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ABSTRACT 

Background and Objectives 

This thesis focuses on developing a novel framework and tools for the collaboration of a remote 

human operator and a robotic platform in performing the task of pesticide spraying in vineyards. 

The use of pesticides is an integral part of worldwide agriculture. Between 30% and 35% of crop 

losses can be prevented when harmful insects and diseases are eliminated by the use of pesticides. 

Although pesticides are necessary in modern agriculture, they are poisonous and dangerous for 

humans and for the environment. Current methods for pesticide application include a human 

operator travelling along the crop rows and selectively spraying the targets manually using a 

backpack sprayer and mechanized non-selective spraying in which a human drives a tractor with 

a sprayer connected to a trailer behind the tractor that sprays the crops continuously. Despite the 

use of pesticide protection equipment (personal head mask and central filtration system for the 

manual and mechanized spraying methods, respectively) the human is still exposed to hazardous 

pesticides that can cause negative health issues. 

Robotic technology may provide a means of reducing agriculture’s current dependence on 

herbicides, improving its sustainability and reducing its environmental impact. A target-specific 

robotic sprayer can reduce the quantity of pesticides applied in modern agriculture and potentially 

remove or minimize the human presence during the spraying pesticide process. 

The spraying task of a spraying robot can be divided into three sub-tasks: navigation along the 

crop row, target detection, and the spraying of the target. The focus of this thesis was on the tasks 

of target detection and spraying. 

This work aimed to develop a human-robot collaborative agriculture robotic sprayer. The specific 

research objectives are to develop a wheeled robotic platform suitable for the spraying of 

vineyards, machine vision algorithms for foliage and grape detection, a framework in which a 

human and robot collaborate in performing the spraying task, and to develop a smart spraying 

device for pesticide application. Collaboration between a human and a robot for the task of 

detection can create a simplified, flexible, and robust system that will use the advantages of both 

human and robot and can react and cope with dynamic and complex conditions. Another specific 

added value of such human-robot collaboration is to remove the human operator from the 

hazardous environment, and reduce the environment pollution by reducing the quantity of pesticide 

being used along with accurate targeting. 
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Methods 

A fully operative robotic sprayer equipped with an adjustable spraying device and the ability to 

communicate with a remote user was designed and built. Human-robot collaboration methods were 

developed as well as methods for target marking by a remote human operator. 

An agricultural robotic system was built to serve as a research tool to enable field experiments and 

reflect the real-world conditions that a future agricultural robot would have to cope with. The 

chassis of the robot is assembled from two identical platforms that are interconnected using a 

universal joint. The design payload of each platform is 300 kg. Each platform contains two wheels 

(one on each side) with a directly connected electric motor and optical encoders for control. The 

robot is equipped with all the hardware and software needed for operation, which included an 

industrial computer, screen, car batteries, power generator, and sensors (digital cameras, distance 

sensors). A kinematic model was developed for accurate navigation along a determined path (the 

path can be set manually using a xBox controller or as an output of a navigation algorithm). 

Grape and foliage detection algorithms were developed and evaluated. The algorithms were 

developed under a new concept that considered pesticide reduction as the main optimization 

parameter. Three algorithms were developed for the grape clusters detection and a single algorithm 

was developed for the foliage detection. Algorithms were evaluated using a database of images 

acquired in commercial vineyards. The foliage detection algorithm was mainly based on the unique 

foliage green color. The grape clusters detection algorithms were based on: difference in edge 

distribution between the grape clusters and the foliage, decision tree algorithm using multiple 

grape and foliage properties, and pixel comparison between edge representations of the captured 

image with a predesigned edge mask that represents grapes. Both algorithms were developed to 

maximize hit rates and minimize pesticide application. 

Human-robot collaboration methods were developed to evaluate the influence of such 

collaboration on the performance rate of the hit, false alarm (FA), and overall spraying task. The 

developed methods included three target-marking methods (circle with constant diameter, ellipse 

with varying diameter, and free hand) and four human-robot collaboration levels (fully human 

manual, robot suggests – human decides, robot decides – human supervises, and fully autonomous 

robot operation). Each of the target-marking methods and the collaboration levels were tested with 

groups of participants while using images captured in a commercial vineyard as the experimental 

database. A user interface was developed to implement the suggested target-marking methods and 



VII 

 

the human-robot collaboration. The user interface was used both for conducting experiments in 

the lab and for conducting field experiments using the robotic sprayer. 

In order to precisely apply the pesticide toward the target, a target specific spraying device was 

designed and built. Due to the amorphous shape and varying size of the grape clusters, a spraying 

nozzle with varying size is needed for accurate target spraying while maximizing the spray 

coverage and minimizing false alarm spraying. The core functionality of the device is to change 

the spray diameter according to the detected target. A commercial spraying nozzle (AYHSS 16) 

assembled from two parts, the nozzle base and the nozzle cap, changes the spray diameter by 

rotating the nozzle cup. The nozzle base was fixed to the device while the nozzle cup was 

connected to a stepper motor. The device also includes a color camera (for capturing targets), 

distance sensor, and two fan lasers (one positioned horizontally and the other vertically, to create 

a cross (+) on the target); all were mounted on a pan/tilt unit. In order to validate the spraying 

device operation, several experiments were conducted to evaluate the flow rate relative to the 

nozzle cup rotational position, the spray diameter relative to the nozzle cap rotational position, and 

the ability of the device to detect and spray targets with different sizes. 

 

Experiments 

Several experiments were conducted to evaluate the foliage and grape detection algorithms, human 

marking methods, human-robot collaboration methods, the adjustable spraying device, and the 

integrated system. The main goal was to evaluate the different elements suggested in the 

framework under as close as possible real world conditions. For that, a set of images, captured in 

two commercial vineyards, was used as the main database for the experiments. These images were 

analyzed by three experts with a goal to precisely mark the grape clusters in each image. 

An integrative site-specific experiment was conducted to demonstrate and evaluate the three main 

components of the collaboration framework working in sync: human marking methods, levels of 

human-robot collaboration, and the specific spraying device. For better control of the experiment, 

artificial targets were used and robot navigation along the vineyard row was simulated by 

following red tape fixed to the ground. During the experiment, the robot traveled a total distance 

of 1044 [m] (16 users × 3 repetitions per user × 18 [m] for each repetition + 10 repetitions × 18 

[m] for each repetition), captured 1108 frames and sprayed 3378 targets. The experiment shows 

that despite the high complexity of such a robotic system and framework, collaboration of a human 
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in the spraying process is feasible. The collaboration between the remote robot and the human 

showed that the hit and the false alarm rate was improved (hit rate increased by 13.4% and false 

alarm rate decreased by 19.5%) compared to a fully autonomous operation (collaboration level 4). 

 

Results 

Grape clusters and foliage detection algorithms 

Analysis of the grape clusters detection algorithms showed that the hit rate can reach ~91% while 

reducing the use of pesticides by ~30%. The minimum and maximum algorithm processing times 

were 0.65 and 1.43 [s/frame] respectively. These results refer solely to detection algorithms that 

are applied using a computer system without any human help. For better detection results the 

human was included in the framework. 

Human-robot collaboration 

The learning process of using the target-marking interface was evaluated with a goal to bring the 

user expertise to minimum of 90% hit rate. The learning experiment revealed that marking 30 

images (that took 7.5min) will bring the user the level of expertise needed. The learning process 

was repeated for every new user using the marking interface. 

Marking methods experiment results show that the hit rates are maximized when the users have 

more time to mark the targets, as expected. While using the collaboration level in which the user 

has full control over the marking process (defined in this thesis as collaboration level 1), the highest 

hit rate of 94.3% (with false alarm rate of 15.1%) was obtained when practicing the constant circle 

diameter marking method with 15 s image switching time (defined as the time the image was 

presented to the user); the lowest false alarm rate of 10.1% was obtained when practicing the free 

hand marking method with 15 s image switching time. Since the ellipse marking method did not 

excel in any category (hit or false alarm rate) it was not evaluated with the three collaboration 

levels. 

Experimental results of the human-robot collaboration levels indicate that the highest hit rate is 

achieved with the collaboration level in which the robot marks the targets and the human 

supervises (can add, remove, and correct computer marking, defined as collaboration level 3), 

constant circle diameter and 15 [sec] image switching time: 92.66%; these results are statistically 

significant. The lowest FA was achieved with the collaboration level in which the computer 

suggests and the human decides (defined as collaboration level 2), free hand marking, and 15 [sec] 
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image switching time: 2.71%. Results from the ease of use questionnaire did not show any 

statistically significant difference between the different collaboration methods. 

Specific target spraying 

A flow rate experiment was conducted using constant pressure of 20 [bar]. The experiment 

revealed a linear curve representing the relation between the flow rate and the nozzle aperture 

(𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 = 6 ∙ 10−6 ∙ 𝑛𝑜𝑧𝑧𝑙𝑒 𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒 + 0.0519 [
𝐿

𝑠𝑒𝑐
]). 

A visual inspection of the sprayed target using the adjustable spraying device revealed that all the 

targets were fully covered by the spray. The results show constant increasing of the sprayed 

diameter when presented with a smaller target; however, the ratio between the sprayed diameter 

and the target size decreases as the target size increases. This ratio can be addressed as the false 

detection ratio. 

Integrative site specific sprayer experiment 

The overall performance of the free hand marking method was better than the circle marking 

method. Hit rate was improved for all cases when using the free hand marking method (except for 

“spray evaluation” in collaboration level 2, the collaboration level in which the computer suggests 

and the human decides). However, along with the improvement of the Hit rate, the FA measures 

increased, implying more wasted spraying material. In both marking methods (constant circle 

diameter and free hand) the Hit and FA rates increase with the collaboration level. The best Hit 

rate results were achieved when using the free hand marking method with collaboration level 3 

(93.6%). 

 

Summary 

A human-robotic collaborative sprayer was designed, built, and tested. The robot showed the 

ability to perform the necessary tasks required for such a robot sprayer in vineyards. The overall 

work demonstrates the operation of a robotic sprayer performing the spraying task with a remote 

human assisting in the target detection in different modes of collaboration. 

The main contribution of the work was the introduction and full implementation of a framework 

for human-robot collaboration for the task of vineyard spraying. During the work we examined 

different collaboration levels between the robot and the human and several target marking methods 

for the target detection task. Another contribution of this work is the development of a unique site-

specific spraying device able to implement the enhanced detection accuracy to the actual pesticide 
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spraying process. The results obtained can be used to develop a human-robot operational system 

by using the best values obtained for the selected criterion (e.g., for highest hit rate use constant 

circle diameter, image switching time of 15 [sec], and fully manual collaboration level; for lowest 

false alarm rate use free hand, image switching time of 15 [sec], and collaboration level 2). 

Our hope is that all or part of this work will be commercialized. This will contribute to less 

environmental pollution and eliminate the risk of human poisoning due to pesticides. 

 

Key words: Agricultural engineering, agricultural machinery, human-robot interaction, image 

processing, levels of automation, machine learning, machine vision, object detection, pesticides, 

precision agriculture, robotic sprayer, spraying, teleoperators 
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1. INTRODUCTION 

1.1. Description of the problem 

Pesticides are an integral part of agriculture worldwide. Between 30% and 35% of crop losses can 

be prevented when harmful insects and diseases are eliminated by applying pesticides (Cho and Ki 

1999). Application of nutrients, fungicides, and pesticides is one of the most important processes in 

agricultural production and can have a significant impact on yield, quality, and ultimately 

profitability (Singh, Burks and Lee 2005). 

Although pesticides are necessary in modern agriculture, they are poisonous and dangerous for 

humans (Rogan and Chen 2005; Dasgupta, Meisner, Wheeler, Xuyen and Thi Lam 2007) and for 

the environment (Pimentel and Lehman 1993; Reus, Leendertse, Bockstaller, Fomsgaard, Gutsche, 

Lewis, Nilsson, Pussemier, Trevisan and Van der Werf 2002), and therefore one of the goals in 

agriculture research is to reduce the use of pesticides while maintaining the crop quantity and 

quality. 

Two common methods are currently used to apply pesticides in the field. Each method has its pros 

and cons: 

Manual – humans manually spray targets using back-pack sprayers 

Using this method, a human operator walks along the rows and selectively sprays targets using a 

backpack sprayer (Figure 1a). This method is often used when high spraying accuracy is needed 

(e.g., spraying tomatoes in a greenhouse) and the human, due to his excellent perceptual skill, can 

achieve this accuracy. This method has several disadvantages, high time to complete (TTC), large 

number of working hands required to complete the task, and high human fatigue. Due to the high 

operative costs of this spraying method and lack of human labor and availability it is less used in 

modern western agriculture practice. 

Mechanical – human drives a sprayer tractor 

Using this method, a human drives a tractor with a sprayer connected to a trailer behind the tractor 

(Figure 1b). The human can control the opening/closing of the spray from the tractor cabin and 

usually opens the spray at the beginning of the row and closes it at the end of the row. This method 

is often used in open field crops, and in orchards and greenhouses when the entire crop (foliage and 

fruit) must be sprayed. This method is also used in the absence of human workers. This spraying 

method is very cost effective since it requires a single operator to cover large areas. The main 
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disadvantage of this method is the high waste of pesticide when needing to spray isolated targets 

and even while spraying the foliage (since the foliage top and bottom borders are not straight). 

Arial spraying (both by plane and helicopter) is another method commonly used for pesticide 

application, but since this method is applied from above the crop and at great distance from it (~35 

m compared to 1 m used in ground spraying), the accuracy of this spraying method is very limited 

and therefore not considered for accurate grape clusters spraying. 

  
a b 

Figure 1 – Pesticide spraying methods. (a) Backpack sprayer. (b) Tractor sprayer. 

Despite the use of pesticide protection equipment (personal head mask for the manual spraying 

method and central air filtration system for the mechanized spraying method) the human is still 

exposed to hazardous pesticides that can cause negative health issues (Swan, Kruse, Liu, Barr, 

Drobnis, Redmon, Wang, Brazil, Overstreet and Group 2003) when applying pesticides using the 

traditional methods. 

Robotic technology may provide a means of reducing agriculture’s current dependence on 

herbicides, improving its sustainability and reducing its environmental impact (Slaughter, Giles and 

Downey 2008). A target-specific robotic sprayer can reduce the quantity of pesticides applied in 

modern agriculture and potentially remove or minimize the human presence during the spraying 

pesticide process (Lee, Slaughter and Giles 1999). Studies show that pesticide use can be reduced 

up to 60% when the spraying material is targeted toward the designated object (Elkabetz, Edan, 

Grinstein and Pasternak 1998; Goudy, Bennett, Brown and Tardif 2001; Gil, Escol, Rosell, Planas 

and Val 2007). The spraying task of a spraying robot can be divided into three sub-tasks: 

1. Navigating – driving along the crop row (including end of the row turn), 

2. Target detection – detect the target needing to be sprayed. The detection process includes 

accurate resolution of the target coordinates and surrounding perimeter, and 
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3. Spraying – spraying the target area. 

In this work we focus on the tasks of target detection and spraying. The case study for this work was 

specific grape clusters spraying. Gibberellic acid (GA3) has been routinely used for seedless grape 

production in modern table grape growth to increase berry and bunch weight, and cause thinning of 

clusters (Lu, Lamikanra and Leong 1995). Growers can minimize undesirable effects by applying 

GA3 directly to the clusters (Fidelibus and Vasquez 2012). However, to date this direct application 

is impractical due to lack of technology (Fidelibus and Vasquez 2012). 

Extensive work has been conducted throughout the past decade on object detection in the complex 

agricultural environments (Kapach, Barnea, Mairon, Edan and Ben–Shahar 2012), but detection 

rates in real world conditions remain limited to a 90% hit rate and are often much less (Jimenez, 

Ceres and Pons 2000; Kapach, Barnea, Mairon, Edan and Ben–Shahar 2012). The limited 

performance is usually caused by the complicated agricultural conditions (Jimenez, Ceres and Pons 

2000; Kapach, Barnea, Mairon, Edan and Ben–Shahar 2012) that are due to the high variability of 

the agricultural objects (i.e., color, texture, orientation), their amorphous size and shape, and the 

unstructured and dynamic environmental conditions (e.g., changing illumination directions, shading, 

and targets occlusion). Recent work by Correa, Valero, Barreiro, Diago and Tardáguila (2012) 

showed a 95% hit rate for detecting red grape clusters, but with an artificial white screen as 

background (to avoid confounding effects from the background vegetation); it is reasonable to 

assume that the hit rate performance of these algorithms will decrease under real world conditions 

and for green grapes. According to Blackmore, Have and Fountas (2001), in order for the robot to 

be economically feasible it must be able to detect and spray more than 95% of the targets 

successfully. In this thesis we developed machine vision algorithms that are able to detect green 

grapes and foliage with ~95% detection rates (Berenstein and Edan 2012). 

Unlike robotic sprayers, humans can easily fit themselves into such changing environments due to 

their high perception skills. By taking advantage of the human perception skills and incorporating 

this with the robot's accuracy and consistency, a combined human-robotic system can be simplified 

and result in improved performance (Fong and Thorpe 2001). 

Vast research has been conducted in the area of HRI (Human-Robot Interaction) focusing on 

interaction modalities (Goodrich and Schultz 2007; Jaimes and Sebe 2007; Sim and Loo 2015) and 

models for collaboration (Bechar and Edan 2003; Chen, Barnes and Harper-Sciarini 2011; 

Cherubini, Passama, Fraisse and Crosnier 2015). In order to increase target detection rates in 

agriculture conditions, in this thesis we propose a framework that includes a human operator to help 
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the robot with the target detection task. The suggested framework places the human at a remote 

location and uses the human’s excellent perception skills to mark targets on images captured from 

a robot in the field. 

Recent work performed in parallel to this thesis shows some design principles for developing a 

teleoperated user interface for an agricultural sprayer (Adamides, Katsanos, Christou, Xenos, 

Kostaras and Hadzilacos 2013; Adamides, Christou, Katsanos, Xenos and Hadzilacos 2015). As 

opposed to Adamides’s work, which focuses on teleoperation only, in this thesis we focus on the 

question of how the human and the remote robotic sprayer should collaborate to successfully 

complete the pesticide spraying task. The assumption is that some tasks can be performed 

autonomously, and some tasks collaboratively. 

This thesis focuses on several questions that arise from the suggested human-robot collaborative 

framework, such as how the human should mark the targets and what is the best collaboration 

method between the human and the robot for the target detection task. 

No other research to date has focused on human-robot collaboration in agricultural applications. 

Increasing the pesticide accuracy can also be achieved by improving traditional spraying methods. 

Due to the amorphous shape and varying position of the targets in the agriculture domain, a novel 

spraying device must be able to direct the spraying nozzle toward the target to accurately spray the 

target (i.e., adjust the spraying diameter to the target). In this thesis such a spraying device was 

developed and tested. 

1.2. Research objectives 

This research aimed to develop a human-robot collaborative agriculture robotic sprayer. The main 

objectives were to introduce a collaborative human-robot system into agricultural robotics 

applications and maximize spray coverage efficiency. 

The specific research objectives were to develop: 

 a wheeled robotic platform for selective spraying in vineyards, 

 machine vision algorithms for foliage detection and grape detection, 

 a human-robot collaborative framework system for detecting and marking areas to be 

sprayed, and 

 a smart spraying device for pesticide application. 
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1.3. Research significance 

The development of a fully autonomous robotic system performing tasks in unstructured 

environments, such as military, medical, and agricultural, is problematic, due to the dynamic, 

unpredictable, and unknown nature of these unstructured environments and due to sensor 

limitations. Humans, on the other hand, have good perception skills and can easily fit themselves 

into such undefined and changing environments. Collaboration between a human and a robot for the 

task of detection can create a simplified, flexible, and robust system that will use the advantages of 

both human and robot and can react and cope with dynamic and complex conditions. A framework 

for human-robot collaboration was developed and implemented for the specific task of targeted 

spraying including extensive field evaluation. The insights from this work can be applied to many 

additional agricultural tasks and to robots performing other target detection tasks in unstructured 

environments. 

