the human time lost when a robot hit is missed and $t_{M h}$ is the human time invested when missing a target that the robot did not hit;
$t_{\text {FArh }}$ is the human time needed not to avoid a robot false alarm and $t_{F A h}$ is the human false alarm time;
$t_{\text {CRrh }}$ is the human time to correctly reject a robot false alarm, $t_{C R h}$ is the human correct rejection time, and t_{r} is the robot operation time.
Explicit operation of the system objective function, $V_{I S}$, which is suitable for all collaboration levels, is:

$$
\begin{align*}
V_{l s}= & N \cdot P_{S} \cdot\left[P_{H r} \cdot P_{H r h} \cdot\left(V_{H}+V_{C}+t_{H r r} \cdot V_{t}\right)+\right. \\
& \left.+\left(1-P_{H r}\right) \cdot P_{H h} \cdot\left(V_{H}+V_{C}+t_{H h} \cdot V_{t}\right)\right]+ \\
& +N \cdot P_{S} \cdot\left[P_{H r} \cdot\left(1-P_{H r h}\right) \cdot\left(V_{M}+t_{M r h} \cdot V_{t}\right)+\right. \\
& \left.+\left(1-P_{H r}\right) \cdot\left(1-P_{H h}\right) \cdot\left(V_{M}+t_{M h} \cdot V_{t}\right)\right]+ \\
& +N \cdot\left(1-P_{S}\right) \cdot\left[P_{F A r} \cdot P_{F A r h} \cdot\left(V_{F A}+V_{C}+t_{F A r h} \cdot V_{t}\right)+\right. \tag{12}\\
& \left.+\left(1-P_{F A r}\right) \cdot P_{F A h} \cdot\left(V_{F A}+V_{C}+t_{F A h} \cdot V_{t}\right)\right]+ \\
& +N \cdot\left(1-P_{S}\right) \cdot\left[P_{F A r} \cdot\left(1-P_{F A r h}\right) \cdot\left(V_{C R}+t_{C R r h} \cdot V_{t}\right)+\right. \\
& \left.+\left(1-P_{F A r}\right) \cdot\left(1-P_{F A h}\right) \cdot\left(V_{C R}+t_{C R h} \cdot V_{t}\right)\right]+N \cdot t_{r} \cdot V_{t}
\end{align*}
$$

For the H collaboration level, the system objective function will be a degenerate form of the full objective function, and will not include the robot variables:

$$
\begin{align*}
V_{I S}= & N \cdot P_{S} \cdot\left[P_{H h} \cdot\left(V_{H}+V_{C}+t_{H h} \cdot V_{t}\right)+\right. \\
& \left.+\left(1-P_{H h}\right) \cdot\left(V_{M}+t_{M h} \cdot V_{t}\right)\right]+ \tag{13}\\
& +N \cdot\left(1-P_{S}\right) \cdot\left[P_{F A h} \cdot\left(V_{F A}+V_{C}+t_{F A h} \cdot V_{t}\right)+\right. \\
& \left.+\left(1-P_{F A h}\right) \cdot\left(V_{C R}+t_{C R h} \cdot V_{t}\right)\right]
\end{align*}
$$

In the R collaboration level, the system objective function will be a degenerate form of the full objective function, and will not include the human variables:

$$
\begin{align*}
V_{I S} & =N \cdot P_{S} \cdot\left[P_{H r} \cdot\left(V_{H}+V_{C}\right)+\left(1-P_{H r}\right) \cdot V_{M}\right]+ \\
& +N \cdot\left(1-P_{S}\right) \cdot\left[P_{F A r} \cdot\left(V_{F A}+V_{C}\right)+\left(1-P_{F A r}\right) \cdot V_{C R}\right]+ \tag{14}\\
& +N \cdot t_{r} \cdot V_{t}
\end{align*}
$$

2.3 Reaction time model

The development of the model that considers the mean reaction time is based on Murdock [9]. Different denotations for the parameters of the exponential function (A, B) and for the cutoff point ($x_{c o}$), is the only difference from Murdock's model. An exponential function is used in order to transfer the strength of an object (its distance from the cutoff point) into the reaction time of the observer.
We use the term 'Positive Response' to describe objects that the system marks. A 'Positive Response' can be either a Hit, if the object is a target; or a False Alarm if it is not. The term 'Negative Response' describes objects with a value lower than the cutoff point value, which the system does not mark as targets. A 'Negative response' can be either a Miss, if the object is a target; or a Correct Rejection if it is not. The reaction time function maps the distance of x from a given cutoff point $x_{c o}$ into time units and it is different for positive and negative responses. An exponential function can describe a symmetrical descendent of latency on both sides of the yes/no criterion (Figure 1). The reaction time function is:
$t(x)= \begin{cases}A e^{-B \cdot\left(x_{c 0}-x\right)} & ; \text { when } x \leq x_{c o} \\ A e^{-B\left(x-x_{c 0}\right)} & ; \text { otherwise }\end{cases}$
In order to fit this function to real data, the parameters A and B must be adjusted. Different parameters values lead
to different reaction time functions. One can define different values for negative and positive responses.

Figure 1 - Reaction time function.
Suppose X is normally distributed with a mean of μ and a variance of σ^{2}. In order to find the mean reaction time, one must calculate the weighted average of all reaction times (results from x-values) of the same response. The weights are the frequencies of x. The mean reaction time depends on the cutoff point value and is denoted as $T_{-}\left(x_{c o}\right), T_{+}\left(x_{c o}\right)$ for negative and positive responses, respectively.
The mean reaction time equations for negative and positive responses are:

$$
\begin{align*}
& T_{-}\left(x_{c o}\right)=\frac{\int_{-\infty}^{x_{c o}} t(x) \cdot f(x) d x}{\int_{-\infty}^{x_{c o}} f(x) d x}=\frac{\int_{-\infty}^{x_{c o}} A e^{-B\left(x_{c o}-x\right)} \cdot f(x) d x}{\int_{-\infty}^{x_{c o}} f(x) d x}= \tag{16}\\
& =\ldots=A \cdot e^{-B \cdot \sigma \cdot z_{c o}+\frac{B^{2} \cdot \sigma^{2}}{2}} \cdot \frac{\Phi\left(z_{c o}-B \cdot \sigma\right)}{\Phi\left(z_{c o}\right)} \\
& T_{+}\left(x_{c o}\right)=\frac{\int_{x_{c o}}^{\infty} t(x) \cdot f(x) d x}{\int_{x_{c o}}^{\infty} f(x) d x}=\frac{\int_{x_{c o}}^{\infty} A e^{-B\left(x-x_{c o}\right)} \cdot f(x) d x}{\int_{x_{c o}}^{\infty} f(x) d x}= \tag{17}\\
& =\ldots=A \cdot e^{B \cdot \sigma \cdot z_{c o}+\frac{B^{2} \cdot \sigma^{2}}{2}} \cdot \frac{1-\Phi\left(z_{c o}+B \cdot \sigma\right)}{1-\Phi\left(z_{c o}\right)}
\end{align*}
$$

where
$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}$
$z_{c O}=\frac{x_{C O}-\mu}{\sigma} ; \Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{\frac{-z^{2}}{2}} d z$
The equations that were developed for the normal distribution are adjusted to the signal and noise distributions. The means and standard deviations of the signal and noise distributions are respectively $\mu_{\mathrm{S}}, \sigma_{\mathrm{S}}$ and μ_{N}, σ_{N}. We used the appropriate equations (for positive or negative responses) and parameters (mean and standard deviation of signal or noise distributions) to define equations for mean reaction time of all four possible outcomes (miss, hit, correct rejection and false alarm):

$$
\begin{align*}
& T_{M}=A \cdot e^{-B \cdot \sigma_{S} \cdot z_{S}+\frac{B^{2} \cdot \sigma_{S}^{2}}{2}} \cdot \frac{\Phi\left(z_{S}-B \cdot \sigma_{S}\right)}{\Phi\left(z_{S}\right)} \tag{18}\\
& T_{H}=A \cdot e^{B \cdot \sigma_{S} \cdot z_{S}+\frac{B^{2} \cdot \sigma_{S}^{2}}{2} \cdot \frac{1-\Phi\left(z_{S}+B \cdot \sigma_{S}\right)}{1-\Phi\left(z_{S}\right)}} \tag{19}
\end{align*}
$$

$T_{C R}=A \cdot e^{-B \cdot \sigma_{N} \cdot z_{N}+\frac{B^{2} \cdot \sigma_{N}^{2}}{2}} \cdot \frac{\Phi\left(z_{N}-B \cdot \sigma_{N}\right)}{\Phi\left(z_{N}\right)}$
$T_{F A}=A \cdot e^{B \cdot \sigma_{N} \cdot z_{N}+\frac{B^{2} \cdot \sigma_{N}{ }^{2}}{2}} \cdot \frac{1-\Phi\left(\mathrm{z}_{N}+B \cdot \sigma_{N}\right)}{1-\Phi\left(\mathrm{z}_{N}\right)}$
where
$z_{S}=\frac{x_{C O}-\mu_{S}}{\sigma_{S}} \quad ; \quad z_{N}=\frac{x_{C O}-\mu_{N}}{\sigma_{N}}$
The reaction time function depends on the value of the cutoff point $x_{c o}$. In our collaborative system, the robot observes the objects first followed by the human. Accordingly, the human decides about two different types of objects: objects that the robot already marked as targets; and objects the robot did not mark (Figure 2). The human uses two different cutoff points, for the two types of objects. Accordingly, two different reaction time functions should be implemented. The denotations with the index rh or h (for instance, $T_{\text {CRh }}, T_{\text {Hrh }}$ etc.), will represent reaction times for objects the robot marked as targets and for those it did not, respectively.
In the objective function, each of the human time variables (denoted as $t_{X h}$ or $t_{X h}$) represents a superposition of a decision time and a motoric time (denoted as t_{M}), in accordance with the collaboration level. The decision times in the previous work [1] were considered constant. In this work, the decision times are replaced with the mean reaction times introduced above.
When the system operates in the R collaboration level the robot fulfills the task all by itself and all human time variables equal zero (there is no human intervening).
In the H collaboration level, the human does not use the robot's help and the time variables are:
$\begin{array}{ll}t_{M h}=T_{M h} & t_{C R h}=T_{C R h} \\ t_{H h}=T_{H h}+t_{M} & t_{F A h}=T_{F A h}+t_{M}\end{array}$
In the HR collaboration level, the robot recommends the human by indicating potential targets. Then the human confirms targets he thinks are real and marks extra targets the robot did not indicate. The human does a motoric action (marking) if he thinks the robot recommended well. The time variables are:

$$
\begin{array}{ll}
t_{M h}=T_{M h} & t_{M r h}=T_{M r h} \\
t_{H h}=T_{H h}+t_{M} & t_{\text {Hrh }}=T_{\text {Hrh }}+t_{M} \\
t_{C R h}=T_{C R h} & t_{C R r h}=T_{C R r h} \\
t_{\text {FAh }}=T_{F A h}+t_{M} & t_{\text {FArh }}=T_{\text {FArh }}+t_{M} \tag{23}
\end{array}
$$

In the HOR collaboration level, the human supervises the robot. The robot marks targets and the human is checking those marks. The human unmarks targets that are not real and marks extra targets that the robot missed. In this case, the human does a motoric action (unmarking) only if he thinks the robot made a mistake. The time variables are:
$t_{M h}=T_{M h}$

$$
\begin{align*}
& t_{\text {Mrh }}=T_{\text {Mrh }}+t_{M} \\
& t_{\text {Hrh }}=T_{\text {Hrh }} \tag{24}\\
& t_{\text {CRrh }}=T_{\text {CRrh }}+t_{M} \\
& t_{\text {FArh }}=T_{\text {FArh }}
\end{align*}
$$

$t_{H h}=T_{H h}+t_{M}$
$t_{C R h}=T_{C R h}$
$t_{F A h}=T_{F A h}+t_{M}$
The (motoric) time it takes to physically mark or unmark an object depends on the system interface and the environment conditions. It should not vary between detected objects and therefore will remain considered constant.

Figure 2 - Reaction times diagram.

3 NUMERICAL ANALYSIS

A numerical analysis of the model was conducted using MatLab 7.1 with optimal human and robot cutoff points. The optimal cutoff points were determined by finding the cutoff points that yielded the maximal objective function value. The objective function score was calculated for each possible combination of parameters and variables, for each collaboration level.

3.1 Model parameters

Task types and parameters
Analysis focused on three system types characterized by the gains and penalties for each outcome ($V_{H}, V_{M}, V_{F A}, V_{C R}$, [10]). Table 1 details the values for each type of system.
Type I gives high priority for not doing errors of the first type, i.e., detecting a target when a target does not exist (false alarm).
Type II gives high priority for not doing errors of the second type, i.e., missing a target.
Type III systems do not prefer one type of error and therefore yield identical values for all four possible outcomes.
The time cost $\left(V_{T}\right)$ is the cost of one time unit of system operation. It includes the cost of the human operator and the robot since they are operating simultaneously. In order to analyze the influence of time cost regardless of the system type, it was set relatively to the gain for a hit ($\left.V_{T}=V_{H} \cdot V_{T 2 H}\right)$. The ratio between the time cost and the gain for a hit, $V_{T 2 H}$, was set to the values: -80, -40, $-20\left(\right.$ hour $\left.^{-1}\right)$.
For example, when V_{H} equals 5 points, V_{T} obtained the values: -400, $-200,-100$ points.
The operational cost $\left(V_{C}\right)$ is the cost of the action conducted when the system detects a target, either if it is a hit or a false alarm. This cost was set to 2 points.

Environmental parameters

The parameters N and P_{s} determine the environmental conditions. The objective function was calculated for 1,000 objects (N). The target probability (P_{S}) represents the fraction of targets from all objects and received values between 0.1 and 0.9 .

Human parameters

The decision time was calculated using the mean reaction time function introduced above. Parameter A, of the function, was set to 2,5 or 10 seconds and parameter B was set to $0,0.5,1,1.5$ or 2 . The human motoric time (t_{M}) of executing an action was set to 2 seconds.
The sensitivity represents the ability of the observer to distinguish between real targets and the other objects. The human's sensitivity ($d^{\prime} h$) was varied between 0.5 and 3 .

Robot parameters

The sensitivity of the robot $\left(d_{r}^{\prime}\right)$ was varied between 0.5 and 3 . The robot decision time $\left(t_{r}\right)$ is negligible relatively to the other times and was set to 0.01 seconds.

Table 1. Gains and penalties for different types of systems.

	Type I	Type II	Type III
V_{H}	5	50	10
V_{M}	-10	-10	-10
$V_{F A}$	-50	-5	-10
$V_{C R}$	10	10	10

3.2 Cutoff point analysis

When the sensitivity of the human operator is high, the human operator can better distinguish between targets. The optimal cutoff point is a point between the means of the noise and signal distribution (Figure 3, a). When the sensitivity is low, the ability to distinguish between targets reduces and it becomes more effective not to examine the objects. The optimal cutoff point goes to the extreme and the human actually does not mark any object as a target (Figure 3, b). When the system gives high priority to "not doing false alarms" (Type I), the cutoff point will be set to infinity. When there is high priority of not missing a target (Type II), the cutoff point will be set to minus infinity, and all of the objects will be marked as targets.
(a)

Figure 3 - A cutoff point between the distributions' means when the sensitivity is high (a) and extreme cutoff point selection when sensitivity is low (b).
This influence finds expression in the analysis, regardless of the response time costs of the observer. The time costs amplify this phenomenon. The mean response time reduces as the cutoff point is far from the mean of the distribution; therefore, in the sense of time costs, an extreme cutoff point is always preferred. The 'extremes' in this data set are -3 and 6 .
The position of the cutoff point influences all other parts of the objective function. An extreme positive cutoff point, for example, causes small probabilities of false alarms and hits; and causes high probabilities of miss and correct rejections. The overall gains and penalties of these outcomes are modified accordingly.

Human optimal cutoff point influence in Type I systems
Type I systems give high priority for avoiding false alarms. When the human has low sensitivity, it is expected to get the highest value possible for the optimal cutoff point. Figure 4 (a) shows the optimal cutoff point of the human (z-axis). When the sensitivity of the human is low, the optimal cutoff point value is six (the highest value possible).
As the cutoff point is drawn away from the means of the distribution (see Figure 3, b), the distance of the objects from the cutoff point increases; and the mean response time, correspondingly, decreases. Figure 4 (b) shows decrease in system operation time for low human sensitivity.
Furthermore, the analysis shows that the total penalty for false alarms grows as the sensitivity of the observer decreases (Figure 4, c). This phenomenon exists up to the point where the sensitivity is too small. Then, an extreme cutoff point is preferred and the human marks less objects as targets. Therefore, the total penalty for false alarms decreases as was expected in Type I systems.

Human optimal cutoff point influence in Type II systems

Type II systems give high priority for not missing targets. Analysis shows that when human has low sensitivity, the optimal cutoff point value -3 (the lowest value possible).
As was explained for Type I, extreme cutoff point results in redundancy of system operation time. The total penalty for misses behaves the same as the total penalty for false alarms in Type I.

Human optimal cutoff point influence in Type III systems

In Type III systems, the gains and penalties are equal for all outcomes, there is no preferable error and the cutoff point remains between the means of the distributions even when the sensitivity of the observer is low.
The total penalty for misses and the total penalty for false alarms continue to decrease also for low sensitivities.

3.3 Human's dominancy analysis

The human operations cause an increase in operation time and costs. The human response time and motoric time are significantly higher than the robot decision time. Therefore, in the sense of time costs, it is reasonable that involving a human in the recognition process will be less profitable when the time cost is high.
In Figure 5, a single collaboration level dominates each zone and the sensitivities of the human and the robot are ranged along x and y axes. The graphs present the collaboration level required to achieve the best system performance.

Figure 4-Optimal cutoff point of the human (a), system operation time (b) and System total penalty for false alarms (c) in the H collaboration level, Type I system. Human sensitivity and the time cost are ranged along x and y axes.

Figure 5 - Human dominance reduces as the time cost increases.
Each color represents different operating level: HR- dark grey, HOR- light grey and R-black

One can see that human dominance reduces as the time cost increases. The time cost increases from the right graph ($V_{T} 2 V_{H}=-0.0055$) to the left graph ($V_{T} 2 V_{H}=-0.0222$). Accordingly, the area of the HR and HOR collaboration levels diminished. Human dominance also reduces as parameter A increases and/or parameter B decreases (Equation 15).

3.4 Object probability analysis

The probability of an object to be a target $\left(P_{S}\right)$ influences the phenomenon of the extreme cutoff point selection. In Type II systems when there are many targets among the objects (i.e., P_{S} is high), the system prefers extreme cutoff point for higher sensitivities of the human (relatively to low sensitivities in cases where P_{S} is not high and an extreme cutoff point is preferred). In a similar manner, when most of the objects are not targets (i.e., P_{s} is low), in Type I systems, an extreme cutoff point is preferred for higher human sensitivities.

