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ABSTRACT

Background and Objectives

This thesis focuses on developing a novel framework and tools for the collaboration of a remote
human operator and a robotic platform in performing the task of pesticide spraying in vineyards.
The use of pesticides is an integral part of worldwide agriculture. Between 30% and 35% of crop
losses can be prevented when harmful insects and diseases are eliminated by the use of pesticides.
Although pesticides are necessary in modern agriculture, they are poisonous and dangerous for
humans and for the environment. Current methods for pesticide application include a human
operator travelling along the crop rows and selectively spraying the targets manually using a
backpack sprayer and mechanized non-selective spraying in which a human drives a tractor with
a sprayer connected to a trailer behind the tractor that sprays the crops continuously. Despite the
use of pesticide protection equipment (personal head mask and central filtration system for the
manual and mechanized spraying methods, respectively) the human is still exposed to hazardous
pesticides that can cause negative health issues.

Robotic technology may provide a means of reducing agriculture’s current dependence on
herbicides, improving its sustainability and reducing its environmental impact. A target-specific
robotic sprayer can reduce the quantity of pesticides applied in modern agriculture and potentially
remove or minimize the human presence during the spraying pesticide process.

The spraying task of a spraying robot can be divided into three sub-tasks: navigation along the
crop row, target detection, and the spraying of the target. The focus of this thesis was on the tasks
of target detection and spraying.

This work aimed to develop a human-robot collaborative agriculture robotic sprayer. The specific
research objectives are to develop a wheeled robotic platform suitable for the spraying of
vineyards, machine vision algorithms for foliage and grape detection, a framework in which a
human and robot collaborate in performing the spraying task, and to develop a smart spraying
device for pesticide application. Collaboration between a human and a robot for the task of
detection can create a simplified, flexible, and robust system that will use the advantages of both
human and robot and can react and cope with dynamic and complex conditions. Another specific
added value of such human-robot collaboration is to remove the human operator from the
hazardous environment, and reduce the environment pollution by reducing the quantity of pesticide

being used along with accurate targeting.



Methods

A fully operative robotic sprayer equipped with an adjustable spraying device and the ability to
communicate with a remote user was designed and built. Human-robot collaboration methods were
developed as well as methods for target marking by a remote human operator.

An agricultural robotic system was built to serve as a research tool to enable field experiments and
reflect the real-world conditions that a future agricultural robot would have to cope with. The
chassis of the robot is assembled from two identical platforms that are interconnected using a
universal joint. The design payload of each platform is 300 kg. Each platform contains two wheels
(one on each side) with a directly connected electric motor and optical encoders for control. The
robot is equipped with all the hardware and software needed for operation, which included an
industrial computer, screen, car batteries, power generator, and sensors (digital cameras, distance
sensors). A kinematic model was developed for accurate navigation along a determined path (the
path can be set manually using a xBox controller or as an output of a navigation algorithm).
Grape and foliage detection algorithms were developed and evaluated. The algorithms were
developed under a new concept that considered pesticide reduction as the main optimization
parameter. Three algorithms were developed for the grape clusters detection and a single algorithm
was developed for the foliage detection. Algorithms were evaluated using a database of images
acquired in commercial vineyards. The foliage detection algorithm was mainly based on the unique
foliage green color. The grape clusters detection algorithms were based on: difference in edge
distribution between the grape clusters and the foliage, decision tree algorithm using multiple
grape and foliage properties, and pixel comparison between edge representations of the captured
image with a predesigned edge mask that represents grapes. Both algorithms were developed to
maximize hit rates and minimize pesticide application.

Human-robot collaboration methods were developed to evaluate the influence of such
collaboration on the performance rate of the hit, false alarm (FA), and overall spraying task. The
developed methods included three target-marking methods (circle with constant diameter, ellipse
with varying diameter, and free hand) and four human-robot collaboration levels (fully human
manual, robot suggests — human decides, robot decides — human supervises, and fully autonomous
robot operation). Each of the target-marking methods and the collaboration levels were tested with
groups of participants while using images captured in a commercial vineyard as the experimental

database. A user interface was developed to implement the suggested target-marking methods and
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the human-robot collaboration. The user interface was used both for conducting experiments in
the lab and for conducting field experiments using the robotic sprayer.

In order to precisely apply the pesticide toward the target, a target specific spraying device was
designed and built. Due to the amorphous shape and varying size of the grape clusters, a spraying
nozzle with varying size is needed for accurate target spraying while maximizing the spray
coverage and minimizing false alarm spraying. The core functionality of the device is to change
the spray diameter according to the detected target. A commercial spraying nozzle (AYHSS 16)
assembled from two parts, the nozzle base and the nozzle cap, changes the spray diameter by
rotating the nozzle cup. The nozzle base was fixed to the device while the nozzle cup was
connected to a stepper motor. The device also includes a color camera (for capturing targets),
distance sensor, and two fan lasers (one positioned horizontally and the other vertically, to create
a cross (+) on the target); all were mounted on a pan/tilt unit. In order to validate the spraying
device operation, several experiments were conducted to evaluate the flow rate relative to the
nozzle cup rotational position, the spray diameter relative to the nozzle cap rotational position, and

the ability of the device to detect and spray targets with different sizes.

Experiments

Several experiments were conducted to evaluate the foliage and grape detection algorithms, human
marking methods, human-robot collaboration methods, the adjustable spraying device, and the
integrated system. The main goal was to evaluate the different elements suggested in the
framework under as close as possible real world conditions. For that, a set of images, captured in
two commercial vineyards, was used as the main database for the experiments. These images were
analyzed by three experts with a goal to precisely mark the grape clusters in each image.

An integrative site-specific experiment was conducted to demonstrate and evaluate the three main
components of the collaboration framework working in sync: human marking methods, levels of
human-robot collaboration, and the specific spraying device. For better control of the experiment,
artificial targets were used and robot navigation along the vineyard row was simulated by
following red tape fixed to the ground. During the experiment, the robot traveled a total distance
of 1044 [m] (16 users x 3 repetitions per user x 18 [m] for each repetition + 10 repetitions x 18
[m] for each repetition), captured 1108 frames and sprayed 3378 targets. The experiment shows

that despite the high complexity of such a robotic system and framework, collaboration of a human
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in the spraying process is feasible. The collaboration between the remote robot and the human
showed that the hit and the false alarm rate was improved (hit rate increased by 13.4% and false

alarm rate decreased by 19.5%) compared to a fully autonomous operation (collaboration level 4).

Results

Grape clusters and foliage detection algorithms

Analysis of the grape clusters detection algorithms showed that the hit rate can reach ~91% while
reducing the use of pesticides by ~30%. The minimum and maximum algorithm processing times
were 0.65 and 1.43 [s/frame] respectively. These results refer solely to detection algorithms that
are applied using a computer system without any human help. For better detection results the
human was included in the framework.

Human-robot collaboration

The learning process of using the target-marking interface was evaluated with a goal to bring the
user expertise to minimum of 90% hit rate. The learning experiment revealed that marking 30
images (that took 7.5min) will bring the user the level of expertise needed. The learning process
was repeated for every new user using the marking interface.

Marking methods experiment results show that the hit rates are maximized when the users have
more time to mark the targets, as expected. While using the collaboration level in which the user
has full control over the marking process (defined in this thesis as collaboration level 1), the highest
hit rate of 94.3% (with false alarm rate of 15.1%) was obtained when practicing the constant circle
diameter marking method with 15 s image switching time (defined as the time the image was
presented to the user); the lowest false alarm rate of 10.1% was obtained when practicing the free
hand marking method with 15 s image switching time. Since the ellipse marking method did not
excel in any category (hit or false alarm rate) it was not evaluated with the three collaboration
levels.

Experimental results of the human-robot collaboration levels indicate that the highest hit rate is
achieved with the collaboration level in which the robot marks the targets and the human
supervises (can add, remove, and correct computer marking, defined as collaboration level 3),
constant circle diameter and 15 [sec] image switching time: 92.66%; these results are statistically
significant. The lowest FA was achieved with the collaboration level in which the computer

suggests and the human decides (defined as collaboration level 2), free hand marking, and 15 [sec]
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image switching time: 2.71%. Results from the ease of use questionnaire did not show any
statistically significant difference between the different collaboration methods.

Specific target spraying

A flow rate experiment was conducted using constant pressure of 20 [bar]. The experiment

revealed a linear curve representing the relation between the flow rate and the nozzle aperture
(flow rate = 6 - 107° - nozzle aperture + 0.0519 [é])

A visual inspection of the sprayed target using the adjustable spraying device revealed that all the
targets were fully covered by the spray. The results show constant increasing of the sprayed
diameter when presented with a smaller target; however, the ratio between the sprayed diameter
and the target size decreases as the target size increases. This ratio can be addressed as the false
detection ratio.

Integrative site specific sprayer experiment

The overall performance of the free hand marking method was better than the circle marking
method. Hit rate was improved for all cases when using the free hand marking method (except for
“spray evaluation” in collaboration level 2, the collaboration level in which the computer suggests
and the human decides). However, along with the improvement of the Hit rate, the FA measures
increased, implying more wasted spraying material. In both marking methods (constant circle
diameter and free hand) the Hit and FA rates increase with the collaboration level. The best Hit
rate results were achieved when using the free hand marking method with collaboration level 3
(93.6%).

Summary

A human-robotic collaborative sprayer was designed, built, and tested. The robot showed the
ability to perform the necessary tasks required for such a robot sprayer in vineyards. The overall
work demonstrates the operation of a robotic sprayer performing the spraying task with a remote
human assisting in the target detection in different modes of collaboration.

The main contribution of the work was the introduction and full implementation of a framework
for human-robot collaboration for the task of vineyard spraying. During the work we examined
different collaboration levels between the robot and the human and several target marking methods
for the target detection task. Another contribution of this work is the development of a unique site-

specific spraying device able to implement the enhanced detection accuracy to the actual pesticide
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spraying process. The results obtained can be used to develop a human-robot operational system
by using the best values obtained for the selected criterion (e.g., for highest hit rate use constant
circle diameter, image switching time of 15 [sec], and fully manual collaboration level; for lowest
false alarm rate use free hand, image switching time of 15 [sec], and collaboration level 2).

Our hope is that all or part of this work will be commercialized. This will contribute to less

environmental pollution and eliminate the risk of human poisoning due to pesticides.

Key words: Agricultural engineering, agricultural machinery, human-robot interaction, image
processing, levels of automation, machine learning, machine vision, object detection, pesticides,

precision agriculture, robotic sprayer, spraying, teleoperators
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1. INTRODUCTION

1.1. Description of the problem

Pesticides are an integral part of agriculture worldwide. Between 30% and 35% of crop losses can
be prevented when harmful insects and diseases are eliminated by applying pesticides (Cho and Ki
1999). Application of nutrients, fungicides, and pesticides is one of the most important processes in
agricultural production and can have a significant impact on yield, quality, and ultimately
profitability (Singh, Burks and Lee 2005).

Although pesticides are necessary in modern agriculture, they are poisonous and dangerous for
humans (Rogan and Chen 2005; Dasgupta, Meisner, Wheeler, Xuyen and Thi Lam 2007) and for
the environment (Pimentel and Lehman 1993; Reus, Leendertse, Bockstaller, Fomsgaard, Gutsche,
Lewis, Nilsson, Pussemier, Trevisan and Van der Werf 2002), and therefore one of the goals in
agriculture research is to reduce the use of pesticides while maintaining the crop quantity and
quality.

Two common methods are currently used to apply pesticides in the field. Each method has its pros
and cons:

Manual — humans manually spray targets using back-pack sprayers

Using this method, a human operator walks along the rows and selectively sprays targets using a
backpack sprayer (Figure 1a). This method is often used when high spraying accuracy is needed
(e.g., spraying tomatoes in a greenhouse) and the human, due to his excellent perceptual skill, can
achieve this accuracy. This method has several disadvantages, high time to complete (TTC), large
number of working hands required to complete the task, and high human fatigue. Due to the high
operative costs of this spraying method and lack of human labor and availability it is less used in
modern western agriculture practice.

Mechanical — human drives a sprayer tractor

Using this method, a human drives a tractor with a sprayer connected to a trailer behind the tractor
(Figure 1b). The human can control the opening/closing of the spray from the tractor cabin and
usually opens the spray at the beginning of the row and closes it at the end of the row. This method
is often used in open field crops, and in orchards and greenhouses when the entire crop (foliage and
fruit) must be sprayed. This method is also used in the absence of human workers. This spraying

method is very cost effective since it requires a single operator to cover large areas. The main



disadvantage of this method is the high waste of pesticide when needing to spray isolated targets
and even while spraying the foliage (since the foliage top and bottom borders are not straight).

Arial spraying (both by plane and helicopter) is another method commonly used for pesticide
application, but since this method is applied from above the crop and at great distance from it (~35
m compared to 1 m used in ground spraying), the accuracy of this spraying method is very limited

and therefore not considered for accurate grape clusters spraying.

Figure 1 — Pesticide spraying methods. (a) Backpack sprayer. (b) Tractor sprayer.

Despite the use of pesticide protection equipment (personal head mask for the manual spraying
method and central air filtration system for the mechanized spraying method) the human is still
exposed to hazardous pesticides that can cause negative health issues (Swan, Kruse, Liu, Barr,
Drobnis, Redmon, Wang, Brazil, Overstreet and Group 2003) when applying pesticides using the
traditional methods.
Robotic technology may provide a means of reducing agriculture’s current dependence on
herbicides, improving its sustainability and reducing its environmental impact (Slaughter, Giles and
Downey 2008). A target-specific robotic sprayer can reduce the quantity of pesticides applied in
modern agriculture and potentially remove or minimize the human presence during the spraying
pesticide process (Lee, Slaughter and Giles 1999). Studies show that pesticide use can be reduced
up to 60% when the spraying material is targeted toward the designated object (Elkabetz, Edan,
Grinstein and Pasternak 1998; Goudy, Bennett, Brown and Tardif 2001; Gil, Escol, Rosell, Planas
and Val 2007). The spraying task of a spraying robot can be divided into three sub-tasks:

1. Navigating — driving along the crop row (including end of the row turn),

2. Target detection — detect the target needing to be sprayed. The detection process includes

accurate resolution of the target coordinates and surrounding perimeter, and



3. Spraying — spraying the target area.
In this work we focus on the tasks of target detection and spraying. The case study for this work was
specific grape clusters spraying. Gibberellic acid (GA3) has been routinely used for seedless grape
production in modern table grape growth to increase berry and bunch weight, and cause thinning of
clusters (Lu, Lamikanra and Leong 1995). Growers can minimize undesirable effects by applying
GAz directly to the clusters (Fidelibus and Vasquez 2012). However, to date this direct application
is impractical due to lack of technology (Fidelibus and Vasquez 2012).
Extensive work has been conducted throughout the past decade on object detection in the complex
agricultural environments (Kapach, Barnea, Mairon, Edan and Ben—Shahar 2012), but detection
rates in real world conditions remain limited to a 90% hit rate and are often much less (Jimenez,
Ceres and Pons 2000; Kapach, Barnea, Mairon, Edan and Ben-Shahar 2012). The limited
performance is usually caused by the complicated agricultural conditions (Jimenez, Ceres and Pons
2000; Kapach, Barnea, Mairon, Edan and Ben—Shahar 2012) that are due to the high variability of
the agricultural objects (i.e., color, texture, orientation), their amorphous size and shape, and the
unstructured and dynamic environmental conditions (e.g., changing illumination directions, shading,
and targets occlusion). Recent work by Correa, Valero, Barreiro, Diago and Tardaguila (2012)
showed a 95% hit rate for detecting red grape clusters, but with an artificial white screen as
background (to avoid confounding effects from the background vegetation); it is reasonable to
assume that the hit rate performance of these algorithms will decrease under real world conditions
and for green grapes. According to Blackmore, Have and Fountas (2001), in order for the robot to
be economically feasible it must be able to detect and spray more than 95% of the targets
successfully. In this thesis we developed machine vision algorithms that are able to detect green
grapes and foliage with ~95% detection rates (Berenstein and Edan 2012).
Unlike robotic sprayers, humans can easily fit themselves into such changing environments due to
their high perception skills. By taking advantage of the human perception skills and incorporating
this with the robot's accuracy and consistency, a combined human-robotic system can be simplified
and result in improved performance (Fong and Thorpe 2001).
Vast research has been conducted in the area of HRI (Human-Robot Interaction) focusing on
interaction modalities (Goodrich and Schultz 2007; Jaimes and Sebe 2007; Sim and Loo 2015) and
models for collaboration (Bechar and Edan 2003; Chen, Barnes and Harper-Sciarini 2011;
Cherubini, Passama, Fraisse and Crosnier 2015). In order to increase target detection rates in

agriculture conditions, in this thesis we propose a framework that includes a human operator to help
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the robot with the target detection task. The suggested framework places the human at a remote
location and uses the human’s excellent perception skills to mark targets on images captured from
a robot in the field.

Recent work performed in parallel to this thesis shows some design principles for developing a
teleoperated user interface for an agricultural sprayer (Adamides, Katsanos, Christou, Xenos,
Kostaras and Hadzilacos 2013; Adamides, Christou, Katsanos, Xenos and Hadzilacos 2015). As
opposed to Adamides’s work, which focuses on teleoperation only, in this thesis we focus on the
question of how the human and the remote robotic sprayer should collaborate to successfully
complete the pesticide spraying task. The assumption is that some tasks can be performed
autonomously, and some tasks collaboratively.

This thesis focuses on several questions that arise from the suggested human-robot collaborative
framework, such as how the human should mark the targets and what is the best collaboration
method between the human and the robot for the target detection task.

No other research to date has focused on human-robot collaboration in agricultural applications.
Increasing the pesticide accuracy can also be achieved by improving traditional spraying methods.
Due to the amorphous shape and varying position of the targets in the agriculture domain, a novel
spraying device must be able to direct the spraying nozzle toward the target to accurately spray the
target (i.e., adjust the spraying diameter to the target). In this thesis such a spraying device was

developed and tested.

1.2. Research objectives
This research aimed to develop a human-robot collaborative agriculture robotic sprayer. The main
objectives were to introduce a collaborative human-robot system into agricultural robotics
applications and maximize spray coverage efficiency.
The specific research objectives were to develop:

e awheeled robotic platform for selective spraying in vineyards,

e machine vision algorithms for foliage detection and grape detection,

e a human-robot collaborative framework system for detecting and marking areas to be

sprayed, and

e asmart spraying device for pesticide application.



1.3. Research significance

The development of a fully autonomous robotic system performing tasks in unstructured
environments, such as military, medical, and agricultural, is problematic, due to the dynamic,
unpredictable, and unknown nature of these unstructured environments and due to sensor
limitations. Humans, on the other hand, have good perception skills and can easily fit themselves
into such undefined and changing environments. Collaboration between a human and a robot for the
task of detection can create a simplified, flexible, and robust system that will use the advantages of
both human and robot and can react and cope with dynamic and complex conditions. A framework
for human-robot collaboration was developed and implemented for the specific task of targeted
spraying including extensive field evaluation. The insights from this work can be applied to many
additional agricultural tasks and to robots performing other target detection tasks in unstructured
environments.

Current practice of pesticide spraying is conducted similarly for different types of targets (e.g., round
with constant size such as apples, and amorphous shape and size like grape clusters) since traditional
spraying technology is not able to detect and isolate the targets, and moreover is not able to adjust
the spray coverage according to the target at hand. In previous work dealing with agricultural robots
(Bechar and Edan 2003), targets were defined and marked by a human operator as a singulated point
usually located at the target’s center of mass. In crops with relatively constant object shape and size
such as citrus and apples the center of mass can provide a good indicator for target (center of mass
coordinated with a relatively constant size can provide a full description of the target); however,
when considering the detection and marking of targets with amorphous shape and varying size, the
center of mass will not provide sufficient description of the target. Spraying only the target center
of mass will cause either extensive area misses when using a small spraying diameter or extensive
pesticide waste when using a large spraying diameter. In this work we developed target marking
methods specifically for amorphous shaped targets. We developed a site-specific spraying device
able to implement the enhanced detection accuracy to the actual pesticide spraying process. The
best spraying method can be selected based on the task objective which can be selected by the

farmer: the farmer can aim to maximize the hit rate or minimize false alarms.