Current practice of pesticide spraying is conducted similarly for different types of targets (e.g., round 

with constant size such as apples, and amorphous shape and size like grape clusters) since traditional 

spraying technology is not able to detect and isolate the targets, and moreover is not able to adjust 

the spray coverage according to the target at hand. In previous work dealing with agricultural robots 

(Bechar and Edan 2003), targets were defined and marked by a human operator as a singulated point 

usually located at the target’s center of mass. In crops with relatively constant object shape and size 

such as citrus and apples the center of mass can provide a good indicator for target (center of mass 

coordinated with a relatively constant size can provide a full description of the target); however, 

when considering the detection and marking of targets with amorphous shape and varying size, the 

center of mass will not provide sufficient description of the target. Spraying only the target center 

of mass will cause either extensive area misses when using a small spraying diameter or extensive 

pesticide waste when using a large spraying diameter. In this work we developed target marking 

methods specifically for amorphous shaped targets. We developed a site-specific spraying device 

able to implement the enhanced detection accuracy to the actual pesticide spraying process. The 

best spraying method can be selected based on the task objective which can be selected by the 

farmer: the farmer can aim to maximize the hit rate or minimize false alarms.  

 

 

1.4. Research contribution and innovations 
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This work was developed under a new concept that considered pesticide reduction as the main 

optimization parameter while maximizing target spray accuracy. Machine vision algorithms were 

developed for the task of detecting fruit and foliage in vineyards. Foliage and grape clusters 

detection algorithm were developed (Berenstein, Shahar, Shapiro and Edan 2010). The algorithms’ 

development was based on images captured from a commercial vineyard in Israel. Since the 

algorithms are not solely based on color recognition, but also use the shape and texture properties 

of the grape cluster, the detection of all grapes varieties is possible (i.e., green and red type grapes). 

Three algorithms were developed, each with a different strategy for the grape clusters detection. The 

first algorithm was based on the difference in edge distribution between the grape clusters and the 

foliage. Using the different edge distribution between the grape clusters and the foliage, the grape 

clusters can be isolated. The second algorithm was based on a decision tree algorithm that used 72 

different parameters. The third algorithm is based on pixel comparison between edge representations 

of the captured image with a predesigned edge mask that represents grapes. The second algorithm 

showed the best detection rate (~91% hit rate), which according to state of the art literature 

(Gongal, Amatya, Karkee, Zhang and Lewis 2015) is considered a very high detection rate. 

Blackmore, Have and Fountas (2001) argue that 95% is the lowest barrier for detection in order for 

the spraying process to be economically feasible. 

Further improvement of the detection rate was achieved by applying collaboration between a human 

operator and a robotic sprayer. A novel human-robot collaboration framework and methods for the 

target detection task were developed and evaluated in a series of experiments. The suggested 

framework places the human in a remote location from the field and by using an imaging device 

(e.g., computer screen, tablet, PDA, smartphone) helps the robot to detect the targets. Four levels of 

collaboration were developed based on Sheridan (1992) suggested 10 levels of human-robot 

collaboration levels. Fully manual - the human operator marks the targets in the image without any 

help from the robot. Robot suggests, human approves - using this collaboration method the grape 

clusters in the captured image are automatically marked using Berenstein, Shahar, Shapiro and Edan 

(2010) detection algorithms. The marked areas are considered as recommendations for the human 

operator to mark the grape areas. Robot marks, human supervises - the human receives an image 

with grape clusters marked using Berenstein, Shahar, Shapiro and Edan (2010) detection algorithms. 

The human has the ability to manually reject robot marked areas and add areas to be sprayed. Fully 

autonomous robot marking - the robot is fully independent and there is no human intervention. 
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One of the questions that arise with the collaboration of a human operator into the target detection 

of grape clusters is: what is the marking technique that the human should use when the task is to 

mark amorphous shapes with varying size as the grape clusters are? In this work we answered this 

question by developing a user interface equipped with several target marking options. Three target-

marking methods were developed, implemented in a user interface, and tested. The suggested 

marking methods were: (i) circle with constant diameter, (ii) ellipse with changeable diameters, and 

(iii) free hand (the human marks surround the target). Evaluating different combinations of the 

marking methods with the collaboration levels provides the optimal combination of marking method 

with collaboration level for different marking goals (i.e., if the goal is high hit rate then the optimal 

combination is a constant circle with collaboration level 3). 

The collaborative aspect between the human and the robotic sprayer is applied only for the target 

detection task; the actual pesticide spray is conducted solely by the robotic sprayer. In order to 

reduce the quantity of pesticide being used, a smart accurate spraying device is needed to accurately 

spray the marked targets. Preliminary evaluation of three spraying options revealed that the optimal 

spraying method (for the grape cluster type targets) is to use a single nozzle with an adjustable spray 

diameter. Thus, a smart spraying device able to control the spray dimeter was designed, built, and 

tested. In the heart of the device lies a stepper motor connected to a nozzle cup, and by rotating the 

nozzle cup the spray diameter is changed. The device was mounted to a pan-tilt unit with two DOF 

allowing it to rotate horizontally and vertically. A series of experiments were conducted to evaluate 

the nozzle flow-rate with different nozzle apertures, the nozzle spray diameter according to the 

nozzle cup rotational position, and the entire device including automatic target detection and spray. 

A custom mobile robotic platform was designed and built specifically for the vineyard environment 

aiming to provide a research platform for pesticide spraying in vineyards. The robot was constructed 

from two identical platforms interconnected with universal joint. Four wheels were connected to the 

robot, two for each platform. Each platform was equipped with an electric motor. The robotic 

platform was equipped with an electric box containing all the electrical components. The robot was 

also equipped with a commercial “off the shelf” 200L sprayer, power generator, and two car 

batteries. This robot platform can serve additional human-robot collaborative R&D. 

Additional contribution of this research is related to development of a novel image registration 

algorithm. An image registration algorithm and methods were developed to enable the fusion of 

different imaging sensors in the agricultural domain (Berenstein, Hočevar, Godeša, Edan and Ben-

Shahar 2015). The novel concept of the algorithm is to capture a scene containing custom design 
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control points, by the two sensors from varying distances between the sensors and the control points. 

A Transformation Matrix (TM) is then calculated for each distance. Once obtaining the TMs from 

varying distances, a regression is performed on each of the elements of the TM and a distance-

dependent relation function is created for each element of the TM. The concept of the operation is 

to detect the distance between the sensors and the target (using distance sensor, e.g., SICK laser 

distance sensor DT35) and calculate TM according to the measured distance. Although the algorithm 

was designed and tested for two different sensors, the algorithm can be easily expanded for 

additional sensors of the same type and for different sensors. Since it was not included in the 

vineyard robotic experiments in this thesis, it is not included as a separate chapter here. 
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2. SCIENTIFIC BACKGROUND 

2.1. Pesticides in agriculture 

Pesticides are those substances that are used to control, destroy, repel, or attract pests to minimize 

their detrimental effects. Pests are those organisms, such as weeds, insects, bacteria, fungi, viruses, 

and animals, which adversely affect our way of life. Pests can reduce the quality and quantity of 

food produced by lowering production and destroying stored produce (Kent 1992). Without the use 

of pesticides, the production and quality of food would be severely jeopardized, with estimates that 

food supplies would immediately fall to 30 to 40% of their current levels due to the ravages of pests 

(Kent 1992; Cho and Ki 1999); thus, modern agriculture relies on the use of pesticides to increase 

crop yields and sustain food safety and security for the global population (Cooper and Dobson 2007). 

Pesticides are poisonous and wrong use of them is dangerous for humans (Betarbet, Sherer, 

MacKenzie, Garcia-Osuna, Panov and Greenamyre 2000; Eddleston, Karalliedde, Buckley, 

Fernando, Hutchinson, Isbister, Konradsen, Murray, Piola and Senanayake 2002; Rogan and Chen 

2005; Dasgupta, Meisner, Wheeler, Xuyen and Thi Lam 2007; Dawson, Eddleston, Senarathna, 

Mohamed, Gawarammana, Bowe, Manuweera and Buckley 2010; Remoundou, Brennan, Hart and 

Frewer 2014) and for the environment (Tardiff 1992; Pimentel and Lehman 1993; Reus, Leendertse, 

Bockstaller, Fomsgaard, Gutsche, Lewis, Nilsson, Pussemier, Trevisan and Van der Werf 2002; 

Bozdogan, Yarpuz-Bozdogan and Tobi 2015; Lambropoulou, Hela, Koltsakidou and Konstantinou 

2015). Recent work in the United States showed that banning pesticides and chemical fertilizers 

would cause loss of half of the fruits and vegetables, and loss of 40%–70% of grains and cotton. 

This loss would cause increase of food costs of more than 40% (MOH 2006). 

Latest studies show that pesticide use can be reduced up to 60% by using selective sprayers 

(Elkabetz, Edan, Grinstein and Pasternak 1998; Goudy, Bennett, Brown and Tardif 2001; Gil, Escol, 

Rosell, Planas and Val 2007; Song, Sun, Li and Zhang 2015). 

2.2. Agricultural robots 

Agricultural robots have been developed for many operations, such as field cultivation, planting, 

spraying, pruning, and selective harvesting (Edan, Kondo and Shufeng 2009). Intensive research has 

focused on selective harvesting of citrus, apples, tomato, cucumbers, melons, strawberries, and 

grapes (Kondo 1991; Edan and Miles 1993; Monta, Kondo and Ting 1998; Bulanon, Kataoka, Ota 

and Hiroma 2001; Van Henten, Hemming, Van Tuijl, Kornet, Meuleman, Bontsema and Van Os 
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2002; Hannan and Burks 2004; Bac, Henten, Hemming and Edan 2014). Other aspects that were 

thoroughly studied are target detection and end effectors for fruits and vegetables (Table 1). 

Agriculture robots must operate in unstructured, dynamically changing, and undefined environments 

that demand a high level of sophistication and complicate the development process (Bac, Henten, 

Hemming and Edan 2014). Agriculture robots have been demonstrated by several researchers, but 

despite the intensive research, commercial robots are still rare (Bac, Henten, Hemming and Edan 

2014). Although commercial agriculture robots exist (Hannan and Burks (2004); Harvest 

Automation Co HV-10), the lack of economic justification is the main reason for the absence of 

robots in agriculture (Edan, Kondo and Shufeng 2009). This is mainly limited by low performance 

rates (low detection) and lack of robustness (Bac, Henten, Hemming and Edan 2014). 

Another field of study in agricultural robots is the use of unmanned aerial vehicles (UAVs) mostly 

applied for precision agriculture imagery tasks. Zhang and Kovacs (2012) reviewed the field of 

small UAVs for precision agriculture and concluded that although in the past decade the number of 

UAVs for agriculture increased they still possess many significant shortcomings such as high initial 

cost, platform reliability, sensors capabilities, lack of standardized procedure, aviation regulations, 

and lack of interest from farmers. 

There is limited work published on UAV's in agriculture in tasks other than imagery tasks. Xue, 

Lan, Sun, Chang and Hoffmann (2016) developed a UAV equipped with an automatic control 

spraying system. The USV was equipped with ultra-low volume spraying. Results showed 0.2 m 

route accuracy. The spraying accuracy was not reported. Faiçal, Pessin, Filho, Carvalho, Furquim 

and Ueyama (2014) proposes a methodology based on Particle Swarm Optimization (PSO) for the 

fine-tuning of control rules during the spraying of pesticides in crop fields. This methodology can 

be employed with speed and efficiency and achieves good results by taking account of the weather 

conditions reported by a Wireless Sensor Network (WSN). In this scenario, the UAV becomes a 

mobile node of the WSN that is able to make personalized decisions for each crop field. 

Although UAVs are a promising field of research for precision agriculture, we do not expect it to 

replace robots in the field for tasks like picking, pruning, and spraying, mainly due to the payload 

limitation of current UAV's.   
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Table 1 – Examples of robotic applications in agriculture. 

Application Sensor Moving platform References 

Melon harvester 2 CCD BW cameras 
Tractor carrying 

robotic platform 
(Edan and Miles 1993) 

Grape harvester TV camera Crawler (Kondo 1991) 

Navigating tractor 

along crop row 
CCD camera 

Tractor modified 

to robot 

(Gerrish, Fehr, Van Ee and 

Welch 1997) 

Mapping 

agricultural field 
Ultrasonic 

4-wheeled, angle 

and speed control 

for each wheel 

(Toda, Kitani, Okamoto and 

Torii 1999) 

Greenhouse tasks CCD camera Rail platform 

(Belforte, Deboli, Gay, 

Piccarolo and Aimonino 

2006) 

Eggplants 

harvester 
CCD camera Crawler 

(Hayashi, Ganno, Ishii and 

Tanaka 2002) 

Plantation sprayer 

2 CCD camera for 

stereo vision, laser 

scanner 

Tractor modified 

to robot 

(Stentz, Dima, Wellington, 

Herman and Stager 2002) 

Weed management 

2 CCD cameras one 

for overall picture and 

one for focus image 

Tractor carrying 

robotic platform 

(Blasco, Aleixos, Roger, 

Rabatel and Molto 2002) 

Weed eradicate 

2 CCD cameras, one 

for navigation and one 

for weed detection 

4-wheeled, angle 

and speed control 

for each wheel 

(Strand and Baerveldt 2002) 

De-leafing 

cucumber plants 
CCD camera 

Move along heat 

pipes 

(Van Henten, Van Tuijl, 

Hoogakker, Van Der Weerd, 

Hemming, Kornet and 

Bontsema 2006) 

General field 

propose 
Currently no sensors 

4-wheeled, angle 

and speed control 

for each wheel 

(Khot, Tang and Hayashi 

2006) 

Strawberry 

harvester 
CCD camera 

Using greenhouse 

infrastructure 

(Cui, Nagata, Guo, Hiyoshi, 

Kinoshita and Mitarai 2007) 

Arecanut tree 

climbing 
Currently no sensors 

X-bar with two 

identical 

clamping units 

(Mittal, Varada, Dave, 

Khanna, Korpu and Tilak 

2014) 

Weed management GPS, CCD camera 
Autonomous 

tractor 

(Pérez-Ruiz, Gonzalez-de-

Santos, Ribeiro, Fernandez-

Quintanilla, Peruzzi, Vieri, 

Tomic and Agüera 2015) 

Monitoring field 

operations 

GPS, IMU, CCD 

camera 

Six geared motors 

with skid steering 

method 

(Durmuş, Güneş, Kırcı and 

Üstündağ 2015) 

Wheat precision 

seeding 
Not reported 

4-wheeled, angle 

and speed control 

for each wheel 

(Haibo, Shuliang, Zunmin 

and Chuijie 2015) 
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2.3. Spraying robots in agriculture 

Spraying robots are commonly used in the field of automotive painting and vast research was applied 

in this field (Chen, Fuhlbrigge and Li 2008) with the main focus on path planning of the robotic arm 

and achieving uniform paint thickness layers (Arikan and Balkan 2000; Zaki and Eskander 2000; 

Conner, Greenfield, Atkar, Rizzi and Choset 2005; Diao, Zeng and Tam 2009; Wei and Dean 2009; 

From, Gunnar and Gravdahl 2011). The common denominator of these robots is that the shape, 

position, and orientation of the target to be sprayed/painted is known and the robot trajectory and 

nozzle operation are pre-planned accordingly. Unlike these industrial robots, spraying robots in 

agriculture must include two core technologies: sensing – for target detection and “robotics” for the 

spray execution (Song, Sun, Li and Zhang 2015). Since the technologies of the automotive industry 

and the agricultural domain are completely different, this literature review will focus solely on the 

agricultural domain. 

Several spraying robots designed for the agricultural domain have been developed (Table 2) and, 

much like other agriculture robots, these developments have yet to become commercial products. 

The review below focuses mainly on weed control and plant protection applications (Table 2). 

2.4. Human-robot collaboration 

Humans have superior recognition capabilities and can easily adapt to changing environmental and 

object conditions (Rodriguez and Weisbin 2003). Their acute perception capabilities enable humans 

to deal with flexible, vague, changing, and wide scope of definitions (Chang, Song and Hsu 1998). 

This set of skills makes the Human Operator (HO) perfect for supervising a machine. In the strictest 

sense, supervisory control means that one or more HOs are intermittently programming and 

continually receiving information from a computer that itself closes an automation control loop 

through artificial effectors and sensors to the controlled process or task environment (Sheridan 

1992).  

There are several motivators for developing human-robot collaborative control. First, it combines 

the advantages of the robot with the advantages of the HO. Specifically; it achieves the accuracy, 

reliability, and high yield of the robot with the cognitive capability and adaptability of the human. 

Moreover, by collaboration, the workload of the HO is reduced and in the event of robot or human 

failure, either can reduce the damage. Second, it makes control possible even where there are time 

delays in communication between human and robot. Last, it saves lives and reduces costs by 

eliminating the need for the HO to be present in hazardous environments (Sheridan 1992). 
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Furthermore, it simplifies the robotic system since the complex tasks can be performed by the 

human. Research in the field of human supervisory control started in 1967 with the work of Ferrell 

and Sheridan (1967) and continues, with much effort, until this day (Table 3). 

Table 2 – Examples of work on robotic sprayers. 

Application Sensor Results Reference 

Greenhouses 
Ultrasonic + 

camera 

Navigate autonomously along 

the greenhouse 

(Mandow, Gomez-de-Gabriel, 

Martinez, Munoz, Ollero and 

Garcia-Cerezo 1996) 

Tomatoes RGB camera 8% incorrect spray (4 of 51) (Lee, Slaughter and Giles 1999) 

Orchards 
Color + 

Ultrasonic 
NOT REPORTED (Shin, Kim and Park 2002) 

Weed in cotton Color CCD 

Sprayed 88.8% of weed while 

correcting, rejecting, and not 

spraying 78.7% of cotton 

(Lamm, Slaughter and Giles 

2002) 

Weed sprayer Color video 
Reduce up to 91% with max 

speed of 14 [km/h] 
(Steward, Tian and Tang 2002) 

Rice NIR 
Reduce of pesticides (no 

quantitative results) 

(Nishiwaki, Amaha and Otani 

2004) 

Weed control USB camera 
83% success rate with less than 3 

seconds per target 
(Jeon, Tian and Grift 2005) 

Greenhouse 

navigation 
Ultrasonic 

Navigate autonomously along 

the greenhouse 
(Singh, Burks and Lee 2005) 

Greenhouses 
CCD 

Camera 

Present the ability to navigate in 

artificial greenhouse 
(Younse and Burks 2005) 

Grapes Ultrasonic NOT REPORTED 
(Ogawa, Kondo, Monta and 

Shibusawa 2006) 

Clean road 

shoulder 
Color CCD 

Reduce pesticide use by up to 

97% 

(Slaughter, Giles and Downey 

2008) 

Palms 
Stereo 

camera 

Scale down model proves the 

ability to track palm trees 

(Shapiro, Korkidi, Demri, Ben-

Shahar, Riemer and Edan 2009) 

Blueberry color camera 

Variable rate sprayer was used 

for spot-application of fungicide 

in a wild blueberry field 

(Esau, Zaman, Chang, 

Schumann, Percival and 

Farooque 2014) 

Technology review of smart spray in agriculture (Song, Sun, Li and Zhang 2015) 

Grapevine color camera 
Selective spraying of grapevine 

using robot arm manipulator 

(Oberti, Marchi, Tirelli, 

Calcante, Iriti, Tona, Hočevar, 

Baur, Pfaff, Schütz and Ulbrich 

2016) 

Blueberry 
machine 

vision 

Economic evaluation of selective 

sprayer 

(Esau, Zaman, Groulx, 

Corscadden, Chang, Schumann 

and Havard 2016) 
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Scientific research in the field of human-robot collaboration in agricultural tasks has been very 

limited with hardly any work that included field experiments (Cheein, Herrera, Gimenez, Carelli, 

Torres-Torriti, Rosell-Polo, Escolà and Arnó 2015). 

Bechar and Edan (2003) provide proof of the advantage of such collaborations in target recognition 

tasks. According to their research, collaboration of human and robot increases detection by 4% when 

compared to an HO alone and by 14% when compared to a fully autonomous system. In addition, 

when compared to the human alone, detection times of integrated systems are reduced by 20%. 

(Bechar, Meyer and Edan 2007) defined four basic levels of human-robot collaboration for target 

recognition tasks. In order to quantify performance and determine the best collaboration level for a 

given set of parameter values, an objective function that includes operational and time costs was 

developed. The findings indicate that the best system performance, the optimal values of 

performance measures, and the best collaboration level depend on the task, the environment, human 

and robot parameters, and the system characteristics. 