4 CONCLUSIONS

The numerical analysis reveals a phenomenon of extreme optimal cutoff point position for the human, when the sensitivity of the human is low. An extreme cutoff point position decreases the total operation time cost. Therefore, an extreme cutoff point is always preferred when time costs are a priority.
Both mean reaction time and time cost affect the position of the optimal cutoff point. This arises for higher human sensitivities as the mean time and/or the time cost are higher. Furthermore, the analysis shows that collaboration with a human is less profitable when the mean reaction time and/or the time cost are high.
The probability of an object to be a target $\left(P_{S}\right)$ influences the extreme cutoff point selection. A reasonable explanation for this influence is the potential of misses or false alarms to occur. When there are many targets, the potential of miss is higher; and when there are few targets, the potential of false alarm is high. Therefore, when the system tries to avoid false alarms, it "gives up" on trying to detect targets when most of the objects are not targets.

5 ACKNOWLEDGMENTS

This research was partially supported by the Paul Ivanier Center for Robotics Research and Production Management, and by the Rabbi W. Gunther Plaut Chair in Manufacturing Engineering, Ben-Gurion University of the Negev.

6 REFERENCES

[1] Bechar A. , 2006, Human-Robot Collaboration Methods for Target Recognition in Unstructured Environments, Ph.D. dissertation, Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
[2] Sheridan T.B., 1992, Telerobotics, Automation and Supervisory Control, Cambridge, MA. MIT Press.
[3] Bechar A. \& Edan Y., 2000, Human-Robot Collaboration for Agricultural Robot Guidance, ASAE Paper No. 00-3135.
[4] Bruemmer D.J., Boring R.A., Few D. A., Marble J.A., Nielsen C.W. and Walton M.C., 2005, Shared Understanding for Collaborative Control, IEEE Transactions on Systems, Man and Cybernetics: Part A, vol. 35, no. 4, pp. 494-504.
[5] Hughes S.B. \& Lewis M., 2005, Task-Driven Camera Operations for Robotic Exploration, IEEE Transactions on Systems, Man and Cybernetics: Part A, vol. 35, no. 4, pp. 513-522.
[6] Czarnecki C. \& Graves A.R., 2000, Design Patterns for Behavior-Based Robotics, IEEE Transactions on Systems, Man and Cybernetics: Part A, vol. 30, no. 1, pp. 36-41.
[7] Bechar A. \& Edan Y., 2003, Human-Robot Collaboration for Improved Target Recognition of Agricultural Robots, Industrial Robot 30(5): 432-436.
[8] Ratcliff R. \& Rouder J. F., 1998, Modeling Response Times for Two Choice Decisions, Psychological Science, vol. 9, No. 5, pp. 347-356.
[9] Murdock B. B., 1985, An Analysis of The StrengthLatency Relationship, Memory and Cognition, 13 (6), 511-521.
[10] Oren Y., Bechar A., Joachim M., Edan Y., 2008, Performance Analysis of Human-Robot Collaboration in Target Recognition Tasks, IEEE International Conference on Distributed Human-Machine Systems, 1-56.

Appendix G-The Numeric Simulation Software

1. The experiment program code

```
% This program sets the parameter's values and runs an experiment
clear all;
clc;
% Create directories fot the experiment data
exName='TypeI';% Experiment name
DataPath=['D:\Data\', exName, '\'];
if isdir(DataPath)
    message=['Directory ', DataPath, ' already exist. Either delete it or change experiment
name.'];
    warning(message)
    break
end
mkdir(DataPath);
mkdir(DataPath, 'Parameters');
mkdir(DataPath, 'Optimal');
mkdir(DataPath, 'Graphs');
% Parameters values
N=1000; % # of objects
vH=5; % The gain from Hit
vM=-10; % The panelty for Miss
vFA=-10*vH; % The panelty for False Alarm
vCR=-1*VM; % The gain from Correct Rejection
vT2vH_vector=[-80,-40,-20]./3600; % The cost of one time unit
vC=-2; % Cost of one object recognition operation
tr=0.01; % The robot time. sec/object on average
tMotor=2; % The motoric time of the human
Ps_vector=[0.1,0.2,0.5,0.8,0.9]; % Probability for object to be target
dh_vector=[0.5:0.5:3]; % The sensitivity of the human
dr_vector=[0.5:0.5:3]; % The sensitivity of the robot
XcoRange=[-3:0.1:6]; % All the posible cutoff points
global A; % A and B are parameters of the reaction time function
global B;
A_vector=[2,5,10];
B_vector=[0,0.5,1,1.5,2];
%Save the parameters for the Graphs programs
eval(['save ' DataPath 'Parameters\Parameters.mat'])
% Run the experiment
OptimalBetas
```


2. The data base creator code

\% This program create a data set of all possible combination of the parameters.
\% Then, it extracts only the records of the optimal objective function value.
tic
\% All possible cutoff points for the robot (r) and the human (h, rh), Based on their sensitivities
\%-----------
Zn_r(:, : i) =XcoRange (i);
Zn_h(:,i,:)=XcoRange(i);
Zn_rh(i,: :) =XcoRange (i);
end

```
%===========================================================================
```

\% Loops 1 to 6 spread all combinations of parameters' values
\% Loop 1 : vT/vH aspect ratio
for ivT2vH = 1:length (vT2vH vector)
vT=vH.*vT2vH_vector (ivT2vH);
\% Loop 2 : B parameter of the mean time function
for iB=1:length(B vector)
B=B_vector (iB);
\% Loop 3: A parameter of the mean time function
for iA=1:length(A_vector)
A=A_vector (iA);
\% Loop 4 : Probability for object to be target
for iPs=1:length(Ps_vector)
Ps=Ps_vector(iPs);
\% Loop 5 : The range of d^{\prime} for the human operator sensitivity
for idh=1:length(dh_vector)
dh=dh vector(idh);
\% Loop 6 : The range of d^{\prime} for the robot sensitivity
for idr=1:length(dr_vector)
dr=dr_vector(idr);

```
%====================================================================================================
% START - For each combination of parameters - create data set of all possible cutoff points
Sin
% All possible cutoff points for the robot(r) and the human(h,rh). Based on their sensitivities
%----------------------------------------------------------------------------------------------------
Zs r=Zn r-dr; % Robot's cutoff point for a signal
Zs_h=Zn_h-dh; % Human's cutoff point for a signal
Zs_rh=Zn_rh-dh; % Human's cutoff point for a signal, when collaborate with the robot
% The probabilities for the robot (r) and the human (h, rh). Based on the cutoff points
p------------------------------------------------------------
pFA r=1-normcdf(Zn r); % Robot's probability for a false alarm
pH_\overline{h}=1-normcdf(Zs_\overline{h}); % Human's probability for a hit
pFA
pH r}h=1-normcdf(Zs-rh); % Human's probability for a hit, when collaborate with the robo
pFA_rh=1-normcdf(Zn_rh); % Human's probability for a FA, when collaborate with the robot
% The mean response time of the human for objects the robot did not mark
%--------------------------------------------------------------------------------------------------------
tH_h=meanTime(Zs_h,'p');
tM_h=meanTime(Zs_h,'n');
tF\overline{A}}\textrm{h}=m=anTime(Z\overline{n}h,'p')
tCR_h=meanTime(Zn_h,'n');
```

```
% The mean response time of the human for objects the robot did mark
tH rh=meanTime(Zs rh,'p');
tM_rh=meanTime(Zs_rh,'n');
tFA rh=meanTime(Zn rh,'p');
tCR_rh=meanTime(Zn_rh,'n');
%H collaboration level - human alone
%------------------------------------------------------------------------------------------------------------------
% Probabilities, gains and penalties
pHs_H=pH_h; % Probability for a hit
vHs_H=N.*Ps.*pHs_H.*vH; % Gain from a hit
pMs_H=1-pHs_H; - % Probability for a miss
vMs_H = N.*\overline{Ps.*pMs_H.*vM; % Penalty from a miss}
pFAs_H=pFA_h; % Probability for a false alarm
vFAs_-H=N.*\overline{(1-Ps).*pFAs_H.*vFA; 渞 Penalty from a false alarm}
pCRs_H = 1-pFAs_H; % Probability for a correct rejection
vCRs_H = N.*(1-\overline{Ps}).*pCRs_H.*vCR; % Gain from a correct rejection
% Operational costs
ts_H= N.*Ps.*pH_h.*(tH_h+tMotor)... % The system time
    +N.*(1-PS).*pFA_h.*(tFA_h+tMotor)...
    +N.*Ps.*(1-pH_h).*tM_h...
    +N.* (1-Ps).* (\overline{1}-\textrm{pFA}h)
vTs_H=ts_H.*vT; % Time costs
vCs_H=(N.*Ps.*pH_h... % Action costs (for detected targets)
    +N.*(1-Ps).*pFA_h).*vC;
% The objective function
VIs_H=vHs_H+vMs_H+vFAs_H+vCRs_H+vTs_H+vCs_H;
% HR collaboration level - the robot recommends the human
%---------------------------------------
pHs HR=pH r.*pH rh+(1-pH r).*pH h; % Probability for a hit
vHs_HR=N.`}\mp@subsup{}{}{-}Ps.*p\overline{Hs_HR.*vH;
pMs_HR=1-pHs_HR; - % Probability for a miss
vMs_HR=N.*Ps.*pMs_HR.*vM; % Penalty from a miss
pFA\overline{s}_HR=pFA_r.*pFA
vFAs_HR=N.*\overline{(1-Ps).}\mp@subsup{}{}{*}\mathrm{ pFAs_HR.*/̄FA; - % Penalty from a false alarm}
pCRs_HR=1-pFAs_HR;
Probability for a correct rejection
vCRs_HR=N.*(1-\overline{P}).*pCRs_HR.*vCR; % Gain from a correct rejection
% Operational costs
ts_HR= N.*Ps.*pH_r.*pH_rh.*(tH_rh+tMotor)... % The system time
    +N.*Ps.*(1-pH r).*pH h.*(tH h+tMotor)...
```



```
    +N.*(1-Ps).*(1-pFA r).*pFA h.*(tFA h+tMotor)...
    +N.*Ps.*pH_r.*(1-p\overline{H_rh).*t\overline{M}_rh...}
    +N.*Ps.*(1-pH_r).* (\overline{1}-\textrm{pH_h}).\overline{*}tM_h...
    +N.*(1-Ps).*pFA_r.*(1-pFA_rh).*tCR_rh...
    +N.* (1-Ps) .* (1-\overline{p}FA_r).* (1-pFA_h) .*\overline{t}CR_h...
    +N*tr;
vTs HR=ts HR.*vT; % Time costs
vCs_HR=(N.*Ps.*pH_r.*pH_rh... % Action costs (for detected targets)
    +N.*Ps.*(1-pH_r).*pH_h...
    +N.*(1-Ps).*p\overline{FA_r.*p\overline{FA_rh...}}\mathbf{~}\mathrm{ . }
    +N.* (1-Ps) .* (1-\overline{p}FA_r). *
\% The objective function
VIs_HR=vHs_HR+vMs_HR+vFAs_HR+vCRs_HR+vTs_HR+vCs_HR;
```

```
%HOR collaboration level - the human supervise the robot
% Probabilities, gains and penalties
% Same as for HR collaboration level
pHs HOR=pHs HR;
vHs_HOR=vHs_HR;
pMs_HOR=pMs_HR;
vMs HOR=vMs HR;
pFA\overline{s}_HOR=pFA\overline{s_HR; % Probability for a false alarm}
vFAs HOR=vFAs HR;
pCRs_HOR=pCRs_HR;
pCRs_HOR=pCRs_HR;
% Probability for a hit
% Gain from a hit
Probability for a miss
% Penalty from a miss
% Penalty from a false alarm
% Operational costs
ts_HOR= N.*Ps.*pH_r.*pH_rh.*tH_rh... % The system time
    +N.*Ps.*(1-pH r).*pH h.*(th h+tMotor)...
```



```
    +N.*(1-Ps).*(1-pFA_r).*pFA_h.*(tFA_h+tMotor)...
    +N.*Ps.*pH_r.*(1-p\overline{H_rh).*(TM_rh+tMötor)...}
    +N.*Ps.*(1-1-pH_r).* (\overline{1}-\textrm{pH_h}).*\overline{tM_h...}
    +N.*(1-Ps).*pFA_r.*(1-p\overline{FA_rh).\overline{*}}\mathrm{ (tCR_rh+tMotor)...}
    +N.* (1-Ps) .* (1-\overline{p}FA_r) .* (1-pFA_h) .*t\overline{C}R_h...
    +N*tr;
vTs HOR=ts HOR.*vT; % Time costs
vCs_HOR=(N.*Ps.*pH_r.*pH_rh... % Action costs (for detected targets)
    +N.*Ps.*(1-pH_r).*pH_h...
    +N.*(1-Ps).*p\overline{FA_r.*p\overline{FA_rh...}}\mathbf{~}\mathrm{ . }
    +N.* (1-Ps) .* (1-\overline{\textrm{p}FA_r). *}
% The objective function
VIs_HOR=vHs_HOR+vMs_HOR+vFAs_HOR+vCRs_HOR+vTs_HOR+vCs_HOR;
%R collaboration level - fully autonomous robot
%-------------------------------------
Probabilities, gains and penalties
pHs_R=pH_r;
pMs_R=1-pHs_R;
vMs__R = N.* Ps.*pMs_R.*vM;
pFA\overline{s}_R=pFA_r;
vFAs_R=N.*(1-Ps).*pFAs_R.*vFA;
pCRs_R = 1-pFAs_R; % Probability for a correct rejection
vCRs_R = N.*(1-\overline{P}).*pCRs_R.*vCR; % Gain from a correct rejection
% Operational costs
ts_R=N*tr*ones(sXco,sXco,sXco); % The system time
vTs_R=ts_R.*vT; % Time costs
vCs_R=(N.*Ps.*pH_r+N.*(1-Ps).*pFA_r).*vC; % Action costs (for detected targets)
```

\% The objective function


```
% This part extracts the records of the optimal system objective function
from the data. For each collaboration level, the maximum value of
the objective function is found, and the indices of the cutoff points are
used to extract the value of the other functions.
```