1.4. Research contribution and innovations



This work was developed under a new concept that considered pesticide reduction as the main
optimization parameter while maximizing target spray accuracy. Machine vision algorithms were
developed for the task of detecting fruit and foliage in vineyards. Foliage and grape clusters
detection algorithm were developed (Berenstein, Shahar, Shapiro and Edan 2010). The algorithms’
development was based on images captured from a commercial vineyard in Israel. Since the
algorithms are not solely based on color recognition, but also use the shape and texture properties
of the grape cluster, the detection of all grapes varieties is possible (i.e., green and red type grapes).
Three algorithms were developed, each with a different strategy for the grape clusters detection. The
first algorithm was based on the difference in edge distribution between the grape clusters and the
foliage. Using the different edge distribution between the grape clusters and the foliage, the grape
clusters can be isolated. The second algorithm was based on a decision tree algorithm that used 72
different parameters. The third algorithm is based on pixel comparison between edge representations
of the captured image with a predesigned edge mask that represents grapes. The second algorithm
showed the best detection rate (~91% hit rate), which according to state of the art literature
(Gongal, Amatya, Karkee, Zhang and Lewis 2015) is considered a very high detection rate.
Blackmore, Have and Fountas (2001) argue that 95% is the lowest barrier for detection in order for
the spraying process to be economically feasible.

Further improvement of the detection rate was achieved by applying collaboration between a human
operator and a robotic sprayer. A novel human-robot collaboration framework and methods for the
target detection task were developed and evaluated in a series of experiments. The suggested
framework places the human in a remote location from the field and by using an imaging device
(e.g., computer screen, tablet, PDA, smartphone) helps the robot to detect the targets. Four levels of
collaboration were developed based on Sheridan (1992) suggested 10 levels of human-robot
collaboration levels. Fully manual - the human operator marks the targets in the image without any

help from the robot. Robot suggests, human approves - using this collaboration method the grape

clusters in the captured image are automatically marked using Berenstein, Shahar, Shapiro and Edan
(2010) detection algorithms. The marked areas are considered as recommendations for the human

operator to mark the grape areas. Robot marks, human supervises - the human receives an image

with grape clusters marked using Berenstein, Shahar, Shapiro and Edan (2010) detection algorithms.
The human has the ability to manually reject robot marked areas and add areas to be sprayed. Fully

autonomous robot marking - the robot is fully independent and there is no human intervention.




One of the questions that arise with the collaboration of a human operator into the target detection
of grape clusters is: what is the marking technique that the human should use when the task is to
mark amorphous shapes with varying size as the grape clusters are? In this work we answered this
question by developing a user interface equipped with several target marking options. Three target-
marking methods were developed, implemented in a user interface, and tested. The suggested
marking methods were: (i) circle with constant diameter, (ii) ellipse with changeable diameters, and
(iii) free hand (the human marks surround the target). Evaluating different combinations of the
marking methods with the collaboration levels provides the optimal combination of marking method
with collaboration level for different marking goals (i.e., if the goal is high hit rate then the optimal
combination is a constant circle with collaboration level 3).

The collaborative aspect between the human and the robotic sprayer is applied only for the target
detection task; the actual pesticide spray is conducted solely by the robotic sprayer. In order to
reduce the quantity of pesticide being used, a smart accurate spraying device is needed to accurately
spray the marked targets. Preliminary evaluation of three spraying options revealed that the optimal
spraying method (for the grape cluster type targets) is to use a single nozzle with an adjustable spray
diameter. Thus, a smart spraying device able to control the spray dimeter was designed, built, and
tested. In the heart of the device lies a stepper motor connected to a nozzle cup, and by rotating the
nozzle cup the spray diameter is changed. The device was mounted to a pan-tilt unit with two DOF
allowing it to rotate horizontally and vertically. A series of experiments were conducted to evaluate
the nozzle flow-rate with different nozzle apertures, the nozzle spray diameter according to the
nozzle cup rotational position, and the entire device including automatic target detection and spray.
A custom mobile robotic platform was designed and built specifically for the vineyard environment
aiming to provide a research platform for pesticide spraying in vineyards. The robot was constructed
from two identical platforms interconnected with universal joint. Four wheels were connected to the
robot, two for each platform. Each platform was equipped with an electric motor. The robotic
platform was equipped with an electric box containing all the electrical components. The robot was
also equipped with a commercial “off the shelf” 200L sprayer, power generator, and two car
batteries. This robot platform can serve additional human-robot collaborative R&D.

Additional contribution of this research is related to development of a novel image registration
algorithm. An image registration algorithm and methods were developed to enable the fusion of
different imaging sensors in the agricultural domain (Berenstein, Hoc¢evar, Godesa, Edan and Ben-

Shahar 2015). The novel concept of the algorithm is to capture a scene containing custom design
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control points, by the two sensors from varying distances between the sensors and the control points.
A Transformation Matrix (TM) is then calculated for each distance. Once obtaining the TMs from
varying distances, a regression is performed on each of the elements of the TM and a distance-
dependent relation function is created for each element of the TM. The concept of the operation is
to detect the distance between the sensors and the target (using distance sensor, e.g., SICK laser
distance sensor DT35) and calculate TM according to the measured distance. Although the algorithm
was designed and tested for two different sensors, the algorithm can be easily expanded for
additional sensors of the same type and for different sensors. Since it was not included in the

vineyard robotic experiments in this thesis, it is not included as a separate chapter here.



2. SCIENTIFIC BACKGROUND

2.1. Pesticides in agriculture

Pesticides are those substances that are used to control, destroy, repel, or attract pests to minimize
their detrimental effects. Pests are those organisms, such as weeds, insects, bacteria, fungi, viruses,
and animals, which adversely affect our way of life. Pests can reduce the quality and quantity of
food produced by lowering production and destroying stored produce (Kent 1992). Without the use
of pesticides, the production and quality of food would be severely jeopardized, with estimates that
food supplies would immediately fall to 30 to 40% of their current levels due to the ravages of pests
(Kent 1992; Cho and Ki 1999); thus, modern agriculture relies on the use of pesticides to increase
crop yields and sustain food safety and security for the global population (Cooper and Dobson 2007).
Pesticides are poisonous and wrong use of them is dangerous for humans (Betarbet, Sherer,
MacKenzie, Garcia-Osuna, Panov and Greenamyre 2000; Eddleston, Karalliedde, Buckley,
Fernando, Hutchinson, Isbister, Konradsen, Murray, Piola and Senanayake 2002; Rogan and Chen
2005; Dasgupta, Meisner, Wheeler, Xuyen and Thi Lam 2007; Dawson, Eddleston, Senarathna,
Mohamed, Gawarammana, Bowe, Manuweera and Buckley 2010; Remoundou, Brennan, Hart and
Frewer 2014) and for the environment (Tardiff 1992; Pimentel and Lehman 1993; Reus, Leendertse,
Bockstaller, Fomsgaard, Gutsche, Lewis, Nilsson, Pussemier, Trevisan and Van der Werf 2002;
Bozdogan, Yarpuz-Bozdogan and Tobi 2015; Lambropoulou, Hela, Koltsakidou and Konstantinou
2015). Recent work in the United States showed that banning pesticides and chemical fertilizers
would cause loss of half of the fruits and vegetables, and loss of 40%-70% of grains and cotton.
This loss would cause increase of food costs of more than 40% (MOH 2006).

Latest studies show that pesticide use can be reduced up to 60% by using selective sprayers
(Elkabetz, Edan, Grinstein and Pasternak 1998; Goudy, Bennett, Brown and Tardif 2001; Gil, Escol,
Rosell, Planas and Val 2007; Song, Sun, Li and Zhang 2015).

2.2. Agricultural robots

Agricultural robots have been developed for many operations, such as field cultivation, planting,
spraying, pruning, and selective harvesting (Edan, Kondo and Shufeng 2009). Intensive research has
focused on selective harvesting of citrus, apples, tomato, cucumbers, melons, strawberries, and
grapes (Kondo 1991; Edan and Miles 1993; Monta, Kondo and Ting 1998; Bulanon, Kataoka, Ota
and Hiroma 2001; Van Henten, Hemming, Van Tuijl, Kornet, Meuleman, Bontsema and Van Os



2002; Hannan and Burks 2004; Bac, Henten, Hemming and Edan 2014). Other aspects that were
thoroughly studied are target detection and end effectors for fruits and vegetables (Table 1).
Agriculture robots must operate in unstructured, dynamically changing, and undefined environments
that demand a high level of sophistication and complicate the development process (Bac, Henten,
Hemming and Edan 2014). Agriculture robots have been demonstrated by several researchers, but
despite the intensive research, commercial robots are still rare (Bac, Henten, Hemming and Edan
2014). Although commercial agriculture robots exist (Hannan and Burks (2004); Harvest
Automation Co HV-10), the lack of economic justification is the main reason for the absence of
robots in agriculture (Edan, Kondo and Shufeng 2009). This is mainly limited by low performance
rates (low detection) and lack of robustness (Bac, Henten, Hemming and Edan 2014).

Another field of study in agricultural robots is the use of unmanned aerial vehicles (UAVS) mostly
applied for precision agriculture imagery tasks. Zhang and Kovacs (2012) reviewed the field of
small UAVs for precision agriculture and concluded that although in the past decade the number of
UAVs for agriculture increased they still possess many significant shortcomings such as high initial
cost, platform reliability, sensors capabilities, lack of standardized procedure, aviation regulations,
and lack of interest from farmers.

There is limited work published on UAV's in agriculture in tasks other than imagery tasks. Xue,
Lan, Sun, Chang and Hoffmann (2016) developed a UAV equipped with an automatic control
spraying system. The USV was equipped with ultra-low volume spraying. Results showed 0.2 m
route accuracy. The spraying accuracy was not reported. Faical, Pessin, Filho, Carvalho, Furquim
and Ueyama (2014) proposes a methodology based on Particle Swarm Optimization (PSO) for the
fine-tuning of control rules during the spraying of pesticides in crop fields. This methodology can
be employed with speed and efficiency and achieves good results by taking account of the weather
conditions reported by a Wireless Sensor Network (WSN). In this scenario, the UAV becomes a
mobile node of the WSN that is able to make personalized decisions for each crop field.

Although UAVs are a promising field of research for precision agriculture, we do not expect it to
replace robots in the field for tasks like picking, pruning, and spraying, mainly due to the payload

limitation of current UAV's.
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Table 1 — Examples of robotic applications in agriculture.

Application

Sensor

Moving platform

References

Melon harvester

2 CCD BW cameras

Tractor carrying
robotic platform

(Edan and Miles 1993)

Grape harvester TV camera Crawler (Kondo 1991)
Navigating tractor CCD camera Tractor modified | (Gerrish, Fehr, Van Ee and
along crop row to robot Welch 1997)
. 4-wheeled, angle -
Mapping Ultrasonic and speed control (ToQa, Kitani, Okamoto and
agricultural field f Torii 1999)
or each wheel

(Belforte, Deboli, Gay,
Greenhouse tasks | CCD camera Rail platform Piccarolo and Aimonino

2006)
Eggplants (Hayashi, Ganno, Ishii and
harvester CCD camera Crawler Tanaka 2002)

Plantation sprayer

2 CCD camera for
stereo vision, laser
scanner

Tractor modified
to robot

(Stentz, Dima, Wellington,
Herman and Stager 2002)

Weed management

2 CCD cameras one
for overall picture and
one for focus image

Tractor carrying
robotic platform

(Blasco, Aleixos, Roger,
Rabatel and Molto 2002)

Weed eradicate

2 CCD cameras, one
for navigation and one
for weed detection

4-wheeled, angle
and speed control
for each wheel

(Strand and Baerveldt 2002)

De-leafing
cucumber plants

CCD camera

Move along heat
pipes

(Van Henten, Van Tuijl,
Hoogakker, Van Der Weerd,
Hemming,  Kornet  and
Bontsema 2006)

4-wheeled, angle

General field (Khot, Tang and Hayashi
Currently no sensors | and speed control

Propose for each wheel 2006)

Strawberry Using greenhouse | (Cui, Nagata, Guo, Hiyoshi,

harvester CCD camera infrastructure Kinoshita and Mitarai 2007)
X-bar with two | (Mittal,  Varada,  Dave,

Arecanut tree | dentical h d Tilak

climbing Currently no sensors identica Khanna, Korpu and Tila

clamping units

2014)

Weed management

GPS, CCD camera

Autonomous
tractor

(Pérez-Ruiz,  Gonzalez-de-
Santos, Ribeiro, Fernandez-
Quintanilla, Peruzzi, Vieri,
Tomic and Agliera 2015)

Six geared motors

Monlt(_)rlng field | GPS, IMU, CCD with skid steering (_DU.I‘THUS: Giines, Kirc1 and
operations camera Ustiindag 2015)
method
. 4-wheeled, angle . . .
Wheat  precision ’ (Haibo, Shuliang, Zunmin
seeding Not reported and speed control and Chuijie 2015)

for each wheel
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2.3. Spraying robots in agriculture

Spraying robots are commonly used in the field of automotive painting and vast research was applied
in this field (Chen, Fuhlbrigge and Li 2008) with the main focus on path planning of the robotic arm
and achieving uniform paint thickness layers (Arikan and Balkan 2000; Zaki and Eskander 2000;
Conner, Greenfield, Atkar, Rizzi and Choset 2005; Diao, Zeng and Tam 2009; Wei and Dean 2009;
From, Gunnar and Gravdahl 2011). The common denominator of these robots is that the shape,
position, and orientation of the target to be sprayed/painted is known and the robot trajectory and
nozzle operation are pre-planned accordingly. Unlike these industrial robots, spraying robots in
agriculture must include two core technologies: sensing — for target detection and “robotics” for the
spray execution (Song, Sun, Li and Zhang 2015). Since the technologies of the automotive industry
and the agricultural domain are completely different, this literature review will focus solely on the
agricultural domain.

Several spraying robots designed for the agricultural domain have been developed (Table 2) and,
much like other agriculture robots, these developments have yet to become commercial products.

The review below focuses mainly on weed control and plant protection applications (Table 2).

2.4. Human-robot collaboration

Humans have superior recognition capabilities and can easily adapt to changing environmental and
object conditions (Rodriguez and Weisbin 2003). Their acute perception capabilities enable humans
to deal with flexible, vague, changing, and wide scope of definitions (Chang, Song and Hsu 1998).
This set of skills makes the Human Operator (HO) perfect for supervising a machine. In the strictest
sense, supervisory control means that one or more HOs are intermittently programming and
continually receiving information from a computer that itself closes an automation control loop
through artificial effectors and sensors to the controlled process or task environment (Sheridan
1992).

There are several motivators for developing human-robot collaborative control. First, it combines
the advantages of the robot with the advantages of the HO. Specifically; it achieves the accuracy,
reliability, and high yield of the robot with the cognitive capability and adaptability of the human.
Moreover, by collaboration, the workload of the HO is reduced and in the event of robot or human
failure, either can reduce the damage. Second, it makes control possible even where there are time
delays in communication between human and robot. Last, it saves lives and reduces costs by

eliminating the need for the HO to be present in hazardous environments (Sheridan 1992).
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Furthermore, it simplifies the robotic system since the complex tasks can be performed by the

human. Research in the field of human supervisory control started in 1967 with the work of Ferrell
and Sheridan (1967) and continues, with much effort, until this day (Table 3).

Table 2 — Examples of work on robotic sprayers.

Application Sensor Results Reference
Ultrasonic +|Navigate autonomously along | (Mandow,  Gomez-de-Gabriel,
Greenhouses camera the ?eenhouse y g Martinez, Munoz, Ollero and
g Garcia-Cerezo 1996)
Tomatoes RGB camera|8% incorrect spray (4 of 51) (Lee, Slaughter and Giles 1999)
Orchards Color | \oT REPORTED (Shin, Kim and Park 2002)
Ultrasonic
Sprayed 88.8% of weed while .
Weed in cotton |Color CCD |correcting, rejecting, and not (Lamm, - Slaughter and - Giles
: 2002)
spraying 78.7% of cotton
: Reduce up to 91% with max .
Weed sprayer |Color video speed of 14 [km/h] (Steward, Tian and Tang 2002)
Rice NIR Reduce of pesticides (no|(Nishiwaki, Amaha and Otani
quantitative results) 2004)
5 -
Weed control |USB camera 83% success rate with less than 3 (Jeon, Tian and Grift 2005)
seconds per target
Gregnhpuse Ultrasonic Navigate autonomously along (Singh, Burks and Lee 2005)
navigation the greenhouse
Greenhouses cCD P“?S.Ef!t the ability to navigate in (Younse and Burks 2005)
Camera artificial greenhouse
. (Ogawa, Kondo, Monta and
Grapes Ultrasonic |NOT REPORTED Shibusawa 2006)
Clean road Reduce pesticide use by up to|(Slaughter, Giles and Downey
shoulder Color CCD | g7, 2008)
Palms Stereo Scale down model proves the|(Shapiro, Korkidi, Demri, Ben-
camera ability to track palm trees Shahar, Riemer and Edan 2009)
Variable rate sprayer was used|(Esau, Zaman, Chang,
Blueberry color camera | for spot-application of fungicide | Schumann, Percival and
in a wild blueberry field Farooque 2014)
Technology review of smart spray in agriculture (Song, Sun, Li and Zhang 2015)
(Oberti, Marchi, Tirelli,
. Selective spraying of grapevine |Calcante, Iriti, Tona, Hodevar,
Grapevine color camera using robot arm manipulator Baur, Pfaff, Schiitz and Ulbrich
2016)
machine Economic evaluation of selective (Esau, Zaman, Groulx,
Blueberry . Corscadden, Chang, Schumann
vision sprayer

and Havard 2016)
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Scientific research in the field of human-robot collaboration in agricultural tasks has been very
limited with hardly any work that included field experiments (Cheein, Herrera, Gimenez, Carelli,
Torres-Torriti, Rosell-Polo, Escola and Arno 2015).

Bechar and Edan (2003) provide proof of the advantage of such collaborations in target recognition
tasks. According to their research, collaboration of human and robot increases detection by 4% when
compared to an HO alone and by 14% when compared to a fully autonomous system. In addition,
when compared to the human alone, detection times of integrated systems are reduced by 20%.
(Bechar, Meyer and Edan 2007) defined four basic levels of human-robot collaboration for target
recognition tasks. In order to quantify performance and determine the best collaboration level for a
given set of parameter values, an objective function that includes operational and time costs was
developed. The findings indicate that the best system performance, the optimal values of
performance measures, and the best collaboration level depend on the task, the environment, human
and robot parameters, and the system characteristics.

This work has been expanded for dynamic real-time switching between collaborative levels and for
evaluating the influence of humans’ reaction times on performance of integrated human-robot target
recognition (Tkach, Edan and Bechar 2009). The switching algorithm developments enable smooth
real-time adaptation of the combined human-robot system to many possible changes of the
environment, human operator, and robot performance. Tkach showed that increasing the switching
execution frequency greatly improves the score achieved by the switching algorithm and increases
system performance (Tkach 2009). Analysis of the model developed to evaluate the effect of
reaction time on the human-robot collaboration level reveals an extreme threshold selection in two
cases: when human sensitivity decreases and when the cost of time increases (Yashpe 2009; Yashpe,
Bechar and Edan 2009). The above research was conducted on field data; however, studies were
limited to human-robot collaboration in laboratory studies and simulations.

Adamides, Christou, Katsanos, Xenos and Hadzilacos (2015) presented usability guidelines for
agricultural teleoperated robot based on a focused literature review, teleoperation interface design
guidelines, user centered methods, and limited field experiments. Murakami, Ito, Will, Steffen,
Inoue, Kita and Miyaura (2008) developed a teleoperated system for a crawler robotic vehicle that
aimed to navigate the robot along a pre-defined path. Two degree cooperation between the robot
and the remote operator was set, including direct and supervisory control. The study shows that the

direct control was difficult for the operator due to high delay time between the operator command
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and the robotic response. The supervisory mode showed ability to travel straight with a maximum

lateral error of 0.3 m.

Table 3 — Examples of work in human-robot collaboration.

Application

Results

Reference

New methodology to incorporate
sensor and model-based computer
assistance into  human-controlled
teleoperator systems

Application of the strategy shows
improved machine performance

(Everett and Dubey
1998)

Improving the performance of HOs in
tasks that involve motion planning and
control of complex objects in
environments with obstacles

Proposed configuration
control mode
significantly better
traditional work

space
performed
than the

(Ilvanisevic and
Lumelsky 1998)

Propose that automation can be
applied to four broad classes of
functions: 1) information acquisition;
2) information analysis; 3) decision
and action selection; and 4) action
implementation. Within each of these
types, automation can be applied
across a continuum of levels from low
to high, i.e., from fully manual to fully
automatic.