This work has been expanded for dynamic real-time switching between collaborative levels  and for 

evaluating the influence of humans’ reaction times on performance of integrated human-robot target 

recognition (Tkach, Edan and Bechar 2009). The switching algorithm developments enable smooth 

real-time adaptation of the combined human-robot system to many possible changes of the 

environment, human operator, and robot performance. Tkach showed that increasing the switching 

execution frequency greatly improves the score achieved by the switching algorithm and increases 

system performance (Tkach 2009). Analysis of the model developed to evaluate the effect of 

reaction time on the human-robot collaboration level reveals an extreme threshold selection in two 

cases: when human sensitivity decreases and when the cost of time increases (Yashpe 2009; Yashpe, 

Bechar and Edan 2009). The above research was conducted on field data; however, studies were 

limited to human-robot collaboration in laboratory studies and simulations. 

Adamides, Christou, Katsanos, Xenos and Hadzilacos (2015) presented usability guidelines for 

agricultural teleoperated robot based on a focused literature review, teleoperation interface design 

guidelines, user centered methods, and limited field experiments. Murakami, Ito, Will, Steffen, 

Inoue, Kita and Miyaura (2008) developed a teleoperated system for a crawler robotic vehicle that 

aimed to navigate the robot along a pre-defined path. Two degree cooperation between the robot 

and the remote operator was set, including direct and supervisory control. The study shows that the 

direct control was difficult for the operator due to high delay time between the operator command 
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and the robotic response. The supervisory mode showed ability to travel straight with a maximum 

lateral error of 0.3 m. 

Table 3 – Examples of work in human-robot collaboration. 

Application Results Reference 

New methodology to incorporate 

sensor and model-based computer 

assistance into human-controlled 

teleoperator systems 

Application of the strategy shows 

improved machine performance 

(Everett and Dubey 

1998) 

Improving the performance of HOs in 

tasks that involve motion planning and 

control of complex objects in 

environments with obstacles 

Proposed configuration space 

control mode performed 

significantly better than the 

traditional work 

(Ivanisevic and 

Lumelsky 1998) 

Propose that automation can be 

applied to four broad classes of 

functions: 1) information acquisition; 

2) information analysis; 3) decision 

and action selection; and 4) action 

implementation. Within each of these 

types, automation can be applied 

across a continuum of levels from low 

to high, i.e., from fully manual to fully 

automatic. 

The model can be used as a 

starting point for considering 

what types and levels of 

automation should be 

implemented in a particular 

system. The model also provides 

a framework within which 

important issues relevant to 

automation design may be 

profitably explored. 

(Parasuraman, 

Sheridan and 

Wickens 2000) 

Developed a teleoperated system for 

electrical live-line maintenance 

With the operator on the ground, 

a great improvement in human 

safety has been introduced 

(Aracil, Ferre, 

Hernando, Pinto 

and Sebastian 

2002) 

Outlines a theory of human-robot 

interaction and proposes the 

interactions and information needed 

by both humans and robots for the 

different levels of interaction, 

including an evaluation methodology 

based on situational awareness. 

Propose that human-robot 

interactions are of five varieties, 

each needed different information 

and being used by different types 

of users. 

(Scholtz 2003) 

Outlines a preliminary perspective on 

teamwork and adjustable autonomy in 

groups involving a mix of humans and 

autonomous agents. 

Implement a model of the work 

practice of human-robot 

teamwork, by focusing on the 

differences between people and 

autonomous agents. 

(Sierhuis, 

Bradshaw, 

Acquisti, Van 

Hoof, Jeffers and 

Uszok 2003) 

Automated detection and recognition 

system of road signs combined with 

the monitoring of the drivers’ response 

Automatic sign classification was 

significantly improved by online 

image enhancement of the 

sequences of approaching signs 

(Fletcher, Loy, 

Barnes and 

Zelinsky 2005) 
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Application Results Reference 

Human-Robot collaboration for space 

missions 

The implementation of the 

method is shown to provide a 

correlated comparison that 

maximizes the actual 

performance of human-robotic 

systems operating in the real 

world. 

(Howard 2006) 

Nature of interactions between 

children and robots 

Their findings may have 

therapeutic implications for 

autistic children 

(Salter, 

Dautenhahn and 

Boekhorst 2006) 

Describes an effort to identify 

common metrics for task-oriented 

human-robot interaction (HRI).  

Assess system performance and 

operator performance. The author 

point the need to select 

appropriate test populations when 

applying the developed metrics.   

(Steinfeld, Fong, 

Kaber, Lewis, 

Scholtz, Schultz 

and Goodrich 

2006) 

Present findings from a human user 

study showing that people use the 

reward signal not only to provide 

feedback about past actions, but also to 

provide future directed rewards to 

guide subsequent actions. 

Demonstrates the importance of 

understanding the human 

teacher/robot learner system as a 

whole in order to design 

algorithms that support how 

people want to teach while 

simultaneously improving the 

robot’s learning performance. 

(Thomaz and 

Breazeal 2006) 

We evaluate and quantify the effects of 

human, robot, and environmental 

factors on perceived trust in human-

robot interaction (HRI). 

The effects of human, robot, and 

environmental characteristics 

were examined with an especial 

evaluation of the robot 

dimensions of performance and 

attribute-based factors. 

(Hancock, Billings, 

Schaefer, Chen, de 

Visser and 

Parasuraman 2011) 

Mechanical weed control was 

achieved by a co-robot actuator that 

automatically positioned a pair of 

miniature hoes into the intra-row zone 

between crop plants. 

57.5% reduction in hand labor 

requirements for intra-row weed 

control 

(Pérez-Ruíz, 

Slaughter, 

Fathallah, Gliever 

and Miller 2014) 

Summarize the state of the art in 

human-robot interaction in farmable 

fields 

Introduce the guidelines for 

designing a human-robot 

interaction strategy for harvesting 

tasks 

(Cheein, Herrera, 

Gimenez, Carelli, 

Torres-Torriti, 

Rosell-Polo, Escolà 

and Arnó 2015) 
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Application Results Reference 

Analyzes the benefit of planning 

motion that explicitly enables the 

collaborator’s inferences on the 

success of physical collaboration, as 

measured by both objective and 

subjective metrics. 

Results suggest that legible 

motion, planned to clearly 

express the robot’s intent, leads to 

more fluent collaborations than 

predictable motion, planned to 

match the collaborator’s 

expectations. 

Functional motion was found to 

negatively affect coordination, 

increasing the time it takes to 

achieve the task, as well as the 

participant’s perception of the 

collaboration. 

(Dragan, Bauman, 

Forlizzi and 

Srinivasa 2015) 

Intelligent low cost telecontrol system 

for agricultural vehicles in harmful 

environments 

Describes how to design and 

implement a low cost telecontrol 

system for agricultural machinery  

(Gazquez, 

Castellano and 

Manzano-

Agugliaro 2016) 

addresses the gap by proposing a  

novel methodology to generate  

multimodal lexicons which  

maximizes multiple performance 

metrics over a wide range of  

communication  modalities 

Experimental results show that 

predicted optimal lexicons 

significantly outperform 

predicted suboptimal lexicons in 

all metrics validating the 

predictability of the methodology. 

(Jacob and Wachs 

2016) 

 

2.5. Human interaction factors 

The field of human factors emerged as the confluence of engineering psychology, ergonomics, and 

accident analysis (Goodrich and Schultz 2007). Key concepts of interaction in human factors 

(Goodrich and Schultz 2007) include mental workload (Hart and Staveland 1988; Goodrich, Boer, 

Crandall, Ricks and Quigley 2004), situation awareness (Endsley 2016), mental models mental 

models (Johnson-Laird 1988; Vicente 1997), and trust in automation (Hoffman, Johnson, Bradshaw 

and Underbrink 2013).  

Human factors are especially important when incorporating the human with his/her exceptional 

perception skills for target detection under a human-robot collaboration framework. Table 4 

summarizes recent work related to human factors in human-robot collaborative studies. 
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Table 4 – Examples of previous work on human factors 

Research Reference 

Situation-awareness global assessment technique (SAGAT), 

developed to assist maintaining pilot high SA by providing an 

objective measure of pilot's SA with any given aircraft design, is 

described. 

(Endsley 1988) 

SAGAT has been used to assess SA at a various levels of 

autonomy. 

(Kaber, Onal and Endsley 

2000; Scholtz, Antonishek 

and Young 2003) 

This paper provides a set of definitions that form a framework for 

describing the types of awareness that humans have of robot 

activities and the knowledge that robots have of the commands 

given them by humans. The case study for this work was an urban 

search and rescue. Results reviled that primarily critical incidents 

were due to lack of human-robot awareness of location and 

surroundings. 

(Drury, Scholtz and Yanco 

2003) 

Operate multiple robotic vehicles and participate in collaborative 

tasks with these systems. The paper examines SA needs in the 

context of a collaborative military task. Cognitive task analysis was 

conducted for the task, along with an examination of potential 

function allocations that may require operator multi-tasking and 

frequent task switching. 

(Riley and Endsley 2005) 

This paper discusses the design of automation support in C2 

systems with multiple uninhabited vehicles that operators can best 

be supported by high-level automation of information acquisition 

and analysis functions. The results support the use of adaptive 

automation to enhance human-system performance in supervision 

of multiple uninhabited vehicles, balance operator workload, and 

enhance situation awareness. 

(Parasuraman, Barnes, 

Cosenzo and Mulgund 

2007) 

NASA-TLX (Task Load indeX) was proposed as a reliable 

estimation of workload. The estimation is based on six combined 

workload-related factors.  

(Hart and Staveland 1988) 

The NASA-TLX has been widely used to measure human 

performance and workload in teleoperation scenarios. 

(Draper and Blair 1996; 

Kaber, Onal and Endsley 

2000; Scholtz, Antonishek 

and Young 2003) 



19 

 

Research Reference 

Evaluating the workload while using PDA for remotely drive robot. 

Two screens are available for the user, vision, provides the forward 

facing camera image, and sensory, provides the on-board ultrasonic 

and LIDAR sensors. Results show that working with both the 

vision and sensory screens increased the human workload. When 

the human was able to view the environment and the robot the 

workload decreased. The evaluation of the workload conducted 

using the NASA-TLX method. 

(Adams and Kaymaz-

Keskinpala 2004) 

This work goal was to examine the use of scalable interfaces and to 

examine operator span of control when controlling one versus two 

autonomous unmanned ground vehicles. Soldiers instructed to 

perform missions that included monitoring, surveillance, target 

acquisition images, and responding to unplanned operator 

intervention requests from the robot. The results do not indicate 

major effect on the operator workload when decreasing the 

interface size. 

(Hill and Bodt 2007) 

This paper reviewed the empirical literature on operator 

information processing and action execution. The paper is 

organized by the operator perceptual and responding demands 

which are routinely manipulated in HRI studies. The paper also 

review the utility of different interventions for reducing the strain 

on the perceptual system (e.g., multimodal displays) and responses 

(e.g., automation). 

(Prewett, Johnson, Saboe, 

Elliott and Coovert 2010) 
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3. METHODS 

3.1. Overview 

A fully operative robotic sprayer equipped with an adjustable spraying device and the ability to 

communicate with a remote user was designed and built. Human-robot collaboration methods were 

developed as well as methods for target marking by a remote human operator. 

In this chapter the different components (Figure 2) that comprised the fully operational robotic 

sprayer are described. 

 

Figure 2 – Robotic sprayer main components. 

3.2. Robotic sprayer system 

An agricultural robotic system was built to serve as a research tool to enable field experiments and 

reflect the real-world conditions that a future agricultural robot would have to cope with. The robot 

is based on two identical platforms interconnected with a Cardan Joint. Each platform includes two 

electrically controlled wheels. The platform is equipped with an electrical control box containing 

PC computer, 7” touch screen, controllers, and all of the peripheral equipment needed for the robot 

operation and conduction of field experiments. The robotic platform is described in detail in Chapter 

4. 
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3.3. Detection algorithms 

Machine vision algorithms were developed for the two critical aspects of targeted vineyard spraying: 

foliage and grape clusters detection. The algorithms were used to enable the robot to autonomously 

spray the vineyard foliage and the grape clusters specifically while steering autonomously along the 

vineyard row. 

The foliage detection algorithm is mainly based on color thresholding on the different color 

channels. Three algorithms were developed for the grape clusters detection task. The algorithms 

were based on: high density edge detection, decision tree, and shape correspondence between an 

artificial mask and the grape cluster edges (Berenstein, Shahar, Shapiro and Edan 2010). Detailed 

description of the foliage and grape clusters detection methods are presented in Chapter 5. 

3.4. Human-robot collaboration 

Human-robot collaboration methods were developed to evaluate the influence of such collaboration 

on the performance of the hit and false alarm rates. The developed methods included three target 

marking methods (circle with constant diameter, ellipse with varying diameter, and free hand) and 

three human-robot collaboration levels (fully manual, robot suggests – human decides, and robot 

decides – human supervises) corresponding to Sheridan (1992) 10 levels of human-robot 

collaboration. Each of the target marking methods and the human-robot collaboration levels were 

tested with groups of participants while using images captured in a commercial vineyard as the 

experimental database. 

A custom design user interface was developed to implement the suggested target marking methods 

and the human-robot collaboration. The user interface was used both for conducting experiments in 

the lab and for conducting field experiments using the robotic sprayer. Detailed descriptions of the 

human-robot collaboration and experiments are presented in Chapter 6. 

3.5. Adjustable spraying device 

A target-specific spraying device was designed and built for the agricultural task of specific target 

spraying. The main problem with spraying agricultural targets in general and specifically grape 

clusters is that their amorphous shape and varying sizes requires adjusting the spraying nozzle for 

each target. The core functionality of the device is to change the spray diameter according to the 

detected target. A commercial spraying nozzle (AYHSS 16) assembled from two parts, the nozzle 

base and the nozzle cap, changes the spray diameter by rotating the nozzle cup. The nozzle base was 
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fixed to the device while the nozzle cup was connected to a stepper motor. The device also includes 

a color camera (for capturing targets), distance sensor, and two fan lasers (one positioned 

horizontally and the other vertically, to create a cross (+) on the target); all were mounted to a pan/tilt 

unit. 

In order to validate the spraying device operation, several experiments were conducted to evaluate 

the flow rate relative to the nozzle cup rotational position, the spray diameter relative to the nozzle 

cap rotational position, and the ability of the device to detect and spray targets of different sizes. 

Detailed description of the adjustable spraying device and experiments are presented in Chapter 7. 

3.6. Image registration techniques 

A novel registration method suitable for unstructured environments with long intervals of sensing 

ranges was developed. The registration approach is based on the computation of a “dynamic” 

transformation matrix in which each element is a function of the distance from the object in the 

image. In the field this distance can be measured by a range sensor. We demonstrate the utility of 

our approach using an RGB and thermal camera, as well as a laser scanner. Within the interval, the 

method offers compact representation of multiple (or infinite, if one considers the continuous range) 

registration transformations. Thanks to the regression algorithm, the procedure permits registration 

at distances for which the sensors were not calibrated. 

The registration approach (see thesis DVD @ \Papers\ Paper 2 - Distance-Dependent Multimodal 

Image Registration for Agriculture Tasks) was implemented on another robotic platform and hence 

is not detailed in a separate chapter in this thesis. 
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4. ROBOTIC SPRAYER 

4.1. Overview 

This chapter describes the robotic sprayer platform designed and built to serve as a research tool for 

investigating methods and devices designated for the agricultural domain in general and specifically 

for vineyards operations. Detecting and spraying the grape clusters was the main agricultural task 

this thesis focused on.  

4.2. Robotic platform 

The robotic platform was designed and built at Ben-Gurion University of the Negev (Figure 3).  

 
Figure 3 – Robotic platform during field experiments. 
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The robotic sprayer (Figure 4, Table 5) chassis is assembled from two identical platforms (Figure 

4a) that are interconnected using a two DOF universal joint (Cardan Joint, Figure 4b). The first DOF 

(Figure 4b-A) is used to improve the turning radius, the second DOF (Figure 4b-B) allows the 

platform designers to neglect the need for complicated suspension system. Despite the fact that the 

robot is capable of turning with differential steering, allowing a relative angle between the platforms 

contributes to a smaller turning radius and minimizes side slip of the wheels, resulting in reduced 

wear of the vehicle and less damage to the field. The design payload of each platform is 300Kg. A 

modular approach is taken with four identical wheel modules. Each wheel module consists of: ATV 

wheel (0.5m diameter), wheel shoulder that connect the wheel to the platform, and a 24V-480W 

electric motor. The electric motor is fixed to the platform and connected to the wheel using chain 

wheels. An incremental encoder (US DIGITAL – E5) is attached to each electric motor and is used 

to control the robot. The robot is equipped with an electrical box that is mounted to the front platform 

and contains the following: 

 Small size industrial PC computer with Intel i7 processor, 

 7” touch screen connected permanently to the computer allowing the operator to control and 

reprogram the robot in field conditions, 

 Two electric motor controllers (Roboteq AX3500), each able to control 2 electric motors with 

current up to 60A each. The controllers are connected to the computer through RS232, 

 Other peripheral hardware such as: Arduino boards, flat screen, small batteries; additional 

devices can be changed according to the experiment. 

Other peripheral equipment on the robot includes (Figure 4d): 

 Color camera (Microsoft LifeCam Studio) mounted to the front platform facing forward, 

 Two car batteries 12V 110A/h. The batteries are connected together to get 24V, 

 Power generator 2500W (Geko 2801) for continuous power supply during field work, 

 Commercial sprayer (200L tank with patrol motor and pressure pump) is mounted to the rear 

platform, 

 Gamepad controller (Microsoft Xbox 360 wireless controller). The controller is used to manually 

control the robot’s movement. 
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Figure 4 – Robotic sprayer overview. (a) Two identical platforms. (b) Joint that connects the 

two platforms. (c) Electric power scheme. (d) Robot overview. 
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Table 5 – Robotic platform specifications. 

Mechanical 

Dimensions 120X220X160 [cm] (W-L-H) 

Weight 200 [Kg] 

Load capacity 500 [Kg] (250 for each platform) 

Speed 3 [m/s] 

Traction system Wheels 

Traction motors 400W motor (per wheel) 

Batteries 2x110[Ah] 

Autonomy ½ [h] 

Temperature range -10° ~ 50° [C] 

Max. climbing angle 15° 

Control 

Modular system 

Can attach several platforms 

Possibility for robotic arms 

Connection to different sensors 

connection 

WIFI 

rs232 

usb 

Ethernet 

controllers 

Roboteq AX3500 

Arduino board 

phidgets 

Sensors 

color camera (Microsoft studio cam) 

Incremental encoder for each wheel 

Single beam laser distance sensor 

Software Custom build based on Visual Studio C# 

(The robotic platform CAD files are included in the thesis DVD \Robotic platform CAD files\). 

4.3. Kinematic model for the robotic platform 

The robot desired trajectory is determined by a machine vision navigation algorithm aimed to follow 

a visual path. The path trajectory is converted into segments of curves or straight lines. Inputs for 

the kinematic model are the robot velocity and the curve radius. Outputs of the kinematic model are 

the velocity of each one of the four wheels. In case that the trajectory of the robot is a straight line, 

all four robot wheels will have the same velocity corresponding to the desired robot velocity. In case 

that the trajectory is a curve, each wheel will have different velocity, according to the kinematic 

model, and the robot’s chassis will travel at the desired velocity. 
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Figure 5 – Robot position definitions. 

The robot is described as the two orange rectangles (Figure 5) where each rectangle represents one 

of the two robot platforms. The lower platform represents the rear part of the robot and the upper 

platform represents the front part of the robot. As shown in Figure 5, the robot is moving 

counterclockwise with a turning radius of r . The state variables are 𝑞 = [𝑥 𝑦 𝜃 𝜑] were x and y 

represent the center position of the rear robot platform relative to the world coordinates system 0x ,

0y .   represents the angle between the horizontal axis of the robot and the horizontal axis 0x , and 

  represents the angle between the robot platforms. 

 
Figure 6 – Definitions of the rotation and translation matrixes. 
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In order to define the position of each one of the robot wheels relative to one main coordinate 

systems, RTM’s were used. Three RTM’s were constructed, the first 01A (red in Figure 6) is used to 

convert between coordinate system 1 to 0, the second 12A  (green in Figure 6) is used to convert 

between coordinate system 2 to 1 and the third 23A  (blue in Figure 6) is used to convert between 

coordinate system 3 to 2. The RTM between the third coordinate system and the world system 0, is 

the multiplication of all the RTMs to that point (i.e., 23120103 AAAA  ). Detailed description of the 

RTM’s is shown in Appendix A.  

In order to determine the wheel position relative to the world coordinate system 0, the vector of each 

wheel, relative to its one coordinate system was multiplied by the corresponding RTM. For example, 

to determine the position of the rear left wheel, the wheel vector in coordinate system 1 





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The position of each one of the robot wheels was calculated in a similar way, Appendix A.   