\%H collaboration level - human alone
\% Find index of optimal Betas
opt VIs H(idr,idh,iPs,iB,iA,ivT2vH) =max(VIs H(:))
$[x \bar{y} z]=\bar{f} i n d\left(V I s _H==o p t _V I s _H(i d r, i d h, i P s, i B, i A, i v T 2 v H)\right) ;$
iXrh_H(idr,idh,iPs,iB,iA, ivT2vH)=x(1);
iXh $H(i d r, i d h, i P s, i B, i A, i v T 2 v H)=y z(1)-l e n g t h(V I s H) *(c e i l(y z(1) . / l e n g t h(V I s ~ H))-1)$
$i X r _H(i d r, i d h, i P s, i B, i A, i v T 2 v H)=\operatorname{ceil}\left(y z(1) . / l e n g \overline{t h}\left(V I s _H\right)\right) ;$
irh $H=i X r h ~ H(i d r, i d h, i P s, i B, i A, i v T 2 v H) ;$
ih $H=i X h$ H(idr, idh, iPs,iB,iA, ivT2vH);
$i r_{-}^{-} H=i X r_{-}^{-} H(i d r, i d h, i P s, i B, i A, i v T 2 v H)$;
\% Create the optimal data metrix based on optimal Betas opt_pHs_H(idr,idh,iPs,iB,iA,ivT2vH) =pHs_H(irh_H,ih_H,ir_H); opt vHs H(idr,idh,iPs,iB,iA,ivT2vH)=vHs H(irh H,ih H,ir H);
 opt_vMs_H(idr,idh,iPs,iB,iA, ivT2vH) =vMs_H(irh_H,ih_H,ir_H); opt_pFAs_H(idr,idh,iPs,iB,iA,ivT2vH) =pFĀs_H(irh_H, īh_H,ir_H); opt_vFAs_H(idr,idh,iPs,iB,iA,ivT2vH)=vFAs_H(irh_H,ih_H,ir_H); opt pCRs H(idr,idh,iPs,iB,iA,ivT2vH)=pCRs H(irh H,ih H,ir H) ; opt_vCRs_H(idr,idh,iPs,iB,iA,ivT2vH)=vCRs_H(irh_H,ih_H,ir_H); opt_ts_H(idr,idh,iPs,iB,iA,ivT2vH)=ts_H(irh_H,ih_H,ir_H);
 opt_-vCs_H(idr,idh,iPs,iB,iA, ivT2vH) $=v$ cs_ $_{-}^{-} H\left(i r h_{-}^{-} H, i h_{-}^{-} H, i r _H\right)$; opt tH h H (idr,idh,iPs,iB,iA, ivT2vH)=tH h(irh H,ih H,ir H); opt_tM_h_H(idr,idh,iPs,iB,iA,ivT2vH)=tM_h(irh_H,ih_H,ir_H); opt tFA $\bar{h} H(i d r, i d h, i P s, i B, i A, i v T 2 v H)=t \overline{F A} h(i \bar{r} h \quad H, \bar{i} h H, \bar{i} r ~ H)$ opt_tCR_h_H(idr,idh,iPs,iB,iA,ivT2vH)=tCR_h(irh_H,ih_H,ir_H);
\%HR collaboration level - the robot recommends the human
\% Find index of optimal Betas
opt VIs HR(idr,idh,iPs,iB,iA,ivT2vH)=max((VIs HR(:)));
$[\mathrm{x} \overline{\mathrm{y}} \mathrm{z}]=\overline{\mathrm{f}}$ ind (VIs_HR==opt_VIs_HR(idr,idh,iPs,iB,iA,ivT2vH));
iXrh HR(idr,idh,iPs,iB,iA,ivT2vH)=x(1);
iXh $\overline{H R}(i d r, i d h, i P s, i B, i A, i v T 2 v H)=y z(1)-l e n g t h(V I s ~ H R) *(c e i l(y z(1) . / l e n g t h(V I s ~ H R))-1) ;$
$i X r _H R(i d r, i d h, i P s, i B, i A, i v T 2 v H)=c e i l\left(y z(1) . / l e n g \overline{t h}\left(V I s _H R\right)\right)$;
irh HR=iXrh HR(idr,idh,iPs,iB,iA,ivT2vH);
$i h_{-}+\mathrm{HR}=i \mathrm{Xh}_{\mathrm{H}} \mathrm{HR}(i d r, i d h, i P s, i B, i A, i v T 2 v H)$;
$i r_{-}^{-H R=i X r _H R(i d r, i d h, i P s, i B, i A, i v T 2 v H) ; ~}$
\% Create the optimal data metrix based on optimal Betas
opt pHs_HR(idr,idh,iPs,iB,iA, ivT2vH)=pHs_HR(irh HR,ih HR,ir HR) opt_vHs_HR(idr,idh,iPs,iB,iA,ivT2vH)=vHs_HR(irh_HR,ih_HR,ir_HR); opt_pMs_HR(idr,idh,iPs,iB,iA,ivT2vH)=pMs_HR(irh_HR,ih_HR,ir_HR) opt $v M s$ HR(idr,idh,iPs,iB,iA,ivT2vH)=vMs HR(irh HR,ih HR,ir HR); opt_pFAs_HR(idr,idh,iPs,iB,iA,ivT2vH)=pFĀs_HR(irh_HR,in_HR,ir_HR); opt_vFAs_HR(idr,idh,iPs,iB,iA,ivT2vH)=vFAs_HR(irh_HR,ih_HR,ir_HR); opt pCRs HR(idr,idh,iPs,iB,iA,ivT2vH)=pCRs HR(irh HR,ih HR,ir HR); opt_vCRs_HR(idr,idh,iPs,iB,iA,ivT2vH)=vCRs_HR(irh_HR,ih_HR,ir_HR); opt ts HR (idr,idh,iPs,iB,iA,ivT2vH)=ts HR(irh_HR,ih_HR,ir_HR); opt_vTs_HR(idr,idh,iPs,iB,iA,ivT2vH)=vTs_HR(irh_HR,ih_HR,ir_HR); $o p t _\mathrm{vCs}_{-}^{-} H R(i d r, i d h, i P s, i B, i A, i v T 2 v H)=v C s _H R\left(i r h _H R, i h^{-} H R, i r _H R\right) ;$ opt ${ }^{-} t H \bar{h} H R(i d r, i d h, i P s, i B, i A, i v T 2 v H)=t H^{-} h(i r h \overline{H R}, i h \overline{H R}$,ir $\overline{H R})$;
 opt ${ }^{-} t F \bar{A} \bar{h} H R(i d r, i d h, i P s, i B, i A, i v T 2 v H)=t \bar{F} A$ h (irh $H R, \bar{i} h$ HR, $\left.\bar{i} r \operatorname{HR}\right)$; opt tCR h HR(idr, idh, iPs,iB,iA, ivT2vH) $=t C R$ (irh HR, ih HR, ir HR); opt_th_一rh_HR(idr,idh,iPs,iB,iA,ivT2vH)=tH_r$h\left(i r h _H R, i h _H R, i r _H R\right) ;$ opt tM^{-}rh $\mathrm{HR}(i d r, i d h, i P s, i B, i A, i v T 2 v H)=t M^{-} r h\left(i r h-H R, i h^{-} H R, i r-H R\right)$; opt_tFA_rh_HR(idr,idh,iPs,iB,iA,ivT2vH)=tFA_rh(irh_HR,ih_HR,ir_HR); opt_tCR_rh_HR(idr,idh,iPs,iB,iA,ivT2vH)=tCR_rh(irh_HR,ih_HR,ir_HR);

```
%HOR collaboration level - the human supervise the robot
% Find index of optimal Betas
    opt_VIs_HOR(idr,idh,iPs,iB,iA,ivT2vH)=max(VIs_HOR(:));
    [x yz]=find(VIs HOR==opt VIs HOR(idr,idh,iPs,iB,iA,ivT2vH));
    iXrh_HOR(idr,idh,iPs,iB,iA,ivT2vH)=x(1);
    iXh \overline{HOR(idr,idh,iPs,iB,iA,ivT2vH)=...}
                yz(1)-length(VIs_HOR)*(ceil(yz(1)./length(VIs_HOR))-1);
    iXr_HOR(idr,idh,iPs,iB,iA,ivT2vH)=ceil(yz(1)./length(VIs_HOR));
    irh HOR=iXrh HOR(idr,idh,iPs,iB,iA,ivT2vH);
    ih_HOR=iXh_HOR(idr,idh,iPs,iB,iA,ivT2vH);
    ir_HOR=iXr_HOR(idr,idh,iPs,iB,iA,ivT2vH);
% Create the optimal data metrix based on optimal Betas
    opt_pHs_HOR(idr,idh,iPs,iB,iA,ivT2vH)=pHs HOR(irh HOR,ih HOR,ir HOR);
    opt vHs HOR(idr,idh,iPs,iB,iA,ivT2vH)=vHs HOR(irh HOR,ih HOR,ir HOR);
    opt_pMs_HOR(idr,idh,iPs,iB,iA,ivT2vH)=pMs_HOR(irh_HOR,ih_HOR,ir_HOR);
    opt_vMs_HOR(idr,idh,iPs,iB,iA,ivT2vH)=vMs_HOR(irh_HOR,ih_HOR,ir_HOR);
    opt_pFAs_HOR(idr,idh,iPs,iB,iA,ivT2vH)=pFAs_HOR(irh_HOR,ih_HOR,ir_HOR);
    opt_vFAs_HOR(idr,idh,iPs,iB,iA,ivT2vH)=vFAs_HOR(irh_HOR,ih_HOR,ir_HOR);
    opt pCRs HOR(idr,idh,iPs,iB,iA,ivT2vH)=pCRs HOR(irh HOR,ih HOR,ir HOR);
    opt_vCRs_HOR(idr,idh,iPs,iB,iA,ivT2vH)=vCRs_HOR(irh_HOR,ih_HOR,ir_HOR);
    opt_ts_HÖ(idr,idh,iPs,iB,iA,ivT2vH)=ts_HOR(irh_HOR,ih_HOR,ir_HOR);
    opt vTs HOR(idr,idh,iPs,iB,iA,ivT2vH)=vTs HOR(irh HOR,ih HOR,ir HOR);
    opt_vCs_HOR(idr,idh,iPs,iB,iA,ivT2vH)=vCs_HOR(irh_HOR,ih_HOR,ir_HOR);
    opt tH h HOR(idr,idh,iPs,iB,iA,ivT2vH)=tH h(irh HOR,ih HOR,ir HOR);
    opt_tM_h_HOR(idr,idh,iPs,iB,iA,ivT2vH)=tM_h(irh_HOR,ih_HOR,ir_HOR);
    opt_tFA_\overline{h_HOR(idr,idh,iPs,iB,iA,ivT2vH)=t\overline{FA_h(ir}\mp@subsup{\}{_}{-}HOR,\overline{ih}_HOR,\overline{ir}_HOR);}
    opt tCR h HOR(idr,idh,iPs,iB,iA,ivT2vH)=tCR h(irh HOR,ih HOR,ir HOR);
    opt_tH_rh_HOR(idr,idh,iPs,iB,iA,ivT2vH)=tH_rh(irh_HOR,ih__HOR,ir_HOR);
    opt_tM_rh_HOR(idr,idh,iPs,iB,iA,ivT2vH)=tM_rh(irh_HOR,ih_HOR,ir_HOR);
    opt tFA_rh_HOR(idr,idh,iPs,iB,iA,ivT2vH)=tFA_rh(irh_HOR,ih_HOR,ir_HOR);
    opt_tCR_rh_HOR(idr,idh,iPs,iB,iA,ivT2vH)=tCR_rh(irh_HOR,ih_HOR,ir_HOR);
%R collaboration level - fully autonomous robot
% Find index of optimal Betas
    opt_VIs_R(idr,idh,iPs,iB,iA,ivT2vH)=max(VIs_R(:));
    [x ȳz]=\overline{find(VIs R==opt VIs R(idr,idh,iPs,iB,iA,ivT2vH));}
    iXrh_R(idr,idh,iPs,iB,iA,ivT2vH)=x(1);
    iXh \overline{R}(idr,idh,iPs,iB,iA,ivT2vH)=yz(1)-length(VIs R)*(ceil(yz(1)./length(VIs R))-1);
    iXr R(idr,idh,iPs,iB,iA,ivT2vH)=ceil(yz(1)./length(VIs R));
    irh_R=iXrh_R(idr,idh,iPs,iB,iA,ivT2vH);
    ih \overline{R}=iXh R(idr,idh,iPs,iB,iA,ivT2vH);
    ir_R=iXr_R(idr,idh,iPs,iB,iA,ivT2vH);
\% Create the optimal data metrix based on optimal Betas opt_pHs_R(idr,idh,iPs,iB,iA,ivT2vH)=pHs_R(irh_R,ih_R,ir_R);
```



``` opt pMs R(idr,idh,iPs,iB,iA, ivT2vH) \(=\mathrm{pMs}\) R(irh R,ih R,ir R); opt_vMs_R(idr,idh,iPs,iB,iA,ivT2vH) \(=\mathrm{vMs}\) _R(irh_R,ih_R,ir_R); opt pFAs R(idr, idh,iPs,iB,iA,ivT2vH) \(=p\) FAs \(R(i \bar{r} h R, \overline{i h} R, \overline{i r} R)\); \(o p t \_v F A s \_R(i d r, i d h, i P s, i B, i A, i v T 2 v H)=v F A s_{-}^{-} R\left(i r h \_R, i h \_R, i r \_R\right)\); opt_pCRs_R(idr, idh, iPs,iB,iA,ivT2vH)=pCRs_R(irh_R,ih_R,ir_R); opt vCRs R(idr,idh,iPs,iB,iA,ivT2vH)=vCRs R(irh R,ih R,ir R); opt_ts_R(idr,idh,iPs,iB,iA,ivT2vH)=ts_R(irh_R,īh_R,ir_R);
opt \({ }^{-} v T \bar{s} R(i d r, i d h, i P s, i B, i A, i v T 2 v H)=v \bar{T} s R(i \bar{r} h R, \bar{i} h R, \overline{i r} R)\); opt_vCs_R(idr,idh,iPs,iB,iA,ivT2vH)=vCs_R(irh_R,ih_R,ir_R);
```

```
%find Max objective function
    all VIs=[opt VIs H(idr,idh,iPs,iB,iA,ivT2vH),opt VIs HR(idr,idh,iPs,iB,iA,ivT2vH),..
        opt_VIs_HOR(idr,idh,iPs,iB,iA,ivT2vH),opt_VIs_R(idr,idh,iPs,iB,iA,ivT2vH)];
    opt_VIs(id\overline{r},id\overline{h},iPs,iB,iA,ivT2vH)=max(all_VIs);
%find best CL based on Max objective function
    CL=find(all VIs==opt VIs(idr,idh,iPs,iB,iA,ivT2vH));
```



```
% Find best Zs, Zn for the optimal CL
    all_pHs=[opt_pHs_H(idr,idh,iPs,iB,iA,ivT2vH),opt_pHs_HR(idr,idh,iPs,iB,iA,ivT2vH),...
                opt_p\overline{Hs_HO}R(idr,idh,iPs,iB,iA,ivT2vH),opt_pHs_R(idr,idh,iPs,iB,iA,ivT2vH)];
    all pFAs=[opt pFAs H(idr,idh,iPs,iB,iA,ivT2vH),opt pFAs HR(idr,idh,iPs,iB,iA,ivT2vH),...
                opt_pFAs_HO\overline{R}(idr,idh,iPs,iB,iA,ivT2vH),opt_\overline{pFAs_\overline{R}(idr,idh,iPs,iB,iA,ivT2vH)];}
    opt_Zss(idr,idh,iPs,iB,iA,ivT2vH)=norminv(all_pHs(CL(1)));
    opt_Zns(idr,idh,iPs,iB,iA,ivT2vH)=norminv(all_pFAs(CL(1)));
% find best dTag of the overall system
    opt_dTags(idr,idh,iPs,iB,iA,ivT2vH)=...
                            opt_Zns(idr,idh,iPs,iB,iA,ivT2vH)-opt_Zss(idr,idh,iPs,iB,iA,ivT2vH);
    opt lnBs(idr,idh,iPs,iB,iA,ivT2vH)=..
    -0.5.*(opt_Zss(idr,idh,iPs,iB,iA,ivT2vH).^2-opt_Zns(idr,idh,iPs,iB,iA,ivT2vH).^2);
%Calculate the optimal Zn (r h rh)
    opt_Zn_r_H(idr,idh,iPs,iB,iA,ivT2vH)=Zn_r(irh_H,ih_H,ir_H);
    opt Zn h H(idr,idh,iPs,iB,iA,ivT2vH)=Zn h(irh H,ih H,ir H);
    opt_Zn_rh_H(idr,idh,iPs,iB,iA,ivT2vH)=Zn_rh(irh_H,ih_H,ir_H);
```



```
    opt_Zn_h_HR(idr,idh,iPs,iB,iA,ivT2vH)=Zn_h(irh_HR,ih_HR,ir_HR);
```



```
    opt_Zn_r_
    opt_Zn_h_HOR(idr,idh,iPs,iB,iA,ivT2vH)=Zn_h(irh_HOR,ih_HOR,ir_HOR);
    opt_Zn_rh_HOR(idr,idh,iPs,iB,iA,ivT2vH)=Zn_r_rh(irh_HOR,ih_HOR,ir_HOR);
    opt Zn-r \overline{R}(idr,idh,iPs,iB,iA,ivT2vH)=Zn r(\overline{irh R,i\overline{h}R,ir \overline{R});}
    opt_Zn_h_R(idr,idh,iPs,iB,iA,ivT2vH)= Zn_h(irh_R,ih_R,ir_R);
    opt_Zn_r\overline{h_R(idr,idh,iPs,iB,iA,ivT2vH)=Z\overline{n}_rh(irh_R,in_R,ir_R);}
%Calculate the optimal Zs (r h rh)
    opt Zs r H(idr,idh,iPs,iB,iA,ivT2vH)=Zs r(irh H,ih H,ir H);
    opt Zs-h-H(idr,idh,iPs,iB,iA,ivT2vH)=Zs h(irh H,ih_H,ir-H);
    opt_Zs_rh_H(idr,idh,iPs,iB,iA,ivT2vH)=Z\overline{s_rh(irh_H,\overline{ih_H,ir_H)}}\mathbf{~}\mathrm{ (in_}
    opt Zs r - पेR(idr,idh,iPs,iB,iA,ivT2vH)=Zs_r(irh \overline{HR,ih_HR,ir HR);}
    opt_Zs_h_HR(idr,idh,iPs,iB,iA,ivT2vH)=Zs_h(irh_HR,ih_HR,ir_HR);
    opt Zs rh HR(idr,idh,iPs,iB,iA,ivT2vH)=Z \s rh(irh HR,\overline{ih HR,ir HR);}
    opt Zs r HOR(idr,idh,iPs,iB,iA,ivT2vH)=Zs r(irh HOR,ih HOR,ir HOR);
    opt_Zs__h_HOR(idr,idh,iPs,iB,iA,ivT2vH)=Zs__h(irh_HOR,ih_HOR,ir_HOR);
```



```
    opt Zs-r \overline{R}(idr,idh,iPs,iB,iA,ivT2vH)=Zs r(\overline{irh R,i\overline{h}R,ir \overline{R});}
    opt_Zs__h_R(idr,idh,iPs,iB,iA,ivT2vH)=Zs_h(irh_R,ih_R,ir_R);
    opt_Zs_r\overline{h_R(idr,idh,iPs,iB,iA,ivT2vH)=Z\overline{s}_rh(irh_R,\overline{ih_R,ir_R);}}\mathbf{~}=\overline{i}
%==========================================================================
% END - For each combination of parameters
```



```
                end % loop 6
            end % loop 5
            end % loop 4
    end
                                % loop 4
                                % loop 3
    end % loop 2
end % loop 1
eval(['save ', DataPath, 'Optimal\', 'OptimalData.mat']) % Save the optimal data
```

toc

3. The graph generator code

The graph generator was developed using the GUI assistant of MatLab. The assistant automatically created most of the following code. The bolded parts were added to the generated code.

```
function varargout = GraphGUI(varargin)
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
    'gui_Singleton', gui_Singleton, ...
    'gui_OpeningFcn', @GraphGUI_OpeningFcn, ...
    'gui_OutputFcn', @GraphGUI_OutputFcn, ...
    'gui_LayoutFcn', [] , ...
    'gui Callback', []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
global dr dh Ps B A vT2vH;
global exName DataPath GraphType_str;
global x_str y_str z_str subG_st\overline{r}}\mathrm{ P1_str P2_str P3_str iP1 iP2 iP3;
dr=1; dh=2; Ps=3; B=\overline{4}; A=5; v\overline{T}2vH=6;
return;
% --- Executes just before GraphGUI is made visible.
function GraphGUI_OpeningFcn(hObject, eventdata, handles, varargin)
% Choose default \overline{command line output for GraphGUI}
handles.output = hobject;
% Update handles structure
guidata(hObject, handles);
function varargout = GraphGUI_OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;
% --- Executes on selection change in funName.
function funName Callback(hObject, eventdata, handles)
global z_str;
val=get(hObject,'Value');
str=get(hObject,'String');
if ~strcmp(str{val}, '------------------------------
    z_str=str{val};
    Graph_CreateFcn(hObject, eventdata, handles);
end
return;
% --- Executes during object creation, after setting all properties.
function funName_CreateFcn(hObject, eventdata, handles)
if ispc && isequàl(get(hobject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
    set(hObject,'BackgroundColor','white');
end
% --- Executes on selection change in expName.
function expName_Callback(hobject, eventdata, handles)
global exName DataPath;
val=get(hObject, 'Value') ;
str=get(hObject,'String') ;
exName=str{val};
DataPath=['D:\Data\', exName, '\'];
TypeDetails_CreateFcn(hObject, eventdata, handles);
Graph_CreateFcn(hObject, eventdata, handles);
return;
```