The model can be used as a
starting point for considering
what types and levels of
automation should be
implemented in a particular
system. The model also provides
a framework within  which
important issues relevant to
automation design may be
profitably explored.

(Parasuraman,
Sheridan
Wickens 2000)

and

Developed a teleoperated system for
electrical live-line maintenance

With the operator on the ground,
a great improvement in human
safety has been introduced

(Aracil, Ferre,
Hernando, Pinto
and Sebastian
2002)

Outlines a theory of human-robot
interaction and  proposes  the
interactions and information needed
by both humans and robots for the
different levels of interaction,
including an evaluation methodology
based on situational awareness.

Propose  that  human-robot
interactions are of five varieties,
each needed different information
and being used by different types
of users.

(Scholtz 2003)

Outlines a preliminary perspective on
teamwork and adjustable autonomy in
groups involving a mix of humans and
autonomous agents.

Implement a model of the work
practice of human-robot
teamwork, by focusing on the
differences between people and
autonomous agents.

(Sierhuis,
Bradshaw,
Acquisti, Van
Hoof, Jeffers and
Uszok 2003)

Automated detection and recognition
system of road signs combined with
the monitoring of the drivers’ response

Automatic sign classification was
significantly improved by online
image enhancement of the
sequences of approaching signs

(Fletcher,
Barnes
Zelinsky 2005)

Loyl
and
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Application Results Reference
The implementation of the
method is shown to provide a
. correlated  comparison  that
Human-Robot collaboration for space maximizes the actual | (Howard 2006)

missions

performance of human-robotic
systems operating in the real
world.

: . Their  findings may  have | (Salter,

Nature of interactions between . AT

children and robots therapeutlg implications  for | Dautenhahn  and
autistic children Boekhorst 2006)
Assess system performance and | (Steinfeld, Fong,

Describes an effort to identify | operator performance. The author | Kaber, Lewis,

common metrics for task-oriented | point the need to select | Scholtz,  Schultz

human-robot interaction (HRI). appropriate test populations when | and Goodrich
applying the developed metrics. | 2006)
Demonstrates the importance of

Present findings from a human user | understanding the human

study showing that people use the | teacher/robot learner system as a

reward signal not only to provide | whole in order to design | (Thomaz and

feedback about past actions, but also to | algorithms that support how | Breazeal 2006)

provide future directed rewards to
guide subsequent actions.

people want to teach while
simultaneously improving the
robot’s learning performance.

We evaluate and quantify the effects of
human, robot, and environmental
factors on perceived trust in human-
robot interaction (HRI).

The effects of human, robot, and
environmental characteristics
were examined with an especial
evaluation of the robot
dimensions of performance and
attribute-based factors.

(Hancock, Billings,
Schaefer, Chen, de
Visser and
Parasuraman 2011)

Mechanical weed control was
achieved by a co-robot actuator that
automatically positioned a pair of
miniature hoes into the intra-row zone
between crop plants.

57.5% reduction in hand labor
requirements for intra-row weed
control

(Pérez-Ruiz,
Slaughter,
Fathallah, Gliever
and Miller 2014)

Summarize the state of the art in
human-robot interaction in farmable
fields

Introduce the gquidelines for
designing a human-robot
interaction strategy for harvesting
tasks

(Cheein, Herrera,
Gimenez, Carelli,
Torres-Torriti,
Rosell-Polo, Escola
and Arn6 2015)
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Analyzes the benefit of planning
motion that explicitly enables the
collaborator’s inferences on the
success of physical collaboration, as
measured by both objective and
subjective metrics.

express the robot’s intent, leads to
more fluent collaborations than
predictable motion, planned to
match the collaborator’s
expectations.

Functional motion was found to
negatively affect coordination,
increasing the time it takes to
achieve the task, as well as the
participant’s perception of the
collaboration.

Application Results Reference
Results suggest that legible
motion, planned to clearly

(Dragan, Bauman,
and

Forlizzi
Srinivasa 2015)

Intelligent low cost telecontrol system
for agricultural vehicles in harmful
environments

Describes how to design and
implement a low cost telecontrol
system for agricultural machinery

(Gazquez,
Castellano
Manzano-
Agugliaro 2016)

and

addresses the gap by proposing a
novel methodology to generate
multimodal lexicons which
maximizes multiple  performance
metrics over a wide range of
communication modalities

Experimental results show that
predicted  optimal lexicons
significantly outperform
predicted suboptimal lexicons in
all  metrics validating the
predictability of the methodology.

(Jacob and Wachs

2016)

2.5. Human interaction factors

The field of human factors emerged as the confluence of engineering psychology, ergonomics, and

accident analysis (Goodrich and Schultz 2007). Key concepts of interaction in human factors
(Goodrich and Schultz 2007) include mental workload (Hart and Staveland 1988; Goodrich, Boer,

Crandall, Ricks and Quigley 2004), situation awareness (Endsley 2016), mental models mental

models (Johnson-Laird 1988; Vicente 1997), and trust in automation (Hoffman, Johnson, Bradshaw

and Underbrink 2013).

Human factors are especially important when incorporating the human with his/her exceptional

perception skills for target detection under a human-robot collaboration framework. Table 4

summarizes recent work related to human factors in human-robot collaborative studies.

17



Table 4 — Examples of previous work on human factors

Research

Reference

Situation-awareness global assessment technique (SAGAT),
developed to assist maintaining pilot high SA by providing an
objective measure of pilot's SA with any given aircraft design, is
described.

(Endsley 1988)

SAGAT has been used to assess SA at a various levels of
autonomy.

(Kaber, Onal and Endsley
2000; Scholtz, Antonishek
and Young 2003)

This paper provides a set of definitions that form a framework for
describing the types of awareness that humans have of robot
activities and the knowledge that robots have of the commands
given them by humans. The case study for this work was an urban
search and rescue. Results reviled that primarily critical incidents
were due to lack of human-robot awareness of location and
surroundings.

(Drury, Scholtz and Yanco
2003)

Operate multiple robotic vehicles and participate in collaborative
tasks with these systems. The paper examines SA needs in the
context of a collaborative military task. Cognitive task analysis was
conducted for the task, along with an examination of potential
function allocations that may require operator multi-tasking and
frequent task switching.

(Riley and Endsley 2005)

This paper discusses the design of automation support in C2
systems with multiple uninhabited vehicles that operators can best
be supported by high-level automation of information acquisition
and analysis functions. The results support the use of adaptive
automation to enhance human-system performance in supervision
of multiple uninhabited vehicles, balance operator workload, and
enhance situation awareness.

(Parasuraman, Barnes,
Cosenzo and Mulgund
2007)

NASA-TLX (Task Load indeX) was proposed as a reliable
estimation of workload. The estimation is based on six combined
workload-related factors.

(Hart and Staveland 1988)

The NASA-TLX has been widely used to measure human
performance and workload in teleoperation scenarios.

(Draper and Blair 1996;
Kaber, Onal and Endsley
2000; Scholtz, Antonishek
and Young 2003)
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Research

Reference

Evaluating the workload while using PDA for remotely drive robot.
Two screens are available for the user, vision, provides the forward
facing camera image, and sensory, provides the on-board ultrasonic
and LIDAR sensors. Results show that working with both the
vision and sensory screens increased the human workload. When
the human was able to view the environment and the robot the
workload decreased. The evaluation of the workload conducted
using the NASA-TLX method.

(Adams and Kaymaz-
Keskinpala 2004)

This work goal was to examine the use of scalable interfaces and to
examine operator span of control when controlling one versus two
autonomous unmanned ground vehicles. Soldiers instructed to
perform missions that included monitoring, surveillance, target
acquisition images, and responding to unplanned operator
intervention requests from the robot. The results do not indicate
major effect on the operator workload when decreasing the
interface size.

(Hill and Bodt 2007)

This paper reviewed the empirical literature on operator
information processing and action execution. The paper is
organized by the operator perceptual and responding demands
which are routinely manipulated in HRI studies. The paper also
review the utility of different interventions for reducing the strain
on the perceptual system (e.g., multimodal displays) and responses
(e.g., automation).

(Prewett, Johnson, Saboe,
Elliott and Coovert 2010)
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3. METHODS

3.1. Overview

A fully operative robotic sprayer equipped with an adjustable spraying device and the ability to
communicate with a remote user was designed and built. Human-robot collaboration methods were
developed as well as methods for target marking by a remote human operator.

In this chapter the different components (Figure 2) that comprised the fully operational robotic
sprayer are described.

Target
marking
techniques

Human-robot Smart
collaboration spraying
methods device

Grape and
foliage

detection spraver
algorithms pray

Figure 2 — Robotic sprayer main components.

3.2. Robotic sprayer system

An agricultural robotic system was built to serve as a research tool to enable field experiments and
reflect the real-world conditions that a future agricultural robot would have to cope with. The robot
is based on two identical platforms interconnected with a Cardan Joint. Each platform includes two
electrically controlled wheels. The platform is equipped with an electrical control box containing
PC computer, 7” touch screen, controllers, and all of the peripheral equipment needed for the robot
operation and conduction of field experiments. The robotic platform is described in detail in Chapter
4.
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3.3. Detection algorithms

Machine vision algorithms were developed for the two critical aspects of targeted vineyard spraying:
foliage and grape clusters detection. The algorithms were used to enable the robot to autonomously
spray the vineyard foliage and the grape clusters specifically while steering autonomously along the
vineyard row.

The foliage detection algorithm is mainly based on color thresholding on the different color
channels. Three algorithms were developed for the grape clusters detection task. The algorithms
were based on: high density edge detection, decision tree, and shape correspondence between an
artificial mask and the grape cluster edges (Berenstein, Shahar, Shapiro and Edan 2010). Detailed

description of the foliage and grape clusters detection methods are presented in Chapter 5.

3.4. Human-robot collaboration

Human-robot collaboration methods were developed to evaluate the influence of such collaboration
on the performance of the hit and false alarm rates. The developed methods included three target
marking methods (circle with constant diameter, ellipse with varying diameter, and free hand) and
three human-robot collaboration levels (fully manual, robot suggests — human decides, and robot
decides — human supervises) corresponding to Sheridan (1992) 10 levels of human-robot
collaboration. Each of the target marking methods and the human-robot collaboration levels were
tested with groups of participants while using images captured in a commercial vineyard as the
experimental database.

A custom design user interface was developed to implement the suggested target marking methods
and the human-robot collaboration. The user interface was used both for conducting experiments in
the lab and for conducting field experiments using the robotic sprayer. Detailed descriptions of the

human-robot collaboration and experiments are presented in Chapter 6.

3.5. Adjustable spraying device

A target-specific spraying device was designed and built for the agricultural task of specific target
spraying. The main problem with spraying agricultural targets in general and specifically grape
clusters is that their amorphous shape and varying sizes requires adjusting the spraying nozzle for
each target. The core functionality of the device is to change the spray diameter according to the
detected target. A commercial spraying nozzle (AYHSS 16) assembled from two parts, the nozzle

base and the nozzle cap, changes the spray diameter by rotating the nozzle cup. The nozzle base was
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fixed to the device while the nozzle cup was connected to a stepper motor. The device also includes
a color camera (for capturing targets), distance sensor, and two fan lasers (one positioned
horizontally and the other vertically, to create a cross (+) on the target); all were mounted to a pan/tilt
unit.

In order to validate the spraying device operation, several experiments were conducted to evaluate
the flow rate relative to the nozzle cup rotational position, the spray diameter relative to the nozzle
cap rotational position, and the ability of the device to detect and spray targets of different sizes.

Detailed description of the adjustable spraying device and experiments are presented in Chapter 7.

3.6. Image registration techniques

A novel registration method suitable for unstructured environments with long intervals of sensing
ranges was developed. The registration approach is based on the computation of a “dynamic”
transformation matrix in which each element is a function of the distance from the object in the
image. In the field this distance can be measured by a range sensor. We demonstrate the utility of
our approach using an RGB and thermal camera, as well as a laser scanner. Within the interval, the
method offers compact representation of multiple (or infinite, if one considers the continuous range)
registration transformations. Thanks to the regression algorithm, the procedure permits registration
at distances for which the sensors were not calibrated.

The registration approach (see thesis DVD @ \Papers\ Paper 2 - Distance-Dependent Multimodal
Image Registration for Agriculture Tasks) was implemented on another robotic platform and hence

is not detailed in a separate chapter in this thesis.
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4. ROBOTIC SPRAYER

4.1. Overview

This chapter describes the robotic sprayer platform designed and built to serve as a research tool for
investigating methods and devices designated for the agricultural domain in general and specifically
for vineyards operations. Detecting and spraying the grape clusters was the main agricultural task

this thesis focused on.

4.2. Robotic platform

SIS - "

e Pradih e v

' F-iguﬂre —‘I':i;Jbo»tic pl'atform dufing field éxperimnts.
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The robotic sprayer (Figure 4, Table 5) chassis is assembled from two identical platforms (Figure

4a) that are interconnected using a two DOF universal joint (Cardan Joint, Figure 4b). The first DOF

(Figure 4b-A) is used to improve the turning radius, the second DOF (Figure 4b-B) allows the

platform designers to neglect the need for complicated suspension system. Despite the fact that the

robot is capable of turning with differential steering, allowing a relative angle between the platforms

contributes to a smaller turning radius and minimizes side slip of the wheels, resulting in reduced

wear of the vehicle and less damage to the field. The design payload of each platform is 300Kg. A

modular approach is taken with four identical wheel modules. Each wheel module consists of: ATV

wheel (0.5m diameter), wheel shoulder that connect the wheel to the platform, and a 24V-480W

electric motor. The electric motor is fixed to the platform and connected to the wheel using chain

wheels. An incremental encoder (US DIGITAL — E5) is attached to each electric motor and is used

to control the robot. The robot is equipped with an electrical box that is mounted to the front platform

and contains the following:

e Small size industrial PC computer with Intel i7 processor,

e 77 touch screen connected permanently to the computer allowing the operator to control and
reprogram the robot in field conditions,

e Two electric motor controllers (Roboteq AX3500), each able to control 2 electric motors with
current up to 60A each. The controllers are connected to the computer through RS232,

e Other peripheral hardware such as: Arduino boards, flat screen, small batteries; additional
devices can be changed according to the experiment.

Other peripheral equipment on the robot includes (Figure 4d):

e Color camera (Microsoft LifeCam Studio) mounted to the front platform facing forward,

e Two car batteries 12V 110A/h. The batteries are connected together to get 24V,

e Power generator 2500W (Geko 2801) for continuous power supply during field work,

e Commercial sprayer (200L tank with patrol motor and pressure pump) is mounted to the rear
platform,

e Gamepad controller (Microsoft Xbox 360 wireless controller). The controller is used to manually

control the robot’s movement.
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2 Motor

2 Motor | |
Controller

Electric Motor

Spraying
Nozzles

Commercial
sprayer

Universal Joint

Power
Generator

d

Figure 4 — Robotic sprayer overview. (a) Two identical platforms. (b) Joint that connects the
two platforms. (c) Electric power scheme. (d) Robot overview.
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Table 5 — Robotic platform specifications.

Mechanical

Dimensions 120X220X160 [cm] (W-L-H)
Weight 200 [Kq]

Load capacity 500 [Kg] (250 for each platform)
Speed 3 [m/s]

Traction system Wheels

Traction motors 400W motor (per wheel)
Batteries 2x110[Ah]

Autonomy Y [h]

Temperature range | -10° ~ 50° [C]
Max. climbing angle | 15°
Control

Can attach several platforms

Modular system Possibility for robotic arms

Connection to different sensors

WIFI

rs232

usb

Ethernet

Roboteq AX3500

controllers Arduino board

phidgets

color camera (Microsoft studio cam)
Sensors Incremental encoder for each wheel
Single beam laser distance sensor
Software Custom build based on Visual Studio C#
(The robotic platform CAD files are included in the thesis DVD \Robotic platform CAD files\).

connection

4.3. Kinematic model for the robotic platform

The robot desired trajectory is determined by a machine vision navigation algorithm aimed to follow
a visual path. The path trajectory is converted into segments of curves or straight lines. Inputs for
the kinematic model are the robot velocity and the curve radius. Outputs of the kinematic model are
the velocity of each one of the four wheels. In case that the trajectory of the robot is a straight line,
all four robot wheels will have the same velocity corresponding to the desired robot velocity. In case
that the trajectory is a curve, each wheel will have different velocity, according to the kinematic

model, and the robot’s chassis will travel at the desired velocity.
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Figure 5 — Robot position definitions.

The robot is described as the two orange rectangles (Figure 5) where each rectangle represents one
of the two robot platforms. The lower platform represents the rear part of the robot and the upper

platform represents the front part of the robot. As shown in Figure 5, the robot is moving

counterclockwise with a turning radius of I. The state variables are ¢ = [x y 6 ¢] were x and y

represent the center position of the rear robot platform relative to the world coordinates system x,,

y, - 0 represents the angle between the horizontal axis of the robot and the horizontal axis x,, and

¢ represents the angle between the robot platforms.

yon

Vs \
N

N
Cd

Xo

Figure 6 — Definitions of the rotation and translation matrixes.
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In order to define the position of each one of the robot wheels relative to one main coordinate

systems, RTM’s were used. Three RTM’s were constructed, the first Ay, (red in Figure 6) is used to
convert between coordinate system 1 to O, the second A, (green in Figure 6) is used to convert
between coordinate system 2 to 1 and the third A,, (blue in Figure 6) is used to convert between
coordinate system 3 to 2. The RTM between the third coordinate system and the world system O, is
the multiplication of all the RTMs to that point (i.e., Ay;=Ay;-A,-Ay). Detailed description of the
RTM’s is shown in Appendix A.

In order to determine the wheel position relative to the world coordinate system 0, the vector of each
wheel, relative to its one coordinate system was multiplied by the corresponding RTM. For example,

. . . . -w/2
to determine the position of the rear left wheel, the wheel vector in coordinate system 1 { 0 } was

multiplied by RTM A, :

Back Left Wheel = {XBL } = Ay;- Equation 1

VoL | -@2) w-Sin[@]+y

1
The position of each one of the robot wheels was calculated in a similar way, Appendix A.

-w/2
0 J{ -(1/2) W-COS[9]+X:|

The wheels velocity was calculated using the derivate by t the wheel position. The detailed results
of the robot’s wheels velocities are summarized in Appendix A. The wheels velocities are given as
the shape of x-value and y-value. Due to the nonholonomic robot constraints, the velocity of the
wheel can be only in the direction where the wheel is facing. In order to calculate the velocity toward
the momentarily direction of the wheel, two vectors were constructed to project the x and y velocities
to the momentarily wheel position. The two vectors are:

1. Rot, =(—Cos[#] Sin[&])

2. Rot, =(—Cos[0+¢] Sin[0+¢])

Where, Rot; is used to project the vectors of the rear robot platform and Rot> is used to project the
front robot platform. The velocities results of each wheel are summarized in Appendix A.

Detailed analysis of the kinematic model for different turning curves produced the relation between
the four wheels velocities and the turning curve (Figure 7). The colored lines represent each of the
wheels speed and the black line shows the angle between the platforms (o)
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Figure 7 — Wheel speed for turning radius.

The robotic platform is controlled using the results in Figure 7 and Appendix A.
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5. GRAPES AND FOLIAGE DETECTION

5.1. Overview

Three algorithms were developed for the grape clusters detection and a single algorithm was
developed for the foliage detection. The algorithms were evaluated by comparing performance on
images acquired in the field. This work was published in the Intelligent Service Robotics Journal
(Berenstein, Shahar, Shapiro and Edan 2010). Several previous works related to the detection of

grape berries and grape clusters are described in Table 6.