The wheels velocity was calculated using the derivate by t the wheel position. The detailed results 

of the robot’s wheels velocities are summarized in Appendix A. The wheels velocities are given as 

the shape of x-value and y-value. Due to the nonholonomic robot constraints, the velocity of the 

wheel can be only in the direction where the wheel is facing. In order to calculate the velocity toward 

the momentarily direction of the wheel, two vectors were constructed to project the x and y velocities 

to the momentarily wheel position. The two vectors are: 

1.  ][][1  SinCosRot   

2.  ][][2   SinCosRot  

Where, Rot1 is used to project the vectors of the rear robot platform and Rot2 is used to project the 

front robot platform. The velocities results of each wheel are summarized in Appendix A.  

Detailed analysis of the kinematic model for different turning curves produced the relation between 

the four wheels velocities and the turning curve (Figure 7). The colored lines represent each of the 

wheels speed and the black line shows the angle between the platforms (φ) 
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Figure 7 – Wheel speed for turning radius. 

The robotic platform is controlled using the results in Figure 7 and Appendix A.  
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5. GRAPES AND FOLIAGE DETECTION 

5.1. Overview 

Three algorithms were developed for the grape clusters detection and a single algorithm was 

developed for the foliage detection. The algorithms were evaluated by comparing performance on 

images acquired in the field. This work was published in the Intelligent Service Robotics Journal 

(Berenstein, Shahar, Shapiro and Edan 2010). Several previous works related to the detection of 

grape berries and grape clusters are described in Table 6.  

Table 6  - Examples of work in grape detection. 

Application Sensor Reference 

Grape bunch detection - 

SVM classifier 
RGB images (Liu and Whitty 2015) 

Counting red grapes 
high-resolution 

images 

(Font, Pallejà, Tresanchez, Teixidó, Martinez, 

Moreno and Palacín 2014) 

Yield prediction  color camera 
(Nuske, Wilshusen, Achar, Yoder, Narasimhan 

and Singh 2014) 

Grapevine yield and leaf 

area estimation 
color camera 

(Diago, Correa, Millán, Barreiro, Valero and 

Tardaguila 2012) 

Automatic detection of 

bunches of grapes 
color images 

(Reis, Morais, Peres, Pereira, Contente, Soares, 

Valente, Baptista, Ferreira and Cruz 2012) 

 

5.2. Detection algorithms 

5.2.1. Foliage detection algorithm 

The Foliage Detection Algorithm (FDA) is based on the fact that the foliage color is green. Two 

filters operate on the captured image; one removes white pixels (sky, sun, etc. by applying a 

thresholds on each of the three RGB channels) and the other traces the green pixels (by applying a 

threshold on the green RGB channel only green pixels are kept). These filters are combined to 

produce the foliage image (Figure 8). Along this process the ground pixels are also removed. The 

FDA is not designed to separate the grapevine foliage close to the camera from the foliage of a 

grapevine in the next row. Such a separation is not necessary to identify the grapevine foliage and 

the grapes clusters (included in the thesis DVD \Foliage and Grapes Detection Algorithms\Foliage 

detection algorithm\). 
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Figure 8 – FDA. (a) Captured image. (b) Final foliage image. (c) Algorithm block diagram. 
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5.2.2. First grape detection algorithm 

The first Grape Detection Algorithm (GDA1) is based on the difference in edge distribution between 

the grape clusters and the foliage. The algorithm was created by examining images from the vineyard 

and noticing that regions of grape clusters contain more edges than those in foliage regions. GDA1 

includes three main stages (Figure 10): FDA, edge detection, and thresholding the high density edge 

from the low density edge areas. The edge detection algorithm was based on the Canny edge 

detection algorithm (Canny 1986). The Canny algorithm was empirically selected after 

experimenting with different edge detection algorithms on an assortment of 100 grape images. 

Examples of different edge detection methods are shown in Figure 9. These edge detection methods 

operated after converting the image to a gray-scale image. Results indicated that the Canny 

algorithm produced the most highly detailed edge images (Figure 9); hence, it was selected for this 

assignment. These results correspond to previous research (Shin, Goldgof and Bowyer 1998; Sharifi, 

Fathy and Mahmoudi 2002).  

(The Matlab program code is included in the thesis DVD \Foliage and Grapes Detection 

Algorithms\Grapes clusters detection algorithms\Edge detection). 

   
a b c 

  

 

d e  

Figure 9 – Different edge detection methods.  

(a) Sobel. (b) Prewitt. (c) Roberts (d) Laplacian of Gaussian (e) Canny. 

5.2.3. Second grape detection algorithm 

The second GDA (GDA2) is based on a decision tree algorithm. First, the color image is represented 

in both the common RGB representation and the perceptually motivated HSV (hue, saturation, and 

intensity) representation. Then, supervised patches taken from the grape areas and the foliage areas 
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are used to extract the following parameters from each of the R, G, B, H, S, and V channels: mean 

value, standard deviation, and the mean and standard deviation of the gradient magnitude. Using 

three patch sizes, 72 different parameters were extracted from each image according to Table 7 and 

a total of 1708 samples of these parameters were extracted from the entire image collection. 

Pearson’s Correlation (Breiman, Friedman, Stone and Olshen 1984) was used to filter the parameters 

that have weak correlation to the classified data: high Pearson correlation represents high correlation 

between the parameter and the classification. All parameters with a Pearson correlation less than 0.5 

were removed from further consideration. The most significant parameters that were selected using 

the correlation test were the mean gradient magnitude of the R, G, B, and V channels, all exhibiting 

Pearson correlation above 0.6. Interestingly enough, this result supports the approach taken in GDA1 

which is based on edges density in the image. 

 
 

a b 

  
c d 

Figure 10 – GDA1.  

(a) Algorithm block diagram. (b) Captured image. (c) Edges image. (d) Final grape image. 
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Training the decision tree was done using the C5.0 algorithm (Breiman, Friedman, Stone and Olshen 

1984). The dataset was divided into two groups of 70% and 30% for training and testing, 

respectively, as commonly practiced. Once the decision tree was constructed, it was used for the 

classification: the same parameters that were extracted during the learning process were extracted 

from the given image around each pixel, and then each pixel was classified as grape or non-grape 

using the trained decision tree. Selected results of GDA2 are shown in Figure 11. 

(Matlab program is included in the thesis DVD \Foliage and Grapes Detection Algorithms\Grapes 

clusters detection algorithms\Decision tree). 
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Table 7 – Decision tree parameters. 

Mask diameter = 11 

Mean Standard deviation 

Image Gradient Image Image Gradient Image 

R,G,B H,S,V R,G,B H,S,V R,G,B H,S,V R,G,B H,S,V 

Mask diameter = 15 

Mean Standard deviation 

Image Gradient Image Image Gradient Image 

R,G,B H,S,V R,G,B H,S,V R,G,B H,S,V R,G,B H,S,V 

Mask diameter = 21 

Mean Standard deviation 

Image Gradient Image Image Gradient Image 

R,G,B H,S,V R,G,B H,S,V R,G,B H,S,V R,G,B H,S,V 

 

 
 

a b 

  
c d 

Figure 11 – GDA2.  

(a) Algorithm block diagram. (b) Captured image. (c) Index image. (d) Final image. 
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5.2.4. Third grape detection algorithm 

GDA3 is based on pixel comparison between edge representations of the captured image with a 

predesigned edge mask that represents grapes. A large number of overlapping pixels between the 

edged image and the edge mask indicates that the area in the image is similar to the area in the mask 

and therefore a high probability for a grape cluster. The algorithm uses a moving average and 

compares the mask over the edged image using two-dimensional convolutions. Four-edge masks 

were evaluated (Figure 12): (a) edge mask of single grape, (b) edge mask of grape cluster, (c) perfect 

circle with varied thickness and diameter of one grape with zero value at the center, and (d) perfect 

circle with varied thickness and diameter of one grape, with negative value at the center. Unlike the 

third mask, the fourth mask was designed to distinguish between circular edged patterns with and 

without response in its interior (which would be less preferable in terms of hits). 

Given the proposed alternatives, the best mask for the algorithm was selected using the methodology 

described in the Image Evaluation Methodology section. Figure 13 presents descriptive results of 

GDA3. 

(Matlab program is included in the thesis DVD \Foliage and Grapes Detection Algorithms\Grapes 

clusters detection algorithms\Moving mask). 

  
b a 

  
d c 

Figure 12 – Four edge masks.  

(a) Single grape. (b) Grape cluster. (c) Center zero. (d) Negative center. 
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a b 

  
c d 

Figure 13 – GDA3. (a) Captured image. (b) Edged image. (c) Index image. (d) Final image. 

5.3. Experimental methods 

A color camera (IDS Inc., uEye USB video camera with a Wide VGA [752 × 480] resolution) was 

attached to a custom-built towing cart designed specifically for the image sampling test (Figure 14). 

This cart imitates the movement of a wheeled vehicle so as to ensure the images taken using the cart 

are as similar as possible to images taken from a moving wheeled robot (including the minor image 

blur occurred for exposure during motion). The camera was connected to a DELL® Core2 laptop 

computer. Images were acquired using Matlab® Image Acquisition Toolbox and saved for offline 

processing. The images were captured under natural illumination field conditions in mid-day during 

the summer time (rarely cloudy weather). The vineyard rows were positioned north-south. Field 

experiments were conducted during the growing season of 2008. The cart was manually dragged 

through the vineyard row and images were captured at a rate of 30 fps and stored on the computer. 

This process was repeated every two weeks from mid April to the end of July 2008. The dragging 

speed of the cart was set at 4 to 5 [km/h], to imitate the normal speed of manual spraying. 
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Figure 14 – Experimental towing cart. 

To obtain a large variety of grape and foliage images, the experiments were performed in two 

different vineyards, one with green grapes (located in Arogot, Israel) and the other with red grapes 

(located in Lachish, Israel). We assume that a minor percentage of the grape clusters in the images 

were totally occluded by leaves, branches, and other grape clusters. 100 random images were 

extracted from 16 different movies that were sampled in the field. For comparison and algorithm 

test accuracy, the grape cluster areas were marked manually in each image (the photos are included 

in the thesis DVD \Foliage and Grapes Detection Algorithms\ and are available for public use under 

demand@ 

https://drive.google.com/open?id=0B5nYMTLWCcUqTFRtTkR1SVdlakE 

 

5.4. Detection algorithm results 

The robot’s spraying speed relative to the algorithm processing time is important for real-time 

implementation. The following condition must be met: xtv  , where v  is the robot’s speed, t is the 

machine vision processing time, and x  is the real world field-of-view length. Laboratory 

measurements showed that the field of view length as perceived by the camera is 2 m, with 1.5 m 

distance from the camera to the grape clusters. The robot speed as related to the processing time can 

be calculated by using txv /  and substituting mx 2 . The maximal robot speed as a 

function of the processing time is shown in Table 8. 

 

 

 

https://drive.google.com/open?id=0B5nYMTLWCcUqTFRtTkR1SVdlakE
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Table 8 – Robot speed in relation to processing time. 

Algorithm Processing time [S] Maximal Robot speed [m/s] (km/h) 

GDA1 0.65 3.07 (11.07) 

GDA2 1.43 1.39 (5.03) 

GDA3 1.15 1.73 (6.26) 

 

The potential to save pesticides is the percent of maximal feasible saving possible in a given image 

(based on experts manually mark areas as grape clusters). The saving potential depends on the 

percent of grape clusters in the given image. Saving potential of 100 implies that there are no grapes 

in the image and there is no need to spray. The saving potential is inversely proportional to the 

percent of grape clusters in the image. The relation between the percent of grape clusters in real field 

images to the saving potential is shown in Figure 15. The saving potential increases with a smaller 

number of grape clusters in the image. Such conditions of few grape clusters could be a result of 

images taken early in the season or a gap between the grapevines. 

 
Figure 15 – Evaluation results of the relation between saving potential and grape clusters in 

the image. 

Three of the four masks suggested for GDA3 resulted in similar pesticide reduction (Table 9), 

indicating the validity of using an artificial perfect circle mask as an alternative to masks created 

from real-world edged image. Furthermore, later in this work (7) the size (diameter) of the artificial 

circle mask can be updated dynamically during the field spraying. These masks are sensitive to 

varying grape size and to use this algorithm throughout the growing season the masks size must be 

adjusted. A self-calibration process can be developed to adjust the mask size to the changing grapes 

size. 

40

45

50

55

60

65

70

75

80

85

90

95

100

1 4 8 11 12 14 15 17 19 22 31

S
a
v
in

g
 P

o
te

n
ti

a
l 

[%
]

Grape clusters in image [%]



40 

 

Table 9 – GDA3 performance of the four masks. 

Mask Detection rate [%] Pesticide reduction [%] 

grape cluster 90.45 24.08 

center zero 89.95 23.90 

single grape 90.10 22.20 

negative center 90.53 12.73 
 

The performance of the three GDA’s is summarized in Table 10 indicating reduction between 25% 

and 30% of pesticides. The detection of grapes as grapes (TP) is more than 90%, which is considered 

very high with respect to other agriculture detection systems which reach average localization 

success of 85% detection rates and usually do not evaluate false negative rates (Bac, Henten, 

Hemming and Edan 2014). The overall detection results show high ability to detect grape clusters 

in the vineyard environment. 

Table 10 – Final GDA's performance. 

Algorithm 

Reduction of 

pesticide agent 

[%] 

Grape as 

Grape TP 

[%] 

Foliage as 

Grape TN 

[%] 

Grape as 

Foliage FP 

[%] 

Processing 

time 

[S] 

GDA1 30.59 90.4 9.59 73.48 0.65 

GDA2 25.58 90.73 9.26 78.73 1.43 

GDA3 26.79 90.7 9.67 79.18 1.15 
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6. HUMAN-ROBOT COLLABORATION 

6.1. Overview 

This chapter presents a new concept and methods for remote collaboration between a human 

operator and a robotic sprayer for the target detection task. The framework places the human at a 

remote location and uses the human’s excellent perception skills to collaborate with the robot on the 

target detection task. The human and robot work in a sequential mode as described in the workflow 

diagram (Figure 16). The suggested concept positions the human at a remote location (e.g., home, 

office) equipped with a target marking device (e.g., stationary computer, laptop, tablet, PDA, or 

smart phone). Berenstein, Shahar, Shapiro and Edan (2010) grape cluster detection algorithm is 

operated on images acquired by the robotic system. Depending on the collaboration level (described 

in section 06.2), the human can mark additional targets and/or erase targets detected by the imaging 

algorithm. The marked targets are then sent back to the robot for actual spraying. Different marking 

methods are proposed and compared.  

This work presents several collaboration levels and different human target marking methods and a 

methodology for their evaluation. Experiments were specially designed to compare the different 

options. Performance measures and a procedure for ground truth measurement were defined. 

Collaboration is expected to yield better target detection results since it benefits from the robot’s 

consistency and accuracy (the image detection algorithm) combined with the human’s perception 

and learning skills.  

Human taskRobot task

Capturing image 
Detect and mark targets
(only for collaboration 

method 2,3)

Image sent to remotely 
located human 

Detect and mark targets 
according to the 

collaboration level

Image sent back to 
robot

Perform spraying 
according to marked 

image

Moves one step forward 
(one frame)

Collaboration level 1

 
Figure 16 – Human-robot working diagram. 
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6.2. Human robot collaboration methods 

Four levels of human–robot collaboration for detection and marking of the targets were developed 

based on Sheridan’s 10 levels of human-robot collaboration (Sheridan 1992) and based on previous 

work in agricultural target detection (Bechar and Edan 2003). The four collaboration levels 

presented below are based on Sheridan’s scale however the numbers are sequential and therefore 

not consistent with Sheridan’s levels of automation. In each collaboration level description (sections 

6.2.1 to 6.2.4) the corresponding collaboration level according to Sheridan’s work is noted.  

The human operator has to mark all the target area with maximum accuracy of the targets in the 

image in a fixed period of time. Maximum accuracy is defined as maximum target area along with 

minimum foliage within the marked area. All marked areas will later be considered as areas to be 

sprayed by the robot.  

6.2.1. Collaboration level 1 – fully manual human target marking 

The human operator is presented an image and must mark all areas to be sprayed. No automatic 

image analysis algorithm is executed. Figure 17a shows an image marked by a human (constant 

circle diameter marking method). This collaboration level corresponds to Sheridan’s level of 

collaboration 1 ("the computer offers no assistance, human must do it all"). 

  

A B 

Figure 17 – Collaboration level 1. (a) User marked. (b) Binary image for analysis. 

6.2.2. Collaboration level 2 – robot suggests, human approves 

Captured image grape clusters are automatically marked using a machine vision algorithm for grape 

clusters detection (Berenstein, Shahar, Shapiro and Edan 2010). These marked areas are considered 

as recommendations for the human operator. The operator must mark each target he/she wants to 

spray. The operator can use the robot-recommended areas to achieve enhanced target hit rate. All 
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areas to be sprayed must be marked by the human. Figure 18 illustrates the collaboration procedure. 

The image captured in the field is processed by the robot using Berenstein, Shahar, Shapiro and 

Edan (2010) grape detection algorithms (Figure 18a blue colored areas), the processed image is 

transferred to the human operator for further analysis. Figure 18b shows the areas marked by the 

human operator (red areas). Figure 18c shows the binary image to by sprayed; only the red area will 

be sprayed. This collaboration level corresponds to Sheridan’s level of collaboration 4 ("the 

computer offers a complete set of action alternatives, and suggests one"). 

   

A B C 

Figure 18 – Collaboration level 2.  

(a) Robot suggested mark. (b) Human mark area. (c) Binary image to be sprayed. 

6.2.3. Collaboration level 3 – robot marks, human supervises 

The human receives an image with grape clusters marked by the robot using Berenstein, Shahar, 

Shapiro and Edan (2010) machine vision algorithms. The human has the ability to manually reject 

robot marked areas and add areas to be sprayed (Figure 19a,b). In case the human does not make 

any change in the robot-marked image (Figure 19a), the entire robot-marked area will be considered 

as targets and will be sprayed. As opposed to collaboration level 2, the human does not need to 

confirm the robot markings but can change existing markings. This collaboration level corresponds 

to Sheridan’s level of collaboration 5 ("the computer offers a complete set of action alternatives, and 

executes that suggestion if the human approves"). 
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A b 

Figure 19 – Collaboration level 3. (a) Robot marked image. (b) Binary image to be sprayed. 

6.2.4. Collaboration level 4 – fully autonomous robot marking 

This collaboration method corresponds to Sheridan’s 10th level of automation where the computer 

decides everything and acts autonomously with no human operations (Sheridan 1992). With this 

collaboration level the robot uses (Berenstein, Shahar, Shapiro and Edan 2010) machine vision 

algorithms to detect the grape clusters and sprays solely the detected areas. The human has no ability 

to intervene. This collaboration level corresponds to Sheridan’s level of collaboration 4 ("the 

computer decides everything and acts autonomously, ignoring the human"). 

6.3. Human marking methods 

Three marking methods were developed and evaluated: (i) constant circle diameter – the operator 

sets the center of a constant diameter circle and by clicking the left mouse button the circle is marked 

on the image (Figure 20a). Using this method, the operator cannot change the circle diameter. (ii) 

ellipse with changeable size – by holding the left mouse button the user sets the ellipse center point, 

and at the point of releasing the left mouse button the end point of the ellipse is set (Figure 20b). 

(iii) free hand – the operator holds the left mouse button and surrounds the target area. When 

releasing the mouse button the area bounded is marked as target (Figure 20c). 

In each method the area bounded within the marked area is considered as “detected” and is colored 

in red. With each of the marking methods, the operator can use the right mouse button to erase a 

marked target. The erasing method is identical to the marking method (e.g., when using the constant 

circle diameter method, the operator can click the right mouse button and the target marked within 

that area will be erased). 
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When the target marking process is completed (due to marking all the targets or end of marking time 

for the image) a binary image is saved for post-analysis (Figure 20d-f). 

   
a b c 

   
d e f 

Figure 20 – Marking methods & results. (a) Constant circle diameter. (b) Ellipse. (c) Free 

hand. (d) Constant circle diameter result. (e) Ellipse result. and (f) Free hand result. 