\% --- Executes during object creation, after setting all properties.
function expName_CreateFcn(hObject, eventdata, handles)
if ispc \&\& isequāl (get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white');
end
\% --- Executes during object creation, after setting all properties.
function TypeDetails_CreateFcn(hObject, eventdata, handles)
global DataPath;
var $=\left[{ }^{\prime} \mathrm{N}\right.$ vH vM vFA vCR vC tr tMotor'];
eval(['load ' DataPath 'Parameters\Parameters.mat ' var])
str=\{['N=' num2str(N)]; ['vH=' num2str(vH)];['vM=' num2str(vM)];['vFA=' num2str(vFA)];['vCR=' num2str (vCR)];['vC=' num2str(vC)];['tr=' num2str(tr)];['tMotor=' num2str(tMotor)]\}; set(handles.TypeDetails,'String', str); return;
\% --- Executes on selection change in axisX.
function axisX_Callback(hObject, eventdata, handles)
global x str
val=get(hobject,'Value');
str=get(hObject,'String');
x_str=str\{val\};
return;
\% --- Executes during object creation, after setting all properties.
function axisX_CreateFcn(hObject, eventdata, handles)
if ispc \&\& isequal (get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject, 'BackgroundColor','white');
end
\% --- Executes on selection change in axis_y.
function axisY Callback(hObject, eventdata, handles)
global y_str;
val=get(hobject, 'Value');
str=get(hObject,'String');
y_str=str\{val\};
return;
\% --- Executes during object creation, after setting all properties.
function axisY CreateFcn(hObject, eventdata, handles)
if ispc \&\& isequal (get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white');
end
\% --- Executes on selection change in axisP1.
function axisP1 Callback(hObject, eventdata, handles)
global P1_str;
val=get(hObject, 'Value')
str=get(hObject,'String');
P1_str=str\{val\};
listP1_CreateFcn (hObject, eventdata, handles);
textP1_CreateFon (hObject, eventdata, handles)
return;
\% --- Executes during object creation, after setting all properties.
function axisP1_CreateFcn(hObject, eventdata, handles)
if ispc \&\& isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set (hObject, 'BackgroundColor','white');
end
\% --- Executes on selection change in axisP2.
function axisP2_Callback(hObject, eventdata, handles)
global P2_str;
val=get(hObject, 'Value');
str=get (hObject,'String');
P2_str=str\{val\};
listP2 CreateFcn (hObject, eventdata, handles);
textP2_CreateFcn(hObject, eventdata, handles)
return;

```
--- Executes during object creation, after setting all properties.
function axisP2_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
    set(hobject,'BackgroundColor','white');
end
% --- Executes on selection change in axisP3.
function axisP3 callback(hObject, eventdata, handles)
global P3_str;
val=get(hObject,'Value') ;
str=get(hObject,'String');
P3_str=str{val};
listP3_CreateFcn(hObject, eventdata, handles);
textP3_CreateFcn(hObject, eventdata, handles);
return;
```

\% --- Executes during object creation, after setting all properties.
function axisP3_CreateFcn(hobject, eventdata, handles
if ispc \&\& isequal (get(hobject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set (hobject, 'BackgroundColor', 'white');
end
\% --- Executes on selection change in axisSubG.
function axisSubG Callback(hObject, eventdata, handles)
global subG_str;
val=get(hObject, 'Value');
str=get (hObject, 'String') ;
subG_str=str\{val\};
return;
\% --- Executes during object creation, after setting all properties.
function axisSubG CreateFcn(hobject, eventdata, handles)
if ispc \&\& isequal (get(hobject, 'BackgroundColor'), get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end
\% --- Executes on button press in pushbutton1.
function pushbuttonGraph_callback(hobject, eventdata, handles)
listP1_CreateFcn (hObject, eventdata, handles);
textP1 CreateFcn (hObject, eventdata, handles) ;
listP2-CreateFcn (hObject, eventdata, handles);
textP2 CreateFcn (hObject, eventdata, handles)
listP3_CreateFcn (hObject, eventdata, handles);
textP3_CreateFcn (hObject, eventdata, handles);
Graph CreateFcn (hObject, eventdata, handles);
return;
\% --- Executes on selection change in listP1.
function listP1_Callback(hObject, eventdata, handles)
global iP1;
iP1=get(hObject, 'Value') ;
Graph_CreateFcn (hObject, eventdata, handles);
return;
\% --- Executes during object creation, after setting all properties.
function listP1_CreateFcn(hobject, eventdata, handles)
if ispc \&\& isequal (get(hobject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject, 'BackgroundColor', 'white');
end
global DataPath;
var $=$ ['dr_vector $\left.d h \quad v e c t o r ~ P s _v e c t o r ~ B _v e c t o r ~ A ~ v e c t o r ~ v T 2 v H ~ v e c t o r '\right] ; ~$
eval(['load ' DataPath 'Parameters\Parameters.mat ' var])
global P1_str;
val=get (hāndles.axisP1, 'Value') ;
str=get (handles.axisP1,'String');
P1_str=str\{val\};
vP1=eval([P1_str '_vector']);
list=vP1;
set (handles.listP1,'String', list, 'Value', 1);
return;

```
% --- Executes on selection change in listP2.
function listP2_Callback(hObject, eventdata, handles)
global iP2;
iP2=get(hObject,'Value');
Graph_CreateFcn(hObject, eventdata, handles);
return;
% --- Executes during object creation, after setting all properties.
function listP2_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
        set(hObject,'BackgroundColor','white');
end
global DataPath;
var =['dr_vector dh_vector Ps_vector B_vector A_vector vT2vH_vector'];
eval(['load ' DataPath 'Parameters\Parameters.mat ' var])
global P2_str;
val=get(hāndles.axisP2,'Value');
str=get(handles.axisP2,'String');
P2_str=str{val};
vP\overline{2}=eval([P2_str '_vector']);
list=vP2;
set(handles.listP2,'String', list, 'Value', 1);
return;
% --- Executes on selection change in listP3.
function listP3 Callback(hObject, eventdata, handles)
global iP3;
iP3=get(hObject,'Value');
Graph CreateFcn(hObject, eventdata, handles);
return;
% --- Executes during object creation, after setting all properties.
function listP3_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
    set(hobject,'BackgroundColor','white');
end
global DataPath;
var =['dr vector dh vector Ps vector B vector A vector vT2vH vector'];
eval(['load ' DataPath 'Parameters\Parameters.mat ' var])
global P3_str;
val=get(handles.axisP3,'Value');
str=get(handles.axisP3,'String');
P3 str=str{val};
vP3=eval([P3_str '_vector']);
list=vP3;
set(handles.listP3,'String', list, 'Value', 1);
return;
% --- Executes during object creation, after setting all properties.
function textP1_CreateFcn(hobject, eventdata, handles)
global P1 str;
set(handles.textP1, 'String', P1_str);
return;
% --- Executes during object creation, after setting all properties.
function textP2 CreateFcn(hobject, eventdata, handles)
global P2_str;
set(handles.textP2, 'String', P2 str);
return;
% --- Executes during object creation, after setting all properties.
function textP3_CreateFcn(hobject, eventdata, handles)
global P3_str;
set(handles.textP3, 'String', P3_str);
return;
% --- Executes on selection change in GraphType.
function GraphType Callback(hObject, eventdata, handles)
val=get(hObject,'Value');
str=get(hObject,'String');
GraphType_str=str{val};
Graph_CreateFcn(hObject, eventdata, handles);
return;
```

```
--- Executes during object creation, after setting all properties
function Graph_CreateFcn(hObject, eventdata, handles)
global dr dh Ps B A vT2vH;
global exName DataPath GraphType_str;
global x_str y_str z_str subG_str P1_str P2_str P3_str iP1 iP2 iP3;
% Load the matrix for z cordination
eval(['load ' DataPath 'Optimal\OptimalData.mat ' z_str])
% Load parameters values
var =['dr_vector dh_vector Ps_vector B_vector A_vector vT2vH_vector'];
eval(['load ' DataPath 'Parameters\Parameters.mat ' var])
switch z_str
    case''vT/VI H'
        eval(['\overline{load ' DataPath 'Optimal\OptimalData.mat opt_vTs_H opt_VIs_H'])}
        z=opt vTs_H./opt_VIs_H;
    case 'vT/V/VI HR''
        eval(['\overline{load ' DataPath 'Optimal\OptimalData.mat opt_vTs HR opt VIs HR'])}
        z=opt_vTs_HR./opt_VIs_HR;
    case 'vT/\overline{VI_HO}R'
        eval(['load ' DataPath 'Optimal\OptimalData.mat opt vTs HOR opt VIs HOR'])
        z=opt_vTs_HOR./opt_VIs_HOR;
    case 'vT/VI R'
        eval(['load ' DataPath 'Optimal\OptimalData.mat opt_vTs_R opt_VIs_R'])
        z=opt_vTs_R./opt_VIs_R;
    otherwise
        % Load the matrix for z cordination
        eval(['load ' DataPath 'Optimal\OptimalData.mat ' z_str])
        z=eval(z_str);
end
x=eval (x_str);
y=eval (y_str);
subG=eval(subG_str);
P1=eval (P1 str);
P2=eval (P2 str) ;
P3=eval (P3_str);
% Rearrange the data matrix
mat=permute(z,[y,x,subG, P1 ,P2,P3]) ;
vx=eval([x_str '_vector']);
vy=eval([y str ' vector']);
vsubG=eval([subG_str '_vector']);
vP1=eval([P1_str'' vecẼor']);
vP2=eval([P2 str ' vector']);
vP3=eval([P3_str '_vector']);
Gname=[ exName ' 'z_str ' X=' x_str ' Y=' Y_str ' subG=' subG str '
    P1_str '=' eval(['num2str(' P\overline{1_str '_vector(iP1),2)'])' ' ' P2_str}\mp@subsup{\}{}{\prime}=' eval(['num2st\overline{r}('
P2_str '_vector(iP2),2)']) ' ' P3_str '=' eval(['num2str(' P3_str '_vector(iP3),2)'])];
set(handles.GraphsTitle, 'String', Gname);
hold on
for i=1:6
    eval(['h=handles.A' num2str(i) ';'])
    reset(h);
    set(h,'Visible', 'on');
    plot(h,1,1);
    set(h,'Visible', 'off');
end
for isubG=1:length(vsubG)
    eval(['h=handles.A' num2str(isubG) ';'])
    set(h,'Visible', 'on');
    if strcmp(z_str, 'opt_CL')
        contour舟('v6',h,v\overline{x},vy,mat(:,:,isubG,iP1,iP2,iP3), [1 2 3 4]);
    elseif strcmp(GraphType_str, 'contour')
        [C,h1] = contour(h,\overline{vx},vy,mat(:,:,isubG,iP1,iP2,iP3));
        clabel(C,h1,'FontSize',8);
    elseif strcmp(GraphType str, 'mesh')
        mesh(h,vx,vy,mat(:, :,isubG,iP1,iP2,iP3));
    end
    xlabel (h,x str);
    ylabel (h,y_str);
    title(h,[subG_str ' = ' num2str(vsubG(isubG))]);
end
datacursormode on
hold off
return;
```


4. The mean time function

```
function [mean]=meanTime(Zco,direction)
% meanTime function calculates mean reaction time for a given cutoff point
% meanTime(Zco,direction)
% Zco - is the cutoff point
% direction can be 'p' or 'n' - result in different calculations for
positive ('p') and negative ('n') decisions
global A; %A and B declared in the main program
global B;
if direction=='p'
    mean=A*exp (B*Zco+B*B/2).*((1-normcdf(Zco+B))./(1-normcdf(Zco)));
elseif direction=='n'
    mean=A*exp (-B*Zco+B*B/2).*(normcdf(Zco-B)./normcdf (Zco));
end;
```


Appendix H - The Relation Between Image Complexity and Reaction Time

Bechar (2006) designed and performed a melon detection experiment in order to examine different human robot collaboration levels for a specific target detection task in an agriculture environment. In this work, the experimental data is used to analyze the reaction time of the human operator. The analysis focuses on the relation between image complexity and reaction time.

1. Melon detection experiment

Full description of the experiment can be found in chapter 6 of Bechar thesis (2006).
Task. The participants of the experiment were asked to detect ready-to-pick melons on a digital image and mark them on the screen (see example in Figure 36). Some of the participants fulfilled the task with a help of a robot according to the level of collaboration.

Subjects. 120 IEM undergraduate students were assigned to 10 groups. The participants were encouraged to achieve high performance through the promise of a monetary award.

Targets database. Melon images were manually selected from a video taken by a camera moving along a melon row in a field, in various illumination conditions. The melons were partially covered by leaves and had different colors and sizes. The images were classified into three levels of complexities (low, intermediate, and high) by a panel of three experts. The image complexity represents the difficulty level of detecting targets in the image. The location of true targets in each image was manually identified and saved in a targets database.

Design. In each session, fifteen participants from all experimental groups were seated in a classroom in front of working stations for target detection that were simulated with a PC and a program written in MatLab. The participants viewed 180 images, a target was defined as any yellow or orange melon, and the task was to mark all the targets in the images. The participants were divided in advance into ten groups, each of which was given one of two objective function weights (represented by a reward system for minimum false alarm rate or for maximum hit rate), one of two different robot detection performance qualities, and one of three collaboration levels as shown in Table 4. In the experiment, the computer simulated the robot operation by picking targets and nontarget objects (marked as false alarms) from the database. The participants received feedback on their performance during the experiment after each image. The feedback included the current objective function score (score), the last image number of hits, false alarms and Misses. The participants had unlimited time to observe the images and the time cost was set to zero.

Figure 36: An example of the graphical user interface of the experiment.

2. Data preparation

During the experiment the activities of the human operator, the objects marked, and the time of each action were automatically recorded. The raw data is attached in Appendix I.

Each image in the targets database includes up to three melons. When the human observes some melons at a time, it is impossible to define what the correct reaction time is for each of the melons. Furthermore, the image complexity was determined for the whole image and not per melon. Therefore, only images that contain one melon were used for the analysis (a total of 84 images were used). Among these images, 30 were of the low complexity images, 35 of the intermediate and 19 of the high complexity images. In this case, the image complexity describes the difficulty to detect a single melon in the image.

The analysis was performed for records of subjects that worked in the HR collaboration level and had to remark targets that the robot recommended (if the recommended object is a really a ready to pick melon). Data from 48 subjects was analyzed (groups 7-10 in Bechar's experiment).

Table 4: The experimental groups (Bechar, 2006).

Group No.	Collaboration level			Reward system		Robot quality	
	H	HOR	HR	Min FA	Max Hit	High	Low
1	x			x			
2	x				x		
3		x		x		x	
4		x		x			x
5		x			x	x	
6		x			x		x
7			x	x		x	
8			x	x			x
9			x		x	x	
10			x		x		x

3. Results

Two time measures were used. The first measure (T2mark) is the time it took the subject to mark a target after the image appeared on screen. The second measure (T2next) is the time spent until the subject hits the "Next" button (after the image appeared). The difference between the two time measures is 1.98 seconds on average (with a standard deviation of 1.34). This is the average time, which the subject spends in order to recheck his decision and to look for other targets.

For each analyzed group (groups 7-10), two Single Factor ANOVA tests were used (one for each measure) in order to determine if there is a statistically significant difference between the three image complexity levels. In all groups (except one case), the detection mean time in high complexity images was longer than that of low and medium complexity images. Similarly, the detection mean time in intermediate complexity images was longer than that of low complexity images (see Tables 5-6). Results indicate that for both of the measures, there is a significant ($\alpha=0.05$) difference between the three image complexity levels. P-values in all tests (except for $T 2$ next in group 8) are less than 0.001 (see Tables 7-8). An exceptional case is found in group 8. In this case, T2next of high complexity images (2.56) is lower than that of medium complexity images (2.62). Despite this, there is significant difference between the three image complexity levels $(\mathrm{P}$-value $=0.013)$.

To conclude, the reaction time depends on image complexity and it decreases as image complexity decreases. This result supports the assumption that human reaction depends on the strength of the observed object.

Table 5: Summary of the statistical data of the T2mark measure.

Group	Complexity	Count	Sum	Average	Variance
7	1	298	484.52	1.62590604	1.156045311
	2	314	631.786	2.012057325	2.119549172
	3	169	372.206	2.202402367	1.865087075
	1	123	227.848	1.852422764	1.046291623
	2	212	556.144	2.623320755	4.888964987
	3	57	146.153	2.564087719	1.434097939
9	1	299	534.032	1.786060201	2.135163681
	2	310	714.756	2.305664516	3.605807686
	3	174	412.914	2.373068966	2.403098446
	1	140	230.172	1.644085714	0.756511647
	2	202	429.041	2.123965347	1.564116651
	3	63	171.757	2.726301587	2.273193956

Table 6: Summary of the statistical data of the T2next measure.

Group	Complexity	Count	Sum	Average	Variance
7	1	298	1018.067	3.416332215	3.730392532
	2	314	1228.389	3.912066879	4.969930427
	3	169	692.108	4.095313609	3.861975705
	1	123	483.787	3.933227642	3.162886587
	2	212	992.536	4.681773585	8.140790043
9	3	57	277.333	4.865491228	5.084170647
	1	299	1135.499	3.797655518	4.277060817
	2	310	1350.314	4.355851613	6.847721467
10	3	174	793.326	4.559344828	4.85237869
	1	140	501.103	3.579307143	1.964418833
	2	202	819.215	4.055519802	3.89106434
	3	63	307.688	4.883936508	4.116458222

Table 7: Results of Single Factor ANOVA tests of the T2mark measure.

Group	Source of Variation	SS	df	MS	F	P -value	F criteria
7	Between Groups	41.75818401	2	20.87909201	12.30508762	$5.47961 \mathrm{E}-06$	3.007297176
	Within Groups	1320.098977	778	1.696785317			
8	Between Groups	48.69841737	2	24.34920869	7.641486939	0.000555747	3.018921644
	Within Groups	1239.528675	389	3.186449035			
9	Between Groups	55.16909124	2	27.58454562	9.932532723	5.5001E-05	3.007267446
	Within Groups	2166.209383	780	2.777191517			
10	Between Groups	52.986315	2	26.4931575	19.00199487	$1.30214 \mathrm{E}-08$	3.018168004
	Within Groups	560.480591	402	1.394230326			

Table 8: Results of Single Factor ANOVA tests of the T2next measure.

Group	Source of Variation	SS	df	MS	F	P -value	F criteria
7	Between Groups	61.45349977	2	30.72674988	7.217105498	0.000784101	3.007297176
	Within Groups	3312.326724	778	4.257489363			
8	Between Groups	53.85755206	2	26.92877603	4.386101883	0.013070751	3.018921644
	Within Groups	2388.292419	389	6.139569201			
9	Between Groups	78.2863356	2	39.1431678	7.21793761	0.000783329	3.007267446
	Within Groups	4229.97157	780	5.423040474			
10	Between Groups	74.46659622	2	37.23329811	11.42248988	$1.49661 \mathrm{E}-05$	3.018168004
	Within Groups	1310.37856	402	3.259648159			

Appendix I - Raw Data of The Experiment

The raw data of the experiment is divided by group number and image complexity level (twelve classes in total). The data details the subject number (S \#), the image number (I \#), the time it took the subject to mark the image (T2mark), and the time it took the subject to press the "Next" button (T2next). The list continues from the left column to the right.