Table 6 - Examples of work in grape detection.
Application Sensor Reference

Grape bunch detection - RGB images (Liu and Whitty 2015)

SVM classifier

high-resolution | (Font, Palleja, Tresanchez, Teixidd, Martinez,
images Moreno and Palacin 2014)
(Nuske, Wilshusen, Achar, Yoder, Narasimhan
and Singh 2014)
Grapevine yield and leaf (Diago, Correa, Millan, Barreiro, Valero and

2 color camera .

area estimation Tardaguila 2012)
Automatic detection of (Reis, Morais, Peres, Pereira, Contente, Soares,
bunches of grapes Valente, Baptista, Ferreira and Cruz 2012)

Counting red grapes

Yield prediction color camera

color images

5.2. Detection algorithms

5.2.1. Foliage detection algorithm

The Foliage Detection Algorithm (FDA) is based on the fact that the foliage color is green. Two
filters operate on the captured image; one removes white pixels (sky, sun, etc. by applying a
thresholds on each of the three RGB channels) and the other traces the green pixels (by applying a
threshold on the green RGB channel only green pixels are kept). These filters are combined to
produce the foliage image (Figure 8). Along this process the ground pixels are also removed. The
FDA is not designed to separate the grapevine foliage close to the camera from the foliage of a
grapevine in the next row. Such a separation is not necessary to identify the grapevine foliage and
the grapes clusters (included in the thesis DVD \Foliage and Grapes Detection Algorithms\Foliage

detection algorithm\).
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Figure 8 — FDA. (a) Captured image. (b) Final foliage image. (c) Algorithm block diagram.
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5.2.2. First grape detection algorithm

The first Grape Detection Algorithm (GDAZ1) is based on the difference in edge distribution between
the grape clusters and the foliage. The algorithm was created by examining images from the vineyard
and noticing that regions of grape clusters contain more edges than those in foliage regions. GDA1
includes three main stages (Figure 10): FDA, edge detection, and thresholding the high density edge
from the low density edge areas. The edge detection algorithm was based on the Canny edge
detection algorithm (Canny 1986). The Canny algorithm was empirically selected after
experimenting with different edge detection algorithms on an assortment of 100 grape images.
Examples of different edge detection methods are shown in Figure 9. These edge detection methods
operated after converting the image to a gray-scale image. Results indicated that the Canny
algorithm produced the most highly detailed edge images (Figure 9); hence, it was selected for this
assignment. These results correspond to previous research (Shin, Goldgof and Bowyer 1998; Sharifi,
Fathy and Mahmoudi 2002).

(The Matlab program code is included in the thesis DVD \Foliage and Grapes Detection

Algorithms\Grapes clusters detection algorithms\Edge detection).

Figure 9 — Different edge detection methods.
(@) Sobel. (b) Prewitt. (c) Roberts (d) Laplacian of Gaussian (e) Canny.

5.2.3. Second grape detection algorithm
The second GDA (GDAZ2) is based on a decision tree algorithm. First, the color image is represented
in both the common RGB representation and the perceptually motivated HSV (hue, saturation, and

intensity) representation. Then, supervised patches taken from the grape areas and the foliage areas

32



are used to extract the following parameters from each of the R, G, B, H, S, and V channels: mean
value, standard deviation, and the mean and standard deviation of the gradient magnitude. Using
three patch sizes, 72 different parameters were extracted from each image according to Table 7 and
a total of 1708 samples of these parameters were extracted from the entire image collection.
Pearson’s Correlation (Breiman, Friedman, Stone and Olshen 1984) was used to filter the parameters
that have weak correlation to the classified data: high Pearson correlation represents high correlation
between the parameter and the classification. All parameters with a Pearson correlation less than 0.5
were removed from further consideration. The most significant parameters that were selected using
the correlation test were the mean gradient magnitude of the R, G, B, and V channels, all exhibiting
Pearson correlation above 0.6. Interestingly enough, this result supports the approach taken in GDA1

which is based on edges density in the image.

NJ/

|

‘ Captured Image ‘

Operating FDA
v

Edge detection algorithm

v

Threshold Image

Figure 10 - GDAL.
(a) Algorithm block diagram. (b) Captured image. (c) Edges image. (d) Final grape image.
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Training the decision tree was done using the C5.0 algorithm (Breiman, Friedman, Stone and Olshen
1984). The dataset was divided into two groups of 70% and 30% for training and testing,
respectively, as commonly practiced. Once the decision tree was constructed, it was used for the
classification: the same parameters that were extracted during the learning process were extracted
from the given image around each pixel, and then each pixel was classified as grape or non-grape
using the trained decision tree. Selected results of GDAZ2 are shown in Figure 11.

(Matlab program is included in the thesis DVD \Foliage and Grapes Detection Algorithms\Grapes
clusters detection algorithms\Decision tree).
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Table 7 — Decision tree parameters.
Mask diameter = 11

Mean Standard deviation
Image Gradient Image Image Gradient Image
RG,B|HSV|RGB|HSV|RGB|HSV|RGB|HSV
Mask diameter = 15

Mean Standard deviation
Image Gradient Image Image Gradient Image
RG,B|HSV|RGB|HSV|RGB|HSV|RGB|HSV
Mask diameter = 21

Mean Standard deviation
Image Gradient Image Image Gradient Image
RGB|HSV|RGB|HSV|RGB|HSV|RGB|HSV

‘ Captured Image ‘

‘ Operating FDA ‘

‘ Parameters extraction ‘

+

‘ Evaluate parameters ‘

I

‘ index image ‘

!

‘ Final image ‘

a b

Figure 11 — GDAZ2.
(a) Algorithm block diagram. (b) Captured image. (c) Index image. (d) Final image.
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5.2.4. Third grape detection algorithm

GDAZ3 is based on pixel comparison between edge representations of the captured image with a
predesigned edge mask that represents grapes. A large number of overlapping pixels between the
edged image and the edge mask indicates that the area in the image is similar to the area in the mask
and therefore a high probability for a grape cluster. The algorithm uses a moving average and
compares the mask over the edged image using two-dimensional convolutions. Four-edge masks
were evaluated (Figure 12): (a) edge mask of single grape, (b) edge mask of grape cluster, (c) perfect
circle with varied thickness and diameter of one grape with zero value at the center, and (d) perfect
circle with varied thickness and diameter of one grape, with negative value at the center. Unlike the
third mask, the fourth mask was designed to distinguish between circular edged patterns with and
without response in its interior (which would be less preferable in terms of hits).

Given the proposed alternatives, the best mask for the algorithm was selected using the methodology
described in the Image Evaluation Methodology section. Figure 13 presents descriptive results of
GDAS3.

(Matlab program is included in the thesis DVD \Foliage and Grapes Detection Algorithms\Grapes

clusters detection algorithms\Moving mask).

M
b

Figure 12 — Four edge masks.
(a) Single grape. (b) Grape cluster. (c) Center zero. (d) Negative center.

36



Figure 13 — GDAS. (a) Captured image. (b) Edged image. (c) Index image. (d) Final image.

5.3. Experimental methods

A color camera (IDS Inc., uEye USB video camera with a Wide VGA [752 x 480] resolution) was
attached to a custom-built towing cart designed specifically for the image sampling test (Figure 14).
This cart imitates the movement of a wheeled vehicle so as to ensure the images taken using the cart
are as similar as possible to images taken from a moving wheeled robot (including the minor image
blur occurred for exposure during motion). The camera was connected to a DELL® Core2 laptop
computer. Images were acquired using Matlab® Image Acquisition Toolbox and saved for offline
processing. The images were captured under natural illumination field conditions in mid-day during
the summer time (rarely cloudy weather). The vineyard rows were positioned north-south. Field
experiments were conducted during the growing season of 2008. The cart was manually dragged
through the vineyard row and images were captured at a rate of 30 fps and stored on the computer.
This process was repeated every two weeks from mid April to the end of July 2008. The dragging
speed of the cart was set at 4 to 5 [km/h], to imitate the normal speed of manual spraying.
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Figure 14 — Experimental towing cart.

To obtain a large variety of grape and foliage images, the experiments were performed in two
different vineyards, one with green grapes (located in Arogot, Israel) and the other with red grapes
(located in Lachish, Israel). We assume that a minor percentage of the grape clusters in the images
were totally occluded by leaves, branches, and other grape clusters. 100 random images were
extracted from 16 different movies that were sampled in the field. For comparison and algorithm
test accuracy, the grape cluster areas were marked manually in each image (the photos are included
in the thesis DVD \Foliage and Grapes Detection Algorithms\ and are available for public use under
demand@

https://drive.google.com/open?id=0B5nYMTLWCcUQTFRtTkR1SVdlakE

5.4. Detection algorithm results

The robot’s spraying speed relative to the algorithm processing time is important for real-time
implementation. The following condition must be met: v-t<x, where , is the robot’s speed, . is the
machine vision processing time, and . is the real world field-of-view length. Laboratory
measurements showed that the field of view length as perceived by the camera is 2 m, with 1.5 m
distance from the camera to the grape clusters. The robot speed as related to the processing time can
be calculated by using v << X/t and substituting x=2m. The maximal robot speed as a

function of the processing time is shown in Table 8.
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Table 8 — Robot speed in relation to processing time.

Algorithm | Processing time [S] | Maximal Robot speed [m/s] (km/h)
GDA1 0.65 3.07 (11.07)
GDA2 1.43 1.39 (5.03)
GDA3 1.15 1.73 (6.26)

The potential to save pesticides is the percent of maximal feasible saving possible in a given image
(based on experts manually mark areas as grape clusters). The saving potential depends on the
percent of grape clusters in the given image. Saving potential of 100 implies that there are no grapes
in the image and there is no need to spray. The saving potential is inversely proportional to the
percent of grape clusters in the image. The relation between the percent of grape clusters in real field
images to the saving potential is shown in Figure 15. The saving potential increases with a smaller
number of grape clusters in the image. Such conditions of few grape clusters could be a result of

images taken early in the season or a gap between the grapevines.

100 +
95 +
90 -~
85 -
80 -
75 A
70 -
65 -
60 -
55 -
50 -
45 -~
40 -

Saving Potential [%0]

1 4 8 11 12 14 15 17 19 22 31
Grape clusters in image [%0]

Figure 15 — Evaluation results of the relation between saving potential and grape clusters in
the image.

Three of the four masks suggested for GDAS3 resulted in similar pesticide reduction (Table 9),
indicating the validity of using an artificial perfect circle mask as an alternative to masks created
from real-world edged image. Furthermore, later in this work (7) the size (diameter) of the artificial
circle mask can be updated dynamically during the field spraying. These masks are sensitive to
varying grape size and to use this algorithm throughout the growing season the masks size must be
adjusted. A self-calibration process can be developed to adjust the mask size to the changing grapes
size.
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Table 9 — GDAS3 performance of the four masks.

Mask Detection rate [%] | Pesticide reduction [%]
grape cluster 90.45 24.08
center zero 89.95 23.90
single grape 90.10 22.20
negative center 90.53 12.73

The performance of the three GDA’s is summarized in Table 10 indicating reduction between 25%

and 30% of pesticides. The detection of grapes as grapes (TP) is more than 90%, which is considered

very high with respect to other agriculture detection systems which reach average localization

success of 85% detection rates and usually do not evaluate false negative rates (Bac, Henten,

Hemming and Edan 2014). The overall detection results show high ability to detect grape clusters

in the vineyard environment.

Table 10 — Final GDA's performance.

Reduction of | Grape as | Foliage as | Grape as | Processing
Algorithm | pesticide agent Grape TP Grape TN Foliage FP time

[%] [%] [%] [%] [S]
GDA1 30.59 90.4 9.59 73.48 0.65
GDA2 25.58 90.73 9.26 78.73 1.43
GDA3 26.79 90.7 9.67 79.18 1.15
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6. HUMAN-ROBOT COLLABORATION

6.1. Overview

This chapter presents a new concept and methods for remote collaboration between a human
operator and a robotic sprayer for the target detection task. The framework places the human at a
remote location and uses the human’s excellent perception skills to collaborate with the robot on the
target detection task. The human and robot work in a sequential mode as described in the workflow
diagram (Figure 16). The suggested concept positions the human at a remote location (e.g., home,
office) equipped with a target marking device (e.g., stationary computer, laptop, tablet, PDA, or
smart phone). Berenstein, Shahar, Shapiro and Edan (2010) grape cluster detection algorithm is
operated on images acquired by the robotic system. Depending on the collaboration level (described
in section 06.2), the human can mark additional targets and/or erase targets detected by the imaging
algorithm. The marked targets are then sent back to the robot for actual spraying. Different marking
methods are proposed and compared.

This work presents several collaboration levels and different human target marking methods and a
methodology for their evaluation. Experiments were specially designed to compare the different
options. Performance measures and a procedure for ground truth measurement were defined.
Collaboration is expected to yield better target detection results since it benefits from the robot’s
consistency and accuracy (the image detection algorithm) combined with the human’s perception

and learning skills.

Robot task Human task

Detect and mark targets Detect and mark targets

. . Image sent to remotely ¥
Capturing image ﬁ (only for collaboration ﬁ located human ﬁ according to the

method 2,3) collaboration level

\c°||aboration evel 1/

Perform spraying

Moves one step forward . Image sent back to
_ according to marked _
(one frame) robot

image

Figure 16 — Human-robot working diagram.
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6.2. Human robot collaboration methods

Four levels of human-robot collaboration for detection and marking of the targets were developed
based on Sheridan’s 10 levels of human-robot collaboration (Sheridan 1992) and based on previous
work in agricultural target detection (Bechar and Edan 2003). The four collaboration levels
presented below are based on Sheridan’s scale however the numbers are sequential and therefore
not consistent with Sheridan’s levels of automation. In each collaboration level description (sections
6.2.1 to 6.2.4) the corresponding collaboration level according to Sheridan’s work is noted.

The human operator has to mark all the target area with maximum accuracy of the targets in the
image in a fixed period of time. Maximum accuracy is defined as maximum target area along with
minimum foliage within the marked area. All marked areas will later be considered as areas to be

sprayed by the robot.

6.2.1. Collaboration level 1 — fully manual human target marking

The human operator is presented an image and must mark all areas to be sprayed. No automatic
image analysis algorithm is executed. Figure 17a shows an image marked by a human (constant
circle diameter marking method). This collaboration level corresponds to Sheridan’s level of

collaboration 1 ('
V| A S AN

A | B
Figure 17 — Collaboration level 1. (a) User marked. (b) Binary image for analysis.

6.2.2. Collaboration level 2 — robot suggests, human approves

Captured image grape clusters are automatically marked using a machine vision algorithm for grape
clusters detection (Berenstein, Shahar, Shapiro and Edan 2010). These marked areas are considered
as recommendations for the human operator. The operator must mark each target he/she wants to

spray. The operator can use the robot-recommended areas to achieve enhanced target hit rate. All
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areas to be sprayed must be marked by the human. Figure 18 illustrates the collaboration procedure.
The image captured in the field is processed by the robot using Berenstein, Shahar, Shapiro and
Edan (2010) grape detection algorithms (Figure 18a blue colored areas), the processed image is
transferred to the human operator for further analysis. Figure 18b shows the areas marked by the
human operator (red areas). Figure 18c shows the binary image to by sprayed; only the red area will
be sprayed. This collaboration level corresponds to Sheridan’s level of collaboration 4 ("the

computer offers a complete set of action alternatives, and suggests one").

A T | B ' c
Figure 18 — Collaboration level 2.
(a) Robot suggested mark. (b) Human mark area. (c) Binary image to be sprayed.

6.2.3. Collaboration level 3 — robot marks, human supervises

The human receives an image with grape clusters marked by the robot using Berenstein, Shahar,
Shapiro and Edan (2010) machine vision algorithms. The human has the ability to manually reject
robot marked areas and add areas to be sprayed (Figure 19a,b). In case the human does not make
any change in the robot-marked image (Figure 19a), the entire robot-marked area will be considered
as targets and will be sprayed. As opposed to collaboration level 2, the human does not need to
confirm the robot markings but can change existing markings. This collaboration level corresponds
to Sheridan’s level of collaboration 5 (“the computer offers a complete set of action alternatives, and

executes that suggestion if the human approves").
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A - b
Figure 19 — Collaboration level 3. (a) Robot marked image. (b) Binary image to be sprayed.

6.2.4. Collaboration level 4 — fully autonomous robot marking

This collaboration method corresponds to Sheridan’s 10th level of automation where the computer
decides everything and acts autonomously with no human operations (Sheridan 1992). With this
collaboration level the robot uses (Berenstein, Shahar, Shapiro and Edan 2010) machine vision
algorithms to detect the grape clusters and sprays solely the detected areas. The human has no ability
to intervene. This collaboration level corresponds to Sheridan’s level of collaboration 4 (“the

computer decides everything and acts autonomously, ignoring the human™).

6.3. Human marking methods

Three marking methods were developed and evaluated: (i) constant circle diameter — the operator
sets the center of a constant diameter circle and by clicking the left mouse button the circle is marked
on the image (Figure 20a). Using this method, the operator cannot change the circle diameter. (ii)
ellipse with changeable size — by holding the left mouse button the user sets the ellipse center point,
and at the point of releasing the left mouse button the end point of the ellipse is set (Figure 20Db).
(iii) free hand — the operator holds the left mouse button and surrounds the target area. When
releasing the mouse button the area bounded is marked as target (Figure 20c).

In each method the area bounded within the marked area is considered as “detected” and is colored
in red. With each of the marking methods, the operator can use the right mouse button to erase a
marked target. The erasing method is identical to the marking method (e.g., when using the constant
circle diameter method, the operator can click the right mouse button and the target marked within

that area will be erased).
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When the target marking process is completed (due to marking all the targets or end of marking time

for the image) a binary image is saved for post-analysis (Figure 20d-f).

= e = B =l

N

d e f
Figure 20 — Marking methods & results. (a) Constant circle diameter. (b) Ellipse. (c) Free
hand. (d) Constant circle diameter result. (e) Ellipse result. and (f) Free hand result.

6.4. User interface

The main goal of the interface is to present the human with images captured from the commercial
vineyard. Using the suggested marking method, the human marks targets within the image; the
images are presented sequentially to the user switching at a fixed time. Presenting the user an image
for a fixed time contributed in two ways: first, the user was not able to dawdle on images more than
the allocated time, resulting in a costly non-effective process, second, the user did not have the
option to mark the images fast, resulting in bad marking (e.g., the user can finish marking the targets
and continue to the next image instead of using the remaining time to unmark FA areas).

The interface (Figure 21) consists of two main windows — the settings and the marking window.
Using the settings window (Figure 21a), the user can select different properties of the marking task
such as: marking method, circle diameter (relevant only for the constant circle diameter marking
method), marking time (image switching time), image to mark (relevant only for experiments), and
the address path to save the marked images (relevant only for experiments). The experiment
properties are pre-selected by the user and cannot be changed during the experiment. The marking

window (Figure 21b) is used for displaying images.
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The human’s task is to detect and mark targets within the image while using one of three marking
methods. The marking window also contains two indicators, the time left to mark the current image
(both numeric and visual), and a counter for the number of mouse clicks. Each marked target is
marked in red.

The interface was implemented in the Microsoft Visual Studio environment with the C# language

(detailed program codes included in the thesis DVD\Human-Robot Collaboration\).

6.5. Evaluation methodology

Experiments were designed aiming to evaluate the influence of the human-robot collaboration level,
human target marking method, and the switching time of the image captured in the field. This was
achieved through a series of user experiments in which images captured in the field were presented
to users on a computer screen in the lab. The work included four experiments to evaluate the: 1)
human learning time to determine the time needed for the human to reach a hit rate expertise of 90%,
2) human marking methods, 3) human-robot collaboration levels, and 4) computer detection value
on the hit rate. During the experiments two image switching times were evaluated. The image
switching times, simulating different robot speeds, were 15 and 12 [sec] per image corresponding
to 1 and 1.25 [m/s] travel speed along the row.

All of the following experiments were conducted in a computer lab at Ben-Gurion University of the
Negev. Each participant occupied a single stand-alone computer equipped with a 19” screen. The

performance measures for evaluation were hit rates (true positive, TP) and false alarms (FA).

6.5.1. Database

Creating a collection of ground truth images is necessary for target detection evaluation. Hit and
False Alarm (FA) performance measures were used. Since the case study for this work is a robotic
sprayer for vineyards, the images used originated from a commercial vineyard growing green grapes
of the “superior” variety. An RGB camera (Microsoft NX-6000) with 600x800 resolution was
manually driven, at mid-day, along a commercial vineyard in Lachish, Israel, during the summer
season of 2011, one month before harvest time. The images were captured from 5 different growing

rows.
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Figure 21 — User interface. (a) Setting window. (b) Marking window.
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The targets were defined as the grape clusters. A group of three experts was guided to mark the
closing perimeter of each grape cluster in the image. The experts were guided to mark the targets
with no time limit for either a single target or the complete image. The experts had the flexibility to
zoom in and out of the image to achieve precise marking of the target. The final ground truth was
marked using the judge rules criteria (if a given pixel was marked by two or more experts, it was
considered a target).