6.4. User interface 

The main goal of the interface is to present the human with images captured from the commercial 

vineyard. Using the suggested marking method, the human marks targets within the image; the 

images are presented sequentially to the user switching at a fixed time. Presenting the user an image 

for a fixed time contributed in two ways: first, the user was not able to dawdle on images more than 

the allocated time, resulting in a costly non-effective process, second, the user did not have the 

option to mark the images fast, resulting in bad marking (e.g., the user can finish marking the targets 

and continue to the next image instead of using the remaining time to unmark FA areas).  

The interface (Figure 21) consists of two main windows – the settings and the marking window. 

Using the settings window (Figure 21a), the user can select different properties of the marking task 

such as: marking method, circle diameter (relevant only for the constant circle diameter marking 

method), marking time (image switching time), image to mark (relevant only for experiments), and 

the address path to save the marked images (relevant only for experiments). The experiment 

properties are pre-selected by the user and cannot be changed during the experiment. The marking 

window (Figure 21b) is used for displaying images. 
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The human’s task is to detect and mark targets within the image while using one of three marking 

methods. The marking window also contains two indicators, the time left to mark the current image 

(both numeric and visual), and a counter for the number of mouse clicks. Each marked target is 

marked in red.  

The interface was implemented in the Microsoft Visual Studio environment with the C# language 

(detailed program codes included in the thesis DVD\Human-Robot Collaboration\). 

6.5. Evaluation methodology 

Experiments were designed aiming to evaluate the influence of the human-robot collaboration level, 

human target marking method, and the switching time of the image captured in the field. This was 

achieved through a series of user experiments in which images captured in the field were presented 

to users on a computer screen in the lab. The work included four experiments to evaluate the: 1) 

human learning time to determine the time needed for the human to reach a hit rate expertise of 90%, 

2) human marking methods, 3) human-robot collaboration levels, and 4) computer detection value 

on the hit rate. During the experiments two image switching times were evaluated. The image 

switching times, simulating different robot speeds, were 15 and 12 [sec] per image corresponding 

to 1 and 1.25 [m/s] travel speed along the row. 

All of the following experiments were conducted in a computer lab at Ben-Gurion University of the 

Negev. Each participant occupied a single stand-alone computer equipped with a 19” screen. The 

performance measures for evaluation were hit rates (true positive, TP) and false alarms (FA). 

6.5.1. Database 

Creating a collection of ground truth images is necessary for target detection evaluation. Hit and 

False Alarm (FA) performance measures were used. Since the case study for this work is a robotic 

sprayer for vineyards, the images used originated from a commercial vineyard growing green grapes 

of the “superior” variety. An RGB camera (Microsoft NX-6000) with 600×800 resolution was 

manually driven, at mid-day, along a commercial vineyard in Lachish, Israel, during the summer 

season of 2011, one month before harvest time. The images were captured from 5 different growing 

rows. 
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Figure 21 – User interface. (a) Setting window. (b) Marking window. 
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The targets were defined as the grape clusters. A group of three experts was guided to mark the 

closing perimeter of each grape cluster in the image. The experts were guided to mark the targets 

with no time limit for either a single target or the complete image. The experts had the flexibility to 

zoom in and out of the image to achieve precise marking of the target. The final ground truth was 

marked using the judge rules criteria (if a given pixel was marked by two or more experts, it was 

considered a target). 

A set of 129 images were marked using this technique and used as a ground truth for the following 

experiments (the images are available for public use @ 

https://drive.google.com/file/d/0B5nYMTLWCcUqYmZ2QzY5aVR1M00/view?usp=sharing). 

6.5.2. Performance measures and data analysis 

Two performance measures were used: Hit rate (true positive) and False Alarm rate (FA, false 

positive). Figure 22 illustrates the target area, human marking area, and the performance measures 

using artificial shapes. The circle represents the target to be marked and the rectangle represents the 

human marking area. The conjunct area between the target and the human marking (colored yellow) 

is the sum of hit pixels. The target area not marked by the human (colored red) is the sum of miss 

pixels, and the human marked area that is not part of the target area (colored green) is the sum of 

FA pixels. The Hit rate [%] was defined as: 

100
 MISSHIT

HIT
 Equation 2 

The FA rate [%] was defined as: 

100
resolution vertical resolution horizontal




FA
 Equation 3 

 
Figure 22 – Performance measures illustration, the circle represents the target, the rectangle 

represents the human marking. 

https://drive.google.com/file/d/0B5nYMTLWCcUqYmZ2QzY5aVR1M00/view?usp=sharing
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The F1 score (Sokolova and Lapalme 2009) was on purpose not used as the performance measure 

so as to be able to control independently the FA and Hit rate depending on the task objective required 

by the farmer. 

A paired t-test design was used for the analysis. Since for each experiment all the users marked the 

same database images, the statistical paired t-test was used. T-test was used since we had a large 

population (>30) and assumed normal distribution of their performance. The tests considered 

statistical significance at or below α=0.05. 

6.6. Preliminary experiment – evaluating interface learning time 

Learning is defined as the time required for a group of people without experience and without 

interface acquaintance to reach satisfactory use of the interface (Norman 1988). Bringing the users 

to the same level of expertise is crucial to neutralize the interface learning effect. The goal of this 

experiment was to find the learning time needed for the users to get to 90% hit rate detection with 

the interface. Users who reached the target 90% marking hit rate were considered experts. Since the 

switching time between the images is constant, the learning time can be referred to as the number 

of images needed for a user to become familiar with the interface. 

6.6.1. Experimental setup 

Prior to the experiment the participants were instructed on how to use the interface using an 

explanation slideshow identical for all participants. Using the interface, the participants were 

instructed to mark the grape clusters in the image as accurately as possible while considering the 

image switching time. Two switching times were evaluated, 9 and 12 seconds. When the switch 

time passed, a binary image containing the marked areas (e.g., Figure 17b) was saved for later 

analysis. After the experiment was finished, each participant completed a NASA TLX workload 

questionnaire to evaluate the workload experienced by the participant during the target marking. 

Since the goal of the learning process was to reach 90% hit rate detection, the only performance 

measure used was the HIT rate value. 

6.6.2. Experimental design 

A group of 20 students, aged 20 to 30, were randomly divided to 2 groups of 10 students each, and 

were used as the experiment participants. The experiment was conducted according to the 

experimental plan described in Table 11. The human-robot collaboration level was set to fully 
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manual marking and the target marking type was set to constant circle diameter. Each participant 

group practiced a single image switching time. 

Table 11 – Experimental design - learning time. 

Group 

Image switching 

time [sec] 

Collaboration 

level 

Marking 

method Number of 

images 

Total experiments 

time [sec] 
9 12 

level 1 

(Manual) 

Constant circle 

diameter 

1 X  X X 80 720 

2  X X X 60 720 

6.6.3. Results 

Learning experiments results indicate that performance increases with a positive trend along time as 

expected (Figure 23). The interface learning goal was to reach 90% hit detection rate. The cross-

sections of the linear trend line with 90% hit were 522 and 366 seconds for the 9 and 12 second 

image switching times, respectively. Based on this experiment, a set of 30 images was used for the 

learning stage in all following experiments. 

  
a b 

Figure 23 – Learning experiment results.  

(a) 9-Second switching time. (b) 12-Second switching time. 
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6.7. Evaluating human marking methods experiment 

The aim of this experiment was to compare the three suggested marking methods. The three marking 

methods were compared to the fully manual human-robot collaboration method (collaboration level 

1), which is the most demanding of the user. Two image switching times, high and low 

corresponding to the robot’s slow and fast movement speeds along the row, were evaluated. 

6.7.1. Experimental setup 

Prior to the experiment the participants were instructed on how to use the interface using an 

explanation slideshow. In addition, the performance measures used to analyze the marked images 

(hit, FA) were explained and the participants were instructed to mark the target accordingly (they 

were instructed to maximize hit rate and minimize false alarms). The number of images for the prior 

training was set to 30 based on findings from the learning time preliminary experiment (described 

in section 6.6). Using the preset switching time and marking method, each group marked the 

projected images. In order to neutralize the effect of the marking methods sequence on the results, 

each participant practiced the three marking methods in a random order. After the experiment the 

participants completed a NASA TLX workload questionnaire (Appendix B. ).  

6.7.2. Experimental design 

A group of 72 students, aged 23 to 30, randomly divided to 2 groups of 36 students each, were used 

as the experiment participants. The experiment was conducted according to the experimental plan 

described in Table 12. Excluding the 30 images used for the interface learning process, each 

participant marked a total of 150 images, 50 for each marking method. The marking methods 

sequences were randomly selected to neutralize any user fatigue influence.  

Table 12 – Experimental design - manual collaboration, three marking methods. 

Group 
Image switch time [sec] Marking method 

12 15 constant circle diameter ellipse free hand 

1 X  X X X 

2  X X X X 

6.7.3. Results 

The results (Figure 24 and Table 15) show that Hit rates are maximized when the users have more 

time to mark the image. For the two image switching times, the method with the highest hit rate and 

the minimum miss rate was the constant circle diameter (94.3%, 89.6% and 84.4%, for the constant 

circle diameter, ellipse, and free hand at 15sec compare to 91.4%, 87.0%, and 82.5% at 12sec 
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respectively). Minimum FA rate is achieved when the marking method used is free hand marking 

(13.0% and 10.1% for the ellipse and free hand at 15sec compare to 16.8% and 13.2% at 12sec 

respectively). 

The difference in the number of clicks between the 15[sec] and 12[sec] image switching times (Table 

13) indicates that the number of clicks per image is higher when the image switching time is longer 

with an average difference of 3.47 clicks. There is a strong correlation between the number of clicks 

to the target size (0.95 and 0.97 for 12[sec] and 15[sec] image switching times, respectively). 

Results ( 

 

Table 14) indicate that the most comfortable marking method was the constant circle diameter (when 

the average score was 3.63, 3.25, and 2.84 for the constant circle diameter, ellipse, and free hand 

respectively). 

The preferred marking method depends on the task objective. If the farmer aims to maximize the hit 

rate  the constant circle diameter marking method with the long image switching time should be 

chosen; if the farmer wants to minimize false alarms the free hand marking method with a short 

image switching time should be chosen. The ellipse marking method did not indicate any advantage 

over the other two marking methods and hence was omitted from the analyses. 

Table 13 – Number of clicks difference between 15 and 12 seconds (15-12)                         

image switching time. 

 constant circle ellipse free hand 

Average 3.47 3.18 1.29 

Standard deviation 1.96 1.01 0.72 

 

 

Table 14 – Results of ease of use questionnaire. 

 constant circle ellipse free hand 

Average 3.63 3.25 2.84 

Standard deviation 1.28 1.18 1.15 
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Figure 24 – Results of marking methods comparison experiment for two different switching 

times. 

Table 15 – Marking method results summary. paired t-test, df=49, t-critical=2.0095. 

a,b are the compared groups, and x is constant. 

Image switch time [sec] Marking method t-test  

HIT 

t-test  

FA 12 15 constant circle diameter ellipse free hand 

a b x   -11.69 -12.30 

a b  x  -9.49 24.29 

a b   x -4.91 19.99 

x  a b  11.39 -12.37 

x  a  b 15.25 3.61 

x   a b 11.96 16.52 

 x a b  17.35 13.39 

 x a  b 20.74 24.16 

 x  a b 16.69 21.07 

 

6.8. Evaluating collaboration level and marking method experiment 

This experiment aimed to evaluate performance for the different collaboration levels and two target 

marking methods, the constant circle diameter and the free hand marking method. The ellipse with 

changeable diameter was not evaluated in this experiment since the previous experiment indicated 

it has no advantage over the constant circle diameter and the free hand marking method. 

6.8.1. Experimental setup 
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Prior to the experiment the participants were instructed on how to use the interface using an 

explanation slideshow (included in the thesis DVD \Explanation slideshow\). In addition, the 

performance measures used to analyze the marked images (hit, FA) were explained and the 

participants were instructed to mark the target accordingly (they were instructed to maximize hit 

rate and minimize false alarms). The number of images for the prior training was set to 30 based on 

findings from the learning time preliminary experiment (described in section 6.6). Using the preset 

switching time and marking method, each group marked the projected images. In order to neutralize 

the learning and fatigue effect on the results, each participant practiced one experiment, which 

consisted of a single switching time, collaboration level, and marking method. 

6.8.2. Experimental design 

A group of 130 students aged 23 to 30, randomly divided to 8 groups were used as the participants. 

The experiment was conducted according to the experimental plan described in Table 16. Each 

participant marked a total of 100 images. 

Table 16 – Experimental design. 

Group 
Image switch time [sec] Collaboration method Marking method 

12 15 level 2 level 3 Constant circle diameter Free hand 

1 X  X  X  

2 X  X   X 

3 X   X X  

4 X   X  X 

5  X X  X  

6  X X   X 

7  X  X X  

8  X  X  X 

6.8.3. Results 

The main aim of this experiment was to compare the collaboration levels for the two marking 

methods. The robot’s “task”, in the suggested scenario, is to mark the grape clusters using 

Berenstein, Shahar, Shapiro and Edan (2010) grape detection algorithms. In the second collaboration 

method (robot suggests, human approves), the robot-detected grape areas were used as 

recommendations for the human operator. In the third collaboration method (robot marks, human 

supervises), the robot-detected areas were considered as decisions that the human can later change 

if necessary. Table 17 summarizes the robot grape detection algorithm hit and false alarm rates. 
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The results (Figure 25 and  

Table 18) indicate that the highest hit rate 92.66%, is achieved with collaboration level 3, 

constant circle diameter and 15[sec] image switching time and these results are statistically 

significant. The lowest FA, 2.71%, was achieved with collaboration level 2, free hand and 15 

[sec] image switching time. While using collaboration level 2, for the two marking methods, 

the hit rate was higher when the user had more time for the marking process. While using 

collaboration level 3 with the constant circle diameter, the hit rate was higher, when the user 

more time. However, for the free hand marking method, the user showed no improvement 

he/she had more time. Collaboration level 3 was proven to be better than collaboration level 

all marking methods and image switching times ( 

Table 18). Collaboration level 3 showed high FA compared to the corresponding collaboration level 

2. The number of clicks using collaboration level 3 is greater than collaboration level 2 for the 

corresponding marking method and image switching time. 

Results from the ease of use questionnaire did not show any statistically significant difference 

between the different collaboration methods. 

 
Figure 25 – Results of collaboration level comparison for two marking methods and 

switching speeds. 

Table 17 – Robot automatic image analysis grape detection performance. 

 HIT FA 

[%] 83.80 28.44 
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Standard deviation 12.05 5.64 

 

Table 18 – Human-robot collaboration level results summary. paired t-test, df=99, t-

critical=1.9842. a,b are the compared groups, and x is constant. 

Image switching time [sec] Marking method 
Collaboration 

method t-test 

(HIT) 

t-test 

(FA) 
12 15 constant circle diameter 

free 

hand 

level 

2 

level 

3 

a b x  x  9.50 24.67 

a b  x x  25.42 25.14 

a b x   x -6.33 9.61 

a b  x  x 1.40 3.46 

x  a b x  40.86 31.65 

 x a b x  46.88 33.79 

x  a b  x -2.44 -4.99 

 x a b  x 3.23 -8.96 

x  x  a b -17.07 -35.54 

 x x  a b -23.31 -38.30 

x   x a b -45.18 -50.36 

 x  x a b -55.39 -58.26 

Collaboration level 2 – robot suggests, human approves 

Collaboration level 3 – robot marks, human supervises 
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7. SITE SPECIFIC TARGET SPRAYING DEVICE 

7.1. Overview 

The traditional pesticide spraying methods (detailed in section 1) are not suitable for a robotic 

sprayer since they lack the precision needed for accurately hitting the target while maximizing the 

hit rate and minimizing the FA rate. Although several agricultural spraying robots have been 

developed, mostly for weed control and plant protection applications (Mandow, Gomez-de-Gabriel, 

Martinez, Munoz, Ollero and Garcia-Cerezo 1996; Steward, Tian and Tang 2002; Singh, Burks and 

Lee 2005; Pergher and Petris 2008; Slaughter, Giles and Downey 2008), they are not suitable for 

the task of spraying amorphous shapes (such as grape clusters). 

To design a spraying device, several different spraying deposition methods were evaluated in 

simulation. Based on the simulation analyses the best performing device was selected for 

implementation. A novel site specific spraying device was developed, built, and tested specifically 

for the task of spraying objects with varying size and amorphous shape while providing maximum 

hit rate and minimum FA rate. 

7.2. Spraying deposition methods 

To develop an efficient spraying deposition method it is important to quantify data regarding the 

target coverage quality in terms of false alarm rate and overlapping of sprays. The assumption is 

that the targets are accurately detected and that the sprayer aims accurately at the target. The spraying 

deposition methods are designed to cover the entire target (i.e., 100% target Hit Rate). We do not 

take into account the effect of spray material. Analytical evaluation of the spraying methods was not 

possible due to the amorphous shape of the targets and high variability. Therefore, a simulation 

analysis was developed (described in thesis DVD \Spraying Simulations\). Three types of spraying 

deposition methods were evaluated. This was published in the ASABE Annual International 

Meeting (Berenstein and Edan 2012). The simulation results were used to design the spraying device 

for amorphous shape target such as the grape clusters (section 7.3). 

7.2.1. First spraying deposition method – fixed nozzle spacing 

The first spraying deposition method, Fixed Nozzle Spacing, is based on existing spraying 

techniques in which a set of nozzles are organized vertically on a spraying column with 

predetermined spacing (Figure 26a). 
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In this method, the nozzles position and spray diameter (nozzle aperture) are set before the spraying 

process regardless of the targets shape and size. The vertical length between the nozzles is derived 

from the spray diameter and is set to minimize the sprays circles overlapping (Figure 26b). To enable 

spraying dispersing like Figure 26b, an electric valve is set for each of the spraying nozzles. The 

electric valve allows accurate control over the spraying timing. 

 

  
a b 

Figure 26 – Fixed nozzle spraying method.  

(a) Spraying boom with  fixed position nozzles. (b) Nozzle spacing. 

7.2.2.Second spraying deposition method – optimal spray coverage 

The second spraying method, optimal spray coverage, aims to cover the target area optimally while 

using a single nozzle, with a preset spray diameter, attached to a pan\tilt head (Figure 27).  

The pan\tilt head provides flexible control over the spray position. The target coverage will be 

similar to the first spraying method with an exception that the area coverage will be optimal. 
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Figure 27 – Pan\tilt head with spraying nozzle attached. 

7.2.3. Third spraying deposition method – one target-one shoot 

The third spraying method, One Target-One Shoot (OTOS), is based on the assumption that the 

spraying circle diameter can be controlled in real-time. With this method, each target will be sprayed 

once for complete coverage. This type of spraying can be achieved by connecting a single nozzle 

with a controlled nozzle aperture to a controlled pan\tilt head (Figure 28). The pan\tilt head will 

direct the nozzle toward the center of the target and by adjusting the spray diameter the entire target 

will be sprayed (Figure 28). 

 
Figure 28 – Varying spray diameter. 

7.2.4. Spraying methods evaluation 

The three spraying methods were evaluated using a dataset of 129 images sampled in a commercial 

vineyard along the season of 2009. The images contained grape clusters images with ground truth 

marking of the grapes area (Figure 29). Each image was evaluated using computer simulation of the 
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three spraying methods (described in thesis DVD \Spraying Simulations\) and the results were 

compared to the corresponding ground truth image. The spraying methods were designed to obtain 

100% hit rate so the performance measures were defined as the False Alarm rate (non-target area 

that was sprayed) and the number of sprays required for the entire image (to cover 100% of the 

target). To derive the optimal spray diameter the fixed nozzle spacing method and the optimal spray 

coverage method were evaluated with a range of spray diameters (3-100 [Pixel]). 

  
A b 

Figure 29 – (a) Grape clusters. (b) Ground truth of grape clusters. 

7.2.5. Spraying deposition methods – results 

Results of the spraying methods evaluation (Figure 30) are the average outcome of the 129 images 

used for the simulation. The results shows that for the fixed nozzle spacing and optimal spray 

coverage spraying methods there is a direct relation between the spray diameter and the pesticide 

waste given in Equation 4 and Equation 5 respectively (linear interpolation): 

  54282DiameterSpray*1382010 WastePesticide 32 mm  Equation 4 

 

  30255DiameterSpray*1803410 WastePesticide 32 mm  Equation 5 

Since the OTOS spraying deposition method does not depend on the spray diameter the pesticide 

waste value is constant (Equation 6): 

  12551810 WastePesticide 32 mm  Equation 6 

The number of sprays per image (Figure 31) shows that for the Fixed Nozzle Spacing and Optimal 

spray coverage spraying deposition methods there is a power shape function given in Equation 7 

and Equation 8 respectively:  

208.1)DiameterSpray(45.588spraysofNumber   Equation 7 

 

08.1)DiameterSpray(481spraysofNumber   Equation 8 
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Since the OTOS spraying deposition method does not depend on the spray diameter, the number of 

sprays per image is a constant number (Equation 9) representing the average number of targets in 

one image. 