Group 7, image complexity 1 :				72	19	0.903	2.009	74	68	1.172	3.125
				72	26	0.903	2.212	74	80	1.43	2.659
				72	46	1.735	2.819	74	82	2.375	4.796
S \# 70	6	12 mark	T2next	72	47	0.684	1.633	74	97	1.672	4.984
70 70	6 7	1.875 1.875	3.203	72	48	0.919	1.775	74	206	1.281	3.812
70	15	1.872 2.312	3.546	72	54	0.898	2.106	74	208	1.353	3.156
70	19	1.797	3.109	72	57	1.13	2.4	74	209	1.187	4.359
70	34	3.219	4.985	72	63	1.022	2.214	74	211	1.166	3.032
70	46	1.829	3.25	72	64	2.146	4.634	74	220	2.527	3.543
70	47	2.078	3.25	72	67	1.09	2.196	74	221	1.244	2.689
70	48	1.172	2.328	72	80	0.919	2.009	74	230	1.094	3.312
70	57	1.828	3.187	72	97	1.14	3.687	74	306	1.25	4.531
70	63	1.907	9.141	72	208	0.701	2.289	74	307	1.063	2.234
70	64	1.859	3.484	72	209	0.96	2.261	75	6	1.36	4.078
70	67	1.407	2.797	72	220	0.824	1.788	75	15	1.562	2.703
70	68	4.969	6.234	72	221	0.826	2.259	75	19	1.575	5.795
70	77	1.656	3.172	72	306	1.161	4.537	75	26	1.105	2.057
70	80	2.079	3.282	72	307	1.648	2.799	75	46	1.343	4.999
70	82	1.359	3.062	72 73	411 6	0.82 0.938	2.028	75 75	47 48	1.391 1.575	2.75
70	97	2.703	4.187	73	15	1.978	2.094	75 75	48 54	1.575 1.578	2.615 2.625
70	111	1.5	2.922	73	19	1.344	2.625	75	57	2.437	4.483
70	206	1.579	3	73	26	1.11	2.407	75	63	2.171	5.249
70	220	2.344	4.172	73	46	1.094	1.922	75	64	1.749	5.342
70	221	1.359	2.5	73	47	1.328	2.265	75	67	2.021	4.83
70	230	1.765	3.265	73	48	1.235	2.031	75	68	2.297	5.359
70	306	1.703 2.124	3.547	73	54	1.938	3	75	82	3.562	5.406
70	307	2.124 2.734	4.031	73	57	1.438	2.641	75	97	3.093	7.03
70	411	2.734 1.203	4.297 6.905	73	63	1.297	2.406	75	206	3.015	5.343
71	6	1.203 1.187	6.905 3.609	73	64	0.953	2.312	75	208	3.076	4.577
71	7 15	1.187 1.235	3.609 2.532	73	67	1.297	2.312	75	209	8.218	11.045
71 71	15 19	1.235 0.843	2.532 2.062	73	68	1.297	2.203	75	211	1.619	2.927
71	26	0.992	7.634	73	80	1	1.625	75	220	1.765	3.655
71	46	1.078	5.764	73	82	1.39	2.218	75	221	1.412	3.054
71	47	1.406	2.453	73	97	1.578	2.484	75	306	2.577	4.28
71	48	1.5	2.828	73	206	1.203	2.078	75	307	1.656	3.187
71	54	1.734	2.953	73	208	0.64	1.296	76	6	3.746	6.186
71	57	2.78	4.374	73 73	209	1.156	3.609 1.969	76	7	3.249	5.802
71	63	1.484	3.093	73	220	1.484	1.969 2.203	76	15 19	1.644 1.925	3.122 3.959
71	64	1.156	3.109	73	221	0.922	1.656	76 76	19 26	1.925 1.878	3.959 3.383
71	67	1.016	2.703	73	230	1.031	1.828	76	46	3.681	5.311
71	68 80	2.141	3.453	73	306	1.734	2.781	76	47	1.493	2.987
71 71	80 82	0.985 2.312	1.938 5.499	73	307	1.485	2.36	76	48	1.694	3.435
71	97	0.921	5.499 4.482	73	411	1.485	2.797	76	54	3.532	5.76
71	206	1.047	2.718	74	6	1.719	3.844	76	57	2.361	3.883
71	208	1.078	2.312	74	15	1.417	2.649	76	63	2.794	4.539
71	209	1.921	4.671	74	19	1.109	4.252	76	67	1.555	3.358
71	211	0.609	1.766	74	46	1.201 1.687	3.463 2.875	76	68	1.832	3.432
71	220	2.312	4.796	74	46 47	1.687 1.064	2.875 2.373	76 76	80 82	1.864 1.645	3.42 3.774
71	221	0.876	3.795	74	48	0.964	2.379	76	97	3.997	9.383
71	230	4.594	6.187	74	54	1.172	3.765	76	206	6.186	8.03
71	306	1.015	2.296	74	57	2.015	4.453	76	208	5.823	7.472
71	307	1.203	5.812	74	63	1.156	3.812	76	209	5.017	6.57
71	411	4.859	6.296	74	64	1.5	4.094	76	211	2.018	3.281
72	6	1.602	4.728	74	67	1.166	2.41	76	220	3.499	5.007
72	15	0.857	1.698								

76	221	1.335	2.825	79	63	1.134	3.059	Group 7, image complexity 2:			
76	230	2.043	3.462	79	64	1.31	4.24				
76	306	4.753	6.242	79	67	0.733	2.544				
76	307	1.252	3.092	79	68	0.9	3.679	S \#	I \#	T2mark	T2next
76	411	2.205	3.634	79	80	1.124	2.483	70	16	1.734	3.25
77	6	1.071	2.461	79	82	0.901	3.462	70	27	1.5	3.032
77	15	0.889	2.452	79	97	1.297	4.61	70	33	1.859	3.218
77	19	1.112	2.002	79	206	1.107	3.242	70	35	2.593	4.062
77	26	0.689	1.722	79	208	0.749	1.858	70	41	1.984	4.281
77	34	0.737	1.64	79	209	1.195	4.175	70	42	1.297	2.75
77	46	7.306	9.611	79	211	0.64	1.53	70	62	2.188	3.782
77	47	1.084	2.878	79	220	1.013	2.307	70	65	3.14	4.531
77	48	0.792	1.626	79	221	0.78	1.748	70	69	1.406	2.625
77	57	2.183	4.916	79	307	0.827	3.024	70	72	2.188	3.688
77	63	1.134	3.524	79	411	0.962	5.215	70	76	1.937	3.031
77	64	1.517	3.601	7001	6	1.209	2.434	70	83	1.032	2.141
77	68	3.619	7.483	7001	7	1.608	5.587	70	87	1.734	3.078
77	77	1.363	3.16	7001	15	1.377	2.097	70	95	1.969	3.531
77	82	3.863	10.261	7001	19	1.734	3.283	70	105	1.844	3.266
77	97	1.748	5.896	7001	26	1.679	3.136	70	204	2.609	4.734
77	111	1.626	6.764	7001	46	1.437	2.592	70	207	1.86	3.156
77	206	1.241	3.969	7001	47	1.102	2.066	70	210	2.438	3.953
77	209	1.777	3.355	7001	48	1.055	1.762	70	217	5.703	6.968
77	211	0.695	1.599	7001	54	1.762	2.814	70	219	1.375	2.906
77	220	1.548	2.851	7001	57	1.999	3.199	70	223	2.016	3.516
77	221	1.084	2.516	7001	63	1.347	2.725	70	224	1.078	2.343
77	306	2.176	5.777	7001	64	1.857	2.76	70	231	3.859	5.656
77	307	1.536	3.833	7001	67	1.124	1.943	70	303	1.656	3.015
77	411	4.473	6.046	7001	68	1.467	2.518	70	304	1.516	2.734
78	6	0.875	1.859	7001	80	1.52	2.575	70	308	2.547	3.937
78	7	0.984	2.203	7001	82	1.881	2.784	70	310	1.906	3.359
78	15	1.125	1.922	7001	97	2.229	3.411	70	322	6.89	8.828
78	19	0.969	2.172	7001	206	1.111	2.37	70	401	3.421	4.843
78	26	0.844	1.719	7001	208	1.595	2.725	71	14	1.312	3.484
78	46	0.734	1.828	7001	209	1.348	2.503	71	16	1.765	5.358
78	47	0.984	1.828	7001	211	1.203	2.119	71	27	1.312	2.859
78	48	0.828	1.781	7001	220	1.117	2.372	71	33	0.672	2.047
78	54	0.781	1.687	7001	221	1.638	2.498	71	35	2.061	9.744
78	57	1.578	2.797	7001	306	1.422	2.74	71	41	12.547	14.328
78	63	0.89	2.078	7001	307	1.378	2.327	71	42	2.562	4.14
78	64	0.735	1.672	7002	6	0.754	1.715	71	62	1.922	3.749
78	67	0.765	1.765	7002	7	0.842	2.675	71	65	2.781	4.812
78	68	1.078	2.156	7002	15	0.947	1.935	71	69	0.781	4.781
78	80	0.937	1.703	7002	19	0.813	1.788	71	70	1.094	2.844
78	82	0.734	1.734	7002	26	0.765	1.713	71	72	2.156	10.296
78	97	1.859	3.094	7002	34	0.576	1.374	71	87	0.812	2.172
78	206	0.938	1.953	7002	46	2.455	9.022	71	95	4.803	6.292
78	208	0.578	1.828	7002	47	2.868	4.08	71	105	1.296	6.996
78	209	1	2.156	7002	48	0.704	1.53	71	204	3.64	4.968
78	211	0.89	1.703	7002	57	1.596	3.084	71	207	3.489	5.284
78	220	0.657	1.657	7002	63	0.96	2.015	71	217	1.906	4.828
78	221	0.765	1.922	7002	64	1.041	2.029	71	219	0.938	7.547
78	306	0.828	1.953	7002	68	6.383	19.579	71	223	1.031	2.859
78	307	0.922	1.875	7002	77	2.571	4.153	71	231	1.639	5.887
78	411	0.984	2.031	7002	82	2.363	9.498	71	303	1.219	4.125
79	6	1.044	3.305	7002	97	3.146	6.215	71	304	1.016	2.735
79	7	0.997	3.211	7002	111	4.232	6.153	71	319	5.294	10.369
79	15	1.294	2.635	7002	206	0.854	1.802	71	322	0.921	2.187
79	19	0.952	3.029	7002	209	0.88	1.855	72	14	1.121	2.32
79	26	1.078	2.515	7002	211	0.754	1.848	72	16	5.173	6.288
79	46	0.699	5.232	7002	220	0.894	1.922	72	27	0.929	2.014
79	47	0.966	2.088	7002	221	0.902	1.774	72	33	1.059	2.227
79	48	0.89	1.983	7002	306	1.041	2.376	72	35	2.657	6.422
79	54	0.543	1.583	7002	307	0.886	2.246	72	41	1.106	2.274
79	57	1.025	3.478	7002	411	3.744	7.153	72	42	1.259	2.364

72	65	2.488	3.437	75	33	1.724	2.853	75	33	1.724	2.853
72	69	0.917	2.285	75	35	5.608	9.436	75	35	5.608	9.436
72	70	1.697	2.741	75	41	3.093	4.296	75	41	3.093	4.296
72	72	0.995	2.457	75	42	2.156	3.39	75	42	2.156	3.39
72	87	0.919	1.62	75	62	2.562	7.702	75	62	2.562	7.702
72	92	0.938	2.484	75	65	2.859	4.108	75	65	2.859	4.108
72	95	0.982	2.68	75	69	3.265	5.873	75	69	3.265	5.873
72	105	2.157	4.094	75	70	1.353	2.482	75	70	1.353	2.482
72	207	0.872	2.01	75	72	1.531	5.14	75	72	1.531	5.14
72	210	1.054	2.757	75	87	1.753	2.898	75	87	1.753	2.898
72	212	1.791	2.913	75	92	3.187	5.702	75	92	3.187	5.702
72	217	1.337	2.799	75	95	1.075	3.024	75	95	1.075	3.024
72	219	0.747	1.915	75	105	9.357	11.935	75	105	9.357	11.935
72	231	2.406	4.047	75	204	3.797	6.562	75	204	3.797	6.562
72	304	1.682	3.239	75	207	1.611	2.563	75	207	1.611	2.563
72	308	1.344	6.281	75	210	4.187	6.515	75	210	4.187	6.515
72	322	1.791	2.834	75	219	1.649	2.942	75	219	1.649	2.942
73	27	1.547	2.265	75	231	8.092	11.061	75	231	8.092	11.061
73	33	1.265	2.14	75	303	1.921	4.452	75	303	1.921	4.452
73	35	2.422	4.094	75	304	1.173	2.243	75	304	1.173	2.243
73	41	1.782	2.61	75	319	5.764	12.497	75	319	5.764	12.497
73	42	1.046	1.64	75	322	2.511	4.903	75	322	2.511	4.903
73	62	1.5	3.141	76	27	2.71	4.852	76	27	2.71	4.852
73	65	1.688	2.485	76	33	8.088	9.412	76	33	8.088	9.412
73	69	1.047	2.641	76	35	4.12	7.685	76	35	4.12	7.685
73	70	1.328	2.437	76	41	1.252	2.549	76	41	1.252	2.549
73	72	1.328	2.125	76	42	2.217	3.68	76	42	2.217	3.68
73	87	1.125	1.719	76	62	3.618	5.761	76	62	3.618	5.761
73	92	1.891	3.188	76	65	2.202	3.514	76	65	2.202	3.514
73	95	1	1.656	76	69	2.172	3.846	76	69	2.172	3.846
73	105	2.188	4.203	76	70	2.203	3.744	76	70	2.203	3.744
73	204	1.641	2.672	76	72	1.433	2.956	76	72	1.433	2.956
73	207	1.016	1.766	76	87	2.572	4.498	76	87	2.572	4.498
73	210	1.266	2.234	76	92	5.834	8.658	76	92	5.834	8.658
73	217	1.407	2.172	76	95	1.366	2.887	76	95	1.366	2.887
73	219	1.093	2.046	76	105	5.263	7.377	76	105	5.263	7.377
73	223	1.328	2.125	76	207	1.785	3.057	76	207	1.785	3.057
73	304	1.297	2.813	76	217	2.284	4.057	76	217	2.284	4.057
73	308	3.125	5.016	76	219	4.329	6.609	76	219	4.329	6.609
73	310	1.75	2.719	76	223	2.157	3.618	76	223	2.157	3.618
73	319	2.125	5.172	76	304	1.648	3.373	76	304	1.648	3.373
73	322	1.25	2.141	76	310	3.975	5.438	76	310	3.975	5.438
73	401	2.704	4.297	77	14	1.228	2.547	77	14	1.228	2.547
74	14	2.565	3.84	77	16	6.954	8.797	77	16	6.954	8.797
74	16	1.312	6.046	77	27	1.5	3.61	77	27	1.5	3.61
74	27	1.359	4.312	77	33	1.182	2.947	77	33	1.182	2.947
74	33	1.042	2.829	77	35	1.315	6.981	77	35	1.315	6.981
74	35	2.203	7.312	77	41	1.501	2.294	77	41	1.501	2.294
74	41	1.217	2.326	77	42	0.98	2.559	77	42	0.98	2.559
74	42	1.525	3.497	77	62	1.348	2.911	77	62	1.348	2.911
74	62	1.86	5.516	77	65	2.206	3.769	77	65	2.206	3.769
74	65	1.372	3.975	77	69	1.946	3.095	77	69	1.946	3.095
74	69	0.875	2.797	77	70	1.094	2.622	77	70	1.094	2.622
74	70	1.756	4.714	77	72	1.608	3.754	77	72	1.608	3.754
74	72	1.171	4.421	77	76	1.056	4.142	77	76	1.056	4.142
74	87	1.337	2.814	77	105	2.391	4.796	77	105	2.391	4.796
74	92	1.781	6.172	77	204	2.822	4.932	77	204	2.822	4.932
74	95	0.764	2.371	77	207	1.209	2.516	77	207	1.209	2.516
74	105	2.64	6.968	77	210	1.257	2.559	77	210	1.257	2.559
74	204	2.594	4.641	77	217	1.286	3.145	77	217	1.286	3.145
74	207	1.653	3.213	77	219	0.848	2.307	77	219	0.848	2.307
74	210	1.657	4.219	77	223	0.976	2.695	77	223	0.976	2.695
74	217	1.937	3.375	77	224	1.321	2.572	77	224	1.321	2.572
74	219	1.197	3.529	77	231	1.716	4.428	77	231	1.716	4.428
74	223	1.297	5.094	77	303	1.784	2.886	77	303	1.784	2.886
74	231	2.937	5.437	77	304	1.237	2.905	77	304	1.237	2.905
74	303	2.049	4.683	77	308	1.753	5.259	77	308	1.753	5.259
74	304	0.886	2.767	77	310	1.223	2.335	77	310	1.223	2.335
74	308	2.719	5.281	77	320	1.457	5.562	77	320	1.457	5.562
74	320	1.75	4.5	77	322	0.917	3.016	77	322	0.917	3.016
74	322	1.492	4.943	77	401	5.756	7.034	77	401	5.756	7.034
74	401	2.313	3.938	78	14	0.985	2.531	78	14	0.985	2.531
75	16	5.342	7.17	78	27	1.25	2.094	78	27	1.25	2.094
75	27	2.687	4.406	78	33	0.75	1.656	78	33	0.75	1.656