A set of 129 images were marked using this technique and used as a ground truth for the following
experiments (the images are available for public use @
https://drive.google.com/file/d/0B5nYMTLWCcUgYmZ2QzY5aVR1MO00/view?usp=sharing).

6.5.2. Performance measures and data analysis

Two performance measures were used: Hit rate (true positive) and False Alarm rate (FA, false
positive). Figure 22 illustrates the target area, human marking area, and the performance measures
using artificial shapes. The circle represents the target to be marked and the rectangle represents the
human marking area. The conjunct area between the target and the human marking (colored yellow)
is the sum of hit pixels. The target area not marked by the human (colored red) is the sum of miss
pixels, and the human marked area that is not part of the target area (colored green) is the sum of

FA pixels. The Hit rate [%] was defined as:

_HT o0
HIT + MISS
The FA rate [%] was defined as:
FA
horizontal resolution -vertical resolution

Equation 2

100 Equation 3

800

600 —

Correct Rejection

Figure 22 — Performance measures illustration, the circle represents the target, the rectangle
represents the human marking.
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The F1 score (Sokolova and Lapalme 2009) was on purpose not used as the performance measure
S0 as to be able to control independently the FA and Hit rate depending on the task objective required
by the farmer.

A paired t-test design was used for the analysis. Since for each experiment all the users marked the
same database images, the statistical paired t-test was used. T-test was used since we had a large
population (>30) and assumed normal distribution of their performance. The tests considered

statistical significance at or below a=0.05.

6.6. Preliminary experiment — evaluating interface learning time

Learning is defined as the time required for a group of people without experience and without
interface acquaintance to reach satisfactory use of the interface (Norman 1988). Bringing the users
to the same level of expertise is crucial to neutralize the interface learning effect. The goal of this
experiment was to find the learning time needed for the users to get to 90% hit rate detection with
the interface. Users who reached the target 90% marking hit rate were considered experts. Since the
switching time between the images is constant, the learning time can be referred to as the number

of images needed for a user to become familiar with the interface.

6.6.1. Experimental setup

Prior to the experiment the participants were instructed on how to use the interface using an
explanation slideshow identical for all participants. Using the interface, the participants were
instructed to mark the grape clusters in the image as accurately as possible while considering the
image switching time. Two switching times were evaluated, 9 and 12 seconds. When the switch
time passed, a binary image containing the marked areas (e.g., Figure 17b) was saved for later
analysis. After the experiment was finished, each participant completed a NASA TLX workload
questionnaire to evaluate the workload experienced by the participant during the target marking.
Since the goal of the learning process was to reach 90% hit rate detection, the only performance

measure used was the HIT rate value.

6.6.2. Experimental design

A group of 20 students, aged 20 to 30, were randomly divided to 2 groups of 10 students each, and
were used as the experiment participants. The experiment was conducted according to the
experimental plan described in Table 11. The human-robot collaboration level was set to fully
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manual marking and the target marking type was set to constant circle diameter. Each participant

group practiced a single image switching time.

Table 11 — Experimental design - learning time.

Image switching | Collaboration Marking
time [sec] level method Number of | Total experiments
Group - . .
level 1 | Constant circle | images time [sec]
9 12 :
(Manual) diameter
1 X X X 80 720
2 X X X 60 720
6.6.3. Results

Learning experiments results indicate that performance increases with a positive trend along time as
expected (Figure 23). The interface learning goal was to reach 90% hit detection rate. The cross-
sections of the linear trend line with 90% hit were 522 and 366 seconds for the 9 and 12 second
Image switching times, respectively. Based on this experiment, a set of 30 images was used for the

learning stage in all following experiments.
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Figure 23 — Learning experiment results.
(a) 9-Second switching time. (b) 12-Second switching time.
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6.7. Evaluating human marking methods experiment

The aim of this experiment was to compare the three suggested marking methods. The three marking
methods were compared to the fully manual human-robot collaboration method (collaboration level
1), which is the most demanding of the user. Two image switching times, high and low

corresponding to the robot’s slow and fast movement speeds along the row, were evaluated.

6.7.1. Experimental setup

Prior to the experiment the participants were instructed on how to use the interface using an
explanation slideshow. In addition, the performance measures used to analyze the marked images
(hit, FA) were explained and the participants were instructed to mark the target accordingly (they
were instructed to maximize hit rate and minimize false alarms). The number of images for the prior
training was set to 30 based on findings from the learning time preliminary experiment (described
in section 6.6). Using the preset switching time and marking method, each group marked the
projected images. In order to neutralize the effect of the marking methods sequence on the results,
each participant practiced the three marking methods in a random order. After the experiment the
participants completed a NASA TLX workload questionnaire (Appendix B. ).

6.7.2. Experimental design

A group of 72 students, aged 23 to 30, randomly divided to 2 groups of 36 students each, were used
as the experiment participants. The experiment was conducted according to the experimental plan
described in Table 12. Excluding the 30 images used for the interface learning process, each
participant marked a total of 150 images, 50 for each marking method. The marking methods

sequences were randomly selected to neutralize any user fatigue influence.

Table 12 — Experimental design - manual collaboration, three marking methods.

Grou Image switch time [sec] Marking method
P 12 15 constant circle diameter | ellipse | free hand
1 X X X X
2 X X X X
6.7.3. Results

The results (Figure 24 and Table 15) show that Hit rates are maximized when the users have more
time to mark the image. For the two image switching times, the method with the highest hit rate and
the minimum miss rate was the constant circle diameter (94.3%, 89.6% and 84.4%, for the constant
circle diameter, ellipse, and free hand at 15sec compare to 91.4%, 87.0%, and 82.5% at 12sec
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respectively). Minimum FA rate is achieved when the marking method used is free hand marking
(13.0% and 10.1% for the ellipse and free hand at 15sec compare to 16.8% and 13.2% at 12sec
respectively).

The difference in the number of clicks between the 15[sec] and 12[sec] image switching times (Table
13) indicates that the number of clicks per image is higher when the image switching time is longer
with an average difference of 3.47 clicks. There is a strong correlation between the number of clicks

to the target size (0.95 and 0.97 for 12[sec] and 15[sec] image switching times, respectively).

Results (

Table 14) indicate that the most comfortable marking method was the constant circle diameter (when
the average score was 3.63, 3.25, and 2.84 for the constant circle diameter, ellipse, and free hand
respectively).

The preferred marking method depends on the task objective. If the farmer aims to maximize the hit
rate the constant circle diameter marking method with the long image switching time should be
chosen; if the farmer wants to minimize false alarms the free hand marking method with a short
image switching time should be chosen. The ellipse marking method did not indicate any advantage

over the other two marking methods and hence was omitted from the analyses.

Table 13 — Number of clicks difference between 15 and 12 seconds (15-12)
image switching time.
constant circle | ellipse | free hand

Average 3.47 3.18 1.29
Standard deviation 1.96 1.01 0.72

Table 14 — Results of ease of use questionnaire.
constant circle | ellipse | free hand

Average 3.63 3.25 2.84
Standard deviation | 1.28 1.18 1.15
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Constant diameter circle
Image switch time 12 | Image switch time 15
sec sec

Ellipse Image switch Ellipse Image switch | Free hand Image switch
time 12 sec time 15 sec time 12 sec time 15sec

W Hit [%] 91.4 94.3 87.0 89.6 825 84.4
= FA[%] 14.1 15.1 16.8 13.0 13.2 10.1
7 Clicks 29.4 329 8.5 11.7 6.2 7.5
Figure 24 — Results of marking methods comparison experiment for two different switching
times.

Table 15 — Marking method results summary. paired t-test, df=49, t-critical=2.0095.
a,b are the compared groups, and x is constant.

Image switch time [sec] Marking method t-test | t-test
12 15 constant circle diameter | ellipse | free hand | HIT FA

a b X -11.69 | -12.30
a b X -9.49 | 24.29
a b X -4.91 | 19.99

X a b 11.39 | -12.37
X a b 15.25 | 3.61

X a b 11.96 | 16.52

X a b 17.35 | 13.39

X a b 20.74 | 24.16

X a b 16.69 | 21.07

6.8. Evaluating collaboration level and marking method experiment

This experiment aimed to evaluate performance for the different collaboration levels and two target
marking methods, the constant circle diameter and the free hand marking method. The ellipse with
changeable diameter was not evaluated in this experiment since the previous experiment indicated

it has no advantage over the constant circle diameter and the free hand marking method.

6.8.1. Experimental setup
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Prior to the experiment the participants were instructed on how to use the interface using an
explanation slideshow (included in the thesis DVD \Explanation slideshow\). In addition, the
performance measures used to analyze the marked images (hit, FA) were explained and the
participants were instructed to mark the target accordingly (they were instructed to maximize hit
rate and minimize false alarms). The number of images for the prior training was set to 30 based on
findings from the learning time preliminary experiment (described in section 6.6). Using the preset
switching time and marking method, each group marked the projected images. In order to neutralize
the learning and fatigue effect on the results, each participant practiced one experiment, which

consisted of a single switching time, collaboration level, and marking method.

6.8.2. Experimental design
A group of 130 students aged 23 to 30, randomly divided to 8 groups were used as the participants.
The experiment was conducted according to the experimental plan described in Table 16. Each

participant marked a total of 100 images.

Table 16 — Experimental design.

Group Image switch time [sec] | Collaboration method Marking method
12 15 level 2 level 3 | Constant circle diameter | Free hand
1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X X X
7 X X X
8 X X X
6.8.3. Results

The main aim of this experiment was to compare the collaboration levels for the two marking
methods. The robot’s “task”, in the suggested scenario, is to mark the grape clusters using
Berenstein, Shahar, Shapiro and Edan (2010) grape detection algorithms. In the second collaboration
method (robot suggests, human approves), the robot-detected grape areas were used as
recommendations for the human operator. In the third collaboration method (robot marks, human
supervises), the robot-detected areas were considered as decisions that the human can later change

if necessary. Table 17 summarizes the robot grape detection algorithm hit and false alarm rates.
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The results (Figure 25 and

Table 18) indicate that the highest hit rate 92.66%, is achieved with collaboration level 3,

constant circle diameter and 15[sec] image switching time and these results are statistically

significant. The lowest FA, 2.71%, was achieved with collaboration level 2, free hand and 15

[sec] image switching time. While using collaboration level 2, for the two marking methods,

the hit rate was higher when the user had more time for the marking process. While using
collaboration level 3 with the constant circle diameter, the hit rate was higher, when the user
more time. However, for the free hand marking method, the user showed no improvement
he/she had more time. Collaboration level 3 was proven to be better than collaboration level

all marking methods and image switching times (

Table 18). Collaboration level 3 showed high FA compared to the corresponding collaboration level

2. The number of clicks using collaboration level 3 is greater than collaboration level 2 for the

corresponding marking method and image switching time.
Results from the ease of use questionnaire did not show any statistically significant difference

between the different collaboration methods.

Constant

Constant

Constant

Constant

) ) ) A Free hand Free hand ) A - ) Free hand Free hand
diameter circle | diameter circle A A diameter circle | diameter circle A A
A A Image switch Image switch A A Image switch Image switch
Image switch Image switch . . Image switch Image switch . .
X X time 12[sec] time 15[sec] . . time 12[sec] time 15[sec]
time 12[sec] time 15[sec] _ _ time 12[sec] time 15[sec] _ _
) ) Collaboration | Collaboration ) ) Collaboration | Collaboration
Collaboration | Collaboration Collaboration | Collaboration
level 2 level 2 level 3 level 3
level 2 level 2 level 3 level 3
W HIT [%] 83.56 80.02 60.73 49.65 91.35 92.66 91.92 91.69
= FA [%)] 10.84 8.50 5.96 271 28.47 26.89 29.45 28.87
7 clicks 37.26 39.88 6.91 6.54 41.48 46.79 10.87 7.14

Figure 25 — Results of collaboration level comparison for two marking methods and
switching speeds.

Table 17 — Robot automatic image analysis grape detection performance.

HIT

FA

[%]

83.80

28.44
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| Standard deviation | 12.05 | 5.64 |

Table 18 — Human-robot collaboration level results summary. paired t-test, df=99, t-
critical=1.9842. a,b are the compared groups, and X is constant.

e . Collaboration
Image switching time [sec] Marking method method t-test t-test
12 15 constant circle diameter free | level | level | (HIT) | (FA)
hand 2 3
a b X X 9.50 24.67
a b X X 25.42 | 25.14
a b X X -6.33 9.61
a b X X 1.40 3.46
X a b X 40.86 | 31.65
X a b X 46.88 | 33.79
X a b X -2.44 | -4.99
X a b X 3.23 -8.96
X X a b -17.07 | -35.54
X X a b -23.31 | -38.30
X X a b -45.18 | -50.36
X X a b -55.39 | -58.26

Collaboration level 2 — robot suggests, human approves
Collaboration level 3 — robot marks, human supervises
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7. SITE SPECIFIC TARGET SPRAYING DEVICE

7.1. Overview

The traditional pesticide spraying methods (detailed in section 1) are not suitable for a robotic
sprayer since they lack the precision needed for accurately hitting the target while maximizing the
hit rate and minimizing the FA rate. Although several agricultural spraying robots have been
developed, mostly for weed control and plant protection applications (Mandow, Gomez-de-Gabriel,
Martinez, Munoz, Ollero and Garcia-Cerezo 1996; Steward, Tian and Tang 2002; Singh, Burks and
Lee 2005; Pergher and Petris 2008; Slaughter, Giles and Downey 2008), they are not suitable for
the task of spraying amorphous shapes (such as grape clusters).

To design a spraying device, several different spraying deposition methods were evaluated in
simulation. Based on the simulation analyses the best performing device was selected for
implementation. A novel site specific spraying device was developed, built, and tested specifically
for the task of spraying objects with varying size and amorphous shape while providing maximum

hit rate and minimum FA rate.

7.2. Spraying deposition methods

To develop an efficient spraying deposition method it is important to quantify data regarding the
target coverage quality in terms of false alarm rate and overlapping of sprays. The assumption is
that the targets are accurately detected and that the sprayer aims accurately at the target. The spraying
deposition methods are designed to cover the entire target (i.e., 100% target Hit Rate). We do not
take into account the effect of spray material. Analytical evaluation of the spraying methods was not
possible due to the amorphous shape of the targets and high variability. Therefore, a simulation
analysis was developed (described in thesis DVD \Spraying Simulations\). Three types of spraying
deposition methods were evaluated. This was published in the ASABE Annual International
Meeting (Berenstein and Edan 2012). The simulation results were used to design the spraying device

for amorphous shape target such as the grape clusters (section 7.3).

7.2.1. First spraying deposition method — fixed nozzle spacing
The first spraying deposition method, Fixed Nozzle Spacing, is based on existing spraying
techniques in which a set of nozzles are organized vertically on a spraying column with

predetermined spacing (Figure 26a).
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In this method, the nozzles position and spray diameter (nozzle aperture) are set before the spraying
process regardless of the targets shape and size. The vertical length between the nozzles is derived
from the spray diameter and is set to minimize the sprays circles overlapping (Figure 26b). To enable
spraying dispersing like Figure 26b, an electric valve is set for each of the spraying nozzles. The

electric valve allows accurate control over the spraying timing.

Figure 26 — Fixed nozzle spraying method.
(a) Spraying boom with fixed position nozzles. (b) Nozzle spacing.

7.2.2.Second spraying deposition method — optimal spray coverage
The second spraying method, optimal spray coverage, aims to cover the target area optimally while
using a single nozzle, with a preset spray diameter, attached to a pan\tilt head (Figure 27).
The pan\tilt head provides flexible control over the spray position. The target coverage will be

similar to the first spraying method with an exception that the area coverage will be optimal.
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Figure 27 — Pan\tilt head with spraying nozzle attached.

7.2.3. Third spraying deposition method — one target-one shoot

The third spraying method, One Target-One Shoot (OTOS), is based on the assumption that the
spraying circle diameter can be controlled in real-time. With this method, each target will be sprayed
once for complete coverage. This type of spraying can be achieved by connecting a single nozzle
with a controlled nozzle aperture to a controlled pan\tilt head (Figure 28). The pan\tilt head will
direct the nozzle toward the center of the target and by adjusting the spray diameter the entire target

will be sprayed (Figure 28).

Figure 28 — Varying spray diameter.

7.2.4. Spraying methods evaluation
The three spraying methods were evaluated using a dataset of 129 images sampled in a commercial
vineyard along the season of 2009. The images contained grape clusters images with ground truth

marking of the grapes area (Figure 29). Each image was evaluated using computer simulation of the
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three spraying methods (described in thesis DVD \Spraying Simulations\) and the results were
compared to the corresponding ground truth image. The spraying methods were designed to obtain
100% hit rate so the performance measures were defined as the False Alarm rate (non-target area
that was sprayed) and the number of sprays required for the entire image (to cover 100% of the
target). To derive the optimal spray diameter the fixed nozzle spacing method and the optimal spray

coverage method were evaluated with a range of spray diameters (3-100 [Pixel]).

b
Figure 29 — (a) Grape clusters. (b) Ground truth of grape clusters.

7.2.5. Spraying deposition methods — results

Results of the spraying methods evaluation (Figure 30) are the average outcome of the 129 images
used for the simulation. The results shows that for the fixed nozzle spacing and optimal spray
coverage spraying methods there is a direct relation between the spray diameter and the pesticide
waste given in Equation 4 and Equation 5 respectively (linear interpolation):

PesticideWaste|mm? -10° |=13820*Spray Diameter +54282 Equation 4

PesticideWaste [mm? -10° |- 18034 *Spray Diameter + 30255 Equation 5
Since the OTOS spraying deposition method does not depend on the spray diameter the pesticide

waste value is constant (Equation 6):

Pesticide Waste [mm2 -103J:125518 Equation 6
The number of sprays per image (Figure 31) shows that for the Fixed Nozzle Spacing and Optimal

spray coverage spraying deposition methods there is a power shape function given in Equation 7
and Equation 8 respectively:

-1.208

Number of sprays = 588.45- (Spray Diameter) Equation 7

1.08

Number of sprays = 481- (Spray Diameter) ™ Equation 8
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Since the OTOS spraying deposition method does not depend on the spray diameter, the number of
sprays per image is a constant number (Equation 9) representing the average number of targets in
one image.

Number of sprays = 7.89 Equation 9
400 -
— = Fixed nozzle spacing y = 18034x + 30255

350
=« «QOptimal spray coverage
300 -
------ One target-one shoot
250

y = 13820x + 54282

200 -

150 - y =434.33x + 123640

100 -

Pesticide waste [mm~2 *103]

(S
o
1
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Spray diameter [pixels]

Figure 30 — Pesticide waste (False Alarm + overlapping).
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Figure 31 — Number of sprays.

Determining the preferred spraying deposition method best suited for the application is achieved by
constructing an economic function for each of the spraying methods (Equation 10, Equation 11,
Equation 12). The economic functions include assessment of the related costs due to pesticide waste
and the number of sprays. The outcome value of these functions is the farmer expense which must

be minimized.
VFix NozzIeSpacing[$] = (13820- SD +54282) - (WV) + (588.45- SD—1.208) (ST -TC) Equation 10
VoptimalsprayCoveragel$] = (18034 - SD +30255) - (WV) + (481- SD %) - (ST - TC) Equation 11
Voros [8]= (125518) - (WV) +(7.89) - (ST - TC) Equation 12

where, Vg, menoarypel$] 1S the function result value which represents the cost of spraying one image

(one image equal 1.5m of vineyard length), SD is the Spray Diameter used in the spraying process,
WV is the pesticide Waste Value [$/mm?], ST [Sec] is the Switch Time between targets and TC
[$/Sec] is the Time Cost.
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Operational parameters values, updated for nowadays, were calculated to evaluate and compare the
economic functions:

e Wv=10"[$] (1 liter of pesticide covers 10m2 and costs 10$)
e TC=0.00695[$/s] (human working hour worth 15%/h, robot operation worth 10$/h)
e ST =0.2[s](estimation)

Applying the operational parameters to the economic functions reveals that for the values analyzed

the OTOS spraying method is the least expensive method, regardless of the spraying diameter

(Figure 32).
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Figure 32 — Economic function results.