89.7spraysofNumber   Equation 9 

 
Figure 30 – Pesticide waste (False Alarm + overlapping). 
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Figure 31 – Number of sprays. 

Determining the preferred spraying deposition method best suited for the application is achieved by 

constructing an economic function for each of the spraying methods (Equation 10, Equation 11, 

Equation 12). The economic functions include assessment of the related costs due to pesticide waste 

and the number of sprays. The outcome value of these functions is the farmer expense which must 

be minimized. 

  )()45.588()()5428213820($ 208.1
SpacingNozzleFix TCSTSDWVSDV    Equation 10 

 

  )()481()()3025518034($ 08.1
CoverageSprayOptimal TCSTSDWVSDV    Equation 11 

 

  )()89.7()()125518($ TCSTWVVOTOS   Equation 12 

 

where,  $TypeMethodSprayV  is the function result value which represents the cost of spraying one image 

(one image equal 1.5m of vineyard length), SD is the Spray Diameter used in the spraying process, 

WV is the pesticide Waste Value [$/mm2], ST [Sec] is the Switch Time between targets and TC 

[$/Sec] is the Time Cost.  
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Operational parameters values, updated for nowadays, were calculated to evaluate and compare the 

economic functions: 

 [$]10 6WV  (1 liter of pesticide covers 10m2 and costs 10$) 

 ]/[$00695.0 sTC   (human working hour worth 15$/h, robot operation worth 10$/h) 

 ][2.0 sST  (estimation) 

Applying the operational parameters to the economic functions reveals that for the values analyzed 

the OTOS spraying method is the least expensive method, regardless of the spraying diameter 

(Figure 32). 

 
Figure 32 – Economic function results. 

Different selection of the operational parameters values can lead to choosing another method rather 

than One Target-One Shoot spraying method. An equilibrium point between the One Target-One 

Shoot and the optimal spray coverage method is obtained when [$]106 6WV , implying that the 

spraying process will be equally costly to the farmer (Figure 33). 
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Figure 33 – Economic function results ( [$]106 6WV ). 

Additional equilibrium points are described in Table 19. 

Table 19 – Equilibrium points. 

Method 1 Method 2 WV [$/mm2] TC [$/s] ST [s] 

One Target-One Shoot Optimal spray coverage 6*10-6 0.00695 0.2 

One Target-One Shoot Optimal spray coverage 10-6 0.00695 0.03 

One Target-One Shoot Optimal spray coverage 10-6 0.0012 0.2 

7.3. The adjustable spraying device 

An adjustable spraying device, ASD, was designed and built as an experimental tool to implement 

the OTOS spraying method (Berenstein and Edan 2012). The device is mounted to a robotic sprayer 

able to navigate along vineyard rows and supply pressurized pesticide. The operational concept of 

the ASD is as follows: 

1. Direct the nozzle to face the crop (perpendicular to the crop), 

2. Capture an image using the ASD camera, 

3. Find the target’s position and diameter, 

4. For each target perform the following routine: 

5. Direct the ASD toward the target center, 

6. Adjust the nozzle diameter according to the target diameter, and 

7. Open the sprayer electric valve for a specific predefined time. 
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The ASD is presented in Figure 34. The ASD base is constructed from three aluminum parts, two 

pressure plates that mount the spraying nozzle and the two line beam lasers, and a shoulder. The 

shoulder is connected to the pressure plate with 4 screws and can be height adjusted. 

A spraying nozzle (AYHSS 16) is constructed from two parts, the nozzle base and the nozzle cup. 

The nozzle base is mounted to the pressure plates. The pressurized (20 BAR) pesticide hose is 

connected to the nozzle base and the flow is controlled using an electric valve (on/off). The spraying 

diameter can be controlled by rotating the nozzle cap over the nozzle base. 

A stepper motor, mounted to the shoulder, is used to control the spraying diameter. The stepper 

motor is connected to the nozzle cap using 2 tangent gears (Figure 34b), one connected to the stepper 

motor (black, 28T), and the other connected to the spraying nozzle cap (white, 42T). The stepper 

motor is controlled using a digital stepper motor driver (LEADSHINE DM556). Rotational feedback 

of the stepper motor is acquired using a rotational potentiometer (10 rounds, 1KΩ) connected to the 

stepper motor gear. An Arduino (UNO) board closes the stepper motor position loop using feedback 

from the potentiometer and the desired circular position. 

Other peripheral sensors are mounted to the ASD; a laser distance sensor (SICK DX35) for 

measuring the distance between the device and the target, a color camera (Microsoft studio cam) for 

capturing images from the field and later used for automatic target detection, and a 2-line beam 

marking lasers (532 nm, 50m W, 60°) positioned horizontally and vertically for marking a cross (+) 

over the target. The entire device is mounted on a Pan-Tilt Unit (PTU) (FLIR D46-17) able to rotate 

horizontally ±180° and vertically +31° -80°. 

A PC computer is connected to an Arduino board, laser distance sensor, color camera, PTU, and the 

electric valve controlling the pesticide flow. The main software for managing the ASD was based 

on Microsoft Visual Studio (c#) (included in the thesis DVD \Robot control software\). 
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a b 

 
c 

Figure 34 – Spraying device. (a) Isometric view – CAD. (b) Front view. (c) Side view. 

7.4. Preliminary experiments  

Two preliminary experiments were conducted to evaluate the pesticide flow rate and the spray 

deposition with different nozzle apertures. 

7.4.1. Flow rate evaluation 

A flow rate experiment was performed to evaluate the pesticide flow rate for varying spraying nozzle 

apertures. The experimental setup included setting up a spraying pressure of 20 [BAR] (the 

recommended pressure for this type of spraying nozzle). The spraying duration was computer 

controlled using the electric valve. 

Twenty-one nozzle apertures that cover all the rotation scale of the nozzle were measured. For each 

aperture, three sprays were measured with a delay of 4 s between the measurements (the delay was 

needed to allow the remaining drops to leave the nozzle orifice). The duration of each spray was 1s. 

The sprayed material was tap water. 
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The flow rate evaluation results (Figure 35) show the relation between the flow rate and the 

corresponding aperture.  

 
Figure 35 – Flow rate evaluation results. 

7.4.2. Spray diameter evaluation 

Spray diameter was evaluated to find the spray diameter (spray cone) for varying nozzle apertures. 

Using this relation between the nozzle aperture and the spray diameter, the spray diameter can be 

adjusted according to the target size. 

The experimental setup (Figure 36a,b) included the ASD facing the target base with a target 

attached. The target base was constructed from steel net and was mounted vertically on a manually 

controlled conveyor in front of the ASD (Figure 36b).  

The target used was a white paper sheet, 0.5 m wide, which was stretched top to bottom and fixed 

to the target base (Figure 36b shows the target fixed to the target base after spraying). In order to 

view the spray deposition and post-analyze the position of the spray, a red water-soluble food dye 

(Florma red 696) was used as pesticide replacement. Each spray repetition included the following 

steps: (i) attaching a new target to the target base, (ii) setting the nozzle aperture to the desired value, 

(iii) opening the spray flow, (iv) starting the conveyor movement towards the spray jet, and (v) after 

the entire target base has crossed the spraying jet, the spray flow is closed and the conveyor stops. 
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a b 

Figure 36 – Experiment configuration.  

(a) Experiment scheme. (b) Field view of the experiment. 

 

The ASD software is designed to start capturing a movie from opening to closing of the spray jet 

using the ASD camera. After each spray repetition, the captured movie is saved for post-analysis. 

Each movie was manually scanned by a human expert to extract a single image containing the target 

in mid-frame. The extracted frame is analyzed manually for the spray boundaries (Figure 37). Since 

the spray is cone-base shaped, the spray diameter can be evaluated by measuring the upper and lower 

boundaries. 

 

 
Figure 37 – Sprayed target. 
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The experimental design included 3 distances between the ASD and the target. For each distance 

the nozzle aperture measures were between 175 and 210 with increments of 5 (units in potentiometer 

Ω). Three measurements were conducted for each distance-aperture combination. 

The experiment started at dawn ensuring no wind (wind was measured as 0 using Skywatch Xplorer 

1). 

The experimental results shown in Figure 38 reveal the relation between the nozzle aperture and the 

spray diameter for three measured distances. 

 

 
Figure 38 – Experimental results. 

 

Table 20 – Experimental results summary. 

Distance Trend line R2 Trend line type 

500 NA=600.22∙SD-0.210 0.911 Power 

1000 NA=490.97∙SD-0.184 0.782 Power 

1500 NA=467.12∙SD-0.177 0.761 Power 

 

Table 20 presents the curve fitting for Figure 38, where NA is the nozzle aperture and SD is the 

spray diameter. In theory, the three curves are supposed to unite since both the camera field of view 

and the spraying cone have a linear trajectory. We assume that the spray jet turbulence and air drag 

affect the spray dispersion. By using the resulting curves for the different distances, the nozzle 

aperture can be calculated after extracting the target diameter. 
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The spraying distance in most commercial vineyards is between 500 and 1500 mm. In order to 

correlate between the spraying distance and the nozzle aperture, an interpolation of the distance and 

the nozzle aperture is applied. 

7.5. Evaluating the ASD performance 

An experiment was conducted to evaluate the performance of the ASD while implementing the 

results of the previous experiment (Figure 38 and Table 20). Currently, the robotic sprayer is 

designed to perform the spraying task in step mode (Figure 39): the robot travels a single step along 

the vineyard row, stops, captures image from the field, sprays the targets, and moves another step 

forward. The experiment is based on the same work procedure. 

One of the secondary goals of this experiment was to provide insights regarding the overall work 

procedure of the complete spraying system which will include the robot equipped with an ASD. 

 

 
Figure 39 – Robotic sprayer work procedure. 
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7.5.1. Experimental setup 

In the experiment the ASD was attached to the robotic sprayer and was operated similarly to the 

robotic procedure. According to the robot work procedure (Figure 39), the robotic sprayer should 

move in step mode along the vineyard row. To avoid path tracking control problems the robotic 

sprayer was programmed to track a straight base line (red plastic strip 50 mm width) (Figure 41a). 

The robot is programmed to travel 1.6 m in each step. The ASD is mounted perpendicular to the 

robot’s travel direction and faces the target’s base (Figure 41a). The target’s base is a polyethylene 

net (50 mesh), 11 m long, stretched between two anchoring poles, and positioned parallel to the base 

line. The targets are attached to the target’s base and the center of the target is positioned 1.55 m 

high. In order to ensure a single target per image, the targets were positioned at intervals of 1.6 m, 

similar to the robot’s travel distance. 

The targets are blue polyethylene round circles with varying diameters (300, 250, 230, 210, 190, 

170, and 150 mm). To simplify the detection and classification of the targets, a red circle was 

attached to the center of the main target. The diameter of the red circle was one-third of the blue 

circle diameter. 

 

The target detection algorithm was based on color thresholding and was implemented using Matlab 

software equipped with the image processing toolbox. The algorithm works as follows: 

1. Capture input RGB image (800×600) (Figure 40a), 

2. Create three ratio-images, green/red, blue/red, blue/green (Figure 40b,c,d, respectively), 

3. Threshold the ratio-images. The threshold value was set as the average image pixel value 

multiplied by 1.5 (Figure 40e,f,g), 

4. Merge (logical AND) the resulting binary images (Figure 40h), 

5. Fill holes in the image using morphological operations (using Matlab command imfill) and 

apply the removal of small clusters (<500) that are considered as noise (using Matlab 

command bwareaopen) (Figure 40i). 
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The next steps were developed to distinguish between true and false targets and were applied to each 

of the detected targets: 

6. Isolate the bounding box of the target (Figure 40j), 

7. Convert the RGB image to HSV representation and isolate the hue and saturation channels, 

8. Apply thresholds on the hue channel (with a scale of 0~1, hue>0.9 & hue<0.1) to extract the 

red area (Figure 40k), 

9. Count the number of red pixels and compare to the number of blue pixels. In theory, the 

outcome ratio value should be 9; however, since the images are acquired in real world 

conditions, the ratio allowed is according the following conditional statement: 

117 



red

redblue
 . If the conditional statement is true then the detected target is defined as a 

true target, else, the detected target is noted as a false one (Figure 40l). 

Following the detection process the program extracts the coordinates of the detected target’s center 

and diameter in pixel units. These measures are used to control the sprayer.  
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(a)

(c)

(f)

(h)

(i)

(j)

(k)

(l)

(e)

(b)(d)

(g)

 
Figure 40 – Target detection procedure. The algorithm output image (I) shows the detected 

target (red), the surrounding circle (light blue). The number in the circle represents the 

diameter of the surrounding circle needed to cover the entire target. 
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a b 

Figure 41 – Experiment configuration.  

(a) Experiment scheme. (b) Field view of the experiment. 

 

Similar to the previous experiment, a red water-soluble food dye (Florma red 696) was used as 

pesticide replacement to simplify the detection of the spray deposition. Images were captured 

immediately after spray deposit. 

The sprayed area was evaluated both manually by measuring the sprayed area’s diameter 

immediately after each spray, and by image processing of the images captured immediately after 

each spray (Figure 42). The spray diameter was measured on the horizontal axis to avoid the effect 

of the dripping. The use of the blue polyethylene along with the plastic net enabled to re-use the 

same targets by washing them with pressurized water between experiments. This was important to 

create identical conditions between experiments for reliable comparisons.  
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Figure 42 – Image captured immediately after spraying. 

 

7.5.2. Experimental design 

The experiment included 12 repetitions of the robot traveling along the base line and spraying the 

seven targets attached to the target base. Each target was sprayed for 2 s. All experiments were 

conducted early morning. Measured wind speed was zero in all experiments (measured using 

Skywatch Xplorer 1). 

7.5.3. Experimental results 

In addition to the captured images from each spray, a visual inspection was performed immediately 

after the spray. The visual inspection revealed that each target was fully covered by the spray. The 

experimental results are summarized in Figure 43. The results show constant increasing of the 

sprayed diameter with the increment of the target size; however, the ratio between the sprayed 

diameter and the target size decreases. This ratio can be addressed as the false detection ratio, and 

according to Figure 43 this ratio decreases with the increase of the target size. 
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Figure 43 – Experimental results. Each column represents the average sprayed diameters of 

12 sprays (robot repetitions). The results standard deviations are shown on each column. 

Secondary axis (right) measures the ratio between the sprayed diameter and the target size. 
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8. INTEGRATIVE SITE-SPECIFIC SPRAYER EXPERIMENT 

8.1. Overview 

The following experiment was designed to demonstrate and evaluate the three main components of 

the collaboration framework working in sync: human marking methods, levels of human-robot 

collaboration, and the specific spraying device. For better experimental control, artificial targets 

were used and robot navigation along the vineyard row was replaced by following red tape fixed to 

the ground (see video of experiments in the thesis DVD \Integrative site specific sprayer 

experiment\). By using artificial targets (Figure 47) we were able to ensure 100% detection rate of 

the robot and control the FA rate. This was important so as to produce optimal and reproducible 

experimental conditions for the human-robot spraying evaluation. Evaluation in real world 

vineyards would introduce highly variable scenes with unpredictable detection and false alarm rates 

which would have disabled systematic evaluation. Furthermore, experiments could not have been 

repeated in identical conditions. 

8.2. Experimental setup 

As the human-robot collaboration framework suggests (Figure 16), the human was remotely located 

at Ben-Gurion University of the Negev located in Beer-Sheva, Israel. The robot was located 100 km 

from the human operator in Beit Dagan, Israel. The experiment consists of the robotic platform 

operating in a step mode as described in Figure 44. 

8.2.1. Robot side 

The robotic platform was programed to follow a red base line (red plastic strip 50 mm width) (Figure 

41a, Figure 45) that was fixed at a 1.6 m distance in parallel to the target’s base. During each step, 

the robot travels 1.6 m to completely change the current frame point of view (POV). The ASD was 

mounted to the robot, perpendicular to the robot’s travel direction, facing the target’s base (Figure 

45). The target’s base was a 50 mesh, polyethylene net, 18 m length, 1.5 m height, mounted 0.5 m 

from ground level (Figure 45). Fifty targets were randomly spread along the target’s base at least 20 

cm apart, imitating grape clusters (Figure 45). 

The targets were constructed from blue polyethylene plastic and were hand cut according to four 

shape patterns as shown in Figure 46. The size of each target was measured using machine vision 

algorithms (geometrical analysis was not possible due to the amorphous shape of the targets). The 

targets sizes were: 623.7, 648.85, 718.63, 538.88 [cm2] corresponding to the target number in Figure 
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46 (the program codes for analysis and calculation of the targets’ sizes are included in the thesis 

DVD \Target size calculation\). 

Robot task

Human task

Robot moves one 

step forward (one 

frame)

Spray detected 

targets using ASD

ASD capture frame

Which collaboration 
level?

Send frame to the 
remote operator

1 2 3 4

Mark target 
according to the 

collaboration level

Mark target 
according to the 

collaboration level

Mark target 
according to the 

collaboration level

Does the frame contain 
targets?

No Find targets using 
artificial target 

detection algorithm

Find targets using 
artificial target 

detection algorithm

Find targets using 
artificial target 

detection algorithm

Send frame to the 
remote operator

Send frame to the 
remote operator

 

Figure 44 – Robotic sprayer work procedure. 

In order to be as close as possible to commercial field conditions the experiment included a pre-

defined hit rate (in the shape of targets that the robot cannot detect) and pre-defined false alarm rate. 

The targets were divided into two groups, 38 targets that can be detected by the robotic sprayer (red 
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circle in the middle of the target, Figure 47a), and 12 targets that cannot be detected by the robotic 

sprayer (yellow circle in the middle of the target, Figure 47b). 

The developed target detection algorithm is similar to the target detection algorithm described in 

section 7.5.1 and in Figure 40 with minor adaptation to enable detection of the yellow color. The 

detection was based on Matlab, using the Matlab Image processing tool (included in the thesis DVD 

\Artificial targets detection\). The pre-defined FA was added using the Matlab Image processing 

tool. The mathematical morphology operation Dilation was used to expand the computer detected 

target (Figure 48) (included in the thesis DVD \Adding FA\). Since each of the captured images is 

unique in the sense of different number of targets, target orientation and position, the added FA is 

different for each image. The average FA added was 17.3% (with standard deviation of 5.5) of the 

entire image. 

 
Figure 45 – Robot following red strip and targets spread along plastic net. 
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Target 1 Target 2 

  
Target 3 Target 4 

Figure 46 – Target patterns. 

  
a b 

Figure 47 – Target groups. (a) Robot can detect. (b) Robot cannot detect. 

   
a b c 

Figure 48 – Adding FA.  

(a) Original image. (b) Computer detected. (c) Computer detected with added FA. 
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Using the ASD, the targets were sprayed with red water-soluble food dye (Florma red 696) (Figure 

51). Each target was sprayed for 1 s and immedietely after the spraying operation stopped, an image 

of the spray was captured and saved for post analysis (Figure 51 shows examples of captured targets 

after the spraying operation). 

8.2.2. Human operations 

The human task is to mark the target area using one of the marking methods described in section 6.3 

and according to the collaboration level being evaluated. The human was using a desk computer 

equipped with a 19” screen (Figure 49). Each user was trained before the experiment with 30 images 

according to the results described in section 6.6. 

According to Figure 44, after each step the robot captured an image using the ASD camera and the 

target detection process began according to the evaluated collaboration level: 

Collaboration level 1:  In this fully manual collaboration level, the captured image is sent directly to 

the remote operator without any detection help from the robot. The remote 

operator marks the targets and sends the marked frame back to the robot for 

spraying. 

Collaboration level 2:  The captured frame is analyzed using the target detection algorithm by the 

robot and sent to the remote operator as a recommendation about the 

“whereabouts” of the targets in the frame. The remote operator marks the 

target while assisting the robotic recommendation and sends the marked 

frame back to the robot for spraying. 

Collaboration level 3:  Similar to Collaboration level 2, with the difference that the robot marks the 

target and the remote operator supervises the detection (can add or remove 

targets). 

Collaboration level 4:  Fully autonomous operation, the robot detects the targets using the target 

detection algorithm and continues directly to the spraying operation without 

human assistance. 