78	35	1.625	5.968	7001	322	2.529	4.188	72	313	1.843	4.863
78	42	0.891	1.797	7001	401	2.78	4.083	72	324	2.177	3.25
78	62	1.843	3.703	7002	14	0.903	1.729	72	325	1.028	1.916
78	69	0.875	1.828	7002	16	3.286	8.184	72	403	1.137	3.037
78	70	0.843	1.671	7002	27	1.134	2.535	72	406	1.368	2.784
78	72	1.328	2.25	7002	33	0.887	1.947	73	61	1.157	1.969
78	92	3.328	4.625	7002	35	2.278	5.611	73	88	1.593	2.468
78	95	0.891	2.75	7002	41	0.887	1.656	73	96	2.078	3.344
78	105	4.843	9.203	7002	42	1.268	2.269	73	102	4	5.234
78	204	1.422	2.75	7002	62	0.747	1.534	73	201	1.593	2.39
78	207	0.938	1.704	7002	65	1.562	2.522	73	227	1.297	2.187
78	210	1.015	2.062	7002	69	0.99	2.187	73	309	1.891	2.75
78	223	1.094	2.015	7002	70	0.887	1.729	73	312	1.562	2.906
78	303	1.203	2.125	7002	76	1.478	2.572	73	324	1.61	2.532
78	304	0.875	1.812	7002	87	0.719	1.621	73	325	1.704	2.375
78	308	2.047	4.156	7002	92	5.843	7.145	73	327	5.234	6.421
78	310	1.531	2.5	7002	105	1.015	2.029	73	402	1.922	3.062
78	319	6.469	9.594	7002	204	1.282	2.323	73	403	1.515	2.359
78	322	1.11	3.969	7002	207	0.665	1.611	74	61	3.066	4.314
78	401	3.015	4.125	7002	210	0.92	2.001	74	88	2.124	5.859
79	14	1.296	2.654	7002	217	1.212	2.129	74	96	1.703	6.046
79	16	1.738	4.89	7002	219	0.933	1.912	74	102	4.015	6.578
79	27	1.273	3.338	7002	224	0.734	1.851	74	104	2.296	3.775
79	33	0.765	1.748	7002	231	2.242	4.124	74	109	3.405	5.299
79	35	1.703	8.156	7002	303	0.887	2.01	74	201	1.648	3.342
79	41	1.217	2.404	7002	304	0.734	1.775	74	227	1.578	4.765
79	42	1.496	2.946	7002	308	1.481	2.548	74	309	1.781	4.64
79	65	1.699	3.491	7002	310	0.813	1.715	74	312	1.197	3.218
79	69	0.92	2.759	7002	320	1.626	2.852	74	313	3.5	8.188
79	70	1.155	3.216	7002	322	0.995	1.974	74	324	2.634	4.205
79	72	1.215	3.133	Group 7, image complexity 3:				74	325	1.555	3.202
79	87	1.467	2.529					74	327	3.672	5.562
79	92	1.593	5.062					74	402	1.703	7.891
79	95	2.296	3.296					74	403	1.679	3.235
79	105	2.281	19.281	S \#	I \#	T2mark	T2next	75	61	2.124	3.296
79	204	3.819	5.76	70	61	3.328	5.109	75	88	6.186	7.951
79	207	1.53	2.624	70	88	3.235	4.969	75	96	5.202	6.827
79	210	0.947	4.238	70	96	4.312	5.843	75	102	6.342	10.404
79	217	1.434	3.851	70	102	4.766	6.391	75	109	2.312	4.062
79	219	1.03	2.17	70	104	2.563	3.907	75	201	2.243	3.462
79	223	1.263	2.713	70	109	1.75	3.218	75	227	1.718	4.749
79	231	5.234	8.656	70	309	2.562	3.781	75	312	1.501	3.136
79	303	1.045	3.788	70	312	1.609	3.468	75	313	8.076	10.451
79	304	0.889	2.404	70	313	4.469	5.938	75	324	2.375	4.187
79	310	2.92	5.215	70	324	1.687	2.812	75	325	2.021	4.859
79	322	1.14	2.514	70	325	1.594	2.781	75	402	5.671	11.014
79	401	1.422	4.14	70	402	2.985	5.578	75	403	1.594	2.844
7001	14	1.688	2.803	70	403	2.188	3.438	76	227	3.675	5.562
7001	16	2.088	3.302	70	404	2.031	3.484	76	312	5.06	6.442
7001	27	1.748	2.592	70	406	2.234	4.109	76	324	3.092	5.415
7001	33	2.71	3.918	71	61	1.187	4.953	76	325	4.098	5.469
7001	35	3.815	6.716	71	88	1.297	6.749	76	403	1.885	3.303
7001	41	1.286	2.48	71	96	4.374	7.217	76	406	2.986	4.253
7001	42	1.011	2.159	71	102	1.062	4.841	77	61	1.778	3.724
7001	62	1.762	2.962	71	104	1.484	2.562	77	88	2.51	7.694
7001	65	1.194	2.097	71	109	1.421	3.249	77	96	1.517	4.03
7001	69	1.47	2.786	71	201	2.61	4.875	77	102	5.287	8.472
7001	70	1.811	2.725	71	227	1.406	3.796	77	104	1.363	3.37
7001	72	1.041	2.173	71	309	5.656	8.843	77	109	1.44	2.743
7001	87	2.389	3.413	71	312	0.985	2.906	77	201	2.187	3.64
7001	92	2.807	4.5	71	313	2.89	8.67	77	227	2.298	5.348
7001	105	3.895	5.628	71	324	1.734	4.5	77	309	3.551	5.021
7001	204	1.718	3.05	71	325	0.969	2.359	77	312	0.974	2.112
7001	207	2.276	3.706	71	327	3.046	4.53	77	313	3.417	6.236
7001	210	2.355	3.54	71	402	8.982	10.498	77	324	1.001	3.114
7001	217	2.082	2.97	71	403	2.359	5.093	77	325	1.633	3.25
7001	219	1.471	2.555	71	406	1.672	3.515	77	327	1.648	6.952
7001	223	1.378	2.418	72	61	1.119	1.85	77	402	2.198	7.873
7001	231	4.002	5.506	72	88	0.914	1.967	77	404	1.251	3.42
7001	303	1.209	2.541	72	96	0.991	3.36	78	61	0.828	1.781
7001	304	1.416	2.304	72	102	2.391	6.079	78	88	1.344	2.485
7001	308	1.639	2.982	72	104	3.567	4.719	78	104	1.219	3.016
7001	310	3.175	5.73	72	227	1.58	2.804	78	109	0.953	1.797
7001	319	2.928	4.888	72	309	1.223	2.679	78	201	1.375	3.39
7001	320	1.303	2.562	72	312	0.996	1.868	78	227	1.344	2.625

78	312	1.031	1.891	80	306	1.985	4.766	88	57	2.813	4.875
78	324	0.875	1.657	81	6	1.109	3.219	88	68	2.406	7.234
78	325	0.985	1.985	81	15	1.39	5.5	88	77	4.562	6.937
78	327	3.187	4.406	81	19	1.281	4.172	88	82	2.797	5.735
78	402	2.25	4.25	81	26	0.984	2.797	88	209	3.468	5.828
78	403	0.735	1.625	81	57	1.75	4.984	89	6	1.562	3.546
78	406	1.531	2.406	81	68	1.563	3.219	89	15	2.218	4.046
79	61	1.013	2.697	81	77	1.204	3.516	89	19	1.172	3
79	88	1.351	4.75	81	82	1.218	2.531	89	26	1.397	2.592
79	96	1.288	5.914	81	209	2.547	5.64	89	57	1.406	3.813
79	102	3.578	7.125	82	6	0.921	3.718	89	68	1.609	4.515
79	104	2.108	4.153	82	15	3.671	9.265	89	77	1.532	4.235
79	109	0.781	2.685	82	19	1.312	3.078	89	82	1.531	3.39
79	227	1.179	4.47	82	26	1.172	2.656	89	209	2.891	6.172
79	312	2.498	4.512	82	57	1.547	2.938	8001	15	1.385	3.618
79	313	4.609	7.906	82	68	1.406	2.406	8001	19	1.107	3.832
79	324	1.419	3.274	82	77	1.766	3.328	8001	48	0.878	1.876
79	325	0.796	2.123	82	82	1.141	2.891	8001	67	1.848	2.779
79	402	1.717	4.107	82	209	1.172	2.906	8001	68	1.939	3.633
79	403	1.218	2.389	82	306	1.125	3.125	8001	82	1.74	3.187
7001	61	1.285	2.158	83	6	2.391	9.344	8001	97	2.017	3.31
7001	88	2.281	3.732	83	15	1.75	6.094	8001	208	0.823	2.672
7001	96	1.926	2.903	83	19	1.422	5.656	8001	209	2.233	4.188
7001	102	3.667	4.902	83	26	1.391	4.516	8001	211	0.985	1.889
7001	104	2.044	3.206	83	48	2.796	4.062	8002	15	1.593	2.703
7001	109	2.128	3.414	83	57	3.782	5.953	8002	19	1.188	2.609
7001	201	1.651	2.512	83	68	2.078	6.406	8002	26	1.078	2.421
7001	227	2.829	4.177	83	77	2.719	5.594	8002	57	4.094	6.047
7001	309	1.925	3.391	83	82	3.515	6.234	8002	68	1.062	2.656
7001	312	1.194	2.179	83	306	4.047	11.594	8002	77	1.094	2.75
7001	313	3.08	4.65	84	6	2.406	5.321	8002	82	1.172	2.391
7001	324	1.24	2.51	84	15	1.508	4.603	8002	209	1.344	3.516
7001	325	1.349	2.575	84	19	1.928	3.686	Group 8, image complexity 2 :			
7001	327	2.503	3.91	84	26	2.16	7.552				
7001	402	2	3.318	84	57	6.53	8.187				
7001	403	1.255	2.173	84	68	1.938	4.672				
7001	406	1.699	2.709	84	77	1.404	3.535	S \#	I \#	T2mark	T2next
7002	61	1.294	2.308	84	82	2.11	5.033	80	27	1.641	3.828
7002	88	1.948	3.83	84	209	2.395	4.942	80	33	1.328	3.031
7002	96	1.441	2.482	85	15	1.012	1.42	80	41	4.344	6.375
7002	102	2.449	7.207	85	26	1.405	1.853	80	69	1.016	5.828
7002	104	0.825	1.682	85	57	4.124	4.827	80	83	1.344	3.547
7002	109	0.99	1.995	85	68	2.171	2.859	80	95	1.547	4.484
7002	201	1.3	2.386	85	77	1.299	1.933	80	105	1.407	4.875
7002	227	1.775	3.056	85	82	4.968	5.687	80	217	1.687	4.249
7002	309	2.495	3.983	85	209	1.313	2.172	80	231	6.406	8.874
7002	312	1.438	2.355	85	306	2.515	3.187	80	303	2.437	4.593
7002	313	1.708	2.976	86	15	1.108	1.826	80	304	1.015	4.796
7002	324	1.168	2.291	86	19	1.42	3.262	80	308	2.39	4.609
7002	325	1.024	1.988	86	26	1.143	2.081	80	310	2.374	3.874
7002	327	1.481	2.615	86	57	1.535	2.734	80	319	7.031	8.656
7002	402	2.092	3.58	86	68	0.826	1.87	81	27	2.719	4.656
$\begin{aligned} & 7002 \\ & 7002 \end{aligned}$	404	0.946	1.744	86	77	1.436	2.31	81	33	1.359	2.89
	406	0.857	1.833	86	82	0.95	1.979	81	41	1.688	$\begin{aligned} & 6.032 \\ & 2.328 \end{aligned}$
Group 8, image complexity 1:				86	209	0.857	2.088	81	42	1.203	
				86	306	1.761	3.397	81	62	1.437	3.968
				87	15	1.239	2.522	81	72	1.063	3.547
				87	19	1.224	2.371	81	83	0.937	3.484
S \#	I \#	T2mark T2next			$87 \quad 48$	1.427	2.502	81	87	1.515	2.594
80	15	2.063	5.609	8787	67	1.366	2.748	81	92	1.531	4.531
80	34	1.406	3.281		68	1.029	2.417	81	95	1.281	2.765
80	47	1.765	5.812	87 87	77	1.388	2.985	81	204	2.344	5.391
80	48	1.265	2.937	87	80	1.535	2.717	81	207	0.907	2.016
80	57	3.187	5.374	87	82	1.268	2.462	81	210	1.375	2.812
80	63	2.609	5.093	87	97	1.164	2.388	81	223	0.985	2.766
80	64	1.734	3.937	87	111	1.264	3.05	81	224	1.875	3
80	67	1.281	3.718	87	208	0.853	2.155	81	310	4.969	6.859
80	68	2.875	4.359	87	209	1.104	2.506	81	320	1.828	3.031
80	80	1.422	2.734	87	211	0.853	1.829	81	322	2.063	3.906
80	82	1.407	3.281	87	230	1.253	2.238	81	401	1.266	7.109
80	97	6.14	7.64	87	306	1.314	2.567	82	14	1.312	3.328
80	206	1.203	4.531		411	1.704	3.985	82	16	7.687	9.172
80	208	1.187	2.437	88	6	2.469	4.422	82	33	0.719	2.656
80	221	1.515	3.281	88	15	3.359	5.625	82	42	1.516	3
80	230	1.609	4.265	88	19	2.046	6.89	82	62	1.125	3.234

82	69	1.047	2.844	86	16	2.384	4.348	8001	224	0.85	1.754
82	83	1.391	2.61	86	27	1.449	2.384	8001	231	2.032	4.511
82	92	10.641	12.172	86	33	0.984	1.905	8001	308	3.495	5.804
82	95	1.25	2	86	41	2.341	2.888	8002	16	10.875	13.172
82	204	1.172	3.687	86	42	0.968	1.811	8002	27	1.485	2.735
82	207	1.422	2.391	86	62	1.163	2.341	8002	33	1.062	3.171
82	210	1.25	2.437	86	69	1.122	1.917	8002	42	1.187	2.015
82	217	2.968	4.297	86	72	2.201	3.153	8002	62	1.281	2.953
82	223	2.985	7.141	86	83	1.583	2.594	8002	65	1.25	2.203
82	224	2.375	3.468	86	87	2.077	3.202	8002	69	1.265	2.734
82	310	1.875	3.25	86	92	2.822	8.266	8002	72	2.188	3.563
82	322	1.813	3.329	86	95	2.99	4.235	8002	87	2.188	3.375
83	14	2.593	10.921	86	204	2.151	3.335	8002	92	2.015	3.828
83	27	3.093	8.39	86	207	0.909	2.184	8002	95	1.094	2.453
83	33	3.5	5.078	86	210	1.418	2.79	8002	204	1.203	3.094
83	41	6.797	9.687	86	223	0.982	1.745	8002	207	1.672	3.266
83	42	5.359	7.219	86	224	1.358	2.201	8002	210	1.735	2.907
83	62	2.937	9.578	86	308	7.645	8.762	8002	223	0.703	1.672
83	69	1.985	4.953	86	310	2.216	3.2	8002	224	1.343	2.531
83	72	7	8.454	86	320	3.943	4.955	8002	308	1.172	4.015
83	83	1.375	2.734	86	322	1.561	2.858	8002	310	1.078	2.812
83	87	1.922	3.937	86	401	3.148	11.29	8002	320	1.641	2.735
83	92	13.485	15.11	87	16	8.065	9.26	8002	322	2.062	3.172
83	95	2.156	3.375	87	33	0.906	2.118	8002	401	3.875	5.422
83	204	2.406	13.343	87	76	1.412	2.609				
83	207	1.922	4.11	87	92	4.273	6.581	Group 8, image complexity 3:			
83	217	5.265	7.906	87	204	1.522	2.88				
83	223	2.562	5.297	87	210	1.704	2.872				
83	224	1.969	6.062	87	224	1.117	2.359	S \#	I \#	T2mark	T2next
83	310	4.312	5.921	87	231	3.552	4.805	80	61	1.578	3.953
83	320	5.516	8.515	87	308	1.94	3.074	80	88	2.359	5.921
83	322	5.062	8.546	87	401	3.572	5.276	80	201	2.359	4.78
83	401	5.062	11.922	88	16	12.922	14.828	80	313	3.265	7.077
84	14	2.192	4.121	88	27	2.422	5.25	80	402	6.328	8.249
84	27	3.119	7.247	88	33	1.875	4.5	80	406	1.891	3.875
84	33	2.24	4.044	88	42	1.703	4.078	81	88	2.796	4.093
84	41	2.69	3.841	88	62	2.547	6.094	81	96	2.546	5.327
84	42	1.82	4.257	88	69	2.563	4.391	81	201	3.828	5.953
84	62	2.078	4.874	88	83	1.828	3.594	81	312	4.86	6.016
84	69	1.743	4.025	88	87	1.578	3.234	81	324	1.234	3.5
84	72	3.995	6.354	88	92	7.406	8.906	82	88	2.015	3.875
84	83	1.431	2.904	88	95	2.282	4	82	312	1.094	2.344
84	87	2.504	3.903	88	204	6.532	8.516	82	324	1.547	3.985
84	92	14.155	15.545	88	207	8.75	10.594	83	88	2.968	10.109
84	204	3.188	7.109	88	217	3.485	6.172	83	201	3.312	7.015
84	207	1.545	2.718	88	223	5.031	6.75	83	312	2.359	6.14
84	210	2.14	12.416	88	224	2.125	4.391	83	324	1.437	3.875
84	217	3.008	5.075	88	308	8.39	10.515	83	403	1.297	5.344
84	223	1.867	3.671	88	320	2.954	4.891	84	88	3.661	8.965
84	224	2.535	3.857	88	322	2.016	4.172	84	96	2.657	5.031
84	310	2.037	3.903	89	14	1.688	3.781	84	312	2.995	7.222
84	320	4.52	7.081	89	16	4.516	7.828	84	324	2.021	5.399
84	322	1.835	3.188	89	27	1.5	3.765	85	88	3.234	4.14
84	401	5.859	7.469	89	33	1.594	3.063	85	96	3.125	4.047
85	14	1.193	1.767	89	42	1.469	3.594	85	201	2.501	3.257
85	16	3.281	3.89	89	62	2.234	5.062	85	312	1.821	2.423
85	27	1.516	2.328	89	69	2.281	5.281	85	324	0.831	1.45
85	33	1.194	1.994	89	72	2.547	3.938	85	403	1.133	1.738
85	41	1.239	1.783	89	83	1.567	5.323	86	88	1.246	2.228
85	42	1.209	1.873	89	87	1.719	2.828	86	96	2.451	4.327
85	62	5.687	6.625	89	92	3.078	4.203	86	312	1.218	2.031
85	69	1.297	2.094	89	95	2.111	3.352	86	324	1.046	2.107
85	72	1.118	1.737	89	204	2.547	4.453	86	403	1.077	2.903
85	83	1.497	2.068	89	207	1.599	2.732	87	88	3.422	5.771
85	92	2.406	3.859	89	210	2.906	5.469	87	327	6.004	7.612
85	204	2.485	3.328	89	223	1.469	4.578	87	402	2.528	5.262
85	207	0.942	1.606	89	224	1.187	2.281	87	403	1.03	2.373
85	210	1.094	1.734	89	310	3.266	4.813	88	88	4.891	7.156
85	217	1.656	2.265	89	401	2.718	3.984	88	96	4.515	6.562
85	223	1.078	1.75	8001	33	1.039	2.065	88	312	2.516	4.172
85	224	1.677	2.266	8001	72	2.894	4.11	88	324	2.203	3.859
85	310	2.024	2.628	8001	76	1.164	2.452	88	403	2	4.156
85	322	1.636	2.254	8001	92	1.792	15.808	89	88	2.203	5.469
85	401	4.297	5.172	8001	204	1.656	7.604	89	96	2.735	4.282
86	14	1.701	2.56	8001	210	1.099	4.637	89	312	2.078	3.187