Different selection of the operational parameters values can lead to choosing another method rather
than One Target-One Shoot spraying method. An equilibrium point between the One Target-One
Shoot and the optimal spray coverage method is obtained when W =6-10°[$], implying that the

spraying process will be equally costly to the farmer (Figure 33).
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Figure 33 — Economic function results (wv =6-107°[$]).

Additional equilibrium points are described in Table 19.

Table 19 — Equilibrium points.

8 10 12 14 16 18 20 22 24 26 28 30 32

Method 1 Method 2 WV [$/mm?] | TC [$/s] | ST [s]
One Target-One Shoot | Optimal spray coverage 6*10° 0.00695 | 0.2
One Target-One Shoot | Optimal spray coverage 10 0.00695 | 0.03
One Target-One Shoot | Optimal spray coverage 10 0.0012 0.2

7.3. The adjustable spraying device

An adjustable spraying device, ASD, was designed and built as an experimental tool to implement

the OTOS spraying method (Berenstein and Edan 2012). The device is mounted to a robotic sprayer

able to navigate along vineyard rows and supply pressurized pesticide. The operational concept of
the ASD is as follows:

1.

2
3
4.
5
6
7
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Direct the nozzle to face the crop (perpendicular to the crop),

Capture an image using the ASD camera,

. Find the target’s position and diameter,

For each target perform the following routine:

Direct the ASD toward the target center,

. Adjust the nozzle diameter according to the target diameter, and

Open the sprayer electric valve for a specific predefined time.



The ASD is presented in Figure 34. The ASD base is constructed from three aluminum parts, two
pressure plates that mount the spraying nozzle and the two line beam lasers, and a shoulder. The
shoulder is connected to the pressure plate with 4 screws and can be height adjusted.

A spraying nozzle (AYHSS 16) is constructed from two parts, the nozzle base and the nozzle cup.
The nozzle base is mounted to the pressure plates. The pressurized (20 BAR) pesticide hose is
connected to the nozzle base and the flow is controlled using an electric valve (on/off). The spraying
diameter can be controlled by rotating the nozzle cap over the nozzle base.

A stepper motor, mounted to the shoulder, is used to control the spraying diameter. The stepper
motor is connected to the nozzle cap using 2 tangent gears (Figure 34b), one connected to the stepper
motor (black, 28T), and the other connected to the spraying nozzle cap (white, 42T). The stepper
motor is controlled using a digital stepper motor driver (LEADSHINE DM556). Rotational feedback
of the stepper motor is acquired using a rotational potentiometer (10 rounds, 1K) connected to the
stepper motor gear. An Arduino (UNO) board closes the stepper motor position loop using feedback
from the potentiometer and the desired circular position.

Other peripheral sensors are mounted to the ASD; a laser distance sensor (SICK DX35) for
measuring the distance between the device and the target, a color camera (Microsoft studio cam) for
capturing images from the field and later used for automatic target detection, and a 2-line beam
marking lasers (532 nm, 50m W, 60°) positioned horizontally and vertically for marking a cross (+)
over the target. The entire device is mounted on a Pan-Tilt Unit (PTU) (FLIR D46-17) able to rotate
horizontally £180° and vertically +31° -80°.

A PC computer is connected to an Arduino board, laser distance sensor, color camera, PTU, and the
electric valve controlling the pesticide flow. The main software for managing the ASD was based
on Microsoft Visual Studio (c#) (included in the thesis DVD \Robot control software\).
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Laser distance sensor (sick
DX35)

Rotational potentiometer
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studio cam)
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Spraying nozzle (AYHSS 16)

Line beam lasers, left —
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(532nm, 60°)

Pan tilt unit (FLIR D46-17)

Stepper motor (LEADSHINE
STHS09, i=1:14)

Stepper motor gear (black)

Nozzle gear (white)

Pesticide supply

Spraying device pressure
plates

Figure 34 — Spraying device. (a) Isometric view — CAD. (b) Front view. (c) Side view.

7.4. Preliminary experiments
Two preliminary experiments were conducted to evaluate the pesticide flow rate and the spray

deposition with different nozzle apertures.

7.4.1. Flow rate evaluation

A flow rate experiment was performed to evaluate the pesticide flow rate for varying spraying nozzle
apertures. The experimental setup included setting up a spraying pressure of 20 [BAR] (the
recommended pressure for this type of spraying nozzle). The spraying duration was computer
controlled using the electric valve.

Twenty-one nozzle apertures that cover all the rotation scale of the nozzle were measured. For each
aperture, three sprays were measured with a delay of 4 s between the measurements (the delay was
needed to allow the remaining drops to leave the nozzle orifice). The duration of each spray was 1s.

The sprayed material was tap water.
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The flow rate evaluation results (Figure 35) show the relation between the flow rate and the
corresponding aperture.
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Figure 35 — Flow rate evaluation results.

7.4.2. Spray diameter evaluation

Spray diameter was evaluated to find the spray diameter (spray cone) for varying nozzle apertures.
Using this relation between the nozzle aperture and the spray diameter, the spray diameter can be
adjusted according to the target size.

The experimental setup (Figure 36a,b) included the ASD facing the target base with a target
attached. The target base was constructed from steel net and was mounted vertically on a manually
controlled conveyor in front of the ASD (Figure 36b).

The target used was a white paper sheet, 0.5 m wide, which was stretched top to bottom and fixed
to the target base (Figure 36b shows the target fixed to the target base after spraying). In order to
view the spray deposition and post-analyze the position of the spray, a red water-soluble food dye
(Florma red 696) was used as pesticide replacement. Each spray repetition included the following
steps: (i) attaching a new target to the target base, (ii) setting the nozzle aperture to the desired value,
(iii) opening the spray flow, (iv) starting the conveyor movement towards the spray jet, and (v) after

the entire target base has crossed the spraying jet, the spray flow is closed and the conveyor stops.
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Figure 36 — Experiment configuration.
(a) Experiment scheme. (b) Field view of the experiment.

The ASD software is designed to start capturing a movie from opening to closing of the spray jet
using the ASD camera. After each spray repetition, the captured movie is saved for post-analysis.
Each movie was manually scanned by a human expert to extract a single image containing the target
in mid-frame. The extracted frame is analyzed manually for the spray boundaries (Figure 37). Since

the spray is cone-base shaped, the spray diameter can be evaluated by measuring the upper and lower
boundaries.
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Figure 37 — Sprayed target.
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The experimental design included 3 distances between the ASD and the target. For each distance
the nozzle aperture measures were between 175 and 210 with increments of 5 (units in potentiometer
Q). Three measurements were conducted for each distance-aperture combination.

The experiment started at dawn ensuring no wind (wind was measured as 0 using Skywatch Xplorer
1).

The experimental results shown in Figure 38 reveal the relation between the nozzle aperture and the

spray diameter for three measured distances.
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Figure 38 — Experimental results.

Table 20 — Experimental results summary.
Distance Trend line RZ | Trend line type
500 | NA=600.22-SD%?1° | 0.911 Power
1000 | NA=490.97-SD™*# | 0.782 Power
1500 | NA=467.12-SD?77 | 0.761 Power

Table 20 presents the curve fitting for Figure 38, where NA is the nozzle aperture and SD is the
spray diameter. In theory, the three curves are supposed to unite since both the camera field of view
and the spraying cone have a linear trajectory. We assume that the spray jet turbulence and air drag
affect the spray dispersion. By using the resulting curves for the different distances, the nozzle
aperture can be calculated after extracting the target diameter.
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The spraying distance in most commercial vineyards is between 500 and 1500 mm. In order to
correlate between the spraying distance and the nozzle aperture, an interpolation of the distance and

the nozzle aperture is applied.

7.5. Evaluating the ASD performance

An experiment was conducted to evaluate the performance of the ASD while implementing the
results of the previous experiment (Figure 38 and Table 20). Currently, the robotic sprayer is
designed to perform the spraying task in step mode (Figure 39): the robot travels a single step along
the vineyard row, stops, captures image from the field, sprays the targets, and moves another step
forward. The experiment is based on the same work procedure.

One of the secondary goals of this experiment was to provide insights regarding the overall work

procedure of the complete spraying system which will include the robot equipped with an ASD.
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Figure 39 — Robotic sprayer work procedure.
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7.5.1. Experimental setup

In the experiment the ASD was attached to the robotic sprayer and was operated similarly to the
robotic procedure. According to the robot work procedure (Figure 39), the robotic sprayer should
move in step mode along the vineyard row. To avoid path tracking control problems the robotic
sprayer was programmed to track a straight base line (red plastic strip 50 mm width) (Figure 41a).
The robot is programmed to travel 1.6 m in each step. The ASD is mounted perpendicular to the
robot’s travel direction and faces the target’s base (Figure 41a). The target’s base is a polyethylene
net (50 mesh), 11 m long, stretched between two anchoring poles, and positioned parallel to the base
line. The targets are attached to the target’s base and the center of the target is positioned 1.55 m
high. In order to ensure a single target per image, the targets were positioned at intervals of 1.6 m,
similar to the robot’s travel distance.

The targets are blue polyethylene round circles with varying diameters (300, 250, 230, 210, 190,
170, and 150 mm). To simplify the detection and classification of the targets, a red circle was
attached to the center of the main target. The diameter of the red circle was one-third of the blue

circle diameter.

The target detection algorithm was based on color thresholding and was implemented using Matlab
software equipped with the image processing toolbox. The algorithm works as follows:
1. Capture input RGB image (800x600) (Figure 40a),
2. Create three ratio-images, green/red, blue/red, blue/green (Figure 40b,c,d, respectively),
3. Threshold the ratio-images. The threshold value was set as the average image pixel value
multiplied by 1.5 (Figure 40e,f,g),
4. Merge (logical AND) the resulting binary images (Figure 40h),
5. Fill holes in the image using morphological operations (using Matlab command imfill) and
apply the removal of small clusters (<500) that are considered as noise (using Matlab
command bwareaopen) (Figure 40i).

71



The next steps were developed to distinguish between true and false targets and were applied to each

of the detected targets:

6.
7.
8.

Isolate the bounding box of the target (Figure 40j),

Convert the RGB image to HSV representation and isolate the hue and saturation channels,
Apply thresholds on the hue channel (with a scale of 0~1, hue>0.9 & hue<0.1) to extract the
red area (Figure 40k),

Count the number of red pixels and compare to the number of blue pixels. In theory, the
outcome ratio value should be 9; however, since the images are acquired in real world
conditions, the ratio allowed is according the following conditional statement:

blue + red
<—

5 <11 . If the conditional statement is true then the detected target is defined as a
re

7

true target, else, the detected target is noted as a false one (Figure 40I).

Following the detection process the program extracts the coordinates of the detected target’s center

and diameter in pixel units. These measures are used to control the sprayer.
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Figure 40 — Target detection procedure. The algorithm output image (I) shows the detected
target (red), the surrounding circle (light blue). The number in the circle represents the
diameter of the surrounding circle needed to cover the entire target.
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Figure 41 — Experiment configuration.
(a) Experiment scheme. (b) Field view of the experiment.

Similar to the previous experiment, a red water-soluble food dye (Florma red 696) was used as
pesticide replacement to simplify the detection of the spray deposition. Images were captured
immediately after spray deposit.

The sprayed area was evaluated both manually by measuring the sprayed area’s diameter
immediately after each spray, and by image processing of the images captured immediately after
each spray (Figure 42). The spray diameter was measured on the horizontal axis to avoid the effect
of the dripping. The use of the blue polyethylene along with the plastic net enabled to re-use the
same targets by washing them with pressurized water between experiments. This was important to

create identical conditions between experiments for reliable comparisons.
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Figure 42 — Image captured imediately after spraying.

7.5.2. Experimental design

The experiment included 12 repetitions of the robot traveling along the base line and spraying the
seven targets attached to the target base. Each target was sprayed for 2 s. All experiments were
conducted early morning. Measured wind speed was zero in all experiments (measured using

Skywatch Xplorer 1).

7.5.3. Experimental results

In addition to the captured images from each spray, a visual inspection was performed immediately
after the spray. The visual inspection revealed that each target was fully covered by the spray. The
experimental results are summarized in Figure 43. The results show constant increasing of the
sprayed diameter with the increment of the target size; however, the ratio between the sprayed
diameter and the target size decreases. This ratio can be addressed as the false detection ratio, and

according to Figure 43 this ratio decreases with the increase of the target size.
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Figure 43 — Experimental results. Each column represents the average sprayed diameters of
12 sprays (robot repetitions). The results standard deviations are shown on each column.
Secondary axis (right) measures the ratio between the sprayed diameter and the target size.
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8. INTEGRATIVE SITE-SPECIFIC SPRAYER EXPERIMENT

8.1. Overview

The following experiment was designed to demonstrate and evaluate the three main components of
the collaboration framework working in sync: human marking methods, levels of human-robot
collaboration, and the specific spraying device. For better experimental control, artificial targets
were used and robot navigation along the vineyard row was replaced by following red tape fixed to
the ground (see video of experiments in the thesis DVD \Integrative site specific sprayer
experiment\). By using artificial targets (Figure 47) we were able to ensure 100% detection rate of
the robot and control the FA rate. This was important so as to produce optimal and reproducible
experimental conditions for the human-robot spraying evaluation. Evaluation in real world
vineyards would introduce highly variable scenes with unpredictable detection and false alarm rates
which would have disabled systematic evaluation. Furthermore, experiments could not have been

repeated in identical conditions.

8.2. Experimental setup

As the human-robot collaboration framework suggests (Figure 16), the human was remotely located
at Ben-Gurion University of the Negev located in Beer-Sheva, Israel. The robot was located 100 km
from the human operator in Beit Dagan, Israel. The experiment consists of the robotic platform

operating in a step mode as described in Figure 44.

8.2.1. Robot side

The robotic platform was programed to follow a red base line (red plastic strip 50 mm width) (Figure
41a, Figure 45) that was fixed at a 1.6 m distance in parallel to the target’s base. During each step,
the robot travels 1.6 m to completely change the current frame point of view (POV). The ASD was
mounted to the robot, perpendicular to the robot’s travel direction, facing the target’s base (Figure
45). The target’s base was a 50 mesh, polyethylene net, 18 m length, 1.5 m height, mounted 0.5 m
from ground level (Figure 45). Fifty targets were randomly spread along the target’s base at least 20
cm apart, imitating grape clusters (Figure 45).

The targets were constructed from blue polyethylene plastic and were hand cut according to four
shape patterns as shown in Figure 46. The size of each target was measured using machine vision
algorithms (geometrical analysis was not possible due to the amorphous shape of the targets). The

targets sizes were: 623.7, 648.85, 718.63, 538.88 [cm?] corresponding to the target number in Figure
7



46 (the program codes for analysis and calculation of the targets’ sizes are included in the thesis

DVD \Target size calculation\).
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Figure 44 — Robotic sprayer work procedure.

In order to be as close as possible to commercial field conditions the experiment included a pre-
defined hit rate (in the shape of targets that the robot cannot detect) and pre-defined false alarm rate.
The targets were divided into two groups, 38 targets that can be detected by the robotic sprayer (red
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circle in the middle of the target, Figure 47a), and 12 targets that cannot be detected by the robotic
sprayer (yellow circle in the middle of the target, Figure 47b).

The developed target detection algorithm is similar to the target detection algorithm described in
section 7.5.1 and in Figure 40 with minor adaptation to enable detection of the yellow color. The
detection was based on Matlab, using the Matlab Image processing tool (included in the thesis DVD
\Artificial targets detection\). The pre-defined FA was added using the Matlab Image processing
tool. The mathematical morphology operation Dilation was used to expand the computer detected
target (Figure 48) (included in the thesis DVD \Adding FA\). Since each of the captured images is
unique in the sense of different number of targets, target orientation and position, the added FA is
different for each image. The average FA added was 17.3% (with standard deviation of 5.5) of the

entire image.
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Figure 45— Ri)bot following red strip and targets spread along plastic net. _
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Figure 48 — Adding FA.
(a) Original image. (b) Computer detected. (c) Computer detected with added FA.
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Using the ASD, the targets were sprayed with red water-soluble food dye (Florma red 696) (Figure
51). Each target was sprayed for 1 s and immedietely after the spraying operation stopped, an image
of the spray was captured and saved for post analysis (Figure 51 shows examples of captured targets

after the spraying operation).

8.2.2. Human operations

The human task is to mark the target area using one of the marking methods described in section 6.3

and according to the collaboration level being evaluated. The human was using a desk computer

equipped with a 19” screen (Figure 49). Each user was trained before the experiment with 30 images

according to the results described in section 6.6.

According to Figure 44, after each step the robot captured an image using the ASD camera and the

target detection process began according to the evaluated collaboration level:

Collaboration level 1: In this fully manual collaboration level, the captured image is sent directly to
the remote operator without any detection help from the robot. The remote
operator marks the targets and sends the marked frame back to the robot for
spraying.

Collaboration level 2: The captured frame is analyzed using the target detection algorithm by the
robot and sent to the remote operator as a recommendation about the
“whereabouts” of the targets in the frame. The remote operator marks the
target while assisting the robotic recommendation and sends the marked
frame back to the robot for spraying.

Collaboration level 3: Similar to Collaboration level 2, with the difference that the robot marks the
target and the remote operator supervises the detection (can add or remove
targets).

Collaboration level 4: Fully autonomous operation, the robot detects the targets using the target
detection algorithm and continues directly to the spraying operation without

human assistance.
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Figure 49 — Human marking targets from a remote computer located 100 km south of the
robot in Beer-Sheva, Israel.

8.2.3. Spray evaluation
The spray quality was evaluated using three methods:

1. Comparison between the computer-detected targets (Figure 50b) (all the targets — both red
and yellow points) and the marked area to spray (Figure 50c) — performance measures: Hit
and FA rates,

2. Comparison between the computer-detected targets (Figure 50b) and the area to be sprayed
(Figure 50d) (green circles in Figure 50d) — performance measures: Hit and FA rate,

3. Qualitative analysis of the sprayed target (Figure 51). Each sprayed target image was
presented to an expert and was marked on a 1 to 5 scale (Figure 51) — performance measure:
Hit rate.
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c d
Figure 50 — Evaluation documentation. (a) Captured image. (b) Computer detected. (c)
Human and robot combined marking. (d) Green circles represent the area to be sprayed.

5 — outstanding

k-

\

2 — unsatisfactory 1- poor
Figure 51 — Target spraying evaluation scale 5 (outstanding) = 1 (poor).

8.3. Experimental design

A group of 20 students, male and female, aged 25 to 40, participated in the experiment. The
participants were divided into two groups, one for each marking method (Constant Circle Diameter
and Free hand). Each participant practiced the three collaboration levels. For each collaboration
level the robot traveled a single time along the target base. The image switching time was set to 12

SecC.

83



For the fourth collaboration level the robot performed 10 repetitions where each included the robot
traveling along the target’s base with 1.6 [m] intervals, capturing the target’s frame, analyzing the
captured frame using the artificial target detection algorithm (detailed in section 7.5.1 and Figure
40) (included in the thesis DVD \Artificial targets detection\), and spraying toward each of the
detected targets.

8.4. Experimental results

Detailed results are summarized in Appendix C and in the thesis DVD \Final experiment

results\. Collaboration level 1 — fully manual. Collaboration level 2 — robot suggests, human approves
Collaboration level 3 — robot marks, human supervises. Collaboration kevel 4 — fully autonomous

Figure 52 and Collaboration level 1 — fully manual. Collaboration level 2 — robot suggests, human approves
Collaboration level 3 — robot marks, human supervises. Collaboration kevel 4 — fully autonomous

Figure 53 show the graphic representation of the experimental results, where the columns
“marking hit” and “marking FA” represent the hit rate and FA using evaluation method #1
(section 8.2.3), the columns “spray hit” and “spray FA” represent the hit rate and FA using
evaluation method #2 (section 8.2.3), and the spray evaluation represents the hit rate using

evaluation method #3 (section 8.2.3). Collaboration level 1 — fully manual. Collaboration level 2 — robot
suggests, human approves
Collaboration level 3 — robot marks, human supervises. Collaboration kevel 4 — fully autonomous

Figure 52 and Collaboration level 1 — fully manual. Collaboration level 2 — robot suggests, human approves
Collaboration level 3 — robot marks, human supervises. Collaboration kevel 4 — fully autonomous

Figure 53 also present the fully autonomous collaboration level 4 results, which are identical in both

figures.