82 

 

 

Figure 49 – Human marking targets from a remote computer located 100 km south of the 

robot in Beer-Sheva, Israel. 

8.2.3.  Spray evaluation 

The spray quality was evaluated using three methods: 

1. Comparison between the computer-detected targets (Figure 50b) (all the targets – both red 

and yellow points) and the marked area to spray (Figure 50c) – performance measures: Hit 

and FA rates, 

2. Comparison between the computer-detected targets (Figure 50b) and the area to be sprayed 

(Figure 50d) (green circles in Figure 50d) – performance measures: Hit and FA rate, 

3. Qualitative analysis of the sprayed target (Figure 51). Each sprayed target image was 

presented to an expert and was marked on a 1 to 5 scale (Figure 51) – performance measure: 

Hit rate. 
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a b 

  
c d 

Figure 50 – Evaluation documentation. (a) Captured image. (b) Computer detected. (c) 

Human and robot combined marking. (d) Green circles represent the area to be sprayed. 

   
5 – outstanding 4 – very satisfactory 3 – satisfactory 

  
2 – unsatisfactory 1 – poor 

Figure 51 – Target spraying evaluation scale 5 (outstanding)  1 (poor). 

8.3. Experimental design 

A group of 20 students, male and female, aged 25 to 40, participated in the experiment. The 

participants were divided into two groups, one for each marking method (Constant Circle Diameter 

and Free hand). Each participant practiced the three collaboration levels. For each collaboration 

level the robot traveled a single time along the target base. The image switching time was set to 12 

sec. 
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For the fourth collaboration level the robot performed 10 repetitions where each included the robot 

traveling along the target’s base with 1.6 [m] intervals, capturing the target’s frame, analyzing the 

captured frame using the artificial target detection algorithm (detailed in section 7.5.1 and Figure 

40) (included in the thesis DVD \Artificial targets detection\), and spraying toward each of the 

detected targets. 

8.4. Experimental results 

Detailed results are summarized in Appendix C and in the thesis DVD \Final experiment 

results\. Collaboration level 1 – fully manual. Collaboration level 2 – robot suggests, human approves 

Collaboration level 3 – robot marks, human supervises. Collaboration kevel 4 – fully autonomous 

Figure 52 and Collaboration level 1 – fully manual. Collaboration level 2 – robot suggests, human approves 

Collaboration level 3 – robot marks, human supervises. Collaboration kevel 4 – fully autonomous 

Figure 53 show the graphic representation of the experimental results, where the columns 

“marking hit” and “marking FA” represent the hit rate and FA using evaluation method #1 

(section 8.2.3), the columns “spray hit” and “spray FA” represent the hit rate and FA using 

evaluation method #2 (section 8.2.3), and the spray evaluation represents the hit rate using 

evaluation method #3 (section 8.2.3). Collaboration level 1 – fully manual. Collaboration level 2 – robot 

suggests, human approves 

Collaboration level 3 – robot marks, human supervises. Collaboration kevel 4 – fully autonomous 

Figure 52 and Collaboration level 1 – fully manual. Collaboration level 2 – robot suggests, human approves 

Collaboration level 3 – robot marks, human supervises. Collaboration kevel 4 – fully autonomous 

Figure 53 also present the fully autonomous collaboration level 4 results, which are identical in both 

figures. 

The overall performance of the free hand marking method was better than the circle 

by 2.8% on average. Hit rate was improved for all cases when using the free hand marking 

(except for “spray evaluation” in collaboration level 2, robot suggests, human approves). 

along with the improvement of the Hit rate, the FA measures increased by 4.5% on average, 

implying more wasted spraying material. In both marking methods (Collaboration level 1 – fully 

manual. Collaboration level 2 – robot suggests, human approves 

Collaboration level 3 – robot marks, human supervises. Collaboration kevel 4 – fully autonomous 

Figure 52, Collaboration level 1 – fully manual. Collaboration level 2 – robot suggests, human approves 

Collaboration level 3 – robot marks, human supervises. Collaboration kevel 4 – fully autonomous 

Figure 53) the Hit and FA rates increase with the collaboration level. The best Hit rate results 

(91.3%) were achieved when using the free hand marking method with collaboration level 3 (robot 

marks, human supervises). 

Another parameter that should be considered is the number of sprays (Table 21). The number of 

sprays also represents the number of detected targets sprayed where each target is sprayed once. 

Since the number of targets in each repetition was 50 we can see that some false spraying occurs in 

all the repetitions. One of the reasons that the number of sprays is higher while using the Free hand 
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marking method is also due to the marking procedure. For future commercial use, we recommend 

to filter out small objects in the marked image that due to their small size should not be considered 

as targets to be sprayed. 

Unlike the results reported in section 6.8.3 and presented in Figure 25 where the constant circle 

diameter shows better performances compared to the free hand marking method, in this experiment 

the free hand marking method showed a better hit rate for all of the collaboration levels. We assume 

that the target’s shape had some influence on the different marking methods. 

The artificial target detection algorithm was designed to detect 76% of the targets (38 targets 

red circle in the middle among 50 targets in total). Collaboration level 4 (fully autonomous) 

marking and spraying hit of ~69.5% (Collaboration level 1 – fully manual. Collaboration level 2 – robot 

suggests, human approves 

Collaboration level 3 – robot marks, human supervises. Collaboration kevel 4 – fully autonomous 

Figure 52, Collaboration level 1 – fully manual. Collaboration level 2 – robot suggests, human approves 

Collaboration level 3 – robot marks, human supervises. Collaboration kevel 4 – fully autonomous 

Figure 53). 

When there is high importance of low FA we recommend using the circles marking method with 

collaboration level 1, i.e. fully manual human target marking. 

Table 21 – Number of sprays. 

Marking method 
Number of sprays  

Collaboration  1 Collaboration  2 Collaboration  3 Collaboration  4 

Circles 57.5 55.0 67.0 
41.3 

Free hand 64.4 66.4 60.4 
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Collaboration level 1 – fully manual. Collaboration level 2 – robot suggests, human approves 

Collaboration level 3 – robot marks, human supervises. Collaboration kevel 4 – fully autonomous 

Figure 52 – Experimental results for the circles marking method. 
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Collaboration level 1 – fully manual. Collaboration level 2 – robot suggests, human approves 

Collaboration level 3 – robot marks, human supervises. Collaboration kevel 4 – fully autonomous 

Figure 53 – Experimental results for the free hand marking method. 
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9. SUMMARY, CONCLUSIONS, AND FUTURE WORK 

9.1. Summary and conclusions 

A full scale robot was developed for the task of pesticide spraying in vineyards. The robot 

development included most of the mechanical, hardware, and software needed for the robot to 

perform the spraying task including grape cluster detection algorithms, human-robot collaboration 

framework, target marking interface for the remote human, sensors registration algorithm dedicated 

for the agricultural domain, and a spraying device for accurate target spraying. All modules were 

evaluated with real field data and were integrated into an operational system which was evaluated 

in field conditions. 

A full scale robotic platform was designed and built to serve as a research tool. The hybrid power 

sources (two batteries 12v-100Ah combined with a 2500W power generator) enable the robotic 

platform to work (and experiment) in the field for long time periods without the need for an external 

power source. The robot kinematic design was proven to travel and maneuver well along commercial 

vineyard terrain. For future robotic platforms designed to work in the field and based on electrical 

motors, we recommend to install electrical motors with a planetary gear transmission instead of 

worm gear transmission like the one installed in this work. One of the characteristics of worm gear 

is a “self-lock”, when the input shaft (motor) is static, the output shaft behaves like a break (i.e., the 

input-output of the worm gear is not bidirectional). In some applications the self-lock can be used 

instead of braking, but when used in an experimental platform in the field (and even in commercial 

use), in case of a failure, the platform cannot be dragged out of the field and a complicated operation 

is then required to move the platform. 

Although the focus of this thesis was not on the robot’s control it must be noted that significant 

errors in tracking along the robot’s path can affect the precision of line-following and hence the 

spray cone and target coverage. In this work this has been avoided by ensuring accurate path tracking 

using the well detected red line. 

With some adjustments, the robotic platform can be used for other tasks in vineyards such as weed 

control, pruning, and harvesting. The robotic platform can also be used for tasks in other grove and 

open field crops and orchards. 

A spraying device capable of adjusting the spray diameter was designed, built, and attached to the 

robotic platform. Much like the robotic platform, the spraying device was designed and built as an 
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experimental tool with a strong commercial orientation. The suggested device and spraying method 

show the ability to perform the spraying task efficiently and economically. 

The overall spraying duration for a single artificial target was 11 s. This duration included general 

software commands, communication between main software and peripherals (Matlab, Arduino), 

machine vision, PTU repositioning, spraying nozzle aperture adjustment, spraying, and capture of 

image post-spraying. The duration also included some software pauses located in critical points of 

the software. These pauses were used to control the experiments and to verify that the ASD was 

functioning as designed. The accumulated time of the pauses was 8 s and spray time was 2 s. By 

eliminating the software pauses, the spraying time for a single target can be reduced to 3 s including 

the 2 s spraying time. Further time reduction can be achieved by optimizing the machine vision 

algorithms and the overall ASD managing software.  

The system was remotely operated from a distance of 100km. Time delay was not an issue in the 

experiments (0.05 sec to upload image from the robot to the remote user). As communication 

hardware is expected to increase speed in future systems, performance will probably not be affected 

even with increasing distances since we are dealing with single image transfer.  

From the mechanical design aspect, we would suggest a more powerful )i.e., higher allowed payload) 

PTU (e.g., FLIR D48E) than the one used (FLIR D46-17). 

Grape cluster and foliage detection algorithms were developed to provide the robotic sprayer with 

spraying positions. The algorithms were developed under a new concept that considered pesticide 

reduction as the main optimization parameter. Furthermore, the farmer could select the task 

objective (maximize hit rate or minimize false alarms). Three algorithms were developed, each 

based on a different machine vision concept. The algorithms were designed to work autonomously 

without human help or supervision. The algorithms’ detection results show approximately 91% hit 

rate while minimizing the FA rate to 30%. The optimal algorithm (based on maximum hit rate and 

minimum FA) was later used as the robot decision regarding the positions of the grape clusters while 

applying the human-robot collaboration framework. 

One of the options to improve the target detection results is by using multiple sensors and applying 

a sensor fusion algorithm. When using several imagery sensors, each mounted at a different position 

(location and orientation), it is essential to perform image registration. A distance-dependent image 

registration method was developed specifically for the agricultural domain. Our approach was based 

on pre-calibrating a distance-dependent TM between the sensors, and representing it in a compact 

way by regressing the distance-dependent coefficients as distance-dependent functions. In our case 
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these dependencies ended up linear, but more elaborate DDTM may be obtained in more 

complicated situations. While the presented approach was developed for an agricultural environment 

application, it can be applied to other applications that require registration of objects at varying 

distances. The method can be used to register images from all imaging sensors providing the sensors 

can detect common control points. 

Another option to improve the target detection results is by introducing a human operator in the 

target detection loop. A human-robot collaboration framework was developed specifically for the 

remote target detection task. The framework included the development of four levels of human-

robot collaboration, human target marking interface, and three methods for the human to mark 

targets remotely. The results from the learning experiment confirmed assumptions made prior to the 

experiment. Hit rate is maximized and FA is minimized when the human has more time to mark the 

targets in the image. Additionally, it takes time for the user to learn the system and training is 

necessary. In our proposed system, learning occurred after presenting 30 images to the user. 

The highest hit rate was measured while using the fully manual collaboration method with no robot 

assistance (collaboration level 1). The users achieved an average of 94.3% hit rate with 15.1 false 

alarms. However, this was achieved only for a long switching time of 15 sec (corresponding to a 

robot velocity of 1 m/s). This collaboration level also yielded high FA. When using the faster 

switching time, the best collaboration level is level 3 (robot marks, human supervises). The lowest 

FA was measured while using collaboration level 2 (robot suggests, human approves) with the free 

hand marking method for both image switching times. 

The best marking method according to the ease of use questionnaire was the constant circle diameter. 

An integrative experiment was conducted to demonstrate and evaluate the human marking methods, 

levels of human-robot collaboration, and the specific spraying device, working in sync. During the 

experiment, the robot traveled a total distance of 1044 [m] (16 users × 3 repetitions per user × 18 

[m] for each repetition + 10 repetitions × 18 [m] for each repetition), captured 1108 frames and 

sprayed 3378 targets. The experiment shows that despite the high complexity of such a robotic 

system and framework, collaboration of a human in the spraying process is feasible. The 

collaboration between the remote robot and the human showed that the hit and the false alarm rate 

was improved (hit rate increased by 13.4% and false alarm rate decreased by 19.5%) compared to a 

fully autonomous operation (collaboration level 4). 

The results obtained can be used to develop a human-robot operational system by using the best 

values obtained for the selected criterion (e.g., for highest hit rate use constant circle diameter, image 
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switching time of 15 [sec], and fully manual collaboration level; for lowest false alarm rate use free 

hand, image switching time of 15 [sec], and collaboration level 2). 

Human-robot collaboration for real world spraying implies that humans will be asked to mark 

thousands of images (km of vine rows). This is a repetitive task that will most likely cause fatigue 

and boredom to the remote human collaborator resulting in decrease hit rate and decreased FA. The 

maximum number of images presented to a user in this study were 150. Human performance 

limitations over time should be investigated in future work as part of the human-robot collaborative 

framework as detailed below.   

9.2. Future work 

Future work can be applied to most of the presented topics. 

9.2.1. Robotic platform 

The current robotic platform was based on electric motors. The choice of electric motors derived 

from the ease of control and mechanical design simplicity that was mandatory for such an 

experimental robotic platform. However, we believe that for such a robot to be accepted by the 

agriculture industry, the robot should be based on hydraulics instead of an electrical power source. 

The hydraulic power will provide the robot with the robustness and high wheel torque so needed in 

agricultural vehicles especially in tough traction grounds. 

Another aspect of the robotic platform that should take into consideration for future work is 

continuous advance of the robotic platform along the row instead of the step mode. 

9.2.2. Navigation algorithm and path tracking 

A very basic navigation algorithm was designed and implemented allowing the robot to travel along 

the vineyard row (included in the thesis DVD \vineyard navigation\). The navigation did not include 

the ability to turn at the end of the row and this was done manually. A robust navigation system 

should be developed specifically for the vineyard environment. It should probably be based on a 

multi-sensory system (color camera, laser scanner, GPS, etc.). Another feature missing in the 

navigation is the end of row turning that is mandatory for such an autonomous system. 

Future work should also investigate the effect of path tracking errors on the spray cones and target 

coverage. 

9.2.3. Grape detection 
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We assumed that a minor percentage of the grape clusters in the images were totally occluded by 

leaves, branches, and other grape clusters. Future work may treat this subject by adding a wind 

blower towards the foliage in order to expose the occluded clusters. However, it should be noticed 

that such a wind blower may diverse the accurate spraying. 

Alternatively, a different sensor can be employed to overcome the occluding elements (e.g., thermal 

camera that is based on based on the temperature difference between the fruit and background. Since 

the fruit absorbs more heat and radiates more heat in comparison with leaves and other parts of the 

plant canopy, which allows for distinction between those plant materials with thermal imaging 

(Gongal, Amatya, Karkee, Zhang and Lewis 2015). The human-robot collaboration framework 

would not be affected since the sensory output would still be presented as images to the user. 

Therefore, it could improve detection results due to better performance for detecting occluded fruit 

(Gongal, Amatya, Karkee, Zhang and Lewis 2015). But, it must be noted that employing a thermal 

sensor limits the operation to limited time slots along the day and is highly dependent on fruit size 

(Gongal, Amatya, Karkee, Zhang and Lewis 2015). 

9.2.4. Spraying device 

While we were able to evaluate the possible pesticide reduction in an experiment that included 

artificial targets, extensive field experimentation is needed to evaluate the pesticide reduction along 

with the evaluation of the pesticide application effectiveness. The field experiments are crucial to 

introduce the spraying device to the agricultural industry. 

9.2.5. Image registration 

A possible following work can apply the registration method using two-dimensional distance 

sensors (e.g., Kinect sensor, Time of Flight camera, 3D laser scanner) instead of the one-dimensional 

distance sensor used in this work. The use of a two-dimensional distance sensor is expected to yield 

higher accuracy. 

9.2.6. Human-robot collaboration 

Future work in the field of human-robot collaboration can focus on several human interaction topics 

such as: 

1. Investigate the influence of expertise during the robot operation, 

2. Investigate the user’s perception of the field environment during remote supervision, 

3. Compare different marking aids such as: computer touch screen, tablet, smart-phone, 
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4. Evaluating the human detection skills without time limitations. 

Additionally, studies on human performance and related issues such as fatigue, monitoring, 

workload and attention should be investigated. This is especially important if the human operator 

will perform over extended periods of time which might limit performance.  
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Appendices 

Appendix A. Kinematic model of the robotic platform. 
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Appendix B.   Workload questionnaire 

In order to avoid confusion among the experiments’ participants, the workload questionnaire was 

presented in the Hebrew language. 

 שאלון -  שיטות סימון

 

במידה  -5במידה מועטה,  -1לפניך מספר שאלות. עבור כל שאלה הקף את התשובה הכי מתאימה כאשר 

 רבה מאוד. ענה על השאלות במקום המתאים.

 

-עיגול בקוטר קבועעבור השיטה שבה מסמנים את המטרות עם   

 באיזו מידה השיטה היתה נוחה  וקלה לשימוש? .1

מידה רבה מאוד 5               4               3               2               1מידה מועטה   

 מה היה נוח/ לא נוח? ________________________________________

_______________________________________________________ 

__מה היית משנה וכיצד? ______________________________________  

________________________________________________________ 

 באיזו מידה את/ה חושב/ת שהצלחת לזהות ולסמן את המטרות? .2

מידה רבה מאוד 5               4               3               2               1מידה מועטה    

-)כמו בצייר(היקף המטרות ביד חופשית עבור השיטה שבה מסמנים את   

 באיזו מידה השיטה היתה נוחה  וקלה לשימוש? .3

מידה רבה מאוד 5               4               3               2               1מידה מועטה   

 מה היה נוח/ לא נוח? ________________________________________

 

____________מה היית משנה וכיצד? ____________________________  

________________________________________________________ 

 

 באיזו מידה את/ה חושב/ת שהצלחת לזהות ולסמן את המטרות? .4

מידה רבה מאוד 5               4               3               2               1מידה מועטה    

 

-באמצעות אליפסה בקוטר משתנהעבור השיטה שבה מסמנים את המטרות     

 באיזו מידה השיטה היתה נוחה  וקלה לשימוש? .5
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מידה רבה מאוד 5               4               3               2               1מידה מועטה   

 מה היה נוח/ לא נוח? ________________________________________

_______________________________________________________  

 מה היית משנה וכיצד? ________________________________________

________________________________________________________ 

 באיזו מידה את/ה חושב/ת שהצלחת לזהות ולסמן את המטרות? .6

מידה רבה מאוד 5               4               3               2               1מידה מועטה    

 

 באיזו מידה מהירות החלפת התמונות היתה מתאימה? .7

מידה רבה מאוד 5               4               3               2               1מידה מועטה        

מן היתה מסייעת לך? מדוע?_____________________האם לדעתך תוספת ז       

     _______________________________________________________ 
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Appendix C. Integrative site-specific sprayer experiment – detailed results. 
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Appendix D. Table of contents of thesis DVD 

Each bullet represent a library in the thesis DVD: 

 Adding FA 

 Artificial targets detection 

 Explanation slideshow 

 Foliage and Grapes Detection Algorithms 

 Human-Robot Collaboration 

 Image registration files 

 Integrative site specific sprayer experiment 

 Papers 

 Robot control software 

 Robotic platform CAD files 

 Spraying Simulations 

 Target size calculation 

 vineyard navigation 
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 תקציר

 רקע ומטרות המחקר

עבודה זו מתמקדת בפיתוח תשתית וכלים חדשניים עבור יישום שיתוף פעולה של משתמש אנושי מרוחק ומערכת 

 רובוטית לצורך ביצוע משימת ריסוס חומרי הדברה בחקלאות בכלל ובכרמי ענבים בפרט. 