89	324	2.14	3.359	92	63	0.86	2.297	95	34	1.109	3.628
89	403	2.969	5.781	92	64	0.984	2.969	95	46	6.158	11.811
8001	61	1.474	2.622	92	67	0.687	2.047	95	47	1.14	3.658
8001	102	3.252	6.594	92	68	0.844	2.235	95	48	0.959	2.788
8001	309	3.077	14.298	92	80	0.828	2.25	95	57	1.976	3.416
8001	403	3.356	4.557	92	82	0.906	2.688	95	63	1.116	2.789
8002	88	3.14	4.781	92	97	1.266	2.953	95	64	4.835	6.104
8002	96	3.812	4.765	92	206	1.047	2.359	95	68	6.572	9.1
8002	201	3.125	5.579	92	208	0.593	1.968	95	77	1.533	4.347
8002	312	2.468	4.234	92	209	1	2.406	95	82	16.223	18.643
8002	324	1.125	2.203	92	211	0.593	1.75	9595	97	1.287	3.202
				92	220	1.078	2.594		111	5.469	7.016
Group 9, image complexity 1:				92	221	0.89	2.843	95	206	0.906	1.951
				92	230	1.078	2.61	95	209	1.177	2.401
				92	306	1.032	4.735	95	211	0.72	2.189
S \#	I \#	T2mark	T2next	92	307	1.062	3.453	95	220	1.84	3.191
90	6	1.093	2.015	92	411	1.75	4.484	95	221	1.649	3.538
90	7	1.11	2.719	93	6	1.704	4.875	95	306	2.137	4.523
90	15	1.093	1.937	93	7	2.094	6.235	95	307	1.686	3.26
90	19	0.703	1.5	93	15	1.297	2.938	95	411	12.899	15.948
90	26	0.734	2.218	93	19	1.609	3.406	96	6	1.063	2.673
90	46	0.968	1.89	93	26	1.078	3.218	96	7	1.397	3.828
90	47	1.031	2.172	93	46	1.609	4	96	15	1.655	3.063
90	48	0.859	1.625	93	47	1.938	3.641	96	19	1.299	3.31
90	54	1.562	2.625	93	48	1.219	2.969	96	26	1.121	5.06
90	57	1.484	2.594	93	54	1.578	3.532	96	46	0.969	2.828
90	63	0.906	2.156	93	57	3.078	5.64	96	47	1.207	2.553
90	64	1.094	1.969	93	63	1.828	4.578	96	48	1.058	3.394
90	67	0.735	1.594	93	64	9.125	11.219	96	54	1.58	2.825
90	68	0.703	2.266	93	67	1.265	3.078	96	57	1.578	3.812
90	80	1.172	1.953	93	68	2.047	4.609	96	63	1.391	2.906
90	82	0.984	1.843	93	80	1.391	3.203	96	64	1.2	2.4
90	97	1.281	7.859	93	82	1.547	3.297	96	67	1.121	3.3
90	206	0.922	2.031	93	97	3.016	6.906	96	68	1.188	2.688
90	208	0.547	1.578	93	206	1.844	7.406	96	80	1.09	2.989
90	209	1.11	3.125	93	208	1.141	2.672	96	82	1.469	3.672
90	211	0.719	1.625	93	209	1.875	5.328	96	97	2.313	8.219
90	220	1.171	2.406	93	211	1.484	3.375	96	206	0.957	2.051
90	221	1.328	2.453	93	220	2.578	4.484	96	208	1.083	2.599
90	230	1.453	2.562	93	221	1.891	3.641	96	209	1.406	3.609
90	306	5.234	6.359	93	230	2.234	5.359	96	211	1.261	2.74
90	307	0.906	1.922	93	306	1.547	4.812	96	220	1.578	4.099
90	411	1.015	2.453	93	307	1.844	3.235	96	221	1.386	3.223
91	6	1.817	5.622	93	411	4.172	6.875	96	230	2.051	3.479
91	7	1.802	5.884	94	6	2.141	2.984	96	306	1.922	3.359
91	15	1.288	3.011	94	15	0.789	1.887	96	307	1.443	4.511
91	19	1.66	3.6	94	19	1.856	2.475	96	411	1.25	3.797
91	46	1.869	4.07	94	26	0.919	2.569	97	6	2.205	3.441
91	47	1.325	3.173	94	46	1	1.828	97	7	2.756	3.84
91	48	1.522	3.483	94	47	0.819	2.227	97	15	1.867	3.274
91	54	2.85	5.111	94	48	0.716	1.743	97	19	1.264	2.346
91	57	4.223	5.668	94	54	0.453	1.437	97	26	1.924	7.11
91	63	1.779	4.809	94	57	1.094	2.719	97	34	2.613	3.708
91	64	3.634	7.026	94	63	2.437	3.515	97	46	1.781	8.556
91	67	2.483	3.964	94	64	1.14	1.984	97	47	1.602	3.849
91	68	2.792	6.689	94	67	0.881	2.521	97	48	1.095	2.177
91	80	1.302	2.633	94	68	0.64	1.547	97	57	1.997	3.743
91	82	1.553	5.051	94	80	0.866	1.562	97	63	1.494	3.048
91	97	2.578	7.329	94	82	0.531	1.453	97	64	1.423	2.968
91	206	2.065	6.92	94	97	1.563	5.344	97	68	2.45	9.708
91	208	1.193	3.237	94	206	1.172	2.141	97	82	2.517	11.569
91	209	2.02	4.282	94	208	1.206	2.042	97	97	1.915	4.459
91	211	1.495	3.388	94	209	1.094	2.203	97	206	2.234	5.799
91	220	1.257	2.887	94	211	0.835	2.042	97	209	1.908	3.062
91	221	1.632	4.512	94	220	0.929	1.779	97	211	1.335	2.571
91	230	4.128	5.622	94	221	1.121	2.289	97	221	1.63	2.838
91	411	2.366	9.594	94	230	1.031	2.156	97	306	1.928	3.014
92	15	0.953	2.594	94	306	1.125	2.078	97	307	3.087	5.072
92	19	1.109	2.812	94	307	1.748	2.847	97	411	2.798	5.315
92	26	0.703	2.844	94	411	1.656	2.89	98	6	2.156	5.281
92	46	0.844	2.281	95	6	1.439	3.988	98	15	1.812	3.406
92	47	0.921	2.093	95	7	2.383	5.588	98	19	1.203	2.485
92	48	0.641	1.703	95	15	1.35	3.274	98	26	1.703	4.016
92	54	1	2.375	95	19	0.825	2.324	98	34	2.235	4.11
92	57	1.578	3.921	95	26	0.876	1.89	98	46	2.532	5.172

98	47	1.578	2.922	9002	64	1.515	5.093	92	35	1.531	3.344
98	48	1.125	2.593	9002	67	2.063	3.625	92	41	0.937	2.484
98	54	1.812	4.609	9002	68	2.109	4.093	92	42	0.907	2.297
98	57	2.891	5.578	9002	80	1.547	3.406	92	62	1.031	3.422
98	63	3.297	5.109	9002	82	2.016	3.985	92	65	1.11	2.5
98	64	1.578	4.265	9002	97	2.469	6.765	92	69	0.891	2.141
98	67	1.984	3.469	9002	206	2.125	4.172	92	70	0.89	2.593
98	68	2.61	5.734	9002	208	1.625	3.703	92	72	3.453	5.235
98	80	1.093	2.14	9002	209	1.781	4.047	92	87	0.922	2.438
98	82	1.86	4.219	9002	211	1.265	6.75	92	92	3.031	4.39
98	97	2.484	5.968	9002	220	2.047	3.922	92	95	0.734	2.343
98	206	2.594	4.766	9002	221	1.453	3.562	92	105	1.281	2.843
98	208	1.031	2.422	9002	230	2.218	4.703	92	204	1.266	3.672
98	209	2.203	4.844	9002	307	1.89	5.124	92	207	0.719	2.203
98	220	6.281	7.874	9002	411	2.828	7.047	92	210	1.016	2.61
98	230	2.235	3.797	Group 9, image complexity 2:				92	217	1.109	2.609
98	307	2.109	3.531					92	219	0.688	2.359
99	6	1.421	2.859					92	223	0.922	2.375
99	7	1.734	3.843					92	303	0.828	2.281
99	15	1.686	2.698	S \#	I \#	T2mark	T2next	92	304	0.781	2.39
99	19	1.962	3.081	90	14	1.312	2.312	92	310	1.125	3.156
99	26	4.64	6.177	90	16	2.625	4.203	92	319	2.328	3.828
99	46	1.672	2.547	90	27	1.219	2.235	92	322	0.922	3.063
99	47	1.548	2.53	90	33	0.765	1.562	92	401	3.172	4.828
99	48	1.738	3.026	90	35	5.25	7.047	93	14	1.641	3.516
99	54	1.609	2.89	90	41	1	1.75	93	16	6.563	8.36
99	57	2.344	4.375	90	42	1.14	1.953	93	27	1.765	3.828
99	63	3.047	5.625	90	62	0.735	1.703	93	33	1.547	3.297
99	64	2.187	3.859	90	70	1.125	2.39	93	35	3.578	8
99	67	2.079	3.181	90	87	2.687	3.562	93	41	1.735	3.204
99	68	2.609	4.89	90	92	1.5	3.047	93	42	1.766	3.078
99	80	2.701	3.926	90	95	2.391	3.625	93	62	3.593	5.703
99	82	2.906	4.75	90	105	3.797	7.297	93	65	2.297	6
99	97	5.359	8.593	90	204	1.344	2.516	93	69	3.297	5.078
99	206	1.172	2.531	90	207	0.687	2.015	93	70	1.422	3.172
99	208	2.023	2.943	90	210	1.031	2.687	93	87	3.157	5.25
99	209	1.703	3.156	90	219	0.781	1.796	93	92	9	10.969
99	211	0.947	1.63	90	223	0.938	2	93	95	1.547	4.937
99	220	1.426	2.576	90	231	2.766	7.344	93	105	2.063	6.703
99	221	1.769	2.964	90	303	1.125	2.469	93	204	2.875	6.172
99	230	1.64	3	90	304	0.797	1.672	93	207	1.64	3.297
99	306	1.953	3.156	90	319	3.063	6.672	93	210	2.156	4.109
99	307	1.226	2.437	90	320	1.406	2.656	93	217	3.516	5.328
99	411	2.672	4.563	90	322	1.094	2.032	93	219	1.594	3.875
9001	6	0.953	2.656	90	401	2.375	3.672	93	223	2.281	3.828
9001	15	1.11	2.844	91	14	1.92	4.114	93	231	14.203	16.625
9001	19	1.422	2.984	91	16	5.925	10.81	93	303	3.015	4.343
9001	26	1.219	2.562	91	27	2.201	4.101	93	304	1.359	2.687
9001	47	1.515	3.187	91	33	1.399	4.512	93	319	12.11	13.641
9001	48	1.234	2.406	91	35	5.877	12.062	93	322	2.219	4.875
9001	54	0.89	2.359	91	41	1.35	2.592	93	401	7.765	9.593
9001	63	1.64	3.5	91	42	1.602	5.622	94	14	1.609	2.414
9001	64	1.391	2.86	91	62	3.444	5.825	94	27	1.063	2.109
9001	67	1.016	2.797	91	69	3.481	5.083	94	33	0.68	1.485
9001	68	1.469	4.875	91	70	1.676	4.361	94	35	4.718	7.093
9001	80	1.532	3.141	91	72	3.111	4.436	94	41	0.851	1.779
9001	97	1.5	6.453	91	87	1.289	2.674	94	42	0.82	1.763
9001	206	1.265	2.953	91	92	2.205	7.562	94	62	1.203	3.407
9001	208	0.766	2.704	91	105	8.946	18.432	94	65	0.735	2
9001	211	1.062	2.625	91	204	2.664	5.966	94	69	0.703	1.359
9001	220	1.703	3.156	91	210	1.824	2.985	94	70	0.728	1.64
9001	221	1.187	2.453	91	217	1.787	4.421	94	72	0.61	1.188
9001	230	1.375	2.812	91	219	1.577	3.662	94	87	0.696	1.237
9001	307	1.281	4.547	91	223	2.433	5.037	94	92	1.656	3.281
9002	6	1.812	5.671	91	231	4.86	8.292	94	105	2.562	5.781
9002	7	2.391	5.188	91	303	1.878	3.601	94	204	1.469	2.578
9002	15	1.609	3.5	91	304	2.084	3.62	94	207	0.934	1.899
9002	19	1.391	3.25	91	319	4.472	14.379	94	210	0.891	2.047
9002	26	1.204	3.703	91	320	1.553	4.011	94	217	0.843	1.484
9002	46	1.265	4.312	91	322	1.399	4.32	94	219	2.073	3.559
9002	47	1.313	2.937	91	401	7.455	9.297	94	223	0.906	1.703
9002	48	1.5	3.219	92	14	0.859	2.765	94	231	3.749	5.031
9002	54	1.766	3.156	92	16	1.906	4.062	94	303	1.161	2.445
9002	57	1.547	4.203	92	27	1.219	3.079	94	304	0.638	1.51
9002	63	1.859	4.281	92	33	0.687	2.047	94	308	1.562	4.406

94	310	1.918	2.955	97	219	1.63	2.599	9001	401	1.125	5.593
94	320	0.891	1.766	97	223	2.353	5.388	9002	14	1.922	4.453
94	322	1.098	2.367	97	224	1.475	2.388	9002	16	2.812	8.89
94	401	1.343	3.515	97	303	3.189	4.335	9002	27	1.922	4.421
95	14	0.968	2.29	97	304	1.32	2.5	9002	33	1.344	3.656
95	16	2.436	3.616	97	310	1.404	2.57	9002	35	5.688	8.125
95	27	3.432	4.703	97	322	1.924	3.067	9002	41	4.781	6.64
95	33	1.229	2.699	98	16	4.781	7.203	9002	42	1.641	5.485
95	35	4.886	6.189	98	27	3.672	7.688	9002	62	1.938	3.344
95	41	1.394	2.519	98	33	1.656	3.953	9002	65	3	4.485
95	42	1.184	2.215	98	41	1.735	3.516	9002	69	2.25	4.75
95	62	1.163	2.746	98	42	2.218	4.39	9002	70	1.515	6.624
95	69	0.975	2.034	98	62	3.969	6.797	9002	72	1.625	4.89
95	70	0.795	1.719	98	69	1.641	4.079	9002	87	1.562	3.453
95	76	1.739	5.742	98	70	1.281	3.187	9002	92	3.125	5.812
95	87	3.073	4.077	98	72	1.938	3.61	9002	95	1.406	3.844
95	92	2.574	4.075	98	76	1.781	3.719	9002	105	4.687	8.421
95	105	1.843	3.872	98	83	1.047	2.531	9002	207	1.485	3.282
95	204	1.487	3.082	98	95	1.219	2.906	9002	210	1.797	4.219
95	207	0.974	2.278	98	105	4.375	7.485	9002	219	1.781	5.469
95	210	1.599	4.221	98	204	4.094	6.688	9002	223	1.515	6.25
95	219	0.885	2.114	98	207	1.485	2.875	9002	231	4.812	8.546
95	223	2.021	3.108	98	210	1.734	4.063	9002	303	15.25	17.359
95	224	0.96	1.994	98	217	2.687	3.984	9002	304	1.859	3.422
95	231	4.492	8.427	98	219	1.344	3.125	9002	308	8.234	12.891
95	303	1.421	3.595	98	223	1.656	4.203	9002	310	1.39	3.781
95	304	1.17	2.489	98	224	1.297	3.234	9002	319	8.359	12.593
95	308	0.96	2.014	98	231	2.578	6.031	9002	320	2.062	4.047
95	320	2.327	5.769	98	303	3.109	6.234	9002	322	2.422	5.875
95	322	1.154	2.308	98	304	1.313	2.297	9002	401	4.766	7.61
96	14	1.454	2.862	98	308	4.672	6	Group 9, image complexity 3:			
96	16	6.765	11.5	98	319	3.141	4.75				
96	27	1.218	3.749	98	322	1.485	2.797				
96	33	1.16	4.811	98	401	4	5.078				
96	35	3.078	7.562	99	27	1.828	3.844	S \#	I \#	T2mark	T2next
96	41	2.398	4.177	99	33	1.947	2.852	90	88	1.656	2.781
96	42	1.368	3.859	99	35	3.547	6.469	90	96	1.797	2.828
96	62	1.5	3.156	99	41	1.487	2.668	90	102	1.766	5.094
96	65	1.686	3.296	99	42	1.272	2.361	90	104	1.75	2.703
96	69	1.23	3.357	99	65	1.375	2.578	90	109	1.046	2.156
96	70	0.959	2.645	99	69	2.031	3.25	90	201	1.14	2.328
96	72	1.503	3.19	99	70	2.759	5.335	90	227	1.14	2.328
96	87	4.733	9.389	99	72	1.063	2.25	90	312	0.891	1.938
96	92	5.391	7.141	99	87	2.499	3.588	90	324	3.766	4.922
96	95	1.432	3.02	99	95	3.538	4.655	90	325	1.015	1.984
96	105	2.36	7.781	99	105	3.64	6.25	90	327	1.031	3.781
96	204	2.374	4.968	99	204	2.593	3.937	90	402	4.969	6.391
96	207	1.494	3.736	99	207	1.567	2.653	90	403	1.172	2.469
96	210	1.216	3.707	99	210	7.422	11.031	90	406	1.953	3.031
96	217	1.929	3.251	99	219	2.116	3.189	91	61	2.522	5.176
96	219	1.16	3.279	99	223	1.89	3.14	91	88	2.744	8.548
96	223	1.23	2.749	99	304	1.676	2.839	91	96	3.387	6.533
96	231	5.296	9.937	99	310	2.238	4.017	91	102	2.889	6.771
96	303	2.119	5.058	99	319	4.656	6.531	91	104	1.94	5.183
96	304	1.37	2.942	99	320	1.812	3.218	91	109	3.135	4.936
96	319	4.266	9.984	99	322	1.536	2.809	91	201	2.277	3.936
96	322	5.584	8.368	99	401	3.156	5.203	91	227	1.673	5.261
96	401	2.828	4.969	9001	14	1.031	2.406	91	309	5.653	8.669
97	14	1.549	2.571	9001	27	1.39	3.875	91	312	1.686	3.524
97	16	1.62	5.717	9001	33	1.234	2.734	91	313	2.919	7.156
97	27	3.003	4.009	9001	41	2.016	3.5	91	324	2.557	4.482
97	33	2.641	4.636	9001	65	1.609	3.547	91	325	1.427	4.43
97	35	1.339	4.231	9001	72	1.015	2.515	91	327	1.956	17.176
97	41	2.557	3.779	9001	87	2.11	3.969	91	402	2.013	8.503
97	42	1.515	2.968	9001	95	1.734	3.453	91	403	2.67	4.299
97	62	1.79	2.831	9001	105	5.296	7.796	92	61	0.828	2.313
97	65	2.417	4.835	9001	207	1.36	2.61	92	88	1.281	3.14
97	69	4.254	5.769	9001	210	3.593	5.343	92	96	1.344	2.797
97	70	1.579	2.556	9001	217	1.157	2.719	92	102	2.281	3.703
97	87	1.684	2.736	9001	219	1.188	3.125	92	104	1.11	3.453
97	105	3.611	6.519	9001	223	1.157	2.86	92	109	1.563	3.344
97	204	2.367	3.521	9001	303	1.375	3.187	92	201	1.094	2.609
97	207	1.587	3.202	9001	304	1.016	2.469	92	227	1.172	2.812
97	210	1.775	3.091	9001	320	1.016	3.156	92	309	1.313	3.141
97	217	2.246	3.469	9001	322	1.313	3.485	92	312	0.953	2.547