The overall performance of the free hand marking method was better than the circle
by 2.8% on average. Hit rate was improved for all cases when using the free hand marking
(except for “spray evaluation” in collaboration level 2, robot suggests, human approves).
along with the improvement of the Hit rate, the FA measures increased by 4.5% on average,

implying more wasted spraying material. In both marking methods (Collaboration level 1 — fully
manual. Collaboration level 2 — robot suggests, human approves

Collaboration level 3 — robot marks, human supervises. Collaboration kevel 4 — fully autonomous

Figure 52, Collaboration level 1 — fully manual. Collaboration level 2 — robot suggests, human approves
Collaboration level 3 — robot marks, human supervises. Collaboration kevel 4 — fully autonomous

Figure 53) the Hit and FA rates increase with the collaboration level. The best Hit rate results
(91.3%) were achieved when using the free hand marking method with collaboration level 3 (robot
marks, human supervises).

Another parameter that should be considered is the number of sprays (Table 21). The number of
sprays also represents the number of detected targets sprayed where each target is sprayed once.
Since the number of targets in each repetition was 50 we can see that some false spraying occurs in
all the repetitions. One of the reasons that the number of sprays is higher while using the Free hand
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marking method is also due to the marking procedure. For future commercial use, we recommend
to filter out small objects in the marked image that due to their small size should not be considered
as targets to be sprayed.

Unlike the results reported in section 6.8.3 and presented in Figure 25 where the constant circle
diameter shows better performances compared to the free hand marking method, in this experiment
the free hand marking method showed a better hit rate for all of the collaboration levels. We assume
that the target’s shape had some influence on the different marking methods.

The artificial target detection algorithm was designed to detect 76% of the targets (38 targets
red circle in the middle among 50 targets in total). Collaboration level 4 (fully autonomous)

marking and spraying hit of ~69.5% (Collaboration level 1 — fully manual. Collaboration level 2 — robot
suggests, human approves

Collaboration level 3 — robot marks, human supervises. Collaboration kevel 4 — fully autonomous

Figure 52, Collaboration level 1 — fully manual. Collaboration level 2 — robot suggests, human approves
Collaboration level 3 — robot marks, human supervises. Collaboration kevel 4 — fully autonomous

Figure 53).
When there is high importance of low FA we recommend using the circles marking method with

collaboration level 1, i.e. fully manual human target marking.

Table 21 — Number of sprays.
Number of sprays

Marking method

Collaboration 1

Collaboration 2

Collaboration 3

Collaboration 4

Circles

57.5

55.0

67.0

Free hand

64.4

66.4

60.4

41.3
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Figure 52 — Experimental results for the circles marking method.
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9. SUMMARY, CONCLUSIONS, AND FUTURE WORK

9.1. Summary and conclusions

A full scale robot was developed for the task of pesticide spraying in vineyards. The robot
development included most of the mechanical, hardware, and software needed for the robot to
perform the spraying task including grape cluster detection algorithms, human-robot collaboration
framework, target marking interface for the remote human, sensors registration algorithm dedicated
for the agricultural domain, and a spraying device for accurate target spraying. All modules were
evaluated with real field data and were integrated into an operational system which was evaluated
in field conditions.

A full scale robotic platform was designed and built to serve as a research tool. The hybrid power
sources (two batteries 12v-100Ah combined with a 2500W power generator) enable the robotic
platform to work (and experiment) in the field for long time periods without the need for an external
power source. The robot kinematic design was proven to travel and maneuver well along commercial
vineyard terrain. For future robotic platforms designed to work in the field and based on electrical
motors, we recommend to install electrical motors with a planetary gear transmission instead of
worm gear transmission like the one installed in this work. One of the characteristics of worm gear
is a “self-lock”, when the input shaft (motor) is static, the output shaft behaves like a break (i.e., the
input-output of the worm gear is not bidirectional). In some applications the self-lock can be used
instead of braking, but when used in an experimental platform in the field (and even in commercial
use), in case of a failure, the platform cannot be dragged out of the field and a complicated operation
is then required to move the platform.

Although the focus of this thesis was not on the robot’s control it must be noted that significant
errors in tracking along the robot’s path can affect the precision of line-following and hence the
spray cone and target coverage. In this work this has been avoided by ensuring accurate path tracking
using the well detected red line.

With some adjustments, the robotic platform can be used for other tasks in vineyards such as weed
control, pruning, and harvesting. The robotic platform can also be used for tasks in other grove and
open field crops and orchards.

A spraying device capable of adjusting the spray diameter was designed, built, and attached to the

robotic platform. Much like the robotic platform, the spraying device was designed and built as an
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experimental tool with a strong commercial orientation. The suggested device and spraying method
show the ability to perform the spraying task efficiently and economically.

The overall spraying duration for a single artificial target was 11 s. This duration included general
software commands, communication between main software and peripherals (Matlab, Arduino),
machine vision, PTU repositioning, spraying nozzle aperture adjustment, spraying, and capture of
image post-spraying. The duration also included some software pauses located in critical points of
the software. These pauses were used to control the experiments and to verify that the ASD was
functioning as designed. The accumulated time of the pauses was 8 s and spray time was 2 s. By
eliminating the software pauses, the spraying time for a single target can be reduced to 3 s including
the 2 s spraying time. Further time reduction can be achieved by optimizing the machine vision
algorithms and the overall ASD managing software.

The system was remotely operated from a distance of 100km. Time delay was not an issue in the
experiments (0.05 sec to upload image from the robot to the remote user). As communication
hardware is expected to increase speed in future systems, performance will probably not be affected
even with increasing distances since we are dealing with single image transfer.

From the mechanical design aspect, we would suggest a more powerful (i.e., higher allowed payload)
PTU (e.g., FLIR D48E) than the one used (FLIR D46-17).

Grape cluster and foliage detection algorithms were developed to provide the robotic sprayer with
spraying positions. The algorithms were developed under a new concept that considered pesticide
reduction as the main optimization parameter. Furthermore, the farmer could select the task
objective (maximize hit rate or minimize false alarms). Three algorithms were developed, each
based on a different machine vision concept. The algorithms were designed to work autonomously
without human help or supervision. The algorithms’ detection results show approximately 91% hit
rate while minimizing the FA rate to 30%. The optimal algorithm (based on maximum hit rate and
minimum FA) was later used as the robot decision regarding the positions of the grape clusters while
applying the human-robot collaboration framework.

One of the options to improve the target detection results is by using multiple sensors and applying
a sensor fusion algorithm. When using several imagery sensors, each mounted at a different position
(location and orientation), it is essential to perform image registration. A distance-dependent image
registration method was developed specifically for the agricultural domain. Our approach was based
on pre-calibrating a distance-dependent TM between the sensors, and representing it in a compact

way by regressing the distance-dependent coefficients as distance-dependent functions. In our case
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these dependencies ended up linear, but more elaborate DDTM may be obtained in more
complicated situations. While the presented approach was developed for an agricultural environment
application, it can be applied to other applications that require registration of objects at varying
distances. The method can be used to register images from all imaging sensors providing the sensors
can detect common control points.

Another option to improve the target detection results is by introducing a human operator in the
target detection loop. A human-robot collaboration framework was developed specifically for the
remote target detection task. The framework included the development of four levels of human-
robot collaboration, human target marking interface, and three methods for the human to mark
targets remotely. The results from the learning experiment confirmed assumptions made prior to the
experiment. Hit rate is maximized and FA is minimized when the human has more time to mark the
targets in the image. Additionally, it takes time for the user to learn the system and training is
necessary. In our proposed system, learning occurred after presenting 30 images to the user.

The highest hit rate was measured while using the fully manual collaboration method with no robot
assistance (collaboration level 1). The users achieved an average of 94.3% hit rate with 15.1 false
alarms. However, this was achieved only for a long switching time of 15 sec (corresponding to a
robot velocity of 1 m/s). This collaboration level also yielded high FA. When using the faster
switching time, the best collaboration level is level 3 (robot marks, human supervises). The lowest
FA was measured while using collaboration level 2 (robot suggests, human approves) with the free
hand marking method for both image switching times.

The best marking method according to the ease of use questionnaire was the constant circle diameter.
An integrative experiment was conducted to demonstrate and evaluate the human marking methods,
levels of human-robot collaboration, and the specific spraying device, working in sync. During the
experiment, the robot traveled a total distance of 1044 [m] (16 users x 3 repetitions per user x 18
[m] for each repetition + 10 repetitions x 18 [m] for each repetition), captured 1108 frames and
sprayed 3378 targets. The experiment shows that despite the high complexity of such a robotic
system and framework, collaboration of a human in the spraying process is feasible. The
collaboration between the remote robot and the human showed that the hit and the false alarm rate
was improved (hit rate increased by 13.4% and false alarm rate decreased by 19.5%) compared to a
fully autonomous operation (collaboration level 4).

The results obtained can be used to develop a human-robot operational system by using the best

values obtained for the selected criterion (e.g., for highest hit rate use constant circle diameter, image
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switching time of 15 [sec], and fully manual collaboration level; for lowest false alarm rate use free
hand, image switching time of 15 [sec], and collaboration level 2).

Human-robot collaboration for real world spraying implies that humans will be asked to mark
thousands of images (km of vine rows). This is a repetitive task that will most likely cause fatigue
and boredom to the remote human collaborator resulting in decrease hit rate and decreased FA. The
maximum number of images presented to a user in this study were 150. Human performance
limitations over time should be investigated in future work as part of the human-robot collaborative

framework as detailed below.

9.2. Future work

Future work can be applied to most of the presented topics.

9.2.1. Robotic platform

The current robotic platform was based on electric motors. The choice of electric motors derived
from the ease of control and mechanical design simplicity that was mandatory for such an
experimental robotic platform. However, we believe that for such a robot to be accepted by the
agriculture industry, the robot should be based on hydraulics instead of an electrical power source.
The hydraulic power will provide the robot with the robustness and high wheel torque so needed in
agricultural vehicles especially in tough traction grounds.

Another aspect of the robotic platform that should take into consideration for future work is

continuous advance of the robotic platform along the row instead of the step mode.

9.2.2. Navigation algorithm and path tracking

A very basic navigation algorithm was designed and implemented allowing the robot to travel along
the vineyard row (included in the thesis DVD \vineyard navigation\). The navigation did not include
the ability to turn at the end of the row and this was done manually. A robust navigation system
should be developed specifically for the vineyard environment. It should probably be based on a
multi-sensory system (color camera, laser scanner, GPS, etc.). Another feature missing in the
navigation is the end of row turning that is mandatory for such an autonomous system.

Future work should also investigate the effect of path tracking errors on the spray cones and target

coverage.

9.2.3. Grape detection
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We assumed that a minor percentage of the grape clusters in the images were totally occluded by
leaves, branches, and other grape clusters. Future work may treat this subject by adding a wind
blower towards the foliage in order to expose the occluded clusters. However, it should be noticed
that such a wind blower may diverse the accurate spraying.

Alternatively, a different sensor can be employed to overcome the occluding elements (e.g., thermal
camera that is based on based on the temperature difference between the fruit and background. Since
the fruit absorbs more heat and radiates more heat in comparison with leaves and other parts of the
plant canopy, which allows for distinction between those plant materials with thermal imaging
(Gongal, Amatya, Karkee, Zhang and Lewis 2015). The human-robot collaboration framework
would not be affected since the sensory output would still be presented as images to the user.
Therefore, it could improve detection results due to better performance for detecting occluded fruit
(Gongal, Amatya, Karkee, Zhang and Lewis 2015). But, it must be noted that employing a thermal
sensor limits the operation to limited time slots along the day and is highly dependent on fruit size
(Gongal, Amatya, Karkee, Zhang and Lewis 2015).

9.2.4. Spraying device

While we were able to evaluate the possible pesticide reduction in an experiment that included
artificial targets, extensive field experimentation is needed to evaluate the pesticide reduction along
with the evaluation of the pesticide application effectiveness. The field experiments are crucial to
introduce the spraying device to the agricultural industry.

9.2.5. Image registration

A possible following work can apply the registration method using two-dimensional distance
sensors (e.g., Kinect sensor, Time of Flight camera, 3D laser scanner) instead of the one-dimensional
distance sensor used in this work. The use of a two-dimensional distance sensor is expected to yield

higher accuracy.

9.2.6. Human-robot collaboration
Future work in the field of human-robot collaboration can focus on several human interaction topics
such as:

1. Investigate the influence of expertise during the robot operation,

2. Investigate the user’s perception of the field environment during remote supervision,

3. Compare different marking aids such as: computer touch screen, tablet, smart-phone,
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4. Evaluating the human detection skills without time limitations.
Additionally, studies on human performance and related issues such as fatigue, monitoring,
workload and attention should be investigated. This is especially important if the human operator

will perform over extended periods of time which might limit performance.
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Appendices

Appendix A. Kinematic model of the robotic platform.
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YeL 1 -(1/2) wSin[d]+y
W21 2 wosiel
X W Cos[6] + x
Back RightWheeI:{ BR}:AYW 0 :{ _ }
YBRr 1/2 wSin[@]+y
X “WIZ)E 12) wCos[8 + g]- LiSine] - L,Sin[o+ o] + x
- +¢]- - +ol+
FrontLeft Wheel=| "~ |=Ay,| 0 |= ) PIm 2 v
YEL - (1/2) wSin[@ + @]+ L,Cos[0] + L,Cos[0 + ] + y
X WI2) 12 wCos[e + - LSin[e]- L,Sin0 + o] + x
+¢]- - +o]+
FrontRightWheeI:{ FR}:AOy 0 ={ . PImm 2 4 }
YEr 1/2 wSin[0 + ¢]+ L,Cos[0] + L,Cos[6 + p] + y

Back Left Speed = XeL | _ >'<+1/2WSin[¢9]9:
VoL y-1/2 w Cos[6] &

Back RightSpeed = Xer | ?"UZWS'H[@]@.
Yer y+1/2wCos[6]6

y +1/2(-(wCos[8 + ¢] + 2L,Sin[6] + 2L,Sin[0 + 9])0 - (WCos[0 + 9] + 2L, Sin[@+ @])@)

Front Left Speed = |:);FL1| _ {1/2 (2 X+ (-2L,C0s[0] - 2 L,COs[ + p] + WSin[ + ¢]) 6 + (-2L ,Cos[0 + ¢] + W Sin[6 + go])gp):|
FL

FrontRightSpeed = Xer | X +1/2(-(2L,Cos[A] + 2L ,Cos[0 + ¢] + WSin[6 + ¢]) 8 - (2L ,Cos[ + p] + WSIn[6 + 1) p)
Yrr 1/2(2y + (WC0S[0 + ¢] - 2L,Sin[6] - 2L,Sin[6 + ¢]) & + (WCO0s[6 + ¢] - 2L,Sin[0 + p])p)
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X .
Back Left Speed = Rotl{yB" } =-Cos[d] x + Sin[#] (y - wCos[£]0)
BL

Back RightSpeed = Ro'[lDBR } =- Cos[@] X + Sin[] (Y + wCos[6]6)
BR

Front Left Speed = Rotz{xyFL } = -Cos[0 + @]X +Sin[0 + ¢] Y + L2 Cos[2 (6 + ¢)] 6 + L1Cos[26 + ¢]6 -
FL
1/2 WSin[2 (0 + )] 6+ L2 Cos[2 (0 + ¢)] ¢~ 1/2 WSin[2 (6 + p)] ¢

Front RightSpeed = Rot{ym } = -Cos[0 + @]% +Sin[0 + ¢] Y + L2 Cos[2 (8 + ¢)] 6 + L1Cos[260 + ¢]0 +
FR

1/2 wSin[2 (0 + ¢)] 8+ L2 Cos[2 (6 + p)] ¢ +1/12 wSin[2 (8 + )]
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Appendix B. Workload questionnaire

In order to avoid confusion among the experiments’ participants, the workload questionnaire was

presented in the Hebrew language.

[In'O NIV'Y - [I'NY

NTNA -5 ,N0YIN DTN -1 AWRD NN'RNN DN NAIYNN DX QPN N7RY 70 112y .NI7RY 190N 7197

.O'XNnNn DN NI7RYUN 7V N1y .TIKA NN

=Viap 2072 21a'y DYy NNLVNN NX D'2N0N DAY NU'YN IAY

?2uI'w? N1 NN ANt No'wN TN TR L1

TIND DAY DTN 5 4 3 2 1 hoym nTn

?nn X7 /NN nn

?T¥1 Mwn N NN

?NNUVNN NX NOYI NINT? NN7¥NY N/AVIN A/AX DTN TR .2

TINN DA NTN S 4 3 2 1 noym nTn
-(1"!1 IY.D) n'yuoin T2 NNLUnNa 97'a NX 0'J00N NAY NL'YN 11y
?2uIm'w? N7 NN ANt nV'wA AT TR .3

TINN DAY DTN 5 4 3 2 1 noyvim NN

?nnn X7 /nin nnnn

7781 MYn NN Nn

?NNLVNN DX NOY7I NINT? NN7¥NY N/AvIN /X DTN ITKa 4

TINN DAY DTN 5 4 3 2 1 noyin NN

-N1NYn 1017 NO9'"IN NIYXNNA NNLNN NKX D201 DAY V'Y IAY

?2uI'w? NP1 AN AN AV'YA ATN TR L5
107



108

TIND DAY DTN 5 4 3 2 1 noyin NN

?nn X7 /N n'nnn

?T¥1 MwN N NN

?NNUVNN NX NOYI NINT? NN7¥NY N/AVIN /AR DTN TR .6

TINN DAY DTN 5 4 3 2 1 noyvin NN

?0N'KNN NN DRIMNN N97Nn NN TN IrKa L7

TIND DAY DTN 5 4 3 2 1 hoyvm nTn

?vIm 777 nyron NN AT N9OIN | NYT? OXRN




Appendix C. Integrative site-specific sprayer experiment — detailed results.

average number os sprayes FA FA

collaboration 1 collaboration 2 collaboration 3 spra added | added

user marl'(mg spl:ay marking | spray | num of marlfmg spr'av marking | spray | num of mar!(mg spltay marking | spray | num of col1 | col2 | col3 | col1 | col2 |col3 by the | by the

name hit hit FA FA | targets hit hit FA FA | targets hit hit FA FA | targets compu | compu
roee 87.2 93.5 2.7 10.3 3.4 77.5 83.2 2.5 9.1 2.8 80.3 84.6 8.1 19.4 4.0 4.1 3.6 3.4 62.0 540 [76.0| 17.8 6.1
asaf 79.3 84.7 3.9 9.8 3.1 89.7 93.2 6.5 15.7 3.2 78.4 84.4 12.3 24.9 4.4 3.7 3.8 3.2 55.0 580 [79.0| 17.9 7.2
[7,) ben 64.8 72.1 12 5.4 2.7 76.1 80.4 4.1 10.6 2.8 86.8 87.3 311 49.1 3.2 4.4 4.4 4.1 51.0 50.0 [57.0] 182 7.7
GJ guy 84.2 87.9 7.2 16.8 3.0 79.1 82.1 5.5 13.4 2.7 84.6 88.7 12.4 23.9 4.2 4.2 4.6 3.8 56.0 49.0 |75.0 | 19.7 6.5
— liad 82.1 85.2 35 9.7 32 813 82.6 9.6 18.6 28 89.1 89.3 30.6 484 32 4.1 4.2 4.2 64.0 51.0 [580] 17.6 5.0
(@) oded 74.2 80.9 2.8 7.7 33 789 8.9 10.2 191 31 85.8 86.7 21.0 36.3 33 4.2 43 3.8 60.0 55.0 [59.0] 17.1 4.9
— shay 61.2 66.3 4.4 9.4 2.8 78.6 84.5 58 147 28 84.0 85.3 18.6 35.0 35 35 3.8 34 49.0 510 [63.0]| 16.0 7.5
¢ G yossi 88.0 94.2 4.9 113 3.4 87.8 93.7 6.6 14.4 3.4 94.3 96.6 17.4 323 3.6 3.7 4.0 43 63.0 720 [69.0] 16.8 4.1
average 77.6 83.1 3.8 10.1 31 811 853 6.4 14.5 3.0 85.4 87.9 189 33.7 37 4.0 4.1 3.8 57.5 550 [67.0] 17.6 6.1
std 10.1 9.8 18 33 0.3 5.0 51 2.6 35 0.2 5.0 4.0 8.4 11.0 0.5 0.3 03 0.4 6.2 5.9 7.2 19 0.7
average number os sprayes FA FA

collaboration 1 collaboration 2 collaboration 3 spray evaluation dded | added

user marlflng spr.ay marking | spray | num of mar!ung spr.ay marking | spray | num of mar!(mg spr.ay marking | spray | num of col1 | col2 | col3 | col1 | col2 |col3 by the | by the

name hit hit FA FA | targets hit hit FA FA | targets hit hit FA FA | targets compu | compu
ben harel 85.7 90.5 51 13.1 3.9 91.7 96.1 8.9 18.1 4.0 95.7 97.5 26.5 40.4 3.5 4.1 4.4 4.6 71.0 720 [67.0] 15.0 4.1
-c dror 86.7 92.5 37 9.2 3.6 84.3 90.1 23 6.7 33 93.4 94.6 29.2 49.3 3.5 4.3 3.9 4.4 65.0 600 [63.0] 17.1 5.1
C inbar 63.4 77.6 0.9 4.0 3.5 58.8 77.9 0.4 3.2 3.4 75.6 817 22.6 313 37 3.8 3.8 43 63.0 65.0 [29.0| 147 4.0
(-U matan 69.3 79.9 29 12.6 29 85.3 93.7 10.2 26.6 37 94.0 96.7 35.9 52.4 3.5 3.2 3.6 4.1 53.0 63.0 [63.0| 183 5.4
_C ofir 85.1 90.2 23 8.6 3.3 85.1 89.6 2.8 9.0 3.4 89.9 91.9 314 47.6 3.2 4.0 3.8 3.6 62.0 640 [59.0| 17.8 5.9
roy 82.6 87.2 8.7 15.6 3.8 87.5 93.4 15.5 27.6 4.2 92.9 94.5 34.2 54.8 3.7 4.2 4.1 4.3 69.0 75.0 [66.0| 16.1 4.7
m sridatta 82.4 90.8 11.2 29.6 3.9 82.8 88.7 11.5 21.8 4.0 94.3 95.7 36.4 70.0 3.9 4.0 4.1 4.4 70.0 720 [70.0]| 17.1 4.0
GJ yarden 79.2 87.5 17 6.6 33 79.7 86.8 2.8 81 33 94.5 96.0 34.8 511 37 4.2 43 4.2 62.0 60.0 [66.0| 19.3 5.4