נגרמים  הפסדי יבול אשר 35%ל  30%בחומרי הדברה הינו חלק בלתי נפרד מהחקלאות העולמית. בין השימוש 

כתוצאה ממחלות ומזיקים יכולים להמנע על ידי השימוש בחומרי הדברה. למרות שחומרי הדברה הכרחיים 

לחקלאות המודרנית, הם רעילים ומסוכנים לאדם ולסביבה. שיטות מודרניות ליישום חומרי הדברה בכרמי ענבים 

מרסס גב מוטורי וריסוס ממוכן בו אדם  כוללות אדם שהולך לאורך הגידול ומרסס מטרות באופן נקודתי על ידי

נוהג בטרקטור מרסס אשר מיישם את הריסוס באופן כוללני ללא יכולת התמקדות במטרות ספציפיות. למרות 

השימוש באמצעי מיגון )מסכת מיגון אישית ומערכת טיהור אוויר לטרקטור( האדם עדיין חשוף לחומרי הדברה 

 מסוכנים אשר מסוכנים לבריאות האדם.

טכנולוגיות רובוטיות עשויות לספק אמצעי להפחתת תלות החקלאות בחומרי הדברה, לשפר קיימות ולהפחית 

את השפעת חומרי ההדברה על הסביבה. מרסס רובוטי יכול להפחית את כמות השימוש בחומרי הדברה ולצמצם 

 את חשיפת האדם לחומרי הדברה במהלך פעולת ההדברה.

חולקת לשלוש תתי משימות: ניווט הרובוט לאורך הגידול, זיהוי המטרה וריסוס משימת הריסוס של הרובוט מ

 המטרה. עבודה זו התמקדה בשתי תתי המשימות האחרונות, זיהוי המטרה וריסוסה.

רובוט לצורך ביצוע משימת ריסוס חומרי הדברה בכרמי -מטרת עבודה זו הינה לפתח מערכת שיתוף פעולה אדם

פציפיות הנן לפתח מערכת רובוטית גלגלית המתאימה לריסוס כרמים, פיתוח מערכת ענבים. מטרות המחקר הס

לזיהוי אשכולות ענבים ועלווה, פיתוח תשתית שבה האדם המרוחק מהמקום והרובוט בשדה יבצעו במשותף את 

וי פעולת הריסוס הנקודתי ולפתח אמצעי ריסוס מדוייק. שיתוף פעולה בין משתמש אנושי לרובוט לצורך זיה

אשכולות הענבים עשוי לתרום למערכת  זיהוי מדוייקת, פשוטה, גמישה ועמידה להפרעות תוך שימוש ביתרונותיו 

של האדם והרובוט. מערכת מסוג זה תהיה מסוגלת להתמודד עם משימות זיהוי מורכבות ומשתנות. יתרון נוסף 

אדם מאיזור הריסוס, ולהפחית את של מערכת שיתוף פעולה בין האדם לרובוט הינה היכולת להרחיק את ה

 הפגיעה בסביבה תודות לחיסכון כמותי של חומרי הדברה זאת על ידי ריסוס נקודתי מדוייק של המטרה.

 שיטות

מערכת רובוטית מצויידת במתקן ריסוס בעל קוטר משתנה ובעלת היכולת לתקשר עם משתמש מרוחק פותחה 

פותחו ובנוסף פותחו שיטות לסימון המטרות על ידי המשתמש  ונבנתה. שיטות שיטוף פעולה בין האדם לרובוט

 האנושי. 

מערכת רובטית חקלאית פותחה ככלי מחקר לצורך איפשור ניסויי שדה ובחינה של תנאים חיצוניים המשקפים 

את התנאי בהם רובוט ריסוס עתידי עשוי להיתקל ולהתמודד. מרכב הרובוט בנוי משתי פלטפורמות זהות אשר 

ק"ג. כל פלטפורמה מכילה שני  300בינהן בעזרת מחבר קארדן. כושר העמסה של כל פלטפורמה הינו  מחברות

גלגלים, אחד בכל צד, ומנוע חשמלי מחובר ישירות לכל גלגל. המערכת הרובוטית מצויידת בכל אמצעי החומרה 
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ם )מצלמות דיגיטליות, חיישני והתוכנה אשר דרושים להפעלתה, כגון, מחשב, מסך, סוללות, גנרטור וחיישנים שוני

 מרחק(. מודל קינמטי פותח באופן ייעודי עבור הרובוט לצורך ניווט המערכת לאורך נתיב מוגדר. 

אלגוריתמי זיהוי אשכולות ענבים ועלווה פותחו ונבחנו. האלגוריתמים פותחו תחת תפיסה חדשנית אשר מתיחסת 

וע אופטימיזציה להפחתה. שלושה אלגוריתמי זיהוי לאחוז ההפחתה בחומרי הדברה כפרמטר ראשוני לביצ

אשכולות פותחו ובנוסף פותח אלגוריתם בודד לזיהוי עלוות הכרם. האלגוריתמים נבחנו בעזרת סט תמונות 

שצולמו בכרם מסחרי. אלגוריתם זיהוי העלווה בוסס על ייחודיות הצבע הירוק שמאפיין את העלווה. אלגוריתמי 

( בין אשכול ענבים לבין עלוות הכרם, edge detectionהתבססו על: הבדל פילוג גבולות ) זיהוי אשכולות הענבים

עץ החלטות תוך שימוש במספר רב של פרמטרים והשוואת תבניות גבול בין אשכול ענבים לבין עלווה. 

 האלגוריתמים פותחו תוך ניסיון למקסם את אחוז הזיהוי ולמזער את אחוז הסימון יתר.

פעולה בין משתמש אנושי לבין מערכת רובוטית מרוחקת פותחו לצורך הערכת ההשפעה של שילוב  שיטות שיתוף

משתמש אנושי במערכת לזיהוי אשכולות הענבים על אחוזי הזיהוי ועל ההשפעה הכללית על המערכת. השיטות 

רובוטית )עיגול שפותחו כללו שלוש שיטות לסימון מטרות על ידי משתמש אנושי אשר ממוקם מרוחק מהמערכת ה

בקוטר קבוע, אליפסה בקוטר משתנה ויד חופשית(. בנוסף, פותחו ארבע שיטות לאופן שיתוף הפעולה בין האדם 

אדם מפקח ורובוט אוטונומי -אדם מחליט, רובוט מחליט-המרוחק לבין הרובוט )ידני לחלוטין, רובוט ממליץ

עולה בין האדם לרובוט ניבחנו בעזרת נסיינים תוך לחלוטין(. כל אחת משיטות סימון המטרות ושיטות שיוף הפ

שימוש בתמונות שצולמו בכרמים מסחריים. ממשק אדם מחשב פותח ויושם לצורך בחינת שיטות סימון המטרות 

ואפשרויות שיתוף הפעולה בין האדם לרובוט. הממשק שימש לבחינת השיטות במעבדה וכן לבחינת השיטות 

 במהלך ניסוי בתנאי חוץ.

ך יישום חומרי ההדברה באופן מדוייק כלפי המטרה )אשכול הענבים( פותח מתקן לריסוס מטרה בודדת. לצור

כיוון שהמטרות )אשכולות הענבים( הינן מטרות בעלות צורה לא קבועה וגודל משתנה, פיית ריסוס בעלת יכולת 

וי מלא של המטרה תוך שינוי מפתח נחוצה לצורך התאמת מפתח הריסוס למטרה הספציפית וזאת לצורך כיס

צימצום ריסוס יתר. התפקיד הבסיסי של המתקן הינו שינוי קוטר הריסוס לפי קוטר המטרה. פיית ריסוס 

( אשר מורכבת משני חלקים, בסיס הפייה וראש הפייה, משנה את קוטר הריסוס על ידי AYHSS 16מסחרית )

יסוס ואילו ראש הפייה מחובר דרך גלגל שיניים סיבוב ראש הפייה ביחס לבסיסה. בסיס הפייה מעוגן למתקן הר

למנוע צעד אשר אחראי על מיקומו הרדיאלי. בנוסף, מתקן הריסוס כולל מצלמת דיגיטאלית צבעונית )לצורך 

צילום המטרות(, חיישן מרחק ושני צייני לייזר בעלי מפתח מניפה )צייני הלייזר מייצרים קו על המטרה וכאשר 

( שתפקידה PTUעל המטרה(. המתקן מקובע ליחידת צידוד הגבהה ) +אנכי מתקבל צלב אחד מוצב אופי והשני 

לכוון את פיית הריסוס כלפי המטרה. לצורך הערכת ביצועי מתקן הריסוס בוצעו מספר ניסויים שכללו ניסוי 

הזווית לבחינת ספיקת הריסוס כפונקציה למפתח פיית הריסוס, ניסוי להערכת קוטר הריסוס כפונקציה של 

 הרדיאלית של ראש הפייה וניסוי אשר בוחן את תיפקוד המתקן בריסוס מטרות בעלות קוטר משתנה.
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 ניסויים

מספר ניסויים בוצעו לצורך הערכת: אלגוריתמי זיהוי אשכולות הענבים והעלווה, שיטות סימון המטרות על יד 

סוס המדוייק וניסוי המערכ הכוללת. מטרתם משתמש אנושי, רמות שיתוף הפעולה בין האדם לרובוט, מתקן הרי

העיקרית של הניסויים היה להעריך אלמנטים שונים במערכת הרובוטית בתנאים הדומים ככל האפשר לתנאי 

השדה האמיתי. לצורך כך, צולמו סט תמונות משני כרמים מסחריים אשר שימשו לצורך הערכת אלמנטים שונים 

 של התשתית הרובוטית. 

כולל של המערכת הרובוטית בוצע לצורך הערכה והדגמה של שלוש מרכיבים עיקריים של המערכת  ניסוי ריסוס

-הרובוטית עובדים במשולב ובתיאום: סימון המטרות על ידי משתמש אנושי מרוחק, רמות שיתוף פעולה אדם

וס מלאכותיות רובוט ומתקן ריסוס מדוייק. לצורך שליטה טובה טובה יותר בניסוי נעשה שימוש במטרות ריס

)לעומת אשכולות ענבים אמיתיים( ובמקום לנווט את הרובוט לאורך כרם ענבים, הרובוט עקב אחרי סרט אדום 

 ×חזרות לכל משתמש  3 ×משתמשים  16מ' ) 1044שהוצמד לקרקע. במהלך הניסוי הרובוט עבר דרך כוללת של 

מטרות.  3378תמונות שהכילו ורוססו  1108צולמו  חזרה(, לכל' מ 18 ×חזרות אוטונומיות  10 +מ' לכל חזרה  18

הניסוי הראה שלמרות המורכבות הגבוהה של המערכת הרובוטית והתשתית, שיתוף האדם בתהליך הינו אפשרי 

ואף מעלה את ביצועי סימון המטרות וריסוסן. שיתוף הפעולה בין האדם לרובוט הראה כי אחוזי הפגיעה במטרה 

( לעומת ריסוס 19.5%ואחוזי ריסוס היתר פחתו ב  13.4%ו )אחוזי הפגיעה עלו ב ואחוזי ריסוס היתר שופר

 אוטונומי )ללא התערבות אדם(.

 תוצאות

 אלגוריתמים לזיהוי אשכולות ענבים ועלווה

עיבוד נתוני הביצועים של שלוש האלגוריתמים לזיהוי אשכולות ענבים הראו כי אחוז הזיהוי המקסימאלי יכול 

. זמן ריצה של המינימאלי והמקסימאלי של 30%תוך הפחתת השימוש בחומרי הדברה ב  91%להגיע ל 

שניות בהתאמה. תוצאות אלו מתייחסות ליכולת המחשב לזהות את אשכולות  1.43ו  0.65האלגוריתמים היה 

י הענבים ללא התערבות אדם בתהליך הזיהוי. לצורך שיפור יכולת זיהוי המטרות שולב האדם בתהליך הזיהו

 ובתשתית המערכת.

 רובוט-שיתוף פעולה אדם

תהליך הלמידה לשימוש בממשק לסימון מטרות הוערך תחת ההנחה שהמשתמש מנוסה בממשק כאשר אחוזי 

. בניסוי להערכת משך זמן הלימוד )כמות תמונות הנדרשת( התגלה 90%זיהוי וסימון המטרות עוברות את רף ה 

(. תהליך הלמידה בשימוש 90%המשתמש האנושי לרף אחוזי הזיהוי הנדרשים )תמונות יביא את  30כי סימון של 

 בממשקי סימון המטרות הועבר לכל מתנסה חדש בניסויים שמפורטים בהמשך.

ניסויי שיטות הסימון הראו כי אחוז הזיהוי הגבוה וזיהוי יתר נמוך מתקבל כאשר למשתמשים יש יותר זמן לסמן 

רובוט הראשונה )רמת שיתוף פעולה בה -. בשימוש ברמת שיתוף הפעולה אדםאת המטרות )כפי שנצפה מראש(

 94.3%לאדם יש שליטה מוחלטת בסימון המטרות ללא התערבות מחשב(, אחוז הזיהוי הגבוה ביותר שנצפה הינו 

אחוז שניות לסמן כל תמונה.  15( תוך שימוש בשיטת הסימון עיגול בקוטר קבוע עם 15.1%)עם אחוז זיהוי יתר של 

שניות לסמן כל תמונה.  15תוך שימוש בשיטת סימון יד חופשית ו 10.1%זיהוי היתר הנמוך ביותר שנצפה הינו 
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כיוון ששיטת הסימון אליפסה לא הראתה כל הצטיינות על שיטות הסימון האחרות, שיטה זו לא נוסתה בניסויי 

 רובוט.-המשך של רמות שיתוף פעולה אדם

, התקבלו תוך שימוש 92.66%רובוט הראו כי אחוזי הזיהוי הגבוהים ביותר, -עולה אדםתוצאות ניסויי שיתוף הפ

ברמת שיתוף פעולה השלישית )רמה בה הרובוט מסמן מטרות והאדם מפקח ויכול להוסיף ולמחוק מטרות(, תוך 

כים ביותר, שניות. אחוזי סימון היתר הנמו 15שימוש בשיטת הסימון עיגול בקוטר קבוע וזמן סימון מטרה של 

, התקבלו תוך שימוש ברמת שיתוף פעולה השניה )רמה בה הרובוט ממליץ על מיקומי המטרות והאדם 2.71%

 שניות.  15מחליט מה לסמן(, תוך שימוש בשיטת סימון יד חופשית וזמן חילוף תמונה של 

 מתקן לריסוס מטרות מדוייק

]באר[. הניסוי הראה קשר לינארי המתאר את  20 ניסוי ספיקת חומר הריסוס בוצע תחת לחץ משאבה קבוע של

𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒הקשר בין הספיקה לבין מפתח פיית הריסוס:  = 6 ∙ 10−6 ∙ 𝑛𝑜𝑧𝑧𝑙𝑒 𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒 + 0.0519 [
𝐿

𝑠𝑒𝑐
]. 

ניסוי לבחינת הריסוס המדוייק תוך שינוי קוטר המטרות הראה כי בבחינה ויזואלית של המטרות שרוססו, כל 

כוסו באופן מוחלט בחומר ההדברה. התוצאות הראו כי מפתח הריסוס גדל עם הגדלת קוטר המטרה אך המטרות 

 היחס בין קוטר הריסוס וקוטר המטרה ירד. יחס זה מייצג את יחס ריסוס היתר שיורד ככל שהמטרה גדלה.

 ניסוי ריסוס משולב

ו טובות מאשר שיטת הסימון עיגול עם קוטר באופן כללי, תוצאות הניסוי תוך שימוש בשיטת סימון יד חופשית הי

קבוע. אחוז הזיהוי היה טוב יותר בכל במקרים כאשר נעשה שימוש בשיטת סימון יד חופשית )למעט בהערכת 

הריסוס ברמת שיתוף הפעולה השנייה(. יחד עם השיפור באחוזי הזיהוי נצפו עלייה באחוזי ריסוס היתר, כלומר, 

מרי הדברה. בשתי שיטות הסימון שנבחנו, עיגול עם קוטר קבוע ויד חופשית, אחוזי נעשה יותר שימוש מיותר בחו

הזיהוי עלו ואחוזי סימון היתר פחתו עם העלאת רמת שיתוף הפעולה בין האדם לרובוט. תוצאות אחוזי הזיהוי 

 , התקבלו תוך שימוש בשיטת סימון יד חופשית ורמת שיתוף פעולה השלישית.93.6%הטובות ביותר, 
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 סיכום

מערכת רובוטית לריסוס משולבת אדם תוכננה, נבנתה ונוסתה. המערכת הרובוטית מציגה יכולת לבצע את 

המשימות הנחוצות לרובוט ריסוס בכרם מסחרי. עבודה זו מציגה את היכולת של מערכת רובוטית לריסוס לשלב 

 פעולה.  משתמש אנושי מרוחק בפעולת סימון המטרות תחת שיטות שונות של שיתוף

רובוט במשימה -התרומה העיקרית של עבודה זו הינה הצגת פונקצונליות מלאה של התשתית לשיתוף פעולה אדם

לריסוס אשכולות ענבים בכרם. במהלך העבודה נבחנו רמות שיתוף פעולה שונות וכן שיטות שונות בהם אמור 

ו הינה הצגת מתקן לריסוס מדוייק המשתמש האנושי לסמן את המטרות לריסוס. תרומה נוספת של עבודה ז

וסלקטיבי אשר מאפשר ליישם ריסוס מדוייק כלפי המטרות שסומנו. התוצאות והנתונים שהופקו מעבודה זו 

רובוט יישומיות תוך יישום התוצאות האפטימליות )לדוגמא, עבור -יכולים לשמש לצורך פיתוח מערכות אדם

שניות ורמת שיתוף פעולה  15ול בקוטר קבוע, זמן חילוף תמונה של אחוזי זיהוי גבוהים שימוש בשיטת סימון עיג

שניות ורמת שיתוף פעולה  15ראשונה, עבור אחוזי סימון יתר נמוכים, שימוש ביד חופשית, זמן חילוף תמונה של 

 שניה(. 

גרום לנזק אנו מקווים כי כל או חלק מעבודה זו יתרום לפיתוח מערכת רובוטית מסחרית משולבת אדם. דבר זה י

 סביבתי מופחת ויתרום לבריאות האדם על מניעת חשיפה לחומרי הדברה רעילים.

רובוט, עיבוד תמונה, ראייה ממוחשבת, זיהוי -: הנדסה חקלאית, מיכון חקלאי, שיתוף פעולה אדםמילות מפתח

 אובייקטים, חומרי הדברה, חקלאות מדייקת, רובוט לריסוס, ריסוס
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 הגשת עבודת הדוקטור לשיפוט הצהרת תלמיד המחקר עם

 

 

 אני החתום מטה מצהיר/ה בזאת: )אנא סמן(:

 

_X.חיברתי את חיבורי בעצמי, להוציא עזרת ההדרכה שקיבלתי מאת מנחה/ים  _ 

 

_X מתקופת היותי תלמיד/ת __  החומר המדעי הנכלל בעבודה זו הינו פרי מחקרי

 .מחקר

 

_X שיתוף עם אחרים, למעט עזרה טכנית__  בעבודה נכלל חומר מחקרי שהוא פרי 

הנהוגה בעבודה ניסיונית. לפי כך מצורפת בזאת הצהרה על תרומתי ותרומת 

 שותפי למחקר, שאושרה על ידם ומוגשת בהסכמתם.

 

 

 

 שם התלמיד/ה  רון ברנשטיין     20.6.2016תאריך 

 

   חתימה 
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 פרופ' יעל אידן העבודה נעשתה בהדרכת

 

 במחלקה להנדסת תעשייה וניהול 

 

 בפקולטה למדעי ההנדסה
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 מערכת רובוטית משולבת אדם לריסוס סלקטיבי בכרמים
 
 
 
 

 מחקר לשם מילוי חלקי של הדרישות לקבלת תואר "דוקטור לפילוסופיה"
 
 
 
 
 
 

 מאת
 
 
 

 ברנשטייןרון 
 
 
 
 
 

 הוגש לסינאט אוניברסיטת בן גוריון בנגב
 
 
 
 

 
 
 

 ____________________ המנחה אישור

 
 אישור דיקן בית הספר ללימודי מחקר מתקדמים ע"ש קרייטמן ____________________

 
 
 

 2016ליוני  20י"ד בסיוון תשע"ו                                                                                                          

 
שבעבאר   
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 מחקר לשם מילוי חלקי של הדרישות לקבלת תואר "דוקטור לפילוסופיה"
 
 
 
 
 
 
   

 
 
 

 ברנשטייןרון 
 
 
 
 
 
 

 הוגש לסינאט אוניברסיטת בן גוריון בנגב
 
 
 
 
 
 
 

 2016ליוני  20י"ד בסיוון תשע"ו                                                                                                         

 
 באר שבע

 
 

 