92	313	4.328	5.859	97	313	3.259	4.957	100	97	1.375	2.906
92	324	0.844	2.344	97	324	2.023	3.161	100	206	1.265	2.953
92	325	1.016	4.016	97	325	1.488	2.48	100	208	1.609	3.859
92	327	2.296	5.124	97	327	1.776	4.794	100	209	1.719	5.922
92	402	1.328	3.047	97	402	4.143	5.149	100	220	1.766	3.656
92	403	0.797	2.984	97	404	2.15	3.793	100	221	1.281	2.515
92	406	0.937	2.406	97	406	2.137	3.562	100	230	1.25	2.593
93	61	2.281	4.015	98	61	2.593	5.281	100	411	1.375	5.109
93	88	2.703	4.547	98	88	3.735	5.594	101	6	1.611	2.477
93	96	3.532	5.125	98	96	2.25	5.422	101	15	1.215	2.021
93	102	4.985	7.203	98	102	7.281	11.156	101	19	0.957	1.838
93	104	2.812	4.89	98	104	2	3.422	101	26	1.041	1.802
93	109	2.25	4.141	98	227	4.171	7.765	101	57	2.48	4.177
93	201	2.157	4.031	98	309	4.219	7.375	101	68	1.378	3.118
93	227	2.015	4.359	98	312	1.813	3.407	101	77	1.763	3.237
93	309	3.328	5.125	98	313	3.766	6.094	101	82	1.16	2.349
93	312	1.391	4.531	98	325	1.969	4.016	101	209	1.653	3.988
93	324	1.734	3.781	98	327	4.25	6.735	101	306	1.32	2.422
93	325	2.187	3.781	98	402	6.531	8.765	102	15	0.875	1.86
93	327	2.89	6.546	98	403	1.594	3.25	102	34	2.079	3.094
93	402	6.891	8.75	98	404	1.266	2.547	102	46	1.063	2.766
93	403	2.219	4.094	99	88	5.484	7.109	102	47	1.219	5.625
93	406	3.672	5.531	99	109	6.746	8.202	102	48	1.094	2.36
94	61	0.773	1.485	99	201	1.785	3.089	102	57	3.985	5.782
94	88	0.765	1.859	99	227	2.531	3.843	102	63	0.843	2.156
94	96	1.328	2.953	99	312	1.987	3.104	102	64	1.797	3.141
94	102	2.469	3.641	99	324	1.453	2.828	102	67	0.906	1.953
94	104	1.299	2.382	99	325	3.072	4.174	102	68	1.422	2.5
94	109	1.037	2.476	99	402	3.921	5.327	102	80	0.781	2.203
94	227	0.922	1.813	99	403	1.549	3.741	102	82	1.281	2.953
94	309	0.891	1.735	9001	61	1.656	3.062	102	97	1.047	2.828
94	312	0.887	1.744	9001	88	2.203	5.797	102	111	1.234	3.218
94	313	1.735	3.047	9001	96	1.562	6.015	102	206	0.765	2.39
94	324	0.906	1.547	9001	102	9.016	10.906	102	208	0.766	1.922
94	325	0.851	1.485	9001	104	1.89	3.718	102	209	1.5	2.766
94	327	2.188	3.266	9001	109	3.5	4.828	102	220	1.578	4.156
94	402	1.531	2.656	9001	201	1.813	4	102	221	1.063	6.094
94	403	1.238	2.939	9001	227	1.328	5.359	102	306	1.359	3.859
94	406	1.609	3.435	9001	309	1.125	4.203	103	6	1.687	5.141
95	88	1.272	2.758	9001	312	1.359	2.953	103	15	1.547	4.344
95	96	2.014	3.424	9001	324	1.469	3.313	103	19	2.25	7.313
95	104	1.999	3.167	9001	325	1.437	3.281	103	26	1.438	2.938
95	109	1.951	3.846	9001	403	2.047	4.172	103	68	2.172	5.563
95	201	1.921	4.32	9001	406	1.187	2.656	103	77	1.625	3.172
95	227	2.633	3.966	9002	61	4.156	5.969	103	82	2.703	3.968
95	309	1.623	5.576	9002	88	2.203	6.656	103	306	1.953	5.797
95	324	3.283	4.363	9002	96	4.985	7.172	104	6	1.796	2.89
95	325	0.922	3.305	9002	102	2.859	9.172	104	15	1.094	2.313
95	327	1.828	2.835	9002	104	1.375	4.141	104	19	4.843	5.875
95	404	1.245	2.624	9002	109	1.234	3.468	104	26	1.771	2.828
96	61	1.454	3.171	9002	227	2.172	3.828	104	57	1.484	2.937
96	88	1.437	2.875	9002	309	1.531	8.312	104	68	2.938	3.922
96	96	1.937	5.265	9002	312	1.938	6.469	104	77	1.375	2.859
96	102	1.766	4.75	9002	313	5.562	7.468	104	82	1.437	2.578
96	104	6.992	8.538	9002	324	1.703	4.218	104	209	2.797	4.156
96	109	1.671	4.161	9002	325	1.766	4.797	104	306	1.094	2.719
96	227	1.5	5.219	9002	327	3.172	7.297	105	6	1.937	8.906
96	309	1.359	3.171	9002	402	6.109	7.703	105	15	1	2.641
96	312	1.448	3.736	9002	406	4.218	8.859	105	19	1.047	2.422
96	313	2.359	4.218					105	26	0.922	6.094
96	324	1.169	2.628	Group 10, image complexity 1:				105	57	1.157	3.235
96	325	1.377	3.604					105	68	0.969	4.25
96	327	1.5	5.437					105	77	1.938	3.891
96	402	2.187	5.875	S \#	I \#	T2mark	T2next	105	82	1.031	5.156
96	403	1.516	4.068	100	15	2.047	4.125	105	209	1	3.266
96	406	2.278	3.904	100	34	0.954	2.532	106	15	1.798	5.815
97	61	1.362	2.586	100	46	1.968	3.921	106	26	1.221	2.769
97	88	8.67	10.712	100	47	1.437	2.593	106	34	0.953	3.626
97	96	3.106	4.621	100	48	0.922	2.156	106	46	2.511	4.814
97	102	3.307	5.771	100	57	3.89	5.718	106	47	1.183	3.38
97	104	6.87	8.704	100	63	1.25	2.906	106	48	1.845	2.917
97	109	2.923	5.432	100	64	1.469	2.656	106	57	2.14	3.323
97	227	2.188	3.703	100	68	1.609	4.078	106	63	1.812	2.83
97	309	2.16	4.439	100	80	1.093	2.515	106	64	4.621	5.862
97	312	1.669	2.751	100	82	1.734	4.891	106	67	1.519	3.603

106	68	1.197	1.991	101	41	1.991	2.812	105	83	0.719	1.781	
106	77	1.798	3.826	101	42	1.322	2.036	105	87	1.25	2.75	
106	206	1.426	2.822	101	62	1.944	4.496	105	95	1.312	3.734	
106	208	1.282	2.674	101	69	0.912	1.611	105	204	2.938	4.86	
106	209	1.123	2.261	101	72	0.972	3.617	105	207	2.125	3.453	
106	221	1.419	3.288	101	83	1.103	1.724	105	210	1.312	5.875	
106	411	1.901	4.102	101	87	1.127	2.286	105	217	5.141	6.922	
107	26	1.203	3.047	101	92	6.607	7.987	105	223	1.453	3.156	
107	57	1.25	4.938	101	95	1.228	2.004	105	224	1.546	5.984	
107	68	1.5	5.312	101	105	5.226	6.854	105	308	5.671	10.296	
107	82	2.703	4.593	101	204	1.74	4.467	105	310	2.266	3.891	
107	209	1.687	4.078	101	207	1.43	2.098	105	320	6.078	7.484	
107	306	1.812	4.781	101	210	1.175	2.335	105	322	1.282	5.469	
108	15	1.5	3.485	101	223	1.261	2.522	105	401	3.859	6.219	
108	34	1.125	1.922	101	224	1.189	2.224	106	16	2.186	4.177	
108	47	3.031	4.859	102	33	1.25	2.516	106	33	1.787	2.756	
108	54	1.625	2.39	102	69	1.125	2.484	106	41	1.706	2.827	
108	57	2.438	5	102	72	2.219	3.984	106	42	1.768	4.063	
108	63	1.797	3.5	102	83	2.578	3.875	106	62	1.647	2.56	
108	64	1.672	3.672	102	87	1.14	2.953	106	65	1.613	6.311	
108	68	1.437	4.703	102	95	1.422	2.579	106	69	1.429	2.75	
108	206	1.578	3.89	102	105	1.625	2.812	106	72	2.781	4.364	
108	208	1.172	2.031	102	204	1.609	3.218	106	83	1.324	2.115	
108	411	2.094	4.016	102	217	1.578	3.594	106	87	1.76	2.524	
109	6	1.016	2.172	102	223	4.063	5.688	106	204	3.009	3.892	
109	15	0.781	1.813	102	231	3.359	5.516	106	207	2.674	5.512	
109	19	1.188	2.219	102	303	1.735	3.156	106	219	1.474	2.754	
109	26	0.86	1.735	102	304	0.984	4.874	106	223	1.121	1.843	
109	57	1.047	3.203	102	308	4.062	5.656	106	231	1.97	4.357	
109	68	1.141	2.266	102	310	1.062	2.484	106	303	1.429	2.243	
109	77	1.172	2.781	103	14	2.313	4.875	106	310	2.879	3.684	
109	82	1.125	1.922	103	16	4.797	8.453	106	319	4.717	5.55	
109	306	1.312	2.281	103	27	1.704	4.297	106	320	3.994	5.392	
110	6	1.297	3.797	103	33	2.937	4.125	106	322	1.515	4.407	
110	15	1.047	2.672	103	42	2.75	6.468	107	14	1.578	3.89	
110	19	1.281	3.687	103	62	4.734	11.391	107	16	5.093	8.578	
110	26	1.265	3.078	103	69	2.203	4.719	107	27	1.204	4.422	
110	57	1.703	4.125	103	83	1.484	3.312	107	33	1.125	2.797	
110	68	1.063	4.266	103	92	5.985	9.516	107	41	2.5	4.171	
110	77	1.485	3.391	103	95	4.062	5.687	107	42	1.781	2.797	
110	82	2.5	4.906	103	204	5.141	14.953	107	72	1.219	3.078	
110	209	1.391	3.391	103	207	2.172	3.437	107	83	0.984	1.859	
110	306	4.266	7.469	103	210	1.657	5.75	107	87	0.813	1.579	
111	15	7.186	9.812	103	217	2.86	4.61	107	92	3.344	5.953	
111	46	3.577	5.344	103	223	2.063	3.438	107	95	1.109	3.171	
111	48	1.383	2.588	103	224	3.968	5.375	107	207	1.14	2.156	
111	68	2.042	3.609	103	308	5.672	9.782	107	210	1.187	3.422	
111	77	1.783	3.767	103	310	4.5	5.766	107	223	2.25	3.36	
111	80	1.055	2.41	104	14	1.219	2.781	107	224	1.188	2.141	
111	82	1.797	3.133	104	16	2.938	4.188	107	308	3.469	6	
111	97	2.15	4.131	104	27	2.204	3.891	107	310	1.141	2.578	
111	208	1.029	2.504	104	33	1.187	2.094	107	320	1.828	3.687	
$\begin{aligned} & 111 \\ & 111 \end{aligned}$	209	2.411	4.0392.639	104	42	1.531	2.828	107	401	3.781	5.094	
	211	1.193		$\begin{aligned} & 104 \\ & 104 \end{aligned}$	62	1.703	3.156	108	14	3.609	5.515	
Group 10, image complexity 2 :					69	1.297	2.484	108	92	1.718	6.218	
				$\begin{aligned} & 104 \\ & 104 \\ & 104 \end{aligned}$	72	1.875	2.922	108	95	1.078	2.093	
				83	2.952	4.568	108	204	3	3.875		
				92	2.157	4.094	108	207	1.703	3.593		
S \#	I \#	T2mark	T2next		104	95	1.849	2.781	108	223	1.656	3.609
100	27	1.563	2.969		104	204	2.063	4.032	108	224	3.297	4.047
100	33	1.734	4.875	104	207	1.29	2.455	108	401	4.25	6.016	
100	41	1.156	2.578	104	210	1.438	3.86	109	27	1.359	2.219	
100	69	1.156	2.656	104	223	1.546	2.703	109	33	1.125	5.5	
100	72	1.672	3.812	104	224	1.25	2.281	109	41	0.969	2.625	
100	83	1.203	2.578	104	310	3.641	5.016	109	42	1.547	2.438	
100	87	1.375	3.156	104	322	1.249	2.718	109	62	1.125	3.75	
100	105	1.187	3.047	105	14	1.578	9.031	109	72	2.359	3.281	
100	204	1.532	4.407	105	16	2.688	10.656	109	83	1.906	2.734	
100	217	3.109	4.812		27	1.219	4.985	109	87	0.907	1.86	
100	223	1.594	3.016	105	33	0.906	2.5	109	92	1.64	2.968	
100	310	1.313	2.766	105	41	3.125	4.296	109	95	1.016	2.219	
101	14	1.992	3.151	105	42	1.156	2.734	109	204	1.532	2.703	
101	16	4.961	7.485	105	62	2	6.141	109	207	1.218	2.093	
101	27	1.334	2.741	105105	69	1.625	4.344	109	210	1.016	1.969	
101	33	1.498	2.78		72	1.328	2.687	109	223	0.812	1.75	

תקציר

רובוטים אוטונומיים מוגבלים בבצועיהם כאשר הם פועלים בסביבות דינאמיות ובלתי מובנות. שילוב מפעיל אנושי במערכת רובוטית יכול לתרום לשיפור הביצועים ולהפחתת מורכבות המערכת. מערכות שיתוף פעולה בין אדם לרובוט מפיקות תועלת מיכולות התפיסה של האדם כמו גם מהדיוק והעקביות של הרובוט. ניתן ליישם שיתוף פעולה ברמות שונות הנבדלות בניהן ברמת האוטונומיה של הרובוט.

תיזה זו מתמקדת בהערכת מערכת זיהוי מטרות משולבת אדם-רובוט. ההערכה מתבססת על פיתוח קודם של פונקצית מטרה עבור משימת זיהוי מטרות (בכר, 2006). ארבע רמות שיתוף פעולה הוגזרו במיוחד עבור משימת זיהוי מטרות. פונקצית המטרה של המודל מכמתת את השפעת הפרמטרים השונים של הרובוט, האדם, הסביבה והמשימה באמצעות סכום משוקלל של מדדי ביצוע. המודל מאפשר לקבוע מהי רמת שיתוף הפעולה האופטימאלית בהינתן פרמטרים אלו. זמן התגובה של האדם הוא הזמן הדרוש לאדם כדי להחליט האם אובייקט הוא מטרה או לא. זמן התגובה משפיע על עלויות התפעול של המערכת. עבודה זו מציגה המשך פיתוח של פונקצית המטרה ולוקחת בחשבון שזמן התגובה תלוי בעוצמת האות של האובייקט הנבחן, זמן שאינו קבוע בין אובייקטים. במחקר זה, מודל זמן תגובה המבוסס על מודל של מורדוק (1985) משולב לתוך המודל של בכר (2006). המודל החדש צפוי לתאר מערכות אמיתיות בצורה טובה יותר על ידי התאמת הפרמטרים של פונקצית הזמן למשימה מוגדרת. מטרת המחקר היא להעריך את השפעת זמן התגובה של האדם על ביצועי המערכת. המחקר מתמקד בהשפעת זמן התגובה על רמת שיתוף הפעולה שמניבה את הביצועים המיטביים.

הניתוחים מגלים רמות שיתוף פעולה חדשות אשר מועדפות כאשר עלות זמן התגובה של האדם גבוהה. ברמות שיתוף פעולה אלה, האדם מתמקד בבחינת רק חלק מהאובייקטים ומתעלם מאחרים. כתוצאה מכך, עלות זמן התגובה של האדם יורד והמערכת מציגה ביצועים טובים יותר. האדם מתעלם מאובייקטים על ידי קביעת סף ההחלטה שלו לערך קיצוני. הניתוחים מראים כיצד סוג המערכת, רגישות האדם, ההסתברות של אובייקט להיות מטרה ועלות הזמן, משפיעים על

תופעת בחירת ערך סף קיצוני.

כאשר רגישות האדם נמוכה יכולת ההבחנה שלו בין מטרות לרעש יורדת. הניתוחים מראים, שכאשר המערכת נותנת עדיפות גבוהה למניעת התראות שווא, האדם בוחר ערך סף קיצוני חיובי, אשר גורם לכך שאף אובייקט לא מסומן כמטרה ולא מתרחשות התראות שווא. במערכת אשר נותנת עדיפות גבוהה לא להחטיא מטרות נבחר ערך סף קיצוּ מוני שלילי, אשר גורם לכך שכל האובייקטים מסומנים כמטרות ומכאן שכל המטרות מתגלות. תופעה זו מופיעה עבור רגישויות גבוהות יותר של האדם, ככל שעלות הזמן גדלה. בנוסף, ניתן לראות ששיתוף פעולה עם האדם נהפך פחות כדאי ככל שעלות הזמן גדלה. ערך סף קיצוני גורם לירידה בעלויות הזמן הכוללות. במודל זמן התגובה, זמן התגובה הממוצע יורד ככל שערך הסף מתרחק ממוצע התפלגות האובייקטים. לכן, מבחינת עלויות הזמן, ערך סף קיצוני יועדף תמיד. מיקום ערך הסף משפיע על
 מטרות ולהסתברויות גבוהות להחטאת מטרות ולדחייה נכונה של רעשים. הרווחים והקנסות הכוללים של מקרים אלו

משתנים בהתאם.

מילות מפתח: שיתוף פעולה אדם-רובוט, רמות שיתוף פעולה, זיהוי מטרות, זמן תגובה.

הששפעת זמן התגובה של האדם על רחת שיתוף הפעולה האופטימאלית במע:רכת זיהוי מטרות רובוטית משולבת אדם

חיבור זה מהווה חלק מהזרישות לקבלת התואר "מגיסטר" בהנדסה

דרור ישפה

מנחים: פרופ' יעל אידן, ד"ר אביטל בכר

[^0]: ${ }^{1}$ Response Time, Response Latency and Decision Time, refer to the common term Reaction Time, which is used to describe the time it takes the observers to decide about an observed object.

[^1]: ${ }^{2}$ The 'extremes' in this data set are -3 and 6. Explanation is detailed in chapter 6 .