—

G average 79.3 87.0 4.6 124 35 819 89.5 6.8 15.2 3.7 913 93.6 314 49.6 3.6 4.0 4.0 4.2 64.4 66.4 [604| 16.9 4.8
std 85 5.4 3.6 7.9 0.4 9.9 5.6 5.4 9.6 03 6.6 51 4.9 11.2 0.2 0.3 03 0.3 6.9 7.1 6.5 18 0.5
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Appendix D. Table of contents of thesis DVD

Each bullet represent a library in the thesis DVD:
e Adding FA
¢ Artificial targets detection
e Explanation slideshow
e Foliage and Grapes Detection Algorithms
e Human-Robot Collaboration
e Image registration files
e Integrative site specific sprayer experiment
e Papers
e Robot control software
e Robotic platform CAD files
e Spraying Simulations
e Target size calculation

e vineyard navigation
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8PN
TPNNN MV ¥

NI PRIV OWNN YANYA YW NIV MY DIW 112y DIWTN DY) PNV MM NTPHNN 1N Ny
L0792 DY M52 9951 MNYPNA 1727 21N DIDM NIWN NI TNYY ML

DM IWN 912 YTON 35% D 30% P2 .7IDWN MNOPNNN TI9) PN PON N NI2TN MIMINT WIN'Wn
D»NI9N NI2TN SIMNY MIND .97 MIDINA YWD T DY YINnD D912 DY2310) MYNNN INSIND
D20y 79952 1927 YIIN DI MMITITHN MLV .1N12X2A0DY DTRD DNIDN) DYDY DN ,NNITINN MINYPND
DTN 12 191919 DIDM) M NVIN 2) DOIN T DY SNTIPI 19INI NMITVN DOINI DYTIN TNNY TONY DTN MDD
MINY .NPXID MIVHNA MTPNNN NDID ROY 25515 19N DIDMN NN DYMN WX DDIN NVPIVA NN
9270 >IIND NVN PYTY DTRD (VPIVY PNX NV NIIYNI TN NI NIDN) NI SYSNNI VINIWN

LDTRN NMINYIAY DIDDN IWN DIDN

TPNANDY MNMP VY ,NI2TH 11NN MXIPNN MIN NNNND SYNNN PIDD NMMVY NPVIAT NPNDNOV
DXNNDY NI2TN MDIN VIV MND NN NPNANY 9157 Y0121 DOIN .N2220N DY NIATHN MIMIN NYOVN NN
.I2TNN N2W TONNA NIATN MININD DTRN NOWN NN

DIDMN NIVNN NPT ,OVYTHIN TIIND VIAN VIV : MDOWN NN VIDYD NPSINKD VI DY DIDMIN NHOWN
DD NIVNN NPT, MNINND NMDWNN NN XNV NTPHRNN I NTIAY .NIVNN

99952 NI2TN YININ DIDM NWN IV TIINY VIAI-DTN NI PNV NN NN NN N NTIAY NILVN
NOIYN MINS DD DIDMD NNINNNN NPDIT) NPVIT NOIWN NNIY PN NPNIDN IPNNRN NTVY DY
NN GMVYNI YYD DTV VI DIPHNN PNIND OTRD NAY NPNYN MM ,MYY) DY MIDUN ND
NPT TN VINY OVIN YWHNYN P2 DDW NIDY .PMITH DIDM OYNNIN NNADY SNTIPIN DIDMN NWI
PNININA YW TIN MYIOND DTNV YOI, N0V NPMITH MY NIIWND DITND NWY DXV MIOWUN
0N PIN .NNNYNI MM NPT MNOWN OY TTHNNND NONDN 1PIN DT NON NIIWYN .V DTRN DY
NN PN ,DIDMN NVRND OTRD NN PPXNIND NDDON NPN VINID OTRD P2 N2 PIMY NOWN SV

.NIVNN DY POYTI OINTIPI DIDM YT HY NNT 1727 1IN DY SMND NODIND MTIN 12°202 NYNIN

MY

NM PAIN WHRNWN DY IWPNY N9IDN NYYD MHNWN 1P Y2 DIV 1PNNI DTN MVIA NI
YRNWNRN T YY MIVHRN NIDPDY MOOY INMO DN INM VIANY DTN P2 N9WS NOIY MOV NN
SUNND

DYAPYNN DMNINN DININ DY NN NTY D NVIN TNXY APNN 2935 NNMO IROPN NPV NIIWN
YN MNT NNV SNYN M2 VIAN 297 . TTHINNND IPNAPND NVY >TPNY DIDM VI DN ININD NN
MY NN NNPNAVY D 3P 300 1N NNV DD DY NONYN I JTIND I2NHD NITYA 11122 MHANNH
NININD OYNNN 952 NTMNND NPVIAIN NIIWNN DID) D35 MPYS 12INN YONYN YN T DI TN 000
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MNYMN NPT MNDNN) DMWY DNIYPNT NV, MO0, TON,AUNN , NI ,NNIYIND DIWITT IUN MIDINM
TN 2N TIIRD NOIWNN VIV TN VIAIN NAY ITIV IDINI NMD OVNPP T .(PNIN

NOMNNN YN MIYTN NDAN NNN INT DMININIIND IININ NI NNDYI D22IY MDDWUN NI INNININ
NPT OMNMIMINON DYDY .DNNIND TPNIMVN VINID MYNI TOVNIID NIATN YIDINT NDNNNN DINKD
MNNN VO NIYA NN DIIMINONRN .OIIN INDY NNPIY T2 OMINOX NMO GONY INMO MNOUN
MIIMIMNON .INDYN NN PIARNDY PIPN YIAND NPTIN DY DDA ANDYN NMT DMINION OINDN DI ININY

, D91 INDY PaY DY DI1DWN P2 (edge detection) M) 1929 571210 : DY DOIANN DY MMDUN NN

MDY PAY DY DIDUN PA D11 NYIAN IXNYM DMVNIY DY 19 990N2 WIOY TN MLYYNN Y
7 )IDON HINK NN YD NN HINK NN DDPHY PO TIN NN DINMININD

DO HY NYIYNN NN TN INMHD NPNIIN NPVIAT NN PAY OYNNR WHNYN P2 NI NNOY MOIY
MLXYN NIIWNN DY NPHHIN NYAYNN DY NN IDINK DY DXV MDIDWUNR NMTD NN SWNN YHNYN
21Y) MVINTIN NIIVNANNI PNIN DPINK TYN IYNN YANIVN YT HY MIVN N0 MO UIZW 15D INMaY
DTND P2 NN NIY JDIND MLV YIIN INMI ,qONA (TOYAIN T MINWN TVIPI NDON IR VP2
MIMLIN VI NP DTR-VIYNND VI, V0NN DTR-YPDNN VI ,POVITND T) VAN PAY PN
TIN 0D NIY NN VIAID OTRN PA NDIVIN GPY MOLIWI NITVNN PO MVLIVN NNX DI (PLIVND
MIVHN NDPD MLIY NN TIXY DY NMD AYNHD DTN PYNN .DMINDN DI 1IDINY NNNNI YIDIY
MYXVUN NPNIAD 1D NTIYNI MVLIYN N1NIY WDV PYNNN DI DTINRD P2 NN PNIPY NMIVINY

N ONIN2 MHDN TONNI

T2 NIVH VIV PN NM (D22YN JIDWK) NIVNN 2970 PXITH 19IND NIATNN YN DI TNKD
N1 NOYA DIDM NS, MNYN DTIN NYIAP XD NN MDY MIVN PN (D22IYN MNDYN) NITVNNIY N1
TN NIV DY KON MDD TNXY NN NPXIDN NIVNY DIDMIN NN NNRNN TNXD NXINI NN NPV
DIDM 1M .NIVNN TVIP A DIDMN TVIP NPV INN JPNNN DY YDI0IN PPINN AN DIDM DINDIY

YTY DY DIDMN TVIP NN MVN |, YN 19N DDA, 000N NWN NI IWN (AYHSS 16) mnon
DY DD TIT 12INN NN YK 1PN DIDMIN PNND YR NN DDA .NDY02D DN NN YN 1D
TNND) TNYAN TORVLIPT NIONN HDI1D DIV JPNN ,GONA SONITIN INPMI DY ININK TIUN TYN VIND
JYUNIY NIVNN DY 1P DXINMNI INON M) NN NNAN DY 3N MIMX NI PNIN JWIN ,(MIVNN DN
NTPanY (PTU) NNN TITX NTNOY ¥2IPN 1PNND .(NIVNHN DY + 29X HAPNN YN NWNI YN AXIN TNN
N DOOY DD 190N WX DIDNMN JPNN OYINID NIIYN TIXD .NIVNN 2957 DIDMIN NS NN DD
NN DY PNV DIDMN TVIP NIIWND MO ,DIDMN NI NNANY 7IYPNFD DIDMN NPXAD NPNIY

.MINYN T0IP MZY2 MIVH DIDM JPNNN NP NN JMA TYUN NI M7 YN DY IIONTIN

112



09”

T Y MIVNN PO MLV, MDY DXIYN MNDWYR NPT INNININ : NIIWN TIXY WA DD 190N
DNIVN .N2IDN IIWNN NDMN PIITHN DIDMN JPNN ,0INTY OTRN P2 NDWIN PNIPY MNI PYNR YHNYND
MNIND IWARD DI DIITN DININA MVIAIN NIIWNA DMNY DIVINON TIVNY 71PN DMDNN DY MIPIVN
DMV DXVININ NN TN WY TUN DMINDN DD MIWN MNNN VO MNN T TN OINND NTYN
POVIIN HINYNN DY

NOIWNN HY DMIPYY D3390 VDY DY NNXTN NN THXD Y12 NOPVIANN NIIYNN DY D10 DIDM ND)
-DTX N2 NIMY NMINT,PMIN SYNX YHNWN YT DY MIVNN NNDD : DINOND) 22I1WN2 OXTAY MO
NPMONIN DIV NMIVN YINY NYYI NDNI 1N NIV NIV NVIYY TNXD .PMTH DIDM JPNN) VIAN
DYTN VIV NN 2PY VAN, DY DI THIND VIAIN NN VINY DIPNAY (DMFHN DY MINOUN NNWD)
X YNNYN DY M 3 X DOWNRNWN 16) /N 1044 DY NS5O 19T 92y VAN NDMIN TONN YPIPY THNINY
.MVN 3378 YODIYN 1INV NN 1108 1N (NN Y25 /1D 18 X NPMNVLIN NN 10 + NN Do 0 18
YIWON PN PONNI DTIRD NNV ,THPAVNM NPVIATN NIIWNN TV NN NI2DNNIN MINDY IXIN MONN
17092 DY PHINK YD NIXIN VI DTN P2 NDIYON NINY .JOID N MIVNN NI HOYINI NN NYYN GN)
DIDM NNWYY (19.5% 2 NN AN DIDM MHINNY 13.4% 2 1DV NYNON OHINK) 1INV 1N DIDM SHINNY

(DTN MIAIYNN ROHY) MNMLIN

MINYIN
INIYV) DY TNIIDUN 252 O ININ

9127 YINDIOPNIN NN HINK YD ININ DY MDDUN NN DNIMININRD VIOV DY DIVINIIN NN TIDY
Y OHNDIOPNM OHNDIPNN OV NN AT .30% 2 NI2TN DN VIDOWN NNNON TN 91% Y yand
M2PDYN DX MNTD 2WNNN N2I1DD MONMPNN DN MXXIN .INXNNA NIV 1.43 1 0.65 7N DINNININD
NN TONNA DTRN A0 NTVNN NPT NND> NDY TNXD NN TONNL DTN MIAIWNN XOD DXYN

NN PNYND

D12)I-OTN IIWO IV
MINN AWND PYNNI NORN YRNWHRNY DNIND NNN TINN MIVN 0D PYNna vindws Nmnon 79NN

N93NN (NYITHIN MNHBN NIND) TN PIT TYHN NN N0 .90% N 97 NN MY MV PDIDY NI
VIOV NTNYN TONN .(90%) DIWITIN NN HOVINK 479 VNN WHNWNN NN N> NN 30 YW 11100 1D
TUNNA DVNONY DD WIN NDINN 955 92N MIVHN NP SPYNHNI

IDY AT INY Y DOVNNYNID TYUNDI DIAPNND T N NPT NN NPT HINN I ININ NDOION MOLIY MO
N2 N2WH NIOY NNI) INIYNRIN VI-DTN N2IWON NNOY NN YIDdIYI (UNIND NINIY 9D) MIVNI NN
94.3% 12N NOXIY INPA M NPT HINX,(AVNND MAIYNN XID MIVNN HNDPDI NVONN DYDY ¥ DTRD
DINN.TNN D 1NOD MMV 15 OY YI12P T0IP D1Y PNIION NVIWIA VIIY TIN (15.1% DY 91N MY HINK DY)
.IN 9D YI0Y NIV 15) TOPWIN T )10 NVIVA WINY TIN 10.1% 1PN NOXIY TNV TN I NN
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D2 NNON XY 1T NVOW ,MINKRD )IDON MOLIY DY NNMVNN DI NNRIN XD NOPIN )IDON NOVIVY NI
J01N-DTR NI NNOY MINI DY TYNN

VIDY TIN DAPNN ,92.66% ,9N12 DXN2IN NN OHINNK 2D NI VIAT-DTX NDIVON PNV DN NINYIN
TN LMD PINKY POIND 919N NP DTRM NVN PIDN VIATN NI NNT) NVOVN NDWS NNV NN
,AN1A DYINIIN AN PRI ODNN NPV 15 DY NI0N NDID IO MR VP DINY NIYON NVLIWI VIV
DTNM MIVNN MMPAI DY DNN VIN N NNT) NNIYN N2WI NPV NN VINOY TN DAPNN ,2.71%

VIV 15 DV NNNN 9N IV VN T IO NVIVA VIDY TIN L (10D NN VONN

21710 17700 OID15 )P0

NN INNNN OINRDD WP IRIN NONN .[INA] 20 DY NP NARWN YND NNN YT DIDMN ININ NPYAD N

flow rate = 6-107° - nozzle aperture + 0.0519 [é] : DYDMN N NNAN 2D NPYADN P WP

95 DOV MIVNN DY TPONIV NN YD RN MIVNN TVIP MY TIN PPITHN DIDMIN NPNIAY ND”N
TN NIVRN IIP NITHIN DY 5T DIDMIN NN I ININ NIRXIND .NI2TNN IDIN VINN 1IN IDID MIVNHN
9T NIVNRNY DI TIPY ANON DIDM DN NIX INMN T DY T NIVNN IVIPI DIDMN IVIP P2 DN

I 0)o>7 NNoN

TVIP DY 211Y 1NIDN NVIW IWRND NIV 1PN TPWIN T NP0 NVIWA YINOY TIN MO MINSIN Y9 19183
NN LYNY) YN T NRXD NVLIVA YINXW NWY) TUND DMIPNI 992 NP 210 N NN HINN WIAP
;MY AT DIDM ONNNI NMIY 19K NI ONNNRD NDOWN DY TN> .(MNMIVN N9IYON NIPY NNI2 DIDMN
SHINK,TPYIN T NP TP DY S10Y ,NNIY NP0 MY SNYA .NN2TN XINDINT TNV WINW TN NUY)
NI ONNN MXNIN .VINTY DTN PA NDIWON NIPY NPT INIYN DY INND AT PO SHINK DY NN

JPWHYN N9 NIPY NN IPYIN T N0 NVWA WY TN YaApnn ,93.6% ,91012 MA0N
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019°0

NN YNID N NN TPVIAIN NN .NINDM NN ,NNDIN DTN NANWN DIDMY NPVIIT NOIWN
2A5YH DIDMY NPVIAT NIIWN DY NN DX NNNN I NTIAY DINDN DI DIDM VIAID MXINN MDOWNN
W9 PMY HY NV MOLIY NNN NTVNN PNDPD NIV PN SYNN YHNYND

07002 VINI-OTN NIV NIOWYH THPNYNN DY AIRDHD NPONSPND NN NN I NTIAY DY NPV NNYIND
NN DN MNY MLV 191 NNY DI NOPY NN NN NTIAYN TONNA .09 DX2IY MDDYN DIDMD
PYYTN DIDMD PN MIXN NPN I NTIAY HY NI0N NN .OIDMD MIVHN NN YIDY SWNIRD WHNYNID
N DTIYN PNV DINTM MINIIND NNIDY MTVNN Y990 PYITH DIDM DY TWAND TUN YOPHD)
Ay, NOTI) NPOPOIVIND MNSIND DWW TIN NPV VINI-DTN MDY MM TN wHvd N
N2V NNOPY NN DMWY 15 S 1NN NN 10T ,aP T0IPA DINY NDID NVIYWL YINOY DX NPT IINKN
N2 NIY NN NPIV 15 DY NN PPN 1AT,7PWIN T2 YINOYW 0251103 9100 N0 OHNN NIY ,INYNI

(M

PNY DY NTI2T DTN NADWN MINDNI NP1 NOIYHN NINAY DTN 1T ITIAYN PONIN DI DMNPN NN
D229 NI2TN MIMIND NOOWN NYNIN DY DTN NINYIAY DTN NNMN N0

MY, NAVNMND NN, NNNN TIDY ,VINV-DTR NI NPV PRIPN N, TIROPN NOTIN : HNDN MM
DYDY, DIDMY VI, NPMTH MNOPN ,NIATN IMN ,DYOPMIIN
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VIDYY NVPITH NTIAY NVYID OY IPNNN T2IIN NINKN

(120 NIN) : DN N/PNNND NV DINND MIN

.D/NNIN NRND ONODPY NOTVTNN NIY RININD NNYL NN DR ONIDN X

N/TA20 dXNVN NNPNN YIPNN 119 11 13 NIV D530 >y 1IN0 MmN X

[Piala)

IOV NY LYY ,DXINN DY NNV Y19 RINY MIPNN N DY) NTaya _ X
TN PNMIN DY NINKN NN NINND T 290 1P NTIAY NNMN
.DNNOONI NI DT DY NIVIRY ,IPNND YaMmY

POV NI /TNONN OV 20.6.2016 TIRN

i

Va miaxsaln
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YTIR DY 79199 NOYTNA NNYYI NTIAYN
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